Energetics of syntrophic fatty acid oxidation

Lade...
Vorschaubild
Dateien
1994_Schink_85_94.pdf
1994_Schink_85_94.pdfGröße: 764 KBDownloads: 950
Datum
1994
Autor:innen
Friedrich, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
FEMS Microbiology Reviews. 1994, 15, pp. 85-94
Zusammenfassung

Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10 4--10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a maximum amount of about 20 kJ per mol reaction to each partner in this syntrophic cooperation system. This amount corresponds to synthesis of only a fraction (one-third) of an ATP to be synthesized per reaction.
Recent studies on the biochemistry of syntrophic fatty acid-oxidizing bacteria have revealed that hydrogen release from butyrate by these bacteria is inhibited by a protonophore or the ATPase inhibitor DCCD (N,N'-dicyclohexyl carbodiimide), indicating that a reversed electron transport step is involved in butyrate or propionate oxidation. Hydrogenase, butyryl-CoA dehydrogenase, and succinate dehydrogenase acitivities were found to be partially associated with the cytoplasmic membrane fraction. Also glycolic acid is degraded to methane and CO 2 by a defined syntrophic coculture. Here the most difficult step for hydrogen release is the glycolate dehydrogenase reaction (E~=-92 mV). Glycolate dehydrogenase, hydrogenase, and ATPase were found to be membrane-bound enzymes. Membrane vesicles produced hydrogen from glycolate only in the presence of ATP; protonophores and DCCD inhibited this hydrogen release. This system provides a suitable model to study reversed electron transport in interspecies hydrogen transfer between fermenting and methanogenic bacteria in methanogenic biomass degradation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Interspecies hydrogen transfer, reversed electron transport, syntrophy, biological energy quantum, fatty acids
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHINK, Bernhard, Michael FRIEDRICH, 1994. Energetics of syntrophic fatty acid oxidation. In: FEMS Microbiology Reviews. 1994, 15, pp. 85-94
BibTex
@article{Schink1994Energ-6770,
  year={1994},
  title={Energetics of syntrophic fatty acid oxidation},
  volume={15},
  journal={FEMS Microbiology Reviews},
  pages={85--94},
  author={Schink, Bernhard and Friedrich, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6770">
    <dc:creator>Schink, Bernhard</dc:creator>
    <dcterms:abstract xml:lang="eng">Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10 4--10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a maximum amount of about 20 kJ per mol reaction to each partner in this syntrophic cooperation system. This amount corresponds to synthesis of only a fraction (one-third) of an ATP to be synthesized per reaction.&lt;br /&gt;Recent studies on the biochemistry of syntrophic fatty acid-oxidizing bacteria have revealed that hydrogen release from butyrate by these bacteria is inhibited by a protonophore or the ATPase inhibitor DCCD (N,N'-dicyclohexyl carbodiimide), indicating that a reversed electron transport step is involved in butyrate or propionate oxidation. Hydrogenase, butyryl-CoA dehydrogenase, and succinate dehydrogenase acitivities were found to be partially associated with the cytoplasmic membrane fraction. Also glycolic acid is degraded to methane and CO 2 by a defined syntrophic coculture. Here the most difficult step for hydrogen release is the glycolate dehydrogenase reaction (E~=-92 mV). Glycolate dehydrogenase, hydrogenase, and ATPase were found to be membrane-bound enzymes. Membrane vesicles produced hydrogen from glycolate only in the presence of ATP; protonophores and DCCD inhibited this hydrogen release. This system provides a suitable model to study reversed electron transport in interspecies hydrogen transfer between fermenting and methanogenic bacteria in methanogenic biomass degradation.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Energetics of syntrophic fatty acid oxidation</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6770/1/1994_Schink_85_94.pdf"/>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:03Z</dcterms:available>
    <dc:contributor>Friedrich, Michael</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: FEMS Microbiology Reviews 15 (1994), pp. 85-94</dcterms:bibliographicCitation>
    <dc:creator>Friedrich, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6770"/>
    <dcterms:issued>1994</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6770/1/1994_Schink_85_94.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:03Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen