Typselektivität und Diastereoselektivität in den Oxidationen von chiralen oxazolidinonsubstituierten Encarbamaten mit Singulettsauerstoff, Dimethyldioxiran und meta-Chlorperbenzoesäure

Mode Selectivity and Diastereoselectivity in the Oxidations of Chiral Oxazolidinone Substituted Enecarbamates with Singlet Oxygen, Dimethyldioxirane and Meta-Chloroperbenzoic Acid

Please always quote using this URN: urn:nbn:de:bvb:20-opus-5253
  • In der vorliegenden Dissertation wurde die Selektivität der Oxidation von chiralen oxazolidinonsubstituierten Encarbamten I mit Singulettsauerstoff, Dimethyldioxiran (DMD) und meta-Chloroperbenzoesäure (mCPBA) untersucht. Durch die Variation der Encarbamatstruktur wurde die Typselektivität (En-Reaktion versus [2+2]-Cycloaddition) kontrolliert. Bei der [2+2]-Cycloaddition der Encarbamate I mit Singulettsauerstoff (1O2) und der Epoxidierung mit DMD und mCPBA wurden hohe Diastereoselektivitäten beobachtet. Die folgenden Ergebnisse wurden erzielt:In der vorliegenden Dissertation wurde die Selektivität der Oxidation von chiralen oxazolidinonsubstituierten Encarbamten I mit Singulettsauerstoff, Dimethyldioxiran (DMD) und meta-Chloroperbenzoesäure (mCPBA) untersucht. Durch die Variation der Encarbamatstruktur wurde die Typselektivität (En-Reaktion versus [2+2]-Cycloaddition) kontrolliert. Bei der [2+2]-Cycloaddition der Encarbamate I mit Singulettsauerstoff (1O2) und der Epoxidierung mit DMD und mCPBA wurden hohe Diastereoselektivitäten beobachtet. Die folgenden Ergebnisse wurden erzielt: 1. Die Typselektivität (En-Reaktion versus [2+2]-Cycloaddition) der Reaktion von 1O2 mit den Encarbamaten Ia-c ist in Tabelle I aufgeführt. Daraus ist ersichtlich, dass die E-Isomere vorzugsweise die En-Reaktion eingehen, während die Z-Isomere die [2+2]-Cycloaddition bevorzugen. Diese diastereomerenabhängige Typselektivität wird durch den orbitaldirigierenden Effekt des vinylischen Stickstoffatoms verständlich. Der Angriff des Singulettsauerstoffs wird durch die vorteilhafte bindende Orbitalwechselwirkung zwischen dem LUMO des Singulettsauerstoffs und dem HOMO des Encarbamates Ib auf die Seite der Stickstofffunktionalität gesteuert. Da im Encarbamat Z-I kein cis-ständiges allylisches Wasserstoffatom für den angreifenden 1O2 zur Verfügung steht, findet vorzugsweise die [2+2]-Cycloaddition mit hoher Diastereoselektivität (> 95:5) statt. Bei den Encarbamaten E-I sind die Stickstofffunktionalität und die allylische Methylgruppe auf der Seite der Doppelbindung angeordnet, die von 1O2 angegriffen wird, so dass der sich annähernde Singulettsauerstoff ein allylisches Wasserstoffatom von der Methylgruppe abstrahiert und eine hohe Typselektivität für die En-Reaktion beobachtet wird. 2. In der [2+2]-Cycloaddition der Encarbamate Id-e mit Singulettsauerstoff, dem kleinstmöglichen Enophil, wird eine vollständige Diastereoseitendifferenzierung (d.r. >95:5) durch die Oxazolidinonkonfiguration bestimmt. Der R1-Substituent des Oxazolidinonrings besetzt aufgrund konformationeller Effekte einen Halbraum der Doppelbindung (Abbildung A), so dass der bevorzugte -faciale Angriff alleine durch die sterische Abschirmung des R1-Substituenten kontrolliert wird, solange R1 ≠ H. Die Gegenwart eines weiteren stereogenen Zentrums im allylischen Substituenten der Encarbamate beeinflusst die Richtung des Singulettsauerstoffangriffs nicht: Der Angriff des Singulettsauerstoffs findet von derselben -Seite statt, unabhängig davon, ob (4R,3’S)-Ie oder (4R,3’R)-Ie als Substrat eingesetzt wird. Offensichtlich rufen (R)-konfigurierte R1-Substituenten die (S)-Konfiguration der zwei neu gebildeten stereogenen Zentren im resultierenden Dioxetan hervor. 