Comparison between Measured and Calculated Thermal Conductivities within Different Grain Size Classes and Their Related Depth Ranges

Language
en
Document Type
Article
Issue Date
2019-08-15
First published
2018-09-01
Issue Year
2018
Authors
Bertermann, David
Müller, Johannes
Freitag, Simon
Schwarz, Hans
Editor
Publisher
MDPI
Abstract

In the field of the efficiency of very shallow geothermal energy systems, there is still a significant need for research activity. To ensure the proper exploitation of this energy resource, the decisive geophysical parameters of soil must be well-known. Within this study, thermal conductivity, as a fundamental property for evaluating the geothermal potential of very shallow geothermal systems, was analyzed and measured with a TK04 device. A dataset, consisting of various geophysical parameters (thermal conductivity, bulk density, water content, and porosity) determined for a large range of different textural soil classes, was collated. In a new approach, the geophysical properties were visualized covering the complete grain size range. The comparison between the measured and calculated thermal conductivity values enabled an investigation with respect to the validity of the different Kersten equations. In the course of this comparison, the influence of effective bulk density was taken into account. In conclusion, both Kersten formulas should be used as recommended and regular bulk density corresponded better to the reference dataset representing the outcomes of the TK04 laboratory measurement. Another objective was to visualize the relation of thermal conductivities within their corresponding textural classes and the validity of Kersten formulas for various bulk densities, depths, and soils. As a result, the accessibility to information for expedient recommendations about the feasibility of very shallow geothermal systems will be improved. Easy, accessible know-how of the fundamentals is important for a growing renewable energy sector where very shallow geothermal installations can also cover heating and cooling demands.

Journal Title
Soil Systems
Volume
2
Issue
3
Citation
Soil Systems 2.3 (2018). <https://www.mdpi.com/2571-8789/2/3/50>
Zugehörige ORCIDs