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Abstract

C OMPREHENSIVE DATA ANALYSIS has become indispensable in a multitude of applications. Data
warehousing and OLAP evolved in the 90s as a response to this need in business environments and
proved their nearly universal applicability for decision support. In the last decade, data warehouses

went beyond classical business performance oriented tasks and reached out for novel application domains,
such as government, science and research, medicine, web usage, network security, etc. Although many re-
search areas in the field of data warehousing and OLAP have reached a state of maturity, new challenges
arise when applying the traditional technology in such non-conventional contexts. The exact causes of un-
satisfactory performance are manifold, ranging from the rigidness of the conceptual data model, adopted
logical schema, and implementation strategy to available data transformation techniques, prevailing metadata
modeling standards, limited set of supported operators, and frontend issues.

The aim of this thesis is to fundamentally extend the functionality of the widely adopted OLAP frame-
work in order to adequately handle usage scenarios not supported by the standard setting. More specifically,
we investigate the limitations of the state-of-the-art relational OLAP systems, analyze the requirements of
comprehensive data analysis, introduce respective extensions at the conceptual, logical, and metadata level
and demonstrate how the extended model can be implemented at both the backend and the frontend layer.
Real-world case studies from the domains of academic administration and medical engineering are used for
exemplifying modeling challenges. Two complimentary ideas determine the contribution of this work: i) to
extend the multidimensional data model that represents the very foundation of OLAP and ii) to enrich the
frontend layer with innovative features for visual analysis of large and complex data volumes.

The primary focus is on extending the backend functionality of data warehousing, obtained by inspecting
the requirements of novel application domains, identifying bottle-necks of the conventional OLAP technol-
ogy with respect to those requirements, and searching for appropriate solutions at the conceptual level. Since
the ultimate worth of the resulting extended conceptual data model is determined by its implementability
into a logical schema, we propose a set of corresponding conceptual-to-logical mappings and transformation
techniques for ensuring correct aggregation. The central contribution of this part of the work is the extended
conceptual model expressed in terms of formal definitions and a graphical notation X -DFM (Extended Di-
mensional Fact Model). X -DFM consists of a set of visual modeling constructs as well as a set of guidelines
for designing multidimensional schemes in accordance with the defined formal semantics. Both the formal
and the graphical model provide three levels of abstraction – the lower, the intermediate, and the upper level
– to support successive layering of the conceptual scheme at different design stages.

The main features of the extended model are the unification of the multidimensional space as a foundation
for handling semantically related elements, measure aggregability and additivity constraints, many-to-many
relationships between facts and dimensions and between hierarchy levels in a dimension, fact schemes with
no measures, heterogeneity in facts and dimension hierarchies, degeneration of facts, dimensions, and roll-up
relationships, optional and partial related roll-up relationships, and various kinds of irregularity in dimension
hierarchies at scheme and instance levels. Besides, the model supports object-oriented properties, such as
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generalization and specialization in fact and dimension schemes, different roles of an element, associations
and self-associations of fact schemes, modeling of abstract, derived and dependent elements.

The feasibility of the proposed conceptual model is demonstrated by describing how the former can be
mapped to a relational representation by formulating general guidelines for logical design. A well-established
requirement of summarizability is used to determine the necessary scheme and/or instance transformations.
The issue of metadata modeling is also considered. Metadata plays a prominent role in data warehouse
systems by acting as an intermediary between different layers and components of the system architecture. In
particular, we consider the metadata of the application layer as the former is responsible for capturing the
multidimensional semantics behind “plain” data tables.

The other part of our research concentrates on the frontend functionality. End-users typically interact
with OLAP data using exclusively visual tools, which allow them to conveniently navigate to the subset
of interest and explore it using various visual layouts and interaction techniques. Therefore, the overall
capabilities of the analysis ultimately depend on the functionality of the provided frontend tools. Aware
of the deficiencies of standard business visualization techniques and data navigation options, we propose a
comprehensive visual exploration framework, which incorporates the awareness of the conceptual extensions
into the frontend in form of enriched metadata and a powerful data interface for interactive specification of
ad hoc queries. Finally, we propose a class of multidimensional visualization techniques for advanced visual
data analysis, called Enhanced Decomposition Trees, which map a series of decomposition (i.e., drill-down)
steps to a hierarchy of obtained subaggregates.

To the best of our knowledge, the proposed modeling framework is superior to other approaches to mul-
tidimensional modeling proposed prior or in the course of carrying out this research. Its main advantage
is the coherence of the formalization, the accompanying graphical notation, the relational and the metadata
mapping, and the frontend implementation. However, we do not claim to have found an ultimate solution to
providing OLAP support to all kinds of complex data and applications and realize that such a goal is simply
unattainable within a single PhD work.
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Zusammenfassung

U MFASSENDE DATENANALYSE ist in einer Vielzahl von Anwendungen unentbehrlich geworden.
Data Warehousing und OLAP entstanden in den 90er Jahren als eine Antwort auf diesen Bedarf im
betriebswirtschaftlichen Bereich und bewiesen ihre nahezu universale Einsetzbarkeit zur Entschei-

dungsunterstützung. Das letzte Jahrzehnt bezeugte die Verbreitung von Data Warehouses über die klassischen
betriebswirtschaftlichen Anwendungen hinaus und die Erschließung neuer Einsatzgebiete, zum Beispiel in
der Verwaltung, Wissenschaft und Forschung, Medizin, Webanalyse, Netzwerksicherheit, usw. Obwohl viele
Forschungsbereiche des Data Warehousing und OLAP den Status der Reife erreicht haben, entstehen neue
Herausforderungen durch die Anwendung der traditionellen Technologie in derartigen unkonventionellen
Kontexten. Die genauen Ursachen für unbefriedigende Leistungen sind vielfältig und reichen von der Star-
rheit des konzeptuellen Datenmodells, des angepassten logischen Schemas und der Implementierungsstrate-
gie bis hin zu verfügbaren Datentransformationstechniken, vorherrschenden Standards der Metadatenmodel-
lierung, der eingeschränkten Menge an unterstützten Operatoren und Problemen der Endbenutzeroberflächen.

Ziel dieser Doktorarbeit ist es, die Funktionalität des weit verbreiteten OLAP-Rahmenwerks funda-
mental zu erweitern, sowie die vom Standard bisher nicht unterstütze Anwendungsszenarien adäquat zu
bewerkstelligen. Im Detail erforschen wir die Beschränkungen der State-of-the-Art relationalen OLAP-
Systeme, analysieren Anforderungen für umfassende Datenanalysen, führen entsprechende Erweiterungen
auf der konzeptionellen, logischen und Metadaten-Ebene ein und demonstrieren wie das erweiterte Modell
sowohl in der Backend- als auch in der Frontend-Schicht umgesetzt werden kann. Um die Herausforderungen
bei der Modellierung exemplarisch aufzuzeigen, werden dazu praxisnahe Fallstudien aus den Bereichen der
akademischen Verwaltung und Medizintechnik verwandt. Zwei komplementäre Ideen bestimmen den Beitrag
dieser Arbeit: i) die Erweiterung des multidimensionalen Datenmodells, welches die Grundlage von OLAP
repräsentiert, und ii) die Bereicherung der Frontend-Schicht durch innovative Funktionalitäten für visuelle
Analyse großer und komplexer Datenbestände.

Der Schwerpunkt liegt in der Erweiterung der Backend-Funktionalität von Data Warehousing. Diese wird
durch die Überprüfung der Anforderungen neuer Anwendungsdomänen, die Identifizierung von Problem-
bereichen in der konventionellen OLAP Technologie hinsichtlich dieser Anforderungen und die Suche nach
angemessenen Lösungen auf der konzeptionellen Ebene erreicht. Da der letztendliche Wert des resultieren-
den erweiterten konzeptuellen Datenmodells durch seine Implementierbarkeit in einem logischen Schema
bestimmt ist, schlagen wir eine Menge von entsprechenden Umsetzungs- und Transformationstechniken zur
Überführung des konzeptuellen Schema ins logische vor, um die korrekte Summierbarkeit sicherzustellen.
Der Kernbeitrag dieses Teils der Arbeit ist das erweiterte konzeptuelle Modell, welches in Form von for-
malen Definitionen und einer graphischen Notation X -DFM (Extended Dimensional Fact Model) ausge-
drückt wird. X -DFM besteht sowohl aus einer Menge von visuellen Modellierungskonstrukten als auch aus
einer Menge von Richtlinien zum Entwurf multidimensionaler Schemata, welche sich im Einklang mit der
definierten formalen Semantik befinden. Sowohl das formale als auch das graphische Modell stellen drei
Abstraktionsebenen bereit – die untere, die mittlere, und die obere Ebene – um einen stufenweisen Entwurf

ix



des konzeptuellen Schemas zu unterstützen.
Die wesentlichen Merkmale des erweiterten Modells sind die Vereinheitlichung des multidimension-

alen Raumes als Grundlage zur Handhabung semantisch verwandter Elemente, Aggregierbarkeits- und der
Additivitätsbedingungen von Kennzahlen, viele-zu-viele Beziehungen zwischen Fakten und Dimensionen
und zwischen den Hierarchiestufen einer Dimension, Faktschemata ohne Kennzahlen, Heterogenität von
Fakten und Dimensionshierarchien, degenerierte Fakten und Dimensionen, optional und partiell verwandte
“Roll-up”-Beziehungen und verschiedene Arten von Irregularitäten in Dimensionshierarchien sowohl auf der
Schema- als auch auf der Instanzebene. Außerdem unterstützt das Modell objektorientierte Eigenschaften
wie Generalisierung und Spezialisierung in Fakten und Dimensionen, multiple Rollen eines Elements, As-
soziationen und Selbst-Assoziationen von Faktschemata, sowie die Modellierung von abstrakten, abgeleiteten
und abhängigen Elementen.

Die Umsetzbarkeit des vorgeschlagenen konzeptuellen Modells wird durch die Darstellung dessen de-
monstriert, wie es auf eine relationale Repräsentation mithilfe von generellen Richtlinien des logischen
Design abgebildet werden kann. Dabei wird die gängige Summierbarkeitsbedingung zur Bestimmung der
notwendigen Schema- und/oder Instanztransformationen verwendet. Des Weiteren betrachten wir das Prob-
lem der Metadatenmodellierung. Metadaten spielen in Datawarehouse-Systemen eine prominente Rolle, da
sie als Vermittler zwischen verschiedenen Schichten und Komponenten der Systemarchitektur fungieren. Ins-
besondere beschäftigen wir uns mit den Metadaten der Anwendungsschicht, da diese für die Erfassung der
multidimensionalen Semantik hinter den “flachen” Datenbanktabellen verantwortlich ist.

Der andere Teil unserer Forschung konzentriert sich auf Funktionalitäten der Endbenutzerschicht. Auf
OLAP-Daten wird typischerweise ausschliesslich durch visuelle Analysewerkzeuge zugegriffen, wobei die
Benutzer bequem zu den relevanten Datenmengen navigieren und diese mittels verschiedenartiger visueller
Layouts und Interaktionstechniken erforschen können. Daher hängt die gesamte Leistungsfähigkeit der Anal-
yse letztendlich von den Funktionalitäten der angebotenen Frontend-Werkzeugen ab. Da wir uns den De-
fiziten von gängigen Business-Visualisierungstechniken und Ansätzen zur Datennavigation bewusst sind,
schlagen wir ein umfassendes visuelles Explorationsrahmenwerk vor, welches die konzeptuellen Erweiterun-
gen in Form von angereicherten Metadaten und einer mächtigen Datenschnittstelle zu interaktiven Spezi-
fikation von Ad-hoc-Anfragen in die Frontend-Schicht propagiert. Abschließend stellen wir eine Klasse von
multidimensionalen Visualisierungstechniken namens Enhanced Decomposition Trees zur fortgeschrittenen
visuellen Datenanalyse vor, welche eine Serie von Zerlegungsschritten (d.h., Drill-down) auf eine Hierarchie
von erhaltenen Teilaggregaten abbildet.

Nach bestem Wissen und Gewissen ist das vorgestellte Modellierungsframework allen zuvor oder während
der Durchführung dieser Forschung vorgeschlagenen Ansätzen zur multidimensionalen Modellierung über-
legen. Seine Hauptvorteile bestehen in der Kohärenz der Formalisierung, der begleitenden graphischen No-
tation, der relationalen und Metadaten- Abbildungstechniken und der Frontend-Implementierung. Dennoch
erheben wir nicht den Anspruch, die endgültige Lösung für die Unterstützung aller Arten von komplexen
Daten und Anwendungen durch die OLAP-Technologie gefunden zu haben und stellen fest, dass ein derar-
tiges Ziel innerhalb einer einzigen Promotion nicht erreichbar ist.
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Chapter 1

Introduction

T HIS CHAPTER INTRODUCES the general context, the aims, and the rationale of the thesis with a
brief description of each chapter’s contents. The motivation for employing the data warehousing
technology in non-conventional application domains is given, followed by identifying the limitations

of the standard techniques to satisfy the requirements of novel usage scenarios and complex data.

Contents
1.1 Data Warehousing and OLAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aims and Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Data Warehousing and OLAP
In the 90s and beyond, a key to survival in the business world has been the ability to analyze, plan and
react to changing business conditions in a much more rapid fashion. In the same decade, a set of significant
new concepts and tools have evolved into a new technology that makes it possible to attack the problem
of providing all the key people in the enterprise with access to whatever level of information they need for
decision making [138]. The terms that have come to characterize this technology are data warehousing
and OLAP (On-line Analytical Processing) [30]. The applicability of the data warehousing approach is by
no means restricted to business scenarios. As comprehensive data analysis is becoming indispensable in
a variety of real-world applications, the deployment of data warehouses has reached out for non-business
domains, such as government, science, education, research, medicine, to name the prominent ones.

The core feature of data warehousing is to provide a separate database that integrates the data extracted
from various operative systems and external sources and rearranges it into multidimensional views to enable
simple but powerful aggregation. The analysis is preceded by a highly complex ETL (extract, transform,
load) process aimed at integrating the data and bringing it into a consistent state. The OLAP technology
draws its analytical power from the underlying multidimensional data model. This model categorizes data
as measurable facts, or simply measures), which are typically of numeric type. Measures are determined
by a set of descriptive dimensions, which serve as exploration axes for aggregation. Member values of a

1
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dimension may be further organized in a containment type hierarchy to support additional aggregation levels.
The resulting multidimensional data structures are often referred to as OLAP cubes.

The task of data warehouse design is to model and to implement a database for a particular analytical
application. The modeling task consists in mapping the relevant data of a given application domain into the
data model of the data warehouse system. The design typically undergoes three phases: i) conceptual model-
ing of multidimensional cubes, ii) logical modeling as the basis for schema implementation, and iii) physical
design addressing the actual implementation issues, such as indexing, partitioning, view materialization, etc.

1.2 Motivation
Even though data warehousing is an established and widely adopted practice in the modern information tech-
nology platform, there exist numerous open research issues in this area. Many of those issues emanate from
the attempts to apply the business performance oriented OLAP techniques to non-conventional application
domains. The causes of deficiencies and failures are manifold, from the underlying conceptual model to
the frontend analysis tools. However, it is our conviction that despite any limitations the data warehousing
technology has the potential to provide adequate analysis support to a wide spectrum of usage scenarios. The
claimed universality of data warehousing bears on the concept of generic “analyzability”: the data should
be homogenized, integrated and preprocessed to enable efficient and goal-oriented analysis [8]. The need
for this kind of analysis is encountered virtually in any application domain where large data volumes get
accumulated over time.

Having the data available in the form of multidimensional cubes in a data warehouse is not only a pre-
requisite for OLAP, but is also beneficial for applying data mining techniques. These techniques are aimed
at discovering new information from vast amounts of data in terms of rules or patterns, which cannot be
found by merely querying the data [41]. Used in conjunction with one another, data warehousing and data
mining achieve a synergetic effect: while computationally expensive data mining algorithms display better
performance and provide more accurate results when run on consolidated and aggregated data sets, the mul-
tidimensional data itself can be enriched by capturing the output generated by the data mining techniques as
additional measures and classification hierarchies.

Figure 1.1 shows a simplified view of the data warehouse reference architecture comprising three basic
layers – transformation, application, and presentation [89]. Some authors propose to refine this standard
technical architecture into four or even five layers. Schütte et al. [161] suggest to separate the back-end
architecture into two layers: the operational data sources and the import, or ETL, layer. Further, Propach and
Reuse [151] obtain the fifth layer by subdividing the presentation layer into the analysis, encompassing data
mining and OLAP, and the actual presentation, encompassing only frontend interfaces. In such multilayer
environments, the overall power of the entire system depends on the maturity of each component and their
interplay: the constraints of the data model at the back-end propagate themselves to the upper layers, while
the limitations of the end-user tools may hinder full utilization of the application layer’s functionality.

At the conceptual level, the rigidness of the conventional data warehouse design is caused primarily by the
enforcement of summarizability for all dimension hierarchies. The concept of summarizability, introduced by
Rafanelli and Shoshani [152] in the context of statistical databases, ensures correct aggregation by requiring
dimension hierarchies to be strict and balanced [98]. However, hierarchies in many real-world applications are
not summarizable and their transformation may be undesirable in order to preserve the original hierarchical
relationships. Another critical constraint is that of homogeneity. Each element of a specific fact type or
a dimension is required to fully conform to the respective schema and roll-up along the same paths as all
other entries of the same class. Prohibition of NULL values in facts and dimensions ensures reliable aggregate
computation but results in the inability to cope with contingent uncertainty and imprecision in the input data.
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In a multitude of applications, analysts are confronted with irregular and complex data that violates the
constraints imposed by the standard multidimensional data model. In a survey on open issues in multidimen-
sional modeling [63], Hümmer et al. identified unbalanced and irregular dimension hierarchies as one of the
major data warehouse design challenges for both researchers and practitioners.

Even more problems arise when attempting to warehouse non-conventional data, such as events, pro-
cesses, workflows, and streams. The original input data, supplied by the logs of process executions, protocols
or other sources, even if reshaped into a multidimensional view, might not contain explicit quantitative met-
rics to serve as measurable facts. In business process analysis, measures of interest are often specified ad hoc
at runtime and not a priori during the design phase.

Many of the above problems arise at the very root of the data warehouse system architecture, i.e., they
are due to the rigidness of the conceptual model itself and, therefore, should be addressed by extending the
multidimensional model at the conceptual level. However, the value of any semantic extension is determined
by the ability to map it to the logical layer of the data warehouse, and, subsequently, to the end-user OLAP
tools. At present, there appears to be a discrepancy between advanced conceptual data models and their
implementations in state-of-the-art data warehouse systems. Obviously, this gap needs to be bridged in order
to propagate the benefits of the extended models up to the presentation layer, i.e., to the end-user interfaces.

To overcome the restrictions mentioned above and thus to increase the capacity of the OLAP technology
to handle a broader spectrum of practical situations, analysis tools have to be extended at virtually all levels
of the system architecture:
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	 recognition and classification of complex data structures,
	 conceptual and logical model extensions,
	 data and schema normalization techniques,
	 enhanced metadata model to ensure correct querying and aggregation,
	 lossless mapping of cube schemes to a visual navigation,
	 adequate visualization techniques for presenting complex query results.

The above enumeration of challenges is by far not exhaustive and should only convey a general idea about
the complexity of the defined task.

1.3 Aims and Contributions of the Thesis
The title of this thesis reflects the overall goal of this work, which is to extend the capacity of the OLAP
technology to adequately handle complex data and non-conventional applications. Although many research
areas in the field of data warehousing and OLAP have reached the state of maturity, new challenges arise
when applying the established technology to novel usage scenarios. In this thesis, we focus on overcoming
the deficiencies of the conventional OLAP technology in providing adequate decision support to non-standard
applications. Real-world case studies from the domains of academic administration and medical engineer-
ing are used to exemplify the challenges and motivate the proposed solutions. Two complimentary ideas
determine the contribution of this work:

a) to extend the multidimensional data model that represents the very core of OLAP and
b) to enrich the frontend layer with innovative features for visual analysis of large data volumes.

The primary focus of the work is on extending the backend functionality of data warehousing, obtained
by inspecting the requirements of novel application domains, identifying the bottle-necks of the conventional
OLAP technology with respect to those requirements, and searching for the ways to overcome the identified
limitations at the conceptual level. Since the ultimate worth of the resulting extended conceptual data model
is determined by its implementability in a state-of-the-art data warehouse system, we propose a set of cor-
responding conceptual-to-logical mappings and transformation techniques for restoring summarizability and
correct aggregate navigation and obtaining a logical data model.

The other part of this work concentrates on the frontend issues. Since end-users typically interact with
OLAP data using exclusively visual tools, which allow them to conveniently navigate to the subset of interest
and explore it using various visual layouts and interaction options, the capability of the analysis is eventually
limited to the functionality of the frontend tools. Aware of the deficiencies of standard business visualization
techniques and data navigation options, we incorporate the awareness of the backend extensions into the
end-user interface in the form of enriched metadata, adjust the data navigation framework for interactive
query specification to account for the extended semantics, and, finally, propose a set of advanced hierarchical
visualization techniques for exploring multidimensional data.

We describe a comprehensive framework for extending the data warehouse technology at the database,
application, and presentation layer. Specifically, at the backend level, the following is proposed:

	 a categorization of fact, dimension and hierarchy types,
	 a categorization inter-fact and fact-dimensional relationships in the unified multidimensional space,
	 a formal definition of the extended conceptual multidimensional data model,
	 a graphical notation X -DFM (Extended Dimensional Fact Model) compliant with the formal model,
	 a conceptual-to-relational mapping of the extended multidimensional model with scheme-level and

instance-level data transformation techniques for ensuring summarizability.
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At the application level, we adjust the metadata model to reflect the conceptual changes. Frontend en-
hancements comprise a powerful navigation approach to interactive specification of ad hoc queries and a
class of multidimensional visualization techniques, denoted Enhanced Decomposition Tree, for advanced
visual data analysis. The proposed techniques definitely do not exhaust the challenges of comprehensive
analysis and supporting non-conventional applications, but we expect them to be useful for a wide range of
usage scenarios.

1.4 Thesis Outline

To address the specified aims this thesis is outlined as follows:

	 Chapter 2 provides the necessary background of the concepts relevant in the context of our research.
Section 2.1 sets the stage by giving an overview of the area of Business Intelligence as a whole and data
warehousing as its major component, sketching recent achievements and trends in the field. Section
2.2 is dedicated to OLAP fundamentals, such as the multidimensional data model, OLAP operations,
implementation alternatives, and the data warehouse design methodology. In the concluding Section
2.3 we elaborate on the issues of visual exploration of OLAP cubes, state-of-the-art analysis tools,
prevailing practices and frameworks, and recent research findings in the area of visual data analysis
and decision support.

	 Chapter 3 presents the overall framework of the proposed extended multidimensional data model. Sec-
tion 3.1 reviews the state of the art in the field of conceptual data warehouse design, followed by
formulating the requirements of comprehensive multidimensional data analysis in Section 3.2. Section
3.3 introduces the conceptual design methodology composed of the formal model and the accompa-
nying graphical notation X -DFM, both defined at three levels of semantic abstraction: a lower, an
intermediate, and an upper one. Section 3.4 proceeds with the actual formalization of the fundamental
elements of the conceptual model, and defines a valid subset of X -DFM for modeling the presented
elements at each of the three abstraction layers.

The fundamental elements of the multidimensional model presented in Chapter 3 are further investigated,
refined and categorized in Chapters 4 and 5:

	 Chapter 4 extends the multidimensional data model with respect to supporting complex dimensions
and hierarchy types. State-of-the art research on dimensional modeling and the prevailing modeling
constraints are described in Section 4.1. Section 4.2 presents a motivating case study from the domain
of academic management. A systematic categorization of OLAP dimension and hierarchy types in the
form of a metamodel is undertaken in Section 4.3, followed by an in-depth categorization of hierarchy
types in Section 4.4 and that of multiple hierarchies within the same dimension in Section 4.5.

	 Chapter 5 undertakes a similar extension and classification effort for the multidimensional elements of
type facts, measures, and multi-fact schemes (galaxies). In Section 5.1 we present a case study from
the area of Surgical Workflow Analysis as an example of an operational data warehousing application
to exemplify the challenges of modeling complex fact schemes. Section 5.2 is dedicated to the catego-
rization of fact and measure types according to their aggregation semantics. Inter-factual relationships
and the resulting types of galaxy schemes are presented in Section 5.3. Finally, Section 5.4 investigates
dimension sharing patterns occurring in the unified multidimensional space and formulates guidelines
for handling dimension sharing in X -DFM.
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Chapters 6 and 7 focus on the challenges of designing, engineering, and implementing a data warehouse for
non-conventional applications:

	 In Chapter 6 we propose a methodology for semi-automatic engineering of multidimensional models
from the existing conceptual schemes of the underlying operational data sources. Section 6.1 overviews
standard approaches to the conceptual data warehouse and shows their limitations when handling non-
conventional domains. In Section 6.2 we propose an alternative approach to engineering multidimen-
sional models via a cardinality-based transformation of the existing operational models. Section 6.3
demonstrates the feasibility of the proposed modeling framework through two usage scenarios and a
series of sample analysis tasks from the field of surgical workflows.

	 Chapter 7 describes a relational implementation of the extended multidimensional model, presented in
Chapters 3 through 5. Section 7.1 describes the fundamentals of obtaining a logical scheme from a
conceptual one, subdivided into the guidelines for implementing fact schemes, derived elements, and
dimension hierarchies. In Sections 7.2 and 7.3, we present a two-phase transformation approach to
obtaining a relational mapping of non-summarizable dimension hierarchies. In the first phase (Section
7.2), scheme transformation techniques are employed to normalize heterogeneous hierarchy schemes,
e.g., to eliminate overlapping specialization and mixed granularity. In the second phase (Section 7.3),
instance normalization techniques are applied to eliminate irregularity in homogeneous schemes. Sec-
tion 7.4 concludes the description of the relational implementation by presenting the metadata model
of the analysis

	 layer, responsible for capturing the multidimensional semantics behind the logical model.

The remainder of the thesis is dedicated to enhancing the presentation layer of data warehousing systems and
summarizing the contributions of the entire modeling framework:

	 Chapter 8 addresses the limitations of the data warehouse systems at the application and presentation
layers. Specifically, we focus on the approaches to interactive visual specification of ad hoc queries
and consider established and novel visualization techniques adequate for advanced exploration and
analysis of multidimensional data. Section 8.1 sets the stage by introducing the overall visual explo-
ration framework and reviewing the state of the art, both in research and in commercial tools, in the
field of visualization techniques for OLAP. In Section 8.2 we focus on the data navigation paradigm
for interactive query specification, consider the prevailing exploration patterns and elaborate on the
implementation of logical OLAP operators in a visual framework. The aim pursued in Section 8.3 is to
enhance the exploratory framework by employing hierarchical visualization techniques for displaying
the results of a series of aggregations in a single view: we introduce Enhanced Decomposition Trees
as a specialized hierarchical visualization technique for OLAP, followed by inspecting various layout,
scaling, visual mapping, and interaction options.

	 Finally, Chapter 9 summarizes the contributions of the thesis, draws conclusions, and identifies future
research directions we regard promising in the context of this work.

The outline of the thesis reflects the multi-layer structure of data warehouse systems depicted in Fig-
ure 1.1. This correspondence between the thesis structure and the data warehouse reference architecture is
shown in Figure 1.2. Chapters 3 to 5 address the backend layer by tackling the challenges of the conceptual
modeling. Chapter 6 proposes a methodology for automating the acquisition of conceptual multidimensional
schemes from the models of the underlying data sources and operational systems. Relational implementa-
tion guidelines and the metadata model presented in Chapter 7 belong to the application layer. The visual
exploration framework in Chapter 8 concentrates on the enhancements of the analysis and presentation layer.
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Figure 1.2: Thesis outline with respect to the multi-layer data warehouse reference model

Due to a high degree of independence and heterogeneity of the concepts and techniques relevant within the
scope of this thesis, we have decided against putting the entire related work into one chapter. Instead, Chapter
2 concentrates on the contributions relevant for presenting the fundamental terminology and describing the
background of our research, whereas more specific related work appears in the respective chapters, interleaved
with the flow of the thesis.





Chapter 2

Background and Related Work

I N THIS CHAPTER, the relevant terminology and concepts are introduced, starting from the overall Busi-
ness Intelligence framework and the data warehousing environment and proceeding to the elements of
the data warehouse system architecture, employed data models and operations, implementation alter-

natives, and the design methodology. The last section highlights the fundamentals of visual OLAP as an
emerging paradigm for interacting with multidimensional aggregates.
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2.1 Business Intelligence and its Components
Due to the fact that data warehousing and its related concepts have been influenced by the technical as well
as by the business application experts, there exist discrepancies in the definition of some terms. As this thesis
focuses on the database aspects of data warehousing research, we pursue a technical definition perspective.

2.1.1 Business Intelligence
Coined as a term by the Gartner Group analyst Howard Dresner in 1992 [10], Business Intelligence (BI) is a
popularized umbrella term encompassing a set of concepts and methods to improve business decision making

9
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by using fact-based support systems. Though often used synonymously with decision support, the former is
technically much broader, potentially encompassing knowledge management, enterprise resource planning,
and data mining, among other practices. In the abundance of definitions emphasizing various aspects of BI,
such as information processing, logistics, assessment, alerting, etc., we adopt the following definition:

“Business intelligence (BI) is a broad category of applications and technologies for gathering, storing,
analyzing, and providing access to data to help enterprise users make better business decisions. BI applica-
tions include the activities of decision support systems, querying and reporting, online analytical processing
(OLAP), statistical analysis, forecasting, and data mining” [171].

Figure 2.1 shows an attempt to structure diverse BI perspectives by arranging them on a two-dimensional
plane, as proposed by Gluchowski [46] and modified in [80]. The phases of the analytical data processing
are ordered along the vertical axis, whereas the horizontal axis differentiates between the technology and
the application focus. Based on the positioning of the application classes, Kemper et al. [80] propose to
distinguish between three prevalent definitional levels:

	 Narrow BI definition is limited to a few core applications with a straightforward decision support
function, such as OLAP, Management (MIS) and Executive (EIS) Information Systems.

	 Analysis-oriented BI definition encompasses the entirety of end-user tools and applications that en-
able interactive analysis. Such tools include data mining, reporting, balanced scorecards, etc.

	 Broad BI definition goes beyond the tools of the presentation layer by comprising all applications
employed for decision support, directly or indirectly. ETL software falls into this category.
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2.1.2 Data Warehousing
Data warehousing is a field that has emerged from the integration of a number of different technologies and
experiences over the last two decades. W. H. Inmon coined the term “data warehouse” as early as in 1990
with the following definition:

“A data warehouse is a subject-oriented, integrated, non-volatile, and time-variant collection of data in
support of management’s decisions. The data warehouse contains granular corporate data” [68].

The four salient characteristics enumerated in the above definition are explicated in Table 2.1.

Table 2.1: Data warehouse characteristics according to W. H. Inmon

Characteristic Explanation

Subject-oriented The data is modeled according to the subject area of the respective enterprise,
and not according to the application needs of operational systems. The topics
of the analysis are enterprise-specific. Thereby, a proper perspective on the
data from the decision-maker’s point of view is provided.

Integrated The data fed from multiple sources has to undergo extensive transformations
to be brought into a coherent state. The main challenges here are to ensure
consistent formatting, naming, data coding, and measurement units.

Non-volatile The data is loaded in a snapshot, static format; existing entries are not supposed
to be further manipulated or deleted. Analytical operations are read-only.

Time-variant Each data unit is accurate with respect to some point or period in time. The time
dimension is used to characterize the validity of the facts. Aggregation along
time and evolution in time are the core analysis types in data warehouses.

As the concept of data warehousing matured over time, other definitions were proposed. R. Kimball
provided a rather simple but accurate definition of a data warehouse as “a copy of transaction data specifically
structured for query and analysis” [81]. Finally, the end user perspective is stressed by Jarke et al. who
define a data warehouse as a “collection of technologies aimed at enabling the knowledge worker (executive,
manager, and analyst) to make better and faster decisions” [72].

The term “data warehouse system” comprises the data warehouse itself as well as its accompanying com-
ponents, such as design and ETL tools, Operational Data Store, metadata repository, analysis and presentation
tools of the end-user. A classical reference architecture of a data warehouse system [8, 24, 89, 92, 138, 151,
161] depicted in Figure 2.2 is a refinement of the simplified version from Figure 1.1. We use the 5-layer
model proposed in [151], in which each layer encapsulates a different stage of the data flow in the system.

The Data Sources Layer encompasses all information sources, primarily the company’s own operational
databases, which function as data suppliers for a warehouse. In addition to the internal data, external data
sources, such as third-party demographic and statistical databases, market research reports, and web docu-
ments are frequently used to enrich the analysis base.

The task of the ETL Layer is to extract data from heterogeneous sources, cleanse it into a consistent
state, transform it according to the target schema, and, finally, load it into the data warehouse. A set of
activities required to populate data warehouses and OLAP applications with cleansed, consistent, integrated,
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Figure 2.2: A multi-layer data warehousing system architecture

and probably summarized data is described by the term ETL (Extract, Transform, Load). The ETL process
is subdivided into two phases: i) definition and ii) execution. The definition phase can be interpreted as
a specification of the data warehouse metadata objects, whereas the execution phase uses the framework
defined in the first phase to carry out the actual data loading routine (on a time-driven or even-driven basis)
[89]. The entire latter phase takes place in a designated storage system called staging area, which is known
as the “back room” portion of the data warehouse environment that lies out of bounds for end-users.

From the ETL layer, the transformed data is transferred to the Data Warehouse Layer, which is a special
purpose database along with its metadata repository. Ideally, there exists a single centralized data ware-
house consolidating the entire company’s data. In practice, however, organizations frequently switch to a
decentralized data mart architecture. A data mart is a departmental data warehouse subset focused on a spe-
cific subject. As for the relationship between the data warehouse itself and the data marts, there exists two
paradigms: Inmon suggests that data marts source their information from the enterprise-wide data warehouse,
whereas Kimball defines the data warehouse to be the union of all data marts within the enterprise [67]. While
current practices tend to be closer to Kimball’s approach, there is an emerging trend towards Inmon’s vision.
Data marts can coexist with the main data warehouse or be fully decentralized, each disposing of its own
ETL tools. The disadvantage of the latter approach is the danger of facing integration problems if the initial
design does not reflect a complete business model [24, 151].

Another integral component of the data warehouse layer is the metadata repository that enables shared
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access to metadata by various tools and processes. Metadata refers to the data required for managing the
data warehouse and comprises administrative (setup, configuration, database objects and rules), business
(definitions, ownership, access rights), and operational (origin, currency, usage statistics) metadata [24]. In
the world of data warehousing, the administrative metadata, which describes the structure of the available
data, functions as an index to the actual contents as the former allows the end-user to navigate through the
data and analyze it interactively [68].

Operational Data Store (ODS) is a storage structure residing outside of the data warehouse environment
and providing integrated real-time detailed data obtained from operational systems. In contrast to a data
warehouse, which contains historical and summarized data, an ODS stores current operational data to support
the demand for near-real-time data, e.g., for operational reporting or tactical decision making. Considering
the growing analytical interest for fine-grained real-time data, Kimball proposes to relocate the ODS by
coupling it tightly with the data warehouse as the “front edge” of the latter [84].

The Analysis Layer encompasses analysis methodologies and techniques, such as OLAP and data mining,
which form the basis for the end-user BI tools. The term OLAP (On-Line Analytical Processing), synonymous
to multidimensional data analysis, was coined in 1993 by the inventor of the relational data model E. F. Codd
to describe a kind of software that analyzes business data in a top-down hierarchical fashion:

“OLAP is the name given to the dynamic enterprise analysis required to create, manipulate, animate, and
synthesize information from exegetical, contemplative, and formulaic data analysis models. . . This includes
the ability to discern new or unanticipated relationships between variables, the ability to identify the param-
eters necessary to handle large amounts of data, to create an unlimited number of dimensions (consolidation
paths), and to specify cross-dimensional conditions and expressions” [30].

Data mining techniques provide advanced predictive and analytical functionality by identifying distribu-
tion patterns (segmentation), characteristic behaviors (classification) and relationships (association) within a
dataset [24, 151].

Finally, the Presentation Layer consists solely of the frontend analytical applications, commonly referred
to as BI tools, for reporting, querying, and mining the data. Presentation tools differ in the degree of freedom
(pre-defined vs. ad hoc queries), complexity and customizability to individual requirements. With the recent
advancements in the Internet technology, there is a clear trend towards browser-based frontend solutions.
Another trendy development is a unification of diverse analysis toolkits in a comprehensive BI platform,
based on an organization-wide business model. Examples of mature BI platform solutions are Oracle BI
Suite [133] and BusinessObjects Enterprise [14]. A pioneering initiative in developing an open-source BI
suite is Pentaho BI Platform [139], which is entirely web-based and highly customizable.

Obviously, each data warehouse solution has to be designed and implemented individually and in accor-
dance with specific requirements of a given organization and the application domain. However, there are
certain general characteristics that make out the advantages of the data warehousing approach [92, 151]:

	 availability of an organization-wide unified and consistent data model,
	 ability to benefit from external data sources,
	 maintenance of historic and summarized data in a separate database,
	 no interference with operational sources,
	 optimized performance for complex queries,
	 accessibility to a wide range of users,
	 user-friendly frontend tools.

Subject-orientation guarantees applicability of data warehousing to virtually any application domain.
Data warehouse solutions are employed in trade, finance, banking, insurance, production etc. Initially de-
signed for satisfying decision support needs of business enterprises, the performance-oriented BI approach
has recently found its way to a multitude of non-conventional applications, such as life sciences, health-care,
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academia, and government, to name a few distinguished fields. In the next section we take a closer look at
the OLAP technology and investigate what factors contribute to its nearly universal applicability.

2.2 OLAP and the Multidimensional Data Model
Data warehouses are targeted at enterprise decision support, which is based on analyzing key performance
indicators presented as measurable facts, or in short measures , e.g., sales volume, turnover, ROI (return on
investment), etc. Complex analytical queries aggregate over large volumes of consolidated data performing
a series of expensive table scans and joins and thus result in heavy workloads. Apparently, data warehouse
performance requirements are quite different from those of the OLTP (On-Line Transaction Processing) sys-
tems. These requirements are met by employing the OLAP approach and its underlying multidimensional
data model. Standard terminology for OLAP is provided by the OLAP Council [134].

2.2.1 Elements of the Multidimensional Data Model
The multidimensional data model is aggregation-centric, i.e., it uses numeric measures as its analysis objects
[24]. A fact entry is identified at the finest available granularity and normally corresponds to a single transac-
tion or an event. Parameters that determine the values of a measure are referred to as dimensions. Consider
an example from the domain of academic administration, with the number of enrollments as the measure of
interest. The associated dimensions are Semester, Degree, and Country. Often, the members of a dimension
are organized in a containment-type hierarchy to enable additional aggregation levels. For instance, single
countries in Country dimension can be grouped into subcontinents and, subsequently, into continents.

DATA CUBES

A natural representation of a set of fact entries along with the associated dimensions and their hierarchies is
known as a multidimensional data cube, or a hypercube. The number of dimensions in a cube corresponds
to the dimensionality of its contained measure(s). Each dimension can be interpreted as an axis in a multidi-
mensional space with the dimension’s member values as its coordinates. Finally, each cell contains a value
of the measure defined by that cell’s dimensional coordinates.

Depending on the application, cubes may range from dense (each cell has a non-null measure value) to
sparse (significant portion of empty cells) ones. The sparsity tends to increase with the increasing number of
dimensions and with the increasing granularity within a dimension. Figure 2.3 shows a sample 3-dimensional
cube (fragment) with student enrollment numbers. In addition to the original fact entries (white cells), slices
of subaggregates, computed for each combination of dimensions (colored cells) as well as the absolute total
value (a dark-grey cell), are shown. Despite the implied 3-dimensionality of the term cube, in OLAP there is
no limitation on the number of dimensions in a cube.

DIMENSIONS

Dimensions represent a crucial concept in OLAP as they provide the context for analyzing the facts – analysts
use them to filter the data and aggregate it to the desired level of detail. Each dimension of a cube corresponds
to an axis in a multidimensional data space. The values of a dimension are called dimension elements, or
members. Members may be arranged into a classification hierarchy, composed of multiple levels, with each
level representing a distinct granularity within the dimension. Each member is mapped to a classification
node in the hierarchy, with the members of the finest grain as the leaf nodes [8].
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Figure 2.3: A sample 3-dimensional cube (fragment) storing student enrollment numbers (white cells) along
with its 2-dimensional, 1-dimensional, and 0-dimensional projections (colored cells)

In the multidimensional data model dimensions are represented via their classification schemes, in which
each level of the hierarchy, denoted a classification level, or category, is a node connected by an edge to its
parent level. In some literature, the classification scheme is termed intension, with the actual classification
hierarchy building its instance, or extension [142]. Fact entries are linked to a dimension exclusively at the
bottom level of the latter, whereas upper levels are used for querying the respective aggregates. Distinct
paths in a classification scheme are referred to as consolidation paths. A classification level is allowed to be
composed of multiple attributes.

The analysis may be further enhanced by defining multiple classification hierarchies within the same
dimension. Consider Degree dimension in the aforementioned student enrollment example. The bottom-
level members are the degrees into which students are enrolled. A degree is composed of the attributes Study
Subject (e.g., “Physics”) and Degree Type (e.g., “Bachelor”). Intuitively, single degree values can be grouped
by Study Subject, on the one hand, and by Degree Type, on the other hand. Figure 2.4 shows the graph of the
resulting aggregation paths within Degree as well as the actual data hierarchy behind each aggregation path.

The attribute upon which the hierarchy is defined is called the analysis criterion. Hierarchies within a
dimension may refer to the same or to different analysis criteria. Hierarchies depicted in Figure 2.4 refer to
various criteria: one classification is based on Degree Type, while the other draws upon Subject. Attributes
holding non-hierarchical characteristics of the category’s members are called properties. In our example,
Department category in Degree dimension may have properties such as Dean, Location, and Foundation
Date. Property role of any attribute is not global but is limited to the context of a given hierarchy. For
example, Location attribute of Department is a property in the context of the subject hierarchy in Degree.
However, Location may be used as an analysis criterion for defining a hierarchy of department locations, such
as Location Õ District Õ City.

Notice that dimension hierarchies are normally defined in terms of the partial ordering, i.e., as parent-
child relationships between its members with no ordering between the members of the same level. However,
for some dimensions, such as time, the total ordering on its members is given. The conventional OLAP
approach requires dimension hierarchies to be strict, regular and balanced to ensure correct aggregation.
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Figure 2.4: Dimension Degree with multiple hierarchies: scheme (left) and instances (right)

FACTS

Facts represent the subjects of the analysis. The granularity, or level of detail, of the facts corresponds to the
atomic level of the modeled business subject. For example, the granularity of the student enrollment facts
from the cube depicted in Figure 2.3 is given by degree, country, and semester. The finest granularity and
homogeneity are ensured by requiring each fact entry to map to the bottom level in each of its dimensions.

Kimball identifies three fundamental types of facts [81]:

	 Transactional facts track the occurrence of events, with each detailed event captured into a fact entry
and the measures being additive across all or most of the dimensions.

	 Periodic snapshots capture the states of an entity at given points in time, such as inventory levels or
account balance. The same entity (e.g., a product) and its state is registered as a new fact for each point
in time. The measured states are not additive across time but additive across other dimensions.

	 Accumulating (cumulative) snapshots capture the states of an entity up to a certain point in time with
respect to some initial point, common for all facts. An example of cumulative snapshots is the total
number of website visitors recorded at daily basis. The measures are non-additive over time (as they
already hold accumulated values) but are additive across other dimensions.

Apart from the measurable fact types listed above, there exist useful fact types that do not contain any
measures, i.e., consist of nothing but a set of dimensions. Kimball denotes such facts factless and names their
common usage scenarios [83]:

	 Event-tracking facts simply store the occurrence of an event itself (e.g., every single student enrollment
case) without any specific measure of interest.

	 Coverage facts are useful for tracking whether something has or has not happened. An example of a
coverage fact type is the entirety of individual student application records that have or have not resulted
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in an enrollment. Such facts are useful for computing the acceptance rate.

	 Any many-to-many relationship is a fact by definition.

Many real-world scenarios combine various types of facts to support complementary analysis tasks.

MEASURES

Measure is a fact property that the users want to analyze, predict, or optimize. The “holy grail” of the
multidimensional design is that the most useful measures are numeric, continuously valued, and additive
[81]. A measure of a query is defined by specifying a formula, usually a simple aggregate function, such as
sum, that combines several measure values into one [143]. The measure attribute(s) and the formula should
be chosen as to provide a meaningful value for all aggregation levels. Calculated, or derived, measures result
from applying a function to one or more measure values pertaining to the same fact entry. An example of a
derived measure is amount, obtained by multiplying price with quantity.

With respect to its aggregation behavior, each measure falls into one of the following three classes:

	 Fully additive measures can be summed up through all of the fact’s dimensions. The number of enroll-
ments in the cube in Figure 2.3 is an example of such a measure.

	 Semi-additive measures may be totalled along some of the dimensions but not all of them. This kind
of measures is typically encountered in snapshot facts, in which the values may not be aggregated over
time.

	 Non-additive measures may be added up along no dimension at all. Values of type measurement or
metric, such as age, height, or density are examples of numeric values non-additive in many contexts.

Measure additivity is determined at design time and stored in the data warehouse as metadata to be used for
checking the validity of attempted queries.

Aggregate functions can be classified into three categories [51]:

	 Distributive functions, such as COUNT(), MIN(), MAX(), and SUM() can be computed by partitioning
their input into disjoint sets, aggregating each set individually, and then aggregating individual subag-
gregates into the final result.

	 Algebraic functions can be expressed as a scalar function with M arguments (where M is a bounded
integer), each of which is obtained by applying a distributive aggregate function. For example, AVG()
can be expressed as SUM()/COUNT().

	 Holistic functions cannot be computed by partitioning as the whole input is required for computing each
output value. Common examples of such functions are MEDIAN(), MostFrequent(), and RANK().

Characterization of aggregate functions is necessary for determining their self-maintainability, i.e., whether
new aggregates can be computed directly from the old output of the function and from the changes to the
base data [100].

2.2.2 OLAP Operations
Cube structure builds the foundation of OLAP applications. A variety of cross-dimensional calculations and
aggregations for real-time data analysis can be performed within a cube or across multiple cubes by applying
specialized query operations. OLAP operators pursue different tasks, from specifying the subset of interest
and manipulating its dimensionality and granularity to filtering the dataset, obtaining new measures by linking
multiple cubes, ranking the aggregates according to some function, specifying user-defined hierarchies, etc.
The operators can be subdivided by function into the following groups:
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Figure 2.5: DRILL-DOWN and ROLL-UP across dimensions (top) and within a dimension hierarchy (bottom)

1. Aggregation operators DRILL-DOWN and ROLL-UP and their variants (DRILL-THROUGH, DRILL-WITHIN,
DRILL-ASIDE, PROJECT) manipulate dimensionality and granularity of the output data cube. The abil-
ity to drill down into any level of any dimension is known as “drilling anywhere”.

2. Filtering operators SLICE&DICE and its special cases (SLICE, DICE, SELECT, FILTER, CONDITIONAL
HIGHLIGHTING) reduce the size of the data set by adding predicates on dimensional characteristics.
RANK operator applies filtering and ranking to the aggregated values themselves.

3. Reordering operators PIVOT (ROTATE) and SWITCH enable visual rearrangement of the output without
any changes in the underlying dataset.

4. Restructuring operators DRILL-ACROSS, DRILL-AROUND, PUSH&PULL, and INSERT/DELETE LEVEL
transform the cube’s schema to obtain new measures, dimensions, or hierarchy levels.

To gain an insight into the specifics of OLAP queries, we provide a detailed description of the popular
operators from the above enumeration:

	 DRILL-DOWN and ROLL-UP are inverse operations that use dimension hierarchies to perform aggrega-
tion steps. ROLL-UP aggregates a measure to a coarser granularity whereas DRILL-DOWN navigates
from aggregated data to a higher level of detail. Drilling down and rolling up by respectively adding
and eliminating dimensions from the drill path changes the dimensionality of the resulting cube, as
shown in the upper part of Figure 2.5. However, the dimensionality remains unaffected when drilling
within a dimension, as presented in the lower part of Figure 2.5 at the example of Country dimension.

	 DRILL-THROUGH allows to jump back to the original fact data behind the selected aggregate values.
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Define a slice by reducing Degree to 

a single value "Mathematics, Dipl."

Dice by filtering Semester to select 

only winter semester values

Figure 2.6: Example of a SLICE&DICE operation

	 DRILL-WITHIN refers to switching from one classification to another within the same dimension. Drill-
within prompts the user to select the path for drilling down at each level where multiple hierarchies are
encountered within a dimension. For instance, at the Year level the user may choose to drill either into
Month or into Week.

	 DRILL-ASIDE enables navigation in a many-to-many mapping of the aggregation path. For instance,
when drilling from Year down to Week, the last week of a year may partially belong to the next year
and, therefore, the user is prompted to decide how the respective subaggregates should be handled.

	 SLICE&DICE corresponds to reducing the cube’s dimensionality by projecting the data onto a subset of
dimensions while setting other dimensions to selected values, and is composed of two sub-operations:
SLICE selects a subcube corresponding to a single value for some dimension in the drill path, while
DICE reduces the size of a slice by filtering its data along any dimension(s) in the drill path. Figure
2.6 visualizes the effects of a slice&dice in the student enrollments cube: Degree dimension is “sliced”
down to a single value “Mathematics, Dipl.” with subsequent “dicing” of Semester dimension by
selecting values “WS04” and “WS05”.

	 SELECT is the dual of dicing: rather then selecting the elements of a dimension to be included, the user
is prompted to specify the condition on eliminating the data from the result.

	 RANK, or top n/bottom n queries, retrieves only the first/last cells in the result sorted by the aggregate’s
value – for example, the 10 most popular degrees in the academic year 2004/05.

	 PIVOT, or ROTATE, is a visualization operation that rotates the dimension axes in the view in order to
provide an alternative presentation of the data. The data subset itself remains unaffected. Figure 2.7
gives an example of pivoting the original data cube by means of two rotations.

	 DRILL-ACROSS allows to query multiple cubes that have at least one common dimension, combining
the results into a single data set [48, 82, 145]. The join is preceded by the ROLL-UP of all participating
cubes to the set of their common dimensions to ensure compatible granularity of the measures to be
combined. Consider a sample task of deriving a new measure acceptance ratio (i.e., the number of
enrollments divided by the number of applications), which can be achieved by combining enrollment
facts with the corresponding application facts. The latter is available in form of a 2-dimensional cube
with dimensions Semester and Country. Figure 2.8 demonstrates the intermediate operation of aggre-
gating the enrollment facts by Semester and Country – the set of dimensions common to both cubes –
and the final step of computing a new cube. Advanced drill-across options are elaborated in [4].

	 PUSH and PULL operations, proposed in [5], enable the interchange of dimension and measure roles in
a query. The push operator is used to convert a dimension into a measure to be aggregated. The pull
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Figure 2.7: Example of a PIVOT operation with two rotations (shaded cells are visible in both views)

Student enrollment numbers

Roll-up

Drill-across

Student enrollment numbers

Application numbers Acceptance ratios

Figure 2.8: Example of a DRILL-ACROSS operation with two input cubes

operator is the converse of push: it converts a measure attribute into a dimension. Combined, push and
pull enable uniform treatment of measure and dimension characteristics.

2.2.3 OLAP Implementation Alternatives
OLAP tools do not indicate how the data actually has to be stored. Hence, there exist multiple ways to
implement a data warehouse, with the following two prominent architectures:

	 Relational OLAP (ROLAP) [65] systems store data in relational DBMS and employ SQL extensions
and specialized access structures to efficiently implement OLAP functionality.
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	 Multidimensional OLAP (MOLAP) [38] systems store data in specialized multidimensional data struc-
tures (such as arrays or cubes) and implement OLAP operations over these structures.

Apart from the fundamental distinction in data storage and processing capabilities, there is a conceptual
difference between the two implementation options: MOLAP pursues a top-down approach by first focusing
on business problems and then identifying measures and dimensions of interest, so that the metadata model
may be built prior to the acquisition of the relevant data sources; ROLAP, in contrast, encourages a bottom-up
analysis to identify candidate facts and dimensions in the relational data models of existing data sources [37].

Both paradigms have their benefits and weaknesses – the latter, however, being rapidly addressed by
the respective vendors. Currently, data warehouses are predominantly built using ROLAP, especially when
dealing with huge data volumes [89]. ROLAP attributes its success to such factors as the established and
proven technology, good scalability in terms of the number of facts and their dimensionality, flexibility under
cube redefinitions, and support for frequent updates [143]. MOLAP needs less storage space and generally
delivers better performance due to specific indexing, compression and storage optimizations. An overview of
the pros and cons of ROLAP and MOLAP based on the findings in [35, 56, 66, 85] is given in Table 2.2.

Hybrid OLAP (HOLAP) encompasses a range of solutions that combine ROLAP and MOLAP to benefit
from the high scalability of ROLAP and a superior performance of MOLAP. For example, a HOLAP system
may store large volumes of fine-grained facts in a relational database while materialized aggregation results
are kept in a MOLAP store [54].

Table 2.2: ROLAP versus MOLAP
Criterion ROLAP MOLAP
Performance 8 4

Maintenance 8 4

Compactness 8 4

Analytic Capabilities 8 4

Data Loading 8 4

Scalability 4 8

Portability 4 8

Standardization 4 8

Flexibility 4 8

Stability & Recoverability 4 8

Schema Evolution and Updates 4 8

Join and Star Join Operation 4 8

Complex Predicates 4 8

Table Scans 4 8

Data Partitioning 4 8

Parallel Query Execution 4 8

Dynamic Consolidation 4 8

Batch Consolidation 4 4

Indexing and Hashing 4 4

This thesis focuses on extending the capabilities of relational OLAP as the latter appears a more suitable
option for handling large volumes of complex high-dimensional data encountered in novel application scenar-
ios. In fact, our solutions in part of handling non-summarizable and heterogeneous classification hierarchies
explicitly exploit the flexibility of the relational database technology as will be shown in Chapter 4.
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Figure 2.9: A sample star schema

ROLAP stores data cubes in relations of two types: i) fact table and ii) dimension table. A fact table stores
a set of uniformly structured facts of the same grain, one row per fact entry. The facts may be either of the
finest granularity or aggregated. Fact tables that contain aggregated facts are called summary tables. A fact
table is composed of two types of columns – measures and dimensions – where each dimension column is
a foreign key (generated foreign keys are preferred for efficiency reasons) to the respective dimension table.
The primary key of a fact table is usually a composite key made up of all its foreign keys, i.e., the dimension
columns. A dimension table is used for storing the members of a dimension along with its classification
hierarchies. Dimension tables are sometimes called lookup or reference tables.

In the context of ROLAP systems, the two logical data warehouse design options are the star schema
and the snowflake schema [81]. Both schemata differ solely in the way they handle dimension hierarchies.
Star schema, used in in most data warehouses, places each dimension with all its hierarchies into exactly
one denormalized relation. The relational schema of a dimension table is given by the set of all level and
property attributes of the respective dimension. Thereby, the star schema provides no explicit support for
classification hierarchies and is prone to update anomalies. The de-normalized structure of the dimension
tables is beneficial for browsing the dimensions and improving the query performance via a star join. Figure
2.9 shows the resulting star schema of the sample 3-dimensional cube with student enrollment numbers.

Snowflake schema is a refinement of the star schema, in which each dimension hierarchy is normalized
according to the rules of the relational design to avoid redundancy: each dimension level is placed into a
separate table containing the respective dimension level attribute and its property attributes. Lower-level
tables also have a foreign key attribute referencing the containing level. Normalized storage is advantageous
for avoiding redundancies and thus facilitating update consistency, as well as for handling complex data
and for sharing dimension levels. Figure 2.10 shows the snowflake schema obtained by decomposing the
dimension tables of the star schema from Figure 2.9.

Multiple fact tables with dimensions modeled using either the star or the snowflake schema may be ar-
ranged into a galaxy schema [86]. This schema is constructed by allowing dimension tables to be shared
amongst multiple fact tables: each fact table is explicitly assigned to the dimensions, relevant for that fact
table. This solution is very flexible and powerful, however, it comes at the expense of high design overhead
because many variants of aggregation must be considered. Figure 2.11 shows an example of a galaxy con-
structed from the snowflake schemata of cubes ENROLLMENTS and EXPENDITURES, which have shared
dimension levels Semester and Department.

When built on top of de-normalized dimension tables, the galaxy schema is limited to full dimension
sharing as each dimension table may only be referenced via its primary key, i.e., the bottom-level category.
Partial dimension sharing, where facts may refer to the same dimension at different granularity levels, as in
the case depicted in Figure 2.11, can only be supported when dimension tables are normalized.
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Figure 2.10: A sample snowflake schema
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Figure 2.11: A sample galaxy schema with normalized dimension tables

A special case of a galaxy schema, in which multiple facts tables with shared dimensions are hierarchi-
cally linked to each other, is called a fact constellation schema [86]. Dimensions are modelled following the
star schema and multiple related fact tables are the result of pre-aggregating the measures in form of summary
tables. Figure 2.12 shows an example of a fact constellation with one base fact table and two summary tables.

Advantages of the star schema (simple design, optimized performance) and the snowflake schema (elim-
ination of redundancies, especially via sharing at subdimension level) can be joined by employing a star
cluster schema proposed in [125]. This schema has the minimal number of tables while avoiding overlap be-
tween dimensions by selectively “snowflaking” dimension tables to separate the segments or subdimensions
shared between different dimensions. Figure 2.13 shows the star cluster schema corresponding to the galaxy
schema depicted in Figure 2.11.

An evaluation of conceptual models for OLAP can be found in [2, 145] and a survey of logical data
warehouse models is published in [180].
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2.2.4 Data Warehouse Design Methodology
Three abstraction levels recommended by ANSI/X3/SPARC, namely conceptual, logical and physical de-
sign, are widely accepted as a sound framework to guide the database modeling process. There is a general
acknowledgement of the validity of this framework in the context of data warehouse design [8, 48, 89, 93,
102, 156]. However, there is no agreement as to how these levels should be actually translated into data
warehouse design phases [149]. Despite a variety of existing methods, the data warehouse community still
lacks universally accepted methods and standards covering all aspects of data warehouse design.

In addition to the three design phases mentioned above, Golfarelli and Rizzi [48] identify two additional
phases that precede the conceptual modeling phase:

1. Analysis of the information system is aimed at obtaining the (conceptual or logical) schemes of the
pre-existing information system.

2. Requirement specification consists in collecting the user requirements and outputting the specification
concerning the choice of facts, dimensions, measures, and aggregations, on the one hand, and indicating
the preliminary workload, on the other hand.



2.2 : OLAP and the Multidimensional Data Model 25

A wealth of approaches for conceptual and logical data warehouse design have been proposed in recent
years, introducing different models, formalisms and notations [2]. In this section we present the major con-
tributions in this field and identify the most appropriate techniques to be used in the remainder of the thesis.

CONCEPTUAL DESIGN

Conceptual modeling provides a high level of abstraction for capturing relevant relationships in the applica-
tion domain and the data to be stored and analyzed in an implementation-independent fashion. The output
of this phase is a set of fact schemes and the prevailing techniques are based on graphical notations under-
standable for both designers and end-users. However, generic database design techniques, such as the Entity-
Relationship (E/R) model [25] and the Unified Modeling Language (UML) standard [136], are not detailed
enough to capture the specifics of the multidimensional data model [8, 89]. Rizzi et al. [156] frame the exist-
ing approaches to multidimensional modeling into three categories: i) extensions to the Entity-Relationship
model, ii) extensions to UML, and iii) ad hoc models. All those models dispose of the same core expressivity,
however, there are significant differences in their ability to handle more advanced concepts. The remainder
of this section enumerates prominent contributions from each of the above model types.

Cabibbo and Torlone [18] present a design method based on restructuring the existing E/R schemes in
order to explicitly express facts and dimensions as well as classification hierarchies. In the target scheme,
the facts are presented as entities, the dimensions of interest are added thereupon, derived either from the
existing scheme or from the external sources. Each dimension is refined by defining aggregation levels and
property attributes. The restructured E/R scheme serves as input for deriving a dimensional graph. The latter
can be obtained automatically and distinguishes between four kinds of nodes: fact nodes corresponding to
fact entities, level nodes representing dimension hierarchy levels, descriptive nodes for level properties, and
measure nodes outgoing from the fact nodes.

