Lowering lattice forces in drug substance crystals to improve dissolution and solubility

Verringerung der Gitterkräfte in kristallinen Arzneistoffen zur Erhöhung der Auflösungsgeschwindigkeit und Löslichkeit

Please always quote using this URN: urn:nbn:de:bvb:20-opus-126232
  • Lattice forces are based on the attraction between the single moieties of molecules. The strength of lattice forces has an impact on the solid state and related physical properties such as melting point, boiling point, vapor pressure solvation and solubility. For solvation to occur, energy is required to break the lattice forces attracting ions and molecules among themselves. The energy for breaking up the attraction between the molecules is gained from the energy released when ions or molecules of the lattice associate with molecules of theLattice forces are based on the attraction between the single moieties of molecules. The strength of lattice forces has an impact on the solid state and related physical properties such as melting point, boiling point, vapor pressure solvation and solubility. For solvation to occur, energy is required to break the lattice forces attracting ions and molecules among themselves. The energy for breaking up the attraction between the molecules is gained from the energy released when ions or molecules of the lattice associate with molecules of the solvent. Solubility is therefore, directly linked to the energy which is required to break the lattice forces and the energy which is liberated by solvation of the molecules or ions. Based on this relation, the lattice forces in two acidic compounds and a neutral compound were subsequently lowered by different approaches with the intention to increase the solubility, supersaturation, and dissolution rate. The conversion to an ionic liquid and the embedding of the compound in a pH-sensitive matrix in an amorphous state were investigated with an acidic compound and its pro-drug. The tetrabutylphosphonium (TBPH) salt showed the most promising properties among the tested counter ions. It alters the properties of the compound from a highly crystalline physicochemical state to an amorphous readily soluble material showing supersaturation in a wider pH range and higher solubility than the sodium and potassium salts. A solid dispersion approach was developed in parallel. Solid dispersions with two different pH-sensitive polymers and different drug load were prepared by lyophilization to determine the miscibility of the compound and the polymer by differential scanning calorimetry (DSC). A miscibility of 50% of the amorphous acid with the pH-sensitive Eudragit L100-55 matrix and a miscibility of 40% with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was found. Both approaches, the TBPH salt and the solid dispersion based on the pH-sensitive Eudragit L100-55 were tested in vivo. The TBPH salt was dosed in a buffered solution to prevent precipitation in the acidic stomach pH. This resulted in BAV higher than the crystalline suspension but lower than the solid dispersion. There were no acute toxicology effects seen. Thus, TBPH was considered safe for further studies. The TBPH salts were very hygroscopic, sticky and prone to precipitation as free compound when exposed to low pH when simulating the passage through the stomach. Thus, the principle of the ionic liquid was combined with the principle of an amorphous solid dispersion. This mitigated the risk of precipitation of the TBPH salt during the passage of the stomach. Also delinquency upon open storage was improved by embedding the TBPH salt in a pH-sensitive polymer. Dissolution tests mimicking the pH gradient in the gastro intestinal tract confirmed the protective properties of the pH-sensitive polymer matrices against recrystallization at low stomach pH in vitro. Furthermore, supersaturation at pH ranges relevant in the intestines of preclinical species or humans was observed. The TBPH solid dispersion showed superior supersaturation behavior in vitro compared to the free acid in pH-sensitive matrix. However, equally increased bioavailability (BAV) was observed when the amorphous solid dispersion contained the free acid form or the TBPH salt. Absorption seemed to be so fast that the short in vitro supersaturation observed for the free from