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zu knüpfen und auch später unabhängig von seinem Aufenthaltsort Ideen und Ergeb-

nisse mit mir diskutierte, sowie Matthias Heinig, dessen Anregungen als externer Experte

meines Thesis Committees meine Arbeit mit formten. Schließlich haben die Diskussionen

meiner Ergebnisse mit Meino Rohlfs und Daniel Kotlarz entscheidend die Entwicklung

der beschriebenen Tools und Pipelines vorangetrieben und mich stets angespornt deren

Qualität zu optimieren.

Auch möchte ich mich bei “meinen” Studenten bedanken, die zu einem nicht uner-

heblichen Teil zu dieser Thesis beigetragen haben. Das umfassende biologische Hinter-

grundwissen von Kaarin Ahomaa gab einen entscheidenden Hinweis zur Identifikation der

kausalen genetischen Variante einer Patientin und der darauf folgenden Entdeckung einer

neuartigen Pathogenese von Neutropenie. Die Projekte von Verena Burger und Susanne

Artmeier waren die Ideengeber für die hier beschriebenen Schritte der Qualitätskontrolle
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Abstract

Millions of people worldwide suffer from rare diseases. Genetic diagnosis is crucial to

identify the molecular cause of disease, adapt the treatment, and decipher the pathogen-

esis. Whole-exome sequencing (WES) became established as a diagnostic tool in clinical

practice, but the majority of rare disease patients remains undiagnosed. As each individ-

ual has several thousands of genetic variants in his or her genome, the identification of

disease-causing variants is challenging. The aim of my thesis was to improve the analysis

of clinical sequencing data, identify genetic causes of rare diseases and gain new insights

into the pathomechanisms underlying rare diseases.

In the first part of my work, I developed the tools KNIME4NGS and SmartPhase as

well as an algorithm for population stratification and a Candidate Identification Pipeline

(CIP). KNIME4NGS simplifies the processing of sequencing data by allowing the user to

assemble modular workflows in a graphical user interface. SmartPhase, a tool for accu-

rate and fast phasing of heterozygous variant pairs, improves the detection of compound

heterozygosity in clinical pipelines. The implemented algorithm that stratifies a cohort

by ethnic origin enables the detection and filtration of population-specific variants, which

appear rare overall, but are common in underrepresented populations. Finally, the CIP is

a flexible workflow to prioritize genetic variants and to select candidate genes for disease

associations based on a multitude of annotations and derived filter criteria.

In the second part, I applied the developed tools and methods to clinical sequencing

data from a cohort of pediatric patients suffering from various inborn errors of immunity

(IEI). The data set comprises WES data of 1, 746 patients and 705 healthy relatives as

well as whole-genome sequencing data of one family. After applying the stratification

algorithm to the cohort, filtering by population-specific allele frequencies increased the

number of frequency-filtered variants by 23.68%. The use of SmartPhase contributed to

a higher efficiency of variant filtering by reducing the number of potentially compound

heterozygous variant pairs by 59.16%. The final variant prioritization and candidate gene

selection using the CIP resulted in the identification of 205 genes potentially causing IEI.

Further, I thoroughly characterized genetic etiologies of IEI in the analyzed cohort

based on 26 selected confirmed pathogenic variants in ten different genes affecting 33

patients. Of the latter, 20 patients suffer from inflammatory bowel disease (IBD). In seven

of these, IBD is the manifestation of underlying IEI, while the other 13 patients have

defects in the genes EPCAM and SLC5A1, both not linked to IEI. This finding shows
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that IBD can be an indication of IEI, but also variants in genes not related to IEI can

cause IBD-like symptoms. Additionally, the symptoms observed in the seven patients with

underlying IEI enabled an extension of the phenotypic description of defects in the genes

CARMIL2, FOXP3, G6PC3, SRP54 and RTEL1. Of two intronic variants among the 26

pathogenic variants, one has proven to be a branch point mutation resulting in a splicing

defect of DKC1 and causing dyskeratosis congenita, which serves as an example of non-

coding variation underlying rare diseases. While eight of the ten discussed genes have

already been associated with monogenic diseases, I describe the discovery of two novel

defects in the genes SRPRA and SRP19 causing severe congenital neutropenia.

In conclusion, the developed tools and methods improved the prioritization of genetic

variants, led to the identification of pathogenic variants in coding as well as non-coding

regions, and resulted in the discovery of novel genetic defects. As none of the analyses pre-

sented is methodologically restricted to a specific set of genes, they can all be applied to any

clinical cohort with suspected monogenic causalities. Besides having enabled a definitive

diagnosis in a substantial number of children in the cohort analyzed, the developed tools

and methods as well as the discovered gene defects will help to increase the diagnostic rate

in future rare disease studies.



Zusammenfassung

Millionen Menschen weltweit leiden an seltenen Krankheiten. Die genetische Diagnostik ist

entscheidend, um die molekulare Ursache der jeweiligen Erkrankung zu identifizieren, die

Behandlung anzupassen und die Pathogenese aufzuklären. Hierzu hat sich Exomsequen-

zierung in der klinischen Praxis als diagnostisches Werkzeug etabliert, aber die Mehrheit

der Patienten mit seltenen Krankheiten kann trotzdem noch nicht mit Gewissheit dia-

gnostiziert werden. Da jeder Mensch mehrere tausend genetische Varianten in seinem

Genom hat, ist die Identifizierung von krankheitsverursachenden Varianten eine Heraus-

forderung. Das Ziel meiner Dissertation war es, die Analyse von klinischen Sequenzdaten

zu verbessern, genetische Ursachen seltener Krankheiten zu identifizieren und neue Er-

kenntnisse zu den Pathomechanismen zu gewinnen, die seltenen Krankheiten zugrunde

liegen.

Im ersten Teil meiner Arbeit habe ich die Programme KNIME4NGS und SmartPhase,

sowie einen Algorithmus zur Populationsstratifikation und eine Kandidaten-Identifikations-

Pipeline entwickelt. KNIME4NGS vereinfacht die Prozessierung von Sequenzdaten indem

es dem Anwender die Modellierung von Analyseschritten in einer grafischen Oberfläche

ermöglicht. SmartPhase, ein Programm für genaues und schnelles Phasen von heterozy-

goten Variantenpaaren, verbessert die Erkennung von kombinierter Heterozygosität bei

der Analyse klinischer Daten. Der implementierte Algorithmus, der eine Kohorte nach

ethnischer Herkunft stratifiziert, erlaubt die Identifikation und Filterung von populations-

spezifischen Varianten, die insgesamt selten erscheinen, aber in unterrepräsentierten Popu-

lationen häufig auftreten. Schließlich stellt die Kandidaten-Identifikations-Pipeline einen

flexibel anpassbaren Ablauf von Analyseschritten dar, um auf Basis einer Vielzahl von

Annotationen und abgeleiteten Filterkriterien genetische Varianten zu priorisieren und

Kandidatengene für Krankheitsassoziationen zu selektieren.

Im zweiten Teil wendete ich die entwickelten Programme und Methoden auf eine kli-

nische Kohorte pädiatrischer Patienten an, die an verschiedenen angeborenen Immunstö-

rungen leiden. Der Datensatz umfasst Exomsequenzdaten von 1.746 Patienten und 705

gesunden Verwandten sowie Genomsequenzdaten einer Familie. Nach Anwendung des

Stratifikationsalgorithmus auf die Kohorte erhöhte das Filtern nach populationsspezifi-

schen Allelhäufigkeiten die Menge der nach Häufigkeit gefilterten Varianten um 23, 68%.

Die Verwendung von SmartPhase trug zu einer höheren Effizienz der Variantenfilterung bei,

indem es die Menge der potentiell kombiniert heterozygoten Variantenpaare um 59, 16%
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reduzierte. Die abschließende Priorisierung der Varianten und Selektion von Kandidaten-

genen resultierte in der Identifikation von 205 Genen, die potentiell angeborene Immunstö-

rungen auslösen.

Weiterhin habe ich genetische Ätiologien angeborener Immunstörungen in der analy-

sierten Kohorte umfassend charakterisiert, basierend auf 26 ausgewählten nachgewiesen

pathogenen Varianten in zehn verschiedenen Genen, die 33 Patienten betreffen. Von

Letzteren leiden 20 Patienten an chronisch-entzündlichen Darmerkrankungen. Bei sieben

von diesen ist die Darmerkrankung eine Manifestation zugrundeliegender angeborener Im-

munstörungen, während die anderen 13 Patienten Defekte in den Genen EPCAM und

SLC5A1 haben, die beide nicht mit angeborenen Immunstörungen in Verbindung stehen.

Diese Erkenntnis zeigt, dass chronisch-entzündliche Darmerkrankungen zwar ein Hinweis

auf angeborene Immunstörungen sein können, aber auch Varianten in Genen ohne Bezug

zu angeborenen Immunstörungen Symptome chronisch-entzündlicher Darmerkrankungen

verursachen können. Zusätzlich ermöglichten die Symptome, die bei den sieben Patien-

ten beobachtet wurden, die Erweiterung der klinischen Beschreibung von Defekten in den

Genen CARMIL2 , FOXP3, G6PC3, SRP54 und RTEL1. Von zwei intronischen Vari-

anten unter den 26 pathogenen Varianten hat sich eine als eine sogenannte “branch point”

Mutation erwiesen, die zu defektem Spleißen von DKC1 führt und Dyskeratosis congenita

verursacht, was ein Beispiel für nicht-kodierende Variation als Ursache seltener Erkrankun-

gen darstellt. Während acht der zehn diskutierten Gene bereits mit monogenetischen

Erkrankungen in Verbindung gebracht wurden, beschreibe ich die Entdeckung von zwei

neuartigen Defekten in den Genen SRPRA und SRP19, die schwere kongenitale Neutrope-

nie verursachen.

Zusammengefasst verbesserten die entwickelten Programme und Methoden die Priori-

sierung genetischer Varianten, führten zur Identifizierung pathogener Varianten sowohl in

kodierenden als auch in nicht-kodierenden Regionen und resultierten in der Entdeckung

neuartiger Gendefekte. Da sich keine der vorgestellten Analysen methodisch auf eine be-

stimmte Gruppe von Genen beschränkt, können sie alle auf jede klinische Kohorte mit

vermuteten monogenen Kausalitäten angewandt werden. Neben der Ermöglichung einer

definitiven Diagnose bei einer wesentlichen Anzahl von Kindern in der hier analysierten

Kohorte, werden sowohl die entwickelten Programme und Methoden als auch die ent-

deckten Gendefekte dazu beitragen, die Diagnoserate in zukünftigen Studien zu seltenen

Krankheiten zu erhöhen.
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Introduction 1
Although rare diseases affect only a limited number of patients individually, millions of

people worldwide suffer from them as they encompass thousands of different disorders [1].

Thus, rare diseases represent a major global health issue that is easily missed when looking

at statistics on the overall global disease burden that are headed by cancer, cardiovascular

and infectious diseases [2]. The wide diversity makes differential diagnosis of rare diseases

challenging and causal therapeutic options are often lacking. As genetic defects are the

predominant cause of rare diseases and costs of sequencing have decreased considerably,

exome sequencing became a standard diagnostic tool in clinical practice since its first suc-

cessful application in 2011 [3]. Despite new insights generated through exome sequencing

studies, the fraction of diagnosed patients is currently limited at approximately 40% [4, 5].

Apart from technical constraints, this is due to the fact that each patient carries thousands

of genetic variants that need to be examined for their clinical relevance. To meet this chal-

lenge, bioinformatics software is needed to simplify the analysis of sequencing data, making

full use of the available data and taking advantage of the growing volume of information on

causal mutations and their corresponding phenotypes. Before presenting my contribution

to this overarching challenge, I give a brief overview of related parts of human genetics,

rare diseases in general and immunological diseases in particular, and the methods used to

link these areas.

1.1 Genetic and phenotypic variation

The discovery of inheritance laws by Gregor Mendel in the 1860s was the first scientific

milestone to understand how the genome determines the phenotype of an organism. How-

ever, Mendel could not be aware that the genome is the major building plan of organisms

[6]. After the detection that chromosomes are the carriers of inherited information and

that they are made of deoxyribonucleic acid (DNA), Francis Crick formulated the “central

dogma” of molecular biology almost 100 years after Mendel’s work [7]. It describes the

flow of sequence information between the macromolecules DNA, ribonucleic acid (RNA),

and proteins [8]. The sequence of DNA molecules can either be copied to another DNA

molecule via replication, or transmitted to RNA molecules via transcription. The infor-

1
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mation in the nucleotide sequence of RNA molecules can then be translated to the amino

acid sequence of proteins, but there is no biological pathway that transfers the sequence

information of a protein to any of the three macromolecules. As proteins directly de-

termine the phenotypic traits through their multiple functions as building blocks of the

cell, catalysts of biological reactions, means of communication and transport, the “central

dogma” established the path from DNA to RNA to protein as the major mechanism how

phenotypic traits are influenced by the genome. Thus, the detection and interpretation

of individual genetic variation that alters the sequence of the human genome is the key

to understand how and to what extend the genome determines our personal phenotype in

health and disease.

1.1.1 Types of genetic variation

The analysis of genetic variation in humans is a challenge because the more than 3 billion

base pairs of each individual’s genome cannot be read out as easily as a person’s height

or eye color, for example. Only recently it became technically possible to sequence human

chromosomes as a whole [9]. So far and also in the foreseeable future, it is necessary to

either assemble genomes from sequenced DNA fragments de novo, or to align sequenced

fragments to an existing reference genome. De novo assemblies are computationally ex-

pensive and more complex to compare with each other as opposed to the comparison of

alignments to the same reference. As genetic variation must be collected from hundreds

and thousands of individuals to learn how phenotypic traits are influenced by the genome,

de novo assemblies are infeasible in large scale. Hence, genetic variation in an individual is

defined as the set of deviations from the reference genome and each deviation corresponds

to a genetic variant.

The currently used versions of the human reference genome, Genome Reference Consor-

tium Human Build 37 (GRCh37) and the more recent GRCh38, are string representations

of the genomes derived from 20 individuals that were randomly sampled from the readers of

the Buffalo News, a newspaper in Buffalo, New York, USA in 1997 [10]. The string-based

representation allows the inclusion of variable regions in the human genome by providing

alternate sequences for certain regions, but the majority of frequent genetic variation can-

not be reflected. Furthermore, variation only prevalent in populations that are not covered

by the 20 individuals who donated DNA is entirely absent in the reference genome. As a

consequence of these limitations, existing collections of human genetic variants are used to

create a human pan-genome that contains all observed variation in graph-based models,

which should serve as a basis for future studies of human genetic variation [10].

Human genomes vary in many ways ranging from differences in the number of chro-

mosomes to distinct single nucleotides. Genetic variants are classified according to their

size and according to the way in which the genome is different compared to the reference

genome, as shown in Figure 1.1. Substitutions of individual nucleotides, so called single

nucleotide variants (SNVs), belong to small variants together with insertions or deletions
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Figure 1.1: Main types of genetic variation. Illustrations of small variants and submi-
croscopic structural variants are adapted from [11]. For each variant type, the wild-type
allele is shown above the gray line with the variant below. The visualization of microscopic
structural variants is adapted from [12].

(InDel) shorter than 50 base pairs long. Apart from that, clusters of close SNVs on the

same allele are defined as multi-nucleotide variants [13]. Variants longer than 50 base

pairs are classified as submicroscopic structural variation [14]. Copy number variation is a

sub-form that refers to changes of the number of a certain genomic region, which includes

deletions and duplications. Combinations of the types of structural variation are also ob-

served and referred to as complex structural variants. Genetic variation affecting more

than three million base pairs forms the class of microscopic structural variation as it may

be identified through a microscope [15]. This class includes large forms of submicroscopic

structural variation and changes in the number of the chromosomes summarized as aneu-

ploidies. Further massive chromosomal rearrangements are named chromoanagenesis and

are commonly observed in degenerated cancer genomes [16].

1.1.2 Phenotypic consequences of genetic variants

Every human genome has 4.1 to 5.0 million sites that are different from the reference

genome [17]. However, the influence of each genetic variant on the phenotype of an indi-

vidual varies in a broad spectrum from having no impact on the phenotype at all, influ-

encing phenotypic features, such as height or eye color, or causing diseases. Assessing the

functional impact of a genetic variant in context of the genotype of an individual is cru-

cial to estimate its phenotypic consequence, and to identify the few potentially pathogenic

variants among the millions of genetic variants when analyzing patient sequencing data.
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Functional impact Genetic variation can have a variety of different consequences on

functions encoded in the human genome. Variants altering the amino acid sequence of pro-

teins can modify all kinds of functions fulfilled by proteins, such as signaling, building cell

structures, or executing biochemical reactions. Variants in other genomic regions can affect

regulation of gene expression, for example, through the alteration of regulatory molecules

like non-coding RNAs or by directly modifying DNA binding sites of transcription factors.

The actual functional impact of a genetic variant depends on its type and its position in

the genome. The more base pairs are affected, the more likely it is that functional elements

in the genome will be altered, leading to changes of the molecular, cellular or physiological

phenotype. If a variant is located at a site that encodes a critical functional element, the

mutation will have a more pronounced effect than one in a less functionally constrained

site. Approximately 80% of the human genome have functional elements assigned [18], but

the interpretability of variants differs for variants located in loci encoding genes in compar-

ison to intergenic variants. The functional mechanism of regulatory non-coding elements

is often not well understood and subsequently it is unclear how genetic variation interferes

with it. In contrast, the generation of protein products from coding genes is far better

understood and the functional consequence of genetic variants is easier to predict. In the

context of this work, variants in coding regions are grouped in three categories, namely

protein-altering variants that modify the sequence of the encoded protein directly, variants

that affect splicing by disrupting splice sites or other genetic regions that affect splicing,

and variants in the 5’ untranslated regions (UTRs) that create or disrupt upstream open

reading frames (uORFs).

• Protein-altering variants Changes in the nucleotide sequence of coding regions can

have various effects on encoded proteins reflected by a multitude of terms reflecting

the functional impact of a variant. SNVs that introduce a premature stop codon

are called stop-gain variants, SNVs that cause an exchange of one amino acid with

another at a certain position are classified as missense variants, and SNVs that alter

the start or stop codon are referred to as start- or stop-loss variants. An InDel in the

coding sequence of a protein is termed an inframe insertion or deletion if its length

is a multiple of three, otherwise it is termed a frameshift variant. Variants affecting

the first or last dinucleotides of an intron are named splice donor or splice acceptor

variants, respectively. Such splice site variants can lead to differences in the amino

acid sequence by causing aberrant splicing, for example, through exon skipping or

exon truncation [19]. In the context of ranking nucleotide changes by impact on

encoded proteins, the term Loss-of-Function (LoF) is used to subsume splice site,

stop-gain and frameshift variants because the disruption of splicing, the premature

termination of the protein sequence, or the alteration of multiple amino acids likely

render the encoded protein dysfunctional.

• Other splicing variants This group refers to mutations of branch points or variants

in introns or exons that activate cryptic splice sites. As branch point and cryptic
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splice sites are not fully annotated for the human genome, such splicing defects are

harder to identify as splice site variants, thus are classified as a separate group.

• 5’ UTR variants Approximately half of all human genes have a uORF in their 5’

UTR [20]. These elements serve as regulators of translation as active translation of

a uORF reduces the expression of its protein by up to 80%. A recent study observed

strong negative selection for two distinct types of variants related to uORFs [21].

Variants generating a start codon for a new uORF and variants disrupting the stop

codon of an existing uORF are the most deleterious variant types among all analyzed

5’ UTR variants and are characterized by their ability to create reading frames that

overlap with the coding sequence. Thus, such variants are promising candidates for

the search for pathogenic variants.

Genotype The phenotypic consequence of a genetic variant is determined by the func-

tional impact of the variant itself and its allelic composition or genotype. A variant oc-

curring on one of both alleles of a locus is called heterozygous and results from a de novo

mutation, or was inherited from either parent (Figure 1.2a). If the same variant is found

on both alleles, it forms a homozygous genotype, as visualized in Figure 1.2b. A pair of

heterozygous variants at the same locus is referred to as compound heterozygous if one of

the variants is located on the maternal and the other on the paternal allele (see Figure

1.2c). Homozygous and compound heterozygous genotypes are also summarized as biallelic

variants. While de novo mutations can also contribute to biallelic genotypes occasionally,

homozygous variants and compound heterozygous variants usually result from one mater-

nally and one paternally inherited variant allele. An accumulation of homozygous variants,

which are otherwise rare in the population, indicates either related parents or an ethnicity

that is not included in the reference genome.

(a) Heterozygous. (b) Homozygous. (c) Compound heterozygous.

Figure 1.2: Possible genotypes of genetic variants. A heterozygous genotype is given if the
genetic variant is found either on the maternal or the paternal allele. It is a homozygous
genotype if both alleles are affected by the same variant. A compound heterozygous geno-
type occurs if one of two different heterozygous variants is located on the maternal and the
other on the paternal allele. The gray rectangles indicate exons. The red line visualizes
the position of a genetic variant.

Recessively inherited traits or diseases are resulting from biallelic genotypes, while dom-

inant traits are mediated by monoallelic variants. When considering the 4, 695 gene-disease
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phenotype relationships annotated in the Online Mendelian Inheritance in Man (OMIM)

[22] data base by June 2020, the majority (51.84%) are inherited in autosomal recessive

manner. Nevertheless, autosomal dominant inheritance still accounts for 41.70%, with the

remaining 6.5% resulting from gonosomal inheritance. Indeed, there are several mecha-

nisms how heterozygous variants can have an effect on the phenotype, including severe

diseases. First, a heterozygous variant can have an effect equal to a homozygous variant if

only the mutant allele is expressed. Monoallelic expression can be caused by heterozygous

variants preventing the transcription or the translation of a functional gene product of

one allele, or by X chromosome inactivation. For example, in women with Fabry disease,

an X-linked inborn error of glycosphingolipid catabolism caused by mutations in the gene

GLA, the direction and degree of X chromosome inactivation influences the expression of

the mutant allele and thereby the severity of the disease phenotype [23].

Even if one of both alleles is properly transcribed and translated, a failure of the other

allele by a deleterious variant may cause harmful consequences when the functionality of

the gene product is dosage dependent. Genes encoding such proteins are called haploinsuf-

ficient, while genes for which the expression of one allele is sufficient to perform the encoded

function are called haplosufficient. Genes that encode enzymes are enriched for haplosuf-

ficiency, while structural and regulatory proteins are enriched for haploinsufficiency [24].

The haplosufficiency of enzymes results from the fact that they do not act in isolation, but

are part of larger systems of kinetically linked enzymes. In such systems a reduction to

50% enzyme activity as a consequence of a deleterious heterozygous variant is not expected

to be detectable in the phenotype [25].

In addition to haploinsufficiency, a heterozygous variant can also have a dominant-

negative effect when the mutant protein interferes with the function of the wild-type pro-

tein. IKZF1 is a gene for which both, haploinsufficiency and dominant-negative alleles

have been described as disease mechanisms. One study found heterozygous mutations in

IKZF1 that disrupt DNA binding of the encoded transcription factor IKAROS without

inhibiting DNA binding of wild-type IKAROS [26]. Another study identified heterozygous

mutations in IKZF1 that also disturb the function of wild-type IKAROS by heterodimer-

ization with mutant IKAROS [27]. The different disease mechanisms are also reflected

in the disease phenotypes. The mutations in IKZF1 underlying haploinsufficiency cause

“common variable immunodeficiency”, while dominant-negative mutations cause a more

severe type of immune defect called “combined immunodeficiency”.

In contrast to the reduction of functionality, so called gain-of-function mutations have

a phenotypic effect as well. By improving or extending the encoded function of a protein

they can cause imbalance in signaling cascades. An example is a heterozygous mutation in

JAK1 in patients with autoinflammation, immune dysregulation, and eosinophilia [28]. In

vitro studies in patient cells verified a gain-of-function effect by showing increased JAK1

kinase activity resulting in enhanced STAT1/STAT3 phosphorylation. The translation of

these findings initiated a treatment with ruxolitinib, an inhibitor of JAK1, which reduced

signaling and improved the condition of the patients.
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1.1.3 Challenges of genotype-phenotype correlation

When similar phenotypic features occur in related individuals, the question arises whether

or which genetic loci are responsible for these characteristics. This is especially true for

diseases that are characterized by high a degree of heritability, such as hearing loss [29].

Many challenges exist when trying to answer which genetic variant causes a certain phe-

notype or what phenotypic consequence does a certain variant have. Often, there is not a

one-to-one relationship between genes and phenotypic traits, but rather polygenicity and

pleiotropy are common, that is, multiple genes effect a trait or a single gene influences mul-

tiple traits respectively [30, 31]. In the context of gene-disease associations, these concepts

are extended by the observation that the same clinical presentation can result from genetic

variants in different genes, just as different variants in the same gene can be causative

for distinct disease phenotypes in affected individuals [32]. In addition, incomplete pen-

etrance can cause varying degrees of severity of the symptoms in individuals that carry

the same pathogenic variant [33]. Finally, the interpretation of genetic variants must take

into account the age of the individual as a genetic disease might only manifest when the

patient grows older. Environmental factors are also important to consider, as, for example,

variants that reduce response to certain pathogens have no effect in individuals who are

not exposed to these pathogens [34].

The lack of a large-scale sequencing technology that can reliably identify small variants

and structural variants of all sizes at the same time is another issue. Multiple experimental

methods have to be applied to fully describe the genetic variation of an individual, which is

too resource-intensive to be applied in large scale. Consequently, most genotype-phenotype

correlation studies suffer from varying degrees of incomplete coverage of genetic variabil-

ity. In general, there are three main study types used to establish genotype-phenotype

correlations.

Case-control studies Case-control studies can be used to identify single genetic variants

or loci that are significantly enriched in a group of cases in comparison to a control group.

When searching for disease-associated loci, the case group consists of patients suffering

from a specific disease, while the control group comprises healthy individuals. The proper

selection of cases and controls is a key element in the design of case-control studies. As

qualitative disorders can be interpreted as being the extremes of quantitative dimensions,

the health of controls must be assessed thoroughly to avoid noise in genetic signals due

to individuals being not affected yet or nearly asymptomatic but carrying the genetic

predisposition [35]. A further prerequisite of case-control studies is a high number of cases

and controls to generate sufficient statistical power for valid significance testing. The

completion of the HapMap project [36] and the development of genotyping arrays made it

possible to test for associations of millions of frequent SNVs with a variety of phenotypes

in so-called genome-wide association studies [37]. As these studies are not limited to

existing knowledge about the location of functional elements in the human genome, they
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are a powerful instrument to identify genetic associations and generate hypotheses of their

functional relevance. However, the presence of genetic causality can only be established

by subsequent studies, since the associated common SNVs are only markers for the region

containing the causative genetic variation [38]. The advent of next-generation sequencing

technologies made it feasible to also assess rare and potentially causal variation in large-

scale studies. Together with the development of new statistical frameworks to test the

association of single rare variants or their collective burden on gene-level, also rare and

potentially causal variants can be explored in case-control studies [39]. However, there is

still a conceptual limitation on common diseases as statistical power will suffer from very

small and insufficient case group sizes when focusing on rare diseases.

Family studies Tracking the inheritance of genetic variants together with the expression

of phenotypic traits of interest in multiple generations of one or more families is another

approach to establish genotype-phenotype correlations. Similar to case-control studies,

such so-called family studies can be used to associate genetic variants or loci with phe-

notypic traits without any prior knowledge about gene function. Likewise, it can also be

a challenge to pinpoint the causative variant, depending on how precisely the region seg-

regating with the phenotype can be narrowed down. In contrast to case-control studies,

the collection of case and control groups is not necessary and a single affected pedigree is

sufficient to perform a family study. Thus, this study type is also suited for rare phenotype

conditions. Nevertheless, it is more powerful the more patients are included, either through

analyzing several generations or multiple pedigrees. The inclusion of multiple generations

is obviously limited by the number of living family members or frozen DNA samples. In

the case of rare diseases, there might only be a few patients described with the disease

phenotype worldwide and the genetic causalities might be different.

Proband-only studies Especially for genetic diagnosis of rare diseases in a clinical

context, case-control or family studies are inefficient as a first tier attempt to identify the

causative genetic variant It is more common to rely on existing knowledge and predictions

of the functional impact of genetic variants to associate them with a given phenotype.

But even if restricting to protein-altering variants, there are still 10,000 to 12,000 missense

variants [17] and approximately 100 LoF variants per individual that have to be considered

[40]. To differentiate benign from pathogenic variation, population allele frequencies are

accounted for, as fully penetrant pathogenic variants cannot be more frequent than the

prevalence of the disease of interest. In particular, there is a focus on rare variants as their

low frequency indicates negative selection. However, rareness is not necessarily the result

of negative selection. It can also result from non-random selection of individuals used to

compute population allele frequencies. Large sequencing studies are usually biased towards

European and American populations with an underrepresentation of, for example, Asian or

Great Middle Eastern ethnicities [41]. Consequently, variants common in underrepresented

or missing populations will seem rare when analyzing the DNA of such individuals. Finally,
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the assessment of a set of rare variants with regard to their potential pathogenicity tends

to be biased towards variants in genes with known function as this allows the generation of

intuitive hypotheses of the underlying pathomechanisms. This is a major problem because

only 2,000 of the 19,000 human protein-coding genes are comprehensively functionally

characterized due to the chemical, physical and biological properties of their encoded gene

products that make them easier to analyze [42].

1.2 Definition of rare diseases

Although rare diseases affect patients in all parts of the world, there is no common preva-

lence threshold that defines a disease as rare. Instead, national definitions range from 5

to 80 patients per 100,000 individuals [1]. To overcome these differences and to compile a

defined set of rare diseases, the Orphanet database was created in 1997 [43]. Since then

Orphanet became an essential online resource that provides a rare disease nomenclature,

an inventory of drugs to treat rare diseases, compiled lists of patient organizations and

expert centers, and other services for patients and the scientific community. An analysis

of Orphanet in October 2018 reports 6, 172 unique rare diseases [1]. Of these, 69.9% are

manifesting in early childhood and 71.9% are genetic, including diseases with a known

gene defect and diseases known or suspected to be familial, but for which an underlying

gene defect has not yet been identified. While most genetic defects manifest in childhood,

there are also genetic defects that cause rare diseases in adolescence or adulthood, such as

Kennedy’s disease. This spinal muscular atrophy is caused by a trinucleotide CAG repeat

expansion in the androgen receptor gene on chromosome X that reduces the receptor’s

transcriptional activation activity [44]. Male carriers of the repeat expansion typically ex-

perience the onset of the disease between the ages of 30 and 50 while early symptoms of

the disease can already be recognized in adolescence [45].

The distribution of the estimated prevalences of 5, 304 rare diseases in Orphanet shows

that 84.5% of them affect less than 1 in 1, 000, 000 individuals [1]. The majority of the

burden of rare diseases in the population (77.3 - 80.7%) is caused by a small subset of 149

rare diseases with prevalences ranging from 10 to 50 in 100, 000. In total, the population

prevalence of rare diseases is estimated between 3.5% and 5.9%, that is, there are 263 to

446 million rare disease patients world-wide. On average, this corresponds to the size of

the population in the United States, which emphasizes the global burden caused by rare

diseases.

