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Max-Planck-Institut für Festkörperforschung

Universität Stuttgart

2022



Contents

1 Introduction 10

2 Background 14

2.1 Group theory in solids . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Space groups . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Group action on a Hamiltonian . . . . . . . . . . . . . 19

2.1.3 Double space groups . . . . . . . . . . . . . . . . . . . 19

2.1.4 Time-reversal symmetry . . . . . . . . . . . . . . . . . 20

2.2 Fibre bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Nodes and their invariants . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Berry phase . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Berry curvature . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Low-energy Hamiltonians . . . . . . . . . . . . . . . . . . . . . 26

3 Symmetry-enforced nodes 29

3.1 Weyl points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Weyl points at high-symmetry points . . . . . . . . . . 32

3.2 Higher-order point crossings . . . . . . . . . . . . . . . . . . . 34

3.2.1 Double Weyl points . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Fourfold double Weyl points . . . . . . . . . . . . . . . 37

3.2.3 Fourfold quadruple Weyl points . . . . . . . . . . . . . 40

3.3 Movable point crossings on rotation axes . . . . . . . . . . . . 43

3.3.1 Hourglass dispersion from twofold screw rotations . . . 43

3.3.2 Accordion states from fourfold screw rotations . . . . . 45

3.3.3 Compatibility relations spanning several rotation axis . 47

2



3.4 Topological nodal planes . . . . . . . . . . . . . . . . . . . . . 51

3.5 Case study for the chiral space groups 19 and 92/96 . . . . . . 55

3.5.1 Tight-binding model for SG 19 . . . . . . . . . . . . . 55

3.5.2 Example material Ba3Sn2 in SG 96 . . . . . . . . . . . 57

3.6 Dirac points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Dirac points at high-symmetry points . . . . . . . . . . 61

3.6.2 Movable Dirac points . . . . . . . . . . . . . . . . . . . 65

3.7 Line degeneracies . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Pinned nodal lines . . . . . . . . . . . . . . . . . . . . 67

3.7.2 Movable nodal lines . . . . . . . . . . . . . . . . . . . . 70

3.7.3 Interlinked nodal lines . . . . . . . . . . . . . . . . . . 75

3.7.4 Almost movable lines . . . . . . . . . . . . . . . . . . . 78

3.7.5 Dirac lines . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.8 Enforced topology in planes . . . . . . . . . . . . . . . . . . . 80

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Quasiparticle interference of drumhead surface states 86

4.1 Nodal loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Berry phase and surface states . . . . . . . . . . . . . . . . . . 89

4.3 Spin-orbit coupled nodal-loop semimetal . . . . . . . . . . . . 94

4.4 Quasiparticle interference . . . . . . . . . . . . . . . . . . . . . 95

4.5 Spin-resolved quasiparticle interference . . . . . . . . . . . . . 99

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Anomalous Hall effect in nodal line system 103

5.1 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Berry curvature and anomalous velocity . . . . . . . . . . . . 105

5.3 Periodic driving . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Floquet formalism . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . 110

5.3.3 Keldysh formalism for the quasistatic system . . . . . . 112

5.4 Current in a finite sample . . . . . . . . . . . . . . . . . . . . 116

5.5 Conductivity tensor . . . . . . . . . . . . . . . . . . . . . . . . 121

3



5.6 Real-time description . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusion 136

A Group action on crystal momentum 140

B Symmetry-enforced nodes in orthorhombic and tetragonal

space groups 142

C Derivation of DC conductivity for a periodically driven sys-

tem 157

Bibliography 161

4



List of Figures

3.1 Dispersion of symmetry-enforced Weyl nodes with Chern num-

ber |C| ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Dispersion of the fourfold double Weyl point in Pd7Se4 . . . . 40

3.3 Schematic hourglass dispersion . . . . . . . . . . . . . . . . . . 44

3.4 Connectivity diagrams for fourfold screw rotations . . . . . . . 46

3.5 Band crossings enforced by compatibility relations comprising

three rotation axes in spinless band structures . . . . . . . . . 49

3.6 Compatibility relations at R in SG 19 . . . . . . . . . . . . . . 52

3.7 Elementary band representation in SG 19 . . . . . . . . . . . . 58

3.8 Elementary band representation in SG 96 . . . . . . . . . . . . 59

3.9 Dispersion around S in AuTlSb . . . . . . . . . . . . . . . . . 64

3.10 Dispersion around the fourfold nodal line in NaSn5 . . . . . . 71

3.11 Pinned and movable lines in mirror planes . . . . . . . . . . . 73

3.12 Dispersion around R in AuTlSb . . . . . . . . . . . . . . . . . 74

3.13 Arrangement of bands along three rotation axes with hourglass

nodal lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.14 Symmetry-enforced weak topology in Ir2Si . . . . . . . . . . . 83

3.15 Symmetry-enforced weak topology in Sr2Bi3 . . . . . . . . . . 84

4.1 Illustration and dispersion of the nodal-loop model . . . . . . 88

4.2 Bulk and surface BZ for the nodal-loop system . . . . . . . . . 90

4.3 Surface states of the open chain . . . . . . . . . . . . . . . . . 92

4.4 Dispersion and surface density of states for the NLSM . . . . . 95

4.5 QPI patterns for the spinless case at different bias . . . . . . . 97

5



4.6 LDOS at constant ω with SOC . . . . . . . . . . . . . . . . . 98

4.7 Surface density of states for the NLSM . . . . . . . . . . . . . 100

4.8 Spin-resolved QPI patterns . . . . . . . . . . . . . . . . . . . . 101

5.1 Floquet quasienergy band structure of the driven NLSM pro-

jected onto the n = 0 component. . . . . . . . . . . . . . . . . 110

5.2 Berry curvature for a gapped nodal loop . . . . . . . . . . . . 111

5.3 Schematic setup of the driven NLSM between two leads . . . . 117

5.4 Currents in a finite-sized driven NLSM . . . . . . . . . . . . . 120

5.5 Mean occupation of Floquet quasienergy bands . . . . . . . . 124

5.6 Conductivity as function of driving amplitude . . . . . . . . . 126

5.7 Chemical potential dependence of the conductivity . . . . . . 127

5.8 Lifetime dependence of the conductivity . . . . . . . . . . . . 127

5.9 Detailed occupation of bands close to the nodal line for differ-

ent values of Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.10 Real-time calculation of the longitudinal current Jx and anoma-

lous Hall current Jz . . . . . . . . . . . . . . . . . . . . . . . . 131

5.11 Time-averged current for different lifetimes . . . . . . . . . . . 133

B.1 Brillouin zones of orthorhombic lattices . . . . . . . . . . . . . 144

B.2 Brillouin zones of the tetragonal lattices . . . . . . . . . . . . 152

C.1 Graphical representation of the conductivity tensor in terms

of Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . 158

6



Nomenclature

T time-reversal symmetry

σi, τi Pauli matrices in spin, orbital space, respectively

BZ Brillouin zone

DP Dirac point

EBR elementary band representation

FBZ Floquet Brillouin zone, [− π
T
, π
T

)

ICSD Inorganic Crystal Structure Database

LDOS local density of states

MP Materials Project

NLSM nodal-line semimetal

QPI quasiparticle interference

SG space group

SOC spin-orbit coupling

STM scanning tunneling microscope

TRIM time-reversal invariant momentum

WP Weyl point

7



Abstract

We investigate topological semimetals in the context of crystalline symme-

tries. In the first part, we classify all symmetry-enforced band crossings in

orthorhombic and tetragonal space groups with time-reversal symmetry and

identify all types of two- and fourfold degenerate point and line crossings, and

nodal planes. Our comprehensive findings are listed in several tables, which

serve as a reference and source of knowledge for band topology. For each

type of crossing we explain the pairing mechanism and provide a local low-

energy Hamiltonian, from which we evaluate its topological invariant. This

systematic analysis revealed several higher-order point crossings with Chern

numbers of C = ±2 or C = ±4 and nodal planes, which necessarily carry a

topological charge. The systematic analysis also includes global restrictions

on the band structure by symmetry. These lead to movable Weyl and Dirac

points on rotation axes and movable nodal lines in mirror planes, which make

up nodal loops or nodal chains in certain space groups. In the second part,

we investigate observable consequences of a nodal-line semimetal. First, we

calculate the drumhead surface states of a nodal-loop semimetal and calcu-

late their signature in quasiparticle interference patterns from scattering at

a surface impurity. We show that in the presence of strong spin-orbit cou-

pling, the surface states become spin polarized and demonstrate that their

spin structure can be resolved in spin-sensitive measurements of interference

patterns from scattering at a magnetic impurity. We then calculate trans-

port properties of the nodal-line semimetal subject to periodic driving by

circularly polarized light. The driving field breaks the symmetry protecting

the nodal line and leads to an anomalous Hall effect. In the Floquet pic-

ture, we demonstrate that the nodal line is weakly gapped except for two

Weyl points. The anomalous Hall effect can then be explained by the Berry

curvature between these two Weyl points.
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Zusammenfassung

In dieser Arbeit studieren wir topologische Halbmetalle, deren Bandkreu-

zungen durch räumliche Symmetrie erzwungen oder geschützt sind. Im ers-

ten Teil der Arbeit identifizieren wir alle erzwungenen Bandkreuzungen

in orthorhombischen und tetragonalen Kristallsystemen mit Zeitumkehr-

Symmetrie und präsentieren diese in umfassenden Tabellen, sortiert nach

entarteten Punkten, Linien und Ebenen. Für jeden Typus präsentieren wir

Niedrigenergie-Modelle, eine Beschreibung des Mechanismus, der zur Entar-

tung führt, sowie eine Analyse der topologischen Eigenschaften. Die syste-

matische Analyse offenbart unter anderem zweifach und vierfach entartete

Punktkreuzungen mit Chernzahlen bis zu C = 4, und topologische Ebenen,

die notwendigerweise topologisch nichttrivial sind. Berücksichtigt wurden ins-

besondere auch globale Randbedingungen nichtsymmorpher Raumgruppen,

die bewegliche Punktkreuzungen auf Rotationsachsen und bewegliche entar-

tete Linien und Ketten in Spiegelebenen erzwingen. Der zweite Teil dieser

Arbeit befasst sich mit beobachtbaren Konsequenzen topologischer Halb-

metalle mit Linienkreuzungen. Wir berechnen die Oberflächenzustände eines

Halbmetalles mit einer Ringkreuzung und deren Signatur in den Mustern der

Quasiteilchen-Streuung an Punktdefekten der Oberfläche. Es wird gezeigt,

dass Spin-Bahnkopplung diese Oberflächenzustände aufspaltet und deren

Spinstruktur durch spinauflösende Messungen der Streuung an magnetischen

Störstellen gemessen werden kann. Wir berechnen außerdem die Transport-

eigenschaften eines solchen Halbmetalles mit Ringkreuzung, das durch zir-

kular polarisiertes Licht periodisch getrieben wird. Die Symmetrien, welche

die Bandkreuzung schützen, werden durch das Licht gebrochen, was zu einer

anomalen Hall-Leitfähigkeit führt. Im Floquet-Formalismus kann demons-

triert werden, dass die Linienkreuzung bis auf zwei Weyl-Punkte aufspaltet

und dass die anomale Hall-Leitfähigkeit auf den Fluss der Berry-Krümmung

zwischen diesen Punkten zurückgeführt werden kann.
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1. Introduction

Symmetries are an essential ingredient in the modern formulation of fun-

damental physics. Group theory provides an analytical approach to vir-

tually all physical systems with symmetries and allows to make definitive,

qualitative statements, for example about degeneracies, allowed transitions

and conserved quantities. In condensed matter physics, the use of sym-

metry representations is a powerful concept for reducing complexity in the

description of periodically ordered matter. The 17 wallpaper groups and 230

space groups are the complete collection of all possible and distinct sym-

metry groups containing discrete translations in two or three dimensions,

respectively. and were already identified in 1891 [1, 2], They were crucial in

the development of crystallography and all periodically ordered systems in

three dimensions can be classified in terms of their space groups. Foremost,

for weakly interacting systems group theory provides the basis for separating

an infinite-dimensional Hilbert space into subspaces labeled by the crystal

momentum k. In the single particle picture, each of these subspaces are fi-

nite dimensional and provide the basis for understanding the properties of

materials in terms of their band structure. Inversion, reflections and discrete

rotations can further reduce complexity by decoupling subspaces with dif-

ferent transformation properties. A complete description of degeneracies in

terms of orthogonal subspaces at high-symmetry points can be given for any

band structure on the basis of orbitals at Wyckoff positions in terms of their

irreducible representations of the space group [3, 4].

With the advent of topology in condensed matter, the focus shifted from

local quantities, like degeneracies of eigenvalues or symmetry allowed or for-

bidden transitions at some k, to the global behavior of eigenstates for vary-
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ing external parameters. The importance of a global phase winding un-

der periodic changes of an external parameter that cannot be removed by

any gauge transformation has been recognized in 1984 by M. V. Berry [5]

and subsequently applied to the crystal momentum k [6]. In the context

of single-particle band structures, topology is used to identify the different

ways eigenstates of the Hamiltonian can be smoothly assigned to each crystal

momentum k up to gauge transformations. The classification of such a map

takes the whole parameter space into account and can be nontrivial in a pro-

jected subspace, e.g., the subset of occupied bands [7]. This idea is presented

together with a short introduction to symmetries in crystals in Chapter 2.

Topological insulators were the first examples of nontrivial topology of

the valence and conduction bands [8–10]. The explanation of the integer

quantum Hall effect in two-dimensional electron gases in terms of the topo-

logical invariant of the bulk states showed the importance of topology in

observable quantities [11, 12]. All possible topological insulators were sub-

sequently classified in the tenfold way according to the presence or absence

of the nonspatial symmetries, time-reversal, particle-hole or chiral symme-

try and dimension [13–15]. This classification is valid for parameter spaces of

arbitrary dimension and also covers crystal analogues, e.g., time periodic sys-

tems [16], (multidimensional) Floquet spaces [17–20] and time crystals [21].

The classification was then further extended to symmetry-protected topolog-

ical phases in the presence of various spatial symmetries [22, 23], culminating

in the complete classification of all known band insulators based on elemen-

tary band representations [24].

In topological semimetals, the same methods can be applied to character-

ize gapless systems with band crossings in terms of the topology on gapped

sub-manifolds surrounding the degeneracies. Topologically protected band

crossings are therefore inherently non-local and cannot be removed by local

perturbations. Most famously, Weyl and Dirac semimetals have topologi-

cally protected band crossings, whose low-energy spectrum provides a con-

densed matter analogue of the Weyl and Dirac fermions of elementary par-

ticle physics [25–29]. Beyond these most famous examples, the combination

of spatial and non-spatial symmetries brings forth a variety of topological

11



INTRODUCTION

degeneracies without a high-energy analogue. Those comprise not only point

crossings of up to eight bands, but also higher dimensional crossings along

so-called nodal lines [29, 23] and nodal planes [30, 31] in the Brillouin zone,

each with their own topological invariants. The topological classification of

band crossings in time-reversal symmetric and magnetic space groups is still

ongoing. Although a purely symmetry-based analysis is qualitatively exact,

it cannot predict the magnitude of band splittings and the energy at which

they appear. This poses a challenge for finding good example candidates, in

which the band crossing of interest is at a relevant energy scale, well isolated

from other bands and the band splitting is large enough to be experimen-

tally observable. A promising approach to identify candidate materials is

given by restricting the search to space groups, where the symmetries al-

ready guarantee the existence of topological band crossings. To aid this

search, we conduct a systematic classification and provide a complete refer-

ence of symmetry-enforced band crossings. In Chapter 3, we will introduce

the methods and discuss examples of all types of symmetry-enforced band

crossings in time-reversal symmetric crystals in the orthorhombic and tetrag-

onal space groups together with an analysis of their topological properties.

For these systems, we present comprehensive lists of all symmetry-enforced

degenerate points, lines and planes in Appendix B. The analysis is done in

terms of representation theory and compatibility relations, identifying all

types of symmetry-enforced band crossings. Expanding the Hamiltonians

around the degenerate points provides a way to evaluate the topological in-

variants in the abstract case.

Topological materials are not only of fundamental interest, but have

unique and robust experimental signatures with potential applications in

functional materials and devices. The winding of eigenstates in a topologi-

cal material has consequences for example for electric and thermal transport

properties [12], electromagnetic response functions [32–34] and the surface

spectrum through the bulk-boundary correspondence [35–38]. In the last

two chapters, we will shift our focus to nodal-loop semimetals and calculate

the influence of their topology on observable quantities. Firstly, we will focus

on surface states and the relation to the bulk topology in Chapter 4. More

12



specifically, we will calculate the signature of the so-called drumhead sur-

face states in the quasiparticle interference pattern from surface impurities.

Magnetic impurities in combination with spin-resolved scanning tunneling

microscopy allows to reveal the spin texture of the surface states. Secondly,

nontrivial topology is expected to lead to new transport phenomenon. In

the case of a nodal-loop semimetal, breaking the symmetry of the system

with polarized light is expected to lead to an anomalous Hall current. In

Chapter 5, we calculate the currents in a driven nodal-loop semimetal using

various methods.
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2. Background

In this chapter we introduce the mathematical foundation and notation for

the following chapters. We will briefly review the concept of symmetry groups

and their representations applied to quantum states and lattice Hamiltoni-

ans. Finally, we introduce the concept of topology for single-particle band

structures in the framework of fibre bundles and define the Berry connection

and curvature.

2.1 Group theory in solids

The symmetries of a system form a group G, with the group operation ◦ : G×
G → G meaning the consecutive application of two symmetry operations. The

identity id is to be understood as the trivial symmetry of no transformation.

The inverse of a symmetry is given by the inverse transformation, e.g., a

rotation in the other direction.

A matrix representation is a map ρ : G → U(N), that assigns every

element Ri ∈ G a unitary matrix ρ(Ri) = Ui in such a way, that the group

structure is preserved under matrix multiplication,

ρ(Ri ◦Rj) = ρ(Ri)ρ(Rj) = UiUj, (2.1.1)

ρ(id) = 1N×N . (2.1.2)

A matrix representation {Ui} is not unique, since for any unitary matrix V ,

{V UV †} is also a representation of the same group. Likewise, the direct sum

of two representations forms a representation. For a finite group, there are

only a finite number of inequivalent representation that cannot be written

14



2.1. GROUP THEORY IN SOLIDS

as direct sum of lower-dimensional representations. These are called the

irreducible representations.

The electron structure of a crystal, described by a Hamiltonian H(r)

is invariant under a symmetry group, if a matrix representation exists, such

that for every spatial symmetry Ri and its representation Ui the Hamiltonian

is invariant,

UiH(r)U †i = H (Ri(r)) . (2.1.3)

If the representation {Ui} can be decomposed in irreducible representations,

the Hamiltonian can be block-diagonalized with each block transforming un-

der one of the irreducible representations.

2.1.1 Space groups

A space group (SG) describes the mathematical symmetries of the atoms in a

crystal structure. Space groups contain discrete translations and potentially

point group symmetries, like rotations, reflections and inversions. Finally,

some space groups also contain nonsymmorphic symmetries, which can be

understood as a combination of a point group symmetry with a fractional

lattice translation in such a way, that no point is invariant. Two SGs are

seen as equivalent, if they can be transformed into each other by a basis

transformation. With this definition, there are 230 different SGs. In the

following, we introduce different types of symmetries together with their

notation.

Discrete translation groups

Discrete translation groups are the symmetry groups of lattices and form a

subgroup of each SG. A lattice in three dimensions is generated from three

linear independent vectors ai, i = 1, 2, 3, and a site X in the lattice can be

described as a linear combination of these three vectors with integer coeffi-

cients,

X = n1a1 + n2a2 + n3a3, (2.1.4)
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BACKGROUND

with n1, n2, n3 ∈ Z. To describe crystals as three dimensional lattices, they

are either assumed to extend to infinity or have periodic boundary conditions.

In the latter case, there is a finite number Ni for each lattice direction, after

which lattice sites are identified, that is, the coefficients in Eq. (2.1.4) are

ni ∈ Z/Ni. Depending on the relative length and angles of the generators, a

lattice belongs to one of the 14 Bravais lattices [39].

The symmetry groups of a lattice consists of all integer valued transla-

tions T =
∑3

i=1 niai, that map a lattice site onto another and this way the

lattice to itself. We will use the compact notation t(n1, n2, n3) to denote

(fractional) translations compactly in multiples of the lattice vectors. Each

of the lattice generators ai also generates a translation subgroup. For lattices

with periodic boundary conditions, these are cyclic groups of order Ni. Since

all translations commute, these are finite abelian groups. It follows from

Schur’s lemma that irreducible representations of finite abelian subgroups

are one-dimensional [40]. One-dimensional unitary matrices are just phases

that can be parametrized by a real number φ, eiφ ∈ U(1), φ ∈ [0, 2π). Ir-

reducible representations of the three dimensional translation group are also

one-dimensional and can be written as products of the individual phases.

Commonly, a three component vector k is introduced to parametrize the

translation eigenvalue for a translation by T as φ = k ·T. Two labels k1 and

k2 are identified, if they label the same translation group representation, i.e.

for every lattice translation T their difference has translation eigenvalue 1,

which is identical to the condition

(k1 − k2) ·T = 2πn, n ∈ Z, ∀T. (2.1.5)

The space of all k is therefore also invariant under discrete translations and

forms a three dimensional lattice, called the reciprocal lattice, spanned by

the lattice vectors Ki defined via Ki · aj = 2πδij. The labels become unique

by restriction to the first Brillouin zone (BZ) of the reciprocal lattice [41].

Any single particle Hamiltonian invariant under the discrete translation

group can be block-diagonalized with respect to the different irreducible rep-

resentations labeled by k. According to Eq. (2.1.3) the eigenfunctions of a

16



2.1. GROUP THEORY IN SOLIDS

block H(k) =
∑

αEα,kΨα,k(r)∗Ψα,k(r), labeled by some internal index α, are

also eigenvectors of lattice translations T and transform as

Ψα,k(r + T) = eik·TΨα,k(r) (2.1.6)

This is a group theoretic proof of Bloch’s theorem. Dividing by the proper

phase factor reproduces the periodic part of the Bloch wave function,

uα,k(r) = e−ik·rΨα,k(r) (2.1.7)

and k is the crystal momentum of the Bloch wave function.

Point group symmetries

Symmetry groups that leave at least one point in space invariant are called

point groups. Those consist of rotations, reflections, inversion and rotoin-

versions. In a space group, a point group symmetry can be combined with

any lattice translation, resulting in another point group symmetry with its

invariant point shifted to another position. A point group symmetry is there-

fore given in terms of a representative with relation to an arbitrarily chosen

origin. The combination with all lattice translations forms a coset of the

translation group. The rotations compatible with the Bravais lattices are

two-, three-, four- and sixfold. They will leave an axis invariant and are

denoted in this thesis following Hermann-Mauguin notation [42, 43], by the

numbers 2, 3 ,4 and 6, respectively. Additionally, we will indicate the direc-

tion of the symmetry axis by a subscript, e.g., 2001 for a rotation with the

invariant axis in [001] direction. Reflections leave a plane invariant and are

indicated by the letter M , followed by the subscript of its invariant plane. In

this notation, the plane M001 leaves the (001) plane invariant, which implies

its surface normal is aligned with [001]. Inversion and improper rotations

leave only one point invariant. The former is denoted by P , the latter can

be understood as a rotation followed by a reflection in a plane perpendicular

to the rotation axis and is indicated by writing the rotation with a bar, e.g,

4̄001 = M0014001.
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For some SGs it is not possible to chose an origin, such that all point

group symmetries can be written with full lattice translations as their trans-

lational parts. Depending on the convention, at least one symmetry will

always carry a fractional translation in addition to the point group opera-

tion acting on the coordinates. Such a symmetry is called off-centered and

the translation applied after the point group symmetry will be added to

its symbol. For example, the two perpendicular rotations with non-crossing

invariant axis in SG 17 can be given as 2100(0, 0, 0), transforming a point

(x, y, z) → (x,−y,−z), and 2010(0, 0, 1
2
), which acts on a point according to

(x, y, z)→ (−x, y,−z + 1
2
). For a different origin choice, the two symmetries

could also be written as 2100(0, 0,−1
2
) and 2010(0, 0, 0).

Nonsymmorphic symmetries

Another type of symmetry, that can appear in SGs are nonsymmorphic sym-

metries. Similar to off-centered symmetries, they consist of point group op-

erations combined with a fractional lattice translations. In contrast to off-

centered symmetries, they leave no point invariant and the fractional trans-

lation cannot be transformed away. For rotations, the translation must be

along the rotation axis and such a symmetry is called a screw rotation. To

be compatible with the lattice, an n-fold rotation can only be paired with

a fraction translation that is a multiple of 1
n
. An example is the third ro-

tation in SG 17, which can be obtained by applying the two perpendicular

rotations from the previous paragraph. For both origin choices, the resulting

symmetry reads 2001(0, 0, 1
2
). A mirror symmetry is nonsymmorphic, if it is

followed by a translation of half a lattice vector within the invariant plane,

e.g., M001(1
2
, 0, 0). A nonsymmorphic reflection is also called a glide mirror

symmetry and has no invariant points.

The crystallographic point group is the set of all symmetries in a SG with

their translational components removed. The 230 SGs can be classified in 32

crystal systems according to their crystallographic point groups.
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2.1.2 Group action on a Hamiltonian

A spatial symmetry {Ri|t} with point group part Ri and translational part

ti acts on a Bloch Hamiltonian H(k) in an orthonormal basis for the k-space

according to

Ui(k)H(k)U †i (k) = H(Rik). (2.1.8)

The crystal momentum transforms only under the point group part, while the

translational part leaves the Bloch Hamiltonian invariant, see Appendix A

for a derivation. All symmetries leaving k invariant up to a reciprocal lattice

translation, Rik = k + K , form a subgroup called the little group of k.

Lattice translations are elements of every little group and the little groups

with maximal symmetry are identical to the SG of the system. The little

group of the point k = Γ = (0, 0, 0) is always the full SG and all translation

eigenvalues are +1, i.e., they do not matter for the group structure and the

little group representations of all SGs with the same crystallographic point

group are identical. The remaining symmetries that are not elements of the

little group map k to finitely many symmetry-related momenta with the same

little group, called the star of k.

2.1.3 Double space groups

Since electron band structures are built from fermions, the transformation

properties of spinors has to be taken into account in representations act-

ing on wave functions. Three dimensional spinors transform under SU(2),

which forms a double cover of SO(3). In terms of the 2x2 Pauli matrices σi,

i ∈ {x, y, z} and the identity σ0, a rotation by an angle Θ around an axis e

acts in spin space as U = exp
(
−iΘ

2
e · σ

)
. Consequently, spinors acquire an

additional minus sign under 2π rotations. Under a reflection with surface

normal e, spinors transform as pseudo-vectors. The reflection acts in spin

space via U = −ie ·σ and squares to −σ0. Lastly, spinors are invariant under

inversion, which acts as σ0.

The transformation properties of spinful states can be included in the

group structure by introducing an additional symmetry Ē, corresponding to
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a rotation by 2π. It commutes with every other symmetry and otherwise re-

spects the group structure. This forms the so-called double SGs, since every

spatial symmetry operation appears once in combination with Ē and once

without. Additionally, the relation Ē2 = 1 needs to be defined, i.e., the full

rotation is its own inverse. A n-fold rotation N fulfills Nn = Ē and mirror

symmetries M2 = Ē. Because Ē squares to the identity, its eigenvalues are

restricted to ±1. The irreducible representations of a SG can therefore be

grouped into one of two categories, which we will call spinless and spinful

representations, with UĒ = +1 and UĒ = −1, respectively. A spinless rep-

resentation represents the element Ē with the identity and thereby forgets

the double group structure. These representations are relevant for bosonic

systems, but also for SU(2) invariant electronic systems, for example for van-

ishing spin-orbit coupling (SOC). In the latter case, the action of a symmetry

in spin space can be removed by combining it with an appropriate SU(2) ro-

tation. Double groups allow to analyze spinful and spinless systems in a

common framework using representation theory.

2.1.4 Time-reversal symmetry

In this work, we will often deal with time-reversal symmetric band structures.

In contrast to spatial symmetries, time-reversal symmetry T is antiunitary,

that is, the inner product of arbitrary states |a〉 and |b〉 is invariant under T
up to complex conjugation. 〈T a|T b〉 = 〈b|a〉. An antiunitary symmetry can

be represented by a unitary matrix UT and the complex conjugation operator

K.

In k-space, T acts like inversion and a Hamiltonian invariant under T
has to fulfill

U †TH
∗(r)UT = H(r), (2.1.9)

which reads for a Bloch Hamiltonian

UTH
∗(k)UT = H(−k), (2.1.10)

as shown in Appendix A. A time-reversal invariant crystal momentum (TRIM)
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fulfills k = −k + K for some reciprocal lattice vector K.

T commutes with all spatial symmetries and any combination of a spatial

symmetry Ri of a SG and T is also part of the symmetry group, which will be

written as the combination without introducing a new symbol. The groups

with symmetry elements {Ri} + T {Ri} are the so-called gray groups of the

magnetic space groups, representing paramagnetic phases without any mag-

netic order. The equivalent to matrix representations for symmetry groups

consisting of unitary and antiunitary symmetries are Wigner’s corepresenta-

tions, where all antiunitary symmetries are represented by unitary matrices

followed by the complex conjugation operator K and all unitary symmetries

by unitary matrices. In double SGs, T squares to the 2π rotation, T 2 = Ē.

2.2 Fibre bundles

The Hilbert spaces of Bloch Hamiltonians H(k) can be treated in the formal-

ism of a Hilbert bundle over the BZ. In this chapter we will recapitulate the

concept of fibre bundles with this concrete application in mind and introduce

the Berry connection in this context.

Conceptually, fibre bundles are manifolds, that locally look like the direct

product of two differentiable manifolds. Formally, a fibre bundle E consists

of [44]:

1. a base manifold M and a projection π : E →M ,

2. a fibre F , which is also a manifold,

3. a Lie group acting on the fibre G : F → F , called structure group

4. an open covering {Vi} of M , together with local trivializations

φi : Vi × F → π−1(Vi), such that π ◦ φi(p, f) = p ∀p ∈ Vi, f ∈ F ,

5. transition functions tij : Vi ∩ Vj → G, defined via

tij(p) = φi(p, ·)−1 ◦ φj(p, ·) ∈ G.
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Here, we will use this concept to describe the Hilbert spaces of Bloch Hamil-

tonians H(k) for each point in the BZ as a parameter space [7]. More specif-

ically, we identify

1. the BZ or a sub-manifold in k-space as the base manifold,

2. Hilbert spaces Hk with finite dimension d as the fibres,

3. the unitary group U(d) as the structure group,

4. a cover of open sets in the BZ with a smooth basis choice ψi(k) as the

local trivialization,

5. basis and gauge transformations as the transition functions Ui(k) ∈
U(d)

In the special case of a one-dimensional Hilbert space, the structure group

U(1) represents the gauge freedom of quantum states. The assignment of a

quantum state to a vector in the BZ, k→ ψ(k) ∈ Hk, is called a section. A

basis and gauge choice in this language corresponds to a choice of sections,

that span the Hilbert spaces Hk. A connection is a differential operator ∇
acting on sections, whose values are one-forms, i.e., co-vectors. It defines

the notion of parallel transport of a tangent vector along a curve in the

base manifold. This provides a unique way of lifting a path γ(t) in the base

manifold M to a path γ̃(t) in the fibre bundle E from a given starting point

ψ(k = γ(0)) by solving the linear differential equation ∇ ∂γ(t)
∂t

ψ = 0. The

projection of the lifted path reproduces the initial path, π(ψ(γ(t)) = γ(t),

and the lifting respects composition laws for paths [7].