Franconi and Sattler [42] propose an extended E/R formalism, which allows for the description of the
explicit structure of multidimensional aggregations. The E/R model is extended to represent the structure of
aggregated entities and multiple classification hierarchies within a dimension. Thereby, aggregations turn
into the “first-class citizens” of the representation language, i.e., they may have their own properties and be
related to other entities, such as dimensions and other aggregations.

The above two approaches are based on “encoding” the multidimensional semantics into the original E/R
constructs. Other authors argue that the E/R model itself has to be extended in order to provide adequate
multidimensional modeling constructs. Prominent examples of this class are are starER and ME/R models.

Tryfona et al. [175] proposed starER as an extension the E/R model, which offers a specialized entity
construct of type fact set, relationship set constructs of types generalization, aggregation, and membership
(subtyped into complete, non-complete, and strict), as well as the attribute construct of type fact property, or
measure, (subtyped into stock, flow, and value-per-unit).

Sapia et al. [159] present a specialization of the E/R model, called Multidimensional Entity Relationship
(ME/R) model. This model defines a specialized entity set dimension level and two specialized relationship
sets: a binary “rolls-up-to” relationship set and an n-ary fact relationship set. Unlike the approach of Franconi
and Sattler [42], ME/R captures only the static structure of the application domain. Derived and functional
information, such as applicable aggregate functions, computed and aggregated measure values, are not part
of this conceptual model. Phipps and Davis [146] propose an algorithm for automatic generation of candidate
ME/R schemes from the E/R schemes of the operational data sources.

UML-based methods employ object-oriented (O-O) concepts and self-extension mechanisms of this mod-
eling standard to map the constructs of the multidimensional data model.

An O-O multidimensional model for OLAP based on metacube is proposed by Nguyen et al. [131]. UML
is used for modeling both the data cubes and the metadata. The authors provide a rigorous formalization of
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cubes and their elements as well as of the cube operators. A UML class diagram is used for modeling the
conceptual model itself in form of a metamodel. The model is flexible and powerful with respect to handling
complex hierarchical relationships within dimensions.

Trujillo et al. [174] propose an O-O multidimensional modeling (OOMD) approach that uses class dia-
grams to model multidimensional schemes. The approach is not restricted to flat UML class diagrams, but
can benefit from the package grouping mechanism of UML to assign classes into higher-level groupings and
create different levels of abstraction. The model is capable of handling advanced concepts, such as derived
measures, many-to-many mappings, measure additivity properties, and multiple hierarchies.

Another approach, which customizes UML for the multidimensional realm, called YAM2 (“Yet Another
Multidimensional Model”), is proposed by Abelló [1]. The ultimate goal of YAM2 was to enrich the mul-
tidimensional modeling with semantic relationships offered by the O-O paradigm. The proposed model
comprises data structures, integrity constraints, and operations. Data structures are mapped to UML exten-
sions using the stereotype mechanism of the latter. Since data cubes are defined as functions, a closed and
complete algebra of available operations is also provided.

The work of Luján-Mora [102] fits into the framework of UML-based design approaches. The proposed
method comprises various design phases and utilizes the profile mechanism of UML (i.e., extendibility for
specific application domains) to define specialized profiles for each of the following data warehouse design
aspects: i) Multidimensional Modeling, ii) Data Mapping, iii) ETL, and iv) Database Deployment. The UML
profile for a unified conceptual multidimensional data model expresses the context of a measure in terms of its
dimensions and their classification hierarchies and can handle such properties as many-to-many relationships
between facts and dimensions, dimension and fact degeneration, multiple and non-strict hierarchies, etc.

An interesting proposal on adapting UML to the multidimensional paradigm can be found in [57]. At the
conceptual level, it distinguishes between the language and the graphical representation. A multidimensional
meta language called MML (Multidimensional Modeling Language) is proposed for flexible, implementation-
independent modeling. MML provides multidimensional semantic constructs and pursues strict distinction
between the metamodel, the schema and the instance. MML as a language can be used with different graphical
notations. The author’s own MML-based extension of the UML, called mUML (multidimensional UML),
defines new stereotypes to model the different types of classes and to mark the connections for building
hierarchies and uses the UML extension mechanism of tagged values to model derived attributes.

Totok [173] also uses UML in his O-O modeling framework. Great flexibility of the proposed approach
with respect to dynamic aspects and special cases is achieved by the use of corresponding methods for linking
measures to dimensions. The model also differentiates between original and derived measures. The power of
this framework consists in the ability to graphically assign each measure to the dimensions that provide valid
aggregation paths in that measure’s context [8].

Among recently proposed data warehouse design methods there is one proposed by Prat et al. [149],
whose framework spans all three design phases – conceptual, logical and physical. The central element of
the method is a so-called unified multidimensional metamodel that describes the elements of the conceptual
model (facts, dimensions, measures, aggregate functions, etc.). The authors also define their own graphical
notation using built-in extensibility mechanisms of UML, such as stereotypes and tagged values. The de-
fined constructs are rather similar to those of the ME/R. Besides, this model explicitly distinguishes between
temporal and non-temporal dimension levels.

The third class of conceptual multidimensional data models provide proprietary frameworks.
ADAPT (Application Design for Analytical Processing Technologies) proposed by Bulos in [11] has

evolved into the most prominent example in the category of revolutionary notations for data warehouse de-
sign. ADAPT offers a detailed notation consisting of a large number of graphical primitives. However, no
formal definition of the constructs’ semantics is provided. The method introduces new features for multidi-
mensional modeling, such as dimension scope and dimension context. The provided graphical framework is
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limited to regular hierarchy types commonly used in OLAP tools. Apparently, the ADAPT method is rather
qualified for logical modeling of MOLAP systems, and is less appropriate for the conceptual design [89].

The Nested Multidimensional Data Model (NMDM) proposed in [97] focuses on extending the multidi-
mensional model to handle complex dimensional structures. Functionally dependent attributes within single
dimensions are grouped, yielding in real orthogonal dimensions, which are easy to create and to maintain.
All schema constructs in this model refer to dimensions. Cubes are considered to be a recursive nesting of all
computable aggregates by classifying multidimensional objects into primary (dimension levels of the finest
granularity) and secondary (upper classification levels). During the analysis phase, this technique results in
nested data cubes with flexible navigation in dimension hierarchies.

Lechtenbörger presents a comprehensive data warehouse design methodology in [92]. His approach
to conceptual modeling is defined as the process of obtaining “good” schemata, i.e., schemata that satisfy
certain quality measures. The quality criteria are specified in terms of multidimensional normal forms. An
algorithmic approach to constructing fact schemata that satisfy the Third Multidimensional Normal Form
(3MNF) from the user requirement specification by analyzing functional dependencies is also proposed.

The first pragmatic scientific approach to the graphical design of multidimensional data is given in [47].
The proposed methodology is aimed at obtaining a multidimensional scheme from the operational schemes
(E/R or relational ones). The methodological framework is based on the conceptual model, called Dimen-
sional Fact Model (DFM). The representation of the multidimensional data built using DFM is called a
multidimensional scheme and consists of a set of fact schemes whose basic elements are facts, dimensions
and hierarchies. Due to its expressiveness, compactness and user-friendliness, DFM appears to be the most
adequate model for solving the conceptual design tasks in the context of this thesis. In Section 3 we present
our own extension of this model, called X -DFM. The extensions are aimed at making the graphical notation
fully coherent with the formal model. At this point, just a brief description of the original DFM is provided,
with example schemes depicted in Figure 2.14.

A fact scheme in DFM is a quasi-tree, i.e., a directed, acyclic, weakly connected graph, in which multiple
directed paths may converge on the same vertex [47]. A fact scheme is rooted at the fact node, presented as a
box labeled by the fact’s name and containing its measures. Dimension levels are represented by circle nodes,
with the bottom level attached to the fact. Property attributes are shown as lines attached to the respective
dimension levels. Dimension levels are connected to their upper levels, thus forming hierarchies rooted at the
bottom level. Arcs connecting pairs of nodes represent many-to-one relationships between them. Directed
arcs are used to resolve the ambiguity in case of multiple hierarchies. Dash-marked arcs express optional
relationships. Measures are assumed to be additive. Exceptions to additivity are specified by connecting the
measure to the respective dimension with a dashed line labeled with all applicable aggregate functions.
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Figure 2.14: A pair of compatible fact schemes (left) and their overlap (right) modeled in DFM
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DFM supports galaxies and fact constellations along with the corresponding drill-across operation by
formalizing the concept of overlapping fact schemes. Fact schemes overlap if they are compatible, i.e., share
at least one dimension level. Figure 2.14 illustrates the use of DFM to model the galaxy scheme from Figure
2.11. Each of the two fact schemes are modeled separately, followed by the resulting fact scheme overlap.

LOGICAL DESIGN

The goal of logical design is to detail the data as much as possible without considering physical implemen-
tation issues. However, logical models are clearly tailored towards a specific architecture. Since this thesis
focuses on extending ROLAP systems, we focus our attention on the works relevant in the context of re-
lational data warehouse design. The classical way to obtain a logical model is by means of mapping the
conceptual model to logical constructs, such as relations, keys, and constraints.

The logical model may adopt the popular star schema or a less popular but more flexible snowflake
schema, already discussed in Section 2.2.3. Both design options were coined by Kimball in his book [81],
where he also documents his approach by presenting various design challenges and how those can be solved.

Some efforts have been made to improve Kimball’s work, for instance, by employing object-oriented
concepts. O3LAP, which is a hybrid OLAP approach aimed at combining the advantages of both ROLAP
and MOLAP, is presented in [15]. The authors employ the O-O paradigm to overcome the mismatch between
multidimensional operations and SQL. A mechanism called Object-Relational View (ORV), which is an O-O
semantically-rich frontend to relational or object-relational data sources, is proposed in [49].

Mangisengi et al. [110] introduce two approaches to multidimensional modeling based on extended rela-
tional concepts. The first approach is based on the concept of nested relations. Nested relations (Non First
Normal Form relations) [107] with relation-valued attributes and nest/unnest operators are used here to store
measure values aggregated at different granularity. The second approach uses the concepts of Codd’s ex-
tended relational model [29], such as object identifiers, a typology of object types, and relationships between
different types, as well as the PATT (partitioning by attribute) operator for modeling multidimensional cubes.

Moody and Kortink [125] propose a methodology for obtaining logical schemata from E/R models and
describe several variants of relational schemata, from a fully denormalized flat to a hybrid star cluster schema.

Lechtenbörger proposes a methodology of obtaining a fact constellation schema from semantic schemes
as a sequence of transformation phases applied to i) dimensional levels, ii) property attributes, iii) contexts of
validity (i.e., modeling of generalization hierarchies), and, finally, iv) fact schemata [92].

Some authors suggest that the relational data warehouse design also encompasses such phases as view
materialization, vertical and horizontal fact table partitioning, and enforcing update independence [48, 92].

Luján-Mora [102] describes an approach to logical modeling based on the UML Profile for Database
Design supplied by Rational Software Corporation [50]. In this thesis, we adopt this graphical notation
for logical design. The main elements defined by this profile along with their graphical representations are
summarized in Table 2.3. Icon representations can be used as a part of the base symbol or instead of the base
symbol for a “collapsed” view of the element.

PHYSICAL DESIGN

The goal of the physical design is to transform the logical model obtained in the second phase into a physical
schema, i.e., to refine its implementation mechanisms, such as storage structures, partitioning, access meth-
ods, and performance optimization techniques. Physical implementation of data warehouse systems is a vast
field of research that is orthogonal to the scope of this thesis. We refer interested readers to [68, 90, 103] for
further insights.
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Table 2.3: Diagram elements of the UML Profile for Database Design
Name & Icon Notation Description

Database
<<Database>>

Database Name

Database is a system for data storage and controlled access to
stored data. Database defines the type of the database and the data
modeling constraints such as data types, stored procedures, syntax,
etc.

Database 
name

Schema
   <<Schema>>

   Schema Name

Schema is the basic unit of organizing tables in a database.
Schemata are assigned to a database component at the next level of
detail.

Table

Constraints

Attr_1: Data type
...
Attr_n : Data type

<<Table>> 
Table Name

Table represents a relational table in a database, defined as a set of
data records of the same structure. A table may be associated to a
particular schema.

Table 
name

View

Attr_1: Data type
...
Attr_n : Data type

<<View>> 
View Name

View is a virtual table. It is structured exactly like a table, with the
only difference that the physical source of the data is in other
table(s).

View 
name

Domain

Constraints

Attr_1: Data type
...
Attr_n : Data type

<<Domain>> 
Domain Name

Domain is a mechanism used to create user-defined data types that
can be applied to columns across multiple tables.

Domain 
name

Constraints

<<PK>> PK_func()
<<FK>> FK_func()
<<Trigger>> T_func()
<<Check>> C_func()
<<Unique>> U_func()

...

<<Table>> 
Table Name

Constraint is a rule applied to a column and/or table. PK
constraint defines a primary key of a table. FK constraint is a
foreign key implementing a relationship to another table. Trigger is
an activity automatically executed to database consistency. Check
constraint verifies whether the values of a column remain within a
certain range. Unique assures that all values of a column are
distinct.

<<PK>>
<<FK>>

<<Trigger>>
<<Check>>
<<Unique>>

Relationships
0..10..*

10..*

Relationships model foreign key dependencies between tables. A
relationship is non-identifying if the tables can exit independent of
each other. A relationship is identifying when the child table
cannot exist without the parent table.

* 1

* 1

2.3 Visual Analysis and Exploration

Analysts query multidimensional data interactively using visual interfaces, called OLAP tools, which build
the Presentation Layer of the data warehouse system architecture shown in Figure 2.2.



30 Chapter 2 : Background and Related Work

(a) A 3-dimensional data cube storing student
enrollment numbers with dimensions Country,
Degree, and Semester

Instrument Intervention-ID
occurrence avg. time of use

A B C D A B C D
mallet/chisel 0 3 0 1 0:00:00 0:00:23 0:00:34 0:00:50
punch 9 22 10 9 0:02:38 0:00:35 0:00:46 0:01:27
trephine 3 0 7 0 0:02:18 0:00:00 0:00:43 0:00:00
bone ablating instr. 12 25 17 10 0:02:33 0:00:33 0:00:45 0:01:24

Table 1. Example results for Queries 1 and 2: Instrument occurrencies and average
use times for 4 discectomy interventions.

to the novel domain of surgical process analysis. Conventional business process
modeling tools are rather limited in the types of supported analytical tasks,
whereas the data warehousing techniques appear more suitable when it comes
to managing large amounts of data, defining various business metrics and run-
ning complex queries. The case study presented in this work is concerned with
designing a recording scheme for acquiring process descriptions from surgical
interventions for their subsequent analysis and exploration.

Confronted with the deficiencies of the relational OLAP approach to meet
the requirements of our case study, we propose an extended data model that
addresses such challenges as non-quantitative and heterogeneous facts, many-
to-many relationships between facts and dimensions, runtime definition of mea-
sures, interchangeability of fact and dimension roles, mixed granularity, etc. Our
solution is based on categorizing the facts into base and satellite facts, fact hierar-
chies and generalizations. At the level of dimensional modeling, various hierarchy
types are identified and examined with respect to their summarizability.

The proposed model extensions can be easily implemented using current
OLAP tools: facts and dimensions can be stored in relational tables and queried
with standard SQL. We demonstrate a prototypical implementation of a visual
interface for runtime measure definition and conclude our work by presenting
the results of various analytical queries formulated by the domain experts and
run against the modeled surgical process data warehouse.
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Measures

! NumPersons (AVERAGE) ! NumPersons(SUM)

Dimensions Semester

Country Degree WS04 SS05 WS05 SS06 Total WS04 SS05 WS05 SS06 Total

– Germany Physics, B.Sc. 114 47 120 39 80 114 47 120 39 320

Mathematics, Dipl. 51 12 44 13 30 51 12 44 13 120

Comp. Science, M.Sc. 21 6 18 5 12.5 21 6 18 5 50

Comp. Science, B.Sc. 65 0 73 0 34.5 65 0 73 0 138

Total Germany 62.75 16.25 63.75 14.25 39.25 251 65 255 57 628

– Switzerland Physics, B.Sc. 8 2 3 0 3.25 8 2 3 0 13

4 8 9 2 1 1 1 0 2 1 4

Comp. Science, M.Sc. 3 0 4 1 2 3 0 4 1 8

Comp. Science, B.Sc. 5 0 4 0 2.25 5 0 4 0 9

Total Switzerland 4.25 0.5 3.25 0.5 2.125 17 2 13 2 34

– U.S.A. Physics, B.Sc. 2 0 5 1 2 2 0 5 1 8

3 1 2 2 0 0.75 0 1 2 0 3

Comp. Science, M.Sc. 0 0 0 1 0.25 0 0 0 1 1

Comp. Science, B.Sc. 2 0 0 0 0.5 2 0 0 0 2

Total U.S.A. 1 0.25 1.75 0.5 0.875 4 1 7 2 14

Total 22.67 5.67 22.91 5.08 14.08 272 68 275 61 676

(b) A pivot table with average and total enrollment numbers
broken down horizontally by Semester and vertically by
Country and Degree

Figure 2.15: Exploring a multidimensional data cube with a pivot table

A traditional interface for analyzing OLAP data is a pivot table, or cross tab, which is a 2-dimensional
spreadsheet with associated totals and subtotals. A pivot table is populated with data by specifying the
measure(s) of interest and selecting dimensions to serve as vertical (and, optionally, horizontal) axes for
summarizing the measures. The power of this presentation comes from its ability to summarize detailed data
along various dimensions and arrange the aggregates computed at different granularity levels into a single
view preserving inclusion relationships between the aggregates. An additional advantage is the ability to
“nest” multiple dimensions within an axis. Figure 2.15 exemplifies the idea of “unfolding” the sample 3-
dimensional student enrollments cube (left) into a pivot table (right). For convenience, table cells at each
granularity level are filled with the same background color as the corresponding cube’s slices.

The pivot table technique is a powerful straightforward presentation of multidimensional aggregates,
however, it is heavily criticized by researchers and practitioners for disgraceful handling of large datasets and
for its inefficiency for non-trivial analytical tasks, such as recognizing patterns, discovering trends, identifying
outliers, etc. [39, 95, 164]. Advanced OLAP tools overcome the limits of the cross tab interface by offering
a multitude of powerful visual alternatives for retrieving, displaying, and interactively exploring the data.
Visualization has the power to save time and reduce errors in analytical reasoning by utilizing the phenomenal
abilities of the human vision system to recognize patterns [55]. Advances in visualization technologies enable
use of human visual abilities to solve analytical tasks. Furthermore, cognitive fit theory shows that decision
making is improved when the information representation matches the problem-solving task [181].

2.3.1 Visual OLAP as an Emerging Trend

The first generation of OLAP tools was tailored towards the needs of routine reporting by providing a man-
aged query environment for navigating within a set of pre-defined queries [23]. With recent achievements
in the information technology, the scope of analytical tasks has expanded far beyond interactive report gen-
erations. Comprehensive analysis includes examining the data from multiple perspectives, extracting useful
information, verifying hypotheses, recognizing trends, revealing patterns, and discovering new knowledge
from arbitrarily large and complex data sets. Conventional frontends display a number of deficiencies, such
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Figure 2.16: Trends in data visualization for business analysis (adopted and modified from [158])

as ineffective and inefficient data presentation, cumbersome usability, and poor functionality. These deficien-
cies have triggered the emergence of fundamentally new ways of interacting with multidimensional data.

Next-generation frontends achieve a new quality of analysis by unlocking the synergy between the perfor-
mance-oriented BI techniques and the achievements in the areas of Information Visualization, Human-Compu-
ter-Interaction, and Visual Analytics. To efficiently analyze huge data volumes and uncover the “hidden
gems” therein, novel tools enable free-wheeling and unconstrained data exploration allowing users to navi-
gate to the desired view, experiment with various layout options, thus, supporting the process of incrementally
refining a question into an answer. We refer to this flexible data exploration approach as Visual OLAP:

“Visual OLAP is an umbrella term encompassing a new generation of OLAP end-user tools for interactive
ad hoc exploration of large volumes of multidimensional data by providing a comprehensive framework of
advanced visualization techniques for representing the retrieved data set along with a powerful navigation
and interaction scheme for specifying, refining, and manipulating the subset of interest.” [160].

The key distinction between the traditional and the novel OLAP tools is the role of visualization: the
former use visualization merely for expressive presentation of the data, whereas the latter employ visualiza-
tion as a method of interactive ad hoc analysis. In addition to conventional OLAP operations, visual OLAP
supports further interaction techniques, such as zooming and panning, filtering, brushing, collapsing, etc.

Continuous efforts are put into providing new approaches to visual exploration for OLAP. Russom [158]
summarizes the trends in business visualization as a progression from rudimentary data visualization to ad-
vanced forms and recognizes three life-cycle stages of visualization techniques, such as maturing, evolving,
and emerging, as depicted in Figure 2.16. Within this classification, visual OLAP clearly fits into the emerg-
ing techniques for advanced interaction and visual querying.

2.3.2 Visual Exploration Framework
Figure 2.17 illustrates the data exploration process, also denoted knowledge crystallization, adopted from
[20] and slightly modified for matching the context of OLAP. In this cycle, visualization clearly plays the
key role in providing insight into the data and, thus, solving the task at hand. Also notice that searching for a
solution may evolve in multiple iteration cycles.
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Figure 2.17: Data exploration cycle

A general approach to enabling the above flexible data exploration scheme is to implement a comprehen-
sive framework, in which the users can browse through the data and interactively generate satisfactory visual
presentations using “point-and-click” and “drag-and-drop” interactions. The overall query specification cycle
includes i) selecting a data source of interest, i) choosing a visualization technique (e.g., a scatterplot or a
bar-chart), and i) mapping various data attributes to that technique’s structural elements (e.g., horizontal or
vertical axis) as well as to other visual attributes, such as color, shape, and size. The main elements of the
framework are a data navigation structure, or “data browser”, for visual querying of data sources, a taxonomy
of available visual layouts and their attributes, and a toolkit of interaction techniques for dynamic query re-
finement and visual presentation of the output. A unified framework is obtained by designing an abstraction
layer for each element and providing mapping routines (e.g., navigation events to database queries, query
results to a visual layout, etc.) that implement the interaction between different layers. Figure 2.18 shows
an example of an advanced frontend tool for visual data analysis provided by Tableau Software [169]. Data
navigation on the left-hand side enumerates available dimensions and measures. The central area is occupied
by the visual display of the current query results. Additional windows and menu provide further options
for refining the dataset itself (e.g., filter) and adjusting the visualization (e.g., color assignment, labeling,
resizing).

DATA NAVIGATION SCHEME

Visual OLAP disburdens the end-user from composing queries in “raw” database syntax (e.g., SQL or MDX).
Instead, queries are specified visually (i.e., by means of using a computer mouse). Multidimensional data is
represented as a browsable structure. Visual interface does not trade off advanced functionality for simplicity,
it rather facilitates the process of specifying ad hoc queries of arbitrary complexity.

A common data browsing paradigm is that of a navigation tree, i.e., as a recursive nesting of element
nodes. The nodes in OLAP navigation scheme may be of types database, schema, table (cube), dimension,
classification level, and measure. In simplified configurations, the navigation may be limited to single data
cubes and, thus, consist solely of dimension and measure attributes of a selected cube.

Data cubes are navigation object consisting of measures and dimensions. A dimension is represented
either as a lattice of its aggregation levels or directly by the data hierarchy. Logical OLAP operations are
incorporated into a visual framework in the form of navigation events. For example, a drill-down is performed
by dragging the respective dimension category node into the visualization.

Mapping of a multidimensional structure to the navigation scheme, translation of navigation events into
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Figure 2.18: Tableau Software as a powerful frontend for visual analysis

database queries and mapping the query output to a visual layout rely on the metadata of the underlying data
warehouse system. Metadata describes the structure of the cubes and their dimensions, measures and their
additivity. In an advanced user interface, the analysts are able to define new measures in addition to the ones
configured via the metadata. New measures may be obtained by applying a different aggregate function (e.g.,
average, variance, count) or a more complex formula over a single or multiple data fields (e.g., computing a
ratio between two aggregated values).

VISUALIZATION INTERFACE

The task of selecting a proper visualization technique for solving a particular problem is by far not trivial
as various visual representations (metaphors) may be not only task-dependent, but also domain-dependent.
Successful visual OLAP frameworks need to be based on a comprehensive taxonomy of domains, tasks, and
visualizations. The problem of assisting the analyst in identifying an appropriate visualization technique for a
specific task is a still unsolved issue in state-of-the-art OLAP tools. Typically, a user has to find an appropriate
solution manually by experimenting with different layout options.

A common approach to visualization in OLAP application relies on a set of templates, wizards, widgets,
and a selection of visual formats. Hanrahan et. al [55] argue, however, that an open set of questions cannot
be addressed by a limited set of techniques, and choose a fundamentally different approach for their visual
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Figure 2.19: Examples of sophisticated visualizations generated by VizQL statements (permission granted
by Tableau Software, Inc.)

analysis tool commercialized as Tableau Software [169]: a declarative visual query language VizQLTM offers
high expressiveness and composability allowing users to create their own visual presentations by combining
various visual components. Figure 2.19 illustrates the visualization approach of Tableau by showing a subset
of sophisticated visual presentations created using simple VizQL statements and not relying on any pre-
defined template layout. In a more recent work [106], the same authors propose a pioneering solution to
automating the visual presentation based on the user experience in the Tableau system. Other prominent
examples of advanced visual systems based on research findings are Advizor by Visual Insights [39] and
MagnaView Explorer by MagnaView [185].



Chapter 3

Extending the Multidimensional Data
Model

T HIS CHAPTER IS DEDICATED to the conceptual data warehouse design for advanced applications.
We revise the state of the art of the multidimensional data model, identify the major “bottle-necks” of
the latter, and formulate a set of requirements towards the extended model. The proposed conceptual

modeling framework consists of a formal model and an appropriate graphical notation. This chapter focuses
on defining the core elements of the extended model. Formal definitions are accompanied by the introduction
of the corresponding graphical constructs and are supplied with illustrative examples.
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3.1 State of the Art of Multidimensional Modeling
The claimed universality of OLAP bears on the concept of “analyzability”: the data should be homogenized,
integrated, and preprocessed to enable efficient and goal-oriented analysis [8]. This claim of the universal
applicability finds sufficient confirmation in practice: in the last years, the deployment of data warehouses has
reached out for a variety of non-business domains and non-conventional applications, such as government,
academia, life sciences, bio-informatics, education, research, medicine, etc.

35
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Even though data warehousing is an established and widely adopted practice in the modern information
technology platform, there exist numerous open research issues in this area. Many of those issues arise due
to the attempts to apply business performance oriented OLAP techniques to non-conventional application
scenarios. The causes of deficiencies and failures are manifold, from the underlying conceptual model to
the frontend “bottle-necks”. At this stage, we investigate the types of constraints that lie at the very heart of
OLAP, i.e., the ones that are imposed by the conceptual model itself.

3.1.1 Fundamental Constraints of the Multidimensional Data Model
Any attempt to extend an existing model should be preceded by the realization of that model’s essential
assumptions and constraints. We define a constraint to be essential, or inherent, if it is fundamental for
the definition and basic functionality of the model; violation of such a constraint results in the malfunction
of the entire approach. The conventional multidimensional data model along with the associated OLAP
operators rely on such constraints as prohibition of many-to-many relationships and NULL values, fact scheme
homogeneity, uniform grain within a fact type, and summarizability for all dimension hierarchies. Further
fundamental issues that aggravate straightforward applicability of the OLAP technology to complex data are
the following ones:

	 “Roll-up” as the only relationship type. This relationship expresses inclusion between facts and di-
mensions as well as between hierarchy levels. The model provides no mechanism to explicitly model
any other relationships.

	 Many-to-many relationships must be mapped to facts. It is one of the so-called Kimball’s Laws [81],
which implies prohibition of non-strict dimension hierarchies and many-to-many relationships between
facts and dimensions.

	 Fact homogeneity implies that all fact entries fully adhere to the fact’s scheme, i.e., have the same
dimensional characteristics and the same grain within each dimension.

	 Homogeneous aggregation requires that all entries within the same fact type roll up along the same
aggregation paths. This requirement implies prohibition of partial roll-up relationships.

	 Prohibition of NULL values is an important guarantee for correct aggregation behavior.

	 Duality of facts and dimensions forces to distinguish between fact schemes and dimension schemes
and to statically assign each characteristic to a particular scheme.

	 Absence of object-oriented features, such as generalization or inheritance.

	 Isolation of fact schemes means that each scheme is modeled in its own multidimensional space, not
related to other schemes. As a result, identical or semantically related attributes are maintained redun-
dantly for each fact scheme. Besides, scheme isolation aggravates straightforward application of the
drill-across operation.

	 Summarizability requires distributive aggregate functions and dimension hierarchy values, or, infor-
mally, that i) facts map directly to the lowest-level dimension values and to only one value per dimen-
sion, and ii) dimensional hierarchies are balanced trees [98].

	 Duality of measure and dimension roles. Measures reflect the focus of the analysis and, therefore, they
should be known at design time and should be explicitly specified in the fact scheme.

	 Duality of category and property roles. A dimension category consists of a single category attribute and
may have further attributes, called properties. Property attributes may not be used as aggregation levels,
even though the relationship between a category attribute and its property is equivalent to roll-up.
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3.1.2 Related Work

Deficiencies of the original multidimensional data model and proposals of extended models have become
an active data warehousing research issue in the last decade. The necessity to develop novel concepts was
emphasized [190], and a series of extensions have been proposed in the literature. Most of the proposals
were coined by a set of requirements drawn from specific application scenarios and, thus, do not claim to
be ultimate or universal. Disclosure of novel applications continues to impose new modeling challenges and
will undoubtedly continue to encourage further contributions.

Pedersen et al. [145] formulated 11 requirements of comprehensive data analysis and evaluated 14 state-
of-the-art data models for data warehousing from both the research community and the commercial systems
against those requirements. As none of the investigated models appeared to provide more than 6 of the 11
features, the authors proposed an extended model for capturing and querying complex multidimensional data
according to the defined requirements. The evaluation criteria specified in [145] were not claimed to be uni-
versal as those were inspired by a specific case study from the healthcare domain. Nevertheless, the proposed
extended model, supporting such features as non-summarizable hierarchies, many-to-many relationships be-
tween facts and dimensions, handling temporal changes and imprecision, remains one of the most powerful
among the existing multidimensional models.

A similar attempt to classify and evaluate existing multidimensional models is presented in [2]. How-
ever, the authors defined two orthogonal sets of classification criteria, namely, according to the kind of
constructs/concepts they provide and according to the design phase at which they are employed. Another
assessment of conceptual models is provided in [104], in which 6 prominent multidimensional models are
evaluated against an exhaustive set of requirements regarding facts, dimensions, measures, operators etc.
Based on the stated requirements, the authors propose a UML-based multidimensional modeling toolkit that
uses self-extensibility mechanisms of UML to enable adequate modeling support for a variety of multidimen-
sional properties. Trujillo et al. propose an O-O multidimensional modeling (OOMD) approach that provides
a theoretical foundation for the use of object-oriented features in data warehousing and OLAP applications
[174]. This approach introduces a set of minimal constraints and extensions to UML for representing multi-
dimensional modeling properties for these applications.

Major research efforts in the field of multidimensional modeling are focused on handling complex di-
mensions [61, 109, 118, 132, 145], which is but comprehensible: traditional models appear rather rigid by
enforcing dimension hierarchies to be homogeneous, complete, strict, and balanced. As a result, irregular
data hierarchies encountered in many real-world applications appear inadequate as dimensions of analysis.
In a survey on open issues in multidimensional modeling [63], Hümmer et al. identified unbalanced and
irregular hierarchies and missing data as the most pressing challenges of dimensional modeling.

Hurtado and Mendelson [60] proposed integrity constraints for inferring summarizability in heteroge-
neous dimension hierarchies and defined a formal framework for constraint-conform hierarchy modeling
[61]. An approach to modeling dimension hierarchies with no enforcement of balancedness or homogene-
ity along with the corresponding SQL extensions, called SQLpHq, is described in [70]. Niemi et al. [132]
analyzed unbalanced and ragged data trees and demonstrated how dependency information can assist in de-
signing summarizable hierarchies. Lehner et al. [96] relaxed the condition of summarizability to enable
modeling of generalization hierarchies. A remarkable contribution to the conceptual design was made by
Malinowski and Zimányi who presented a comprehensive classification of dimensional hierarchies includ-
ing those not addressed by current OLAP systems in [108] and formalized their conceptual model and its
mapping to the relational schema in [109].

To the best of our knowledge, most of the extensions proposed in the above contributions have not been
implemented by any existing data warehouse systems. In a previous work [182], we presented a prototypical
analysis interface capable of supporting a subset of irregular dimension hierarchies and allowing interactive
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data exploration using hierarchical visualization techniques. A more recent work [118] builds upon the clas-
sification framework of [109] and extends it by providing a more formal and comprehensive categorization of
dimension hierarchy types. All enumerated classes are inspected for summarizability and a two-phase trans-
formation algorithm for deriving a logical schema is proposed. As a proof of concept, all introduced model
extensions were implemented in a visual interface with a schema-based dimensional navigation structure for
exploring data cubes along complex dimension hierarchies.

Another branch of research in the multidimensional modeling focuses on challenges other than complex
dimensions. These other issues address non-conventional requirements concerning facts, measures, fact-
dimension mappings, and multi-fact schemes. The extended model of Pedersen et al. [145] accounts for such
features as symmetric treatment of dimensions and measures, many-to-many relationships between facts and
dimensions, awareness of the aggregation semantics, and variable granularity of facts. Abelló et al. [3]
clarify some concepts related to multidimensionality in general and fact modeling in particular. The authors
demonstrate the convertibility of fact and dimension roles in multi-fact schemes.

Ravat et al. [153] demonstrated how OLAP can be applied for analyzing semi-structured data, such as
XML documents. As this data type is non-additive and non-numeric, the whole analysis framework needs to
be adapted. The authors proposed a conceptual model based on a “factless multi-dimension” representation
and define a set of multidimensional operations and aggregate functions specialized on this type of analysis.

In [114] we applied the data warehousing approach to business process analysis. The requirement to store
the original process execution data rather than pre-defined performance measurements helped us identify new
types of facts, factual and fact-dimensional relationships and aggregation behaviors. Besides, absence of
predefined measures in the scheme raises the issue of enabling interactive measure specification.

3.2 Requirements of Comprehensive Multidimensional Analysis
A multitude of multidimensional models proposed in recent years is a result of specifying different sets of
requirements a model has to meet. In this section, we integrate diverse requirements and properties defined
by various authors with respect to comprehensive multidimensional analysis over complex data into a unified
framework. This framework will serves as a reference for designing an extended data model.

The requirements can be subdivided into i) static properties dealing with the structuring of the multidi-
mensional data space and dynamic properties dealing with the supported analysis tasks.

A set of major static multidimensional modeling properties, proposed in the research literature [2, 104,
145] including our own works [113, 114, 115, 116, 118, 120], can be summarized as follows:

1. Explicit separation of cube structure and its contents. The structure of a data cube is modeled as a fact-
dimensional scheme. The actual content is crucial for refining the scheme in order to identify irregular
hierarchies, partial roll-ups, etc.

2. Facts with no measures. The terms “fact” and “measure” are often used interchangeably in the data
warehousing literature. However, some applications deal with multidimensional data structures without
explicitly defined measures. Besides, according to one of Kimball’s laws, any many-to-many relation-
ship should be modeled as fact [81]. Therefore, it is necessary to refine the concept of a “fact” and
enable modeling of facts with no measures.

3. Complex measures. The model should support composite and derived measures as well as the specifi-
cation of each measure’s additivity, i.e., aggregation semantics.

4. Complex facts. The model should be capable of handling deviating behavior within facts, such as
heterogeneity, variable granularity, and missing values.
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5. Multi-fact schemes. Some application scenarios require the data to be modeled as multiple related fact
schemes in order to preserve the actual relationships in the data. Inter-factual relationships take the
form of shared dimensions in a unified multidimensional space.

6. Fully and partially shared dimensions. Data cubes may be compatible to one another at a non-bottom
granularity level. This happens when their schemes have at least one pair of partially shared dimen-
sions, i.e., converging or overlapping at a category, non-bottom for at least on of them. To recognize
partial sharing,

7. it is imperative to provide a methodology for identifying scheme overlap.

8. Multiple roles of dimension categories. In multi-fact schemes, the same dimension or category may be
used in multiple roles (e.g., date dimension may be used as order date and payment date characteristics
of a fact). Therefore, it is imperative to distinguish between the categories and and their roles.

9. Many-to-many fact-dimensional relationships. Many-to-many mappings between facts and dimensions
are common in practice and, therefore, should be manageable by the model.

10. Explicit hierarchies in dimensions. Hierarchies should be presented explicitly in the multidimensional
scheme as the former determine valid aggregation paths. Furthermore, the model has to distinguish
between dimension level attributes and property attributes belonging to a particular level.

11. Complete hierarchies. In a complete hierarchy, all child-level members fully roll-up to one parent-level
and the extension of the parent-level consists of those child members only [104]. The model should
provide constructs to specify the completeness, i.e., non-expandability, of a hierarchy.

12. Multiple hierarchies. A dimension can have multiple aggregation paths, which may be mutually exclu-
sive or compatible and which may or may not converge at some upper level.

13. Distinction between alternative and parallel hierarchies. Multiple alternative hierarchies refer to the
same hierarchical property and thus represent mutually exclusive aggregation paths. Parallel hierar-
chies are based on mutually independent hierarchical properties and may be used in combination as
aggregation criteria.

14. Complex dimensions. To support complex dimensions, the model should capture the causes of the
complexity, such as non-covering, non-onto, and non-strict mappings, heterogeneity, etc.

15. Partial roll-up behavior. Roll-up relationship between a fact and a dimension or between dimension
categories may be full (each member participates in the relationship) or partial (members are allowed
not to participate in the relationship). Partial roll-up may be a result of optionality, heterogeneity, or
specialization. The model should distinguish between various kinds of roll-up relationships.

16. Totally ordered hierarchies. A dimension hierarchy is normally defined in terms of partial ordering
(parent-child relationships within pairs of members). However, in some hierarchies, members of the
same hierarchy level may have to be ordered to reflect some semantics and enable default sorting
according to this ordering.

As for the dynamic properties of the extended multidimensional model, we identify the following ones:

1. Symmetric treatment of facts and dimensions. In multi-fact schemes, the duality of fact and dimension
roles fades since one fact may act as a dimension of another fact, or a dimension may be turned into a
fact of a specific query.

2. Symmetric treatment of measure and dimension attributes. Any attribute within a fact scheme may be
converged into a measure of a specific query.



40 Chapter 3 : Extending the Multidimensional Data Model

3. Measure used as dimension. Some queries may need to use some measure attribute as a dimension
w.r.t. another measure within the same fact scheme.

4. Drill-across. Drill-across is a logical operator for constructing a multicube by joining a set of multiple
related cubes, projected to the subset of their common dimensional characteristics, in order to explore
their measures in parallel or to derive new measures.

5. Ad hoc measure derivation. Measures, not available in the static model, can be added at query time by
specifying their derivation formulas.

6. Ad hoc dimension derivation. Dimensions, derivable from the existing one but not included into the
original scheme, can be added at query time by specifying their derivation formulas.

7. Ad hoc hierarchy specification. The user should be able to manipulate the existing hierarchies (e.g.,
merge multiple categories into one) as well as to arrange dimensional values into a new hierarchy.

8. Resolution of many-to-many mappings. In the presence of non-strict hierarchies, users should be
prompted to resolve multi-parent relationships for correct aggregation (drill-aside operation).

Table 3.1 summarizes the above mentioned static and dynamic properties grouping them according to the
construct of the conceptual model, to which they belong.

Table 3.1: Overview of the desirable multidimensional properties
Concept / Construct Static property Dynamic property

Fact galaxy � Fully and partially shared dimensions
� Dimension category in multiple roles
� Fact in dimension role

� DRILL-ACROSS operation
� Fact overlap scheme

Fact � Non-measurable facts
� Heterogeneous facts
� Variably grained facts
� Missing values

� Dimension treated as a fact
� Derived fact

Measure � Complex measures
� Derived measures
� Aggregation semantics

� Ad hoc derived measures
� Combined measures
� Measure from a dimension (PUSH)

Dimension � Explicit hierarchies
� Multiple hierarchies
� Parallel vs. alternative hierarchies
� Complex/irregular hierarchies
� Heterogeneous hierarchies
� Complete hierarchies
� Derived categories
� Totally ordered hierarchies

� Ad hoc defined categories
� Ad hoc defined dimensions
� Dimension from a measure (PULL)
� Ad hoc hierarchies

Roll-up relationship � Partial roll-up
� Optional roll-up
� Generalization/specialization
� Many-to-many mappings

� Resolution of non-strict roll-ups
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3.3 Conceptual Model: Graphical Notation and Formalization
The aim of the conceptual modeling is to capture relevant data and relationships in the application domain
in a semantically rich and implementation-independent fashion. Two major components of the semantic
multidimensional model are the formalization and the graphical notation. A formal model is necessary for
providing a rigorous theoretical framework in form of definitions, constraints, classifications, lemmas, and
proofs, whereas the role of a graphical notation is to support the practice of user-friendly design of conceptual
schemata. Most of the multidimensional existing models focus either on the formalism or on the graphical
toolkit, but not both. Formal models usually employ some existing graphical notation (e.g., ER, UML or their
variants) or do not employ any.

In our opinion, the graphical notation should be fully aligned with the formal model in order to correctly
capture the semantics of the latter. A prominent contribution in providing a comprehensive methodology
for conceptual data warehouse design is Dimensional Fact Model (DFM) of Golfarelli et al. [47], already
introduced and briefly explained in Section 2.2.4. DFM is based on a pragmatic scientific approach, in which
the graphical framework emanates from the formal conceptual framework. Wide acceptance of this model in
research and practice can be attributed to its simplicity, elegance, and expressiveness. As we proceed with
extending the conceptual model, we will face the necessity to revise the original DFM notation and extend it
to account for novel concepts.

Our model emerged gradually as we accumulated practical experiences of dealing with various application
domains. Earlier stages of the resulting framework can be found in a series of previous works [113, 116,
118, 120]. Fundamentally, our formalization relies on the extended multidimensional models proposed by
Pedersen, Jensen et al. [73, 145] as well as on the above mentioned DFM framework. In the remaining two
sections of this chapter, we introduce our graphical notation and the underlying formalization, respectively.

3.3.1 X -DFM as the Graphical Modeling Notation
We require the graphical model to be as discriminative as the formal one, i.e., the former is not allowed to map
different concepts of the latter to the same graphical element. At the same time, we avoid over-discrimination
of the graphical model, i.e., providing multiple ways of expressing the same semantic element. Semantic
richness is preferred over minimality to ensure that the graphical model is self-sufficient for extracting the
metadata about the multidimensional structure.

Throughout the thesis, we undertake numerous extensions of the original DFM with the objective of
insuring its coherence with the formal definitions of the respective concepts. The resulting notation is denoted
X -DFM (Extended Dimensional Fact Model) to be distinguished from the original DFM.

THE ORIGINAL DFM NOTATION

In DFM, data cubes are presented as fact schemes, which show the fact’s measures and dimension hierarchies
as a structured quasi-tree rooted at the fact node. Dimension hierarchies are shown as directed graphs of
aggregation paths with hierarchy levels as nodes and roll-up relationships between them as edges. Table
3.2 gives an overview of the provided notation elements. DFM identifies three types of nodes: i) facts, ii)
dimension attributes (levels), and iii) non-dimension attributes (properties). A fact node is shown as a box
bearing the fact’s name and containing its measures. Dimension attributes are represented by labeled circles
while property attributes are terminal nodes represented by labeled lines. Non-dimension attributes may be
associated either with a fact or with a dimension attribute.
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Table 3.2: Graphical constructs of the original DFM notation

Element Description

measure_1

...

measure_n

FACT_NAME A fact is a box-shaped node labeled by the fact’s name and containing the set of
the fact’s measures.

attribute_name A dimension attribute, or level, is a circle-shaped node labeled by the
attribute’s name.

attribute_name A non-dimension attribute, or property, is an additional characteristic of a
dimension attribute.

A roll-up relationship is a many-to-one relationship between a pair of attributes.
A directed edge (the bottom one) is used to resolve ambiguities in case of
multiple incoming roll-up relationships of the same attribute.

An optional relationship is a many-to-one relationship with partial
participation.

Non-aggregability of measure M along dimension D means inapplicability of
any aggregate function along that dimension’s hierarchy.

func1, func2, ...

Non-additivity of measure M along dimension D results in inapplicability of
the SUM operator along that dimension’s hierarchy. Allowed aggregate functions
(operators) are listed as the edge’s labels.

An arc connecting a pair of nodes represents a many-to-one, or a roll-up, relationship between two nodes.
Such a relationship may exist between i) a fact and a dimension level, ii) dimension levels, and iii) between a
dimension level and a property attribute. DFM uses undirected arcs to represent directed edges as the direction
can be unambiguously derived from the position of the fact node: an edge between two nodes is outgoing
with respect to the node that has a shorter path to the root. The only ambiguity arises in the presence of
multiple alternative or parallel hierarchies and related partial roll-up relationships, as in those cases distinct
paths converge at the same dimension level. To resolve such cycles, DFM uses directed arcs. Optional
relationships between nodes are marked with a dash crossing the corresponding arc. Such relationships may
occur between any types of nodes and imply a partial roll-up. Whenever a measure is non-additive along a
dimension, a dashed line is drawn between the two. If there exist further applicable aggregate functions (e.g.,
COUNT, MAX, etc.) those are listed as labels of the respective non-additivity edge.

Figure 3.1 demonstrates the usage of DFM for modeling a data cube that captures purchasing transactions
within a university. The resulting 5-dimensional fact scheme PURCHASE describes purchasing transaction
records in terms of two measures – amount and number of items – characterized by dimensions funding,
product, project, date, and unit. Shaded bubbles enclosing each dimension’s hierarchy are used solely for
facilitating the perception and are not part of DFM.
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Figure 3.1: A 5-dimensional fact scheme PURCHASE in the original DFM notation

FROM DFM TO X-DFM

With respect to the requirements of the extended multidimensional data model and the fundamental defini-
tions provided in Section 2.2, DFM displays a number of deficiencies, which can be summarized as follows:

	 Facts are allowed to have non-dimension attributes, as is the case with invoice number in Figure 3.1.
However, by definition, facts are composed solely of measures and dimensions.

	 There is no construct for modeling many-to-many and one-to-one relationships between elements.

	 Directed (i.e., many-to-one) relationships between the nodes are shown by non-directed edges. In our
opinion, that is somewhat counter-intuitive for the interpretation of the scheme. Besides, DFM uses
directed and undirected edges as alternative notations for the same type of relationship (many-to-one),
thereby producing unnecessary differentiation.

	 There is no distinction between hierarchical and non-hierarchical relationships: a roll-up relationship
between levels does not visually differ from an associating a level with a non-dimension attribute.

	 There is no distinction between optional properties and partial roll-up relationships.

	 There is no construct for modeling heterogeneous roll-up relationships.

	 There is no way to specify a totally ordered category or hierarchy.

	 Top-level dimension categories are not shown in the scheme.

	 DFM does not differentiate between alternative and parallel hierarchies in a dimension. However,
the distinction is crucial for automatic recognition of valid aggregation paths. Multiple alternative
hierarchies like the ones given by dimension levels week and month offer alternative, i.e., mutually
exclusive, aggregation paths for date. Parallel hierarchies like the ones given by manager and project
group are defined on independent characteristics within project dimension, and thus, can be used as
aggregation axes in arbitrary order. Parallel hierarchies behave like different dimensions due to their
orthogonality.

	 Measure attributes inside the fact are presented as text labels. However, each attribute is a node of the
scheme and, therefore, should be identifiable as nodes.

	 There is no concept for modeling derived elements (facts, dimensions, measures).

In X -DFM, the above issues are resolved by modifying the affected constructs or introducing new ones.
Table 3.3 provides an overview of the resulting elements of type node, defined by applying the following
rationale:
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Table 3.3: Graphical node type constructs of X -DFM

Element Description

measures

degenerated dimensions
FACT_NAME A fact is a box-shaped node labeled by the fact name and containing two sets of

elements: i) degenerated dimensions and ii) measures. Both sets are allowed
to be empty.

measures

degenerated dimensions
FACT_NAME A degenerate fact is a many-to-many fact-dimensional relationship extracted

into a separate fact, shown by placing a double-lined frame around the cell of
the fact name.

measure_name A measure attribute is shown as a black circle-shaped node labeled by the
measure’s name. Measure nodes appear in the designated area of the fact node.

attribute_name A dimension category corresponding to a non-abstract hierarchy level is a
circle-shaped node labeled by the category’s name.

attribute_name

measure_name

A derived dimension/measure attribute is shown as a double-lined circle-
shaped node. Optionally, a dashed-line annotated with the derivation formula
connects the derived element with its base element(s).

attribute_name A fact identifier is a degenerated dimension with a one-to-one relationship to
the fact, shown by underlining the attribute’s name with a double line.

category_name
T category_name

An abstract dimension category is a circle-shaped node filled with grey color
and labeled by the attribute’s name. In case of a top-level category, the name is
shown as a subscript of the J symbol.

attribute_name
Tcategory_name

A totally ordered dimension category is marked by a dot in the node’s cen-
ter. A totally ordered dimension can be specified by placing a dot in the top
category’s node.

attribute_name A property attribute is a characteristic associated with some dimension cate-
gory, shown as an underlined attribute’s name, connected by an undirected edge
to its category node.

attribute_name A “degree-of-belonging” attribute is a property associated with a child cate-
gory of a non-strict weighted roll-up relationship.

	 Non-dimension attributes of a fact should be treated as dimensions, as proposed in the literature: a
dimension “stripped-off” to a single attribute is called degenerated [81].

	 All attributes existing only in the context of their fact (i.e., measures and degenerated dimensions) are
placed inside the fact node. Therefore, the fact’s box is partitioned into two respective areas.
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	 Degenerate facts, i.e., many-to-many mappings extracted from other facts, are marked by double-lining
the border of the fact’s name (similar to a weak entity in the E/R notation).

	 A dimension attribute with a one-to-one relationship to the fact (i.e., fulfilling the primary key property)
is double-underlined.

	 Measures are considered as a special kind of dimensions residing inside the fact. This assumption
provides a basis for the interchangeability of measure and dimension roles. A measure’s name is
preceded by a circle node filled with black color.

	 Abstract dimension categories consisting of a single value all, such as a top level of the whole dimen-
sion hierarchy or an abstract top node of a homogeneous subtree within a heterogeneous hierarchy, are
shown as shaded circle nodes. The name of a top-level category is preceded by the “J” symbol.

	 Derived measures and dimension categories are shown by double-lining the border of their nodes.

	 Total order within a category is shown by placing a dot in the center of the category’s node.

Different kinds of relationships, such as aggregation, composition, association, and generalization, are
mapped to respectively different edge types, similar to those provided by UML, and are summarized in Table
3.4:

	 An undirected edge is used for specifying non-hierarchical associations, such as the one between a
property attribute and its category or a one-to-one relationship between a fact and a dimension. Op-
tionality of an association is specified by placing a dash across the edge, as in DFM.

	 A directed edge, or an arrow, stands for a many-to-one roll-up relationship.

	 A bi-directed edge captures a many-to-many relationship. In case of a predominantly many-to-one
relationship in a non-strict hierarchy, the stronger arrowhead indicates the roll-up direction.

	 All kinds of related or alternative roll-up relationships (these relationships arise in case of multiple
alternative hierarchies as well as in heterogeneous hierarchies of types non-covering and specialization)
are visibly related by bundling their outgoing edge ends. Thereby, related hierarchies are distinguished
from parallel ones.

	 A dashed-line edge marks a partial roll-up relationship. In case of a set of related partial roll-up
relationships, the bundled part of the edge is shown by a solid line to reflect the fact that the roll-up
relationship of the child category to the set of those alternative parent categories is complete.

	 A dotted-line edge links a derived element to its base element(s). A derivation formula can be shown
as the edge’s annotation.

	 A generalization/specialization relationship between a category and its superclass/subclass is shown
by an edge with a hollow triangle at the superclass end, adopted from the UML. A set of related
specializations is shown in a shared-target style, i.e., as a tree rooted at the superclass.

Notice, that some of the edge properties may be used in combination, e.g., a roll-up relationship can
be partial and non-strict, whereas other properties are mutually exclusive, e.g., a roll-up relationship can be
either full or partial.

Figure 3.2 shows the results of adjusting the original PURCHASE scheme from Figure 3.1 according to
the X -DFM notation. Graphical elements not explicated so far and not covered by this simple example are
detailed in the next chapters. As we proceed with the formalization of the extended multidimensional model,
the advantages of the proposed notation will become more apparent.
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Table 3.4: Graphical edge type constructs of X -DFM

Element Description
An association relationship is an undirected edge connecting a property attribute with
its category or connecting a fact with a dimension in case of a one-to-one relationship
between the two.

An optional association relationship is shown by putting a dash across the edge.

role

A full strict roll-up is a many-to-one relationship between a fact and a category or be-
tween a pair of categories, shown as a edge directed towards the parent category. In case
the same category is a target of multiple roll-up relationships, each roll-up edge can be
labeled by the respective role of that category.

A complete roll-up is a many-to-one relationship within a complete hierarchy, shown by
a diamond at the outgoing end of the roll-up edge.

A fuzzy roll-up relationship, in which child elements are assigned to parent elements
dynamically based on some rules, is marked as a double-pointed arrow.

Multiple alternative roll-up relationships are alternative, i.e., mutually incompatible,
aggregation paths of the same child category, shown by bundling the roll-up edges into a
common edge at the outgoing end.

A many-to-many relationship between categories is shown as a bi-directed edge. In case
of a non-strict roll-up relationship, the direction of the roll-up is indicated by a stronger
arrowhead.

A partial roll-up is an optional roll-up relationship of the child category, shown as a
directed dotted-line edge.

Related partial roll-ups are a set of mutually exclusive roll-up relationships in a het-
erogeneous hierarchy, shown by bundling the outgoing parts of the edges into a single
solid-line edge.

Generalization/specialization is shown as a solid-line edge with a hollow triangle at the
superclass end. The edges of related specializations are shown in a shared-target style.
By default, specialization is disjoint. Overlapping subclasses are specified by placing a
diamond with “o” symbol onto the edge at the point where it branches into subclass edges.

formula

Derivation relationship is a dotted-line connecting a derived element to its input ele-
ment(s).

func1, func2, ...

Non-aggregability/non-additivity edge is adopted from DFM.



3.3 : Conceptual Model: Graphical Notation and Formalization 47

     amount

     number of items

     invoice number

PURCHASE

department

faculty
section

dean

sponsor

fundingT
funding

product

product type

category

product

T

T
unit

date weekday

week month

quarter

semi-annual

year

Ttime

project

manager

building

city

office

code

project 
group

projectT

Figure 3.2: The revised fact scheme PURCHASE in the X -DFM notation

3.3.2 Formalization
According to the classification framework of Abelló [2], existing conceptual multidimensional data models
can be grouped into three categories according the level of semantic details they provide:

1. Upper Level (UL) models use the constructs fact and dimension without further subdivision, thus
enabling modeling of star-shaped fact schemes. In this models, the terms fact and measure are used
synonymously, i.e., each measure is modeled as a fact of its own.

2. Intermediate Level (IL) models recognize decomposition of facts and dimensions into cells and lev-
els, respectively. Different levels in a dimension are arranged into hierarchies and a cell contains the
measure’s value for a given set of dimensional values.

3. Lower Level (LL) models structure the attributes constituting dimension levels and fact cells into
classification attributes and measures, respectively. At this level, the term fact is no longer a synonym
of measure, but is rather a set of measures of the same granularity.

The use of term “lower level” in this classification may appear confusing as it actually stands for the higher
level of detail. Supposedly, the term “level” in the above classification is to be interpreted as the level of
abstraction, which is the opposite of detail. Obviously, LL models provide the finest level of detail necessary
for obtaining the logical model from the conceptual one. Besides, the other two levels are comprised by LL
and can be obtained by eliminating the elements that go beyond that level’s scope. Less accurate IL and UL
models, even though insufficient for deriving full-fledged logical schemata, are useful at initial design stages
as well as for modeling simple OLAP applications as their constructs are sufficient for specifying the overall
structure of a cube.

We decided to define and formalize the basic multidimensional model at each level of detail in a top-down
fashion. This way, we ensure consistency and downward compatibility of all introduced concepts, and the
proposed basic model is applicable at any of the three defined levels. The scheme in Figure 3.2 is an example
of an LL model as it explicitly captures each attribute as a separate node. Figure 3.3 contains the same data
fragment, modeled in X -DFM according to (a) UL and (b) IL.

Notice that only the basic elements of the multidimensional model can be specified at all three levels
of abstraction. Advanced concepts, such as overlapping fact schemes and complex dimension hierarchies,
presented in Chapters 5 and 4, respectively, premise the conceptual framework of the LL model.
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Figure 3.3: Modeling purchasing facts at higher levels of abstraction

In the remainder of this chapter, we provide the formalization of the fundamental elements of the concep-
tual model as a foundation for defining extensions and specializations of those elements described in the next
two chapters.

3.4 Terminology and Definitions
In this section, the elements of the multidimensional model are defined successively at the upper, the inter-
mediate, and the lower level of abstraction. Once the basic definitions and general concepts are provided,
further characteristics and special cases are deduced.

3.4.1 Unified Multidimensional Space
One fundamental definitional issue to be clarified prior to the formalization is whether the semantics, i.e.,
relationships between fact schemes as well as between dimensions, should be captured by the conceptual
model. A conventional approach would be to model each n-dimensional fact scheme in its own isolated
n-dimensional space. The output of such a model is a set of unrelated fact schemes. Advanced models how-
ever, such as YAM2 [1], OOMD [174], and DFM [47], support inter-factual semantics by allowing facts to
share dimensions. The major advantage of the latter approach is explicit support for the drill-across opera-
tion that allows to compare measures of related data cubes or even derive new measures by combining the
existing ones. Further kinds of relationships, such as specialization, aggregation, composition, and degenera-
tion, are also possible between multiple fact schemes, when their dimensions are defined in a non-redundant
multidimensional space.

In UL models, the resulting conceptual scheme is called multi-star. A pair of dimensions is merged into
one shared dimension, if the former are defined on a related semantic domain [1]. For example, dimensions
customer city and sale city would be modeled as a common dimension city containing the union of values
from both dimensions. IL and LL models recognize further types of dimension sharing besides full sharing
by decomposing dimension structure into categories and attributes and considering semantic compatibility at
the level of single categories. The resulting conceptual scheme is called inter-stellar, or galaxy.

Inter-factual relations are useful not only for the analysis, but also for the design itself as their recognition
helps to reduce maintenance overhead and automatically detect valid operations. To fully capture these
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relationships, our model employs the concept of a unified multidimensional space, in which dimensions (as
well as dimension categories at IL and LL) with semantically related value domains are represented in a
non-redundant fashion. Formal unification of the multidimensional space is achieved by defining the notions
of related domains, compatible and conform dimensions, and related fact schemes.

The issue of dimension sharing, or conformation, was first brought up by Kimball in [81], who introduced
the term conformed dimensions to refer to dimensions, which are not physically centralized but which have
identical schemes. Our approach to dimension sharing differs from that of Kimball, as the latter addresses the
logical design (e.g., centralization and normalization) whereas we are concerned with the conceptual mod-
eling. A unified multidimensional space approach of our conceptual model does not impose any particular
logical or physical implementation scheme. Moreover, this approach is beneficial for generating accurate
metadata to support advanced OLAP operations and data navigation options in frontend tools irrespective of
the backend implementation.

3.4.2 Facts and Dimensions
All definitions are first given for the UL model and subsequently refined into the IL and, finally, the LL
model. Concepts defined at higher levels of abstraction represent coarsements of their counterparts at lower
levels, thus preserving the coherence of the definitional framework from one level to another.

UPPER LEVEL MODEL

From the UL perspective, fact and dimension are the only available elements of the conceptual model.

DEFINITION UL-FACT. A fact F is a collection of uniformly structured data entries over a fact scheme
F , where F is determined by a set of dimensions DF � tDi, i � 1, . . . , nu.

DEFINITION UL-DIMENSION. A dimension D is a nominal category with member values of type D.
A dimension type D characterizes the semantics of all potentially possible values drawn from the same
value domain, denoted DomainpDq.