1.3 Inborn errors of immunity (IEI)

Inborn errors of immunity (IEI) are a group of rare diseases defined by congenital defects in

the human immune system causing a wide range of severe symptoms. Recurrent and severe

infections are the result of a permanently weakened immune system, while autoimmunity

or autoinflammation indicate an overactive immune system. Recently, the International
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Union of Immunological Societies (IUIS) Export Committee has reported 416 IEI [32]. It

has to be assumed that this set is far from being complete, as dozens of new immunodefi-

ciencies have been described in each report over the last 20 years (see Figure 1.3). Together

with the growing number of described IEI, the overall prevalence of this group of rare dis-

eases is now estimated to affect between two and ten births in 10, 000, which is ten times

higher as assumed earlier. IEI differ greatly in how distinctly they can be defined, how

well symptoms can be assessed and how specific these are to infer the underlying genetic

defect. One example for a concisely defined disease sub-group with a wide phenotypic spec-

trum are severe congenital neutropenias (SCNs) identified by a low amount of neutrophils

in the peripheral blood. Early-onset inflammatory bowel disease (IBD), characterized by

chronic inflammation of the intestines, is an example of a pathology that can indicate an

underlying immune defect, but can also have other etiologies.

Figure 1.3: Number of immune defects in International Union of Immunological Societies
(IUIS) reports since 1983. Since 1999 the number of described inborn errors of immunity
is growing rapidly. Figure taken from [32].

.

1.3.1 Severe congenital neutropenia (SCN)

Congenital neutropenias are a group of rare diseases characterized by a decreased number

of neutrophils in the peripheral blood. The absolute neutrophil count is used to divide

neutropenias into mild (1.0− 1.5 · 109 cells/l), moderate (0.5− 1.0 · 109 cells/l) and severe

(< 0.5 · 109 cells/l) subtypes [46]. The latter form, referred to as SCN, is further defined

by an accumulation of promyelocytes in the bone marrow as a consequence of arrested

myelopoiesis during the differentiation of hematopoietic stem cells into neutrophils. In

general, decreased numbers of neutrophils cause a higher susceptibility to infection, with

patients with SCN suffering from severe, recurrent and often life-threatening infections

setting on as early as the first months of childhood. SCN has an estimated prevalence be-

tween 3 to 8.5 cases per million individuals [47]. Besides non-syndromic forms, congenital

neutropenia is often observed together with other features, such as oculocutaneous hy-

popigmentation, pancreatic insufficiency, metabolic disease, or it is part of the symptoms
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of other IEI [48]. In addition to the general prevention of microbial infections, the therapy

of SCN consists of regular subcutaneous administration of granulocyte colony-stimulating

factor (G-CSF), which increases the blood neutrophil count and improves quality of life

and life expectancy [49]. A summary of several studies shows that patients with SCN are

at risk to develop acute myeloid leukemia or myelodysplastic syndromes [47]. At present,

congenital neutropenia can only be cured by allogeneic hematopoietic stem cell transplan-

tation.

Figure 1.4: Proteins mutated in patients with congenital neutropenia. Neutrophil elastase
is also referred to as ELANE. Figure adapted from [47].

The latest IUIS report lists 21 gene defects causing primarily congenital neutropenia

together with several other IEI where neutropenia is one of the known associated features

[32]. The described mutations affect different components of hematopoietic stem cells and

myeloid cells resulting in a variety of pathogenic mechanisms, such as protein and vesi-

cle mistrafficking, endoplasmic reticulum stress or disturbed energy metabolism. Almost

half of the SCN patients carry autosomal dominant mutations in ELANE, which encodes

neutrophil elastase, a protein playing a key role in innate immune defense [50]. The most

frequent causes of autosomal recessive non-syndromic neutropenia are mutations in HAX1,

which is critical for stabilizing the mitochondrial membrane potential [51]. Figure 1.4 gives

an overview of mutated proteins and their cellular localization in hematopoietic stem cells

and myeloid cells.

1.3.2 Very early onset inflammatory bowel disease (VEOIBD)

IBD is a group of heterogeneous diseases characterized by chronic or relapsing inflammation

in the gastrointestinal tract. Depending on the affected parts of the digestive tract, IBD

is classified as Crohn’s disease, ulcerative colitis or IBD-unclassified. Very early onset

IBD (VEOIBD) is a subtype of IBD defined by an onset in childhood below 6 years of

age. The classification is motivated by the fact that a causative genetic defect is more

likely in younger patients in contrast to adult IBD, which is influenced by general genetic

predisposition and environmental factors [52]. Additionally, there is an increased likelihood

that VEOIBD results from an underlying IEI. The close relationship of VEOIBD and
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immune defects is reflected by the observation that 20% of the known genetic defects causal

for IEI are accompanied by IBD manifestations [53]. VEOIBD is often associated with a

more severe disease course characterized by increased surgical interventions and growth

failure [54]. Pediatric IBD is one of the more common rare diseases and its incidence

is growing [52]. A Canadian epidemiological study observed an increase from 9.68 cases

per 100,000 children in 1999 to 38.25 cases per 100,000 children in 2010 [55]. A similar

trend has been observed in the United States where the prevalence has risen from 33 per

100,000 children in 2007 to 77 per 100,000 children in 2016 [56]. However, neither study

was able to determine the extent to which increasing awareness and diagnosis of pediatric

IBD and/or changing environmental conditions and dietary habits are responsible for the

increased prevalence [55, 56].

Figure 1.5: Pathomechanisms of monogenic inflammatory bowel disease. Molecular path-
omechanisms are grouped into four categories: loss of immune tolerance, impaired mucosal
defense, epithelial barrier defects and other mechanisms. The inner circle depicts involved
cell types and cell components. The middle circle lists cellular pathways affected by genetic
defects in the genes represented in the outer circle. The following abbreviations are used:
Treg for regulatory T cells, TCR for T cell receptor, PRR for pattern recognition receptor
and ROS for reactive oxygen species. Figure taken from [53].

A recent review lists 63 monogenic defects causing VEOIBD [52]. The proteins encoded

by the genes affected play roles in various functions of the digestive tract. Some etiologies

are partly overlapping and can be grouped together according to the affected cell type
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or cellular component, as shown in Figure 1.5. A group of defects involves a general

deregulation of the immune system often through dysfunctional T and B cells. Other

groups comprise mutations that impair the mucosal defense or the integrity of the epithelial

barrier. Despite the growing number of identified genetic defects, the genetic etiology

cannot be determined for the majority of VEOIBD patients. The proportion of genetically

undiagnosed cases is strongly depending on the underlying patient cohort. A cohort study

of VEOIBD patients younger than 6 years of age identified the causal gene defect for 32%

[57], while another study based on a cohort of patients aged 0 to 18 years diagnosed 3% [58].

In addition to the growing prevalence of IBD, the results of these studies suggest that the

role of environmental factors in IBD development increases with the age of the patients.

The examination of the genetic background is nevertheless indispensable to choose an

accurate therapeutic option [52]. In case an inborn error of immunity as cause of IBD

can be determined, allogeneic hematopoietic stem cell transplantation provides a curative

treatment approach [59]. Alternatively, the knowledge of the underlying pathomechanisms

may guide targeted treatments with specific drugs, surgery or nutritional approaches, which

can improve the life of the patients considerably.

1.4 Genetic diagnosis of rare diseases in clinical practice

In multi-factorial diseases, such as type 2 diabetes or schizophrenia, the exact cause of

disease can hardly be determined for each patient due to the high dimensionality of genetic

and environmental factors. In contrast, the majority of rare diseases is caused by single

genetic defects. Thus, it is possible to pinpoint the exact cause of disease with current

sequencing technologies. Additionally, the biological malfunction can be uncovered as

there exists a defined cause-and-effect relation, if the genetic defect was identified. Once the

biological mechanism leading from the genetic defect to the pathophenotype is understood,

attempts can be made to correct it through targeted interventions. If such an attempt is

successful, all patients with the same gene defect can be cured. Although the path from

a genetic diagnosis to a targeted therapy can take decades, a recent study has shown that

already the knowledge about the genetic cause of his or her disease can be of great value

for the patient [60]. At best, of course, a targeted therapy is already available and the

patient can be treated accordingly or even be cured. Otherwise, a genetic diagnosis ends at

least the often long-lasting journey of visiting various doctors, trying diverse treatments,

and undergoing medical tests without even knowing the exact disease. The diagnosis can

be used to inform the patient about the expected progression of the disease and serve as

basis for genetic counseling. Finally, the patient can play an active role in fighting the

disease by being able to actively participate in projects performing basic or translational

research on the identified genetic defect.

Whenever a genetic defect is the suspected cause of the pathophenotype of a patient,

next-generation sequencing (NGS) techniques are increasingly used in clinics to perform

the genetic diagnosis of patients suffering from rare diseases. Whole-exome sequencing
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(WES) is a method to analyze variants in the 1-2% of the human genome that is coding

for proteins, while whole-genome sequencing (WGS) covers genetic variants in the entire

genome. Despite the more comprehensive coverage of genetic variance by WGS, WES

has become the routine approach in clinical practice because it is cheaper and achieves a

similar diagnostic rate [4, 5].

Figure 1.6: Diagnostic rates of whole-exome sequencing studies by disease phenotype. The
size of the boxes reflects the prevalence of the disease phenotypes in pediatric practice.
Figure taken from [5].

The general strategy of using DNA sequencing data is the definition and implementation

of criteria to select the most promising potentially pathogenic genetic variants from the

thousands of detected variants per patient. The result is a list of variants supported

with varying level of evidence to be pathogenic. In order to prove that a selected variant

causes the observed pathophenotype, it needs to be shown that the variant is not present

in individuals without this phenotype, that it impairs the function of the encoded gene

product, and that the phenotype can be recapitulated by introducing the mutant allele or

can be rescued by introducing the wild-type allele in an appropriate model system [61].

As there are no methods available to verify or falsify the potential pathogenicity of dozens

of candidate variants per patient automatically, stringent variant prioritization strategies

are required. Despite advances in speed and quality of sequencing methods and more

sophisticated bioinformatics tools, the results of multiple studies consistently indicate that



1.5. MOTIVATION AND OBJECTIVES 15

the diagnostic rate is limited for most pediatric diseases, as visualized in Figure 1.6 [5].

There are different reasons why a genetic diagnosis may fail when using WES or WGS.

The patient might not suffer from a genetic disease or a mosaic variant is causative, which

is missed when DNA is taken from organs or tissues that do not harbor the variant.

Further, the pathophenotype might be caused by genetic variation that is not detected.

Due to the shortness of the sequenced DNA fragments most structural variation cannot

be identified by NGS techniques. If WES is used, variants in the non-coding regions of

the human genome are additionally not covered. Accurately predicting the functional

impact of detected variants is another challenge, especially for variants in non-coding

regions, such as UTRs, introns or intergenic regions. Even if a deleterious impact on

protein-level can be confidently predicted, it often remains unclear if the gene has any

relevance for the clinical phenotype. Finally, incomplete penetrance, digenic inheritance of

pathogenic variants or more complex forms of multigenic etiology might easily be missed

when assuming Mendelian inheritance.

1.5 Motivation and objectives

The Dr. von Hauner Children’s Hospital of the Ludwig-Maximilians-Universität in Munich

is part of an international network of research institutions collaborating in the research for

rare diseases and personalized medicine [62]. Within this framework, the Dr. von Hauner

Children’s Hospital plays a central role as it houses the Care-for-Rare Laboratories [63]

with their own NGS facility that allows immediate sequencing and analysis of patient sam-

ples taken on site at the hospital or sent in by international collaboration partners. A

three-stage strategy is pursued to identify pathogenic variants that serve as the starting

point for understanding the underlying disease mechanisms. First, the exome of the pa-

tient gets sequenced to screen for recessive effects in protein-coding and adjacent intronic

regions as well as in untranslated regions. If none of the identified variants provides a

conclusive explanation for the observed pathophenotype, WES of the parents is performed

to search for potentially pathogenic de novo variants. If the trio analysis does not yield a

promising candidate variant, patients are prioritized for additional studies, such as WGS,

transcriptome or proteome analysis. Despite being highly informative, sequencing of par-

ents cannot be done for all patients due to financial constraints and limited availability of

blood or tissue samples of patients and healthy relatives.

My project at the Dr. von Hauner Children’s Hospital aims to leverage the growing

amount of collected WES data to extend the current knowledge on the genetic etiologies

of IEI. For this purpose, I explore ways to improve the analysis of NGS data and establish

a new workflow to discover novel candidates for disease genes by screening the entire WES

data collection from 2, 451 individuals. As part of this, I develop new bioinformatic tools

and routines to meet the special requirements of clinical research. By application of the

implemented pipelines, I want to characterize the patient cohort thoroughly and gain new

biological insights into the pathogenesis of IEI.
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My project is based on WES data of a cohort of 1, 746 patients with IEI together with 705

healthy relatives and on WGS data of a family with a child suffering from SCN. For the

analysis, I’ve created several modules assembled from published tools and self-developed

methods specifically tailored for clinical application. Additionally, several public data sets

are integrated to support the analysis and interpretation of the sequencing data.

2.1 Clinical sequencing data

The NGS facility of the Care-for-Rare Laboratories of the Dr. von Hauner Children’s

Hospital is equipped with a NextSeq 500 and a NextSeq 550 sequencer (Illumina, San

Diego, California) to analyze whole exomes of patients and healthy relatives. Prior to

the acquisition of the NextSeq machines, a SOLiD sequencing platform was used that

contributed to the exome data set as well. Exome enrichment was done using the Agilent

SureSelect V5/V6+UTR kits (Agilent, Santa Clara, California) consisting of RNA probes

targeting annotated exon regions while ensuring comparable hybridization conditions.

This work takes the entire WES data collection to evaluate genetic variants in known

IEI genes and to search for yet unknown genetic defects underlying IEI. Moreover, it

includes the analysis of externally generated WGS data of a family, for which preceding

WES did not result in a reasonable candidate variant, to test whether a genetic diagnosis

can be made by WGS in this case.

2.1.1 Whole-exome sequencing (WES) data collection

The main data set comprises sequencing data of 2, 451 individuals, 1, 746 of whom are pa-

tients and the other 705 are otherwise healthy parents, siblings or other relatives. Among

the patients, there are 315 patients having both parents sequenced, referred to as trio

patients. About 30% of the blood samples for sequencing were taken in Germany, approx-

imately 20% were sent from Turkey and Iran respectively. The remaining part originates

mainly from other countries in Europe and the Middle East. Patients with IBD or SCN

as the main pathophenotype are stratified into two corresponding sub-cohorts together

17
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with their relatives. Table 2.1 gives an overview of the numbers of trio patients, non-trio

patients and healthy relatives for the respective disjoint sub-cohorts.

Cohort Trio patients Non-trio patients Healthy relatives

Inflammatory bowel disease 21 655 54
Severe congenital neutropenia 123 190 268
Other immune defects 171 586 383

Total 315 1, 431 705

Table 2.1: Composition of the exome sequencing data collection. Trio patients are patients
for whom both parents were sequenced. Non-trio patients were sequenced either as single-
tons, together with only one parent or with other healthy relatives. According to the main
pathophenotype all patients and their relatives are stratified into three sub-cohorts.

2.1.2 Whole-genome sequencing (WGS) data of a family

Besides the WES data, one WGS data set of a Romanian family is part of the data

underlying this thesis. The pedigree of the family, called SCN-1 in the following, is shown

in Figure 2.1. The index patient II-3 presented with recurrent pulmonary infections, failure

to thrive, SCN and Shwachman-Diamond syndrome (SDS) when she was five years old.

Her brother II-2 also showed failure to thrive and skeletal abnormalities, but is not affected

by neutropenia or pancreatic insufficiency.

Figure 2.1: Pedigree of family SCN-1. The bold line highlights the index patient. Whole-
gnome sequencing was performed for all family members except II-6, visualized by the
dashed line. The order of the children corresponds to the order of the dates of birth.
Square nodes indicate male family members, circular nodes indicate females.

An initial WES analysis of the index patient, the parents and two brothers (II-2 and

II-4) did not reveal any pathogenic variant in known SCN or SDS related genes. Because it

was suspected that a non-coding variant underlies or modulates the symptoms of the index

patient and her brother II-2, WGS was done for all family members at the HudsonAlpha

Institute for Biotechnology in Huntsville, Alabama. The healthy brother II-6 did not

undergo sequencing, because he was born later.

2.1.3 Ethics statement

All clinical sequencing data used in this work was generated as part of different studies

that were approved by the Ethics Commission of the Medical Faculty of the Ludwig-
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Maximilians-Universität in Munich. The reference numbers of the corresponding ethics

votes are 346-11, 381-11, 387-11, 438-11, 486-11, 303-12, 187-13 BB, 353-13, 66-14, 501-14

and 806-16. The consent of the participants was obtained in written form.

2.2 Public data sets

Two types of information are crucial to distinguish pathogenic from benign genomic varia-

tion. Reliable data on the frequency of a variant allele is necessary to filter for rare alleles.

Already existing knowledge about the pathogenicity of individual variants or entire genes

helps to highlight known or potentially pathogenic variants. The following paragraphs in-

troduce the integrated resources for the analysis and interpretation of the genetic variants

identified in the sequencing data. Reference allele frequency data is obtained from the

1000 Genomes Project and the Genome Aggregation Database (gnomAD). ClinVar and

the International Mouse Phenotyping Consortium (IMPC) are used as resources to inform

about the pathogenicity of individual variants and entire genes.

2.2.1 1000 Genomes Project

Launched in 2008, the 1000 Genomes Project was the first project aiming to study genomic

variation across different populations. It was finished in 2015 with the reconstruction of

the genomes of 2, 504 individuals from 26 populations in East and South Asia, Europe,

Africa and North and South America [17]. The analysis of low-coverage WGS, deep WES

and dense microarray genotyping of all studied individuals showed that a typical genome

has 4.1 to 5.0 million variant sites with only 40, 000 to 200, 000 rare variants having an

allele frequency below 0.5%. Regarding variation in protein-coding regions, 149 to 182

protein-truncating and 10, 000 to 12, 000 protein-sequence-altering variants were reported

per genome. The upper ranges of these figures were observed in African populations, which

is consistent with an African origin of modern humans. Genetic variance could accumulate

in African populations while serial founder effects have reduced genetic diversity in popu-

lations outside of Africa [64]. Although larger sequencing data sets have become available

in recent years, the 1000 Genomes Project remains a highly valuable resource due to the

multitude of included populations and its fully published data set.

2.2.2 Genome Aggregation Database

Following the 1000 Genomes Project, the Exome Aggregation Consortium (ExAC) has set

the next major milestone for the analysis of human genomic variation [13]. The consortium

has assembled WES data of 60, 706 human individuals and consistently processed all data

to generate high-quality variant calls. The successor of the ExAC is the gnomAD data

collection, which has expanded the data set to WES data of 125, 748 individuals and WGS

data of 15, 708 individuals [65]. Because of its tremendous size, the frequency spectrum

of the identified variants is resolved in much higher resolution in comparison to previous
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sequencing projects. Therefore, gnomAD has become the most important source of allele

frequencies to filter for variants potentially causing rare pediatric diseases as individuals

suffering from severe pediatric diseases are not part of the data set. However, since it

cannot be completely excluded that the included individuals suffer from other diseases

that are investigated in the respective integrated studies, the gnomAD consortium defined

a subset of control individuals that are healthy with regard to the studied diseases. This

control set comprises 54, 704 exome and 5, 442 genome data sets.

The size of the gnomAD data set enables the systematic comparison of the number of

observed LoF variants per gene to the expected number inferred from a human mutation

rate model. The median ratio of observed to expected LoF variants is 0.48, which shows

that LoF variants are subject to negative selection in most genes. Thus, in addition to allele

frequencies on variant-level, gnomAD provides a metric to estimate the deleteriousness of

LoF variants on gene-level. Although gnomAD is essential for the analysis of clinical

sequencing data, there are two evident limitations of the data set. First, the majority

of the individuals has European ancestry while Middle Eastern populations are almost

completely absent, which limits the filtering capability for variants common in Middle

Eastern populations but rare in other populations. In contrast to the 1000 Genomes

Project, the individual genotypes are not part of the published data set, which makes it

impossible to study the composition of genotypes in single individuals. This information

would be necessary, for example, to assess the frequency of compound heterozygous variant

pairs.

2.2.3 ClinVar

ClinVar [66] is a public resource that collects interpretations of clinical significance of ge-

netic variants indicated by their impact on certain disease phenotypes. Although the term

“clinical significance” does not represent statistical significance but rather reflects the effect

size of a variant, it is commonly used to describe the pathogenicity of a variant [67, 68, 69].

Identified genotype-phenotype relationships including the associated mode of inheritance

and other details of evidence can be submitted by clinical and research institutions as well

as other qualified groups. These reports are then aggregated on variant level to support

variant interpretation through the type, consistency and quality of the provided evidence

[70]. ClinVar classifies variants as pathogenic or likely pathogenic, benign or likely benign

or as variants of uncertain significance. The reliability of the assigned interpretations is

indicated by the review status ranging from missing or contradicting evidence, reports of

only one submitter, consistent information of multiple submissions, to interpretations of

expert panels or practice guideline-providing groups.

The February 2020 release of ClinVar contains 1, 339, 085 variant interpretations, of

which 674, 527 are annotated on the human reference genome assembly GRCh37 and all

others on GRCh38. Figure 2.2 shows the distribution of the GRCh37 assembly based

ClinVar entries across the different classes for clinical significance and review status. Re-
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(a) ClinVar entries by clinical significance.

(b) ClinVar entries by review status.

Figure 2.2: Stratification of ClinVar entries by clinical significance and review status.
Each row of the charts contains 25 squares with each square corresponding to 1, 000 Clin-
Var entries. The squares are arranged according to the order of the corresponding legends
starting with the squares representing the last legend entry in the lower left corner and
then adding squares from left to right, from bottom to top for each legend entry. The
interpretations released in February 2020 and based on the GRCh37 assembly were used
to create the diagrams. (a) The five main categories for classifying the clinical significance
of genetic variants are Pathogenic, Benign, Likely pathogenic, Likely benign and Uncertain
significance. The sub-categories Pathogenic/likely pathogenic, Benign/likely benign and
Conflicting interpretations are a consequence of submissions reporting different interpre-
tations. (b) The review status of a variant interpretation can be divided into four quality
levels. The highest reliability is achieved by expert panels or by practice-guideline provid-
ing groups. Multiple concordant submissions are less reliable, but still more trustworthy
than single submissions. Interpretations without evidence or conflicting interpretations are
the least trustworthy.
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garding the clinical significance, variants of uncertain significance account for the largest

proportion equivalent to 34%. The vast majority of interpretations come from individual

submissions, indicating that the majority of the entries in the database should be treated

with caution in the absence of independent confirmation of the classification. In total,

there are 13, 481 variants that have been classified as pathogenic with medium to high

reliability through multiple submissions or expert review or practice guidelines. This sub-

set is the most relevant for clinical sequencing as it enables fast and reliable detection of

known disease-causing variants. Although its size seems rather small compared to the total

number of entries based on GRCh37, ClinVar is nevertheless a highly valuable resource to

quickly explore whether certain genetic variants have already been investigated in other

studies.

2.2.4 International Mouse Phenotyping Consortium

The IMPC was founded in 2011 with the aim to create a comprehensive catalog of sys-

tematically phenotyped mono- and biallelic knockouts of 20, 000 mouse genes [71]. When

finished, the resource will represent the first fully functional description of a mammalian

genome. In February 2020, the IMPC published release 11.0 containing 75, 844 significant

phenotypic traits in knockouts of 6, 440 genes generated by the 24 consortium members

worldwide. In addition to the new insights into the function of individual genes in mice,

analyses across all genes yielded further important results. A study of the first 1, 751 gene

knockouts in 2016 showed that one third causes embryonic defects and that the underlying

genes are enriched for the 3, 302 human disease genes reported in the Human Genome

Mutation Database [72] at the time of the study [73]. Furthermore, the authors of the

study found that incomplete penetrance is frequently observed in these mouse strains de-

spite their defined genetic background as a consequence of stochastic variability in gene

expression of functionally redundant genes [74]. Another subsequent study on 2, 186 gene

knockouts in 2017 found that a large proportion of phenotypic traits is influenced by sex

[75]. An analysis of the first 3, 328 null mutants in the same year showed that 90% of all

reported gene-phenotype relationships were hitherto unknown and that 1, 092 genes were

functionally described for the first time [76]. Although gene-phenotype relationships in

mice knockout strains are generally not fully transferable to humans, the IMPC never-

theless provides a valuable resource to support the interpretation of genetic variation in

human orthologs of already phenotyped mouse genes.

2.3 Analysis of genomic sequencing data

The search for pathogenic variants in the exome and genome sequencing data presented

in Section 2.1.1 and 2.1.2 involves a multitude of steps starting from the raw sequencing

reads. Figure 2.3 shows the three major parts of the overall workflow beginning with the

identification of genetic variants for each individual separately (a), then using the variants
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to generate a comprehensive matrix of genotypes including only high quality variants and

samples (b), and finally selecting potential pathogenic variants and candidate genes for

disease associations (c).

(a) Separate variant
identification.

(b) Joint variant calling and
quality control.

(c) Generation of candidate
list.

Figure 2.3: Main steps for processing sequencing data. The left part (a) shows the workflow
to generate genomic VCF files from raw FASTQ files that is performed separately for each
sequenced individual. The middle part (b) illustrates the combination of multiple gnomic
VCF files to a single VCF file containing the genotype information of all individuals and
the subsequent quality control of the identified variants and included samples. The right
part (c) depicts the workflow steps required to create lists of candidate variants or genes.
Input files, intermediate data and results are indicated as green nodes, gray nodes indicate
processing steps. The abbreviation VCF stands for variant call format.

2.3.1 Variant calling and quality control

The Genome Analysis Toolkit (GATK, version 3.8-1) [77] and accompanying best practice

guidelines [78, 79] are applied to detect genetic variants in two main steps as indicated

in Figure 2.3a and 2.3b. They include mapping of raw reads and the improvement of the

read alignments followed by single and joint variant calling and subsequent quality control

measures.

Mapping raw reads Before identifying genetic variants, millions of short sequenc-

ing reads generated by WES and WGS have to be aligned or mapped to the human

reference genome. The algorithm BWA-MEM [80] of the tool Burrow-Wheeler Aligner

(BWA, version 0.7.15) [81] is used for mapping the reads to the human genome assembly

GRCh37. While the original BWA algorithm is restricted to align the full sequence of

a read, BWA-MEM decides automatically whether to generate local or end-to-end align-

ments, thus performing better for read lengths of modern NGS machines. BWA-MEM

returns a file containing all input reads together with their mapping position in the refer-

ence genome, the quality of the mapping and further information defined in the Sequence
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Alignment/Map (SAM) format specifications [82]. The accompanying tool set SAMtools

(version 1.3.1) is then applied to compress the SAM files to Binary Alignment/Map (BAM)

files.

Improving read alignments Variant calling algorithms search for genetic variants by

identifying mismatches in the alignments of the sequenced reads. The quality of the result-

ing variant calls critically depends on the ability of the algorithm to differentiate between

sequencing errors and evidence for real genetic variants. In general, the more reads con-

tain a differing nucleotide, the more likely the mismatch is not caused by a sequencing

error, but reflects a genetic variant in the sequenced genome. Additionally, the quality

of the sequenced bases is taken into account relying on the base quality score computed

by the sequencing machine for each base of each read. Both the number of reads and the

base quality score can be distorted by systematic errors that need to be corrected by the

following two procedures to avoid false-positive or false-negative variant calls.

The number of reads supporting a variant at a certain position can be inflated by du-

plicate reads that are originating from the same genomic DNA fragment. Duplicates are

either introduced during library preparation when polymerase chain reaction is used to

amplify DNA fragments before sequencing, or the sequencing machine mistakenly reports

the sequence of one DNA fragment as two identical sequences because the readout algo-

rithm considers it as two different fragments. In order to prevent false-positive variant calls

resulting from duplicated reads they are marked by the tool MarkDuplicates of the Picard

toolkit [83] (version 2.5.0). It identifies duplicate reads by comparing the 5’ positions of

two reads and marks them if the are identical. Because duplicate reads are ignored during

variant calling, the read having the highest quality score within a set of duplicates is not

marked as such.

Algorithms used by sequencing machines are prone to systematic technical errors that

result in over- or under-estimated base quality scores. Although the exact errors depend

on the sequencing machine and the reagents used for the sequencing reaction they are

detectable by analyzing covariation in the data. GATK provides tools to perform so-called

Base Quality Score Recalibration (BQSR), which identifies bias and corrects the base

quality scores while taking into account known genetic variation. Both steps, marking

duplicate reads and BQSR are important to improve sensitivity and specificity of the

subsequent variant calling step.

Calling variants Variant calling is implemented as a two step process as shown in Figure

2.3a and 2.3b. First, the GATK HaplotypeCaller [84] computes genotype likelihoods for

variant positions separately for each individual, then the GATK GenotypeGVCF tool

creates a matrix of genotypes for the whole family or cohort at every variant site. Besides

being a widely applied method for variant calling, for example in the gnomAD project,

especially the use of the GATK HaplotypeCaller offers several advantages over other tools

[84]. The authors report that GATK HaplotypeCaller scales efficiently to large sample
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Figure 2.4: Main steps of the HaplotypeCaller algorithm of the Genome Analysis Toolkit.
First, the algorithm identifies ActiveRegions in the mapping data where read alignments
provide evidence for genomic variation. In the next step, possible haplotypes are created
that could have generated the read data in the ActiveRegions. Then, likelihoods of the
haplotypes are computed based on the observed read data. Finally, for each identified
genetic variant, the most likely genotype is assigned according to the maximum likelihood,
which is illustrated by the darkest shade in the matrix in “Genotype sample”. The ab-
breviation PairHMM stands for Pair-hidden Markov model and GL indicates genotype
likelihood. The figure is taken from [84].

sizes without loosing accuracy and that the accuracy of calling insertions and deletions is

superior in comparison to other algorithms.

As illustrated in Figure 2.4 the GATK HaplotypeCaller algorithm consists of four main

steps. First, it identifies regions varying from the reference genome, so-called ActiveRe-

gions, based on information on mismatches, insertions or deletions in the read alignments.

For each ActiveRegion, the algorithm assembles possible haplotypes underlying the mapped

reads by building a De Bruijn-like graph. Each haplotype is then realigned by the Smith-

Waterman algorithm to detect potentially variant sites. Then, the program performs a

pairwise alignment of each read against each haplotype using a pair-hidden Markov model

resulting in a matrix of likelihoods of haplotypes given the read data. For each potentially

variant site, the program uses this matrix to compute likelihoods of alleles per read, applies

Bayes’ rule to infer posterior likelihoods of each genotype given the observed read data and

then assigns the most likely genotype. As a result, the GATK HaplotypeCaller produces a

file in the genome variant call format (gVCF) that contains genotype likelihoods for each

variant position and the non-variant regions in between.
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The GATK GenotypeGVCF tool takes gVCF files of multiple samples as input and

performs joint variant calling to create a matrix of genotypes containing all genomic po-

sitions where at least one individual of a family or a cohort carries a non-reference allele.

In contrast to single sample variant calling, the resulting genotype matrix is the major

advantage of joint variant calling, as it distinguishes for non-variant positions of a sample

whether the individual carries two copies of the reference allele or whether no genotype

could be determined due to poor sequencing quality. Moreover, variant identification is

the more accurate the more samples are available during the variant calling step. The

specificity is improved as a higher amount of samples provides a greater ability to detect

systematic errors to filter out false-positive variant calls. Beyond that, there is a higher

chance to find evidence for low-frequency variants increasing the sensitivity. The GATK

GenotypeGVCF tool generates a file in the variant call format (VCF) [85] that represents

the genotype matrix with all identified variant positions as rows and samples as columns.