in pH-sensitive matrix was already sufficient for complete absorption within 15 - 30 minutes. This is in accordance with the short tmax of around 15 - 30 minutes after oral application of the low lattice force principles. The pharmacokinetic (PK) profile became the main focus of further optimization as the BAV was maximized already. Early maximal plasma concentration (tmax) went along with high maximal plasma concentration (Cmax) for the low lattice force principles. Central nervous system related side effects as consequence of the PK profile with such a high Cmax were likely to happen and therefore, the formulation principles were modified to maintain the doubled BAV and reduce the observed Cmax. Additionally, the compound showed a short half-life requiring a two times daily dose, which is suboptimal for a chronic treatment. The amorphous acid in pH-matrix showed a modified PK profile when dosed in a hydrogel but not in an oleo gel. Surprisingly, administration of the TBPH salt in pH-matrix suspended in oil showed a massive delay of the tmax to 8 hours and a reduction of Cmax by factor 2 - 3 with unchanged good BAV when administered as a suspension in oil without increased viscosity. TBPH salt solution with a high viscosity resulted in the same PK profile as when administered without increased viscosity. The animal model was changed from rat to dog. The dose was limited to 15 mg/dog since they reacted much more sensitively to the drug. BAV at this dose level was 100% for the crystalline suspension already, thus the focus of this study was not increasing BAV but to achieve prolonged and/or delayed exposure using different formulation principles elaborated in rats before. An immediate release formulation of 3 mg was combined with a delayed/modified release principle containing 12 mg of the compound. An additional study arm was conducted with a remote controlled device programmed to deliver a first dose of 3 mg instantaneously after passing the stomach and a second dose of 12 mg when entering the caecum. The tmax remained short for all formulation principles and it seemed that delayed and modified release lead to BAV reduction. The modified PK profiles could not be translated to an oral dog model which endorsed the hypothesis of an absorption window; however, the in vitro results could be translated to a dog model for colonic absorption. A nanosuspension of the crystalline compound, the TBPH salt in pH-matrix and the TBPH salt of the pro-drug of the compound were administered rectally to determine colonic absorption. The nanosuspension showed exposure around the limit of quantification whereas the TBPH in pH-matrix showed 4% BAV and the pro-drug as TBPH salt in pH-matrix resulted in 12% BAV although the pro-drug is factor 3 less soluble. This was in line with the increased permeation of the pro-drug which was observed in the Caco2 experiments. The bioavailability was increased by using the low lattice force principles and validated the hypothesis for the acidic drug and its pro-drug in the colonic dog model. Chemical and physicochemical stability of the investigated solid dispersions was confirmed for at least 18 months at room temperature. Amorphous solid dispersions were investigated to lower lattice forces of a neutral molecule. Solid dispersions are well known from literature; however, they are not frequently used as principles for dosage forms due to limitations in physical stability and complex manufacturing processes. A viable formulation principle was developed for a neutral compound assuming that the stability of a solid dispersion with a drug load below the maximal miscibility will be better than one which exceeds the maximal miscibility. The dispersed and amorphous state of the neutral compound resulted in a higher energy level and chemical potential compared to a crystalline form implying that they are thermodynamically instable and sensitive to recrystallization. This was confirmed by the fast recrystallization of an amorphous solid dispersion made from HPMC with 50% drug load which recrystallized within a few days. Solid dispersions with different drug loads in different polymers and in polymer mixtures were prepared by lyophilization. The miscibility of the compound and the polymer was determined by DSC as the miscibility is a surrogate for maximal stable drugload of the solid dispersion. HPMC was found to be miscible with 20% compound confirming the instability of the 50% HPMC solid dispersion observed earlier. Based on dosing needs, a miscibility/drug load of at least 30% was mandatory because of the dosing requirements to dose less than 1500 mg of final formulation. This was considered as maximal swallowable volume for later clinical development. Thus, all systems with a miscibility higher or equal to 30% drug in polymer were evaluated in an in vitro dissolution test and ranked in comparison with amorphous pure compound, crystalline compound and a 20% drug load solid dispersion made from HPMC. The HPMC based solid dispersion which gave good exposure in previous in vivo experiments did not support the high drugload that was needed. Therefore, similar in vitro behavior of this solid dispersion should result in similar in vivo performance. The polyvinylpyrrolidone (PVP) based solid dispersions scored with high drug load and medium initial kinetic solubility. The Soluplus based solid dispersion offer lower drug load and slightly lower initial kinetic solubility, but showed an extended supersaturation. The 4 best performing systems were evaluated in rats. They resulted in a short Tmax of 15 minutes and BAV higher than 85% indicating fast and complete absorption. The reference HPMC based solid dispersion with a drug load of 20% showed 65% BAV. This showed that higher drug loads were feasible and did not limit absorption in this animal model. Since the estimated human dose required a higher formulation density than obtained from lyophilization or spray drying, melt extrusion of the solid dispersion was considered to be the most adequate technology. The process temperature needed to be below 200 °C as this value represents the degradation temperature of the polymers. It was investigated by differential scanning calorimetry whether the compound can be mixed with the molten polymer. None of the polymers could dissolve the crystalline compound below the degradation point of the polymer. The temperature had to be increased to 260 °C until the compound was molten together to a monophasic system with polymer. This resulted in degradation of the polymers. Therefore, different plasticizers and small organic molecules with similar functional groups as the compound were investigated on their ability to reduce the melting point of the mixture of polymer and compound. Positive results were obtained with several small molecules. Based on a literature review, nicotinamide had the least concerning pharmaceutical activities and was chosen for further development. Solid dispersions with the same composition as the ones tested in rat were prepared with 9% nicotinamide as softener. Extrusion without nicotinamide was not possible at 135 °C or at 170 °C whereas the addition of 9% nicotinamide led to a homogenous extrudate when processed at 135 °C. The solid state of the extrudates was not molecularly dispersed but the compound was in a crystalline state. They could not reach the in vitro performance observed for the lyophilized solid dispersions with Soluplus or PVP derivatives. Nevertheless, the performances in the supersaturation assay were comparable to the HPMC based lyophilized solid dispersion. The Soluplus and PVP based crystalline extrudates were evaluated in a dog PK showing that the crystalline solid dispersion does not enable BAV higher than 90% within 24 hours after application. In parallel, the hygroscopicity of the meltextrudates was investigated by DVS and the best performing system based on Kollidon VA64 was further optimized regarding the solid state after its extrusion. The minimal process temperature to obtain a fully amorphous solid dispersion was determined by hot stage X-ray powder diffraction analysis (XRPD) and confirmed by lab scale extrusion. Addition of 9% nicotinamide lowered the process temperature from 220 °C (without nicotinamide) to 200 °C with nicotinamide. The minimal temperature for obtaining crystal free material was independent of the nicotinamide amount as soon as it exceeded 9%. Lowering the process temperature with nicotinamide reduced the impurity levels from 3.5% at 220 °C to 1.1% at 200 °C. The fully amorphous extrudates performed now better in the in vitro supersaturation assay than the lyophilized amorphous HPMC solid dispersion and the crystalline extrudates which were extruded at 135 °C. The process was up-scaled to a pilot scale extruder with alternative screw designs increasing mechanical shear forces and mixing which enabled lower process temperatures. This resulted in a maximal process temperature of 195 °C when nicotinamide was present and 205 °C without nicotinamide. However, shorter process time and reduced process temperatures (compared to the lab scale equipment) resulted in impurity levels smaller than 0.5% for both compositions and temperatures and made the nicotinamide obsolete. The amorphous extrudates from the pilot scale extruder performed better in vitro than the crystalline extrudates from the lab scale extruder and the lyophilized HPMC solid dispersion. A comparable PK profile of the HPMC solid dispersion and the amorphous melt extruded formulation principle was anticipated from these in vitro results. This was confirmed by the pharmacokinetic profile in dogs after oral administration of the final extruded solid dispersion formulation which was equivalent with the pharmacokinetic profile of the HPMC based solid dispersion formulation. The assumption that using a drug load below the miscibility prevents the solid dispersion from recrystallization was verified at least for a limited time by a stability test at elevated temperatures for 3 months showing no change in solid state. This indicates the opportunities of the low lattice forces approach, but also showed the importance of developing principles first assuring stable solid state, performance in vitro and in vivo, tailor them in a second step based on performance and combine them with technology such as melt extrusion as third step. If these steps are done in the context of clinical needs and quality it can rationalize the development of a solid dispersion and minimalize the formulation related risks regarding biopharmacy and stability.show moreshow less
  • Gitterkräfte basieren auf der Interaktion zwischen einzelnen funktionellen Gruppen und Regionen von Molekülen oder Ionen. Die Summe der Interaktionen beeinflusst physikalische Eigenschaften wie Schmelzpunkt, Siedepunkt, Dampfdruck, Solvatisierung und Löslichkeit. Für die Solvatisierung eines Moleküls aus einem Feststoff muss zum einen Energie aufgewendet werden, damit das Molekül seine Interaktionen mit den es umgebenden Molekülen überwinden kann. Zum anderen wird Energie frei, wenn das herausgelöste Molekül mit dem Solvens interagiert. DieGitterkräfte basieren auf der Interaktion zwischen einzelnen funktionellen Gruppen und Regionen von Molekülen oder Ionen. Die Summe der Interaktionen beeinflusst physikalische Eigenschaften wie Schmelzpunkt, Siedepunkt, Dampfdruck, Solvatisierung und Löslichkeit. Für die Solvatisierung eines Moleküls aus einem Feststoff muss zum einen Energie aufgewendet werden, damit das Molekül seine Interaktionen mit den es umgebenden Molekülen überwinden kann. Zum anderen wird Energie frei, wenn das herausgelöste Molekül mit dem Solvens interagiert. Die Differenz zwischen der benötigten Energie, um die Interaktionen im festen Zustand zu überwinden, und der Energie, die frei wird, wenn das gelöste Molekül oder Ion mit dem Solvens interagiert, bestimmt die Löslichkeit. Auf dieser Gesetzmässigkeit aufbauend wurden die Gitterkräfte von zwei sauren Arzneistoffen und einem neutralen Arzneistoff sukzessive reduziert, um ihre Löslichkeit entsprechend zu erhöhen. Die sauren Verbindungen, das Stamm-Molekül und dessen Prodrug, wurden mit verschiedenen Gegenionen in ionische Flüssigkeiten umgewandelt. Verschiedene Gegenionen aus der Literatur wurden in die Untersuchungen miteinbezogen. Das Tetrabutylphosphonium-Gegenion (TBPH) hatte besonders vielversprechende Eigenschaften. Es modifizierte den Feststoffzustand von hochkristallin zu amorph. Dies resultierte in guten Löslichkeiten in ungepufferten wässrigen Systemen, vergleichbar mit den bereits bekannten Natriumsalze. Zusätzlich zeigten sie eine massiv verbesserte Löslichkeit bei biorelevantem pH. Die ionischen Flüssigkeiten blieben in Lösung in pH-Bereichen, in denen die klassischen Salze aufgrund ihres Eigen-pHs bereits präzipitierten. Bei einem tiefen pH, wie er im Magen