Fact scheme F related to n dimensions (|DF | � n) is referred to as an n-dimensional fact scheme. In the
UL fact definition, there is no mention of measures since the fact itself is understood as a measure along with
its dimensional characteristics. However, our model needs a mechanism for specifying factless and derived
facts. Since fact and measure types are detailed in the next chapter, at this point we only consider the problem
of representing those properties in the graphical model with the respective examples found in Figure 3.4:

	 A fact corresponding to a measure (default case) is shown by prepending the name of the fact node
with a measure symbol. As an example, consider the fact ITEMS_SOLD in Figure 3.4b.

	 A fact with a derived measure is shown by prepending the name of the fact node with a derived measure
symbol and connecting it to its base fact(s) with a derivation edge. An example of a derived fact in
Figure 3.4b is PROFIT, computed from ITEMS_SOLD.

	 A fact with no measure is shown with no measure symbol next to the fact’s name, as is the case with
the fact RECRUITMENT in Figure 3.4a.

The only type of a UL roll-up relationship is a fact-dimensional roll-up, denoted F � Di, where Di is
any dimension in fact scheme F . By default, this relationship is assumed to be full, denoted �(full), implying
full participation of fact entries in F in dimension Di. Otherwise, Di is an optional dimension in F resulting
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Figure 3.4: Examples of dimension sharing in star and multi-star schemes

in a partial roll-up relationship, denoted�(part). The entire set of the fact’s roll-up relationships, denoted�F ,
stands for the union of all full and partial roll-up relationships of F .

Let e be a member value of D, denoted e P D. The following conditions hold for e: @e P D : Typepeq �
D ^ e P DomainpDq, or informally, all values are of the same data type. The above definition of a di-
mension distinguishes between the notions “dimension” and “dimension type” in order to admit existence of
multiple dimensions of the same type. Consider an example of modeling temporal characteristics of a fact.
Dimension type date describes the overall semantics of date as a characteristic and defines its value domain
Domainpdateq � ’DD-MM-YYYY’. A fact may have more than one dimensional characteristic of type date,
e.g., start date and stop date. We call such dimensions conform. Member sets of conform dimensions do not
have to be identical or even overlap – the only requirement is that all member values are drawn from the same
domain, i.e., possess the same semantics.

DEFINITION UL-CONFORM DIMENSIONS. Dimensions Di and Dj are conform, if they are of the
same dimension type: ConformpDi, Djq ð pDi � Dj ^Di � Djq.

Defined as a nominal category, a dimension assumes no order between its members. However, some
dimensions are defined on ordinal domains (e.g., time). In that case, the dimension is said to be totally
ordered. We use operators   and ¡ to specify the order for a pair of ordinal values.

DEFINITION UL-TOTALLY ORDERED DIMENSION. A dimension D is totally ordered, if there exists
an order between its members: OrderedpDq ð p@ei, ej P D : pei   ej _ ei ¡ ejqq.

Back to the concept of conform dimensions, we have obtained a foundation for dimension sharing: in a
unified multidimensional space, each set of conform dimensions is represented by a shared dimension of the
respective type. Thereby, the graphs of fact schemes containing a shared dimension appear connected.

DEFINITION UL-RELATED FACTS. Fact schemes Fk and Fl are related, if they share at least one
dimension:
RelatedpFk,Flq ð pDDi P Fk, DDj P Fl : ConformpDi, Djqq.

In the UL model, fact schemes are also known as stars. A set of related facts form a multi-star scheme
since their schemes are connected through shared dimensions. Dimension sharing may occur both within the
same fact scheme and between different schemes. Figure 3.4 shows the respective examples of dimension
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Figure 3.5: Arranging facts into a cluster in X -DFM

sharing in fact schemes of type single star and multi-star: fact RECRUITMENT in (a) has conform dimen-
sions start and end of type date; facts ITEMS_SOLD and ITEMS_PURCHASED in (b) are related via shared
dimensions of types product and date.

A special case of a multi-star is given by multiple facts with identical dimension sets. Intuitively, such
facts represent different measures in exactly the same multidimensional space. We introduce the term “fact
cluster” to refer to a set of identically structured facts.

DEFINITION UL-FACT CLUSTER. Facts Fk and Fl form a cluster, if their schemes are identical:
ClusterpFk, Flq ð Fk � Fl.

In X -DFM, fact nodes that form a cluster are put into a common cluster super-node in order to obtain a
non-redundant presentation of their schemes. Figure 3.5 exemplifies the benefits of recognizing fact clusters
in X -DFM: (a) is an unclustered view of two facts with identical schemes and (b) is a unified view of the
same fact schemes obtained by putting both fact nodes into a common cluster node.

The output of the conceptual data warehouse design for the entire application domain is given by the
set of its fact schemes and is denoted a fact family F . This concept is crucial for the formalization of the
multidimensional space. We first define the multidimensional space in the context of a single fact scheme and
then generalize it for a family of fact schemes.

For any dimension Di P DF , DimpDiq stands for the projection of cube F over Di. The resulting
multidimensional space of a cube groups all valid combinations built up by considering the value sets of
dimensions in DF . Each dimension’s value set is enriched with an abstract value ALL, a generalization of all
possible values in the dimension, which is considered the originating point of that dimension.

DEFINITION UL-MULTIDIMENSIONAL SPACE (FACT). A multidimensional space of fact F , denoted
SpacepF q, is defined as follows: SpacepF q � t�DiPDpDimpDiq Y ALLqu Y tH, . . . ,Hu, where � is
the Cartesian product and tH, . . . ,Hu stands for the combination of empty values.

Informally, dimensions serve as axes of a data cube with ordered dimension values as coordinates. Fact
entries are mapped to the points of the multidimensional space. The set of each point’s coordinates is called a
multidimensional pattern and the point’s value is given by the corresponding measure value. A multidimen-
sional pattern with no associated fact entry is considered empty. Intuitively, the multidimensional space of a
family of facts F is built up as a Cartesian product of the value sets of all dimensions in F .

Figure 3.6 illustrates the concept of a multidimensional space at a simple example of three dimensions
X , Y , Z, with 9, 6, and 7 member values, respectively. All dimensions originate at the common point
pH,H,Hq. Not surprisingly, an n-dimensional space has a shape of an n-dimensional cube.
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DEFINITION UL-MULTIDIMENSIONAL SPACE (FACT FAMILY). A multidimensional space of a fact
family F , denoted SpacepF q, is defined as follows: SpacepF q � t�DiP

�
D
pDimpDiq Y ALLqu Y

tH, . . . ,Hu where
�

D is a union of all dimensions of all facts in F .

A multidimensional space!unified disallows co-existence of conform dimensions by replacing each con-
forming set by a single shared dimension type:

DEFINITION UL-UNIFIED MULTIDIMENSIONAL SPACE. A multidimensional space is unified, if
none of its dimensions is conform with another dimension:
UnifiedpSpacepF qq ð @Di P SpacepF q : pEDj P SpacepF q : ConformpDi, Djqq.

As can be seen from the set of definitions in this section, the UL model spans a rather limited set of
elements and multidimensional properties: facts are not decomposable into measures, dimensions are non-
hierarchical categories, and categories are not decomposable into attributes. As a result, only a small subset of
X -DFM constructs are valid in the context of the UL model, as summarized in Figure 3.7. Apparently, even
the valid graphical constructs had to be adjusted to comply with the respective UL definitions. For example,
fact nodes have no subareas for measures and degenerated dimensions, and each dimension is represented by
a single category node.
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INTERMEDIATE LEVEL MODEL

Unlike in the UL model, the IL allows to structure dimensions into aggregation hierarchies. In OLAP, di-
mensions are used for aggregating data to a desired granularity. Therefore, the task of the conceptual model
is to capture the aggregation semantics and valid navigation paths for the analysis. The notions of fact and
dimension are redefined to account for the concept of hierarchically structured dimension schemes:

DEFINITION IL-FACT. A fact F is a collection of uniformly structured data entries over a fact scheme
F , where F is determined by a set of dimension schemes DF � tDi, i � 1, . . . , nu.

DEFINITION IL-DIMENSION. A dimension D is defined by its hierarchy scheme (intension)D and the
associated member set (extension) E, so that TypepEq � D.

DEFINITION IL-DIMENSION SCHEME. A dimension scheme is a quadrupleD � pCD,�D,JD,KDq,
where CD � tCk, k � 1, . . . , pu is set of category types in D, �D is a partial order in C , whereas JD
and KD are distinguished as the top and the bottom element of the ordering, respectively.

Informally, a dimension scheme is a connected, directed graph, in which vertices correspond to hierarchy
levels and edge represent roll-up relationships between the levels. KD corresponds to the finest grain of D,
i.e., the one at whichD is connected to the fact scheme. Notice that the property of being a bottom element is
not global, but is valid only in the context of a given fact scheme. Therefore, in multi-fact schemes, X -DFM
shows the category’s actual name instead of KD notation. JD corresponds to an abstract root node of the
dimension hierarchy and has a single value referred to as ALL: JD � tALLu. Function Abstractpq returns
true, if the input category is an abstract one.

Relation �D captures the containment relationships between category types. This containment may be
full, denoted �(full)

D , or partial, denoted �(part)
D . Thereby, relation �D indicates the union of the two orders

�
(full)
D and �(part)

D . Admission of partial containment, also known as partial roll-up relationship, between
category types is crucial for specifying heterogeneous dimension hierarchies.

Predicates� and�� specify direct and transitive containment relationship, respectively, between a pair of
category types in C . Partial and full direct containment predicates are denoted�(part) and�(full), respectively.
Predicates� and�� without fullness / partiality indication imply that the containment is either full or partial:
C � C1 ñ pCi �

(full) Cj _ Ci �
(part) Cjq. Partial containment between any two categories Ci and Cj

(Ci �
(part) Cj) occurs when members of Ci are not required to have parent members in Cj .

A pair of partial containment relationships of the same category Ci (i.e., Ci �
(part) Cj ^ Ci �

(part) Ck)
is mutually exclusive, if any member of Ci rolls-up either to Cj or Ck, but never to both. A set of exclusive
partial roll-up relationships is denoted Ci �

part pCj |Ckq.
Back to Figure 3.3b, dimension project has a set of categories C project � tKproject, office, building, city,

manager, project_group, Jprojectu and a partial order �project� tKproject �
(full) project_group, project_group

�(full) Jproject, Kproject �
(full) manager, manager �(full) Jproject, Kproject �

(part) poffice| buildingq, office �(full)

building, building �(full) city, city �(full) Jprojectu. The roll-up between Kproject and office is partial due to the
implied heterogeneity of project instances: internal projects roll-up to office, whereas external ones roll-up to
building. These two parent categories form an exclusive partial roll-up Kproject �

(part) poffice| buildingq.
The following properties hold for the partial order relation �D and its predicates:

	 Antireflexivity: ECj P CD : Cj � Cj .
	 Antisymmetry: EpCi, Cjq P CD : pCi � Cj ^ Cj � Ciq.
	 Transitivity : @pCi, Cj , Ckq P CD : pppCi � Cj _ Ci �

� Cjq ^ pCj � Ck _ Cj �
� Ckqq ñ Ci �

� Ckq.
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Antireflexivity forbids reflexive roll-up, i.e., a relationship of a category with itself. A classical example
of such reflexive relationship could be a supervisor hierarchy within the category manager. Antisymmetry
disallows bi-directional rolls-up between any pair of categories, since that would result in cyclic aggregation
paths. Thereby, the first two properties guarantee acyclic termination of all aggregation paths. Transitivity
defines indirect roll-up relationships within a hierarchy. For instance, if date is contained in month and month
is contained in year, then date is transitively contained in year.

Cj is said to be a category type in CD, denoted Cj P CD. A dimension scheme defines a skeleton of the
associated data tree, for which the following conditions hold:

1. @Cj P CDztJDu : Cj �
�(full) JD (non-top category types are fully contained in the top category).

2. @Cj P CDztKDu : KD �� Cj (the bottom category type of a dimension is contained in all its other
category types, either fully or partially).

3. ECj P CD : Cj � KD (the bottom category type is childless in the context of a given dimension).

In the simplest case, a dimension consists solely of the bottom and the top category types, i.e., is non-
hierarchical. A scheme of a single hierarchy is a lattice, whereas dimension schemes of multiple hierarchies
may result in rather complex graph structures. Multiple hierarchies inD exist whenever there exists a category
type at which at least two paths converge, or formally: DCi, Cj , Ck P CD : Ci �

(full) Ck ^ Cj �
(full) Ck. Figure

3.8 shows examples of dimension schemes of various complexity.
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Figure 3.8: Dimension schemes as directed graphs of various complexity

Since the IL model structures facts into cells of measure values determined by the respective dimension
values, scheme definitions at this level should be supplied with the corresponding instance definitions.

DEFINITION IL-DIMENSION INSTANCE. An instance, or extension, E associated with dimension
schemeD is a pair (C ,�E), where C � tCj , j � 1, . . . ,mu is a set of categories such that TypepCjq �
Cj and �E is a partial order on

�
j Cj , the union of all dimensional values in the individual categories.

DEFINITION IL-CATEGORY. A category Cj of type Cj is a set of member values ek such that
@ek P Cj : Typepekq � Cj .

The definition of the partial order �E in the context of dimension values is as follows: given pe1, e2q P�
j Cj , e1 � e2, if e1 is logically contained in e2. Predicates � and �� specify the direct and the transitive
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containment relationship, respectively, between members. The containment relationship at the category levels
is expressed using the same predicates� and��, as used at category type level. The total number of member
values in category Cj is denoted |Cj |. The following conditions hold for a dimension instance:

1. @em P Ci,@en P Cj : em � en ñ Ci � Cj (connectivity). This condition ensures that the contain-
ment relationship between categories results from the containment relationship between the members
of those categories and disallows roll-up relationships between members of unrelated categories.

2. Eem P Ci, Een P Cj : em � en ^ Ci � Cj (disjointness of category types). Prohibiting any value to be
a member of multiple category types enforces unification of conform categories into a shared category
type as well as disjointness of categories referring to different types.

3. Eem, en P Ci : em � en _ em �� en (stratification, i.e., disallowing direct or transitive containment
within members of the same category).

4. pTypepCjq � JDq ñ p|Cj | � 1^ Cj � tALLuq (top category consists of a single value ALL).

As already mentioned, a roll-up relationship between category types may be either full or partial. The
containment pattern actually originates in the dimension’s extension as the former is determined by the roll-up
behavior of member values, and is simply propagated to the respective category type.

DEFINITION IL-FULL ROLL-UP. A roll-up relationship between a pair of categories Ci and Cj is full,
denoted Ci �

(full) Cj , if each member in Ci has a containing member in Cj , i.e., @em P Ci : pDen P
Cj : em � enq.

DEFINITION IL-PARTIAL ROLL-UP. A roll-up relationship between a pair of categories Ci and Cj is
partial, denoted Ci �

(part) Cj , if Ci admits members with no containing member in Cj , i.e., Dem P Ci :
pEen P Cj : em � enq.

DEFINITION IL-PARTIAL RELATED ROLL-UPS. A set of partial roll-up relationships of category Ci

(Ci �
(part) Cj , . . . , Ci �

(part) Cn is called exclusive, if each member of Ci is directly contained in only
one of the multiple parent categories. Partial related roll-ups are denoted Ci �

(part) pCj | . . . |Cnq.

So far, we assumed a partial order between the elements belonging to different hierarchy levels. However,
if a category is defined on an ordinal value domain, its members are totally ordered.

DEFINITION IL-TOTALLY ORDERED CATEGORY. A category Cj is totally ordered, if there exists an
order between its members: OrderedpCjq ð p@ek, el P Cj , k � l : pek   el _ ek ¡ elqq.

The property of the total order can be inherent to a category, i.e., imposed by the category’s value domain,
or propagated from a totally ordered category in the hierarchy path. For semantic correctness, a category in
X -DFM should be marked as totally ordered only then, if that order is inherent. Apparently, a hierarchy is
totally ordered, if each of its levels is totally ordered, and, similarly, a dimension is totally ordered if all its
hierarchies are ordered. In X -DFM, such dimension is marked by a totally ordered top-level category symbol,
as used for the time dimension in Figure 3.8c.

DEFINITION IL-TOTALLY ORDERED DIMENSION. A dimension D is totally ordered, if a total order
exists in each of its categories: OrderedpDq ð p@Cj P D : OrderedpCjqq.
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The concept of the multidimensional space also needs to be reconsidered, as the IL model allows di-
mensions to be arbitrarily complex (e.g., hierarchical, heterogeneous), whereas dimensions of the multidi-
mensional space represent non-hierarchical value domains. Therefore, each dimension category should be
considered a dimension of its own in the multidimensional space. For any category Ci P DF , DimpCiq
stands for the projection of cube F over Ci. The resulting multidimensional space of a cube groups all valid
combinations built up by considering the value set of each category in DF .

DEFINITION IL-MULTIDIMENSIONAL SPACE (FACT). A multidimensional space of fact F , denoted
SpacepF q, is defined as follows: SpacepF q � t�CiPDpDimpCiq Y ALLqu Y tH, . . . ,Hu, where � is
the Cartesian product and tH, . . . ,Hu stands for the combination of empty values.

DEFINITION IL-MULTIDIMENSIONAL SPACE (FAMILY). A multidimensional space of a fact family
F , denoted SpacepF q, is defined as follows: SpacepF q � t�CiP

�
D
pDimpCiqY ALLquY tH, . . . ,Hu

where
�

D is a union of all dimension categories in all dimensions of all facts in F .

Prior to proceeding with the definition of the unified multidimensional space, we have to reconsider the
concept of conform dimensions in presence of dimension hierarchies, multiple hierarchies, and heteroge-
neous roll-ups within a dimension. IL models define dimensions in terms of directed aggregation graphs of
their categories. Therefore, the compatibility of dimension schemes results from the compatibility at each di-
mension level. Thereby, dimension schemes may have different semantic relationships with each other, such
as full coincidence, convergence, overlap or disjointness. At this stage, we provide definitions of compati-
bility patterns in dimension categories, and will reason about sharing patterns in entire dimension schemes
in Section 5.4 of the next chapter. Since categories are involved into roll-up relationships, we propose to
distinguish between two types of semantic relations, such as compatibility and conformance:

DEFINITION IL-COMPATIBLE CATEGORIES. Categories Ci and Cj are compatible, if they belong to
the same category type: CompatiblepCi, Cjq ð pCi � Cj ^ TypepCiq � TypepCjqq.

DEFINITION IL-CONFORM CATEGORIES. Compatible categories Ci and Cj are conform, if they roll-
up to compatible sets of category types: ConformpCi, Cjq ð CompatiblepCi, Cjq ^ p@Cm, Ci � Cm :
pDCn, Cj � Cn : ConformpCm, Cnqqq.

Figure 3.9, showing a slightly modified variant of the multi-star scheme from Figure 3.3b, should serve
as an illustrating example for the above concepts. Examples of conform categories are order date and re-
ceipt date as their hierarchy schemes are identical. Categories office and building in project dimension are
compatible, but not conform, to their counterparts in unit dimension, as they roll-up along different paths.

From the compatibility of single categories, we infer the notion of related dimensions and facts:

DEFINITION IL-RELATED DIMENSIONS. Dimensions Di and Dj are related, if they share at least
one category: RelatedpDi, Djq ð DCm P Ei, DCn P Ej : CompatiblepCi, Cjq.

DEFINITION IL-RELATED FACTS. Fact schemesFk andFl are related, if at least one dimension inFk

is related to at least one dimension in Fl: RelatedpFk,Flq ô DDi P Fk, DDj P Fl : RelatedpDi, Djq.

Apparently, fact schemes may be related to each other at the bottom granularity or at some upper ag-
gregation levels. The resulting multi-fact scheme is referred to as a galaxy. The UL definition of a fact
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Figure 3.9: Clustered IL view of purchasing facts with compatible and conform categories

cluster remains valid in the IL context and is useful for arranging facts with identical sets of dimensions into
a common super-node in X -DFM, as was done in Figure 3.9.

We suggest that top-level categories should be essentially treated as unique to account for the fact that
compatible dimensions may have different member sets and that the abstract root value ALL covers only the
respective dimension’s member set. Therefore, top-level categories are exempted from the compatibility test.
While the UL model unifies the multidimensional space by merging conform dimensions, the IL model does
the same at the category level:

DEFINITION IL-UNIFIED MULTIDIMENSIONAL SPACE. A multidimensional space is unified, if it
maps each set of compatible categories to a single shared category type:
UnifiedpSpacepF qq ð @Ci P SpacepF q : pECj P SpacepF q : CompatiblepCi, Cjqq.

DEFINITION IL-CONFORMED MULTIDIMENSIONAL SPACE. A multidimensional space is con-
formed, if it enforces sharing of only conform category types:
ConformedpSpacepF qq ð @Ci P SpacepF q : pECj P SpacepF q : ConformpCi, Cjqq.

As can be seen from the set of definitions in this section, the IL model spans a rather broad set of elements
and multidimensional properties by introducing the concept of hierarchically structured dimension schemes.
This fact is reflected in the IL construct set of X -DFM, which includes all types of dimension category nodes
and roll-up relationships. The only unsupported components in the IL are measure and property attributes.

LOWER LEVEL MODEL

The LL model lowers the abstraction of the defined multidimensional properties in two major respects,
namely, i) defining the term “measure” as an attribute of a fact and ii) decomposing categories into their
constituting attributes. This refinement is reflected in the according redefinition of the terms “fact” and “cat-
egory type”.

DEFINITION LL-FACT. A fact F is a collection of uniformly structured data entries over a fact scheme
F , where F is defined as a pair (MF ,DF ), where MF � tMj , j � 1, . . . ,mu is a set of measures
and DF � tDi, i � 1, . . . , nu is a set of corresponding dimension schemes.
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The above fact definition supersedes the concept of a fact cluster in the UL and IL by assigning all
measures of the same dimensionality to the same fact. Fact scheme PURCHASE from Figure 3.2 can now
be formally defined in terms of its measure set M PURCHASE � t amount, number_of_items u and a set of
dimension schemes DPURCHASE � t funding, product, project, time, unit, invoice_number u.

The definition of a category type is modified as to specify its constituting attributes:

DEFINITION LL-CATEGORY TYPE. A category type C is a pair pAC ,A qwhereAC is the distinguished
dimension level attribute, whereas A � tAr, r � 1, . . . , xu is a set of property attributes belonging to
C and functionally dependent on AC .

A category type C has exactly one dimension level attribute AC , which represents the essential character-
istic (key property) of that category type. The entire set of attributes defines the structure of the category’s
members. With the above definition, members in a category of type C are not atomic values, but tuples of
values over the schema tAC ,A u.

Members of a dimension level attribute are required to be unique (key constraint) whereas the set of
property attributes is functionally dependent from the former. Consequently, the relationship between the
dimension level attribute and any of its properties is many-to-one or even one-to-one, i.e., it produces the
same hierarchical behavior as a roll-up relationship between two categories. Technically, that implies that
any property Ar in C can be alternatively modeled as a parent category type of C. In the literature, there are
no strict guidelines as to which of the modeling alternatives is to be preferred. However, from the semantic
perspective, property attributes are declared as non-hierarchical characteristics of a specific category type and,
as such, they may not be used as aggregation levels in OLAP queries. Considering this established rationale,
we suggest that the parent-level option is “safer”, whenever the expected query pattern of an attribute is
unknown a priori. However, if there relationship of a property to the dimension level attribute is one-to-one,
it is not worth representing it as a parent category type.

Figure 3.10 demonstrates the two alternatives of dealing with property attributes in the LL model at the
example of project dimension: in (a) manager is a property of the bottom category project and in (b) the
former is promoted to a parent hierarchy level of the latter. In X -DFM, the dimension level attribute is
implicitly shown as the name of the respective category node, whereas properties are modeled as attribute
nodes attached to the respective category.

The definitional framework of the LL model provides the necessary level of semantic detail for identifying
various classes of dimensions and facts, presented in the following two chapters.
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Figure 3.10: Alternatives of dealing with property attributes in the LL model



Chapter 4

Dimensions and Hierarchies in the
Multidimensional Data Model

T HIS CHAPTER FOCUSES on extending the multidimensional data model to handle complexity in
OLAP dimensions and dimension hierarchies. We show that the underlying constraints of the con-
ventional model, such as homogeneity, strictness, regularity, and others, appear too rigid for many

real-world applications and, therefore, have to be overcome at the conceptual and, subsequently, at the logical
level in order to provide adequate OLAP support for those applications. We present a formal framework for
classifying dimension and hierarchy types and demonstrate the feasibility of the proposed extensions at a
real-world case study from the domain of academic administration.
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4.1 State of the Art of Dimensional Modeling
Dimension hierarchy is a central concept in OLAP as it specifies valid aggregation paths for exploring the
facts in a data cube at different levels of detail and in a hierarchical fashion: typically, data analysis evolves
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from a more abstract view of coarsely-grained aggregates to a more precise view obtained through a sequence
of drill-down and slice&dice operations. In OLAP tools, dimension schemes and instances are presented in
the form of hierarchical data navigation structures, which enable purely visual specification of analytical
queries: the user simply navigates to the desired categories and their members. Abstraction of a database
query into a navigation interface raises the issue of reachability: each lower-level member must be reachable
from each of its containing members at the upper levels. Another important issue is correct summation: subto-
tals produced by drilling down should sum up to the value of the decomposed total. The above issues are well
investigated in the literature and are formalized as the concepts of aggregate navigation and summarizability.

4.1.1 Rigidness of OLAP Dimensions
Rigidness of the standard OLAP technology is primarily due to the requirement of summarizability for all
dimension hierarchies. The concepts of summarizability and well-formedness were coined by Rafanelli and
Shoshani [152] in the context of statistical databases and redefined by Lenz and Shoshani [98] for OLAP.
Summarizability guarantees correct aggregation and optimized performance, as any aggregate view is obtain-
able from a set of precomputed views of superior granularity. However, the hierarchies in many real-world
applications are not summarizable and, therefore, may not be used as dimensions in their original form. In
case of minor irregularities, the data tree can be balanced by filling the “gaps” with artificial nodes. In highly
unbalanced hierarchies, however, suchlike transformations may be undesirable. Yet in other scenarios, e.g.,
in taxonomy-based classifications, it is crucial to preserve the original state of hierarchical structures.

Another limitation of OLAP comes from enforcing uniform granularity, or precision, in the members of
the same category type. As stated in [145], in some applications the data may be prone to naturally varying
precision, e.g., the diagnosis of a patient, whereas in other scenarios mixed granularity arises as a result
of combining data from different sources. These variations are eliminated by “cleansing” the data prior to
loading it into a data warehouse.

The requirement of completeness prohibits missing (NULL) values in facts and dimensions, as those values
aggravate the invocation of aggregate functions and correct interpretation of computed aggregates.

Correct aggregation is also enforced via the requirement of homogeneity. Even though it is admissible to
define multiple hierarchies within the same dimension, each of those hierarchies must be homogeneous, i.e.,
each level of the tree corresponds to a single category and all members of a given category have ancestors in
the same set of categories [61].

Analysts are frequently confronted with data, which violates the above restrictions and which, therefore,
cannot be adequately supported by standard OLAP systems.

4.1.2 Related Work on Modeling Dimension Hierarchies
Despite the overall maturity and successful establishment of the OLAP technology, the domain of conceptual
design still faces a lot of research challenges. New issues arise when this technology, tailored primarily
towards the needs of business performance analysis, is applied in novel contexts that deal with rather complex
data that cannot be trivially rearranged into homogeneous cubes of uniformly grained facts and perfectly
balanced dimension hierarchies.

Early works on multidimensional data models, such as Kimball’s star schema model [81], cube operator
of Gray et al. [51], the conceptual model for OLAP of Gyssens and Lakshmanan [52], and the cube data
model of Datta and Thomas [36] tightly coupled the conceptual model with the logical, especially the rela-
tional one, considering dimension hierarchies as mere collections of attributes used as grouping criteria for
aggregating measures. The underlying star schema approach trades semantic richness off against simplicity
by not capturing hierarchical relationships at the schema level.



4.1 : State of the Art of Dimensional Modeling 61

A step in the right direction was achieved by a concurrent branch of research on so-called structured cube
models, in which dimension hierarchies are explicit in the scheme.

Li and Wang [99] introduced the notion of a grouping relation to reflect hierarchical relationships between
the attributes of a dimension and defined grouping algebra as an extension of relational algebra that includes
order-oriented and aggregation operators.

Agrawal et al. [5] also proposed a model along with a set of algebraic operators for multidimensional
databases. Their model provides support for multiple hierarchies in a dimension and symmetric treatment
of dimensions and measures by means of PUSH and PULL operators. However, the model does not distin-
guish between structure and contents, which results in the necessity of encoding structural and functional
information into the query.

Cabibbo and Torlone [16] proposed a formal multidimensional model, which is truly implementation-
independent and thus provides clear distinction between practical and conceptual aspects. Complex structured
dimensions are modeled by specifying a partial order on dimension levels, thus accounting for the possibility
of multiple aggregation paths. In the follow-up work [17], the authors extend their formal framework by
presenting an algebraic and a graphical language for querying multidimensional databases.

Vassiliadis [179] provides a formal model that defines dimensions as lattices of levels, in which each path
is a linear, totally ordered list of levels. The model also includes a set of useful cube operations. Furthermore,
the authors present mappings of the conceptual model and its operators to an extended relational model and
to multidimensional arrays.

A powerful approach to modeling dimension hierarchies along with SQL query language extensions
called SQLpHq was presented by Jagadish et al. [70]. The notion of a dimension is formalized by introducing
the concepts of a hierarchical domain, hierarchy, hierarchy scheme, and dimension scheme. SQLpHq does
not require data hierarchies to be balanced or homogeneous. The data model allows capturing of structural
heterogeneity at schema level.

The necessity of dropping the restriction of homogeneity has been recognized by the researchers who
proposed respective extensions in form of dimension constraints [61], multidimensional normal forms [94,
96], transformation techniques [144], and mapping algorithms [109].

Hurtado and Mendelson contributed a series of works on summarizability for heterogeneous hierarchies.
In [60], a class of constraints for inferring summarizability in a particular class of heterogeneous dimensions is
presented. A follow-up work [61] proposes a class of integrity constraints and schemes that enable reasoning
about summarizability in general heterogeneous dimensions. A more recent work [59] summarizes previous
contributions of the authors and provides a survey of related work on heterogeneity in OLAP.

Lehner et al. [96] relaxed the condition of summarizability to enable modeling of generalization hierar-
chies by defining a Generalized Multidimensional Normal Form (GMNF) as a yardstick for the quality of
multidimensional schemata. Lechtenbörger and Vossen [94] pointed out the methodological deficiency in de-
riving multidimensional schema from the relational one and extend the framework of normal forms proposed
in [96] to provide more guidance in data warehouse design.

In spite of numerous contributions and competing multidimensional models, there is still no consensus in
the community about the modeling standards and especially what concerns different hierarchy types.

Pedersen et al. [145] proposed an extended multidimensional data model for handling complex data and
a corresponding algebra for multidimensional objects. Model extensions in part of dimension hierarchies
address variable granularity due to imprecision, missing values, non-covering, non-strict, and non-onto hi-
erarchies. The issue of heterogeneity is not considered by this model. Innovative features, such as handling
imprecision and incompleteness, are supported by means of the proprietary algebra, which has not been
implemented in any OLAP system.

Some researchers propose to handle complex hierarchies at the logical schema level. Bauer et al. [9]
exploit the flexibility of the relational and, alternatively, the object-relational database constructs to obtain
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normalized OLAP schemes. Lin et al. [101] describe an object-relational modeling approach for warehousing
complex data. Complexity is handled by employing inheritance and complex objects.

The conceptual design approach of Hüsemann et al. [64] builds upon the multidimensional normal form
framework of [96] and investigates the properties of multiple hierarchies, subdividing them into optional
(i.e., generalized) and alternative ones. Non-balanced hierarchies are not considered by this framework.
Pourabbas and Rafanelli [148] propose a characterization of hierarchy types, distinguishing between total
and partial hierarchies, derived hierarchies, and different types of multiple hierarchies within a dimension.
The model admits existence of irregular hierarchies, however, not discriminating between different kinds of
irregularity.

Abelló et al. [1] proposed a conceptual multidimensional model YAM2 based on the UML notation.
The model provides a sound framework for classifying various hierarchy types, e.g., symmetric, non-strict,
derived, multiple alternative, and generalized hierarchies. Besides, the model also formalizes the types of
relationships between correlated dimensions, distinguishing between generalization, aggregation, and deriva-
tion. A conceptual model with very rich multidimensional semantics was proposed by Luján-Mora et al.
in [104]: dimension hierarchies are classified using the properties of strictness, completeness, degeneration,
optionality, multiplicity, derivation, etc. However, the model focuses on the graphical presentation of the
extended set of constructs using UML rather than on formal aspects.

The works of Malinowski and Zimányi focus on extending the conceptual model to handle complex hi-
erarchies, not addressed by standard OLAP systems. [108] presents a conceptual classification of hierarchies
and proposes a graphical notation based on the E/R model. In [109], the authors formalize and extend their
framework, presenting it as MultiDimER, a conceptual multidimensional model, and a relational mapping of
all defined hierarchy types. The authors evaluate various approaches to enforcing summarizability by trans-
forming complex hierarchies and propose their own mappings, which overcome the deficiencies of previously
proposed solutions. However, the author’s own conceptual model is presented in a rather informal fashion
compared to other models of the state-of-the-art. Besides, this work does not consider the implications of
extending the data model on the applicability of OLAP operators.

4.2 Academic Management as the Motivating Case Study
Conceptual extensions of the multidimensional model presented in this chapter emerged as a result of a col-
laborative effort of our research team with SuperX Project 1. SuperX is the name of the data warehouse
system for university administration, developed specifically for the needs of German public higher education
sector and patronized by the Ministry of Education as a standardized reporting environment for public univer-
sities throughout Germany. Originated at the University of Karlsruhe and further developed at the University
of Duisburg-Essen, SuperX has been officially taken over by HIS Ltd. 2. HIS Ltd. is the principal provider
of software solutions for university management (e.g., facilities, personnel, finance, teaching and research,
time-scheduling, etc.) in Germany. SuperX automatically extracts operational data from various HIS sys-
tems, cleanses and transforms it into multidimensional cubes and makes the latter available for querying and
reporting to decision-makers and other staff.

SuperX appeared an attractive and promising cooperation partner for our research for a number of reasons,
such as the following:

	 SuperX is an open-source product available free of charge.
	 SuperX is being increasingly adopted by universities throughout Germany.

1Project homepage: http://www.superx-projekt.de/
2Higher Education Information System Ltd., http://www.his.de/english/

http://www.superx-projekt.de/
http://www.his.de/english/
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Figure 4.1: Original SuperX fact table COB_BUSA_CUBE (university expenditures) and its dimension tables

	 SuperX is platform-independent and does not require any commercial software to run.
	 SuperX is flexibly configurable with respect to the overall architecture (e.g., DBMS, web server).
	 SuperX has numerous open issues, predominantly due to complex and/or inconsistent data delivered

by some of the operational data sources

In addition to the above issues, we intended to enrich the functionality of SuperX by integrating our own
software module UniCap [117, 183, 184], which is a decision support system for managing the admission
capacity and teaching resource utilization in universities.

The SuperX team granted us access to test data extracted from HIS systems COB (cost and activity
accounting) and SOC (student admission and performance records). The data was available in the relational
form as 2 fact tables with 14 (partially shared) dimension tables. The cubes are as follows:

1. COB_BUSA_CUBE contains the household data, i.e., purchases of various administrative units.

2. STUD_ALLG_CUBE contains overall student statistics, broken down by age, sex, origin, semester,
major, etc., i.e., grouped into cohorts rather than as individual records.

The original logical schemata of the above cubes are depicted in Figures 4.1 and 4.2, respectively: primary
key attributes are shown with red background and arrows point to the targets of the foreign key relationships.

At the first glance, the logical schemata shown in Figures 4.1 and 4.2 seem to follow the star schema
design – each dimension is stored in a single relation. Notice, however, that most of the dimensions have
exactly the same set of attributes, namely tID, NAME, PARENT, SQLu, with ID being the primary key and
PARENT being a self-reference foreign key. In terms of the star schema design, those dimensions appear
to contain no hierarchies. However, that is not the case as SuperX stores hierarchical relationships as a
reference to the parent record (foreign key PARENT) – a well-known approach to storing recursive structures
in relational databases, but not in data warehouses.

Table 4.1 shows an example of storing the hierarchy of the university’s administrative units using the
parent reference. The resulting data hierarchy is shown in Figure 4.3. Since the relational representation pro-
vides no clue about hierarchy levels, the node type information mapped to the nodes’ background color had to
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Figure 4.2: Original SuperX fact table STUD_ALLG_CUBE (student enrollments) and its dimension tables

Figure 4.3: Organization hierarchy (fragment) of a university stored in Table 4.1

be extracted manually from the values of the attribute NAME. Without this tediously obtained node semantics
it would be impossible to lay the hierarchy out into levels and, consequently, impossible to characterize or
interpret it. Back to the data tree in Figure 4.3, based on the node type assignments, we can characterize it as
heterogeneous (multiple category types at the same level) and asymmetric (childless non-bottom nodes).

We denote the above approach to storing dimension hierarchies a “pseudo-star” schema: the entire hier-
archy is put into a single table, as in the star schema, however not by means of de-normalization, but rather
by referencing the parent element. An attempt to map the above tiny organization hierarchy to a summariz-
able OLAP dimension would fail at the very bottom level as even that level consists of three node types and,
therefore, may not be mapped to a single category. In the SuperX database, this kind of complex hierarchy
structures is rather typical and is encountered in product and cost categorizations, personnel and organisation
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Table 4.1: Example of a non-structured hierarchy storage
ID NAME PARENT 

1 ALL  NULL 

1117 Institut für Entwicklung und Frieden  1100 

1211 Institut für Kulturwissenschaften  1200 

1213 Institut für Fremdsprachliche Philologie  1200 

1510 Abteilung für Elektrotechnik u. Informationstechnik  1500 

1612 Institut für niederrheinische Kulturgeschichte  1600 

1613 Institut für Verkehr und Logistik (IVL)  1600 

1614 Institut für Automation und Robotik  1600 

1615 Institut für Informatik  1600 

1616 Zentrum für Lehrerbildung  1600 

1100 Gesellschaftswissenschaften  1 

1200 Geisteswissenschaften  1 

1212 Institut für Germanistik 1200 

1600 Zentrale wiss. Einrichtungen  1 

1300 Wirtschaftswissenschaft  1 

1400 Naturwissenschaften  1 

1500 Ingenieurwissenschaften  1 

1520 Abteilung für Maschinenbau 1500 

1530 Abteilung für Informatik, Information/Medien 1500 

1540 Abteilung für Materialtechnik 1500 

1611 Institut für Ostasienwissenschaften 1600 

 

hierarchies, course structures, etc. Besides, the underlying data sources (HIS applications) also employ the
same relational storage approach to hierarchical data. Therefore, SuperX does not only avoid the challenges
of re-modeling complex data into OLAP dimensions, but also facilitates the ETL process by simply taking
over the original data hierarchies as dimensions of the respective facts.

The penalty of storing dimension hierarchies as unstructured data graphs is devastating–the OLAP tech-
nology, its operators, query languages, metadata, and frontend tools become fully inapplicable. SuperX
provides proprietary end-user tools for analyzing “pseudo-star” schemata. These tools are rather rudimentary
in their functionality, e.g., they allow to retrieve data via pre-defined masks or interact with a cube via a pivot
table. The provided pivot table interface Joolap3 allows to explore available measures along at most two
dimensions (no dimension nesting) whereas other dimensions may be used as filters. Joolap avoids recursive
queries by allowing to drill down only one value at a time, e.g., to drill-down from quarters into months, each
quarter’s element has to be expanded. Poor query and presentation functionality is the price SuperX pays for
supporting non-structured and non-summarizable hierarchies.

In our opinion, the “pseudo-star” schema solution of SuperX is too disadvantageous due to its incompat-
ibility with the established OLAP technology and, hence, inability to benefit from the techniques and tools
of the latter. Therefore, we reconsidered the original intention to extend the existing SuperX framework and
decided to build a new data warehouse in accordance with the general guidelines of data warehouse design.
Complex hierarchies, which cannot be handled by the conventional multidimensional model, inspired the cor-
responding conceptual extensions of the model and transformation techniques for inferring summarizability
in those hierarchies.

3Project homepage: http://joolap.memtext.de/

http://joolap.memtext.de/
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4.3 Categorization of Dimension and Hierarchy Types

A categorization of dimension types and their hierarchy types is obtained by systematically investigating
various properties of dimensions and hierarchies at the scheme and at the instance level. To have an adequate
example for illustrating diverse types of dimensions presented in this section, we generated a more detailed
variant of the sample fact scheme PURCHASE from Chapter 3, shown in Figure 4.4.

Adherence to or violation of a particular multidimensional property (e.g., homogeneity, strictness, bal-
ancedness) is used for subtyping dimension hierarchies. The metamodel of the categorization is specified in
terms of dimension and hierarchy classes with composition and specialization relationships between them.
Since a dimension may consist of multiple hierarchies or be non-hierarchical, we distinguish between dimen-
sion and hierarchy classes. Metaclasses are identified starting from more general properties and proceeding
to their subclasses and special cases, with the entire resulting categorization scheme depicted in Figure 4.5 in
the form of a metamodel. The edges of the classification are labeled by the respective discrimination criteria.

4.3.1 Refining the Formal Framework

The formalization of the conceptual model, presented in Chapter 3, needs to be further refined to define the
properties necessary for coping with complex dimension hierarchies. The concepts introduced in this section
are definable at the IL and remain valid in the LL model.

A dimension hierarchy is based on a hierarchical characteristic, also referred to as an analysis criterion.
For instance, in the dimension project (see Figure 4.4), a hierarchy given by office �(full) building �(full) city
orders projects according to their location criterion, whereas manager creates a supervision hierarchy, and
project group groups projects thematically. To classify dimensions according to their hierarchy types, we
provide an alternative definition of the concept dimension in terms of its constituting hierarchies:
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Figure 4.5: Categorization of dimension and hierarchy types

DEFINITION IL-HIERARCHICAL DOMAIN. A hierarchical domain is a non-empty set VH with the
only defined predicates � (identity), � (child/parent relationship), and �� (transitive closure, or de-
scendant/ancestor, relationship) such that the graph G� over the nodes teiu of VH is a tree.

In OLAP, only structured hierarchies, i.e., those adhering to a certain scheme, qualify as dimensions. A
dimension may be organized into one or multiple hierarchies to provide additional aggregation levels.

DEFINITION IL-HIERARCHY SCHEME. A hierarchy scheme H within a dimension scheme D is a
quadruple H � pCH,�H,JD,KDq, where �H is a restriction of �D and each category has at most
one outgoing full roll-up relationship: EpCi, Cj , Ckq P CH : Ci �

full Cj ^ Ci �
full Ck, i.e., no category is

allowed to have multiple full roll-up relationships.

Thereby, any hierarchy in a dimension has the same bottom and top category types as the dimension itself.
According to the above definition, a scheme is guaranteed to yield a single hierarchy by excluding multiple
full roll-up relationships of the same category type. Notice that it does not prohibit heterogeneous schemes
produced by related partial roll-ups. The instance of a hierarchy results from specifying the members in each
category and the partial order between them.

DEFINITION IL-HIERARCHY INSTANCE. A hierarchy instance H associated with hierarchy scheme
H is a pair H � pCH ,�H ), where CH � tCj , j � 1, . . . ,mu is a set of categories such that
TypepCjq � Cj , Cj P CH, and �H is a partial order on

�
j Cj , the union of all dimensional values

in the individual categories.

A dimension extension, or instance, E associated with dimension scheme D is a merge graph of all its
hierarchy instances Hi. Dimension scheme D can similarly be obtained by merging its hierarchy schemes,
however, in each case of multiple outgoing roll-up relationships, it is necessary to specify whether those
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Figure 4.6: Dimension time (left) as a merge graph of its hierarchies (right)

are multiple alternative or parallel hierarchies. Dimension scheme is decomposable into a set of hierarchy
schemes H D � tHi, i � 1, . . . , nu. Figure 4.6 illustrates the concept of obtaining the dimension scheme by
merging the schemes of all hierarchies found in that dimension, at the example of dimension time.

DEFINITION IL-DIMENSION SCHEME. A dimension scheme D is a directed graph constructed by
merging the graphs of all hierarchy schemes associated with D. The set of vertices in D is a duplicate-
free union of category types from H D and the edges are the union of the partial orders from HD. D
contains each scheme Hi P H as its subgraph.

The above dimension definition admits a broad variety of hierarchical behaviors within a dimension. For
instance, it is not prohibited to have multiple hierarchies, shared category types, or partial roll-up relation-
ships.

Decomposition of complex dimension schemes into their constituting hierarchy schemes is crucial for
determining valid aggregation paths. Consider dimension project in Figure 4.4. Apparently, it is composed
of multiple hierarchy schemes with the following sets of category types:

1. CH1 � tKproject, project group,Jprojectu,
2. CH2 � tKproject, manager,Jprojectu,
3. CH3 � tKproject, office, building, city,Jprojectu,
4. CH4 � tKproject, building, city,Jprojectu.

Multiple hierarchies in a dimension exist whenever its scheme contains a category that rolls-up to more
than one destination. We distinguish between heterogeneous and truly multiple hierarchies. In heterogeneous
hierarchies, multiple paths result from partial related roll-up edges, such as in the project location hierarchy,
in which the members of project have parent members either in office or directly in the next-level category
building. Therefore, hierarchies H3 and H4 can be considered parts of a single heterogeneous hierarchy.

4.3.2 Dimension Types

Dimension classes are identified by inspecting such properties as i) the cardinality of its relationship with the
fact, ii) fullness of its participation in the fact, iii) derivability of its members, and iv) the number of constitut-
ing hierarchies. Figure 4.7 shows the fragment of the metamodel corresponding to dimension categorization,
described in this section.
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Cardinality of fact-dimensional relationship. Typically, a relationship between a fact and any of its
dimensions is many-to-one, i.e., each fact maps to exactly one member in each dimension. Degeneration of a
fact-dimensional roll-up to a one-to-one relationship produces a so-called “shadow” dimension [45]. Figure
4.8 shows three possible cases of modeling “shadow” dimensions in X -DFM at the example of a degenerated
roll-up relationship between the fact PURCHASE and its dimension purchase record: (a) shows purchase
record as a degenerated dimension, i.e., consisting of a single attribute, and, therefore, qualifying as a fact
identifier of PURCHASE, (b) shows purchase record as a non-hierarchical non-degenerated dimension, i.e.,
consisting of multiple attributes, whereas (c) presents purchase record as a hierarchy. We denote a one-to-one
fact-dimensional relationship a degenerated roll-up and represent it by a non-directed edge in X -DFM, as in
Figures 4.8b and 4.8c.

Participation in the fact-dimensional relationship. The roll-up relationship between a fact and a di-
mension may be full or partial. Partial containment occurs when fact entries are not required to have the
respective dimensional characteristic, i.e., admit NULL values in its place. A partially contained dimension is
called optional with respect to the fact. In Figure 4.4, funding is an optional dimension, as indicated by the
incoming partial roll-up edge towards its bottom category.

Derivability. A dimension, in which the members of the bottom category are derived from one or sev-
eral other dimension categories, is called derived. In some scenarios, it may be feasible to model derived
dimensions explicitly, if those are expected to be used frequently or if the frontend tools do not support ad
hoc dimension specification. In fact scheme PURCHASE in Figure 4.4, an example of such a dimension is
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70 Chapter 4 : Dimensions and Hierarchies in the Multidimensional Data Model

delay, as its values are derived by subtracting order date from receipt date. Notice that, if modeled explicitly,
a derived category may be used just as a normal category, i.e., participate in roll-up relationships, serve as
input for deriving further categories, etc.

Number of constituting hierarchies. Considering the number of hierarchies, a dimension can be a
hierarchy, non-hierarchy, or multiple hierarchies, with funding, product, and project as the examples of the
respective types shown in Figure 4.4.

DEFINITION IL-NON-HIERARCHY. A dimension D is a non-hierarchy, if its scheme is composed
solely of the bottom and the top category types: Non-hierarchypDq ð CD � tKD,JDu.

DEFINITION IL-HIERARCHY. A dimension D is a hierarchy, if its scheme consists of exactly one
hierarchy: HierarchypDq ð |H D| � 1^ DCi P D : Ci � KD ^ Ci � JD.

DEFINITION IL-MULTIPLE HIERARCHIES. A dimension D represents multiple hierarchies, if its
scheme contains more than one hierarchy: MultiplepDq ð |H D| ¡ 1.

In a non-hierarchical dimension, no hierarchy levels are defined on top of the bottom category. A non-
hierarchical dimension that has been “stripped off” to a single category with a single attribute is called degen-
erateddimension!degenerated, and a degenerated dimension is a fact identifierdimension!degenerated!fact
identifier, if it uniquely identifies each fact entry. Formalization of the above two dimension types is provided
in Section 5.2.2 of the next chapter. InvoiceNumber and PurchaseID are examples of a degenerated and a fact
identifier dimension, respectively, in fact scheme PURCHASE in Figure 4.4.

A dimension with at least one roll-up relationship (besides the default roll-up to the abstract root category)
is a hierarchical one. The remaining two sections of this chapter elaborate on the types of single and multiple
hierarchies, respectively.

4.4 Classification of Hierarchy Types
Similarly to the way a hierarchical structure can be recursively decomposed into subtrees, hierarchical di-
mensions can be decomposed into constituent subdimensions. Intuitively, Dj is a subdimension of Di, if
both the scheme and the extension of the former are subgraphs in the scheme and the extension of the latter.
Horizontal decomposition into subdimensions is done by recursively stripping off the bottom level. For ex-
ample, a project location hierarchy project �(part) office �(full) building �(full) city �(full) Jproject consists of the
following subdimensions:

	 office �(full) building �(full) city �(full) Jproject,
	 building �(full) city �(full) Jproject,
	 city �(full) Jproject.

Alternatively, a dimension can be decomposed into subdimensions vertically, i.e., along multiple aggre-
gation paths, as was already shown in Figure 4.6 for the time dimension. Finally, vertical and horizontal
decomposition may be used in combination for subdimension extraction. Decomposition of complex di-
mensions into simple subdimensions is useful for localizing the segments, in which a certain property (e.g.,
non-strictness or heterogeneity) occurs.

DEFINITION IL-SUBDIMENSION. A dimension Dn is a subdimension of Dm, if scheme Dn is a
subgraph in scheme Dm (i.e., CDn P CDm and � Dn is a restriction of � Dm) and extension En is a
restriction of extension Em to the corresponding categories.
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Dimension hierarchies are categorized along two orthogonal properties of homogeneity and strictness.
Homogeneity of a hierarchy is assessed by testing it for partial containment relationships. Dimension

project contains a homogeneous hierarchy project �(full) manager � J(full)
project. However, the hierarchy project

�part ppoffice �(full) building �(full)cityq| city q �(full) Jproject is heterogeneous as project values are allowed to
roll-up either to office or directly to city. This behavior is the result of having two types of projects, namely,
the internal ones with an office location, and the external ones located in other cities.

DEFINITION IL-HOMOGENEOUS HIERARCHY. A hierarchy H is homogeneous, if all roll-up rela-
tionships between its categories are full (all members roll-up along identical paths):
HomogeneouspHq ð EpCi, Cjq P CH : Ci �

(part) Cj .

DEFINITION IL-HETEROGENEOUS HIERARCHY. A hierarchy H is heterogeneous, if it admits mul-
tiple mutually exclusive paths (related partial roll-up relationships) between its categories:
HeterogeneouspHq ð DpCi, Cjq P CH : Ci �

(part) Cj .

4.4.1 Strict vs. Non-Strict Hierarchies
Generally, dimension hierarchies are assumed to be strict, i.e., each roll-up relationship is many-to-one and,
therefore, each child member has at most one parent member. Conventional OLAP tools are constrained
to aggregating along strict hierarchies to ensure summarizability. However, in many applications non-strict
hierarchies are common: an employee may be registered with more than one department, a product may
belong to several categories, etc. Figure 4.9 shows the fragment of the metamodel corresponding to the
strictness-based categorization of dimension hierarchies.

DEFINITION IL-STRICT HIERARCHY. A hierarchy H is strict, if it prohibits multi-parent roll-up
relationships between its members:
StrictpHq ð @pCi � Cjq P CH ,@e1 P Ci,@pe2, e3q P Cj : ppe1 � e2 ^ e1 � e3q ñ e2 � e3q.

DEFINITION IL-NON-STRICT HIERARCHY. A hierarchy H is non-strict, if it admits multi-parent
roll-up relationships between its members:
Non-strictpHq ð DpCi � Cjq P CH , De1 P Ci, Dpe2, e3q P Cj : pe1 � e2 ^ e1 � e3 ^ e2 � e3q.

A non-strict roll-up relationship is expressed by a predicate � in the formal model and by a bi-directed
edge in X -DFM. The stronger arrow head indicates the direction of the roll-up. Notice that a non-strict roll-
up is not just a general many-to-many relationship, but a hierarchical (“part-of”) one. In other words, it is

weighted
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certainty

strict

Figure 4.9: Categorization of hierarchy types with respect to strictness
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Figure 4.10: A sample instance of a non-strict hierarchy

predominantly a many-to-one mapping with a relatively small portion of multi-parent occurrences (otherwise,
it would be a misuse of the term “hierarchy”). An example of a non-strict hierarchy in Figure 4.4 is project
�(full) project group �(full) section, where a project member may be associated with multiple project group
members, and project group members, in their turn, may belong to more than one section value. Figure 4.10
shows a sample instance of this non-strict hierarchy with multi-parent project members (P3, P8), multi-parent
project group members (G5, G6), as well as multi-parent roll-up edges of those members highlighted with
red color.

Non-strict mappings are generally non-summarizable. However, there exist two augmented non-strict
hierarchy types that provide correct summarization. Those are weighted and fuzzy hierarchies, which use
weights and rules, respectively, to associate the elements of two hierarchy levels.

A weighted hierarchy is obtained by specifying each child element’s degree, or probability, of belonging
to each of its parent elements. In X -DFM, the weight associated with a non-strict roll-up edge is shown
as the child category’s property attribute with grey background color. The relation between project group
and section in Figure 4.4 is an example of such mapping, supplied with an obligatory “degree-of-belonging”
attribute degree.

In the formal notation, a weighted non-strict roll-up relationship is expressed by a predicate�(weight) at the
scheme level (e.g., project group �(weight) section) and by super-scripting the � predicate with the respective
weight’s value at the instance level (e.g., G5 �p0.5q S2). Thereby, a strict roll-up relationship e1 � e2 is
equivalent to a weighted roll-up relationship e1 �p1q e2.

DEFINITION IL-WEIGHTED HIERARCHY. A hierarchy H is weighted, if the roll-up relationships of
its members are supplied with weight values, which express the child member’s degree of participation
in that relationship:
WeightedpHq ð @Cj P H,@e1, e2 P YjCj , e1 � e2 : pDw, 0   w ¤ 1 : e1 �pwq e2q.

We introduce a function Weightpe1, e2q, which returns the weight value w of the relationship e1 �pwq e2.
The following property holds for a weighted hierarchy and guarantees its summarizability:

@ej P H :
°

ek,ej�ek
Weightpej , ekq � 1.0.

This property states that for any member value ej , the total weight of all its roll-up relationships sums up
to 1.0, and, therefore, the sum of the weighted aggregates at each hierarchy level equals 100%. Figure 4.11
shows the instance of the non-strict mapping between project group and section from Figure 4.10, turned into
a weighted hierarchy by supplying the edges with weights (left) and resolving the resulting hierarchy into a
non-overlapping tree by splitting multi-parent nodes into multiple single-parent nodes (right).
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Figure 4.11: Normalizing non-strictness via a weighted hierarchy

Fuzzy hierarchies are a special type of non-strict mappings, in which child elements are assigned to parent
elements dynamically using some rules, so that the actual partial order in the hierarchy may vary in time [91].
However, at any single point in time, the mapping is strict and, therefore, summarizable. Consider an example
of a fuzzy category expensiveness in Figure 4.4: price values are assigned to those in expensiveness based
on complex rules, e.g., by analyzing the overall price distribution for the products purchased so far.

In the formal notation, a fuzzy roll-up relationship between a pair of categories is expressed by a predicate
� (e.g., price � expensiveness). The corresponding X -DFM construct is a roll-up edge with a double arrow.
Fuzzy hierarchies for OLAP represent a rather new and immature research field with mostly theoretical
contributions. Existing OLAP systems do not support fuzzy hierarchies and no prototype implementations
are available yet. Therefore, at this stage we restrain ourselves to providing the constructs for their conceptual
modeling with no further discussion of this hierarchy type.

4.4.2 Types of Homogeneous Hierarchies
Homogeneous hierarchies should be tested for symmetry and completeness, as can be seen in the respective
fragment of the hierarchy classification, depicted in Figure 4.12.

A hierarchy is symmetric , or onto, if all its levels are mandatory, i.e., if each non-bottom member has at
least one descendant element at the bottom level. Otherwise, the hierarchy is asymmetric (non-onto).

DEFINITION IL-ONTO HIERARCHY. A hierarchy H is onto, if it disallows childless members in
non-bottom categories: OntopHq ð pHomogeneouspHq ^ @Ci P CH , TypepCiq � KH,@e1 P Ci :
pDe2, T ypepe2q � KH : e2 �� e1qq.

DEFINITION IL-NON-ONTO HIERARCHY. A hierarchy H is non-onto, if it admits childless members
in non-bottom categories: Non-ontopHq ð pHomogeneouspHq ^ DCi P CH , TypepCiq � KH, De1 P
Ci : pEe2, T ypepe2q � KH : e2 �� e1qq.

homogeneous
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heterogeneous

hierarchy
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complete
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closuregrain

Figure 4.12: Categorization of homogeneous hierarchy types



74 Chapter 4 : Dimensions and Hierarchies in the Multidimensional Data Model

ALL

A B building

office

project

A11 A12 A20 A23 B15 B16 B21

P1 P2 P3 P4 P9P5 P6 P7 P8 P10 P13P11 P12

B13

ALL

A B building

office

project

A11 A12 A20 A23 B15 B16 B21

P1 P2 P3 P4 P9P5 P6 P7 P8 P10 P13P11 P12

B13

C

B19A10

(a) Project locations as an onto hierarchy

ALL

A B building

office

project

A11 A12 A20 A23 B15 B16 B21

P1 P2 P3 P4 P9P5 P6 P7 P8 P10 P13P11 P12

B13

ALL

A B building

office

project

A11 A12 A20 A23 B15 B16 B21

P1 P2 P3 P4 P9P5 P6 P7 P8 P10 P13P11 P12

B13

C

B19A10

(b) Project locations as a non-onto hierarchy

Figure 4.13: Examples of a symmetric and an asymmetric hierarchy

The hierarchy project �(part) office �(full) building is symmetric, as shown in Figure 4.13a. A non-onto
variant of this hierarchy can be obtained by including members of office and building categories, which do not
serve as project locations. Figure 4.13b shows an example of the resulting asymmetric hierarchy instance,
with childless non-bottom members highlighted with red color.

Asymmetry in a hierarchy may have two reasons:

	 Asymmetry due to dimension conformance. In a unified multidimensional space, each category
type is represented in a non-redundant fashion and is shared by all dimension categories of that type.
Therefore, the extension of a category type contains the union of all member values from all conform
categories. Each single category, however, is likely to span only a subset of the entire extension. The
hierarchy of project locations, depicted in Figure 4.13b, gives an example of this kind of asymmetry:
the bottom category project makes use of the existing category types office and building. In such a
case, existence of office and/or building members with no child members in project does not lead to
non-summarizable behavior because there are no fact entries associated with those members.

	 Inherent asymmetry is a result of variable granularity in the hierarchical domain itself. A classical
example of inherently asymmetric hierarchies are organisational structures, in which some units are
decomposed into more structural levels than others, e.g., some departments are subdivided into units
and others are not. This type of non-onto hierarchy is non-summarizable as there may exist fact entries
that map to childless non-bottom category members.

Another property of homogeneous hierarchies, orthogonal to symmetry, is that of completeness. The term
“complete hierarchy” is introduced in [104] to denote a hierarchy, in which all child-level members belong to
one member of a parent category and that parent member consists of those child members only. For example,
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the mapping between month and year is complete because all months together form a year. Awareness of the
hierarchy’s completeness can be incorporated into a logical schema in form of integrity constraints, such as
non-extendibility of existing subtrees. By default, hierarchies are assumed to be non-complete.

