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Abstract. We describe a scalable incomplete boundedness test for the commu-
nication buffers in UML RT models. UML RT is a variant of the UML modeling
language, tailored to describing asynchronous concurrent embedded systems. We
reduce UML RT models to systems of communicating finite state machines (CF-
SMs). We propose a series of further abstractions that leaves us with a system of
linear inequalities. Those represent the message sending and receiving effect that
the control flow cycles of every process have on the overall message buffer. The
test tries to establish the existence of a linear combination of the effect vectors
so that at least one message can occur an unbounded number of times. We dis-
cuss the complexity of this test and present experimental results using the IBOC
system that we are implementing. Scalability of the test is in part due to the fact
that it is polynomial for the type of sparse control flow graphs that are derived
from UML RT models. Also, the analysis is local, i.e., it avoids the combinatorial
state space explosion due to concurrency of the models. We also present a method
to derive upper bound estimates for the maximal occupancy of each individual
message buffer. While we focus on the analysis of UML RT models, the analysis
can directly be applied to any type of CFSM models.

1 Introduction

The unboundedness of the communication channels in a communicating finite state ma-
chine (CFSM) model can have several negative effects. First, if the model represents
a software design, the unboundedness of one or more of the communication channels
hints at a possible design fault. For instance, the overflow of a communication buffer can
have equally negative ramifications on the sanity of a system as, say, an overflow of the
program heap due to inadequate object allocation and deallocation. Of course, unbound-
edness of a buffer can also be due to the environment, e.g., if it is flooded with requests
from the outside. In this case, it is important to determine whether the unboundedness
of certain buffers is only due to external flooding or to internal design flaws. Finally,
buffers with unbounded capacity impede automated finite state analyzability since they
induce an infinite state space that renders state space exploration incomplete in finite
time.

In spite of the potential unboundedness of the buffers in CFSM systems one com-
monly observes that for many actual CFSM models the buffer occupancy is bounded by
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some small constant k. This is not surprising since, as we argue above, the unbounded
growth of the buffers that are typically employed to implement communication chan-
nels is an undesired property of the system. If k-boundedness is proven, then one can
safely replace the unbounded message buffers by k-bounded message buffers without
changing the behavior of the system. Ideally, one wants to find individual bounds k; for
every buffer B;. A system with k-bounded buffers is a finite-state system, modulo any
remaining infinity due to data.

Practitioners usually notice the k-boundedness of a system either by manual inspec-
tion of the code (for small examples), or by running random simulations. Both these
methods are not reliable and do no scale. The objective of our paper is to present algo-
rithms that are capable of establishing the boundedness of CFSM models in an automated
fashion. In their seminal paper [8], Brand and Zafiropulo showed that for CFSM sys-
tems with unbounded buffers many interesting properties, including reachability and
boundedness, are undecidable. Consequently, the boundedness analysis that we propose
in this paper is inevitably an incomplete test. We use an over-approximation of CFSMs
for which boundedness is decidable and for which bounds on the buffer length can be
computed. By the very nature of over-approximations, not every bounded CFSM can be
detected as such by this method and the obtained bounds are not necessarily optimal.
However, the computed bounds are certainly upper bounds, which is sufficient to make
the system analyzable by finite-state verification methods.

While our results apply to the whole class of CFSM systems, in this paper we are
interested in a particular instance of this paradigm. Variants of CFSMs form the foun-
dation of many object-oriented modeling techniques for concurrent, reactive systems.
We will focus on the modeling notation UML RT [28]. UML RT is an integral part of
the current version 2.0 of the Unified Modeling Language (UML) [26]. UML RT enjoys
widespread use in the design of asynchronous distributed embedded systems [16,25],
and as an architectural description language [4]. Our interest in boundedness analysis for
UML RT models is partly due to the availability of a commercial CASE tool supporting
this modeling language. The Rational Rose RealTime tool suite, a direct successor to the
ObjecTime Developer toolset [20], permits the graphical editing, interactive simulation
and automated target platform implementation of UML RT models.

As we alluded to above, obtaining a boundedness result for a given UML RT model
provides at least two benefits. First, it is an assurance of the well-formedness of the inter-
object communication mechanism in the model. Second, the boundedness property of
an UML RT model facilitates the translation of the model to a finite state verification
tool such as the model checker SPIN [17]. SPIN requires all communication channels
to have finite, compile-time known capacity limits. Having to commit to a specific
channel capacity at modeling time may be undesirable. On the other hand, the fact that
the boundedness of the UML RT model has been proven means that the designer can
completely verify properties for models that are bounded by a sufficiently large buffer
capacity limit. As we will explain later, the estimation of an actual upper bound is more
intricate to obtain than the boundedness result, but we will present overapproximations
that conservatively estimate buffer capacities for bounded models.
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2 UMLRT

UML RT has its root in the graphical modeling language ROOM [27]. ROOM has later
been reconciled with the UML standard to form a UML compatible language for the
modeling of real-time systems [28]. We will refer to this notation as UML RT. UML
RT permits the description of the communication structure and the dynamic behavior
of the systems. A system is decomposed into a set of concurrent active objects, called
capsules. Capsules can be decomposed hierarchically into sub-capsules. The communi-
cation interfaces of the capsules are called ports. Ports can be associated with each other
using connectors - the presence of a connector between ports indicates a communica-
tion channel. Inter-capsule communication is by message passing only, i.e., no shared
variable communication is defined in UML RT.

The behavior of each capsule is described using a communicating, extended, hi-
erarchical finite state machines (CEHFSM). These state machines are derived from
ROOMCharts [27] which, in turn, are a variant of Statecharts [15]. However, as opposed
to Statecharts, the CEHFSMs in UML RT are strictly sequential, i.e., the orthogonality
concept of Statecharts in absent in UML RT. The operational semantics of UML RT is
characterized by two salient features: state machine transitions can only be triggered by
message reception, and arbitrary programming language code can be executed in the
course of a transition between states. The structure of this transition code is not specifi-
cally constrained by the UML RT definition, and, in fact, the Rose RealTime tool allows
arbitrary C++ or Java code to be attached to transitions.

+/ part]
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Fig. 1. The 2-Capsule UML RT Model

Consider the simple UML RT model with two capsules given in Figure 1. It consists of
two capsules, named Left and Right. Capsules represent active objects that may have
state machines attached to them. Ports denote communication interfaces of capsules,
and a connector between ports, such as the one between port1 and port2, represents
a bi-directional communication channel. Figure 1 also illustrates the state machines
associated with the two capsules. Since in UML RT the transition labels are mere names
that carry no semantics, we have used speaking transition names which indicate which
message sending and receiving primitives are executed in the course of the respective
transition. For instance, the transition labeled with c_aab consumes a message c. It then
sends two messages a and then a message b. For a more complete description of the
UML RT notation we refer the reader to [28].

At the time of writing, there is no complete formal operational semantics for UML
RT available in the literature that we are aware of. It turns out that the precise definition
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of a formal semantics is not a prerequisite for the work pursued here. We will present an
approach that is taking advantage of a significant amount of abstraction in preparation of
the analysis. These abstractions amount to an over-approximation of the actual system
behavior so that subtle issues in the UML RT semantics, such as the ordering of message
events and the treatment of message priorities, are not meaningful in the abstract system
and hence for our analysis. In fact, our abstraction and the results of our algorithm are
safe w.r.t. effects like message reordering and message loss in the channels. The only
really necessary assumption is that no unbounded message duplication occurs. (Our
boundedness test (YES/NO) is safe w.r.t. finite message duplication, but the computed
upper bounds on the buffer lengths are not.)

3 Overview of the Boundedness Test

The underlying idea of our boundedness test is to determine whether at all it is possible
to combine the cyclic executions of all of the processes in a UML RT model in such
a way that the filling of at least one of the message buffers can be “blown up” in an
unbounded way. Note that any infinite execution of the system can be understood as the
combination of an infinite number of control state cycles through the CFSMs.

Consider the examples in Figure 2. All examples consist of two state machines
which we assume to represent concurrent CFSMs. The state transition labels indicate
message sending and receiving in the usual format. Since we are only interested in
infinite execution sequences, all finite prefixes, e.g., transitions initializing the system,
have been disregarded. In Example 1 it is easy to see that the system is unbounded. Any
execution of the cycle through state S1 will consume a message of type a and produce two
messages, b and c. However, each one of these messages only produces another message
of type a when cycling through S2. To the contrary, Example 2 represents a bounded
system since an a message generates a single b or ¢ message, while the consumption of
a b or a c message triggers the generation of a single a message. Example 3 contains
a spontaneous transition that generates a message of type ¢ which may obviously flood
one of the system’s buffers in an unbounded fashion. Assessing the boundedness of
Example 4 is less obvious. Whenever the system generates a ¢ message, a buffer may be
flooded. However, if the system only ever executes the cycles in which a and b messages
are exchanged, the filling of every buffer remains bounded. Whether a cycle generating
a ¢ message ever gets executed obviously depends on how the system is initialized,
which is information we have already abstracted away. Since our test is conservative and
only returns a boundedness result if boundedness can be proven, i.e., there is no way of
combining the cycles in the CFSM in such a fashion that the buffer can be blown up, it
would in this case return an “UNKNOWN” answer.

