Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-8950
Autor(en): Schiemann, Thorben
Titel: Mechanismen der Faltenbildung beim Bundanstauchen an hohlen Fließpressteilen
Erscheinungsdatum: 2016
Verlag: Stuttgart : Institut für Umformtechnik
Dokumentart: Dissertation
Seiten: A-E, 216
Serie/Report Nr.: Beiträge zur Umformtechnik;76
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-89677
http://elib.uni-stuttgart.de/handle/11682/8967
http://dx.doi.org/10.18419/opus-8950
ISBN: 978-3-946818-01-4
Zusammenfassung: Der wirtschaftliche Durchbruch des Kaltfließpressens von Stahl gelang in den 1930er Jahren nach erfolgreicher Umsetzung des sogenannten Singer Patents [PAT59], das ein Verfahren zur Phosphatierung der für die Kaltformgebung eingesetzten Halbzeuge aus Stahl beschreibt. Die wirtschaftliche Bedeutung des Fließpressens und des Stauchens nahm im Zuge der Industrialisierung und der Massenproduktion stetig zu. Der Automobilsektor gilt gemeinhin als der größte Abnehmer für durch Fließpressen und Stauchen hergestellte Bauteile. Weitere große Abnehmer sind der allgemeine Maschinenbau und die Bauindustrie. Durch Fließpressen hergestellte Bauteile zeichnen sich gegenüber durch andere Fertigungsverfahren hergestellte Bauteile aus Stahl vor allem durch die überlegenen mechanischen Eigenschaften aufgrund der fertigungsbedingten Kaltverfestigung sowie des belastungsgerechten Faserverlaufs aus. Darüber hinaus sind sehr hohe Mengenleistungen sowie einbaufertige Form-, Maß- und Lagetoleranzen (zwischen IT6 - IT11 [VDI98]) erzielbar. Die Oberfläche fließgepresster Bauteile weißt eine geringe Rauigkeit auf. Angesichts der globalen Ressourcenknappheit nimmt ein weiterer Vorteil dieses Fertigungsverfahrens - die Ressourceneffizienz - einen immer höheren Stellenwert ein. Fortschritte bei den Fertigungsverfahren zur Herstellung der für die Formgebung benötigten Umformwerkzeuge, wie z.B. das Senkerodieren und das Drahtschneiden sowie Weiterentwicklungen der Werkzeug- und auch Werkstückwerkstoffe und der für die Umformung benötigten tribologischen Systeme, erlauben die Herstellung immer komplexerer Komponenten [Lan08]. Die komplexen Fertigungsprozessketten bei der Herstellung von Kaltfließpress- und Kaltstauchteilen beginnen im Walzwerk mit dem Design des für den Anwendungsfall benötigten Werkstoffes. Bei der Weiterverarbeitung vom Draht erfolgt meist eine Reduzierung des Ausgangsdurchmessers durch eine oder mehrere Ziehstufen, die Vereinzelung durch einen Scherprozess und die mehrstufige Umformung. Dem Umformprozess können Weiterverarbeitungsschritte wie das Walzen und das Spanen angeschlossen sein. Darüber hinaus sind Veredelungsprozesse wie das Verzinken und Wärmebehandlungsprozesse zur Erreichung der notwendigen Bauteilfestigkeiten möglich. Die Komplexität dieser Prozessketten in Verbindung mit dem globalen Kostendruck und bedarfssynchroner Produktionen erfordert die frühzeitige Erkennung und Vermeidung von Fehlern, möglichst bereits während der Entwicklungsphase. Ein Hilfsmittel zur frühzeitigen Fehlererkennung ist die Methode der finiten Elemente und die auf ihr basierenden Computerprogramme zur Umform- und Prozesssimulation. Erklärtes Ziel aktueller Entwicklungen im Bereich der Massivumformung (z.B. Forschungsverbund Massiver Leichtbau) ist die virtuelle Abbildung dieser Prozessketten, die nicht nur die Herstellung des Umformteils, sondern auch mögliche Wärmebehandlungsschritte sowie das Verhalten des Bauteils unter Einsatzbedingungen berücksichtigen. Voraussetzung für die frühzeitige Erkennung von