4.4.3 Types of Heterogeneous Hierarchies
Heterogeneous hierarchies occur whenever members of the same category roll-up along different paths. The
term “frozen” dimension is introduced in [61] to denote minimal homogeneous dimension instances repre-
senting different structures implicitly combined into a heterogeneous dimension. Typically, a heterogeneous
hierarchy is the result of including subtypes that can be represented by a generalization/specialization rela-
tionship. In the context of multidimensional modeling, specialization is an opportunity to specify optional
attributes, categories and even hierarchies and, hence, is an important mechanism for semantically correct
organization of optional hierarchies.

As can be seen in the fragment of the metamodel, depicted in Figure 4.14, heterogeneous hierarchies are
subdivided into non-covering and generalized, based on the criterion of scheme homogeneity.

NON-COVERING HIERARCHY

A non-covering hierarchy is obtained by allowing roll-up relationships of a category to be partial, so that
its members may skip levels. Non-covering hierarchies have a homogeneous hierarchy scheme, i.e., each
category has at most one parent category, however, the members are allowed to skip the parent level and roll
up directly to an upper level. Therefore, in the hierarchy instance, each member has a single parent member,
however, the path length from the bottom category to the root varies from one member to another.

DEFINITION IL-NON-COVERING HIERARCHY. A hierarchy H is non-covering, if it contains an
exclusive partial roll-up relationship to a set of categories, which form a hierarchy: Non-coveringpHq ð
pHeterogeneouspHq ^ DCi, Cj , Ck P CH : pCi �

part pCj |Ckq ^ pCj � Ck _ Cj �
� Ckqq.

An example of a non-covering hierarchy scheme is project �part poffice �full building �full city | cityq �full

Jproject, due to the mutually exclusive partial roll-up relationships of project to office and to city, where office
�� city. A sample instance of this hierarchy is shown in Figure 4.15, revealing the cause of heterogeneity:
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Figure 4.14: Categorization of heterogeneous hierarchy types
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Figure 4.15: Project locations as a non-covering hierarchy

apparently, there exist two types of projects, internal projects located in city C1 have an office assignment,
whereas for external projects only the city is specified.

In the classification of Malinowski and Zimányi [109], non-covering hierarchies are treated as a special
case of generalized hierarchies. In our classification, however, the former is not considered generalized as it
does not make explicit use of a generalization/specialization relationship. As we proceed with the definition
of generalized hierarchies, we will provide further insights on why we distinguish between heterogeneous
hierarchies of type non-covering and generalized.

GENERALIZED HIERARCHY

Conventional multidimensional models do not support the object-oriented feature of inheritance. Instead, all
subclass categories of a heterogeneous class are represented as optional aggregation paths. Disadvantages of
this approach are unavailability of subtypes as subdimensions of their own and, consequently, impossibility
to conveniently navigate to a specific subtype or compare measure values aggregated by subtype.

A generalized hierarchy contains categories that can be represented by a generalization relationship. At
the scheme level, the dimension graph has multiple exclusive paths converging at some categories. Cate-
gories, at which the alternative paths split and join are called splitting and joining levels, respectively. A
dimension category is generalized, if its individual members differ considerably, e.g., have different prop-
erties and/or roll up along different paths. Unlike non-covering hierarchies, where members simply skip
hierarchy levels in the same path, generalization allows to unify instances with different hierarchy schemes.
As an example, let us consider staff hierarchy in purchaser dimension scheme in Figure 4.4. Category staff is
specialized into subclass categories teaching staff and admin. staff, each with its own hierarchy scheme.

In the formalization, we introduce predicates _ and _� to express direct and transitive specialization
relationship, respectively, between a pair of categories or category types: Ci _ Cj states that Ci is a special-
ization of Cj and also that Cj is a generalization of Ci. Specialization of category type into multiple subclass
category types is expressed as a set of multiple related specializations: tCi, . . . , Cnu _ Cj . Technically,
specialization relationship is a degeneration of partial roll-up (a subset of the superclass’ members belongs to
a subclass) to a one-to-one cardinality. Similarly, multiple related disjoint specializations correspond to a set
of exclusive partial roll-up relationships.

DEFINITION IL-GENERALIZED HIERARCHY. A hierarchy is generalized, if it includes categories
with a generalization/specialization relationship between them:
GeneralizedpHq ð pHeterogeneouspHq ^ DpCi, Cjq P CH : Ci _ Cjq.
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Figure 4.16: A non-covering hierarchy transformed into a generalized hierarchy

With the above definition, it becomes evident that non-covering hierarchies do not represent a subclass of
generalized ones. However, the former type can be reshaped into the latter one by arranging diverse roll-up
behaviors into subclasses. The sample non-covering hierarchy of project locations, depicted in Figure 4.15,
can be turned into a generalized one by specializing project category into subtypes internal and external,
with the resulting instance shown in Figure 4.16 (subtype nodes are filled with grey color). The resulting
generalized hierarchy consists of homogeneous subtrees of its specializations. Whether non-covering hierar-
chies should be transformed into generalized or not depends on the expected query patterns: a homogeneous
scheme of a non-covering hierarchy is useful for treating all members of a generalized category as the same
class, however, the hierarchy is non-summarizable; a heterogeneous scheme of a generalized hierarchy sep-
arates different behaviors within a category into subtype hierarchies, thus treating them as different classes
and yielding a summarizable mapping. Normalization of non-covering mappings is presented in Chapter 7.

X -DFM provides two alternatives for modeling specialization relationships (see Table 3.4): i) a set of
related partial roll-up edges enables modeling of splitting levels, and ii) a generalization/specialization edge
(or edge set) and abstract categories can be used to model both splitting and joining levels and abstract
superclass category types, respectively. In Figure 4.4, a specialization edge set was used to model the sets of
subtype relationships of the categories purchaser and staff.

The generalization/specialization construct in X -DFM may appear somewhat counter-intuitive as it does
not reveal the direction of the roll-up relationship. Naturally, a superclass represents a higher hierarchy
level with respect to its subclasses, as shown in Figure 4.17 at the example of the inheritance hierarchies
in purchaser dimension. Two alternatives of subtyping the generalized category are presented: the left-side
tree is a structural hierarchy (unit vs. staff) and the right-hand tree is a functional one (admin. purchaser
vs. teaching purchaser). It is not always obvious how the inheritance relationships in a dimension should be
modeled. In order to be useful, the inheritance hierarchy should reflect the desired navigation structure for the
analysis, i.e., provide meaningful aggregation levels. Multiple inheritance hierarchies in the same dimension
may be supported similarly to multiple alternative hierarchies.

Unlike in inheritance hierarchies, superclass relationships in roll-up hierarchies appear “upside-down”,
i.e., with a generalized category below its specializations, as in purchaser hierarchy (Figure 4.4). This is due
to the fact that generalized categories in dimensions are used to “homogenize” diverse classes into a single
bottom category so that the latter can be used as a dimension in a fact scheme. Considering bi-directionality
(i.e., one-to-one relationship) of generalization, we suggest that the respective X -DFM construct should be
resolved into roll-up edges and propose the following approach to modeling generalized hierarchies:



78 Chapter 4 : Dimensions and Hierarchies in the Multidimensional Data Model

purchaser

unit staff

admin.
staff

teaching 
staff

admin.
unit

teaching 
unit

department facultychair

admin. 
purchaser

purchaser

admin.
staff

teaching 
staff

admin.
unit

teaching 
unit

department facultychair

teaching 
purchaser

Figure 4.17: Examples of inheritance hierarchies in purchaser dimension
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Figure 4.18: An inheritance hierarchy with local root categories added

1. A “pure” inheritance hierarchy, i.e., without roll-up relationships, is constructed via a stepwise decom-
position of the generalized category into subclasses according to the sets of mutual properties. Multiple
inheritance hierarchies can be specified for the same dimension, as was shown in Figure 4.17.

2. Each subclass category type C is assembled into a hierarchy of its own by adding an abstract local root
nodeJC on top. Figure 4.18 shows the resulting graph for the left-hand side inheritance hierarchy from
Figure 4.17. Shared-target style specialization relationships are replaced by a distinct specialization
edge for each subclass to improve the visibility of the scheme. The most general superclass category
on top of the hierarchy is augmented by the abstract root node.

3.

4. Proceeding top-down, each non-abstract category type C is augmented with aggregation hierarchies
valid for that category, placing the hierarchy scheme between C and its local root JC . In the resulting
scheme, subclass-specific hierarchies appear connected to the respective subclass categories, whereas
common hierarchies are attached to the respective generalized category. Figure 4.19 shows the results
of augmenting the dimension scheme from Figure 4.18 with aggregation paths. At the highest gen-
eralization level purchaser, the members are aggregable by location. Superclass category unit has no
aggregation paths of its own, whereas admin. staff and teaching staff have their specific hierarchies as
well as common ones, associated with their generalization category staff.

5. The hierarchy scheme obtained so far has multiple categories at the bottom. However, to be usable as
a dimension, the scheme must originate at a single bottom category. Actually, the scheme in Figure
4.19 already contains a category qualifying as the bottom level, namely purchaser. This category has
no incoming roll-up relationships and contains the union of values of all purchaser subtypes, which
corresponds to the grain of purchaser dimension. The bottom category is made evident in the scheme
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Figure 4.20: A generalized hierarchy scheme with a common bottom level

by pushing the former below all other categories as shown in Figure 4.20. Besides, specialization of
purchaser into staff and unit is replaced by a set of exclusive partial roll-up relationships with one-
to-one cardinality. This replacement is fully justified as it corresponds to a complete non-overlapping
specialization (i.e., each member of purchaser category is of type either staff or unit).

6. The representation of the generalized scheme obtained so far is further improved by “pushing down”
specializations and replacing them by related partial roll-up sets in the same manner as it was done for
the bottom category in the previous step. Figure 4.21 shows the final state of the generalized hierarchy
scheme, in which each generalized category is represented as a child category of its specializations.

SPECIALIZATION HIERARCHY

In the example of purchaser dimension all specializations are complete (each member of a generalized cate-
gory belongs to at least one subtype) and disjoint (each member of a generalized category belongs to at most
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Figure 4.21: A completed generalized hierarchy scheme

one subtype). These two properties ensure correct summarization when aggregating measures at different ab-
straction levels, e.g., the total expenditures of all staff members are the sum of the expenditures of all admin.
staff and all teaching staff members. In some scenarios, however, non-summarizable generalized hierarchies
occur. To investigate the causes of non-summarizability, we propose to distinguish between specialization
and generalization hierarchies. Even though these two relationships represent two sides of the same phe-
nomenon, which is inheritance, or abstraction, there exist differences as to which of the two relationships
lays the foundation of a given generalized hierarchy scheme:

	 A generalization hierarchy results from the necessity of abstracting multiple categories into one in order
to treat their members as the same dimension of a fact scheme. Dimension purchaser is an example of
a generalization hierarchy, in which the bottom level purchaser is an artificially constructed superclass,
which unites the members of unit and staff categories. Since the actual dimensional data originates from
multiple category types and the superclass is superimposed as a union of those categories’ instances,
the resulting hierarchy guarantees correct summarization.

	 A specialization hierarchy emerges when a category type, originally treated as a single class, is divided
into subclasses to enable subclass-specific characteristics and/or aggregation levels. An example of a
specialization hierarchy is that of staff category, which is subdivided into teaching staff and admin. staff
to aggregate the respective along the hierarchy scheme, specific to their class. Since the actual actual
dimensional data originates from a single superclass and multiple subclasses are introduced upon it as
partial roll-up targets, the resulting specialization is not guaranteed to be complete or disjoint.

Subdivision into generalization and specialization hierarchy types is a purely semantic one as it considers
the origin of abstraction in a dimension. This property might be invisible in the resulting generalized scheme
or manifest itself in form of an incomplete or overlapping specialization.

DEFINITION IL-COMPLETE SPECIALIZATION. A set of direct specialization relationships of a gen-
eralized category Ci is complete, if each of Ci’s members belongs to at least one subclass:
CompleteSpecializationpCiq ð @em P Ci : pDCj , Den P Cj : Cj _ Ci ^ en _ emq.
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Figure 4.22: Staff hierarchy with incomplete specialization

DEFINITION IL-INCOMPLETE SPECIALIZATION. A set of direct specialization relationships of a
generalized category Ci is incomplete, if Ci contains members not belonging to any subclass:
IncompleteSpecializationpCiq ð Dem P Ci : p@Cj , Cj _ Ci : pEen P Cj : em _ enqq.

As an example of an incomplete specialization, consider staff hierarchy. In the context of fact scheme
PURCHASE, depicted in Figure 4.4, subdivision into admin. staff and teaching staff is sufficient as only those
staff categories may function as purchasers. In the university-wide staff hierarchy, however, there may exist
further staff types. Figure 4.22 shows a sample instance of the resulting incomplete specialization hierarchy,
in which the bottom level staff contains members (marked with red background color) covered by neither
admin. staff nor teaching staff.

Incompleteness of a specialization can be expressed in X -DFM in a straightforward fashion by augment-
ing the set of partial roll-up edges of the specialization relationship with an additional edge, which shows
the aggregation path for those members not involved in the specialization. A more elegant option, however,
would be to normalize the specialization into a complete one by either adding the missing subclasses or using
just a single additional subclass (e.g., others) to cover those members not participating in the specialization.
Figure 4.23 shows two variants of modeling incomplete specialization at the example of staff dimension: the
scheme in (a) preserves the original hierarchy by adding the respective partial roll-up edge, whereas in (b)
the incompleteness is normalized by adding a missing specialization class.
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Figure 4.23: Handling incomplete specialization hierarchies in X -DFM
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Figure 4.24: Person hierarchy with overlapping specialization

Another property of specialization is disjointness, which guarantees that each member of a generalized
category belongs to at most one of its direct subclasses, yielding non-overlapping subclass instances.

DEFINITION IL-DISJOINT SPECIALIZATION. A set of direct specialization relationships of a gener-
alized category Ci is disjoint, if each of Ci’s members belongs to at most one subclass:
DisjointSpecializationpCiq ð @Cj , Cj _ Ci,@Ck, Ck _ Ci : pEem P Ci, Een P Cj , Eep P Ck : en _
em ^ ep _ emq.

DEFINITION IL-OVERLAPPING SPECIALIZATION. A set of direct specialization relationships of a
generalized category Ci is overlapping, if Ci contains members belonging to more that one subclass:
OverlappingSpecializationpCiq ð DCj , Cj _ Ci, DCk, Ck _ Ci, Dem P Ci, Den P Cj , Dep P Ck :
pem _ en ^ em _ epq.

As an example of an overlapping, or non-exclusive, specialization, let us consider modeling person di-
mension in the university context. Persons can be subdivided into two major categories, namely student and
staff. While most persons fall into one of the two categories, there may exist cases of students employed as
staff members. Figure 4.24 shows the scheme of the resulting generalized hierarchy. The most general class
person at the bottom rolls up along age and origin hierarchies and specializes itself into staff and student.
Due to its non-exclusive paths, overlapping specialization may not be replaced by a set of exclusive partial
roll-ups. Therefore, it is shown using the overlapping specialization edge set construct in X -DFM.

To restore summarizability, an overlapping specialization must be transformed into a disjoint one. Various
strategies are conceivable depending on the analysis requirements. For example, if the student status is more
significant for the members belonging to both student and staff, specialization of those members into staff
may simply be removed from the hierarchy instance. In many cases, however, it is desirable to keep the
original relationships. A normalization technique for overlapping specialization is proposed in Section 7.2.2.

A peculiar type of generalized hierarchies is a mixed, or ragged, hierarchy, marked as non-summarizable
in the hierarchy categorization shown in Figure 4.14. Mixed granularity occurs due to allowing the same
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Figure 4.25: Revealing mixed grain by eliminating redundant scheme fragments

member values to represent the bottom grain, on the one hand, and serve as parents for values of other cate-
gories, on the other hand. As a result, the bottom level is a generalized category, whose direct specializations
have hierarchical relationships with one another.

DEFINITION IL-MIXED-GRAIN HIERARCHY. A generalized category Ci is mixed, if there exists a
direct or transitive roll-up relationship between Ci’s direct specializations:
MixedpCiq ð DCj , Cj _ Ci, DCk, Ck _ Ci : pCj � Ck _ Cj �

� Ckq.

Mixed grain phenomenon can be observed in the teaching unit hierarchy in purchaser dimension depicted
in Figure 4.21: bottom category teaching unit consists of subtypes chair, department, and faculty, whereas
chair rolls-up to department and department rolls-up to faculty, i.e., the three subtypes build an aggregation
hierarchy of their own. The double role (i.e., bottom and non-bottom level) of categories department and
faculty in purchaser is to be understood as follows: departments and faculties may act as purchasers in their
right but also consist of small units, which also act as purchasers in their own right. In the dimension scheme,
the mixed grain pattern can be revealed by merging conform categories into shared category types, as shown
in Figure 4.25 at the example of the generalized hierarchy teaching unit: (a) is the original scheme fragment
in purchaser dimension and (b) is its equivalent in a unified multidimensional space, i.e., with each set of
conform categories represented as one shared category type.

Aggregating measures along a mixed-grain hierarchy is not trivial. As an example, consider a simple
query “What is the total amount spent on purchases by faculty X?”. This formulation appears ambiguous as
it can be interpreted in at least three ways:

1. the total amount spent by all subdivisions of faculty X,
2. the total amount spent by faculty X itself, i.e., not including the subdivisions,
3. the total amount spent by faculty X itself and all its subdivisions.

Naturally, all three variants represent valid queries and, therefore, are expected to be supported by the
system. The dimension scheme in Figure 4.21, however, does not provide adequate aggregation levels for
supporting the last query, i.e., for summing up the expenditures of the faculty itself with those of the faculty’s
departments and chairs. In Section 7.2.2 we describe a transformation technique for re-modeling mixed grain
into a summarizable generalization hierarchy by means of abstraction levels.

In Chapter 7 we propose a relational mapping of generalized schemes and demonstrate how those schemes
can be represented in the navigation hierarchy of frontend tools in Chapter 8.
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4.5 Classification of Multiple Hierarchies
Multiple hierarchies represent alternative ways of aggregating within a dimension, expressed as diverging
non-exclusive roll-up paths of the same category. Figure 4.26 shows the part of the metamodel referring to
the types of multiple hierarchies.

A classical example of multiple hierarchies is time dimension, in which date or time values may be
grouped into weekdays, weeks, months, etc. Multiple hierarchies in time dimension of fact scheme PUR-
CHASE are shown in Figure 4.30a. Multiple hierarchies are subdivided into alternative and parallel accord-
ing to whether their constituent hierarchies are based on the same or on different analysis criteria, respectively.
Analysis criterion refers to the underlying hierarchical property such as location, age, origin, etc.

alternativeparallel patterned

multiple hierarchies
converging

criterion

structure

independent

sharinghierarchy

Figure 4.26: Categorization of multiple hierarchies

PARALLEL HIERARCHIES

Parallel hierarchies differ from the alternative ones by accounting for different analysis criteria. A pair of
roll-up relationships originating at the same category are parallel to one another, if their target categories have
no interrelation whatsoever. Figure 4.30c shows parallel hierarchies in time dimension: date values roll up to
weekday, on the one hand, and to weeks or months, on the other hand. Since the values of weekday are in no
way associated with those of weeks or months, both hierarchies can be explored in parallel.

Let us investigate the properties of parallel hierarchies by considering two sample hierarchy instances,
shown in Figure 4.27: (a) groups date values by weekday and (b) groups the same values by weeks and,
subsequently, by years. When drilling down to PURCHASE facts along the time axis, categories of both
hierarchies may be combined into a new aggregation hierarchy, as shown in Figure 4.28: the hierarchy in (a)
is obtained by decomposing the measure’s total value by weekday, weeks, and, finally, by date, whereas the
hierarchy in (b) decomposes the data first by weeks and then by weekday and date.

Apparently, parallel hierarchies in a dimension are similar to various dimensions in a fact scheme: both
can be combined in any order and at any grain for aggregating the facts. The only validity constraint upon the
resulting decomposition hierarchy in both cases is that the categories within each dimension should be added
in the increasing order of their grain. For instance, category years could be added to decomposition hierarchy
shown in Figure 4.28b only prior to its child category weeks.

DEPENDENT HIERARCHIES

Multiple hierarchies are converging, or dependent, if their paths join at some upper level. Hierarchies with
no shared categories except the bottom one are called independent. Convergence occurs in both alternative
and parallel types of multiple hierarchies, however, its semantics differs between these two types.

In case of alternative hierarchies, the convergence is true, i.e., both hierarchies yield the same aggregate
values at any of their shared levels. As an example, consider the alternative hierarchy paths i) date� weeks�
years and ii) date�months� quarters� semi-annuals� years in time dimension. Both paths truly converge
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Figure 4.27: Sample instances of parallel hierarchies
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(b) Aggregate decomposition by weeks, weekday, date

Figure 4.28: Examples of combining parallel hierarchies into new aggregation hierarchies

in years as both produce the same aggregate values when rolled up to years. In other words, the total measure
value computed for any years member can be decomposed into weeks subtotals or, alternatively, into months
subtotals.

In parallel hierarchies, the convergence is fictitious as it corresponds to a mere category type sharing
in a unified space. Due to differing analysis criteria, a shared category type represents different categories,
expressed as different roles assigned to each of the incoming roll-up relationships. As an example, let us
suppose that project dimension in fact scheme PURCHASE has two parallel hierarchies: i) a supervision
hierarchy project �(full) manager �(full) city �(full) country, in which the last two categories refer to the city
and the country of the manager’s origin, and ii) a location hierarchy project �(part) office �(full) city �(full)

country, in which the same two categories refer to the project location. Figure 4.29 shows sample instances
of the above hierarchies revealing the different roles of city and country categories in each hierarchy. As
a result, the respective instances of those categories may contain different member sets and even the same
member value may span a different subset of child elements. Therefore, parallel hierarchies produce different
aggregate values at the levels of their convergence. Due to their semantic non-relatedness, shared category
types may be used as different grouping criteria in a drill-down hierarchy, e.g., the total PURCHASE amount
can be decomposed by city as a project location and, subsequently, by the manager’s home city, or vice versa.

ALTERNATIVE HIERARCHIES

Multiple alternative hierarchies are non-exclusive roll-up paths originating from the same category and ac-
counting for the same analysis criterion. The paths are non-exclusive in a sense that the same child entity
participates in each of the alternative paths. However, when it comes to aggregating the data, it would be
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Figure 4.29: Parallel hierarchies with fictitious convergence in city and country

semantically incorrect to combine categories from the alternative paths as grouping criteria. The reason for
this incompatibility is an implied many-to-many relationship between the bottom categories of the alternative
paths. Back to the example of time dimension, Figure 4.30b shows two major alternative hierarchies originat-
ing as roll-up relationships of date to weeks and to months, respectively. Since there exists a many-to-many
mapping between those two target categories (a month consists of multiple weeks and a week may be split
between two months), the resulting paths are incompatible.

Patterned hierarchies are a special case of multiple alternatives in which a certain regularity, or pattern,
reoccurs in the roll-up behavior of its members. Temporal hierarchies are a classical example of containing a
structural pattern. Treating time as an ordinary dimension would yield a simplified scheme shown in Figure
3.2. However, recognition of a certain roll-up pattern, such as that each year consists of the 1st and the
2nd semi-annual, of the same 4 quarters, the same 12 months, and so on, makes it possible to generate
further valid hierarchies by explicitly representing the type of the patterned category as its parent category.
For instance, members of quarters roll-up to quarter (“Quarter 1 1997” and “Quarter 1 1998” are child
elements of “Quarter 1”), as illustrated in Figure 4.31. The enriched dimension scheme of time supports
additional aggregation paths, as can be seen in Figure 4.30a.

Jones and Song [74] proposed a comprehensive framework for identifying frequently occurring dimen-
sional design patterns, such as temporal, action, location, object, stakeholder, qualifier, and combination.
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In this chapter, we focused on extending the scope of the conceptual multidimensional model with re-
spect to dimension and hierarchy modeling. The goal of the extensions is to cover the kinds of hierarchical
behaviors not supported by conventional models. At this stage, we only provided the formalization of various
dimension and hierarchy types as well as the guidelines for their conceptual design with no consideration of
implementation issues. Methods for enforcing summarizability and implementing the proposed framework
in relational OLAP systems are presented in Chapter 7.





Chapter 5

Measures, Facts, and Galaxies in the
Multidimensional Data Model

T HIS CHAPTER CARRIES ON the extension of the multidimensional data model by handling com-
plexity in OLAP facts and relationships. Building upon the concept of the unified multidimensional
space, we provide classifications of fact and measure types, multi-fact schemes, and dimension

sharing patterns. Consideration of dynamic multidimensional properties, such as drilling across, deriving
new measures, and rearranging cube schemes raises the phenomenon of fading duality of fact and dimension
roles. A case study from the field of Surgical Workflow Analysis is used to motivate the proposed categoriza-
tion and to demonstrate the benefits of the obtained extended model.
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5.1 Surgical Workflow Analysis as a Motivating Case Study
Healthware domain is a rather known supplier of data warehousing challenges as testified by a series of re-
search works: Pedersen et al. [145] used patient diagnosis data as an application scenario for their extended
multidimensional data model; Golfarelli et al. [47] demonstrated the methodology of obtaining multidimen-
sional schemes from existing E/R schemes at the example of hospital admission data; Song et al. [166]
use patient diagnosing and billing case study to demonstrate various strategies of handling many-to-many
relationships between facts and dimensions.

Concepts and proposals presented in this work have been inspired by practical challenges encountered
during the design phase of the ongoing project on developing a BI platform for the domain of Surgical Work-
flow Analysis, henceforth abbreviated as SWA. The project is hosted by the Innovation Center Computer
Assisted Surgery (ICCAS)1 and involves domestic and international collaborators from multiple scientific
disciplines, such as medicine, medical engineering, databases and data warehousing, web technologies, scien-
tific visualization, etc. Major directions of their projects are surgical workflow formalization [129], semantics
[13], analysis [130], standardization [12], and visualization [128].

The medical informatics term Surgical Workflows refers to a methodology for intelligent acquisition and
consolidation of process descriptions from surgical interventions for the purpose of their clinical and technical
analysis [129]. This type of analysis is crucial for the development of surgical assist systems for the operating
room of the future. Besides, it provides a framework for evaluating innovative devices and surgery strategies.
Process execution data is obtained manually and semi-automatically by monitoring and recording the course
of a surgical intervention. Manual acquisition is carried out either in the real-time mode, i.e., by observing
the surgical intervention live in the operating room, or retrospectively, typically, from a video recording.

Surgical processes clearly fall into a category of knowledge intensive processes: even though each surgery
type has a pre-defined execution scheme, individual executions are highly diverse because the actual course of
each intervention is largely determined by the expertise of the surgeon expressed in terms of his/her actions,
reactions, instructions to other participants, etc. Therefore, one of the long-term goals of SWA is extraction
and interpretation of surgical “know-how”. In order to achieve this goal, a thorough understanding of the
process context needs to be gained. This is done by capturing the relevant aspects of the domain in a formal
model.

Challenges of SWA as a non-conventional data warehousing application have been tackled in a series
of our own works. In [114] we showed how the requirement to warehouse the original process execution
data, i.e., without pre-aggregation to a set of statically defined measures of analysis, results in the necessity
to extend the foundations of the multidimensional data model. Implications of propagating the extensions
introduced at the conceptual level to the backend and the presentation layer of the data warehouse system are
presented in [115]. The overall process of designing and implementing a data warehouse for accumulating
surgical workflow data is described in [127]. In [120] we used surgical workflow modeling as an example
of handling complex data in the extended multidimensional model. Finally, a book chapter on conceptual
data warehouse design for Business Process Intelligence [113] summarizes and extends previously published
findings putting them into a comprehensive methodological framework.

5.1.1 Requirements of Surgical Workflow Analysis
Surgeons, medical researchers, and engineers are interested in obtaining a well-defined formal recording
scheme of a surgical process that would lay a foundation for a systematic accumulation of the obtained
process descriptions in a centralized data warehouse to enable its comprehensive analysis and exploration.

1Innovation Center Computer Assisted Surgery (ICCAS) is located in the Hospital at the University of Leipzig, Leipzig, Germany.
Website: http://www.iccas.de

http://www.iccas.de
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Whatever abstraction approach is adopted, there is a need for an unambiguous description of concepts that
characterize a surgical process in a way adequate for modeling a wide range of workflow types and different
surgical disciplines.

Applications of SWA are manifold: support for the preoperative planning by retrieving similar precedent
cases, clinical documentation, postoperative exploration of surgical data, formalization of the surgical know-
how, analysis of the optimization potential with respect to the instruments and systems involved, evaluation
of the ergonomic conditions, verification of medical hypotheses, gaining input for designing surgical assist
systems and workflow automation.

Obviously, such high diversity of potential applications results in the diversity of expected query types.
We distinguish the following major categories of analytical queries:

1. Quantitative queries are concerned with performance indicators and other measurements occurrences,
frequencies, duration, or availability of various events or objects.

2. Qualitative queries aim at discovering relationships, patterns, trends, and other kind of additional
knowledge from the data.

3. Ergonomic queries evaluate the design of the workspace, ergonomic limitations, positions and direc-
tions of involved participants and objects.

4. Cognitive queries attempt to assess such “fuzzy” issues as usefulness, relevance, satisfaction, etc.

Considering the expected kinds of queries, the multidimensional database technology seems a promising
solution as it allows analysts to view the data from different perspectives, to define various metrics, and
to aggregate the latter to a desired level of detail. A simple example should convey the idea of benefiting
from the OLAP approach in SWA context. Figure 5.1 shows a fragment of a 3-dimensional data cube, storing
instrument usage statistics (number of instruments as the cube’s measure) determined by dimensions Surgeon,
Treated Structure, and Date. Besides the original cube storing the data at the finest granularity, Figure 5.1
also displays the results of two roll-up operations, which summarize the measure across all treated structures
and, subsequently, across all dates, thus providing different abstractions of instrument usage numbers.
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aggregated views (right)
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Figure 5.2: Vertical (de-)composition of a surgical process

5.1.2 Structuring Surgical Workflows
Surgical workflow is an abstraction of a surgical intervention obtained by capturing the characteristics of
the original process that are relevant for the analysis. A common approach to structuring a process is to
decompose it vertically, i.e., along the timeline, into logical units, such as subprocesses, stages, and work
steps. Figure 5.2 shows a possible vertical decomposition scheme of a surgery: a surgical process consists
of phases, which, in their turn, consist of activities, the latter being a series of work steps, each performing
a certain action. Technically, an action may be executed by multiple participants and/or using multiple in-
struments. To account for this observation, we refine the granularity to the instrument usage level, denoted
movement. Each movement refers to a part of the work step performed by a single actuator (i.e., a body part
of a participant) on a single treated structure of a patient using a single surgical instrument. In the upward
direction, surgical instances can be grouped into classes by diagnosis or therapy, which, in their turn, are
associated with particular surgical disciplines. Discipline and diagnosis are the determining factors in the
classification of surgery types. The above decomposition is called logical, or task-based, as it relies on the
reasoning of a human expert in recognizing process elements.

An alternative decomposition practice is a state-based one, aimed at automated data acquisition. This
approach uses the concepts system, state, and event to capture the state evolution of involved systems and the
events that trigger state transitions. The concept of a system is very generic and may refer to a participant or
his/her body part, a patient or a treated structure, an instrument or a device, etc. For instance, if surgeon’s eyes
are considered a system, then their gaze direction can be then modeled as states, while surgeon’s directives
to other participants may be captured as events.

The two data acquisition practices can be used as complementary ones to benefit from both the human
and the systemic perspective. We introduce a superordinate concept of component, which is synonymous to
the term flow object in the Business Process Modeling Notation [137], to enable uniform treatment of logical
(activities and work steps) and technical (states and events) units of a process with regard to their common
properties. Thereby, the analyst is able to retrieve a unified timeline for the whole course of a surgery.

In the vertical decomposition, we identify two major granularity levels of the acquired data:

	 Workflow level refers to the characteristics of a surgical intervention as a whole, such as patient, loca-
tion, date, and surgeon. This data is normally imported from clinical information systems. Workflow-
level data is useful for high-level analysis, such as hospital utilisation or patient history.

	 Intra-workflow level refers to the properties of process components (events, activities), such as instru-
ments used or structures treated. This fine-grained data is acquired from running surgical interventions
and is used for analyzing workflow execution within as well as across surgery instances.
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Figure 5.3: Recording scheme of a surgical process model as a UML class diagram
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Figure 5.3 presents the initial approximation of the surgical workflow recording scheme, originally pro-
posed by the collaborators from the ICCAS in [129] and refined in our joined follow-up works [114, 115].
Notice how the graphical presentation reveals the two-level structure of the recording scheme.
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Figure 5.4 shows a revised model of the same application, however, expressed in the E/R (Entity/Relation-
ship) modeling notation. This E/R diagram represents a more recent model that evolved as a result of multiple
refinements. For example, this model distinguishes between a surgery itself and a surgical workflow as its ab-
straction, thus accounting for the possibility to produce multiple recordings of the same instance. Conceptual
models shown in Figures 5.3 and 5.4 will be refined in the upcoming sections.

5.2 Categorization of Facts and Measures
In this section we undertake a categorization of fact and measure types similarly to the categorization of
dimension and hierarchy types presented in the previous chapter. Multidimensional schemes obtained in the
process of designing a data warehouse for accumulating surgical workflow data provide illustrative exam-
ples for concepts and constructs defined throughout this chapter. As an introductory example, consider the
multidimensional fragment from the surgical workflow scenario depicted in Figure 5.5. This scheme was
constructed by invoking the LL layer of X -DFM under the constraint of the unified multidimensional space.
Therefore, sets of conform categories are shown as shared category types. For instance, start time and end
time dimension schemes appear as a single scheme, apart from the top categories as those are exempted from
sharing by definition.

Figure 5.5 contains a pair of interrelated fact schemes. Fact scheme SURGERY captures surgical inter-
ventions as fact entries with no measures and with a degenerated dimension SurgeryID as the fact identifier.
A many-to-many relationship between SURGERY and its dimensions discipline, diagnosis, and therapy is
extracted into a degenerate fact SURGERY-DISCIPLINE. Some categories have optional attributes, such as
degree of diagnosis. Dimensions in SURGERY contain two examples of derived categories: age is de-
rived from birth year and is used as an additional aggregation level in dimension patient, whereas delay
is computed from the bottom categories start and end (defined as end � start) and thus represents a derived
dimension of SURGERY.

The remainder of this chapter is dedicated to capturing advanced semantics related to various types of fact
schemes, measure aggregability, types of multi-fact schemes and dimension sharing patterns. The presented
formalization applies to the LL model as it premises the highest level of semantics.
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Figure 5.6 gives an overview of fact types in the multidimensional model in form of a metamodel, with
fact types in the left-hand side and multi-fact types in the right-hand side of the categorization. The meta-
model uses the same notation as in that of dimension and hierarchy types (see Figure 4.7) presented in the
previous chapter. With the LL definition of a fact presented in Section 3.4.2, we do not only distinguish
between the terms “fact” and “measure”, but we can also classify fact schemes into measurable and non-
measurable according to the size of the fact’s measure set. Measurable fact schemes and measure types are
classified in Section 5.2.1, followed by the consideration of non-measurable fact schemes in Section 5.2.2.
Multi-fact schemes and inter-factual relationships are inspected in Section 5.3.

5.2.1 Measurable Facts and Measure Types
Classical designation of facts is to contain relevant measures for analysis some business process. Normally,
facts are modeled by specifying the measures of interest and the context (dimensions) for their analysis.
Consequently, facts schemes are expected to have a non-empty set of measures.

DEFINITION LL-MEASURABLE FACT. A fact scheme F is measurable, if it has a non-empty set of
measures: MeasurablepFq ð pMF � Hq.

Recall that according to the UL and the IL definitions of a fact each measure is mapped to a fact of its own,
whereas a set of facts (measures) with identical dimensional characteristics form a fact cluster. Obviously,
in the LL model, fact cluster is a just subtype of a measurable fact (see Figure 5.6), in which the measure set
contains more than one measure.

DEFINITION LL-FACT CLUSTER. A fact scheme F represents a fact cluster, if its set of measures has
more that one element: ClusterpFq ð |MF | ¡ 1.

In the introductory Section 2.2.1 we introduced three fundamental types of facts according to Kimball
[81], namely i) transactional, ii) periodic snapshots, and ii) accumulating snapshots. Apparently, this classi-
fication adopts the UL definition of a fact since the fact type is identified through its measure type. The enu-
merated fact characteristics actually describe the aggregation semantics of single measure attributes within
that fact. According to our LL definition of a measurable fact, however, a fact scheme may contain multiple
measures with different aggregation semantics. Therefore, Kimball’s classification of fact types should be
re-declared as that of measure types in our framework. Figure 5.7 shows a metamodel of our proposed cate-
gorization of measure types, with meta-classes as nodes, specialization relationships between them as edges,
and the underlying discrimination criteria as edge labels.
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In the first place, measures are subdivided into primary and derived according to the way their values are
acquired: the values of a derived measure attribute are computed from the values of another measure or a set
measures according to some derivation formula.

Another discrimination criterion, orthogonal to the measure’s acquisition strategy, is aggregability. The
aggregation semantics of a measure in a fact scheme is formalized using the concept of an aggregation
statement, as proposed in [47]:

DEFINITION LL-AGGREGATION STATEMENT. An aggregation statement is a triple GpM,D,Ωq,
where M P MF is a measure and D P DF is a dimension in F and Ω P
tSUM(), AVG(), COUNT(), MIN(), MAX(), AND(), OR(), RANK(), EXISTS(), . . .u is an aggregate func-
tion.

A complete set of aggregation statements for all measures in fact scheme F is denoted G F . An ag-
gregation statement GpM,D,Ωq P G F declares that measure M can be aggregated along dimension D by
applying aggregation operator Ω. The complete set of supported aggregate functions is system-dependent,
however, it is sufficient to consider the standard set of distributive and algebraic functions Aggr(standard) �
tSUM(), AVG(), COUNT(), MIN(), MAX()u to determine the aggregability of a measure, since the latter is
given by the existence of at least one aggregation statement for the respective measure.

DEFINITION LL-AGGREGABILITY. A measure M is aggregable, if it has a non-empty set of aggre-
gation statements: AggregablepMq ð pDD P DF , DΩ P Aggr(standard) : DGpM,D,Ωq P G F q.
A measureM is aggregable along a dimensionD, if there exists at least one aggregation statement with
respect to M and D: AggregablepM,Dq ð pDΩ P Aggr(standard) : DGpM,D,Ωq P G F q.

DEFINITION LL-NON-AGGREGABILITY. A measure M is non-aggregable, if its set of aggregation
statements is empty: Non-aggregablepMq ð p@D P DF ,@Ω P Aggr(standard) : EGpM,D,Ωq P G F q.
A measure M is non-aggregable along a dimension D, if there exists no aggregation statement with
respect to M and D: Non-aggregablepM,Dq ð p@Ω P Aggr(standard) : EGpM,D,Ωq P G F q.

Non-aggregable measures are rather unusual, even paradox, as they may not be analyzed using classical
OLAP operators. Such measures are expected to represent some non-numeric characteristics in a fact, which
are analyzed with no aggregation or using other approaches than OLAP (e.g., data mining algorithms).
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Aggregable measures are further classified according to their additivity, defined as applicability of the
SUM() operator, i.e., by the ability to total the measure’s values. Thereby, measures are subtyped into fully
additive, semi-additive, and non-additive.

DEFINITION LL-FULL ADDITIVITY. A measureMj is additive, if it is aggregable using SUM() along
any dimension: AdditivepMjq ð p@Di P DF : DGpMj ,Di, SUM()q P G F q.

DEFINITION LL-SEMI-ADDITIVITY. A measureMj is semi-additive, if it is aggregable using SUM()
along a subset, but no the whole set, of dimensions in the fact scheme:
Semi-additivepMjq ð pDDi,Dk P DF : DGpMj ,Di, SUM()q P G F ^ EGpMj ,Dk, SUM()q P G F q.

DEFINITION LL-NON-ADDITIVITY. A measure Mj is non-additive, if it is non-aggregable using
SUM(): Non-additivepMjq ð p@Di P DF : EGpMj ,Di, SUM()q P G F q.

Another additivity-based classification of measures, also referred to as “summary properties”, is known
from the area of statistical databases. With respect to their summation, these properties are subtyped into
flow, stock, and value-per-unit, elaborated in [98]. There is a strong correspondence between the above
classification and Kimball’s fundamental fact types:

1. A property of type flow records a change or a cumulative effect of a measure over a period of time.
Most measures are of this type, which is fully additive. Kimball’s notion of transactional facts falls
into this category.

2. A property of type stock records a state or a level of a measure at specific points in time and, therefore,
its values can be thought of as snapshots of the current state. Semi-additive behavior is typical for
measures of type stock as their values are not summable with respect to temporal characteristics, but
are additive along any other dimensions. Kimball subdivides snapshot measures into periodic and
accumulating:

(a) Periodic snapshots represent regular (e.g., daily or monthly) measurements of status.
(b) Accumulating snapshots already include the accumulation of the measurement with respect to

some starting point in time.

3. A property of type value-per-unit records the value of a measure at at specific points in time in relation
to some unit (e.g., “interest rate per repayment”). Measures of this type are non-additive as their values
may be considered only in the context of their unit.

As an illustrative example of various measure types, let us consider a sample fact scheme in Figure
5.8. Both fact schemes capture hospitalization records, however, as different types of measurements. Fact
scheme HOSPITALIZATION in Figure 5.8a stores each new hospitalization case as a fact record with a measure
bill_amount. The grain of the record corresponds to the actual hospitalization transaction and bill_amount
is an additive measure of type transactional. Fact scheme HOSPITALIZATIONS in Figure 5.8a stores the
state of hospitalization records as two measurements: i) records_by_day is a periodic snapshot of running
hospitalization cases registered on a daily basis, whereas ii) accum_records is an accumulating snapshot
registering the total number of hospitalization cases to date. Notice that the measure records_by_day is
still aggregable along date with the exception of SUM() function, as its values have the same granularity
and the same context and are thus comparable with one another. The measure accum_records, however, is
non-aggregable along date at all as its values already include the cumulative effect over time.
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5.2.2 Non-Measurable Facts
Technically, a fact type is given by a many-to-many relationship between a set of attributes. According to one
of Kimball’s laws, any many-to-many relationship is a fact by definition [81]. Some scenarios require storing
many-to-many mappings in which no attribute qualifies as a measure. Typical cases include recording of some
events, where an event is given by a combination of simultaneously occurring dimensional characteristics.
Such scenarios result in so called factless fact tables – a term introduced by Kimball [81]. However, fact
table is a logical design construct as it implies a table structure. We denote the conceptual equivalent of a
factless fact table as a non-measurable fact type.

DEFINITION LL-NON-MEASURABLE FACT. A fact scheme F is non-measurable, if its set of mea-
sures is empty: Non-measurablepFq ð pMF � Hq.

Non-measurable fact schemes are crucial for capturing facts of type event-tracking and coverage [81]:

1. Event-tracking fact record occurrence of events, defined as robust sets of many-to-many relationships
between multiple dimensions. This fact type is primary in a sense that it is not derivable from or
dependent on other facts.

2. Coverage facts are used to track events that were eligible, but did not happen. This fact type is sec-
ondary as it is always semantically related to some other fact.

Figure 5.9 provides examples of non-measurable fact schemes (for simplicity, only the bottom dimension
categories are shown). Fact scheme SURGERY in Figure 5.9a is an event tracking fact type as its records
correspond to real events of type surgery, characterized by a set of dimensions with no measures. An example
of a useful coverage fact in this scenario could be a record of all patient diagnoses, with and without surgical
treatment. A patient may have multiple diagnoses, which are prone to changes in time. In SURGERY,
diagnosis dimension captures only the primary diagnosis associated with the respective surgical intervention.
A complete patient diagnosis history is managed in a coverage fact DIAGNOSIS, depicted in Figure 5.9b.



5.3 : Types of Multi-Fact Schemes 99

  
   SurgeryID
SURGERY

start timelocation patientend time

recorderdiscipline

diagnosis surgeon

(a) SURGERY as an event tracking fact

  
   RecordID
DIAGNOSIS

date

patient

doctor

diagnosis

severity

(b) DIAGNOSIS as a coverage fact related to
SURGERY

Figure 5.9: Examples of non-measurable fact schemes

FACT IDENTIFIER

Whenever the fact’s grain corresponds to actual events, there may exist a dimensional attribute with identifier
properties, i.e., whose values are unique for each fact entry. For example, each SURGERY instance has a
unique SurgeryID. Kimball uses the concept of a degenerated dimension [81] to handle such id-like attributes,
while DFM handles them as non-dimension attributes of a fact. In our model, a fact identifier attribute is
a special case of a degenerated dimension, defined as a dimension represented by a single data field. An
example of a degenerated dimension in Figure 4.4 is InvoiceNumber in fact scheme PURCHASE. Note that
InvoiceNumber does not fulfill the role of a fact identifier in PURCHASE since multiple purchasing records
may appear in the same invoice.

DEFINITION LL-DEGENERATED DIMENSION. A dimension D is degenerated, if it has a single cate-
gory C consisting of a single attribute AC : DegeneratedpDq ð pCD � tC,JDu ^ C � tAC ,Huq.

DEFINITION LL-FACT IDENTIFIER. A degenerated dimension Di is a fact identifier of fact scheme
F , if the values of Di in F uniquely identify the fact entries, i.e., Di functionally determines the entire
set of F’s dimensions: FactIdentifierpDi,Fq ð pDegeneratedpDiq ^Di Ñ DF q.

Since a degenerated dimension is represented by a single category consisting solely of the dimension level
attribute, the functions Degeneratedpq and FactIdentifierpq may be invoked on a dimension, a category, or an
attribute. Existence of a fact identifier is common for, but not limited to, event tracking fact schemes. In case
of a measurable fact scheme, the the fact identifier also functionally determines its set of measures (implied
by the transitive functional dependency Di Ñ DF ^DF Ñ MF ). As fact identifier examples, consider the
attributes SurgeryID and RecordID in non-measurable fact schemes SURGERY and DIAGNOSIS, respectively,
in Figure 5.9. Since a degenerated dimension is only valid in the context of its fact, X -DFM places it into
the designated area inside the respective fact’s node. Degenerated attributes of type fact identifier are shown
by double-underlining the attribute’s name. Recognition of fact identifier properties lays the foundation for
modeling multi-fact schemes discussed in the following section.

5.3 Types of Multi-Fact Schemes

Multi-fact schemes emerge as sets of related fact schemes in the unified multidimensional space. In this
section we investigate various patterns of semantic factual interrelationships (see Figure 5.6).
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5.3.1 Fact Degeneration
There may exist a many-to-many mapping of a fact with some of its dimensional characteristics or even
with another fact. Giovinazzo proposes a concept of a degenerate fact, defined as a measure recorded in the
intersection table of a many-to-many relationship between a pair of facts or a fact and a dimension [45].

We have been able to identify the following three types of fact degeneration:

	 A satellite fact scheme Fn extracts a many-to-many relationship between a fact scheme Fm and a
dimension scheme Di along with the corresponding measure characteristics of this relationship as a
separate fact. Thereby, Fm acts as a dimension in Fn. The term satellite reflects the accompanying
nature of this degenerate fact with respect to its base fact.

	 An association fact scheme Fn extracts a many-to-many relationship between a set (typically, just a
pair) of fact schemes tFj , j � 1, . . . , ku along with the corresponding measure characteristics of this
relationship as a separate fact.

	 A self-association fact schemeFn extracts a recursive relationship within a fact schemeFm, converting
the latter into two distinct dimensions of Fn.

To put the above descriptions into formal definitions, we declare a function DegenerationpFn, tFj , j �
1, . . . , kuq, which returns true, ifFn is a degeneration (i.e., a satellite, an association, or a self-association) of
Fj . If called with just one argument, e.g., DegenerationpFnq, the function returns true if Fn is a degeneration
of any other fact scheme(s). There may be no syntactic definition of fact degeneration as it is a purely semantic
property and as such, has to be explicitly specified by the data warehouse designer.

DEFINITION LL-SATELLITE FACT. A degenerate fact scheme Fn is a satellite of fact scheme Fm,
if Fn contains Fm as a dimension scheme, with the fact identifier of Fm as that dimension’s bottom
level in Fn: SatellitepFn,Fmq ð pDegenerationpFn, tFmuq ^ DDi P Fn, DCj P Fm : KDi

� Cj ^
FactIdentifierpCj ,Fmqq.

Consider a many-to-many relationship between SURGERY and PARTICIPANT in the E/R diagram (Figure
5.4) of our case study. An attempt to map this relationship to a multidimensional scheme would yield a
satellite fact SURGERY-PARTICIPANT, shown in Figure 5.10a. Extraction of this relationship into a separate
fact scheme enables handling of that relationship’s further attributes, such as fee stored as a measure in
SURGERY-PARTICIPANT.

DEFINITION LL-ASSOCIATION FACT. A degenerate fact scheme Fn is an association of a set of
fact schemes tFk, k � 1, . . . , pu, if Fn contains each Fk as a dimension scheme, with the fact
identifier of Fk as that dimension’s bottom level in Fn: AssociationpFn, tFk, k � 1, . . . , puq ð
pDegenerationpFn, tFkuq ^ @Fk : pDDi P Fn, DCj P Fk : KDi

� Cj ^ FactIdentifierpCj ,Fkqqq.

DEFINITION LL-SELF-ASSOCIATION FACT. A degenerate fact scheme Fn is a self-association
of fact scheme Fm, if Fm plays the role of multiple dimension schemes in Fn, with the fact
identifier of Fm as the respective dimension’s bottom level in Fn: Self-AssociationpFn,Fmq ð
DegenerationpFn, tFmuq ^ DDi,Dj P Fn, DCk P Fm : KDi � KDj � Ck ^ Fact-IdentifierpCj ,Fmq.

As an example of an association fact, consider modeling of a trigger relationship between the facts EVENT
and ACTIVITY (e.g., event X triggered activity Y ). This many-to-many relationship is extracted into an
association fact scheme EVENT-ACTIVITY, shown in Figure 5.10b. As expected, the schemes of EVENT
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and ACTIVITY act as the corresponding dimensions of the resulting association fact, and attribute confidence
could be added as a measure of the captured trigger relationship. Similarly, a self-association of EVENT can
be used to capture trigger relationships between events. The resulting fact scheme EVENT-EVENT is also
shown in Figure 5.10b.
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Figure 5.10: Examples of degenerate fact schemes

5.3.2 Fact Roll-up
So far we considered roll-up relationships only between facts and dimensions and between dimension cate-
gories. However, in multi-fact schemes facts may also be involved into a similar kind of roll-up relationships,
i.e., be in a many-to-one relationship with each other. This behavior was already encountered in the previous
section, where we observed that a degenerate fact scheme rolls-up to each of its base fact schemes by con-
verting the latter into dimension hierarchies. In this section we investigate interfactual roll-up relationships
that occur between non-degenerate fact schemes. Intuitively, a pair of fact schemes forms a roll-up, or a
hierarchy, if those schemes represent different granularity of the same process, event, or object.

DEFINITION LL-FACT ROLL-UP. A pair of non-degenerate fact schemes Fm and Fn form a fact hi-
erarchy, or a fact roll-up, denoted Fm �� Fn, if Fm has a dimension containing the fact identifier of
Fn as its category at any level of the hierarchy:
Fm �� Fn ð  pDegenerationpFmq _ DegenerationpFnqq ^ pDDi P Fm, DCk P Di :
FactIdentifierpCj ,Fnqq.

A fact roll-up is direct, denoted Fm � Fn, if the fact identifier of Fn serves as the bottom category in F ,
and is transitive otherwise, denoted Fm �� Fn.

In our scenario, hierarchical relationships exist between the event-tracking fact schemes that model the
surgical process itself and its vertical decomposition into phases, activities, work steps, etc. For example,
there is a transitive fact roll-up of ACTIVITY to SURGERY, as depicted in Figure 5.11a: category phase of
ACTIVITY rolls-up to SurgeryID, which is a fact identifier of SURGERY.

5.3.3 Fact Generalization
An object-oriented concept of inheritance is helpful for dealing with heterogeneity in fact records. Con-
ventional multidimensional models disallow heterogeneous fact instances by enforcing decomposition of a
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Figure 5.11: Examples of hierarchical relationships between fact schemes

heterogeneous cube into a set of homogeneous subcubes. One obvious disadvantage of this normalization is
that the entire set of fact entries can no longer be analyzed as the same class with respect to their common
dimensions as there exists no such OLAP operator as cube union.

In many applications, it might be of benefit to provide support to heterogeneous schemes. Let us consider
the example of modeling surgical workflows: each workflow is recorded as a sequence of different types of
components, such as activities and events. All component subclasses have a subset of common properties,
e.g., start time and executor, as well as type-specific properties, such as event category, instrument used, and
treated structure, characterizing an activity.

A so-called fact generalization is obtained, when a set of heterogeneous fact types, projected to their
common characteristics, is extracted into a superclass fact type. Subclass fact schemes, denoted fact special-
izations, inherit all properties of their superclass. Theoretically, there is no limitation on the depth of fact
inheritance hierarchies.

In our example, EVENT and ACTIVITY are made subclasses of class COMPONENT, as shown in Figure
5.12. The superclass contains a set of dimensions shared by all subclasses. Moreover, fact generalization
enables non-redundant modeling of fact degeneration, applicable to all subclasses, by elevating that relation-
ship to the superclass level. In our example, COMPONENT-DATA is modeled as a satellite of the generalized
fact scheme COMPONENT.

Fact generalization offers an elegant solution to handling heterogeneity. If inheritance betwen fact
schemes is not supported, the respective multi-fact structures are resolved into a set of isolated fact schemes,
which can be of type homogeneous or heterogeneous. A fact scheme is homogeneous, if it disallows partial
roll-up relationships between the fact and any of its dimensions, and is heterogeneous otherwise.
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Figure 5.12: Fact generalization of classes EVENT and ACTIVITY as a superclass COMPONENT
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DEFINITION LL-HOMOGENEOUS FACT. A fact scheme F is homogeneous, if all its fact-dimensional
roll-up relationships are full: HomogeneouspFq ð p@D P DF : F �(full) KDq.

DEFINITION LL-HETEROGENEOUS FACT. A fact scheme F is heterogeneous, if it contains partial
fact-dimensional roll-up relationships: HeterogeneouspFq ð pDD P DF : F �(part) KDq.

Heterogeneous fact types result from storing non-uniformly structured facts as the same type, i.e., avoid-
ing specialization. Figure 5.11b shows a variant of COMPONENT modeled as a heterogeneous fact scheme
storing all characteristics of both subclasses EVENT and ACTIVITY. Subclass specific dimensions have to be
modeled as optional roll-up relationships (dashed-line edge).

All fact types considered so far are called primary, or base, as they store fine-grained data that cannot be
derived from other already available facts. It is a common practice in data warehousing to build additional
multidimensional data views on top of the existing facts – a process known as “cube/subcube computation”.
Results of such computations are typically materialized to boost the performance and to reveal additional
information hidden in the data (e.g., to compute a new measure or derive an additional dimension category).
All types of facts computed from the primary data are called secondary, or derived. The latter can be further
categorized according to the way they were obtained. We limit ourselves to enumerating a few frequent fact
derivation methods:

	 Aggregation fact type is obtained by aggregating its base fact type to a coarser granularity.
	 Drill-across fact type obtains new measures by combining measures from multiple related fact types.
	 Partition fact type contains a subset of fact entries from its base fact type.
	 Transformation fact type is drawn by defining a new measure from a dimension category (push) or

converting a measure into a dimension (pull).

5.3.4 “Fading” Duality of Fact and Dimension Roles
Throughout this section we encountered multiple examples of fact schemes acting as dimensions in other
fact schemes. That might seem paradox, but it has its legitimacy. Structurally, both facts and dimensions
are given by a graph of roll-up relationships between their categories. The difference is that the aggregation
graph of a dimension depends on its proper semantics, while the aggregation graph of a fact depends on
the aggregation hierarchies of its analysis dimensions [3]. Fact and dimension roles are fixed only in the
context of isolated fact schemes. In a multi-fact environment, however, these roles are determined by the
focus of a given analytical task, which may vary from one query to another. For example, a query focusing
on a measure of an association fact treats the base fact schemes of this association as the dimensions of the
former. Altogether, multidimensionality implies that what is considered a fact in one task could be considered
a dimension by another one, and vice versa.

The first interchangeability case is concerned with a fact scheme acting as dimension of another fact
scheme. Fact scheme F can be treated as a dimension in fact scheme F 1 while querying the measure(s) of the
latter scheme, when F 1 rolls-up to the fact identifier dimension of F . This relationship may be encountered
in satellite facts and fact roll-ups.

One implication of this interchangeability is that it results in different conceptual schemes for the same
data fragment, depending on the focus of the analysis. Figure 5.13 illustrates the example of two con-
ceptual views of the satellite fact relationship between SURGERY-PARTICIPANT and SURGERY. A focus-
independent view of both fact schemes is shown in Figure 5.13a and a perspective focused on SURGERY-
PARTICIPANT and its valid aggregation paths is given in Figure 5.13b. Thereby, fact scheme SURGERY is



104 Chapter 5 : Measures, Facts, and Galaxies in the Multidimensional Data Model

date

weekday

month

quarter

week

year

room

Tstart time

building

hospital

Tlocation

patient

age group

sex

Tpatient

minute

hour address

city

country

time
start

end

   

   SurgeryID

SURGERY

name

code

state

Tend time

hospital city

p
a
tie

n
t 
ci

ty

birth date positiondegree

Tparticipant

participantrole

Trole

date

weekday

month

quarter

week

year

room

building

hospital

patient

age group

sex

minute

hour address

city

country

time start

end

name

code

state

hospital city

p
a
tie

n
t 
ci

ty

birth date positiondegree

Tparticipant

participantrole

Trole

SurgeryID

Tsurgery

    fee

  

SURGERY-PARTICIPANT

    fee

  

SURGERY-PARTICIPANT

(a) Focus-independent view of a satellite fact scheme

date

weekday

month

quarter

week

year

room

Tstart time

building

hospital

Tlocation

patient

age group

sex

Tpatient

minute

hour address

city

country

time
start

end

   

   SurgeryID

SURGERY

name

code

state

Tend time

hospital city

p
a
tie

n
t 
ci

ty

birth date positiondegree

Tparticipant

participantrole

Trole

date

weekday

month

quarter

week

year

room

building

hospital

patient

age group

sex

minute

hour address

city

country

time start

end

name

code

state

hospital city

p
a
tie

n
t 
ci

ty

birth date positiondegree

Tparticipant

participantrole

Trole

SurgeryID

Tsurgery

    fee

  

SURGERY-PARTICIPANT

    fee

  

SURGERY-PARTICIPANT

(b) A base fact as a dimension of its satellite fact

Figure 5.13: Fact SURGERY as a dimension in its satellite fact SURGERY-PARTICIPANT

transformed into a dimension surgery, in which all dimensions of the original fact scheme turn into paral-
lel hierarchies, diverging from the bottom category SurgeryID. The validity of regarding the fact identifier of
SURGERY as a bottom category in surgery is given by the fact that the latter has the same grain as SURGERY
fact entries, and thus, has a many-to-one, i.e., a roll-up, relationship to all other dimensions.

Another kind of interchangeability is related to treating dimensions as measures and vice versa at query
time. Support of advanced OLAP operators, such as PUSH for converting a dimension category into an ad
hoc measure and PULL for converting a measure into an ad hoc dimension, as well as DRILL-ACROSS for
combining measures from multiple related fact schemes to obtain new facts, is a challenge not handled by
conventional conceptual models. The output of those operators is a new conceptual multidimensional scheme
derived from an existing scheme or a set of schemes.

date

weekday

month

quarter
week

year

Tstart time Tlocation

patient

age group

sex

Tpatient

minute

hour address

city

country

time
start

end

    hospital 

   SurgeryID

SURGERY

name

code

state

Tend time

ho
sp

ita
l c

ity

patient citybirth date

Figure 5.14: Example of a PUSH operation

Our solution for supporting scheme-transforming operators
at the conceptual level is straightforward, namely, to enable
explicit modeling of the resulting fact schemes. Figure 5.14
exemplifies this idea by showing the conceptual consequences
of “pushing” a dimension category hospital in fact scheme
SURGERY (with the original fact scheme depicted in Figure
5.15b) into a measure attribute to support query measures such
as COUNT(hospital) or COUNT(DISTINCT hospital). The
“pushed” category hospital itself as well as all categories below
it are removed from the output dimension scheme of location
as their granularity levels are no longer available. Dashed lines
connecting the measure attribute hospital with all dimensions
indicate non-additivity of the former, i.e., inapplicability of any
aggregate function except mere enumeration with COUNT.
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5.4 Classification of Dimension Sharing Patterns
Dimension sharing is an advanced concept of dimensional modeling aimed at accurate capturing of multi-
dimensional semantics. A set of cube’s dimensions represents the multidimensional space of the respective
fact. Intuitively, a common multidimensional space of a set of facts contains all dimensions occurring in
those facts. The formal framework of the unified multidimensional space in terms of compatible and conform
categories as well as of related dimension and fact schemes was provided in Section 3.4.2. In this section we
proceed by investigating various patterns of dimension sharing and propose guidelines for conforming dimen-
sion schemes in X -DFM. We continue using the surgical workflow scenario presented in the beginning of this
chapter, as it possesses the necessary complexity and variety of factual and dimensional interrelationships.