While in the above case the boundedness can be seen by manual inspection, this
is not generally the case. Consider the example given in Figure 1 in which the actual
boundedness of the model is far from obvious. This calls for automated methods in
support of testing a system’s boundedness.

4 Abstracting UML RT Models

In this section we describe a sequence of conceptual abstractions for UML RT mod-
els. Each level corresponds to a computational model for which complexity results for
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Fig. 2. Various Examples of Simple CFSM Systems

the boundedness problem are either known, or provided by our work. The abstraction
is conceptual since the tool that we develop does not perform the transformations de-
scribed in this section, but uses a more direct code analysis approach. The purpose of
the conceptual abstraction is to reason about the complexity of our boundedness test. As
mentioned above, we want to reason about the boundedness of the UML RT model in
terms of summary message passing effects of simple control flow cycles. The goal of
our conceptual abstraction is to arrive at a data structure that allows us to reason about
these summary effects using linear combination analysis.

The abstract computational model that we obtain is an overapproximation of the
original UML RT system in the following sense:

— All behavior of the original system is also possible in the overapproximation. How-
ever, there can exist some behavior that is possible in the overapproximation, but
not in the original system.

— The abstraction preserves the number of messages in every communication channel
(buffer) of the UML RT model. In particular, if some buffer is unbounded in the
UML RT model, then it is also unbounded in the overapproximation. Furthermore,
if a buffer is bounded by a constant k' in the overapproximation, then it is bounded
by some constant & < k' in the original system.

The following summarizes the conceptual abstraction steps.

Level 0: UML RT. We start with the original system model described in UML RT. For
the original UML RT model boundedness is, of course, undecidable, since it can contain
arbitrary program code and can thus simulate Turing-machines.

Level 1: CFSMs. First, we abstract from the general program code on the transitions
of the UML RT model and retain only the finite control structure of the capsules and
their message passing via unbounded buffers representing the communication channels.
We obtain a system of communicating finite-state machines (CFSMs), sometimes also
called FIFO-channel systems [1]. For the CFSM model boundedness is also undecidable
since CFSMs can still simulate Turing-machines [8].

Level 2: Parallel-Composition-VASS. In the next step we abstract from the order of the
messages in the buffers and consider only the number of messages of any given type. For
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example, the buffer with contents abbacb would be represented by the integer vector
(2,3, 1), representing 2 messages of type a, 3 messages of type b and 1 message of type
c. Also we abstract from the ability to test explicitly if a given buffer is empty. In the
abstraction, all actions that are enabled when the buffer is empty are also enabled when
it is non-empty.

For the purpose of complexity analysis it is helpful to relate the obtained abstraction
to the theory of Petri nets. The numbers of messages in any buffer can be stored on
Petri net places. We then obtain a vector addition system with states (VASS) [7]. The
states correspond to the control-states of the UML RT model and the Petri net places
represent the buffer contents. More exactly, we obtain a parallel-composition-VASS.
This is a VASS whose finite-control is the parallel (but unsynchronized) composition
of several finite automata. Each part of this parallel composition corresponds to the
finite control of some part of CFSM of level 1, and to the finite control of a capsule in
the original UML RT model. Note that a parallel-composition-VASS is not exactly the
same as the parallel composition of several VASS, because the places are shared by all
parallel parts of the finite control. (It will be shown later that parallel-composition-VASS
are in some respects more succinct that normal VASS.) The boundedness problem for
parallel-composition-VASS is polynomially equivalent to the boundedness problem for
Petri nets, which is EXPSPACFE-complete [29].