For all band structures induced from Wannier functions φα(Ri + r) with

some internal index α = 1, . . . , d a smooth basis choice for the whole BZ

can be chosen in terms of Bloch waves ψα(k) =
∑

i e
ikRiφα(Ri + r). This

makes it a trivializable bundle, i.e., it is isomorphic to the direct product

E = BZ × H0. Concretely speaking, a band representation induced from

a site-symmetry group representation of a Wyckoff position is trivial in the

basis, where the basis vectors correspond to site-symmetry representations.

This is often also just called the orbital basis. Conversely, trivializable Hilbert
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bundles which respect SG symmetries form band representations and can be

decomposed into its elementary band representations (EBR) [45, 46]. In this

case, there is a preferred trivial connection and a path can be lifted according

to γ(t)→ (γ(t), ψ0) ∀t.
A topologically more interesting situation is found in projected Hilbert

bundles. According to the Serre-Swan theorem, every finite-dimensional

Hilbert bundle is isomorphic to a projected subbundle of some finite rank

trivial Hilbert bundle [47, 48]. The fibers in a projected Hilbert bundle V are

spanned by a subset of basis vectors {ψα(k)}, α < d, forming a sub-bundle

V . For topological insulators, the projection is into the subset of occupied

states, using the projector P (k) = Θ (Egap − E(k)). This requires a well

defined gap in the spectrum and bands that are either fully occupied and

thus part of the projected bundle or not. In the context of topology and

in this thesis, occupied bands therefore often refers to an integer number of

bands below a possibly dispersive gap Egap(k). The position of the actual

Fermi energy and the overall dispersion is for example irrelevant for the ques-

tion of surface states in a gap separating two sets of bands, as long as the

separation of bands above and below the gap is locally well defined for all

k. Even when starting from a trivial connection of the full Hilbert bundle

H, with ∇H |vi〉 = 0 for all basis vectors |vi〉, the projected Berry connec-

tion ∇Berry = P ◦ ∇H ◦ I defined on the projected Hilbert bundle V is not

necessarily trivial [7]. The distinction of valence and conductance bands is

therefore an essential ingredient for getting topological nontrivial phase in

band structures induced from Wannier functions.

2.3 Nodes and their invariants

The distinction of bands in occupied and unoccupied breaks down at band

crossings or band touching points. The topology of semimetals is instead

characterized on a subset of the BZ without gap closing points. Depending

on the dimensionality d of the system and manifold of degenerate points, the

subset resembles a lower-dimensional topological insulator. The topological

invariant can then be evaluated on a closed manifold with dimension D =
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d− ddefect − 1, which encloses the whole degeneracy and on which there is a

well defined gap [49, 14]. In this work, we mainly deal with three-dimensional

systems, d = 3 with point and line defects. Their invariants are line and

surface integrals, evaluated on circles S1 and spheres S2, respectively.

2.3.1 Berry phase

The Berry phase is the integral of the Berry connection Ai(k) = 〈ψk| ∂ki |ψk〉
on a closed loop and can characterize point defects in two-dimensional and

line defects in three-dimensional systems. The Berry connection is not a

gauge invariant quantity. For a differentiable gauge transformation |ψ′k〉 =

eiφk |ψk〉, we find

A′(k) = −i 〈ψk′ | ∇k |ψ′k〉 = −i 〈ψk| ∇k |ψk〉+∇kφk (2.3.1)

However, in an integral along a path in the BZ the additional factor depends

only on the endpoints and always vanishes for closed loops. In the presence

of certain symmetries, the Berry phase of loops is restricted to a discrete set

of values. A system is topological, if its holonomy group is not trivial, i.e., if

there are paths in the Brillouin zone, for which the Berry phase is nonzero.

Evaluating the Berry phase numerically poses additional challenges, as it

can only be done on discrete steps and there is no smooth phase convention

for the eigenstates of the Hamiltonian. A solution to both problems is pre-

sented in the Wilson loop formalism, in which the Berry phase is expressed

as a product of projection operators [50]. The discretized Wilson loop matrix

is defined via the product of projectors onto the subspace of occupied states

at intermediate points kn, n = 1, . . . N − 1 along the path,

(Wγ)ij =
〈
uik0

∣∣N−1∏
n=1

(∑
l

∣∣ulkn〉 〈ulkn∣∣
) ∣∣ujkN〉 (2.3.2)

=

(
N−1∏
n=0

Sn

)
ij

. (2.3.3)

24



2.3. NODES AND THEIR INVARIANTS

In the last step we introduced the overlap matrices

(Sn)ij =
〈
uikn

∣∣∣ujkn+1

〉
. (2.3.4)

Note that the multiplication of states for different k is only defined for a

trivial connection on the bundle. Otherwise the vectors would first need to

be parallel transported to the same Hilbert space.

The exponential of the path-ordered, multi-band Berry phase integral can

be rewritten in terms of infinitesimal discrete steps,

P exp

(
i

∫
γ

A(k) · dl

)
≈ P exp

(
i
N−1∑
i=0

A(ki) · (ki+1 − ki)

)

= P
N−1∏
i=0

exp(iA(ki) · (ki+1 − ki))

= P
N−1∏
i=0

Si
No
√
| detSi|

(2.3.5)

In the last step, we expanded the exponential,

(
eiεAα

)
ij
≈ δij + iε(Aα)ij
| det(1 + iεAα)|1/d

=
δij +

〈
uik

∣∣∣ujk+εêα)

〉
−
〈
uik
∣∣ujk〉

| det(1 + iεAα)|1/d

=

〈
uik
∣∣ujk+εêα

〉
| det(1 + iεAα)|1/d

. (2.3.6)

Dividing by the d-th root of the determinant preserves unitarity in the expan-

sion and makes the expression numerically more stable, allowing fewer and

coarser steps. Finally, the Berry phase P for a path γ in the multi-band case

can be given in terms of the Wilson loop, P = Tr
∫
γ
A · dl = i log(det(Wγ)).

2.3.2 Berry curvature

The Berry curvature is the curl of the Berry connection, F = ∇×A, and is

gauge invariant. The Berry curvature transforms like a pseudovector un-
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der spatial symmetries, i.e., it is transformed by rotations, but remains

unchanged by reflections and inversion. Time-reversal symmetry however

inverts its sign. Therefore, the Berry curvature vanishes identically in PT -

symmetric band structures. The integral of the Berry curvature over a two-

dimensional (sub-)manifold, e.g., a slice of the BZ or a sphere around a

degenerate point gives the Chern number or Thouless-Kohmoto-Nightingale-

den Nijs (TKNN) invariant [16]. On a closed, orientable surface, the integral

of the Berry curvature corresponds to the integral over the first Chern char-

acter [51, 44] and evaluates therefore always to an integer [16, 12].

For numeric evaluations, we can make use of Stokes’ theorem and evaluate

the flux through a finite patch of the integration surface via a line integral

of the Berry connection along its border. The total integration surface A is

tiled by small patches, which can be evaluated using the discrete Wilson loop

formalism on the border of each patch [52].

C =

∫
FdA (2.3.7)

=
∑
n

Fµν(kn) = i logWµν(kn), (2.3.8)

with the Wilson plaquette

Wµν(kn) = Uµ(kn)Uν(kn + êµ)U †µ(kn + êν)U
†
ν(kn), (2.3.9)(

Uµ(k)
)
ij

=
〈
uik

∣∣∣ujk+êµ

〉
. (2.3.10)

Here, µ̂ and ν̂ are chosen such, that they connect to the three neighboring

kn′ and the whole surface is covered exactly once. This method does not

depend on the tiling or the shape of the integration surface, and is robust

even for a coarse tiling.

2.4 Low-energy Hamiltonians

In order to better understand the dispersion around a degeneracy and eval-

uate its topological invariant, we construct low-energy Hamiltonians. The
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dimension of a low-energy Hamiltonian is given by the number of states in-

volved in the degeneracy. Since we are only interested in qualitative features

like the splitting of bands when moving away from the degeneracy, the mod-

els are expanded to lowest non-vanishing order in the relative momentum

coordinate. In a purely symmetry based analysis, the actual energy of states

at the degeneracy and their dispersion in the vicinity are not determined.

Therefore, we will call the states above the gap, which is closed by the de-

generacy, unoccupied and the ones below occupied. In this slight abuse of

terminology, bands are always fully occupied or fully unoccupied —except

for the degeneracy, where this distinction is not possible— and the gap can

be simply specified in terms of the band index. The projection on only the

lower bands for evaluating the topological invariant is done after diagonaliz-

ing the low-energy Hamiltonian and the topological information is captured

by the winding of the occupied eigenstates on a closed surface, that contains

the degeneracy.

Formally, the low-energy Hamiltonian for a degeneracy at k0 is defined

on an open environment V 3 k0 in the base manifold of the Hilbert bundle,

where a local trivialization φ : V ×H → E for the relevant bands exists. Since

the low-energy Hamiltonian describes both, occupied and unoccupied bands,

it is trivializable, i.e. a smooth basis choice {|ψ(q)〉} with q = k − k0 ∈ V
exists. Practically, V should be small enough to avoid crossing or strong

hybridization with other bands.

A trivialization is then chosen such, that the matrix representations of

the little group are constant over V . Concretely, for ever symmetry in the

little group with matrix representation Ui, we find

UiH(q)U † = H(Riq). (2.4.1)

The use of the relative coordinate q in this equation is justified, because k0 is

invariant under the symmetries of the little group by definition. Including all

symmetry-allowed terms in the Hamiltonian, one can then make qualitative

statements about the dispersion in the vicinity of the degeneracy.
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Mostly we are interested in the splitting of bands away from the degen-

eracy and the topological invariants, which are not sensitive to an overall

dispersion, encoded in a term proportional to 1. Neglecting this term leaves

us with the gap Hamiltonian. In the two-band case, the gap Hamiltonian

can conveniently written using the Pauli matrices σi (or τi), i ∈ x, y, z,

Hgap(q) = d(q) · σ. (2.4.2)

The real vector components di(q) contain the momentum dependence and

the degeneracy is found for all q with di(q) = 0 for all three components.

All elements ki in the star of k0 have the same little group. A matrix

representation for the SG can be given for the entire star. The matrix rep-

resentation of all little group symmetries will be block diagonal with respect

to the elements of the star. The remaining symmetries are off-diagonal and

determine, which little group representations at symmetry-related ki can be

combined. They further relate the low-energy Hamiltonians expanded around

each ki.
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In this chapter we will discuss symmetry-enforced topological band crossings.

The degeneracy of these band crossings is enforced by symmetry and their

topology can be determined from the symmetry allowed terms in the low-

energy Hamiltonian evaluated in their vicinity.

In a collaborative effort, we performed a systematic search for all symmetry-

enforced degenerate points, lines and planes in time-reversal symmetric or-

thorhombic and tetragonal SGs with SOC. The primary result of this search

are comprehensive tables for all SGs, presented in references [53, 54] and in

Appendix B. For the orthorhombic SGs, spinless band structures were con-

sidered as well. More precisely, we also included irreps with UĒ = +1 as

defined in Sec. 2.1.3. These are relevant for bosonic band structure and elec-

tronic band structures with negligible SOC. In the latter case, spin degrees

of freedom exist, but the system is invariant under spin rotations with sym-

metry group SU(2) and the action of symmetries on spinors can be undone

by combining them with properly chosen SU(2) transformations. We will

present the different types of degeneracies, explain how symmetries enforce

them and calculate their topological invariants.

Our analysis contains topological band crossings pinned to points, lines or

planes with higher symmetry, that can be understood in terms of their little

groups. More importantly, we also identified all crossings enforced by com-

patibility relations of bands between high-symmetry points. These crossings

cannot be found from the analysis of local little groups alone and they are

free to move on an axis or within a plane, therefore they are called movable.

For the point and line degeneracies, we derived low-energy Hamiltonians

based on the little group of the degeneracy. The low-energy Hamiltonians
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provide insight on how the different symmetries lead to degeneracies and

how symmetry breaking affects them. Furthermore, they can be used for the

evaluation of the topological invariants, often times analytically. Knowing

that all topological charges within the same gap need to add up to zero [33],

we can identify the charges of extended band crossings like nodal planes by

summing up all other contributions in the same gap.

Material search

For the most interesting SGs, we performed a systematic search in databases

of known compounds to identify material examples, consisting of an auto-

mated screening followed by manual inspection of the phases passing the

first round. As a starting point, we include all materials that are found

both in the Materials Project (MP) [55, 56] and the Inorganic Crystal Struc-

ture Database (ICSD) [57, 58]. The MP provides an API [59] and allows

to apply further selection criteria to narrow down the results. The goal of

preliminary screening is to reduce the number of results for further manual

inspection, while maximizing the chance of finding well resolved band cross-

ings close to the Fermi energy. Depending on the total available number of

reported phases in a SG, which range from zero up to 1400 for the examples

investigated here, the following criteria can be loosened or used for sorting

the results. The first criteria is the thermodynamic stability of the reported

structure and we require a formation energy of ≤ 50meV off the convex hull.

Since we are interested in band crossings close to the Fermi energy, we reject

phases with a reported band gap1 above a certain threshold, depending on

the availability of phases. In order to exclude materials with a high struc-

tural complexity, we place an upper limit of 50 atoms per primitive unit cell,

as very large unit cells often lead to flat bands and crowded band structures.

Finally, if the desired band crossing relies on spin split bands from SOC, we

require heavier elements (Z ≥ 49) to be present. In a more refined step we

use the orbital projections in the DOS of a certain energy window around the

1In the high-throughput calculations of the MP, the band gap is calculated using a
generalized gradient approximation functional, which often underestimates the band gap.
For the elimination of insulators, this is of minor importance here.
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Fermi energy and place a lower limit on the relative weight of heavy element

orbitals.

The band structures of the candidates passing the primary selection can

then be inspected for band crossings in the band structures on high-symmetry

lines from the high-throughput calculations in the databases [60, 61]. Al-

though the symmetry-enforced band crossings must exist in every set of bands

in a given SG, they might not be resolved at a relevant energy scale. Further-

more, the bands involved in the crossing might show too large of a dispersion

or there might be other trivial bands at the same energies, both of which

can obscure the crossing and mask its effect on observable quantities. Un-

derstanding the pairing mechanism based on SG symmetries beforehand is

crucial to correctly identify the dimension and topological nature of a cross-

ings in the band structure plots along high-symmetry paths [62], as a crossing

on a section might be a true point crossing or part of a nodal line. In a simi-

lar manner, nodal planes and degenerate lines are not distinguishable in the

plots of the high-symmetry path alone.

3.1 Weyl points

Weyl fermions are real solutions of the massless Dirac equation first described

by Weyl [63],

σµ∂µΨ = 0. (3.1.1)

In condensed matter systems, a Weyl point is a pointlike degeneracy with a

linear dispersion [64], which can be described locally by a low-energy Hamil-

tonian up to linear order in the relative momentum q of the form

H(q) =
∑
i=x,y,z

(viqi)σi. (3.1.2)

The real factors vi allow for anisotropic group velocities in each direction

i = x, y, z. The Chern number of this Weyl point, evaluated on a closed

surface surrounding q = 0 is C =
∏

i sgn(vi) ∈ {+1,−1}. The Chern number

remains unchanged when varying the velocities as long as the gap on the
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enclosing surface is preserved, i.e., vi 6= 0, ∀i. In the same way, the Chern

number is preserved when higher-order terms are introduced smoothly while

leaving the gap open.

The Chern numbers of two Weyl points related by proper rotations and

time-reversal symmetry are identical, while improper rotations like inversion

flip the sign of the Chern number. This follows directly from the transfor-

mation properties of the Berry curvature and can also be verified from the

matrix representations of the star in a given SG.

3.1.1 Weyl points at high-symmetry points

A Weyl point at a high-symmetry point k0 can be completely understood

from the invariance of the low-energy Hamiltonian under the little group of

k0. A twofold degeneracy is necessary, but not sufficient, since it might be

part of a line or plane. In that case, the Chern number cannot be evaluated

on an enclosing two-dimensional closed manifold, even though the whole

node might still carry a nodal charge, see Sec. 3.4. The behavior of bands

in the vicinity of the degeneracy can be understood in terms of a low-energy

Hamiltonian respecting the symmetries of the little group.

Kramers theorem ensures a twofold degeneracy at all TRIMs in time-

reversal symmetric spinful band structures. Invariance under T restricts the

gap Hamiltonian up to linear order in q to the form

H(q) = qT · V · σ, (3.1.3)

with a real valued velocity matrix V . Without fine-tuning, this matrix is in

general diagonalizable by a proper choice of coordinates and Pauli matrices,

thereby reproducing a Weyl point as defined in Eq. (3.1.2) with Chern number

C = ±1, called Kramers Weyl points [65, 66].

Usually, the little groups of TRIMs contain spatial symmetries as well.

These symmetries restrict the entries in V . In case of mirror symmetries, ro-

toinversions or inversion, the degeneracy at the TRIM belongs to an extended

degeneracy and no Chern number can be assigned. Chiral little groups lead

in general to odd Chern numbers [65], but the inclusion of higher-order terms
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might be needed to accurately describe the gap in the case of larger Chern

numbers. Screw rotations in combination with T enforce nodal planes for

some TRIMs, which hide the point degeneracy, as we will discuss in Sec. 3.4.

In conclusion, Kramers Weyl points can be found in all chiral SGs, but

also in non-primitive lattices of non-chiral SGs, where some TRIMs can have

chiral little groups. For example, in the orthorhombic SG 35, the TRIMs S

and R are not in mirror planes and their little group is generated by T and

2001.

Kramers theorem requires the representation of T to square to −1 and

is therefore not applicable for spinless band structures. Here we will present

an alternative mechanism for creating Weyl points based on spatial symme-

tries alone, which works in spinless and spinful band structures. We consider

three orthogonal off-centered twofold rotations, as found for example in SG

24. The rotation matrices of twofold rotations are diagonal and commute,

whereas their spinor representations anticommute. Including the transla-

tional components of the off-centered rotations, we find the commutation

relation [54]

2100

(
0, 0, 1

2

)
· 2001

(
0, 1

2
, 0
)

= Ēt(0,−1, 0) · 2001

(
0, 1

2
, 0
)
· 2100

(
0, 0, 1

2

)
. (3.1.4)

There are three points in the BZ of orthorhombic body-centered lattices

with these three rotations in the little group, of which only W= (π, π, π) has

translation eigenvalue −1 for the above translation by one lattice constant

in the conventional cell. Consequently, the spinless representations (UĒ = 1)

of the rotations U2001 and U2100 anticommute and must therefore be at least

two-dimensional. For an eigenstate |±〉 of U2001 with eigenvalue ±1 we can

write explicitly

U2001U2100 |±〉 = −U2100U2001 |±〉 = ∓U2100 |±〉 , (3.1.5)

which implies that for example |+〉 and U2100 |+〉 have different 2001 eigenval-

ues and must therefore be orthogonal. Because the Hamiltonian commutes

with both, U2001 and U2100 , the two states must furthermore be degenerate.
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The same argument holds also for all spinful representations with little group

222 at Γ in any lattice, where translation eigenvalues are always 1.

A two-dimensional representation for the three anti-commuting twofold

rotations can be given by U2001 = σz, U2100 = σx and U2010 = iσy, of which

the last one squares to −1. The low-energy Hamiltonian up to linear order

invariant under these symmetries is of the form (3.1.2) and describes therefore

a Weyl point with C = ±1. This mechanism does not rely on time-reversal

symmetry and holds equally in its absence. In our systematic analysis, the

point W in SG 24 is the only instance of a symmetry-enforced Weyl point at

a high-symmetry point in spinless band structures of orthorhombic SGs.

3.2 Higher-order point crossings

Higher order point crossings are made up from more than two bands or carry

Chern numbers of a larger multiplicity. Among these are higher-order Weyl

points, which are twofold pointlike band crossings with an integer Chern

number ±n with n ≥ 1. A model can be given via a generalization2 of the

definition in Eq. (3.1.2),

H±n(q) = (qx ± iqy)
n σ− + (qx ∓ iqy)

n σ+ + qzσz, (3.2.1)

where all anisotropies have been absorbed into the definition of qi, and a

gauge has been chosen, such that the signs in front of qx and qz are all positive.

The Chern number of such a point degeneracy is C = ±n. The dispersion

is linear along the qz axis and of order qn in the plane perpendicular to it.

This model is rotationally invariant around the qz-axis, and the off-diagonal

terms must transform according to the ratio of rotation eigenvalues of the

states on the axis.

2 This is however not the most general form of a higher-order Weyl point. In the cubic
SGs 207–214 and time-reversal symmetric SGs 195–199, there is a spinless representation
at Γ creating a Weyl point with quadratic and cubic dispersion, but C = ±4 [67, 68],
enforced by the twofold and threefold rotations with non-orthogonal axes. The low-energy

Hamiltonian in this case is H(q) = qxqyqzσz + (q2z − 1
2 (q2x + q2y))σx −

√
3
2 (q2x − q2y)σy.
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3.2.1 Double Weyl points

Double Weyl points are the special case n = ±2 of a higher-order Weyl point

and consequently their Chern number is C = ±2. The dispersion to lowest

order is linear along one axis and quadratic in directions perpendicular to it

[69], as shown in Fig. 3.1(a). In spinless band structures, they can be found

at TRIMs, when T pairs non-real eigenvalues of three-, four- and sixfold

rotations [66].

In the following, we will focus on fourfold rotations found in the tetragonal

SGs. A crossing on a fourfold rotation axis forms a double Weyl point,

when the ratio of rotation eigenvalues of the bands is −1. In that case, the

representation of the fourfold rotation is proportional to σz in the rotation

eigenbasis, which restricts the diagonal elements in the gap Hamiltonian to

be invariant under the symmetry, while the off-diagonal elements will acquire

a negative sign. With the rotation axis oriented along qz, symmetry allowed

terms up to second order are qz and q2
x + q2

y in dz, whereas the requirement

for off-diagonal terms in dx and dy can only be realized by the combinations

(qx + iqy)
2 and (qx − iqy)

2. The Chern number of such a Hamiltonian is ±2,

where the sign is determined by the term with the dominant prefactor. Note

that the special case of identical prefactors the gap is closed along a line and

the Chern number is not defined.

Such a double Weyl point can be enforced at high-symmetry points in

the spinless case, when T pairs the fourfold rotation eigenvalue i with −i.

This situation appears at Γ in every band structure induced from orbitals

transforming like x ± iy under the fourfold rotation in their site-symmetry

group. Interestingly, in chiral SGs with fourfold screw rotation 4001(0, 0, n
4
),

double Weyl points are enforced at TRIMs with kz = 0 for n = 1, 3 in all

possible band structures, regardless of the Wyckoff position or site symmetry

group representation inducing the band structure. In the case n = 2, the

double Weyl can be found at one TRIM on the rotation axis, either with

kz = 0 or π. Non-zero SOC will push the double Weyl points in each spin

subspace apart and onto the rotation axis away from the TRIMs, as we will

discuss in Sec. 3.3.
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E

q
q

(a) double Weyl point

qx
qy

E

(b) fourfold double Weyl
point

q101
q010

E

(c) fourfold quadruple
Weyl point

Figure 3.1: Dispersion of symmetry-enforced Weyl nodes with Chern num-
ber |C| ≥ 2. (a) A double Weyl point is a twofold degeneracy, with linear
dispersion along the rotation axis q‖ and quadratic dispersion perpendicular
to it, i.e., along q⊥. The Chern number of a double Weyl is CdW = ±2. (b) A
fourfold double Weyl point is a fourfold degeneracy with linear dispersion in
all directions. Along high-symmetry lines a twofold degeneracy is enforced.
The colors distinguish between the two symmetry-related Weyl points. The
Chern number is the sum of these two Weyl points, CfW = 2CWeyl = ±2. (c)
The fourfold double Weyl is built from two symmetry-related double Weyl
points of equal chirality, the total Chern number is CfdW = 2CdW = ±4.
Twofold-degenerate lines in (b) and (c) are part of nodal planes (see Sec.3.4).
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3.2.2 Fourfold double Weyl points

A pointlike crossing of more than two bands can also carry a larger topological

charge, |C| > 1. As a first example, we discuss a fourfold degenerate point

with a Chern number of C = ±2, called a fourfold double Weyl point [53, 34].

A fourfold double Weyl point is a pointlike degeneracy at the level of

two occupied and two unoccupied bands. It splits into nondegenerate bands

almost everywhere and the dispersion depends to lowest order linearly on the

relative momentum q. As we will see, some additional degeneracies remain

in two-dimensional subspaces between the lower two and upper two bands.

A schematic dispersion in the proximity of a fourfold double Weyl point

is shown in Fig. 3.1(b). It can be understood as two Weyl points of equal

chirality, which are pinned to the same high-symmetry point by an additional

symmetry. Hence, they are also referred to as double-spin-1/2 Weyl points

[34]. The Chern number prevents the Weyl point from being gapped by small

perturbations of any kind, but perturbations breaking one of the symmetries

relevant for the fourfold degeneracy can separate the two Weyl points in

energy or k-space and move them away from the high-symmetry point.

Two different mechanisms need to be at play simultaneously to enforce

such a feature. First, the representations of the three twofold rotations at

a TRIM need to anticommute and thereby enforce a twofold degeneracy in

orbital space, formed by the pairing of the two different rotation eigenval-

ues. Secondly, an antiunitary symmetry is required, which pairs identical

eigenvalues of at least one rotation.

In spinful band structures, T ensures a Kramers partner of the same

eigenvalue, if the eigenvalue is purely real, i.e, ±1. These conditions are met

at some TRIMs for the twofold rotations in the orthorhombic SGs 18 (S,R)

and 19 (S,T,U), and in the tetragonal SGs 90, 94 (M,A) and 92, 96 (M,R).

We illustrate this mechanism in more detail for the TRIM S in SG 18. In this

SG the symmetries T , 2100(1
2
, 1

2
, 0) and 2010(1

2
, 1

2
, 0) create the little group of

all TRIMs. A direct evaluation shows the relation

2100

(
1
2
, 1

2
, 0
)
· 2010

(
1
2
, 1

2
, 0
)

= Ēt (1,−1, 0) · 2010

(
1
2
, 1

2
, 0
)
· 2100

(
1
2
, 1

2
, 0
)
. (3.2.2)
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At the TRIMs S and R, the eigenvalue of the translation is +1 and we find

U2100U2010 = −U2010U2100 in spinful representations with UĒ = −1. Applying

U2010 to a state with a positive 2100 eigenvalue results in a new state with

negative eigenvalue and vice versa. As shown in Sec. 3.1.1, this requirement

alone leads to a Weyl point with chirality |C| = 1 [66]. Because 2100

(
1
2
, 1

2
, 0
)

is

a screw rotation squaring to the translation Ē(1, 0, 0), its eigenvalues are the

square roots of the translation eigenvalue times the Ē eigenvalue. At R and

S one finds ±ieikx/2
∣∣
kx=π

= ∓1. Kramers partners therefore share the same

symmetry eigenvalue. Labeled in terms of 2100-eigenvalue signs, we therefore

find the quadruple degeneracy (+,+,−,−). Since the chiralities of two Weyl

points related by T are identical, they add up to ±2.

A matrix representation for a little group fulfilling the above can be writ-

ten in terms of the 4× 4 matrices

U2100 = σ0 ⊗ τx, (3.2.3)

U2010 = σ0 ⊗ τy, (3.2.4)

U2001 = iσ0 ⊗ τz, (3.2.5)

UTK = iσy ⊗ τxK. (3.2.6)

The Pauli matrices σi and τi (i = 0, x, y, z) act in spin and orbital space,

respectively. The low-energy Hamiltonian around the invariant point K can

be given, up to linear order in relative coordinates q = k−K, as

H(q) = vxqxσz ⊗ τx + vyqyσz ⊗ τy + vzqzσ0 ⊗ τz
+λxqxσx ⊗ τx + λyqyσx ⊗ τy, (3.2.7)

with the real parameters vi and λi. The velocities vi describe the slope of

the dispersion of the individual Weyl points. Without SOC, the first three

terms would be uncoupled and all bands twofold degenerate. The terms with

parameters λi result from non-vanishing SOC and remove the overall twofold

degeneracy. In the tetragonal SGs, the same situation can be found, but there

is an additional fourfold rotation symmetry present at some TRIMs, which

further requires |vx| = |vy| and |λx| = |λy|. Using the unitary transformation
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U = 1√
2
(σz⊗ τ0 +σy⊗ τz), we can bring the Hamiltonian into block diagonal

form with the two blocks

H±(q) = (±vxqx − λyqy)τx + (±vyqy − λxqx)τy + vzqzτz. (3.2.8)

The Chern number can be evaluated for each block separately and the colors

in Fig. 3.1(b) mark the bands of each block. In the planes qx = 0 and qy = 0,

the different signs do not matter for the dispersion and a state from one

block becomes degenerate with a state of the other block. This degeneracy

in planes is enforced by the presence of time-reversal symmetry together with

twofold screw rotations, as we will discuss in more detail in Sec. 3.4. For this

reason, a Chern number cannot be evaluated at the level of one or three filled

bands.

In spinless band structures, T is not enough to ensure a Kramers partner

for states with real eigenvalues. The pairing of equal eigenvalues can be

enforced instead by the combination of T with one of the screw rotations.

This situation is ensured in SG 19, and identically in SGs 92 and 96 at

k0 = (π, π, π). The principle remains the same as in the example above,

with the difference that the commutation relation for the screw rotations

reads

2100

(
1
2
, 1

2
, 0
)

2010

(
0, 1

2
, 1

2

)
= Ē t(1,−1,−1) 2010

(
0, 1

2
, 1

2

)
2100

(
1
2
, 1

2
, 0
)
.

(3.2.9)

In spinless band structures we have UĒ = 1, but the negative sign is now

provided by the translation eigenvalue of t(1,−1,−1) at k0 and we find again

anti-commuting representations for the twofold rotations. The antiunitary

symmetry 2001(1
2
, 0, 1

2
)T squares to the translation t(0, 0, 1) with eigenvalue

−1 at k0 and enforces therefore Kramers pairs also in the spinless case. A

Kramers partner of a state with rotation eigenvalues ±i of U2100 or U2010 has

the same eigenvalues, because U2001 anticommutes with both representations,

U2100 and U2010 , and this cancels the sign change from complex conjugation.

Upon inclusion of SOC, the fourfold double Weyl point is moved to one of the

rotation axis in SG 19, as will be discussed in Sec. 3.3, whereas in SGs 92 and
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kx [a]
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Figure 3.2: Dispersion of the fourfold double Weyl point in Pd7Se4 within
the kz = 0 plane around S= 2π(1

2
, 1

2
, 0). The colors indicate the two Weyl

cones, related by the rotation 2100 or 2010. The twofold degenerate lines along
(kx, π, 0) and (π, ky, 0) are part of nodal planes. Figure adapted from [53].

96 it will split up into two sets of twofold degenerate bands and a fourfold

quadruple Weyl point, which will be the topic of the following section.

In our systematic search for candidate materials, we found a fourfold

double Weyl in Pd7Se4, crystallizing in SG 18. The bands at the TRIM S

are close to the Fermi energy and SOC leads to a large splitting of bands,

revealing the symmetry-enforced fourfold double Weyl point, see Fig. 3.2. In

contrast to the sketch in Fig. 3.1(b), the uniform parabolic dispersion of all

bands is included.