As formalized in the the IL modeling framework in Section 3.4, semantically related categories are sub-
divided into compatible and conform, where conformance denotes full compatibility, i.e., identity of both the
value domains and the hierarchy schemes. Figure 5.15a shows fact scheme SURGERY, in which start and
end categories in start time and end time dimensions, respectively, are conform, whereas date in start time
and birth date in patient are compatible (the same value domain), but not conform (different roll-up paths).

5.4.1 Dimension Sharing Modes in X -DFM

With respect to dimension sharing, X -DFM can be used in three modes: i) non-shared, ii) partially shared,
and iii) fully shared mode.

In the non-shared mode, categories are not examined for compatibility, i.e., each category is presented
by a distinct node, as in a scheme shown in Figure 5.15a. Thereby, a category can be a shared target of
multiple roll-up edges only in the case of true convergence, occurring in non-covering and multiple alternative
hierarchies, with country and year as the respective examples of true convergence.

In the partially shared mode, only conform categories qualify to be represented as shared category types.
As a result, the aggregation paths of conform categories are merged into a common path. This mode was
applied in the scheme shown in Figure 5.5, where compatible yet non-conform categories birth date and date
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Figure 5.15: Fact scheme SURGERY modeled using different dimension sharing modes in X -DFM
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along with their aggregation paths are exempted from merging. The partially shared mode produces “clean”,
easy to interpret conceptual schemes and is a preferred option for general modeling purposes.

In the fully shared mode, all compatible categories are required to be represented as shared category types
to reflect the semantics of the unified multidimensional space. Full sharing in X -DFM is achieved as follows:

	 Proceeding from the bottom level upwards, each set of conform categories is merged into a single
shared category type node. Subsequently, the same is done for the remaining compatible categories.

	 Each shared node is named after its category type.

	 The actual names of single categories behind the shared category type are shown as labels of the
respective incoming roll-up edges.

	 Edge labels are obligatory in the existence of multiple unrelated incoming roll-up edges of a node and
may be omitted otherwise. In the latter case, the category name is identical to its category type name.

	 To resolve ambiguities, fully qualified edge labels can be used (or displayed on demand). Such labels
follow the naming convention <fact-name>.<dimension-name>.<category-name>.

Figure 5.15 depicts the concept of modeling shared dimensions at the example of fact scheme SURGERY:
(a) shows the initial state of the model, in which each category is represented by a distinct node in the scheme
and (b) presents the same fragment, modified by applying the above rules of category sharing in the unified
multidimensional space. Dimensions start time and end time now appear merged as their hierarchy schemes
are identical. The two bottom categories are merged into one node of type time, whereas the categories’
actual names start and end are shown as edge labels. Dimensions patient and location also appear related as
their paths converge in the shared category type city.

In case of conform categories, the entire roll-up graphs rooted at those categories can be merged in a
single step. Merging of compatible categories with deviating aggregation behavior is less trivial. Let us
consider the example of merging birth date and date. Originally, birth date was modeled with the only parent
category birth year of type year. Category date also rolls-up to year, however via two alternative hierarchy
paths. At this stage, the designer has to decide whether these roll-up relationships should also be made valid
for birth date. In that case, birth year is simply merged with year, as shown in Figure 5.15b. Category age
group, however, which is a parent of year in dimension patient, does not appear semantically feasible as
an additional aggregation level in dimensions start time and stop time and, therefore, is not added to their
dimension schemes.

5.4.2 Levels and Types of Dimension Sharing
With respect to the degree of convergence, dimension sharing can be full (i.e., conformance) or partial. Partial
sharing is further subtyped into overlap and inclusion, with fact-as-dimension and convergence as special
cases of inclusion and overlap, respectively. Any of those sharing levels may occur between dimensions
within the same fact or in different facts. Figure 5.16 shows the metamodel of dimension sharing discussed
in the remainder of this section.

Conformance is the highest degree of convergence, corresponding to identical dimension schemes. In that
case, multiple dimensions are represented by a single scheme, with its bottom level referenced by multiple
incoming fact-dimensional roll-up relationships. Different roles of the same dimension are expressed by
the labels of the respective fact-dimensional roll-up edges as well as by the name of the top category. As
an example, consider the use of time hierarchy as start and stop dimensions in SURGERY as well as in
ACTIVITY, with the respective scheme fragment shown in Figure 5.17. Besides, the same hierarchy serves as
time dimension in WORKFLOW.
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Figure 5.16: Categorization of dimension sharing patterns

DEFINITION IL-CONFORM DIMENSIONS. A pair of related dimensions Di and Dj are con-
form, if their bottom categories are conform: ConformpDi, Djq ð pRelatedpDi, Djq ^ pDCm P
Di, TypepCmq � KDi

, DCn P Dj , T ypepCnq � KDj
: ConformpCm, Cnqqq.

Partial sharing occurs between dimensions with non-conform bottom categories, when both dimension
schemes contain hierarchy paths converging at some level. Partial sharing is of type inclusion, if some
category in Di fully rolls-up to the bottom level of Dj , i.e., when two dimensions represent different grain of
the same hierarchy. In our scenario, this is the case with dimensions patient in SURGERY and treated structure
in WORKSTEP, shown in Figure 5.18: the bottom category of patient serves as an upper aggregation level in
treated structure. As a result, WORKSTEP facts, if grouped by treated structure, can be further aggregated
along the entire dimension scheme of patient.

DEFINITION IL-INCLUDED DIMENSION. A dimension Di is included into a dimension Dj , if scheme
Di is a subgraph in Dj : IncludedpDi, Djq ð pRelatedpDi, Djq ^ CDiztJDiu � CDj ztJDjuq.

Whereas the typical case of inclusion is that between dimension schemes, there exists a special case of
a fact scheme acting as a dimension in another fact scheme, encountered in satellite and hierarchical factual
interrelationships discussed in Section 5.3.
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Figure 5.18: Examples of dimension inclusion within and across fact schemes

DEFINITION IL-FACT-AS-DIMENSION. A fact schema F is included as a dimension in fact schema
F 1, if F 1 rolls-up to the fact identifier of F :
IncludedpF ,F 1q ð RelatedpF ,F 1q ^ DDi P F , DDj P F 1 : FactIdentifierpKDi

,Fq ^ KDi
� KDj

.

To be treated as a dimension, the affected fact scheme F has to be converted into a dimension scheme Dj

of F 1. This conversion of the conceptual scheme evolves in the following steps:

1. Fact identifier of F is converted into a bottom level in Dj .
2. Fact node F itself is replaced by the bottom-level node created in the previous step.
3. The set of F’s dimensions is added as a set of parallel hierarchies outgoing from KDj .
4. Top node JDj is added to the scheme.
5. Top categories of F’s dimensions are removed. In case of a totally ordered top category, the total order

mark should be placed into each category of the respective dimension’s scheme.
6. All hierarchies in Dj are made to roll-up to the new top-level JDj

.

As an example, consider a series of fact roll-ups between ACTIVITY, RECORD and SURGERY in Figure
5.17. From within the satellite fact scheme RECORD, its base fact SURGERY plays a role of a dimension
surgery and the former, in its turn, plays a role of a dimension in ACTIVITY. Figure 5.19 shows the step-wise
process of creating a focus-dependent fact scheme of ACTIVITY. In case of a recursive “fact-as-dimension”
inclusion, such as the one between ACTIVITY, RECORD and SURGERY, the transformation is done in a top-
down fashion, i.e., starting from the fact scheme with no outgoing interfactual roll-up relationship. Therefore,
SURGERY is transformed into a dimension of RECORD first, with the resulting scheme depicted in Figure
5.19a, followed by the transformation of the obtained focus-dependent fact scheme RECORD into a dimen-
sion of ACTIVITY, as shown in Figure 5.19b. As expected, in the obtained focus-dependent scheme, the
number of top categories corresponds to the number of fact-dimensional roll-up relationships, i.e., the num-
ber of dimensions in the respective fact scheme.

The last pattern of dimension sharing to be considered is overlap. As implied by the name, dimensions
are said to overlap if their schemes overlap, i.e., have hierarchies converging at some level, non-bottom for
either of the dimensions.



5.4 : Classification of Dimension Sharing Patterns 109

date

weekdaymonth

quarter

week

year

room

Tend

building

hospital

patient

birth 
date

age 
group

sex

minute

hour
address

city

country

time start
end

mode recorder

surgery

position
clinical
degree

Trecord

run

start

phaseaction

Taction

duration

Tduration

   

    ActivityID

ACTIVITY

TphaseTstart

end

record

date

weekdaymonth

quarter

week

year

room

building

hospital

Tsurgery

patient

birth 
date

age 
group

sex

minute

houraddress

city

country

timestart

end

mode
recorder

surgery

positionclinical
degree

TrecorderTmode

run

Trun

    

   RecordID

WORKFLOW

Ttime

start

phaseaction

Taction

duration

Tduration

   

    ActivityID

ACTIVITY

Tphase

end

(a) Transforming fact scheme SURGERY into a dimension surgery in WORKFLOW
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Figure 5.19: A recursive “fact-as-dimension” inclusion in a series of fact roll-ups

DEFINITION IL-OVERLAPING DIMENSIONS. A pair of dimensions Di and Dj overlap, if they are
related at a level, non-bottom for either of them:
OverlappDi, Djq ð RelatedpDi, Djq ^  pIncludedpDi, Djq _ IncludedpDj , Diqq.

Dimensions patient and location of SURGERY in Figure 5.18 overlap as they contain hierarchies that
converge in city. Another example of overlap is given by dimensions performer and structure of WORKSTEP
as both share non-bottom categories side and name.

Overlapping dimensions may belong to the same or to different fact schemes. The latter case builds the
foundation for performing a drill-across operation over a conceptual scheme.
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A special case of overlap is convergence, given when both dimension schemes fully converge at some
level (or a set of levels). Convergence results in identical sets of roll-up destinations below the top category.

DEFINITION IL-CONVERGING DIMENSIONS. A pair of overlapping dimensions Di and Dj converge,
if their hierarchies roll-up to the same set of categories at some level:
ConvergepDi, Djq ð OverlappDi, Djq ^ @Cm, Cm � JDi : pDCn, Cn � JDj : ConformpCm, Cnqq.

None of the above examples of overlapping dimensions fulfills the convergence criterion: patient dimen-
sion has hierarchies that roll-up to sex and age group – categories not present in the scheme of location – and
structure includes patient hierarchy, not present in performer.

This chapter concludes the description of the extended multidimensional data model by considering var-
ious types of facts, measures, and relationships between facts and dimensions in multi-fact environments.
While presenting the conceptual framework in Chapters 3 through 5, we deliberately did not provided any
guidelines for its implementation in an OLAP system. These issues are elaborated in the following two
chapters.



Chapter 6

Data Warehouse Design for
Non-Conventional Applications

T HE CONTRIBUTION OF THIS CHAPTER IS to propose a methodological framework for designing
non-conventional data warehouse applications. We focus on the challenges of operational data
warehouses, in which the data flows are required to be stored without pre-aggregation to a set of

measures. Surgical Workflow Analysis, introduced in the previous chapter, serves as a motivating application
for the presented framework. We demonstrate that the classical data warehouse design steps are not feasible
for modeling operational data warehouses and propose an alternative solution based on cardinality-driven
transformation of operational models into multidimensional schemes. We expect the proposed approach to
be applicable to a variety of data warehouse scenarios dealing with ad hoc analysis of operational data.
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6.1 Challenges of Conceptual Data Warehouse Design
The original data behind multidimensional cubes typically comes from operational and other data sources of
various applications. The data is made “analyzable” with the OLAP technology by remodeling it into (prefer-
ably) measurable facts with relevant dimensional characteristics. The resulting data set is made subject-
oriented by getting rid of application-specific data models. Whatever data cannot be remodeled into cubes of
facts and measures, remains unavailable for OLAP.
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Considering that the overall characteristics of data transformation in a data warehouse are to get away
from application domain orientation towards subject orientation, one could interpret the task of obtaining
multidimensional models from domain-specific models as semantic reduction. For example, dealing with
business processes or workflows implies that semantically rich business process models, which structure data
into complex control flows of diverse elements and relationships, must be mapped to cubes of measurable
facts.

6.1.1 Standard Stages of Conceptual Data Warehouse Design
Convergence of domain models into the multidimensional data model takes place primarily at the conceptual
level. Therefore, conceptual design phase is the central issue of this chapter. In the context of the multidi-
mensional data model, the output of this phase is a set of fact schemes and the prevailing techniques are based
on graphical notations, such as the E/R model, the UML, and their variants, understandable by both design-
ers and target users. Back to the SWA scenario, the E/R diagram in Figure 5.4 may be taken as a model of
the pre-existing system, whereas the expected types of queries and applications enumerated in Section 5.1.1
correspond to the output of the requirement specification phase.

The conceptual design of a data warehouse evolves in modeling the structure of facts and their associated
dimensions. Once major fact types have been defined, aggregation hierarchies are imposed upon dimensions
to enable additional granularity levels. Hüsemann et al. [64] structure the conceptual data warehouse design
process into the following consecutive phases:

1. Context definition of measures,
2. Dimensional hierarchy design,
3. Definition of summarizability constraints.

A lot of research has been done on facilitating the conceptual modeling phase as highlighted in Section
2.2.4. The main idea is to enable automatic acquisition of star schemes from the available conceptual, logical,
or physical models of the underlying data sources. Since most of the existing business information manage-
ment systems are relational, especially many efforts were put into deriving multidimensional models from the
relational ones, the latter expressed as E/R or the UML class diagrams at the conceptual level. Outstanding
contributions in this field were made by [18, 42, 47, 146, 175]. Some of the approaches, such as the ones
proposed by [18] and [42], are based on “encoding” multidimensional semantics into the original E/R con-
structs, while others provide extended variants of the E/R model. Prominent examples of the latter class are
the starER [175] and the Multidimensional Entity Relationship (ME/R) Model [159]. Yet another group of
works provides mapping of the E/R schemes to ad hoc multidimensional models. The DFM approach [47],
which is the predecessor of our proposed X -DFM model, is an example of such a methodology.

A property common to all the approaches mentioned above is measure-centrism as they presume that mea-
sures of interest and their desired granularity are known at the design stage. Therefore, measure specification
is defined as the initial step for restructuring a relational scheme into facts and dimensions. In our experience,
measure-centric data warehouse design is not universal enough to cover those application domains, in which
the set of potentially useful measures cannot be determined in advance or evolves in time.

6.1.2 Limitations of Conventional Design Methodologies
Versatility of feasible application areas and analysis tasks imposes multiple challenges on the conventional
data warehouse design methodology. Back to the kinds of queries in the context of SWA, the same data
field may serve as a measure, i.e., input of an aggregate function, in one query or as a dimension, i.e., a
grouping criterion for aggregation, in another query. As an example, let us consider entity types SURGERY



6.2 : Acquisition of Multidimensional Schemes from the E/R Schemes 113

and PATIENT in Figure 5.4. In order to decide whether those entity types should be mapped to facts or
dimensions one has to consider the types of queries referring to those elements. However, some scenarios,
such as hospital utilization assessment, may define number of surgeries as a measure with hospital as one
of its dimensions, whereas other scenarios, such as surgical discipline analysis, may be interested in the
number of hospitals offering surgical support in a specified discipline. This example shows the necessity for
symmetric treatment of measure and dimension roles. Similar examples can be specified for virtually any
other entity type in the given case study. To support all kinds of expected queries, the detailed data, i.e.,
without pre-aggregation to any of the expected measures of interest,must be available in the data warehouse.

Apparently, the classical approach to designing multidimensional schemes based on the three previously
mentioned phases is not adequate for supporting the above scenario. Kimball proposes a slightly different
approach to structuring the conceptual design process, which appears less measure-centric and, thus, more
suitable for meeting the requirements of comprehensive analysis. According to [81], the design process
undergoes the stages of:

1. choosing a business process,
2. choosing the grain of the process,
3. identifying the dimensional characteristics,
4. defining the measured facts.

One major advantage of the latter approach is its ability to abstract the data model from the expected
measures of analysis. This abstraction is realized by proposing to reason in terms of the business process
itself and its grain and by putting measure definition into the last stage of the design. At this final step, the
transformation of the “raw” process data into cubes of specified measures takes place. It is by “pushing” the
measure definition from the initial step, as in [64], to a final step, as in [81], that the support of operational
BI scenarios can be achieved.

Quantitative queries represent just a fraction of SWA. Some analysis tasks go beyond mere aggregation
and may address more complex issues, such as pattern recognition, relevance assessment, and process dis-
covery. These tasks require that the original process data, i.e., with no pre-aggregation to a specified set of
measures, is available in the data warehouse.

In the remainder of this chapter we present an approach to data warehouse re-engineering, which auto-
mates the acquisition of a multidimensional model from the available models of input applications. The main
difference between our methodology and previously proposed approaches is that we shift the focus from fact
modeling to the modeling of the unified multidimensional space, in which measurable and non-measurable
facts can be identified both statically, i.e., at the design phase, and dynamically, i.e., as ad hoc cubes.

6.2 Acquisition of Multidimensional Schemes from the E/R Schemes
In the preceding Chapter 5 we formalized the properties of fact and multi-fact schemes in the extended mul-
tidimensional model. The presented formalisms were illustrated using relevant multidimensional fragments
from the field of SWA. However, we did not elaborate on how those fragments had actually been obtained.
The algorithm for acquiring multidimensional models from non-multidimensional conceptual models of the
underlying data sources is the subject of the current chapter.

In the previous section we explained why the classical data warehouse design approach, based on identi-
fying the measures of interest and their dimensional context, is not adequate for some usage scenarios, such
as process and workflow analysis. Our alternative design approach is to acquire multidimensional data views
for the analysis from pre-existing conceptual models available as E/R or UML class diagrams.
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The E/R model structures data in terms of entity types and their attributes as well as relationship types
between entity types and the cardinality of each entity type’s participation in a given relationship. UML class
notation uses the concepts of a class, property, relationship, and multiplicity to express the same concepts
as entity type, attribute, relationship type, and cardinality, respectively. Due to this straightforward corre-
spondence between both notations, it is sufficient to provide a mapping for either of them. We opt for the
E/R model as the input notation and consider the E/R diagram depicted in Figure 5.4 to be the starting point
of the data warehouse design for our usage scenario. The transformation task consists in mapping semantic
constructs of the E/R model to those of the multidimensional data model.

Established methodologies, which proceed by determining the facts and subsequently refining their di-
mensional context, proved inapplicable to our usage scenario due to their fundamental assumption of knowing
the measures of interests at design time. Dealing with predominantly “factless” data of type “event tracking”
necessitates a different procedure for identifying facts and measures. Our approach to identifying candidate
fact entities in an E/R scheme is based on analyzing the set of each entity type’s relationships with other entity
types by inspecting the cardinalities and the structural constraints of those relationships. From the definitional
framework of the multidimensional model provided in the previous three chapters, the following cardinality
information with respect to the fact scheme structure can be deduced:

	 A fact scheme is given by a set of dimension categories that have an n-ary relationship to each other or
where a distinguished category, representing the grain of the fact, has a binary relationship with each
other category in the set.

	 In measurable schemes, each measure attribute has an n:1 relationship with any of its dimensions.

	 Non-measurable schemes correspond to an entity type that represents some event, along with the set of
entity types, related to the former via a 1:n relationship.

With respect to dimension hierarchies, the cardinality constraints are straightforward:

	 Each category corresponds to an entity type and a set of its single-valued attributes.

	 A homogeneous dimension hierarchy is given by a lattice of categories, in which each category is
connected to at most one parent category via an n:1 relationship.

	 Heterogeneous hierarchy contains categories involved in a generalization relationship, with the subclass
as a parent category of the subclasses.

The above observations provide valuable insights for automatic recognition of fact and dimension candi-
dates in an E/R scheme, subject to the condition that the input scheme accurately and fully maps all required
attributes, relationships, and dependencies between attributes.

6.2.1 Verification and Refinement of the E/R Scheme
In most cases, pre-existing conceptual models are tailored towards specific application needs and are thus
focused on the properties and relationships relevant in that application’s context. Besides, the level of detail,
accuracy, and completeness of the model may not be adequate tfor meeting the requirements of the analy-
sis. Therefore, the actual transformation of the E/R scheme into a multidimensional one is preceded by the
transformation of the E/R scheme itself. This transformation evolves in two phases, namely, i) pruning and
enriching the data set and ii) refining the relationships between the elements.

The data set is pruned to eliminate parts of the model irrelevant for the analysis. For instance, private
data of the patients, such as name, address, and birth date, may have to be removed to comply with data
privacy regulations. Subsequently, the model is enriched to include further data sources available. Most
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of the enhancements are concerned with enabling additional granularity levels. For example, a geographic
database may be added to be able to aggregate address entries by zip code, city, region, and so on.

The aim of the refinement phase is to have an accurate mapping of all relationships between entity types
and attributes in the scheme. There is a fundamental difference in the way the E/R model and the multidimen-
sional data model handle relationships: the former admits relationships only between entity types, whereas
the latter specifies relationships between attributes. In the E/R model, each attribute is associated with a single
entity or relationship type implying a one-to-many relationship in the general case, a one-to-one relationship
in case of an identifier property, and a many-to-one or many-to-many relationship in case of a multivalued
attribute. Thereby, it is impossible to specify dependencies between attributes. A legitimate way to overcome
this penalty is to re-arrange attributes into additional entities and explicitly specify the relationships between
the newly defined entities.

The only constructs of the multidimensional model that fully corresponds to that of an attribute in the
E/R notation, are dimension level attribute, property attribute, and measure as each of them is related to one
element in the scheme. Other constructs, such as facts, dimensions, and dimension categories participate in
relationships and, therefore, have to be represented by entity types. As for relationship types, it is insufficient
to have the cardinalities specified as a simple ratio (1:1, 1:n, or m:n) as this notation does not reveal
whether the relationship is with respect to any of participating entity types. Therefore, transformation of
cardinality ratios into structural constraints (in (min, max) notation) is a crucial requirement of E/R scheme
refinement. The above considerations of the multidimensional modeling constraints with respect to attributes
and relationships is fundamental for formulating the ultimate goal of approximating an E/R scheme to a
multidimensional one.

DEFINITION ER-SCHEME ACCURACY. An E/R scheme is accurate, if the following conditions hold:

1. the structural constraints are fully specified for each relationship type R and each entity type E
participating in R,

2. all generalization/specialization relationships are made explicit,
3. for each attribute Ai in the scheme holds:

	 Ai is simple (i.e., non-composite),
	 Ai is single-valued,
	 Ai either belongs to the key or functionally depends on the key,
	 Ai is not related (i.e., has no functional dependency) to any other attribute apart from the

key of its entity type.

The accurate state defined above is achieved by means of the following transformation procedure:

1. Identify implicitly composite attributes (i.e., consisting of multiple data fields) and replace them by
explicit composite attributes.

2. Similarly, re-shape explicit composite attributes into entity types consisting of simple attributes.

3. Each multivalued attribute is reshaped into an entity type, related to the attribute’s original entity type.

4. Identify dependencies and relations between attributes, not explicit in the scheme. Each attribute,
involved in such relations, is transformed into an entity type and the relationship between newly created
entity types is specified.

5. Identify implied generalization/specialization relationships and make them explicit in the scheme.

6. Redundant fragments of the scheme are merged into shared fragments.
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Figure 6.2: Transforming composite attributes into related entity types

7. Elements of the scheme that became obsolete are eliminated.

The above sequence of steps is chosen as to complete the transformation of the scheme in a single itera-
tion. As an example of refining the E/R scheme according to the above procedure, let us consider the case of
SURGERY attributes in Figure 5.4.

In the first step, attribute Location has been identified as implicitly composite, as its values are full ad-
dresses of respective operating theatres specified as the room, the building, the name of the hospital and its
full address. The address values, in their turn, are also decomposable into multiple fields. Similarly, at-
tributes of type date and time should be decomposed into their constituent fields. Figure 6.1 shows the results
of re-structuring implicitly composite attributes Location, StartTime, and StopTime.

In the second step, composite attributes are transformed into related entity types. Figure 6.2 shows the
results of translating composite attributes Location, StartTime, and StopTime into a set of entity types and
aggregation relationships between them. Notice that both temporal attributes could be represented by the
same entity type TIMESTAMP due to their identical structure. As a result, these two attributes are replaced by
two respective relationships between SURGERY and TIMESTAMP.

Multivalued attributes are handled in the third step. Each multivalued attribute is transformed into an
entity type linked to the hosting entity type of that attribute via a 1:n or an m:n relationship. As an example,
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Figure 6.3: Transforming attributes into entity types to reveal implied roll-up relationships between them
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consider the result of transforming Discipline attribute into an entity type, depicted in Figure 6.1.
The fourth step of identifying “hidden” relationships between attributes is primarily concerned with re-

vealing candidate roll-up, or “part-of”, relationships. Explicit modeling of those relationships facilitates
recognition of dimension hierarchies at a later stage. Back to our example, aggregation relationships exist
between Room and Building, between Building and Hospital, between Hospital and City, and so on. Figure 6.3
shows the results of revealing the hierarchical structure behind the attributes of surgery location.

In the next step, the scheme is verified with respect to implied generalization/specialization relationships.
Our original model (see Figure 5.4) already contains a generalization of heterogeneous process components,
such as ACTIVITY, EVENT, and STATE into a superclass COMPONENT. However, the scheme can be further
refined by adding a specialization relationship to the entity type SYSTEM. In our scenario, the notion of a
“system” is heterogeneous and may refer to an instrument, a body part of a participant, or a treated structure
of a patient. Figure 6.4 shows the affected part of the scheme.

The last two transformation steps finalize the refined scheme by identifying redundant fragments, merging
them, and removing obsolete elements. Redundant fragments emerge in the course of transforming attributes
into entity types. For instance, decomposition of the Address attribute in PATIENT will yield the same scheme
as the one produced by transforming the Address attribute in HOSPITAL. This redundancy is eliminated by
relating all entity types that have an address property, with the same entity type ADDRESS. Some elements
become obsolete at different stages of refinement. For example, entity type LOCATION (see Figure 6.2) gets
dissolved into ROOM and BUILDING along with a “part-of” relationship between them (see Figure 6.3). In
the final step, the scheme is verified to ensure that it contains no obsolete elements.
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6.2.2 Identifying Facts and Dimensions

Once the transformation of the E/R scheme is complete, a cardinality-based transformation into a multidi-
mensional scheme can be applied. Essentially, the task consists in determining for each entity type whether
it maps to a fact, a bottom-level or an upper level dimension category.

As facts build the focus of a multidimensional scheme, the first step is concerned with identifying candi-
date facts in the scheme. Remember that, technically, a fact structure is a collection of properties, which have
many-to-many relationship to each other and a one-to-many relationship to the fact’s grain. Therefore, there
exist just three structures in terms of the E/R model, which satisfy this cardinality constraint:

	 An entity type that has n:1 relationships with multiple other entity types,
	 An n-ary relationship between a set of entity types,
	 An m:n relationship between a pair of entity types.

For the sake of simplicity, the first two cases can be unified as any n-ary relationship can be converted into
an entity type by replacing each branch with a binary relationship towards the respective participating entity
type. Besides, the concept of an entity type is generally superior to that of a relationship as the former may
participate in other relationships. The third case is typical for a fact degeneration, i.e., an m:n relationship
between a fact and a dimension, but may also occur in a non-strict dimension hierarchy.

IDENTIFYING FACTS

Generally, a fact is given by an entity type Ef involved into multiple n:1 relationships with other entity types
(whereas existence of 1:n, m:n or 1:1 relationships between Ef and other entity types is not prohibited).
Ef corresponds to the fact’s grain, whereas the set of the related entity types along with the attributes of
Ef define the fact’s dimensional context. To investigate the properties of Ef as a candidate fact scheme, all
relationships of Ef are arranged into the following mutually disjoint sets:

	 E rec¡pEf q is a set of recursive (i.e., connecting the entity type to itself) relationships of Ef ,
	 E n:1¡pEf q is a set of Ef ’s candidate dimensions, i.e., a set of its non-key attributes and entity types

with which Ef has an n:1 relationship,
	 Ep super¡qpEf q is a set of superclasses, i.e., direct generalizations, of Ef ,
	 Ep sub¡qpEf q is a set of subclasses, i.e., direct specializations, of Ef ,
	 E 1:1¡pEf q is a set of Ef ’s identifier dimensions, i.e., a set of entity types and attributes with which

Ef has a 1:1 relationship,
	 E 1:n¡pEf q is a set of Ef ’s candidate sub-facts, i.e., entity types with which Ef has a 1:n relationship,
	 E m:n¡pEf q is a set of Ef ’s candidate degenerate facts, i.e., a set of entity types with which Ef has

an m:n relationship.

Convergence of the E/R scheme into a multidimensional one evolves in a bottom-up fashion, starting
with the entity types that qualify as terminal facts, i.e., the elements of the finest grain, and proceeding to the
entities of coarser grain.

DEFINITION ER-TERMINAL FACT CANDIDATE. Entity type Ef is a terminal fact candidate, if it is not
involved into any decomposition or specialization relationship, i.e., E 1:n¡pEf q � E sub¡pEf q � H.

A 1:n relationship between Ef and some other entity type Ek indicates a composition or an aggregation
relationship and, thus, existence of a fact roll-up pattern (Ek rolls-up to Ef ). A specialization relationship of
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Ef implies that subclasses of Ef represent more specialized facts than Ef as they inherit all characteristics
of Ef and may have further characteristics of their own.

In our surgical workflow model, three entity types qualify as terminal facts, namely, STEP, EVENT, and
STATE. Figure 6.5 shows the part of the E/R diagram referring to STEP and its relationships types as well
as its mapping to a 4-dimensional fact scheme. For consistency, n:1 relationship with full participation,
i.e., with (1,1) and (1,*) as its structural constraints, are all renamed as “rolls-up-to”. The transformation
appears straightforward as the only non-empty set of related categories E n:1¡pSTEPq = tINSTRUMENT,
BODY PART, BODY STRUCTURE, ACTIVITYu maps seamlessly to a set of the fact’s dimensions.

As an example of a more complex fact candidate at a coarser granularity level, let us consider the en-
tity type ACTIVITY, depicted in Figure 6.6, with its non-empty sets E n:1¡pACTIVITYq = tTIME-OFFSET,
ACTIONu, E super¡pACTIVITYq = tCOMPONENTu, and E 1:n¡pACTIVITYq = tSTEPu. As STEP has al-
ready been mapped to a fact scheme, the 1:n relationship is interpreted as fact roll-up. COMPONENT as a
superclass of ACTIVITY is also represented as a fact, yielding a fact generalization pattern.

Finally, consider an example of identifying and modeling degenerate facts. Once an entity type Ef has
been converted to a fact, its degenerate facts correspond to Ef ’s relationships in E m:n¡pEf q (satellite facts
and fact associations) and E¡rec¡pEf q (fact self-associations). Figure 6.7 (left) shows a fragment of the
E/R diagram modeling a generalized entity type COMPONENT and its relationships. COMPONENT’s m:n
relationship with DATA and a recursive relationship triggers are converted to a satellite fact COMPONENT-
DATA and a self-association COMPONENT-TRIGGER, respectively, as depicted in Figure 6.7 (right).

Having considered various examples of identifying parts of the E/R scheme that qualify to be converted
into facts, we are ready to provide an algorithmic description of acquiring fact schemes from accurate E/R
schemes. Algorithm 1 is invoked on each “terminal” entity type Ef , outputting a set of fact schemes, obtained
by recursively applying itself to each entity type identified as a candidate fact. Sets Ep sub¡qpEf q and
Ep 1:n¡qpEf q used for identifying “terminal” entity types become obsolete inside the algorithm as it proceeds
in the bottom-up fashion.

In the first step, Algorithm 1 creates an empty fact type and converts the attributes of the underlying entity
into measures and degenerated dimensions, as shown in the subroutine Algorithm 2.
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Algorithm 1: ConvertToFact
Data: Entity type Ef , Set of previously identified fact schemes F
Result: Updated set of fact schemes F
begin

F ÐÝ ConvertAttributespEf ,Fq;
E rec¡ ÐÝ H;
E super¡ ÐÝ H;
E 1:1¡ ÐÝ H;
E n:1¡ ÐÝ H;
E m:n¡ ÐÝ H;
Rel ÐÝ getRelationshipspEf q;
foreach Ef � Ei P Rel do

if Ef � Ei then
appendpEf � Ei, E rec¡q;

else if Ei � GeneralizationpEf q then
appendpEi, E super¡q;

else
c � CardinalitypEf � Eiq;
switch c do

case 1 : 1
appendpEi, E 1:1¡q;

case n : 1 appendpEi, E n:1¡q;
otherwise

appendpEi, E m:n¡q;

foreach Ei P E 1:1¡ do
addDimensionpEi,F , “shadow2q;

foreach Ei P E n:1¡ do
addDimensionpEi,F , “normal2q;
if qualifiesAsFactpEiq then

F ÐÝ ConvertToFactpEi, F q;

foreach Ei P E super¡ do
addDimensionpEi,F , “superclass2q;
F ÐÝ ConvertToFactpEi, F q;

foreach Ef � Ei P E rec¡ do
Fk ÐÝ CreateFactSelfAssociationpF , Ef � Eiq;
appendpFk, F q;

foreach Ei P E m:n¡ do
Fk ÐÝ CreateDegenerateFactpF , Eiq;
appendpFk, F q;

foreach Ei P E 1:n¡ do
addDimensionpEi,F , “normal2q;

appendpF , F q;
return F ;

end



6.2 : Acquisition of Multidimensional Schemes from the E/R Schemes 121

Algorithm 2: ConvertAttributes
Data: Entity type Ef

Result: Fact type F corresponding to Ef

begin
F ÐÝ createFactpEf q;
Attr � getAtributespEf q;
foreach A P Attr do

if isMeasurepAq then
addMeasurepA,Fq;

else if isIdentifierpAq then
addDimensionpA,F , “identifier2q;

else
addDimensionpA,F , “degenerated2q;

return F ;
end
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Figure 6.7: Transforming m:n and recursive relationships of COMPONENT (left) into degenerate fact
schemes (right)

IDENTIFYING DIMENSION HIERARCHIES

Fact schemes produced by Algorithm 1 are incomplete in a sense that dimensions are defined solely in terms
of their bottom categories. Therefore, the next step is to model dimension hierarchies. Once the E/R scheme
is brought into an accurate state defined in the previous subsection, dimension hierarchies become easily
identifiable: each category type corresponds to an entity type and the partial order on the category types is
given by the hierarchical, i.e., many-to-one, relationships between categories.

Similarly to the fact conversion procedure, dimension schemes are constructed in a bottom-up fashion by
rooting the dimension’s graph at the bottom category and recursively adding roll-up relationships until the top
level is reached. In the presence of multiple and heterogeneous hierarchies the resulting dimension scheme
contains diverging and converging paths.

Roll-up behaviour of an entity type is determined by its relationships. As dimension categories are identi-
fied bottom-up, the set of relevant relationships is reduced to 1:1, n:1, and m:n. Let us consider the process
of hierarchy modeling at the example of phase dimension in COMPONENT. The corresponding part of the
E/R diagram (simplified for presentation purposes) is given in Figure 6.8.

Possible roll-up behaviours of a candidate dimension category given by an entity type Ed can be cate-
gorized based on the number of its relevant relationships, their structural constraints and interdependencies
(detailed definitions of the presented hierarchy types are given in Chapter 4):
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Figure 6.8: Fragment of the E/R scheme relevant for building phase dimension of COMPONENT

	 Homogeneous (non-)hierarchy emerges in the existence of at most one relevant relationship:

Non-hierarchy is given, if Ed is not involved into any relevant relationship. As an example, consider
a non-hierarchical dimension RECORDER of fact scheme WORKFLOW in Figure 6.8.

Simple hierarchy is given by an n:1 relationship between Ed and some other entity type Ei with
(1,1) as the structural constraint on Ed’s participation (full roll-up of Ed to Ei). For instance,
PHASE and WORKFLOW yield a simple hierarchy.

Non-strict hierarchy is given by an m:n relationship between Ed and some other entity type. Non-
strict hierarchies are not supported by the conventional OLAP.

	 Heterogeneous hierarchy emerges in the existence of an optional roll-up or a single set of relevant
mutually exclusive relationships:

Optional hierarchy is given by an n:1 relationship between Ed and some other entity type Ei with
(0,1) as the structural constraint on Ed’s participation as this relationship produces a partial
roll-up of Ed to Ei.

Non-covering hierarchy results from a set of related partial n:1 relationships. The partiality is given
by (0,1) as the structural constraint on Ed’s participation in each relationship. Besides, the
diverging roll-up paths of Ed ought to converge at a later stage. An example of such partial
related roll-ups is the relationship between CITY, STATE, and COUNTRY in Figure 6.3.

Specialization hierarchy emerges from a specialization relationship of Ed into multiple subclass cat-
egories. As an example, consider a generalized category SYSTEM in Figure 6.4.

	 Multiple hierarchies correspond to multiple relevant relationships that are mutually non-exclusive.
Figure 6.9 shows the relationships of the category DATE as an example of multiple hierarchies.

Alternative hierarchies result from multiple roll-up relationships towards mutually related entity types.
For instance, the relationships of DATE with CAL_MONTH and with CAL_WEEK are alternative,
since the latter two categories have a many-to-many relationship with each other.

Parallel hierarchies correspond to multiple roll-up relationships towards unrelated entity types. For
instance, the relationship of DATE with CAL_MONTH is parallel to that of DATE and WEEKDAY.
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Figure 6.9: Multiple alternative and parallel hierarchies in DATE dimension

    

   ComponentID    

COMPONENT

phase

workflow

recorder

surgery timestamp

time

patient room

run

mode

date

building hospital

started

ended

weekday

cal_month

month

cal_week

quarter

cal_quarter

year

minute

hour

therapy
diagnosis

Figure 6.10: The resulting dimension scheme of the PHASE dimension in COMPONENT

Figure 6.10 shows the result of converging the fragment of the E/R model from Figure 6.8 into a dimen-
sion. Additionally, the structure of the hierarchical category DATE corresponding to the E/R scheme from
Figure 6.9 is shown. Once the construction of the dimension scheme is complete, an abstract top category
is added as a root node at which all dimension’s hierarchies converge. In case of the unified multidimen-
sional space, redundant elements of dimension schemes have to be eliminated by merging sets of compatible
categories as described in Section 5.4 of the previous chapter.

6.3 Evaluation of the Proposed Framework
In this chapter we provided a methodology for obtaining multidimensional schemes from existing conceptual
models of operational data sources. We advocate that the proposed cardinality-based modeling approach
is more adequate for non-conventional data warehousing applications than the classical measure-centric
methodologies. The advantages become manifest especially when dealing with operational or process-
oriented data warehouse scenarios, in which non-measurable fact schemes prevail and metrics of interest
are too versatile to be fully captured at design time.

We invoked the presented methodology for designing a data warehouse for Surgical Workflow Analysis.
Once the conceptual modeling stage is accomplished, it is mapped to a logical model and implemented as a
physical one in the selected backend system. Thereupon, cube designer tools can be used to define desired
multidimensional views from the available data.

In this concluding section of the chapter we present two usage scenarios, in which the designed data
warehouse filled with real data experimentally acquired at ICCAS from a series of running surgical interven-
tions was used to solve typical SWA tasks. Data acquisition is performed using a graphical workflow editor
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Figure 6.11: Multidimensional scheme of a surgical workflow structure

interface, implemented at ICCAS [126]. A trained recorder generates the workflow data instantaneously by
monitoring a running surgical intervention. The originally obtained flow often contains errors, inconsisten-
cies, and gaps due to time pressure, limited visibility or audibility, human or software failures. Therefore,
prior to transferring the workflow to the data warehouse, the data is placed into temporary storage for veri-
fication, correction, and completion. Two methods of reducing recording errors are applicable, whereas the
choice of the method depends on the configuration of the operating environment and the resources available:

1. Multiple recorders are employed to generate multiple versions of the workflow. These versions are
combined to produce the final workflow.

2. A video recording of a surgery is produced to be used as a reference for post-processing the workflow.

Figure 6.11 shows the underlying conceptual model of a surgical workflow (some parts of the scheme
irrelevant for the considered usage scenarios are omitted in order to unclutter the presentation). The final
workflow of each intervention is stored with the characteristic run=0. Only the final workflows are considered
for answering end-user queries.

6.3.1 Usage Scenario 1: Discectomy Surgery
The first usage scenario is concerned with instrument usage analysis in surgical interventions of type discec-
tomy, which is an intervention at the spine. The goal of a discectomy is the partial removal of the herniated
intervertebral disc. The objective of this sample analysis itself is to estimate the potential benefit of modifying
the surgery by introducing an alternative surgical assist system. Typical expert queries in this scenario focus
on the use of different conventional surgical instruments that have the same surgical objective.
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Figure 6.12: Annotated diagram of vertebra as an anatomic structure affected by a discectomy intervention

Figure 6.13: Spine
cross-section view

During a discectomy, parts of the vertebra are removed to assess the underlying
intervertebral disc. Figure 6.12, adopted from [187], shows the main elements of verte-
bra and should give the reader some insight into the affected anatomic structure. Figure
6.13 shows a computer-tomographic image of a rapid prototyping model of the human
spine (cross-section): the intervertebral disc (visible as white segments) is hidden from
surgical access in the center angle under the bone material. The red-line marks the
approximate volume of the vertebra to be removed by the surgeon to gain access to the
intervertebral disc in order to remove it.

To minimize invasiveness at the patient’s body, the access area to the spine is spa-
tially restricted. The two steps of ablating vertebra material and removing the disc are
performed iteratively, i.e., the surgeon ablates only a small part of the vertebra, subse-
quently removing as much tissue of the intervertebral disc as he/she can reach, and then
decides whether further access is needed. If so, the surgeon ablates the next portion of
the vertebra and removes the tissue again, and so on.

Conventional bone ablation at the vertebra is performed using different surgical instruments, such as
surgical punch, trephine, or surgical mallet/chisel. Each of the instrument types is available in different sizes
and has different properties regarding invasiveness or handedness. Instrument usage patterns in terms of
frequency and duration of usage during a discectomy can be obtained by aggregating the corresponding data
from the protocols of surgical intervention.

In a visual OLAP tool, the required aggregates can be obtained by performing a series of simple interac-
tion steps. Figure 6.14 contains the results of the first two of the following four sample queries, obtained by
dragging the fields of interest into a pivot table interface.

Query I. For each intervention of type discectomy and each of the specified bone ablating instruments,
return the number of those work steps, in which that instrument was used by a surgeon.
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The query is answered by specifying a new measure Occurrence, defined as COUNT(*) (simple count-
ing of qualifying fact entries), in fact table WORKSTEP. The aggregates are then computed as a roll-up of
Occurrence by Surgery, Instrument Type and Instrument with selection conditions on Instrument Type (‘bone
ablating’) and on Participant (‘surgeon’).

Query II. For each intervention of type discectomy and each of the specified bone ablating instruments,
return the average duration of a work step, in which that instrument was used by a surgeon.

The query is answered by specifying a new measure Average_duration, defined as AVG(Duration), in
fact table WORKSTEP and performing the same roll-up operation as in Query I.

In the backend, the two interactively specified queries, the results of which are shown in the pivot table
(Figure 6.14), are answered by executing the following SQL statement:

SELECT SURGERY.SurgeryID, INSTRUMENT_TYPE.Name, INSTRUMENT.Name,

COUNT(*) AS Occurrence, AVG(Duration) AS Average_duration

FROM WORKSTEP, INSTRUMENT, INSTRUMENT_TYPE, ACTIVITY,

WORKFLOW, SURGERY, PARTICIPANT, POSITION

WHERE SURGERY.SurgeryID IN

(SELECT SurgeryID FROM SURGERY_DISCIPLINE WHERE DisciplineID IN

(SELECT DisciplineID FROM Discipline WHERE name = ‘‘discectomy’’))

AND WORKSTEP.InstrumentID = INSTRUMENT.InstrumentID

AND INSTRUMENT.TypeID = INSTRUMENT_TYPE.TypeID

AND INSTRUMENT_TYPE.Name = ’bone ablating’

AND WORKSTEP.ActuatorID = PARTICIPANT.PersonID

AND PARTICIPANT.PositionID = POSITION.PositionID

AND POSITION.Name = ’surgeon’

AND WORKSTEP.ActivityID = ACTIVITY.ActivityID

AND ACTIVITY.RecordID = WORKFLOW.RecordID

AND WORKFLOW.Run = 0

AND WORKFLOW.SurgeryID = SURGERY.SurgeryID

GROUP BY ROLLUP (SurgeryID, INSTRUMENT_TYPE.TypeID, INSTRUMENT_TYPE.Name,

INSTRUMENT.InstrumentID, INSTRUMENT.Name)

Measures

 Occurrence  Average duration

Dimensions SurgeryID

Instrument Group Instrument A B C D A B C D

- bone ablating mallet/chisel 0 3 1 1 00:00 00:23 00:34 00:50

punch 9 22 10 9 02:38 00:35 00:46 01:27

trephine 3 0 7 0 02:18 00:00 00:43 00:00

bone ablating Total 12 25 18 10 02:33 00:33 00:45 01:24

Figure 6.14: Instrument usage statistics as a pivot table

Query III. For each intervention of type discectomy, return the number of those work steps, in which a
surgeon used any bone ablating instrument.

The result of this query is obtained from the results of Query I as a roll-up step by removing Instrument
from the grouping set. The results of the query arranged into a bar-chart are presented in Figure 6.15a.
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Figure 6.15: Occurrence and duration of bone ablation steps in discectomy interventions

Query IV. For each intervention of type discectomy, calculate the total time span between the begin of
the first and the end of the last ‘bone ablating’ activity.

The query is answered by defining a new composite measure Timespan as MAX(End) - MIN(Start)
in fact table ACTIVITY. The aggregates are computed as a roll-up of Timespan by Surgery with a selection
condition on Action (‘bone ablation’). A bar chart with the results of this query is shown in Figure 6.15b.

The above queries describe a real-world example from the field of medical engineering. The aggregates
obtained in the above queries describe the usage pattern for bone ablating instruments and provide crucial
information for predicting the success of a new surgical instrument in this field [130]. This new system is
a power driven milling system, whose evolution speed is controlled by its spatial position in relation to the
patient’s body [71]. The system is intended to replace the conventional bone ablating instruments and to
enable the surgeon to perform the entire removal procedure in a single work step.

6.3.2 Usage Scenario 2: Functional Endoscopic Sinus Surgery
The second usage scenario presents the experimental results of recording three cases of functional endoscopic
sinus surgery (FESS) in the discipline ENT surgery. Ten workflow versions of each case were generated by
respectively ten recorders with a similar level of training. The task was limited to storing only the data of type
WORKSTEP and its dimensions. Each surgical case was executed by one surgeon and one assistant. Table
6.1 shows further statistics about the obtained data for each of the three cases. Incompleteness of data records
was caused primarily by missing values for Treated Structure, presumably due to insufficient visibility or lack
of time to enter the values as Treated Structure appears as the last input field in the recording software.

Figure 6.16 shows an example of using line-charts to validate the quality of the obtained data flows. Both
line-charts show three recordings (versions) of the same intervention. The X-axis corresponds to the start
time dimension of ACTIVITY, normalized to display simple auto-incremented timestamps (activity number
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Table 6.1: Statistical overview of the acquired data

Parameter Case 1 Case 2 Case 3

Total number of records 590 848 651
Portion of incomplete records 5.9% 4.2% 4.3%
Minimum number of records per workflow 57 77 61
Maximum number of records per workflow 63 89 68
Number of distinct action types 14 12 20
Number of instruments 11 11 13
Number of treated body structures 6 6 5
Average activity duration (seconds) 37.5 25.3 34.9
Minimum activity duration (seconds) 12.9 6.6 9.8
Maximum activity duration (seconds) 81.3 106 135.2
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Figure 6.16: Synchronizing multiple workflow versions of the same surgical intervention
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Measure frequency duration (minutes) 

Dimension Surgery Surgery  

Instrument 1 2 3 all 1 2 3 all 

Blakesley forcep 16 29 16 61 10.5 6.9 7.4 24.8 

Camera  2 2 3 7 0.8 0.2 0.5 1.5 

Curette, sharp    3 3    2.4 2.4 

Elevator, doble-ended  2 2 3 7 0.7 0.9 1.1 2.7 

Forceps    2 2 4   0.7 0.4 1.1 

Nasal speculum  2 2 2 6 0.7 0.8 0.5 2.0 

Optics + Endoscope  14 14 15 43 18.0 17.9 18.8 54.6 

Sterile towels   1 1 2   0.3 0.1 0.4 

Suction unit 19 35 16 70 4.3 5.6 4.1 836 

Syringe 2 2 2 6 0.7 0.6 0.3 1.5 

Swab 2 2 2 6 0.7 0.7 0.4 1.8 

Tamponades  2 2 2 6 0.5 0.4 0.4 1.3 

Telephone     3 3    0.9 0.9 

Total 61 93 70 224 36.8 34.9 37.2 108.9 

 

Figure 6.17: Pivot table view of the instrument usage statistics

1, 2, . . . , n) instead of absolute time values. The Y -axis shows the duration of each step. As expected, the
trajectories of the resulting graphs are very similar. However, in the original data shown in Figure 6.16a, an
anomaly is evident: while versions 1 and 3 appear well synchronized, version 2 seems shifted in time. The
chart in Figure 6.16b shows the same data, with version 2 shifted backwards by two steps. Now, all versions
appear correctly synchronized. Similar visualizations can be employed to instantaneously detect and resolve
recording inconsistencies that may otherwise be extremely tedious to identify.

Once the “cleansed” data has been written to the data warehouse in form of final workflow versions, it is
available for analysis and exploration. Figure 6.17 shows a pivot table with the results of the following query:

Query I. For each FESS intervention, calculate the frequency of using each instrument as well as the
total duration of each instrument’s usage throughout the intervention (i.e., the number and the duration of
the respective work steps).

A two-dimensional view of the instrument usage numbers with totals and subtotals in Figure 6.17 reveals
valuable insights to surgeons and medical engineers. For instance, it confirms the expectation of similar usage
patterns for most of the instruments across multiple instances of the same surgery type. Also, one can notice
that two instruments were used only in the third case, which could be an indication of an exception in the
workflow. Combination of frequency and duration in the same query is helpful for analyzing the intensity
of usage. For instance, Blakesley forcep and Suction unit were used with similar frequency (61 and 70,
respectively), however, with immense difference in duration (24.8 versus 836 minutes).

Availability of the multidimensional perspective of fine-grain workflow data enables effortless retrieval
of relevant measures by the end-users, whereas advanced OLAP frontends can be employed for more sophis-
ticated analysis tasks, such as pattern recognition, anomaly detection, etc. In Chapter 8 we continue using
the SWA usage scenario for demonstrating advanced visual exploration options, such as ad hoc specification
of user-defined measures.





Chapter 7

Relational Implementation of the
Multidimensional Data Model

T HE AIM OF THIS CHAPTER is to demonstrate the implementability of the proposed extended multidi-
mensional model in a state-of-the-art ROLAP system. We elaborate on the aptitude of the relational
technology for handling complex multidimensional structures and formulate general guidelines for

logical design. A well-established requirement of summarizability is used to determine the necessary scheme
and/or instance transformations. Major challenges arise when dealing with complex dimension hierarchies.
We propose a two-phase normalization approach: in the first phase, heterogeneous hierarchy schemes are
transformed to eliminate incomplete and overlapping specialization, mixed-grain, and non-covering roll-ups;
in the second phase, multiple and generalized hierarchies are decomposed into constituent homogeneous sub-
trees in order to identify non-onto and non-strict mappings and eliminate those via instance normalization.
Finally, we consider the issue of the metadata, which acts as an intermediary between the relational model
and the application layer by capturing the multidimensional semantics behind “plain” data tables.
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7.1 Mapping the Multidimensional Model to the Relational Model
In Section 2.2.3 we highlighted the major data warehouse implementation alternatives and explained why
we favor the relational OLAP architecture as the target platform for implementing our extended conceptual
model. We also discussed various logical design options for the relational implementation, such as star,
snowflake, galaxy, fact constellation, and star cluster schemata. We adopt the galaxy schema based on nor-
malized storage of dimension hierarchies, as in the snowflake schema, with centralized, i.e., non-redundant,
maintenance of semantically related categories. Advantages of this schema can be summarized as follows:

	 Normalized storage of dimension hierarchies enforces consistent maintenance of data hierarchies by
using foreign key constraints for mapping child-parent relationships.

	 Hierarchical structure of a dimension is explicit in the logical schema as each dimension level is
mapped to a separate dimension table referencing its parent level(s).

	 Non-redundant storage guarantees anomaly-free maintenance of dimension hierarchies.
	 Since each category is mapped to a separate dimension table, unification of the multidimensional space

becomes trivial: each set of conform or compatible categories is managed in a centralized dimension
table of the respective category type.

	 Properties of a particular dimension level can be easily associated with that level by adding them as
attributes to the respective dimension table.

	 Semantically related fact schemes and dimensions are mapped to related logical structures. Valid roll-
up paths can be derived simply by “tracing” the foreign key relationships between tables.

	 Interchangeability of fact and dimension roles is given as both are mapped to relational tables.
	 Interchangeability of dimension category, property attribute, and measure role is given as all character-

istics are stored as attributes in relational tables.
	 Non-strict mappings can be handled using an established data warehousing practice of bridge tables.
	 Inheritance in fact and dimension schemes can be handled using (materialized) views and/or integrity

constraints (e.g., triggers).

A conceptual-to-relational mapping of the multidimensional data model is a thoroughly investigated field
of data warehousing, with many established methodologies and designer tools, which foster automated ac-
quisition of logical and physical schemes from the conceptual ones. However, existing approaches perform
poorly or even fail when it comes to handling extensions and modifications of the multidimensional model.
To identify the actual challenges of providing a logical mapping of our extended model, we proceed by “re-
viving” the general rules of the relational data warehouse design according to the galaxy schema [7, 8, 92]:

	 The two types of tables are a fact table and a dimension table.
	 Each fact type is mapped to a relation of type fact table that includes all measure characteristics of the

fact type as well as a foreign key reference to each associated dimension.
	 Each dimension level is mapped to a separate dimension table that includes all attributes of that level

as well as a foreign key reference to each associated parent dimension level.
	 If a roll-up relationship between a pair of dimension levels is non-strict, it may not be referenced via

a foreign key from within the child level table. Instead, such relationship is extracted into a so-called
“bridge table” that includes a foreign key reference for each of the two affected dimension levels.

	 The fact table is associated with each of its dimensions by referencing the dimension’s bottom level,
i.e., each dimension is represented in the fact by the primary key attribute of its bottom category.

	 A partial roll-up relationship is expressed by declaring the respective parent key reference as nullable.
	 Each set of semantically related categories (conform or compatible ones) is maintained centralized in

the same dimension table.
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The above relational model with “snowflaked” dimension hierarchies, arranged into galaxies by sharing
semantically related categories, produces a rather self-describing logical scheme. Fact and dimension cate-
gory types are mapped to fact and dimension tables, respectively, and roll-up relationships are represented
by foreign keys. Related fact schemes are also evident as their logical schemata share dimension tables.
However, the relational model is incapable of capturing multidimensional semantics in its entirety. For in-
stance, it provides no constraints for specifying measure additivity, exclusivity or compatibility of multiple
hierarchies, degenerate fact types, etc. Semantic description of the logical schema in a data warehouse sys-
tem is handled by the metadata layer. The metadata repository is even considered the key component in the
data warehouse architecture [41] as it manages all the information necessary for successful interplay of all
system’s components. Metadata management is the subject of the last section in this chapter.

Application of the relational data warehouse design principles is rather straightforward for most of the
multidimensional constructs. Ambiguities or complications arise when dealing with non-conventional prop-
erties, such as degenerated and derived elements or irregular dimension hierarchies. In the remainder of this
section we discuss the overall process of obtaining logical representations of all types of fact and dimen-
sion schemes supported by our extended model. Logical schemes are constructed using the UML profile for
logical data warehouse design proposed in [102] and introduced in Section 2.2.4.

7.1.1 Mapping Fact Schemes

Each non-derived fact type is mapped to a separate fact table consisting of the fact’s measures and their di-
mensional characteristics. The relational model does not distinguish between normal and degenerate facts.
Fact tables of non-measurable facts consist solely of the respective dimensional characteristics, which, to-
gether, build a fact entry. If a fact identifier dimension exists in the scheme, it is used as a primary key of the
fact table. Otherwise, the entire set of the dimensional attributes form a composite key or, alternatively, a sur-
rogate (i.e., system-generated) fact identifier attribute can be added to the scheme. As an example, consider
a multidimensional fragment consisting of a non-measurable fact SURGERY and its degenerate measurable
fact SURGERY-PARTICIPANT in Figure 7.1a with the corresponding logical implementation shown in Figure
7.1b. As expected, each fact scheme maps to a fact table of its own. The fact table of a measurable fact

<<PK>> SurgeryID
<<FK>> DisciplineID (DISCIPLINE)
<<FK>> DiagnosisID (DIAGNOSIS)
<<FK>> LocationID (LOCATION)
<<FK>> StartTime (TIME)
<<FK>> StopTime (TIME)
<<FK>> PatientID (PATIENT)
<<FK>> RecorderID (RECORDER)

SurgeryID: int
DisciplineID: int
DiagnosisID: int
LocationID: int
StartTime: time
EndTime: time
PatientID: int
RecorderID: int

<<Table>>

SURGERY

<<PK>> SurgeryID, ParticipantID, RoleID
<<FK>> SurgeryID (SURGERY)
<<FK>> ParticipantID (PARTICIPANT)
<<FK>> RoleID (ROLE)

SurgeryID: int
ParticipantID: int
RoleID: int
Fee: numeric

<<Table>>

SURGERY_PARTICIPANT

PARTICIPANT

ROLE
DISCIPLINE

RECORDER

DIAGNOSIS

  

   SurgeryID

SURGERY

start timelocation patientend time

recorderdiscipline

diagnosis

role

participant

   fee

 

SURGERY-PARTICIPANT

TIME

LOCATION

RATIENT

(a) Facts SURGERY and SURGERY-
PARTICIPANT in X -DFM

<<PK>> SurgeryID
<<FK>> DisciplineID (DISCIPLINE)
<<FK>> DiagnosisID (DIAGNOSIS)
<<FK>> LocationID (LOCATION)
<<FK>> StartTime (TIMESTAMPS)
<<FK>> StopTime (TIMESTAMPS)
<<FK>> PatientID (PATIENT)
<<FK>> RecorderID (RECORDER)

SurgeryID: int

DisciplineID: int

DiagnosisID: int

LocationID: int

StartTime: time

EndTime: time

PatientID: int

RecorderID: int

<<Table>>

SURGERY

<<PK>> SurgeryID, ParticipantID, RoleID
<<FK>> SurgeryID (SURGERY)
<<FK>> ParticipantID (PARTICIPANT)
<<FK>> RoleID (ROLE)

SurgeryID: int

ParticipantID: int

RoleID: int

Fee: numeric

<<Table>>

SURGERY-PARTICIPANT

PARTICIPANT

ROLE
DISCIPLINE

RECORDER

DIAGNOSIS

TIMESTAMPS

LOCATION

RATIENT

(b) Fact tables SURGERY and SURGERY-PARTICIPANT in the UML profile

Figure 7.1: Example of conceptual fact schemes and their logical representations
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contains each measure as an attribute (e.g., Fee in SURGERY-PARTICIPANT), whereas the fact table schema
of a non-measurable fact consists solely of dimension attributes.

Dimension attributes of a fact table correspond to fact-dimensional roll-up relationships and are specified
as foreign key references to the respective dimension tables (e.g., PatientID in SURGERY references dimen-
sion table PATIENT). Multiple roles of the same dimension type in a fact scheme result in multiple foreign
key references targeting the same dimension table. For example, dimension table TIMESTAMPS is referenced
as StartTime and as EndTime characteristic in fact table SURGERY.