In addition, the family or cohort VCF file includes quality scores computed on variant and

genotype level.

Variant quality control After calling variants, it is necessary to conduct quality con-

trol steps to remove false-positive variants from the obtained call set. Instead of directly

using the variant quality scores computed by the GATK GenotypeGVCF tool, best prac-

tice guidelines recommend a filtering technique called Variant Quality Score Recalibra-

tion (VQSR) [78]. This machine learning based method takes the provided quality scores

as features to model profiles of known variants in the call set. Subsequently, a meta-score

is calculated, which provides a continuous estimate of the probability that a variant is

true. The sensitivity and specificity of the variant call set can then be controlled by set-

ting a sensitivity threshold value that specifies the percentage of known variants that are

to be retained after filtering. Choosing a higher percentage as threshold value improves

sensitivity, while a lower percentage increases specificity. Figure 2.5 illustrates the concept

of VQSR based on artificial data. For the analysis of the WGS family data set and the

WES cohort data set a threshold of 99.5% is chosen, which means that 99.5% of all known

variants are contained in the filtered set. The threshold is chosen close to 100% because in

the clinical context it is more serious to miss a variant classified as a false-negative than

to report false-positive variants.

In order to further improve the quality of the variant call set, the quality of individual

genotypes is assessed by means of the depth of coverage (DP) and the genotype quality

(GQ) value. The DP value indicates the number of reads at the variant position. The

GQ value is a quality score ranging from 0 to 99 defined as the difference between the

Phred scaled genotype likelihood of the second most likely genotype and the Phred scaled

genotype likelihood of the most likely genotype. Following the recommendations of Carson

et al. [86] genotypes are discarded if GQ < 20 to achieve a 99% confidence of the remaining

genotype calls. Genotypes are also rejected if DP < 8 to ensure that the probability of a

heterozygous genotype appearing as a homozygous genotype by random chance is smaller



2.3. ANALYSIS OF GENOMIC SEQUENCING DATA 27

Figure 2.5: Visualization of the concept of Variant Quality Score Recalibration. The dots
represent identified variants. They are plotted according to the values of two variables,
val1 and val2, which correspond to two quality metrics. For this figure, the values of
val1 and val2 are following a normal distribution centered at 0 with a standard deviation
of 0.3 and 0.4 respectively. Dots are highlighted in red if a number drawn at random
from an equal distribution between 0 and 1 is lower than 0.4 when multiplied with val1
and when multiplied with val2. Thus, dots in the center are more likely to be colored
red, which corresponds to known genetic variants whose values tend to be located at the
center of the distribution of the respective quality metric. The green circle visualizes the
meta-score threshold corresponding to the chosen sensitivity threshold. It separates the
set of variants in a way that the proportion of known (red) variants within the circle is
equal to the selected sensitivity threshold. All variants within the circle will be kept and
all variants outside the circle will be filtered out.

than 1% when assuming a two-tailed binomial model where the reference and the alternate

allele have a 50% chance of being in each read.

The reliability of identified insertions and deletions decreases with their length espe-

cially in repetitive regions of the genome because sequencing reads are only 150 base pairs

long. To avoid that false-positive calls of InDels cause false-positive signals when searching

for new disease genes, all insertions equal or longer than ten base pairs and all deletions

removing more than nine base pairs are only kept in the cohort analysis when occurring

in known disease-related genes.

2.3.2 Sample quality control

With the many steps from taking a blood sample of a patient to readily processed sequenc-

ing data, a multitude of different errors risks to be introduced into the data set. DNA
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samples might be contaminated with DNA of laboratory staff or other patient samples.

Samples might be assigned to other family members or completely different individuals

or two samples of the same individual are sequenced as samples of two different persons.

Library preparation of the sample DNA might fail or other technical errors occur during

the sequencing reaction resulting in low quality sequencing data. It is important to remove

low quality samples or fix the underlying issue to prevent corruption of the downstream

analysis. To detect and resolve inconsistencies in the sequencing data, the tool Peddy

(version 0.4.2) [87] is used to assess the quality of the samples after generating the initial

variant call set. Based on a set of 23, 770 frequent biallelic SNVs that were identified in

the 1000 Genomes Project, Peddy computes several quality measures.

Sequencing depth and call rate Peddy determines the median sequencing depth of

the preselected SNVs and summarizes the fraction of SNVs with sufficient read coverage

to call a genotype as the call rate. Samples having a median coverage below 30 or a call

rate below 90% indicate low quality of the underlying sequencing, which increases the risk

of missing genetic variants when keeping them in the analysis. Sequencing of such samples

should be repeated if no disease-causing variant was found so far and if sufficient patient

material is available. For my analyses, I remove low quality samples from the WES cohort.

The distribution of sequencing depth and call rate in the WES data collection and the

number of failed samples are presented in Section 3.3.1.

DNA contamination Potential contamination of DNA is detected by assessing the

distribution of the fraction of alternate alleles per heterozygous genotype. A deviation of a

binomial distribution with p = 0.5 indicates that more than two alleles were sequenced and

thus the DNA is likely contaminated with other DNA. To measure the difference from the

expected distribution, Peddy computes the interdecile range of the observed distribution.

The more the binomial expectation is violated, the higher is the interdecile range value. To

identify DNA contamination in the WES data set, I select all samples having an interdecile

range value higher than 0.3 for further examination by the more sophisticated but also more

time consuming tool VerifyBamID [88]. Its algorithm computes likelihoods that varying

contamination levels have generated the observed sequencing data and then determines

the most likely contamination level. When a sample exhibits a substantial level of DNA

contamination the data is not included in further analyses and, whenever possible, a new

blood sample is taken, as it is usually not possible to determine when the contamination

occurred.

Relationship coefficient and sex prediction In order to inform about relationships

between the individuals of a family or a cohort, Peddy computes pairwise relationship

coefficients using the following formula:

Heti,j − 2 ·NIBS0

min(Heti, Hetj)
(2.1)
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where i and j represent the indices for each individual, Heti is the count of sites where

individual i is heterozygous, Hetj is the count of sites where individual j is heterozygous,

Heti,j is the count of sites where individuals i and j are both heterozygous, and NIBS0

is the count of sites at which individuals i and j share no alleles, referred to as zero

identity-by-state (IBS0) sites. The coefficient can adopt 1.0 as the maximum value in the

case of genetically identical individuals, which is the result either for identical twins or for

duplicate sequencing of the same individual. In order to differentiate parent-offspring from

sibling-sibling pairs, both having an expected coefficient of 0.5, the count of IBS0 sites

has to be taken into account. Since both alleles of a child originate from either father or

mother, there are no positions where no allele is shared with either parent and thus the

count of IBS0 sites should be 0. For sibling-sibling pairs, IBS0 sites exist, for example,

when both parents are heterozygous and one sibling inherits the reference alleles and the

other the alternate alleles.

In addition to the relationship coefficient, Peddy examines the ratio of heterozygous to

homozygous variant genotypes on the non-pseudoautosomal regions of the X chromosome

to predict the sex of the sequenced individuals. Due to the hemizygosity of males all

variant calls in these regions are reported as homozygous variants resulting in an expected

ratio of 0. For females, a minimum ratio of 1.0 is expected, which can be lower if there

is some degree of consanguinity in the family. Using the computed relationship and the

predicted sex assignment, several anomalies in sequencing data can be identified, resolved,

and also be leveraged for further analysis.

• Unexpected sex If the predicted sex deviates from the sex stated in the metadata

of the individual, the correctness of the metadata should be validated first. However,

it is also possible that the sex prediction is incorrect. I have observed ratios of 0.33

and higher, which could clearly be assigned to female individuals although they were

classified as males by Peddy. If both, the sex prediction and the metadata of the

individual are correct, identified relationships to other family members can help to

identify the individual that was actually sequenced. Otherwise, the sequenced data

should be discarded and replaced by sequencing a new sample of the individual of

interest.

• Duplicate samples If a relationship coefficient close to 1.0 is observed for two in-

dividuals that are not identical siblings, the reason for the duplication needs to be

investigated. In case of an intentional repetition of the sequencing, the two read sets

can be pooled to increase sequencing depth, otherwise it has to be found out before-

hand who has been sequenced twice. If the two individuals that should have been

sequenced are a male and a female, the sex prediction can help to determine which

of the individuals was sequenced twice given that not samples of a third individual

were involved in the duplication. However, sequencing another sample of one of the

both individuals that might be duplicated or a sample of a close relative of one of

them is the most accurate way to resolve the origin.
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• Inconsistent pedigrees Relying on the relationship coefficient and the count of

IBS0 sites, all expected parent-offspring and sibling-sibling pairs can be verified in

trios or more complex pedigrees. For this purpose, a maximum count of IBS0 sites

of 50 is set as threshold to identify parent-offspring pairs when the relationship co-

efficient is close to 0.5. Although no IBS0 sites are expected, they can result from

sequencing artifacts that are targeted by variant quality control described in Section

2.3.1. Pedigree inconsistencies can, for example, arise through unintentional swap-

ping of the patient’s mother and father, through swapping the child for one of its

parents, or through the assignment of unrelated individuals as parents. While acci-

dental permutations can be corrected by swapping the labels of the underlying data

sets, individuals wrongly assigned as parents must be excluded from further analysis

to prevent incorrect variant filtering by segregation.

• Unknown relationships As Peddy computes relationship coefficients for all pairs

of individuals in a cohort, it can also identify unknown relationships. A minimum

coefficient of 0.2 is required for assuming a familial relationship. If related individuals

are patients with similar disease phenotypes they are grouped together in a sub-

analysis as there is an increased chance that the same genetic defect is causative,

which can be found more easily due to the increased power of segregation filtering.

2.3.3 Population-specific allele frequencies

A considerable proportion of the patients in the WES cohort lives in or comes from Middle

Eastern countries (see Section 2.1.1). As Middle Eastern populations are underrepresented

in the 1000 Genomes Project and the gnomAD, candidate filtering will fail to remove

genetic variants that are rare in European populations but common in Middle Eastern

populations. To prevent such population-specific and thus non-pathogenic variants from

inflating candidate lists, I have developed a routine to detect and remove them. First,

the cohort is stratified into different populations without any prior knowledge, then the

maximum allele frequency across all detected populations is assigned to each variant.

Population stratification The tool ADMIXTURE (version 1.3.0) is applied to stratify

the WES cohort according to the different ethnic origins of the individuals [89]. For a

given number of populations, its algorithm estimates the proportion of ancestry from each

contributing population over the individual’s entire genome. As ADMIXTURE requires

unrelated individuals as input, a maximum subset of unrelated individuals is extracted

from the cohort before determining the number of underlying populations and assigning

each individual of the cohort to one of the identified populations.

To produce a set of unrelated individuals, a relationship network is created with indi-

viduals as nodes connected by edges if they are related to each other. If the relationship

coefficient computed by Peddy as described by equation (2.1) is 0.2 or higher, two indi-

viduals are considered as being related with each other. A maximum subset of unrelated
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Figure 2.6: Steps of population stratification. Panel (a) to (d) visualize the generation of
the maximum set of unrelated individuals for an exemplary cohort of five individuals. Panel
(e) illustrates the initial population stratification through ADMIXTURE for two identified
populations: individual d belongs to the green and individual b and e belong to the red
population. Panel (f) and (g) demonstrate the expansion of the population assignment
along the edges of the relationship network. Individual c cannot be assigned to one of the
two populations as it is related to individuals of the red and the green population.

individuals is then determined by removing nodes with the highest degree until the highest

degree equals 0. Figure 2.6 (a) shows the relationship network for an exemplary cohort

of five individuals. According to the described method individual c and a are removed

resulting in a network consisting of three unrelated individuals (see Figure 2.6 (b) to (d)).

Before carrying out ancestry estimation by ADMIXTURE, a set of representative ge-

netic variants is selected from all identified variants in the unrelated cohort. For this

purpose, VCFtools (version 0.1.14) [85] first extracts biallelic SNVs with a minimum allele

frequency of 5%. Then, PLINK (version 1.9) [90] is applied to the variant set to remove

all variants in linkage disequilibrium (LD). To identify variants in LD, PLINK screens for

pairs of variants with a squared correlation r2 greater than 0.1 in windows of 50 kilobases

length by shifting this window by ten variants in each step.

For different numbers of assumed populations in the input cohort, ADMIXTURE es-

timates the corresponding ancestry proportions for each individual, and then computes a

cross-validation error across all iterations [91]. The number of populations resulting in the

minimum cross-validation error represents the estimated number of contributing ances-

tries. By k-means clustering of the ancestry proportions, each individual is assigned to one

of the identified populations as visualized in Figure 2.6 (e). The population background of

individuals initially excluded from the analysis is derived from the relationship network as

shown in Figure 2.6 (f) and (g). Individuals with relationships to individuals of different

populations remain unassigned.

Maximum allele frequency calculation All variants surpassing a given allele fre-

quency threshold in at least one identified population are to be filtered out as population-

specific variants defined by:

∃
p∈P

AFp > AFmax (2.2)

where p is a population of the identified set of populations P , AFp is the allele frequency

of the variant in p and AFmax is the chosen maximum allele frequency threshold. For this
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purpose, allele frequencies of each genetic variant are computed separately within each

detected populations. A call rate of at least 10% is required to generate a valid value for

a population. The maximum of the computed allele frequencies per variant is then stored

in a separate VCF file.

Ethnicity prediction Available data on the origin of some of the individuals is used to

gain insight into the ethnicity of the identified populations. For each country that is the

reported origin of at least ten individuals, it is examined whether more than half of the

individuals belongs to one of the identified populations. These population-specific countries

are then used to manually assign each population to a world region. The population to

region assignment enables the comparison of the reported to the predicted ethnic origin in

order to identify potentially mixed up DNA samples.

2.3.4 Variant annotation

After removing low quality variants and samples from the variant call set of a family or an

entire cohort, several features are annotated to each variant, which serve as criteria to filter

for potentially pathogenic variants. To obtain a comprehensive and informative description

of the variants, annotations of several different tools are incorporated. The Variant Effect

Predictor (VEP, version 95) [92] and GEMINI (version 0.30.1) [93] annotate the functional

impact of a variant and its allele frequency. The deleteriousness of variants is determined

by the tool InterVar (version 2.0.2) [94] that aims to classify variants as pathogenic or

benign and by the Combined Annotation Dependent Depletion (CADD, version 1.4) [95]

framework that assigns a pathogenicity score to each variant.

Variant Effect Predictor and GEMINI At its core, the Ensembl VEP determines

the functional consequence of a variant with respect to the gene or genes at the locus

where it is situated [92, 96]. Furthermore, it supports the annotation of a multitude of

other predefined or user-specified features. GEMINI transforms the resulting annotated

VCF file into a database file, which accelerates and simplifies the subsequent selection of

variants of interest.

Figure 2.7 shows an overview of the main functional consequences that are annotated

by the VEP. Variants affecting splice-sites, causing non-synonymous amino acid changes,

a shift of the reading frame or a premature stop codon likely alter the protein sequence and

are thus most relevant when searching for pathogenic variants. Such potentially deleterious

variants are usually rare while technical error rates are uniformly distributed resulting

in an increased effective error rate especially for LoF variants [97]. To adjust for the

increased effective error rate, the VEP plugin Loss-Of-Function Transcript Effect Estimator

(LOFTEE) is used to assess the impact of LoF variants [40, 65]. LOFTEE incorporates

various types of information including the location of the variant in the transcript, the

strength of splice sites and the ancestral state of the allele to flag variants either as low or
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Figure 2.7: Main variant consequences annotated by the Variant Effect Predictor. The
consequence of a variant is determined in relation to the gene in which the variant is
located or with respect to the closest gene. The abbreviation UTR stands for untranslated
region, indel refers to an insertion or deletion, kb is kilobases, bp is base pairs and miRNA
is micro ribonucleic acid. Figure adapted from [96].

high confidence LoF. To facilitate the interpretation of stop-gain variants, their annotation

is completed by a score that is computed by the NMDetective and reflects the probability

of triggering nonsense-mediated mRNA decay (NMD) [98].

Variants not directly changing the amino acid sequence are harder to interpret regarding

their functional impact. The SpliceAI plugin extends the search for splicing defects to

intronic and synonymous variants based on a deep neural network that predicts splice

junctions from pre-messenger RNA (mRNA) transcript sequences [99]. Variants in 5’ UTRs

can have an effect on transcription and translation when they affect uORFs. To find such

effects, additional information is added to variants creating a new upstream start-codon or

removing an existing upstream stop-codon by the 5’ UTR annotator plugin for the VEP

[21]. After the annotation by the VEP, GEMINI creates a variant database and adds

allele frequencies provided by the 1000 Genomes Project and the gnomAD consortium.

For the cohort analysis, GEMINI further annotates the maximum allele frequency across

the identified populations as described in Section 2.3.3.

InterVar In 2015, the American College of Medical Genetics and Genomics (ACMG) and

the Association for Molecular Pathology (AMP) [69] published guidelines to standardize

the interpretation of genetic variants. For this purpose, the authors defined a set of 28
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criteria representing different levels of evidence either for the pathogenicity or benign

impact of a variant. Additionally, rules are provided for combining the criteria to classify

genetic variants as pathogenic, likely pathogenic, likely benign, benign or having uncertain

significance.

Figure 2.8: Subset of the ACMG/AMP criteria annotated by InterVar. Some criteria are
only assigned to specific variant types. The abbreviations of the criteria are taken from
the original ACMG/AMG publication [69]

.

The tool InterVar [94] automates the annotation of 18 of the 28 criteria by extracting

information from public data sets, such as ClinVar and gnomAD. Figure 2.8 shows an

overview of the eight criteria for pathogenicity that are implicated in the variant prioriti-

zation approach described in Section 2.3.6. The criteria PS1, PM5, PP2 and PP5 are based

on the ClinVar database, PM1 uses information given by dbNSFP [100, 101] and InterPro

[102], and PM4 relies on the RepeatMasker track [103] of the UCSC Genome Browser [104].

Criterion PVS1 results from a combination of the LoF tolerance estimation provided by

the gnomAD (see Section 2.2.2) and the presence of pathogenic LoF variants reported in

the ClinVar database. Although automation through InterVar simplifies the ACMG/AMP

classification while increasing standardization, it depends heavily on the availability and

quality of entries in the underlying databases. Therefore, the annotated criteria should

rather be considered as an indication of the variant impact then as a final classification.

Combined Annotation Dependent Depletion CADD is a framework that assigns

scores to genetic variants to estimate their deleteriousness [95, 105]. Its underlying machine

learning model is based on more than 60 genomic features and was trained to differentiate

between frequent benign variants and simulated de novo variants that could be neutral
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or deleterious. The pure statistical approach gives CADD an advantage over data based

methods, such as InterVar, which are heavily relying on curated sets of pathogenic and

benign variants. CADD does not suffer from implicit ascertainment bias nor the varying

quality and limited scope of positive and negative evidence for pathogenicity as discussed

for ClinVar in Section 2.2.3. In contrast to other scores, CADD scores can be computed for

all types of variants and can thus rank any given variant set by predicted deleteriousness.

However, it was shown that the CADD framework is most powerful to evaluate protein-

coding variants while the scoring of non-coding is less reliable [106]. Although, CADD does

not explicitly consider the impact of coding variants on intra-chain amino acid interactions

or on the overall protein structure, it performs only slightly worse in a comparison to a

tool called VIPUR that performs structural modeling to predict deleteriousness [107]. On

a set of 950 human variants with 664 deleterious and 286 neutral variants, VIPUR achieves

an accuracy of 0.782 while CADD achieves 0.781. The difference is more pronounced for

the balanced accuracy reported with 0.752 for VIPUR and 0.695 for CADD. The inferior

performance when weighting the performance on neutral variants equally is in accordance

with the result of another study that showed that CADD scores tend to overestimate the

deleteriousness of benign variants while accurately predicting pathogenic variants [108].

Taken together, CADD scores are well suited to prioritize variants in clinical exome se-

quencing data because any genetic variant can easily be scored, pathogenic variants are

accurately identified and the tendency to report false-positives prevents disease-causing

variants from being systematically missed.

2.3.5 Search for compound effects

In order to find the genetic defect underlying an autosomal recessive disease in a non-

consanguineous family, pairs of harmful heterozygous variants affecting one allele each are

screened first [109]. Their compound effect is able to impede the function of the gene prod-

uct in the same way as homozygous deleterious variants, which are rather found in families

with a history of consanguinity. However, the identification of these so-called compound

heterozygous variant pairs is not readily possible in NGS data, because information on the

parental origin of the sequencing reads is usually lost during library preparation. Thus,

algorithms are required to evaluate whether two heterozygous variants are located on the

same or opposite alleles referred to as phasing.

As the number of possible compound heterozygous combinations increases quadratically

with the number of rare heterozygous variants per gene, there can be many more pairs of

potentially compound heterozygous variants then single hetero- or homozygous candidate

variants per patient. The difference is the more pronounced the more rare heterozygous

variants are found, primarily depending on the specified maximum allowed allele frequency.

Therefore, it is not only relevant to identify compound heterozygous pairs, but also to

reduce the set of candidate pairs by excluding those located on the same allele or those being

non-pathogenic according to the observed inheritance pattern in the family. Targeting
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phasing of rare variants in regions of interest and the combination of different phasing

strategies to achieve best possible results are additional requirements in the clinical context.

As existing phasing tools do not meet all of the required features, Paul Hager and I

developed and published a new tool called SmartPhase [110, 111].

(a) Trio phasing. (b) Read-based phasing. (c) Innocuous labeling.

Figure 2.9: Strategies of SmartPhase for resolving heterozygous variant pairs. Variant
pairs are phased using parental genotypes (a) or sequencing reads (b) or are labeled as
innocuous (c). The dashed green lines in panel (c) show the possible genotypes of the
parents assuming that the child is compound heterozygous for the exemplary variant pair.

Figure 2.9 visualizes the implemented strategies to resolve heterozygous variant pairs.

SmartPhase is able to perform trio phasing and read-based phasing and can combine both

strategies if both genotypes of the parents and reads from single- or paired-end DNA or

RNA sequencing are given (see Figure 2.9a and 2.9b). If parental genotypes are available

and both parents are healthy, SmartPhase can additionally identify non-pathogenic pairs

when the inheritance pattern contradicts the observed phenotypes (see Figure 2.9c). This is

especially useful in the case of variants heterozygous in both parents and its offspring, which

cannot be phased, but can be classified as innocuous because there is either compound

heterozygosity in one of the parents too, or both variants were inherited on the same

allele. Furthermore, SmartPhase is able to incorporate the haplotypes generated by the

GATK HaplotypeCaller during variant calling (see Section 2.3.1) to phase variants not

resolved by trio or read-based phasing or innocuous labeling. SmartPhase returns a bitflag

and a confidence score for each input variant pair to inform in detail about the phasing

result and its reliability.

SmartPhase was validated on simulated data and a subset of the WES cohort described

in Section 2.1.1. We showed that SmartPhase generates error-free predictions when using

a threshold of 0.34 for the confidence score to discard low quality phasing predictions.

In comparison to WhatsHap [112], another phasing tool combining trio and read-based

phasing, we demonstrated that SmartPhase is markedly faster and resolves more pairs

when parental genotypes are provided.
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2.3.6 Variant prioritization

While the identification and quality control of genetic variants is a standardized process

to a large extent, the prioritization of variants according to their potential pathogenicity

depends much more on the underlying disease type and the research objective. For rare

diseases, especially if they manifest in early childhood, it is generally assumed that a sin-

gle rare genetic defect causes the disease in a fully penetrant manner [113]. In common

diseases, single disease-causing variants are rarely observed and it is more likely that a

mixture of common and rare variants determines the predisposition to a disease, which

then manifests itself through mechanistically diverse interactions with environmental fac-

tors. Regarding the research objective, exploration of specific diseases in firmly defined

cohorts primarily aims to describe the complete diversity of genetic findings to develop or

extend a comprehensive picture of the underlying pathomechanisms. In contrast, clinical

cohorts are consistently growing by including new patients and rather aim to find genetic

variants that can be translated to treatment after verifying pathogenicity. As resources

for functional validation are limited regarding time and cost, criteria for prioritization

tend to be chosen more strictly to select variants and genes whose further evaluation is

promising. For my project, which focuses on the variety of rare IEI in clinical context, I

am thus searching for rare deleterious variants as monogenic and fully penetrant causes of

the observed pathophenotypes. The following paragraphs describe the criteria to screen

for recessive effects in the form of homozygous variants or compound heterozygous variant

pairs and for dominant effects either inherited as heterozygous allele or caused by a de novo

mutation. Further, it is specified how the criteria are applied to discover so far unknown

candidates for disease genes in the patient cohort.

Frequency criteria Allele frequencies and genotype counts of the 1000 Genomes Project

and the gnomAD data set are used for filtering for rare alleles. This step depends on the

assumption that the individuals included in these data sets do not suffer from IEI. The

assumption is supported by the fact that both data sets aim to represent the healthy

population and that it is unlikely that individuals with IEI have been recruited as healthy

participants due to the severity of the pathophenotype. To ensure that variants that are

pathogenic but not fully penetrant are not overlooked, the control subset of gnomAD is

used for applying the following filter criteria in genes causative for IEI, otherwise the whole

data set is used.

Based on the assumption that heterozygous variants causing dominant effects are not

part of the reference data sets, all heterozygous variants identified in the 1000 Genomes

Project or gnomAD are filtered out. Homozygous variants are kept as potential candidate

if no homozygous genotype is reported in gnomAD and the allele frequency is below 5%

in the 1000 Genomes Project and below 0.5% in gnomAD. The threshold is less stringent

for the 1000 Genomes Project because of the much smaller number of sequenced individ-

uals it is based on. As it is not possible to assess the prevalence of variant pairs because
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frequencies are given separately for each genotype, the filter criteria for homozygous vari-

ants are equally applied for heterozygous variants that are part of potentially compound

heterozygous pairs. This choice is based on the assumption that heterozygous variants in

compound heterozygous loci would have the same effect as individual homozygous variants.

For the WES cohort, the population-specific allele frequencies computed as described in

Section 2.3.3 are used to remove all alleles more frequent than 10% in any of the identified

populations.

Impact criteria Using the annotations described in Section 2.3.4, genetic variants are

selected as potential pathogenic candidates when they directly alter the protein sequence or

likely affect splicing, transcription or translation. Protein-altering variants, in homozygous

configuration or heterozygous either as de novo variant, dominantly inherited or part of

a compound heterozygous pair, are considered as candidates when their CADD score is

equal or higher than 15 and InterVar annotated at least one of the pathogenicity criteria

shown in Figure 2.8. LoF variants in genes not known to cause IEI are excluded when

they are flagged as low confidence variants by LOFTEE. The CADD and InterVar criteria

are not applied for intronic or synonymous variants for which SpliceAI predicted a splicing

defect with high probability, and not for 5’ UTR variants that have an effect on a uORF.

Each uORF created or disrupted by a heterozygous or homozygous variant in the 5’ UTR

is instead filtered for having a moderate or strong consensus with the Kozak sequence, a

frequent sequence motif in eukaryotes framing the start-codon AUG [114, 21]. Moreover,

such newly created or disrupted uORFs must not have a stop-codon in the UTR, thus

generating overlapping reading frames, which may reduce the expression of the encoded

protein.

Segregation criteria Three criteria ensure that variants are excluded that do not seg-

regate with observed pathophenotypes under the assumption of dominant-recessive inheri-

tance. Heterozygous variants are excluded as candidates for dominant effects or as part of

potentially compound heterozygous pairs, if a homozygous genotype of the variant allele

occurs in any of the healthy individuals in the cohort. Based on the assumption that a

disease affecting multiple individuals of a family is caused by the same underlying genetic

defect, all patients must be carries of a potential candidate variant, otherwise it is ex-

cluded. Heterozygous variant pairs, which are on the same allele or labeled as innocuous

in any affected individual are excluded to limit the number of heterozygous variant pairs

to those where all affected individuals could be compound heterozygous. For homozygous

variants or heterozygous variant pairs in trios, it is not necessary that each parent inher-

ited one of the variant alleles as deviations from this, so-called Mendelian errors, can be

the consequence of incorrect genotype calls in the parents resulting in false-negatives when

discarding such variants.
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Candidate gene selection In order to discover gene defects that have not yet been

described to cause IEI, additional impact and segregation criteria are applied after aggre-

gating annotations on variant level. To include only the most promising protein-altering

variants, a variant is selected if it is part of the top 15 variants in at least one of the indi-

viduals carrying the variant when ranking by CADD score. A pair of heterozygous variants

must be phased by SmartPhase (see Section 2.3.5) as being compound heterozygous in at

least one of the individuals in which the variant combination was found.

After the additional variant filtering, genes are sought that are hit by deleterious mu-

tations in at least two unrelated patients. This criterion strengthens the hypothesis for

a disease association and is therefore used to restrict lists of potentially relevant genes to

the most promising candidates for subsequent long-term research projects that aim to link

the gene mechanistically to the suspected disease. It is implemented as a filter for genes

where the same or different, recessive or dominant candidate variants are found in patients

from at least two different families. Additionally, it is required that none of the patients

has been diagnosed genetically or that only variants in that gene have been reported as

genetic diagnosis. If such genes harbor variants of healthy individuals that fulfill the de-

fined frequency and impact criteria, it is no longer considered a candidate gene, however.

Genes are only considered as candidates for dominant effects if at least one of the selected

heterozygous variants is de novo according to the sequencing data in at least one trio or

was inherited at least once from diseased parents. The remaining candidate genes are

finally annotated with known gene-disease relationships taken from OMIM and immune

mouse phenotypes identified by the IMPC to quickly identify genes potentially associated

with immune diseases.





Results 3
The comprehensive analysis of the entire collection of WES data at the Dr. von Hauner

Children’s Hospital and the analysis of a single family with WGS data yielded a wide range

of results presented in the following five sections. First, the workflows are described that

were implemented and extended in the course of the sequencing data analysis (Section 3.1).

The next section covers the analysis of the WGS data, which resulted in the discovery of the

disease-causing variant in the index patient of the family (Section 3.2). The remaining three

parts present the results on the WES data divided into an examination of the intermediate

results (Section 3.3), a characterization of the generated candidate lists (Section 3.4) and

a detailed description of identified pathogenic variants that provide new insights into the

etiology of IEI (Section 3.5).

3.1 Implemented workflows

To implement the analysis steps described in Section 2.3 as structured and reusable

pipelines, I used the Konstanz Information Miner (KNIME). This open source platform is

designed to create flexible analysis pipelines for various applications in data science [115].

KNIME provides a graphical user interface that enables users to easily create workflows

from individual data processing modules, so called nodes. The user community extends the

standard set of nodes for basic operations on tabular data continuously to make KNIME us-

able for various applications. To also make the standard steps of NGS pipelines available as

KNIME nodes, I developed the extension KNIME4NGS in collaboration with many other

colleagues. The subsequent steps of variant prioritization, which are specifically tailored

to the analysis of the entire WES data set, are also implemented as a KNIME workflow,

referred to as Candidate Identification Pipeline.

