Logo Logo
Hilfe
Kontakt
Switch language to English
Messung von Ericson-Fluktuationen
Messung von Ericson-Fluktuationen
Eine bestimmte statistische Verteilung der Fluktuationsbreiten einer quantenmechanischen Anregungsfunktion wird als "Ericson-Fluktuation" bezeichnet. Anregungsfunktionen mit diesem Merkmal wurden zuerst bei Compound-Kern-Reaktionen gemessen. Für die heutige Forschung sind Ericson-Fluktuationen in zweierlei Hinsicht von besonderer Bedeutung. Zum einen benötigt das zu ihrer theoretischen Beschreibung dienende Modell lediglich den Rahmen der quantenmechanischen Streutheorie, was sie in den Rang einer universellen quantenmechanischen Erscheinung erhebt. Zum anderen spielen sie eine Schlüsselrolle in der noch jungen "Quantenchaos"-Forschung, in der sie nach einer Vorhersage von Blümel und Smilansky quantenmechanische Streuvorgänge kennzeichnen, für die es ein klassisches Modell gibt, das chaotisches Verhalten aufweist. Diese herausgehobene theoretische Bedeutung der Ericson-Fluktuationen bedarf allerdings noch der experimentellen Rechtfertigung. Vor diesem Hintergrund sind die Ergebnisse des in dieser Arbeit aufgebauten Experimentes besonders wertvoll. Es liefert nicht nur die erste Messung von Ericson-Fluktuationen in der Atomphysik, sondern auch die erste experimentelle Bestätigung der Vorhersage von Blümel und Smilansky. Dazu wird in einem He(4)-Bad-Kryostat die Anregungsfunktion der Photoabsorption von Rb(85)-Atomen in gekreuzten statischen homogenen magnetischen und elektrischen Feldern an einem thermisch erzeugten Atomstrahl gemessen. Die magnetische Induktion wird durch supraleitende Magnetspulen in Helmholtz-Anordnung und das elektrische Feld durch einen Plattenkondensator erzeugt. Als Photonenquelle dient ein kontinuierlich betriebener frequenzstabilisierter Farbstoff-Laser. Im Zuge einer schrittweisen Durchstimmung des Farbstoff-Lasers wird die Anregungsfunktion in guter Näherung bis auf eine Proportionalitätskonstante bestimmt. Eine geeignete Geometrie des Experimentes unterdrückt den Doppler-Effekt und den bewegungsvermittelten Stark-Effekt bei der Spektroskopie am Atomstrahl. Eine zweistufige Anregung mit optischem Pumpen eines Zeeman-verschobenen Hyperfeinstrukturübergangs der Rb(85)-D2-Linie durch einen frequenzstabilisierten Dioden-Laser wählt einen bestimmten Unterzustand aus. Die Anregungsfunktion entspricht dann in guter Näherung der eines Atoms in einem reinen atomaren Zustand unter dem Einfluß festgelegter äußerer Felder. Angeregte Zustände werden unabhängig von ihrem Autoionisationsverhalten detektiert. Die Stärken der statischen Felder betragen etwa 22 kV/m und 1...2 T und werden mit hoher Genauigkeit bestimmt. Die relativen Fehler betragen etwa 2,5*10^(-3) für die elektrische Feldstärke und 5*10^(-4) für die magnetische Induktionsstärke. Mit Hilfe eines Referenz-Lasers und eines Michelson-Interferometers zur absoluten sowie eines längenstabilisierten Fabry-Perot-Interferometers zur relativen Frequenzmessung werden die Anregungsfunktionen auf eine absolute Frequenzskala umgerechnet. Knapp unterhalb der feldfreien Ionisationsschwelle kann beim Anlegen gekreuzter Felder mit geeigneten Werten für die elektrische Feldstärke und die magnetische Induktionsstärke im klassischen Modell des Valenzelektrons mit chaotischer Streuung gerechnet werden. Die angeregten Zustände haben dann eine starke Autoionisationsneigung. Die gemessene Anregungsfunktion für die Anregung dieser Elektronenenergien weist ausgeprägte Ericson-Fluktuationen auf. In Übereinstimmung mit numerischen Berechnungen für Wasserstoff nimmt die Deutlichkeit der Ericson-Fluktuationen mit der magnetischer Induktionsstärke zu. Die Ericson-Fluktuationen erweisen sich als sehr empfindlich gegen zahlreiche störende elektromagnetische Einflüsse. Diese müssen während der Messung unterdrückt werden. In dieser Arbeit werden Ericson-Fluktuationen auf einer Skala beobachtet, die zehn Größenordnungen unter der liegt, die für Compound-Kern-Reaktionen ermittelt wurde. Bis auf die Skalierung weisen die Verteilungen der Fluktuationsbreiten allerdings eine große Ähnlichkeit auf. Dies spricht für die Universalität der Ericson-Fluktuationen.
Ericson-Fluktuationen, Quantenchaos, gekreuzte Felder, Atomphysik, Spektroskopie
Stania, Gernot
2005
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Stania, Gernot (2005): Messung von Ericson-Fluktuationen. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Stania_Gernot.pdf]
Vorschau
PDF
Stania_Gernot.pdf

3MB

Abstract

Eine bestimmte statistische Verteilung der Fluktuationsbreiten einer quantenmechanischen Anregungsfunktion wird als "Ericson-Fluktuation" bezeichnet. Anregungsfunktionen mit diesem Merkmal wurden zuerst bei Compound-Kern-Reaktionen gemessen. Für die heutige Forschung sind Ericson-Fluktuationen in zweierlei Hinsicht von besonderer Bedeutung. Zum einen benötigt das zu ihrer theoretischen Beschreibung dienende Modell lediglich den Rahmen der quantenmechanischen Streutheorie, was sie in den Rang einer universellen quantenmechanischen Erscheinung erhebt. Zum anderen spielen sie eine Schlüsselrolle in der noch jungen "Quantenchaos"-Forschung, in der sie nach einer Vorhersage von Blümel und Smilansky quantenmechanische Streuvorgänge kennzeichnen, für die es ein klassisches Modell gibt, das chaotisches Verhalten aufweist. Diese herausgehobene theoretische Bedeutung der Ericson-Fluktuationen bedarf allerdings noch der experimentellen Rechtfertigung. Vor diesem Hintergrund sind die Ergebnisse des in dieser Arbeit aufgebauten Experimentes besonders wertvoll. Es liefert nicht nur die erste Messung von Ericson-Fluktuationen in der Atomphysik, sondern auch die erste experimentelle Bestätigung der Vorhersage von Blümel und Smilansky. Dazu wird in einem He(4)-Bad-Kryostat die Anregungsfunktion der Photoabsorption von Rb(85)-Atomen in gekreuzten statischen homogenen magnetischen und elektrischen Feldern an einem thermisch erzeugten Atomstrahl gemessen. Die magnetische Induktion wird durch supraleitende Magnetspulen in Helmholtz-Anordnung und das elektrische Feld durch einen Plattenkondensator erzeugt. Als Photonenquelle dient ein kontinuierlich betriebener frequenzstabilisierter Farbstoff-Laser. Im Zuge einer schrittweisen Durchstimmung des Farbstoff-Lasers wird die Anregungsfunktion in guter Näherung bis auf eine Proportionalitätskonstante bestimmt. Eine geeignete Geometrie des Experimentes unterdrückt den Doppler-Effekt und den bewegungsvermittelten Stark-Effekt bei der Spektroskopie am Atomstrahl. Eine zweistufige Anregung mit optischem Pumpen eines Zeeman-verschobenen Hyperfeinstrukturübergangs der Rb(85)-D2-Linie durch einen frequenzstabilisierten Dioden-Laser wählt einen bestimmten Unterzustand aus. Die Anregungsfunktion entspricht dann in guter Näherung der eines Atoms in einem reinen atomaren Zustand unter dem Einfluß festgelegter äußerer Felder. Angeregte Zustände werden unabhängig von ihrem Autoionisationsverhalten detektiert. Die Stärken der statischen Felder betragen etwa 22 kV/m und 1...2 T und werden mit hoher Genauigkeit bestimmt. Die relativen Fehler betragen etwa 2,5*10^(-3) für die elektrische Feldstärke und 5*10^(-4) für die magnetische Induktionsstärke. Mit Hilfe eines Referenz-Lasers und eines Michelson-Interferometers zur absoluten sowie eines längenstabilisierten Fabry-Perot-Interferometers zur relativen Frequenzmessung werden die Anregungsfunktionen auf eine absolute Frequenzskala umgerechnet. Knapp unterhalb der feldfreien Ionisationsschwelle kann beim Anlegen gekreuzter Felder mit geeigneten Werten für die elektrische Feldstärke und die magnetische Induktionsstärke im klassischen Modell des Valenzelektrons mit chaotischer Streuung gerechnet werden. Die angeregten Zustände haben dann eine starke Autoionisationsneigung. Die gemessene Anregungsfunktion für die Anregung dieser Elektronenenergien weist ausgeprägte Ericson-Fluktuationen auf. In Übereinstimmung mit numerischen Berechnungen für Wasserstoff nimmt die Deutlichkeit der Ericson-Fluktuationen mit der magnetischer Induktionsstärke zu. Die Ericson-Fluktuationen erweisen sich als sehr empfindlich gegen zahlreiche störende elektromagnetische Einflüsse. Diese müssen während der Messung unterdrückt werden. In dieser Arbeit werden Ericson-Fluktuationen auf einer Skala beobachtet, die zehn Größenordnungen unter der liegt, die für Compound-Kern-Reaktionen ermittelt wurde. Bis auf die Skalierung weisen die Verteilungen der Fluktuationsbreiten allerdings eine große Ähnlichkeit auf. Dies spricht für die Universalität der Ericson-Fluktuationen.