The only kind of dimension attribute not referencing another table is the one representing a degenerated
dimension, which exists only in the context of its containing fact scheme and, therefore, is not extracted
into a dimension table of its own. In our example, SurgeryID is a degenerated dimension of SURGERY.
Moreover, SurgeryID is a fact identifier and, as such, it qualifies as a primary key in SURGERY. In fact
schemes with no fact identifier, the primary key is composed of the whole set of dimension attributes, as in
SURGERY-PARTICIPANT, where SurgeryID, ParticipantID, and RoleID build the key.

Notice that there is no evident distinction between fact tables of fully-fledged and degenerate facts. An
indication of degeneration is given, if the fact table contains a dimension attribute referencing another fact
table. For example, the schema of SURGERY-PARTICIPANT contains the attribute SurgeryID, i.e., references
SURGERY as a dimension table. Thereby, the relational representation inherently resolves the duality of facts
and dimensions: both types are mapped to relations and both kinds of roll-up relationships – fact-dimensional
and intra-dimensional ones – are implemented as foreign keys. Subsequently, metadata is used to specify the
role of each table in a particular fact’s context.

7.1.2 Handling Derived Elements

According to the rules of “good” database design, derived elements – attributes or relations – should not
be materialized to avoid redundancy and update anomalies. Since the instance of a derived element can
be calculated by querying its base element(s), views (virtual relations) should be employed for storing the
definition of such elements. In the data warehouse design, however, materialization of calculated data views
is a common practice, aimed primarily at boosting the performance.

DERIVED FACTS

Typically, materialized views are constructed as projections of primary facts by aggregating their measures
to a subset of the fact’s dimensions and/or to a desired granularity within a dimension. Such aggregated
views are commonly referred to as “cube computations” or “summary tables” and represent derived multi-
dimensional structures of type fact. Further examples of derived facts are those obtained as an outcome of
scheme-transforming OLAP operators, such as drill-across, push, and pull. In the UML notation, derived facts
are modeled using the view element, linking the former to the fact’s base tables. As an example, consider the
derivation of fact DISCIPLINE-PARTICIPANT defined as a drill-across of SURGERY’s two degenerate facts
SURGERY-PARTICIPANT and SURGERY-DISCIPLINE (the conceptual scheme of the base facts is depicted in
Figure 6.11). The resulting fact scheme DISCIPLINE-PARTICIPANT should include dimensions discipline and
participant and a measure surgeries enumerating the number of surgeries a participant had in the respective
discipline. Figure 7.2 shows the logical schema fragment of this derived fact and its input fact tables.

At the logical design stage, it is not mandatory to distinguish between standard and materialized views
since the actual implementation decision can be taken during the physical design phase depending on storage
availability and other constraints.
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<<PK>> SurgeryID, ParticipantID, RoleID
<<FK>> SurgeryID (SURGERY)
<<FK>> ParticipantID (PARTICIPANT)
<<FK>> RoleID (ROLE)

SurgeryID: int
ParticipantID: int
RoleID: int
Fee: numeric

<<Table>>
SURGERY-PARTICIPANT

PARTICIPANT

ROLE

<<PK>> SurgeryID, DiagnosisID, 
DisciplineID, TherapyID
<<FK>> SurgeryID (SURGERY)
<<FK>> DiagnosisID (DIAGNOSIS)
<<FK>> TherapyID (THERAPY)
<<FK>> DisciplineID (DISCIPLINE)

SurgeryID: int
DiagnosisID: int
TherapyID: int
DisciplineID: int

<<Table>>
SURGERY-DISCIPLINE

SURGERY

DIAGNOSIS
DisciplineID: int
ParticipantID: int
Surgeries: int

<<View>>
DISCIPLINE-PARTICIPANT

THERAPY
DISCIPLINE

Figure 7.2: Derived fact modeled as a view linked to the base fact tables

DERIVED MEASURES AND DIMENSION CATEGORIES

Besides derived facts, our conceptual model supports derived elements of type measure and dimension cat-
egory. To our knowledge, there exist no established guidelines in the data warehouse design for handling
these kinds of derivation. We have come to realize that in most cases it is unfeasible to implement derived
measures and dimension categories using the (materialized) view mechanism.

In case of a measure, materialized storage of its values in the fact table is crucial for query performance.
The question is how and where exactly derived measures should be stored. We distinguish between simple
and complex derivation.

In the simple case, a new measure is computed from one or more measure attributes of the same fact
scheme and, therefore, it has the same set of dimensional characteristics as its input measure(s). For example,
net-profit can be computed as a difference between revenue and expenditure. If the new measure were to be
realized using a materialized view, the view would have to include the entire set of dimensional attributes
and the same number of fact entries as the base fact table. Obviously, it is much cheaper to materialize just
the measure attribute itself by adding it as a column to the base fact table. Since existing fact entries are not
subject to modification, there is no overhead for guarding the consistency of derived measures.

Derivation is complex, if the granularity of the derived measure differs from that of its input measure(s).
In such a case, it would be incorrect to materialize the derived attribute in its base fact scheme. Therefore,
complex measure derivation is considered to be a special case of fact derivation and is handled accordingly,
i.e., using materialized views.

Derived dimension categories represent an additional challenge of the relational design as dimension
tables need to have full-fledged schemata in order to be usable as targets of foreign key relationships and to
reference other dimension tables. Therefore, derived categories are mapped to tables rather than to views.
Initial data loading is performed using an appropriate query while subsequent maintenance relies on triggers
(updates of the base dimension tables are propagated to the table of the derived category).

7.1.3 Mapping Dimension Hierarchies

“Snowflaked” dimension storage is achieved by structuring and normalizing dimension hierarchies according
to the Third Normal Form (3NF) [41]. As a result, each category (or category type) is mapped to a dimension
table of its own, containing the respective dimension level attribute along with all property attributes as well
as a foreign key attribute for each outgoing roll-up relationship of that category. Surrogate keys are commonly
used to achieve efficient implementation of foreign key references.

Normalized hierarchy maintenance has a number of advantages when dealing with complex dimensions.
For example, it provides a more stable context for adding new hierarchies: new roll-up relationships of an
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existing category can be introduced without affecting other categories in the dimension. Snowflake schema
appears to be the most appropriate solution for dimensions with complex schemes, e.g., with a large number of
levels or containing multiple related and/or independent hierarchies. However, the 3NF appears too restrictive
or provides no guidelines for modeling partial related roll-up relationships and irregular hierarchies. For
instance, consider a non-covering hierarchy of project in Figure 7.6a. Intuitively, its relational mapping should
consist of the dimension tables PROJECT, OFFICE, BUILDING, and CITY. As for foreign key relationships,
the bottom level project has a twofold roll-up relationship with city, a direct and a transitive (via office and
building) one. Consequently, two conflicting mapping options arise: a reference to CITY should be stored
within PROJECT, on the one hand, and within its upper level BUILDING, on the other hand.

Non-strict roll-up relationships represent another challenge: existence of multiple parent-level values for
the same element makes it impossible to map this relationship to an atomic-valued parent column.

Apparently, major challenges of mapping dimension schemes to relations arise when dealing with hetero-
geneous, ragged, non-balanced, and non-strict hierarchies. Our approach to handling such non-summarizable
mappings is based on the concepts of controlled heterogeneity and controlled non-strictness, which restore
summarizable aggregation behavior within a hierarchy by forcing the latter to undergo a series if transforma-
tions at the scheme level and, subsequently, at the instance level. The first phase is concerned with scheme
transformation of heterogeneous hierarchies: a dimension scheme is normalized as to eliminate incomplete
and overlapping specialization, mixed-grain, and non-covering roll-up relationships. In the second phase,
instance normalization is conducted: multiple and generalized hierarchies are decomposed into constituent
homogeneous subtrees in order to identify non-onto and non-strict mappings and eliminate those by ap-
plying instance normalization techniques. In the next two sections, the above two phases of normalizing
non-summarizable hierarchies and obtaining their relational mappings are described in detail.

7.2 Mapping Heterogeneous Hierarchy Schemes
Relational data warehouse systems have no methodological guidelines for handling heterogeneous dimen-
sions. Obviously, the concerns of summarizability and adequate mappings of all aggregation paths remain
valid in this context. To realize the requirements of supporting heterogeneity, let us consider various types of
heterogeneous hierarchies defined by our metamodel (see Figure 4.14). The first distinction is made between
non-covering and generalized hierarchies: in the former, the members are simply allowed to skip levels, while
generalization implies existence of superclass/subclass relationships between categories. We expect different
analysis requirements for these two types and propose to handle their modeling accordingly:

	 A non-covering hierarchy scheme is transformed into a summarizable homogeneous symmetric scheme
by applying a well known instance normalization technique, which eliminates skipped levels by insert-
ing “placeholder” nodes. Additionally, non-covering hierarchy can be transformed into a generaliza-
tion, with the latter added as an alternative hierarchy to the homogeneous one.

	 A generalized hierarchy is first normalized at the conceptual level by eliminating mixed grain and over-
lapping specialization. Subsequently, the inheritance relationships are mapped using object-relational
inheritance mechanisms or imitations thereof.

7.2.1 Mapping Non-Covering Hierarchies
The traditional approach to handling a non-covering mapping is to normalize it into a covering one by insert-
ing placeholder elements to fill the gaps of the missing parent nodes. However, this method is criticized for
“polluting” the data with artificial entries and losing the original roll-up relationships. Besides, it is not clear
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Figure 7.3: A non-covering hierarchy of project locations: instance (left) and scheme (right)

C1

A B

A11 A12 A20 A23 B15 B16 B21

P1 P2 P3 P4 P9P5 P6 P7 P8 P10 P13P11 P12

B13

C2

ALL

C3

project

building

city

office

projectT

P18P14 P17P16P15

other

Figure 7.4: State of the non-covering hierarchy with city normalized to covering

how each new node should be named. We propose a slightly modified mapping-to-covering method, which
partially overcomes the above shortages and provides a fully automated normalization routine.

As an example of a non-covering mapping, let us consider the location hierarchy in project dimension,
with a sample instance and its underlying scheme shown in Figure 7.3. Member values with skipping edges
are marked with red color. We use a slightly modified example than the one used previously in Figure 4.15 in
order to increase the complexity of the non-covering behavior. In the current example, project members roll
up either to office or directly to city, or have no location at all (i.e., roll up directly to the root).

Normalization of a non-covering hierarchy scheme H and its instance H evolves as follows:

1. The hierarchy scheme is inspected top-down to identify levels at which skipping occurs. Category Cj

qualifies as a non-covering level, if it is targeted by a full roll-up edge Ck �
(full) Ci, on the one hand,

and there exists at least one bypassing (i.e., rolling up to an upper level of Cj) partial roll-up edge
Ci �

(part) Cm, where Ci �
� Cj and Cj �

� Cm, on the other hand. In our example, city, building and
office represent a set of non-covering categories.

2. The instance of each non-covering level is traversed in order to identify missing member nodes:

	 If a non-covering category Cj represents the highest aggregation level (Cj � JH), a placeholder
element named other1 is added to the member set of Cj and all skipping edges are re-assigned
to roll up to this new element. In our example, depicted in Figure 7.4, such a node (marked with
grey filling) is added to city as a parent of project members P15 and P16. The scheme is modified
accordingly by removing the partial roll-up relationship project �(part) Jproject.

1Another suitable name, such as n/a, unknown, none, etc., can be used instead of other.
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Figure 7.5: Mapping to covering by normalizing non-covering levels building (top) and office (bottom)

	 A non-covering category Ci at any lower aggregation level is normalized by inserting a new
member for each roll-up edge bypassing Ci and adjusting that edge to roll up to the respective
new member in Ci. The states of the hierarchy after normalizing building and office levels are
shown in Figure 7.5. The obtained hierarchy is homogeneous and symmetric.

3. The following naming convention is applied to placeholder elements: the name of the respective parent
member, supplemented by a ‘*’ symbol, is inherited2. For example, skipping edge P14 � C1 (see
Figure 7.4) is resolved by creating a placeholder element named C1* in building, resulting in edges
P14 � C1* and C1* � C1 (see Figure 7.5 (top)). In case of a recursive name propagation, the number
of ‘*’ symbols indicates the depth of the normalization.

The advantage of the proposed normalization approach along with the applied naming strategy is that
it enables a fully automated generation of placeholder nodes with meaningful names, which contain the
information about the original parent element (the propagated name) and the depth of the normalization (the
number of supplement symbols).

The penalty of losing heterogeneity can be overcome by creating multiple alternative hierarchies: i) the
covering hierarchy obtained by applying the above normalization technique and ii) a generalization hierarchy
that extracts each aggregation path from the non-covering scheme into a homogeneous subclass hierarchy,
as described in Section 4.4.3 and depicted in Figure 4.16. With our modified example of a non-covering
hierarchy, the transformation into a generalization would yield three specializations of project: i) internal for
instances that roll up to office, ii) external for instances that roll up to city, and iii) others for instances with no
parent location category. Figure 7.6 illustrates the process of obtaining the final normalized hierarchy scheme:
(a) is the original non-covering hierarchy scheme of project locations; (b) shows the two normalized schemes
– a covering one (left) and a generalization (right); 7.6c is a final normalized scheme consisting of the two

2Any other symbol or string can be used as a supplement.
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Figure 7.6: Transformation of a non-covering hierarchy into a set of multiple alternative hierarchies

<<PK>> CityID

CityID: int
Name: varchar
Placeholder: bool

<<Table>>
CITY

<<PK>> BuildingID
<<FK>> CityID (CITY)

BuildingID: int
Name: varchar
CityID: int
Placeholder: bool

<<Table>>
BUIDING

1
0..*

<<PK>> OfficeID
<<FK>> BuildingID (BUILDING)

OfficeID: int
Name: varchar
BuildingID: int
Placeholder: bool

<<Table>>
OFFICE

1
0..*

<<PK>> ProjectID
<<FK>> OfficeID (OFFICE)
<<FK>> ManagerID  (MANAGER)

ProjectID: int
Code: char(5)
Title: varchar
OfficeID: int
ManagerID: int
ProjType: varchar

<<Table>>
PROJECT

1
0..*

<<PFK>> ProjectID (PROJECT)
<<FK>> OfficeID (OFFICE)
<<Trigger>> UpdateInternal

ProjectID: int
OfficeID: int

<<Table>>
INTERNAL

<<PFK>> ProjectID (PROJECT)
<<FK>> CityID (CITY)
<<Trigger>> UpdateExternal

ProjectID: int
CityID: int

<<Table>>
EXTERNAL

0..1

1

0..1

1

<<PFK>> ProjectID (PROJECT)
<<Trigger>> UpdateOthers

ProjectID: int

<<Table>>
OTHERS

0..1

1
1

0..*

1

0..*

Figure 7.7: Logical schema of project location hierarchies

normalizations as alternative hierarchies. The obtained scheme is summarizable and supports aggregation of
project instances either along the uniform (covering) path or along subclass-specific hierarchies.

The actual relational mapping of a balanced hierarchy according to the galaxy schema is straightforward:
each level is stored in its own dimensional table that references the respective parent-level table. Back to our
example, the four hierarchy levels are mapped to tables PROJECT, OFFICE, BUILDING, and CITY. Figure 7.7
shows the logical schema of project hierarchy. Dimension levels affected by the normalization to covering
contain a boolean field Placeholder for marking placeholder entries.

The alternative specialization-based hierarchy is also present in the logical schema. There exist different
approaches to the relational representation of inheritance. The actual choice depends on the capacities of the
backend system (object-relational features, triggers, rules, materialized views, etc.) and storage constraints.
We propose a rather simple solution based on derived tables, which do not require any advanced database
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procedures. A derived table is similar to a materialized view: both are created as data copies populated
with the data queried from other tables. However, derived tables are superior to materialized views as the
former have a full-fledged scheme definition and, therefore, support the use of integrity constraints, such as
primary and foreign keys, triggers, and check clauses. Foreign keys are imperative for linking fact tables to
dimensions as well as for assembling dimension tables into hierarchies. Triggers and check constraints are
useful for keeping the derived data consistent and up-to-date.

Back to our example, the two project specializations into internal and external are represented by the
derived tables shown with a darker background color in Figure 7.7. In case of a non-covering hierarchy, its
normalized covering instance is captured by a homogeneous hierarchy scheme. The alternative specialization
hierarchy, however, is used to imitate the original non-covering instance and its heterogeneous hierarchy
paths. Therefore, the bottom-level table PROJECT contains the properties of both alternatives: a foreign key
OfficeID for the covering mapping and a ProjType attribute for storing the belonging to a specialization
class of the non-covering mapping. That is why the specialization classes inherit only those properties of the
generalized level, attributing to the non-covering mapping.

Specialization tables of a non-covering hierarchy do not have subtype-specific characteristics apart from
the roll-up relationships. The logical mapping of such a specialization is a table containing the key attribute
of the generalized type and the subtype-specific reference to the parent level. The table is populated via a
query extracting the necessary data from the underlying relations. As an example, consider the maintenance
of the derived table EXTERNAL, instantiated using the following SQL statement:

INSERT INTO EXTERNAL

SELECT PROJECT.ProjectID, BUILDING.CityID

FROM PROJECT, OFFICE, BUILDING

WHERE PROJECT.ProjType = ’External’ AND PROJECT.OfficeID = OFFICE.OfficeID

AND OFFICE.BuildingID = BUILDING.BuildingID

The consistency of the data copy with respect to its sources is guarded using triggers. A trigger is a special
kind of stored procedure that automatically executes when a specified event (such as insert, update, or delete)
occurs in the specified data source. In case of the table EXTERNAL, its trigger function UpdateExternal is
defined as to react to the changes in any of the source tables, i.e., in PROJECT, OFFICE or BUILDING.

7.2.2 Mapping Generalized Hierarchies
The conventional relational model offers three representation alternatives for handling generalization: i) cre-
ating a separate table for the superclass and for each of its subclasses, ii) creating only the subclass tables,
with all superclass-level properties stored within each subclass, and iii) creating a single superclass table
hosting all common as well as subclass-specific attributes and admitting NULL values for the latter. Presence
of hierarchies aggravates straightforward application of these mappings to multidimensional data.

Some approaches on adopting standard relational mappings of generalization for ROLAP have been pro-
posed in the literature. Jagadish et al. [70] suggest normalizing dimension levels into separate tables with
subclass-specific aggregation paths, resulting in the loss of their common hierarchy paths. Flattening of the
hierarchy into a single table with optional attributes, as proposed in [19, 96], provides a homogeneous hi-
erarchy scheme with no subclass-specific hierarchies. Some authors advocate decomposition of a fact table
itself into subclass partitions resulting in a set of homogeneous stars [9, 53]. As a consequence, the entire
set of facts can no longer be explored as one cube. A more flexible approach based on creating one table
for common paths and separate tables for subclass-specific paths is proposed in [9]. In their recent work,
Malinowski and Zimányi [109] propose to supply the normalized dimension tables of splitting levels with
two kinds of roll-up references: i) to the subclass-specific parent level and ii) to the superclass’ parent level.
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The resulting hierarchy paths enable flexible traversal of heterogeneous trees: from the splitting level, the
user can drill into a subclass tree or use the generalized link to remain in the common path.

Our approach to mapping generalized hierarchies is similar to that of [109]. However, it adds even more
exploration options by handling the “mixed grain” phenomenon and overlapping subclass aggregation paths.
The major challenge of building a dimension with heterogeneous instances and hierarchy paths is handled
at the conceptual level. In Section 4.4.3 we defined various properties of generalized hierarchies, such as
completeness, disjointness and raggedness. We also stated that generalized hierarchies of type mixed grain,
incomplete and overlapping specialization lead to non-summarizable aggregation behavior. Therefore, these
hierarchy types undergo scheme normalization to a complete disjoint specialization with no mixed grain.

NORMALIZING SPECIALIZATION

Incomplete specialization can be easily overcome by adding a superclass to cover those members that cause
incompleteness, as described in Section 4.4.3 and exemplified in Figure 4.23b, in which category other staff
was created as a superclass, additional to admin. staff and teaching staff. This normalization is similar to
adding placeholder parent elements in a non-covering hierarchy, except that not just a new member but a new
category has to be inserted to resolve edge skipping.

With overlapping specialization, various normalization strategies are conceivable. A rather simple strat-
egy is to eliminate roll-up edges that cause overlap by “sacrificing” a subset of the original relationships. In
many applications, however, such a trade-off is inadmissible for correct analysis. To meet the requirement of
preserving the original relationships, we propose the following approach to resolving overlap:

1. Each overlap of multiple subtypes is extracted into a subclass of its own. Figure 7.8 demonstrates this
process at the example of an overlapping specialization into categories A, B, C, D, and E: the hierarchy
on the top is the original one (member values causing overlap are marked with red background color)
and the bottom one is the transformed state after adding a new subclass for each set of overlapping
classes (e.g., overlap of B, C and D is extracted into category BCD, and so on).

2. New categories are augmented with hierarchy paths inherited from all their contained subclasses.

3. Optionally, an additional abstraction level can be introduced to group new subclasses with the origi-
nal ones according to the needs of the analysis. Each “composite” subclass is attached to one of its
subclasses, e.g., BCD is attached to B. Alternative groupings are specified as alternative specialization
hierarchies. Back to our example, let us suppose that two grouping options are feasible: i) subclasses
containing B are merged with B into a superclass B* and those containing D are merged with D into

CA B D E

ALL

CA B D EAB BCD CDE DE

ALL

Figure 7.8: Transforming overlapping specialization (top) into a disjoint one (bottom)
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D* and ii) first, subclasses containing C are merged with C, then those containing E are merged with E
and, finally, those containing B are merged B. Figure 7.9 shows the resulting alternative specialization
hierarchies, as (a) and (b), respectively (bottom level is omitted for compactness).

ALL

CB* D* E

B DAB BCD CDE DE

A

(a) Order of precedence B, D

ALL

C*B* D E*

CB EAB BCD CDE DE

A

(b) Order of precedence C, E, B

Figure 7.9: Adding alternative generalization layers for grouping disjoint subclasses

Back to the example of overlapping specialization of person into student and staff, presented in Chap-
ter 4 (see Figure 4.24), let us suppose that students may actually function only as teaching staff and not
as administrative one. Application of the above transformation steps would yield a new subclass student
teaching staff, inheriting from student, staff, and teaching staff. Let us further suppose that associating this
category with student is more relevant for the analysis than that with teaching staff. Figure 7.10 shows the
transformed dimension scheme of person, in which the overlap of student and teaching staff staff is extracted
into a specialization of student named student staff, the remainder of student members form the counterpart
specialization student non-staff. Notice, that inheritance of student staff from teaching staff is implied by
adding aggregation hierarchies of staff and teaching staff as multiple parallel hierarchies to student non-staff.

person

staff student

admin. unit

teaching staff

T staff

admin. staffT teaching staffT 

admin. staff
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faculty

department

chair

office

building
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studentT 
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faculty

department
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student 
non-staff

student 
staff

chair

student staffT student 
non-staff

T 

section

faculty

department

office

building

position

birth date

birth year

age group

generation

country

subcontinent

continent

Figure 7.10: Generalized hierarchy person after eliminating overlapping specialization



7.2 : Mapping Heterogeneous Hierarchy Schemes 143

NORMALIZING MIXED GRAIN

We propose an approach to transforming mixed hierarchies into summarizable generalization hierarchies by
adding missing abstraction levels. The approach evolves largely in the same steps as the one for generalized
hierarchy schemes described in Section 4.4.3. However, the awareness of ragged categories is “injected” into
the scheme in form of self-specialization in the very first step. Self-specialization is a role-driven phenomenon
of specializing a category according to its twofold role (i.e., bottom and non-bottom grain) into two subtypes
of the respective roles. The original mixed-grain category turns into a generalization of the two subtypes
providing correct summarization. Resolution of mixed grain evolves in the following steps:

1. In the plain inheritance hierarchy, each mixed-grain category is presented as a generalization of its
two roles, e.g., faculty is specialized into faculty-self and faculty*, with faculty-self denoting faculties as
purchaser units per se and faculty* as a hierarchy level for grouping department units. Figure 7.11a
shows the inheritance tree of teaching unit with self-specializations of department and faculty.

2. The inheritance hierarchy is turned into a dimension scheme by adding abstract local root nodes on top
of each specialization node and replacing shared-target style specialization edges by a set of distinct
edges. The resulting hierarchy scheme is depicted in Figure 7.11b.

3. The scheme is augmented with roll-up relationships between categories. In the first place, hierarchical
relationships between the bottom categories are added, following the rules of the unified multidimen-
sional space, i.e., avoiding redundancy, with the result shown in Figure 7.12. Thereby, chair rolls-up to
department*, which is a purely hierarchical subtype of department.

4. The remaining two steps, namely, obtaining a unified bottom level and pushing down specializations,
are performed by integrating the scheme obtained in the previous step into purchaser dimension (see
Figure 4.19). These steps are executed exactly as described for the case of generalized hierarchies. The
final state of the entire dimension scheme purchaser is given in Figure 7.13.

teaching unit

department facultychair

department-self department* faculty-self faculty*

teaching unit

department

faculty
chair

T teaching unit

T chair

T department

T faculty

faculty-self faculty*

T faculty*T faculty-self

department-self

T department-self

department*

T department*

(a) Inheritance tree with self-specialization

teaching unit

department facultychair

department-self department* faculty-self faculty*

teaching unit

department

faculty
chair

T teaching unit

T chair

T department

T faculty

faculty-self faculty*

T faculty*T faculty-self

department-self

T department-self

department*

T department*

(b) Mixed inheritance hierarchy with local roots added

Figure 7.11: Resolving mixed grain into self-specializations

THE OVERALL MAPPING PROCEDURE

The conceptual scheme is converted into a relational one by creating a separate dimension table for each
distinct aggregation level including superclass and subclass levels and excluding abstract subclass root cat-
egories. Generalized levels are used to unify members of different categories into one category, raising the
problem of global primary key uniqueness. Let us consider the example of a highly heterogeneous scheme
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teaching unit

department

faculty

chair

T teaching unit

T chair

T department

T faculty

faculty-selffaculty*

T faculty* T faculty-self

department-self

T department-self

department*

T department*

section

Figure 7.12: Adding roll-up relationships to a self-specialization scheme
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Figure 7.13: A completed generalized hierarchy scheme purchaser

purchaser, depicted in Figure 7.13: its bottom level unifies the members originally coming from diverse cat-
egories, such as chair, department, teaching staff, etc., each with its own primary key attribute and its own
allocation strategy. The resulting logical schema of purchaser as a generalized hierarchy is given in Figure
7.14. For compactness, cardinalities are not shown but rather implied by the edge type, i.e., generalization
edge for an “is-a” relationship and composition edge for a roll-up.

A simple but reliable strategy to merging data from multiple sources into one relation is to maintain
an original-to-new primary key mapping: in the generalized level’s relation, each member is assigned a
new primary key value. Additionally, the original key value and its source are stored to be able to trace
the member’s origin. In our logical schema presented in Figure 7.14, the above key mapping approach is
applied at each generalization level. The most generalized level has a distinguished role of the authority
that provides the dimension-wide identifier attribute. In our example, this role is carried out by the bottom
category PURCHASER, whose primary key attribute PurchID serves as a unique identifier for all members
“imported” into that category. Attributes OriginalID and Type capture each member’s actual key value
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<<PK>> LocationID

LocationID: int
Description: varchar

<<Table>>
LOCATION

<<PK>> PurchID
<<FK>> LocationID (LOCATION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
LocationID: int

<<Table>>
PURCHASER

<<PFK>> PurchID (PURCHASER)
<<FK>> LocationID (LOCATION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
LocationID: int

<<Table>>
UNIT

<<PK>> BuildingID
<<FK>> CityID (CITY)

BuildingID: int
Name: varchar
CityID: int
Placeholder: bool

<<Table>>
BUIDING

<<PK>> OfficeID
<<FK>> BuildingID (BUILDING)

OfficeID: int
Name: varchar
BuildingID: int
Placeholder: bool

<<Table>>
OFFICE

<<PK>> PositionID

PositionID: int
Name: varchar

<<Table>>
POSITION

<<PK>> StaffID 
<<FK>> OfficeID (OFFICE)
<<FK>> PositionID (POSITION)
<<FK>> AdminUnitID (ADMIN_UNIT)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser2
<<Trigger>> UpdateStaff1

StaffID: int
Name: varchar
AdminUnitID: int
OfficeID: int
PositionID: int
LocationID: int

<<Table>>
ADMIN_STAFF

<<PK>> UnitID 
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser1
<<Trigger>> UpdateUnit1

UnitID: int
Title: varchar
LocationID: int

<<Table>>
ADMIN_UNIT

<<PFK>> PurchID (PURCHASER)
<<FK>> LocationID (LOCATION)
<<FK>> SectionID (SECTION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
SectionID: int
LocationID: int

<<Table>>
TEACHING_UNIT

<<PK>> StaffID 
<<FK>> OfficeID (OFFICE)
<<FK>> PositionID (POSITION)
<<FK>> ChairID (CHAIR)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser3
<<Trigger>> UpdateStaff2

StaffID: int
Name: varchar
ChairID: int
OfficeID: int
PositionID: int
LocationID: int

<<Table>>
TEACHING_STAFF

<<PFK>> PurchID (PURCHASER)
<<FK>> OfficeID (OFFICE)
<<FK>> PositionID (POSITION)
<<FK>> LocationID (LOCATION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
OfficeID: int
PositionID: int
LocationID: int

<<Table>>
STAFF

<<PK>> FacultyID
<<FK>> SectionID (SECTION)
<<FK>> LocationID (LOCATION)
<<FK>> OwnID (FACULTY)
<<Trigger>> UpdatePurchaser6
<<Trigger>> UpdateTUnit3
<<Trigger>> UpdateUnit4

FacultyID: int
Name: varchar
SectionID: int
LocationID: int
OwnId: int

<<Table>>
FACULTY

<<PK>> SectionID

SectionID: int
Name: varchar

<<Table>>
SECTION <<PK>> ChairID

<<FK>> DeptID (DEPARTMENT)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser4
<<Trigger>> UpdateTUnit1
<<Trigger>> UpdateUnit2

ChairID: int
Name: varchar
DeptID: int
LocationID: int

<<Table>>
CHAIR

<<PK>> DeptID
<<FK>> FacultyID (FACULTY)
<<FK>> LocationID (LOCATION)
<<FK>> OwnId (DEPARTMENT)
<<Trigger>> UpdatePurchaser5
<<Trigger>> UpdateTUnit2
<<Trigger>> UpdateUnit3

DeptID: int
Name: varchar
Dean: varchar
FacultyID: int
LocationID: int
OwnId: int

<<Table>>
DEPARTMENT

Figure 7.14: Logical schema of a generalized hierarchy purchaser

and its source table, respectively. Figure 7.15 exemplifies the proposed key allocation approach by showing
sample instances of DEPARTMENT and FACULTY tables and their representation in PURCHASER.

New key values can be generated using auto-increment or some other function. The generalized relation
is instantiated via a query that builds a union over all specialization tables at the bottom of the inheritance
tree. PURCHASER instance is created as a union of 5 specializations with the following SQL statement:
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INSERT INTO PURCHASER(OriginalID, Type, Title, LocationID)

SELECT UnitID, ’ADMIN_UNIT’, Title, LocationID FROM ADMIN_UNIT

UNION SELECT StaffID, ’ADMIN_STAFF’, Name, LocationID FROM ADMIN_STAFF

UNION SELECT FacultyID, ’FACULTY’, Name, LocationID FROM FACULTY

UNION SELECT DeptID, ’DEPARTMENT’, Name, LocationID FROM DEPARTMENT

UNION SELECT ChairID, ’CHAIR’, Name, LocationID FROM CHAIR

Due to the pursued key propagation strategy, non-transitive specialization relations are created first, fol-
lowed by the most generalized superclass. Thereupon, transitive specialization classes are defined as derived
tables (see relations UNIT, STAFF and TEACHING_UNIT in Figure 7.14). Once the schema of the entire dimen-
sion is completed, trigger constraints are added to each terminal specialization table to guard the consistency
of the affected generalized level(s). For instance, FACULTY provides a trigger for each of its generaliza-
tions: UpdatePurchaser6 propagates modifications in FACULTY instance to the utmost generalization table
PURCHASER, while UpdateTUnit3 and UpdateUnit4 are responsible for keeping the copies of FACULTY
members in the derived generalization tables TEACHING_UNIT and UNIT, respectively, up-to-date.

Let us now consider how the logical schema handles roll-up relationships in a generalization. Such rela-
tionships are propagated in the inheritance hierarchy bottom-up, i.e., starting from the terminal specialization
categories and proceeding towards the next-level generalized category, until the utmost generalization is
reached. Those parent-level references that are present in each specialization category, are replicated to the
generalized one. For instance, OFFICE and POSITION references in TEACHING_STAFF and ADMIN_STAFF
reoccur in STAFF, whereas LOCATION reference, common for all terminal specializations, reoccurs at each
generalization level. In addition to the above propagation of parent references, generalized categories should
account for transitive roll-up relationships common for all specializations. In our example, the hierarchy
schemes of TEACHING_UNIT specializations CHAIR, DEPARTMENT, and FACULTY converge at SECTION. As a
result, a roll-up to SECTION should be added to TEACHING_UNIT.

Finally, the issue of mapping mixed-grain generalization remains to be considered. Mixed grain oc-
curs in DEPARTMENT and FACULTY as their member values play a double role by acting as non-hierarchical
PURCHASER specializations, on the one hand, and as aggregation levels for CHAIR and DEPARTMENT, re-
spectively, on the other hand. In the conceptual scheme, we proposed to resolve this duality by making

DEPARTMENT

DeptID Name Dean FacultyID LocationID OwnID

1 Computer Science Peter Jung 1 511 1
2 Information Science Hans Stolz 1 514 2

FACULTY

FacultyID Name SectionID LocationID OwnID

1 Computer and Information Science 1 510 1
2 Mathematics and Statistics 1 232 2

PURCHASER

PurchID OriginalID Type Title LocationID

1 1 FACULTY Computer and Information Science 510
2 2 FACULTY Mathematics and Statistics 232
3 1 DEPARTMENT Computer Science 511
4 2 DEPARTMENT Information Science 514

Figure 7.15: Example of obtaining the instance of the generalized relation PURCHASER
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<<PFK>> PurchID (PURCHASER)
<<FK>> LocationID (LOCATION)
<<FK>> SectionID (SECTION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
SectionID: int
LocationID: int

<<Table>>
TEACHING_UNIT

<<PK>> FacultyID
<<FK>> SectionID (SECTION)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser6
<<Trigger>> UpdateTUnit3
<<Trigger>> UpdateUnit4

FacultyID: int
Name: varchar
SectionID: int
LocationID: int

<<Table>>
FACULTY

<<PK>> SectionID

SectionID: int
Name: varchar

<<Table>>
SECTION

<<PK>> ChairID
<<FK>> DeptID (DEPARTMENT)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser4
<<Trigger>> UpdateTUnit1
<<Trigger>> UpdateUnit2

ChairID: int
Name: varchar
DeptID: int
LocationID: int

<<Table>>
CHAIR

<<PK>> DeptID
<<FK>> FacultyID (FACULTY)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser5
<<Trigger>> UpdateTUnit2
<<Trigger>> UpdateUnit3

DeptID: int
Name: varchar
Dean: varchar
FacultyID: int
LocationID: int

<<Table>>
DEPARTMENT

<<PK>> FacultyID
<<FK>> SectionID (SECTION)
<<FK>> LocationID (LOCATION)
<<FK>> OwnID (FACULTY)

FacultyID: int
Name: varchar
SectionID: int
LocationID: int
OwnId: int

<<Table>>
FACULTY1

<<PK>> DeptID
<<FK>> FacultyID (FACULTY)
<<FK>> LocationID (LOCATION)
<<FK>> OwnId (DEPARTMENT)

DeptID: int
Name: varchar
Dean: varchar
FacultyID: int
LocationID: int
OwnId: int

<<Table>>
DEPARTMENT1

Figure 7.16: Resolving mixed grain into multiple dimension tables

a non-hierarchical “version” of the ragged category to roll up to its hierarchical counterpart. In the rela-
tional schema, this kind of recursive roll-up relationship can be conveniently expressed using a self-reference
attribute OwnId. Figure 7.16 exemplifies the idea behind the self-reference by showing a variant of the
same scheme fragment, in which mixed dimension levels are resolved each into two tables, making the
double role evident: DEPARTMENT1 and FACULTY1 represent non-hierarchical PURCHASER specializations,
whereas DEPARTMENT and FACULTY are hierarchy levels. As expected, DEPARTMENT1 as a purchaser rolls
up to DEPARTMENT as a hierarchy level. Obviously, the above resolution of a category into a pair of nearly
identical tables produces unnecessary redundancy in the physical storage. Therefore, we suggest to merge the
two relations into one and capture the different views and roles of the respective category through metadata.
Figure 7.17 shows the state of the relational scheme from Figure 7.16 after incorporating DEPARTMENT1 and
FACULTY1 tables into DEPARTMENT and FACULTY, respectively.

The approach to implementing heterogeneous hierarchies, described in this section, is based on the ma-
terializing generalized categories and replicating parent-level references upwards along the entire general-
ization hierarchy. Even though at the expense of redundant storage, it achieves the preservation of all valid
aggregation paths and their combinations, as implied by the underlying conceptual scheme:

	 The logical representation of any hierarchy level including generalized ones is complete as it encom-
passes all valid attributes and roll-up relationships. Therefore, any level can be reused outside of its
original dimensional context. For instance, the generalized category STAFF and its specializations in
PURCHASER dimension are ready to be used as staff dimension in any fact scheme.

	 All valid aggregation paths of a generalized category are available directly, i.e., without accessing its
specializations.

	 Hierarchies elevated to the generalized level remain available at the subclass level as hierarchies, par-
allel to the subclass-specific ones.
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<<PFK>> PurchID (PURCHASER)
<<FK>> LocationID (LOCATION)
<<FK>> SectionID (SECTION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
SectionID: int
LocationID: int

<<Table>>
TEACHING_UNIT

<<PK>> FacultyID
<<FK>> SectionID (SECTION)
<<FK>> LocationID (LOCATION)
<<FK>> OwnID (FACULTY)
<<Trigger>> UpdatePurchaser6
<<Trigger>> UpdateTUnit3
<<Trigger>> UpdateUnit4

FacultyID: int
Name: varchar
SectionID: int
LocationID: int
OwnId: int

<<Table>>
FACULTY

<<PK>> SectionID

SectionID: int
Name: varchar

<<Table>>
SECTION

<<PK>> ChairID
<<FK>> DeptID (DEPARTMENT)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser4
<<Trigger>> UpdateTUnit1
<<Trigger>> UpdateUnit2

ChairID: int
Name: varchar
DeptID: int
LocationID: int

<<Table>>
CHAIR

<<PK>> DeptID
<<FK>> FacultyID (FACULTY)
<<FK>> LocationID (LOCATION)
<<FK>> OwnId (DEPARTMENT)
<<Trigger>> UpdatePurchaser5
<<Trigger>> UpdateTUnit2
<<Trigger>> UpdateUnit3

DeptID: int
Name: varchar
Dean: varchar
FacultyID: int
LocationID: int
OwnId: int

<<Table>>
DEPARTMENT

Figure 7.17: Optimized logical schema of dimension tables with mixed grain

In this section, we focused on the challenges of handling heterogeneity in dimension hierarchies and
presented a relational mapping that enables adequate storage of such hierarchies and lays the foundation for
correct aggregation behavior. The relational schema alone, however, is insufficient for recognizing all valid
aggregation paths. This task is carried out by the metadata, which specifies the actual structure of facts and
dimensions. Further insights on metadata are provided in Section 7.4.

7.3 Enforcing Summarizability in Homogeneous Hierarchies

An important requirement towards the logical schema is that it must fulfill the summarizability constraint.
Non-summarizable hierarchy types have been classified by our dimensional metamodel, depicted in Figure
4.5. In the previous section, we presented scheme normalization techniques for enforcing summarizable be-
havior in heterogeneous hierarchies of types non-covering, incomplete, overlapping, and mixed-grain. There-
fore, it remains to handle non-strict and non-onto mappings in homogeneous hierarchy schemes.

Various transformation techniques for enforcing summarizability have been proposed in the literature
[19, 109, 145]. In general, the choice of a particular technique depends largely on the semantics behind
the data and the requirements of the analysis. If irregularity is caused by missing or imprecisely captured
values and it is crucial to produce imprecision-aware queries and results (e.g., in clinical diagnosing or risk
assessment), the approach of Pedersen et al. [145], in which the original data remains de-normalized and
imprecision is made explicit to the user by providing a set of alternative queries, may provide an adequate
solution. However, if the data hierarchy is intrinsically asymmetric, such as the hierarchical structure of an
organization, it needs to be normalized to ensure correct aggregation using conventional OLAP operators.
Our choice of instance normalization techniques is driven by the considerations of minimality, transparency,
and intuitiveness for the user.

Recall that a hierarchy is summarizable, if it is onto, covering and strict. Hierarchies in the real world may
violate one or more of those properties. If more than one property is violated at the same hierarchy level, it is
imperative to determine the precedence in which the summarizability conditions are enforced. Pedersen et al.
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[145] propose to normalize irregular hierarchies by mapping to covering, followed by mapping to onto and,
finally, to strict. By investigating various data sets, we figured out, that the order of the transformation steps
depends on the kinds of techniques invoked at each step. For instance, mapping to strict by eliminating multi-
parent edges may produce a non-onto hierarchy. In such a case, it appears feasible to handle non-strictness
prior to non-onto in order to avoid cyclic normalization.

The actual transformation of the hierarchy instance is preceded by exact localization of each summariz-
ability violation pattern in the hierarchy scheme. As an example of a hierarchy that contains fragments of
types non-onto, non-strict, and non-covering, let us consider a sample organization hierarchy of university
courses, depicted in Figure 7.18, with the hierarchy scheme shown to the right of the instance. Courses are
offered by departments, departments belong to faculties and the latter are grouped into sections.
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Engineering
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informatics Chemistry Sociology Philosophy  

& Ethics

ALL

Mathematics & 
Computer Science

Mathematics Computer 
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PedagogicsSociology Philosophy Ethics

Psychology

Psychology

Natural Sciences Humanities

multi-parent  member

non-onto member

non-covering roll-up

Explanation:

course

faculty

section

department

courseT

Figure 7.18: A sample hierarchy containing non-onto, non-covering and non-strict elements

However, there exist faculties with no subdivision into departments, which also offer courses (e.g., Biol-
ogy) and there exist departments not assigned to any faculty (e.g., Philosophy). These two kinds of deviating
roll-up behavior result in non-covering mappings between course and department and between department
and faculty (non-covering edges in the hierarchy instance are marked with dark-red color).

There exist departments with no courses (e.g., Pedagogics), resulting in a non-onto mapping between
course and department (non-onto elements in the hierarchy instance have yellow background color).

Finally, there are courses offered jointly by multiple departments and/or faculties (e.g., Bioinformatics)
as well as there are faculties assigned to multiple sections (e.g., Psychology), resulting in non-strict map-
pings between course and department/faculty and between faculty and section (multi-parent members are
shown with orange background color). The results of localizing non-balanced hierarchy fragments can be
summarized as follows:

	 Non-covering: course �(part) pdepartment|facultyq and department �(part) pfaculty|sectionq
	 Non-onto: course � department
	 Non-strict: course �(part) pdepartment|facultyq and faculty � section

7.3.1 Mapping to Covering
The first transformation step maps a hierarchy instance to covering. It is achieved by applying the combined
scheme and instance normalization technique presented in Section 7.2.1. Back to the above example, the
resulting covering hierarchy is depicted in Figure 7.19 (the inserted placeholder elements are shown with
grey background).



150 Chapter 7 : Relational Implementation of the Multidimensional Data Model
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Figure 7.19: The state of the hierarchy after mapping to covering

7.3.2 Mapping to Strict

A data warehouse designer confronted with non-strict hierarchies has two major choices: i) to preserve
non-strictness in the data and to provide mechanisms for correct aggregation in such hierarchies, and ii) to
transform a non-strict hierarchy into a strict one.

If the analysis admits or even requires a hierarchy to be mapped to strict, the actual choice of the trans-
formation technique depends on the semantics behind non-strict roll-up relationships. In what follows, we
present two strategies for mapping to strict, namely, a manual one based on edge elimination and an algorith-
mic one based on fusing multiparent elements.

EDGE ELIMINATION

If the accuracy of many-to-many relationships is not crucial for the analysis, the hierarchy can be transformed
into strict via a simple edge elimination: each set of multi-parent roll-up relationships is reduced to a single
“priority” edge. Priority edges can be specified manually based on the use preferences, or picked randomly
if no such preferences are available. Only the resulting strict hierarchy is implemented. Figure 7.20 shows a
sample strict mapping of the sample course hierarchy, obtained via edge elimination. Note that this technique
may have a side effect of leaving some of the affected parent elements non-onto (childless), as is the case
with Ethics Department in our example.
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Figure 7.20: The state of the hierarchy after eliminating multi-parent roll-ups
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“FUSED” MULTI-PARENT ELEMENTS

Pedersen et al. [144] propose a solution based on turning a non-strict hierarchy into a strict one based on
“fusing” each set of multiple parent elements into one “fused” value. The hierarchy is normalized bottom-up.
First, explicit and implied non-strict roll-ups between hierarchy levels are to be identified. In our sample
hierarchy, depicted in Figure 7.19, overlapping subtrees exist at department, faculty, and section level. New
parent elements are inserted as a new category between the original parent and child categories of a non-strict
roll-up and is named set-of ‘p’, where ‘p’ is the name of the parent category. For example, category set-of
department is inserted in-between course and department, resulting in a strict roll-up relationship between
course and set-of department. Elements of all new categories at different levels are linked to one another to
produce a strict hierarchy. Figure 7.21 shows the state of the hierarchy after inserting three additional levels.
Since the original algorithm in [144] prohibits non-onto nodes in the input hierarchy, we suggest treating them
just like onto nodes within the same category at this stage. The resulting scheme course � set-of department
� set-of faculty � set-of section � Jcourse is strict.

Note that the elements of the new category are also linked to the relevant values of the original parent
category (e.g., set-of department rolls up to department) resulting in a non-strict mapping between the two,
as reflected in the hierarchy scheme shown on the right of its instance in Figure 7.21. The authors propose
to disable non-summarizable aggregation along such paths by “unlinking” the original parent category from
its upward roll-up path. Thereby, upper-level aggregates can be reached only through the hierarchy of fused
categories and not the original one. For our example, it means detaching department from set-of faculty,
faculty from set-of section and section from Jcourse. In Figure 7.21, the edges affected by this elimination are
marked with a red cross in both the instance and the scheme.

Unlinking elements from their upward hierarchy paths results in the existence of subtrees not reaching
the root node. In [144], unlinked categories are denoted “unsafe” and are exempted from the aggregation.
However, the algorithm preserves unlinked subtrees in the hierarchy instance along with the corresponding
scheme fragments, detached from the root category. In our model, such fragments are inadmissible by defi-
nition (each member in a dimension finally rolls up to the root) and, therefore, have to be entirely removed
from the final state of the hierarchy. Figure 7.22 shows the resulting strict hierarchy after the removal of the
“unsafe” categories. Note that we also marked the childless fused element Pedagogics as onto.
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Figure 7.21: The state of the hierarchy after adding categories with “fused” elements
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Figure 7.22: The state of the sample hierarchy after unlinking non-strict roll-up relationships

BRIDGE TABLES

Another group of techniques aims at storing a non-strict mapping “as it is” or with additional hints for correct
aggregate computation. A currently popular data warehouse implementation of a many-to-many relationship
between a pair of categories is known as bridge table [87]. A separate bridge table is created for each non-
strict roll-up relationship in the hierarchy to compensate for the missing parent level reference in the child
category’s dimension table. In addition to the child-parent pair itself, a bridge table must include information
about measure distribution, i.e., how a lower-level aggregate is to be split between its multiple upper-level
parent aggregates. This information can be made available in one of the following representations:

1. “Weighted” non-strictness. In the conceptual model, we introduced a summarizable hierarchy of
type weighted non-strict (see Section 4.4.1): whenever an element rolls up to multiple parent elements,
each of these roll-ups is assigned a degree of belonging (weight) valued between 0 and 1. The sum of
one child node’s degrees of belonging should be exactly 1.0 to ensure summarizable aggregation. The
sample covering hierarchy from Step 1, augmented with edge weights for resolving non-strict roll-up
relationships at department and section levels is depicted in Figure 7.23.

As for the implementation of the resulting hierarchy, the dimension tables COURSE and FACULTY have
no parent level reference. Instead, two bridge tables, COURSE_DEPARTMENT and FACULTY_SECTION,
have to be created to capture the respective weighted non-strict roll-up relationships.

In the process of aggregate computation, consistent results are ensured by multiplying the measure,
aggregated along a weighted non-strict hierarchy, with each enclosed element’s degree of belonging.

2. Ad hoc edge elimination. If multi-parent relationships are relatively infrequent or if a hierarchy is
used in different contexts, “priority” parent values can be specified ad hoc. Whenever a roll-up oper-
ation encounters a multi-parent relationship, the user is prompted to specify interactively, to which of
the parent aggregates the child aggregate should be assigned. The advantage of this strategy compared
to simple edge elimination is leaving the resolution up to the user, thus supporting various user pref-
erences. Figure 7.24 shows a non-strict hierarchy and its ad hoc strict variant, obtained by marking
the edges to be excluded when performing a roll-up. Edge elimination can be seen as a degeneration
of weighted non-strictness, in which one of the parent elements is assigned the weight of 1 and all the
others are set to 0. Therefore, this technique can be implemented similarly, i.e., using bridge tables with
a data field for storing the degree of belonging. Ad hoc specification of a user-defined strict hierarchy
variant is done on that user’s copy of the bridge table.
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Figure 7.24: The state of the hierarchy after ad hoc edge elimination

7.3.3 Mapping to Onto

Mapping to onto is performed as the final step since a symmetric hierarchy may become non-onto as a result of
eliminating parent edges for resolving non-strictness, as in the case depicted in Figure 7.24. Interestingly, this
last step may be omitted altogether in those cases, where childless members in the hierarchy are guaranteed to
have no associated fact entries. For example, the member Pedagogics Department, which offers no courses,
is simply irrelevant for the course hierarchy.

Mapping to onto is crucial for inherently asymmetric hierarchies, in which leaf nodes actually belong to
different hierarchy levels, resulting in mixed granularity. As an example of such asymmetry, let us consider
the structure of educational units themselves, i.e., without the offered courses, from Figure 7.18. The original
state of this hierarchy shown in Figure 7.25. This hierarchy is non-onto since its bottom granularity is com-
posed of two levels, namely, department and faculty. Let us further assume that there exists a fact scheme,
which includes the above hierarchy as one of its dimensions. Linking the fact scheme to the dimension’s
bottom level department will result in the impossibility to capture those fact entries referring to faculties with
no departments. Obviously, mapping to onto is indispensable in such a scenario.

A traditional technique for mapping to onto is the same as the one used for mapping to covering: asym-
metric hierarchy paths are normalized by inserting placeholder child elements [109, 144]. Back to our ex-
ample, the irregular hierarchy is balanced by creating “dummy” department nodes for the faculties Biology,
Chemistry, and Psychology. Note that the hierarchy had to undergo normalization to covering (placeholder
nodes at faculty level) and to strict (“fusing” two section values) prior to its mapping to onto. The obtained
balanced hierarchy instance is shown in Figure 7.26.
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7.4 Metadata for the Analysis Layer
Generally, metadata refers to an abstraction of lower-level data into knowledge, or “data about data”. In the
world of databases, metadata is used to provide a concise description of the actual data contents, necessary
for its management. In data warehouse systems, metadata turns into a core ingredient as it provides the foun-
dation for all interactions between the architectural layers and components. Further, it defines an interface
for data interchange and communication between the data warehouse and relevant external sources and tools.

In this section, we focus on a subclass of metadata concerned with bridging the gap between the mul-
tidimensional data model and its relational implementation. Its goal is to map relational structures (tables,
views, columns, constraints, etc.) to the constructs of the conceptual model (facts, measures, dimensions,
hierarchies, levels, properties, etc.). Thereby, in the frontend layer, the data is represented in a way adequate
for the analysis with implementation details hidden from the user.

There exist different classifications of metadata in data warehouse systems [8, 62, 86]. Bauer and Günzel
[8] summarize the existing classifications according to five criteria:

1. According to the data type, metadata refers to primary data (schemata, relations, attributes), processes
(ETL), or enterprise organization (users, access rights).

2. The level of abstraction suggests distinguishing between conceptual (application relevant definitions),
logical (relational schemata) and physical (SQL code) metadata.

3. The application perspective divides metadata into business (terminology, reports, documentation) and
technical (schema definitions, transformation rules) metadata.

4. The origin of metadata is determined by the tool or the source, by which it was supplied.

5. According to the creation/usage time, the metadata refers to the design (schema definitions, transfor-
mation rules), setup (log files) or usage (access statistics and patterns).
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In addition to the above categorization, metadata can be classified into ETL, data management, and query
management metadata based on the reference architecture layers [33]. Huynh et al. [62] also distinguish
between static (data structure) and dynamic (access statistics) metadata.

A key to successful interplay of heterogeneous sources and components involved in the operation of a
data warehousing system is their adherence to a common standard in part of metadata management. Ideally,
a unified metamodel is necessary for enabling unrestrained data integration and interchange across vendor-
specific platforms. As a respond to this need, two major standardization efforts arose: i) the Common Ware-
house Metamodel (CWM) [135] by the Object Management Group (OMG) and ii) the Open Information
Model (OIM) [121] by the Meta Data Coalition (MDC). Both metamodels are UML-based and use XML as a
format for data interchange. In 2000, the MDC merged with the Object Management Group (OMG) in favor
of the CWM as a prospective single standard for metadata modeling in data warehouse systems.

7.4.1 Overview of the CWM
The initial version of the CWM specification was issued in 1999; the current version is 1.1. dated March 2003
[135]. CWM provides an open industry standard for metadata-based integration of BI tools and components
in a product and vendor independent fashion across all major hardware platforms and operating systems.

CWM builds upon three key industry standards provided by OMG:

	 UML [136] as a modeling standard,
	 MOF (Meta Object Facility) as a metamodeling and metadata repository standard,
	 XMI (XML Metadata Interchange) as a metadata interchange standard.

These three standards form the core of the OMG metadata repository architecture and provide a foundation
for adequate representation of the data warehousing semantics. CWM acknowledges the heterogeneity of
metadata requirements in a data warehouse system by structuring its provided metamodel into a set of sub-
metamodels, as depicted in Figure 7.27, for representing metadata in the following major areas of interest:

1. Warehouse Management includes metamodels that represent warehouse processes and operations.

2. Data Analysis includes metamodels that represent data transformations, OLAP, data mining, informa-
tion visualization, and business nomenclature.

3. Data Resources include metamodels that represent object-oriented, relational, record, multidimen-
sional, and XML data resources.
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Figure 7.27: The multi-layered metamodel of the CWM and its constituent packages



156 Chapter 7 : Relational Implementation of the Multidimensional Data Model

Foundation layer provides packages for various concepts and structures (business information, data types,
expressions, key and indexes, software deployment, and type mapping) to be used by the packages of the
above enumerated higher layers. The base of the entire multilayer model is the Object Model, which supplies
packages defining the fundamental metamodel services for all upper layers.

The CWM is organized into a modular architecture consisting of 21 separate packages (each rectangle
in Figure 7.27 represents a package) grouped into five stackable layers, so that metamodels residing at one
particular layer are dependent only on metamodels residing at the layer underneath it. As a result, vertical
coupling between packages is reduced to a minimum and there is no horizontal coupling whatsoever.

OLAP PACKAGE

Description of the multidimensional properties behind a relational resource is handled by the Analysis layer,
more precisely, by its OLAP package. In OLAP, the data is analyzed as multidimensional cubes consisting
of measures distributed along a set of dimensions, with the latter typically structured into one or several clas-
sification hierarchies. Obviously, those are the elements of the conceptual data model. The OLAP package of
the CWM provides a metamodel that describes those elements in terms of classes and relationships between
them. Figure 7.28 shows the major classes and associations of the OLAP metamodel in the UML notation.
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11.3 Organization of the OLAP Package

11.3.1 Dependencies

The OLAP package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::Expressions

• org.omg::CWM::Analysis::Transformation

11.3.2 Major Classes and Associations

Figure 11-1 OLAP Metamodel: Major Classes and Associations

The major classes and associations of the OLAP metamodel are shown in Figure 11-1.
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Figure 7.28: OLAP Metamodel of the CWM: Major Classes and Associations (adopted from [135])
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The root element of the model as well as of the resulting data navigation hierarchy is Schema, which is a
logical container of all other elements. A Schema is structured into elements of types Cube and Dimension.
CubeDimensionAssociation relates a Cube to its defining Dimensions. A Dimension is a collection of
unique values, optionally structured into one or several Hierarchies. A Hierarchy is defined in terms of
parent/child relationships between members of a Dimension. It is possible to designate a default Hierarchy
within a Dimension. MemberSelection is a mechanism for identifying partitions within the instance of
a Dimension, such members belonging to a specific hierarchy level. CubeRegion defines a subcube of
the same dimensionality as the Cube itself. A dimension in a CubeRegion is specified via a corresponding
MemberSelection. CubeRegion enables implementation of a Cube as a set of regions, each mapping a
portion of the logical cube to a physical data source. Multiple MemberSelections in a CubeRegion can
be grouped into MemberSelectionGroup, enabling definition of CubeRegions with specific semantics.
CubeDeployment represents an implementation strategy for a CubeRegion.

Figure 7.29 reveals further specification details referring to the metaclasses Dimension and Hierarchy.
The metamodel defined two special Dimension types: time (isTime) and measure (isMeasure). Time
dimension is used for representing temporal values thus laying the foundation for providing advanced “time-
intelligent” functionality. Measure dimension describes the measure set of a multidimensional structure:
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A CubeRegion may own any number of CubeDeployments.  CubeDeployment is a 

metaclass that represents an implementation strategy for a multidimensional structure.  

The ordering of the CubeDeployment classes may optionally be given some 

implementation-specific meaning (for example, desired order of selection of several 

possible deployment strategies, based on optimization considerations).

11.3.3 Dimension and Hierarchy

Figure 11-2 shows Dimension and Hierarchy, along with several other classes that 

model hierarchical structuring and deployment mappings.

11.3.3.1 Dimension

The OLAP metamodel defines two special types of Dimension: Time and Measure.

A Time Dimension provides a means of representing time-series data within a 

multidimensional structure. The members of a Time Dimension usually define some

Figure 11-2 OLAP Metamodel: Dimension and Hierarchy
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Figure 7.29: OLAP Metamodel of the CWM: Dimension and Hierarchy (adopted from [135])
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whenever a Cube stores multiple measures, the measure dimension takes the names of the measure attributes
as its member values. Thereby, the cells of a Cube remain single-valued, whereas values in the measure
dimension specifies what measure attribute is stored in the respective cell.

There are two subclasses of Hierarchy: LevelBasedHierarchy and ValueBasedHierarchy.
LevelBasedHierarchy represents the classical definition of a dimension hierarchy, in which members

are arranged into hierarchical Levels (dimension categories). Level is a subclass of MemberSelection that
partitions the Dimension’s members into disjoint level-wise subsets. LevelBasedHierarchy is an ordered
collection of HierarchyLevelAssocations that defines the hierarchical structure in top-down fashion.
A HierarchyLevelAssociation may own any number of DimensionDeployments, whereas the class
DimensionDeployment represents an implementation strategy for hierarchically structured Dimensions.

A ValueBasedHierarchy defines a hierarchical ordering with no hierarchy scheme, i.e., no explicit
levels. Such hierarchies are typically obtained by classifying or ranking member values according to their
distance from the common root. Thereby, each member has some specific “metric" associated with it. A
ValueBasedHierarchy is realized as an (ordered) collection of DimensionDeployments.

