The degradative pathway of the s-triazine melamine : the steps to ring cleavage

Lade...
Vorschaubild
Dateien
The_degradative_pathway.pdf
The_degradative_pathway.pdfGröße: 1.02 MBDownloads: 395
Datum
1982
Autor:innen
Jutzi, Kathrin
Hütter, Ralf
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Biochemical Journal. 1982, 208(3), pp. 679-684. ISSN 0264-6021. eISSN 1470-8728. Available under: doi: 10.1042/bj2080679
Zusammenfassung
  1. The degradative pathway of melamine (1,3,5-triazine-2,4,6-triamine) was examined in Pseudomonas sp. strain A. 2. The bacterium grew with melamine, ammeline, ammelide, cyanuric acid or NH+4 as sole source of nitrogen, and each substrate was entirely metabolized. Utilization of ammeline, ammelide, cyanuric acid or NH+4 was concomitant with growth. But with melamine as substrate, a transient intermediate was detected, which was identified as ammeline by three methods. 3. Enzymes from strain A were separated by chromatography on DEAE-cellulose, and four activities were examined. 4. Melamine was converted stoichiometrically into equimolar amounts of ammeline and NH+4. 5. Ammeline was converted stoichiometrically into equimolar amounts of ammelide and NH+4; ammelide was identified by four methods. 6. Ammelide was converted stoichiometrically into equimolar amounts of cyanuric acid and NH+4; cyanuric acid was identified by four methods. 7. Cyanuric acid was converted by an enzyme preparation into an unidentified product with negligible release of NH+4. 8. The specific activities of the degradative enzymes (greater than or equal to 0.3 mkat/kg of protein) were high enough to explain the growth rate of the organism. 9. The bacterium converted 0.4 mM-melamine anaerobically into 2.3 mM-NH+4. 10. Two other pseudomonads and two strains of Klebsiella pneumoniae were also examined, with similar results. 11. The degradative pathway of melamine appears to be hydrolytic, and proceeds by three successive deaminations to cyanuric acid, which is further metabolized.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690JUTZI, Kathrin, Alasdair M. COOK, Ralf HÃœTTER, 1982. The degradative pathway of the s-triazine melamine : the steps to ring cleavage. In: Biochemical Journal. 1982, 208(3), pp. 679-684. ISSN 0264-6021. eISSN 1470-8728. Available under: doi: 10.1042/bj2080679
BibTex
@article{Jutzi1982degra-6816,
  year={1982},
  doi={10.1042/bj2080679},
  title={The degradative pathway of the s-triazine melamine : the steps to ring cleavage},
  number={3},
  volume={208},
  issn={0264-6021},
  journal={Biochemical Journal},
  pages={679--684},
  author={Jutzi, Kathrin and Cook, Alasdair M. and Hütter, Ralf}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6816">
    <dc:contributor>Cook, Alasdair M.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:23Z</dcterms:available>
    <dc:creator>Cook, Alasdair M.</dc:creator>
    <dc:creator>Jutzi, Kathrin</dc:creator>
    <dc:contributor>Hütter, Ralf</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Biochemical Journal 208 (1982), 3, pp. 679 684</dcterms:bibliographicCitation>
    <dc:contributor>Jutzi, Kathrin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:23Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>The degradative pathway of the s-triazine melamine : the steps to ring cleavage</dcterms:title>
    <dcterms:abstract xml:lang="eng">1. The degradative pathway of melamine (1,3,5-triazine-2,4,6-triamine) was examined in Pseudomonas sp. strain A. 2. The bacterium grew with melamine, ammeline, ammelide, cyanuric acid or NH+4 as sole source of nitrogen, and each substrate was entirely metabolized. Utilization of ammeline, ammelide, cyanuric acid or NH+4 was concomitant with growth. But with melamine as substrate, a transient intermediate was detected, which was identified as ammeline by three methods. 3. Enzymes from strain A were separated by chromatography on DEAE-cellulose, and four activities were examined. 4. Melamine was converted stoichiometrically into equimolar amounts of ammeline and NH+4. 5. Ammeline was converted stoichiometrically into equimolar amounts of ammelide and NH+4; ammelide was identified by four methods. 6. Ammelide was converted stoichiometrically into equimolar amounts of cyanuric acid and NH+4; cyanuric acid was identified by four methods. 7. Cyanuric acid was converted by an enzyme preparation into an unidentified product with negligible release of NH+4. 8. The specific activities of the degradative enzymes (greater than or equal to 0.3 mkat/kg of protein) were high enough to explain the growth rate of the organism. 9. The bacterium converted 0.4 mM-melamine anaerobically into 2.3 mM-NH+4. 10. Two other pseudomonads and two strains of Klebsiella pneumoniae were also examined, with similar results. 11. The degradative pathway of melamine appears to be hydrolytic, and proceeds by three successive deaminations to cyanuric acid, which is further metabolized.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6816/1/The_degradative_pathway.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6816/1/The_degradative_pathway.pdf"/>
    <dc:creator>Hütter, Ralf</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6816"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:issued>1982</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen