Logo Logo
Hilfe
Kontakt
Switch language to English
Morphological Studies of the CMB: Non-standard Models and Foregrounds
Morphological Studies of the CMB: Non-standard Models and Foregrounds
Recent measurements of the Cosmic Microwave Background (CMB) have allowed the most accurate determinations yet of the parameters of the standard CDM model, but the data also contain intriguing anomalies that are inconsistent with the assumptions of statistical isotropy and Gaussianity. This work investigates possible sources of such anomalies by studying the morphology of the CMB. An unexpected correlation is found between the CMB anisotropies and a temperature pattern generated in a Bianchi Type VIIh universe, i.e., an anisotropic universe allowing a universal rotation or vorticity. This model is found to be incompatible with other observations of the cosmological parameters, but correcting for such a component can serendipitously remove many of the anomalies from the WMAP sky. This result indicates that an alternative cosmological model producing such a morphology may be needed. A similar cross-correlation method applied to the microwave foregrounds studies the variation of the spectral behaviours of the Galactic emission processes across the sky. The results shed light on the unexpectedly low free-free emission amplitude as well as the nature of the anomalous dust-correlated emission that dominates at low frequencies. As a complementary method, phase statistics apply to situations where no a priori knowledge of the spatial structure informs the search for a non-Gaussian signal. Such statistics are applied to compact topological models as well as to foreground residuals, and a preliminary analysis shows that these may prove powerful tools in the study of non-Gaussianity and anisotropy.
cosmology, cosmic microwave background
Jaffe, Theresa
2006
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Jaffe, Theresa (2006): Morphological Studies of the CMB: Non-standard Models and Foregrounds. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Jaffe_Theresa.pdf]
Vorschau
PDF
Jaffe_Theresa.pdf

11MB

Abstract

Recent measurements of the Cosmic Microwave Background (CMB) have allowed the most accurate determinations yet of the parameters of the standard CDM model, but the data also contain intriguing anomalies that are inconsistent with the assumptions of statistical isotropy and Gaussianity. This work investigates possible sources of such anomalies by studying the morphology of the CMB. An unexpected correlation is found between the CMB anisotropies and a temperature pattern generated in a Bianchi Type VIIh universe, i.e., an anisotropic universe allowing a universal rotation or vorticity. This model is found to be incompatible with other observations of the cosmological parameters, but correcting for such a component can serendipitously remove many of the anomalies from the WMAP sky. This result indicates that an alternative cosmological model producing such a morphology may be needed. A similar cross-correlation method applied to the microwave foregrounds studies the variation of the spectral behaviours of the Galactic emission processes across the sky. The results shed light on the unexpectedly low free-free emission amplitude as well as the nature of the anomalous dust-correlated emission that dominates at low frequencies. As a complementary method, phase statistics apply to situations where no a priori knowledge of the spatial structure informs the search for a non-Gaussian signal. Such statistics are applied to compact topological models as well as to foreground residuals, and a preliminary analysis shows that these may prove powerful tools in the study of non-Gaussianity and anisotropy.