3.1.1 KNIME4NGS

The KNIME4NGS extension [116] was developed to enable the straight-forward generation

of workflows for versatile NGS data analyses using the intuitive and user-friendly KNIME

platform. We implemented a set of 42 nodes each providing a certain functionality for

building customized NGS data analysis pipelines. Many of the nodes are wrappers of

41
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software, such as BWA or GATK, to make these commonly used tools available in the

KNIME environment. The input and output of all developed nodes are in tabular form to

enable the use of our nodes together with the default nodes of KNIME or nodes of other

extensions. In addition to the nodes, KNIME4NGS offers a dedicated binary manager to

simplify the installation of the underlying software binaries. Since the analysis of NGS data

involves the application of multiple interdependent tools on large data sets, the probability

of spurious premature termination of individual processes increases. In order to minimize

manual control and intervention, we have designed the High-Throughput Executor (HTE)

as an extension of the standard KNIME node model. For each analysis step, the HTE

records its completion state in a database and restarts the process if it failed for reasons

like insufficient memory or other randomly occurring errors. The established database can

then be used to identify and eliminate error-prone steps in the workflows. The HTE further

ensures that successfully completed analysis steps will not be re-executed when the entire

workflow is run again.

Figure 3.1: KNIME pipeline for whole-genome sequencing data analysis. The pipeline
covers all steps from the import of FASTQ files to the generation of the GEMINI database.
All KNIME nodes shown are part of KNIME4NGS. Figure taken from [117].

In the context of my thesis, KNIME4NGS was used to process the WGS data (see Sec-

tion 2.1.2) as shown in Figure 3.1. The WES data was processed by an already established

script-based pipeline at the Dr. von Hauner Children’s Hospital that covers the same steps

up to variant calling. In the following section, I will introduce how I extended this pipeline

with a KNIME pipeline for variant prioritization.

3.1.2 Candidate Identification Pipeline

Periodic re-analysis of sequencing data increases the diagnostic rate as new algorithms

and growing knowledge help prioritizing variants [118]. Nevertheless, the diagnostic rate

is still limited, which motivates the search for deleterious mutations in genes that are not

yet associated with the observed disease phenotype, so called candidate genes. As it is

hardly feasible to review the variant lists for each patient separately after each re-analysis
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iteration, I created a workflow that takes a cohort VCF as input and generates two types

of overviews of relevant genetic variants. First, the workflow generates lists of all rare

potential deleterious variants in known disease-associated genes that serve as a reference

to review the cohort for variants especially in recently identified novel disease-associated

genes. Second, it reports novel candidate genes that are hit by potentially pathogenic vari-

ants in multiple undiagnosed patients. The latter list serves as a starting point to collect

evidence for each gene that supports or contradicts an association with the pathopheno-

types of the affected patients in order to decide for which candidate genes further functional

studies should be performed. As described in Section 2.3.6, the prioritization strategy for

variants within known disease genes and within potentially relevant genes are similar re-

garding the information that is used for filtering, but thresholds are more stringent when

searching for candidate genes.

Figure 3.2: Schematic overview of the Candidate Identification Pipeline. Each box repre-
sents a group of nodes in the underlying KNIME workflow that performs a specific function.
Nodes in green and brown boxes are responsible for the identification of dominant and re-
cessive candidate genes. Nodes in the yellow box import additional annotations and nodes
in the red box generate supplemental overview lists of patients and known pathogenic vari-
ants. A detailed view of all parts of the workflow and its 238 nodes is given in Section 6.1
in the Appendix (Chapter 6).

The developed KNIME workflow, named Candidate Identification Pipeline (CIP), con-

sists of 238 nodes. A schematic overview that groups the nodes by their functionalities

is shown in Figure 3.2 complemented by a more detailed description in Section 6.1 in the

Appendix (Chapter 6). Nodes in the yellow box import the origin, the phenotype and

the diagnostic state of the patients, the CADD scores and the InterVar classification of

the filtered variants, and information on genes from the IMPC database and from OMIM.

To search for dominant and recessive effects, the CIP takes frequency-filtered variants

occurring hetero- or homozygous in at least one patient as input. In addition, a list of

heterozygous variants is passed to the workflow, from which it creates potentially com-

pound heterozygous variant pairs that serve as input for SmartPhase. After performing

the variant prioritization steps described in Section 2.3.6, the resulting candidate variants

are reported in four separate lists containing putative dominant and recessive effects in
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known and novel disease genes. The green boxes of the workflow generate the monoallelic

candidates and the brown boxes are responsible for the biallelic candidates. Supplementary

to the lists of candidates, nodes in the red box of the CIP compile a list of all informa-

tion available for the patients in the WES cohort and a list with detailed information on

variants that have previously been reported as diagnosis.

3.2 Analysis of the WGS data of family SCN-1

The analysis of family SCN-1 was performed to compare the quality of exome and genome

sequencing and to search for a genetic variant that explains the pathophenotype of the

index patient. It was performed by Kaarin Ahomaa as her master’s thesis project under

my supervision [117].

We compared the WGS data to WES data of the index patient SCN-1pa (II-3), her

parents (I-1 and I-2) and two of her brothers (II-2 and II-5) (see Figure 2.1). In order

compute the coverage of the exomes of the sequenced individuals, we defined a reference

exome by merging all 208, 979 human protein-coding exons defined in Ensembl release

85 [119]. WGS resulted in an average sequencing depth of 42x over the entire genome,

while WES achieved an average coverage of 117x for the exomes of the core trio, which

were captured with the Agilent SureSelect V5+UTR kit, and 137x for the exomes of the

brothers, for whom the more recent Agilent SureSelect V6+UTR kit was used (Agilent,

Santa Clara, California). Although the WES coverage is much higher for both kits, the

percentage of protein-coding regions reliably covered with at least 20 reads is considerably

lower for both, the brothers with 86% and the core trio with 92%, in contrast to an average

of 98% for all family members in the WGS data. This result highlights the superiority of

WGS in comparison to WES when considering the completeness of the coverage of protein-

coding regions.

We identified a total of 6, 018, 305 variants in the WGS data set with an average

(range) of 74, 511 (66, 424 - 86, 294) SNVs and 10, 568 (9, 409 - 12, 122) InDels per pa-

tient in the regions targeted by Agilent SureSelect exome capturing kits. Variant filter-

ing and prioritization according to the procedures described in Section 2.3.6 revealed no

promising segregating variant but two de novo variants with CADD scores higher than

25. Both of them are missense mutations, one in the gene METTL26 (also known as

C16orf13, chr16:g.686265C>T, ENST00000397666:c.26G>A, p.Arg9Gln) and the other in

SRPRA (also known as SRPR, chr11:g.126134989G>C, ENST00000332118:c.1390C>G,

p.Gln464Glu). While less is known about the function of human METTL26, SRPRA is

a promising candidate gene as there are two studies that report that variants in SRP54,

a direct interaction partner of SRPRA, induce a highly similar SCN phenotype including

SDS-like features [120, 121].

SRPRA encodes for the α subunit of the heterodimeric signal recognition particle (SRP)

receptor. The SRP complex and its receptor are a universally conserved cellular machinery

that targets proteins cotranslationally to the endoplasmatic reticulum (ER), thus playing a
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(a) SRP54/SRPRA complex.

(b) SRPRA wild-type closeup. (c) SRPRA mutation closeup.

Figure 3.3: Visualization of the SRPRA mutation in patient SCN-1pa. The upper part (a)
shows SRP54 in yellow on the left side and SRPRA in green on the right side in cartoon
view. The glutamine (GLN-464) affected by the mutation in the patient, a close by arginine
residue (ARG-141), and bound phosphoaminophosphonic acid guanylate ester (GNP-705),
a non-hydrolyzable analog of guanosine triophosphate, are shown in stick representation
together with hydrogen bonds between them (dashed blue lines). The lower left part (b)
shows a closeup of the wild-type amino acids and the GNP. The lower right part (c) shows
the same protein region with GLN-464 mutated to glutamic acid (GLU-464). Additionally,
the hydrogen bond to GNP-705 is lost and one to ARG-141 is gained. The visualization
was created with PyMOL(TM) (2.3.2) based on model 5L3Q in the Protein Data Bank
[122].

central role for proper subcellular protein localization [123]. The identified de novo variant

causes a change of glutamine to glutamic acid in the GTPase domain of SRPRA and has

a CADD score of 27.4 indicating a deleterious mutation. Figure 3.3 shows that the mu-

tated position is close to the guanosine-5’-triphosphate (GTP) binding pocket. Modeling

the side chain substitution with PyMOL(TM) indicates that a hydrogen bond to GTP is

lost, which might hinder GTP hydrolysis and SRP complex function. This would most
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likely lead to impairment of transmembrane protein targeting to the ER. The pathogenic-

ity of the variant was validated in induced pluripotent stem cell (iPS) cells, which were

differentiated into bona fide neutrophil granulocytes [124]. The introduction of the pa-

tient mutation in wild-type iPS cells reduced the capacity to differentiate into neutrophil

granulocytes. Additionally, the in vitro generated neutrophil granulocytes were more sus-

ceptible to apoptosis and an increased activation of the unfolded protein response could

be observed.

In retrospect, the SRPRA variant was part of the candidate variant set that resulted

from the initial WES data analysis, but could not be linked to the phenotype of the patient

as the pathogenicity of heterozygous variants in SRP54 was not yet known. This case sup-

ports the argument that WES data of undiagnosed patients should first be re-evaluated be-

fore performing WGS to make use of the growing number of described genotype-phenotype

associations [125]. Although WGS offers a better coverage of the protein-coding regions of

the exome, the analyzed data shows that still approximately 90% of protein-coding regions

are reliably covered by WES. Additionally WGS returns millions of variants that are hard

to interpret because information about non-coding genetic elements and their influence on

the phenotype is scarce. This reasoning is part of the motivation for the analysis of the

entire WES data collection at the Dr. von Hauner Children’s Hospital, the results of which

are presented in the following sections.

3.3 Analysis of the WES data collection

The analysis of the entire WES data collection at the Dr. von Hauner Children’s Hospital

includes an initial quality control of the sequenced samples and the set of identified vari-

ants. The individuals are subsequently stratified according to their predicted ethnic origin

as a prerequisite for computing population-specific allele frequencies before prioritizing po-

tentially disease-causing variants. The following sections present the results of these major

steps for WES data of 1, 746 patients and 705 healthy relatives (see Table 2.1).

3.3.1 Quality control of variants and samples

After the generation of the cohort VCF as described in Section 2.3.1 quality control

procedures attempt to exclude false-positive variants by first removing low quality vari-

ants and then discarding all variants from samples with poor sequencing quality. The

transition/transversion (Ti/Tv) ratio is a commonly used metric to measure the success

of removing false-positive signals from variant call sets [86, 126]. Transversions are SNVs

that exchange pyrimidine with purine bases or vice versa (A↔C, A↔T, C↔G, G↔T),

while transitions are exchanges within pyrimidine or purine bases (C↔T, A↔G). If sub-

stitutions would occur at random, a Ti/Tv ratio of 0.5 would be expected as there are

two possible transitions and four possible transversions. Because transversions are ener-

getically unfavorable due to the structural difference of the nucleotides, they are observed
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less frequently resulting in Ti/Tv ratios around 3.0 for variants in coding regions and 2.0

in non-coding regions [126].

Stage of variant call set Individuals Variants Transition/Transversion ratio

Initial variant call set 2, 451 4, 011, 777 1.93
After variant quality control 2, 451 3, 675, 680 2.06
After sample quality control 2, 312 3, 484, 964 2.09

Table 3.1: Results of quality control steps applied to the exome sequencing data collection.
The number of individuals in the cohort, the number of genetic variants, and the transi-
tion/transversion ratio is shown directly after variant calling, after variant quality control,
and after sample quality control.

Table 3.1 shows that the variant quality control steps based on the overall quality of

a variant and the quality of individual genotypes has a greater impact on the number of

variants in the call set and on the Ti/Tv than the sample quality control. Summarized

over both steps, 526, 813 or 13.13% of all called variants are discarded including 346, 878

SNVs with a Ti/Tv ratio of 1.00. The increase of the Ti/Tv ratio of the remaining variant

set from 1.93 to 2.09 and the low Ti/Tv ratio of the removed variants indicates that

the quality of the variant set was increased. Computing the Ti/Tv ratio of the filtered

variant set separately for SNVs in coding and non-coding regions results in 2.66 and 1.94,

respectively. The reason for the pronounced difference in the coding variants is that 75.64%

of all identified SNVs are located in non-coding regions. This is because the used library

preparation kits (Agilent SureSelect V5/V6+UTR, Agilent, Santa Clara, California) also

capture UTRs and intronic regions around the exons. Despite considering the Ti/Tv ratios

separately for coding and non-coding variants, they are lower as the expected with 2.66

versus 3.0 for coding and 1.94 versus 2.0 for non-coding regions. This is a consequence of

the chosen filter setting, which was optimized to achieve a high sensitivity at the cost of

some false-positive variants retained in the variant set.

Cohort Trio Patients Non-trio patients Healthy relatives

Inflammatory bowel disease 18 645 49
Severe congenital neutropenia 93 185 231
Other immune defects 149 588 354

Total 260 1, 418 634

Table 3.2: Composition of the exome sequencing data collection after quality control.
Trio patients are patients for whom sequencing data of both parents passed the quality
control measures. Patients are counted as non-trio patients if these are singletons, or only
sequencing data of healthy relatives passed quality control, which do not form a complete
trio. According to the main pathophenotype all patients and their relatives are stratified
into three sub-cohorts.

Figure 3.4 shows an overview of the median sequencing depth and the rate of called

genotypes for predefined frequent SNVs as computed by the tool Peddy. A total of 138
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Figure 3.4: Sequencing depth and call rate of the exome sequencing data collection. The
tool Peddy computes the sequencing depth and the call rate of each sequencing data set
using frequent reference single nucleotide variants as described in Section 2.3.2. Each dot
represents the sequencing data set of an individual. The orange dashed line represents
the respective filter threshold value for both quality metrics. Samples having a median
coverage below 30 and a call rate below 90% are highlighted in orange and are considered
as low-quality samples. The bin size of the histogram of the median depth is 1 and 0.01
for the histogram of the call rate, respectively.

samples fail at one or both filter threshold values. Almost half of them (66 or 47.83%) are

parents that were purposely sequenced at a lower coverage to improve filtering for segre-

gation in the corresponding patient analyses at low financial cost. Nevertheless, they are

omitted in the cohort analyses as their low-coverage and potentially false-positive variants

could interfere when evaluating whether any healthy proband has deleterious variants in

potential candidate genes. The histograms illustrate that the vast majority of the samples

have significantly better quality than required to pass the filter threshold values. Of all

samples, the median of the median depth is 41 and the median call rate amounts to 0.99.

In addition to the 138 low quality samples, one sample was found that was sequenced

twice as patient and father. The duplicate sample is not related to the mother and is

male according to the WES data although the patient of the family is female. Since these

indications suggest that the father was sequenced twice, the WES data set labeled as pa-

tient was excluded from subsequent analyses. Table 3.2 shows the number of trio patients,

non-trio patients and healthy relatives remaining after quality control stratified by major

pathophenotype. Compared to the cohort composition before the quality control measures
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(see Table 2.1), the number of trio patients is noticeably reduced by 55 or 17.46% because

these are now counted as non-trio patients due to the removal of parents sequenced at low

coverage.

3.3.2 Population stratification and ethnicity prediction

Stratifying the individuals in the WES cohort at the Dr. von Children’s Hospital by ethnic

origin pursues two aims. First, the knowledge of the ethnic background of an individual can

be used to reveal mislabeling of DNA samples. Second, stratifying the cohort by the ethnic

origin of the probands enables the computation of population-specific allele frequencies,

which is required for the identification of population-specific variants that seem rare in the

overall cohort, although they are frequent in the population of the variant allele carriers.

As these variants are most likely benign they can be removed during variant prioritization.

To determine the ethnic origin of the probands, the maximum subset of unrelated

individuals was first extracted from the entire WES cohort as described in Section 2.3.3.

The resulting set comprises 1, 861 individuals. Then, ADMIXTURE was applied to identify

a stratification resulting in the minimum cross validation error by iterating from two to

ten populations, which suggested an optimum number of six populations. By spreading

the initial assignment of the 1, 861 unrelated individuals along the edges of the created

relationship network, 2, 264 or 97.23% of the individuals of the cohort could be assigned

unambiguously to one of the six identified populations. The remaining 48 individuals were

not assigned, because they are related to individuals in different populations. Figure 3.5a

visualizes the number of assigned individuals per population. The two largest populations

cover more than half of all individuals, while only 7.9% of the cohort are assigned to the

two smallest populations.

For the assignment of the identified populations to ethnicities, countries were sought

that are the annotated origin of at least ten individuals with at least half of them being as-

signed to the same population. The identified population-specific countries are highlighted

in the map in Figure 3.5b. The countries Algeria, Egypt, Israel and Oman were used

to assign the largest population to Northern Africa (NAFR) ethnicity. The less specific

Greater Middle East (GME) ethnicity is defined by Iran and Turkey. Europe is divided

into Western Europe (WEUR) and Eastern Europe (EEUR) ethnicities characterized by

the countries Croatia and Germany for the former, and Poland and Russia for the latter.

India and Pakistan are allocated to Indian Subcontinent (ISC) ethnicity and Thailand

represents South East Asia (SEAS) ethnicity.

As expected, the map shows that many countries cannot be assigned to ethnic groups

unambiguously. There is a mixture of NAFR and GME ethnicities in Iran, Egypt and

Turkey, just as WEUR and EEUR ethnicities are found in Germany, Poland and Russia.

Thus, a contradiction between an individual’s country of origin and its predicted ethnicity

is not a clear indication whether the underlying DNA sample was mislabeled. It may be the

consequence of overlapping ethnicities in neighboring countries, migration of the patient
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(a) Population stratification. (b) Ethnicity assignment.

Figure 3.5: Population stratification and assigned ethnicities. The left chart shows the
distribution of the 2, 312 individuals in the WES cohort on the six populations identified
by ADMIXTURE as described in Section 2.3.3. Each row of the chart contains 40 squares
corresponding to 40 individuals. The squares are arranged according to the order of the
assigned ethnicities in the legend starting with unassigned individuals in the lower left
corner and then adding squares from left to right, from bottom to top for each ethnicity.
Countries in the right map are colored if they are the origin of at least ten individuals in
the cohort and more than half of them belongs to one of the six identified populations.
These population-specific countries were used to define the ethnicities Northern Africa
(NAFR, 688 individuals), Greater Middle East (GME, 538 individuals), Western Europe
(WEUR, 484 individuals), Eastern Europe (EEUR, 376 individuals), Indian Subcontinent
(ISC, 116 individuals) and South East Asia (SEAS, 62 individuals). The main color of
the highlighted countries is determined by the primary ethnicity, which makes up more
than 50% of the individuals from this country. The color of the stripes indicates secondary
ethnicities that account for more than 10% of the individuals from the country. Population-
specific countries are Algeria (22 individuals, 95.5% NAFR), Croatia (13 individuals, 76.9%
WEUR, 15.4% NAFR), Egypt (42 individuals, 78.6% NAFR, 14.3% GME), Germany
(618 individuals, 56.5% WEUR, 28.6% EEUR), India (32 individuals, 100% ISC), Iran
(318 individuals, 53.5% GME, 39.9% NAFR), Israel (73 individuals, 75.3% NAFR, 16.4%
GME), Oman (24 individuals, 100% NAFR), Pakistan (32 individuals, 100% ISC), Poland
(44 individuals, 56.8% EEUR, 36.4% WEUR), Russia (16 individuals, 81.2% EEUR, 12.5%
WEUR), Thailand (10 individuals, 100% SEAS) and Turkey (345 individuals, 59.5% GME,
34.7% NAFR).

or its family to a country with another predominant ethnicity, or the annotation of the

country of origin refers to the origin of the DNA sample rather than the ethnic origin of

the patient. Thus, the ethnicity prediction can be used as an additional information when

there is a suspect of mislabeled DNA or to help to resolve such issues, however, its primary

use is to identify and filter out population-specific variants.

3.3.3 Intermediate results of variant prioritization

In addition to the necessary variant prioritization steps based on annotations described

in Section 2.3.4 and 2.3.6, frequency filtering using population-specific allele frequencies

(see Section 2.3.3) and targeted search for potentially pathogenic compound heterozygous



3.3. ANALYSIS OF THE WES DATA COLLECTION 51

variant pairs using SmartPhase (see Section 2.3.5) are two novel features that were imple-

mented for the analysis of the WES data collection. In order to estimate their influence on

variant filtering, intermediate results of variant prioritization are presented in the following

paragraphs.

Figure 3.6: Frequency filtering combining overall and population-specific allele frequencies.
Each square of the chart corresponds to 100 variants of the total set of 312, 959 filtered
variants. The squares are arranged according to the order of the populations in the legend
starting in the lower left corner with variants with an allele frequency (AF) equal to or
greater than 0.1 in the overall cohort (253, 038 variants or 80.85%). Then squares are
added from bottom to top, from left to right for each population for variants with an AF
equal to or greater than 0.1 in the corresponding population and an AF smaller than 0.1 in
the overall cohort (30, 503 variants or 9.75% for South East Asia, 11, 927 variants or 3.81%
for Indian Subcontinent, 5, 667 variants or 1.81% for Western Europe, 4, 584 variants or
1.46% for Northern Africa, 3, 883 variants or 1.24% for Eastern Europe and 3, 357 variants
or 1, 07% for Greater Middle East). The population with the maximum AF was counted
if the AF was higher than 0.1 in multiple populations.

Population-specific allele frequencies The first step of variant prioritization is the

exclusion of frequent variants as these cannot be the sole cause of a rare disease. The

gnomAD database is the main resource for frequency filtering as it includes the largest

collection of human exome and genome sequencing data. However, it is mainly based on

individuals with European ancestry while the majority of the individuals in the WES cohort

originates from Northern Africa and the Greater Middle East with some Asian populations

(see Figure 3.5a). The differing underlying population structures limit the capability of

filtering variants that are frequent in the populations included in the WES cohort but are

rare in European ancestries. Therefore, frequency filtering in the generated variant call

set is not only relying on public data sets but also on population-specific allele frequencies

calculated separately for each population. Variants with an allele frequency equal or greater

than 10% in the overall cohort or in any of the populations are assumed to be too frequent

as a fully penetrant disease-causing allele and are discarded. Figure 3.6 shows the increase

in the ability to filter variants using population-specific allele frequencies in addition to

the allele frequencies as calculated over all individuals in the cohort. Additional 59, 921

variants can be filtered out corresponding to an increase of 23.68% and resulting in a total

of 312, 959 excluded variants. As larger populations have a stronger impact on the overall
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allele frequency than smaller ones, the populations that dominate the cohort, namely

NAFR, GME, WEUR and EEUR, contribute only to a minor extent to the additionally

filtered variants. Consequently, the two smaller Asian populations ISC and SEAS have the

highest impact through 42, 430 variants that have an allele frequency equal to or greater

than 10% only in one of both populations.

Division of the variant set into potentially dominant and recessive effects After

having filtered by cohort and population-specific allele frequencies, the allele counts and

frequencies provided by the 1000 Genomes Project and the gnomAD database were used

to compile three lists of rare variants according to the thresholds defined in Section 2.3.6.

The first list contains 1, 319, 177 variants that are heterozygous in at least one individual

in the WES cohort, but that do not occur in either of the two reference data sets. The

second list comprises 97, 330 variants that were found to be homozygous in at least one

individual in the cohort, but no homozygous genotypes are reported in the gnomAD data

set, and the allele frequency is below 5% in the 1000 Genomes data set and below 0.5%

in gnomAD. The third list includes 2, 683, 830 variants having a heterozygous genotype in

at least one individual of the cohort and passing the same allele frequency thresholds as

the variants in the second list. The CIP takes the first list as input to search for dominant

effects, while the second and the third list are used to screen for recessive effects occurring

as homozygous and compound heterozygous variants, respectively.

Search for compound effects To identify potential compound heterozygous variant

pairs in the WES cohort, the prefiltered list of 2, 683, 830 rare heterozygous variants was

further filtered for having an effect on the protein sequence or affecting splicing. Then,

pairs of variants were created where both variants have been found in the same individual

and both are located in the same gene resulting in a list of 99, 300 variant pairs with 34

pairs per individual in the median. SmartPhase was able to resolve 30, 848 of these pairs

as being on the same allele, 2, 041 pairs as being compound heterozygous and 460 as being

non-pathogenic according to the segregation pattern in trio patients. All 30, 848 pairs on

the same allele and 460 non-pathogenic variants were discarded. To further reduce the

amount of variant pairs that remain unresolved, all variant pairs were removed for which

a pair with identical positions and alternate alleles exists in the set of the 31, 308 variant

pairs already discarded. As a result, 40, 559 variant pairs remained, which were then

concatenated with the list of 97, 330 homozygous variants for joint processing as recessive

candidate variants resulting in the lists described in Section 3.4.

3.3.4 Sensitivity of variant calling and frequency filtering

The sensitivity of variant calling and the subsequent quality control and frequency filtering

steps is estimated by the amount of rediscovered known pathogenic variants. In total, 343

gene defects explain the pathophenotype of 337 of the 1, 678 patients in the WES cohort.



3.3. ANALYSIS OF THE WES DATA COLLECTION 53

There are six patients with two faulty genes and 27 of the gene defects are found in at

least two patients. While 15 of the 343 gene defects are caused by larger deletions, 328

include small variants that should be found by the implemented cohort analysis pipeline.

However, 14 variants were not found, because two of them are not covered by WES reads,

seven are filtered out during the quality control of the variant call set and five are reported

as homozygous genotypes in gnomAD. The latter are therefore not considered as fully

penetrant pathogenic variants but rather as risk alleles. While it is impossible to identify

the two variants not covered by sequencing reads, the other twelve variants could be kept

in the variant call set by using more lenient threshold values when assessing the quality or

frequency of a variant. As this would inevitably lead to longer lists of candidate variants

and genes, the false-negative rate of 4.27% is accepted in the search for pathogenic variants

in the entire cohort to limit the amount of false-positives in the underlying variant call set.

3.3.5 Reliability of variant impact annotations

As shown in Section 3.3.4, the cohort analysis pipeline rediscovered 314 known pathogenic

gene defects in the WES cohort. Of these, 27 are found in more than one patient, which

results in 293 distinct genetic variants when counting the heterozygous variants in 32

compound heterozygous pairs separately. Figure 3.7a shows that 81.91% of them are

included in recessive inheritance patterns either as a homozygous or hemizygous variant,

or as a heterozygous variant part of a compound heterozygous pair. The majority of the

293 variants has a direct effect on the protein-sequence (262 or 89.42%), a minor percentage

directly affects splicing sites (29 or 9.90%) and only two variants are located in introns.

The variants can further be divided in 117 LoF and 176 other variants as highlighted by

the red and blue colors in Figure 3.7b. Since the pathogenicity of this set of variants is

already proven, it offers the possibility to evaluate the reliability of variant annotations

used for variant prioritization.

SpliceAI SpliceAI predicts a highly likely effect on splicing for 30 variants. Based on

the variant annotation by the VEP (see Section 2.3.4), these include three frameshift, one

missense and one intron variant in addition to twelve splice donor, seven splice region and

six splice acceptor variants. Although the prediction of a splicing defect is expected for

the latter three variant types, there are three splice region variants for which SpliceAI did

not predict a splicing defect when considering only predictions with a probability above

80%. For two of them the probability of a splicing defect is close to the recommended

threshold value (69% and 75%). For the third variant, SpliceAI correctly predicted the

loss of a donor site as the existence of a splicing defect could be verified experimentally,

but SpliceAI estimated the probability of the prediction to be far below the threshold at

only 18%. Additionally, there is one deletion of ten bases affecting a splice donor site, but

the used SpliceAI plugin provides no prediction, because only deletions up to a length of

four bases are supported. Despite the chosen filter value aiming at high precision, SpliceAI
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(a) Distribution of genotypes. (b) Distribution of functional impacts.

(c) Number of ACMG/AMP criteria
annotated by InterVar.

(d) Distribution of CADD scores by mode
of inheritance.

Figure 3.7: Characterization of pathogenic variants discovered in the exome sequencing
data collection. Chart (a) illustrates the distribution of the genotypes of the 293 distinct
genetic variants. Green colors indicate recessive inheritance in contrast to dominant in-
heritance in ocher. Chart (b) shows the functional impact of the disease-causing variants
ordered by severity as proposed by the Variant Effect Predictor [92]. Red colors distinguish
Loss-of-Function (LoF) variants from other variants. Each square represents one variant in
(a) and (b). The squares are arranged according to the order of the corresponding legend
starting with the squares representing the last legend entry in the lower left corner and then
adding squares from left to right, from bottom to top for each legend entry. The bar plot
(c) indicates the number of criteria defined by the American College of Medical Genetics
and Genomics (ACMG) and the Association for Molecular Pathology (AMP) that apply to
LoF and other variants as annotated by InterVar. PVS1 stands for “LoF variant in a gene
where LoF is a known mechanism of disease”, PM1 is “missense variant in a functional
domain or mutational hotspot”, PM4 is “inframe insertion or deletion that changes the
length of the encoded protein or causes the loss of a stop codon”, PM5 is “missense variant
at the same position as a reported pathogenic variant”, PP2 is “missense variant in a gene
where missense variants are a common mechanism of disease”, PP3 indicates that “mul-
tiple computational evidence shows deleterious effect”, and PP5 states “variant reported
as pathogenic” (see Figure 2.8). The box plot (d) compares the distribution of Combined
Annotation Dependent Depletion (CADD) score values of LoF and other variants divided
into those that contribute to dominant and those that contribute to recessive inheritance.
The horizontal dashed line highlights the CADD score threshold value 15 used to filter for
deleterious variants.
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has a reasonable recall (89.66%) on pathogenic variants that cause splicing defects. The

effect on splicing of the three frameshift, the missense and the intron variant has not yet

been verified experimentally, thus the precision of SpliceAI cannot be assessed on this set

of variants.

LOFTEE Of the 117 LoF variants, 98 pass all LOFTEE filters while 19 are labeled as

low confidence LoF variants. Eight of the high confidence LoF variants are flagged as being

located in an exon that does show the pattern of conservation of a protein-coding exon

according to PhyloCSF [127]. One splice donor variant is classified as a low confidence

LoF variant because it only affects splicing of the 5’ UTR. Another splice region variant

has low confidence because a rescuing splice acceptor site is located less than 15 base pairs

away. All other low confidence LoF variants are filtered because they are close to the

end of a transcript and are otherwise not deleterious according to LOFTEE [65]. The

precision of LOFTEE regarding the ability to identify high confidence LoF variants cannot

be reasonably determined on a set of known pathogenic variants. However, the recall is

83.76%, which indicates that LOFTEE should not be used to filter LoF variants when

aiming to diagnose single patients as there is a chance of more than 15% that a pathogenic

LoF variant is ignored as a low confidence variant. Nevertheless, a classification as a high-

confidence LoF variant provides strong evidence supporting the deleteriousness of a variant

when searching for new disease-causing gene defects. Therefore, the LOFTEE classification

into high and low confidence LoF variants is used as a criterion for prioritizing variants in

genes not related to IEI.

InterVar According to the variant classification scheme of the ACMG/AMP and the cri-

teria annotated by InterVar [69, 94], 43 of the 293 known pathogenic variants are classified

as pathogenic, 72 as likely pathogenic, one as likely benign and all others as variants with

uncertain significance. As only 39.25% of the variants are correctly classified as pathogenic

or likely pathogenic, but 60.41% remain unclassified and one variant is even misclassified,

filtering by InterVar pathogenicity classification would result in many false-negatives. How-

ever, InterVar has annotated one of the eight pathogenicity criteria shown in Figure 2.8

for 254 or 86.69% of the known disease-causing variants. Figure 3.7c shows how often each

criterion is annotated. Overall, 57 variants are listed as being pathogenic in ClinVar (PP5).