3. Mit den chiralen Oxazolidinonauxiliaren kann nicht nur die Diastereoselektivität der [2+2]-Cycloaddition von Singulettsauerstoff gesteuert werden, sondern auch die der En-Reaktion. Die Konfiguration der Doppelbindung der Encarbamate spielt in der En-Reaktion eine entscheidende Rolle. Im Fall der Isomere Z-Ia, b hängt die Diastereoselektivität stark von der Größe des R1-Substituenten am Oxazolidinon ab. Dies ist verständlich, denn der Angriff des Singulettsauerstoffs muß auf der Seite der allylischen Methylgruppe erfolgen, um die En-Produkte zu erhalten (Abbildung B). Für kleinere R1-Substituenten, z.B. Methyl (Tabelle 1), wird diese Seite der Doppelbindung im Fall der Substrate Z-1 weniger effektiv abgeschirmt als für die räumlich anspruchsvollere Phenylgruppe. Für letztere wird das unlike En-Produkt daher in hoher Diastereoselektivität erhalten Im Fall der Substrate E-I, ist der Oxazolidinonring auf derselben Seite der Doppelbindung wie die allylische Methylgruppe. Daher treten intensivere sterische Wechselwirkungen des R1-Substituenten mit Singulettsauerstoff auf und sorgen für die höhere Diastereoselektivität als bei den Diastereomeren Z-I. 4. Bei der Epoxidierung der Encarbamate Ic, f wird ebenfalls eine hohe Diastereo-selektivität beobachtet, diese ist jedoch weniger ausgeprägt als bei der Photooxygenierung derselben Substrate. Zudem wird in diesem Fall nicht nur die Richtung, sondern auch das Ausmaß der Diastereo-selektivität durch den R1-Substituenten im Oxazolidinonring beeinflusst. Deshalb wird für den Sauerstoff-Transfer der Mechanismus in Abbildung A vorgeschlagen. Wenn X = H, sind die sterischen Wechselwirkungen für den (1’Re,2’Re)- und den (1’Si,2’Si)-Angriff vergleichbar und daher ist die Diastereoselektivität niedrig (60:40). Für X = CH3 ist die Doppelbindung vollständig abgeschirmt, wodurch der (1’Re,2’Re)-Angriff erschwert wird und die Diastereoselektivität steigt deutlich (93:7). Weiterhin ist das Ausmaß der diastereo-facialen Differenzierung nicht nur von der Größe von R1 abhängig, sondern auch von der Konfiguration der Doppelbindung. Die Epoxidierung des Z-Isomers ist wegen der besser abgeschirmten Doppelbindung der Z-Encarbamate immer selektiver als die des E-Isomers.show moreshow less
  • In the present dissertation, the selectivity of the oxidation of the chiral oxazolidinone-substituited enecarbamates I with singlet oxygen, dimethyldioxirane (DMD) and meta-chloroperbenzoic acid (mCPBA) was studied. By varying the structure of the enecarbamates I, the mode selectivity (ene reaction versus [2+2] cycloaddition) was controlled. In the [2+2] cycloaddition of the enecarbamates I by singlet oxygen (1O2) and in the epoxidation by DMD and mCPBA high diastereoselectivities were observed. The following results were received: 1. The modeIn the present dissertation, the selectivity of the oxidation of the chiral oxazolidinone-substituited enecarbamates I with singlet oxygen, dimethyldioxirane (DMD) and meta-chloroperbenzoic acid (mCPBA) was studied. By varying the structure of the enecarbamates I, the mode selectivity (ene reaction versus [2+2] cycloaddition) was controlled. In the [2+2] cycloaddition of the enecarbamates I by singlet oxygen (1O2) and in the epoxidation by DMD and mCPBA high diastereoselectivities were observed. The following results were received: 1. The mode selectivity (ene reaction versus [2+2] cycloaddition) for the enecarbamates Ia-c with 1O2 is given in Table I, which reveals that the E isomers react preferentially according to the ene mode, while the Z isomers undergo [2+2] cycloaddition. This diastereomer-dependent dichotomy in the reaction modes may be understood in terms of the orbital-directing effect imposed by the vinylic nitrogen functionality: In the orbital interaction (Scheme A) between the HOMO of the enecarbamate Ic and the LUMO of theincoming singlet oxygen the attack is steered onto the side that bears the nitrogen functionality due to the favorable bonding overlap. Since for the ene carbamates Z-I no allylic hydrogen atom is available for the attacking 1O2 on this side of the double bond, the [2+2] cycloaddition takes place preferably in a very high diastereoselectivity (> 95:5). In contrast, in the case of the E-I enecarbamates, the nitrogen functionality and the allylic methyl group are located on the same side of the double bond that is being attacked by 1O2; thus, the incoming singlet oxygen abstracts an allylic hydrogen atom from the methyl group and a high mode 2. Complete diastereofacial control (dr > 95:5) is achieved in the [2+2] cycloaddition of the enecarbamates Id-e with singlet oxygen, the smallest of all cyclophiles by the appropriate choice of the oxazolidinone configuration. Through conformational effects, the R1 substituent of the oxazolidinone ring is obliged to occupy one  face of the double bond. The preferred -facial attack is controlled exclusively through steric shielding by the R1 substituent, whose size is irrelevant as long as R1≠ H, a fact which illustrates the structural characteristics inherent in the enecarbamates. The presence of a stereogenic center in the allylic substituent of the encarbamate besides the one in the oxazolidinone ring plays no role in directing the singlet-oxygen approach, as is demonstrated by the experimental fact that the attack of singlet oxygen takes place from the same  face, irrespective of whether the (4R,3’S)-Ie or the (4R,3’R)-Ie substrate is employed. Thus, it is evident that (R)-configured R1 substituents induce the S configuration of the two new stereogenic centers in the resulting dioxetane. 3. With the oxazolidinone chiral auxiliary not only the diastereoselectivity of the [2+2] cycloaddition of singlet oxygen may be steered, but also that of the ene reaction, for which the double-bond configuration of the starting material plays a decisive role. In the case of the Z-1a-b isomers, the diastereoselectivity strongly depends on the size of the R1 substituent of the oxazolidinone moiety. Indeed, to obtain ene products, the attack of the singlet oxygen must occur on the side of the allylic methyl group. For the smaller methyl R1 substituent (Table I), the steric shielding is not as effective as for the larger phenyl group, which is sufficiently spacious to cover up one  face of the double bond. Consequently, the unlike ene product is obtained in high diastereoselectivity In the case of the E-1 substrates, the oxazolidinone rings on the same side of the double bond as the allylic methyl group; therefore, the more severe steric interactions of the R1 substituents of the E-1 substrates with singlet oxygen are responsible for the increased diastereoselectivity compared to the Z-1 diastereomers. 4. The epoxidation of the enecarbamates Ic, f shows also a high diastereoselectivity, although not as pronounced as in the photooxygenation. In this case not only the sense but also the extent of the diastereoselectivity is influenced by the R1 substituent in the oxazolidinone ring. To account for this fact the mechanism of the oxygen transfer in Figure A was proposed. When X=H, the steric interactions for the (1’Re,2’Re) and the (1’Si,2’Si) attacks are nearly the same and, consequently, the diastereoselectivity is low (60:40), but for X=CH3, the (1’Re,2’Re) attack is obstructed because the double bond is completely shielded and the diastereoselectivity increases substantially (93:7). Furthermore, the extent of the diastereofacial differentiation depends not only on the R1 size but also on the double-bond configuration: The epoxidation of the Z isomers is always more selective than of the E isomers, which is due to the better shielding of the double bond in the Z enecarbamates.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sara Bosio
URN:urn:nbn:de:bvb:20-opus-5253
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Organische Chemie
Date of final exam:2003/03/28
Language:German
Year of Completion:2003
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Tag:Diastereoselektivität; Encarbamat; Oxazolidinon; Singulettsauerstoff; Typselektivität
Diastereoselectivity; Enecarbamate; Mode Selectivity; Oxazolidinone; Singlet Oxygen
Release Date:2003/04/23
Advisor:Prof. Dr. Waldemar Adam