vorkommt, fiel jedoch unmittlerbar die freie Form aus. Daher wurde parallel zum TBPH-Salz eine Solid Dispersion entwickelt auf Basis von pH-sensitiven Polymeren. Diese sollten zum einen den amorphen Zustand stabilisieren, zum anderen verhindern, dass der amorphe Arzneistoff bereits im Magen freigesetzt wird, da er als Säure bei tiefem pH schlecht löslich ist und ausfallen kann. Es wurden Trägermaterialen evaluiert, welche erst bei einem pH grösser als 5.5 löslich sind. Kriterium war die Mischbarkeit der Matrixpolymere mit dem Arzneistoff. Dazu wurden Solid Dispersions, bestehend aus der Verbindung und den Polymermatrices, in verschiedenen Verhältnissen lyophilisiert und anschliessend mit dynamischer Differenzkalorimetrie (DSC) auf ihre Mischbarkeit hin untersucht. Eudragit L100-55 wurde als pH-sensitives Matrixpolymer ausgewählt, da es bis zu 50% mit der Verbindung mischbar war. Hydroxypropyl-methylcellulose-Acetat-Succinat (HPMC-AS) jedoch nur zu 40%. In einer Tierstudie wurden das TBPH-Salz und die Solid Dispersion gegen eine Suspension des kristallinen Arzneistoffes getestet. Aufgrund der stark pH-abhängigen Löslichkeit des TBPH-Salzes wurde es als gepufferte Lösung appliziert, die Solid Dispersion als Suspension. Die beste Pharmakokinetik (PK) wurde für die Solid Dispersion gemessen, gefolgt von der TBPH-Salz-Lösung. Da das TBPH-Salz auch Schwächen im Bereich der Hygroskopizität und der Verarbeitung (wie Zerfliessen und Kleben) zeigte, wurde die ionische Flüssigkeit und die freie, amorphe Form des Arzneistoffes in eine pH-sensitive Matrix inkorporiert. Dissolutionsversuche, welche den pH-Verlauf nach oraler Applikation wiederspiegelten, zeigten, dass die anfänglich beobachtete Präzipitation bei den ionischen Flüssigkeiten bei tiefem pH ausbleibt, wenn sie in die pH-Matrix inkorporiert sind. Zusätzlich konnte eine Übersättigung in Kombination mit der pH-sensitiven Matrix beobachtet werden, nachdem der pH-Wert auf Niveau des Dünndarms anstieg. Der Effekt der Supersaturierung war jedoch mit der ionischen Flüssigkeit signifikant länger. Ebenso verbesserte sich mit der Solid Dispersion die Handhabung der ionischen Flüssigkeiten als Feststoff. Die modifizierten Löslichkeitseigenschaften in vitro führten auch zu einer verdoppelten Bioverfügbarkeit (BAV) in Ratten. Im PK-Profil war kein Unterschied auszumachen, ob der Arzneistoff amorph in pH-Matrix appliziert wurde oder als ionische Flüssigkeit in der pH-Matrix. Die Supersaturierung der freien amorphen Form in pH-Matrix, obwohl wesentlich kürzer als mit dem TBPH-Salz, reichte bereits für eine komplette Absorption in 15-30 Minuten. Dies widerspiegelte auch der tmax-Wert von 30 Minuten. Da Nebenwirkungen oft einhergehen mit hohen maximalen Plasmakonzentrationen (Cmax) und der Arzneistoff relativ schnell aus der Blutzirkulation eliminiert wird, wurde nun versucht, das PK-Profil entsprechend zu modifizieren, um eine längere Exposition und einen tiefere Cmax-Wert bei gleicher Fläche unter der Kurve (AUC) zu erreichen. Die freie amorphe Form des sauren Arzneistoffes zeigte eine leicht verlängerte Zeitspanne, bis Cmax erreicht wurde (tmax), und einen tieferen Cmax-Wert, wenn die Viskosität der dosierten Suspension mit Hydroxypropylmethylcellulose (HPMC) erhöht wurde. Überraschenderweise zeigte das in Maisöl dosierte TBPH-Salz ein um 7 Stunden verzögertes tmax und einen reduzierten Cmax-Wert. Da die Ratte nur bedingt Rückschlüsse und Extrapolation für ein humanes PK-Profil zulässt, wurde der Beagle-Hund als finales und repräsentatives Tiermodel gewählt. Die Hunde reagierten viel sensitiver auf die Verbindung. Deshalb war die maximale Dosis auf 15 mg pro Hund limitiert. Bei dieser Dosis beträgt die BAV für die kristalline freie Form des Arzneistoffes bereits 100%. Das Interesse lag primär auf der Modifizierung des PK-Profils hin zu tieferen Cmax-Werten und späterem tmax bei gleichbleibender AUC. Die Formulierungsansätze aus der Rattenstudie wurden zu einer Dosis von 3 mg kombiniert, welche unmittelbar freigesetzt wird, und einer zweiten Dosis von 12 mg, welche verzögert oder langsamer aufgenommen werden sollte. Zusätzlich wurde eine ferngesteuerte Kapsel benutzt, welche 3 mg sofort nach der Passage des Magens und 12 mg bei Ankunft im Caecum freisetzen sollte. Das tmax blieb für alle Kombinationen kurz