Fertigungsfehlern ist eine ausreichende Kenntnis über deren Ursache, die Mechanismen zur Entstehung dieser Fehler sowie der daraus abgeleiteten Ansätze zur Vermeidung dieser Fehler. Die vorliegende Arbeit setzt an diesem Punkt an und enthält Untersuchungsergebnisse zu Entstehungsarten, Ursachen, numerischer Darstellung sowie Abstellmaßnahmen des Umformfehlers äquatoriale Faltenbildung beim zweiseitig eingespannten, innen geführten Bundanstauchen hohler Fließpressteile. Die eingangs erwähnte Ressourceneffizienz durch Kaltmassivumformung hergestellter Leichtbauteile lässt sich durch Verwendung hohler Halbzeuge als Ausgangsmaterial weiter steigern. In Kapitel 1 und Kapitel 2 der vorliegenden Arbeit werden daher neben den Grundlagen des Fließpressens und des Stauchens verschiedene Herstellungsmöglichkeiten rohrförmiger Halbzeuge und in Kapitel 2.4 deren umformtechnische Weiterverarbeitung zu hohlen Bundwellen mittels Stauchen, Quer-Fließpressen und zahlreicher Sonderverfahren zusammengefasst. Ferner erfolgt die Darstellung bekannter verfahrensspezifischer Grenzen mit dem Schwerpunkt der äquatorialen Faltenbildung in einer übersichtlichen Form, aus der sich die in Kapitel 3 beschriebene Motivation und Zielsetzung der vorliegenden Arbeit ableitet. Defizite verschiedener nationaler und internationaler wissenschaftlicher Arbeiten zur Thematik der vorliegenden Arbeit sind vor allem die Missachtung des Einflusses der Umformhistorie der hohlen Halbzeuge auf die Faltenbildung sowie fehlende Untersuchungen zum Einfluss mehrstufiger Umformverfahren, Wärmebehandlungen sowie kinematischer, thermischer und tribologischer Einflüsse auf die äquatoriale Faltenbildung. Aus dem Stand der Technik leitet sich darüber hinaus Forschungsbedarf zur numerischen Darstellung der bekannten und bislang unbekannten Faltenbildungsmechanismen ab. Die Parametrisierung der numerischen Modelle, die Vorgehensweise zur Ermittlung der dafür benötigten Materialkennwerte und die eingesetzten Sampling- und Auswertemethoden für die stochastischen Parameterstudien werden in Kapitel 4 vorgestellt. In Kapitel 5 werden die eingesetzten Untersuchungsmethoden, die verwendete Anlagentechnik sowie die mehrstufigen, experimentell und numerisch untersuchten Prozessrouten und Verfahrenskombinationen für die Generierung der Untersuchungsergebnisse der vorliegenden Arbeit vorgestellt. In Kapitel 6 werden die drei gefundenen und zur äquatorialen Faltenbildung beim zweiseitig eingespannten, innen geführten Bundanstauchen hohler Halbzeuge führenden Mechanismen erläutert und anhand numerischer sowie experimenteller Untersuchungen belegt. Metallographische Analysen unterstützten hierbei die wissenschaftliche Beweisführung. Es gibt, Stand heute, drei verschiedene zur Faltenbildung führende Mechanismen. Die Faltenbildung 1. Art, als Folge instabilen Ausknickens des hohlen Halbzeuges, wird signifikant von geometrischen Prozessgrößen wie der bezogenen freien Stauchhöhe und der Wanddicke des hohlen Halbzeuges beeinflusst. Die numerischen und experimentellen Untersuchungen in Kapitel 7 zeigen darüber hinaus, dass das Instabilitätsverhalten des hohlen Halbzeuges werkstoffunspezifisch ist und kinematische sowie thermische Einflussgrößen nicht signifikant sind. Über die im Stand der Technik dargestellten Einflussgrößen hinaus konnte gezeigt werden, dass die Umformhistorie bzw. die Vorverfestigung des hohlen Halbzeuges das instabile Ausknicken signifikant beeinflusst und die Verfahrensgrenze bezogene freie Stauchhöhe in Richtung geringerer freier Stauchhöhen