3.2.3 Fourfold quadruple Weyl points

In the previous section we have shown how a fourfold double Weyl point can

be made out of two single Weyl points at the same TRIM. At the TRIM

A= (π, π, π) in SGs 92 and 96 with SOC there is another fourfold degenerate

point in spinful band structures, but in contrast to the fourfold double Weyl

point at M it is made up from two double Weyl points. The splitting of bands

is therefore also quadratic in qx and qy, shown in Fig. 3.1(c). As before,

the Chern numbers of the two double Weyl points have to be identical by
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symmetry, hence they add up to a total of |C| = 4 [53] and we give this point

the attribute quadruple. Because of the splitting into nondegenerate bands

and the non-zero Chern number we do not use the name Dirac point, even

though this name has been used in the literature also for this type of linearly

dispersing fourfold degeneracy [70].

For each set of bands in SG 92, there are two different twofold degener-

ate representations and one fourfold degenerate representations at A. They

result from splitting up the symmetry-enforced fourfold degeneracy from the

spinless case by nonzero SOC, which amounts to eight bands when the spin

degeneracy is accounted for. We proceed by labeling the states with their

eigenvalues of the fourfold screw rotation 4001(1
2
, 1

2
, 1

4
). Because applying the

screw rotations four times results in a 2π rotation and a translation in z-

direction, the representation has to respect U4
4001

= −eikz and the eigenvalues

can be labeled by

U4001 |p〉 = ei(2p+1)π
4 ei kz

4 |p〉 , (3.2.10)

which evaluates at A to i, −1, i and +1 for p = 0 to 3, respectively. In

the spinful EBR of this SG every rotation eigenvalue is present twice. In

the presence of T , the complex eigenvalues appear in two degenerate pairs,

denoted by (0, 2) in terms of the label p. Through Kramers theorem, the

states with real eigenvalues also get Kramers partners, but they have the same

eigenvalue and the pairs are (1, 1) and (3, 3). A second antiunitary symmetry,

the combined operation 2010(1
2
, 1

2
, 1

4
)T is then responsible for creating the

fourfold degeneracy. By direct evaluation of the spatial symmetry, one finds

the commutation relation

4001(1
2
, 1

2
, 1

4
)2010(1

2
, 1

2
, 1

4
)T = 2010(1

2
, 1

2
, 1

4
)T t(1, 0,−1)

[
Ē4001(1

2
, 1

2
, 1

4
)
]
)3.(3.2.11)

Consequently, a state |p〉 with rotation eigenvalue α = exp
(
iπ

2
(p+ 1)

)
has a

Kramers partner U2010UTK |p〉 with rotation eigenvalue −α3
p
∗

= αp′ . In the

notation (p, p′) introduced above, we find the same pairing as from T for

the complex eigenvalues, (0, 2), and the degeneracy remains twofold. The

real eigenvalues on the other hand get paired as (1, 3). This establishes the

fourfold degeneracy for states with fourfold rotation eigenvalues ±1. The
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chirality of a Weyl point invariant under fourfold rotations can be evaluated

from the ratio of its eigenvalues and is |C| = 2 for a ratio of −1 with quadratic

dispersion perpendicular to the rotation axis [66].

To illustrate the topology of the fourfold crossing, we construct a low-

energy gap Hamiltonian up to second order in q = k− (π, π, π). In the basis

of rotation eigenvalues, the representation for the generators of the little

group reads

4+
001, (

1
2
, 1

2
, 3

4
) : U4 = σ0 ⊗ τz, (3.2.12)

2010, (
1
2
, 1

2
, 3

4
) : U2 = σ0 ⊗ τy. (3.2.13)

With this basis choice, the unitary part of the time-reversal symmetry takes

the form UT = iσyτz. The symmetry allowed terms are then

H(q) = vxqxqyσz ⊗ τx + vy(q
2
x − q2

y)σ0 ⊗ τy + vzqzσz ⊗ τz
+λxqxqyσx ⊗ τx + λzqzσx ⊗ τz, (3.2.14)

with the real parameters vi and λi. This Hamiltonian can be block-diagonalized

with the q-independent transformation U = 1√
2
(σ0τ0 + iσxτy). The two 2× 2

blocks have the form of double Weyl points, H±dW making up the blocks,

H±dW = (±vxqxqy + λzqz)σx + vy(q
2
y − q2

x)σy + (±vzqz − λxqxqy)σz. (3.2.15)

The dispersion in the plane (u+π, v+π, u+π) is shown in Fig. 3.1(c), where

the colors indicate the two blocks. As for the fourfold double Weyl point,

twofold degeneracies remain in the planes qx = 0, qy = 0 and qz = 0. Apart

from these nodal plane, the bands split into individual bands. In the qz = 0-

plane, the gap grows quadratically. The Chern numbers of both double Weyl

points are necessarily identical for both subspaces and the together the Chern

number of a fourfold quadruple Weyl point is C = 2CdW = ±4.
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3.3 Movable point crossings on rotation axes

A movable Weyl point is not fixed to a high-symmetry point and can there-

fore not be explained from the little group of its location alone. Such Weyl

points can be symmetry-enforced nonetheless, when compatibility relations

between representations at high-symmetry points and on the axis connect-

ing them require an exchange of bands with different symmetry eigenvalues.

The resulting band crossing is then not only protected by symmetry, but its

existence is guaranteed somewhere along the axis. Since the actual position

depends on free parameters of the system and is not fixed by symmetry, such

a crossing is called movable.

3.3.1 Hourglass dispersion from twofold screw rota-

tions

The simplest example of a movable Weyl point is generated from twofold

screw rotations, which square to Ē combined with a lattice translations in

the direction of the rotation axis. Their eigenvalues are the square roots of

translation eigenvalues and therefore k-dependent. For example, 2001(a, b, c)

has eigenvalues

U2001 |±〉 = ±iζ exp(ikzc) |±〉 , (3.3.1)

where c is a half integer lattice translation for a screw rotation. With the

factor ζ = 0, 1 we distinguish the spinless from the spinful case. Along the

rotation axis the eigenvalue of each band evolves smoothly with kz, and a

state can be labeled uniquely by the sign ± according to this definition. In

lattices, where kz = π is equivalent to kz = −π, e.g., all primitive lattices, a

band with eigenvalue label + will have acquired a phase of −1 when travers-

ing the first BZ and is turned into a band labeled with − and vice versa.

Therefore, there must be at least two bands an they must exchange an odd

number of times. With time-reversal symmetry, all spinful representations

form Kramers pairs at TRIMs with complex conjugate rotation eigenvalues.
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Figure 3.3: Schematic hourglass dispersion along a path between two degen-
erate points K1 and K2 along a twofold rotation axis or in a mirror plane.
Colors indicate the sign of the symmetry eigenvalue of the twofold symmetry.

At kz = 0, the eigenvalues ±i are paired. We label such a pair in terms of the

signs (+,−). At TRIMs with kz = π on the other hand, the eigenvalues are

±(−1) and identical eigenvalues are paired, (+,+) or (−,−). In total four

bands are required to connect these pairs smoothly along the rotation axis

and two bands with opposite eigenvalues need to exchange, leading to a so-

called hourglass dispersion [71]. In Fig. 3.3 we present an illustration, where

blue and orange correspond to the positive and negative label, respectively.

In the presence of inversion or when the axis rests in a mirror plane, the

hourglass dispersion will be hidden within an overall twofold degeneracy on

the whole axis. Without them, i.e., in all chiral SGs and screw axes with

chiral little groups, the movable crossings are enforced by symmetry. We list

all movable Weyl points in noncentrosymmetric orthorhombic SGs in Tables I

and II and in tetragonal SGs in Table V under “points” in terms of their

symmetry axis. The topological properties of movable crossings can again

be determined from a low-energy Hamiltonian restricted by the symmetries

of the little group. Since the degeneracy cannot be understood from local

terms alone, the condition Hgap(q = 0) = 0 needs to be included additionally.

Knowing that the crossings have rotation eigenvalues with opposite signs,

the representation can immediately given as U2001 = iζ exp(ikzc)σz. For the

twofold screw rotation, the movable Weyl point has chirality |C| = 1 [66].
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3.3.2 Accordion states from fourfold screw rotations

In a similar manner, we can construct the band connectivity for fourfold

nonsymmorphic rotation symmetries 4001(a, b, n
4
), acting on a point in space

according to

(x, y, z)→ (−y + a, x+ b, z +
n

4
) (3.3.2)

and in spin space via 1√
2
(σ0 + iσz). Applying such a symmetry four times re-

sults again in a full lattice translation combined with Ē, i.e., spinful represen-

tations acquire a negative sign. Their eigenvalues are therefore given by the

fourth roots of − exp(inkz), which we label with the integer p ∈ {0, 1, 2, 3},
defined through the parameterization

αp = exp
(
iπ

4
(2p+ 1)

)
exp

(
in

4
kz
)
. (3.3.3)

At the two TRIMs on the rotation axes, time-reversal symmetry T pairs

bands with complex conjugate eigenvalues. For kz = 0, i.e., at Γ and

M= (π, π, 0) in primitive tetragonal lattices, we find α0
∗ = α3 and α1

∗ = α2.

We label these degeneracies with (p, p′) = (0, 3) and (1, 2), respectively. For

the TRIMs with kz = π, i.e., at Z= (0, 0, π) and A= (π, π, π), the three

different fractional translations have to be considered separately.

For a fractional translation by a quarter of the unit cell, i.e., n = 1, we

find α0
∗ = α2 = −i at the other TRIM, leading to the pairing (0,2). The

two real eigenvalues α1 = −1 and α3 = 1 each have a Kramers partner

with the same eigenvalue, leading to the pairs (3,3) and (1,1). Connecting

these pairs smoothly in kz creates a minimum of three band crossings on the

rotation axis. This pattern is called an accordion state [72, 73] and is sketched

in Fig. 3.4(a). Each of these crossings is protected by different rotation

symmetry eigenvalues. The screw rotation with n = 3 is the enantiomorphic

partner symmetry and creates the same pattern, but with interchanged labels

p→ (p− 1) mod 4.

For n = 2, that is the translation by half a unit cell with each fourfold

rotation, the eigenvalues at either TRIM are purely complex. The pairing at

Γ (M) remains unchanged, but at Z (A) the pairing is now (0,1) and (2,3).
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(1,2)

(1,2)

(0,3)

(0,3) (3,3)
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(1,1)

�(M) Z(A)

(a) 4001(a, b, 1
4)
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�(M) Z(A)

(b) 4001(a, b, 1
2)

Figure 3.4: Connectivity diagrams with minimal band crossings for fourfold
screw rotations. The case for a fourfold screw rotation with translational part
c = 3

4
along the rotation axis is identical to the case c = 1

4
in (a) with redefined

labels. The colored symbols indicate the chiral charge of each crossing. Blue
and red dots mark chirality +1 and -1 and green hexagons indicate a double
Weyl point with C = ±2, where the sign cannot be determined by symmetry
alone.

This allows a simpler band connectivity made up of four bands forming an

hourglass dispersion with only and one band crossing along the path, see

Fig. 3.4(b). The chirality C of these Weyl points at TRIMs and on the

axis can be inferred from the ratio of eigenvalues involved in a crossing [66].

Fourfold screw-rotations lead to at least one movable double Weyl point with

chirality ±2 on the rotation axis, see the green hexagons in Fig. 3.4. The

double Weyl points are crossings of bands with the labels (0, 2) or (3, 1),

which directly determines the matrix representation of the fourfold rotation,

U4001 = exp
(
kz

n
4

)
iσz or U4001 = exp

(
kz

n
4

)
σz, respectively. Double Weyl

points were already discussed in Sec. 3.2.1. There, we identified them at a

TRIM on the rotation axis in spinless representations, e.g., at Γ. Treating

SOC strength as a tunable parameter connects the two cases smoothly. For

vanishing SOC, bands are spin degenerate everywhere and the Chern number
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can be evaluated separately in each spin subspaces, each of which contributes

Cσ = ±2. This leads to a total Chern number of C = C↑+C↓ = ±4, because T
flips the spin and relates Weyl points with the same chirality. Non-zero SOC

removes the spin degeneracy everywhere except on TRIMs, but far from the

original degeneracy the total Chern number remains unchanged, as long as

the gap remains open on an enclosing surface. The double Weyl point splits

then into two movable double Weyl points at K0 ± δz with respect to the

TRIM K0 hosting the double Weyl point in the spinless case. As before, the

double Weyl points are related by T and must have the same chirality. For

small SOC, they will therefore be found close to the TRIM.

3.3.3 Compatibility relations spanning several rotation

axis

Previously, we have shown how nonsymmorphic rotations can enforce band

crossings on a rotation axis. In the chiral SGs 19 and 24, the three perpen-

dicular twofold rotations together impose restrictions in a way, that bands

need to exchange at least once on one of the three rotation axis [74].

Movable Weyl points in spinless bands structures

As a first case, we look at spinless band structures in SG 19 with time-reversal

symmetry. Because Γ is nondegenerate, there are no hourglass states enforced

by the screw rotations. On the TRIMs X, Y and Z, the eigenvalues of the

screw rotations 2100(1
2
, 1

2
, 0), 2010(0, 1

2
, 1

2
) and 2001(1

2
, 0, 1

2
), respectively, are

±i and therefore paired by T . This band crossing facilitates the exchange

of bands required by each screw rotation when traversing the BZ along its

rotation axis. At Γ on the other hand, all three rotation eigenvalues are ±1

and simultaneously good quantum numbers. The representations commute

and multiply to the identity, U2100U2010U2001 = UĒ = +1. Therefore, the

three eigenvalues must multiply to +1 in each of the nondegenerate bands.

Consequently, none or exactly two of the rotation eigenvalues can be negative

in a representation at Γ. Since they must evolve smoothly according to

Eq. (3.3.1) and connect to the pairs (+,−) at the other TRIM on their
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rotation axis, all four possible combinations must exist in every set of bands.

This is in agreement of the lowest possible multiplicity for Wyckoff positions,

which is four, and every EBR contains all these irreducible representations

at Γ, regardless of the type of point group representation used to induce it.

Fulfilling these requirements requires at least one crossing on one rotation

axis, protected by the different eigenvalues. In Fig. 3.5(a) we present a

possible arrangement of four bands respecting these requirements. The colors

blue and orange correspond to the positive and negative sign in Eq. (3.3.1),

respectively and each color combination uniquely defines one of the four

irreducible representations at Γ. Exchanging their order can only move the

crossing to another axis, but not eliminate it. Additional crossings may only

be introduced pairwise.

In the absence of additional accidental crossings, which might appear on

any of the rotation axes, spinless band structures in SG 19 have only three

pointlike degeneracies for 4n+ 2 filled bands and the topological charge from

the two symmetry-related copies of the movable point is compensated by

the fourfold double Weyl point at R discussed in Sec. 3.2.2. In Sec. 3.5.1 we

provide an archetypical band structure for this SG, where this charge balance

can be observed, see the blue bands in Fig. 3.7.

Next, we consider SG 24, which is one of the two nonsymmorphic space

groups without nonsymmorphic symmetries. In the BZ of body-centered

lattices, all three rotation axes connect Γ to Z, which has the equivalent

coordinates (0, 0, 2π), (0, 2π, 0) or (2π, 0, 0). Both TRIMs Γ and Z are non-

degenerate in spinless representations of SG 24, because the eigenvalues are

real on the whole axis. Because of the translational parts of the mutually

off-centered rotations, the product of all three rotations results always in a

lattice translation,

2100(0, 0, 1
2
) · 2010(1

2
, 0, 0) · 2100(0, 1

2
, 0) = t(1

2
,−1

2
, 1

2
). (3.3.4)

At Γ, the translation eigenvalue is +1 and the product of all three rotation

eigenvalues ±1 has to be positive, as it was the case previously, i.e., only

none or two of the eigenvalues can be negative. At Z on the other hand,
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X

Y

Z

(a) SG 19

Z

Z

Z

(b) SG 24

Figure 3.5: Band crossings enforced by compatibility relations comprising
three rotation axes in spinless band structures. (a) Exemplary arrangement
of bands with minimal crossings in spinless band structures of SG 19, leav-
ing one movable Weyl point on one of the three rotation axes connecting to
Γ. Blue (orange) colored bands correspond to bands labeled with positive
(negative) eigenvalue according to the definition in Eq. (3.3.1). (b) Possible
arrangement for a spinless band representation in SG 24 with rotation eigen-
value +1 in blue and −1 in orange of the corresponding axis. The product of
eigenvalues is fixed to +1 at Γ and −1 at Z, enforcing a movable Weyl point
on one of the axes.

49



SYMMETRY-ENFORCED NODES

eigenvalue of the translation is −1, therefore the only valid combinations are

those with one or three negative rotation eigenvalues. The two different re-

quirements can only be fulfilled simultaneously by two bands exchanging on

at least one rotation axis. An example representing a possible combination

of two irreducible representations is shown in Fig. 3.5(b). There are three

other possible representations, but the resulting restriction on the dispersion

is always the same as in the example. In a real material the representa-

tions at Γ and Z are induced from the orbital present at a certain Wyckoff

position [75]. The charge of this movable Weyl point is, in the absence of

accidental crossings, compensated by the pinned Weyl point at W, which

also appears in two symmetry-related copies. Finally, we consider the spin-

ful cases. On the rotation axes through Γ, no such restrictions are found.

As we have mentioned earlier, the results are still relevant for small SOC,

since the chirality of these Weyl points protects them topologically. In order

to remove these Weyl points, they have to annihilate with Weyl points of

opposite chirality, which would require a large transformation of bands. The

two time-reversal related copies however can move from the rotation axis to

two symmetry-related k-points.

In addition, we find a movable Weyl point in spinful bands of SG 24 on

one of the three axes W-R, W-S or W-T. The compatibility relations require

the same connectivity as shown in Fig. 3.5(a) with W in the center. In that

case, orange bands have the rotation eigenvalue +i and blue ones i All three

rotation eigenvalues at W multiplied equal to −i. If SOC vanishes exactly,

the Weyl point in each spin subspace is pinned to W, as has been shown

above in Sec. 3.1.1. For non-zero SOC, they can split up and move onto a

rotation axis, where they are still related by time-reversal symmetry.

Movable fourfold double Weyl

In a similar manner, the fourfold double Weyl point at R in SG 19 moves

to one of the three axis S-R, U-R and T-R for non-vanishing SOC [74]. For

the rotation eigenvalues at R, there is again the restriction, that in every

irreducible representation the three rotation eigenvalues must multiply to an
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odd number. Considering T , all corepresentations are twofold degenerate

on the three axes with pairs sharing the same eigenvalues. As discussed in

Sec. 3.2.2, the TRIMs S,T and U host fourfold double Weyl points, where

opposite eigenvalues are paired. Together, this necessitates a crossing of

twofold degenerate bands on at least one rotation axis, forming a fourfold

degenerate crossing. The little group of the axis consists of the twofold

rotation and the combination of T with each of the other two rotations.

This restricts the crossing also to a fourfold double Weyl point with Chern

number ±2.

Figure 3.6(a) shows an example of an arrangement of bands fulfilling the

compatibility relations on the three rotation axes through R. Double lines

show the twofold degenerate bands with identical eigenvalues and possible

combinations at R. In Fig. 3.6(b) we show the DFT band structure of Ag2Se

in SG 19 with and without SOC in the vicinity of R. Without SOC, the

point R is eightfold degenerate, namely a fourfold double Weyl in each spin

subspace. Including SOC in the calculation lifts the spin degeneracy, lead-

ing to two symmetry-related, tilted fourfold double Weyl points on the axis

connecting R and T.

3.4 Topological nodal planes

The combined symmetry of time-reversal symmetry followed by a twofold

screw rotation leads to twofold degeneracies on a plane, which can contribute

to the band topology [30, 76, 31]. We will discuss the mechanism enforcing

the degeneracy and identify SGs where the nodal planes are necessarily topo-

logically nontrivial.

The combination of time-reversal symmetry with any spatial symmetry

is also antiunitary. Because T commutes with all spatial symmetries, the

order is not relevant and leads to the same element of the gray group. In

the case of a twofold screw rotation, the square of the combined symmetry

is a lattice translation along the rotation axis. This holds equally in double

groups, because both the rotation and T contribute Ē, which in turn squares

to the identity. In k-space, the combined symmetry acts like a reflection on
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(b) fourfold double Weyl point in Ag2Se

Figure 3.6: (a) Compatibility relations at R in SG 19 for spinful bands. Col-
ors indicate the sign of the rotation eigenvalue according to Eq. (3.3.1). Note
that all bands are twofold degenerate on the paths shown, with identical ro-
tation eigenvalues being paired. Figure adapted from Ref. [74]. (b) Fourfold
double Weyl point in Ag2Se without SOC at R (black). Including SOC (red)
moves the fourfold double Weyl point to the axis R-T.
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a plane perpendicular to the rotation axis, because T acts like inversion.

For example, 2001(0, 0, 1
2
)T squares to t(0, 0, 1) and transforms a point k

according to (kx, ky, kz) → (kx, ky,−kz). The invariant planes are kz = 0

and, if K = (0, 0, 2π) is a reciprocal lattice vector, kz = π. The latter case is

given in all primitive and base-centered orthorhombic lattices and in primitive

tetragonal, hexagonal or cubic lattices. In the kz = π plane, the eigenvalue

of the translation is eikz = −1. Any antiunitary symmetry squaring to −1

enforces degeneracies on invariant momenta through Kramers theorem [53].

Consequently, the whole plane kz = π is twofold degenerate. Note that this

holds equally for spinless and spinful representations. The degeneracy of the

plane already contains the Kramers degeneracy at the TRIMs within it and

there are no Kramers Weyl points. For this reason, there are no Weyl points

at Z and A in the accordion states in Fig. 3.4(a). The twofold degeneracies

in planes found in the low-energy models of fourfold double and quadruple

Weyl points are also explained by this mechanism, c.f. Figures 3.1(b) and

(c).

The nodal planes themselves can act as a source or sink of Berry curvature

and thereby carry a topological charge. These topological nodal planes can in

principal exist in all chiral SGs with nodal planes. Their Chern number can

be directly evaluated on a closed surface slightly offset from the nodal plane,

but close enough to stay clear of all degeneracies in the interior of the BZ.

Because of the Nielsen-Ninomiya theorem [33], the chirality is the negative of

the sum of Chern numbers from point crossings in the BZ interior closing the

same gap. In some of these SGs, the topological charges of point crossings in

the interior of the BZ cannot be balanced other than by the nodal plane, their

topology is therefore symmetry-enforced. In the orthorhombic and tetragonal

crystal systems, we identified four SGs with symmetry-enforced nodal planes,

namely SG 19, the enantiomorphic pair SG 92 and SG 96, and SG 94.

There are three perpendicular twofold screw rotations in SGs 19, 92 and

96. Together they form a nodal plane trio, which encloses the BZ interior.

Γ is the only TRIM not residing in a nodal plane and there is a Weyl point

of chirality ±1 [24, 77, 65]. Every other point in the BZ interior has a

star of order two or larger, related by either a rotation or T , both of which
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relate Weyl points with identical chirality. Consequently, in the sum of all

chiralities of the interior, accidental crossings only contribute even numbers

and the sum is always odd,

Cinterior = 1 + 2n n ∈ Z. (3.4.1)

Therefore, the topological charge of the nodal plane trio has to be odd as

well and |CNP| ≥ 1 [78].

In SGs 18, 90 and 94, there are the two screw rotations 2100(1
2
, 1

2
, 1

2
) and

2010(1
2
, 1

2
, 1

2
), enforcing a nodal plane duo build from the two degenerate planes

kx = π and ky = π. The TRIMs Γ and Z are now the only ones not in a nodal

plane, both hosting Kramers Weyl points of chirality C = ±1. In SG 18 and

90, these two are not related by symmetry and their topological charges might

cancel, allowing the nodal plane duo to be trivial. In SG 94 however, the

fourfold screw rotation 4001(0, 0, 1
2
) enforces an hourglass dispersion, in which

the two Weyl points at both TRIMs have the same chirality for a minimal

number of crossings, see Fig. 3.4(b). Introducing accidental crossings on the

fourfold rotation axis cannot change the sum of chiralities and everywhere

else they come in four symmetry-related copies with equal chirality. The

charge of the nodal plane duo is therefore restricted to the values

CNP = 2 + 4n n ∈ Z, (3.4.2)

and is at least doubly charged. The doubly charged nodal plane is especially

interesting, because in an 001-termination the gap can in principle be pre-

served, which could reveal the two Fermi arcs connecting the projected Weyl

points to the projected nodal plane. Unfortunately, SG 94 is very elusive

and no suitable candidate material could be identified. As an alternative, a

similar situation can be found in magnetic SGs by breaking one of the screw

rotations in a nodal plane trio [31].
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3.5 Case study for the chiral space groups 19

and 92/96

All of the above features are enforced in SG 92 and its enantiomorphic partner

SG 96, and almost all of them also exist in their subgroup SG 19. There-

fore, we construct the complete band connectivity with a minimal number

of crossings from compatibility relations for these SGs and compare them to

lattice models and materials. These models also demonstrate the balance of

topological charges of the different types of degeneracies.

3.5.1 Tight-binding model for SG 19

For SG 19, we present a simple tight-binding model, containing all symmetry

allowed next-nearest neighbor hopping terms. By separating inter- and intra-

spin space contributions, the fate of each crossing upon inclusion of SOC can

be demonstrated.

There is just one EBR in SG 19, i.e., any band structure is built from

several instances of this set of bands. The EBR has four bands in the spinless

case, corresponding to the multiplicity of its only Wyckoff position. Its site-

symmetry group is 1, therefore it is not sensitive to the type of orbital placed

there. Nearest-neighbor hopping terms are sufficient to create a maximally

split band structure. We focus on the gap Hamiltonian, i.e., disregard any

uniform dispersion, which is mostly determined by hopping of one lattice

translation, i.e., next-nearest neighbor hopping. Note that a crystal in SG 19

based on atoms cannot be built with only four equivalent atoms per unit cell,

as this would actually be the face-centered SG 69, which is symmorphic and

inversion symmetric. In the four-band model, anisotropic hopping ensures

the lower symmetry of SG 19. Without SOC, the gap Hamiltonian reads

H0(k) =


0 (t0+t1eikx)(1+eikz) (t2+t3eiky)(1+eikx) (t4+t5eikz)(1+eiky)

0 (t4e−ikz+t5)(1+eiky) (t2eiky+t3)(1+e−ikx)

0 (t0e−ikx+t1)(1+eikz)

h.c. 0

,
(3.5.1)
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containing the six free real parameters ti. For non-zero SOC, we include a

time-reversed copy and an off-diagonal block Λ covering all symmetry allowed

intra-spin hopping terms,

Hgap(k) =

(
H0(k) Λ(k)

Λ†(k) H∗0 (−k)

)
. (3.5.2)

Introducing the short notations ci = 1 + e+iki and si = 1− e+iki , this term is
given by

Λ(k) =
0 (λ0+λ1e+ikx)cz (λ2+λ3e+iky )cx (λ4+λ5e+ikz )sy

−(λ0+λ1e−ikx)c∗z 0 (λ4e−ikz+λ5)sy −(λ2e+iky+λ3)c∗x
−(λ2+λ3e−iky )c∗x −(λ4e+ikz+λ5)s∗y 0 −(λ0e−ikx+λ1)cz

−(λ4+λ5e−ikz )s∗y (λ2e−iky+λ3)cx (λ0e+ikx+λ1)c∗z 0

 (3.5.3)

+i


0 (λ6+λ7e+ikx)cz (λ8+λ9e+iky )sx −(λ10+λ11e+ikz )cy

−(λ6+λ7e−ikx)c∗z 0 (λ10e−ikz+λ11)cy −(λ8e+iky+λ9)s∗x
−(λ8+λ9e−iky )s∗x −(λ10e+ikz+λ11)c∗y 0 (λ6e−ikx+λ7)cz

(λ10+λ11e−ikz )c∗y (λ8e−iky+λ3)sx −(λ6e+ikx+λ7)c∗z 0

.

The spinful model has 12 additional real parameters λi, allowed by symme-

try. The spinless case with a twofold spin degeneracy is recreated by setting

all of them to zero. Only few of these need to be non-zero in order to split the

spin degeneracy with no fine-tuned degeneracies left. In Fig. 3.7 we show the

schematic band structure together with the dispersion of the tight-binding

model and a material example along the high-symmetry path of the primitive

orthorhombic BZ. The band structure without SOC, shown in blue, has two

movable Weyl points on the axis Γ-X with identical chirality and a fourfold

double Weyl at R compensating their charges. The orange bands show the

band structure for nonzero values for the λi. At half filling, there are four

movable Weyl points, which moved from the axis to the interior and are

not visible along the high-symmetry path. They have to exist to balance the

Chern number of the fourfold double Weyl points which split and moved onto

the axis U-R [65]. There are hourglass states visible on all three rotation axis

connecting to Γ. Charge balance for two or six filled bands is achieved with
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the fourfold double Weyl points at S, U and T. Nodal planes remain twofold

degenerate in both cases, indicated by the thick lines in the sketch. In the

spinful case they are necessarily topological, balancing the charge at Γ for an

odd number of filled bands.

As an example material, we identified the narrow gap semiconductor

Ag2Se in the material search, whose room temperature polymorph crystal-

lizes in SG 19 [79]. In Fig. 3.7(c) we present the DFT band structure includ-

ing SOC. Although the splitting of spin degenerate bands is small relative to

the band width, hourglass states are well resolved along Γ-Z. The fourfold

degeneracy at R is shown in detail in Fig. 3.6(b)

3.5.2 Example material Ba3Sn2 in SG 96

Space group 96 is a supergroup of SG 19 with a fourfold screw rotation

4001(0, 0, 3
4
) as additional generator. This puts further restrictions on the

band connectivity and symmetry-enforced crossings. In the spinless case,

the schematic band structure remains mostly unchanged. There are again

four bands in every EBR. The previously movable crossing at half filling is

now pinned to Γ, where it forms a spinless double Weyl point, compare the

blue bands in Fig. 3.8(a) and Fig. 3.7(a). Its charge balances the fourfold

double Weyl point at A.

As discussed in Sec. 3.3.1 and Sec. 3.3.2, SOC splits bands such, that hour-

glass and accordion states are formed on the twofold and fourfold rotation

axis, respectively. There is no movable fourfold double Weyl point, instead

the spin-degenerate fourfold double Weyl point splits up into two twofold

degenerate bands and a fourfold quadruple Weyl point at R, as discussed in

Sec. 3.2.3.