Level 3: Parallel-Composition-VASS with Arbitrary Input. We now abstract from acti-
vation conditions of cycles in the control-graph of the VASS and assume instead that
there are always enough messages, represented by tokens, present to start the cycle.
For example, a cycle that first reads one message a from a buffer and then writes two
messages a to the same buffer can be repeated infinitely often, but only if in the be-
ginning there was at least one message a in the buffer. Any (combination of) cycles
with an overall positive effect on all places has a minimal activation condition, i.e., a
minimal number of tokens needed to get it started. In principle, it is decidable if there
is a reachable configuration that satisfies these minimal requirements, but this involves
solving the coverability problem for VASS (i.e., Petri nets). The coverability problem is
the question if there exists a reachable marking which is bigger than a given marking.
This problem is decidable, but at least EXPSPA CE-hard [19,12], and thus not practical.
Therefore we use this overapproximation and assume that these activation conditions can
always be satisfied. More precisely, we assume that any cyclic sequence of transitions
that has an overall non-negative effect on all places can be repeated arbitrarily often.
As far as boundedness is concerned, we replace the problem ‘Is the system bounded if
starting at the given initial configuration?’ by the problem ‘Is the system bounded for
any finite initial configuration?’, also referred to as the structural boundedness problem.
Obviously, every unbounded system is also not structurally bounded. It will be shown
in Section 7 that this structural boundedness problem for parallel-composition-VASS is
co-N"P-complete, unlike for standard Petri nets where it is polynomial [23,12]. (The
reason for this difference is that an encoding of control-states by Petri net places does not
preserve structural boundedness, because it is not assured that only one of these places
is marked at any time.) Furthermore, the co-A/P-lower bound even holds if the number
of simple cycles in the control-graph is only linear in the size of the system description.
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Level 4: Independent Cycle System. Finally, we abstract from the fact that certain cy-
cles in the control graph depend on each other. For example, cycles might be mutually
exclusive so that executing one cycle makes another cycle unreachable, or imply each
other, i.e., one cannot repeat some cycle infinitely often without repeating some other
cycle infinitely often. Instead we assume that all cycles are independent and any com-
bination of them is executable infinitely often, provided that the combined effect of
this combination on all places is non-negative. It should be noted that one part of this
overapproximation condition, the mutually exclusive cycles, is normally not a problem
anyway. This is because in almost all practical cases the control-graph of the capsules in
UML RT models is strongly connected and therefore cycles are not mutually exclusive.

The unboundedness problem for this abstracted model then becomes the following
question: Is there any linear combination (with positive integer coefficients) of the effects
of simple cycles in the control graph, such that the combined effect is non-negative on
all places and strictly positive on at least one place? Since we consider an overapproxi-
mation, the original UML RT model is surely bounded if the answer to this question is
‘no’. Since these effects of simple cycles can be represented by integer vectors, we get
the following problem. Given a set of integer vectors, does there exist a linear combina-
tion (with positive integer coefficients) of them, such that the result is non-negative in
every component and strictly positive in at least one. This problem can be solved in time
polynomial in the number of vectors by using linear programming techniques. How-
ever, in the worst case the number of different simple cycles and corresponding vectors
can be exponential (in the size of the control-graph), although they are not necessarily
completely independent. So far, we only have an exponential-time upper bound on the
worst-case complexity of checking boundedness at this abstraction level 4. However,
the important aspect is that the time required is only polynomial in the number of simple
cycles, unlike at level 3, where the problem is co-AP-hard even for a linear number of
simple cycles. This is very significant, since for instances derived from typical UML RT
models, the number of simple cycles is usually small (see Section 7).

It is easy to see that the abstraction obtained at level 4 is an overapproximation of
the UML RT model in the sense defined above.

5 The Concrete Abstraction

We now present the concrete abstraction of UML RT models as we are currently imple-
menting it in the tool IBOC (IMCOS Boundedness Checker). Due to space limitations, the
presentation only sketches the approach, a complete presentation including correctness
arguments will be included in a forthcoming paper.

The objective of the concrete abstraction is to automatically transform UML RT
models into a collection of effect vectors, each of which represents the summary message
passing effect of each simple cycle in each capsule state machine. In order to obtain these
vectors we extract the control flow graph of each capsule state machine from the UML
RT model'. We annotate the edges of this graph, which we call effect graph, with the
summary message passing effect of the UML RT model transition that it corresponds

! Note that we currently assume the transition code to only consist of linear, non-branching and
non-iterating control flow structures.
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to. To obtain the effect vectors we determine the simple cycles in the effect graphs using
a modified depth-first search (DFS) procedure. Figure 3 presents the effect graphs that
we obtain for the 2-Capsule model in Figure 1. The analysis returns the effect vectors
vy = (4,1,—-2)and vy = (—1,-1,1).