verschoben wird. Mittels geeigneter Wärmebehandlungen der umformtechnisch hergestellten hohlen Halbzeuge konnte die Verfahrensgrenze bezogene freie Stauchhöhe erweitert werden (Kapitel 7.5). In Kapitel 8 wird gezeigt, dass eine verfahrensspezifische, lokal sehr hohe, Verfestigung in Wechselwirkung mit der Oberflächenqualität des hohlen Halbzeuges sowie der lokalen Oberflächenverkleinerung zu einem hohen Fließwiderstand innerhalb des Werkstückes führt und der von oben nachfließende Werkstoff im Bauteil eingeschlossen wird. Überlegungen, dass diese Faltenbildung 2. Art aufgrund Überschreitung des werkstoffspezifischen ertragbaren Formänderungsvermögens ein Riss ist, wurde durch REM- und EDX-Analysen in Kapitel 6 widerlegt. Im Rahmen der experimentellen Untersuchungen in Kapitel 8.2.3 und Kapitel 8.2.4 konnte darüber hinaus gezeigt werden, dass die lokale Verfestigung Hauptursache für die Faltenbildung 2. Art ist und durch eine geeignete Wärmebehandlung oder einen veränderten Stofffluss vermieden werden kann. Bei Vermeidung sowohl der Falte 1. Art als auch 2. Art kommt es aufgrund der verfahrensspezifischen kontinuierlichen Reduzierung der inneren Mantelfläche zu einer unvermeidbaren multiplen Faltenbildung 3. Art (Kapitel 6.3). Die numerischen Untersuchungen zur prädiktiven Vorhersage der Faltenbildung 2. Art in Kapitel 7.5 zeigen, dass mittels der in der verwendeten Simulationssoftware verfügbaren Schadenskriterien diese Art der Faltenbildung nicht darstellbar ist. Es wird daher in Kapitel 9 die Vorgehensweise und die Umsetzung zur Entwicklung eines empirischen Schädigungsmodells zur Vorhersage der Faltenbildung 2. Art beschrieben. Die Beschreibung der experimentell bestimmten Einflussgrößen auf die Faltenbildung 2. Art erfolgte mit mathematisch, empirischen Termen und in Kapitel 10 wird die Parametrisierung der Gleichungen mittels der vorliegenden experimentellen Datenbasis beschrieben. Die Validierung und Absicherung des empirischen Schädigungskriteriums sowie der Nachweis der Übertragbarkeit auf andere Verfahren erfolgt in den Kapiteln 10.2 und 10.3. Kapitel 11 enthält eine Zusammenfassung der durchgeführten Forschungsarbeiten. Die gewonnen Erkenntnisse über die Verfahrensgrenzen werden in werkstoffspezifischen Arbeitsdiagrammen übersichtlich dargestellt. Die numerischen und experimentellen Ergebnisse dieser Arbeit machen deutlich, dass der Umformfehler Faltenbildung beim zweiseitig eingespannten und innen geführten Bundanstauchen differenziert und unter Beachtung der Fertigungsfolge, beginnend mit der Herstellung des hohlen Halbzeugs, betrachtet werden muss. Generell ist eine geringe Vorverfestigung des hohlen Halbzeuges vor dem Stauchprozess anzustreben. Darüber hinaus sollte eine möglichst geringe Oberflächenrauigkeit der inneren Mantelfläche angestrebt und das Instabilitätsverhalten des hohlen Halbzeuges während des Stauchens berücksichtigt werden. Kinematische und tribologische Einflussgrößen auf die Bildung einer Falte können im Rahmen z.B. industriell erreichbarer Prozessgeschwindigkeiten vernachlässigt werden. Mittels des entwickelten und in eine kommerzielle Software implementierten, empirischen Schädigungsmodells konnte erstmals die Faltenbildung 2. Art mit einer relativ hohen Genauigkeit prädiktiv vorhergesagt werden. Die Ergebnisse dieser Arbeit leisten somit einen wichtigen Beitrag zur industriellen Prozessauslegung derartiger Umformprozesse.
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
IFU_76_Schiemann.pdf19,15 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.