und die verzögert oder langsamer freisetzenden Prinzipien resultierten in einer tieferen Exposition. Dies führte zur Formulierung der Hypothese, dass dieser Arzneistoff ein Absorptionsfenster haben könnte. Daher würde die Aufnahme, zumindest im Wesentlichen, auf den Dünndarm beschränkt. Die Entwicklung verzögert freisetzender Arzneiformen, die Anteile der Wirkstoffbeladung distal zum intestinalen Teil des Darmes freisetzen, wäre dann nicht zweckmäßig. Dieser Wirkstoffanteil würde in geringerem Maße, gegebenenfalls auch gar nicht, aufgenommen werden. Da technische Probleme bei der verzögerten Freisetzung nicht ausgeschlossen werden konnten, wurden die Formulierungen nun rektal in den Bereich des Caecums appliziert. Der Arzneistoff wurde als Nanosuspension, als TBPH in pH-Matrix und als TBPH des Prodrugs rektal appliziert. Die Exposition bei der Nanosuspension bewegte sich nahe dem Detektionslimit und ein wenig höher beim TBPH in pH-Matrix. Die Bioverfügbarkeit des Prodrugs als TBPH in pH-Matrix verglichen mit dem TBPH der Grundverbindung in der pH-Matrix war viermal höher. Dies passt gut zur besseren Permeation des Prodrugs in Caco2-Zellen, obwohl das Prodrug um Faktor 3 schlechter löslich ist. Amorphe Solid Dispersions wurden auf ihre Fähigkeit untersucht, die Gitterkräfte im Kristall eines neutralen Moleküls zu senken. Solid Dispersions sind seit ungefähr 50 Jahren in der Literatur bekannt, werden jedoch erst seit kürzerer Zeit erfolgreich von der Pharmaindustrie vermarktet. Die amorphe Form mit dem latenten Risiko der Rekristallisation bedeutet ein grosses Risiko in Bezug auf die Haltbarkeit eines Arzneimittels. In der vorliegenden Arbeit wurde diesem Risiko Rechnung getragen, indem die Mischbarkeit der Substanz mit den Polymeren gründlich untersucht wurde. Systeme, welche mischbar sind, haben ein wesentlich kleineres Risiko, bei der Lagerung zu rekristallisieren. Der amorphe Zustand geht einher mit einer höheren Energie im System, welche das System anfällig macht, durch Kristallisation in den tieferen Energiezustand überzugehen. Dies wurde bei einer HPMC-basierten Solid Dispersion mit 50% Beladung beobachtet. Die Bestimmung der Mischbarkeit deutete auf eine maximale Mischbarkeit von nur 20% hin. Dies korrelierte mit der Rekristallisation dieser Solid Dispersion innerhalb von zwei Wochen, wohingegen diejenige mit nur 20% Beladung wesentlich stabiler war. Basierend auf der zu erwartenden Dosis von 200  400 mg im Menschen, wie sie mit Hilfe der PK-Software vorhergesagt wurde, wurde eine Beladung von mindestens 30% spezifiziert. Alle Kombinationen, die bei der Analyse von den lyophilisierten Systemen mit DSC eine Mischbarkeit von 30% und mehr zeigten, wurden daher in einem Dissolutionstest untersucht. Die Resultate wurden in Relation zum reinen amorphen Arzneistoff, der kristallinen Form und der Solid Dispersion mit HPMC und 20% Beladung bewertet. Diese Solid Dispersion zeigte in Ratten bereits sehr gute Ergebnisse. Daher galt sie als positive Referenz. Systeme, die in vitro gleich gut oder besser abschnitten, sollten ebenfalls in vivo gut abschneiden. Polyvinylpyrrolidon (PVP)-basierte Systeme punkteten mit guter Mischbarkeit und hoher kinetischer Löslichkeit. Soluplus-basierte Systeme zeichneten sich hingegen eher durch lange Supersaturation bei etwas tieferen kinetischen Löslichkeiten und etwas tieferen Mischbarkeiten aus. In der Ratte zeigten alle getesteten Solid Dispersions eine bessere BAV als diejenige mit HPMC. Das tmax war mit 15 Minuten früh und die Absorption vollständig. Dies zeigte, dass höhere Beladungen durchaus möglich sind, ohne dass dies einen negativen Einfluss auf die PK hat. Mit der antizipierten Dosis für den Menschen fielen alle Herstellungsverfahren weg, bei denen das finale Produkt eine kleine Dichte hat. Als adäquat wurde somit die Hot Melt-Extrusion als Herstellungsmethode gewählt. Dieser Prozess hat seine Limitierung jedoch in der maximal möglichen Prozesstemperatur, welche je nach Gerät und Polymer bei ungefähr 200 °C liegt. DSC-Untersuchungen zeigten, dass aber 260 °C nötig sind, um die Substanz und das Polymer zu einer amorphen Phase zusammenzuschmelzen. Dies resultierte in einer Verkohlung der Polymere und war somit nicht umsetzbar. Verschiedene klassische plastifizierende Substanzen und kleinere organische