Prozessierung und elektrische Charakterisierung von ZnSe Heterostrukturen in verschiedenen Messgeometrien zum eindeutigen Nachweis der elektrischen Spininjektion

Processing and electrical characterization of ZnSe heterostructures in various measurement geometries to unambiguously detect electrical spin injection

Please always quote using this URN: urn:nbn:de:bvb:20-opus-15003
  • 2-Punkt Transportmessungen, die in der Vergangenheit an ZnSe-basierenden DMS/NMS/DMS Multischichtsystemem durchgeführt wurden, zeigten eine 25-prozentige Erhöhung des Widerstandes beim Übergang vom unpolarisierten in den polarisierten Zustand des DMS. Dieser Magnetowiderstandseffekt wurde durch elektrische Spininjektion in den NMS erklärt. In dieser Arbeit wird zunächst anhand von 4-Punkt Transportmessungen an miniaturisierten, elektronenstrahllithographisch gefertigten DMS/NMS/DMS Strukturen dieser Widerstandseffekt näher untersucht, um eine2-Punkt Transportmessungen, die in der Vergangenheit an ZnSe-basierenden DMS/NMS/DMS Multischichtsystemem durchgeführt wurden, zeigten eine 25-prozentige Erhöhung des Widerstandes beim Übergang vom unpolarisierten in den polarisierten Zustand des DMS. Dieser Magnetowiderstandseffekt wurde durch elektrische Spininjektion in den NMS erklärt. In dieser Arbeit wird zunächst anhand von 4-Punkt Transportmessungen an miniaturisierten, elektronenstrahllithographisch gefertigten DMS/NMS/DMS Strukturen dieser Widerstandseffekt näher untersucht, um eine Bestimmung der Spinrelaxationslänge im nichtmagnetischen II-VI Halbleiter zu erlauben. Aufgrund der im Rahmen dieser Experimente erhaltenen Ergebnisse muss jedoch die Verknüpfung des positiven Magnetowiderstandseffekts mit der elektrischen Spininjektion in den NMS des Multischichtsystems revidiert werden. Im weiteren Verlauf der Arbeit werden Strukturen mit Abmessungen in der Größenordnung von 1 µm hergestellt und gemessen, mit deren Hilfe ein eindeutiger Nachweis der elektrischen Spininjektion in einen nichtmagnetischen Halbleiter mittels Transportmessungen ermöglicht wird. Mit diesen Resultaten kann eine oberer Grenzwert für die Spinfliplänge in ZnBeSe von 100 nm abgeschätzt werden.show moreshow less
  • 2-probe transport measurements that were performed in the past on ZnSe-based DMS/NMS/DMS multilayer-systems showed a 25% increase of the resistance during the transition of the DMS from its unpolarized to its polarized state. This magnetoresistance effect was described by spin injection into the NMS. In this work, this resistance effect is further investigated by 4-probe transport measurements on miniaturized DMS/NMS/DMS structures that were fabricated by electron beam lithography to allow the determination of the spin-relaxation length in the2-probe transport measurements that were performed in the past on ZnSe-based DMS/NMS/DMS multilayer-systems showed a 25% increase of the resistance during the transition of the DMS from its unpolarized to its polarized state. This magnetoresistance effect was described by spin injection into the NMS. In this work, this resistance effect is further investigated by 4-probe transport measurements on miniaturized DMS/NMS/DMS structures that were fabricated by electron beam lithography to allow the determination of the spin-relaxation length in the non-magnetic II-VI semiconductor. On the basis of the results that were obtained in the framework of these experiments the connection of the positive magnetoresistance effect with spin injection into the NMS of the multilayer-system has to be revised. In the further course of this work structures with dimensions of the order of 1 µm are fabricated und measured that allow the unambiguous detection of electrical spin injection into a non-magnetic semiconductor by transport measurements. With these results an upper limit of the spin-flip length in ZnBeSe of 100 nm can be estimated.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Frank Lehmann
URN:urn:nbn:de:bvb:20-opus-15003
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2005/09/22
Language:German
Year of Completion:2005
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Zinkselenid; Heterostruktur; Elektronenspin; Diffusionsverfahren <Halbleitertechnologie>
Tag:Prozessierung; Spininjektion; Transportmessung; ZnSe-Heterostruktur
ZnSe heterostructure; processing; spin injection; transport measurement
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 72.00.00 Electronic transport in condensed matter (for electronic transport in surfaces, interfaces, and thin films, see section 73; for electrical properties related to treatment conditions, see 81.40.Rs; for transport properties of superconductors, see 74.25.Fy; / 72.25.-b Spin polarized transport (for ballistic magnetoresistance, see 75.47.Jn; for spin polarized transport devices, see 85.75.-d)
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.47.-m Magnetotransport phenomena; materials for magnetotransport (for spintronics, see 85.75.-d; see also 72.15.Gd, 73.50.Jt, 73.43.Qt, and 72.25.-b in transport phenomena)
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 85.00.00 Electronic and magnetic devices; microelectronics; Vacuum tubes, see 84.47.+w; Microwave tubes, see 84.40.Fe; Phototubes, see 85.60.Ha; Conductors, resistors, and inductors, see 84.32.Ff, Hh / 85.70.-w Magnetic devices; Molecular magnets, see 75.50.Xx; Magnets, see 07.55.Db; Superconducting magnets and magnetic levitation devices, see 84.71.Ba; Beam bending magnets, see 41.85.Lc / 85.70.Ay Magnetic device characterization, design, and modeling
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 85.00.00 Electronic and magnetic devices; microelectronics; Vacuum tubes, see 84.47.+w; Microwave tubes, see 84.40.Fe; Phototubes, see 85.60.Ha; Conductors, resistors, and inductors, see 84.32.Ff, Hh / 85.75.-d Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields
Release Date:2005/10/10
Advisor:Prof. Dr. Laurens W. Molenkamp