No differing missense variant causing the same amino acid change as a reported pathogenic

variant was found (PS1) and only three missense mutations at the same position as a re-

ported variant are part of the 293 known pathogenic variants (PM5). Inframe deletions

in non-repeat regions or stop-loss variants (PM4) are rare because these impacts are rare

themselves (see Figure 3.7b). Missense variants in a functional domain or a mutational

hotspot (PM1) are quite frequent, but only eleven missense variants are located in genes

where missense variants are a common mechanism of disease (PP2). Regarding the 117

LoF variants, 88 of them are located in genes where LoF is a known mechanism of disease

(PVS1). Finally, for almost half of the pathogenic variants (145 or 49.49%) multiple com-
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putational evidence suggests a deleterious effect. While the lack of these eight criteria does

not implicate that a variant is benign, the presence of any of them represents an evidence

of deleteriousness. The finding that 86.69% of all known pathogenic variants fulfill at least

one of the eight criteria, motivates the use of this feature as a filter criterion in the search

for deleterious variants in genes not related to IEI.

CADD In contrast to InterVar, CADD scoring does not depend on curated data sets of

pathogenic and benign variants and therefore it is able to estimate the pathogenicity of

every genetic variant. Figure 3.7d shows the distribution of the CADD scores of all 293

known disease-causing variants separately for those contributing to dominant and recessive

inheritance (ochre and green colors in Figure 3.7a) subdivided into LoF and other variants

(red and blue colors in Figure 3.7b). As expected, CADD scores are generally higher

for LoF variants, and there is no difference between the scores of dominant and recessive

variants reflecting that CADD scores estimate the pathogenicity of a variant independent

of the mode of inheritance of its associated phenotype. Figure 3.7d also highlights the

threshold value of 15 that is used to classify variants as potentially pathogenic or likely

benign. As only twelve of the 293 known pathogenic variants are below this threshold

value, CADD score based variant classification achieves a recall of 95.90% on this variant

set.

Taken together, the results from the list of known pathogenic variants provide evidence that

LOFTEE, InterVar and CADD generate reliable annotations as the filter criteria based on

them achieve recall values of at least 84%. Section 3.4.2 presents how many genes known

to cause IEI are rediscovered when applying these and all other filter criteria defined in

Section 2.3.6.

3.4 Resulting lists of candidate variants and genes

Based on the three frequency-filtered input lists described in Section 3.3.3, the CIP gen-

erates four lists of candidate variants. Separated into mono- and biallelic variants, two

lists contain variants in genes with known defects causing IEI and two contain variants in

genes not associated with IEI. While the first two lists are only filtered to ensure that the

variants are rare and affect only patients, the other two lists result from the application

all the criteria described in Section 2.3.6 to generate a set of promising candidate genes.

3.4.1 Variants in genes associated with IEI

In 380 of all 408 genes reported to be causative for IEI [32], the CIP identified 1, 852 ho-

mozygous variants and 383 pairs of heterozygous variants with 40 of them being compound

heterozygous according to SmartPhase. In 101 of the 102 IEI dominant genes, 5, 257 het-

erozygous variants were found including 185 de novo variants according to WES data of
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the parents. Although the second list comprises only a quarter of the genes of the first

list, it is almost three times longer because filtering heterozygous variants by segregation

is limited due to the low proportion of trios in the cohort (see Table 3.2). Of all 1, 678

patients, 1, 496 harbor a heterozygous variant and 936 are affected by a homozygous or a

heterozygous variant pair in one of the IEI genes. In total, a rare genetic variant in at least

one of the IEI genes can be found in 94.46% or 1, 585 of the patients in the WES cohort.

Consequence Heterozygous Homozygous Heterozygous in pair

Splice acceptor variant 11 4 10
Splice donor variant 12 11 15
Stop gained 29 22 18
Frameshift variant 34 45 36
Stop lost 4 - -
Start lost 4 2 1
Inframe insertion 8 1 6
Inframe deletion 14 5 14
Missense variant 635 274 579
Protein-altering variant - - 1
Splice region variant 82 26 86
Synonymous variant 265 114 -
5’ UTR variant 384 93 -
3’ UTR variant 1, 220 367 -
Non-coding transcript exon
variant

- 1 -

Intron variant 2, 348 811 -
Upstream gene variant 137 58 -
Downstream gene variant 70 18 -

Total 5, 257 1, 852 766

Table 3.3: Consequences of variants found in genes associated with inborn errors of immu-
nity. Biallelic variants are separated into homozygous variants and heterozygous variants in
potential compound heterozygous pairs. Synonymous, 5’ UTR, 3’ UTR, intron, upstream
and downstream gene variants were not used to create pairs of heterozygous variants which
explains the absence of these consequences in the fourth column of the table. The order
of the consequences corresponds to the severity rating provided by the Variant Effect Pre-
dictor [92]. The abbreviation UTR stands for untranslated region.

Although almost all patients have a rare variant in one of the IEI genes, in most cases

it probably has no functional impact. As Table 3.3 shows, the majority of the variants

in the lists of heterozygous and homozygous variants are located in non-coding regions,

such as UTRs and introns. Nevertheless, these might affect gene expression regulation by

creating or disrupting uORFs, or splicing by activating cryptic splice sites as detailed in

Section 1.1.2.

Of the 384 heterozygous and 93 homozygous 5’ UTR variants, 32 and five are annotated

as uORF affecting variants respectively. Only two of the heterozygous variants fulfill the

criteria of being potentially deleterious by creating uORFs with a moderately strong Kozak
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sequence [114] and a reading frame overlapping and shifted towards the main reading frame.

Both variants are found in patients suffering from IBD, one in the gene PIK3R1 and the

other in SAMD9. For both patients, the variants were excluded as sole cause of disease.

The variant in PIK3R1 occurs in four of the non-control individuals in gnomAD and the

patient with the variant in SAMD9 has already been diagnosed with a homozygous splice

donor variant in IL10RB, known as a monogenic cause of VEOIBD [128].

Within the intronic and synonymous variants, SpliceAI predicts the gain of splice sites

for three heterozygous and two homozygous intron variants and for one homozygous syn-

onymous variant. One of the heterozygous and one of the homozygous intron variants can

be excluded as monogenic cause of disease as the pathophenotypes of the affected patients

are already explained by mutations in other genes. The homozygous synonymous variant

is also considered as non-pathogenic as Sanger sequencing showed that the genotypes of

the healthy parents are homozygous, too. The second heterozygous intron variant could

be a false-positive variant, as the locus is covered only by 15 sequencing reads, twelve

supporting the reference allele and three the mutant allele. The third heterozygous intron

variant affects ELANE and the second homozygous intron variant affects DOCK8. Both

variants are promising explanations for the diseases of the patients, one suffering from

SCN and the other from hyperimmunoglobulin E syndrome, both known to be caused by

mutations in the respective genes [32]. The heterozygous variant in ELANE is a de novo

mutation according to the WES data and is predicted to create a donor splice site, which

elongates exon 4 of 5 by 83 nucleotides (chr19:g.855879G>T, ENST00000263621:c.598-

79G>T), thereby potentially introducing additional amino acids and a shift of the reading

frame. SpliceAI also predicts the gain of a donor splice site for the homozygous variant

in DOCK8. The variant is located 76 nucleotides after exon 23 in a transcript having 35

exons (chr9:g.429930A>G, ENST00000382329:c.3027+76A>G), which might result in an

elongation of the coding sequence by 75 nucleotides. For both variants, the predicted elon-

gations of the mRNAs have yet to be confirmed by gel electrophoresis of complementary

DNA (cDNA) isolated from patient cells.

The most deleterious variants according to their functional impact are LoF variants.

Among the homozygous variants there are 82 LoF variants, among the heterozygous ones

there are 86 LoF alleles and the list of heterozygous pairs includes 17 pairs of LoF variants.

Many of these variants have already been confirmed to be disease-causing. The proportion

is highest for the homozygous variants, where 69 of the 82 variants are reported as genetic

diagnosis. For heterozygous variant pairs, seven of the 17 pairs are considered as disease-

causing, while pathogenicity is only proven for nine of the 86 heterozygous LoF variants.

For most of them, segregation has not yet been tested and functional studies have not yet

been conducted. Therefore, it cannot be assessed whether the considerably lower fraction

of confirmed diagnoses among monoallelic LoF variants is due to the limited possibilities in

filtering heterozygous variants as a consequence of the low amount of sequenced parents,

or rather due to the primary focus on biallelic variants when searching for pathogenic

variants.
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In total, the two lists of possible dominant and recessive variants in IEI genes contain

the genetic diagnoses of 260 patients. The number will certainly grow once segregation

and functional studies are completed. However, this figure also shows that only a small

proportion of all 1, 678 patients can be explained by variants in known genes. This moti-

vates the search for deleterious variants in genes that are not yet associated with IEI, the

results of which are presented in the following section.

3.4.2 Disease gene candidates

In the WES cohort, the CIP discovered 205 candidate genes each hit by deleterious variants

in patients of at least two families. Recessive inheritance is assumed for 155 genes as these

harbor biallelic variants, while dominant inheritance is supposed for 49 genes affected by

heterozygous variants. In addition one gene on the Y chromosome has deleterious variants

in two male patients. For each gene Table 6.1 indicates the number of identified variants

and the range of their CADD scores, the number of affected patients and their genotypes,

as well as phenotypic information taken from IMPC and OMIM.

Sensitivity of candidate gene selection In order to check the recall of candidate gene

discovery, all genes serve as positive control that harbor known pathogenic mutations in

at least two unrelated patients of the cohort. This set comprises 58 genes, 49 of which

are causative for recessively inherited diseases in 181 patients and nine genes causative

for dominantly inherited diseases in 47 patients. The list of 155 recessive candidate genes

contains 35 of the 49 disease genes and the list of 49 dominant candidate genes includes

five of the nine disease genes corresponding to an overall recall of 67.24%. There are a

numerous reasons why 19 of the genes in the truth set are not rediscovered. Three genes

are excluded as candidates because variants in healthy individuals fulfill the deleteriousness

criteria, too. Eleven genes are missed because one or no patient remains after removing

variants that fail one or more of the impact criteria. This happens four times because no

pathogenicity criterion is annotated by InterVar, once because the CADD score is below

15 and once because a LoF variant has low confidence according to LOFTEE. For the

remaining five genes a mixture of these criteria results in the exclusion of the respective

gene as a candidate gene. Another gene is not found, because the two affected patients

carry variants that occur in the gnomAD data set. In one more gene, one of two known

pathogenic variants affects only one patient of a pair of diseased siblings with different

pathophenotypes. As a consequence, the gene is not reported as a candidate, because

there is a contradiction to the expectation that all patients of a family suffer from the same

genetic defect, and there is just one other patient remaining with a deleterious variant in

the same gene. One of the recessive disease genes is not found, because only one patient

remains after excluding the compound heterozygous variant pair in the other patient, which

could not be phased by SmartPhase. Two dominant disease genes are not identified as

candidate genes, because dominant inheritance or a de novo event could not be confirmed
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in any of the four affected patients due to the lack of parental sequencing data. This

filter criterion explains why the true positive rate is much higher for recessive candidates

(71.43%) than for dominant candidates (44.44%). As sequencing data of the parents is

only available for 260 of all 1, 678 patients, strict filter criteria are required to reduce the

number of false-positives among dominant candidates, which however will also cause more

false-negatives than among recessive candidates. The mixture of filter criteria that cause

genes to be missed shows that the chosen criteria are not redundant and there is no bias

towards one single criterion.

Evaluation of the candidate gene list Reviewing the 205 candidate genes for biolog-

ical plausibility with regard to the phenotypes of the patients is an ongoing process. We

started with the eleven genes with potentially pathogenic variants in five or more patients.

Seven of these genes, namely HAX1, SRP54, G6PC3, IL10RB, BTK, ZAP70, and WAS

have already been associated with IEI [32]. One of the four remaining genes, given the

pseudonym C GENE 1, stands out because one of two potentially pathogenic variants in

this gene was identified as a heterozygous genotype in seven unrelated patients (see Table

6.1). Whether the variants are inherited or de novo mutations could not be assessed for

these patients, because exome sequencing data of the parents has not been generated to

date. The identified missense variant causes a change of valine to glycine and has a CADD

score of 23.3. As the parents of the affected families are healthy, the pathogenicity of the

variant could only be explained by seven independent de novo events. While this already

seems rather unlikely, the quality of the variant genotypes gives rise to further doubts.

Only between 7.69% and 29.41% of the reads at the variant position support the alter-

nate allele in the seven patients, which indicates false-positive variant calls. In addition,

a heterozygous missense variant affecting the same amino acid position by exchanging the

valine with an alanine is reported in 72 individuals in gnomAD, which contradicts a strong

pathogenic potential of this amino acid position. The variant observed in gnomAD has

a CADD score of 19.3 indicating deleteriousness. However, the prevailing evidence for a

benign effect of this variant given by multiple healthy carriers suggests that CADD scores

of amino acid changes at the affected position tend to be overestimated. Consequently,

the variant observed in the patients was not analyzed further, as it is probably a false-

positive signal. Finally, the described pathophenotypes for C GENE 1 in OMIM indicate

autosomal recessive as well as autosomal dominant inheritance with strongly overlapping

phenotypic descriptions. The annotated phenotype for autosomal dominant inheritance,

which could be relevant for the seven patients, includes some of their symptoms, but is also

characterized by prominent dysmorphic facial features, which were not reported for these

patients. Based on these considerations C GENE 1 was discarded as candidate gene.

Another candidate gene, given the pseudonym C GENE 2, is currently the focus of

further functional studies. C GENE 2 is located on chromosome X and encodes a cyto-

plasmic protein that plays a role in cell signaling. The gene is a particularly promising

candidate for a disease association as there are six male patients carrying six different hem-
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izygous missense variants (see Table 6.1). All variants hit functional domains of the gene

and the CADD scores range from 18.95 to 23.8. Interestingly, the pathophenotypes of the

patients differ and include IBD phenotypes, inherited bone marrow failure, and vasculitis.

This could be the result of a yet unknown wide-ranging functional diversity of the encoded

protein, but several further experiments are required to explore the full spectrum of its

biological functions and to evaluate the pathogenicity of the identified variants.

The following section provides a detailed description of the variants in the two remaining

genes with at least five affected patients, namely EPCAM and SLC5A1. Additionally,

pathogenic variants in eight other genes identified during my work on the WES cohort are

presented.

3.5 Discovered pathogenic variants

The results of my work include not only the CIP itself and the generated lists of candidate

variants and genes, but also the explanation of the genetic etiology of multiple patients.

Some diagnoses resulted directly from the lists, others could be found after thorough

review of all candidate variants of individual patients. The following sub-sections present

26 pathogenic variants whose discovery goes beyond routine diagnosis by having direct

implications for the understanding of the diversity of IEI. The segregation of all variants

was confirmed by Sanger sequencing, seven of them were published in four papers, and five

are part of a manuscript in preparation.

Gene & Variant Posi-

tion

Impact CADD

v1.6

InterVar

v2.0.2

Type Patients

EPCAM (AR)

2-47600604-T-C missense 25.4 PP3 hom DIAR5-1pa

2-47600989-C-G stop gained 33.0 PVS1, PP3 hom DIAR5-2pa

2-47602386-G-T stop gained 58.0 PVS1, PP3 hom DIAR5-3pa

2-47604152-G-T splice

acceptor

32.0 PVS1, PP3 hom DIAR5-4pa

2-47604202-A-G missense 15.5 - hom DIAR5-5pa

2-47604217-G-C splice

donor

33.0 PVS1, PP3 hom DIAR5-6pa

2-47606078-A-G intronic 14.5 PP5 hom DIAR5-7pa

SLC5A1 (AR)

22-32462939-TG-T frameshift 32.0 - hom GGM-1pa

22-32480526-C-G missense 26.2 PP3 hom GGM-2pa

22-32480629-T-C missense 26.8 PP3 hom GGM-3pa

22-32480964-G-T missense 22.7 PM1, PP3 hom GGM-4pa

22-32481011-T-A missense 26.6 PP3 hom GGM-5pa

22-32487745-G-T stop gained 40.0 PP3 hom GGM-6pa
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Gene & Variant Posi-

tion

Impact CADD

v1.6

InterVar

v2.0.2

Type Patients

CARMIL2 (AR)

16-67681199-CAG-C splice

acceptor

33.0 - hom VEOIBD-1pa

16-67683038-CAT-C frameshift 26.4 PVS1 hom VEOIBD-2pa

16-67683871-

GGTGGGCGTCC-G splice

donor

24.8 - hom VEOIBD-3pa

FOXP3 (XLR)

X-49111955-CCTT-C inframe

deletion

20.7 PM4, PP5 hemi VEOIBD-4pa

G6PC3 (AR)

17-42152399-C-T missense 29.8 PM1, PP3 hom VEOIBD-5pa

SRP54 (AR)

14-35465950-C-T missense 25.3 PM1 hom VEOIBD-6pa

RTEL1 (AR)

20-62326972-G-A missense 24.1 PM1, PP5 hom VEOIBD-7pa

DKC1 (XLR)

X-153993690-T-G intronic 9.4 - hemi DKC-1pa

SRPRA (AD)

11-126134989-G-C missense 26.8 PM1, PP3 het SCN-1pa

SRP54 (AD)

14-35476564-G-T missense 31.0 PM1, PP3 het SCN-2pa

14-35476574-AAAC-A inframe

deletion

22.5 PM4, PP5 het SCN-[3-7]pa

14-35477982-G-C missense 27.0 PM1, PP3 het SCN-8pa

SRP19 (AR)

5-112200230-G-A splice

region

14.3 PP3 hom SCN-9pa[1-4]
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Table 3.4: Discovered pathogenic variants. The order of the genes corresponds to the

order of their description in Section 3.5. The division by horizontal lines corresponds

to the subsections 3.5.1, 3.5.2, 3.5.3, and 3.5.4. The abbreviation in brackets after the

gene name indicates the mode of inheritance (AR is autosomal recessive, AD is autosomal

dominant, XLR is X-linked recessive). The chromosome, position, reference and alternate

allele of the variants are concatenated as a string with dashes as separator. The position

is based on the human reference genome assembly GRCh37. The column “InterVar” lists

criteria defined by the American College of Medical Genetics and Genomics (ACMG)

and the Association for Molecular Pathology (AMP) as annotated by InterVar. PVS1

stands for “Loss-of-Function (LoF) variant in a gene where LoF is a known mechanism of

disease”, PM1 is “missense variant in a functional domain or mutational hotspot”, PM4

is “inframe insertion or deletion that changes the length of the encoded protein or causes

the loss of a stop codon”, PP3 indicates that “multiple computational evidence shows

deleterious effect”, and PP5 states “variant reported as pathogenic” (see Figure 2.8). The

column “Type” specifies the genotype of the identified variant (hom is homozygous, hemi is

hemizygous, het is heterozygous). The patient identifier consists of an abbreviation of the

major pathophenotype, the number of the affected family and the number of the patient if

the variant occurs in multiple patients of a family. “Diarrhea 5, with tufting enteropathy,

congenital” is abbreviated as DIAR5, “glucose-galactose malabsorption” as GGM, “very

early onset inflammatory bowel disease” as VEOIBD, “dyskeratosis congenita” as DKC,

and “severe congenital neutropenia” as SCN. Square brackets are used to list affected

patients or families.

3.5.1 EPCAM and SLC5A1 - Disease diagnosis driven by variant

prioritization

Among the genes that are reported by the CIP to be hit by deleterious biallelic variants,

EPCAM and SLC5A1 appear as the strongest candidate genes. In addition to the fact

that at least five variants were found in each gene, the phenotype of all affected patients

is consistently characterized by chronic diarrhea and/or IBD-like phenotypes.

The protein product of EPCAM is the epithelial cell adhesion molecule, which is sus-

pected to mediate physical interaction of intestinal epithelial cells and intraepithelial lym-

phocytes, thereby playing a role in the defense against mucosal infection [129]. Further,

it is known that mutations in the gene can cause diarrhea-5 with congenital tufting en-

teropathy (DIAR5) [130], which matches the described pathophenotypes of the affected

patients.

The solute carrier family 5 member 1 encoded by SLC5A1 is responsible for the active

transport of glucose and galactose across the brush border membrane of the cells within

the gastrointestinal tract [131]. Mutations in SLC5A1 can cause glucose-galactose malab-

sorption (GGM) in early childhood, which is characterized by severe chronic diarrhea and
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failure to thrive fitting to the phenotypes of the affected patients [132]. Although GGM

may be lethal if untreated, it is possible to control the disease by replacing lactose, sucrose

and glucose by fructose-based nutrients. Thus, the proper diagnosis of a SLC5A1 defect is

crucial for the patient as its quality of life can be improved tremendously and permanently

through nutritional adjustment.

Table 3.4 lists the 13 identified variants in EPCAM and SLC5A1 occurring as ho-

mozygous genotypes in 13 unrelated patients. The variants in the patients DIAR5-5pa

and GGM-1pa were only found after a targeted search for variants in both genes, as In-

terVar did not annotate any of the required pathogenicity criteria for either variant. The

pathogenicity of the variants was not verified experimentally, but can be derived from their

annotated features as discussed in the following paragraphs.

(a) Pathogenic variants in EPCAM.

(b) Pathogenic variants in SLC5A1.

Figure 3.8: Positions of the pathogenic variants in EPCAM and SLC5A1. The domain
and topology information is taken from Pfam [133] and UniProtKB [134] entries P16422
for EPCAM and P13866 for SLC5A1. The signal peptide of EPCAM is abbreviated
as sig p, the EPCAM N-terminal domain as EpCAM-N, and the Thyroglobulin type-1
repeat as Thyroglobulin 1. The sodium-solute symporter family domain of SLC5A1 is
abbreviated as SSF. The topology E stands for extracellular, C for cytoplasmic and H for
helical transmembrane segments. The positions of the variants in EPCAM with respect to
the cDNA and protein sequence are based on ENST00000263735 and ENSP00000263735.
The positions in the protein sequence of SLC5A1 are based on ENSP00000266088.

EPCAM Figure 3.8a shows that all seven pathogenic mutations in EPCAM affect

the extracellular part of the encoded protein. Because the missense variant in patient
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DIAR5-1pa is located between the signal peptide and the N-terminal domain of EPCAM,

it is likely that the functionality of one or both domains is impaired as indicated by the

CADD score of 25.4 and other computational evidence of deleteriousness (PP3). CADD es-

timates the pathogenicity to be lower for the second missense variant in patient DIAR5-5pa,

but the secondary structure of human EPCAM provides an indication of its impact. The

affected isoleucine is located at the start position of a beta strand after a helix [135]. Al-

though it is replaced by valine, an amino acid with similar physicochemical properties, it

is nevertheless reasonable to assume that even minor changes at this structurally critical

position in the protein can lead to misfolding and a dysfunctional protein product. The

pathogenicity of the two stop-gain variants in the patients DIAR5-2pa and DIAR5-3pa

results directly from the truncation of the protein together with the activation of NMD

predicted by the NMDetective. SpliceAI predicts the creation of a splice acceptor site by

the intron variant in patient DIAR5-7pa. Schnell et al. identified the same variant in a

patient with congenital tufting enteropathy and verified its pathogenicity experimentally

[136]. They predict that the variant introduces a frameshift and causes the truncation

of the protein sequence after amino acid 191 (p.Tyr186PhefsTer6). Additionally, they

observed in vitro that the mutant EPCAM is retained in the ER resulting in a loss of

EPCAM at the cell surface. The same study analyzed a variant disrupting the same splice

site as the variant in patient DIAR5-4pa and showed again that the mutant EPCAM is

not present at the cell surface. Similar to the intron variant the authors predict that the

loss of this splice acceptor site causes the truncation of the protein due to exon skipping

and the introduction of a frameshift resulting in a termination codon after amino acid

188 (p.Ala165MetfsTer24). Under the assumption that the splice donor variant in patient

DIAR5-6pa causes intron retention the protein would be truncated after amino acid 187

(p.Tyr186ValinsTer2). Although other splicing defects are conceivable, the variant is con-

sidered to cause disease because of the reported pathogenicity of other splice site disrupting

variants in EPCAM [136].

SLC5A1 As depicted in Figure 3.8b all variants in SLC5A1 are located in the sodium-

substrate symporter family domain, which is required for glucose and galactose uptake

in the small intestine. The four missense variants in the patients GGM-[2-5]pa are addi-

tionally characterized by CADD scores higher than 20 indicating deleterious amino acid

exchanges that likely disrupt the transport function. Since the frameshift variant in patient

GGM-1pa modifies the amino acid chain from position 76 on and causes a truncation after

amino acid 126, it is apparent that the protein product is dysfunctional. The stop-gain

variant in GGM-6pa truncates the protein closer to its end, but triggers NMD according

to the NMDetective, which explains a complete loss of function.

Taken together, the identification of the variants in EPCAM and SLC5A1 highlights

that the developed CIP is not limited to detect genetic defects causing IEI, but can be

applied more generally to identify mutations causing rare diseases. Furthermore, both
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genes demonstrate that even if the initially described pathophenotypes of patients indicate

a certain disease, the analysis of genetic data should consider all discovered rare and

deleterious variants as potential cause of disease.

3.5.2 CARMIL2, FOXP3, G6PC3, SRP54 and RTEL1 - New insights

into VEOIBD as a feature of IEI

Besides searching for yet unknown disease genes, the CIP screens for harmful variants in

known disease genes in order to learn more about the phenotypic spectrum of defects in

these genes. With a focus on patients suffering from VEOIBD, the following paragraphs

present pathogenic variants in five IEI genes, which are particularly interesting because the

pathophenotypes of the seven patients involved extended the known phenotypic spectra of

the underlying genetic defects.

CARMIL2 Three homozygous deletions were identified in CARMIL2 encoding the cap-

ping protein regulator and myosin 1 linker 2 (see Table 3.4). CARMIL2, also known as

RLTPR, is essential for CD28 costimulation in T cells and the development of regulatory

T cells [137]. The central role of CARMIL2 in the immune system is reflected by the fact

that mutations in the gene can cause a wide rage of immune-related phenotypes including

recurrent bacterial, viral, and fungal infections, Epstein-Barr virus associated lymphopro-

liferative malignancy or atopy [138]. Patient VEOIBD-1pa and VEOIBD-3pa are children

from consanguineous parents who both have a sibling each carrying the same genotype.

All five patients suffer from pancolitis together with failure to thrive, abdominal pain

and diarrhea classified as VEOIBD. Immunophenotyping of peripheral blood mononuclear

blood cells of the patients showed CD28-dependent functional defects of T cell activation

and proliferation confirming the presence of a CARMIL2 deficiency in the patients [139].

Consequently, the newly identified mutations demonstrate that CARMIL2 deficiency can

manifest with IBD-like symptoms, which adds VEOIBD to the phenotypic spectrum of

gene defects in CARMIL2.

FOXP3 A deletion of one amino acid in FOXP3 was found in a male patient suffering

from VEOIBD since its first weeks of life (ENST00000376197:c.748 750del, p.Lys250del,

see Table 3.4). The forkhead box P3 encoded by FOXP3 is a transcriptional regulator

that plays an important role for the development of CD4+CD25+ regulatory T cells,

which in turn are essential for the active suppression of autoimmunity [140]. Mutations in

FOXP3 are known to cause a syndromic disease characterized by Immunodysregulation,

Polyendocrinopathy, Enteropathy, and X-linked inheritance abbreviated as IPEX [141]. As

IPEX fits to the pathophenotype of the patient, the identified mutation was considered as

causative and the patient underwent hematopoietic stem cell transplantation, which im-

proved his condition considerably. Li et al. deciphered parts of the pathogenic mechanism

of the same deletion and another adjacent deletion of an glutamic acid (p.Glu251del) [142].
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They report that both mutations disrupt the leucine zipper motif, which is required for

FOXP3 homooligomerization and heteromerization with FOXP1, thereby impairing proper

DNA-binding. In addition to the known features of the mutation in patient VEOIBD-4pa,

we describe for the first time ganulomas, small nodular collections of macrophages, in the

lung and duodenum as a pathophenotype of IPEX [143]. Further, the example of the

patient demonstrates that FOXP3 should be considered as a candidate gene in patients

suffering from VEOIBD.

G6PC3 & SRP54 A recent study of 25 Iranian patients with VEOIBD identified an

underlying genetic defect in 14 patients suffering from IBD [144]. The two homozygous

missense variants in the genes G6PC3 and SRP54 shown in Table 3.4 are particularly in-

teresting because they provide new insights into the relationship of IBD and neutropenia.

G6PC3 encodes glucose-6-phosphatase, which catalyzes hydrolysis of glucose-6-phosphate

to glucose and phosphate in the ER [145]. Gene defects in G6PC3 cause an autosomal

recessive form of SCN associated with structural heart defects and urogenital abnormali-

ties [146]. Symptoms compatible with the latter two pathophenotypes are also observed in

patient VEOIBD-5pa, but the patient does not suffer from neutropenia. Despite this con-

tradiction to the expected pathophenotype, the homozygous missense variant is considered

pathogenic as it is predicted to cause a deleterious amino acid exchange in the enzymatic

type 2 phosphatidic acid phosphatase domain of G6PC3 (ENST00000269097:c.479C>T,

p.Ser160Leu). We hypothesized that the variant causes a functional defect in neutrophils

that disrupts their role in the intestinal immune defense without increased apoptosis of

neutrophils, which explains the IBD phenotype without neutropenia [144].

The signal recognition particle 54 encoded by SRP54 is one of the components of the

SRP that recognizes the signal peptide of secretory proteins and interacts with SRPRA

of the SRP receptor to target them to the ER [147]. Two studies have shown that het-

erozygous mutations in SRP54 can cause a dominant form of SCN associated with SDS

phenotype [120, 121]. In contrast to the reported patients, patient VEOIBD-6pa carries a

homozygous variant in SRP54, suggesting an autosomal recessive mode of inheritance for

this gene as well. Interestingly, heterozygous carriers in this family seemed to be mildly

affected. The predicted deleteriousness of the variant in the N-terminal helical bundle do-

main of SRP54 (ENST00000216774:c.35C>T, p.Ser12Leu) gave rise to the hypothesis that

the numeral defect in neutrophils hinders the formation of a normal gut barrier against

microbiota, which predisposes the patient to IBD [144]. As a relationship between muta-

tions in SRP54 and IBD has never been reported before, further functional studies will be

performed to evaluate this hypothesis. Together with the variant in G6PC3, both variants

suggest that despite both genes are primarily associated with neutropenia, disruptions in

both genes can also result in an IBD phenotype with no or less pronounced neutropenia.

RTEL1 The regulator of telomere elongation helicase 1 encoded by RTEL1 is crucial for

the maintenance of telomeres and therefore for general genomic stability [148]. Biallelic
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mutations in RTEL1 have been described to cause dyskeratosis congenita (DC) and its

more severe form Hyeraal-Hreidarsson syondrome (HHS) characterized among others by

bone-marrow failure, developmental delay and recurrent infections [149, 150]. Based on

functional studies showing that formation of telomeric circles is increased in patients with

RTEL1 mutations compared to controls, Walne et al. postulate that impaired processing

of telomere loops during DNA replication causes telomere shortening, which manifests as

DC and HHS [150]. Recently, we reported a homozygous missense variant in RTEL1 in

an Ashkenazi Jewish patient that presented with failure to thrive and infantile ulcerative

colitis before severe immunodeficiency evolved as the patient grew older [151]. The variant

in the patient (see patient VEOIBD-7pa in Table 3.4) causes an amino acid exchange from

arginine to histidine at the C terminus of the protein (ENST00000360203:c.3791G>A,

p.Arg1264His). Reports of patients with the same variant and similar symptoms prove the

pathogenicity of the variant [149, 150]. Additionally, we observed shortened telomeres in

leukocytes of the patient suggesting that the initial manifestation of the IBD phenotype

is likely the result of aberrant telomere function in both immune and epithelial cells [151].