In Fig. 3.8(b) we present the band structure of the binary compound

Ba3Sn2, which crystallizes in SG 96 [80] and has been identified in our ma-

terial search. This material is insulating with a narrow band gap and the

first eight bands below the Fermi energy are all from one EBR and can be

compared directly to the connectivity diagram. In the uppermost occupied

bands, the movable crossings of the hourglass dispersion are to close to X to
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Figure 3.7: Elementary band representation in SG 19. (a) Band connectivity
diagram based on compatibility relations of representations. Spinless bands
are shown in blue, spinful bands in orange. Thick lines indicate twofold
degenerate bands in nodal planes. (b) Minimal tight-binding model for SG
19 defined in Eq. (3.5.2) with hopping parameters t0 = −t5 = 0.25, t1 =
−t4 = 0.55, t2 = −0.6, t3 = −0.95, λi = 0 for the spinless case (blue), for
the case with SOC (orange) λ0 = λ1 = λ7 = 0, λ2 = −λ5 = 0, λ3 = 0.7,
λ4 = −λ8 = 0.2, λ5 = −0.3, λ9 = λ10 = −λ11 = 0.1. Parameters were chosen
for maximal visibility of the features mentioned in the text. (c) DFT band
structure for Ag2Se including SOC.
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Figure 3.8: Elementary band representation in SG 96: (a) Schematic band
structure based on the connectivity of irreducible representations without
(blue) and with SOC (orange). Thick lines indicate twofold degenerate bands
within nodal planes. (b) Band structure of Ba3Sn2 calculated from first
principles including SOC. All Bands show the same connectivity as in the
above sketch. The accordion states along Γ-Z can be seen most clearly in
the uppermost eight bands (green), whereas the hourglass states are only
resolved in some bands lower in energy.

be resolved, but they are visible in the bands below. An additional feature is

the fourfold degenerate band crossing along A-M. This feature is protected

by symmetry eigenvalues, but not mandated by band connectivity. It can in

principle be removed by exchanging the bands at A such that the fourfold

degenerate representation falls between the two twofold representations. In

either case, the fourfold degeneracy at half filling has to carry a Chern num-

ber of C = ∓2 to cancel the topological charges of the double Weyl point with

C = ±2 in the accordion state at half filling. Again, the path segments on

the BZ surface are twofold degenerate as they are part of topological nodal

planes, balancing the chirality of the Weyl point at Γ.
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3.6 Dirac points

The wave function of a free, massive fermion is described by the Dirac equa-

tion [81],

(iγµ∂µ −m)Ψ = 0, (3.6.1)

written in terms of the four-dimensional Dirac matrices. These are defined

through the anticommutation relation

{γµ, γν} = 2ηµν14×4. (3.6.2)

Here ηµν is the Minkowski metric. The corresponding Hamiltonian in mo-

mentum space reads

H = γ0(γipi +m) (3.6.3)

In condensed matter systems, a Dirac fermion refers to a set of four bands,

which can be described by a linearized Hamiltonian in a subset of the BZ

that can be mapped to Dirac Hamiltonian by a similarity transformation.

Expanded in relative coordinates q the Hamiltonian is of the form

HDirac(q) =
3∑
i=1

viqiγ0γi +mγ0, (3.6.4)

If we choose the representation for the Dirac matrices γ0γi = τz⊗σi and γ0 =

τzσ0, written in terms of two sets of Pauli matrices σi and τi, i ∈ {x, y, z, 0},
the connection to the Weyl-Hamiltonian introduced in Eq. (3.1.2) becomes

immediately apparent. Without the mass term, those are just two Weyl

points with opposite signs in all three velocity factors vi and therefore oppo-

site Chern numbers. Since the total Chern number vanishes, it is possible to

introduce a gap via a non-vanishing mass term mγ0.

A Dirac point corresponds to the special case m = 0 and has a gapless

spectrum with a fourfold degeneracy and linear dispersion in all three spatial

directions. From the definition above it follows, that a Dirac point splits

into twofold degenerate bands. In the literature, the term is often used more

loosely and any fourfold degenerate point with linear dispersion is called a
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Dirac point. In this work, we require the linear dispersion and a vanishing

Chern number. The latter distinguishes Dirac points from the fourfold double

Weyl points in Sec. 3.2.2. In addition, we will explicitly highlight the cases,

where bands are not twofold degenerate as an exception.

3.6.1 Dirac points at high-symmetry points

Symmetry-enforced Dirac points at high-symmetry points appear in spinful

band structures of many centrosymmetric SGs at TRIMs. Inversion com-

bined with time-reversal symmetry, PT , already leads to twofold degenerate

bands in the whole BZ in all centrosymmetric SGs and all Chern numbers

must be zero, because the Berry curvature vanishes identically at each point

in the BZ. For a symmetry-enforced Dirac point, a second kind of pairing

mechanism needs to be present to ensure a vanishing mass term, thereby

guaranteeing the fourfold degeneracy.

Here, we present this mechanism exemplarily for the orthorhombic SG 49.

The four TRIMs in the kz = 0 plane are all only twofold degenerate and

therefore not different from the bands in their vicinity. Each of the TRIMs

in the kz = π plane, however, host symmetry-enforced Dirac points. Any

TRIM in centrosymmetric SGs has always inversion in its little group, since

the action in k-space is the same for T and P . The fourfold degeneracy can

be understood from the product of one of the glide mirror symmetries and

the rotation with its axis perpendicular to the mirror plane, which multiplies

to the inversion symmetry and potentially a translation,

2100(0, 0, 1
2
) ·M100(0, 0, 1

2
) = P(0, 0, 1),

M100(0, 0, 1
2
) · 2100(0, 0, 1

2
) = P(0, 0, 0). (3.6.5)

At TRIMs with kz = π, the translation eigenvalue is −1 and consequently

the representations anticommute, whereas at TRIMs with kz = 0 the trans-

lation eigenvalue is +1 and they commute. The representations for the three

perpendicular twofold rotations always anticommute and are therefore pro-

portional to the Pauli matrices, as previously shown in Sec. 3.1.1. In the
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commuting case, the representation of the reflection must be proportional to

the same Pauli matrix as the one from the rotation, therefore the product

is UP = ±σ0, and two identical inversion eigenvalues are paired. Kramers

theorem does not lead to an additional pairing and the points remain twofold

degenerate. In the anti-commuting case, the two representations are made

from two different Pauli matrices and their product is proportional to the

third one, implying the pair has inversion eigenvalues with opposite sign.

Kramers partners, on the other hand, share the inversion eigenvalue, result-

ing in the fourfold degeneracy of the Dirac point. A similar situation can be

found in many other orthorhombic and tetragonal SGs with inversion and

nonsymmorphic mirror symmetries, all of which are listed in Tables IV and

VI.

Another notable example are the eightfold degenerate double Dirac points

which can only be found in the two tetragonal SGs 130 and 138 [82]. At the

point A= (π, π, π), the representations of the three glide mirror symmetries

anticommute, because the products differ by a translation with eigenvalue

−1, creating a twofold degeneracy of eigenvalues with opposite sign for each

eigenvalue. Additionally, two of the glide mirror symmetries have real eigen-

values and Kramers theorem implies that there must be four orthogonal

states. It further follows, that the product of the three perpendicular re-

flections is proportional to the identity, UP = ±iτxτyτz = ±τ0. Including

the Kramers degeneracy, the fourfold degeneracy consists entirely of states

with the same inversion eigenvalues. A similar argument holds for two of the

rotation axes with little group mm2 + PT , preventing a gap from opening

along the invariant axis. Finally, the fourfold rotation 4001 anticommutes

with inversion and therefore requires an eightfold degeneracy at A. The dis-

persion looks identical to the one of a fourfold double Weyl point, shown

in Fig. 3.1(b) with a linearly growing gap between the fourth and the fifth

band. Here however, all bands are twofold degenerate and the Chern number

is zero, hence the name double Dirac point.
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Fourfold degenerate points without inversion

Without inversion and in spinless band structures, there are no Dirac points

in the strict sense. We found however many cases of fourfold degenerate

points with vanishing Chern number and linear dispersion in spinful band

structures of SGs with two perpendicular glide mirror symmetries. A di-

rect evaluation of the product of two perpendicular mirror symmetries with

translational parts (a, b, c) and (d, e, f) reveals

M100(a, b, c)·M010(d, e, f) = Ē(−2d, 2b, 0)·M010(d, e, f)·M100(a, b, c). (3.6.6)

Depending on the eigenvalue of Ē(−2d, 2b, 0), the representation at a TRIM

commutes or anticommutes. In the second case, the representations must be

at least two-dimensional and eigenvalues with opposite signs are paired for

each symmetry,

UiUj |±mi〉 = −UjUi |±mi〉 = ∓miUj |±mj〉 . (3.6.7)

Glide reflections are nonsymmorphic symmetries and square to a Ē combined

with a lattice translation, e.g.,

M100(a, b, c)2 = Ē(0, 2b, 2c), (3.6.8)

where b and c can have half integer values. The eigenvalues of glide reflec-

tions are therefore square roots of −1 or +1 at TRIMs, depending on the

translation eigenvalue.

A fourfold degenerate point follows in the second case, when both mirror

symmetries have real eigenvalues ±1 and Kramers partners share the same

eigenvalues. If only one of them has real eigenvalues, the gap will remain

closed along a line, as we will see in Sec. 3.7.2. Although the Berry curvature

does not vanish identically, the resulting fourfold degeneracy cannot carry

a Chern number. Contributions from both sides of a mirror plane to the

surface integral cancel, since the Berry curvature transforms as a pseudo

vector under reflections. Both statements can again be demonstrated from
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Figure 3.9: Dispersion around the point S= (π, π, 0) in the kx = π plane
in AuTlSb, crystallizing in SG 33. Colors indicate the relative sign of M100

eigenvalues. All twofold degeneracies are part of nodal lines with opposite
mirror eigenvalues.

a low-energy Hamiltonian. The representations for the symmetry generators

at the TRIM can be given by

UM100 = τ0σx, (3.6.9)

UM010 = τ0σy, (3.6.10)

UTK = iτyσxK, (3.6.11)

which restricts the linearized Hamiltonian to the form

H(q) = vzqzτzσ0 + vxqxτzσy + vyqyτzσx

+λxqxτxσy + λyqyτxσx + λzqzτxσ0, (3.6.12)

with the real parameters vi and λi. The gap between the second and third

band closes only at the TRIM, i.e., for q = 0. The bands are maximally

split from linear terms only and the vanishing Chern number can be verified

numerically. A real material example is shown in Fig. 3.9.

Another noteworthy case is the only fourfold degenerate point with van-
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ishing Chern number in spinless band structures in orthorhombic SGs. The

body centered SG 73 is a supergroup of SG 24 and inherits its Weyl point at

W= (π, π, π). However, SG 73 contains also inversion symmetry. In spinless

band structures, PT does not lead to Kramers degenerate bands at generic

positions, but the twofold degeneracy is doubled at W by PT . The disper-

sion looks like the one of a fourfold double Weyl point, shown in Fig. 3.1(b),

since there are only rotations in the little group. The difference is, that both

Weyl points have opposite chirality, such that the total Chern number van-

ishes. The low-energy Hamiltonian up to linear order is equivalent to the one

described in Eq. (3.6.12) previously.

3.6.2 Movable Dirac points

Dirac points can also be symmetry-enforced on a rotation axis in centrosym-

metric SGs, similar to movable Weyl points. In most SGs with inversion, the

hourglass dispersion from screw rotations is suppressed by the overall twofold

degeneracy with rotation eigenvalue pairs (+,−), according to the definition

in Eq. (3.3.1). If the screw rotation is however off-centered from the inversion

center, the co-representation of PT anticommutes on some rotation axes and

pairs identical eigenvalues as (+,+), and (−,−) [83]. For an hourglass dis-

persion as shown in Fig. 3.3, fourfold degeneracies at two TRIMs are needed

additionally. Since the eigenvalue of the screw rotation is ±i at one TRIM,

T creates the fourfold degeneracy (+,+,−,−) there. At the other TRIM,

however, the screw rotation eigenvalue alone is not sufficient to enforce a

fourfold degeneracy. In orthorhombic and tetragonal centrosymmetric SGs

with primitive lattices, two perpendicular mirror symmetries are also part

of the little group of any rotation axis, one of which must be a glide reflec-

tion. Their representations need to commute with the rotation, otherwise

there would be a fourfold degeneracy on the whole line, see Sec. 3.7.5. If

the partners within a pair (+,+) or (−,−) have distinct real valued glide

mirror eigenvalues, they cannot be Kramers partners. Consequently, a co-

representation at the second TRIM needs to contain four states with rotation

eigenvalues (+,+,+,+) or (−,−,−,−). The resulting hourglass dispersion
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is identical to the one for a movable Weyl point, but all the bands are twofold

degenerate. The crossing on the axis itself is not invariant under inversion,

but splits into twofold degenerate bands in all directions and forms therefore

a Dirac point. We find these conditions to be met in the four orthorhombic

SGs 52, 54, 56, and 60, and in the three tetragonal SGs 130, 133, and 138.

We also identified one movable Dirac point from a compatibility rela-

tion spanning the three rotation axis connecting to W in SG 73. In SU(2)-

symmetric band structures, there is a pinned Dirac point at W. Counting the

spin degrees of freedom, this corresponds to an eightfold degeneracy. Non-

vanishing SOC lifts this degeneracy, which splits into two symmetry-related

Dirac points on one of the rotation axes. Each of the TRIMs R, S, and T

has one rotation in its site symmetry group and the corresponding rotation

eigenvalues are paired as (+,+,−,−). On the axis connecting to W, the

pairing is (+,+) and (−,−). At W, all three rotation eigenvalues are simul-

taneously present, but their overall sign is restricted to +. This can only be

arranged with a minimum of one band crossing on one of the axes W-R, W-S,

and W-T, equivalent to the requirement shown in Fig. 3.5(a). The resulting

band crossing forms also movable Dirac point.

3.7 Line degeneracies

Nodal lines are —after nodal points and planes— a third type of symmetry-

enforced degeneracies. Linearly dispersing twofold degenerate lines are gen-

erally enforced by mirror symmetries, which can be motivated by a parameter

counting argument. In a subspace of two bands with opposite mirror eigen-

values, the matrix representation of a mirror symmetry is proportional to one

of the Pauli matrices. The other two Pauli matrices in the gap Hamiltonian

change sign under the application of the symmetry and must therefore vanish

in the mirror plane. For the remaining component, there are no further re-

strictions on the two in-plane coordinates and it can therefore vanish along an

one-dimensional sub-manifold. Therefore, we find symmetry-enforced nodal

lines in non-chiral SGs, i.e., those with at least one mirror symmetry.
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The topological invariant of nodal lines is the Berry phase, evaluated

on an integral along a loop enclosing the nodal line. The mirror symmetry

restricts the value of any loop integral to 0 or π. The presence of a line defect

therefore changes the homotopy of Berry phase loops. Because this results in

a Z2 invariant, nodal lines are not stable against large perturbations, since

they can annihilate pairwise or be removed by shrinking them to a point.

But as long as all symmetries of a SG remain unbroken, symmetry-enforced

nodal lines are necessarily present in the following cases.

In the orthorhombic and tetragonal SGs, all symmetry-enforced nodal

lines can be grouped in one of three categories. First, we give examples

of nodal lines pinned to a high-symmetry axis, which are enforced by the

little co-group structure. In Sec 3.7.2, we introduce the more interesting

case of almost movable and movable lines, which are at most pinned to high-

symmetry points, but can be moved freely within a mirror plane.

3.7.1 Pinned nodal lines

Twofold degeneracies along high-symmetry axis are common in many SGs

and can be understood from the irreducible co-representations of their little

groups. These can be found in tables, for example on the Bilbao Crystal-

lographic Server [4, 3, 75]. For later reference, we introduce two common

examples.

The first case is independent of time-reversal symmetry. If the matrix

representations of symmetries in the little group mm2 anticommute, they

must be at least two-dimensional and eigenvalues with opposite signs are

paired for each symmetry, c.f., Eq. (3.6.7). Previously, we have shown that

the commutation relation of two perpendicular mirror symmetries depends

on the Ē eigenvalue and fractional translations in off-centered and nonsym-

morphic symmetries, see Eq. (3.6.6). On any axis through Γ, each of the

spinful representations always square to UĒ = −1, because any translational

part has always eigenvalue +1. At the same time, a product of any two of the

three symmetries results in the third, which also squares to UĒ = −1. The

smallest matrix representation that fulfills these requirements is generated by
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the three Pauli matrices with a complex factor, Ui = iσi. Therefore, an anti-

commutation relation is found in all spinful representations of the little group

mm2 at least on the rotation axes through Γ, c.f. Table II. Pinned nodal

lines are not listed in Table V, but it holds equally for axis through Γ with

little group 4mm in the tetragonal SGs. In spinless representations, such a

nodal line requires at least one glide mirror symmetry. An anticommutation

relation is then given on those axis, where the translation in Eq. (3.6.6) has

eigenvalue −1, see Table I. Pinned nodal lines of this type do not rely on T
and are also degenerate when it is broken.

A second important example results from combining T with a glide mirror

symmetry. This antiunitary symmetry acts like a rotation in k-space, with its

axis perpendicular to the mirror plane, and squares to a lattice translation.

In the spinful case, T and the mirror symmetry each contribute a factor i

and no distinction between the two cases is necessary. With a translation

eigenvalue of −1, the conditions for Kramers theorem are fulfilled and the

whole invariant axis is twofold degenerate. At the TRIMs on the axis, the

two symmetries exist independently and in the spinless case identical mirror

eigenvalues +1 or −1 are paired, whereas in spinful representations the pair

consists of the complex partners ±i.

Fourfold degenerate nodal lines from rotoinversion

Combining T with a rotoinversion also acts like a rotation in k-space. A

fourfold degenerate line follows from the combination of two antiunitary

symmetries 4001T and a perpendicular screw rotation 2010(1
2
, 1

2
, c)T . This

combination exists in time-reversal symmetry band structures of SGs 113

and 114 in the tetragonal SGs with SOC, whose generators contain the spa-

tial symmetries mentioned above. The factor c = 0, 1
2

distinguishes between

SG 113 and SG 114 and is not relevant in the following discussion.

In Sec. 3.4, we showed how 2010(1
2
, 1

2
, c)T leads to nodal planes in the

ky = π plane. The same holds true for 2100(1
2
, 1

2
, c)T in the kx = π plane,

meaning there is a nodal plane duo in these SGs. Simultaneously, 4001T
squares to Ē2001 and leaves the line (π, π, w) at the intersection of the nodal
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planes invariant. It further fulfills the conditions of Kramers theorem on

these lines, since the eigenvalues of 2001 are ±i.

Both antiunitary symmetries enforce Kramers pairs, but with different

eigenvalues, creating a pinned fourfold degenerate line. To illustrate this, we

label the states with the sign of their 2001-eigenvalues ±i. Since the represen-

tations of 2001 and 4001T always commute, the eigenvalues are related only via

complex conjugation, i.e., the pairing is (+,−). 2010(1
2
, 1

2
, c)T , on the other

hand, anticommutes with 2001, adding another sign change to the complex

conjugated eigenvalue. Hence it pairs (+,+) and (−,−). In combination, we

find the fourfold degeneracy of the nodal line with the pairing (+,+,−,−).

Apart from the planes ky = π and kx = π, the bands are nondegenerate.

For constant kz, this is the same structure seen in the fourfold double Weyl

point shown in Fig. 3.1(b). Since the Berry phase is a Z2 invariant, two

nodal lines on top of each other are not topologically protected. A linearized

Hamiltonian of the fourfold degenerate line, however, can always be brought

in block diagonal form, which allows to define the topological invariant in

each subspace. Note that only the directions perpendicular to the nodal line

are expanded in relative coordinates qx and qy, as kz spans the full range

from −π to π along the nodal line.

The irreducible matrix co-representation can be given as

U2001 = τ0(−iσy) (3.7.1)

UM110 = τ0(ieikzcσx) (3.7.2)

U4̄+
001T
K = −iτy

σ0 − iσy√
2
K. (3.7.3)

The linearized Hamiltonian close to the nodal line at q = (qx, qy, kz) =

k− (π, π, 0) is restricted by these symmetries to the form

H(q) =

(
αq+σz + βq−σx λ(q+σz − q−σx)
λ(q+σz − q−σx) βq+σz + αq−σx

)
+ε01, (3.7.4)

with the perpendicular momentum components q± = qx± qy and the param-
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eters α, β, λ and ε0 all depending arbitrarily on kz.

This Hamiltonian can be block diagonalized via the unitary, k-independent

matrix T = cosφτ0σ0 + sinφiτyσ0, where tan(2φ) = 2λ
α−β , and reads in the

new basis

H(q) =

(
α̃q+σz − β̃q−σx 0

0 β̃q+σz − α̃q−σx

)
+ε01. (3.7.5)

The two blocks describe decoupled linearly dispersing nodal lines with the

modified velocities

α̃ = α+β
2

+ sgn(α− β)
√(

α−β
2

)
+ λ2,

β̃ = α+β
2
− sgn(α− β)

√(
α−β

2

)
+ λ2. (3.7.6)

In the nodal planes we find |q+| = |q−| and the spectrum becomes degenerate,

as demanded by symmetry. Furthermore, a π
2
-rotation around the kz-axis

relates the eigenvalues of the upper block to the ones in the lower one and

vice versa. The nodal line in each subspace is protected by a Berry phase of π.

Including symmetry allowed terms of higher order in q only adds a quadratic

dispersion ε0, identical to both bands, but cannot remove the degeneracy.

In Fig. 3.10 we present the dispersion of such a fourfold degenerate line in

NaSn5, which crystallizes in SG 113 [84].

3.7.2 Movable nodal lines

As we have seen earlier, glide mirror symmetries play an important role in

enforcing pinned nodal lines. Like nonsymmorphic rotations, they can also

enforce movable nodal lines, which can move freely in the mirror plane.

The half-integer lattice translation 1
2
t of a glide mirror symmetry M with

surface normal n can be decomposed in a parallel component t‖ = (t·n)n and

a perpendicular in-plane component t⊥ = t−t‖. If the former is non-zero, the

mirror symmetry is off-centered, which has no influence on its eigenvalues.

The latter means it is a nonsymmorphic symmetry and its eigenvalues are
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Figure 3.10: Dispersion around the fourfold nodal line in the plane defined
by k = (π + δ, π + δ, kz) in NaSn5. The dashed line highlights the fourfold
degeneracy on the high-symmetry axis. The colored solid lines show the
dispersion perpendicular to the nodal line at constant kz, where the nodal
line crosses the Fermi level. The linear splitting of bands is partly obscured
by the large collective bending of bands from the quadratic terms.

k-dependent,

UM |±〉 = ±iζ exp
(
ik · 1

2
t⊥
)
|±〉 , (3.7.7)

because (M · 1
2
t)2 = Ē · t⊥ requires the mirror eigenvalues contain the square

roots of the translation eigenvalue. The factor ζ = 0, 1 reproduces the spin-

less or spinful Ē eigenvalue, respectively.

In primitive lattices, the eigenvalue acquires a negative sign when travers-

ing the mirror plane Therefore, the bands need to exchange along paths par-

allel to each non-zero component of t⊥. Additionally, symmetry eigenvalues

can be paired at high-symmetry points or pinned nodal lines in a different
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way, such that an hourglass dispersion is enforced in between them. For

example, the glide reflection M010(1
2
, 0, 0) of SG 28 has eigenvalues ±i in

spinful representations at the twofold degenerate line connecting Γ and Z.

In the following, we denote these axis compactly by the TRIMs on them,

connected with a dash, e.g., Γ-Z. There, states with opposite eigenvalues are

paired by the anticommutation relation mentioned earlier, likewise on the

axis Y-T. This pairing is compatible with the one from T at each TRIM on

the axis. At the TRIMs X, U, S, and R on the other hand, the eigenvalues

are ±1, which means T pairs identical eigenvalues. This requires a total of

four bands and an hourglass dispersion like the one sketched in in Fig. 3.3

is enforced on paths in the mirror plane ky = 0, which connect the axis Γ-Z

with X or U. Since this holds for arbitrary paths, the movable degeneracy

forms a nodal line in the mirror plane, see the illustration in Fig. 3.11(a).

This holds equally for paths in the other mirror plane ky = π, which connect

Y-T with R or S. Such movable nodal lines are indicated in Tables I to IV

and Table V in terms of a tuple containing the degenerate points or lines,

separated by a semicolon. Entries left of the semicolon have eigenvalues with

different signs paired, whereas the entries to the right are pairs with the same

eigenvalue. The mirror plane can be inferred from the high-symmetry points

and lines in the bracket. In the example above, the two entries are (Γ-Z;X,U)

and (Y-T;R,S).

For certain combinations of glide reflections, there can be points where

identical and opposite eigenvalues are paired by different criteria, leading to

fourfold degeneracies. These points can either be nodal points as described in

Sec 3.6.1, or be a part of an otherwise movable nodal line. In the second case,

the point in question appears on the left and right side of the semicolon, and

we further highlight such points by writing them in italic font. An example

is found in SG 33 with (R-S-X;R-U). The movable nodal line in the kx = π

plane must pass through the point R, see Fig.3.11(b). In this SG, the point S

is also fourfold degenerate. As mentioned above, this is however a true point

degeneracy at the level of the movable nodal line.
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Figure 3.11: Pinned and movable lines forming an hourglass dispersion in
mirror planes. Blue (green) lines have eigenvalues with opposite (equal) sign.
The dashed red nodal lines are made from states with different eigenvalues.
(a) Nodal lines in the mirror plane ky = 0 in SG 28. Green dots are part
of perpendicular nodal lines from the combination of the mirror symmetry
with T , which also pairs identical eigenvalues. Note that the movable line
could gap itself out at the BZ boundary, splitting thereby into separate,
disconnected lines around the green dots and lines. (b) Nodal lines in the
kx = π plane of SG 33. The movable nodal line joins an intersection of two
pinned nodal lines with different eigenvalue pairing at R, enforcing a fourfold
degeneracy there. The point S is also fourfold degenerate, but without an
hourglass dispersion between the nodal lines it is a pointlike degeneracy.
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At R, the representations of the generators can be given as

UM100 = iτ0σx, (3.7.8)

UM010 = τ0σy, (3.7.9)

UTK = iτyσzK, (3.7.10)

and the linearized Hamiltonian in relative coordinates q = k−(π, π, π) reads

H(q) = vzqzτzσ0 + vxqxτzσy + vyqyτ0σx

+λxqxτxσy + λzqzτxσ0, (3.7.11)

with real parameters vi and λi. There are twofold degeneracies on the axes

(qx, 0, 0) and (0, 0, qz), and an additional hourglass nodal line between the

second and third band in the qx = 0 plane, also running through q = 0.

Comparing this dispersion with the low-energy model for S, c.f., Eqs. (3.6.12),

reveals the difference in pairing of eigenvalues on the (qy, 0, 0)-axis. In Fig-

ures 3.9 and 3.12 we show the dispersion around both of these points for the

ky  [2 /b]

0.48
0.50

0.52
kz [2 /c]

0.48 0.50 0.52

En
er

gy
E F

 [e
V]

0.18

0.17

0.16

Figure 3.12: Dispersion around the point R= (π, π, π) in the kx = π plane
in AuTlSb with SG 33. Colors indicate the relative sign of M100 eigenvalues.
Unlike the dispersion around the point S, shown in Fig. 3.9, for the same
material, there is no pointlike degeneracy.
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same bands in the example material AuTlSb.

3.7.3 Interlinked nodal lines

The movable nodal lines discussed in the previous section stem from com-

patibility relations between high-symmetry points. Along the intersection

of two mirror planes, both mirror symmetries are good quantum numbers

of a band. If there are hourglass relations for both planes, they need to be

fulfilled simultaneously, which leads to structures of interlinked nodal lines.

Because the bands in an hourglass dispersion need to exchange, there must

be an odd number of crossings. This can only be achieved, if the two nodal

lines of each mirror plane intersect. With the notation introduced earlier,

such situations can easily be identified by two points appearing on either

side of the semicolon in two hourglass relations.

In SG 34, for example, there are movable lines defined through (Γ-Z-T;Y)

and (Y-S-R;T) in the kx = 0 and ky = π plane respectively. Both relations

require a movable nodal line in the form of a loop around Y in the kx = 0

plane and around T in the ky = π plane. On the common axis Y-T, these

two loops have to touch, such that the two bands exchange only once along

the axis. The two loops therefore form a so-called nodal chain [85]. A second

chain is formed in the ky = 0 and kx = π plane by (Γ-Z-U;X) and (X-S-R;U)

with intersections along the common axis X-U. The same scenario is found in

SG 43 with the relations (Γ-Z-T;Y)kx=0 and (Γ-Z-Y;T)ky=0. Here, the planes

have to be specified explicitly, as the mirror invariant planes in the BZ of the

body-centered lattice contains the same four TRIMs.

In a slightly different scenario, there can be only one loop, whereas the

second nodal line wraps around the BZ boundary. For example, in SG 30,

there are the relations (Γ-Z-T;Y), forming a nodal loop around Y in the

kx = 0 plane, and (Y-S;T,R), which can be either one movable line extending

through the whole BZ facet or two loops around T and R. In either case, the

loop around Y has to touch the other nodal line on the axis Y-T.

A third possibility are two loops around the same point. We call such

an arrangement an armillary sphere, because the loops intersect similar to
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the rings in the astronomical device. This arrangement is found in SG 110

around P, stemming from the two relations (Γ-Z,X;P) in the kx = ky plane

and (X-M;P) in the kx = −ky plane.

Nodal line arrangement in SGs 61 and 73

In the orthorhombic SGs, there are cases where three mirror symmetries have

hourglass relations, which simultaneously have to be fulfilled on three axis.

Space group 61 is a supergroup of SG 19 with inversion as an additional

generator. Because of the screw rotations, spinless bands still have to fulfill

the requirements of exchanging bands on one of the three rotation axis in Γ-

X, Γ-Y, and Γ-Z, discussed in Sec. 3.3.3 and shown in Fig. 3.5(a) Combining

inversion with the screw rotations results in glide mirror symmetries with the

enforced movable nodal lines (Y-T;T-Z), (Z-U;U-X), and (X-S;S-Y). Each

of the mirror planes contain two of the rotation axis and the nondegenerate

bands have two mirror eigenvalues on these axis. For example, in the plane

kx = 0 bands form an hourglass dispersion for any path connecting the

lines Z-T and T -Y. This includes the path from Z to Y via Γ along the

rotation axes. The same holds for the other two planes, but bands can only

be exchanged an odd number of times in each mirror plane and two bands

cannot be paired at two different TRIMs. This requires a minimum of three

crossings on the rotation axes, all of which are part of the movable nodal lines.

In Fig. 3.13(a) we show a possible arrangement of bands fulfilling all these

requirements simultaneously. The representation is completely determined

by the mirror eigenvalues. We encode this in the figure via the colors of the

double lines, where orange corresponds to the negative sign and blue to the

positive sign of the definition in Eq. (3.7.7). The rotation eigenvalue is then

given by the product of the two mirror eigenvalues, i.e., positive for identical

colors and negative for different ones. The exchange of bands as required from

the rotation eigenvalues alone is fulfilled as well, c.f. Fig. 3.5(a). Reordering

the bands in energy can move the crossings to other axis, but cannot remove

them because all bands differ at least in one eigenvalue. Each crossing belongs

to a movable nodal line extending into the mirror plane where the eigenvalues
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differ.

In a slightly different manner, we find a compatibility relation for SG

73, which results from adding P to SG 24. All mirror symmetries in SG 73

are nonsymmorphic and have k-dependent eigenvalues. This implies a sign

change when connecting two identical points in the BZ, that are separated

by 2π in the relevant coordinate. For example, a state with M010(0, 1
2
, 1

2
)

eigenvalue +1 at Z = (0, 0, 2π) is labeled with + according to the definition

in Eq. (3.7.7), whereas at the equivalent point Z′ = (2π, 0, 0) a state with

eigenvalue +1 is labeled −. The labels are continuously assigned in each mir-

ror plane and therefore the bands have to exchange on any path connecting

these points. On the three rotation axis connecting Γ with Z, these relations

have to be fulfilled simultaneously for each pair of symmetries and at the

TRIMs Γ and Z, the products of rotation eigenvalues are restricted as they

(R)
X(U)

Z(S)

Y(T)

(a) SG 61

Z
Z

Z

(b) SG 73

Figure 3.13: Possible arrangement of bands along three rotation axes simul-
taneously fulfilling three relations for hourglass nodal lines. Colors encode
the sign of the mirror eigenvalues according to the definition in Eq. (3.7.7).
Each crossing is part of an hourglass nodal line. (a) shows spinless bands in
SG 61 for the labels Γ, X, Y, and Z. Labels in brackets corresponds to the
different axes in the spinful case and each band is twofold degenerate with
identical mirror eigenvalues. (b) shows a possible arrangement of spinless
bands in SG 73 with a minimal number of crossings.
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were for SG 24. Both conditions lead to at least six crossings on the three

axes, a possible arrangement is shown in Fig. 3.13(b). Again, the crossings

belong to nodal lines, which are mostly free to move in each mirror plane,

but join one of the TRIMs S, R, and T, as we will show in the following

section.