The classes of the OLAP metamodel inherit from the packages Core and Transformation of the CWM
Object Model, as shown in Figure 7.30. The metaclass Measure is defined as a subclass of Attribute that
describes the meaning of values stored in the data cells of a Cube. Depending on the adopted definition of the
term “measure”, measure attributes can be represented as attributes in a Cube or CubeRegion that models the
fact table or as values characterized by the members of a Measure Dimension. In the latter representation,
a fact table has a single Measure column with values corresponding to the names of the measure attributes
(e.g., “sales”, “amount”) and a single value column of an implicit data dimension storing the actual measure
values. Relational OLAP systems adopt the first measure representation option (i.e., as a attribute), whereas
multidimensional servers often opt for the second one (i.e., as a dimension).
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ValueBasedHierarchy

A ValueBasedHierarchy defines a hierarchical ordering of members in which the 

concept of level has little or no significance. Instead, the topological structure of the 

hierarchy conveys meaning. ValueBasedHierarchies are often used to model situations 

where members are classified or ranked according to their distance from a common 

root member (for example, an organizational chart of a corporation). In this case, each 

member of the hierarchy has some specific “metric” or “value” associated with it.

ValueBasedHierarchy can be used to model pure “linked node” hierarchies (for 

example, asymmetric hierarchical graphs or parent-child tables).

As with LevelBasedHierarchy, ValueBasedHierarchy also has an ordered collection of 

DimensionDeployments, where the ordering semantics are left to implementations to 

define.

11.3.4 Inheritance from the Object Model

Figure 11-3 OLAP Metamodel: Inheritance from Object Model

Figure 11-3 illustrates how classes of the OLAP metamodel inherit from the CWM 

Object Model.  Two classes requiring further explanation are:

• Measure: A subclass of Attribute that describes the meaning of values stored in the 

data cells of a multidimensional structure. Different OLAP models often give 

different interpretations to the term “measure.” In a relational Star Schema, 
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Figure 7.30: OLAP Metamodel of the CWM: Inheritance from the Object Model (adopted from [135])
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RELATIONAL DEPLOYMENT OF OLAP MODELS

Note that the OLAP metamodel does not specify how an OLAP system should be implemented. The de-
ployment is modeled by mapping the instances of the OLAP metaclasses to the metaclasses of the relevant
package in the Resource layer. In case of a ROLAP implementation, the relevant package is Relational and
the target elements are tables, columns, referential constraints, etc.

The CWM Transformation package is used as the primary means of mapping the logical OLAP model
to the Resource layer. Figure 7.31 shows a fragment of the Transformation package relevant for OLAP
deployment: its major metaclass TransformationMap and its subclass hierarchy are used to specify so
called “white-box” transformations, which relate data sources and targets to a transformation and to each
other at a detailed level. “White-box” transformations are commonly used in data warehousing where it is
necessary to specify exactly how a specific data source is related to a specific data target through a specific
part of the transformation.
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Figure 10-3   Transformation Package: Relationships - 2

Feature

(from Core)

Classifier

(from Core)

Feature

(from Core)

Classifier

(from Core)

FeatureMap

function : ProcedureExpression

functionDescript ion : String

/ source : Feature

/ target : Feature

/ classifierMap : ClassifierMap

1..*

target

1..*

featureMap

1..**

source

1..*

featureMap

*

ClassifierFeatureMap

function : ProcedureExpression

functionDescript ion : String

classifierToFeature :  Boolean

/ classifier : Classifier

/ feature : Feature

/ classifierMap : ClassifierMap

1..**

classifier

1..*

cfMap

*

1..**

feature

1..*

cfMap

*

ClassifierMap

function : ProcedureExpression

functionDescription : String

/ source : Classifier

/ target : Classifier

/ transformationMap : Namespace

/ featureMap : FeatureMap

/ cfMap : ClassifierFeatureMap

1..**

source

1..*

classifierMap

*

1..**

arget

1..*

classifierMap

*

*

0..1

featureMap*

classifierMap0..1

*

0..1

cfMap *

classifierMap 0..1

TransformationMap

/ classifierMap : ModelElement

*

0..1

/ownedElement *

/namespace 0..1

Figure 7.31: Transformation Metamodel (fragment) of the CWM (adopted from [135])

The OLAP package inherits from the Transformation package as shown in Figure 7.30. Deployments
of an OLAP model are specified by defining the TransformationMap instances to link the logical OLAP
objects to one another and to the objects representing the underlying physical data sources.
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Figure 11-4 OLAP Metamodel: Deployment Mapping Structures

11.4 OLAP Classes

11.4.1 CodedLevel

CodedLevel is a subclass of Level that assigns a unique encoding, or label, to each of 
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Figure 7.32: Deployment mapping structures in the CWM OLAP Metamodel (adopted from [135])

Figure 7.32 shows metaclasses and associations involved in defining deployment mappings between log-
ical OLAP models and physical resource models. The OLAP package defines StructureMap as a subclass
of TransformationMap for modeling structure-oriented transformation mappings, such as member identity
and hierarchy structure. This type of transformation mapping is connected to the OLAP metamodel according
to Level and Hierarchy to make the associations explicit. There are two specific usages of StructureMap:
i) ListOfValues maps the attributes that identify the members at a specific Level (possibly, within a partic-
ular Hierarchy), and ii) ImmediateParent maps the attributes that identify the parent(s) of the members
in a Hierarchy. Attribute-oriented transformations within an OLAP model, such as mapping dimension at-
tributes to table columns, can be represented by relatively simple TransformationMaps. ContentMap is a
specialization of TransformationMap for modeling content-oriented transformation mappings, for example,
for mapping each of the CubeRegion’s measures to the columns of the underlying fact table.

The DeploymentGroup metaclass allows to combine the content (CubeDeployment) and the structure
(DimensionDeployment) of a cube within the context of a single Schema. Several possible deployments of
the same Schema can be specified.

Tools that implement the CWM share their metadata via CWM-compliant XML files. These files are
created by following the XML-based format for metadata interchange (XMI) provided by the CWM. Each
metamodel has a a DTD (Document Type Definition) representation. A tool importing metadata via an XMI
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document must validate the latter against the DTDs or otherwise assure the validity of the model.
As a practical demonstration of how the CWM implementation works, let us consider a CWM Enablement

Showcase, which was held by the OMG in December 2000 and involved six vendors (IBM, Unisys, Hyperion,
Oracle, SAS, and Meta Integration) as well as a large number of different types of warehouse tools [21].
Figure 7.33 contains extracts from a sample XML file, generated from within an Oracle data warehouse
system. The file exports both the relational and the OLAP metadata referring to a dimension table Period.

    <CWMOLAP:Dimension.hierarchy> 
      <CWMOLAP:LevelBasedHierarchy xmi.id="X1425" name="Standard" visibility="public" isSpecification="false" dimension="X1323"> 
        … 
        <CWMOLAP:LevelBasedHierarchy.hierarchyLevelAssoc> 
          … 
          <CWMOLAP:HierarchyLevelAssoc xmi.id="X1404" visibility="public" isSpecification="false" levelBasedHierarchy="X1425" currentLevel="X1349" 
            immediateParent="X1406"> 
            <CWM:Classifier.feature> 
              <CWM:Attribute xmi.id="X1405" name="PRNT" visibility="public" isSpecification="false" owner="X1404"/> 
            </CWM:Classifier.feature> 
              </CWMOLAP:HierarchyLevelAssoc>
            … 
                </CWMOLAP:LevelBasedHierarchy.hierarchyLevelAssoc>
                …
        </CWMOLAP:LevelBasedHierarchy>
    </CWMOLAP:Dimension.hierarchy>
    …
  </CWMOLAP:Schema>

<CWMRDB:Schema xmi.id="X1231" name="CWMDemo" visibility="public" isSpecification="false" namespace="X1229"> 
  <CWM:Namespace.ownedElement> 
    <CWMRDB:Table xmi.id="X1268" name="Period" visibility="public" isSpecification="false" isRoot="true" isLeaf="true" isAbstract="false" 
      isActive="false" isSystem="false" isTemporary="false" namespace="X1231"> 
      <CWM:Classifier.feature> 
        <CWMRDB:Column xmi.id="X1249" name="EndDate" visibility="public" isSpecification="false" ownerScope="instance" precision="0" 
        isNullable="columnNullable" owner="X1268" type="X1234"/> 
          </CWM:Classifier.feature>
          … 
        </CWMRDB:Table>
  </CWM:Namespace.ownedElement>
  … 
</CWMRDB:Schema>

(a) CWM-compliant relational metadata

  <CWMOLAP:Schema xmi.id="X1306" name="CWMDemo" visibility="public" isSpecification="false" namespace="X1229"> 
    <CWM:Namespace.ownedElement> 
      <CWMOLAP:Dimension xmi.id="X1323" name="Period" visibility="public" isSpecification="false" namespace="X1306"> 
        <CWMOLAP:Dimension.cubeDimAssoc> 
          <CWMOLAP:CubeDimAssoc xmi.idref="X1429"/> 
        </CWMOLAP:Dimension.cubeDimAssoc>
      </CWMOLAP:Dimension>
        </CWM:Namespace.ownedElement> 
    <CWM:Namespace.ownedElement> 
      <CWMTFM:TransformationMap xmi.id="X1449" visibility="public" isSpecification="false" namespace="X1323"> 
        <CWM:Namespace.ownedElement> 
          <CWMTFM:ClassifierMap xmi.id="X1450" visibility="public" isSpecification="false" namespace="X1449" transformationMap="X1449"> 
            <CWMTFM:ClassifierMap.source> 
              <CWM:Classifier xmi.idref="X1268"/> 
            </CWMTFM:ClassifierMap.source> 
            <CWMTFM:ClassifierMap.target> 
              <CWM:Classifier xmi.idref="X1323"/> 
            </CWMTFM:ClassifierMap.target>
            …   
              </CWMTFM:ClassifierMap>
        </CWM:Namespace.ownedElement> 
      </CWMTFM:TransformationMap> 
      … 
    </CWM:Namespace.ownedElement>

    <CWMOLAP:Dimension.hierarchy> 
      <CWMOLAP:LevelBasedHierarchy xmi.id="X1425" name="Standard" visibility="public" isSpecification="false" dimension="X1323"> 
        … 
        <CWMOLAP:LevelBasedHierarchy.hierarchyLevelAssoc> 
          … 
          <CWMOLAP:HierarchyLevelAssoc xmi.id="X1404" visibility="public" isSpecification="false" levelBasedHierarchy="X1425" currentLevel="X1349" 
            immediateParent="X1406"> 
            <CWM:Classifier.feature> 
              <CWM:Attribute xmi.id="X1405" name="PRNT" visibility="public" isSpecification="false" owner="X1404"/> 
            </CWM:Classifier.feature> 
              </CWMOLAP:HierarchyLevelAssoc>
            … 
                </CWMOLAP:LevelBasedHierarchy.hierarchyLevelAssoc>
                …
        </CWMOLAP:LevelBasedHierarchy>
    </CWMOLAP:Dimension.hierarchy>
    …
  </CWMOLAP:Schema>

(b) CWM-compliant OLAP metadata

Figure 7.33: A sample XML file for metadata export according to the CWM
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Figure 7.33a shows a fragment of the relational metadata demonstrating the definition of relational sources
at the example of column EndDate of table Period in schema CWMDemo. Figure 7.33b shows another part
of the same XML file, which contains the OLAP metadata describing the hierarchical structure of dimension
Period associated with the relational table Period. The Transformation package is used to map the OLAP
metadata to its relational source. For example, the ClassifierMap element defines dimension Period as
the target of the relational table Period.

7.4.2 Representing multidimensional properties in the CWM
It remains to investigate whether the OLAP metamodel of the CWM is capable of adequately representing all
multidimensional properties defined by our conceptual model. Medina and Trujillo assess the appropriate-
ness of the CWM as a standard for representing multidimensional properties in [122]. This evaluation refers
to an object oriented UML-based approach to conceptual multidimensional modeling, proposed by the same
research team and presented in [174]. The multidimensional properties assessed in that work represent a sub-
set of the features supported by our extended model, therefore, the results of the CWM evaluation published
in [122] appear highly relevant for our work.

Whereas representations of the fundamental constructs in the CWM OLAP metamodel are defined un-
ambiguously, some of the special cases are not explicitly handled by this package. However, an appropriate
mapping may be found at a lower layer of the CWM inheritance stack. For instance, there are no guide-
lines for describing partial roll-ups, fact and dimension degeneration, or non-strict hierarchies in the OLAP
package itself, but it is possible to identify an appropriate metamodel construct in other packages, such
as Core, Behavioral, Relationships, KeysIndexes, Relational, and Transformation. Especially the Object-
Model metamodel at the heart of the CWM provides a solid framework for describing the data in terms of
ModelElements, Features, Constraints, TaggedValues, Attributes, etc.

In Table 7.1 we enumerate the elements of the conceptual multidimensional model including those defined
by our extended model and provide the corresponding CWM mechanisms for their mapping. As expected,
representations of the major constructs, such as facts, dimensions, measures, hierarchies, and categories in the
CWM are rather straightforward: each construct is represented by a designated metaclass, e.g., Dimension,
Hierarchy, and Level.

As can be seen from Table 7.1, some of the features are only implicit in the respective metamodel repre-
sentations. In most cases, such features are considered a pure implementation issue to be captured at a lower
metamodel layer or were simply not supported at the time the last CWM specification version was drafted.
Consider, for instance, fact degeneration (i.e., satellites, associations, and self-associations) introduced in
Section 5.3. The OLAP package does not define any subclasses of Cube. However, degeneration can be
recognized by inspecting the fact’s dimensions as at least one of them should be defined upon a resource used
as a fact table within the same Schema. Similarly, a non-measurable fact is identifiable via a non-inclusion
of Measure attributes.

Whether an implied representation of a property is sufficient depends on the requirements of the Analysis
layer and the intended purpose of the generated metadata. If intended for frontend tools, the pursued cube
navigation approach may require the metadata to be more specific. For example, in our OLAP tool prototype,
satellite facts should appear nested in their respective base facts. To support this requirement we had to extend
the metadata with an explicit specification of degenerate facts and their associated base facts. Similarly, we
needed an explicit association of fact types involved in a fact roll-up to incorporate the containing fact into a
dimension of the contained one in the navigation tree.

It is important to note that the concepts of the unified multidimensional space and semantically related
dimension categories are not reflected by the CWM OLAP metamodel. However, sharing is expressible at
the Resource layer by mapping shared dimensions and/or category types to the same physical resource.
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Table 7.1: Representing multidimensional properties in the CWM OLAP metamodel

Multidimensional construct Representation in the CWM
Fact family Metaclass Schema
Fact type (cube) Metaclass Cube
� Derived fact type Attribute isVirtual of the metaclass Cube
� Degenerate fact type Implied by including a dimension defined from another fact

type resource
� Fact roll-up Implied by including a fact identifier of another fact type

as a dimension level
� Non-measurable fact type Implied by the absence of associated Measure elements
� Slice (subcube) Metaclass CubeRegion

Measure Subclass Measure of metaclass Attribute
� Aggregability constraints Metaclass ClassifierFeatureMap

Dimension Metaclass Dimension
� Time dimension Attribute isTime in metaclass Dimension
� Hierarchical dimension A single hierarchy reference in metaclass Dimension
� Multiple hierarchies Multiple hierarchy references in metaclass Dimension

Hierarchy Metaclass Hierarchy
� Hierarchy schema Metaclass LevelBasedHierarchy
� Default dimension hierarchy 3 displayDefault reference in Dimension
� Derived hierarchy calcHierarchy reference in metaclass

CubeDimensionAssociation
� Parallel hierarchies Assumed by default
� Alternative hierarchies Not supported!

Dimension category Metaclass Level
� Abstract category Attribute isAbstract in metaclass Level
� Totally ordered category Metaclass DimensionDeployment

Roll-up relationships Metaclasses of type Association
� Fact-dimensional roll-up Metaclass CubeDimensionAssociation
� Roll-up between categories Metaclass HierarchyLevelAssociation
� Partial roll-up Not supported!

One obvious deficiency of the OLAP metamodel is that it does not distinguish between multiple alterna-
tive and parallel hierarchies: a Hierarchy is associated only to its Dimension, but there is no association
between hierarchies. As a result, all hierarchies in dimension are treated as parallel. As a matter of fact,
state-of-the-art OLAP tools also treat all multiple hierarchies as parallel, resulting in admissibility of invalid
combinations of grouping criteria in OLAP queries [109]. Besides, the relational mapping of alternative hi-
erarchies is identical to those of parallel ones. However, there is a big difference in how those hierarchies
are allowed to be used when performing roll-up operations (see Section 4.5 for the details). Therefore, in
our opinion, explicit support of alternative hierarchies is an indispensable extension of the OLAP metamodel
due in a forthcoming version of the CWM specification. In our own implementation of a prototypical OLAP
frontend, we enabled support for alternative hierarchies in the data navigation by extending the metamodel
with the metaclass HierarchyAssociation for representing a pair of alternative hierarchies.

3The CWM OLAP specification suggests that a specific hierarchy may be designated as the default one, either for the display purposes
or for a default consolidation path within a cube.
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Table 7.2: Representing multidimensional properties in the CWM metamodels other than OLAP

Multidimensional construct Representation in the CWM
Types of facts:
� Fact generalization Metaclass Generalization of the Relationships package

Types of measures:
� Measure semantics4 Metaclass ClassifierFeatureMap of the Transforma-

tion package
� Measure derivation Metaclass FeatureMap of the Transformation package

Dimension types:
� Degenerated dimension Implied by being mapped to the same resource at its fact
� Fact identifier Metaclass UniqueKey of the KeysIndexes package
� Derived dimension Implied by the derivation of its bottom-level category

Types of hierarchies:
� Generalized hierarchy Metaclass Generalization of the Relationships package

Types of dimension categories:
� Derived category Metaclass FeatureMap of the Transformation package
� Conform categories Implied by mapping the respective Levels to the same re-

source
Types of roll-up relationships:
� Non-strict roll-up Metaclasses Association and AssociationEnd of the

Relationships package

A partial roll-up relationship, i.e., an optional dimension level, and consequently, a set of partial related
roll-ups, is another example of a non-supported concept in the OLAP metamodel, even though the resulting
non-covering mappings can be implemented in a relational system by declaring the respective parent-level ref-
erences as nullable. However, due to unavoidable non-summarizability of such mappings, our model proposes
a set of normalization techniques for transforming non-covering schemes into specialization/generalization
hierarchies (described in Section 7.2.1), which are expressible by the CWM.

The set of properties in Table 7.1 is not exhaustive as it encompasses only those concepts captured by the
OLAP package itself. We now proceed by investigating the cases handled by other layers of the CWM, with
the summary of the respective mappings presented in Table 7.2.

Flexibility of the CWM’s abstraction mechanism results in a multitude of valid options for representing
those multidimensional properties, which lie beyond the scope of the OLAP package. These options can be
summarized as follows: i) re-interpreting the property to make it representable within the OLAP metamodel,
ii) extending the OLAP metamodel by adding the missing elements, and iii) “pushing” the specification of the
property down to a metamodel at a lower abstraction layer that provides the necessary mapping mechanisms.
Metadata representations suggested in Table 7.2 refer to the latter category.

As an example of a construct, not documented by the CWM specification, let us consider a degenerated
dimension. Since the OLAP metaclass Dimension does not have any subclasses, dimension degeneration has
to be expressed by some other means. An example of re-defining the notion of a degenerated dimension as
to “fit” it into the CWM OLAP metamodel is given in [122], where the authors suggest mapping it to a non-
additive measure in the respective fact. However, such a re-interpreted representation may be inadequate for
frontend tools, if the latter provide different display and/or navigation options for dimensions and measures.

4Measure semantics provides the background for the additivity behavior by distinguishing between transactional and snapshot mea-
sure types (see Section 5.2.1).
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The option of extending the metamodel is generally less recommendable as it aggravates standard-
conform metadata interchange. However, an extension may be feasible, if the CWM standard or the “work-
around” options appear too inadequate for representing some concept. An example of a meaningful extension
is the Secure Relational Data Warehouse (SECRDW) metamodel, proposed by Soler et al. in [165] as an ex-
tension of the Relational package of the CWM for representing security and audit measures.

Finally, the option of using lower-level metamodels for representing multidimensional properties in a
more implementation-dependent fashion is more in line with the prevailing practices of CWM-compliant
vendors. In data warehouse systems, any generated metadata always refers to a particular physical resource,
i.e., each multidimensional property has real data behind it. Therefore, it is not the ultimate goal to specify the
multidimensional properties in an implementation-independent fashion. Instead, the OLAP package is used
primarily for capturing only those properties relevant for the front-end functionality, whereas all other details
are “pushed down” to the underlying Resource layer. In our experience, this strategy is rather reasonable as
it disburdens the Analysis layer from irrelevant implementation details.

A prominent implementation of the CWM is provided by Pentaho Metadata, which is a feature within a
popular open-source BI Platform Pentaho [139]. While most vendors’ systems are based on proprietary meta-
models and use the CWM solely as an import/export format for metadata interchange, Pentaho provides direct
support for the CWM standard. As an example of capturing the multidimensional semantics at the Resource
layer, let us consider how Pentaho represents computed measures. Figures 7.34 and 7.35 show a fragment
of sample OLAP metadata describing cube Order Details and its underlying fact table PT_ORDERDETAILS.
The XML fragment depicted in Figure 7.34 refers to the description of the cube in terms of measures and di-
mensions according to the CWM OLAP metamodel. Note that only two measures, namely Quantity Ordered
and Price Each are defined at this level. The metadata in Figure 7.35 gives the relational mapping of the
same cube in terms of a relational table and its attributes and demonstrates how a computed measure Total is
specified: the measure’s table column PC_TOTAL is an aggregated field computed from the two base measures
as sum(QUANTITYORDERED*PRICEEACH).

        <CWMOLAP:Cube xmi.id = 'a384' name = 'Order Details' isAbstract = 'false' isVirtual = 'false'>
          <CWM:ModelElement.taggedValue>
            <CWM:TaggedValue xmi.id = 'a385' tag = 'CUBE_BUSINESS_TABLE' value = 'BT_ORDER_DETAILS'/>
          </CWM:ModelElement.taggedValue>
          <CWM:Namespace.ownedElement>
            <CWMOLAP:Measure xmi.id = 'a386' name = 'Quantity Ordered'>
              <CWM:ModelElement.taggedValue>
                <CWM:TaggedValue xmi.id = 'a387' tag = 'MEASURE_BUSINESS_COLUMN' value = 'BC_ORDER_DETAILS_QUANTITYORDERED'/>
              </CWM:ModelElement.taggedValue>
            </CWMOLAP:Measure>
            <CWMOLAP:Measure xmi.id = 'a388' name = 'Price Each'>
              <CWM:ModelElement.taggedValue>
                <CWM:TaggedValue xmi.id = 'a389' tag = 'MEASURE_BUSINESS_COLUMN' value = 'BC_ORDER_DETAILS_PRICEEACH'/>
              </CWM:ModelElement.taggedValue>
            </CWMOLAP:Measure>
          </CWM:Namespace.ownedElement>
          <CWMOLAP:Cube.cubeDimensionAssociation>
            <CWMOLAP:CubeDimensionAssociation xmi.id = 'a390' name = 'Orders' isAbstract = 'false'>
              <CWMOLAP:CubeDimensionAssociation.dimension>
                <CWMOLAP:Dimension xmi.idref = 'a391'/>
              </CWMOLAP:CubeDimensionAssociation.dimension>
            </CWMOLAP:CubeDimensionAssociation>
            <CWMOLAP:CubeDimensionAssociation xmi.id = 'a392' name = 'Products' isAbstract = 'false'>
              <CWMOLAP:CubeDimensionAssociation.dimension>
                <CWMOLAP:Dimension xmi.idref = 'a393'/>
              </CWMOLAP:CubeDimensionAssociation.dimension>
            </CWMOLAP:CubeDimensionAssociation>
          </CWMOLAP:Cube.cubeDimensionAssociation>
        </CWMOLAP:Cube>
   
   <CWMRDB:Table xmi.id = 'a138' name = 'PT_ORDERDETAILS' isAbstract = 'false' isTemporary = 'false' isSystem = 'false'>
      <CWM:ModelElement.taggedValue>
        <CWM:TaggedValue xmi.id = 'a476' tag = 'TABLE_TARGET_DATABASE_NAME' value = 'SampleData'/>
      </CWM:ModelElement.taggedValue>
      <CWM:Namespace.ownedElement>
        <CWMRDB:Column xmi.id = 'a142' name = 'ORDERNUMBER'/>
        <CWMRDB:Column xmi.id = 'a150' name = 'PRODUCTCODE'/>
        <CWMRDB:Column xmi.id = 'a158' name = 'QUANTITYORDERED'/>
        <CWMRDB:Column xmi.id = 'a167' name = 'PRICEEACH'/>
        <CWMRDB:Column xmi.id = 'a176' name = 'ORDERLINENUMBER'/>
        <CWMRDB:Column xmi.id = 'a184' name = 'PC_TOTAL'/>
      </CWM:Namespace.ownedElement>
    </CWMRDB:Table>
    <CWM:Description xmi.id = 'a183' name = 'aggregation' body = 'sum' type = 'Aggregation'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>

Figure 7.34: Description of a computed measure at the Analysis layer (CWM OLAP)
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    <CWMRDB:Table xmi.id = 'a138' name = 'PT_ORDERDETAILS' isAbstract = 'false' isTemporary = 'false' isSystem = 'false'>
      <CWM:ModelElement.taggedValue>
        <CWM:TaggedValue xmi.id = 'a476' tag = 'TABLE_TARGET_DATABASE_NAME' value = 'SampleData'/>
      </CWM:ModelElement.taggedValue>
      <CWM:Namespace.ownedElement>
        <CWMRDB:Column xmi.id = 'a142' name = 'ORDERNUMBER'/>
        <CWMRDB:Column xmi.id = 'a150' name = 'PRODUCTCODE'/>
        <CWMRDB:Column xmi.id = 'a158' name = 'QUANTITYORDERED'/>
        <CWMRDB:Column xmi.id = 'a167' name = 'PRICEEACH'/>
        <CWMRDB:Column xmi.id = 'a176' name = 'ORDERLINENUMBER'/>
        <CWMRDB:Column xmi.id = 'a184' name = 'PC_TOTAL'/>
      </CWM:Namespace.ownedElement>
    </CWMRDB:Table>
    <CWM:Description xmi.id = 'a183' name = 'aggregation' body = 'sum' type = 'Aggregation'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>
    <CWM:Description xmi.id = 'a185' name = 'exact' body = 'Y' type = 'Boolean'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>
    <CWM:Description xmi.id = 'a186' name = 'fieldtype' body = 'Fact' type = 'FieldType'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>
    <CWM:Description xmi.id = 'a187' name = 'formula' body = 'sum(QUANTITYORDERED*PRICEEACH)' type = 'String'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>
    <CWM:Description xmi.id = 'a188' name = 'hidden' body = 'N' type = 'Boolean'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>
    <CWM:Description xmi.id = 'a189' name = 'name' body = 'Total' language = 'en_US' type = 'LocString'>
      <CWM:Description.modelElement>
        <CWMRDB:Column xmi.idref = 'a184'/>
      </CWM:Description.modelElement>
    </CWM:Description>

Figure 7.35: Description of a computed measure at the Resource layer (CWM Relational)

Further examples for using the CWM for describing advanced multidimensional concepts can be found
in the work of Medina and Trujillo [122] and in the comprehensive developer’s guide to the CWM [147].



Chapter 8

Interactive Exploration of OLAP
Aggregates

T HE AIM OF THIS CHAPTER is to address the issue of supporting complex data at the analysis and
presentation layer, based on the emerging Visual OLAP paradigm. We describe an overall frame-
work for comprehensive exploration of OLAP aggregates in terms of two major components: i) data

navigation as an interface for interactive query specification and ii) a visualization toolkit providing a set of
interactive visualization techniques of various complexity, which serve as the output layout for exploring the
retrieved query results and gaining a deeper insight into the data. In particular, we propose a novel visual-
ization technique called Enhanced Decomposition Tree, which combines a hierarchical layout for arranging
aggregate values obtained in a series of successive drill-down steps into a visual decomposition hierarchy.
Enhanced Decomposition Tree employs embedded charts at the node level aimed at improving visual com-
parability of the presented values. The proposed technique offers multiscale visualization while naturally
preserving the history of the interaction.
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8.1 Visual Analysis Framework
The multidimensional data model underlying the OLAP technology has proven to be particularly suitable for
sophisticated analysis of large multivariate data volumes. With rapid evolution of this technology in the last
decade, unprecedented volumes of data have become available for analysis and exploration. To cope with
the information overload, analysts use advanced BI frontends that enable purely visual and rather intuitive
interaction with the data. Therefore, the ultimate benefit of the data warehousing approach is determined by
the functionality, usability, and “intelligence” of end-user interfaces.

The last decade has witnessed an explosion of visual interfaces for OLAP – dashboards, charts, maps
and scatterplots – that have impacted modern BI analytics. Interactive features, such as zooming, slicing,
brushing, and filtering are becoming a commonplace in analysis software. With ever-growing volumes of ac-
cumulated data visualization becomes indispensable for extracting useful knowledge from data by a human
expert. Adequate visual presentation helps to rapidly reveal patterns, recognize trends or anomalies. Espe-
cially the ad hoc queries, driven by a mere guess or a hypothesis about the knowledge hidden in the “raw”
data, benefit from the ability to visually specify the data set of interest and interact with it. Arranging the data
into a multidimensional space is especially beneficial for decision support due to the potential of retrieving
the data subsets of interest in the form exactly satisfying the user’s information needs.

The term Visual OLAP, already introduced in Section 2.3.1, encompasses a new generation of OLAP
end-user tools for interactive ad hoc exploration of large multidimensional data volumes. While traditional
analysis tools designed primarily to support routine reporting and analysis use visualization merely for ex-
pressive presentation of the data, in Visual OLAP it plays a key role as the method of interactive query-driven
analysis. Continuous efforts are put into providing new approaches to visual exploration of OLAP cubes, such
as hierarchical visualizations (decomposition trees, chart trees, TreeMaps, etc.), multiscale views, interactive
and animated scatter-plots, described in the next section.

Analysis tools that abound the market offer a multitude of features and functions that require training and
skill to understand and use. Feature overload and usability deficiencies often lead to loss of orientation and
discourage users from using novel techniques. The work reported in this chapter is an attempt to enhance
the Visual OLAP approach in terms of functionality and user-friendliness. Applicability of a particular vi-
sualization technique depends on various criteria, such as the type of the analytical task, data volume and
complexity, user preferences and skills. Our approach accounts for a variety of tasks by providing an ex-
ploration framework, in which users can experiment with various layouts and techniques to find satisfactory
solutions to specific problems.

8.1.1 Related Work on Visualization for OLAP
The work related to the topic of this chapters in one way or another can be subdivided into two major groups,
namely, visual analysis systems and advanced visualization techniques for OLAP.

VISUAL ANALYSIS SYSTEMS

First proposals to use visualization for exploring multidimensional data were not tailored towards OLAP
applications, but rather addressed the generic problem of visual querying of large datasets stored in a database.
Keim and Kriegel [75] proposed VisDB, a visualization system based on a new query paradigm. In VisDB,
users are prompted to specify an initial query. Thereafter, guided by visual feedback, they dynamically
adjust the query, e.g., by using sliders for specifying range predicates on single attributes. Retrieved records
are mapped to the pixels of the rectangular display area colored according the degree of their conformity
to the specified set of selection predicates and positioned according to a grouping or ordering directive.
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Another example of an early work related to multidimensional data exploration can be found in [44], where
an intelligent visual interface CoDecide for cooperative analysis of spreadsheet data is proposed. CoDecide
links multiple views of a data cube in a multi-perspective and multi-user mode and uses “tape” representations
for visualizing the problem dimensions.

OLAP tools of the current state of the art provide the classical pivot table interface along with a set
of popular business visualization techniques, such as charts and time series as well as more sophisticated
layouts, such as scatterplots, maps, graphs, cartograms, matrices, grids, etc., and proprietary visualizations
(e.g., ProClarity Decomposition Tree [141] and Fractal Map [22]). In the abundance of existing OLAP tools,
we limit ourselves to naming a few products, which offer distinguished features.

Tableau Software [169] and other established OLAP vendors deliberately restrict the set of supported
visualizations to the popular and proven ones, such as tables, charts, maps, and time series, doubting general
utility of exotic visual metaphors [55]. Polaris, a visual tool for multidimensional analysis developed by the
research team of Pat Hanrahan at Stanford University [167], is a predecessor of Tableau Software. Polaris
inherits the basic idea of the classical pivot table interface that maps aggregates onto a grid defined by dimen-
sion categories assigned to the grid’s rows and columns. However, Polaris uses embedded graphical marks
rather than textual numbers in the table cells. The types of supported graphics are arranged into a taxonomy,
comprising rectangle, circle, glyph, text, Gantt bar, line, polygon, and image layouts.

Advizor system [39] implements a technique that organizes data into three perspectives. A perspective
is a set of linked visual components displayed together on the same screen. Each perspective focuses on a
particular type of analytical task, such as i) single measure view using a 3D multiscape layout, ii) multiple
measures arranged into a scatterplot, and iii) anchored measures presented using techniques from multidi-
mensional visualization (e.g., Box Plots [177] or Parallel Coordinates [69]). A more recent survey [40]
investigates common visual metaphors and associated interaction techniques with improved visual scalabil-
ity, i.e., the capability to effectively display large volumes of multidimensional data, and describes how the
proposed techniques were implemented in the Advizor system.

ProClarity Analytics [150] is famous for innovative visualization tools, such as the Decomposition Tree,
Perspective View, and Performance Map. In 2006, ProClarity became a Microsoft subsidiary and as of 2007,
ProClarity Analytics was released as a part of the Microsoft Office Performance Point Server [34].

Another noteworthy tool is Report Portal – a web client reporting solution for Microsoft Analysis Services
released by XMLA Consulting [188]. Report Portal in its current version 2.2 offers interactive OLAP and
data mining reports based on visualization techniques , such as GIS maps, chart trees, TreeMaps, dashboards,
and animated scatterplots (moving bubbles).

VISUALIZATION TECHNIQUES

A pioneering and fundamental work on automating visualization of relational data was carried out by Jock
Mackinlay [105], who proposed to define visual presentations in terms of graphical languages. Graphical
languages encode syntactic and semantic properties of graphical presentations in form of sentences, simi-
lar to other formal languages. Expressiveness and effectiveness criteria are used to assess the quality of a
graphical encoding and to compare various presentation alternatives with one another. By formalizing graph-
ical presentation as a collection of graphical languages, Mackinlay’s approach provides an abstraction for
automatic synthesis of effective visual designs for a variety of data sets, focusing on two-dimensional static
representations, such as bar-charts, scatterplots, and connected graphs.

Besides the classical visualization techniques, such as the pivot table and 2-dimensional plots and charts
familiar to any data analyst, a wealth of more comprehensive visual frameworks for incremental exploration
of and navigation in large multidimensional data volumes have emerged. Visualization techniques applicable
in the OLAP context can be roughly grouped into the following categories (see [140] for further details):
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	 Geometric (Scatterplots, Landscapes, Hyperslices, Parallel Coordinates)
	 Icon-based (Chernoff Faces, Stick Figures, Color Icons, TileBars)
	 Pixel-oriented (Recursive Pattern, Circle Segments)
	 Hierarchical (Dimensional Stacking, Worlds-within-Worlds, TreeMap, Cone Trees, InfoCube)
	 Graph-Based (Straight-, Poly- and Curved-Line, DAG, Symmetric, Cluster)
	 Hybrid techniques which arbitrarily combine any of the above.

Applicability of a particular technique or a meaningful combination of techniques depends largely on the
analysis needs and the level of user expertise.

Figure 8.1 presents a structured overview of visualization techniques for OLAP arranged into four quad-
rants according to the layout (simple vs. hybrid) and granularity (uniform vs. mixed). The techniques in each
quadrant are sorted upwards in the increasing order of the maximum number of dimensions they can support.
Visual metaphors capable of displaying multiple measure fields are shown with orange background. This
enumeration is by no means exhaustive and contains only the major techniques provided by existing OLAP
tools or proposed in the research literature. Descriptions of the most of the enumerated techniques may
be found in standard literature on information visualization [20, 176], as well as in industrial and research
publications [119, 168, 172, 178].

Any OLAP tool implements just a small subset of the visualizations listed in Figure 8.1, mostly from the
upper-left quadrant of simple layouts. However, there is a trend towards adopting novel and more complex
layouts to support a wider spectrum of analysis tasks. This trend raises the issue of assisting the user in
choosing a “good” visualization. In data warehouse systems, the issue of assessing the aptitude of a particular
visualization approach for solving different types of analysis tasks is rather neglected. Typically, the user has
to find an appropriate solution manually by experimenting with different layout options. As a result, users
often come up with inefficient and even misleading visualizations. Apparently, a successful visual OLAP
framework needs to be based on a comprehensive taxonomy of domains, tasks, and visualizations.
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To support a large set of diverse visualization techniques and to enable dynamic switching from one tech-
nique to another, an abstraction layer has to be defined for specifying the relationships between the data and
its visual presentation. Maniatis et al. [111] propose an abstraction layer solution, called the Cube Presen-
tation Model (CPM), which distinguishes between two layers: the logical layer deals with data modeling
and retrieval whereas the presentation layer provides a generic model for representing the data visually (nor-
mally, on a 2D screen). The entities of the presentation layer include points, axes, multicubes, slices, tapes,
cross-joins, and content functions. The authors demonstrate how CPM constructs can be mapped to advanced
visual layouts at the example of the Table Lens – a technique based on a cross-tabular paradigm with support
for multiple zoomable windows of focus.

While many OLAP vendors restrict the set of supported visualizations to the popular and proven ones
and doubt general utility of exotic visual metaphors, some research works suggest enriching the visual OLAP
framework by extending basic charting techniques or employing novel and less known visualization tech-
niques to take full advantage of multidimensional and hierarchical properties of the data [95, 164, 170, 172].

Tegarden [172] formulates the general requirements of business information visualization and gives an
overview of advanced visual metaphors for multivariate data, such as Kiviat diagrams and Parallel Coordi-
nates for visualizing data sets of high dimensionality, as well as 3D techniques, such as 3D Scattergrams, 3D
line graphs, floors and walls, and 3D map-based bar-charts.

Another branch of visualization research for OLAP concentrates on developing multiscale visualization
techniques capable of presenting the data at different levels of aggregation. Stolte et al. describe their im-
plementation of multiscale visualizations within the framework of the Polaris system [168]. The underlying
visual abstraction is that of a zoom graph that supports multiple zooming paths, where zooming actions may
be tied to dimension axes or triggered by a different type of interaction.

Lee and Ong propose a multidimensional visualization technique that adopts and modifies the Parallel
Coordinates method for knowledge discovery in OLAP [95]. The main advantage of this technique is its
scalability to virtually any number of dimensions. Each dimension is represented by a vertical axis and the
aggregates are aligned along each axis in form of a bar-chart. The other side of the axis may be used for
generating a bar-chart at a higher level of detail. Polygon lines adopted from the original Parallel Coordinates
technique are used for indicating relationships among the aggregates computed along various dimensions (a
relationship exists if the underlying sets of fact entries overlap in both aggregates).

Sifer [164] presents a multiscale visualization technique for OLAP based on coordinated views of dimen-
sion hierarchies. Each dimension hierarchy with qualifying fact entries attached as the bottom-level nodes
is presented using a space-filling nested tree layout. Drilling-down and rolling-up is performed implicitly
by zooming within each dimension view. Filtering is realized by (de-)selecting the values of interest at any
level of dimension hierarchies, resulting either in highlighting the qualifying fact entries in all dimension
views (global context coordination) or in eliminating the disqualified entries from the display (result only
coordination). A similar interactive visualization technique, called the Hierarchical Dynamic Dimensional
Visualization (HDDV), is proposed in [170]. Dimension hierarchies are shown as hierarchically aligned
barsticks. A barstick is partitioned into rectangles that represent portions of the aggregated measure value
associated with the respective member of the dimension. Color intensity is used to mark the density of the
number of records satisfying a specified range condition. Unlike in [164], dimension level bars are not ex-
plicitly linked to each other, allowing to split the same aggregate along multiple dimensions and, thus, to
preserve the execution order of the disaggregation steps.

One of the major visualization challenges for OLAP is the ability to present a large number of dimensions
on a display. An additional visual attribute for mapping a dimension could be animation, as found in the
Gapminder software for interactive data exploration using animated scatterplots in which animation is used
to show the evolution of values along the timeline [157]. A well-structured classification of visualization and
interaction techniques with respect to the type and the dimensionality of the data is produced in [77].
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A technique for finding an appropriate ordering of the aggregates along dimensional axes, proposed by
Wei Choong et al. in [26], may help to improve the analytical quality of any visualization. By default, the
ordering of the measures is imposed by the lexical ordering of dimension members. To make patterns more
obvious, the user has to rearrange the ordering manually. The proposed algorithm automates the ordering of
measures in a representation as to best reveal the patterns (e.g., trends, similarity) in a data set.

Whenever a data cube contains spatio-temporal characteristics, the analysis may benefit from specialized
exploration techniques for space-time patterns. Rivest et al. [155] propose SOLAP (spatial OLAP) as a
visual platform for spatio-temporal analysis using cartographic and general displays. The authors also define
different types of spatial dimensions and measures as well as a set of specialized geometry-aware OLAP
operators. A synopsis of techniques for spatio-temporal exploration arranged according to the data and task
types is produced in [6]. Kuchar et al. [88] point out that time dimension is not an ordinary data attribute and
that, therefore, to ensure satisfactory analysis, interaction and visualization techniques have to incorporate
explicit awareness of temporal characteristics.

8.1.2 Components of a Visual OLAP Tool
Comprehensive analysis includes a variety of tasks such as examining the data from multiple perspectives, ex-
tracting useful information, verifying hypotheses, recognizing trends, revealing patterns, gaining insight, and
discovering new knowledge from arbitrarily large and/or complex data volumes. In addition to conventional
operations of analytical processing, i.e., drill-down, roll-up, slice-and-dice, pivoting, and ranking, OLAP
frontends support further interactive data manipulation techniques, such as zooming and panning, filtering,
brushing, collapsing, distorting, etc.

OLAP tools account for a diversity of potential analytical tasks by providing a comprehensive framework
for interactive generation of desired visual presentations. The overall query specification cycle evolves by i)
selecting a data source of interest, ii) choosing a desired visual layout (e.g., a scatterplot or a pivot table), and
iii) mapping various data attributes to these structural elements of the chosen layout (e.g., the horizontal and
the vertical axis of a plot) as well as to other visual attributes, such as color, shape, and size.

The entire exploration framework can be considered as composed of an input and an output area for spec-
ifying queries and presenting query results, respectively. The input component has the form of a navigation
interface for visual querying of data sources by presenting data cubes as browsable structures. The output
area presents the results of user interactions in a selected visual format and enables interactive exploration by
providing a taxonomy of available visual layouts and attributes along with a toolkit of interaction techniques
for dynamic refinement of the queried data subset and its visual representation. A unified framework is ob-
tained by designing an abstraction layer for each element and providing mapping routines (e.g., metadata
to a navigation hierarchy, navigation events to database queries, and query results to a visual layout) that
implement the interaction between different layers.

VISUAL QUERY SPECIFICATION

Visual OLAP disburdens the end-user from composing queries in the “raw” database syntax (e.g., SQL or
MDX). Instead, queries are specified visually. Multidimensional data is represented as a browsable structure
whose elements can be queried by “pointing-and-clicking” and “dragging-and-dropping”. The visual inter-
face does not trade advanced functionality off for simplicity, it rather facilitates the process of specifying ad
hoc queries of arbitrary complexity.

While analytical queries aggregate over detailed data, visual exploration evolves in the inverse direction,
i.e., “descending” from coarsely grained views towards more detailed ones via a stepwise decomposition into
subaggregates along selected dimensions. This prevailing drill-down direction is reflected in the structure
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of a typical OLAP data navigation: each data cube is presented as a hierarchy of its dimensions and each
dimension is a recursive top-down nesting of granularity levels, i.e., with the coarsest granularity at the top
and the finest at the bottom. Users proceed by specifying the measure(s) (both the data field and the aggregate
function), choosing the dimensions to be used as decomposition axes, filtering the selected data subset, and
manipulating the visual representation of the result. These query steps are performed irrespective of the query
type and the chosen visualization technique. Therefore, we see a great potential for improving the usability
in designing a common uniform navigation framework for satisfying any type of analytical query.

Various navigation events, such as dragging and clicking, are translated into valid queries and executed
instantaneously. Therefore, from the user’s point of view, querying is done implicitly by populating the
visualization with data and incrementally refining the data view. The first step is to instantiate an empty
visualization template with data, performed by dragging the elements (measures, dimensions) of interest
into the respective layout areas. Figure 8.2 shows an example of instantiating a visualization in the Tableau
Software: an empty pivot table template prompts the user to drop data fields from the navigation (left) into
the column, the row or the cell area.

Figure 8.2: Mapping data fields to a visual layout in Tableau

Any OLAP query follows the same scheme, i.e., consists of the same query clauses, some of which
are optional. In ROLAP systems, database queries are expressed in SQL and structured into the following
sequence of clauses (optional clauses and elements are placed in square brackets):



174 Chapter 8 : Interactive Exploration of OLAP Aggregates

SELECT [ dimension_list, ] measure_list
FROM table_list
[ WHERE predicate_list ]
[ GROUP BY [ ROLLUP | CUBE ] dimension_list ]
[ HAVING measure_predicate_list ]
[ ORDER BY attribute_list [sort_direction] ]

Elements measure_list and table_list are obligatory and have to be populated with at least one measure
and one fact table, respectively. Thereby, the simplest possible query for instantiating a visualization with a
grand total value is generated by picking a data cube and some measure field in it. For example, picking the
field Discount from the cube Superstore Sales in Figure 8.2 would generate the following SQL query:

SELECT SUM(discount) FROM superstore_sales

Further clauses serve for refining the initial query: i) WHERE and HAVING clauses allow to specify
selection conditions on any attributes and aggregated measure fields, respectively, ii) GROUP BY contains
dimension categories to aggregate along, and iii) ORDER BY sorts the output. These clauses are populated
with data by invoking corresponding OLAP operations described in the next section.

VISUALIZATION OF QUERY RESULTS

In the context of OLAP, visualization refers to the mapping of the data returned by a query or a series of
queries to a visual layout. The output of any OLAP query is a data cube. Visual presentation is generated by
assigning the cube’s elements – measures and dimensions – to visual variables of the display. A visualization
technique is defined by its graphical primitives, such as line or circle segments, points, curves, etc., which in
combination determine the layout template. Further visual variables, such as color, position, length, and area,
are used for encoding various properties of the data set into its visual presentation.

Users analyze the visual presentation by extracting the quantitative information encoded into the graphics
in the form of perceptual tasks. Visual analysis tasks are quite different from those encountered in classical
data analysis. The former include recognizing shapes, discerning colour, judging sizes and distances, tracing
motion, etc. Obviously, various tasks differ in their accuracy and ease of interpretation. Cleveland and McGill
[28] propose the notion of elementary perceptual tasks, or elementary graphical encodings, to describe the
basic way of encoding data into a visualization. The authors also provide an empirically verified ranking
of those tasks according to the accuracy of quantitative perception. Mackinlay [105] extended the set of
considered tasks by addressing the issue of encoding non-quantitative information and provided a ranking of
perceptual tasks according the data type (quantitative, qualitative, nominal).

The commonly recognized perceptual tasks in descending order of accuracy for quantitative data domains
according to [28, 105] (except for animation, which was not evaluated in those studies) are the following ones:

	 Position (e.g., a coordinate of a point along an axis),
	 Length (distance) (e.g., length of a bar in a bar-chart),
	 Angle (e.g., angle of a segment in a pie-chart),
	 Slope (e.g., slope of a line in a line-chart),
	 Direction (orientation) (e.g., direction of an edge in a graph),
	 Area (size) (e.g., a rectangular area of a node in a TreeMap),
	 Volume (e.g., volume of a 3-D shape),
	 Curvature (e.g., curve-difference charts),
	 Density (darkness) (e.g., greyscale colormap),
	 Color saturation (brightness) (e.g., fading effect in the animation),
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Figure 5.17: Decoding using positions on non-aligned scales.

assessments about slopes and changes of slope, it is angles which we look at. These
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judgements. In particular, the best decoding of slopes happens when the slopes are

about 1.

Figure 5.18: Slope decoding using angles.
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	 Color hue (e.g., assigning distinct colors to the segments of a pie-chart),
	 Texture (shading) (e.g., assigning different filling patterns to shapes),
	 Connection (e.g., connecting related nodes in a graph by an edge),
	 Containment (e.g., nesting child nodes within a parent node in a TreeMap),
	 Shape or symbol (e.g., using marks with different shapes or borders in a scatterplot),
	 Animation (motion) (e.g., animating the evolution of a value along the time axis in a scatterplot).

Figure 8.3 shows simple pictorial symbols that describe the main idea of each elementary perception task.
A visual layout typically employs a combination of different tasks to encode multiple characteristics of the
data items. For example, bar-charts use position and length, whereas stacked bar-charts additionally make
use of containment and color.

Since OLAP is concerned with the analysis of quantitative information, the accuracy of the utilized visual
elements is a crucial requirement. However, the adequacy of the perceptual tasks for non-quantitative data
types is also an important issue since dimensional characteristics may be of different data types – numeric,
ordinal, or nominal. Ranking of perceptual tasks according to the encoded data type, proposed by Mackinlay
[105], is shown in Figure 8.4. This ranking is related to relational data in general. Data sets retrieved by
OLAP queries can be considered a special case of relational data consisting of two types of attributes, namely,
numeric measures and descriptive dimensions. Therefore, ranking of quantitative tasks is especially relevant
for encoding measures whereas ordinal and nominal ranks should be considered for mapping dimensions.
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Prevailing visual layouts and default visualization metaphors in the area of OLAP generally adhere to the
proposed rankings: popular presentations are business charts and scatterplots, which map measures to length,
angle, volume, area, or color, encoding their dimensional characteristics into position, density, or color hue.

Intuitively, the more perceptual tasks a particular visualization combines, the more characteristics of a data
set can be presented. Simple bar-charts and pie-charts are capable of showing just a single measure grouped
along a single dimension category, scatterplots support two dimensions and pivot tables allow to display mul-
tiple measures and to nest multiple dimensions in its rows and/or columns. Comprehensive analysis tasks
may require more expressive visualization techniques. Popular approaches to increasing the dimensionality
are to extend a 2-dimensional layout to 3-D (e.g., 3D charts and maps in Miner3D [124]), to use hierarchical
layouts (e.g., Chart Trees in Report Portal [188]), to split the view into multiple perspectives (e.g., perspec-
tives in Advizor [39]), or to arrange it into a grid of small multiples (e.g., visual tables in Tableau [169]).
Another emerging trend is to adopt specialized multidimensional visualization techniques, such as Parallel
Coordinates [69], which scale to a higher number of dimensions.

8.2 Navigating in Multidimensional Data

A common interface for accessing the data in a cube is a browser-like navigation hierarchy, which represents
each cube as a hierarchical node consisting of dimensions and measures. Dimensions are also represented in a
hierarchical fashion, i.e., as a recursive nesting of hierarchy levels. Comprehensive OLAP tools allow users to
access the data residing in different data sources. Therefore, the navigation hierarchy in such tools is rooted
at the node of type Database. Relational databases are partitioned into schemes (not to be confused with
conceptual or logical schemes!), where a schema specifies a collection of table definitions. Therefore, the
next-level node in the navigation is of type Schema, which, in its turn, is a parent node of Cube. In simplified
configurations, the navigation may be limited to single data cubes and, thus, consist solely of dimension and
measure attributes of a selected cube.

8.2.1 Prevailing Data Navigation Schemes

The cube navigation is typically subdivided into Dimensions and Measures sections, as can be found in nearly
any popular commercial BI tools, e.g., IBM Cognos PowerPlay [31], SAP BusinessObjects Intelligence Plat-
form [14], and MicroStrategy OLAP Services [123]. Most of the tools also agree that dimensions are to be
represented in a straightforward fashion, i.e., by their hierarchy instances, where each member is a node con-
taining its child members. We denote this kind of navigation instance-based. Figure 8.5 shows a screenshot
of a data navigation in Cognos PowerPlay. Consider, for instance, the navigation hierarchy of Product dimen-
sion: the top-level node ALL PRODUCTS contains single product categories, which, in their turn, contain the
respective product groups. The hierarchy scheme Product � Product category � JProduct group is not explicit
in such a presentation but is expected to be guessed by the user.

In an instance-based navigation, each dimension is accessed in a top-down fashion, so that lower-level
elements are reached exclusively via their containing upper-level elements. For example, in the time hierarchy
with the scheme date � month � quarter � year, date value ‘February, 16 2004’ is reached by successively
expanding the nodes ‘2004’, ‘Q1’, and ‘February’. Thereby, instance-based hierarchy presentation has some
obvious disadvantages, such as tedious navigation to lower hierarchy levels, having to expand multiple paths
to access multiple members at the same level, and the premise that the user knows the path leading to the
element of interest (e.g., a user interested in software products must know that this product group is assigned
to the product category ENTERTAINMENT MEDIA).
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Figure 8.5: Instance-based hierarchy navigation in Cognos PowerPlay

Figure 8.6: Explicit enumeration of hierarchy levels in OracleBI Discoverer

Some OLAP vendors tried to compensate for the above disadvantages by enhancing the navigation with
some kind of scheme awareness. For example, OracleBI Discoverer [32] allows to “jump” to the desired
hierarchy level in a dimension by providing a drop-down list of all available levels, as shown in Figure 8.6.
Other vendors treat hierarchy levels as distinct dimensions in the navigation, as can be seen in the screenshot
of MicroStrategy OLAP Services depicted in Figure 8.7. In this example, Product dimension is resolved into
hierarchy levels Category and Subcategory and Time dimension is shown as Year and Month. We denote the
latter navigation approach category-based.

Category-based navigation is superior into the instance-based one as it provides a more detailed overview
of the available granularities and facilitates the navigation to the desired level of detail and the desired subset
of member values. More importantly, it becomes possible to support multiple and heterogeneous hierarchies
since each category can be presented as a dimension in its own right. However, many issues remain unsolved
or aggravated: belonging of a category to a particular dimension and hierarchical relationships between
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Figure 8.7: Treating hierarchy levels as dimensions in MicroStrategy OLAP Services

categories are not shown, there is no distinction between parallel and alternative hierarchies and no means
of expressing generalization/specialization relationships, partial and non-strict roll-ups. Besides, nesting
dimensions and measures within their cubes disables parallel exploration of multiple cubes (drill-across) and
asymmetric treatment of dimensions and measures disallows using a dimension attribute as a measure and
vice versa (push and pull). The above mentioned limitations of the existing OLAP tools motivated us to
develop a novel OLAP cube navigation paradigm, capable of adequately handling the entire set of static and
dynamic features of the extended multidimensional model, proposed in Chapters 3 to 5.

8.2.2 Enhancing Data Navigation through Scheme Awareness
We have come to realize that the weaknesses of the instance-based and the category-based navigation are pri-
marily due to trading semantic richness off for simplicity: decomposition of a multidimensional scheme into a
set of unrelated categories results in a loss of all types of relationships between categories and, consequently,
in the inability to support semantic properties provided by those relationships. We propose a scheme-based
navigation approach, which preserves the multidimensional semantics by accurately reflecting the conceptual
data scheme in the navigation hierarchy. In a nutshell, we pursue a clear distinction between the scheme
and the instance of a dimension: a dimension is represented by its scheme, i.e., its category nodes nested
according to parent-child relationships between them. Expanding a category node reveals solely its contained
child categories, whereas the members of a particular category are displayed on-demand.

Figure 8.8 demonstrates the main idea of moving from the instance-based navigation (a) to the scheme-
based one (b) at the example of a hierarchical dimension Nationality. Expansion of the top-level node in Figure
8.8b reveals the entire hierarchy scheme, thus enabling the user to drill through to any desired granularity
level. The instance is retrieved by clicking on the category’s data-view button as shown in Figure 8.8c for
category Subcontinents. By switching to the instance view, the user can explore the data hierarchy in the
same way as in the instance-based navigation.

HANDLING HIERARCHIES

The navigation structure of a dimension is further refined by distinguishing between the nodes of type Di-
mension, Hierarchy, Level, and Attribute, whose meanings correspond to their counterparts in the conceptual
and the metadata model:

	 Dimension node represents the abstract top category of the dimension and “wraps” the entire dimension
scheme into a single navigation node at the top level.

	 Hierarchy node “wraps” each of the multiple hierarchies into a single containing node (dimension in a
dimension), thus allowing to specify alternative and specialization hierarchies.

	 Level node represents a single non-abstract category in a hierarchy.

	 Attribute node corresponds to a single attribute in a category with multiple attributes.
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(a) Instance-based hierarchy (b) Scheme-based hierarchy (c) Switching from scheme to instance hierarchy

Figure 8.8: Instance-based vs. scheme-based navigation for a hierarchical dimension
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Figure 8.9: Obtaining a scheme-based navigation hierarchy of a dimension

To understand the roles of different node types in the navigation, let us consider a sample dimension
scheme location in Figure 8.9a and its resulting navigation scheme in Figure 8.9b. In addition to the nodes
mentioned above, the navigation also uses structural nodes of type HIERARCHIES and ATTRIBUTES to
separate the set of the category’s hierarchical relationships from the set of its properties (as in category city).
The ATTRIBUTES node can be omitted in a category consisting of a single attribute and HIERARCHIES node
is only necessary in the existence of the ATTRIBUTES node. Figure 8.9c provides an overview of all node
types that may occur in a dimensional navigation structure.
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Figure 8.10: Examples of navigating in multiple hierarchies

Navigation nodes of type Hierarchy are employed to enable adequate handling of multiple alternative and
specialization hierarchies. Diverging hierarchy paths underneath a category node indicate parallel, alternative,
or specialization hierarchies, as exemplified by the respective variants of dimension Surgery Date depicted in
Figure 8.10. Each type leads to specific aggregation constraints and, therefore, has to be treated accordingly
in the navigation hierarchy:

	 Parallel hierarchies are independent non-exclusive aggregation paths that may be explored in combina-
tion. Therefore, these hierarchies can be represented as simple nestings of category nodes, not topped
by a Hierarchy node and not linked to one another in any way. As an example, consider the variant of
Surgery Date navigation in Figure 8.10a: the bottom category Dates rolls up to Weekdays, on the one
hand, and to Months, Quarters, Semi-annuals, and Years, on the other hand. Both paths are represented
by their respective top levels Weekdays and Years, nested in the dimension node.

	 Alternative hierarchies are incompatible aggregation paths: once a category of a hierarchy has been
used as a grouping criterion, all hierarchies alternative to the former should be disabled. The variant
of Surgery Date dimension in Figure 8.10b contains alternative aggregation paths of Dates: grouping
by Months, Quarters, and Semi-annuals may not be combined with grouping by Weeks. Both paths
are represented by the respective Hierarchy nodes, linked with a dashed line, within Years, where
both paths converge. Once a category from such a hierarchy is selected as a grouping condition, all
hierarchies alternative to the former become “undraggable” and can only be used for filtering.

	 Specialization hierarchies are exclusive (each member of the superclass belong to just one of the spe-
cializations) but compatible (specializations may be explored in parallel) for parallel exploration. In
the navigation, a set specialization paths is represented by a set of linked Specialization Hierarchy
nodes, as can be seen in Figure 8.10c at the example of the generalized hierarchy Work/Holiday and
its specializations Working Days and Holidays. The resulting representation is rather similar to that of
alternative hierarchies, however, there are significant differences in query options. First, specialization
paths do not “lock” one another allowing the user to drill into different subclass hierarchies within the
same query. Besides, the navigation element of type Specialization Hierarchy is not just an abstract
“wrapper”, like the nodes of type Cube, Dimension, or Hierarchy, but it actually represents the local
root category and its implied member “all” of the underlying subclass hierarchy. Therefore, we make
such nodes selectable as grouping criteria. For example, dropping the hierarchy nodes Working Days
and Holidays into the visualization would split the parent aggregate value into two subaggregates, one
for all date values of type working day and the other one for all date values of type holiday.
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HANDLING MEASURES

Representation of measures in the navigation is generally less challenging as the former are non-hierarchical
each consisting of a single data field. So, basically, a set of cube’s measures can be represented as a plain
enumeration. Issues relevant in this context are whether the navigation should distinguish between basic
and computed measures, how it should go about the aggregability constraints and how it could implement
definition of new measures and enable interchangeability of measure and dimension roles in a query.

In the current practice of OLAP interfaces, there exist two major approaches to representing measures,
namely as an attribute of the fact table or as computation formula. As an example, consider fact scheme
PURCHASE with measure attributes Number of Items and Amount Paid. The simplest navigation alternative
would be to enumerate the above two attributes in the MEASURES area of the cube and to prompt the user
select an aggregate function from the FUNCTIONS area of the navigation. By default, the SUM function is
assumed. Figure 8.11a shows the resulting navigation fragment (a measure icon with a blue triangle marks
the default measure of the cube). In such a setting, the user is free to apply any function to any measure field,
i.e., there is no support for aggregation semantics.