The variant is particularly prevalent in the Ashkenazi Jewish population with a carrier

frequency between 0.45% and 1% and was presumably introduced by a common founder

[152]. In addition to the extension of the phenotypic spectrum of RTEL1 mutations, we

therefore conclude that especially patients with IBD-like symptoms who originate from the

Ashkenazi Jewish population should be screened for the identified variant in RTEL1 [151].

Summary The identified mutations in the patients VEOIBD-1pa to VEOIBD-7pa ex-

tend the phenotypic spectrum of mutations in the genes CARMIL2, FOXP3, G6PC3,

SRP54 and RTEL1. Additionally, the described defects demonstrate that IBD-like symp-

toms can indicate underlying immunodeficiencies by co-occurring with other immmunophe-

notypes, or being the first or most pronounced manifestation of a defect in a gene associated

with IEI. More generally, the results show that any rare and deleterious variant should

be evaluated for its potential pathogenicity, regardless of whether the affected gene is

associated with the observed pathophenotype.

3.5.3 DKC1 - A novel intronic branch point mutation as cause of

disease

A novel hemizygous variant in the second intron of the gene DKC1 was found in a male

patient clinically diagnosed as suffering from DC with an extended HHS phenotype (see

patient DKC-1pa in Table 3.4). DKC1 codes for dyskerin, which plays a critical role in ribo-

some biogenesis and telomere maintenance [153, 154]. Mutations in different exons of DKC1

have been described to cause DC with HHS phenotype following X-linked recessive inher-

itance [155]. The variant identified in the patient is located in the intron after the second

exon and 29 bases away from the start position of the third exon (ENST00000369550:c.85-

29T>G). Due to the matching pathophenotype and the close location to an intron-exon
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boundary, it was hypothesized that the mutation causes DC and HHS through a splicing

defect of DKC1. The Human Splicing Finder predicts the creation of an exonic splicing

enhancer site in the intron but no probable impact on splicing [156]. BPP, an algorithm

dedicated to detect branch points indicated that the mutation switches off a branch point

[157]. Branch points are nucleotides within a conserved sequence upstream of the 3’ splice

site that are critical for splicing process [158].

(a) Gel electrophoresis of cDNA. (b) Western blot.

Figure 3.9: Experimental validation of the splicing defect in DKC1 in patient DKC-1pa.
(a) Gel electrophoresis of the cDNA of DKC1 generated from samples of a healthy donor
(HD), the mother of DKC-1pa (M) and DKC-1pa (P). The leftmost column serves as a
reference for the length of the separated fragments in base pairs (bp). (b) Western blot
of dyskerin in peripheral blood mononuclear blood cells derived from samples of a healthy
donor (HD) and DKC-1pa (P). The leftmost column indicates the length of the proteins
in kilodaltons (kDa). Figures provided by Dr. Ido Somekh.

To test the hypothesis of a splicing defect, Dr. Ido Somekh analyzed the cDNA of

DKC1 of the patient, its mother, and a healthy donor by gel electrophoresis. Figure 3.9a

shows one band for the mother and the healthy donor, but two bands for the patient.

The upper band indicates cDNA with the same length as in the mother and the healthy

donor. Through sequencing the patient cDNA within the lower band and the cDNA of

the upper band in the mother, it was found that exon 3 is missing. The loss of exon 3 on

protein-level was proven by the Western blot in Figure 3.9b, which shows two bands for the

patient and only one band for a healthy donor. Both experiments support the hypothesis

of a splicing defect resulting in two transcript isoforms transcribed from the same allele.

The mutant form lacks exon 3, but is transcribed and translated to a similar extent as

the wild-type form. Exon 3 seems crucial for the proper function of dyskerin as several

mutations in exon 3 of DKC1 are known to cause DC with the extended HHS phenotype

[155]. Taken together, it was concluded that the hemizygous mutation is pathogenic by

rendering approximately half of the translated dyskerin dysfunctional as a consequence of

the deletion of the amino acids encoded by exon 3.

3.5.4 SRP54 and SRP19 - Novel variants and a new gene causing SCN

Following publications of autosomal dominant genetic defects in SRP54 [120, 121] and the

recognition of the pathogenicity of the de novo variant in SRPRA in patient SCN-1pa (see

Section 3.2), the WES data collection was screened for variants in these and other genes

that form the SRP and its receptor. Thereby, I found one of the published variants in
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SRP54 in five patients, two novel variants in SRP54 and a variant in the gene SRP19

that was so-far not functionally related to any disease phenotype (see Table 3.5).

Figure 3.10: Residues in the SRP54/SRPRA complex affected by mutations in the families
SCN-1 to SCN-8. The figure shows a closeup of the GTPase domains in the SRP54/SRPRA
complex that is also shown in Figure 3.3a. SRP54 on the left side is colored yellow, SRPRA
on the right side is colored green. Stick representation is used for the amino acids affected
by the identified mutations and bound phosphoaminophosphonic acid guanylate ester, a
non-hydrolyzable analog of guanosine triophosphate (GNP-502, GNP-705). Amino acids
mutated in the patients SCN-1pa (GLN-464), SCN-2pa (GLY-111), SCN-[3-7]pa (THR-
117) and SCN-8pa (ALA-144) are highlighted in magenta. Hydrogen bonds between GLY-
111 and GNP-502 and between GNP-705 and GLN-464 are indicated by dashed blue lines.
The visualization was created with PyMOL(TM) (2.3.2) based on model 5L3Q in the
Protein Data Bank [122].

SRP54 Figure 3.10 shows that the variants identified in SRPRA and all variants iden-

tified in SRP54 affect residues that are located in the GTPase domains of the interact-

ing SRPRA and SRP54. Glycine at position 111 (GLY-111) is mutated to tryptophan

in patient SCN-2pa by a heterozygous missense variant (ENST00000216774:c.331G>T,

p.Gly111Trp). Similar to the disappearance of the hydrogen bond between GLN464 and

GTP (represented as GNP-705) in SCN-1pa (see Figure 3.3b and 3.3c), the mutation in

SCN-2pa most likely alters both the hydrogen bond to GTP (represented as GNP-502)

and the overall structure of the GTPase region due to the structural difference of glycine

and tryptophan. As the SCN phenotype of SCN-2pa fits to the pathophenotypes caused

by reported mutations in SRP54 this novel mutation is considered as pathogenic although

its segregation could not be evaluated due to missing sample material of the parents.

The deletion of the threonine at position 117 (THR-117) was already reported in one

patient by Carapito et al. [120] and in 14 patients by Bellanne-Chantelont et al. [121].

The mutation was identified as a heterozygous inframe deletion in the patients SCN-3pa

to SCN-7pa (ENST00000216774:c.349 351del, p.Thr117del). As Figure 3.10 shows that

the deleted amino acid THR-117 is located in an helix, Carapito et al. and Bellanne-

Chantelont et al. assume that the mutation affects GTP binding through rearrangement of

the three-dimensional structure of the binding pocket. In accordance with the published

pathogenicity of the variant, all five patients suffer from SCN and myeloid maturation arrest
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could be shown in four patients (Y. Mizoguchi, S. Hesse, M. I. Linder, et al., manuscript

in preparation). Exocrine pancreatic insufficiency as a feature of SDS was additionally

observed in three patients. Sanger sequencing verified that the variant was inherited from

the diseased mother in SCN-3pa and is caused by de novo mutation events in the patients

SCN-[4-7]pa. The variant was also confirmed as a de novo mutation in the patient described

by Carapito et al. [120] and in seven of the 14 patients reported by Bellanne-Chantelont et

al. [121]. This data demonstrates that the affected site exhibits increased mutability most

likely caused by the trinucleotide repeat ACAACAACA between the positions 35,476,576

and 35,476,584 coding for three tryptophan residues at the residues 115 to 117. Instability

of trinucleotide repeats as a consequence of deletions and expansions is a known feature

in the genomes of various organisms [159] and might such explain the identification of

recurrent de novo mutations in multiple patients.

Another rare and deleterious missense variant that changes alanine at position 144

(ALA-144) to proline (ENST00000216774:c.430G>C, p.Ala144Pro) was identified in pa-

tient SCN-8pa as a de novo mutation. As the affected alanine is located in a helix that is

part of the GTP binding pocket, the mutation might also cause structural rearrangements

causing impaired GTP binding as assumed for the mutation of THR-117. Even though

the SCN phenotype of the patient would fit well to the mutation, its role is unclear, since

a homozygous missense mutation was also found in the gene VPS45. This gene belongs to

the set of prominent genes known to cause SCN [32], so it is possible that both mutations

contribute equally to the pathophenotype, one overlaps the effect of the other or the effects

are mutually reinforcing.

SRP19 The analysis of WES data of two sibling pairs affected by SCN and growth

deficiency that belong to a larger family revealed a splice region variant in SRP19 as the

only overlapping candidate after variant prioritization (ENST00000505459, c.189+5G>A).

Sanger sequencing confirmed that the variant is homozygous in the four patients SCN-9pa1

to SCN-9pa4 and a brother of the first sibling pair and that it is heterozygous in their

consanguineous parents. The Human Splicing Finder predicts that the variant causes an

alteration of the splice donor site, which has an effect on splicing. Experimental studies of

transcripts of SRP19 in patient cells could confirm aberrant expression of SRP and showed

that the mutation introduces a new isoform of SRP19 by skipping exon 3 (Y. Mizoguchi, S.

Hesse, M. I. Linder, et al., manuscript in preparation). Analogous to the SRPRA mutation

in SCN-1pa, the introduction of the mutation in iPS cells results in reduced capacity to

differentiate into neutrophil granulocytes, developed cells are more susceptible to apoptosis

and unfolded protein response seems to be increased [124].
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3.5.5 Functional context of the affected genes

To gain insight into the functional context of the genes listed in Table 3.4 and their rela-

tionships to each other, Figure 3.11 shows a protein-protein interaction (PPI) network of

the encoded proteins and their closest interaction partners.

Figure 3.11: Interaction network of proteins affected by the identified pathogenic variants.
The red nodes represent the ten genes harboring the 26 pathogenic mutations described
in the preceding sections. Genes associated with inborn errors of immunity as reported by
the International Union of Immunological Societies are highlighted by blue borders [32].
Brown borders indicate genes associated with other Mendelian diseases according to the
Online Mendelian Inheritance in Man database [22]. The size of the nodes reflects the
number of interaction partners. Interactions were extracted from the STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) database [160] in two steps. First,
for each of the ten genes I selected the five most reliable protein interactions that have
a combined interaction score of at least 0.15 when restricting to the interaction sources
“experiments” and “databases”. Then, I queried all interactions between the 52 resulting
proteins that have a minimum interaction score of 0.15 and visualized the resulting network
using Cytoscape [161]. Green edges highlight high confidence interactions (interaction score
≥ 0.7) based on the interaction sources “experiments” or “databases”. The intensity of
the color of the edges indicates the reliability of the interaction.

The network was extracted from the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database [160] as described in the caption of Figure 3.11. It

comprises 52 proteins including nine proteins associated with IEI according to the latest

IUIS report [32] and ten proteins associated with other diseases as reported in the OMIM

database (see Table 3.5). The proteins are connected by 296 PPIs that have at least low

confidence based on all provided interaction sources. When restricting to “databases” and

“experiments” as interaction sources and taking only high confidence interactions into ac-
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count, 129 interactions remain. Three of the proteins affected by the discussed pathogenic

variants share no high confidence PPIs to any other protein, namely EPCAM, SLC5A1,

and CARMIL2. All others are part of clusters of proteins internally strongly connected by

high confidence PPI. Some of these cluster also share high confidence interactions to other

clusters.

Gene Disease associations Source

BCAP31 Deafness, dystonia, and cerebral hypomyelination

(XLR)

OMIM

CARMIL2 Severe combined immunodeficiency due to RLTPR de-

ficiency (AR)

IUIS, OMIM

CTLA4 Autoimmune lymphoproliferative syndrome, type V

(AD)

IUIS, OMIM

DCTN1 Perry syndrome (AD); Distal hereditary motor neu-

ronopathy type VIIB (AD)

OMIM

DKC1 Dyskeratosis congenita (XLR) IUIS, OMIM

EPCAM Diarrhea 5, with tufting enteropathy, congenital (AR) OMIM

FOXP3 Immunodysregulation, polyendocrinopathy, and en-

teropathy, X-linked (XLR)

IUIS, OMIM

G6PC3 Severe congenital neutropenia (AR) IUIS, OMIM

GALM Galactosemia IV (AR) OMIM

GLB1 GM1-gangliosidosis, type I - III (AR); Mucopolysac-

charidosis type IVB (Morquio) (AR)

OMIM

LCT Congenital lactase deficiency (AR) OMIM

NHP2 Dyskeratosis congenita (AR) IUIS, OMIM

NOP10 Dyskeratosis congenita (AR) IUIS, OMIM

NOP56 Spinocerebellar ataxia 36 (AD) OMIM

PGM1 Congenital disorder of glycosylation, type It (AR) OMIM

RAD50 Microcephaly and chromosomal instability without

immunodeficiency (AR)

OMIM

RTEL1 Dyskeratosis congenita (AD, AR); Pulmonary fibrosis

and/or bone marrow failure (AD)

IUIS, OMIM

RUNX1 Platelet disorder, familial, with associated myeloid

malignancy (AD); Acute myeloid leukemia (AD)

OMIM

SLC5A1 Glucose/galactose malabsorption (AR) OMIM

SRP19 Severe congenital neutropenia (AR) novel

SRP54 Severe congenital neutropenia (AD) IUIS, OMIM

SRPRA Severe congenital neutropenia (AD) novel
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Table 3.5: Gene-disease associations. The table lists disease associations of the 22 genes

highlighted in Figure 3.11 and specifies their source. Associations are taken from the

International Union of Immunological Societies (IUIS) publication [32], from the Online

Mendelian Inheritance in Man (OMIM) database [22], or were identified for the first time

during the analysis of the sequencing data underlying this thesis (novel).

Interactions of EPCAM, SLC5A1 & G6PC3 Experimental evidence suggests that

EPCAM expression is controlled by BCAP31 during the regulation of human embryonic

stem cell adhesion, stemness, and survival [162]. While mutations in EPCAM cause DIAR5

[130], mutations in BCAP31 cause the rare disease “Deafness, dystonia, and cerebral hy-

pomyelination”, which mainly affects the central nervous system but is not associated with

gastrointestinal features [163]. Although there is a functional link between EPCAM and

BCAP31, the caused disease phenotypes are not related, in contrast to SLC5A1 and LCT.

STRING reports an association of SLC5A1 and LCT or lactase primarily because mutant

forms of both result in a similar pathophenotype characterized by neonatal-onset watery

diarrhea and failure to thrive. Both diseases, glucose-galactose malabsorption due to mu-

tations in SLC5A1 [132] and congenital lactase deficiency due to mutations in LCT are

rare while the latter is primarily reported in Finland [164]. LCT is part of a cluster of six

proteins responsible for galactose metabolism. Five of them are associated with Mendelian

diseases (see Table 3.5) including G6PC3. Although defects in this protein are predomi-

nantly associated with neutropenia, we recently reported a patient having a mutation in

G6PC3 and suffering primarily from IBD symptoms [144]. This observation demonstrates

that not only defects in functionally linked genes can produce different pathophenotypes,

but even defects in the same gene can result in varying disease phenotypes.

Interaction of RTEL1 RTEL1 links two small protein clusters each fully connected

by high confidence PPIs. Together with CIAO1, FAM96B and MMS19 it takes part in

cytosolic iron-sulfur cluster assembly. Iron-sulfur clusters are essential for various biologi-

cal processes, such as mitochondrial respiratory chain activity. Defects in their biogenesis

have been associated with multiple human diseases [165]. Additionally, RTEL1 is in-

volved in DNA replication processes together with RAD50 and RMI. Both, defects in

RTEL1 and RAD50 cause genome instability but the resulting phenotypes differ. While

mutations in RTEL1 cause Dyskeratosis congenita characterized by a severe immune phe-

notype [149, 150], RAD50 deficiency is expressed trough anatomical anomalies without

immunodeficiency [166].

Interactions of CARMIL2 CARMIL2 has no high confidence PPI to any of the other

51 proteins in the network depicted in Figure 3.11, but it has multiple weak interactions to

a cluster of five cytoskeleton proteins including DCTN1 that is associated with distal hered-

itary motor neuronopathy type VIIB with variable onset, [167] and the neurodegenerative
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Perry syndrome with adult onset [168]. Both diseases are completely different from the

immune and IBD pathophenotype that we have reported for the mutation in CARMIL2

[139]. A similarity in terms of associated diseases is rather reflected by the relation to

CTLA4. Both proteins are involved in T cell regulation and their mutant forms cause

diseases of immune dysregulation with overlapping symptoms, such as diarrhea [169].

Interactions of FOXP3 In addition to the association with CARMIL2, CTLA4 is part

of a cluster of six proteins having high confidence PPIs with FOXP3. All of the interacting

proteins are involved in the regulation of regulatory T cell differentiation. Mutations in

both CTLA4 and FOXP3 have been described to cause regulatory T cell defects, which are

phenotypically similar to defects in CARMIL2 but result in more severe pathophenotypes

[170]. Among the proteins in the cluster, RUNX1 is another gene associated with Mendelian

disease. While defects in CARMIL2, CTLA4 and FOXP3 are all forms of IEI, mutations

in RUNX1 are related to myeloid malignancy and acute myeloid leukemia (see Table

3.5) despite a regulatory relationship between FOXP3 and RUNX1 [171]. Through high-

confidence PPIs between IL2 and MAPK1 and MAPK3 as well as IFNG and HSPA1A,

the FOXP3 cluster is connected to a cluster of proteins involved in cellular response to

oxidative stress consisting of EGFR, HSPA1A, MAPK1 and MAPK3. A relationship

between regulatory T cells and oxidative stress was observed in tumors, for example, where

oxidative stress regulates apoptosis and suppressor activity of regulatory T cells [172].

Interactions of DKC1 The FOXP3 cluster connects to a cluster of proteins interact-

ing with DKC1 via two high confidence interactions between IFNG and DKC1, and IL2

and DKC1. According to the Pathway Interaction Database [173], both proteins regulate

the activity of human telomerase, a complex consisting of telomerase reverse transcrip-

tase, telomerase RNA, and dyskerin encoded by DKC1 [174]. The proteins in the DKC1

cluster are all part of the small nucleolar ribonucleoprotein complex that is involved in

ribosomal RNA modification. Mutations in DKC1 trigger Dyskeratosis congenita [155],

analogous to mutations in the genes NHP2 and NOP10 (see Table 3.5), both encoding

ribonucleoproteins that are part of the interaction cluster of DKC1. Also the interacting

ribonucleoprotein NOP56 is related to a Mendelian disease, namely Spinocerebellar ataxia

36, which is characterized by adult onset and neurological features without immune system

anomalies [175].

Interactions of SRP19, SRP54 & SRPRA Through high confidence interactions

with RPS12 and RPS16, NOP56 links the ribonucleoprotein cluster to the most pro-

nounced cluster in the left upper part of Figure 3.11. The cluster includes SRP19, SRP54

and SRPRA, the three proteins of the SRP complex and its receptor that are mutated in

overall twelve SCN patients of the analyzed WES cohort. The interaction partners of these

three proteins are overlapping, thereby forming a cluster of proteins responsible for SRP-

dependent co-translational protein targeting to the ER membrane. The similar pathophe-
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notype of the twelve patients together with the observed proteome aberrations including

the decreased abundance of granule proteins suggests that especially neutrophil granulo-

cytes are highly dependent on balanced protein-synthesis, -trafficking, and -homeostasis

(Y. Mizoguchi, S. Hesse, M. I. Linder, et al., manuscript in preparation).

Summary Taken together, the proteins affected by the pathogenic mutations described

in Section 3.5 and their interaction partners shown in Figure 3.11 are involved in multiple

biological functions ranging from processes directly related to the immune system, such

as T cell regulation, to ubiquitous processes such as DNA replication, ribosomal RNA

modification, and protein targeting to the ER membrane. This diversity of biological pro-

cesses is also reflected in the diversity of diseases associated with the underlying genes.

Even directly interacting proteins are related to diseases with differing phenotypes, such

as FOXP3 and RUNX1, or DKC1 and NOP56. On the other hand, however, there are

genes associated with the same disease whose proteins are not connected by high confi-

dence interactions in the STRING database when restricting to the interaction sources

“databases” and “experiments”, for example DKC1 and RTEL1, both causing Dyskerato-

sis congenita, or G6PC3 and the three SRP proteins that are all causative for SCN. Two

conclusions can be drawn from these observations. First, proteins interacting with each

other do not necessarily cause similar pathophenotypes. Second, immune system processes

are intertwined with and depend on multiple biological processes. As a consequence, mu-

tations can lead to severe immunological diseases, even though the function of the affected

gene is not specific to cell types or processes of the immune system.
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The analysis of the WGS data set and the WES data collection resulted in multiple ge-

netic diagnoses and novel insights in the genetic etiology of IEI as presented in the last

chapter. Besides the data itself, the chosen steps of variant prioritization including the de-

velopment of SmartPhase, the computation of population-based allele frequencies, and the

implementation of the CIP were crucial for these achievements. This chapter discusses the

opportunities and limitations of the methodology and evaluates the biological and clinical

importance of the discovered pathogenic variants and genes.

4.1 Challenges of variant prioritization and resulting

practical approaches

While the identification of small genetic variants is a standardized step in the analysis of

NGS data, the selection of those that are clinically relevant is a challenging task due to

the large number of genetic variants in each individual. In the exomes of the presented

cohort of 2, 312 individuals, approximately 3.5 million variants were identified using the

human reference genome build GRCh37. This number is still rather small when considering

growing clinical cohorts and increasing usage of WGS [176]. Especially, the transition to

WGS will raise the number of variants as illustrated by the analysis of the WGS data of

family SCN-1 based on the same genome assembly. Together, the seven sequenced family

members carry 6.0 million variants, almost double the amount of variants in the whole

WES cohort. Two recent studies also relying on GRCh37 show how much the number

increases when WGS is applied to larger cohorts. A rare disease study identified 172

million short variants in 13, 037 individuals [176] and the gnomAD WGS data set based

on 15, 708 individuals reports 230 million variants [65]. Therefore, variant annotation

and filter criteria for variant prioritization must become more and more sophisticated to

reduce the set of all identified genetic variants to short lists of variants of interest. The

following sections present the challenges of variant annotation and filtering, and discuss

how problems were methodically approached and solutions implemented.
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4.1.1 Variant annotation

In the context of rare disease etiology, rare and deleterious genetic variants are in the focus

of diagnostic and research projects. To select such variants as candidates for the cause

of disease, impact, frequency, and segregation criteria are first annotated for all identified

variants and subsequently used to define filter criteria for variant prioritization.

Impact annotation The prediction of the impact of a variant on gene-level depends on

the proper annotation of genes in the human genome, which is still an ongoing project

[177]. Although the application of widely-used tools, such as the VEP, ensures a certain

degree of standardization, it is important to keep in mind that the annotation of a genetic

variant can change when new releases of gene annotation become available. In addition of

being able to differentiate, e.g. synonymous from missense variants, the estimation of the

harmfulness of a genetic variant is critical for its interpretation. The ACMG/AMP variant

classification rules provide a valuable framework for standardized variant interpretation,

but their application requires manual annotation of several predefined criteria. As it is

unfeasible to review all variants of a patient manually, algorithms have been developed to

automatize the assessment of variants. Because almost all of them have certain limitations,

multiple tools should be combined to optimize the estimation of variant deleteriousness

[108]. Accordingly, I’ve used the VEP together with its plugins SpliceAI, UTR annotator

and LOFTEE to classify variants by their functional impact, as well as a combination of

CADD scores and ACMG/AMP criteria annotated by InterVar to assess the deleteriousness

of variants.

Frequency annotation The genome of each human contains approximately 20 genes

that are completely inactivated by LoF variants. The majority of these seemingly deleteri-

ous but mostly benign variants has allele frequencies of 1% or greater [40]. Consequently,

the interpretation of a genetic variant must consider its population-wide frequency to ex-

clude variants that appear harmful, but are too common to be the sole cause of a rare

disease. Although filtering by allele frequencies and genotype counts is powerful to reduce

the number of candidate variants, there are two major limitations. First, variants that

have not been observed in any reference data set will be enriched for sequencing artifacts

specific to the laboratory where the variants were found [97]. Second, genetic variation in

populations not represented in reference data sets can seem rare although it is frequent in

the corresponding population. In the context of the analysis of the WES cohort, the first

issue is tackled by including allele frequencies within the cohort in the filtering procedure.

Due to the size of the cohort, recurrent sequencing artifacts can properly be detected and

removed. The underrepresentation of Middle Eastern and South Asian populations in the

gnomAD database is compensated by the stratification of the cohort according to the eth-

nic origin of the probands, and the subsequent use of population-specific allele frequencies

during variant prioritization. This approach revealed that the WES cohort consists of six
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distinguishable populations that could be assigned to six geographic ethnicities using the

ethnic origins reported by the individuals included. Based on this stratification, 59, 921

population-specific variants were detected and excluded from the variant set corresponding

to 19.15% of all frequency-filtered variants.

Segregation filtering In addition to the annotation of the functional impact and the

frequency of a variant, the comparison of its segregation pattern with the observed in-

heritance pattern of the disease helps to evaluate its pathogenicity. While variant calling

enables the differentiation between hetero- and homozygous genetic variants as potential

mono- or biallelic causes of disease, the assessment of compound heterozygous variants is

more challenging. First, it is necessary to enumerate all combinations of potential com-

pound heterozygous variant pairs for each gene. Second, phasing algorithms are required

to compute for each pair whether both variants were inherited from the same parent or one

was inherited from the mother and the other from the father. To meet these challenges,

we have developed the tool SmartPhase to enable fast and accurate phasing of single genes

or specific variant pairs. For this purpose, SmartPhase creates haplotypes by means of

trio phasing, read-based phasing and the integration of existing phasing information. Ad-

ditionally, it is able to identify variant combinations as benign through logical rules. After

we have shown the usability and accuracy of SmartPhase in the original publication [111],

SmartPhase recently enabled the diagnosis of a patient suffering from a chronic interstitial

lung disease by identifying a compound heterozygous defect in FARSA [178]. The appli-

cation of SmartPhase to the WES cohort resulted in the exclusion of 58, 741 variant pairs

or 59% of the initial set of 99, 300 potential compound heterozygous variant pairs. The

remaining set of 40, 559 variant pairs most likely still contains a considerable proportion of

pairs located on the same allele as a consequence of the limitations of the applied phasing

strategies. First, trio phasing requires parental sequencing data, which was available only

for 15.49% of all 1, 678 patients. Second, the efficiency of read-based phasing strongly de-

pends on the length of the generated sequencing reads. As the length of the reads of NGS

technologies is limited to a few hundred base pairs, the length of initially reconstructed

haplotypes is in a similar range. Even though initial haplotypes can be extended by us-

ing paired-end reads and combining overlapping haplotypes, the read length is the most

limiting factor of read-based phasing. However, the effect of both limitations will weaken

in the future when more parents can be sequenced due to declining sequencing costs and

longer reads become available due to the use of long-read sequencing technologies.

4.1.2 Variant filtering

When filtering variants there is always a risk to loose the variant one is searching for. This

applies to variant prioritization based on annotated criteria, such as impact or frequency,

but also to the preceding removal of supposedly false-positive variants from the initial

variant call set. Therefore, it is necessary to check thoroughly whether the chosen filter
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criteria are appropriately defined. The validity of the filter criteria used for the analysis of

the WES cohort was evaluated in three ways. First, the Ti/Tv ratio was assessed after the

removal of low quality variants and the exclusion of samples with low sequencing coverage.

The increase of the ratio from 1.93 to 2.09 in the set of kept variants and the decline to

1.00 in the set of discarded variants confirms that the quality control measures successfully

removed false-positive variants. Second, all pathogenic variants in the WES cohort were

used to evaluate the efficiency of quality and frequency filtering, which are part of the

search for novel candidate genes. Of the 328 pathogenic variants, 14 or 4.27% variants

were not found due to a lack of sequencing reads or because they failed criteria for variant

quality or frequency. The percentage is minor in comparison to the achieved reduction

of the initial variant set from 4, 011, 777 variants by 63.69% to 1, 457, 066 variants. This

demonstrates that the selected quality and frequency filter criteria reflect the focus on the

identification of fewer but promising candidate genes, while accepting that not all patients

can be diagnosed in the cohort analysis. Third, criteria based on the impact annotation

were evaluated for their individual effect on filtering variants and their combined effect on

identifying candidate genes. The individual analysis of the criteria based on the annotations

of SpliceAI, LOFTEE, InterVar and CADD showed that all of them achieve a minimum

recall of 83.76%. The combination of all criteria results in a recall of 67.24% of the known

disease-associated genes in the cohort. This leads to the estimate that approximately 30%

of all genes that have not previously been associated with IEI and that have a causal

defect in at least two unrelated patients in the cohort would not be reported as candidate

genes by the CIP. A higher recall could be achieved by relaxing the filter criteria in the

search for novel gene-disease associations, but this would inevitably increase the number

of reported candidate genes. As the analysis of the WES cohort has already identified

205 candidate genes, this step will only be necessary when disease associations could be

verified or excluded for all of the reported genes.

4.1.3 Implementation

Increasing the diagnostic rate of NGS studies on rare disease patients is a major challenge

[125]. A study based on WES data of 1, 133 children with severe developmental disorders

achieved an increase of the diagnostic rate from 27% to 40% through a reanalysis of all

exome data three years after the first analysis [118]. The authors found that the majority

of the new diagnoses resulted from newly discovered gene-disease associations. Similarly,

the recognition of the variant in SRPRA in the index patient of family SCN-1 as a top

candidate arose from the new insight that the interaction partner SRP54 is involved in

neutropenia rather than the use of WGS after initial WES. Both examples demonstrate

that the iterative reanalysis of WES data can be highly valuable to increase the diagnostic

rate of exome sequencing studies. Recently, Appelbaum et al. even proposed an ethical duty

to reinterpret genetic data when considering the likelihood of substantial patient benefit

[179]. The need for iterative reanalysis reinforces the general requirements of proper and
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thorough data analysis. All steps of data analysis pipelines must be reproducible and well

documented. Further, pipelines should be stable and easy to use to reduce the effort of

starting and performing the desired analysis. The latter requirement is especially relevant

when data should be reanalyzed regularly.

Both the published KNIME extension KNIME4NGS and the developed KNIME-based

CIP fulfill these criteria. In general, KNIME workflows are implicitly documented and

the data processing can easily be reproduced by re-executing the corresponding workflow.