3.7.4 Almost movable lines

Beyond the pinned nodal lines and movable hourglass nodal lines, there is a

third mechanism, that enforces nodal lines originating from TRIMs in mirror

planes. Complex mirror eigenvalues ±i are paired at TRIMs by T . From the

little group representation it can be shown, that this crossing needs to be

part of a nodal line. In the basis of mirror eigenstates, the representation for

the reflection can readily be given as UM = iσz. Here, it is necessary to find

the restrictions on the Hamiltonian beyond the lowest order to proof that

no gap can open along a line. The general gap Hamiltonian H(q) = d(q)σ

has to be odd in the reflected coordinate for dx and dy and therefore only dz

can be non-zero in the mirror plane. The co-representation for time-reversal

symmetry is UTK = iσyK in the spinful case and it requires all terms in the

Hamiltonian to be odd in q. This means, dz(qx, qy, qz = 0) is an odd function

in the in-plane components, which means it has to vanish along a line in the

plane.

This relation can also be understood from eigenvalues alone. A state

|q,m = +i〉 at relative momentum q with mirror eigenvalue m = i is mapped

by T to a state |−q,m = −i〉 with the same energy. The same holds for the

state with the opposite mirror eigenvalue. Along any path from q to −q, the

two bands need to exchange smoothly. In the mirror plane, their crossing

cannot be gapped because of the different mirror eigenvalues.

In the spinless case, a similar situation can be found, when P or T re-

quire dz to be odd. Without further restrictions from other symmetries, such

a nodal line is enforced, but can be moved in the plane freely, apart from the

TRIM it is anchored to. Therefore, we call it an almost movable line [53, 54].

It is indicated in Tables II toVI again as a tuple, containing the TRIM left
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of the semicolon, but only a dash to the right, since no other degeneracy

might be present. The considerations above are valid in the presence of fur-

ther symmetries, but often there are symmetry-enforced pinned nodal lines,

which already fulfill the requirement. The nodal lines of SG 73, discussed in

the previous section are all such almost movable nodal lines, the entries in

Table III are (S;−), (R;−), and (T;−).

3.7.5 Dirac lines

Nodal lines also exist in spinful band structures of centrosymmetric SGs.

The lines are fourfold degenerate and split into a pair of twofold degenerate

bands. In analogy to the Dirac points, they are called Dirac lines and are

listed in Tables IV and VI. All of the above types of nodal lines exist as

Dirac lines in the orthorhombic SGs. They are formed by essentially the

same mechanisms described in previous sections, However, to get a fourfold

degeneracy there needs to be a pairing mechanism that is not covered by

the PT Kramers pairs. This can be realized by nonsymmorphic symmetries,

which are additionally off-centered with respect to the inversion center.

Pinned Dirac lines in orthorhombic SGs all have a site-symmetry co-

group mm2 + PT , in which the spatial symmetries anticommute and PT
pairs identical eigenvalues of at least one symmetry. This can be achieved

by either an anticommutation relation of UPTK with the representations of

mm2, or via the doubling of states with identical real eigenvalues through

Kramers theorem.

Almost movable Dirac lines were only found once, in SG 63 at the point

R= (π, π, π). There, the mirror eigenvalues of ±i get a Kramers partner with

the same eigenvalue in the whole mirror plane, because PT anticommutes

with the mirror symmetry. The rest of the argument is identical to the one

for almost movable Weyl lines in Sec. 3.7.4.

There are also movable Dirac lines from hourglass dispersions between

fourfold degenerate points and lines. In SG 60, they even form a Dirac

chain [86]. In SG 61 we find an arrangement of band crossings as part of

movable Dirac lines on the rotation axes through R similar to the spinless
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case, where the arrangement concerns the axes through Γ. With the labels

R, S, T, and U in brackets, Fig. 3.13(a) describes the arrangement of Dirac

lines as well. The bands are then twofold degenerate and each crossing is

part of a fourfold degenerate line. The colors still describe the eigenvalues

for each pair.

3.8 Enforced topology in planes

In Sec. 3.6.1 and Sec. 3.7.5 we have shown how spatial symmetries can enforce

fourfold point and line degeneracies in centrosymmetric band structures. In

these cases, we often find a fixed relation between the inversion eigenvalues

of degenerate states at TRIMs and use them to label quantum states. At the

same time, the combination of inversion eigenvalues is at the basis of defining

the strong and weak Z2 indices of centrosymmetric topological insulators [87].

In this section, we show that there are some SGs with necessarily nontrivial

weak invariants. This means that some two-dimensional slices of the BZ

with a band gap are topological insulators and must therefore have in-gap

surface states. The weak invariant is calculated from the symmetry indicators

δi for each TRIM Γi, defined as δi =
∏N/2

m=1 ξ2m(Γi), where m indexes one

member of each occupied Kramers pair and runs therefore only over one

half of the N states in the degeneracy. This definition makes use of the

fact that Kramers partners always share the same inversion eigenvalue. The

fourfold degeneracies were previously often written in terms of the inversion

eigenvalues and we find the two possibilities δi = −1 for pairs (+,+,−,−)

and δi = +1 for pairs (+,+,+,+) or (−,−,−,−). If there is a gap in a plane

that has four TRIMs, the weak Z2 invariant ν is then defined through the

product of all their δi, (−1)ν =
∏

i δi.

For ν to be nonzero, there must be only one or only three TRIMs, where

four identical inversion eigenvalues are paired. In the example of the double

Dirac point of SG 130, we have already shown how glide mirror symmetries

and time-reversal symmetry can enforce such a fourfold degeneracy. Without

the fourfold rotation symmetry the three mirror symmetries generate SG 56

and there is no eightfold degeneracy at R = (π, π, π). Instead, one finds
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two sets of fourfold degenerate states with identical eigenvalues in each set,

i.e., δR = +1. All other TRIMs with the exception of Γ are also fourfold

degenerate and have δi = −1. Translational components of glide mirror

symmetries are irrelevant for representations at Γ and they are therefore

always twofold degenerate pairs (+,+) or (−,−). Therefore, no definite

statement can be made for δΓ for four occupied bands, because either value is

possible by arranging the bands accordingly. There are three high-symmetry

planes in the BZ that include R, but not Γ. Indicated by their four TRIMs,

they are ZURT, XUSR and YTSR. The first one is not gapless, as there are

symmetry-enforced movable Dirac points in the axis Z-U and Z-T. In the

absence of accidental crossings, the latter two planes have a gap between the

fourth and the fifth band in each gap and fulfill necessarily all the criteria of

a weak topological insulator.

This mechanism can also be found in the orthorhombic SGs 52 and 60–

62, as well as the tetragonal SG 138. We indicate these nontrivial planes in

Tables IV and VI in the above notation and highlighted the TRIMs where

four identical eigenvalues are paired.

In the search of suitable candidate materials, one has to identify the gap

corresponding to one elementary band representation of eight bands. These

can be identified from knowing the full connectivity of bands. In almost all

examples, an elementary band representation is tied together by a movable

Dirac point or line, as can be easily verified from our comprehensive tables.

For the existence of surface states, it is necessary to have a gap. This is,

however, not sufficient, because there might be no surface where the gap of

the nodal plane is preserved under the projection of all bulk bands. Therefore,

one needs to identify candidates by carefully inspecting the band structures

within the nontrivial plane.

In Fig. 3.14, we present Ir2Si as an example. This material crystallizes

in SG 62 with the two nontrivial planes ZURT and XUYT. However, only

the gap in the former is preserved for open boundary conditions on a (100)

surface. Figure 3.14(a) shows the dispersion in the plane ZURT. The blue

and red band belong to the same EBR and at each TRIM we labeled the

bands with the corresponding δi. Note that the lines Z-U-R-T are pinned
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Dirac lines. The inset shows the full BZ with the nontrivial plane highlighted

in green, together with the surface BZ for the finite system. The plane ZURT

projects onto the segment Z-T and surface states crossing the gap can be seen

there in the local density of states (LDOS) calculation for the surface, shown

in Fig. 3.14(b).

As a second example, we present Sr2Bi3, crystallizing in SG 52. In this SG,

there is no enforced nontrivial weak invariant, because the representations

at T are only twofold degenerate with pairs (+,+) or (−,−). The value δT

can take either value, depending on the actual representation and ordering of

bands. The spinless representations, however, are also all twofold degenerate

with identical inversion eigenvalue. Including SOC splits these into two sets

of identical eigenvalues, because the inversion eigenvalue is not changed. This

implies, that for small SOC relative to the splitting of spinless bands, we find

δT = +1 and thereby a nontrivial weak invariant. In Fig. 3.15 we show the

two bands above and below the Fermi energy, together with the symmetry

indicators δi for each TRIM in the plane ZURT. The bulk gap is preserved

in the spectrum of a (100) termination, where the plane is mapped to the

line Z-T. The LDOS of the surface clearly shows the two surface states in

the gap. They are related by time-reversal symmetry, which also ensures the

twofold degeneracy at the TRIMs. A similar situation is also found in SGs

56, 60 and 62, which are highlighted in Table III with the entry “precedes

Z2 invariant (with SOC)” in the column “notable features”.
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Figure 3.14: Symmetry-enforced weak topology in Ir2Si. The sign of the
product of inversion eigenvalues is shown in (a) for the bands of the first
EBR below the Fermi energy at all TRIMs in the plane ZURT. The nontrivial
plane is mapped onto the line Z-T. A pair of time-reversal symmetric surface
states connect the bands below the projected bulk gap to the upper ones in
the surface density of states shown in (b). Figure adapted from Ref [54].
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Figure 3.15: Symmetry-enforced weak topology in Sr2Bi3 in the plane kz = π.
The symmetry indicators δi at each TRIM in the nontrivial plane are shown
in (a) for each band in the EBR crossing the Fermi energy. The nontrivial
plane maps on the line Z̄-T̄, see inset in (a). Two surface states crossing
the projected bulk gap in this segment can be seen in the surface density of
states in (b). Figure adapted from Ref [54].
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3.9 Summary

In this chapter we explored various types of symmetry-enforced band cross-

ings and presented the results of a systematic and exhaustive search in or-

thorhombic and tetragonal SGs with time-reversal symmetry. The analysis is

based on symmetries alone and relied extensively on representation theory of

symmetry groups, as introduced in Sec. 2.1. It therefore applies to all trans-

lation invariant systems with the symmetries of one of these SGs. For each

type of degeneracy, we explained the pairing mechanism and explored the

topological invariants. The main results are collected in the comprehensive

Tables I – VI, presented in Appendix B.

The extensive search revealed interesting new types of topologically pro-

tected crossings. Nonsymmorphic SGs proved to be a very interesting subset

of SGs, rich in band crossings that cannot be understood from the local little

group alone and are therefore easily overlooked. The analysis of compatibility

relations along the whole band structure reveals the movable crossings, which

can alternatively be understood from their k-dependent eigenvalues. Their

existence is enforced, even though there is some freedom in the exact location

in the BZ. Especially the chiral nonsymmorphic SGs show exceptional topol-

ogy with higher-order Weyl points and topologically charged nodal planes,

e.g., the fourfold degenerate point crossing with a Chern number of C = ±4

in SGs 92/96 and topologically charged nodal plane duos with a Chern num-

ber of at least C = ±2 in SG 94. Unfortunately, they seem to be seldom

realized in real materials and we hope to inspire additional research towards

the growth of new (meta-)materials with these symmetries.

Understanding the interplay of symmetries and the resulting topology

reveals the robustness of the degeneracy against symmetry breaking pertur-

bations. This was demonstrated for several examples of SU(2) symmetry

breaking, which shows the connection between spinless and spinful band

structures in the presence or absence of SOC, respectively. The detailed

description in terms of local representations, eigenvalues and compatibility

relations provides a valuable toolkit for extending this analysis to other SG

families and magnetic SGs, which lie beyond the scope of this work.

85



4. Quasiparticle interference of

drumhead surface states

In the next two chapters we will describe consequences and observable effects

of nodal-line semimetals (NLSM), starting with the surface states of nodal

loops. These are two-dimensional and bounded by the projection of the nodal

line, resembling a drumhead. We will introduce a two-band model for the

NLSM. Taking nonzero SOC into account extends this model to four bands,

which can have two split nodal lines or a finite gap. We discuss the symmetry

protection of the nodal loop and its topological invariants.

We then discuss how this might lead to the drumhead surface states.

Finally, we calculate the patterns formed by these drumhead surface states

in quasiparticle interference patterns [88]. We will also demonstrate how

SOC leads to spin-polarized drumhead surface states, that can be resolved

by spin-sensitive measurements of the quasiparticle interference at magnetic

impurities.

4.1 Nodal loops

A nodal-loop semimetal has a band crossing along a one-dimensional loop in

the Brillouin zone. Parameter counting for a general two band model

H(k) = ε̄(k) · τ0 + d(k) · τ (4.1.1)

shows that for a nodal line in a three-dimensional material, the image space of

the vector d(k) needs to be restricted to a two-dimensional manifold. This
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restriction can be imposed by one of two spatial symmetries, inversion or

reflection symmetry, combined with time-reversal symmetry T . While the

former allows for nodal lines anywhere in the BZ, the latter one restricts them

to mirror planes. Throughout this and the following chapter, we will deal

with the second case protected by the mirror symmetry Mz and time-reversal

symmetry.

In contrast to the previous chapter, these nodal loops are protected by

symmetry, but not enforced. A mirror or inversion symmetry allows for the

definition of a topological Z2 invariant, protecting the nodal line against

small symmetry-preserving perturbations. A large deformation of bands can

however remove the nodal line by shrinking it to a point. Alternatively, the

nodal line can be removed by bringing it into contact with a second nodal

line, which is reflected in the Z2 invariant. Such nodal lines have been found

for example in CaP3 [89], CaAgP and CaAgAs [90–92] and the latter two

materials serve as motivation for the minimal model.

A simple two-band model with a nodal loop can be induced from two

sites separated by half a lattice constant 1
2
c. Additionally, we require the

site-symmetry representation on one site to be odd under reflection, the other

one being even. An illustration is presented in Fig. 4.1(a). In a hexagonal

lattice system, the entries in the Hamiltonian with next nearest neighbor

hopping in c-direction and nearest neighbor hopping perpendicular to it can

be given as

ε̄(k) = 2t‖(cos(k · a) + cos(k · b) + cos(k · (a + b)))

+2t′⊥ cos(k · c) + µ (4.1.2)

dz(k) = 2δt‖(cos(k · a) + cos(k · b) + cos(k · (a + b)))

+2δt′⊥ cos(k · c) + δµ (4.1.3)

dy(k) = 2t⊥ sin
(

1
2
k · c

)
(4.1.4)

dx = 0 (4.1.5)

The hopping strength in the plane spanned by a and b for each band is given

by t‖ ± δt‖, the coupling between the two orbitals is given by the nearest
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(b) Dispersion for t‖ = t′⊥ = µ = 0, δt‖ = −0.6, δt′⊥ = −1.0, δµ = 3,
t⊥ = −0.5. The BZ with the shape of the nodal loop is shown in Fig. 4.2.

Figure 4.1: Illustration and dispersion of the nodal-loop model defined in
Eq. (4.1.5).

neighbor out-of-plane hopping strength t⊥ and the intra-orbital next-nearest

hopping strength t′⊥±δt′⊥. A nodal line is formed, when the difference in on-

site energy is smaller than the difference in bandwidth, i.e., −δt⊥ < δµ < δt⊥.

The nodal line forms a loop around Γ or K.

In this basis, the reflection M001 has the matrix representation UM001 ∝ τz

in the kz = 0 plane due to the different representations at the two sites. This

requires the off-diagonal entry in the Hamiltonian to be odd in kz and vanish

in the kz = 0 plane. In the other invariant plane kz = π, the representation is

proportional to the identity, UM001 ∝ τ0, because the reflection maps one site
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to another unit cell and acquires thereby an additional translation eigenvalue

of −1. Consequently, the off-diagonal entry needs to be even in qz = kz − π.

Therefore, the nodal line is protected by the different symmetry eigenvalues

in the former case, but not in the latter.

Further crystalline symmetries are encoded in ε‖, but they are not central

for the following discussion.

4.2 Berry phase and surface states

The topology of a nodal line in a three-dimensional system (d = 3) is char-

acterized on a loop, i.e., a sphere SD with D = d− ddefect − 1 = 1 [14]. The

topological invariant is the Berry phase Pγ calculated by a line integral of

the Berry curvature of the lower band along paths γ that encircle the line

degeneracy,

Pγ = −i

∫
γ

〈
u−k
∣∣∇k

∣∣u−k 〉 · dl. (4.2.1)

The value of this integral does not change for smooth deformations of the

path, as long as no degeneracy is encountered. On paths that do not wrap

the nodal line, the Berry phase must vanish, since these can be smoothly

shrunk to a point without encountering a degeneracy. In Fig. 4.2 we show

two equivalent paths around a nodal loop. The circle can be continuously

deformed into the two straight lines. The dashed sections lie in the equivalent

planes kz = ±π and their contributions to the line integral cancel due to the

opposite orientation. Each straight segment can be evaluated independently,

P (kx, ky) = −i

∫ π

−π
dkz

〈
u−k
∣∣ ∂kz ∣∣u−k 〉 . (4.2.2)

In the gauge of the cell-periodic functions |uk(r + c)〉 = |uk(r)〉, this is the

Zak phase of one-dimensional subsystems indexed by the remaining mo-

mentum components [6]. In this gauge, however, the Hamiltonian and its

eigenstates are not periodic in k. This expression is directly linked to the
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Figure 4.2: Bulk and surface BZ for the nodal-loop system defined in Eq-
(4.1.5). Nodal loop (red) in the kz = 0 plane encircled by topologically
equivalent paths (blue). The dashed blue lines are identical segments whose
contributions cancel. The gray patch in the surface BZ is the area bounded
by the projection of the nodal line and hosts the drumhead surface states.

expression for the center of the Wannier function within the unit cell [93],

P (kx, ky) =
2π

|c|

〈
w−kx,ky

∣∣∣ ẑ ∣∣∣w−kx,ky〉 . (4.2.3)

Here, |c| is the height of the unit cell and we constructed the Wannier function

in the unit cell at the origin (R = 0) by a partial Fourier transformation

∣∣∣w−kx,ky〉 =
V
√
N

(2π)3

∫ ∞
−∞

dkz
∣∣u−k 〉 . (4.2.4)

The mirror symmetry restricts the center of the Wannier function to one

of two invariant coordinates, 0 or |c|
2

, and quantizes the Zak phase of the

straight path to 0 or π. There is however only a direct link between the

quantized Zak phase and surface states, if the system can be terminated at a

reflection center. In this model, both atoms reside in mirror planes and the

system can therefore not be terminated at a reflection center. Furthermore,

every termination either breaks global reflection symmetry or requires half
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a unit cell at one end, see Fig. 4.1(a). In this scenario, the bulk-boundary

correspondence cannot be applied [94, 95].

In order to illustrate the connection between the Zak phase of a one-

dimensional subsystem and the Berry phase in this case, we rewrite the

one-dimensional gap Hamiltonian as

H(kz) = (m+ 2t′ cos kz)τz + t sin
kz
2
τy. (4.2.5)

Neglecting any uniform dispersion does not influence the energy eigenstates.

The parameter m contains all terms depending on the remaining components

k‖ and we dropped the subscript ⊥ in the hopping parameters. The existence

of surface states is independent of the total energy scale and we can express

all parameters in multiples of t′ for now. The gap closes only for m = −2t′,

marking the only point where the quantized Zak phase can change. For

positive t′ and m > 2t′, the Zak phase is π and we find two in-gap states

for the open chain. They are exponentially localized to either side of the

open chain. Their energies differ due to the different termination on either

side. Their decay length grows with increasing m. At the same time, the

states approach the upper and lower bulk bands. Eventually, they merge and

become indistinguishable from bulk states. This transition is not topological

and the surface state cannot be claimed to be topologically protected. This

transition happens at m = 2 + t2, and since t is usually substantially larger

than t′ due to the smaller real space distance, the surface state often exist

in a wide range of values for m without ever merging into the bulk states

in NLSMs with drumhead surface states. For negative t′, we find the same

situation, only now the surface state is in the region m < −2t′, that is, in

a region where the Berry phase is 0. In the third scenario t′ = 0, the gap

closing coincides with the merging of the surface states with the bulk and

there is no surface state at all.

The Zak phase can be decomposed into the dipole moment of the unit cell

Pcell and a contribution ∆Q of surface charges to the total polarization via the

unitary transformation U =
∑

i |i〉 eikzi 〈i|, which adds a phase to each orbital

|i〉 depending on its position zi in the unit cell [96]. This decomposition is
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Figure 4.3: Surface states of the simplified model of a open chain. (a) and
(b) The upper plot shows the Zak phase (continuous line) and its individual
contributions ∆Q (dash-dotted) and the polarization of the unit cell (dotted).
The surface states can show up on either side of the crossing, not necessarily
where the Zak phase is non-zero. The surface state merges with the bulk
around m = ±(2 + t2) = ±3. Without next-nearest neighbor hopping (t′ =
0) this points coincides with the gap closing point at m = 0 and there is
no surface state on either side. (c) Local weight of the lowest occupied
state in each unit cell in the finite system for t′ = +1 for selected values
m ∈ {−2 ± 0.2, 0, 3 ± 0.2}. The state is only exponentially localized for
−2 > m > 3. In the case t′ = −1 we find the same situation with the
substitution m → −m and the surface state lower in energy is localized on
the other end.
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not gauge invariant and depends on the choice of origin and unit cell. With

this transformation, Eq. (4.2.3) reads

P = −i

∫ π

−π
dkz

〈
u−k
∣∣U †∂kzU ∣∣u−k 〉− 〈u−k ∣∣U †(∂kzU)

∣∣u−k 〉
= −i

∫ π

−π
dkz

〈
ũ−k
∣∣ ∂kz ∣∣ũ−k 〉 +2π

∑
i

zi|
〈
i
∣∣u−k 〉 |2. (4.2.6)

The surface charge ∆Q is given by the first term, which is formally equiv-

alent to the definition of the Zak phase, but in the gauge of the k-periodic

wave function |ũk〉 = |ũk+K〉. This expression is not quantized any longer.

It can be interpreted as an excess charge in one half of the finite system,

exponentially localized at the surface for a sufficiently large system. Note

that the value of a closed loop not wrapping around the Brillouin zone edges

is independent of gauge choice.

In Figures 4.3(a) and 4.3(b) we show the dispersion of the open chain for

different values of m in the two scenarios. Figure 4.3(c) shows the localization

of the first state below the gap for selected values of m. Surface states have

the highest weight close to one end and decay exponentially in the bulk. The

first state above the main gap is localized at the opposite end. The existence

of a localized surface state corresponds to regions with large ∆Q. The total

polarization given by the Zak phase can vanish however, when the dipole

moment of the unit cell cancels this contribution. Without second neighbor

hopping, t′ = 0, there is no surface state on either side despite the jump in

Berry phase [94, 97, 98].

For the full nodal-loop model defined in Eq. (4.1.5), we find an expo-

nentially localized surface state in the whole region bound by the projection

of the nodal line as indicated by the gray circle in the surface BZ shown in

Fig. 4.2. Because of their shape, they are called drumhead surface states [99].

From a topological point of view there is no difference between the inside of

the loop and the outside on the two-dimensional torus kz = π and a drum-

head surface state could also be centered around K..
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4.3 Spin-orbit coupled nodal-loop semimetal

Including spin degrees of freedom extends the model of a nodal-loop semimetal

introduced in Eq. (4.1.5) to a four-band model,

H =

(
H(k) Λ(k)

Λ†(k) H∗(−k)

)
, (4.3.1)

where the additional symmetry-allowed terms due to SOC are

Λ(k) =
(

e−i 2π
3 sin(k · a) + e+i 2π

3 sin(k · b)− sin(k · (a + b))
)

×(λinter2 cos
(

1
2
k · c

)
τx + λintraτz)

The dispersion is of the Rashba-type, ∝ (kyσx − kxσy) for small momenta.

The inter-orbital term ∝ λinterτx is an intrinsic contribution, which can be

non-zero without breaking the bulk symmetries and does not remove the spin

degeneracy of bulk bands, because Kramers theorem still holds. Because the

nodal line is protected by a Z2 invariant, the coupling of spin spaces results in

a gapped line, although all symmetries are preserved. Regardless of the sign

of λinter, the system is turned into a mirror Chern insulator, characterized

by a mirror Chern number, evaluated in the kx = 0 plane or symmetrically

equivalent ones [95]. This leads to a pair of chiral surface states, which is well

defined in the limit of vanishing SOC. At the surface, inversion symmetry is

broken and the surface states are not spin degenerate, except at TRIMs. In

Fig. 4.4(a) we show the LDOS at the surface of a slab with open boundary

conditions in the [001] direction, calculated via the spectral function weighted

by the expectation value of the projection operator P̂bottom on the lower three

layers of the slab,

ρ(ω,k‖) =
∑
i

Im

〈
Ψi

k‖

∣∣∣ P̂bottom

∣∣∣Ψi
k‖

〉
ω − Ei + iε

. (4.3.2)

The term ∝ λintraτz, on the other hand, acts within each orbital space.

This term can only be nonzero if inversion and the mirror symmetry are
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Figure 4.4: Dispersion in the kz = 0 plane (top) and surface density of states
(bottom) for the NLSM for intrinsic, Rashba and combined SOC contribu-
tions. Parameters are identical to the ones in Fig. 4.1(b).

broken, either by finite size effects or by some perturbation. It lifts the

spin degeneracy in the bulk without removing the nodal line. With this

term alone, the nodal loop splits into two separate concentric nodal lines,

see Fig. 4.4(b). With both terms non-zero, the two nodal lines become also

gapped. Since this situation can be smoothly connected to the first case

with the intrinsic contribution only, they are topologically equivalent and

the chiral surface states cross the gap in the same way, shown in Fig. 4.4(c).

4.4 Quasiparticle interference

Due to the high weight on the surface, the drumhead surface states are ex-

pected to dominate surface effects. In this section, we will calculate the

quasiparticle interference (QPI) patterns of a nodal-loop semimetal with

drumhead surface states, resulting from elastic scattering on a pointlike sur-

face impurity [100–102]. QPI patterns can be experimentally obtained from

Fourier transformed spatial modulations in the tunneling current of scanning

tunneling microscope (STM) measurements.

In the following, calculations are done in a slab geometry with peri-

odic boundary conditions in the plane spanned by a and b, indexed by

the 2-dimensional crystal momentum k‖. In the perpendicular direction
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we perform a partial Fourier transformation to the real space coordinate

z and choose open boundary conditions with the NLSM being located at

0 ≤ z ≤ Nlayers. The spatial coordinate z is given in terms of the unit cell

height |c|.
The surface impurity is modeled as a pointlike potential in the directions

perpendicular to the surface and exponentially decaying with decay length

a0 into the system perpendicular to the termination,

V = δ(x̂)δ(ŷ)
V0

a0

e
−i ẑ

a0 (4.4.1)

The Fourier transformed spatial fluctuations δN(q, ω) of the tunneling

current for a given bias ω around a surface impurity, can be directly related

to the change in Greens functions of the perturbed Hamiltonian H = H0 +V

compared to the unperturbed system [102]. We work in the regime of a weak

scattering potential, such that the Born approximation G−G0 = G0V G0 is

justified.

For a given instrument response function F (z), the QPI patterns ρ(q, ω)

are then defined through

ρ(q, ω) = i (Λ(q, ω)− Λ(−q, ω)∗) , (4.4.2)

Λ(q, ω) =

∫
dzF (z)

1

N

∑
k‖

Tr
(
Gk‖(ω, z)V (z)Gk‖+q(ω, z)

)

=
1

N

∑
k‖,i,j

Tr


〈

Ψj
k‖+q

∣∣∣ F̂ ∣∣∣Ψi
k‖

〉〈
Ψi
k‖

∣∣∣ V̂ ∣∣∣Ψj
k‖+q

〉
(ω − Ei(k‖) + iε)(ω − Ej(k‖ + q) + iε)

 .(4.4.3)

We model the instrument response as being sensitive to the first z0 layers,

F (z) = Θ(z − z0) and local in the perpendicular directions. Qualitatively,

the resulting QPI patterns can be understood as a convolution of states

weighted with their overlap in the surface layers and their spectral weight.

The strongest contributions are therefore expected for nesting vectors q of

twice the radius of the drumhead surface state for a constant energy cut at

the bias voltage, Ei(k‖) ≈ Ej(k‖ + q) ≈ ω. In Fig. 4.5 the QPI patterns for

the spinless NLSM is shown for three different bias voltages. The strongest
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Figure 4.5: QPI patterns for the spinless case at different bias ω = −0.5,
0.0, and +0.5. The axis in the color plot are (qx, qy) in units of π

a
. The lower

plot shows a cut along the dashed line. The parameters of the Hamiltonian
are identical to the ones in Fig. 4.1(b). Figure adapted from Ref. [88].
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Figure 4.6: LDOS at constant ω = −0.5 with SOC. Parameters are the same
as in Fig. 4.4(b). Arrows show the spin polarization of the surface states.

response can be seen for ω = −0.5, where the surface state is well localized.

Note, that the radius of the drumhead surface state at this energy is approx-

imately half of the radius of the nodal line. At the same distance from the

Fermi level in the opposite direction, only bulk states contribute and there is

no strong response, because bulk states have very little weight on the surface.

The pattern does not change much upon inclusion of SOC in the cen-

trosymmetric case. Even though, there are now two nondegenerate drum-

head surface states with distinct radii at constant energy ω, the QPI pattern

shows only one ring. This becomes clear from the spin structure of the sur-

face state. Since the impurity potential and instrument response function are

diagonal in the spin indices, the only contribution arises from nesting vectors

q connecting the two rings. In Fig. 4.6 we show the spin polarization of the
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surface states at ω = −0.5 with λintra = 0.1, c.f. Fig. 4.4(b). For nonzero

λinter, a qualitatively identical situation is found. In the next chapter, we will

show how their spin structure can be measured.

4.5 Spin-resolved quasiparticle interference

To resolve the spin polarization of the surface states, we will look at spin-

resolved patterns arising from scattering at a magnetic impurity. Spin-

resolved STM measurements can be done using a magnetic or spin-polarized

tip [103, 104].

Formally, we introduce in Eq. (4.4.3) the operator Sµ = 1
2
τ0 ⊗ σµ, ν ∈

{0, x, y, z}, acting on the spin degrees of freedom to the instrument response

function F̂ µ = F̂Sµ. In the same manner, the impurity magnetic moment

is encoded via V̂ ν = V̂ Sν .The QPI patterns ρµν can then be evaluated

for all combinations of of tip and spin polarization, shown in Fig. 4.8. Ex-

changing the spin indices µ and ν changes the magnetization of the STM tip

with the impurity, which differ only in their spatial dependence within the

sample. Since both are sensitive to the first few layers only, the resulting

patterns are qualitatively symmetric under this exchange. The component

ρ00 corresponds to the case discussed in the previous section. In the spin de-

generate case for vanishing SOC, all nonzero components can be summarized

as ρµν = δµνρ00.