O,-1,1)

Fig. 3. Effect Graphs of the 2-Capsule Model Fig. 4. Effect graph of Hierar-
from Figure 1 chical State Machine

The above presentation refers to flat state machines, however, the effect graphs
derived from UML RT state machines may be hierarchical as shown in Figure 4. The
problem is compounded by group transitions that return to history, such as transition
t2 in the example. We are adjusting the DFS algorithm to deal with composite states.
If a vertex v corresponding to some state is enclosed by several composite vertices,
we also collect all the successors of the enclosing vertices in addition to its own. That
exactly resembles the behavior of the common edges which represent group transitions.
When the target of an edge is a composite vertex, say v’, a procedure is invoked to
recall the latest non-composite vertex enclosed by v’ in the vertex stack. The latest
enclosed vertex corresponds to the last active substate when a return to history transition
is taken. For the example in Figure 4, the modified DFS algorithm will determine the
following cycles: (I',3,52,t2,1'), (52,¢1,.53,t3,52) and (53,13, 52,t2, 53). Note
the different targets for the return-to-history transition t2.

6 Boundedness Test

Overall Boundedness Test. We now describe the boundedness test using a linear combi-
nation analysis of the effect vectors that have been derived from the UML RT model. For
every buffer and every message type there is one component in each of the effect vectors.
The component can be negative if in the cycle more messages of this type were removed
from a buffer than added to it. The resulting semilinear system is unbounded if and only
if there exists a linear combination with positive coefficients of the effect-vectors that is
positive in every component and strictly positive in at least one component. Formally,
this can be described as follows: Let vy, ..., v, € 7" be the effect-vectors of all simple
cycles and let v/ be the j-th component of the vector v. The question then is

n n J
Hxl,...,an]No.invizO/\Hj. <invi> > 0.
i=1

i=1

This can easily be transformed into a system of linear inequations and solved by stan-
dard linear programming tools. If this condition is true then our overapproximation is
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unbounded, but not necessarily also the UML RT model. The unboundedness could sim-
ply be due to the coarseness of the overapproximation. On the other hand, if the condition
above is false, then our overapproximation is bounded, and thus our original UML-RT
model is also bounded. Thus, this test yields an answer of the form “BOUNDED” in
case no linear combination of the effect vectors satisfying the above constraint can be
found, and “UNKNOWN” when such a linear combination exists.

Examples. Consider Example 1 from Figure 2. The effect vectors are v; = (—1,1,1),
ve = (1,0,—1) and v3 = (1,—1,0). Obviously, z;y = x2 = 1 describes a linear
combination satisfying the above constrains and we conclude “UNKNOWN”. In fact,
Example 1 is unbounded under any initialization of the message buffers with either a,
b or ¢ messages. For Example 2 the vectors are v; = (—1,0,1), v2 = (—=1,1,0), v3 =
(1,0,—1)and vy = (1, —1, 0). Itis easy to see that there is no linear combination of these
vectors satisfying the above constraint, hence we conclude “BOUNDED”. Similarly,
Examples 3 and 4 lead to results “UNKNOWN”. For the 2-Capsule example of Figure
1 we had obtained the effect vectors vectors v; = (4,1, —2) and vy = (—1,—1,1). To
represent the > 0 condition in the linear inequation system we add a constraint 3z, —x2 >
1. The linear inequation solver returns infeasibility of this system of inequations, and
we thus conclude a result of “BOUNDED”. Note that it is not easy to see this result by
manual inspection

Computing Bounds for Individual Buffers. A more refined problem is to compute upper
bounds on the lengths of individual buffers in the system. In particular, some buffers
might be bounded even if the whole system is unbounded. Since normally not all buffers
can reach maximal length simultaneously, the analysis is done individually for each
buffer B. This can be done by solving a linear programming problem that maximizes a
target function fp. fp is a linear function whose input is our abstracted system configu-
ration, i.e., a vector of natural numbers indicating how often which message type occurs
in which buffer, and which returns the length of buffer B. Let m be the number of cap-
sules in the system. Let Cy be the initial configuration of the system, C'g the reachable
configuration where buffer B has maximal length, and p the path from Cj to C'z. Then p
can be decomposed into m parts p1, . . . , P, such that p; is the part of p that occurs in the
i-th capsule. Each p; starts at control-state s}, the initial state of capsule i. Each p; can
be further decomposed into a part consisting of simple cycles and a non-cyclic part. The
order of these is not important for us, since we are only interested in the effect-vectors of
these paths. Let p(s{, s*) be the non-cyclic part of p; and s* some control-state in capsule
i. For any path p let E(p) be its effect-vector. Then E(p;) = E(p(sf, s*)) + >y 205
for some z;. It follows that E(p) = > i" | E(p(sf,s")) + Y_i_, yiv; for some y;. In
order to maximize our target function fp we need to apply it to F(p) and find the optimal
paths to control-states s!, . . ., s™ (note that the same control-state might be reachable via
several different paths), and the optimal numbers ¥y, . . ., ¥,,. We thus need to compute
maz = max(p(sd, s1), ..., p(sT, 8™),y1, - Yn) fB(E(D)).