Through the graphical user interface, workflows can easily be created and altered, and the

state of execution is always visible. The HTE of KNIME4NGS compensates for instabil-

ities arising from the consecutive execution of integrated tools. The stability of the CIP

results from the use of the provided stable KNIME nodes. While KNIME4NGS enables

the creation of various workflows, the CIP represents a configured workflow for the identi-

fication of candidate genes. The division of variant prioritization in multiple steps makes

it highly flexible as each filter criterion can be altered independently and the effects can

be evaluated step by step. Consequently, the CIP can be considered as a template work-

flow that can be adapted quickly and easily to individual requirements. The generated

candidate lists contain all required information helping to find diagnoses that were missed

in previous analyses, and supporting the review of criteria annotated for potentially novel

gene-disease associations. Taken together, KNIME4NGS is highly valuable for stable pro-

cessing of sequencing data and the CIP is an important resource to support the iterative

analysis of the growing WES data cohort at the Dr. von Hauner Children’s Hospital.

4.2 Opportunities and limitations of the WES cohort

This thesis presents the first systematic analysis of the entire WES data set collected at

the Dr. von Hauner Children’s Hospital. Consisting of 1, 678 patients and 634 healthy

relatives, the cohort seems rather small compared to the currently largest published exome

sequencing data set gnomAD with 125, 748 individuals, but compared to other clinical

exome sequencing studies, it is in the upper range. A meta-analysis of clinical WES lists

21 studies having between 31 and 3, 040 probands enrolled, corresponding to an average

of 477 probands [4]. Thus, the examined cohort is considerably larger than others and

enables analyses that would not be possible or less reliable in cohorts of a few dozen or

only a few hundred patients. First, the granularity of population stratification and the

power of subsequent filtering of population-specific variants increases with the size of the

cohort. A previous analysis of the cohort based on a total of 1, 562 individuals resulted in a

stratification into only four instead of six populations, for example. Second, the estimation

of the impact and efficiency of the individual variant prioritization steps is the more reliable

the more patients are included in a cohort and the more diagnoses are known. The set

of 328 pathogenic small genetic variants allowed to determine filter criteria ensuring high

sensitivity while generating concise lists of new candidate genes as discussed in Section

4.1.2. Third, the size of the cohort and the presence of overlapping pathophenotypes
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makes the identification of new candidate genes promising. Identifying defects in the

same gene that are harbored only by a few patients worldwide requires a comprehensive

collection of patients with a certain phenotype. Even though the cohort can be separated

into patients suffering primarily from IBD, SCN or other immune defects, phenotypes are

often overlapping and there are numerous examples of the same genetic defect resulting in

differing pathophenotypes. For this reason, the cohort represents a unique opportunity to

search for new candidate genes that trigger IEI. Despite the many opportunities afforded

by the size and composition of the cohort, there are several limitations. Some of them arise

from technical constraints of WES or generally NGS, while others are specific to clinical

WES cohorts.

4.2.1 Technical limitations of WES and next-generation sequencing

Conceptually, WES is not able to identify the majority of genetic variation in non-coding

regions of the human genome. Nevertheless, the library preparation kits used for the

analyzed WES cohort also capture UTRs and flanking intron regions of exons. While the

latter enabled the detection of two pathogenic intron variants, the analysis of potentially

damaging UTR variants did not result in any plausible candidates. There might be no

pathogenic UTR variation in the cohort or, more likely, the pathogenicity of identified

variants was not recognized, because the understanding of the functional impact of UTR

variants is still limited.

Library preparation of WES includes capturing of protein-coding DNA fragments and

their amplification by polymerase chain reaction before sequencing. Both steps intro-

duce bias causing an uneven coverage distribution across the exons of the human exome.

Furthermore, the exact coverage distribution varies for each batch of chemicals used. Con-

sequently, the detection of copy number variation is challenging because unusual high or

low sequencing depth does not necessarily reflect a duplication or a deletion, but can result

from the use of another batch of chemicals or other deviations during library preparation.

Especially cohorts of patients that were sequenced over several years using the most recent

library preparation kit at the time of sequencing are affected by variation during library

preparation. As this applies to the analyzed WES cohort, an analysis of copy number

variants on a larger scale was not performed.

Further limitations arise from the shortness of sequencing reads generated by NGS

technologies. First, submicroscopic structural variants, such as insertions, translocations,

or inversions, are hard to find because single reads do not cover the entire variant site. As

a consequence, an analysis of structural variants was not performed for the WES cohort.

Second, short reads offer only limited ability to recreate haplotypes to assign heterozygous

variants to one of both paternal alleles. As discussed in Section 4.1.1, SmartPhase and other

tools using read-based phasing will therefore perform more efficient when new sequencing

technologies are established that generate reads longer than a few hundred base pairs.

Third, short reads make it impossible to reliably cover regions of high sequence homology in
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the human genome. Depending on the percentage of identity, mapping of sequencing reads

generated from homologous regions is completely impossible or results in misalignments and

subsequently in unreliable variant calls. In the context of clinical WES, this is especially

a problem when homologous regions overlap with protein-coding regions because there is

always a chance that undiagnosed patients carry an unidentifiable pathogenic variant in a

highly homologous exon or exon segment. Overall, there are 7, 691 exons of 1, 168 genes

that have at least 98% sequence homology to other regions in the human genome at the

DNA level [180]. These genes include 18 of the 408 genes reported to be causative for

IEI [32], such as NCF1, where recombination events with highly homologous pseudogenes

cause chronic granulomatous disease [181]. Consequently, whenever the pathophenotype

of a patient is highly similar to the ones described for the 18 genes, other sequencing

approaches should be considered to exclude pathogenic variants in the homologous regions

of these genes.

4.2.2 Other limitations of clinical WES cohorts

Clinical WES faces several challenges that have an impact on the ability to analyze the

generated data. The extent to which specific issues are encountered depends primarily on

the exact composition of the respective cohort. Consequently, the points discussed below

cannot be fully generalized, but are also not unique to the analyzed cohort.

Only parents of 15.49% of all patients have been sequenced in order to maximize the

number of sequenced patients at the same cost. While this strategy gives as many children

as possible the chance to get a genetic diagnosis, it reduces the chance of diagnosing de

novo variants, as these may be overlooked in the set of rare heterozygous variants. This

issue is illustrated by the fact that screening variants in known IEI genes found almost

three times more monoallelic than biallelic variants. Following the proposal of pooled

parent exome sequencing [182], parents are now sequenced at low coverage at the Dr.

von Hauner Children’s Hospital when patient only sequencing did not result in a good

candidate. However, these sequencing data sets were excluded from the cohort analysis

to avoid the unintended exclusion of candidate genes for novel disease associations as a

consequence of supposedly deleterious variants in healthy individuals that are actually

false-positives introduced by low coverage parental sequencing data.

The fact that at least one genetic variant in one of the 408 IEI genes was identified for

94.46% of the patients in the cohort when applying the frequency filtering criteria defined in

Section 2.3.6, suggests that the increasing number of discovered disease genes will result in

an increasing number of patients for whom at least one variant in a disease-associated gene

will be found. Despite the specification of additional stringent filter criteria for candidate

gene selection, the CIP still identified 205 candidate genes. This is a large amount, when

considering that these genes have to be checked manually to evaluate whether they might

be relevant. Both issues increase the risk that potentially important variants or genes

are ignored due to multiple types of bias during manual review. Depending on individual
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experience and training, the focus may be on variants in known genes or on genes with

an intuitive link to the disease of interest [42]. The effect of bias grows with the length of

the resulting candidate lists, as the probability increases that the list contains a candidate

that seems appropriate. Besides the percentage of trios, the length of candidate lists is

primarily influenced by the number of individuals in a cohort and the strictness of the used

filtering criteria. Enlarging patient cohorts without being able to stratify patients increases

the number of genes affected by deleterious mutations in multiple patients. In order to

restrict the length of candidate lists, more stringent filter criteria are applied, which in turn

increases the probability of missing disease-causing genes. To tackle this issue, while still

enabling the growth of clinical WES cohorts, it is necessary to characterize the phenotype

of patients systematically to be able to identify groups of similar patients as a measure to

reduce the search space and shorten candidate lists.

For this purpose, the Human Phenotype Ontology (HPO) provides a standardized

vocabulary of phenotypic abnormalities observed in human disease [183]. The HPO enables

the computation of ontology-based semantic similarity between any entities annotated with

HPO terms, such as patients, genes, or diseases [184]. The tool Exomiser [185], for example,

makes use of this feature to compute the similarity of a patient’s phenotype to the known

phenotypes of disease genes to integrate phenotypic information in variant prioritization.

Despite the advantages of the HPO, there are several reasons why the patients of the

analyzed WES cohort are only roughly characterized as IBD, SCN or other syndromic

immune defect patients. First, the HPO does not yet capture all phenotypic features

observed in different clinical disciplines. In addition to many other groups, some colleagues

and I contributed new terms to the HPO recently [186]. While the vocabulary of the HPO

will become increasingly complete in the future, other challenges regarding the application

and the use of the HPO are still open. HPO terms can be extracted automatically from

patient reports or annotated manually. The former approach ensures a uniform and fast

annotation of patients, but has to tackle the various challenges of text mining, such as

different languages, negations, or the use of individual abbreviations. Manual annotation

requires much more time and rules to harmonize the annotation across all responsible

persons. For both approaches it has to be defined whether a predefined set of features

should be queried for every patient, all phenotypic features should be annotated, or only

diagnosis-relevant features should be collected. Even though there are efforts to standardize

the storage of phenotypic information as so-called Phenopackets [187], there are still only

few tools available that make use of them. Notwithstanding these challenges, thorough

phenotyping of patients seems highly promising to draw further insights from the collected

WES cohort.

4.3 Importance of the discovered pathogenic variants

Most of the 293 distinct pathogenic genetic variants reported as diagnosis in the WES

cohort are part of biallelic genotypes, alter the protein-coding sequence, and have evidence
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to be harmful through ACMG/AMP criteria and/or CADD scores higher than 15 (see

Section 3.3.5). On the one hand, this observation confirms that the chosen criteria for

variant prioritization are suitable for the search for pathogenic variants as discussed in

Section 4.1. On the other hand, these properties result in part from technical limitations

and an incomplete understanding of cellular processes. For example, there is a bias to-

wards biallelic variants because the detection of de novo variants is limited through the

low amount of trio sequencing. The pathogenic variants are almost exclusively located in

protein-coding regions, since pathogenic variants in non-coding regions can only be com-

prehensively searched for by means of performing WGS on a regular basis along with a

better understanding of the functional mechanisms of regulatory elements.

Although WES is designed to cover only exons, the used library preparation kits enable

the identification of variants in the flanking intron regions of the captured exons. This

resulted in the discovery of an intronic variant that introduces a new splice donor site in

the gene DOCK8 (c.3027+76A>G) in addition to a branch point mutation in DKC1 (c.85-

29T>G). Both variants demonstrate that WES analysis should be extended to flanking

intronic regions if these are covered by the sequencing kits used. Additionally, the variant

in DKC1 exemplifies how splicing defects can be caused by variants other than ones that

disrupt or generate splice acceptor or donor sites.

As its greatest advantage, WES enables an exome-wide search for pathogenic variants

in all covered genes without restricting to already known disease-associated genes. Con-

sequently, it can uncover the genetic cause, even if the initial phenotypic diagnosis was

misleading, and beyond that, identify new gene defects and associated pathways. The

first point is illustrated by the identified pathogenic variants in EPCAM and SLC5A1.

The diagnosis of the 13 affected patients was only possible because the analysis was not

restricted to IBD genes, although the pathophenotype suggested IBD as underlying dis-

ease. Especially for patients with IBD-like symptoms it is critical to consider all potentially

pathogenic variants. The patients with defects in CARMIL2, FOXP3, G6PC3, SRP54 and

RTEL1 all showed a combination of VEOIBD and other phenotypic features that extend

the known phenotypic spectrum of defects in these genes. Focusing on genes related to the

most prominent symptoms, or excluding genes because the observed phenotypes are not

perfectly fitting to the already described pathophenotypes of defects in these genes, might

have missed the causative variants. Further, these examples show that VEOIBD is often a

manifestation of immune dysregulation rather than a disease with its own specific genetic

etiology [188]. Prioritization of the variants in the WGS data of family SCN-1 and the

WES data of family SCN-9 without restricting the search space to known disease-associated

genes pointed to defects in two SRP genes as novel causes for SCN. The identification of

novel and reported pathogenic variants in SRP54 in the WES cohort gave additional ev-

idence that SRP-dependent co-translational protein targeting to the ER membrane is a

vulnerable process especially for the generation of neutrophils. This finding is further sub-

stantiated by the report of a patient suffering from SCN caused by a biallelic pathogenic

variant in the gene SRP68 [189].
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Schürch et al. recently investigated SRP54 deficient zebrafish in order to understand

the functional mechanism of SRP54 defects [190]. The authors report that homozygous

knockouts are lethal while heterozygous knockouts show only mild neutropenia. How-

ever, they were able to aggravate neutropenia in heterozygous fish, and induce pancreatic

defects by the injection of mRNAs carrying the mutations described by Carapito et al.

[120]. Similarly, overexpression of mutated SRP54 in wild-type fish induced neutropenia.

Additionally, they show that impaired unconventional splicing of XBP1, one of the key

transcription factors involved in unfolded protein response, drives the SDS-like phenotype

by rescuing neutropenia through the injection of spliced XBP1 into zebrafish embryos.

Three important conclusions can be drawn from these results. First, the pathogenicity

of monoallelic mutations in SRP54 is due to a mutation-specific dominant-negative effect

as mutated SRP54 caused neutropenia in wild-type fish and the severe SDS-like pheno-

type in heterozygous knockout fish. Therefore, most probably a dominant-negative effect

also underlies the pathogenicity of the de novo mutation in SRPRA in patient SCN-1pa

(p.Gln464Glu). Second, the mild neutropenia phenotype of heterozygous knockout fish

without pancreatic involvement indicates that variants in SRP54, other than LoF vari-

ants, could exist that cause a less pronounced or even no pathophenotype when they are

monoallelic, but cause yet unknown disease phenotypes in case they are biallelic. This hy-

pothesis supports the assumed pathogenicity of the homozygous missense variant in SRP54

in patient VEOIBD-6pa with weakly affected heterozygous carries in the family. Third,

a more detailed hypothesis of the pathomechanism of the SRPRA, SRP54 and SRP19

mutations can be derived. As discussed in Section 3.2 and 3.5.4, all observed mutations

impair the functionality of the SRP complex. As a consequence, unconventional splicing

of XBP1 is hampered because the process requires SRP-dependent transport to the ER

[191]. Due the lack of spliced XBP1, unfolded protein response cannot be initiated, leading

to unresolved ER stress and ultimately to myeloid maturation arrest.

Taken together, the variant prioritization approach in my work allowed the discovery

of pathogenic variants that revealed a new pathomechanism of SCN and demonstrate that

pediatric IBD can indicate underlying IEI but also be the consequence of other gene defects.

Moreover, the variants reflect the general observation that defects in the same gene may

cause differing pathophenotypes just as defects in different genes can result in highly similar

pathophenotypes. The effects of the described pathogenic variants are, as expected, very

diverse and range from biallelic inactivation of genes by LoF variants, to disturbed gene

function by homozygous missense variants in functional domains, to splicing defects by

homozygous splice site alterations. Furthermore, they include a hemizygous branch point

mutation, as well as dominant-negative effects through de novo variants. The analysis

of the functional context of the individual genes further shows that there is no single

biological function or cellular pathway that underlies all IEI. Rather, multiple pathways

and functions are necessary to ensure proper functionality of all components of the immune

system.
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This chapter summarizes the major achievements of my work and the novel contributions

to the fields of NGS data analysis, IEI in particular and rare disease genetics in general.

Further, it discusses directions for further analysis of the data to overcome shortcomings of

the existing approaches and to make use of the opportunities offered by new technologies.

5.1 Contributions to NGS data analysis and the etiology of

IEI

This work was motivated by the idea of using the entire WES data collection at the Dr. von

Hauner Children’s Hospital to extend the current knowledge on genetic causes of IEI. The

development of new bioinformatic tools and routines played an important role in achieving

this goal and resulted in three major contributions to the field of NGS data analysis.

First, I was part of the team developing the KNIME extension KNIME4NGS that makes

it possible to compile NGS workflows easily in a modular way [116]. Second, I was leading

the design and implementation of SmartPhase enabling efficient and accurate phasing of

variants of clinical interest [111]. Third, I established a novel pipeline for the joint and

iterative analysis of the growing amount of WES data at the Dr. von Hauner Children’s

Hospital. Besides quality control at variant and sample level, variant annotation based

on publicly available data and derived population-specific allele frequencies, the KNIME

workflow for variant prioritization, termed CIP, is the key element to identify novel genetic

defects underlying IEI.

The application of the developed tools and pipelines to WES data from 1, 746 patients

and 705 healthy relatives, as well as to WGS data of one family, enabled definitive di-

agnoses in a substantial number of children with life-threatening diseases and generated

several new insights into the pathogenesis of IEI. The identified pathogenic variants in

the patients DIAR5-1pa to DIAR5-7pa, GGM-1pa to GGM-6pa, and VEOIBD-1pa to

VEOIBD-7pa demonstrate that IBD-like symptoms can be the manifestation of an inborn

error of immunity but also the consequence of other genetic defects. The published variants

in CARMIL2 [139], FOXP3 [143], G6PC3 [144], SRP54 [144] and RTEL1 [151] show that

87
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IBD-like symptoms can be the first manifesting or most dominant phenotype of defects in

these genes, while the described mutations in EPCAM and SLC5A1 show that not only

variants in IEI genes should be considered in pediatric IBD. Independent of the underlying

etiology, an early genetic diagnosis is crucial because diseases like GGM can be treated

efficiently through dietary adjustments, and IEI can be cured by allogeneic hematopoietic

stem cell transplantation.

With regard to SCN, my work contributed considerably to the finding that the SRP

and its receptor play a critical role for the proper development of neutrophils. The analysis

of the WGS data revealed a de novo mutation in SRPRA as the cause of SCN with SDS-like

phenotype. In addition to the identification of a reported pathogenic SRP54 variant in five

patients, the analysis of the exome data detected two novel pathogenic variants in SRP54

in two unrelated patients and the same homozygous pathogenic mutation in SRP19 in four

closely related patients. Besides the first description of two novel human genetic defects in

SRPRA and SRP19, we identified the disturbance of proteostasis and subsequent apoptosis

of neutrophils as the main underlying pathomechanism for SRP-related mutations and

as the main reason for the observed SCN phenotypes of the investigated patients (Y.

Mizoguchi, S. Hesse, M. I. Linder, et al., manuscript in preparation).

The discussed intronic DKC1 mutation is the first pathogenic branch point variant

that was detected in the WES cohort at the Dr. von Hauner Children’s Hospital. Because

branch point sequences are highly variable and extremely degenerate, their identification is

challenging and it is hard to predict the possible effect of specific variants [157, 192]. As a

consequence, only few examples of pathogenic branch point mutations are known. There-

fore, the identified variant and functional experiments represent an important contribution

to the awareness of the relevance of branch point mutations in rare disease genetics.

In addition to these findings, my work will also have a major influence on the future

analysis of the growing WES data set at the Dr. von Hauner Children’s Hospital. First,

the implemented quality steps ensure that anomalies like duplicate, mislabeled, or con-

taminated samples can easily be identified and resolved, or removed without disrupting

downstream analysis. Second, the CIP can be used to re-iterate the presented analysis

when new gene-disease associations will have been discovered in order to identify new ge-

netic diagnosis, to screen for new candidate genes after extending the WES cohort, or to

analyze sub-cohorts with less stringent filter criteria when thorough phenotyping enables

fine-grained stratification of patients into groups of similar pathophenotypes. Finally, the

gained insights have direct impact on routine analysis by drawing more attention to vari-

ants in genes not associated with IEI in VEOIBD patients and to variants in all genes in

the SRP complex and its receptor as potential causative in SCN patients.

In conclusion, I successfully implemented new tools and pipelines for the analysis of the

collected WES data at the Dr. von Hauner Children’s Hospital and gained new insights into

the pathogenesis of IEI. Along the way, two points have emerged to be particularly critical

for the search for genetic causes of rare disease in sequencing data of cohorts larger than a

few dozen patients. First, there is a need for elaborate variant prioritization using multiple
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filter criteria to keep the resulting lists of candidate variants and genes manageable. Second,

each filter criterion should be as independent as possible from already known gene-disease

relationships to avoid bias towards functionally comprehensively described genes and to

enable the discovery of novel genetic defects and underlying pathomechanisms.

5.2 Future directions

In spite of the progress made, the majority of the patients in the WES cohort at the Dr.

von Hauner Children’s Hospital is still lacking a genetic diagnosis. In general, there are

a variety of reasons why WES analysis is not able to find the underlying genetic defect.

The disease of some patients might not be caused by a monogenic defect, but results

from some complex interplay of genetic variants and environmental factors. If there is a

single causative genetic defect, WES might not be able to identify it, because the causative

variant is located in a non-coding region or it is not discovered by short-read sequencing

technologies. If the causal defect is identified, we might not recognize it, because it fails

filter criteria, or is observed the first time without any evidence linking the affected gene to

the pathophenotype. Finding a second patient with a defect in the same gene would be the

most solid evidence of a potential gene-disease association. However, so far unidentified

genetic defects will be less frequent than known defects, otherwise they would have been

found already. Consequently, the chance of finding more than one patient with pathogenic

variants in the same gene, if such patients exist at all, is unlikely when the size of a cohort

is not increased. However, larger cohorts will also generate more random hits making it

more challenging to differentiate real signals from noise. Additionally, cohorts of patients

affected by a particular rare disease are often not easily extendable, because there might

just be a few dozen or only a few hundred patients world-wide.

Because these challenges apply to most rare disease cohorts, opportunities for improve-

ment are discussed in multiple recent publications [125, 193, 194]. Structured phenotyping

of patients is a promising way to find new gene-disease associations in phenotypically

highly similar patients as discussed in Section 4.2.2. Phenotyping also makes it possible

to expand sequencing data sets without introducing noise into the analyses, because the

type and severity of the underlying pathophenotype is not determined through the selec-

tion of patients to be sequenced, but can be taken into account during analysis. Besides

the expansion of sequencing data sets, the role of non-coding variation in rare disease will

be better understood as the use of WGS becomes more widespread. Additionally, multi-

omics assays will help to prioritize and understand the molecular functional consequence

of genetic variants.

5.2.1 Enlargement of cohorts of sequenced individuals

Following the aim of expanding our knowledge on human genetic variation and driven by

the decreasing costs of NGS, increasingly larger cohorts of healthy and diseased individuals



90 CHAPTER 5. CONCLUSION AND OUTLOOK

are getting sequenced or existing data is combined into larger cohorts. While the publica-

tion of the 1000 Genomes data set in 2015 included sequencing data of 2, 504 individuals

[17], the gnomAD data set comprised already the exomes and gnomes of 141, 456 humans

in 2020 [65]. A similar growth can be observed for cohorts of patients with rare diseases.

While a review of genome and exome sequencing studies in children with suspected genetic

diseases was based on studies between 31 and 3, 040 enrolled participants in 2018 [4], a

study published in 2020 performed WGS of already 13, 037 participants [176]. Noticeably,

the latter study carried out by the National Health Service in the United Kingdom plans to

further perform WGS for 30, 000 individuals per month across multiple clinical genomics

laboratories. Obviously, the volume of sequencing by the NGS facility at the Dr. von

Hauner Children’s Hospital as a single site is limited, but shall nevertheless comprise at

least 1, 000 patients per year in the near future.

Both, the growth of reference and clinical data sets will improve rare disease diagnosis

in several aspects. First, more comprehensive collections of genetic variants in individu-

als without severe disease will increase the number of variants that can be excluded as

monogenic cause of disease in rare disease patients. Second, the identification of new LoF

variants inactivating certain genes or a statistically significant lack of LoF variants will re-

fine estimates of disease-related relevance of individual human genes [65]. Third, each new

patient added to a cohort increases the chance to detect a genetic defect in more than one

patient as a promising indication of pathogenicity, if the phenotypes are sufficiently simi-

lar. Fourth, larger patient cohorts may help to decipher genetic causes more complex than

monogenic defects, such as digenic defects. The latter refer to a combination of two genetic

defects that are both required to induce a pathophenotype [195, 196]. In comparison to

the thousands of monogenic defects reported in OMIM [22], only 90 of such true digenic

combinations are reported in the Digenic Disease Database in the most recent update of

July 2017 [197]. Although it is unknown how frequent digenic or oligogenic defects underlie

rare diseases, these numbers reflect the low chance of finding more than one patient with

rare defects in the same genes as each incrementation of the number of potentially involved

genes adds an equal number of dimensions to the search space. Nevertheless, increasing

the size of patient cohorts may also increase the ability to identify new digenic or oligogenic

inheritance modes, thereby furthering the understanding of their role in rare diseases.

5.2.2 Replacement of WES by WGS

Although current evidence does not support a considerably higher diagnostic utility of

WGS in comparison to WES [4, 5], WGS will replace WES in the near future due to an

increasingly overlapping range of cost [198] and the prospect of greater long-term benefit

through improved analysis and interpretation of the generated data. This development

is evident in the large-scale study of the National Health Service in the United Kingdom

[176], and also the Dr. von Hauner Children’s Hospital wants to rely more on WGS in the

future.
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In contrast to WES, library preparation of WGS does not include any selection and

amplification steps of DNA fragments. Therefore, WGS offers a more comprehensive cov-

erage of the protein-coding regions of the human genome and a uniform sequencing depth

over the whole genome. Consequently, the chance of missing pathogenic protein-coding

variants is reduced and structural variation can be detected more accurately as deviations

in the sequencing depth must result from duplication or deletion events and the identifi-

cation of breakpoints is not limited to exons. However, the primary advantage of WGS

over WES is the ability to find variants in the non-coding regions of the human genome.

Yet the interpretation of non-coding variation is not as intuitive as for variants in protein-

coding exons. There are many more genetic variants in a genome than in an exome and

filtering for rare variants is less powerful due to the currently several times smaller sizes of

reference cohorts based on WGS in contrast to those based on WES. Results of genome-

wide association studies suggest to focus the analysis of non-coding variants on regulatory

regions as these are enriched for associated SNVs [199, 200], but predicting the impact

of non-coding variation in regulatory regions and validating derived hypothesis remains

challenging. Although WGS is currently primarily useful to detect protein-coding variants

more comprehensively, and to identify structural variants, new findings on non-coding vari-

ants, and algorithms supporting their interpretation will continue to make WGS even more

valuable in the future.

5.2.3 Generation and integration of multi-omics assays

Multiple different omics technologies enable the study of molecular details of cellular pro-

cesses in humans in health and disease on various levels [201]. Based on NGS techniques,

genomics refers to the identification of genetic variation, epigenomics describes the study

of DNA methylation and chromatin accessibility, transcriptomics measures the abundance

and sequence of RNAs and microbiomics comprises the characterization of microorgan-

isms populating the skin, mucosal surfaces, and the gut. Proteomics and metabolomics

measure the abundance of proteins and metabolites by mass spectrometry. Many of these

technologies can also be applied at single-cell level enabling even more detailed insights

into cellular processes [202].

Finding methods to integrate the wealth of multi-omics data is crucial to improve the

diagnosis of diseases, to understand the details of pathomechanisms, and to use gained

insights to optimize treatment [203]. Especially RNA sequencing has been proven to be

valuable to improve the genetic diagnosis of Mendelian diseases by enabling variant calling

in exons not covered by WES and linking variants without clear functional impact to

aberrant expression, aberrant splicing or allelic expression imbalances. Multiple studies

showed that transcriptome profiling of patients that could not be diagnosed through WES

yields an additional diagnostic rate between 7.5% and 25% [204, 205, 206, 207].

To understand the interplay of multi-omics layers in children, the Dr. von Hauner

Children’s Hospital recently launched a large-scale project aiming to collect retina images
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and blood samples of 5, 000 children to perform multi-omics assays and use the generated

data pool to identify and characterize biomarkers of pediatric disease.

Taken together, the future directions outlined will all play an important role in improving

our ability to discover genetic causes of rare diseases. They will also help us to compre-

hensively describe and understand the functional mechanisms linking genetic variation to

observed pathophenotypes. Finally, this is the prerequisite for developing targeted thera-

pies and getting closer to the ultimate goal of offering each patient the optimal treatment

based on their individual genetic makeup.



Appendix 6
6.1 Detailed view of the Candidate Identification Pipeline

This section presents the individual parts of the implemented Candidate Identification

Pipeline described in Section 3.1.2 and abbreviated as CIP. Figure 6.1 shows the whole

KNIME workflow as a thumbnail with an identifier for each functional group of the CIP.

Parts that import annotations on patients, variants and genes are highlighted by yellow (A)

boxes, which are individually depicted in Figure 6.2 to 6.5. The generation of candidate

variant lists are shown in Figure 6.6 to 6.11 for dominant and in Figure 6.12 to 6.20 for

recessive effects, in green (B) and brown (C) boxes respectively. The compilation of lists

summarizing data on patients and pathogenic variants is highlighted by red (D) boxes and

depicted in Figure 6.21 to 6.23.

Figure 6.1: Identifiers for the individual parts of the Candidate Identification Pipeline
(CIP). The figure shows the overall workflow consisting of 238 nodes. The identifiers were
added to mark the positions of the individual parts shown in Figure 6.2 to 6.23.

93
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A. Importing annotations

Figure 6.2: Part A1 of the CIP. The nodes import the pedigree file of the cohort, quality
metrics of the exome sequencing (WES), the predicted ethnicity of each individual, known
genetic diagnoses, and available patient phenotypes.
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Figure 6.3: Part A2 of the CIP. The nodes import all genes that are significantly associated
with immune system phenotypes or preweaning lethality according to the International
Mouse Phenotyping Consortium (IMPC) database.

Figure 6.4: Part A3 of the CIP. The nodes import known gene-disease relationships pro-
vided by the Online Mendelian Inheritance in Man (OMIM) database.
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Figure 6.5: Part A4 of the CIP. The nodes in the upper part import the computed Com-
bined Annotation Dependent Depletion (CADD) scores of all identified genetic variants.
The nodes in the lower part read variant annotations of InterVar.
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B. Dominant candidates.

Figure 6.6: Part B1 of the CIP. The nodes import all genetic variants that are heterozygous
in at least one patient of the cohort and that have not been reported in the used reference
data sets. Variant annotations imported in part A4 (Figure 6.5) are added and prepared for
further variant prioritization. The affection states of homozygous carriers of the imported
variants are attached based on the metadata prepared in part A1 (Figure 6.2). CADD
abbreviates Combined Annotation Dependent Depletion, LOFTEE refers to the Loss-Of-
Function Transcript Effect Estimator and UTR stands for untranslated region.

Figure 6.7: Part B2 of the CIP. If sequencing data of the parents of a patient is available,
the nodes annotate whether potential dominant effects were inherited from diseased parents
or are the result of a de novo event.
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Figure 6.8: Part B3 of the CIP. The nodes compile a list of rare heterozygous variants only
found in the patients of the cohort and in genes already associated with dominant inheri-
tance of inborn errors of immunity as reported by the International Union of Immunological
Societies (IUIS).

Figure 6.9: Part B4.1 of the CIP. The nodes filter the list of all heterozygous variants
loaded in part B1 (Figure 6.6) according to the criteria defined in Section 2.3.6. Over-
lapping open reading frame is abbreviated as oORF, Loss-of-Function as LoF, Genome
Aggregation Database as gnomAD, American College of Medical Genetics and Genomics
and the Association for Molecular Pathology as ACMG/AMP, and Combined Annotation
Dependent Depletion as CADD.
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Figure 6.10: Part B4.2 of the CIP. The nodes continue the variant filtering shown in Figure
6.9 (part B4.1). Overlapping open reading frame is abbreviated as oORF and Combined
Annotation Dependent Depletion as CADD.

Figure 6.11: Part B4.3 of the CIP. The nodes select candidate genes for dominant inheri-
tance from the set of variants that result from the prioritization steps in part B4.1 (Figure
6.9) and B4.2 (Figure 6.10). Annotations of the International Mouse Phenotyping Consor-
tium (IMPC) and the Online Mendelian Inheritance in Man (OMIM) database imported
in part A2 (Figure 6.3) and A3 (Figure 6.4) are added.
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C. Recessive candidates.

Figure 6.12: Part C1 of the CIP. The nodes import all genetic variants that are homozygous
in at least one patient of the cohort and are rare according to the used reference data sets.
Variant annotations imported in part A4 (Figure 6.5) are added and prepared for further
variant prioritization. CADD abbreviates Combined Annotation Dependent Depletion,
LOFTEE refers to the Loss-Of-Function Transcript Effect Estimator and UTR stands for
untranslated region.

Figure 6.13: Part C2 of the CIP. The nodes import all genetic variants that are heterozy-
gous in at least one patient of the cohort and are rare according to the used reference
data sets. Variant annotations imported in part A4 (Figure 6.5) are added and prepared
for further variant prioritization. The affection states of homozygous carriers of the im-
ported variants are attached based on the metadata prepared in part A1 (Figure 6.2).
CADD abbreviates Combined Annotation Dependent Depletion, LOFTEE refers to the
Loss-Of-Function Transcript Effect Estimator and UTR stands for untranslated region.
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Figure 6.14: Part C3 of the CIP. Based on the rare heterozygous variants loaded by part
C2 (Figure 6.13), the shown nodes generate pairs of heterozygous variants as input for
SmartPhase. The results of SmartPhase are imported and variant pairs that are on the
same allele or are considered benign based on their segregation pattern are discarded.

Figure 6.15: Part C4 of the CIP. The list of heterozygous variant pairs generated in part
C3 (Figure 6.14) is concatenated with the list of homozygous variants imported in part C1
(Figure 6.12). CADD abbreviates Combined Annotation Dependent Depletion.
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Figure 6.16: Part C5 of the CIP. The nodes compile a list of rare homozygous variants
only found in the patients of the cohort and in genes already associated with inborn errors
of immunity as reported by the International Union of Immunological Societies (IUIS).

Figure 6.17: Part C6.1 of the CIP. The nodes filter the concatenated list of homozygous
variants and heterozygous variant pairs generated in part C4 (Figure 6.15) according to
the criteria defined in Section 2.3.6. Overlapping open reading frame is abbreviated as
oORF, Loss-of-Function as LoF, Genome Aggregation Database as gnomAD, American
College of Medical Genetics and Genomics and the Association for Molecular Pathology
as ACMG/AMP, and Combined Annotation Dependent Depletion as CADD.
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Figure 6.18: Part C6.2 of the CIP. The nodes continue the variant filtering shown in Figure
6.17 (part C6.1). Overlapping open reading frame is abbreviated as oORF and Combined
Annotation Dependent Depletion as CADD.

Figure 6.19: Part C6.3 of the CIP. The nodes continue the variant prioritization after part
C6.1 (Figure 6.17) and C6.2 (Figure 6.18).
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Figure 6.20: Part C6.4 of the CIP. The nodes select candidate genes for recessive inheritance
from the set of variants that result from the prioritization steps shown in Figure 6.17 (part
C6.1), 6.18 (part C6.2) and 6.19 (part C6.3). Annotations of the International Mouse
Phenotyping Consortium (IMPC) and the Online Mendelian Inheritance in Man (OMIM)
database imported in part A2 (Figure 6.3) and A3 (Figure 6.4) are added.
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D. Overview lists.

Figure 6.21: Part D1.1 of the CIP. Using the knowledge on known causative genes for a
subset of the patients in the cohort, the nodes identify the causal variant by searching for
the variant with the maximum Combined Annotation Dependent Depletion (CADD) score
in the diagnosed gene using the results of part B2 (Figure 6.7) and C4 (Figure 6.15) as
input.

Figure 6.22: Part D1.2 of the CIP. In continuation of the nodes shown in Figure 6.21 (part
D1.1), diagnosed individuals are identified for whom the causal variant is not part of the
variant sets generated in Figure 6.7 (part B2) and 6.15 (part C4). These missing causal
variants are reported as part of a summary of the metadata of all individuals.
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Figure 6.23: Part D2 of the CIP. The nodes compile a summary of all causal variants
identified in part D1.1 (Figure 6.21).
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6.2 List of identified candidate genes

This section lists all candidate genes resulting from the application of the Candidate Iden-

tification Pipeline to the WES cohort. Because most candidate genes are still under review

to identify promising genes for further research projects on their pathogenicity, only names

of genes are shown for which an association with IEI has been published [32], or for which

variants have been discussed in Chapter 3. Details on the individual columns and the used

abbreviations can be found at the end of the table.

Chr Gene Variants

in patients

CADD Effect type IMPC OMIM

1 CD55 2 in 2 15.9 - 22.1 AR (hm=2) - AR

1 CSF3R 4 in 4 18.4 - 29.8 AR (hm=5) lethal AR

1 HAX1 5 in 11 23.1 - 33.0 AR (hm=11) - AR

1 MYSM1 3 in 3 25.3 - 37.0 AD (ht=2, dn=1) immune AR

1 TNFRSF9 2 in 2 24.9 - 32.0 AR (hm=2) lethal -

1 - 3 in 3 9.5 - 25.7 AD (ht=2, dn=1) - AD

1 - 2 in 2 32.0 - 33.0 AR (hm=2) - AR

1 - 3 in 3 22.9 - 27.5 AR (cpht=3) lethal -

1 - 2 in 2 23.9 - 34.0 AD (ht=1, dn=1) - -

1 - 1 in 2 28.1 AD (ht=1, dn=1) - -

1 - 4 in 4 25.9 - 29.3 AD (ht=3, dn=1) - -

1 - 2 in 2 25.3 - 27.4 AR (hm=1, cpht=1) - -

1 - 2 in 2 21.1 - 25.0 AR (hm=1, cpht=1) - -

1 - 2 in 2 17.5 - 23.8 AR (hm=1, cpht=1) - -

1 - 3 in 3 16.1 - 16.4 AR (hm=1, cpht=2) - -

1 - 2 in 2 21.2 - 21.4 AR (hm=2) - -

1 - 2 in 2 22.2 - 25.1 AR (hm=2) - -

2 CTLA4 4 in 4 24.5 - 34.0 AD (ht=3, dn=1) - AD

2 EPCAM 6 in 6 14.5 - 58.0 AR (hm=6) - AR

2 NBAS 2 in 2 15.1 - 23.3 AR (hm=2) lethal AR

2 STAT1 3 in 3 25.0 - 33.0 AR (hm=3) immune AD/AR

2 ZAP70 5 in 5 23.8 - 34.0 AR (hm=5) - AR

2 - 2 in 2 22.7 - 24.2 AR (hm=2) - AR

2 - 3 in 3 15.4 - 22.5 AR (hm=3) - AR

2 - 2 in 2 23.2 - 24.2 AR (hm=2) - AR

2 - 2 in 2 24.1 - 28.2 AR (hm=2) - AR

2 - 2 in 2 16.6 - 24.5 AR (hm=2) lethal -

2 - 1 in 2 31.0 AR (hm=2) lethal -

2 - 2 in 2 27.4 - 31.0 AD (ht=1, dn=1) - -

2 - 2 in 2 31.0 - 32.0 AD (ht=1, dn=1) - -
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2 - 1 in 2 9.8 AR (hm=2) - -

3 JAGN1 2 in 2 23.8 - 31.0 AR (hm=2) - AR

3 - 2 in 2 25.9 - 34.0 AR (hm=2) - AD/AR

3 - 3 in 4 29.2 - 34.0 AD (ht=3, dn=1) lethal AR

3 - 2 in 2 23.0 - 29.3 AD (ht=1, dn=1) - AD

3 - 2 in 2 25.5 - 32.0 AD (ht=1, dn=1) - -

3 - 2 in 2 28.0 - 44.0 AD (ht=1, dn=1) - -

3 - 3 in 3 0.2 - 24.2 AR (hm=2, cpht=1) - -

4 LRBA 2 in 2 23.4 - 38.0 AR (hm=2) - AR

4 NFKB1 2 in 3 25.8 - 32.0 AD (ht=2, dn=1) immune AD

4 - 4 in 4 18.7 - 27.8 AD (ht=3, dn=1) - AD

4 - 2 in 3 16.4 - 28.0 AR (hm=2, cpht=1) - AR

4 - 2 in 2 19.1 - 22.7 AR (hm=2) - -

5 IL7R 2 in 2 21.5 - 29.9 AR (hm=2) - AR

5 TTC37 2 in 2 25.3 - 33.0 AR (hm=2) - AR

5 - 2 in 2 28.4 - 33.0 AD (ht=1, dn=1) lethal AR

5 - 2 in 2 27.6 - 35.0 AD (ht=1, dn=1) lethal AR

5 - 3 in 3 16.5 - 24.9 AR (hm=3) immune AD

5 - 3 in 3 27.2 - 32.0 AD (ht=2, dn=1) - AR

5 - 2 in 2 22.3 - 33.0 AR (hm=1, cpht=1) - AR

5 - 2 in 2 24.2 - 31.0 AR (hm=1, cpht=1) - -

5 - 2 in 2 24.9 - 25.3 AR (hm=2) - -

5 - 2 in 2 18.5 - 25.9 AR (hm=1, cpht=1) - -

5 - 2 in 2 19.2 - 28.0 AR (hm=2) - -

5 - 2 in 2 22.2 - 27.3 AR (hm=2) - -

6 RIPK1 4 in 4 22.8 - 27.4 AR (hm=4) - AD/AR

6 SKIV2L 3 in 3 24.3 - 43.0 AR (hm=3) lethal AR

6 - 2 in 2 17.0 - 19.8 AR (hm=2) lethal AR

6 - 2 in 2 21.6 - 25.7 AR (hm=2) - AD/AR

6 - 2 in 2 22.6 - 25.2 AR (hm=2) - AR

6 - 2 in 2 25.1 - 33.0 AD (ht=1, dn=1) lethal -

6 - 2 in 2 24.1 - 25.9 AR (hm=2) lethal -

6 - 2 in 2 16.5 - 25.8 AR (hm=1, cpht=1) - -

6 - 3 in 4 24.2 - 26.1 AR (hm=4) - -

6 - 2 in 2 23.5 - 26.9 AR (hm=2) - -

7 ARPC1B 3 in 3 31.0 - 38.0 AR (hm=3) immune AR

7 NCF1 1 in 2 35.0 AR (hm=2) - AR

7 SBDS 2 in 2 28.3 - 44.0 AR (hm=1, cpht=1) - AR

7 - 2 in 2 31.0 - 32.0 AR (hm=2) - AR

7 - 3 in 4 25.6 - 27.8 AD (ht=3, inher-

ited=1)

- -
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7 - 1 in 2 16.1 AR (hm=2) - -

7 - 2 in 2 26.7 - 44.0 AR (hm=2) - -

7 - 2 in 2 18.5 - 18.6 AR (hm=2) - -

7 - 2 in 2 16.8 - 17.1 AR (hm=2) - -

7 - 3 in 2 21.9 - 23.6 AR (hm=3) - -

7 - 2 in 2 17.4 - 17.9 AR (hm=2) - -

7 - 3 in 3 24.8 - 46.0 AR (hm=2, cpht=1) - -

8 VPS13B 2 in 2 34.0 - 38.0 AR (hm=2) - AR

8 - 2 in 2 23.1 - 27.9 AR (hm=2) lethal AR

8 - 2 in 3 28.4 - 34.0 AD (ht=2, inher-

ited=1)

- AD

8 - 2 in 2 26.2 - 27.5 AR (hm=2) - AR

8 - 1 in 2 32.0 AD (ht=1, dn=1) - -

8 - 2 in 2 24.4 - 25.9 AR (hm=2) - -

8 - 2 in 2 24.2 - 26.4 AR (hm=2) - -

8 - 2 in 2 15.1 - 23.5 AR (hm=2) - -

9 - 1 in 2 27.5 AR (hm=2) lethal AR

9 - 1 in 2 33.0 AD (ht=1, dn=1) - -

9 - 1 in 2 25.3 AD (ht=1, dn=1) - -

9 - 2 in 2 22.3 - 27.0 AR (hm=1, cpht=1) - -

9 - 2 in 2 22.1 - 23.6 AR (hm=1, cpht=1) - -

10 - 4 in 4 26.1 - 33.0 AD (ht=3, dn=1) lethal AR

10 - 2 in 2 25.9 - 28.6 AD (ht=1, dn=1) - AD/AR

10 - 2 in 2 19.3 - 22.7 AR (hm=2) - AD

10 - 2 in 2 15.1 - 28.5 AD (ht=1, dn=1) lethal -

10 - 2 in 2 22.1 - 23.4 AR (hm=2) - -

11 C GENE 1 2 in 8 23.3 - 25.0 AD (ht=7, dn=1) - AD/AR

11 IL10RA 2 in 2 24.3 - 26.1 AR (hm=2) immune AR

11 RAG1 3 in 3 24.7 - 28.9 AR (hm=3) - AR

11 RAG2 2 in 2 27.4 - 29.3 AR (hm=2) - AR

11 - 2 in 2 16.6 - 24.7 AD (ht=1, dn=1) - AD

11 - 1 in 3 33.0 AD (ht=2, dn=1) - -

11 - 5 in 4 22.5 - 32.0 AD (ht=4, dn=1) - -

11 - 2 in 2 22.5 - 22.9 AR (hm=2) - -

11 - 3 in 3 15.4 - 23.1 AR (hm=2, cpht=1) - -

11 - 2 in 2 20.9 - 23.2 AR (hm=2) - -

11 - 2 in 2 22.3 - 23.5 AR (hm=2) - -

12 KRAS 1 in 2 26.1 AD (ht=1, dn=1) - AD

12 MVK 2 in 2 24.6 - 31.0 AR (hm=2) lethal AD/AR

12 - 2 in 4 23.2 - 24.4 AD (ht=2, dn=2) - -
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12 - 2 in 2 24.0 - 37.0 AD (ht=1, dn=1) - -

12 - 2 in 2 16.1 - 22.4 AR (hm=1, cpht=1) - -

12 - 2 in 2 15.8 - 22.3 AR (hm=2) - -

12 - 2 in 2 17.3 - 27.4 AR (hm=2) - -

12 - 2 in 2 17.8 - 23.6 AR (hm=2) - -

12 - 2 in 2 28.8 - 33.0 AR (hm=2) - -

12 - 2 in 2 22.4 - 29.9 AR (hm=1, cpht=1) - -

13 LIG4 1 in 2 26.3 AR (hm=2) - AR

13 - 2 in 2 19.2 - 32.0 AR (hm=2) immune -

13 - 1 in 2 33.0 AD (ht=1, dn=1) - -

14 SRP54 4 in 10 22.5 - 31.0 AD (ht=8, dn=2) - AD

14 - 2 in 2 23.8 - 25.1 AR (hm=1, cpht=1) immune -

14 - 2 in 2 25.0 - 31.0 AR (hm=2) - -

15 RAB27A 2 in 2 31.0 - 33.0 AR (hm=2) - AR

15 RASGRP1 3 in 2 26.9 - 28.1 AR (hm=3) - AR

15 - 2 in 2 24.1 - 29.5 AR (hm=2) - AR

15 - 3 in 3 18.6 - 28.9 AR (hm=3) lethal -

15 - 1 in 2 27.4 AD (ht=1, dn=1) - -

15 - 4 in 3 26.5 - 35.0 AD (ht=4, dn=3) - -

15 - 2 in 2 23.6 - 25.9 AR (hm=2) - -

15 - 2 in 2 16.2 - 28.4 AR (hm=2) - -

15 - 1 in 2 21.6 AR (hm=2) - -

16 RLTPR 4 in 4 23.5 - 33.0 AR (hm=4) - -

16 - 2 in 2 25.6 - 32.0 AD (ht=1, dn=1) - -

16 - 2 in 2 19.1 - 24.9 AR (hm=2) - -

16 - 2 in 2 20.9 - 22.5 AR (hm=2) - -

16 - 2 in 2 17.9 - 24.1 AR (hm=2) - -

17 G6PC3 7 in 8 18.3 - 33.0 AR (hm=7, cpht=1) - AR

17 STAT3 4 in 4 7.9 - 32.0 AD (ht=3, dn=1) - AD

17 - 2 in 2 25.2 - 30.0 AD (ht=1, dn=1) lethal -

17 - 2 in 2 20.4 - 25.4 AR (hm=1, cpht=1) lethal -

17 - 2 in 2 16.5 - 25.7 AR (hm=1, cpht=1) immune -

17 - 2 in 2 13.8 - 28.6 AR (hm=2) - -

17 - 2 in 2 24.1 - 32.0 AR (hm=2) - -

17 - 2 in 2 23.0 - 38.0 AR (hm=2) - -

17 - 2 in 2 17.6 - 22.1 AR (hm=2) - -

18 - 2 in 2 23.2 - 32.0 AD (ht=1, dn=2) - AD

18 - 3 in 3 15.6 - 27.0 AR (hm=2, cpht=1) - AR

18 - 2 in 2 22.2 - 29.1 AR (hm=2) - -

19 ELANE 2 in 2 11.5 - 26.2 AD (dn=2) - AD
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19 FCHO1 2 in 3 26.1 - 33.0 AR (hm=3) - -

19 IL12RB1 3 in 3 23.4 - 32.0 AR (hm=3) - AR

19 JAK3 2 in 2 29.2 - 29.7 AR (hm=2) - AR

19 TGFB1 2 in 2 24.5 - 28.9 AR (hm=1, cpht=1) - AD/AR

19 TYK2 2 in 2 21.7 - 25.0 AR (hm=1, cpht=1) - AR

19 - 3 in 3 32.0 - 39.0 AD (ht=2, dn=1) lethal AD

19 - 2 in 2 23.2 - 29.3 AR (hm=1, cpht=1) - AR

19 - 2 in 2 17.0 - 23.3 AR (hm=2) lethal -

19 - 2 in 3 25.7 - 28.8 AD (ht=2, dn=1) - -

19 - 3 in 4 25.2 - 27.7 AD (ht=2, dn=2) - -

19 - 2 in 2 15.0 - 17.1 AR (hm=2) - -

19 - 2 in 2 16.0 - 25.8 AR (hm=2) - -

19 - 2 in 3 19.0 - 26.6 AR (hm=3) - -

20 DNMT3B 4 in 4 29.2 - 32.0 AR (hm=3, cpht=1) lethal AR

20 ZNF341 2 in 2 27.8 - 29.1 AR (hm=2) - AR

20 - 1 in 2 23.5 AD (ht=1, dn=1) - AD

20 - 3 in 3 21.6 - 32.0 AD (ht=2, dn=1) - AR

20 - 2 in 2 19.8 - 32.0 AR (hm=1, cpht=1) - AR

20 - 3 in 3 19.4 - 29.9 AR (hm=2, cpht=1) lethal -

21 ICOSLG 2 in 2 22.3 - 36.0 AR (hm=2) - -

21 IL10RB 6 in 8 19.1 - 33.0 AR (hm=8) immune AR

21 ITGB2 3 in 3 24.8 - 33.0 AR (hm=3) - AR

21 - 2 in 2 15.9 - 22.2 AR (hm=2) - AD

21 - 1 in 2 15.3 AR (hm=2) - AD

22 CECR1 3 in 3 21.9 - 25.2 AR (hm=3) - -

22 SLC5A1 5 in 5 22.7 - 40.0 AR (hm=5) - AR

22 USP18 1 in 2 19.5 AR (hm=2) - AR

22 - 1 in 2 24.7 AD (ht=1, dn=1) - -

X BTK 4 in 7 26.2 - 32.0 XLR (hemi=7) immune XLR

X CD40LG 3 in 3 22.9 - 26.3 XLR (hemi=3) - XLR

X C GENE 2 6 in 6 18.9 - 28.3 XLR (hemi=6) immune -

X DKC1 2 in 2 23.4 - 25.7 XLR (hemi=2) - XLR

X G6PD 3 in 3 18.8 - 24.5 XLR (hemi=3) - XLD

X MSN 3 in 3 22.6 - 31.0 XLR (hemi=3) - XLR

X WAS 5 in 5 16.0 - 32.0 XLR (hemi=5) - XLR

X XIAP 3 in 3 24.5 - 33.0 XLR (hemi=3) - XLR

X - 2 in 2 17.3 - 19.4 XLR (hemi=2) lethal XLD

X - 3 in 3 15.6 - 33.0 XLD (ht=1, dn=2) - XLR

X - 2 in 2 22.8 - 25.9 XLR (hemi=2) - XLR

X - 2 in 2 15.8 - 24.8 XLR (hemi=2) - XLR
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X - 1 in 2 27.4 XLR (hemi=2) - XLD

X - 1 in 2 17.3 XLR (hemi=2) - XLR

X - 2 in 2 16.9 - 19.8 XLR (hemi=2) -

X - 2 in 2 23.9 - 25.8 XLR (hemi=2) - XLR

X - 2 in 2 22.1 - 22.9 XLR (hemi=2) - XLR

X - 2 in 2 15.2 - 23.2 XLR (hemi=2) - XLR

X - 2 in 2 20.9 - 22.2 XLR (hemi=2) - -

X - 4 in 4 18.9 - 28.4 XLR (hemi=4) - -

X - 2 in 2 22.6 - 25.8 XLR (hemi=2) - -

X - 2 in 2 20.2 - 22.3 XLR (hemi=2) - -

X - 2 in 2 16.8 - 28.1 XLR (hemi=2) - -

X - 2 in 2 16.9 - 22.5 XLR (hemi=2) - -

X - 2 in 2 16.8 - 20.2 XLR (hemi=2) - -

X - 2 in 2 24.3 - 24.4 XLR (hemi=2) - -

X - 2 in 2 23.1 - 33.0 XLR (hemi=2) - -

Y - 2 in 2 23.1 - 24.4 YL (2) - -

Table 6.1: List of identified candidate genes. For each chromosome specified in the column

“Chr”, named genes are listed in lexicographical order, while unnamed genes are ordered

by chromosomal position. Names are in bold if genes are associated with inborn errors

of immunity [32]. The column “Variants in patients” indicates the number of variants

or variant pairs that were identified and how many patients are affected by these. The

number of variants can be smaller than the number of patients if a variant or variant pair

was found in multiple patients. If a patient carries multiple variants in the same gene, the

number of variants can be larger than the number of patients. The range of the Combined

Annotation Dependent Depletion scores of the variants is given in the column “CADD”.

The column “Effect type” specifies whether the gene was identified as a candidate when

searching for dominant effects (autosomal dominant (AD) or X-linked dominant (XLD))

or recessive effects (autosomal recessive (AR) or X-linked recessive (XLR)) including Y-

linked variants (YL). Counts of the genotypes carried by the affected patients are given

in the same column in brackets where hm is homozygous, ht is heterozygous, dn is de

novo, cpht is compound heterozygous and hemi is hemizygous. The column “IMPC”

informs whether preweaning lethality (lethal) or any immune system phenotypes (immune)

were significantly associated with knockouts of orthologous mouse genes as reported by

the International Mouse Phenotyping Consortium based on data release 11.0 of February

2020. The column “OMIM” indicates the mode of inheritance of gene-disease phenotype

relationships annotated in Online Mendelian Inheritance in Man by June 2020.



List of Abbreviations

ACMG American College of Medical Genetics and Genomics

AMP Association for Molecular Pathology

BAM Binary Alignment/Map

BQSR Base Quality Score Recalibration

BWA Burrow-Wheeler Aligner

CADD Combined Annotation Dependent Depletion

cDNA complementary DNA

CIP Candidate Identification Pipeline

DC dyskeratosis congenita

DIAR5 diarrhea-5 with congenital tufting enteropathy

DNA deoxyribonucleic acid

DP depth of coverage

EEUR Eastern Europe

ER endoplasmatic reticulum

ExAC Exome Aggregation Consortium

GATK Genome Analysis Toolkit

G-CSF granulocyte colony-stimulating factor

GGM glucose-galactose malabsorption

GME Greater Middle East

gnomAD Genome Aggregation Database

GRCh37 Genome Reference Consortium Human Build 37

GQ genotype quality

GTP guanosine-5’-triphosphate

gVCF genome variant call format

HHS Hyeraal-Hreidarsson syondrome

HPO Human Phenotype Ontology

HTE High-Throughput Executor

IBD inflammatory bowel disease

IBS0 zero identity-by-state

113



114 CHAPTER 6. APPENDIX

IEI inborn errors of immunity

IMPC International Mouse Phenotyping Consortium

InDel insertion or deletion

IPEX Immunodysregulation, Polyendocrinopathy, and Enteropathy, X-linked

iPS induced pluripotent stem cell

ISC Indian Subcontinent

IUIS International Union of Immunological Societies

KNIME Konstanz Information Miner

LD linkage disequilibrium

LoF Loss-of-Function

LOFTEE Loss-Of-Function Transcript Effect Estimator

NAFR Northern Africa

NGS next-generation sequencing

NMD nonsense-mediated mRNA decay

mRNA messenger RNA

OMIM Online Mendelian Inheritance in Man

PPI protein-protein interaction

RNA ribonucleic acid

SAM Sequence Alignment/Map

SDS Shwachman-Diamond syndrome

SEAS South East Asia

SCN severe congenital neutropenia

SNV single nucleotide variant

STRING Search Tool for the Retrieval of Interacting Genes/Proteins

SRP signal recognition particle

Ti/Tv transition/transversion

uORF upstream open reading frame

UTR untranslated region

WES whole-exome sequencing

WEUR Western Europe

WGS whole-genome sequencing

VCF variant call format

VEOIBD very early onset IBD

VEP Variant Effect Predictor

VQSR Variant Quality Score Recalibration



List of Figures

1.1 Main types of genetic variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Possible genotypes of genetic variants. . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Number of immune defects in International Union of Immunological Societies

(IUIS) reports since 1983. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Proteins mutated in patients with congenital neutropenia. . . . . . . . . . . . . 11

1.5 Pathomechanisms of monogenic inflammatory bowel disease. . . . . . . . . . . 12

1.6 Diagnostic rates of whole-exome sequencing studies by disease phenotype. . . . 14

2.1 Pedigree of family SCN-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Stratification of ClinVar entries by clinical significance and review status. . . . 21

2.3 Main steps for processing sequencing data. . . . . . . . . . . . . . . . . . . . . 23

2.4 Main steps of the HaplotypeCaller algorithm of the Genome Analysis Toolkit. . 25

2.5 Visualization the concept of Variant Quality Score Recalibration. . . . . . . . . 27

2.6 Steps of population stratification. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Main variant consequences annotated by the Variant Effect Predictor. . . . . . 33

2.8 Subset of the ACMG/AMP criteria annotated by InterVar. . . . . . . . . . . . 34

2.9 Strategies of SmartPhase for resolving heterozygous variant pairs. . . . . . . . 36

3.1 KNIME pipeline for whole-genome sequencing data analysis. . . . . . . . . . . 42

3.2 Schematic overview of the Candidate Identification Pipeline . . . . . . . . . . . 43

3.3 Visualization of the SRPRA mutation in patient SCN-1pa. . . . . . . . . . . . 45

3.4 Sequencing depth and call rate of the exome sequencing data collection. . . . . 48

3.5 Population stratification and assigned ethnicities. . . . . . . . . . . . . . . . . . 50

3.6 Frequency filtering combining overall and population-specific allele frequencies. 51

3.7 Characterization of pathogenic variants discovered in the exome sequencing

data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Positions of the pathogenic variants in EPCAM and SLC5A1. . . . . . . . . . . 64

3.9 Experimental validation of the splicing defect in DKC1 in patient DKC-1pa. . 69

3.10 Residues in the SRP54/SRPRA complex affected by mutations in the families

SCN-1 to SCN-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.11 Interaction network of proteins affected by the identified pathogenic variants. . 72

115



116 List of Figures

6.1 Identifiers for the individual parts of the Candidate Identification Pipeline (CIP). 93

6.2 Part A1 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Part A2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Part A3 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Part A4 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Part B1 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Part B2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.8 Part B3 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.9 Part B4.1 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.10 Part B4.2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.11 Part B4.3 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.12 Part C1 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.13 Part C2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.14 Part C3 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.15 Part C4 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.16 Part C5 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.17 Part C6.1 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.18 Part C6.2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.19 Part C6.3 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.20 Part C6.4 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.21 Part D1.1 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.22 Part D1.2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.23 Part D2 of the CIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Tables

2.1 Composition of the exome sequencing data collection. . . . . . . . . . . . . . . 18

3.1 Results of quality control steps applied to the exome sequencing data collection. 47

3.2 Composition of the exome sequencing data collection after quality control. . . . 47

3.3 Consequences of variants found in genes associated with inborn errors of immunity 57

3.4 Discovered pathogenic variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Gene-disease associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 List of identified candidate genes. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

117





Bibliography

[1] S. Nguengang Wakap, D. M. Lambert, A. Olry, C. Rodwell, C. Gueydan, V. Lanneau,

D. Murphy, Y. Le Cam, and A. Rath, “Estimating cumulative point prevalence of

rare diseases: analysis of the Orphanet database,” Eur. J. Hum. Genet., vol. 28,

pp. 165–173, Feb. 2020.

[2] World Health Organization, “Global Health Estimates 2016: Deaths by Cause, Age,

Sex, by Country and by Region, 2000-2016,” 2018. Available: https://www.who.

int/healthinfo/global_burden_disease/estimates/en/.

[3] E. A. Worthey, A. N. Mayer, G. D. Syverson, D. Helbling, B. B. Bonacci, B. Decker,

J. M. Serpe, T. Dasu, M. R. Tschannen, R. L. Veith, M. J. Basehore, U. Broeckel,

A. Tomita-Mitchell, M. J. Arca, J. T. Casper, D. A. Margolis, D. P. Bick, M. J.

Hessner, J. M. Routes, J. W. Verbsky, H. J. Jacob, and D. P. Dimmock, “Making

a definitive diagnosis: successful clinical application of whole exome sequencing in a

child with intractable inflammatory bowel disease,” Genet. Med., vol. 13, pp. 255–62,

Mar. 2011.

[4] M. M. Clark, Z. Stark, L. Farnaes, T. Y. Tan, S. M. White, D. Dimmock, and

S. F. Kingsmore, “Meta-analysis of the diagnostic and clinical utility of genome and

exome sequencing and chromosomal microarray in children with suspected genetic

diseases,” npj Genomic Med., vol. 3, p. 16, July 2018.

[5] C. F. Wright, D. R. FitzPatrick, and H. V. Firth, “Paediatric genomics: diagnosing

rare disease in children,” Nat. Rev. Genet., vol. 19, pp. 253–268, May 2018.

[6] G. Mendel, “Versuche über Pflanzen-Hybriden,” Verhandlungen des

Naturforschenden Vereins zu Brünn, vol. 4, pp. 3–47, 1866.
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Grantier, S. Calne, D. B. Calne, B. Lechevalier, F. Chapon, Y. Tsuboi, T. Yamada,

L. Gutmann, B. Elibol, K. P. Bhatia, C. Wider, C. Vilariño-Güell, O. A. Ross,
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