We focus on the case λinter = 0.2, λintra = 0, where the bulk states remain

spin degenerate and only the drumhead surface states are spin polarized. In

this chapter, we remove the apparent particle-hole symmetry by using param-

eters in the Hamiltonian, that qualitatively resemble the nodal-line material

CaAgAs, see Fig. 4.7. As mentioned before, the dominant contributions to

the QPI pattern arise from q connecting the two surface states and ρ00 re-

mains qualitatively unchanged even for non-zero SOC. In ρ33, the matrices Sz

each flip the spins in the xy-plane, and the dominant contributions arise for

nesting vectors q connecting opposite spins. Each surface state contributes

one ring with twice the radius of the state where it intersects ω, leading to

two concentric rings in the QPI pattern. ρ11 and ρ22 present a mixed case.
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Figure 4.7: Surface density of states for the gapped NLSM model with
parameters µ = 4.3, δµ = −10.5, t‖ = −0.75 δt‖ = 1.25, t′⊥ = −0.5 δt′⊥ = 2.5,
t⊥ = 2.5. and λinter = 0.2. While the bulk remains spin degenerate, the
drumhead surface states are spin polarized and close the bulk gap, which
was opened by hybridizing the spin subspaces due to nonzero SOC.

The spins are flipped in the qy and qx direction, respectively, because of

the Rashba-like spin polarization kyσx + kxσy. In this direction, there are

again two separate peaks in the signal. In the perpendicular direction, the

spin matrices contribute only the eigenvalue squared and the QPI pattern

remains unchanged in this direction with respect to ρ00.

For the off-diagonal entries, we find ρ0i = ρi0 = 0 for all i = x, y, z. The

remaining entries have contributions from the spin polarized surface states

only and Sx and Sy each contribute the sign of their eigenvalue in the qy and

qx direction, respectively. This leads to antisymmetric patterns ρ13 and ρ23

with respect to a reflection of qy or qx, respectively, and for both components

in ρ12
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Figure 4.8: Spin-resolved QPI patterns ρµν with spin component
ν = 0, x, y, z and magnetic impurity with spin µ = 0, x, y, z for inter-orbital
SOC contributions with a bias voltage of ω− = 2.0. The parameters of the
Hamiltonian are identical to the one listed in Fig. 4.7
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4.6 Summary

In this chapter, we took a closer look at the surface states of a nodal-loop

semimetal. It is shown, that a non-vanishing Berry phase does not guarantee

topological surface states, but there are drumhead surface states for this type

of NLSM. With nonzero SOC, the nodal line becomes gapped and the system

is turned into a mirror Chern insulator with chiral surface states in accor-

dance to the drumhead surface states of the spinless loop. Drumhead surface

states are often elusive, but have been measured in several NLSMs [105, 106]

and also synthetic materials [107]. They are however often difficult to detect

directly via angle-resolved photo emission spectroscopy. We calculated the

signature of these surface states in QPI patterns, which provides a method

to identify them indirectly, taking advantage of their high surface weight.

Recently, this approach has been experimentally verified in a NLSM with

double loops [108].

In the presence of inversion symmetry, the bulk is spin-degenerate and

the surface states contribute in a unique way to spin-resolved QPI measure-

ments. Taking all possible combinations of tip and impurity polarization

into account, the spin structure of the drumhead surface states can be recon-

structed from the QPI patterns.
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5. Anomalous Hall effect in nodal

line system

A nodal line with a non-zero Berry phase can be understood as a singularity

with diverging Berry curvature. The Berry curvature is directly related to

an anomalous component in the electric DC conductivity. However, the

direction of the Berry curvature is only well defined for a gapped nodal line.

Often times, the contributions from different sites of a nodal line gapped by

a small symmetry breaking perturbation will cancel exactly. In this chapter,

we will investigate the effect of periodic driving with circularly polarized

light on the NLSM, which brakes the spatial symmetries and time-reversal

symmetry such, that a nonzero anomalous conductivity can be observed.

5.1 Model Hamiltonian

Similar to the previous chapter, we use a two-band model to describe the

nodal-loop semimetal. It is again induced from two sites half a unit cell apart,

c.f., Fig. 4.1(a). In this chapter, we define the NLSM on a tetragonal lattice

with up to second-nearest neighbor hopping. The coefficients of H(k) =
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ε̄(k)τ0 + d(k) · τ read

ε̄ = − v̄r
sin kF

(cos kx + cos ky)− 2w̄ cos kz + µ, (5.1.1a)

dz = − δvr
sin kF

(cos kx + cos ky)− 2δw cos kz + δµ, (5.1.1b)

dy = 2vz sin

(
kz
2

)
, (5.1.1c)

dx = 0. (5.1.1d)

Here, we implicitly set the unit cell lengths a = c = 1. In the following, we

will also set e = ~ = 1, such that all quantities are expressed in units of the

hopping.

The difference in on-site energy is set to δµ = δvr
1+cos kF

sin kF
+2δw. With this,

the nodal line in the kz = 0 plane is at the Fermi energy and is parametrized

via

cos kx = 1 + cos kF − cos ky, (5.1.2)

with radius kF at the intersections with the kx- and ky-axis. The group

velocities ∂E(k)
∂ki

of the dispersion at these points is given by v±r = v̄r±δvr along

the kx- and ky-axis and ±vz in the kz-direction. For small radii kF ≈ sin kF ,

the nodal line becomes approximately round and a low-energy model can

be obtained by expanding around Γ up to second order in momentum. The

coefficients of the low-energy Hamiltonian are

ε̄ =
v̄

2kF

(
k2
x + k2

y − k2
F

)
+ w̄ik

2
z + µ, (5.1.3a)

dz =
δv

2kF

(
k2
x + k2

y − k2
F

)
+ δwik

2
z , (5.1.3b)

dy = vzkz, (5.1.3c)

dx = 0. (5.1.3d)
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5.2 Berry curvature and anomalous velocity

As discussed in Sec. 4.2, the nodal line is topologically characterized by the

Berry phase evaluated on line integrals along closed paths. Such a loop

integral picks up a phase of π if it winds around the nodal line an odd

number of times, while the integral for a path that can be contracted to

a single point without encountering a degenerate point vanishes identically.

Stokes’ theorem then implies that the Berry curvature F = dA is divergent

along the nodal line and zero elsewhere. Introducing a small symmetry-

breaking constant term dx = m turns the nodal line into an avoided crossing

and the Berry curvature becomes non-zero and well-defined everywhere in

the Brillouin zone.FyzFzx
Fxy

 =
mvzδvr
2|d|3

cos
(
kz
2

)− sin ky

+ sin kx

0

. (5.2.1)

From the low-energy model it becomes obvious that the Berry curvature is

tangential to the nodal line, F = mvzδvr
2|d|3

kr
kF

êφ. In Fig. 5.2(a) we illustrate the

major contribution to the Berry curvature field for non-zero m. In the limit

m→ 0, the above expression becomes a Dirac delta function, i.e., the Berry

curvature vanishes identically everywhere except for the nodal line, where it

diverges. The sign of the Berry curvature depends however directly on the

sign of the perturbation m and the limit is not well defined.

At zero temperature and in the clean limit, the off-diagonal terms in

the DC conductivity tensor in linear response theory are directly related to

the integral over the Berry curvature of all bands weighted by the Fermi

factor [109],

σDC
ij =

e2

(2π)3

∑
α=±

∫
BZ

d3k f(εαk)Fαij, (5.2.2)

and consequently the Berry curvature gives rise to the intrinsic anomalous

Hall effect. Here we labeled the upper and lower bands by ± and used the
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fact that their Berry curvature adds up to zero at each k, i.e., F± = ±F . In

the nodal-loop system with a constant symmetry breaking term, however, the

Berry curvature is anti-symmetric in the radial component and contributions

from opposite sides cancel exactly in the integral over the Brillouin zone, such

that no net Hall current can be observed [110]. A slice in k-space in a plane

horizontal to the reflection plane, i.e. the plane of the nodal line, gives a 2D

system with two nodal points of opposite chirality. From a topological point

of view, such a subsystem resembles graphene with its two Dirac points at

K and K′ = −K, leading to opposing valley currents [111, 112]. It can be

shown that circularly polarized light with vertical indication couples only to

the node with the same chirality, while transitions at the node of opposite

chirality are strongly suppressed [113]. This strongly suggest that in a NLSM

subjected to polarized light an anomalous Hall current can be measured.

5.3 Periodic driving

We introduce periodic driving by circularly polarized, monochromatic light

incident in the plane of the nodal line. By neglecting the magnetic compo-

nents of the light field and by assuming spatial homogeneity, we can describe

the circularly polarized light by

Ã(t) = −Ax cos(Ωt)ex − Az sin(Ωt)ez, (5.3.1)

which corresponds to the temporal gauge preserving translation invariance.

The cases Ax = Ex
Ω

= ∓Ez
Ω

= ∓Az corresponds to fully right or left polarized

light. Introducing the field via Peierls substitution and Fourier transforming

to k-space results in the time-dependent HamiltonianH(k, t) = H(k− Ã(t)).

5.3.1 Floquet formalism

The Hamiltonian inherits discrete time-translation symmetry H(t + T ) =

H(t) from the periodicity of Ã(t) with driving period T = 2π
Ω

. There-

fore, the Hamiltonian commutes with the discrete time-translation opera-
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tors U(t0, t0 + nT ), n ∈ Z. These operators form an Abelian group and have

therefore one-dimensional irreducible representations. As shown in the group

theoretic proof for the Bloch theorem in Sec. 2.1.1, this allows us to write

eigenstates of the time dependent Schrödinger operator, (H(t)− i d
dt

) |ψ〉 = 0,

as a product of a time periodic Floquet state and a phase factor [114],

|ψα(t)〉 = e−iεαt |uα(t)〉 . (5.3.2)

The quasienergies εα can be chosen from the interval [−Ω
2
, Ω

2
) = [− π

T
, π
T

),

because two quasienergies which differ by a multiple of Ω result in the same

time translation eigenvalue. In analogy to the BZ in k-space, this interval is

also referred to as the first Floquet Brillouin zone (FBZ). The Hamiltonian

and the periodic states can be written in terms of a discrete Fourier series

with coefficients

Hn =
1

T

∫ T

0

dt einΩtH(k, t). (5.3.3)

|unα〉 =
1

T

∫ T

0

dt einΩt |uα(t)〉 , (5.3.4)

The states |unα〉 form a basis of the so-called Sambe space [114] of time-

periodic integrable functions. This extends the original Hilbert space by the

time coordinate T = [0, T ) as an internal parameter. The inner product of

this Hilbert space implicitly contains an integral over one period. Throughout

this chapter, we will use indices m, n for discrete Fourier components and

α, β to label the Floquet quasienergies and their eigenstates. Using these

definitions, the Schrödinger equation can be expressed as time-independent

eigenvalue problem

∞∑
n=−∞

Qmn |unα〉 = εα |umα 〉 , (5.3.5)

of the Fourier transformed Floquet operator

Qmn = Hm−n − nΩδmn. (5.3.6)

107



ANOMALOUS HALL EFFECT IN NODAL LINE SYSTEM

This equation has infinitely many solutions corresponding to physically equiv-

alent states whose eigenvalues differ by integer multiples of Ω. They are

related by a shift in the Fourier index,

Qmn

∣∣un+l
α

〉
= (εα + lΩ)

∣∣um+l
α

〉
. (5.3.7)

Starting with the low-energy Hamiltonian, we can evaluate the three non-

vanishing components of the Fourier transformed Hamiltonian directly. The

time-averaged component H0 is identical to the undriven Hamiltonian up to

the redefinition of some of its constants, c.f., Eq. (5.1.3),

kF → k̃2
F = k2

F −
1

2
A2
x −

δwkF
δvr

A2
z, (5.3.8)

v̄r → ˜̄vr = v̄r
k̃F
kF
, (5.3.9)

δvr → δṽr = δvr
k̃F
kF
, (5.3.10)

µ→ µ̃ = µ+ 1
2
A2
z(w̄ −

v̄r
δvr

δw). (5.3.11)

The two non-zero off-diagonal components are

H±1(k) =
( vr

2kF
Axkx ± i wAzkz

)
τ0

+
( δvr

2kF
Axkx ± iδwAzkz

)
τz

∓ivzAzτy, (5.3.12)

H±2(k) =
A2
x

8kF
(v̄rτ0 + δvr τz)−

A2
z

4
(w̄τ0 + δw τz). (5.3.13)

For tight-binding lattice Hamiltonians, the entries of Qmn can also be

written out analytically. Using the identities for Bessel functions of the first
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kind Jn(x),

1

T

∫ T

0

dt einΩteiAi cos Ωt = inJn(Ai),

1

T

∫ T

0

dt einΩteiAi sin Ωt = (−1)nJn(Ai),

(5.3.14)

and considering that they are even (odd) in their argument for even (odd) n,

we can put together a table for the entries of the Fourier transformed Hamil-

tonian Hn based on the sine and cosine terms in the lattice Hamiltonian,

n even n odd

cos(ki + Ai cos(Ωt)) in cos(ki) in+1 sin(ki)

sin(ki + Ai cos(Ωt)) in sin(ki) −in+1 cos(ki)

cos(ki + Ai sin(Ωt)) cos(ki) −i sin(ki)

sin(ki + Ai sin(Ωt)) sin(ki) i cos(ki)

× Jn(Ai).
(5.3.15)

Strictly speaking, the off-diagonal entries in Q(m+n)m are non-zero for all

orders of n. Those are however proportional to the n-th Bessel function of the

first kind, (Hn)ij ∝ Jn(A) and higher orders are suppressed exponentially in

n. The zeroth component H0 is again similar to the unperturbed Hamiltonian

with some of its constants renormalized by the driving. The operator Qmn is

therefore local in the indices m and n and the eigenstates and quasienergies

can again be calculated from a truncated version.

In dealing with a truncated matrix with a symmetric range of indices

from n = −Nm to n = Nm, the states with the highest weight on the central

component n = 0 , wα = | |u0
α〉 | are least sensitive to finite size effects. The

dispersion of the quasienergies εα for the lattice model are shown in Fig. 5.1

and the band thickness indicates the weight wα. For weak light intensity,

the quasienergy dispersion close to the Fermi energy reproduces the original

band structure. However, the mirror symmetry is broken by the driving and

the nodal line is gapped almost everywhere.
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Figure 5.1: Floquet quasienergy band structure of the driven NLSM defined
in Eq. (5.1.1) projected onto the n = 0 component. Parameters throughout
the text are vr = −1, δvr = 2, vz = 4 and kF = π

4
for the Hamiltonian. The

driving intensity and frequency are Ez = −Ex = 0.2 and Ω = 2.0. Horizontal
dashed lines mark the FBZ boundaries at ε = ±Ω

2
.

5.3.2 Effective Hamiltonian

In order to see the effect of the periodic driving on the nodal line more

clearly, we introduce an effective Hamiltonian. For this purpose, we treat

the off-diagonal blocks H±1 as a perturbation to H0. This is justified, when

the driving frequency is large compared to the energy scale of H0, which is

satisfied for the bands in proximity of the nodal line. In this energy range,

the low-energy Hamiltonian provides an accurate description of the bands.

Using ε±1,α − ε0,β ≈ ±Ω, the effective Hamiltonian reads
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(a) dx = const. (b) dx ∝ kx

Figure 5.2: Berry curvature for a nodal loop gapped by small symmetry
breaking term dx. The Berry curvature is evaluated for a discrete set of
angles in cylindrical coordinates, the arrow length and intensity indicates
the strength. (a) The Berry curvature flows uniformly along the former loop
in a circle for a constant symmetry breaking term. (b) Two ungapped points
remain, acting as source and sink of Berry curvature, which flows in the same
direction on both sides of the loop.

Heff = H0 +
1

Ω
[H−1, H1] (5.3.16)

=

(
˜̄v

2k̃F

(
k2
x + k2

y − k̃2
F

)
+ w̄ik

2
z + µ̃

)
τ0

+

(
δṽ

2k̃F

(
k2
x + k2

y − k̃2
F

)
+ δwik

2
z

)
τz

+vzkzτy

+
δvrvz
kF

AxAz
Ω

kxτx. (5.3.17)

The new term in the last line gaps the nodal line everywhere except for

k± = ±k̃F êy. At these two points we find Weyl points [115]. Expanding to

lowest order in q = k± kf êy shows, that they have indeed linear dispersion,

H±(q) = ±˜̄vrqyτ0 ± δṽrqyτz + vzqzτy +
δvrvz
kF

AxAz
Ω

qxτx, (5.3.18)

and therefore topological charges of C± = ±sgn(AxAz), c.f. Sec. 3.1. Note

that the coefficients δvr and vz appear implicitly twice, therefore the Chern

number is independent of their sign. This is relevant when taking the spin

degrees of freedom into account, because for the PT -symmetric copy in a
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spin-degenerate band structure, these coefficients have an additional minus

sign. With the uniform contribution ˜̄vrqyτ0 the Weyl cones are tilted and turn

into type-II Weyl points for ˜̄vr > δṽr [116]. In the following discussion, we

will restrict ourselves to type-I Weyl points only. The flow of Berry curvature

still follows the nodal line, but in contrast to the constant symmetry breaking

term discussed in Sec. 5.2, one Weyl point acts as source and the flow points

to the other Weyl point along both parts of the circle, shown in Fig. 5.2(b).

Therefore, their contributions to the anomalous Hall conductivity add up.

The direction of the flow can be reversed by changing the sign of either Ax

or Az, which physically means switching the light polarization. If the Fermi

energy is exactly at the Weyl nodes, the contribution to the anomalous Hall

effect at zero temperature depends only on the distance of the two Weyl

points [117] in the clean limit,

σDC
xz =

e2

(2π)3

∫
BZ

d3k Fxz

=
e2

2π

∫ π

−π
dkx C(kx)

=
e2

2π
2k̃F . (5.3.19)

The last line follows from the observation, that the integral of Fxz over a

slice of the BZ for constant kx is the Chern number of the two-dimensional

subsystem. For k̃F < kx < k̃F , i.e., between the two Weyl nodes, the Chern

number is ±1 and 0 otherwise. This results also holds for small variations

of the Fermi energy with respect to the Weyl nodes, as long as there are

two disconnected Fermi surfaces surrounding each Weyl point [118, 119].

However, due to the small gap of the order |E|2, we expect the anomalous

Hall effect to be smaller, because the bands will not be fully occupied or

unoccupied close to the nodal line, where the Berry curvature is strongest.

5.3.3 Keldysh formalism for the quasistatic system

We calculate the current or conductivity for a steady state solution of the

driven system coupled to a heat bath. The heat bath is either provided by
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leads in a finite-sized system or by some averaged disorder coupling to un-

specified degrees of freedom. In this section, we will introduce the formalism

in an abstract manner. We follow the derivation in Ref. [120], which provides

a direct derivation equivalent to the Keldysh formalism. The Hamiltonian

of the whole setup consists of three parts, the nodal line, the bath and the

coupling between the two, H = HNL+Hbath+Hcoupl. For a general derivation

we introduce a superindex I, J combining orbital degrees of freedom as well

as momentum or spatial indices and use the Einstein convention of summing

repeated indices. The nodal-loop Hamiltonian in second quantization reads,

HNL = HIJ(t)c†IcJ . (5.3.20)

We further define a heat bath in the wide band limit, i.e., with a continuous,

uniform density of states across the whole relevant energy range. Each degree

of freedom I is individually coupled to the bath with coupling strength VI

independent of energy,

Hleads =

∫
dε ε d†I,εdI,ε, (5.3.21)

Hcoupl =

∫
dε VI

(
d†I,εcI + dI,εc

†
I

)
. (5.3.22)

With these assumption, the bath is memory free and does not introduce cor-

relations in time or across degrees of freedom. Furthermore, we assume the

bath is not affected by the system’s dynamics and therefore completely char-

acterized by temperature and chemical potential. The Heisenberg equations

of motion for the annihilation operators are

i
d

dt
dI,ε(t) = VIcI(t) + εdI,ε(t), (5.3.23)

i
d

dt
cI(t) = HIJ(t) cJ(t) +

∫
dε VIdI,ε(t). (5.3.24)
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Integrating the former equation and inserting it in the latter results in the

integro-differential equation for the nodal line operators,

i
dcI(t)

dt
= HIJcJ(t)− i

∫
dεVI

(∫ t−t0

0

dτ VIe
iετcI(t− τ) + ie−iε(t−t0)dI,ε(t0)

)
=
(
HIJ(t)− ΣR

IJ

)
cJ(t) +

∫
dε VIe

−iε(t−t0)dI,ε(t0). (5.3.25)

In the last line, we introduced the notation

ΣR
IJ = i

2
δIJV

2
I . (5.3.26)

By choosing the coupling to be energy independent, the first term in the

bracket is local in time,
∫
dε eiετ = δ(τ). Therefore, the equation reduces to

an inhomogeneous differential equation. We can compactly define the Greens

function to this differential operator,

(i
d

dt
−HNL(t) + ΣR)G(t, t′) = δ(t− t′). (5.3.27)

Sending t0 → −∞, the equation of motion for the annihilation operators of

the nodal line system can be written in terms of the retarded Greens function

cI(t) =

∫ ∞
0

dτ GIJ(t, t− τ)

∫
dε VJe−iε(t−τ)dI,ε (5.3.28)

=

∫
dε GR

IJ(t, ε)VJe−iεtdJ,ε. (5.3.29)

The solution for the creation operators follows from taking the Hermitian

conjugate. Defining the advanced Greens function GA(t, ε) = GR(t, ε)
†

and

advanced self-energy ΣA = ΣR† = −ΣR, we can also write an expression

formally equivalent to Eq. (5.3.27) for the advanced Greens function. Finally,

we can then evaluate the full propagator,

−iG<
IJ(t, t′) =

〈
c†I(t

′)cJ(t)
〉

(5.3.30)

=

∫
dε

∫
dε′GR

JK(t, ε)VKeiεt
〈
d†L,ε′dK,ε

〉
e−iε′t′VLG

A
LI(t

′, ε′).
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The correlation function of the heat bath is diagonal in both indices and

contains otherwise only the Fermi distribution function,〈
d†L,ε′dK,ε

〉
= δKLδ(ε− ε′)fL(ε). (5.3.31)

With the definition

Σ<
KL(ε) = iδKLV

2
LfL(ε), (5.3.32)

we can express Eq. (5.3.30) compactly as a matrix equation,

G<(t, t′) =

∫
dε GR(t, ε)Σ<(ε)eiε(t−t′)GA(t′, ε). (5.3.33)

This result can alternatively be obtained from solving the equation(
GR GK

0 GA

)−1

=

(
ε+0+−HNL 0

0 ε+0−−HNL

)
+

(
ΣR ΣK

0 ΣA

)
(5.3.34)

in the Keldysh formalism [121], where the Keldysh component of the self-

energy is ΣK
IJ(ε) = iδIJ(1 − 2fI(ε)). The upper triangular structure of this

block matrix allows to read of the entries of the inverse matrix directly. The

retarded and advanced Greens functions are just the inverse of the diagonal

entries in agreement with the definition in Eq. (5.3.27), and the Keldysh

Greens function is GK = −GRΣKGA. The lesser Greens function follows

from the identity G< = 1
2

(
GK +GR −GA

)
= GR(−ΣK +ΣR−ΣA)GA [122],

reproducing Eq. (5.3.33) through the relation Σ< = 1
2

(
ΣR − ΣA − ΣK

)
[123].

Because ΣR/A are time-independent, the retarded and advanced Greens

functions GR/A(t, ε) are periodic in the remaining time component. They can

therefore be expressed in eigenstates and eigenvalues of the Floquet operators

extended by the self-energy,

(
Hm−n − ΣRδmn − nΩδmn

)
|unα〉 = εα |umα 〉 , (5.3.35a)(

Hm−n − ΣAδmn − nΩδmn
)
|vnα〉 = ε∗α |vmα 〉 . (5.3.35b)
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Since ΣR and ΣA are not Hermitian, the eigenvalues are complex valued. The

complex conjugated and transposed eigenvectors 〈unα| and 〈vnα| also serve as

left eigenvalues to the other, i.e., complex conjugate, operator. Together they

form a bi-orthonormal basis,
∑

n

〈
unα
∣∣vnβ〉 = δαβ. In this basis, the retarded

and advanced Greens functions can be given explicitly as a matrix in Fourier

indices,

GR
n (ε) =

1

T

∫ T

0

dt einΩtGR(t, ε)

=
∑
α,m

|um+n
α 〉 〈vmα |

ε− εα −mΩ
, (5.3.36)

GA
n (ε) =

1

T

∫ T

0

dt einΩtGA(t, ε)

=
∑
α,m

|vmα 〉 〈um−nα |
ε− ε∗α −mΩ

. (5.3.37)

All eigenvalues εα are shifted up from the real axis, because all entries in

ΣR have positive imaginary part, and vice versa for the complex conjugate

eigenvalues. Therefore, no infinitesimal shift from the real axis is needed.

Here, the sum over α includes only Floquet quasienergies from the first FBZ

and the sum over the Fourier index m accounts for the other solutions of

Eqs. (5.3.35a) and (5.3.35b) explicitly.

5.4 Current in a finite sample

In this chapter, we follow the approach in Ref. [18] and calculate the anoma-

lous Hall current in the Landauer–Büttiker formalism [124]. In this approach,

we describe a finite-sized sample with N layers and open boundary condi-

tions in the x-direction. The remaining directions are treated in periodic

boundary conditions. At the left and right boundaries we introduce leads,

which keep the translational invariance in the remaining directions. There-

fore, k = (kz, ky) remain good quantum numbers. In Fig. 5.3 we illustrate

the setup. In this geometry, there are no surface states, as the nodal line

in the kz = 0 plane is projected to a line in the real space description. The
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V

NLSMLeadL LeadR

E(t)

x

y

z

Figure 5.3: Schematic setup of the driven NLSM between two leads. The
boundary conditions in y and z direction are treated as periodic.

applied voltage across the sample is modeled by the difference in chemical

potential between the left and right lead.

The partially real space version of the nodal line Hamiltonian introduced

in Eq. (5.1.1) is

HNL(k, t) =
∑
r,s

N∑
i=1

Mrs(ky, kz + Az sin(Ωt))c†k,i,rck,i,s (5.4.1)

+
∑
r

N−1∑
i=1

tr
2

(e+iAx cos(Ωt)c†k,i,rck,i+1,r + h.c.).

Here and in the following, indices r, s label the two sites per unit cell and

indices i, j label cells. In x-direction there is only nearest-neighbor hopping

with strength tr = v̄r±δv
sin kF

, c.f. Fig. 4.1(a). The intra-unit cell component

M = εσ0 + m · σ contains the k-dispersion and on-site potentials,

ε̄ = − v̄r
sin kF

cos ky − 2w̄ cos kz + µ, (5.4.2a)

mz = − δvr
sin kF

cos ky − 2δw cos kz + δµ, (5.4.2b)

my = 2vz sin

(
kz
2

)
, (5.4.2c)

mx = 0. (5.4.2d)

The entries in the Floquet operator of this Hamiltonian again contain the
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Bessel functions of the first kind and can readily be identified using the

identities given in Eq. (5.3.14) and Eq. (5.3.15). Both sites in the first and

last unit cells are coupled uniformly to the leads with coupling strength
√

Γ.

In this case, the self-energy terms defined in Eqs. (5.3.26) and (5.3.32) read

Σ
R/A
k,ij,rs = ±iΓ

2
δijδrs(δi1 + δiN), (5.4.3)

Σ<
k,ij,rs(ε) = iΓδijδrs (δi1f(ε− µ1) + δiNf(ε− µN)) . (5.4.4)

The difference in the chemical potential of the leads, µ1 − µN , will drive

a current through the system. We calculate the expectation value of the

current via the equal-time lesser Greens function,

J(t) = −i Tr
(
Ĵ(t)G<(t, t)

)
. (5.4.5)

Here, the trace runs over all momenta k and the orbital and unit cell indices.

The matrix elements of the current operator are

(
Ĵz/y(t)

)
k,ij,rs

=
∂

∂kz/y
Mrs(ky, kz + Az cos(Ωt))δij, (5.4.6)(

Ĵx(t)
)
k,ij,rs

=
tα
2
δrs
(
ieiAx cos(Ωt)δi,j+1 − ie−iAx cos(Ωt)δi+1,j

)
. (5.4.7)

Below, we will calculate the time-averaged DC current, for which the x-

component defined in the last line can be evaluated at an arbitrary unit cell

index i0 due to Kirchhoff’s law of charge conservation.

Both the current operator and the equal-time lesser Greens function are

periodic in t and can be expressed as a discrete Fourier series. Based on the

definitions (5.3.36) and (5.3.37), the equal-time lesser Greens function can

be written as

G<
k =

1

T

∫ T

0

dt eikΩtG<(t, t)

=
∑
m,n

∑
α,β

∫ Ω
2

−Ω
2

dε

∣∣un+k
α

〉
〈vmα |

ε− εα
Σ<(ε+mΩ)

∣∣vmβ 〉 〈unβ∣∣
ε− ε∗β

. (5.4.8)

Here, the sum over α and β runs over all solutions to the eigenvalue equation
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of the Floquet operator and not only the ones in the FBZ [−Ω
2
, Ω

2
), because we

used the identity (5.3.7) to rewrite sums over eigenvalues and Fourier indices.

Furthermore, we broke the ε-integral over the real axis into several integrals

covering the FBZ. In this way, a closed form expression for the ε-integral can

be given for the zero-temperature limit using the identity∫ b

a

dε
1

(ε− εα)(ε− ε∗β)
=

1

εα − ε∗β

(
log

(
b− εα
a− εα

)
− log

(
b− ε∗β
a− ε∗β

))
, (5.4.9)

with the boundaries a and b determined by the fermionic thermal distribution

function f(ε+mΩ−µi) = Θ(−ε−mΩ+µi). The Fourier transformed current

operator can also be obtained from the Floquet operator directly,

(Ĵy/z)n−m =
∂Qmn

∂kx/z
, (5.4.10)

(Ĵx)n−m =
∂Qmn

∂Ãx
,

=
∑
k,r

(
i (Qmn)k,i0,i0+1,r,r c

†
k,i0,r

ck,i0+1,r + h.c.
)
, (5.4.11)

This is equivalent to evaluating the Fourier series of Eq. (5.4.7), because

these operations commute. Finally, the frequency resolved current is given

by

J(nΩ) = Tr

(∑
m

Ĵn−mG
<
m

)
. (5.4.12)

We are interested in the DC current, i.e., the cycle average with n = 0. In

Fig 5.4(b) we show the current for different amplitudes of circularly polar-

ized light, Ex = Ez. For small driving amplitudes, the Hall current J⊥ = Jz

rises quadratically in the field strength. Changing Ex and Ez independently

reveals a linear dependence in each component. This implies, that the Hall

current vanishes for linear polarization and switches direction when going

from right to left circular polarization. This is in accordance to the expec-

tation from the effective model discussed in Sec. 5.3.2. The driving does not

break the reflection symmetry in y-direction and the component Jy always
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(a) Voltage dependence of longitudinal and anomalous Hall
currents, J‖ and J⊥, respectively, for various amplitudes of
the driving field.
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(b) Amplitude dependence along the gray dashed line U =
0.05 in (a).

Figure 5.4: Longitudinal (blue) and anomalous Hall current (orange) in the
finite-sized driven nodal line system. The parameters of the nodal line are
identical to the ones in Fig. 5.1 and the number of unit cells in x-direction
is N = 36.
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vanishes identically. In the case of strong driving, the longitudinal current

J‖ = Jx rises slightly with increasing driving intensity, see Fig. 5.4(b). This

can be understood from the increasing weight of Floquet side bands, which

effectively increases the availability of bands for conduction compared to the

low density of states at Fermi level of the undriven NLSM.