Another extreme is to explicitly display each valid aggregation option specified by the metadata. This is
done by representing each allowed computation formula, i.e., a combination of a measure attribute and an
aggregate function, as a measure in its own right, as shown in Figure 8.11b. Both measure attributes Number
of Items and Amount Paid are allowed to be aggregated using SUM, MAX, MIN, and AVG, resulting in eight
valid measure entries in the navigation. With such a setting, the user’s choice is restricted to the aggregation
options specified through the metadata.

Apparently, both approaches have their pros and cons. The first option produces a very compact view,
but it is unable to assign various aggregate functions to various measure attributes within the same query.
The second approach prevents invalid aggregation semantics, however, at the expense of generating very long
lists of measures and inflexibility to support user-defined measures. We propose an alternative representation,
aimed at overcoming the disadvantages of the above two approaches and extending the functionality by the
following means (see Figure 8.11c for the corresponding example):

	 Measures are represented as attributes prepended by a drop-down selection of applicable aggregate
functions. Thereby, the navigation remains compact allowing multiple measures to be selected each
with its own function.

PURCHASE

DIMENSIONS

...

MEASURES

Amount Paid

Number of Items

FUNCTIONS

PURCHASE

DIMENSIONS

...

MEASURES

Total Amount Paid

Maximum Amount Paid

Total Number of Items

Minimum Amount Paid

Average Amount Paid

Maximum Number of Items

Minimum Number of Items

Average Number of Items

PURCHASE

DIMENSIONS

...

MEASURES

Amount Paid

Number of Items

Amount per Item

(a) Separating measures attributes
from aggregate functions

PURCHASE

DIMENSIONS

...

MEASURES

Amount Paid

Number of Items

FUNCTIONS

PURCHASE

DIMENSIONS

...

MEASURES

Total Amount Paid

Maximum Amount Paid

Total Number of Items

Minimum Amount Paid

Average Amount Paid

Maximum Number of Items

Minimum Number of Items

Average Number of Items

PURCHASE

DIMENSIONS

...

MEASURES

Amount Paid

Number of Items

Amount per Item

(b) Measures with built-in aggregate
functions

PURCHASE

DIMENSIONS

...

MEASURES

Amount Paid

Number of Items

FUNCTIONS

PURCHASE

DIMENSIONS

...

MEASURES

Total Amount Paid

Maximum Amount Paid

Total Number of Items

Minimum Amount Paid

Average Amount Paid

Maximum Number of Items

Minimum Number of Items

Average Number of Items

PURCHASE

DIMENSIONS

...

MEASURES

Amount Paid

Number of Items

Amount per Item

(c) Measures with built-in
aggregation semantics

Figure 8.11: Different approaches to representing measures
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	 Aggregability constraints are preserved by adjusting each measure’s function selection. As an exam-
ple, consider the derived measure field Amount per Item of type value-per-unit and its functions set
reflecting the measure’s non-additivity in Figure 8.11c.

	 The option “more...” in the function list enables the user to select another aggregate function, besides
the explicitly allowed one.

	 Derived measure fields are shown by marking their measure icons with (x). Amount per Item is an
example of a derived field, computed as Amount Paid { Number of Items.

	 In addition to the measure fields (primary or derived ones), specified through the metadata, the user
should be able to derive further measures from the existing ones ad hoc. This is done via the measure
definition wizard – a feature provided by any advanced OLAP tool.

	 Each cube specifies a measure attribute to be used by default and each measure specifies the default
aggregate function to guarantee proper query instantiation. In case of a non-measurable scheme, a
default measure entry COUNT(*) (i.e., mere counting of qualifying facts) is added to the navigation.

With the proposed semantically rich scheme-based navigation framework, we are able to support ad-
vanced scheme-transforming OLAP operators and other dynamic properties as described in the next section.

8.2.3 Dynamic Properties of the Navigation Scheme

One of the desirable advanced properties of the navigation scheme as the query specification interface is sup-
porting ad hoc manipulation of multidimensional schemes in order to obtain new views of the available data.
Such manipulations are concerned with changing the hierarchical organization of dimension, interchanging
the roles of dimensions and measures in a cube, and creating new facts by joining multiple related cubes.

The initial state of the navigation corresponds to the metadata description of the displayed sources. In
the course of interaction, the users may manipulate the original multidimensional schemes to adjust them to
specific analysis needs. We distinguish between persistent and ad hoc data manipulation. Persistent changes
to the data (e.g., materialization of derived elements or definition of new data views) are done via cube
designer tools, which propagate the required operations to the backend and to the metadata layer, whereas ad
hoc changes refer to temporary transformations aimed at supporting particular tasks or queries. We propose
that the latter type of operations should be supported by the navigation interface of OLAP frontends: the state
of the navigation may undergo a series of transformations during the session but gets reset once the session
is closed.

The first kind of ad hoc transformations is concerned with allowing the user to change the aggregation
hierarchy of a specific dimension by adding or removing hierarchy levels or adjusting the existing levels
and relationships between the elements. Since this functionality is readily supported by the leading OLAP
vendors by means of providing corresponding dimension redesign wizards, we skip its further detailing and
rather focus on insufficiently supported features, such as PUSH, PULL, and DRILL-ACROSS operations.

ENABLING PUSH AND PULL

OLAP operators PUSH and PULL allow the user to define a measure from a dimension category and to use
a measure field as a dimension, respectively. A combination of these operators providing a foundation for
interchanging measure and dimension roles in a scheme. Since the navigation scheme of a cube is subdivided
into DIMENSIONS and MEASURES sections, an intuitive way of supporting these operators is to allow a
drag&drop of measure and category nodes from one section to the other.
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Dropping a measure attribute into the DIMENSIONS section is interpreted as a PULL operation and trig-
gers a dimension specification wizard. Semantic implication of “pulling” a measure is to treat its values as
dimensional characteristics of other measure attributes in the fact scheme. For example, converting measure
Number of Items in fact scheme PURCHASE into a dimension allows to use the former as a filtering condition
and to aggregate the other two measures Amount Paid and Amount per Item by Number of Items.

Considering that measure fields are typically of a numeric type, possibly with high precision and a huge
number of distinct values, their instances need to be adjusted to be usable as dimensions. This problem,
known as “continuous dimensions” in data warehousing research, is solved by employing various discretiza-
tion techniques to reduce the size of the dimension’s instance [162]. Discretization is performed by lowering
the precision (e.g., rounding) of the values or replacing each set of values by a single (e.g., median) value or a
range specification. The dimension specification wizard prompts the user to specify the desired discretization
method in the same similar fashion as the existing cube designer tools treat continuous dimensions. The
resulting ad hoc dimension is non-hierarchical. If desired, hierarchy levels (INSERT LEVEL operator) can be
added using the dimension redesign wizard. The navigation scheme of the affected cube reflects the changes
by removing the converted attribute from MEASURES and making it appear in DIMENSIONS.

To ensure the validity of the transformed fact scheme, we reduce the set of PULL-able measures to the
simple ones, i.e., consisting of a single data field. Members of the new dimension correspond to those of the
underlying measure attribute, thus, ensuring the validity of the original fact entries. Conversion of a measure
with no data field in the fact table (e.g., COUNT(*)) or with a complex computation formula is not trivial and
remains a subject for further investigation.

The reverse act of dropping a dimension category into the MEASURES section is interpreted PUSH and
triggers the measure specification wizard. The semantics of “pushing” is to enable aggregation of the cate-
gory’s values along other dimensions of the fact scheme. This operation is indispensable in non-measurable
fact schemes and was used in sample queries presented in Section 6.3. The key attribute of the selected
category turns into the input field of the new measure, prompting the user to specify the set of applicable
aggregate functions. A non-numeric input attribute results in a non-aggregable measure. Therefore, the set
of selectable functions is automatically reduced to COUNT and COUNT DISTINCT (duplicate-free counting).

Define new measure

Cancel Commit

Measure name Cities

Input field

Allow functions

New Measure

Code (Cities)

Figure 8.12: Performing a PUSH operation

The major challenge of performing a PUSH is to adjust the granu-
larity of the affected cube. Especially when converting a non-bottom
category into a measure, the fact entries must be consolidated ac-
cordingly. For example, if category city in dimension Location of
SURGERY (see Figure 8.9a) is turned into a measure (e.g., to query
the number of cities in which certain surgery types took place), all
levels below city should be removed from the aggregation path and
hospital values in fact entries should be replaced by the respective
city values. Figure 8.12 shows a view of the measure specification
wizard used for transforming category Cities into a measure. The
navigation scheme of the affected cube reflects the changes by re-
moving the converted category as well as the path below it from
DIMENSIONS and making the new measure appear in MEASURES.

Let us consider a complete example of swapping a measure with a dimension in a variant of fact scheme
SURGERY depicted in Figure 8.13a. The transformation is aimed at enabling the analysis of surgery duration
in each cost category. In the first step, category Full Hours in Duration is converted into a into a measure, as
shown in Figure 8.13b, resulting in disappearance of the entire dimension Duration since Full Hours was its
coarsest level. In the subsequent PULL step, measure attribute Costs is converted into a dimension. To enable
aggregation by cost categories, hierarchy level Cost Ranges is added on top of the bottom category Exact
Costs. The resulting cube navigation is shown in Figure 8.13c.
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(b) Full Hours pushed into a measure

Location

SURGERY

DIMENSIONS

MEASURES

Costs

Start Time

Stop Time

Patient

Surgery ID

Location

SURGERY

DIMENSIONS

Full Hours

Durations

MEASURES

Costs

Start Time

Stop Time

Patient

Surgery ID

Duration

Full Hours

Location

SURGERY

DIMENSIONS

Cost Ranges

Exact Costs

MEASURES

Start Time

Stop Time

Patient

Surgery ID

Costs

Full Hours

(c) Costs pulled into a dimension

Figure 8.13: Example of a combined usage of PUSH and PULL

ENABLING DRILL-ACROSS

Drilling across, also known as a multicube join, is an advanced OLAP operation for parallel exploration of
multiple related cubes in order to compare their measures or even to combine the latter into a new measure.
Intuitively, a pair of measures are comparable, if they have compatible sets of dimensional characteristics.
Therefore, to qualify for a DRILL-ACROSS, participating fact schemes must be related, i.e., must share at least
one category. Each of the input cubes is made compatible for multicube join by being rolled-up to the subset
of dimensional characteristics, common to all participating cubes. Some of the existing OLAP tools support
drilling across by providing a cube definition wizard for a step-by-step construction of the desired multicube
view. To avoid a tedious cube definition procedure, we suggest that the drill-across functionality should be
integrated into the navigation scheme in the form of a multicube navigation hierarchy.

A rather simple solution is to “unnest” the dimensions and the measures from their containing cube
nodes into a common navigation hierarchy, as illustrated in Figure 8.14. The standard view of the navigation
scheme in Figure 8.14a reveals the structure of cubes SURGERY and HOSPITALIZATION. Both fact schemes
are strongly related since their dimension sets overlap for the most part. The unnested (“galaxy”) navigation
view is obtained by placing the dimensions and the measures of both cubes into common DIMENSIONS and
MEASURES sections, respectively, as shown in Figures 8.14b and 8.14c, with conform dimensions repre-
sented in a non-redundant fashion. The resulting navigation structure can be used for querying the measures
both within any of the cubes and across cubes. Once a measure is selected, the DIMENSIONS section adjusts
itself by disabling (fading out) the dimensions invalid in that measure’s context, as shown in Figure 8.14b.
Similarly, selecting measures from both cubes results in displaying only the subset of dimensions valid for
all selected measures. Figure 8.14c presents a drill-across view for comparing average surgery costs with the
respective hospitalization expenses.

The above galaxy view provides a simple drill-across interface, however, it is restricted to admitting only
fully conforming dimensions as multicube join axes. Obviously, a more intelligent solution is needed for
drilling across along partially related dimension schemes. Let us suppose that temporal dimensions in HOSPI-
TALIZATION are called Check-In and Check-Out and have Date category as the bottom grain. The correspond-
ing dimensions Start Time and Stop Time in SURGERY are fine-grained into Timestamp. A DRILL-ACROSS
is still possible, if HOSPITALIZATION facts are rolled up to the date level. Similarly, surgery location is
Operating Theater, whereas hospitalization location is Room, but both hierarchies converge in Hospital.
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a single-cube mode
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Figure 8.14: “Galaxy” view of the navigation for a pair of related cubes

We propose to enhance the galaxy view of the navigation by prompting the user to specify, what dimen-
sions should be matched, and by merging each pair of matching dimensions into a common super-dimension.
Figure 8.15 visualizes the essence of our approach based on the above example, with isolated navigation
schemes of the two cubes in (a) and the resulting joined navigation scheme in (b). Notice that the unified
view of dimension hierarchy schemes is an accurate reflection of the underlying semantic galaxy scheme.

The proposed enhanced multicube navigation scheme is obtained as follows:

1. The user is prompted to specify the set of cubes for drilling across. The system analyzes the validity of
the selection, generates the definition of the virtual cube for performing the requested multicube join,
and constructs the corresponding joined navigation scheme. Basically, there is no limitation on the
number of cubes to be explored in parallel, but in the practice, this number rarely exceeds two.

2. In case of ambiguities (e.g., differing names of related elements or multiple possibilities of dimension
matching), the user must specify which dimensions should be merged and how. Back to our example,
the user chose to merge Start Time with Check-In and Stop Time with Check-Out and confirmed that
dimensions Location and Duration in both cubes should be matched in spite of the differing bottom
grain.

3. Each of the selected cubes is assigned a unique color icon (see the top of Figure 8.15b). Belonging of a
dimension, a hierarchy level, an attribute, or a measure to any of the cubes is then specified by marking
it with the respective color mark. Dimensional nodes at the top display the marks of all contained
elements. Similarly, computed measures display the marks of all cubes, whose measures are involved
into the computation. As an example, consider the derived measure Total Charge, defined as Costs �
Amount. We denote such measures multicube measures.
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(b) Multicube navigation view
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(c) Performing a drill-across operation

Figure 8.15: Multicube navigation scheme with enhanced semantics

The “drill-across” navigation mode is triggered by selecting either a set of measures belonging to different
cubes or a multicube measure. The latter case is shown in Figure 8.15c. The use of color marks facilitates
visual recognition of valid drill-across paths: only those hierarchy levels containing each of the marks present
in the selected measure (or set of measures) may be used as drill-down axes, as shown in Figure 8.15c by a
“faded” display of all disqualified paths. Notice, however, that disqualified categories are prohibited only for
drilling down, but they still may be used for filtering. For example, category Days in Duration can be used to
exclude HOSPITALIZATION facts of too short duration from the computation of Total Charge.

Implementation of scheme-transforming operators is done by generating a temporary metadata descrip-
tion for the transformed cube, rebuilding the navigation according to the new metadata, and defining an
appropriate virtual cube at the backend. In case of a complex multicube join, constructing a virtual cube “on-
the-fly” may cause unacceptable performance degradation of the backend system. One solution to solving
this problem is to materialize the defined multicube, i.e., the correspondingly preaggregated input facts and
their join. In that case, however, the functionality of filtering along disqualified levels becomes unavailable
as the respective characteristics are not present in the preaggregated view.

8.2.4 OLAP Operators and their Implementation Options

Analytical queries manipulate the input data by applying of OLAP operators, such as drill-down, roll-up,
slice&dice, ranking, and pivoting, to name the major ones. These operators enable the user to abstract “raw”
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numbers into a desired perspective by taking a cube or a set of cubes as an input and outputting a new cube.
In visual frontends, in which queries are specified implicitly, OLAP operators are “encoded” into interaction
events performed either on the navigation scheme or on the visual presentation of the retrieved data subset.

To account for various user preferences, most of the operators are provided redundantly, e.g., via the
navigation, as a menu option, an icon, or a widget, and via direct interaction with the visualization. In the
previous subsection we already touched upon a number of operations, such as drill-down, filter, push, pull,
and drill-across, and described their implementation in the navigation interface. Table 8.1 enumerates the set
of supported OLAP operations (for detailed descriptions of the provided functionality refer to Section 2.2.2)
and describes possibilities of their implementation as navigation events or other interaction techniques. The
next section will provide further insights into interactive visualization techniques for OLAP.

Table 8.1: OLAP operations and their implementation in a visual frontend

Operation Navigation Interaction

ROLL-UP Undo of a previously
performed DRILL-DOWN

Zoom-out within a dimension axis, collapse the element(s)
of interest, or remove the category from its visual mapping

PROJECT See ROLL-UP Remove the whole dimension from its visual mapping

DRILL-DOWN Dropping the category into a
visual mapping

Zoom-in within a dimension axis or expand the element(s)
of interest

DRILL-THROUGH Menu option, icon, or a popup menu

DRILL-WITHIN See DRILL-DOWN A popup menu

SLICE Selecting a value in a
category to serve as a filter

Trim the view to the area of interest

DICE Selecting a set of values in a
category to be filtered out

Deleting or collapsing corresponding areas in the
visualization

SELECT Selecting a set of values in a
category to serve as a filter

Trim the view to the area of interest, use of sliders or
panning windows for range selections

FILTER See DICE Configuration via a filter menu, use of sliders for range
selections

CONDITIONAL
HIGHLIGHTING

See FILTER

RANKING Including a ranking function
into the measure’s definition

Layout-specific options, a filter menu or a slider on the
measure field

SWITCH Sort menu or drag&drop of visual elements into desired
positions

PIVOT Drag&drop of data fields to new visual mappings

DRILL-ACROSS Multicube navigation
scheme

PUSH Dropping the category into
the measure section

PULL Dropping the measure into
the dimension section

INSERT LEVEL Dimension redesign wizard

DELETE LEVEL Dimension redesign wizard
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Apart from the intuitive and purely visual query specification, OLAP frontends enable incremental gen-
eration of the desired view, i.e., without the loss of context. For example, one can drill down into just a subset
of the retrieved aggregates, resulting in the display of multiple granularities in the same view. Thereby, the
complexity of the underlying backend operations remains transparent to the user.

8.3 Hierarchical Visualization Techniques for OLAP

8.3.1 Salient Characteristics of Visual Interaction Patterns

Confronted with having to evaluate thousands of values returned by an OLAP query, users tend to focus
on few outstanding values and discard the remaining ones or run another query to calculate the next-level
aggregates (drill-down or roll-up) in order to obtain a mental image of the data. While this strategy can be
successfully applied for reporting tasks, exploratory analysis is driven forward by finding information hidden
in the data via ad hoc queries. In such scenarios, abstract visual representations (i.e., overviews) can be of
significant help in supporting this process of comprehending characteristics of large data sets.

As data sets for analysis are huge, coarsely grained aggregates play the role of orientation hints, or “di-
rection signs”, in exploratory queries. The analyst wants to see measures of interest at different aggregation
levels and compare the aggregates within the same level as well as across levels. As an example, one might
want to compare expenditures of departments with each other, but a comparison of a small department with
a project team of approximately the same size would also make sense.

Multiscale visualizations are effective techniques for facilitating the exploration process because they
change the visual representation to show the data at different levels of abstraction. At a high level, it is heavily
aggregated in order to display a large amount of data in a compact way. As the user zooms in, data density
decreases allowing to show more detailed representations of individual data points [168]. Preservation of the
overview throughout the course of interaction (zooming and panning) becomes very important as otherwise
the user might easily lose the context in the process of drilling down.

Visual scalability, i.e., the ability of a visualization to meaningfully display a large number of data items,
is another challenge. Display space becomes a scarce resource, which in turn leads to the development of
space-filling visualization techniques that efficiently utilize the available display area.

While analytical queries aggregate over detailed facts, visual analysis evolves in the inverse direction, i.e.,
proceeding from a few coarsely grained aggregates towards more detail by drilling down along dimensions
of interest. This top-down direction makes it easier for the analysis to retain an overview and to get hints on
how to proceed, e.g., whether to apply a filtering or a drill-down step. The top-down navigation hierarchy,
described in the previous section, accords nicely with this query pattern by nesting deeper hierarchy levels
inside their coarser-grained predecessor levels.

Considering the prevailing iterative disaggregation pattern in visual exploration and the fact that aggre-
gates obtained at earlier stages often remain useful for comparisons with their subaggregates or other values,
hierarchical visualization techniques suggest themselves as perfect candidates for exploring OLAP data.

8.3.2 Decomposition Tree

A structure that captures the aggregates produced by a series of drill-down or roll-up operations is denoted
a decomposition tree: the grand total value of the measure is placed into the root node and the constituent
sub-aggregates, obtained via a drill-down step, are represented as child nodes of the containing aggregate.

As an example, let us consider iterative decomposition of student numbers, measured as the number of
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(b) Decomposition by year
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(d) Decomposition by semester and gender
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(e) Decomposition by semester, gender, and degree

Figure 8.16: Mapping a sequence of decomposition steps to a set of bar-charts

enrollment cases and the number of persons1 by year, semester, gender, and degree. Figure 8.16 shows the
output of each decomposition step organized into a bar-chart with number of enrollment cases and number
of persons mapped to blue and red bars, respectively. Since the bar-chart layout provides a one-dimensional
view, each decompositions results in splitting the charts along the horizontal axis.

With every decomposition step, the chart view gets updated resulting in the loss of previously computed
aggregates. Replacing a sequence of charts with a decomposition tree view connects the aggregates computed
at each step into a hierarchy as shown in Figure 8.17. Such a hierarchical presentation by its very nature has
an advantage of supporting any number of drill-down categories. Since there are as many disaggregation
operations possible within a cube as the total number of mutually non-exclusive hierarchy levels in all its
dimensions, and since the order of combining orthogonal grouping criteria can be arbitrary, OLAP cubes can
be seen as containers of a multitude of decomposition hierarchies.

The first commercial implementation of the decomposition tree as an interactive visualization technique
for OLAP was provided by ProClarity [141]. Figure 8.18a shows the results of decomposing the total sales
in Category “Computer Hardware” by Sub Category, Region, and Name. Child nodes display the next level
of detail as absolute value and percentage of the total. The tree can be expanded only one node at a time, is
limited to displaying a single measure attribute and has no visual formatting of the node values. Besides, it is

1The number of enrollment cases tends to be slightly higher than the number of persons since a person may be enrolled into multiple
study programs.
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Figure 8.17: Arranging a sequence of decomposition steps into a decomposition tree

(a) ProClarity’s Decomposition Tree (b) Bar-Chart Tree in Report Portal

Figure 8.18: Commercial decomposition tree techniques

rather wasteful in terms of display utilization and is thus infeasible for exploring large data volumes.
Further enhancements of hierarchical decomposition techniques for OLAP are found in the OLAP web

client Report Portal 2.1 released by XMLA Consulting in 2005 [188]. Report Portal offers graphical de-
composition tree techniques, such as Bar-Chart Tree and Pie-Chart Tree, which enhance the presentation by
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arrange the values inside a node into a chart. The bar-chart variant even supports multiple measures and
negative value domains. The interaction approach is similar to that of ProClarity, i.e., a single aggregate
can be expanded at a time. However, drill-down steps need not be aligned into categories, thus allowing to
expand each of the “sibling” aggregates along a different path. Figure 8.18b shows an example of such a
heterogeneous Bar-Chart Tree, in which the the left-hand set of measure values is decomposed by state and
the right one by product category.

8.3.3 Enhanced Decomposition Trees
Aware of the limited functionality and poor presentation options of the existing decomposition tree interfaces,
we developed a class of Enhanced Decomposition Tree. The introduced enhancements are manifold and
target various optimization criteria, such as simplicity, type of measure and aggregate function, the size and
the dimensionality of the data set, etc. The entire set of the proposed enhancements can be subdivided in i)
generation/interaction and ii) layout options, discussed in the following subsections.

DECOMPOSITION STRATEGIES

Existing decomposition tree techniques enable drilling down into single aggregates to see their subaggregates,
as shown in the tree instances depicted in Figure 8.18a, in which just a single node per level is expanded.
To change the grain of the whole tree, the user has to expand every single node at the bottom level – obvi-
ously a too tedious way of performing a single drill-down query. However, this node-per-node decomposition
strategy is pursued by the vendors deliberately since the provided tree layouts are of very limited scalability
and are thus inadequate for visualizing complete decomposition hierarchies. In our framework, this explo-
ration deficiency is overcome by providing layouts of better scalability (described in the next subsection) and
enabling various drill-down modes, such as i) the value-wise, ii) the node-wise2, and iii) the level-wise one.

As an example of a hierarchical decomposition, let us consider that of student enrollments along section,
faculty, and department, mapped to a bar-chart tree shown in Figure 8.19: (a) shows the results of two value-
wise drill-down steps, (b) shows a variant of decomposing all values within one node at each level, and (c)
captures two complete (i.e., level-wise) drill-down operations. The user is free to choose the desired mode
and can arbitrarily switch from one mode to another during the exploration.

Value-wise and the node-wise decomposition steps require specification of the context element, i.e., a
value or a node to be split. The context can be specified either explicitly by marking the elements of interest
with mouse clicks prior to performing the respective drill-down step or implicitly by dropping the drill-down
category’s node into the element’s area.

Contrary to the chart tree techniques of Report Portal, Enhanced Decomposition Trees preserve the con-
cept of uniform tree levels, i.e., all aggregates within the same level are obtained via the same sequence of
drill-down steps. This property is crucial for enabling the above multi-mode decomposition within the same
visualization as well as interactive switching between different layouts.

Another empowerment of the decomposition tree technique is achieved by introducing different types of
drill-down steps, triggerable by the same drag&drop action:

	 Nested split (split-into) refers to the specification of the drill-down step inside the nodes and is valid
only in hybrid tree layouts that arrange multiple values into a single node by means of nested visualiza-
tions. The resulting intra-node granularity in the tree can be refined by a subsequent nested split along
any category, which lies deeper in the hierarchy path of the current split.

2Differentiation between the value-wise and the node-wise modes is only made in those layouts, in which a node contains a set of
aggregates rather than a single one.
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(c) level-wise decomposition

Figure 8.19: Using different decomposition modes with a bar-chart tree

	 Inner split (split-across) decomposes each of the aggregate values in the parent node into subaggre-
gates along a specified split category. As a result, each of the child nodes has the same number of
aggregate values as the parent node, however, at a finer grain.

	 Outer split (split-along) maps each of the the aggregate values in the parent node to a separate child
node and uses the split category to perform a nested-split in those new nodes. As a result, the number
of aggregates is different from that in the parent node.

Figure 8.20 illustrates the above split types. A split-into by faculty generates a set of aggregates for the
bar-chart presentation in the root node. A subsequent decomposition by department is performed as a split-
along: each child nodes corresponds to an aggregate in the parent node broken down by department. A
split-across along the category cost class, which consists of just two member values External and Internal,
partitions each parent-node set into two subsets, one for each member value: each aggregate in a child node’s
refers to a different aggregate value in the parent node.
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DEPARTMENT 

COST CLASS 

FACULTY 

Figure 8.20: A decomposition tree of the measure student enrollments produced via a nested split by faculty,
an outer split by department, and an inner split by cost class

COST CLASS 

FACULTY 

Figure 8.21: A decomposition tree with an orthogonal outer split (from faculty to cost class)

In addition to the above split types, it is important to distinguish between two semantic subtypes of a
drill-down: i) drilling within a dimension occurs when the current split category Cj represents a refinement
of the previous split category Ci (Cj �

� Ci), and ii) drilling out of a dimension occurs when when the current
split category is orthogonal to the previous split category. Both types are applicable in the split-along mode,
however, with different implications. The split by department in Figure 8.20 represents the case of remaining
within the teaching unit hierarchy. As a result, a child-level set of department values is individual for each
faculty value of the parent level. Figure 8.21 depicts the results of an outer split for the same set of faculty
aggregates along cost class. In this case, each child-level node is broken down by the identical set of member
values, reflecting the orthogonality of cost class to faculty.

As exemplified by the above decomposition trees, an outer split can be performed for drilling both within
and out of a dimension. The other two split modes, however, are more restrictive. Thereby, a non-initial
nested split is admissible only in case of drilling within, since the granularity of the inner representation in
the existing tree may only be refined but not replaced. An inner split, on the contrary, is valid only in case of
an orthogonal drill-down as only in this case each parent set can be broken down by the entire member set of
the split category. Checking the validity of attempted decomposition steps to prevent invalid user interactions
is an important task of the visualization framework.
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LAYOUT STRATEGIES

The ultimate success of applying any particular visualization technique depends on the type of task to be
solved, the kind of data to deal with, as well as on the user’s expertise and preferences. Therefore, our aim is
to define a flexible framework rather than to provide a set of pre-configured layouts. Enhanced Decomposition
Trees improve the quality of visualization by enabling hybrid layouts and providing various layout options at
two levels: i) the hierarchical layout itself ii) embedded visual presentations.

An abundance of hierarchical visualization techniques proposed in the research literature fall into one of
two major classes, namely, connection and enclosure layouts.

Connection layouts, also known as node-link diagrams in a classical aesthetic view [154] and in a variety
of more compact layouts (hyperbolic, balloon, radial, etc., presented in [58]) are known to be easy to grasp
and intuitive to interpret. These layouts can be used to increase the user’s awareness of the hierarchical
relationships within the data or to allow users to build their own hierarchies, such as decomposition trees.

In the aesthetic layout, nodes are aligned both vertically and horizontally, thereby enabling visual com-
parison of aggregates within the same level as well as in a top-down fashion: all nodes containing the subag-
gregates of the same granularity appear aligned and so are descendant subtrees with respect to their roots. The
tree layout can be set either to vertical (placing child nodes underneath their parents) or to horizontal (left-
to-right direction of parent-child relationships). Bar-chart nodes in the decomposition hierarchy depicted in
Figure 8.20 are arranged into a vertical layout. Directing embedded bar-charts in the same direction appears
optimal for perceiving the whole level as a single chart, provided that all of them are scaled uniformly.

The simplest implementation of a decomposition tree is a node-link diagram with a plain subaggregate
value placed inside each node. This straightforward layout may be sufficient for the task of tracing the
composition of an aggregate. Figure 8.22 shows an example of exploring a drill-across measure costs-per-
student ratio by drilling down into semester and, subsequently, into faculty. Compared to the layout of
the ProClarity’s tree, our variant is more compact as it minimizes the node area by placing the associated
dimensional characteristic outside the node over the respective edge.

Figure 8.22: Exploring a drill-across measure costs-per-student ratio with a plain-text decomposition tree

Aesthetic node-link layouts are heavily criticized for extremely wasteful display utilization: sparsely
populated upper levels consume as much area as the bottom ones. Nodes at lower levels quickly run out of
space for displaying the labeling information, while a large portion of the display is wasted as background.
Radial and balloon node-link trees scale somewhat better. Enclosure, also known as “space-filling” or “value-
by-area”, offer a space-optimized solution. The compactness is achieved by scaling down the node size and
allotting progressively less space for nodes deeper in the hierarchy. The most commonly used enclosure
techniques are TreeMaps [163] and their variations, based on the rectangular node shape, and radial layouts,
such as the SolarPlot [27] and InterRing [189], in which the aggregates are laid out radially with the coarsest
aggregates in the center and finer grained levels farther away from the center.
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Figure 8.23: A rectangular space-filling decomposition tree (TreeMap)

Figure 8.23 demonstrates the use of a TreeMap layout for capturing hierarchical decomposition of total
expenditures, broken down by faculty, department, unit, chair, quarter, and cost class. Each aggregate’s value
is mapped to the size of the respective rectangular node, enclosed in the parent node’s area. Thereby, the
display area is not only fully utilized, but is re-utilized by rendering child nodes inside parent nodes, resulting
in the ability to visualize rather large data sets in a compact fashion. However, small values are hardly visible
and there is no space to label them.

Figure 8.24 shows the results of querying student enrollment numbers using a SolarPlot visualization.
The measure’s aggregates are mapped to the size of the circle segments in each ring. For examining the
distribution of foreign students over departments, the analyst filters out Germany in the dimension country
(German “Land”), retrieves the subaggregates at subcontinent (German “Subkontinent”) and, subsequently,
at country level. In the final step, a drill-down by department (German “Institut”) is mapped to the outermost
ring. SolarPlot technique overcomes the problem of nested rectangle layouts (TreeMaps), which quickly run
out of space for lower-level nodes. This is due to the fact that outer rings intrinsically occupy more space
than the inner ones. However, radial layouts have a number of drawbacks, such as leaving large portions of
the rectangular screen area unused, inability to accurately compare the nodes at different levels by area, and
difficulty of labeling the node areas due to their differing orientation.
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Figure 8.24: A radial space-filling decomposition tree (SolarPlot)

In space-filling techniques, a hierarchically decomposed aggregate is mapped to node size (area), whereas
node color is used for encoding some relevant dimensional characteristic, as in Figure 8.24. Such “value-by-
area” mapping is appropriate for exploring the aggregates computed using the SUM function where each
subtotal represents a fraction of the total. However, non-cumulative aggregate functions, such as MIN, MAX,
or AVG, produce values that remain within comparable ranges across the entire decomposition hierarchy and,
therefore, may not be represented as subareas of the parent node. On the other hand, a common value range
opens up an opportunity to map the measure to color using a common colormap for the entire value set.

To support non-cumulative disaggregation, we propose a visualization technique called Hierarchical
HeatMap, demonstrated in Figure 8.25. The layout is inspired by the pivot table technique: bottom-level
nodes are represented as a column of equally-sized cells and each higher-level nodes are shaped as cells
spanning the width of their subtrees. The value of an aggregate is represented as plain text as well as the
node’s background color. The color value is drawn using a variant of a “heat” colormap (colder or lighter
tones for lower values and warmer or darker tones for higher values).

Hierarchical HeatMap instances depicted in Figure 8.25 are obtained by decomposing the measure ex-
penditure amount along the hierarchy of teaching institution: aggregates in (a) are computed using AVG and
those in (b) are obtained with MAX. The range and the distribution of the resulting set of aggregates is sensitive
to the applied aggregate function: while MIN and MAX simply propagate extreme values to upper levels, AVG
has a “smoothing” effect on the values at upper levels. Our technique compensates for different aggregation
patterns by employing different colormap settings. In case of average values, a linear scale and a unipolar
colormap based on the increasing color intensity provide an intuitive view of the measure’s overall behavior
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Figure 8.25: Hierarchical HeatMaps for non-cumulative disaggregation

and enable immediate recognition of outliers. In case of maximum/minimum values, a logarithmic scale and
a multipolar colormap can successfully cope with the skewness of the distribution. Sliders at the poles of the
colormap are useful for dynamically adjusting the visualization’s sensitivity to outliers.

So far, we only considered bar-charts as an embedded representation in decomposition trees. Business
charts enjoy great user acceptance for their simplicity and ease of interpretation. As data subsets within single
nodes tend to be rather small and 2-dimensional (measure axis and the nested split dimensional axis), there is
no urge to employ more complex metaphors at this level. Basically, there is no limitation to what layouts can
be embedded in the nodes. However, bar-charts are known to outperform other chart types (e.g., line-charts or
area-charts) in terms of accuracy for presenting quantitative information, robustness to outliers (by adjusting
the range or the method of the scale), ability to present negative numbers and multiple measures.

Used in the context of hierarchical decomposition and embedded in an aesthetic node-link view, standard
bar-charts lead to rather wasteful display utilization, as can be observed in Figure 8.19c. We propose two
improved bar-chart variants, namely, i) space-filling bars and ii) area-preserving bars.

The first variant takes advantage of space-filling methodology for arranging the bars in a chart, as depicted
in Figure 8.26: the compactness of bar-charts is improved by replacing equal-width bars with equal-height
bars, proposed by Keim et al. in [76]. Thus, the whole chart is transformed into a partitioned rectangle,
with no display area wasted as background. The tree view in Figure 8.26 shows the results of disaggregating
the measure expenditure amount along a heterogeneous hierarchy purchaser. With space-filling bar-chart
decomposition trees , all bars can be visually compared with one another by considering their areas or widths.

Another similar option is based on area-preserving bars. An example of a horizontal decomposition tree
with such bars is depicted in Figure 8.27 and refers to the same scenario as the bar-chart tree in Figure 8.19c.
The idea is rather simple: charts within the same level use the same scale and the same bar width, whereas at
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Figure 8.26: A decomposition tree with space-filling bars
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Figure 8.27: A decomposition tree with area-preserving bars

each child level the width of the bars scales down proportionally to the decrease of the scale with respect to the
parent level. As a result, all bars remain comparable across levels by area, as in TreeMaps. Area-preserving
bars are not as scalable as space-filling bars, but, embedded in an aesthetic tree layout, they naturally achieve
a better utilization of the display than standard bar-charts while preserving the familiar chart view.
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8.3.4 Spatio-temporal Visualization Techniques

In the multidimensional data model, spatial and temporal components of the data are treated just like any
other dimensions. However, to fully exploit the potential and the richness of spatio-temporal data attributes,
the awareness of their specific characteristics has to be incorporated into the data warehouse and the analysis
tools on top of it. The outstanding role of the temporal dimension in OLAP is reflected in the data ware-
house definition: “...a subject-oriented, integrated, time-variant, non-volatile collection of data in support of
management’s decision making process” [68]. Rivest et al. [155] point out that space is the other of the two
analytical components needed to take full advantage of a data warehouse, and that spatial dimensions, just
like temporal ones, should receive a special treatment in any data warehouse implementation. Indeed, there
is an estimation that about 80% of all data stored in corporate databases has a spatial component [43].

The requirements towards handling spatio-temporal data in a visual interface are twofold: i) to commu-
nicate spatial or temporal patterns hidden within the data and ii) to facilitate query specification by building
up a mental image of the data distribution, which helps in restricting too generally formulated queries to data
regions of interest. We enhance the decomposition trees with temporal and spacial components by adopting
existing specialized visual presentations, such as calendar views and maps. In what follows, we present two
examples of spatio-temporal exploration tasks and a variant of a temporal and a spacial decomposition tree,
employed for solving the respective task.

Scenario 1: Temporal decomposition. To visualize the temporal evolution of a certain measure within a
data cube, a Recursive Pattern visualization technique [78] can be adapted to fit into a calendar view, similar
to the calendar-based visualization proposed in [186]. Figure 8.28 demonstrates the results of analyzing the
volumes of email communication along the time axis using the above approach. As the information can be
displayed at several granularities without changing the positions of the underlying data items, this technique
has proven to be very scalable. Recursive pattern calendar view can be used as an exploration technique in its

Figure 8.28: Multiscale Recursive Pattern visualization for drilling down along the time dimension
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own right or as a node-level view in a decomposition tree. The latter variant enables combination of temporal
exploration with disaggregation along other dimensions.

Scenario 2: Spatial decomposition. Spatial attributes, such as address, location coordinates, position,
orientation, or size, are frequently encountered dimensional characteristics in OLAP cubes. Geography is
often used as an exploration axis due to the fact that other data characteristics (i.e., consumer behavior)
may strongly vary in space and display interesting distribution behavior. Straightforward map visualization
techniques proceed by colorizing regions of a map or a cartogram according to the measure’s value. Using
geographical maps often leads to a disadvantage that larger regions (e.g., a state or a country) – which do not
necessarily encompass more data elements than small countries – dominate the visual impression and a lot of
display space remains unused.

Distortion approaches are employed to overcome the disadvantages of classical maps. The measure of the
analysis is used as a distortion parameter as demonstrated in [79]. In case of a gap-free rectangular distortion,
the resulting map degrades to a TreeMap, as in the Hierarchical Network Map (HNMap) technique [112].
Figure 8.29 shows a HNMap instance, which reveals geographical distribution of the network traffic at a
network gateway. The approach simultaneously displays two measures: one attribute is mapped to the size of
rectangular areas and the other is represented by color. In this example, the size of the country’s or the internet
backbone system’s node is proportional to the number of IP addresses it encompasses and the background
color marks the actual traffic volumes registered at each node.

Figure 8.29: Hierarchical Network Map with geographical decomposition of the network traffic load by
country and a drill-down into internet backbone system for Germany’s node region

In the future, we plan to investigate other established and novel approaches to spatio-temporal visualiza-
tion and incorporate them as further specializations of the Enhanced Decomposition Tree technique.
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Thesis conclusions and Future Work

T HIS DISSERTATION has explored the issue of extending the OLAP technology to support complex
data and non-conventional application scenarios. In this concluding chapter, we summarize and
evaluate the main findings of our research, discuss the issues that remain open, and make suggestions

for possible directions of further research.
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9.1 Summary of Supported Multidimensional Properties
The main contribution of this work consists in extending the scope of analysis tasks and usage scenarios
supported by the OLAP technology. We have come to realize that the extensions are due primarily in the con-
ceptual model, which captures the relationships in the application domain in an intuitive and implementation-
independent fashion. The capacity of a given multidimensional model can be presented in terms of the
provided multidimensional constructs and their properties. In this section, we summarize the concepts pro-
posed in different parts of this thesis and evaluate them against an extensive set of requirements found in the
state-of-the-art literature on multidimensional modeling.

To enable a more systematic evaluation, we group the considered set of multidimensional properties
into five categories: i) unification of the multidimensional space, ii) facts and measures, iii) dimensions and
hierarchies, iv) hierarchy levels and roll-up relationships, and v) dynamic features. The properties chosen for
the evaluation essentially correspond to the requirements formulated in Sections 3.1 and 3.2 of the thesis.

Table 9.1 enumerates the properties related to the unification of the multidimensional space as a founda-
tion for modeling semantically related elements. In the original OLAP setting, each fact scheme is modeled in
its own isolated space, resulting in the inability to capture semantic relationships across multiple fact schemes.
Our approach overcomes this deficiency by distinguishing between the terms category and category type and
presenting related categories as different roles of the respective category type.

A classification of measure and fact types as well as the resulting palette of multi-fact relationships defined
primarily in Chapter 6 are given in Table 9.2. Many-to-many relationships between facts and dimensions are

201
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Table 9.1: Multidimensional properties for mapping semantically related elements
Property Support Source
Common multidimensional space + Sections 3.4.1, 3.4
� Unified multidimensional space +
� Conformed multidimensional space +

Semantically related dimensions + Sections 3.4, 5.4.2
� Conform dimensions +
� Partially shared dimensions +

Dimension sharing + Section 5.4
� Conformance +
� Overlap +
�� Fact-as-dimension +
� Inclusion +
�� Convergence +

Semantically related categories + Section 3.4
� Conform categories +
� Compatible categories +

Related fact schemes + Section 3.4
� Fact family (galaxy) +
� Fact cluster +

Table 9.2: Multidimensional properties related to measures and facts
Property Support Source
Measure aggregation semantics + Section 5.2.1
� Aggregability +
� Additivity +
�� Measure value type +

Derived (computed) measures + Sections 3.3.1, 7.1.2
Non-measurable facts + Section 5.2.2
� Event-tracking facts +
� Coverage facts +

Non-strict fact-dimensional roll-up –
Degenerate facts + Section 5.3.1
� Satellite fact +
� Association fact +
�� Self-association fact +

Fact roll-up (composition) + Section 5.3.2
Heterogeneous facts + Section 5.3.3
� Optional dimensions + Section 4.3.2
� Fact generalization / specialization +

marked as unsupported since our model forces such relationships to be resolved into satellite facts for the
sake of correct aggregation.

Table 9.3 summarizes the contributions of Chapter 4 in the form of dimension and hierarchy types. In-
complete and overlapping specializations are marked with ‘+/–’ as those hierarchy types can be expressed
in the conceptual scheme “as they are”, however, our model forces their transformation into summarizable
structures as a preparation step for providing their logical mapping.
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Table 9.3: Multidimensional properties related to dimensions and hierarchies
Property Support Source
Derived dimension + Sections 3.3.1, 4.3.2, 7.1.2
Degenerated dimension + Sections 4.3.2, 5.2.2
� Fact identifier +

Optional dimension +
Hierarchically structured dimension + Sections 3.4.2, 4.3.2
� Multiple hierarchies + Sections 3.3.1, 4.5
�� Alternative hierarchies +
�� Parallel hierarchies +
�� Dependent hierarchies +

Totally ordered dimension + Section 3.4.2
Non-strict hierarchy + Sections 4.4.1, 7.3.2
� Weighted non-strict hierarchy +
� Fuzzy hierarchy –

Complete hierarchy + Section 4.4.2
Asymmetric (non-onto) hierarchy + Sections 4.4.2, 7.3.3
Heterogeneous hierarchy + Sections 4.4.3, 7.2
� Non-covering hierarchy + Section 7.2.1
� Mixed-grain hierarchy + Section 7.2.2
� Generalization/specialization + Section 7.2.2
�� Incomplete specialization +/–
�� Overlapping specialization +/–

Imprecise/incomplete hierarchy –

Table 9.4: Multidimensional properties related to categories and roll-up relationships
Property Support Source
Derived category + Sections 3.3.1, 3.4.2, 7.1.2
Totally ordered category + Sections 3.3.1, 3.4.2
Abstract (top) category + Sections 3.3.1, 3.4.2, 4.4.3
� Local root category + Section 7.2.2

Category type + Sections 3.4.2, 5.4.1
Property attribute + Sections 3.3.1, 3.4.2
Mutually exclusive roll-up relationships + Sections 3.3.1, 3.4.2
� Alternative roll-up relationships +
� Partial related roll-up relationships +
�� Non-covering roll-up +

Degenerated roll-up relationship + Section 4.3.2
Optional (partial) roll-up relationship + Sections 3.3.1, 3.4.2
Non-strict roll-up relationship + Sections 3.3.1, 3.4.2
� Weighted non-strict roll-up relationship + Section 7.3.2
� Fuzzy roll-up relationship –

Complete roll-up relationship + Sections 3.3.1, 4.4.2
Generalization/specialization relationship + Sections 3.3.1, 4.4.3, 5.3.3
� Mixed-grain generalization + Section 7.2.2
� Set of overlapping specializations + Section 7.2.2
� Incomplete set of specializations +
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Table 9.5: Dynamic multidimensional properties
Property Support Source
Ad hoc measure specification + Section 5.2.1
� Derived measure +

Scheme-transforming operators + Sections 5.3.4, 8.2.4
� “PUSH” (measure from a dimension category) + Section 8.2.3
� “PULL” (dimension from a measure) + Section 8.2.3
� “DRILL-ACROSS” (fact overlap) + Section 8.2.3

Ad hoc hierarchy + Section 8.2.3
� Ad hoc dimension category +
�� Derived dimension category +

Ad hoc cube specification + Section 8.2.3
DRILL-ASIDE (resolution of a non-strict roll-up) + Section 8.2.4

Fuzzy hierarchies are stated as unsupported, even though the X -DFM provides a fuzzy roll-up edge
construct. We have deliberately abstained from including fuzzy features into the formal model in order not
to explode the scope of this dissertation. Imprecision and incompleteness are further currently unsupported
features identified as direction for future work.

Categorization of dimension category types and the kinds of roll-up relationships between the them is
shown in Table 9.4.

Finally, Table 9.5 summarizes the dynamic properties of the multidimensional model, presented predom-
inantly in Chapter 8. The latter are not “hard-coded” into the conceptual scheme but are added by a user at
query time. User-defined elements are specified directly in frontend tools and can be stored for future use as
additional metadata within the respective user’s profile.

Not surprisingly, our proposed multidimensional model and its graphical notation cover most of the de-
fined requirements. After all, the objective of this work was to systematize the wealth of existing concepts
related to the conceptual data warehouse design and enrich them with the results of our research in order to
obtain a powerful modeling framework. To the best of our knowledge, our proposed formalization, classifi-
cation, and graphical notation are the most comprehensive and coherent in the state of the art.

9.2 Conclusions

The research represented in this thesis was motivated by two observations. On the one hand, data warehousing
and OLAP are gaining momentum as the core technology for decision support in the business world and
beyond. On the other hand, disclosure of novel application domains pushes this technology to its limits and
invalidates many of its established concepts. This work presents an attempt to reduce the gap between the
capacities of the state-of-the-art OLAP systems and the challenges imposed by comprehensive data analysis
and emerging decision-support applications.

In the introductory Chapter 1 we explained the general complexity of extending OLAP functionality by
pointing out that OLAP is an integral component of a multilayer data warehouse system architecture. The
overall power of such a complex system is determined by the interplay of the involved components and
therefore, any improvement introduced at a lower layer must be propagated upwards in the system in order to
reach the end-user. We also stated that many deficiencies of the standard technology are due to the rigidness
of the underlying multidimensional model. This insight coined the structure of this thesis.
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Background and Related Work (Chapter 2)

Measures

! Quantity ! Amount

Dimensions Store

Product Date A19 A27 A34 Total Store A19 A27 A34 Total Store

– Road Bike 450 06/20/2007 2 7 4 13 498 1743 996 3237

06/21/2007 9 12 10 31 2241 2988 2490 7719

06/22/2007 3 7 10 747 1743 2490

06/23/2007 5 1 9 15 1245 249 2241 3735

Total Road Bike 450 19 20 30 69 4731 4980 7470 17181

– Mountain Bike 100 06/20/2007 8 10 3 21 6392 7990 2397 16779

06/21/2007 5 11 4 20 3995 8789 3196 15980

06/22/2007 9 7 16 7191 5593 12784

06/23/2007 6 4 10 4794 3196 7990

Total Mountain Bike 100 28 28 11 67 22372 22372 8789 53533

– Touring Bike 710 06/20/2007 5  9 14 2995 5391 8386

06/21/2007 7 2 12 21 4193 1198 7188 12579

06/22/2007 4 13 17 2396 7787 10183

06/23/2007  2 8 10 1198 4792 5990

Total Touring Bike 710 16 4 42 62 9584 2396 25158 37138

+ Touring Bike 750 19 12 15 46 10621 6708 8385 25714

Total Product 82 64 98 244 47308 83765 49802 133566

This chapter set the stage for presenting our research by pro-
viding the necessary background in terms of the relevant ter-
minology and concepts as well as of the related work start-
ing from the fundamentals and components of Business In-
telligence, followed by an overview of the data warehousing
technology and its outstanding characteristics, OLAP opera-
tions and implementation alternatives, the multidimensional
data model, and the data warehouse design methodology.
We also highlighted the fundamentals of visual OLAP as an
emerging paradigm for exploring multidimensional aggre-
gates.

Extending the Multidimensional Data Model (Chapter 3)
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The central contribution of this work has been to develop
a conceptual multidimensional data model capable of han-
dling complex and non-conventional data and analytical
tasks. This chapter laid the foundation for the new model
by investigating the challenges of data warehouse design for
advanced applications, revising the state of the art, and iden-
tifying major “bottle-necks” in the existing systems. The re-
sults of this survey were organized into a set of requirements
and properties to be satisfied by the extended model.

The proposed conceptual design framework comes in the form of a formal model and an accompanying
graphical modeling notation. Since none of the existing graphical models appeared to be fully compliant
with the formulated requirements, we developed our own model, denoted X -DFM, which extends and and
modifies the popular Dimensional Fact Model of Golfarelli et al. [47]. Both the formalization and the
graphical toolkit were defined at three levels of abstraction – the lower, the intermediate, and the upper
level – to support consecutive layering of the conceptual scheme at different design stages. The concept
of the unified multidimensional space was introduced as a cornerstone for capturing semantic relationships
between the elements. In this chapter, we define only the core elements of the conceptual model, such as fact,
dimension, hierarchy, and roll-up relationship, to be particularized in the next two chapters.

Dimensions and Hierarchies in the Multidimensional Data Model (Chapter 4)
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This chapter was dedicated to extending the multidimen-
sional model as to support complex dimension and hierarchy
types. This work was inspired by the challenges encoun-
tered in a case study from the domain of academic admin-
istration. We demonstrated that the established constraints
of the conventional model, such as homogeneity, strictness,
and regularity, appear too restrictive for many real-world ap-
plications and, therefore, have to be overcome at the concep-
tual and, subsequently, at the logical level in order to provide
adequate OLAP support to such data domains.
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We undertook a systematic categorization of dimension and hierarchy types in the form of a metamodel
of dimensional modeling and provided formal definitions accompanied by illustrating examples for each of
the identified classes. Strong emphasis was placed on examining non-summarizable hierarchy types and
identifying inadmissible relationships in the data, which must be remodeled in the conceptual scheme prior
to proceeding to the logical design phase.

Measures, Facts, and Galaxies in the Multidimensional Data Model (Chapter 5)
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While Chapter 4 focused on classifying complex dimen-
sions, here we provided a similar categorization of facts
and measures. We used surgical workflow analysis as a
motivating non-conventional usage scenario. Fact schemes
were subdivided into measurable and non-measurable ones
as a foundation for determining the aggregation semantics.
By employing the concept of the unified multidimensional
space, we were also able to capture multi-fact relationships,
such as degeneration, composition, and generalization as
well as to classify dimension sharing patterns within and
across fact schemes. We also demonstrated the interchange-
ability of fact and dimension roles when dealing with semantically related fact schemes.

Data Warehouse Design for Non-Conventional Applications (Chapter 6)
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This chapter raised the issue of reconsidering the classical
data warehouse design methodology for dealing with non-
conventional applications, such as warehousing operational
data. Considering the fact that data warehouses are typi-
cally built on top of existing information systems and data
sources, we developed a methodology for semi-automatic
acquisition of multidimensional schemes from existing data
models. The proposed solution evolves as a the verification

and refinement of the existing conceptual scheme, followed by its cardinality-based transformation into a
multidimensional one. The capabilities of the proposed modeling framework were demonstrated by solving
sample analysis tasks from the field of surgical workflow analysis.

Relational Implementation of the Multidimensional Data Model (Chapter 7)

<<PFK>> PurchID (PURCHASER)
<<FK>> LocationID (LOCATION)
<<FK>> SectionID (SECTION)

PurchID: int
OriginalID: int
Type: varchar
Title: varchar
SectionID: int
LocationID: int

<<Table>>
TEACHING_UNIT

<<PK>> FacultyID
<<FK>> SectionID (SECTION)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser6
<<Trigger>> UpdateTUnit3
<<Trigger>> UpdateUnit4

FacultyID: int
Name: varchar
SectionID: int
LocationID: int

<<Table>>
FACULTY

<<PK>> SectionID

SectionID: int
Name: varchar

<<Table>>
SECTION

<<PK>> ChairID
<<FK>> DeptID (DEPARTMENT)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser4
<<Trigger>> UpdateTUnit1
<<Trigger>> UpdateUnit2

ChairID: int
Name: varchar
DeptID: int
LocationID: int

<<Table>>
CHAIR

<<PK>> DeptID
<<FK>> FacultyID (FACULTY)
<<FK>> LocationID (LOCATION)
<<Trigger>> UpdatePurchaser5
<<Trigger>> UpdateTUnit2
<<Trigger>> UpdateUnit3

DeptID: int
Name: varchar
Dean: varchar
FacultyID: int
LocationID: int

<<Table>>
DEPARTMENT

<<PK>> FacultyID
<<FK>> SectionID (SECTION)
<<FK>> LocationID (LOCATION)
<<FK>> OwnID (FACULTY)

FacultyID: int
Name: varchar
SectionID: int
LocationID: int
OwnId: int

<<Table>>
FACULTY1

<<PK>> DeptID
<<FK>> FacultyID (FACULTY)
<<FK>> LocationID (LOCATION)
<<FK>> OwnId (DEPARTMENT)

DeptID: int
Name: varchar
Dean: varchar
FacultyID: int
LocationID: int
OwnId: int

<<Table>>
DEPARTMENT1

The aim of this chapter was to demonstrate the imple-
mentability of the proposed conceptual model in a ROLAP
system with a reasonable overhead. The relational imple-
mentation was favored over the multidimensional one for
its superiority in handling complex data structures. A well-
established requirement of summarizability, i.e., correct ag-
gregate navigation, served as a benchmark for determining
the elements of the conceptual model, which had to undergo
scheme and/or instance transformation prior to obtaining
their logical mappings.
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We arrived at a conclusion that irregular dimension hierarchies represent the major challenges for rela-
tional implementation and proposed a two-phase hierarchy normalization approach for enforcing summa-
rizability in dimension hierarchies. The first phase is concerned with the normalization of heterogeneous
schemes by eliminating incomplete and overlapping specialization, mixed-grain, and non-covering roll-up
relationships. In the next phase, multiple and generalized hierarchies are decomposed into constituent ho-
mogeneous subtrees in order to identify non-onto and non-strict mappings to be normalized at the instance
level.

Finally, we paid a tribute to the outstanding role of the metadata in data warehousing systems, where
the former acts as an intermediary between various components and, in particular, between the physical data
model and the application layer residing on top it. We showed how the Common Warehouse Metamodel,
which is an established industrial standard for metadata interchange in data warehousing environments, can
be employed for capturing the rich multidimensional semantics behind the relational implementation.

Interactive Exploration of OLAP Aggregates (Chapter 8)
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This chapter addressed the issue of supporting complex data
at the frontend layer based on the emerging Visual OLAP
paradigm. Aware of the deficiencies of standard business
visualization techniques and employed data navigation ap-
proaches in OLAP tools, we proposed an enhanced visual
framework for comprehensive exploration of multidimen-
sional aggregates. Our framework incorporates the aware-
ness of the conceptual extensions in the form of enriched
metadata along with a powerful data interface for interac-
tive specification of ad hoc queries. We also provided an
exhaustive set of OLAP operators and elaborated on their
possible implementations (e.g., as navigation events or interaction techniques) in a visual interface.

Finally, we investigated the typical patterns of interacting with OLAP cubes and proposed to use hierar-
chical layouts for mapping the iterative nature of navigating to a dataset of interest. In particular, we designed
a class of hierarchical visualization techniques called Enhanced Decomposition Tree, in which hierarchical
layouts are employed for arranging aggregate values into a decomposition hierarchy, combined with simple
and intuitive chart representations used for displaying the sets of values inside single nodes. We experimented
with different hierarchical and chart layouts, colormap and scaling options in order to identify visualizations
that best match a specified criterion (e.g., compactness, precision, robustness against outliers).
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9.3 Future Work
The results presented in this thesis improve the claimed universality of the data warehousing technology by
bringing it some steps closer to the requirements of comprehensive data analysis. However, the set of features
enabled by our framework is by no means exhaustive. Some of the useful properties were omitted due to the
limited timeframe of our work whereas others were excluded deliberately as they did not fit or would have
exploded the scope of the resulting model. Our work can be continued by connecting it to other related
research areas, such as spatio-temporal analysis, real-time data warehousing, intergration of OLAP and data
mining, or by deepening the issues central to this thesis. In the latter category, a number of promissing
directions for future research can be identified.

Conceptual design

We have not considered the outstanding role of the time dimension and temporal characteristics in OLAP.
It would be useful to provide formalisms for capturing time-related semantics and to handle evolution of
dimension instances over time. In the literature, the term “slowly chanding dimensions” [81] is used to denote
dimensions, prone to modifications over time. Whereas various solutions to handling such dimensions exist
at the level of logical design, conceptual models tend to neglect this property.

Formalization of OLAP operators, especially of the scheme-transforming ones, would be beneficial for
modeling the outcomes of those operators at the conceptual level as well as for semantic query optimization.

The set of OLAP operations can be extended to include novel operators and aggregate functions, tai-
lored towards specific data types and analysis tasks. For instance, multidimensional analysis of text data
could benefit from retrieval operators, such as substring matching and similarity search, whereas business
process analysis requires operators for process decomposition and consolidation, subprocess matching, and
identifying similar process fragments.

Logical design

Implementation of the conceptual scheme is an important issue. So far, we only considered the relational
representation and identified a set of normalization techniques necessary in the relational context. It would
be useful to also provide a MOLAP and an object-relational DBMS implementation alternative and become
aware of the respective mapping challenges. We also intend to develop a CASE tool that would integrate our
proposed conceptual design methodology based on the X -DFM notation and the transformation techniques
for obtaining logical representations from the multidimensional schemes.

Visual OLAP

At present, visual OLAP is lacking a unified formal model and query specification standard. Existing frame-
works are based on proprietary formalisms and models. To be universally adopted, a new standard has to
be open, flexible, and extendible to account for a wide range of visualization approaches. Furthermore,
advanced OLAP tools claim to turn visualization from the presentation layout into the method of data explo-
ration, raising the necessity of re-defining visualization as an instrument in terms of its structural components
and interaction functions.

Another direction for future work is to search for novel visual querying paradigms as well as on adopting
and extending visualization and interaction techniques from the area of Information Visualization. Especially
those layouts capable of elegantly presenting large data volumes and/or a large number of dimensions are
demanded. Spatial and temporal OLAP support can be enabled by providing visualization techniques with
spatio-temporal “intelligence”, such as maps, cartograms, calendar views, and animated scatterplots.
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