However, the combinatorial complexity of finding the optimal paths and control-
states s’ in all capsules to maximize fg is too big for practical purposes since one would
need to try out all exponentially many possible combinations. Therefore, we apply yet
another overapproximation to simplify the problem. Let r; be the minimal vector s.t.
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Vs'. r; > E(p(sh,s')). In other words, we maximize individual components of vector
E(p(sh, s*)) over all paths to control-states s’. The vectors 7; can easily be computed
in polynomial time by depth-first search in the individual capsules. Then we define
maz’ == maz(y1,...,yn)fB (O iey ri + D5y Yiv;) Which requires just one instance
of a linear programming problem to be solved. It is easy to see that maz’ > maz and
thus we have computed an upper bound. Normally, the function fz will be the number
of messages in some buffer B, but it can be any linear function. For example, one might
want to count only some types of messages in a buffer and not others.

Example. Having established boundedness of the 2-Capsule example of Figure 1, we
now compute the estimated upper bound for each buffer (port). First we compute the
effect vectors for all non-cyclic paths. They are listed in Table 1 where init and init’ are
the initial states of the state machines. Then we take the maxima of individual components
from those effect vectors and construct the overapproximated maximal effect vectors for
capsule Left as r; = (2,5, 0) and for capsule Right as 7 = (0, 0, 2). Thus the sum is
i ri = (2,5,2). We obtain the following two optimization problems (1-4 and 5-8)
for the two buffers left-to-right and right-to-left:

mazx : 2 — 2x1 + xo @)) mazx : 7+ dxr1 — 2x4 (®))
2441 —x2 >0 2) 24+4x1 —29 >0 (6)
54+z1—2220 3) 5421 —x2>0 (7
2—2x1 +x9 > 0. 4) 2—-2x1+x2 > 0. (8

Linear Programming returns a value of 6 for the objective function (1) and a value of
18 for the objective function (5). These values represent the estimated bounds for the
communication buffers associated with port1 and port2, respectively.

Table 1. The Effect Vectors for all Non-Cyclic Paths in 2-Capsules

The non-cyclic path [The effect vectors|The non-cyclic path|The effect vectors
< tnat, sl > (0,0,0) < wnat, sl,s2 > 0,2,-1)
< init, sl, s2,s3 > (2,3,-2) < tnit, sl,s3 > 0,5,-1)
< init, s, s3,52 > (2,5,-2) < init’, s4 > (0,0,2)
< init’, s4,s5 > (-1,0,2)

7 Complexity Analysis

In this Section we analyze the complexity of the problem of checking for boundedness
in general and our algorithm in particular. It has already been mentioned in Section 3
that the boundedness problem is undecidable for UML RT (level 0), undecidable for CF-
SMs (level 1), EXPSPACE-complete for VASS (level 2), co-NP-complete for VASS
with arbitrary input (level 3), and polynomial in the number of simple cycles for In-
dependent Cycle Systems (level 4). The only part that still needs to be shown is the
NP-completeness for parallel-combination-VASS with arbitrary input.
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STRUCTURAL BOUNDEDNESS OF PARALLEL-COMPOSITION-VASS

Instance: A VASS whose finite control is given as an unsynchronized parallel compo-

sition of automata G1|| ... ||G,.
Question: Is the system structurally bounded, i.e., is it bounded for every initial config-
uration?

Lemma 1. Structural boundedness of parallel-composition-VASS is co-N"P-hard, even
if all the control-graphs G; are strongly connected and contain only polynomially many
simple cycles.

Proof. We reduce SAT to unboundedness of parallel-composition-VASS for some initial
configuration. Let @ := Q1 A ... A Q be a boolean formula over variables 1, . . . , z,.
Each clause (); is a disjunction of literals and each literal is either a variable or the
negation of a variable. We now construct in polynomial time a parallel-composition-
VASS as follows. The system contains k + 2 places, p1, ..., Dk, (, g, where the first &
places each correspond to one clause, and places [, g have special functions.

For every variable z; we define an automaton G; with three states s;, t;, f; and the
following transitions. We describe the effects of these transitions on the places by vectors
of integers, as usual in VASS. There are transitions from s; to ¢;, t; to s;, s; to f; and f; to
s; that each have the following effect. They reduce place [ by 1 and leave all other places
unaffected. There is a transition from ¢; to ¢; with the following effect: For all j, if clause
Q; contains literal x; then one token is added to p;. Furthermore, exactly one token
is removed from place g. There is a transition from f; to f; with the following effect.
For all 7, if clause @); contains literal —~z; then one token is added to p;. Furthermore,
exactly one token is removed from place g.

Finally, we add another automaton 7" with just the state s and a transition from s to
s with the effect (—1,...,—1,0,n + 1). We now show that the VASS with these places
and finite control G || . .. |G, ||T and initial control-state (s1, . .., Sy, $) is structurally
bounded iff @ is not satisfiable?.

If @ is satisfiable then there exists a variable assignment that makes all clauses Q) ;
true. Then there exists an unbounded run of the system of the following form. If x; is
true then go from s; to ¢;, else go to f;. The combined effect of this is (0, ...,0, —n,0).
Then do each local cycle at ¢; (resp. f;) exactly once. The combined effect of this
is (e1,...,€x,0,—n), where for all j we have e; > 1. Then we do the cycle at s
exactly once. The effect of this is (—1,...,—1,0,n + 1). Thus the combined effect is
> (0,...,0,41). This combination of cycles can then be repeated infinitely often. Thus
there exists an unbounded run starting at configuration (0, . .., 0,7, n). So the system is
not structurally bounded.

Now assume that @ is not satisfiable. No infinite run from any initial configuration
can change infinitely often between some s; and ¢;/f;, because place [ is decreased in
these transitions and never increased anywhere else. Thus, for every 4, every infinite run
can only contain infinitely many loops at ; or at f; but not infinitely many of both. By
the construction of the automata G, and since there is no satisfying assignment for &,
no combination of these loops can have a strictly positive effect on all places py, . . . , pg.
Therefore, for any initial configuration, the loop at s can only be done finitely often.

% Note also that each G; and T are strongly connected and that the total number of simple cycles
in the system is 4n + 1.
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Therefore, the local loops at states ¢;/f; can only be done finitely often, because of their
effect on place g. Thus all runs from any initial configuration have finite length and the
system is structurally bounded. a

Lemma 2. Structural boundedness of parallel-composition-VASS is in co-NP.

For the proof we refer the reader to the full version of the paper. We conclude the
following theorem:

Theorem 3. Structural boundedness of parallel-composition-VASS is co-NP-
complete.

The co-N"P-hardness of the structural boundedness problem at abstraction level 3,
even for small numbers of simple cycles, justifies for further abstraction to level 4, where
the problem is polynomial in the number of simple cycles.

To analyze the complexity of our boundedness test algorithm for UML RT mod-
els, consider a typical input system. It consists of m capsules running in parallel and
communicating with each other via buffers. Let k£ be the maximal size of each buffer.
Thus the size of the instance is n := O(m * k). Note that the total number of different
control-state combinations is O(k™), the classical state explosion problem. However,
our algorithm avoids this combinatorial explosion.

First, it extracts (the effects of) all simple cycles from the finite controls of each
capsule. The time needed for this is polynomial in the number of simple cycles. Then
it checks for the existence of positive linear combinations of the effects of these cycles.
Again, the time required is polynomial in the number of simple cycles (by using linear
programming techniques). Thus, the algorithm overall requires polynomial time in the
number of simple cycles.

In the worst case, the number of simple cycles in any capsule (of size k) can
be exponential in , i.e., O(2¥). So the total number of simple cycles in the system
is only bounded by O(m % 2F). Thus the worst-case complexity of the algorithm is
O(poly(m  2%)). It should be noted that this is still normally much smaller than
O(2m*k) = O(2"). However, these worst-case complexity estimates are not very mean-
ingful for practical problems. In typical UML RT models the finite-control graphs in
the capsules are derived from programming-language-like control-flow graphs. These
graphs are normally very sparse, and the number of simple cycles in them is normally
polynomial, rather than exponential. Therefore, for typical UML RT models, the algo-
rithm requires only polynomial time.

8 Experimental Results

We now report on experiments that we performed using the IBOC system. We used the
2-Capsule model of Figure 1, a UML RT model of the Alternating Bit Protocol, and
the UML RT model of a telecommunications switch, called PBX. For experimentation
purposes we obtained the PBX model from IBM/Rational. It is a model with a complexity
comparable to that of models used in industrial development projects.

IBOC directly accesses the internal model structure inside the Rose RealTime tool
and uses the LPSOLVE system for linear programming tasks. Table 2 shows the perfor-
mance results of these experiments that are performed on a two processor 1 GHz Pentium
III PC with 2 GB memory.
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The IBOC system returned “precise” boundedness results in the sense that an “UN-
KNOWN” verdict in all cases corresponded to an unboundedness in the respective UML
RT model. For the model of Alternating Bit protocol, for instance, IBOC returned “UN-
KNOWN” and provided two counterexamples as linear combinations of cycles that
potentially contribute to the unbounded growth of channels. These counterexamples in-
dicate that two cycles in the state machine of the sender capsule may cause the unbound-
edness. This result is plausible since the sender injects messages into the Alternating
Bit system without restraint. The PBX model is obviously of a complexity that makes it
impossible to guess boundedness with manual methods. IBOC returns a “BOUNDED”
result within very reasonable runtime, which proves that our analysis scales to UML RT
models of realistic size. To assess the quality of the estimated buffer bounds we executed
the PBX model in Rose RealTime and traced several ports. For most ports, the actual
bounds are very close to the estimates. For instance, a port con figureDial Plan is
observed to contain no more than five messages at runtime, while the estimate is seven.

Table 2. Experimental Results obtained with the IBOC System

2-Capsule|Alternating Bit| PBX
Checked capsules 3 4 29
Checked states 30 47| 736
Checked transitions 8 15 299
Checked message types 3 8| 308
Checked buffers 2 4 57
Reported cycles 3 11| 2030
Generated vectors 2 11} 1026
Runtime for cycle detection [sec.] 0.034 0.136|24.860
Runtime for boundedness check [sec.] 0.233 1.110|28.110
Runtime for computing bounds [sec.] 0.207 - 3.250

9 Related Work

There is a vast body of literature on the problem of dealing with the unboundedness of
communication queues. This includes overapproximations using lossiness assumptions
for queues [1] (the boundedness problem stays undecidable for lossy queue systems [2],
even under strong restrictions [21]), sufficient syntactic conditions for the unboundedness
of communication channels in CFSM systems [18], the symbolic treatment of infinite
queues [5,6] and the elimination of unbounded queues using structural properties of the
state spaces of the CFSMs [10].

At the time of writing, no operational semantics for UML RT is available. Work
described in [13] and [14] focuses on giving semantics to the structural aspects of UML
RT. The translation of UML RT models into Promela was fist attempted by [24] which
pointed out the tremendous problems involved in dealing with UML RT queues and their
potential unboundedness. Our analysis of hierarchical UML RT CFSMs is in part based
on ideas from [3].
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Model Checking based on integer inequality systems has been pioneered by the
INCA system [9]. Esparza and Melzer used integer linear programming to check several
safety properties (e.g., mutual exclusion) for Petri nets models [22,11]. However, in most
cases, the models considered were 1-safe Petri nets which are bounded by definition.

10 Conclusion

We presented an incomplete test for the boundedness of communication buffers in UML
RT models. Our algorithm abstracts UML RT models such that only the communication
effects of the simple control flow cycles in the capsule state machines remain. The test
then tries to establish a linear combination of the resulting effect vectors that allows
at least one of the system’s message buffers to grow unboundedly. If such a linear
combination cannot be found, the system is bounded. In addition we proposed an upper
bound estimate for the maximal occupancy of individual buffers. We have argued that
our analyses scale well to UML RT systems of realistic complexity, and supported this
claim by experimental results using the IBOC tool.

One focus of current research is to refine the analysis, in particular when the result
is “UNKNOWN”. The IBOC system that we currently develop permits the identifica-
tion of a sub-model to which the boundedness analysis can be limited. Another focus
lies on enhancing the generation of “counterexamples”, i.e., sets of cycles that lead to
unboundedness. We are also interested in developing abstraction refinement procedures
when the counterexamples are spurious, i.e., not executable in the original UML RT
model. Future work will extend the analysis to establish boundedness results for more
general types of dynamic systems, e.g., systems that dynamically generate and delete
concurrent processes, or systems that dynamically allocate and deallocate objects on
heap memory. Boundedness in these cases implies the absence of memory leaks due to
improper memory management.
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