Figure 5.4(a) shows the current for different voltages for three different

driving amplitudes. The average chemical potential is kept at the level of

the nodal line. Initially, all components of the current rise linearly, but the

anomalous Hall current saturates for higher values of µN −µ1. This strongly

indicates that only the direct vicinity of the nodal line contributes to the Hall

current and once the potential difference covers this interval, the contribution

due to the Berry curvature saturates. Crossing of different Floquet side bands

occur only outside the interval spanned by the chemical potentials of the

leads, such that possible contributions from them are suppressed. Therefore

no fine tuning of frequency is required for this effect. In this non-resonant

condition, the driving frequency influences the result only by changing the

amplitude of the vector potential A ∝ 1
Ω

for fixed electric field strength and

thereby in the gap introduced in the nodal line.

5.5 Conductivity tensor

The calculation in the previous section shows linear response of the currents

for a small potential difference. In this section we will evaluate the conduc-

tivity tensor in linear response theory. It is in this framework, that the Berry

curvature can be identified as a direct contribution to the anomalous Hall

conductivity [109].

The conductivity is a bulk quantity and, in contrast to the previous sec-

tion, is independent of the transport measurement layout. However, this

approach requires some simplifying assumptions. In this section, we assume

that each degree of freedom is coupled uniformly and independently to the

heat bath. This situation is for example given in a disorder averaged sys-

tem coupled to some internal degrees of freedom, which are not affected by

the driving and act as a correlation free thermal bath. In addition, we ne-
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glect contributions from skew scattering at impurities here [125, 126]. We

assume uniform coupling and a uniform chemical potential. The resulting

formalism corresponds to an energy-independent finite lifetime. This set-

ting preserves translation symmetry in all directions and all quantities can

be expressed in three-dimensional k-space. The self-energy terms defined in

equations (5.3.26) and (5.3.32) are proportional to the identity matrix with

respect to all indices, i.e., different crystal momenta or orbital degrees of

freedom are not coupled,

ΣR = i
Γ

2
1, (5.5.1)

Σ<(ε) = iΓf(ε)1. (5.5.2)

In this form, the retarded and advanced self-energy in the eigenvalue equa-

tions Eqs. (5.3.35a) and (5.3.35b) simplify to

(
Hm−n ± i

2
Γδmn − nΩδmn

)
|unα〉 = (εα ± i

2
Γ) |umα 〉 . (5.5.3)

The self-energies shift the real valued quasienergy eigenvalues εα into the

complex plane by the constant factor of ± i
2
Γ and we write out the imaginary

part explicitly in this section. The eigenvectors |uα〉 are independent of the

self-energy term and identical to the solutions of the hermitian eigenvalue

equation, therefore no distinction has to be made between left and right

eigenvectors.

In order to derive the conductivity tensor, we introduce the vector poten-

tial of a spatially homogeneous electric field, Ãext(t) = i
ω
Eexteiωt, in addition

to the potential of the circularly polarized light. The total Hamiltonian reads

H(k − Ã(t) − Ãext(t)). We then expand Eq. (5.4.5) in the electric field up

to linear order. Ultimately, we are interested in the DC conductivity, which

is evaluated in the limit of vanishing ω. Therefore, the time-scale of the

external electric field is large compared to the driving and the expansion

can be done in the framework of the two-time method, where the long and

short timescales are treated as independent variables in the derivatives and

identified later [127]. The derivation is presented in Appendix C. In the

122



5.5. CONDUCTIVITY TENSOR

limit ω → 0, the conductivity is given entirely in terms of T -periodic quan-

tities. We are interested in the DC current response, i.e., the cycle averaged

contribution, which can be expressed in the Floquet eigenstate basis,

σDC
ij =

∑
αβγ

∑
n

∫ Ω
2

−Ω
2

dε
(Ĵi)γαΓ 〈unα| f(ε+ nΩ)

∣∣unβ〉 (Ĵj)βγ

(ε− εα + iΓ
2

)(ε− εβ − iΓ
2

)(ε− εγ − iΓ
2

)2

−
(Ĵi)γαΓ

〈
unβ
∣∣ f(ε+ nΩ)

∣∣unγ〉 (Ĵj)αβ

(ε− εα + iΓ
2

)2(ε− εβ − iΓ
2

)(ε− εγ + iΓ
2

)
, (5.5.4)

with the matrix elements (Ji)αβ =
∑

n,m 〈unα| Jn−m
∣∣umβ 〉. Here, the indices

α and β run over all solutions to the Floquet eigenvalue equations in- and

outside the FBZ.

Note that in the case of vanishing driving amplitude, the Floquet side

bands become decoupled with the full weight of an eigenstate on the zeroth

index, |unα〉 = δn0 |u0
α〉 for the bands whose quasienergy corresponds to the un-

perturbed energy. Additionally, the only non-zero component of the current

operator is Ĵ0. The lesser Greens function reduces to the spectral function

A = i
2π

(GR−GA) with inverse lifetime Γ
2
, weighted by the Fermi distribution

function f(ε),

G<
α (ε)

∣∣∣
A=0

=
iΓf(ε)

(ε− εα)2 + Γ2

4

= −2iπA(ε)f(ε). (5.5.5)

Inserting this identity into Eq. (C.12) reproduces the formula for DC con-

ductivity in time invariant systems in thermal equilibrium [128]. In Fig. 5.5

we show the time-averaged occupation of Floquet states nα = Tr(G<
α ), to-

gether with the projection of the states |i〉 of the undriven system, ni =

Tr(|i〉 〈i|G<). The majority of the weight lies on states in the first FBZ and

the weight on side bands falls of quickly. The low weight on the side bands

is a consequence of the locality of the Floquet operator with respect to the

side-band index and justifies the use of a truncated matrix. The projection

on the original bands shows, that the steady state solution mainly retains

the distinction into valence and conduction bands, but the occupation num-

ber changes smoothly in the steady state solution despite the assumption of

123



ANOMALOUS HALL EFFECT IN NODAL LINE SYSTEM

3
2
1
0
1
2
3

0.00

0.25

0.50

0.75

1.00

1
2 0 1

2
kx

3
2
1
0
1
2
3

E

Figure 5.5: Floquet quasienergy bands ε(k) color coded with their time-
averaged occupation nα = Tr(G<

α ) (up), and original energy bands E(k)
with the projected average occupation ni = Tr(|i〉 〈i|G<) (down) on the axis
(kx, 0, 0) for the same parameters as in Fig. 5.1 and Γ = 0.01. The Floquet
bands have been calculated for a truncated Floquet operator with Nm = 5.
A close-up of the nodal line is shown in Fig. 5.9(b).
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vanishing temperature. Exceptions from the valence and conduction band

occupation are found at the Fermi level and for momenta, where the driving

frequency is resonant to the gap. In the Floquet band structure, these cases

correspond to the avoided crossings of Floquet bands.

Finally, we are in the position to evaluate the conductivity for various

driving intensities. In Fig. 5.6 we show all non-vanishing contributions of the

conductivity tensor. Despite the vanishing density of states at the nodal line,

the longitudinal components do not vanish, because the occupation number

changes smoothly over a finite energy range around the Fermi energy with

non-vanishing density of states instead of a step function at the nodal line.

The component σzz is scaled by a factor of 0.2 in the plot to better fit into the

scale of the plot. The large difference to the other longitudinal components

can be understood from the larger Fermi velocity in z-direction, which enters

quadratically in the longitudinal conductivity. Additionally, the whole nodal

line contributes uniformly, whereas the Fermi velocity in the perpendicular

directions varies with the angle along the nodal line. With increasing driving

strength, the longitudinal conductivity grows. This can be understood from

the additional changes in occupation number at momenta where the driving

becomes resonant. In agreement with the flow of Berry curvature in the ef-

fective model discussed in Sec. 5.3.2, only σxz = −σzx acquires a non-zero

contribution from the driving field. Again, we find linear dependence on each

component Ex or Ez. The strength of the effect scales therefore quadrati-

cally on the driving amplitude, i.e., linearly on the intensity. A change in

polarization corresponds to a sign change in either amplitude and therefore

to a sign change in the conductivity. For comparison, we also evaluated the

effective Floquet Hamiltonian based on the lattice model, using the ordinary

expression for the conductivity of a static system with a finite lifetime in ther-

mal equilibrium, shown as dotted lines in Fig. 5.6. It can be seen that the

anomalous Hall conductivity is well captured from the effective model. The

crossing of Floquet side bands is not captured and the assumptions for the

effective model are not valid in the region in momentum space with resonant

driving. Therefore, the enhancement of the longitudinal conductivity is also

not captured. This shows that the Berry curvature provides a good explana-
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Figure 5.6: Conductivity as a function of driving amplitude |E| for the
driven NLSM with parameters as given in Fig. 5.1, Γ = 0.1. The anomalous
Hall conductivity σxz grows linear with the intensity |E|2 of the circularly
polarized light. The dotted lines show the same quantities evaluated from
the effective Floquet Hamiltonian.

tion of the anomalous Hall effect in the driven NLSM, but its contribution is

overestimated by assuming a sharp Fermi-Dirac thermal distribution for the

effective model.

In Fig. 5.7 we show the conductivity for different values of the chemical

potential µ. The longitudinal components have a minimum at the nodal

line, because of the low density of states. This can be seen from the effective

model as well, with the shortcomings mentioned in the previous paragraph.

The anomalous Hall component is largest with the chemical potential right

at the energy of the nodal line, µ = 0 and falls of when shifting the nodal

line away from the Fermi energy, because the Berry curvature is largest at

the nodal line and falls of quickly.

In undriven materials in thermal equilibrium, longitudinal and anomalous

Hall conductivity are expected to scale with Γ−1 and Γ0 for small lifetimes,

respectively [109]. The Γ dependence is shown in Fig. 5.8 and shows an

exponential decay for all components. Since the driven nodal line in the

Floquet picture remains gapless at two points and the maximum gap is of
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Figure 5.7: Chemical potential dependence of the longitudinal and transver-
sal conductivity relative to the energy of the nodal line for Ex = Ez = 0.05.
The dotted lines show the same quantities evaluated from the effective Flo-
quet Hamiltonian.
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Figure 5.8: Lifetime dependence of the conductivity tensor components for
Ez = −Ex = 0.1.
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the order of the light intensity |E|2, these limits do not apply, as there are

always sections in the BZ, when the Γ is large compared to the gap size. In

that case, there is no clear distinction between valence and conduction band,

which limits the contribution of the Berry curvature to the anomalous Hall

conductivity. A detailed view of the occupation of Floquet bands and original

bands in the vicinity of the (maximally gapped) nodal line is shown in Fig. 5.9

for two different values of Γ. In the case Γ = 0.1, the occupation is of the order

of the gap and there is no clear distinction in occupied and unoccupied bands.

Furthermore, small values of Γ pose an additional challenge in evaluating the

BZ integral numerically on a finite grid.
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Figure 5.9: Detailed occupation of bands close to the nodal line for two
different values of Γ.

The results confirm the calculation in the previous section of a anomalous

Hall current induced by circularly polarized light. A quantitative comparison

is, however, not possible due to the different assumptions in terms of the
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coupling to the heat bath and the different treatment with respect to the

x-direction and system size.

5.6 Real-time description

Recently, an anomalous Hall current induced by circularly polarized light has

been measured in graphene [129], which is a lower dimensional analogue from

a topological point of view. In the theoretical analysis of their results, the

authors question the validity of the Floquet approach and the interpretation

through the Berry curvature of dressed bands [130]. Motivated by these

arguments, we calculate the current in the driven nodal-loop system field in

the time domain.

We add a small static electric field along the x-direction order to drive

a current through the system. For an electric field that is constant in time,

its potential Astat(t) has to grow linearly with t in the temporal gauge. The

total time-dependent Hamiltonian reads then H(k− Ã(t)−Astat(t)). Both,

the static and driving fields are smoothly switched on, one after the other.

The static electric field is turned on first at time t1 with smooth phase in

time f1,

Astat(t) = −Estatêx ×


0 t <= t1,

( t−t1
f1

)2 − 1
2

(t−t1)4

f3
1

t1 < t <= t1 + f1,

t− t1 − 1
2
f1 t > t1 + f1.

(5.6.1)

The amplitude of the driving field is modeled as a Gaussian with width f2

before reaching its maximum at t2. After that, the amplitude is kept constant

to achieve a steady state solution,

Ã(t) = − 1

Ω

Ex cos Ωt

0

Ez sin Ωt

×
exp

(
(t−t2)2

2f2
2

)
t < t2,

1 t >= t2.
(5.6.2)

In this way, the increasing amplitude in the beginning resembles a short
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ANOMALOUS HALL EFFECT IN NODAL LINE SYSTEM

pulse, whereas the rest of the calculation can still be compared to the Floquet

solution, which assumes continuous driving. The x-component of the total

potential is shown in the upper part of Fig. 5.10.

There are two contributions to the time evolution. The Hermitian part is

given by the unitary time step U(t+∆t, t) ≈ e−iH(t)∆t. The uniform coupling
Γ
2

to the heat bath introduced in the previous section corresponds to a finite

lifetime τ = 1
Γ

after integrating out the bath degrees of freedom. We include

this second, effectively non-Hermitian contribution via a factor proportional

to the difference between the current state and the thermal equilibrium for

the instantaneous eigenstates of the Hamiltonian H(t). The discretized time

evolution of the density matrix reads

ρ(tn+1) = e−iH(tn)∆tρ(tn)e+iH(tn)∆t −∆tΓ (ρ(tn)− ρeq(tn)) , (5.6.3)

where ρeq(t) =
∑

a f(Ea(t)) |a(t)〉 〈a(t)| is defined as the thermal equilibrium

mixed state for the instantaneous eigenstates and eigenenergies, H(t) |a(t)〉 =

Ea(t) |a(t)〉. This also serves as the starting point of the evolution at t0,

ρ(t0) = ρeq(t0). In the basis of these instantaneous eigenstates, Eq. (5.6.3)

can also be expressed component-wise,

ρab(tn+1) = e−i(Ea−Eb)∆tρab(tn)−∆tΓ (ρab(tn)− δabf(Ea)) . (5.6.4)

At each time step, we directly evaluate the current components Ji(tn) =

Tr
(
∂H(tn)
∂ki

ρ(tn)
)

. The resulting time-dependent current is dominated by the

much larger driving field and oscillates strongly with the driving frequency.

In order to identify the DC component, we average the current using a moving

Gaussian filter with a width of σGauss = 2T . By dividing the current com-

ponents Jx and Jz by the strength of the static field Estat, we can compare

the results directly to the corresponding entries in the conductivity tensor,
Jx
Estat = σxx and Jz

Estat = σzx = −σxz, respectively. Jy and consequently σyx

vanish identically. The remaining entries of the conductivity tensor are not

probed in this setup. Because we calculate σzx instead of σxz, we use the

opposite polarization for the driving field in this chapter, in order to end up
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Figure 5.10: The upper part shows the x-component of the total electromag-
netic potential Ãx(t)+Astat

x (t) with the time scale in units of inverse hopping
strength. For visual clarity, a larger driving amplitude has been chosen than
in the results shown below. The static electric field is smoothly switched
on at t1 = 0 and reaches its final value at t1 + f1 = 100. The driving field
reaches its maximal strength at t2 = 600 and remains constant afterwards.
The inset shows the Gaussian filter used for averaging the currents below.
The lower plot shows the real-time calculation of the longitudinal current Jx
and anomalous Hall current Jz (dotted) divided by the static field strength
Estat for different values of the driving field strength Ex(= Ez). Apart from
the polarization, which is reversed here, the parameters in the Hamiltonian
are identical to the ones of the previous plots, c.f. Fig. 5.1. The relaxation
to a steady state is given by the lifetime τ = 1

Γ
= 20.
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again with positive numbers for the anomalous Hall component.

Figure 5.10 shows the time-averaged currents for three different values

of the driving amplitude. In all cases, the longitudinal current rises with

the amplitude of the electric field and asymptotically approaches the steady

state solution with the lifetime τ = 1
Γ
. With the onset of the driving field,

the longitudinal component increases and the anomalous Hall component be-

comes non-zero, reproducing the behavior seen in the previous chapters. The

anomalous Hall current rises almost quadratically with the driving field, as

seen for the conductivity, which in turn almost follows the quadratic increase

of the effective model. For Γ = 0.05 and driving amplitudes Ez = 0.01,

0.02 and 0.04, the anomalous Hall conductivity evaluated through the Flo-

quet states is 1.1 · 10−6, 3.6 · 10−6 and 1.1 · 10−5, respectively, compared to

3.9 · 10−6, 1.4 · 10−5 and 4.0 · 10−5, when evaluated from the real-time calcu-

lations. The relative change with the driving amplitude agrees up to a few

percent when comparing both methods. However, the two methods differ

qualitatively, which is also the case for the longitudinal components. We

attribute this difference partly to the way Γ enters the calculation, one the

one hand as a coupling to the heat bath, one the other hand as an inverse

lifetime for excited states. Fig. 5.11 shows the time-averaged current for two

different values of Γ, showing a similar scaling behavior as in the previous

chapter. In addition, the different times to reach a steady state solution can

be seen in the parts where the static and driving fields are switched on.

Furthermore, the numerical evaluation of the three-dimensional model

poses a challenge, as it limits the number of k-points. The evaluation of the

integral in Eq. (5.5.4) on a finite grid requires a large enough Γ to reliably

pick up the peaks created by the denominators. An estimate can be given by

comparing the difference of quasienergy eigenvalues for neighboring k-points,
Γ
2
& ε(k)− ε(k + ∆k). The step size is given by the number Nk of k-points

per direction, ∆ki = 2π
Nk

. Around the nodal line, we find ∆ε ≥ ∆ki = 2π
Nk

for the hopping strength used in the NLSM model. For the Nk = 200 points

per spatial dimension used in the calculations, this requires Γ & 0.06. In the

time-evolution calculated in this chapter, a smaller Γ corresponds to a longer

lifetime and ensures, that a steady state solution regarding the occupation of
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Figure 5.11: Time-averaged current for the same Hamiltonian and driving
field as in Fig. 5.10, but for two different values of Γ and fixed driving strength
Ex = 0.01.
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an eigenstate of H(k−A(t)) can be achieved. A relevant time scale for this is

given by the time it takes Astat(t) to traverse the gap between two discrete k-

points. Because the conductivity is valid only in the limit of vanishing Estat,

it has to be substantially smaller than the amplitude of the driving field and

this component becomes the limiting factor. The estimated validity for Γ is

then dictated by the relation 1
Γ
& ∆k

Estat , which in our case requires Γ . 0.06.

From these rough estimates it can be seen, that the two methods can only

be compared in a very narrow range for Γ, in which they might already show

numerical artifacts. Indeed, at close inspection oscillations can be seen in all

components of J(t) with a period determined by Estat and ∆k, corresponding

to a shifting k-grid on which the Fermi surface periodically gets sampled with

more or less accuracy by the discrete k-mesh. At the same time, the scaling

of the longitudinal components of the conductivity also deviates from the

expected Γ−1-scaling already in this regime. Moving away from the crossover

regime, the two methods start to disagree also qualitatively. Although these

numerical limitations prevent a qualitative comparison, the Hall angles, i.e.,

the ratio of longitudinal to transversal conductivity, agree within one percent

in the crossover regime for small driving amplitudes, showing that the Berry

curvature in the Floquet picture provides a good description of the anomalous

Hall current for the driven NLSM.

5.7 Summary

In this chapter, we calculated the anomalous Hall current of a nodal-loop

semimetal driven by circularly polarized light. In the Floquet picture, the

driving can be understood as a symmetry breaking perturbation, which gaps

the nodal line almost everywhere and turns the system into a Weyl semimetal.

The flow of Berry curvature along the gapped nodal line leads to an anoma-

lous Hall conductivity. The nodal loop in three dimensions falls into the

same topological category as graphene and provides an analogue to the light-

induced anomalous Hall effect there. In contrast to graphene, however, the

circularly polarized light is not only needed to create an imbalance among

canceling terms on opposite sides of the nodal ring, but also to introduce a

134



5.7. SUMMARY

well-defined flow of Berry curvature.

We used three different methods to calculate the longitudinal and anoma-

lous Hall currents or conductivities, each based on different assumptions for

the coupling to a heat bath and for the static potential. The common sig-

nature for the light-induced anomalous Hall conductivity is a quadratic de-

pendence on the field strength of the driving and a sign change when the

polarization is flipped. More precisely, the anomalous Hall conductivity is

proportional to the product of the two polarizations of the driving field and,

thus vanishes exactly for light that is linearly polarized only in one direc-

tion. This can be readily understood from an effective Floquet Hamiltonian,

as the symmetry breaking term contains the product of both polarization

components. Another strong indicator for the relevance of the topology of

Floquet bands is the strong dependence on chemical potential, i.e., the nodal

line should be sufficiently close to the Fermi level to see this effect. For a

concrete material, the preferred numerical method depends on the sample

size and the values of Γ and Ω relative to the energy scale of the bands

forming the nodal line. Furthermore, the Floquet approach relies on a suffi-

ciently long driving pulse in relation to the driving frequency, which might

become challenging in an experimental setup, where usually very high light

intensities are required, leading to unwanted heating effects.
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6. Conclusion

In this work, we investigated the topology of band crossings from a symme-

try point of view, focusing on weakly correlated materials where interactions

can be neglected. More concretely, in the first part of this work (Chapter 3)

we identified all band crossings whose existence is enforced by combinations

of spatial and non-spatial symmetries in band structures of orthorhombic

and tetragonal space groups. This systematic analysis revealed a variety of

degeneracies along points, lines and planes. Making extensive use of group

representation theory, we further classified them in terms of their topological

invariants. The analysis also took compatibility relations between representa-

tions at different high-symmetry points into account and identified several so-

called movable crossings, that cannot be predicted from the local little group.

Instead, global restrictions on the band structure imposed by the symmetry

group have to be taken into account. These movable crossings must exist,

but can be placed anywhere on a rotation axis or within a mirror plane. We

considered both materials with strong and weak spin-orbit coupling, where

the latter case also applies to bosonic and spinless band structures. Beyond

the well known Weyl and Dirac points, we identified several different types of

pointlike crossings of several bands or with larger Chern numbers. For each

of these points or lines we gave a detailed description of the mechanism en-

forcing the degeneracy and provided a low-energy model. Notable examples

are fourfold degenerate Weyl points with a Chern number of C = ±2, which

are found at high-symmetry points or as movable versions on one of three

rotation axes. In the presence of a fourfold screw rotation, two of these are

found superimposed at the same high-symmetry point, forming a fourfold

degenerate point crossing with Chern number C = 4. We also characterized
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line crossings, which can be twofold or fourfold degenerate, some of which

are enforced to exist by symmetry, but are not pinned to a high-symmetry

axis. Finally, we also identified all space groups with symmetry-enforced

nodal planes, some of which necessarily carry a topological charge. The

main results of this chapter have been published in references [53, 54] and

are summarized in comprehensive tables presented in Appendix B. Under-

standing the interplay of symmetry eigenvalues and representations provides

insight into the stability of the nodes under symmetry breaking perturba-

tions. For example, breaking one of the spatial symmetries might split a

multifold Weyl point into several independent copies in the vicinity, while

the sum of their Chern numbers is protected for any type of perturbation, as

long as they remain separate from other Weyl points in the band structure.

The topology of band structures has become a new characteristic of com-

pounds which is reported alongside the information about their symmetry.

For example, the ”Topological Quantum Chemistry” project already eval-

uates the topological classification of insulators and some other topological

phases in an automatized manner and lists them in databases of known ma-

terials [24, 55]. Our results provide a compact reference to extend this classi-

fication for semimetals in the corresponding space groups. Since symmetry-

enforced topology is valid for all band structures in a given space group, it

can also be used as a guide in finding new topological materials. We have

paired the systematic analysis of symmetry-enforced crossings with an au-

tomated screening of material databases to identify topologically interesting

materials [53, 54], and thereby found interesting examples for many of the

topological band crossings from the purely symmetry-based analysis. With

these methods and results, we created a guide for identifying novel functional

materials based on their topological properties and hope to inspire research

into growing new compounds, especially in the nonsymmorphic chiral space

groups, which have shown to be especially rich in symmetry-enforced topolog-

ical band crossings of various kinds. The methods presented in this chapter

can be used to extend the analysis to other space groups beyond the scope

of this work, including also magnetic space groups, spin space groups and

other spatial dimensions. In magnetic space groups, one might expect an
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interesting topology in spin split bands from the various combinations of

time-reversal symmetry and spatial symmetries.

In the second part of this work (Chapter 4) we took a closer look at

observable consequences arising from a topological line crossing protected

by a mirror symmetry. In this chapter, we studied a two band model that

describes the low-energy physics of materials like CaAgP and CaAgAs, both

of which have nodal lines close to the Fermi energy [90]. We investigated

the bulk-boundary correspondence for such a nodal-line semimetal. It is still

often claimed that a non-zero Zak phase leads in general to surface states,

but we showed that there is no strict bulk-boundary correspondence for this

particular model. However, we also demonstrated that a drumhead surface

state is found for the relevant parameters used to describe these materials.

A finite spin-orbit coupling introduces a topological gap at the nodal line,

turning the semimetal into a weakly gapped topological insulator [95]. In

this situation, the bulk-boundary correspondence can be applied and a spin-

polarized surface state is guaranteed by the nontrivial bulk topology.

We then calculated the quasiparticle interference patterns resulting from

scattering at a surface impurity. Due to the high weight in the surface density

of states, the drumhead surface states dominate the quasiparticle interference

spectrum at energies close to the nodal line. The interference pattern of a

similar nodal line surface states has been measured recently [108]. Spin-

resolved quasiparticle interference patterns from magnetic impurities can be

measured in a spin-sensitive scanning tunneling microscope using a magnetic

tip [103, 104]. We calculated the quasiparticle interference patterns for dif-

ferent orientations of the magnetization of tip and impurity and showed, that

the structure of the spin polarized drumhead surface states can be resolved

in the presence of sufficiently strong spin-orbit coupling [88]. The expo-

nentially localized drumhead surface states of a nodal-line semimetal might

provide an interesting platform in itself for experiments in weakly dispersing

two-dimensional bands. These studies could be generalized to more com-

plicated arrangements of surface states, for example for drumhead surface

states of several nodal loops or ones that coexist with Fermi arcs.
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In the last part of this work (Chapter 5), we explored the impact of

the nodal line topology on the transport characteristics of the nodal-line

semimetal. We calculated the longitudinal and transversal currents and

the conductivity tensor for a nodal-line semimetal subject to periodic driv-

ing with circularly polarized light. We showed that the driven nodal-line

semimetal acquires a non-zero anomalous Hall conductivity that grows with

the square of the driving amplitude. This calculation was done in the Floquet

formalism using various experimental setups and assumptions. The driving

breaks the protecting symmetry of the nodal line. In the Floquet picture, the

nodal-line semimetal turns into a Weyl semimetal and the anomalous Hall

conductivity can be directly related to its topology. Finally, we compared

the results to a simulation of the driven nodal-line semimetal in real time and

identified the topology arising from the nodal line as the main contribution

to the anomalous Hall effect. Albeit using the simplest model of a nodal line,

these results are relevant for any nodal line close to the Fermi energy, includ-

ing the symmetry-enforced ones identified in the Chapter 3. The sign and

magnitude of the anomalous Hall current in the driven nodal-line semimetal

depends on the polarization and strength of the driving field, respectively.

This is one of the unique characteristics of this effect and allows to control the

orientation and strength of the transversal current. It might provide a first

step towards using the topology of nodal lines in functional materials, such

as topological devices or sensors. Our results show that Floquet engineering

can be used to design topological phases using the symmetry breaking of the

driving field. In this way, nodal-line semimetals might provide a starting

point to using the topology of Weyl and Dirac semimetals for several other

transport quantities, e.g., the anomalous Nernst effect [131, 132] or the chi-

ral photogalvanic effect [133], and the gyrotropic magnetic effect [34]. This

might also be of relevance to other topological semimetals with inversion

symmetry and topological transport characteristics.
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A. Group action on crystal mo-

mentum

The action of a symmetry on a Bloch function Ψα,k can be constructed by

its decomposition into symmetry-adapted Wannier functions,

Ψα,k(r) =
∑
R

e−ikRφα(R + r). (A.1)

Here, α is an arbitrary multi-index for internal degrees of freedom like spin or

orbital. The lattice vectors R assign each Wannier function to a lattice point

with the sum running over all lattice points. A spatial symmetry {Ri|ti} with

point group symmetry Ri and translational part ti acts on the coordinates

of the Wannier function,

{Ri|ti} : φα(R + r)→ Uαβφβ(RiR +Rir + ti). (A.2)

We use the Einstein summation convention and the unitary map Uαβ contains

phase factors or mapping between the internal degrees of freedom. We split

the translational part of the symmetry into lattice vectors plus a fractional

part, ti = Ti + t′i to separate the change in lattice site from the translation

within a unit cell of the lattice. Using this decomposition, we can rewrite

the sum in Eq. (A.1) via the substitution R→ R−1
i (R−Ti), leading to

{Ri|ti} : Ψαk(r)→ eikR−1
i Ti

∑
R

e−ikR−1
i RUαβφβ(R +Rir + t′i)

= eik′TiUαβΨβ,k′(Rir + t′i), (A.3)
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which is the symmetry-related Bloch wave function with crystal momentum

k′ = (R−1
i )Tk. In an orthonormal basis, the matrix of a point group symme-

try is orthogonal, R−1
i = RT

i , and we simply find k′ = Rik. It can be readily

seen, that the lattice part Ti of the translation in the symmetry leads to a

phase factor according to the transformed crystal momentum k′.

Time reversal symmetry T acts through complex conjugation and a uni-

tary symmetry Uαβ, e.g., U = iσy in spin space. The action in momentum

space k→ −k can be read of from

T Ψα,k(r) =
∑
R

e+ikRφ∗α(R + r)

=
∑
R

e+ikRUαβφβ(R + r)

= UαβΨβ,−k(r). (A.4)
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B. Symmetry-enforced nodes in

orthorhombic and tetragonal

space groups

Here we present the result of our systematic search for symmetry-enforced

nodal points, lines and planes in orthorhombic and tetragonal SGs discussed

in Chapter. 3. For the orthorhombic SGs, we consider the spinless and spin-

ful case, while we only present results for spinful band structures for the

tetragonal SGs. The tables are further divided in noncentrosymmetric or-

thorhombic SGs (SG 16 – SG 46) and centrosymmetric orthorhombic SGs

(SG 47 – SG 74) with and without SOC, and in noncentrosymmetric tetrago-

nal SGs (SG 75–SG 82, SG 89–SG 122) and centrosymmetric tetragonal SGs

(SG 83–SG 88, SG 123–SG 142) with SOC. Hexagonal and trigonal SGs with

SOC have been investigated by others [72, 134] and spinless band structures

in these SGs and the remaining families of SGs are left for future work.

Each line describes one SG given in terms of its number and Hermann–

Mauguin symbol in the conventional setting [135]. The columns in each table

are organized foremost by the dimensionality of the nodes, i.e., into point

degeneracies, nodal lines, and planes. In the last column, we highlight notable

or unique features. Throughout, we use a notation based on named points in

the BZ of a SG family, as shown in Figures B.1 and B.2 for the orthorhombic

and tetragonal lattices, respectively. High-symmetry lines are highlighted in

color and are indicated in the tables by the two named points they connect,

e.g., the entry Γ-Z refers to the line parametrized by k = (0, 0, w) in all
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cases. Unlike the segments shown in the figure, these lines are not finite

and w in the example covers the whole BZ. Symmetry-related segments are

not shown explicitly. In the main text, we included the parametrisation

in Cartesian coordinates explicitly. Intersecting lines can be written in a

contracted form, e.g., Γ-Z-T means Γ-Z and Z-T. The Dirac or Weyl points

of Sections 3.1–3.3 and 3.6 are listed in terms of the high-symmetry point

they are pinned to, while movable point crossings are given in terms of the

axis they are confined to, i.e., the entry Γ-Z in the column “points” means

a movable point somewhere on this axis together with its symmetry-related

copies. In a separate column, we list the pinned and movable nodal lines

described in Sec. 3.7. Pinned nodal lines are listed explicitly in terms of the

high-symmetry lines. Movable lines always lie between two sets of degenerate

points with different mirror eigenvalue pairing. We indicate movable nodal

lines by specifying these sets in terms of a tuple (A;B). Left of the semicolon

are all degeneracies where opposite eigenvalues are paired, while on the right

the degeneracy is made up of two bands with identical eigenvalues. The sets

A and B can be points, lines or combinations thereof. If a point appears on

both sides of the semicolon, it must be fourfold degenerate and is written

in italic font. Since such a crossing is not a point degeneracy at any level

of bands, these fourfold degeneracies do not appear in the column “points”.

Usually, all entries in the tuple identify the mirror plane uniquely, otherwise

we specify it explicitly as a subscript. For nodal planes discussed in Sec. 3.4,

we use Cartesian coordinates, aligned with the coordinate system shown in

the figures. In spinful centrosymmetric SGs there are no nodal planes and

we list insulating planes with a symmetry-enforced nontrivial weak invariant

as described in Sec. 3.8, using the labels of the four TRIMs in the plane. The

TRIM with identical fourfold inversion eigenvalue pairing is highlighted in

bold font.

There are four Bravais lattice types compatible with the twofold rota-

tions of the orthorhombic SGs: primitive, body-, face- and base-centered

lattices. Their BZs are shown in Fig. B.1. In the absence of higher rotation

symmetries, no symmetry axis is preferred. Since our analysis is based on

symmetries alone with no concrete material in mind, we always use the align-
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(a) P: primitive (b) C: base-centered

(c) F: face-centered (d) I: body-centered

Figure B.1: Brillouin zones (BZs) of orthorhombic lattices with a < b < c.
Of the several possibilities in the face-centered case, the one for 1

a2 = 1
b2

+ 1
c2

is shown and used for labeling the points and axis. The BZ of side-centered
lattices (SG 38–SG 41) is obtained from (b) by rotation around the Γ-Y
axis, e.g. Z= (π, 0, 0), Γ-X= (0, 0, w), etc. TRIMs are labeled in blue,
high-symmetry axes are shown in green and labeled by the points they are
connecting. Figure adapted from Ref. [54].

ment as given by the Hermann–Mauguin symbol in the first column of tables.

For example, SG 17 has the Hermann–Mauguin symbol P2221, which means

the screw rotation is aligned with the c-axis and its invariant points in the

BZ are on the lines Γ-Z, X-U, S-R and Y-T. When comparing to results form

high-throughput calculations, attention has to be paid to the convention, as

the crystal axes are often sorted by their relative length, a < b < c [62] and

our results must be rotated accordingly. For example, SG 17 might then
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alternatively read P2122 or P2212 and the movable Weyl point is found on

the axis Γ-X or Γ-Y and their parallels, respectively.

Table I lists all symmetry-enforced band crossings in the noncentrosym-

metric orthorhombic SGs for spinless bands. Table II covers the same SGs

for spinful bands. The horizontal line separates the chiral SGs 16–24 from

the ones including mirror symmetries. The centrosymmetric orthorhombic

SGs are covered in Table III and IV, for the spinless and spinful cases, re-

spectively. In the latter case, all bands are twofold degenerate and crossings

are always Dirac points and lines. The overall twofold degeneracy is not in-

cluded when specifying the number of bands involved in forming an hourglass

dispersion.

SG points lines nodal planes notable features

16 (P222)

17 (P2221) kz = π

18 (P21212) kx/y = π

19 (P212121) Γ-[XYYYZ](4),
R(4)

kx/y/z = π fourfold double WP

20 (C2221) kz = π

21 (C222)

22 (F222)

23 (I222)

24 (I212121) Γ-[XYYYZ](2),
W(2)

only 4 WPs

25 (Pmm2)

26 (Pmc21) kz = π

27 (Pcc2) Z-U-R-T-Z

28 (Pma2) X-U-R-S-X

29 (Pca21) (U -X-S-R;U -R) kz = π

30 (Pnc2) Z-U-R-S-Y-T-Z

31 (Pmn21) U-X-S-R kz = π

32 (Pba2) X-U-R-T-Y-S-X

33 (Pna21) (S-X-U ;U -R),
S-Y-T

kz = π

34 (Pnn2) X-S-Y-T-Z-U-X

35 (Cmm2)

36 (Cmc21) kz = π

37 (Ccc2) U-Z-T

38 (Amm2)

39 (Aem2) R-S

40 (Ama2) A-Z-T

41 (Aea2) R-S, A-Z-T
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SG points lines nodal planes notable features

42 (Fmm2)

43 (Fdd2) A-Z-T-Y

44 (Imm2)

45 (Iba2) R-W-S

46 (Ima2) R-W

Table I: Symmetry-enforced band crossings in spinless band structures
of noncentrosymmetric orthorhombic SGs. The second column shows all
pointlike degeneracies. They can be on a high-symmetry point (e.g. Γ),
somewhere on an axis connecting two high-symmetry points (e.g. Γ-Z) or
on one of several axes (e.g. Γ-[XYYYZ]) with Y indicating the exclusive
OR. Numbers in brackets indicate the total number of bands involved in the
hourglass dispersion or crossing. The topological type of the degeneracies are
listed under notable features, if it is different from a Weyl point (WP). The
third column lists all symmetry-enforced nodal lines. The notation (A;B)
indicates an hourglass nodal line between two point- or linelike degeneracies
A with eigenvalue pairing (+,−) and B with (+,+) or (−,−). The fourth
column lists all twofold degenerate nodal planes.
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SG points lines nodal planes notable features

16 (P222) all TRIMs

17 (P2221) Γ, X, Y, S,
Γ-Z(4),
X-U(4),
Y-T(4),
S-R(4)

kz = π only 4 WPs

18 (P21212) Γ, Z, Γ-X(4),
Γ-Y(4),
Z-U(4),
Z-T(4), S(4),
R(4)

kx/y = π fourfold double
WPs (n even),
only 2 WPs (n
odd)

19 (P212121 ) Γ, Γ-Z(4),
Γ-X(4),
Γ-Y(4), S(4),
T(4), U(4),
R-[SYTYU](8)

kx/y/z = π top. nodal plane
trio, fourfold dou-
ble WPs

20 (C2221) Γ, S, Y,
Γ-Z(4),
Y-T(4),
S-R(4)

kz = π only 4 WPs

21 (C222) all TRIMs

22 (F222) all TRIMs

23 (I222) all TRIMs,
W

24 (I212121) all TRIMs,
W-[RYSYT](4)

25 (Pmm2) Γ-Z, X-U,
Y-T, S-R

26 (Pmc21) (Γ-Z,Y-T;Z-T ),
(X-U,R-S;U -R)

kz = π

27 (Pcc2) Z(4), T(4),
U(4), R(4)

Γ-Z-U-R-T-Z,
X-U, S-R, Y-T

fourfold points
(C=0)

28 (Pma2) (Γ-Z;X,U),
(Y-T;S,R),
X-S, U-R

29 (Pca21) (Γ-Z;Z-U,X),
(Y-T ;S,R-T ),
(X-S;U-R)

kz = π

30 (Pnc2) Z(4), U(4) (Γ-Z-T;Y),
(X-U -R;S),
(Y-S;T,R),
Z-U

nodal chain, four-
fold points (C=0)

31 (Pmn21) (Γ-Z,T -Y;Z-T ),
(Γ-Z-U;X),
(Y-T -R;S),
X-S

kz = π
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SG points lines nodal planes notable features

32 (Pba2) R(4), S(4) (Γ-Z;Y,T),
(Γ-Z;X,T),
X-S-Y, U-R-T,
S-R

fourfold points
(C=0)

33 (Pna21) S(4) (R-S-X;R-U)
(Γ-Z;Z-U,X),
(Γ-Z-T;Y),
Y-S

kz = π fourfold point
(C=0)

34 (Pnn2) Z(4), S(4) (Γ-Z-T;Y),
(Y-S-R;T),
(Γ-Z-U;X),
(X-S-R;U)

nodal chain, four-
fold points (C=0)

35 (Cmm2) R, S Γ-Z, Y-T only 4 WPs

36 (Cmc21) S, R-S(4) (Γ-Z,Y-T ;Z-T ) kz = π only 2 (4) WPs for
n odd (even)

37 (Ccc2) R, S, Z(4),
T(4)

Γ-Z-T-Y, Z-U fourfold points
(C=0), only 4
WPs

38 (Amm2) (R;−), (S;−),
Γ-X, Z-A

39 (Aem2) (Γ-X;S),
(Z-A;R), R-S

40 (Ama2) (Γ-X;Z,T),
(R;−), (S;−),
Z-T

41 (Aea2) (Γ-X;Z,T),
(Γ-X;S),
(Z-T;R), R-S

42 (Fmm2) L Γ-Z, Y-T only 4 WPs

43 (Fdd2) L, Z(4) (Γ-Z-T;Y)kx=0,
(Γ-Z-A;T)kz=0

nodal chain, four-
fold point, only 4
WPs

44 (Imm2) T (R;−), (S;−),
Γ-Z

only 2 WPs

45 (Iba2) T, T-W(4) (Γ-Z;S,R),
R-W-S

only 2 (4) WPs for
n odd (even)

46 (Ima2) T (Γ-Z;R),
(S;−), R-W

only 2 WPs

Table II: Symmetry-enforced band crossings in band structures with SOC of
noncentrosymmetric orthorhombic SGs. The notation is identical to the one
in Table I. Additionally, almost movable lines are indicated by (A;−) with A
being the high-symmetry point they run through as described in Sec. 3.7.4.

148



SG points lines nodal planes notable features

47 (Pmmm)

48 (Pnnn) Z-U-X-S-Y-T-Z

49 (Pccm) Z-U-R-T-Z

50 (Pban) X-U-R-T-Y-S-X

51 (Pmma) kx = π

52 (Pnna) U-Z-T, X-S,
(U-X-S;S-R)(4),
(X-S,Y-S)(4)

ky = π precedes Z2 invari-
ant (with SOC)

53 (Pmna) U-X-S-R kz = π

54 (Pcca) R-T-Z-U,
(Z-U ;U -X)(4),
(T-R;R-S)(4),
(U -R;R-T-Z-U)

kx = π

55 (Pbam) kx, ky = π

56 (Pccn) T-Z-U,
(T -Z;Y-T )(4),
(U -Z-T ;U -R-T )(4),
(Z-U ;U -X)(4)

kx, ky = π precedes Z2 invari-
ant (with SOC)

57 (Pbcm) R-T(4),
(Y-T ;T -Z)(4),
(S-R;R-U)(4)

ky, kz = π

58 (Pnnm) T-Z-U kx, ky = π

59 (Pmmn) kx, ky = π

60 (Pbcn) S-Y-T, U-R(4),
(Y-T ;T -Z)(4),
(Z-U ;U -X)(4),
(R-S-Y-T ;T -R)(4)

kx, kz = π precedes Z2 invari-
ant (with SOC)

61 (Pbca) S-R(4), U-R-T(4),
(Y-T ;T -Z)(4),
(Z-U ;U -X)(4)
(X-S;S-Y)(4)

kx/y/z = π

62 (Pnma) S-R(4),
(X-S;S-Y)

kx/y/z = π precedes Z2 invari-
ant (with SOC)

63 (Cmcm) kz = π

64 (Cmca) S-R, (S;−)(2) kz = π

65 (Cmmm)

66 (Cccm) A-Z-T

67 (Cmme) S-R, (S;−)(2),
(R;−)(2)

68 (Ccce) A-Z-T,S-R,
(S;−)(2),
(R;−)(2)

69 (Fmmm)

70 (Fddd) A-Z-T-Y

71 (Immm)
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SG points lines nodal planes notable features

72 (Ibam) S-W-R, (S;−)(2),
(R;−)(2)

73 (Ibca) W(4) S-W-R, W-T,
(S;−)(2),
(R;−)(2),
(T;−)(2)

fourfold point
(C=0) at half filling

74 (Imma) W-T, (T;−)(2)

Table III: Symmetry-enforced band crossings in spinless band structures
of centrosymmetric orthorhombic SGs. The notation is identical to the one
introduced in Tables I and II.

SG points lines nontrivial
Z2 planes

notable features

47 (Pmmm)

48 (Pnnn) S,T,U,X,Y,Z

49 (Pccm) R,T,U,Z

50 (Pban) R,S,T,U,X,Y

51 (Pmma) U-X, S-R

52 (Pnna) U,X,Z, X-S(4) R-S-Y ZURT,
XUYT

movable DP

53 (Pmna) X,S T-Z

54 (Pcca) T,Z, U-Z(4),
R-T(4)

S-R-U-X

55 (Pbam) X-S-R-U, S-Y,
R-T

56 (Pccn) Z, Z-U(4),
Z-T(4)

Y-T-R-U-X,
S-R

XUSR,
YTSR

movable DP

57 (Pbcm) U-R,S-Y,T-Z,
(S-Y;R,T)(4)

only Dirac nodal
line at half filling

58 (Pnnm) Z X-S-R,S-Y

59 (Pmmn) X-U,S-R,Y-T

60 (Pbcn) Y, T-Y(4) X-U, R-T-Z,
(X-U;R)(4),
(R-T-Z;U)(4)

XSTZ Dirac nodal chain

61 (Pbca) T-Z,
(U-X;S)(4),
(S-Y;T)(4),
(T-Z;U)(4)

XYRZ three Dirac nodal
lines at half filling
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SG points lines nontrivial
Z2 planes

notable features

62 (Pnma) Z-U-X, U-R-T,
S-Y,
(R-U-X;S)

XUTY,
ZURT

63 (Cmcm) (R;−), Z-T

64 (Cmca) S Z-A

65 (Cmmm)

66 (Cccm) T,Z

67 (Cmme) R,S

68 (Ccce) T,Z,R,S

69 (Fmmm)

70 (Fddd) T,Y,Z

71 (Immm)

72 (Ibam) R,S,W

73 (Ibca) R,S,T,
W-[RYSYT](4)

movable DP

74 (Imma) T

Table IV: Symmetry-enforced band crossings in band structures with SOC
of centrosymmetric orthorhombic SGs. The notation is identical to the one
introduced in Tables I and II. All degeneracies are Dirac points (DP) and
lines and the overall twofold degeneracy due to PT -symmetry is not counted
in the number of involved bands. There are no nodal planes and in the fourth
column we list instead planes with a nontrivial Z2 invariant in terms of the
TRIMs they contain. The TRIM with identical inversion eigenvalue pairing
is highlighted in bold font.

There are two lattice types compatible with the tetragonal SG symme-

tries, the primitive lattice and the body-centered lattice. The fourfold rota-

tion or rotoinversion defines the primary symmetry axis and relates the re-

maining symmetry axes to their equivalent perpendicular instances. Hence,

there is no ambiguity in the orientation of the lattice with respect to the

symmetry. The shape of the BZ for body-centered lattices depends on the

relative length of lattice constants a and c. We use the BZ for the case c < a

for indicating high-symmetry lines based on labeled points. The results hold

true in the other case as well, after identifying the appropriate parametriza-

tion in coordinates. As an example, the line (0, 0, w) is given as Γ-Z-M and

connects Γ and M= (0, 0, 2π) along the kz-axis. In the BZ for c > a, the
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Figure B.2: Brillouin zones of the tetragonal crystal system with labeled
high-symmetry points. TRIMs are highlighted in dark blue. Representative
sections of high-symmetry lines are highlighted in color and correspond to
the axis invariant under rotations. Namely, the fourfold rotation axis along
the primary symmetry axis [001] (red), and twofold rotations axis along 〈100〉
(green), 〈110〉 (light blue), and [001] (orange). (a) Primitive BZ. (b) Body-
centered BZ for c < a, used for defining symmetry axes of body-centered SGs
in Tables V and VI. (c) Body-centered BZ for c > a. Figure adapted from
Ref. [53].

point (0, 0, 2π) is called Z, but any result holds equally on this axis. For

the tetragonal SGs, we considered only the spinful representations relevant

for band structures with non-negligible SOC. In contrast to the previous ta-

bles, pinned twofold points and lines are not given explicitly and we refer to

tabulated representations, e.g., on the Bilbao Crystallographic Sever [4, 3].

The only exceptions are Weyl and Dirac points at P in the body-centered

BZ, mentioned explicitly in the column ”notable features” , as this is not a

TRIM. For the noncentrosymmetric tetragonal SGs, given in Table V, we list

all movable twofold point crossings in the first column and all fourfold point

and line degeneracies in the second. The two cases of fourfold degenerate

lines in SGs 113 and 114 are given by the symbol MA and refer to the whole

axis (π, π, w). Otherwise, the notation is identical to the one defined previ-

ously. Table VI show the result for all centrosymmetric tetragonal SGs. In

the second column, we list all pinned and movable Dirac points. Again, the

number in brackets indicates the number of bands involved in an hourglass

crossing and does not include the overall spin-degeneracy due to Kramers

theorem. Pinned nodal lines can be found in the third column, indexed by
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the points on the line as shown in Fig. B.2. There are no movable nodal

lines or nodal planes in the centrosymmetric SGs, and only one case of a 2D

subsystem with a symmetry-enforced nontrivial invariant.

SG movable
Weyl
points

fourfold
points
& lines

movable lines nodal
planes

notable
features

75 (P4)

76 (P41) Γ-Z(8),
M-A(8),
X-R(4)

kz = π double WP

77 (P42) Γ-Z(4),
M-A(4)

double WP

78 (P43) Γ-Z(8),
M-A(8),
X-R(4)

kz = π double WP

79 (I4) WP at P

80 (I41) Γ-Z-
M(4)

double WP,
WP at P

81 (P 4̄)

82 (I 4̄)

89 (P422)

90 (P4212) Γ-X(4),
Z-R(4)

A, M kx/y = π fourfold WP

91 (P4122) Γ-Z(8),
M-A(8),
X-R(4)

kz = π double WP

92 (P41212) Γ-Z(8),
Γ-X(4)

M, R,
A

kx/y/z = π top. nodal
plane trio,
twofold/four-
fold (dou-
ble/quadru-
ple) WP

93 (P4222) Γ-Z(4),
M-A(4)

double WP

94 (P42212) Γ-Z(4),
Γ-X(4),
Z-R(4)

A, M kx/y = π top. nodal
plane duo,
double/four-
fold WP
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SG movable
Weyl
points

fourfold
points
& lines

movable lines nodal
planes

notable
features

95 (P4322) Γ-Z(8),
M-A(8),
X-R(4)

kz = π double WP

96 (P43212) Γ-Z(8),
Γ-X(4)

M, R,
A

kx/y/z = π see SG 92

97 (I422) WP at P

98 (I4122) Γ-Z-
M(4)

WP at P

99 (P4mm)

100 (P4bm) M, A (Γ-Z;X,R)(4)

101 (P42cm) Z, A, R

102 (P42nm) Z, M (Γ-Z-R;X)(4),
(X-M -A;R)(4)

nodal chain
metal

103 (P4cc) Z, R, A

104 (P4nc) Z, M,
A

(Γ-Z-R;X)(4),
(X-M -A;R)(4)

nodal chain
metal

105 (P42mc) Z, A

106 (P42bc) Z, A,
M,
M-A(8)

(Γ-Z;X,R)(4) movable four-
fold point

107 (I4mm) (N,Γ-Z,M-
Z1;−)(2)

108 (I4cm) P (Γ-Z,M-Z1;N)(4)

109 (I41md) M (Γ-Z;X)(4),
(N,Γ-Z,M-
Z1;−)(2)

WP at P,
nodal chain
metal

110 (I41cd) M (Γ-Z,P;X)(4),
(Γ-Z,X;P)(4),
(X-M ;P)(4),
(Γ-Z,M -Z1;N)(4),
(P,Γ-Z;−)(2),
(P,X-M-Z1;−)(2)

8N bands,
in-gap nodal
lines

111 (P 4̄2m)

112 (P 4̄2c) Z, A

113 (P 4̄21m) Γ-X(4),
Z-R(4)

MA kx/y = π fourfold line

114 (P 4̄21c) Γ-X(4) Z, MA kx/y = π fourfold line

115 (P 4̄m2)
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SG movable
Weyl
points

fourfold
points
& lines

movable lines nodal
planes

notable
features

116 (P 4̄c2) Z, A, R

117 (P 4̄b2) A, M (Γ-Z;X,R)(4)

118 (P 4̄n2) A-R(4),
R-X(4)

Z, M (Γ-Z-R;X)(4)
(X-M -A;R)(4)

nodal chain
metal

119 (I 4̄m2) (N,Γ-Z,M-
Z1;−)(2)

120 (I 4̄c2) X-P(4) (Γ-Z,M-Z1;N)(4)

121 (I 4̄2m)

122 (I 4̄2d) M (Γ-Z;X)(4) nodal chain
metal

Table V: Classification of band crossings in spinful bands with strong SOC
for time-reversal symmetric, noncentrosymmetric tetragonal SGs, given in
the fist column. The second column lists all movable Weyl points in terms
of the symmetry axis. The number in brackets indicates the total number of
connected bands involved in enforcing the crossing, i.e., (4) for an hourglass
crossing and (8) for an accordion state. In the third column we list pinned
and movable fourfold degenerate points, as well as pinned fourfold degenerate
lines. The latter ones are written with an overline to distinguish them from
movable points. The third column contains movable and almost movable
lines, as before indicated by the two sets of different eigenvalue pairing in a
plane. In the fourth column we list all nodal planes and in the last column
we highlight the most noteworthy features.

SG Dirac points Dirac lines nontrivial
Z2 planes

notable features

83 (P4/m)

84 (P42/m) Z, A

85 (P4/n) X, A, M, R

86 (P42/n) X, Z, M, R

87 (I4/m)

88 (I41/a) X, M

123 (P4/mmm)

124 (P4/mcc) A, Z, R

125 (P4/nbm) M, A, X, R

126 (P4/nnc) X, Z, A, R, M
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SG Dirac points Dirac lines nontrivial
Z2 planes

notable features

127 (P4/mbm) M-X, A-M, A-R

128 (P4/mnc) Z A-M, M-X

129 (P4/nmm) R-X, A-M

130 (P4/ncc) Z, R-Z(4),
A(8)

R-X, A-M, A-R movable DP,
double DP

131 (P42/mmc) Z, A

132 (P42/mcm) Z, R, A

133 (P42/nbc) X, Z, A, R, M,
A-M(4)

movable DP

134 (P42/nnm) X, Z, M, R

135 (P42/mbc) Z, A(8) M-X, A-M, A-R double DP

136 (P42/mnm) Z M-X, A-M

137 (P42/nmc) Z A-M, R-X

138 (P42/ncm) Z, R-Z(4) A-M, A-R, R-X XMAR movable DP

139 (I4/mmm)

140 (I4/mcm) N, P

141 (I4/amd) X, M

142 (I41/acd) X, M, N, P DP at P

Table VI: Classification of symmetry-enforced band crossings in centrosym-
metric tetragonal crystals with strong SOC. The second and third columns
list the positions of pinned and movable Dirac points and pinned Dirac lines,
respectively, following the notation of the previous tables. The fourth col-
umn lists two-dimensional planes within the BZ with an enforced nontrivial
Z2 invariant, indicated by the four TRIMs in the plane, with the one with
even parity highlighted in bold font. The last column highlights the most
noteworthy features.
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C. Derivation of DC conductiv-

ity for a periodically driven

system

Without the external field there is no current due to symmetry, and we

can define the entries of the polarization tensor Π(t, ω) as the coefficient of

the lowest order expansion of the current component with respect to the

amplitude component of the vector potential, Ji(t, ω) = Πij(t, ω)Aext
j . By

varying with respect to the amplitude, the frequency ω of the external field

is incorporated in the definition of the polarization tensor directly. There are

two contributions from the expansion,

Πij(t, ω) =
δJi
δAext

j

∣∣∣
Aext=0

= Tr

(
Ĵi(t)

δG<(t, t)

δAext
j

+
δĴi(t)

δAext
j

G<(t, t)

)
. (C.1)

A graphical representation of the following calculation in terms of Feynman

diagrams is shown in Fig. C.1. The wiggly lines represent the coupling to

the field or the current expectation value, the dashed line represents the

interaction with the bath. Starting with the derivative of the lesser Greens
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lim
ω→0

−1

ω

 j

i
+

−ω
j

i

−
+ω

j

i 

=
∂ω

j

i

−
∂ω

j

i

Figure C.1: Graphical representation of Eq. (C.12) in terms of Feynman
diagrams. The dashed line represents the coupling to the bath, wiggly lines
to the external electric field.

function, we first vary the retarded and advanced Greens functions,

δGR

δAext
i

(t, ε) =

∫
dt′ eiε(t−t′)

∫
dt′′

δGR(t, t′)

δÃext
i (t′′)

∂Ãext(t′′)

∂Aext
i

=

∫
dt′eiε(t−t′)

∫
dt′′GR(t, t′′)

∂H(t′′)

∂ki
eiωt′′GR(t′′, t′)

=
∑
n,m,m′

ei(ω−nΩ)tGR
n−m(ε− ω +mΩ)(Ĵi)m−m′G

R
m′(ε), (C.2)

δGA

δAext
i

(t, ε) =

∫
dt′eiε(t−t′)

∫
dt′′GA(t, t′′)

∂H(t′′)

∂ki
eiωt′′GA(t′′, t′)

=
∑
n,m,m′

ei(ω−nΩ)tGA
n−m(ε)(Ji)m−m′G

A
m′(ε+ ω + (m′ − n)Ω). (C.3)
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Inserting these relations into Eq. (5.3.33) leads to the expression

δG<(t, t)

δAi
=

∫
dε
δGR(t, ε)

δAi
Σ<(ε)GA(t, ε) +GR(t, ε)Σ<(ε)

δGA(t, ε)

δAi
(C.4)

=

∫ Ω
2

−Ω
2

dε
∑

m,n,q,r,s

ei(ω−(m−s)Ω)t
(

GR
m−n(ε+ ω + nΩ)(Ĵi)n−qG

R
q−r(ε+ rΩ)Σ<(ε+ rΩ)GA

r−s(ε+ rΩ)

+GR
m−n(ε+ nΩ)Σ<(ε+ nΩ)GA

n−q(ε+ nΩ)(Ĵi)q−rG
A
r−s(ε− ω − rΩ)

)
. (C.5)

We introduce the shorter notation

gRnm(ε) = GR
n−m(ε+mΩ) =

∑
α

|unα〉 〈umα |
ε− εα + iΓ

2

, (C.6)

gAnm(ε) = GA
n−m(ε+ nΩ) =

∑
α

|unα〉 〈umα |
ε− εα − iΓ

2

, (C.7)

as well as (Ĵi)n−m = ∂Qmn
∂ki

and Σ̂<
mn(ε) = δmnΣ<(ε + mΩ), and write the

above expression compactly as a matrix equation, implicitly including the

Floquet indices,

δG<(t, t)

δAi
=

∫
dε
∑
n,m

ei(ω+(n−m)Ω)t
(
gR(ε− ω)

∂Q

∂ki
gR(ε)Σ̂<(ε)gA(ε)

+gR(ε)Σ̂<(ε)gA(ε)
∂Q

∂ki
gA(ε+ ω)

)
nm
. (C.8)

The second term in Eq. (C.1) can be rewritten under the trace using

partial integration in the momentum component,

Tr

(
δĴ(t)

δAi
G<(t, t)

)
= Tr

(
∂Ĵ(t)

∂ki
eiωtG<(t, t)

)
= −Tr

(
Ĵ(t)eiωt∂G

<(t, t)

∂ki

)
. (C.9)

In the notation introduced above, the equal time lesser Greens function

reads G<
mn =

(
gR(ε)Σ̂<(ε)gA)(ε)

)
mn

, c.f., Eq. (5.4.8). Inserting the relation
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∂gR/A

∂ki
= gR/A(ε) ∂Q

∂ki
gR/A(ε), the k-derivative of the equal time lesser Greens

function reproduces Eq. (C.3) with ω = 0 in the argument of gR/A. In total,

we find

Πij(t, ω) =

∫
dε
∑
n,m

Ĵ(t)ei(ω+(n−m)Ω)t
(

(gR(ε− ω)− gR(ε))
∂Q

∂ki
gR(ε)Σ̂<(ε)gA(ε)

+gR(ε)Σ̂<(ε)gA(ε)
∂Q

∂ki
(gA(ε+ ω)− gA(ε))

)
nm
.(C.10)

Conductivity σij(t, ω) is defined as the coefficient of linear expansion with

respect to the electric field rather than the vector potential. Using the rela-

tion ∂
∂E

= ∂A
∂E

∂
∂A

= −1
iω

∂
∂A

, the cycle averaged conductivity for a static field

can be calculated from the polarization tensor by the relation

σDC
ij =

∫ T

0

dt

T
lim
ω→0

i

ω
Πij(t, ω) (C.11)

= −i Tr

∫
dε

∂Q

∂ki

∂gR(ε)

∂ε

∂Q

∂kj
gR(ε)Σ̂<(ε)gA(ε)

− ∂Q

∂ki
gR(ε)Σ̂<(ε)gA(ε)

∂Q

∂kj

∂gA(ε)

∂ε
. (C.12)

Here, the trace includes the Floquet indices explicitly. Taking the limit

ω → 0 turns the differences in Eq. (C.10) into derivatives and the DC con-

ductivity tensor contains only Fourier components of Ĵ and GR/A. Changing

into an eigenstate basis using Mαβ =
∑

mn 〈umα |Mmn

∣∣unβ〉 for all components

reproduces Eq. (5.5.4) given in the main text.
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[124] M. Büttiker. Absence of backscattering in the quantum Hall effect in

multiprobe conductors. Phys. Rev. B, 38:9375–9389, Nov 1988.

[125] N. A. Sinitsyn, Qian Niu, Jairo Sinova, and Kentaro Nomura. Disorder

effects in the anomalous Hall effect induced by Berry curvature. Phys.

Rev. B, 72:045346, Jul 2005.

[126] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and

N. P. Ong. Anomalous Hall effect. Rev. Mod. Phys., 82:1539–1592,

May 2010.

174



BIBLIOGRAPHY

[127] H.P. Breuer and M. Holthaus. Quantum phases and Landau-Zener

transitions in oscillating fields. Physics Letters A, 140(9):507–512,

1989.

[128] Johannes Mitscherling and Walter Metzner. Longitudinal conductivity

and Hall coefficient in two-dimensional metals with spiral magnetic

order. Phys. Rev. B, 98:195126, Nov 2018.

[129] James W McIver, Benedikt Schulte, F-U Stein, Toru Matsuyama, Gre-

gor Jotzu, Guido Meier, and Andrea Cavalleri. Light-induced anoma-

lous Hall effect in graphene. Nature physics, 16(1):38–41, 2020.

[130] S. A. Sato, J. W. McIver, M. Nuske, P. Tang, G. Jotzu, B. Schulte,
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