Moleküle mit homologen funktionellen Gruppen wurden auf ihre schmelzpunktreduzierende Wirkung hin untersucht. Vielversprechende Resultate wurden mit mehreren kleinen organischen Molekülen beobachtet. Die klassischen plastifizierenden Substanzen waren allesamt nicht mischbar mit dem Arzneistoff. Nicotinamid wurde aufgrund seines Status als Nahrungsergänzungsmittel für die weitere Entwicklung ausgewählt. Die Solid Dispersions aus der Rattenstudie wurden mit den identischen Beladungen gemischt, jedoch waren die Pulvermischungen bei Temperaturen unter 170 °C nicht extrudierbar. Bei Zugabe von 9% Nicotinamid war die Mischung leicht über dem Schmelzpunkt von Nicotinamid bei 135 °C extrudierbar. Die Extrudate waren für alle verwendeten Polymere kristallin, die Resultate im Auflösungstest im Bereich der HPMC-Solid Dispersion mit 20% Beladung konnten aber mit den Ergebnissen der Kollidon- und Soluplus-basierten Systeme aus der Rattenstudie (alle amorph) nicht mithalten. Die folgende Hundestudie, welche mit einer Formulierung basierend auf Kollidon VA64, einer auf Kollidon K12/K30 und einer auf Basis Kollidon VA64/Soluplus Formulierung durchgeführt wurde, zeigte eine Verbesserung der PK im Hund. Gleichzeitig war aber auch ersichtlich, dass die amorphe HPMC-Solid Dispersion mit 20% Beladung noch wesentlich besser abschnitt. Daher wurde der Extrusionsprozess optimiert, um ein komplett amorphes Extrudat zu erhalten. Parallel wurden die Solid Dispersions per DVS auf ihre Hygroskopizität hin getestet. Kollidon VA64 zeigte die geringste Wasseraufnahme. Zusätzlich ist das Polymer laut Hersteller temperaturstabil bis ungefähr 230 °C. Die Prozesstemperatur wurde mittels Hot Stage-Pulverdiffraktometrie (XRPD) bestimmt, indem eine physikalische Mischung erhitzt wurde und dabei jeweils XRP-Diffraktogramme erstellt wurden, bis bei 230 °C keine kristallinen Signale mehr beobachtbar waren. Diese Temperatur lieferte auch auf dem im Labormassstab arbeitenden Extruder komplett amorphes Material. Die minimale Extrusionstemperatur betrug 220 °C ohne Nicotinamid und 200 °C mit 9% Nicotinamid. Höhere Nicotinamidanteile reduzierten die minimale Extrusionstemperatur nicht weiter, kleinere Anteile erhöhten sie jedoch. Die um 20 °C reduzierte Prozesstemperatur senkte den Anteil von Abbauprodukten von 3.5% ohne Nicotinamid auf 1.1% mit Nicotinamid. Der Wechsel auf einen grösseren Extruder mit variablem Schraubendesign und verschiedenen Temperaturzonen ermöglichte grössere Scherkräfte, was tiefere Prozesstemperaturen ohne kristalline Anteile im Extrudat erlaubte. 195 °C waren mit 9% Nicotinamid nötig, 205 °C ohne. Beide Extrudate zeigten unter 0.5% Abbauprodukte. Dies machte den Gebrauch von Nicotinamid obsolet. Die Extrudate vom grösseren Extruder zeigten Dissolutionsergebnisse, welche identisch mit den lyophilisierten aus den Rattenstudien waren. Diese waren somit besser als die kristallinen Extrudate oder die HPMC-basierte 20% beladene Solid Dispersion. Das gute Abschneiden im in vitro-Test bestätigte sich in einer Hundestudie. Die Exposition der Kollidon basierten Extrudate war mit der PK des HPMC-Systems vergleichbar. Die Stabilität der beiden extrudierten Varianten wurde in einem Stabilitätstest unter Stressbedingungen verifiziert. Keines der Systeme zeigte physikalische Instabilitäten, und die Annahme, dass Beladungen von Systemen unterhalb ihrer maximalen Mischbarkeit physikalisch stabil sind, wurde für den gewählten Zeitraum von 3 Monaten auch unter Stressbedingungen bestätigt. Dies zeigt, dass eine rationale Entwicklung einer Solid Dispersion in einem finalen Produkt resultiert, welches die biopharmazeutischen Ansprüche ebenso erfüllt wie jene bezüglich der physikalischen Stabilität.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Toni Widmer
URN:urn:nbn:de:bvb:20-opus-126232
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Referee:Prof. Dr. Dr. Lorenz Meinel
Date of final exam:2016/01/29
Language:English
Year of Completion:2015
Sonstige beteiligte Institutionen:Novartis AG
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Arzneimittel; Löslichkeit; Bioverfügbarkeit
Tag:Ionic Liquids; lowering lattice forces; oral bioavailability; poorly water soluble drugs; solid dispersion
Release Date:2017/01/30
Licence (German):License LogoDeutsches Urheberrecht