Microbial desulfonation

Lade...
Vorschaubild
Dateien
Microbialdesulfonation.pdf
Microbialdesulfonation.pdfGröße: 311.16 KBDownloads: 682
Datum
1999
Autor:innen
Laue, Heike
Junker, Frank
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
FEMS Microbiology Reviews. 1999, 22(5), pp. 399-419. eISSN 1574-6976. Available under: doi: 10.1111/j.1574-6976.1998.tb00378.x
Zusammenfassung

Organosulfonates are widespread compounds, be they natural products of low or high molecular weight, or xenobiotics. Many commonly found compounds are subject to desulfonation, even if it is not certain whether all the corresponding enzymes are widely expressed in nature. Sulfonates require transport systems to cross the cell membrane, but few physiological data and no biochemical data on this topic are available, though the sequences of some of the appropriate genes are known. Desulfonative enzymes in aerobic bacteria are generally regulated by induction, if the sulfonate is serving as a carbon and energy source, or by a global network for sulfur scavenging (sulfate-starvation-induced (SSI) stimulon) if the sulfonate is serving as a source of sulfur. It is unclear whether an SSI regulation is found in anaerobes. The anaerobic bacteria examined can express the degradative enzymes constitutively, if the sulfonate is being utilized as a carbon source, but enzyme induction has also been observed. At least three general mechanisms of desulfonation are recognisable or postulated in the aerobic catabolism of sulfonates: (1) activate the carbon neighboring the C SO3 bond and release of sulfite assisted by a thiamine pyrophosphate cofactor; (2) destabilize the C SO3 bond by addition of an oxygen atom to the same carbon, usually directly by oxygenation, and loss of the good leaving group, sulfite; (3) an unidentified, formally reductive reaction. Under SSIS control, different variants of mechanism (2) can be seen. Catabolism of sulfonates by anaerobes was discovered recently, and the degradation of taurine involves mechanism (1). When anaerobes assimilate sulfonate sulfur, there is one common, unknown mechanism to desulfonate the inert aromatic compounds and another to desulfonate inert aliphatic compounds; taurine seems to be desulfonated by mechanism (1).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Fermentation, Oxidation, Reduction, Oxygenation, Hydrolysis
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690COOK, Alasdair M., Heike LAUE, Frank JUNKER, 1999. Microbial desulfonation. In: FEMS Microbiology Reviews. 1999, 22(5), pp. 399-419. eISSN 1574-6976. Available under: doi: 10.1111/j.1574-6976.1998.tb00378.x
BibTex
@article{Cook1999Micro-7927,
  year={1999},
  doi={10.1111/j.1574-6976.1998.tb00378.x},
  title={Microbial desulfonation},
  number={5},
  volume={22},
  journal={FEMS Microbiology Reviews},
  pages={399--419},
  author={Cook, Alasdair M. and Laue, Heike and Junker, Frank}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7927">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:38:34Z</dc:date>
    <dcterms:abstract xml:lang="eng">Organosulfonates are widespread compounds, be they natural products of low or high molecular weight, or xenobiotics. Many commonly found compounds are subject to desulfonation, even if it is not certain whether all the corresponding enzymes are widely expressed in nature. Sulfonates require transport systems to cross the cell membrane, but few physiological data and no biochemical data on this topic are available, though the sequences of some of the appropriate genes are known. Desulfonative enzymes in aerobic bacteria are generally regulated by induction, if the sulfonate is serving as a carbon and energy source, or by a global network for sulfur scavenging (sulfate-starvation-induced (SSI) stimulon) if the sulfonate is serving as a source of sulfur. It is unclear whether an SSI regulation is found in anaerobes. The anaerobic bacteria examined can express the degradative enzymes constitutively, if the sulfonate is being utilized as a carbon source, but enzyme induction has also been observed. At least three general mechanisms of desulfonation are recognisable or postulated in the aerobic catabolism of sulfonates: (1) activate the carbon neighboring the C SO3 bond and release of sulfite assisted by a thiamine pyrophosphate cofactor; (2) destabilize the C SO3 bond by addition of an oxygen atom to the same carbon, usually directly by oxygenation, and loss of the good leaving group, sulfite; (3) an unidentified, formally reductive reaction. Under SSIS control, different variants of mechanism (2) can be seen. Catabolism of sulfonates by anaerobes was discovered recently, and the degradation of taurine involves mechanism (1). When anaerobes assimilate sulfonate sulfur, there is one common, unknown mechanism to desulfonate the inert aromatic compounds and another to desulfonate inert aliphatic compounds; taurine seems to be desulfonated by mechanism (1).</dcterms:abstract>
    <dc:contributor>Junker, Frank</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Microbial desulfonation</dcterms:title>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Junker, Frank</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7927/1/Microbialdesulfonation.pdf"/>
    <dc:creator>Laue, Heike</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7927"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7927/1/Microbialdesulfonation.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Cook, Alasdair M.</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Laue, Heike</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: FEMS Microbiology Reviews 22 (1999), 5, pp. 399-419</dcterms:bibliographicCitation>
    <dcterms:issued>1999</dcterms:issued>
    <dc:creator>Cook, Alasdair M.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:38:34Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen