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Abstract
Deciding where to travel is a complex, emotionally involving, and financially relevant
decision which people face relatively infrequently. Some aspects of tourist recommenda-
tions, such as point-of-interest recommendation, hotel recommendations, or restaurant
recommendations, are commercially well established, whereas there are few successful
recommender systems for individual travel destinations. In this thesis, we present several
contributions in the context of destination recommendation covering traveler mobility
analysis, destination characterization, and conversational recommender systems.

Understanding traveler mobility forms the basis for more personalized recommen-
dations. We propose methods to analyze global traveler mobility from location-based
social networks to learn which data sources are suitable for analyses in this domain,
how people travel around the world, and which types of travelers can be observed.
Our cluster analyses of trips and travelers reveal distinct groups, which can serve as an
initial preference elicitation step, but we could also show that the common practice of
evaluating point-of-interest recommendations without differentiating these groups leads
to misleading results. Furthermore, we use the mined trips to construct a specialized
map of hierarchical travel regions and to recommend the personalized duration of stay
at destinations.

To correctly match traveler preferences with destinations in the content-based recom-
mendation domain, we investigate which data sources are suitable for characterizing
destinations. Constructing 18 data models and eliciting the concept of touristic ex-
perience in cities using an expert study, we determine that textual data sources, e.g.,
Wikipedia articles, do a good job of emulating the touristic experience using rank agree-
ment metrics. Additionally, we are able to optimize data sources with explicit features to
be competitive by learning the importance of feature weights using black-box learning.

Finally, we present the CityRec conversational destination recommender system. Since
users often struggle to verbalize their true preferences and might have unrealistic expec-
tations about destinations, we propose a novel conversational paradigm, “Navigation by
Revealing Trade-offs”, to overcome the wishful-thinking problem and inform users of the
trade-offs involved in choosing one destination over another. The seamless integration
of user interface and algorithms was evaluated using a large-scale user study with 600
participants.
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Zusammenfassung

Die Entscheidung, wohin eine Reise gehen soll, ist eine komplexe, emotional fordernde
und finanziell bedeutsame Entscheidung, vor der Menschen allerdings relativ selten
stehen. Einige relevante Bereiche von Reisempfehlungen, wie z.B. Empfehlungen von
Sehenswürdigkeiten, Hotels oder Restaurants sind kommerziell gut etabliert. Allerdings
existieren – bedingt durch die immense Komplexität von Reiseempfehlungen – noch
kaum erfogreiche Empfehlungssysteme für individuelle Reiseplanung. Hier knüpft die
vorlegende Doktorarbeit an und schafft durch verschiedene Beiträge zur individuellen
Reiseplanung Grundlagen für verbesserte Systeme.

Im ersten Teil schlagen wir Methoden zur Analyse der globalen Reisemobilität aus
standortbasierten sozialen Netzwerken heraus vor, um zu bestimmen, (1) welche Daten-
quellen sich für Analysen in diesem Bereich eignen, (2) wie Menschen die Welt bereisen
und (3) welche Arten von Reisenden beobachtet werden können. Über Cluster-Analysen
von Reisen und Reisenden werden unterschiedliche Gruppen ermittelt, die als Aus-
gangspunkt zur Präferenzerhebung in Empfehlungsdiensten dienen können. Mithilfe
der Unterscheidung dieser Gruppen können wir die gängige Praxis in der Evaluation
von Empfehlungsalgorithmen für Sehenswürdigkeiten, die keine Gruppen unterscheidet
als wenig zielführend kennzeichnen. Darüber hinaus verwenden wir die gesammelten
Reisedaten, um eine spezielle Karte von hierarchisch gegliederten Reiseregionen zu er-
stellen und eine personalisierte Aufenthaltsdauer bezogen auf die jeweiligen Reisezielen
zu empfehlen.

Im zweiten Teil dieser Arbeit untersuchen wir, welche Datenquellen geeignet sind,
um Reiseziele für merkmals-basierte Empfehlungsdienste zu charakterisieren. Durch
die Erstellung von 18 Datenmodellen und die Erfassung des touristischen Erlebnisses in
Städten stellen wir in einer Expertenstudie fest, dass textbasierte Datenquellen wie z.B.
Wikipedia-Artikel, das gewünschte Konzept mit Hilfe von Rangkorrelationskoeffizienten
gut abbilden. Wir sind darüber hinaus in der Lage, Datenquellen mit expliziten Merk-
malen so zu optimieren, dass sie wettbewerbsfähig werden, indem wir die Gewichtung
der Bedeutung von Merkmalen mithilfe von Black-Box-Lernen optimieren.

Zuletzt stellen wir das CityRec-System zur dialogbasierten Empfehlung von Reisezielen
vor. Da Nutzer oft Schwierigkeiten haben, ihre tatsächlichen Präferenzen auszudrücken
und möglicherweise unrealistische Erwartungen an Reiseziele haben, schlagen wir mit
„Navigation by Revealing Trade-offs“ (Navigation durch Offenlegung von Kompromis-
sen) ein neuartiges Konversationsparadigma vor, um das Problem des Wunschdenkens
zu überwinden und die Nutzer über die mit ihren Entscheidungen verbundenen Kom-
promisse zu informieren. Die nahtlose Integration der Nutzeroberfläche und darauf
abgestimmten Algorithmen wurde in einer groß angelegten Nutzerstudie mit 600 Teil-
nehmern evaluiert.
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1 Introduction
Recommender systems are ubiquitous in today’s digital media. Given the enormous
quantity of content on the Web, recommendation technologies help users to overcome
information overload they would otherwise be suffering. With few exceptions, most
content shown on online platforms is determined by some kind of recommendation
algorithm, making it “one of the most compelling success stories of AI” [72]. Users greatly
benefit from this development, since they are presented with content that is of relevance
to them instead of having to browse millions of products, songs, or videos. Even tradi-
tional media, such as news organizations who heavily relied on curation in the past, need
to employ recommendation technology to satisfy the information needs of their hetero-
geneous audiences [73, 115]. At the same time, the advances in recommender systems
put all market players under immense pressure to roll out high-quality recommendations
in order to not loose against competitors with superior quality of personalized recom-
mendations. This leads to a high interest in recommendation technology from industry
and enables a competitive and fast-growing research community1.

Today’s rating-based recommendation algorithms have reached such high maturity
level that it becomes increasingly hard to independently evaluate the actual progress in
these fields [32, 31]. Since the performance of common rating-based recommendation
algorithms is so high, the competitiveness of real-world systems increasingly depends
on the user experience such as the presentation of items [77, 70]. Furthermore, many
recommendation scenarios cannot be addressed with rating-based algorithms, but require
custom solutions with a seamless integration of algorithms and user interfaces.

1.1 Motivation
In this doctoral thesis, we analyze and resolve various problems concerning travel
recommender systems. Following the success of e-commerce, e-tourism has transformed
the way how people plan and book their vacations [42, 57, 150]. A significant difference
to recommendations in the e-commerce domain is that each trip is different in a sense
that when people visit a destination, the experience will be determined by various factors,
such as the visited attractions, the cultural experience, the climate during the visiting
period, the costs involved, and many more. To compute meaningful recommendations, a
destination recommender would need to approximate a scoring function over all aspects
that are relevant to the current user. Furthermore, when planning a trip to an unknown
destination, users’ expectations might be influenced by biased information [101, 86],
which motivated us to develop unbiased, data-driven methods that yield results that can
directly be used in future travel recommender systems.

From a recommender systems research perspective, traveling is a relatively rare
activity compared to watching a movie or buying a product, which in conjunction
with the fuzziness of destinations as items, makes collaborative filtering approaches

1https://recsys.acm.org/statistics/

1
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infeasible [19]. Thus, the recommendations need to based on features describing
the destinations, which can also be used to familiarize the users users with potential
destinations. This interaction with potential items within an e-tourism recommender
system, can be helpful for the users to come to a decision, since there there is a high
emotional involvement in the decision making in travel planning [150]. These challenges
offer a huge opportunity to recommender systems that can provide users with relevant
and reliable information about destinations to visit.

Analyzing the current state of digital travel information systems in the e-tourism
industry and scientific community, it is striking how lacking the support for individual
travel planning is. While there are various commercial platforms for hotel and point of
interest (POI) recommendations, gathering reliable information about destinations is
tedious as the information is scattered and becomes outdated quickly. Tourism boards
and destination marketing organizations naturally promote their own destinations while
commercial travel websites for booking hotels or airfares feature destination recom-
mendations only as a side product as these platforms are currently mostly consulted
when the user has already decided which destination to visit. One rare example would
be booking.com’s efforts to make suitable recommendations in a trip continuation sce-
nario [52]. Other than that, commercial platforms present non-personalized destination
recommendations for the current travel season, typically based on a popularity recom-
mendation strategy. In academia, research contributions usually focus on a narrow
aspect of the problem, disregarding much of the complexity [22]. Furthermore, existing
approaches in literature are often heavily reliant on costly expert knowledge, which
might be feasible to show the merit of a research idea, but would become impractical in
real-world applications in terms of scalability, costs, and quality [48, 103].

1.2 Problem Statement and Contributions

There is enormous potential of improving the current state of e-tourism applications
using data that can be gathered and processed in an automated way. The title of this
thesis starts with “data-driven” to emphasize that there is huge potential to utilize
available information from LBSNs, such as Foursquare or Twitter, open data initiatives
such as Wikipedia or OpenStreetMap, and public data platforms of companies and other
institutions. The main focus is on the destination recommendation problem, however,
the implications of this work can be applied outside of this scope.

Figure 1.1 describes the structure of the contributions of this thesis. Traveling is a
mobile activity, thus, in the first part of the thesis, we want to understand the mobility
of travelers around the world to use these insights to improve travel recommender
systems. On the left side, one can see that the traveler mobility analysis enables many
use cases, e.g., uncovering traveler types that can aid to improve POI recommender
systems, determining travel regions, and recommending the duration of stay. The other
two chapters 4 and 5 on the right side of Figure 1.1 are about the characterization
of destinations within content-based recommendations and how destinations can be
recommended in a conversational recommender system while informing the users of the
trade-offs involved in their choices, respectively.

In the following, we describe the three main topic areas of this thesis by identifying
various challenges around destination recommender systems and describe how we
resolve them.
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1.2 Problem Statement and Contributions

Figure 1.1: Structure of the contributions

1.2.1 Traveler Mobility Analysis Using LBSN Data
The first part of this thesis deals with analyzing global mobility of travelers from LBSN
data. LBSN data is so useful for understanding the mobility of travelers around the
world since traditional data sources are usually very limited in scope: for example, call
data records from mobile phones are limited to one country making international travel
impossible to track while the GPS location information from a single app typically has
way fewer users compared to LBSN data [8]. The drawback is that the location of a user
is only known when she actively checks in to venues or makes a geotagged posts. We
identify the following challenges of using LBSN data for traveler mobility analysis and
applying the obtained information for improving recommender systems in the travel and
tourism domain.

Challenge 1: How can LBSN data be used to determine the behavior of domestic
and international travelers? To address this challenge, we develop software solutions
to analyze global traveler mobility based on LBSN data, which allows us to collect
international trips and to assess the quality of the obtained data depending on the use
case. We develop the tripmining library2, which combines the geotagged check-in
stream of users into trips, which are then quantified regarding their underlying mobility
as well as the reliability of incomplete check-in data [34]. This helps us to evaluate
which types of LBSNs are suited for understanding global travel and the respective use
cases [38].

Challenge 2: Given the behavior of travelers; which groups can be identified?
The main result of this global traveler mobility analysis is to identify different types of
trips solely based on the mobility metrics. This results in a data-driven characterization
of users that can be employed to make more personalized recommendation in cold-start
recommendation scenarios, i.e., as a model of the long-term preferences when short
term preferences need to be elicited [159, 151, 141].

Challenge 3: What is the effect of establishing different groups of users on POI
recommendation performance? To analyze the impact of improved personalization
through the identification of different types of users, we quantify the effect of the traveler
type identification on the performance of POI recommender algorithms [126].

2https://github.com/LinusDietz/tripmining
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1 Introduction

Challenge 4: How does the map of global travel regions look like? In many
regions, such as the Schengen Region in Europe travel is not impeded by administrative
boundaries. This also means there is a mismatch between administrative regions and
the users’ understanding of travel regions. For example, if a traveler wants to do a
hiking vacation in the European Alps, the national borders will be mostly irrelevant.
To understand this phenomenon, we propose an alternative hierarchical map of travel
regions based on traveler mobility instead of administrative regions [127]. This shows
which national borders are relevant for defining a travel destination.

Challenge 5: What are the recommended durations of stay at one specific desti-
nation? Another application of the traveler mobility analysis is that it can be used to
recommend the duration of stay at specific destinations [41]. For this, we propose a
statistical method which uses the distribution of the duration of stays in a target city as
well as the past travel behavior of the current user.

1.2.2 Destination Characterization
Given the absence of reliable rating data, destination recommendation is typically done
using the content-based recommendation paradigm [19]. However, the decision of which
features to include for the characterization of items in content-based recommendation can
be challenging if the features represent latent concepts leading to ad-hoc decisions [155].
This topic is worth investigating and we identified four major challenges that need to be
addressed to make a positive impact on content-based destination recommender systems.

Challenge 6: What data sources are suitable to characterize destinations? To
answer this, we construct 18 data models to characterize 140 cities using online data
sources of three categories: textual data, factual data, and data models based on the
distributions of venues within a destination.

Challenge 7: How can a latent concept such as the touristic experience of a
destination be elicited? To obtain a ground truth for evaluation, we create a web
system and invite experts on travel and tourism to give their opinion on this concept.

Challenge 8: How can data models be evaluated against the expert opinion? The
outcome of the expert study was a list of most similar cities to a base city. To enable a
direct comparison between the data models and the target concept, we present variants
of established rank agreement metrics to measure the distance between a complete
permutation and a top-𝑘 list. The results show that data models used in academic
recommender systems indeed fall behind textual online sources in terms of how well
they emulate the experts opinion on what manifests the touristic experience.

Challenge 9: To what extent can data models describing destinations be opti-
mized to better capture the touristic experience? For data model which had explicit
features, we are able to show that by learning the weights, a better alignment of the
recommendation function to the desired concept can be achieved [39].

1.2.3 Navigation by Revealing Trade-offs
When deciding where to travel, the decision making is influenced by various factors,
such as not knowing what possible destinations exist, having a false image of certain
destinations, and having a relatively high financial and emotional investment [86, 150].
Furthermore, traveling is about exploration, so the value of the recommender system
lies in recommending fitting destinations a user is not already familiar with. At the
same time, users often struggle to express their preferences directly [168], which favors
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conversational recommendation approaches over one-shot recommendations in this
domain [71]. Finally, users can fall victim to the “wishful-thinking” problem, i.e.,
expecting very high quality items at a very low price tag, which do not exist in reality.

To directly address these challenges, we developed the “Navigation by Revealing
Trade-offs” paradigm, which allows users to interact with concrete items, and refine
their preferences in a conversational interaction. The exploration of the search space is
supported by a visualization of the trade-offs involved of choosing one destination over
another, i.e., how much more expensive a city will be if one wants to get a better cultural
experience.

Challenge 10: How can a user interface of a conversational recommender system
be designed to enable exploration and visualize the trade-offs involved in choosing
one destination over another? We present CityRec, a conversational destination
recommender system which features a user interface that operates with example items
and visualizes the change in feature values when selecting items.

Challenge 11: How can the exploration of the search space be directed so that
the users are able understand the extent of the search space, with a gradual con-
vergence towards the user’s preferences? CityRec uses a utility function to determine
which candidate items should be presented to the user. With time, the utility function
learns which features are important to the user and gradually converges towards the
target values.

This paradigm, “Navigation by Revealing Trade-offs,” was evaluated in a large-scale
user study with 600 participants on a 140 destinations data set. The destinations from all
over the world have been characterized along six dimensions relevant to travelers [38].

1.3 Structure of this Thesis
In the upcoming Chapter 2, we give an overview of the scientific literature in the relevant
areas. Chapter 3 describes the methodology of how to derive trips all around the world
from LBSN data. Furthermore, it showcases various applications of traveler mobility
analysis to improve travel recommender systems. In Chapter 4, we present the study
on destination characterization for content-based recommender systems. Chapter 5 de-
scribes the CityRec system which uses the “Navigation by Revealing Trade-offs” paradigm
for guiding the user towards fitting recommendations through the search space. Finally,
we draw our conclusions and point out future research directions in Chapter 6.
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2 Fundamentals
Destination recommendation is a comparatively under-researched discipline within
modern recommender systems research. This is mainly due to the lack of commercial
application of recommending destinations within the current e-tourism ecosystem: while
there are various successful platforms whose core business is to recommend hotels or
restaurants in exchange for a commission, travel destinations are not business entities.
Even though local tourism boards aim to attract travelers to their regions, there are
no significant online commercial destination recommendation platforms where users
can receive destination recommendations. Instead, prospective travelers need to inform
themselves to come to a decision or use the services of a travel agency. An essential
difference to product recommendation is that a travel destination has several aspects
which altogether manifest the experience of visiting it. Thus, no meaningful ratings
are available, making traditional recommendation algorithms less suited [19, 150].
This “fuzziness” of destinations as items to be recommended motivated this research to
improve various aspects of this challenging recommendation domain.

Starting with an overview of travel recommender systems, we highlight the funda-
mental differences in recommending products or media. One important difference to
traditional recommender system domains is that destinations do not come with reliable
ratings; thus, all rating-based algorithms, such as collaborative filtering, cannot be em-
ployed [47]. Instead, recommendations are typically driven using the items’ features
using content-based filtering. Furthermore, there is a significant cold-start challenge in
travel recommender systems, which can be overcome with defining tourist roles or per-
sonas a user can identify with in the preference elicitation phase. Finally, conversational
recommender systems are an established method to aid users in expressing and refining
their preferences. This is especially useful for this domain since it is known that users
struggle to express their real preferences when deciding where to travel to [168].

A significant part of this work is based on the analysis of traveler mobility. Using LBSN
data, we mine trips of users to understand their travel behavior and propose methods
to automatically group users based on their mobility. Working with the limitations of
check-in-based mobility data requires close monitoring of the data quality.

Finally, we systematically tackle the open question of how travel destinations can be
characterized effectively and efficiently.

2.1 Travel Recommender Systems

Individual tourism is a challenging domain for recommender systems due to the substan-
tial complexities of planning an independent trip and the enormous economic importance
of the travel and tourism industry [22]. Back in 2014, Borràs, Moreno, and Valls identify
four different tasks concerning tourism recommender systems [12]: recommending travel
destinations or travel packages [81], suggesting attractions [88, 125], planning trips [49,
40], and accounting for social aspects [56]. Since then, however, the most active areas
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have shifted towards hotel recommendations [50, 9], trip recommendations [61, 63,
121], and POI recommendation [125, 123, 87].

While the recommendation of defined items, i.e., hotels, POIs, and restaurants mainly
relied on interaction data, such as ratings or visits [125], destination recommender
systems needed to fall back to the content-based paradigm [85]. Werthner and Ricci
identify the following challenges in recommending destinations: the intangibility of the
recommended item, the high consumption costs, and the high emotional involvement in
the decision making [150]. This makes travel recommender systems less suited toward
standard off-the-shelf solutions and justifies more sophisticated systems and interaction
paradigms to support the decision-making of the individual users.

2.1.1 Content-Based Recommendation
The cold start problem in recommender systems is defined as the phase when a new item
or user is introduced to the system; thus, no interaction data is available to compute
personalized recommendations. A purely collaborative filtering system cannot operate in
the absence of ratings. Hence, the content-based paradigm is a commonly used fall-back
mechanism to perform recommendations in cold-start situations [14, 17]. To facilitate
the content-based paradigm, users and items need to be embedded into the same feature
space that allows for calculating a similarity metric. Finding features to describe items
is key, as they solely determine the recommendation outcome [85], however, where
this is possible, content-based recommendations have been shown to overcome the item
cold-start problem using hybridization [17, 20, 23]. In some scenarios, it is unattainable
to get sufficient interaction data, which means that all recommendations are based on
content-based algorithms [135, 109].

Nevertheless, content-based recommendations only work if the users’ preferences can
be embedded into the same feature space as the items. Fortunately, this can be done
by, e.g., characterizing the users based on their past activities [8, 144, 40], or other
more sophisticated preference elicitation approaches [14] including preference-based
navigation [113] or conversational recommender systems [71, 25].

When selecting features, it is not trivial to ensure that the selection is ideal for the
task at hand. Yao and Harper identify the fundamental problem that a data model
naturally diverges a bit from the domain, and it is hard to capture a ground truth for
item similarity [155]: what are the movies most similar to “Fight Club”? Which cities
are most similar to Munich? We as humans might have an intuition about such similarity
concepts, but it is asses how well the recommendation algorithms emulate such, possibly
latent, concepts. Evaluating this is an under-researched challenge in content-based
recommendation, especially in the travel and tourism domain, where items such as
destinations or travel packs are often not as clearly defined as consumer products [102].

2.1.2 Destination Characterization
As previously mentioned, the items in content-based recommender systems need to be
characterized along various features. In literature, this has been done using ad-hoc
methods, expert knowledge, or based on existing data sets.

For example, Herzog and Wörndl developed a region recommender for personalized
inter-continental travel [62]. The destinations were characterized along various travel
interests, such as nature & wildlife, beaches, or winter sports. The underlying data for
determining the suitability of the regions for these activities came from several online
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and offline information sources, which must be incorporated and updated manually
using the expert knowledge of the authors.

When it comes to cities as destinations, there are various approaches that charac-
terize different districts for intangible concepts. Quercia et al. used LBSN data and
Google Street View imagery to determine intangible concepts such as the smell, the
soundscape [3], and general happiness [111] on a street granularity [112]. Analogously,
street imagery can also be reliably used to measure distributions of income, education,
unemployment, housing, living environment, health, and crime, as Suel et al. have
demonstrated [140]. Analyzing LBSN data to characterize cities and their districts
has been an active topic in previous years [134]. It has been shown that such data is
quite helpful to unveil characteristics of certain districts within a city [78], as McKenzie
and Adams have done using kernel density estimation models of check-ins to identify
thematic areas within a city [93].

In destination recommender systems, data models have been constructed using various
data sets derived through aggregating multiple information sources, including proprietary
tourism data sets. Sertkan, Neidhardt, and Werthner characterized a vast data set of
16,950 destinations based on 26 motivational ratings and 12 geographical attributes
within the Seven Factor Model of tourism motifs [129]. They proposed a cluster analysis
and regression analysis to map the destinations to the vector space of the Seven Factor
Model [103]. This framework was recently also used by Grossmann et al. to elicit
preferences of prospective tourists using pictures of destinations and an underlying
ontology to characterize the image contents. While modeling the user’s interests using
travel-related pictures has been shown to be possible, obtaining a representative set of
images of global destinations in an automated fashion is an open research problem [131,
105].

2.1.3 Tourist Roles
Another frequently used method to mitigate the cold-start problem is to assign users
into groups, to have an initial filtering based on the assumed group characteristics. The
characterization of tourists has been an active field in tourism research over the last
decades. One of the first works by Cohen established four different social roles of tourists:
the “organized mass tourist”, “individual mass tourist”, “explorer”, and “drifter” [28].
Pearce used fuzzy set theory to define 15 different travel roles [110], while McKercher
used a cultural sciences approach to classify tourists based on the importance of cultural
motives when deciding which destination to visit and the depth of cultural experience
gathered by the tourist [94]. Finally, Yiannakis and Gibson took a sociological perspective
to determine 17 roles that are enacted by people when they travel while also associating
these with different psychological needs [156].

In light of this diversity of tourist categorizations in the literature, the best grouping of
tourists and their preferences remains unclear. More importantly, none of the existing
categorizations have been validated with observational data [102], so it is unclear to
what extent the categories apply to real travelers. To address this challenge, Neidhardt
et al. developed the Seven Factor Model of tourist behavioral patterns [102] based on
the Big Five Factor Model [90] from psychology and a factor analysis of the 17 tourist
roles proposed by Yiannakis and Gibson [156, 51]. With a destination recommender
system in mind, they elicited user preferences through an image classification task, where
the users are to pick the most appealing travel-related photos from a collection. The
classification of these pictures along the Seven Factors has been previously determined
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using a questionnaire. This framework of the seven travel behavioral patterns was used
in various subsequent articles, both to group users [130] as well as to characterize
destinations within the seven-factor model using tourism data sets [128, 129] or image
data of destinations [131].

2.2 Conversational Recommender Systems
As opposed to one-shot recommendation, conversational recommender systems augment
the preference elicitation by giving the user a chance to provide feedback on the currently
recommended items [71]. We scope our survey toward custom user interface concepts
and algorithms, thereby excluding approaches based on natural language processing,
such as chat bots [108].

Critiquing is a popular approach to eliciting and refining user preferences in a conver-
sational manner. It is usually associated with content-based filtering, although there is
some research incorporating collaborative approaches [152] or even unstructured item
descriptions [113]. One of the early systems, FindMe [18] introduced the concept of unit
critiquing, which can be seen as the start of the conversational exploration of the search
space in recommender systems research. The static unit critiquing was quite successful
in several domains [18, 16], but there is opportunity to perform a smarter exploration of
the item space [91]. For example, McCarthy et al. [89] proposed dynamic critiquing to
show how compound critiques can be generated dynamically, cycle-by-cycle, by mining
the feature patterns of the remaining products.

The evolution of dynamic compound critiques is the multi-attribute utility theory
(MAUT) [161], which introduced a utility function to rank a list of multi-attribute
products. Once the user selects a critique, the corresponding product is set as the current
preference product in the user model, and a new set of critiques is generated using a
utility function. The MAUT was successfully evaluated against dynamic critiquing [89],
thereby reducing the number of critiquing cycles. Chen and Pu extended the MAUT-based
approach and called it “preference-based organization interfaces” [24]. In their approach,
the authors organized all potential critiques in a trade-off vector showing whether the
features were compromised or improved compared to the current recommendation. That
enabled them to determine useful compound critiques and successfully evaluate their
systems using a computer configuration data set. However, we feel that such an approach
is more suited for products with clear specifications since, in tourism, relative differences
between the feature values of items are of higher importance.

One major issue with critiquing is the divergence of the intended direction of ex-
ploration. McGinty and Smythstudied selection strategies for recommending items in
critiquing [92]. Their Adaptive Selection approach resulted in a reduction in critiquing
cycles, and they could prove that their critiquing-based approaches would converge
faster than preference-based approaches. Another important insight of their work was
that the user should not lose progress, i.e., the previous recommendation should be
included in the upcoming cycle.

2.3 Traveler Mobility Analysis
The analysis of human mobility gives insights into various aspects of everyday life. Before
the advent of online social networks on GPS-enabled devices, data sources like mobile
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phone communication records [54], Wi-Fi usage [162], and raw GPS trajectories [167]
were used to analyze individual human mobility. Given today’s availability of LBSN data
that enriches a pure location trace with further information, such as user-posted content
and the user’s social network, much research has been done analyzing mobility using
data from Twitter, Foursquare, and other platforms [64].

2.3.1 Predictability
A prominent research objective is the predictability of human mobility based on past
behavior. Song et al. found that individual mobility patterns followed reproducible
scaling laws [136] and described the limits of the extent to which human mobility
can be predicted [137]. More recently, Ouyang et al. have analyzed mobility data to
predict travel trajectories using a deep learning framework [107]. Similar approaches
to predicting the next visited place exist for tourists as well [163]. The correlation of
locations with a social activity that can be studied with LBSN data promises interesting
insights into social behavior. Cheng et al. found recurring daily and weekly patterns
of activity [27] and Wang et al. found a positive pairwise correlation between social
connectedness [149], i.e., the strength of interactions and mobility. Noulas et al. analyze
activity patterns of Foursquare users, such as the spatial and temporal distances between
two check-ins [106]. They discover place transitions that could well be used to predict
or recommend the future locations of users.

2.3.2 Application in Recommender Systems
Contrary to the approaches in the previous section, destination recommender systems
should generally not predict the user’s mobility but provide the user with recommenda-
tions that she will like but would not have discovered otherwise. Given the richness of
LBSN mobility data, various approaches used such data to improve recommender sys-
tems [8]. Zheng and Xie studied spatial co-occurrences that can also be used to identify
similar users and generate implicit ratings for collaborative filtering algorithms [166].
Bao, Zheng, and Mokbel matched the travelers in a foreign city to local experts based
on their respective home behaviors to improve the accuracy of a point of interest rec-
ommender [7]. LBSN data has also been used to capture cross-border movement [10].
The authors demonstrate how the movement dynamics of people in a country can be
analyzed, however, this study is not about tourists and is limited to one country, Kenya.
Hsieh, Li, and Lin used past LBSN data to recommend traveling paths [65], while Zheng
et al. proposed heuristics to approximate the similarity of tourist trips [164]. For this,
they present solutions to derive the popularity, the proper time of day to visit, the transit
time between venues, and the best order to visit the places.

2.4 Rank Agreement Metrics
To compare data models of destination recommender systems, we rely on rank agreement
metrics of ordered lists. In literature, one can find various methods to compute the
agreement of two ranked lists. They are also known as rank “correlation” methods
and essentially capture a notion of similarity between the ordering of items within two
lists. For complete permutation groups, i.e., both lists have the same items and the
same length, there are several established metrics, such as Kendall’s Tau Distance [75],

10



2.5 Summary

Spearman’s Footrule Distance [139], and Spearman’s 𝜌 [138]. Based on these measures,
countless other methods have been proposed to cater to the needs of more specialized
domains and different assumptions.

However, the problem of assessing two incomplete lists, also called top-𝑘 lists, makes
the matter more complicated, and the choice depends on the application area. Critchlow
was first to establish a theoretical basis for such rank agreement metrics [30], assuming a
fixed domain of items 𝐷. One of the most comprehensive papers on the rank agreement
of top-𝑘 lists is the one of Fagin et al. [46]. Unlike Critchlow, they did not assume a fixed
domain of items and, thus, proposed very general distance measures for top-𝑘 lists that
are not directly useful to our scenario. The authors also proved that, in the general case,
the measures for top-𝑘 lists reside in the same equivalence class and showcased further
applications of these measures in the context of the rank aggregation problem [43, 80].

An important property of Kendall’s Tau and Spearman’s Footrule is that all ranks
are treated equally, i.e., they do not take the potentially non-uniform relevancy of top-
ranked or bottom-ranked into account. In many domains, the assumption of uniform
relevancy does not hold, thus, several other measures have been proposed. Iman and
Conover proposed a concordance measure that prioritizes rank agreements at the top
of the rankings [67], while Shieh proposed a weighted variant of Kendall’s Tau, where
the analyst can prioritize either low-ranked or high-ranked items [133]. The Average
Precision Correlation is another important measure in information retrieval that more
heavily penalizes differences of top-ranked items compared to Kendall’s Tau [157].
Deciding which method to use can be challenging, given the often subtle differences
within these metrics. The decision should be based on either analytical insights from the
domain or on the metrics’ performance in modeling business success indicators.

2.5 Summary
In this chapter, we described the domain of travel recommender systems and the scientific
foundations for the methods and contributions of this thesis. Given how decision-making
is done in touristic travel, we concluded the conversational recommendation paradigm to
be well-suited for prospective travelers to contrast possible alternatives of where to travel.
Since the medium in the conversational interaction is characterized items and features,
i.e., users giving the system feedback that a certain aspect of the current recommendation
should be refined in a certain way, it is important that the data models closely reflect
reality. Unfortunately, it is hard to elicit a ground truth for latent concepts, such as how
the touristic experience will be at a destination, which makes the quality of competing
data models and features hard to judge. In a purely content-based recommender system,
the recommendations are based on a distance metric and some features describing all
items. Thus, one can generate ranked lists based on the distance metric over the item
features and assess the overall similarity of the data models using rank agreement metrics
on the resulting ranked lists.

Since traveling leaves mobility traces, mobility analysis of traveler behavior can provide
relevant insights into the domain and users’ preferences. Identifying tourist roles has
been of long-standing interest within the research community but has not been done
using the global mobility of travelers. Furthermore, capturing the behavior of travelers
can be useful to shape the outcome of recommendations, e.g., which destinations are
frequently traveled together and how long one should stay at a specific destination.
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3 Traveler Mobility Analysis Using
Location-based Social Networks

Analyzing the mobility of travelers reveals valuable information about their behavior,
preferences, and visited destinations. We argue that it is important to capture how
people actually travel the world and use this information to shape the outcome of the
recommendations. The destination recommendation domain is in dire need of analyses
capturing real user behavior since real-world empirical user studies of such recommender
systems are infeasible due to the high costs of traveling. Furthermore, traveler mobility
analysis can reveal information about the popularity of destinations, give valuable
insights to destination marketers, and can be a valuable tool to characterize users based
on their past trips automatically.

Traveler mobility can be observed in different ways; however, nowadays, LBSN data
has been the most accessible and useful resource for global mobility research. Examples
for LBSNs are Gowalla, Brightkite, and Foursquare, where users check in into venues
or traditional online social networks such as Twitter, Facebook, or Instagram, if users
enrich their posts with a geolocation [118]. Additionally, there are other platforms, such
as Flickr, where a location trace can be constructed using geographic metadata. The
advantage of LBSN data over analyzing the number of accommodation bookings in a
city, tracking ticket sales of flights or trains, is that we obtain individual mobility traces
instead of aggregate travel patterns. However, access to such data has been increasingly
restricted on many platforms due to business [68] and privacy reasons [98].

The basic idea of our approach is to chronologically sort all of a user’s geotagged
content into a stream of check-ins and to segment it into periods of being at home
and of travel. Consecutive check-ins outside the user’s home are combined into a trip
that will be characterized using different metrics regarding the quality of the data and
the underlying mobility. We describe the algorithms and the design decisions of the
tripmining library in Section 3.1.

The collected trips capture much information about individual travelers, revealing
common behavior and preferences over whole populations. In Section 3.2, we present
two studies to reveal which groups of trips can be discerned in a cluster analysis. The
outcome of the cluster analysis is shaped by the input features, which makes it interesting
to compare the clusters of a purely mobility-based approach using Twitter data with a
data set from Foursquare that also includes additional information about the activities of
the users.

Another application of this cluster analysis method of traveler behavior is to compare
the recommendation outcome of different groups of locals and travelers in an offline
evaluation study in the POI recommendation domain. Section 3.3 summarizes this
approach, which combines the cluster analysis of traveler types [38] with a beyond-
accuracy analysis of the performance of different groups in POI recommendation [124].

Aggregating the mined trips and transforming them into a mobility graph establishes
a unique view of global traveler mobility. We use this global mobility graph to propose
an alternative, hierarchical travel region map of the world without any information
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on existing administrative and national boundaries. By employing graph community
detection algorithms, we detect which cities are frequently traveled together and, thus,
form coherent travel regions in Section 3.4.

Finally, we can use the determined stays to compute personalized recommendations
regarding the durations of stays. This approach, described in Section 3.5, can be useful
for personalized travel planning applications.

3.1 Mining Trips from Location-Based Social Networks
As opposed to collecting trajectories from GPS trajectories with continuous recordings,
deriving trips from the users’ geotagged posts on a LBSN requires careful consideration
due to the relatively low frequency of the data. Despite this incomplete view of a user’s
mobility, LBSN users leave spatio-temporal traces, which can be characterized whether
the quality of the trace is sufficient for the mobility analysis to be done. For this task, we
developed an algorithm to derive trips from users’ timelines on LBSNs and metrics to
quantify the quality of the trips. The project was open-sourced on Github as a Python
module under the name tripmining1.

3.1.1 Tripmining Algorithm
Throughout all analyses, the locations of the users are geocoded to a city or municipality.
The chronologically sorted list of the check-ins of each user is segmented into periods of
being at home and periods of travel. For this, the home location needs to be determined
reliably, for which several strategies exist [74]. We use the plurality strategy, i.e.,
choosing the city with the highest number of check-ins. Kariryaa et al. show that this
simple heuristic has a very high accuracy which is on par with more sophisticated and
computationally intensive methods such as the geometric median [74]. In addition, we
propose to use a threshold for the number of stays at the most frequent city to prevent
false classifications for users who predominately use social media when traveling. In
the forthcoming analyses, we discard all travelers whose check-ins at home are fewer
than 50%.

Having determined the home city, the actual trip mining starts: check-ins at home are
discarded, while contiguous check-ins outside the hometown are combined into trips.
Since we are interested in the underlying mobility of the user, we further aggregate
consecutive check-ins at the same location into blocks. Thus, the result is a collection of
trips, each having at least one block. This approach is so far straightforward, but it is
worthwhile to mention some aspects: first, the segmentation of the trips and blocks is
triggered based on a change in the location of the user, whether it is a newly visited city
or returning home. Second, the algorithm does not aim to infer any information that
is not backed by evidence: for example, if there is a change of location, the transition
time between the two check-ins is not counted towards the adjacent blocks. Finally, we
characterize all trips regarding the reliability of the check-in stream. Depending on the
use case, the analyst can decide to drop trips whose quality is insufficient for the task at
hand.

To visualize the approach, Figure 3.1 exemplifies a check-in stream of a user from
Munich. The user’s check-in stream starts on day 0 (𝑑0) in Munich and is followed by a

1https://github.com/LinusDietz/tripmining
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𝐻𝑜𝑚𝑒⏞  ⏟  
Munich 𝑑0 →2

Block⏞  ⏟  
𝑑3 Paris 𝑑11⏟  ⏞  

Trip 1

→0

𝐻𝑜𝑚𝑒⏞  ⏟  
𝑑12 Munich 𝑑100 →0

→0

Block⏞  ⏟  
𝑑101 Paris 𝑑101 →0

Block⏞  ⏟  
𝑑101 New York City 𝑑105 →3

Block⏞  ⏟  
𝑑109 Washington, D.C. 𝑑118⏟  ⏞  

Trip 2

→1

→1

𝐻𝑜𝑚𝑒⏞  ⏟  
𝑑120 Munich → . . .

Figure 3.1: Example of a user’s check-in stream with two trips.

block of nine days (𝑑3–𝑑11) in Paris. In this case, the block is terminated by a check-in in
Munich on the next day (𝑑12). Since Munich is the user’s home location, the first trip is
considered completed with only one block.

Staying home for 83 days, the user is then observed checking-in in Paris on 𝑑101 and
a few hours later in New York City. Since she was located in Munich the day before, it
seems quite probable that she traveled from Munich to New York City with a stopover
in Paris. The check-in stream shows several check-ins in New York City until 𝑑105 and
continues with check-ins in Washington, D.C. from 𝑑109–𝑑118 before the trip is again
terminated by the return to Munich on 𝑑120. Thus, this trip lasts 18 days and consists of
three blocks.

3.1.2 Quality Assurance Metrics
Using the algorithm above to concatenate check-ins into trips, one would potentially
get many trips comprising only a single check-in. For this reason, we characterize trips
using quality metrics, which act as filters to ensure that the determined trips are reliable
enough for the task at hand. For example, one could only analyze trips with a minimum
duration of seven days to filter out typical business trips.

Furthermore, to approximate the actual mobility of the user, a relatively steady check-
in behavior during travel is required. For this, we propose and discuss various metrics to
capture the quality of a user’s check-in stream.

3.1.2.1 Check-in Frequency

The check-in frequency shown in Equation 3.1 is not robust against a multitude of check-
ins on one day, which makes it unsuitable for assessing the reliability of the check-in
stream.

check-in frequency = check-ins
days

(3.1)

3.1.2.2 Check-in Density

In this regard, the better measure is the check-in density (Equation 3.2), as it captures
the fraction of days with a check-in during a trip. Thus, it captures how steady the
check-in stream is, which is more important than having several check-ins at the same
location in one day. The minimum value of check-in density should be chosen depending
on the use case.
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check-in density = days with check-in
days

(3.2)

3.1.2.3 Maximum Transition Speed

The transition speed between two locations is the covered distance divided by the
transition time. It can be useful to detect irregularities in the check-in stream, such as
multiple people sharing one account, which can result in simultaneous check-ins from
distant locations. We typically use it as a quality metric, i.e., discarding all users with
a transition speed above 1100km/h [145], but it could also be used to select certain
means of travel, e.g., airfares.

maximum transition speed = argmax𝑡∈Transitions(
𝑡distance

𝑡time
) (3.3)

3.1.3 Mobility Metrics

While the metrics from the previous section were about the quality of the users’ check-in
stream, the following metrics capture the underlying mobility of the users.

3.1.3.1 Trip Duration

The trip duration is the number of calendar days between the first and the last check-in
of the trip.

3.1.3.2 Number of Locations, Blocks, and Countries

We also analyzed the number of distinct locations, blocks, and countries within a trip.
The number of locations is naturally lower than the number of blocks since one location
can be visited in several noncontiguous blocks of a trip. Furthermore, we typically
discriminate between international and domestic trips.

3.1.3.3 Radius of Gyration

The Radius of Gyration is a measure of how far the users traveled within a trip [54]. In
simple terms, the radius of gyration measures the mean distance between the center
location of the trip to all other check-ins. Thus, it is more robust against skewed check-in
distributions than the distance between consecutive check-ins.

3.1.3.4 Displacement

Displacement measures the distance between the user’s home location and the mean
position of the places visited during the trips. It is conceptually similar to the Radius
of Gyration; the only difference is the reference location from which the distance is
calculated.
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3.1.3.5 Venue Information

In some cases, there is additional information available for the visited venues. Concretely,
when working with Foursquare data, it is known which type of establishment the user
has checked into, e.g., “Outdoors,” “Nightlife,” or “Arts & Entertainment.” This can reveal
further information about the activities a user has done during the trip.

3.1.4 Summary
The proposed approach makes it possible to mine trips from the check-in stream of LBSN
users. The logic of constructing trips from user timelines is relatively straightforward,
thus, the emphasis of the contribution lies within the derived metrics for the quality of
the trips and the mobility of the travelers. The tripmining library provides analysts high
flexibility to select the suitable thresholds given the use case at hand. It is implemented
as a Python module, published under the permissive MIT License on Github2. It provides
functionality for parsing various data sets and can be extended for parsers of other data
sets in about 30–50 lines of Python code.

Analyzing various LBSNs data sets, we found that they are not equally suited for all
analyses, which comes from how this data was collected. For example, trips derived from
Foursquare or geotagged Tweets are often of sufficient quality to understand the mobility
between different destinations; however, the data from the check-in stream is typically
too infrequent to reliably capture the mobility within a city. Data from the image sharing
platform Flickr is even less suited for most analyses since we observe that few people
post geotagged pictures of their home, making the home detection infeasible on a city
level, and the number of posted pictures is way sparser compared to LBSN posts.

The mined trips can serve as starting points for various improvements to recommender
systems. First of all, they reveal many analytic insights into global travel behavior, such
as the relative popularity of cities throughout the year. This can be used to increase the
diversity of recommendations and, thus, avoid peak season visits for travelers sensitive
to mass tourism. Furthermore, it reveals patterns of destinations often visited together,
which can serve as input for approaches to resolving the tourist trip design problem [61,
121]. In the following, we present various applications of the trip mining methodology
on LBSN data.

3.2 Cluster Analysis to Discover Trip Types
The first application of the mined trips for touristic information systems is a cluster
analysis. By revealing different kinds of tourist trips, we can offer insights into the
general characteristics of different types of travelers using unsupervised machine learning.
While this is an analytic result in itself, it can be directly used as part of user modeling
within travel recommender systems. To reveal which types of trips are undertaken in
which quantity, we run the tripmining algorithm on two data sources: A self-collected
Twitter data set and a publicly available Foursquare data set [154]. In the former, we
have a pure mobility trajectory with a check-in granularity of cities. In contrast, in the
latter, the check-ins are attributed to specific venues with further information about the
categorization of the venue.

2https://github.com/LinusDietz/tripmining

16

https://github.com/LinusDietz/tripmining


3.2 Cluster Analysis to Discover Trip Types

3.2.1 Clustering Method

In both analyses, we run the users’ check-in streams through the tripmining library,
discard users with an uncertain home, and also drop all trips that do not fulfill the quality
criterion of a check-in density of at least 0.2. To eliminate short weekend trips and typical
business travel, the analysis is only based on trips that lasted at least 7 calendar days.
Since the goal is to capture the underlying phenomena of the users’ travel behavior, we
only use the metrics from Section 3.1.3, which capture the users’ mobility instead of the
data quality.

Using all trips, we perform a correlation analysis to remove redundant features with
a Pearson Correlation Coefficient of > 0.75. The reason for this exclusion is that highly
correlated features will not improve the segregation in the clustering algorithm. Instead,
it biases the results towards one phenomenon. Since we use the K-means clustering
algorithms with the Euclidean distance, we further normalize all features using min-max
normalization to avoid bias toward metrics with generally high values, such as the
displacement from home.

Finally, we run the clustering algorithm with a different number of clusters and
systematically assess the quality of the determined clusters depending on the number of
clusters 𝑘 in terms of the average silhouette width [120]. The silhouette width measures
how well a data object fits into its labeled cluster as opposed to all other clusters.
Therefore, it is a robust and easy-to-interpret method that gives a broad overview of the
overall solution quality, as well as information about each data object.

3.2.2 Case Study on Twitter Trips

The first trip clustering study was on trips from Twitter. We were able to collect almost
100, 000 trips; however, due to memory limitations, we drew a random sample of 40, 000
trips to run the clustering using K-means clustering. Since no venue information was
available, this case study is about the pure mobility of travelers. Applying the aforemen-
tioned correlation analysis method, we retained five mobility metrics: the duration of
the trip, the number of locations, the number of blocks, the radius of gyration, and the
displacement from home.

Analyzing the clustering results from 𝑘 = 2 to 𝑘 = 7 clusters, there is always one
dominant cluster of domestic trips and several smaller, more specialized ones. According
to the silhouette width, a solution with two or three clusters would be acceptable.
Analyzing the resulting clusters, we chose the clustering result of 𝑘 = 3 as our final
segmentation tabulated in Table 3.1.

Since we do not discriminate between international and domestic trips, unsurprisingly,
most trips (87.1%) are in the “Domestic” cluster, with a low mean displacement of
565.57 km and only 1.22 countries on average. This imbalanced result is potentially an
outcome of most Twitter users residing in the USA. The two other clusters are smaller in
number and more specialized. The “Globetrotters” travel further, visit the most countries,
and display the highest radius of gyration. With 35 days duration, these trips are also
the longest. Finally, the “Distant Vacationers” travel furthest from home but are not as
active during their travel. Their radius of gyration is only one-third of the Globetrotters,
despite visiting nearly as many distinct locations.
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Table 3.1: Twitter: resulting clusters. Mean value/standard deviation. *The number of countries
was not an input feature of the clustering algorithm.

Domestic Globetrotters Distant
Vacationers

Relative Size 87.1% 6.4% 6.5%
Silhouette 0.83 0.25 0.38

Duration 19.65/53.45 34.99/96.03 25.05/59.18
Locations 5.13/6.6 9.73/12.35 8.18/7.92
Blocks 1.46/1.83 4.89/6.93 3.34/4.07
Countries* 1.22/0.6 3.04/2.01 2.39/1.48
Radius of Gyration 329.2/541.36 5,172.25/2,435.53 1,677.74/1,428.58
Displacement 565.57/887.83 5,262.2/2,323.11 8,733.89/2,834.18

3.2.3 Case Study on Foursquare Trips
Unlike the Twitter study, the data set from Foursquare [154] enabled us to analyze what
clusters are formed when taking social aspects of the travelers into account. Again, we
use the mobility features of the trips but enrich them with the type of venues the travelers
checked into using the Foursquare venue categories. This results in the following features:
trip duration, countries visited, the displacement, the radius of gyration, and the number
of respective check-ins in the categories Food, Nightlife, Arts & Entertainment, and
Outdoors & Recreation. No features had to be removed after the correlation analysis.

Table 3.2: Foursquare: resulting clusters. Mean value/standard deviation
Party City Foreign World Domestic

Long
Domestic
Short

Relative Size 1.6% 14.7% 3.2% 1.2% 3.2% 76.2%
Silhouette 0.08 0.28 0.01 0.16 0.23 0.65

Duration 16.01/11.85 11.46/5.06 12.87/6.72 17.72/14.89 40.76/22.41 10.3/3.87
Locations 4.36/2.81 3.7/1.8 4.89/2.49 6.48/3.88 6.07/3.52 2.78/1.47
Blocks 3.24/2.8 2.53/1.8 4.14/2.26 5.71/3.67 5.5/6.06 2.07/1.45
Countries 1.06/0.24 1.02/0.14 1.85/0.54 2.39/1.05 1.03/0.17 1.01/0.1
Radius of Gy-
ration

107.65
/289.05

47.01 /138.24 1,304.51
/963.4

3,987.41
/2,725.93

75.12 /216.55 27.85 /100.1

Displacement 192.69
/596.07

65.08 /204.52 1,692.77
/1,184.4

7,224.18
/2,678.58

95.05 /232.25 39.5 /146.52

Food 1.92/6.64 0.97/1.6 1.55/2.1 1.94/2.34 3.22/5.07 0.94/1.24
Arts 0.48/0.94 0.33/0.67 0.35/0.79 0.8/1.31 0.9/2.15 0.28/0.66
Outdoors 0.72/1.99 0.45/0.94 0.54/0.96 0.87/1.47 2.28/3.54 0.46/0.92
Nightlife 3.67/1.13 1.23/0.42 0.21/0.49 0.49/1 0.26/0.56 0/0

With this data set, the results were more nuanced, and using the silhouette width, we
determined 6 as the optimal number of clusters. Analyzing the results summarized in
Table 3.2 more closely, again, a dominant cluster of “Short Domestic” trips arises with
76% of all trips residing in this group. These trips are, on average, the shortest, have the
smallest radius of gyration, and are almost exclusively in the traveler’s home country
since the displacement is, on average, as small as 40 km. The other clusters are low in
number and highly specialized:

The “Party” trips are about two-week long trips that visit around four cities in one
country. They are distinguished by their high number of food check-ins and very high
number of nightlife check-ins.
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The “City” trips are similar to the domestic short trips, however, they span more cities,
and these destinations are more distant from their home town.

The “Foreign” trips are about two-week long trips to several cities located about
1,700 km away from home. People travel quite extensively, as the radius of gyration of
about 1,300 km indicates.

The “World” trips are similar to the “Globetrotters” from Twitter. They visit the
most locations, travel the farthest, and have the highest radius of gyration with nearly
4,000 km.

Finally, there is the cluster of the “Long Domestic” trips that last about six weeks,
roughly corresponding to the summer holiday duration in many countries. The small
radius of gyration and the high number of outdoors and food check-ins indicate that
these trips might be monothematic vacations, e.g., at a beach resort during summer
holidays.

3.2.4 Summary
This section described a method for revealing tourist types using LBSN mobility data. We
presented two case studies of international and domestic trips stemming from Twitter
and Foursquare. On Twitter, only three clusters emerged, whereas, on Foursquare, most
trips resided in two clusters, with four more very specialized ones.

Besides the analytic value of the analysis, the results can be useful for user modeling
within various tourism recommender systems. Without any user interaction required, a
system can automatically derive the preferences of a user from data about their past trips.
This can be achieved through an app permission by which the user grants access to their
timeline on an LBSN that they have been using, e.g., through a third-party Facebook or
Twitter application. Also, large online travel platforms such as Booking.com, Tripadvisor,
and AirBnB could leverage a similar approach with additional features to classify their
user and, thereby, establish a foundation for providing personalized recommendations,
which can then be further refined using explicit preference elicitation techniques.

It must be noted that the cluster analysis results strongly depend on the input data.
Developers of recommender systems should carefully evaluate only to include features
useful for the preference elicitation and the recommendation outcome. Otherwise, the
approach is at risk of overfitting the data and results in outlier groups, as can already be
observed in the Foursquare case study.

3.3 Impact of Traveler Type Analysis on Point-of-Interest
Recommendation

A related domain to destination recommendation is point of interest (POI) recom-
mendation. This is an interesting challenge, as travelers are often in need of such
recommendations when they arrive at a specific city or region [12, 143]. Similar to the
mobility analyses of the previous section, much of the POI recommendation data sets
stem from LBSNs, such as Foursquare, Gowalla, or Yelp [8]. Despite the richness and
availability of LBSN data, POI recommendation has specific aspects that differ from the
conventional recommendation of movies, books, or music that affect the recommenders’
performance: there are various influences, such as social dynamics, temporal variations,
and sequential patterns, i.e., people visiting venues in a particular order. Most impor-
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tantly, the geographic location of venues has an important influence since users tend to
visit nearby locations over distant ones [79, 82]. Finally, the sparsity of the interaction
data is more severe than in traditional recommendation scenarios, such as books or
movies [125].

Revisiting the literature on POI recommendation, we observe that all users are treated
in the same way; i.e., most POI recommender systems studies report their accuracy
metrics such as Precision or the nDCG averaged over all users irrespective of their age,
gender, or even the city where they reside in. In many recommendation domains, it has
been shown that recommendation models exhibit various biases toward certain users [95,
45, 44]. Yet, most studies on POI recommendation do not even differentiate between
users being in their home city or on travel.

Motivated by this observation, we analyze the extent to which the performance of
POI recommendation algorithms differs among different groups of users. We analyze
the effect of subdividing groups of travelers and locals on the recommendation outcome
in five well-known cities: Istanbul, Mexico City, Tokyo, New York, and London. To
discover the groups within these two categories, we characterize the users based on
the behavior they exhibit using various features, thereby focusing on mobility patterns
and the types of venues they visited. We obtain different user groups through a cluster
analysis following the general procedure to the one proposed in Section 3.2. Then we
analyze the performance of different recommendation algorithms in each of the obtained
subclusters in terms of ranking accuracy, novelty, and diversity.

3.3.1 User Behavior Characterization and Cluster Analysis
In this first step, we aim to find coherent groups of users that can be discriminated based
on information that is relevant to POI recommendation and can be extracted from LBSNs.
When performing a cluster analysis, the features selected shape the outcome, thus, it is
imperative to compute features that actually help to define the user characteristics. Again,
we use the global-scale check-in data set from Foursquare [154], which, in contrast to
Twitter, contains information about the venues. We aim to determine expressive features
to characterize travelers and locals independently since the behavior of these groups
differs significantly, depending on whether a user is at home in a city or she is on a visit.
Consequently, different features capture the user behavior of the two categories of users.

Starting from the complete data set of 33M check-ins in 415 different cities, we
performed a data cleaning step, which included the removal of duplicate check-ins of
a user in the same venue. We enforced a 10-core for users and POIs, i.e., ensured that
ultimately all users have at least ten interactions and each POI has at least ten visits.
Finally, we split the data set following a temporal partition in which 80% of the most
ancient interactions are sent to the training set, whereas the other 20% is used as the
test set.

Using the information in the training set only, we perform two cluster analyses in-
dependently for locals and travelers. To perform this study correctly, it is essential to
know a user’s home because only check-ins of the home city of a user should be used
to compute their behavior as a local; likewise, a user’s travel behavior should solely
be characterized using check-ins outside of the home city. For this, we use the home
detection strategy of the tripmining library with a threshold of 50% of the check-ins
needed to be performed in the most frequent city. This step excludes another 8,548
(6.20%) users with an unclear home from the training data, resulting in 129,294 valid
users in the training set.
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3.3.1.1 Local Users Behavior Cluster Analysis

To discover distinct groups of user activity in their home town, we exclusively analyzed
check-ins users have performed in their home cities and computed various features,
including mobility metrics, such as the radius of gyration, the mean distance from the
city center, and the mean distance between consecutive check-ins. Further features
describe the activity of the users, e.g., the mean time between check-ins, the activity
period, the number of check-ins, and the number of unique POIs visited. Finally, we
also count check-ins in relevant categories, such as visiting POIs labeled with “Arts
& Entertainment,” “Outdoors & Recreation,” “Food,” “Nightlife Spot,” and “Shops &
Services.”

Having obtained these features, we perform a correlation analysis similar to the one in
Section 3.2.1 to remove redundant and orthogonal features that would bias or deteriorate
the quality of the formed clusters. This step resulted in eliminating the following metrics:
mean check-ins per day, the total number of check-ins, and the number of check-ins
in “Colleges & Universities.” Using the K-means algorithm, we systematically analyzed
the outcome of the algorithm on the min-max normalized features using the Euclidean
Distance and Observing the quality of the resulting clusters using different values for 𝑘,
we observed that the quality of the segmentation to be very low, despite having performed
the relevant steps of the prior correlation analysis. Experimenting with different feature
combinations, the silhouette width ranged in the area of 0.3 for 3–4 clusters and further
dropped with a higher 𝑘. However, when dropping the mobility features (radius of
gyration, mean check-in distance, and mean distance to the city center), we obtained
clearly better results and finally chose the optimal configuration of a silhouette width of
0.57 for 𝑘 = 3, which can be seen in Table 3.3.

Table 3.3: Cluster results of the 129,294 locals. In the absence of mobility features, the segmen-
tation is mostly driven by the users’ activity level. Values represent the mean/standard
deviation.

L1 L2 L3

Name Low Medium High
Ratio 25.3% 28.0% 46.6%

Activity Duration 79.74/40.47 205.65/38.98 341.86/30.75
Unique POIs 14.36/ 9.89 20.63/12.68 26.03/16.66
Arts & Entertainment 1.30/2.70 2.11/3.49 3.58/5.54
Outdoors & Recreation 4.18/ 7.43 5.87/10.01 6.55/12.23
Food 6.65/ 9.03 10.45/12.40 13.67/18.48
Nightlife Spot 1.42/3.60 2.38/4.83 3.73/7.38
Shops & Service 4.43/ 6.27 6.43/ 8.01 8.74/11.61

There are three clusters, two of which respectively make up about a quarter of the
users and a larger one containing the remaining 46.6% of the locals. We interpret the
fact that the mobility features, such as the radius of gyration and the distance to the city
center, prevented the algorithm from finding an acceptable segmentation of the locals as
a clear indication that these features are unsuitable for distinguishing different resident
groups in the data set at hand. This may be for several reasons: residents might be more
active in their respective districts, making it hard to characterize their behavior with
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metrics in relation to the entire city. In addition, commuting introduces noise, which
is difficult to eliminate given the volatile usage of LBSNs during leisure and work time.
Finally, the mobility metrics to characterize residents of five different cities might need
more careful deliberation: cultural and geographic circumstances could be too different
to find universal clusters across all cities. This means that the clustering result of the
locals is mainly influenced by the user activity level.

3.3.1.2 Travelers Behavior Cluster Analysis

Similar to the locals, we analyzed the behavior of the users when traveling outside of
their home city. The processing was entirely performed using the tripmining library,
which resulted in 64, 316 trips of 38, 903 travelers. We aggregated all trips of a traveler
as their traveler profile and again used the same method used for the locals to select
the features for the cluster analysis. This aggregation of multiple trips of one user to
a traveler profile is a notable difference from the clustering approach in Section 3.2,
where we analyzed the features of the trips independently. Due to a high correlation to
the number of trips, we eliminated the number of stays in cities (non-distinct) and the
number of “Food” check-ins. The final features lead to a clustering result of four clusters
with a silhouette width of 0.68.

Table 3.4: Cluster results of the 38,903 travelers. The discovered groups shed light on the
preferred type of trips the users did. Values are the mean/standard deviation.

T1 T2 T3 T4

Name Foreign Cities Active Vacationers Domestic Globetrotters
Ratio 11.1% 5.0% 80.6% 3.2%
Ratio Domestic Trips 0.09% 55.36% 99.94% 0.46%

Displacement 1324.58/1086.56 1746.56/1806.27 503.19/ 673.21 7599.87/2715.97
Radius of Gyration 263.34/ 556.04 1783.14/2029.40 108.96/ 285.24 1968.35/2818.53
Number of Trips 1.33/1.01 2.77/1.20 1.64/1.44 1.30/0.89
Unique Cities 1.64/0.96 3.45/1.54 1.58/0.94 2.30/1.44
Arts & Entertainment 0.44/0.85 0.89/1.29 0.38/0.81 0.72/1.35
Outdoors & Recreation 0.75/1.33 1.53/2.18 0.95/1.92 0.80/2.31
Nightlife Spot 0.27/0.76 0.68/1.25 0.44/1.12 0.37/1.93
Shops & Service 0.90/1.62 1.65/2.22 0.98/1.80 0.90/1.62

The four traveler clusters tabulated in Table 3.4 show comparable groups to the
studies presented in Section 3.2 despite the results in Tables 3.1 and 3.2 comprising
trips. In this study, we aggregated the trip metrics per traveler before clustering. With
approximately 81%, T3 (Domestic) is the largest group comprising travelers whose trips
were almost exclusively domestic and quite near their home cities. T1 (Foreign Cities)
are infrequent travelers with only 1.33 trips that are almost exclusively international
trips, where the users were relatively stationary at their destination, which can be seen in
the low radius of gyration. T4 (Globetrotters) is somewhat similar; however, this group
of intercontinental travelers was more into POIs of the “Arts & Entertainment” category
than Foreign Cities. The high radius of gyration in Globetrotters can be an artifact of
airfare stopovers because such check-ins are also included in the travel behavior. Finally,
T2 (Active Vacationers) is a likewise small cluster, but it has the most active travelers
with 2.77 trips visiting many unique cities both in their own country and abroad.

In summary, our independent characterization of the users’ check-in behavior in their
home city and during travel allowed us to discover three and four distinct groups of
locals and travelers, respectively. Our main takeaway from the cluster analysis is that
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the mobility metrics explored in our work seem unsuitable for characterizing locals in
our LBSN check-in data set, as the clustering algorithms struggle to find distinct groups
using these features. This is an important observation since it implies that by mixing
travelers and locals when evaluating POI recommendation algorithms, we will likely
observe disparate results due to the fact that we may not adapt well to the interests of
any of them. To systematically investigate the effect of having established these groups,
we evaluate the performance of POI recommender systems in each group.

3.3.2 Experimental Settings
For the recommendation experiments, we performed the same preprocessing steps
temporal splitting as for the cluster analysis, cf. Section 3.3.1. Since the five cities of the
study (Istanbul, Mexico City, Tokyo, New York, and London) have different characteristics,
especially geographic properties that are exploited by some of the recommendation
models, we train and test the algorithms separately for each city. Table 3.5 summarizes
relevant statistics of the individual cities: note that repetitive check-ins constitute a large
part of the interactions (the percentage of unique check-ins reach at most 60%), which
makes it difficult to recommend new POIs to users. Since we follow the “TrainItems”
methodology [122], we furthermore remove all visited venues of a user in the training
set as candidates for recommendation in the test set for this user. We firmly believe that
this approach is suitable because, as opposed to repeated consumption of items, in, e.g.,
the music domain, the inherent value of POI recommendation is to suggest new places
for users to be discovered.

Table 3.5: Statistics of the data set and cities used in the experiments. |U|, |V|, C, and |C|
|U|·|V|%

represent the number of users, venues, check-ins, and the density, respectively. As in
LBSNs, some users may check-in in the same venue more than once, we also report in

column |C|𝑢 the number of unique check-ins and |C|
𝑢

|U|·|V|% represents the density

with the unique check-ins.

City Split |U| |V| |C| |C|𝑢
|C|

|U|·|V|
% |C|𝑢

|U|·|V|
%

Filtered data set
Full 139,270 251,115 9,266,149 4,354,336 0.02650 0.01245
Training 137,842 248,692 7,412,919 3,596,596 0.02162 0.01049
Test 108,213 196,945 1,853,230 1,134,909 0.00870 0.00532

Istanbul
Full 29,307 20,366 1,569,015 821,683 0.26288 0.13767
Training 26,894 19,976 1,189,646 645,536 0.22144 0.12016
Test 21,780 17,226 379,369 248,157 0.10112 0.06614

Mexico City
Full 5,944 7,978 286,638 147,850 0.60445 0.31178
Training 5,690 7,948 237,188 125,675 0.52447 0.27789
Test 4,018 6,442 49,450 32,616 0.19104 0.12601

Tokyo
Full 6,631 5,543 227,391 122,814 0.61866 0.33414
Training 6,213 5,534 186,248 103,768 0.54169 0.30180
Test 4,194 4,831 41,143 28,211 0.20306 0.13924

New York
Full 8,170 3,557 109,611 68,988 0.37718 0.23739
Training 7,238 3,548 92,790 59,342 0.36133 0.23108
Test 3,319 2,867 16,821 12,728 0.17677 0.13376

London
Full 4,235 1,612 43,794 26,472 0.64150 0.38776
Training 3,520 1,607 35,516 21,697 0.62786 0.38357
Test 1,749 1,361 8,278 6,108 0.34776 0.25660
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3.3.2.1 Algorithms

The algorithms used in our experiments are representative of the state of the art in POI
recommendation [125] and can be categorized into classic and POI-specific algorithms.
For their exact formulations, we refer the reader to the respective references.

• Classic recommendation algorithms:

– Rnd: performs recommendations of venues randomly.

– Pop: recommends to the target user the venues that have been visited by the
largest number of users.

– UB/IB: non-normalized user and item-based neighborhood approaches [104,
4].

– HKV: Matrix Factorization (MF) algorithm that uses Alternate Least Squares
for optimization (from [66]).

– BPRMF: Bayesian Personalized Ranking (a pairwise personalized ranking loss
optimization algorithm) using an MF approach (from [116]). We used the
version from MyMedialite’s3 library.

• Specific algorithms for POI recommendation:

– IRENMF: Weighted MF method from [84]. This method incorporates geo-
graphical information in two different ways: instance-level influence (users
tend to visit neighboring locations) and region-level influence (they assume
that the user preferences are shared in the same geographical region).

– GeoBPR: Geographical Bayesian Personalized Ranking. A POI recommender
optimized using BPR [160]. It analyzes the POIs visited by the target user and
assumes that she will prefer to visit new POIs that are close to the ones she
visited previously.

– FMFMGM: Probabilistic MF with multi-center Gaussian model. It is a hybrid
approach proposed by [26] that combines Probabilistic MF (PMF) with a
Multi-center Gaussian Model technique (MGM).

– RankGeo-FM: a ranking-based MF approach model proposed by Li et al. [79].
They model the geographical influence by exploiting the neighboring POIs
(by geographical distance) with respect to the target POI using an additional
latent matrix for the users.

– PGN: popularity, geographical, and user-based neighborhood. A hybrid ap-
proach that combines the popularity algorithm (Pop), user-based neighbor-
hood (UB), and a geographical recommender that recommends to the target
user the venues closer to the average geographical position of all the venues
visited by the user. The final score is an aggregation of every item score
provided by each recommender after normalizing its values by the maximum
score of each method.

To ensure fair competition between the algorithms, we perform a hyperparameter
tuning step for all recommenders [31]. Table 3.6 lists the tested configurations. For
the subsequent experiments, we selected the respective configuration that maximized
nDCG@5.

3MyMedialite library: http://www.mymedialite.net/
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Table 3.6: Parameters tuning in the recommenders. The best configurations are selected by
maximizing nDCG@5.

Rec Parameters

UB/IB/PGN Sim = {Vector Cosine, Set Jaccard}, 𝑘 = {20, 40, 60, 80, 100, 120}

HKV Iter = 20, Factors = {10, 50, 100}, 𝜆 = {0.1, 1, 10}, 𝛼 = {0.1, 1, 10, 100}

BPRMF Factors = {10, 50, 100}, BiasReg = {0, 0.5, 1}, LearnRate = 0.05, Iter = 50, RegU = RegI =
{0.0025, 0.001, 0.005, 0.01, 0.1}, RegJ = RegU/10

IRENMF Factors = {50, 100}, geo-𝛼 = {0.4, 0.6}, 𝜆3 = {0.1, 1}, clusters = {5, 50}

FMFMGM Factors = {50, 100}, 𝛼 = {0.2, 0.4}, 𝜃 = {0.02, 0.1}, dist = 15, iter = 30, 𝛼2 = {20, 40}, 𝛽 = 0.2, sigmoid =
False, LearnRate = 0.0001

RankGeo-FM Factors = {50, 100}, 𝛼 = {0.1, 0.2}, c = 1, 𝜖 = 0.3, neighs = {10, 50, 100, 200} iter = 120, decay = 1,
boldDriver = True, learnRate = 0.001

3.3.2.2 Evaluation Metrics

As we mentioned above, we will not only measure the performance of the recommenda-
tions in terms of nDCG, but also we take the novelty (in terms of EPC), and the diversity
(in terms of Aggregate Diversity, or Item Coverage, IC) into account. All metrics are
reported with a cutoff of 5.

• Normalized Discounted Cumulative Gain (nDCG): is the most prevalent metric
to measure accuracy in information retrieval and recommender systems [60].

• Expected Popularity Complement (EPC): a novelty metric that rewards recom-
mending less popular items [146]. We report the normalized EPC value by applying
the min-max normalization.

• Item Coverage (IC), also known as Aggregate Diversity: a diversity metric that
measures the number of different items an algorithm is able to recommend [60].

3.3.3 Performance of Recommenders in Specific User Groups

To visualize the results of the recommenders, we use a scatter plot that combines all
cities, the three evaluation metrics, and report the performance for four exemplary
algorithms, Pop and BPRMF from the classical recommenders and GeoBPR and PGN
from the POI recommenders, as they are the algorithms which generally obtain the best
results in terms of nDCG. We report the overall performance of all users in the test set
along with the respective clusters of the travelers (denoted with T1, T2, T3, and T4) and
the locals (L1, L2, and L3) in Figure 3.2.

To report comparable values for the Item Coverage with clusters of different sizes,
we compute this metric by performing random subsamples. We select the cluster of
the travelers and locals with the smallest number of users and then compute the IC
values with this amount of random users. The reported values are the mean values after
repeating the sampling 1, 000 times, thereby making the values comparable. This is why
instead of the “all” label, we use two additional ones when representing the IC metric,
“MT” (mean of travelers) and “ML” (mean of locals), which would be used for selecting a
subsample of all users with the size of the lowest traveler and local group, respectively.

25



3 Traveler Mobility Analysis Using Location-based Social Networks

(a) Results for Istanbul.

(b) Results for Mexico City.

(c) Results for Tokyo.

(d) Results for New York City.

(e) Results for London.

Figure 3.2: Outcome of the recommendation for the different cities, metrics, algorithms, and
groups.
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3.3.3.1 Locals versus Travelers Results

The results reveal some interesting effects: surprisingly, travelers generally obtain better
values than locals in terms of accuracy in most cities, despite that in each city, we have
way more training data for locals than for travelers. Notably, travelers generally have a
slightly lower novelty than locals, indicating that they tend to receive recommendations
of more popular POIs. This makes sense because when a tourist visits a city, she is more
likely to visit the most popular venues than if she was a local. Furthermore, frequently
and repetitively visited venues such as airports and train stations can usually not be
recommended to the locals since they have a higher chance of having already visited
them during the training period. This also leads to the effect that locals tend to receive
recommendations of more diverse POIs. By contrast, most travelers will visit a city for
the first time during the evaluation period; thus, it is more probable that they actually
visit one of the recommended popular POIs, which results in decreased novelty and
diversity scores. Finally, because there are far fewer travelers than locals, it is expected
that despite having computed the IC metric using the subsamples, we obtain much lower
results for travelers than for locals, making a direct comparison impossible. In general,
these results tend to support the findings of Sánchez and Bellogín [124]. However, we
performed a different data preprocessing, splitting methodology, and also a different
analysis and characterization of travelers and locals.

3.3.3.2 Cluster Results

In addition to the analysis performed for travelers and locals, it is also interesting to
study the behavior of the recommendation models among the different types of travelers
and locals, i.e., the clusters derived in Section 3.3.1.

Regarding the travelers, there is no common behavior in the different cities. For
example, T4 obtains the highest values in nDCG for New York in all recommenders,
whereas, in other cities, such as Istanbul and Mexico City, some models obtain very low
values for these users. Regarding novelty and diversity, T1 obtains the worst results in
the cities of Tokyo and New York, whereas, in London, it is one of the best groups in
both dimensions. Despite these discrepancies among the travelers, we can observe some
common behavior, such as T2 and T3 generally obtaining comparable results. This may
be explained by the features shown in Table 3.4, where we can observe that these two
groups have the highest ratio of domestic trips, whereas T1 and T4 tend to make more
abroad travels, visiting more popular POIs as we can observe in the performance in both
nDCG and EPC metrics. In fact, except for Mexico City, the Pop algorithm consistently
achieves higher values in EPC (and hence, more novel items) for both T2 and T3.

Regarding the locals, in all cities, except Mexico City, L3 (highest activity level) is the
cluster that obtains the lowest levels in terms of accuracy but obtains higher values of
novelty than the other clusters. In this cluster, all recommenders have similar perfor-
mance in terms of ranking accuracy, whereas the other groups show higher variations.
We argue that this has to do with the larger size of this cluster and the larger number of
venues the users of this cluster visit compared to the other clusters. Hence, it is more
probable to recommend these users less popular venues given the probability that they
have visited more venues before than the other two groups with a lower activity level,
making it more difficult to recommend both novel and relevant venues to them.
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3.3.4 Summary
Unsurprisingly, by segmenting the Foursquare users into different clusters of travelers
and locals, we are able to observe well-differentiated behaviors and recommendation
outcomes. When analyzing the recommendations, we found that despite travelers being
fewer in numbers, they tend to get higher values in terms of accuracy and lower values
in terms of novelty and diversity compared to the recommendations for the locals with
more available training data. Our results once more emphasize the role of the popularity
bias in POI recommendation. However, we believe this bias would be worth analyzing
more in-depth for this domain, as it has been done in other traditional recommendation
scenarios [1, 11]. It should also not go unnoticed that for both travelers and locals,
the performance of the recommendation algorithms is rather low, and sometimes the
best performing algorithm in the basic popularity recommender, which is a previously
observed tendency in this domain [124, 125].

A relevant insight of this study is that by assessing the quality of the clustering results,
it is imperative to use different features to derive the clusters of travelers and locals.
We note that the geographical information was especially relevant for the travelers, as
we found four highly differentiated groups according to the ratio of domestic trips and
geographic displacement. For locals, we found that the most important features were
regarding the activity level, especially in terms of activity duration and the number of
unique POIs visited. Interestingly, that mobility features derived from such an LBSN data
set are unsuited to obtain high-quality clusters for the locals.

Most importantly, we could show that different user groups exhibit very different
behavior; therefore, it would be misleading to measure the performance of recommenda-
tion algorithms for all users as a whole. Especially when the recommendations should be
tailored to specific groups, a “one-size-fits-it-all” algorithm, which seemingly produces
good recommendations, might fail in a particular user group. Concretely, we could
measure differences of > 400% between different user groups in terms of nDCG, such
as in London and New York using GeoBPR recommender or Mexico City using the PGN
algorithm. Besides, we also observed some important differences between user groups
when measuring EPC, in the case of Tokyo for the PGN and BPRMF algorithms, although
the difference was less severe in comparison to the accuracy. Finally, in view of the
analyses and results obtained, we would like to raise concerns that this Foursquare
data set may not generally be appropriate for use in the travel and tourism domain
because the vast majority of them have barely checked-in in more than one city, as can
be seen in Tables 3.3, and 3.4. Although this particular data set seems to be ill-suited
for obtaining general conclusions about the decision-making of travelers in a real-world
environment, we do believe LBSN data is a useful resource to tourism applications,
including recommending venues to users exploiting the interactions of users in their
home city [114].

3.4 Discovering Regions Using Graph-based Community
Detection of Tourist Trips

The mobility of travelers manifested in the trips can be used for further insights into
global travel behavior. In this section, we describe a methodology to obtain a map of
the world’s travel regions that are entirely based on tourist travel behavior instead of
political and administrative regions. With this approach, we aim to uncover implicit
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tourist regions independent of administrative boundaries, e.g., in areas where travel
can occur irrespective of national borders, such as the Schengen Area of Europe. To
achieve this, we construct a graph of flows from the trips and use a community detection
algorithm to cluster single destinations into coherent travel regions [127]. Again, the
trips from the self-collected Twitter data set serve as the basis for the analysis.

3.4.1 Global Mobility Graph Creation and Community Detection
To capture the global mobility in its entirety, graph-based structures are a common
choice. For the transformation of individual trips into a mobility graph, we performed
the following steps: each node corresponds to a city, and the weight of the edges should
model the traveled-together relation, i.e., that two cities have been visited within the
same trip, as closely as possible. Thus, the flow between two cities is computed by
summing up the co-occurrences of the two nodes in a clique formed by all cities in a
trip, over all trips. For example, if a trip consisted of travel from Munich to Berlin via
Nuremberg, we would also count the transitive flow from Munich to Berlin. This makes
the undirected graph denser, but we argue that including the transitive links of a trip
models the phenomenon better than discarding this information. Finally, we determine
the weight of each edge as the flow divided by the Euclidean Distance between the two
cities. Including the distance in the edge weight reduces the noise in the flow graph
introduced by distant traffic hubs, such as airports.

Transforming the mobility patterns into this graph-based representation enables us
to run community detection algorithms to see which cities form coherent clusters with
only global mobility as input. The Infomap algorithm is a graph community detec-
tion algorithm that is designed to discover the underlying structure of the nodes and
edges [119], which can yield multi-level hierarchies for communities. Using a random
walk strategy, the algorithm optimizes community segmentation by selecting groups
so that the inter-community flows are maximized while the flows between groups are
minimized. Since it uses a probabilistic model for community detection, we re-run the
algorithm ten times to reduce the probability of obtaining a local minimum, which is
monitored using the description length [119].

In our approach, a community corresponds to a set of cities that form a region. Since
the results of Infomap are hierarchical, it will return a tree of regions and subregions,
depending on a graph-theoretic termination criterion. This is especially useful since
choosing the right granularity of regions depends on the use case and allows for a flexible
application of the method.

3.4.2 Results
The resulting graph consists of 14,558 nodes and 3,624,909 undirected edges. The
degree distribution is long-tailed with very few high degree nodes and 87% of nodes
having a degree of less than 1,000. The graph density of 0.034 indicates a sparse graph.

The communities computed by the Infomap algorithm show four top-level regions
that align well with existing continental boundaries, cf. Table 3.7 and Figure 3.3. These
are further subdivided into a region hierarchy of up to four levels. Level 2 regions
roughly align with national boundaries; however, as discussed below, we can observe
some interesting exceptions to this rule. Level 3 regions are the most numerous and
comprise travel regions, which are of primary relevance for a destination recommender
system. In most cases, the community detection algorithm terminates after level 3, but
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Table 3.7: Numerical description of the four top-level regions.

Region name Nodes 2nd-level
regions

3rd-level re-
gions

4th-level re-
gions

World 15,858 53 942 476

South America 1,873 9 193 19
North & Central America 4,193 17 254 145
Europe & West Africa 6,591 14 381 116
Asia & Oceania 3,201 13 114 196

in some areas, with more Twitter data, these regions are further subdivided into level 4
regions, which can even be individual districts of cities.

In the following, we will exemplify the regions formed on each level and discuss some
interesting artifacts.

3.4.2.1 Level 1 – Continents

On this level, the division between the Americas is a perfect cut between North and
Central America and South America. Africa is under-represented in the data because it
has only a few check-ins in Morocco, Algeria, Ghana, Nigeria, Kenya, and South Africa.
These countries are merged in the European cluster except Kenya, which is in the Asian
region. The European cluster is merged with all of Russia, Turkey, and the Arabian
Peninsula. The Asian region comprises the Indian subcontinent, South East Asia, South
Korea, Japan, Australia, and New Zealand.

Figure 3.3: The top-level regions

We observe that on this level, the destinations’ geography and accessibility play a
dominant role. For example, the Arab countries are united with the European cluster
due to the major aviation hubs. Unfortunately, the lack of data from Africa and some
countries in Central Asia hinders the formation of additional clusters in these areas.
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3.4.2.2 Level 2 – Countries

At the second level of the region hierarchy, we found that many regions align well with
national boundaries; however, with some notable exceptions.

In Europe, a large second-level cluster is found spanning the countries of Germany,
Austria, Switzerland, Hungary, the Czech Republic, Poland, and Romania (cf. Figure 3.4a).
The Scandinavian countries are clustered together with Russia and the Baltic countries.
Italy forms one region with Serbia, however, the unavailability of data from Croatia
possibly influenced this result in an unpredictable manner. The Iberian countries are
clustered with Morocco, which could be attributed to immigration patterns and the very
cheap flight and ferry prices between these countries. Belgium and the Netherlands
form another region, and also the British Isles are clustered together. On the other hand,
France, Turkey, and Greece form regions identical to their national borders.

(a) The second-level community structure of Europe (b) The second-level communities of North America

The second-level regions formed in North America in Figure 3.4b mostly disregard
national boundaries. Mexico is in one region with other Central American countries,
while the USA and Canada are divided into fourteen clusters. The western Canadian
states are merged with Oregon and Washington, while California is split into two major
clusters, with the southern cluster expanding down to Tijuana and Mexicali in Mexico.
Mexican cities on the borders of Arizona and Texas are also members of predominantly
American clusters. Several other well-known regions, such as the New England states,
Florida, and the Great Lakes area, form their own clusters.

The second-level regions reveal that there are some countries that are traveled to
exclusively, but other countries are visited together in one trip. In extensive countries
such as Brazil and the USA, we observe a subdivision into multiple domestic subregions
at the second level. We see this as an indication that the approach is well suited for
discovering domestic tourism regions.
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3.4.2.3 Level 3 – Destinations

The regions formed at the third level of the hierarchy comprise tourism destinations;
however, the results show varying granularities in different parts of the world, with some
regions containing further subregions.

(a) The third-level community structure of the Cen-
tral European cluster

(b) The third-level community structure of the
British and the Benelux cluster

(c) The third-level community structure of the
Iberian and Italian clusters

(d) The third-level community structure of South
Asia

The third-level clusters of the big Central European cluster in Figure 3.5a vary in
terms of cities’ size and density. The dense regions are typically very contiguous and
are centered around a major city. For example, the brown region containing Munich,
Germany, is comparatively large and includes southern Bavaria, Germany. Large areas of
the Czech Republic, Poland, and Hungary form homogeneous clusters with no further
subregions. Figure 3.5b shows that Belgium forms three main regions at the third level
with another shared region in the partly German-speaking areas in the east of the country,
spanning over to North-Rhine Westphalia. The Netherlands is divided into six regions
that align well with the local administrative divisions. Similar contiguous subdivisions
are found in the British Isles, Spain, and Italy. The clustering of Morocco, cf. Figure 3.5c,
with Gibraltar, UK and Andalusia, Spain is curious, and we have no convincing theory
why this is the case besides very accessible ferry connections and cultural similarities
due to a shared history.

In Asia, Pakistan and India are separated at this level, with India forming four subre-
gions (Figure 3.5d). In Thailand, one region is formed by places along the touristically
very active coast, while the inland regions are divided into numerous smaller regions.
The regions formed in Japan are similar to the administrative prefectures.

The third-level hierarchical result generally provides regions that can be seen as
coherent tourist destinations. At this level, they become small enough to visit them
exhaustively within a few days, and most do not contain further subregions. Thus, for
applicability in a global destination recommender system, the level 3 regions are a very
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good fit, despite some influence of the administrative regions. This is acceptable since
administrative borders naturally influence travel behavior, and there are many examples
where our detected regions either combine several administrative regions or subdivide
them.

3.4.2.4 Further Levels

Interestingly, some regions are further subdivided, which we discuss using one striking
example from New York City, NY, USA. In the third-level region of New York State, a
fourth-level region with the Burroughs Manhattan, Bronx, Brooklyn, Queens, Staten
Island, and Jersey City is formed (cf. Figure 3.6). Long Island contains two more regions,
while four other regions surround New York City.

Figure 3.6: The fourth-level community structure within New York, NY, USA

This shows that given that the Infomap algorithm obtains sufficient data, it is capable
of discovering very fine-grained regions even within cities. This example of New York
City is an artifact of the high-population density, the municipality structure, and a large
amount of Twitter data in this area.

3.4.3 Summary
The first three levels of the cluster hierarchy roughly align to continents, countries, and
travel regions. The fourth level gives an even finer granularity of destinations, however,
in most regions, there is insufficient data for the community detection algorithm to
descend to this level.

Generally, the influence of national borders is still observable, however, other factors
such as the language (e.g., France, Greece, British Isles, and the USA) seem to be relevant
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to retaining national boundaries, while other regions are clustered together, as can be
seen in central Europe. Thus, migratory patterns also play a role, as can be seen in
Central Europa as well as the merging of the Baltic countries together with Russia;
an effect that we attribute to the significant Russian communities living in the Baltic
countries.

An important limitation of this approach is missing data. If the underlying data
source is missing check-ins from a country for any reason, the algorithm does not have
reasonable means to counter this. In the case of China, where Twitter is a target of
censorship [5], independent clusters simply form around the large country. In the case of
small countries with missing data, such as Croatia or Belarus, the algorithm can ignore
the missing data resulting in clusters that encompass the area.

In conclusion, this approach provides a fine-grained map of touristic travel regions
solely based on traveler mobility. Since the region model is hierarchical, its application
scenarios are flexible, and developers can pick the hierarchy that suits their needs best.
To make the region model usable, Sharaki has developed a software library to handle
such hierarchical region models4 and also create visualizations5 [132].

In the next section, we show another application of collecting trips from LBSN data,
namely recommending the personalized duration of stay.

3.5 Recommending the Duration of Stay
Mainstream recommender systems research is mainly concerned with predicting the
ratings for items of an active user, which results in a subset of top-ranked items that
are to be presented to the user in an appealing way. This challenge of finding the “best”
items according to any metric is essential across all recommender system domains. In
the destination recommendation domain, it is not only important to visit the right region
but to plan the trip duration in a way that personal preferences, costs, and the value
of staying longer at a destination are balanced. This is especially relevant when travel
packages [153] or composite trips are recommended [121].

We examine the problem of determining the personalized duration of stay using both
the past trips of the active user and the overall duration of stays at the specific cities.
In Section 3.2, we already determined the typical overall trip duration of groups of
travelers using a cluster analysis, however, in this section, we focus on individual stays at
a destination. For this, we used the mined trips from the Foursquare data [41].

3.5.1 Algorithm
Our proposed solution addresses the question of making personalized recommendations
regarding the duration of a tourist’s visit to a city by considering two factors: the typical
time that all tourists spend in that city and the current user’s average duration of stay
at previously visited destinations. Thus, the first step is to compute the distribution of
the durations of people’s stay at a destination since there can be substantial differences
between destinations regarding how long one needs to explore it. For example, a smaller
city can be covered within a day or two, whereas a major metropolis might require more
time. The second aspect is the pace at which the particular traveler visits destinations.
Some tourists want to immerse themselves deeply into a culture and therefore stay at

4https://github.com/osharaki/travel_regions
5https://github.com/osharaki/travel_regions_visualizer
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each location for a longer time, whereas others want to visit as many different places
as possible during their holidays. This past behavior can be used to personalize the
recommended duration of stays.

Using the tripmining library, we mine 223, 688 domestic and 10, 963 international
trips from the Foursquare data set [154] with a total of 690,897 blocks for further
analysis. We compute the distributions of the durations of stay for all towns with more
than 15, 000 inhabitants.

The next step is to determine the pace at which the current typically travels, i.e.,
the distribution of the duration of the individual traveler’s past blocks. To obtain this
information, we can either ask the traveler to provide some information about past trips
directly, or we can request access to the individual’s mobility patterns from her profile
on a LBSN. Once we have this information about past trips, we can derive the user’s
pace by comparing it to the quantiles of all other travelers who have visited the same
destinations. This essentially establishes a collaborative filtering method to derive the
duration of stays from actual user behavior.

3.5.2 Example
To visualize our approach, we show how the algorithm would calculate the personalized
duration of a sample user’s visit to Washington, D.C. To that end, we calculate the
quantiles of the previously visited cities. In our example, the user made three previous
visits, spending 16 days in Tokyo, ten days in Jakarta, and seven days in London. We have
visualized the distributions of the durations of blocks in the three cities in Figures 3.7c,
3.7a, and 3.7b. The duration of these trips reveals that our user is a relatively slow-paced
traveler compared to others, as her lengths of stay are toward the right side of the
distributions.

(a) Jakarta, Indonesia (b) London, United Kingdom

(c) Tokyo, Japan

Figure 3.7: Distributions of the stay durations of the current user’s past trips.

The trip to Tokyo was at 91%, the stay in Jakarta at 81%, and the visit to London
at 96% of the cumulative distribution function. To aggregate the user’s pace over
the previous trips, we can calculate the mean percentile, which is 91%. We can then
find that percentile in the distribution of visits to Washington, D.C., where the 91st
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percentile of the distribution is at ten days (see Figure 3.8). Therefore, this would be the
recommended duration of stay.

Figure 3.8: Distribution of the durations of blocks of tourist stays in Washington, D.C., USA

3.5.3 Summary
The recommended duration of stay at a specific destination can be determined using
additional information about the domain and the user’s past behavior. We showcased
an approach based on the analysis of global mobility data from location-based social
networks. The underlying method is, however, generalizable to similar problems, given
the availability of appropriate data. We argue that such data is indeed often available,
especially in commercial recommender systems. In the tourism sector, airlines and
hotel portals have a long history of user data, which they could easily leverage when
making recommendations [53]. After all, the proposed approach can be used in any
recommender systems domain, where the amount of the recommendation matters and
where information about the distribution of the quantity is available for both all users
and the particular user of interest.

Needless to say, this research idea should be systematically evaluated trips from
different LBSNs and compared to other machine learning baselines [2].

3.6 Summary
Capturing the mobility of travelers can improve travel recommender system in meaningful
ways. Since traveling is a global phenomenon, the popularity of LBSNs provided us with
great data sources to analyze how people travel the world compared to the incomplete
view one would obtain from traditional data sources used in mobility research. The
foundation of this chapter is a method to derive individual trips from check-in-based
data and assess it regarding the reliability of the data. This enabled us to characterize
the behavior of users, e.g., using a cluster analysis of trip types.

Different groups of users might have different needs, however, the evaluation practice
in POI recommender systems is to report performance metrics aggregated over all users.
By discovering groups of local users and travelers based on their behavior using a similar
cluster analysis, we found that there are significant differences in the performance
of POI recommendation models for the different groups. This finding calls for more
rigorous evaluation practices and helps to understand the differences in recommendation
performance in different populations.
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3.6 Summary

In Section 3.4, we presented an approach to compute an alternative map of the world
by clustering cities into travel regions based on which cities are commonly traveled
together. The clustering is based on a community detection algorithm that takes a global
mobility graph as input, which we constructed using the mined trips from Twitter. Lastly,
we proposed a statistical method to derive the personalized duration of stay for uses
based on their past trips and the distribution of stay lengths at a destination.

This range of applications underlines the value of traveler mobility analysis for im-
proving travel recommender systems and enabling use cases that would otherwise not
be achievable. With minor adaptations, all these contributions can be used to improve
an individual trip planning application, whether be it the region model for destinations
of different scopes, kick-starting the preference elicitation by analyzing the users’ past
trips, or recommending how long they should stay at the individual destinations to make
most of the limited vacation period. When it comes to recommending where to travel,
we will analyze the quality of data models in content-based destination recommender
systems in the following Chapter 4.
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The performance of data-driven systems is inherently determined by the underlying
quality of data. In content-based recommendation, there are usually many competing
ways to characterize items to compute recommendations. As recommendations are based
on the items’ features, it is imperative to capture each entity as close as possible with
respect to the user’s conception of the domain. This leads to the challenge of determining
which instantiation of the available data is the best to emulate a possibly latent concept,
i.e., what the recommendations are about. Concretely, a destination recommender
system should characterize the items in a way that similar destinations concerning the
touristic experience should also be located close to each other in the information space
in which they are embedded. Such an information space is defined by the features used
to characterize all items, but how does one know whether this information space reflects
the users’ conception of the domain? In principle, similar items in the physical world
should also be similar in the information space, despite the loss of information and
granularity. In some domains, the mapping of features is obvious, for example, in the
case of recommending a computer configuration: the feature values, such as available
memory or number of USB outlets, have a clear meaning and can be easily interpreted
by the users and the algorithms [161]. In other domains, however, the ground truth for
items similarity is hard to capture, which is a fundamental problem [155]: what are the
movies most similar to “Fight Club?” Which cities are most similar to Munich? We as
humans might have an intuition about such similarity concepts, but it is hard to show
that recommendation algorithms actually emulate such latent concepts well.

To the best of our knowledge, this two-fold challenge of choosing accurate data
sources to characterize items, as well as determining which features to incorporate in a
content-based recommender system, has not been analyzed in a systematic way [155].
We propose a toolbox of methods to compare data sources with each other and also
with respect to what is important in the domain of such a recommender system. In this
study, we analyze these problems within the particularly challenging domain of content-
based destination recommendation [78, 83]. For this, we introduce 18 destination
characterization methods for 140 cities, which we have collected from literature or
constructed ourselves. Using well-established rank correlation methods [75], we compute
their pairwise similarities, thereby revealing families of similar data sources. To evaluate
the data sources with respect to how tourists experience a destination, we conduct
an expert study to elicit this latent concept. Using variants of established top-𝑘 rank
agreement methods, we are able to assess the quality of the data sources by their
similarity to the expert opinions. The choice of rank agreement methods [75] on
ranked lists generated using the similarity measure of the recommender system has the
advantage that our methods are straightforward to apply in other domains.
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4.1 Data Sources for Destination Characterization
To characterize destinations, we collected data from various online data sources tabulated
in Table 4.1. These data sources belong to three major categories: data models based on
venues, textual sources, and fact-based data sets. Overall, we characterized 140 cities
in Europe, Asia, Africa, and the Americas. To perform the analyses, it was necessary
to characterize all cities with all data sources, which led to the exclusion of small and
obscure destinations. All analyzed data sources have some touristic relevancy, meaning
that they are commonly used to learn about destinations or that they are already part of
travel-related information systems.

Table 4.1: Overview of the data sources for characterizing cities

Type Name Category Data Objects Number of
Objects

Acronym

Venue Foursquare LBSN Venues 2,468,736 FSQ
Data Open-

StreetMap
Collaborative Map Map entities 3,106,856 OSM

Textual Wikipedia Collaborative Ency-
clopedia

Documents 1,150,719
words

WP

Wikitravel Travel-related Wiki Documents 984,777
words

WT

Google
Travel

Travel Information Documents 56,499 words GT

Factual Webologen Travel Information
Provider

City Features 49 tourism
facts/city

TF

Nomad
List

Collaborative
Travel Information

City Features 8 features /
city

Nomadlist

Seven Fac-
tor Model

Scientific Charac-
terization

Derived Factors 7 factors /
city

7FM-2018

Geographic
Location

Geographic Loca-
tion

Latitude, Longitude 1 coordinate
pair / city

GEO

4.1.1 Venue-based
The intuition behind this class of data sources is that the variety of venues one can visit
at a destination would reflect the experience of a traveler. The following characterization
methods rely on the assumption that the larger the variety of, e.g., restaurants or cultural
sites of a city is, the better the score should be in these categories. Thus, these methods
do not aim to assess the quality of the venues since most venues do not come with quality
indications such as ratings.

The two data sources were Foursquare and OpenStreetMap. In both cases, we queried
all venues within a destination that were categorized into a tourism-related category. To
establish a multi-dimensional vector space of these categories, the number of venues
in each category was normalized to make large and small cities comparable, as well as
accounting for some categories being more frequent than others. The resulting features
are, thus, based on the distribution of venues in a destination and take a normalized
score in [0, 1] [35].
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Using this method, we constructed two data models from Foursquare, thereby lever-
aging the category hierarchy of the venues. The FSQ-TOP model comprises the venues
of four top-level categories: “Arts & Entertainment,” “Food,” “Outdoors & Recreation,”
and “Nightlife,” whereas the FSQ-2nd level uses the 337 second-level categories as
aggregation targets.

Similarly, we could use the hierarchy of the OpenStreetMap (OSM) map features to
create a top-level model of categories such as “tourism,” “leisure,” “historic,” “natural,”
“sport,” venue count, and area. As opposed to the Foursquare characterization, OSM
also provided us with exact city boundaries so that we could compute the area of the
destination. The OSM-2nd model likewise comprises 14 tourism-related subcategories,
as well as the venue count and the area.

4.1.2 Textual
The following family of data sources to assess the similarity of destinations are text
documents describing the cities. Text as a medium is an efficient way to describe what
a destination is about and what its attractions are. We selected three online resources
which we argue that travelers commonly use to inform themselves about destinations:
Wikipedia, Wikitravel, and Google Travel.

Wikipedia1 articles of these prominent cities have converged to a similar structure
providing both background information of the cultural history of a destination as well as
brief descriptions of the city’s main attractions. Thus, it is commonly used to get a first
impression of a city. Wikitravel2, on the other hand, is a collaborative travel guide that
offers more concrete information about possible activities, recommended restaurants,
and general advice for traveling. The target audience of these two data sources is, thus,
slightly different, with Wikitravel being more oriented towards travelers seeking concrete
advice for coping in a destination, whereas Wikipedia is more aimed at prospective
travelers learning about a destination.

Another popular travel information system is Google Travel3. Based on actual traveler
visits and local insights, the platform provides a list of the most iconic attractions. To
characterize the destinations, we combined all descriptions of these attractions into one
document.

After applying the same pre-processing steps to the HTML text files, the pairwise
document similarity was computed using the Jaccard Distance, Word2Vec embeddings,
and a transformers-based approach with BERT. For the Jaccard models, a document
term matrix was constructed, and the similarity between the cities was determined using
the Jaccard Distance. For the embeddings-based models, Word2Vec and BERT, we used
pre-trained models as zero-shot encoders to embed the documents. In the case of the
Word2Vec-based models, we aggregated the pre-trained word embeddings using mean-
pooling to obtain the document embedding and used the cosine similarity to compute
the similarity. Given that the BERT-based sentence encoder was already pre-trained on
Wikipedia articles, we did not need to perform further fine-tuning of (hyper-) parameters.
After the embedding step, we again used the cosine similarity to determine the rankings.
Thus, we obtained nine textual ranked lists for further evaluation: three data sources ×
three similarity measures.

1https://en.wikipedia.org
2https://wikitravel.org
3https://www.google.com/travel
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4.2 Eliciting a Desired Concept Through Expert Opinions

4.1.3 Factual

The third category is factual data with a focus on travel and tourism. This group
comprises data sources that provide facts about destinations, such as rated features or
geo-social features relevant to travelers. This does not imply that the quality of the data
is beyond scrutiny.

4.1.3.1 Webologen Tourism Facts

The former German eTourism start-up Webologen compiled a data set of 30,000 cities,
which are described by 22 geographical attributes and 27 “motivational” ratings. With
this multitude of features, this data set provides a very detailed image of a tourism
destination, which makes it an interesting source. The similarity is computed using the
Gower Distance [55], as the features are both binary and interval scaled.

4.1.3.2 Seven Factor Model

This data model is a mapping between Neidhardt et al.’s Seven Factor Model and the
tourism facts of the Webologen data set [129]. Using the Seven Factor representations
for each destination in our data set, we use the Euclidean Distance to compute the city
similarity rankings on the seven-dimensional vectors.

4.1.3.3 Nomad List

Nomad List4, a platform aimed toward digital nomads, employed a mixture of own
data modeling and crowdsourcing to characterize cities for their suitability for digital
nomadism. Built as a specialized platform for this community, it offers rich information
about destinations, but it should also be noted that the target audience is not tourists.
Since these features were already available in a normalized interval format, we used the
Euclidean Distance to compute the city similarity rankings.

4.1.3.4 Geographical Distance

The geographic position of a city might not provide much insight into the characterization
of destinations. However, it still serves as a simple baseline for assessing the similarities
of other methods. We used the Haversine Distance [117] to compute this distance.

4.2 Eliciting a Desired Concept Through Expert Opinions

To find out which data source is best suited for the domain of destination recommen-
dation, we developed a web-based expert study to capture a specific concept we are
interested in: “Similar experience when visiting cities as a tourist.” To make this latent
concept explicit, we asked experts from the travel and tourism domain to give their
opinion on this matter by selecting the most similar destinations to a given city.

4https://nomadlist.com
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4.2.1 Expert Survey Instrument
Eliciting such a latent concept is not trivial, as different people might have varying views
on it. Additionally, ranking cities by their similarity requires much travel experience and
is still a challenging task even if one has visited them. For this reason, we decided to use
a web-based expert study among experts in the travel and tourism domain, as well as
representatives of local tourism boards. To trade off the number of expected available
experts, the difficulty of the task, and the time each expert would be willing to spend,
our design choices were as follows: the study was delivered as a web page to allow easy
access and no further software requirements besides a web browser. Furthermore, we
focused the evaluation on 50 very prominent destinations for which the experts should
determine and rank the most similar cities.

Figure 4.1: User interface of the expert survey

The user interface was designed using a drag-and-drop metaphor, where the experts
were asked to drag the cities to the left “Most Similar Cities” column. All other cities were
available in the middle “Similar City Candidates” and right “Remaining Cities” column.
Introducing the column with a shortlist of 30 cities was necessary since going through
an unordered list of 139 items is not practical for human experts, as it would have taken
a long time depleting their concentration. For this reason, we added this shortlist of 30
cities which were the most similar to the base city according to the aggregation of all
methods in a randomized order to ease the task for the experts without introducing bias
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in favor of a specific data source. Finally, the experts nevertheless had all destinations
available with the right column containing all remaining 109 cities in alphabetical order.
Figure 4.1 contains a screenshot of the application.

When the experts finished dragging at least ten cities to the left column, they were
asked to reorder their choices to emphasize the list semantics before they could submit
their final ranking. The minimum number of 10 cities was chosen to give the partial
rank agreement methods sufficient information to compute meaningful results and to
limit the time it takes for the experts to complete a city ranking. It also corresponds to
the reality of information retrieval or recommender systems, where only a few highly
relevant items are important.

By recruiting the experts from the tourism research community as well as the local
experts from the tourism boards, we aimed to obtain a heterogeneous group of experts
that are sufficiently knowledgeable for the task. Contacting the experts in the local
tourism boards was done based on the assumption that those are the ones who know
their competition best. We are confident that this rigorous sampling method ensured
that both the quality and the quantity of the responses were very high, despite being an
online study conducted during the Covid-19 Pandemic.

4.2.2 Data Analysis of the Expert Survey
In total, we received 164 destination rankings from the survey instrument, which we
analyzed for quality and to confirm that the experts’ behavior is in line with our research
goals.

Despite being an expert study, the link could still be distributed over the Internet.
Thus we took various precautions to protect the data quality against potential low-effort
and spam submissions: we excluded responses that were completed in less than one
minute and those that did not adjust the internal ordering within the results column.
Furthermore, we removed responses where the experts indicated their familiarity with
the city on the “Very unfamiliar” or “Unfamiliar” levels. After removing cities with only
one ranking, the final data set for evaluation comprised 28, with a total of 88 rankings
coming from 37 different IP addresses. The top five most characterized cities were
London, UK; New York City, NY, USA; Miami, FL, USA; Barcelona, Spain; and Nice,
France.

To verify that the survey worked as intended, we first analyzed the agreement of the
cities chosen by the experts. Since traditional inter-rater reliability metrics operate on
ratings instead of ranked lists, we choose to compute the agreement as the pairwise
size of the intersection over the union (in %) of two expert rankings for the same city.
To make the results of cities with a different number of expert ratings comparable, we
looked at the mean value over all pairs. The agreement ranges between 11% in the
case of Brussels, Mumbai, and Osaka, while it reaches up to 54% in the case of San
Diego. On average, the experts’ lists had an overlap of about 25%, which we consider
quite good, given that the experts at most choose 10–14 cities out of 139. Agreeing on
about one-fourth of the most similar destinations both shows that there is clear common
ground among the experts, but also that an intangible concept such as the touristic
experience cannot be determined in a purely objective way.

The second aspect we evaluated was the influence of the shortlist in the middle column
(cf. Figure 4.1). Overall, 79.82% of the selected cities came from the shortlist, which we
see as a confirmation that the recruited experts were serious about their task and did not
only follow the ranking provided by the shortlist.
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To summarize, we developed an easy-to-use web-based tool to elicit a concept we
argue that a generic destination recommender system should follow. To create a high-
quality data set, we recruited domain experts and analyzed the outcome of the study to
confirm that our design choices for the elicitation were reasonable. The outcome is a
collection of 88 rankings of the 10–14 most similar destinations to 28 cities.

4.3 Rank Agreement Metrics for Incomplete Rankings
In their original definition, the rank agreement methods introduced in Section 2.4 such as
Kendall’s Tau Distance [75], or Spearman’s Footrule Distance [139] are defined over two
complete permutations of the same finite list. This assumption does not generally hold
since we were unable to characterize all cities with all data sources resulting in missing
characterization of cities. We sidestepped this problem by considering only a subset of
destinations that could be characterized with all methods. However, the outcome of the
expert study is a collection of top-𝑘 lists, with each list containing 𝑘 >= 10 most similar
cities to the city the expert characterized. To find out which data model is the most
similar to the experts’ opinions, we need to modify the rank agreement methods to cope
with this scenario. Concretely, this means that we need to compute the rank agreement
between an expert’s top-𝑘 ranking 𝜏 , where 10 ≤ 𝑘 ≤ 139 and a complete permutation of
length 140.

4.3.1 Proposed Methods
In light of the complexities of comparing the agreement of two top-𝑘 lists, we tighten the
assumptions about the two lists to obtain deterministic solutions for our concrete problem.
Since we have a fixed domain of items and one of our lists is always the complete
permutation, our problem is less complex than the general case as it is systematically
discussed in the work of Fagin, Kumar, and Sivakumar [46, Section 3.1].

We use the following notation: each ranked list is a permutation of the set of permuta-
tions 𝑆𝐷 of 𝐷. 𝑟𝑙(𝑖) denotes the rank of a city 𝑖 in the ranked list 𝑟𝑙. 𝑟𝑙(1) is always the
city based on which the model was created.

With our problem of comparing the agreement of a top-𝑘 list with the permutation
of 𝐷, we only need to discriminate three cases, omitting the case when two items are
present in one top-𝑘 list, but their relative ranking is unknown in the other list. Due to
the fixed domain assumption, this case cannot happen, as the other list is always the full
permutation. This results in a simpler problem without any room for uncertainty that
might arise from having items that are in one top-𝑘 list but not in the other.

• Case 1: 𝑖 ∈ 𝜏 , and 𝑟𝑙(𝑖) ≤ 𝑘 (the item is in the top-k list and the rank of the item in
the permutation is at most 𝑘)

• Case 2: 𝑖 ∈ 𝜏 , but 𝑟𝑙(𝑖) > 𝑘 (the item is in the top-k list but the rank of the item in
the permutation is greater than 𝑘)

• Case 3: 𝑖 /∈ 𝜏 (the item is not in the top-𝑘 list)

Using this insight, we propose variants to Kendall’s Tau and Spearman’s Footrule
distance for top-𝑘 lists.
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• Modified Spearman’s Footrule Distance

If a city is in the top-𝑘 list (Case 1 & 2), we can compute the distance between 𝜏(𝑖)
and 𝑟𝑙(𝑖) as before since all information is still available. In Case 3, we do not add
any penalty since we have no information about which penalty should be applied.
Thus, 𝐹 ′(𝜏, 𝑟𝑙) is simply the footrule distance between all elements of 𝜏 and the
corresponding elements in 𝑟𝑙.

𝐹 ′(𝜏, 𝑟𝑙) =
𝑘∑︁

𝑖=1
|𝜏(𝑖) − 𝑟𝑙(𝑖)|

• Modified Kendall’s Tau Distance

For a modified Kendall’s Tau Distance, we again count the number of discordant
pairs between 𝜏 and 𝑟𝑙. This situation is similar to the modified footrule distance,
as only the penalties from the elements of 𝜏 are applied.

𝑇 ′(𝜏, 𝑟𝑙) =
∑︁

𝑖,𝑗∈𝑃

𝑇𝑖,𝑗(𝜏, 𝑟𝑙),

where 𝑃 = {{𝑖, 𝑗}|𝑖 ̸= 𝑗 and 𝑖, 𝑗 ∈ 𝐷}, and 𝑇𝑖,𝑗(𝜏, 𝑟𝑙) = 1 if 𝑖 and 𝑗 are in the
opposite order, and 0 otherwise.

4.3.2 Example

To make the approach concrete, we show the experts’ rankings for the city of Munich
in Table 4.2. The first column shows the first ten cities of the Wikipedia-jaccard list.
To obtain the score of a data model concerning the expert’s opinion, we compute the
two modified rank agreement metrics between the ranked list and the experts’ partial
rankings. The overall score is the mean value of the rank agreement metric of all experts
and all cities. The lower part of the table shows individual values and the aggregation:
in this example, the opinion of Expert 1 is quite close to the ranked list according to
both metrics. According to the modified Kendall’s Tau, Expert 2’s ranking is closer than
Expert 3, however, the modified Footrule distance is lower for Expert 3. This is due to
the potentially exotic choices of Expert 2 including Dubai (rank 48 in the ranked list),
Vancouver (rank 54), and Boston (rank 84), which are heavily penalized in Footrule
distance.

The final score of a data model according to one of the metrics is computed by the
mean value of all expert rankings over all cities.

4.4 Results
We evaluate our work in three ways: first, we conduct an exploratory analysis using
pairwise comparisons of the ranked lists to capture commonalities between them. Second,
we compare each data model against the top-k lists that encode the expert-elicited
concept, and finally, we present the results of a black-box optimization of selected data
sources against the expert-elicited concept.
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Table 4.2: Three expert opinions in the city of Munich are contrasted with the WP-jaccard ranked
lists. The ranking of Expert 1 is closer to the ranked list than the two others.

WP-jaccard Expert 1 Expert 2 Expert 3

1 Vienna Salzburg Vienna Frankfurt
2 Dusseldorf Vienna Milan Brussels
3 Leipzig Cologne Dusseldorf Heidelberg
4 Berlin Graz Paris Budapest
5 Frankfurt Milan Boston Hamburg
6 Heidelberg Edinburgh Luxembourg Barcelona
7 Cologne Dusseldorf Berlin Vienna
8 Nuremberg Hamburg Cologne Prague
9 Salzburg Amsterdam Vancouver Berlin

10 Copenhagen Brussels Dubai Rome

𝐹 ′(𝜏, 𝑚) 𝑥 = 233.67 146 292 263
𝑇 ′(𝜏, 𝑚) 𝑥 = 16.33 14 15 20

4.4.1 Assessing the Similarity of Data Sources

As an initial comparison of our data sources with an emphasis on detecting commonalities,
we compare the data sources for each city against each other using Kendall’s Tau in
the original formulation for full permutations. The result is visualized as a heat map
in Figure 4.2, here the color is determined by the mean pairwise distances among all
ranked lists derived from the data models, and the sort order is adjusted using hierarchical
clustering using the Euclidean Distance, which is also the basis of the dendrogram on
the top. The values in the cells are Kendall’s Tau distance, rounded to integers.

At first glance, one can see RANDOM being clearly separated from all other data
models since it has no correlation to any of them. The first group is the family of
textual data sources together with GEO. The very close grouping of GEO with all models
stemming from Wikipedia and Wikitravel – irrespective of the text processing method –
can be explained with the amount of geographic information that is encoded within the
articles describing the cities. Nomad List seems to be unrelated to any other data source
in particular but, unlike RANDOM, still has a low correlation to all other data models.
Recall that the Nomad List platform is about digital nomadism, which is a form of travel,
but certainly, the platform’s features are not aimed at ordinary tourists resulting in a
somewhat orthogonal result. The high agreement between the Webologen features (TF)
and 7FM-2018 is interesting because it shows that the tourism facts are still manifested
in the Seven Factor Model representation of the destinations.

This analysis helped to get a broad overview of the data sources and their common-
alities. The hierarchical clustering grouped the data models in well-comprehensible
families; however, the pairwise comparisons also revealed that some models that one
could have expected to be quite similar, such as the top-level and second-level aggre-
gation of Foursquare, are indeed not that similar, likely due to the large branching
factor of the category tree. The benefit of this analysis is that an analyst can quickly
recognize whether data models capture similar concepts to make a decision if they can
be interchanged in case them being highly correlated.
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Figure 4.2: Crosswise-analysis of all data models using Kendall’s Tau method. The entries are
sorted using hierarchical clustering; the dendrogram reveals families of data sources.

4.4.2 Comparison with the Touristic Experience
Finally, we get to answer which characterization method would be most suited to use
within a content-based information retrieval system such as a destination recommender.
Having elicited the concept of “similar experience when visiting cities as a tourist” with
the expert study, we can now compare the partial rankings of the experts with our
characterization methods. We use the two modified metrics from Section 4.3.1 that
compare a full permutation with a top-𝑘 list and also tabulate the MRR and Precision
as comparison baselines. Note that the MRR and Precision do not capture the internal
rankings provided by the experts. To compute them, we treated the rankings provided
by the experts as a set and aggregated the metrics over all cities included in the lists,
treating each element as an individual query.

Generally, the results in Table 4.3 confirm the picture of Figure 4.2: the versions that
have shown to be similar there also rank similarly in the comparison to the expert ranking.
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Table 4.3: Ranking of the different data sources using the modified rank agreement methods for
top-𝑘 lists as well as MRR and Precision.

Spearman’s FR top-𝑘 Kendall’s Tau top-𝑘 Mean Reciprocal Rank Precision@5 Precision@10

WP-jaccard 297.011 GEO 18.284 WP-jaccard 0.101 WP-word2vec 0.186 WP-jaccard 0.304
GEO 304.091 WP-jaccard 18.750 WP-word2vec 0.101 WT-word2vec 0.182 GEO 0.302
WP-word2vec 318.080 WP-word2vec 19.068 WT-word2vec 0.100 WP-jaccard 0.178 WT-jaccard 0.297
WT-word2vec 322.489 WT-jaccard 19.227 FSQ-2nd 0.094 GEO 0.162 WT-word2vec 0.297
WT-jaccard 330.057 WP-BERT 19.568 WP-BERT 0.093 WT-jaccard 0.161 WP-word2vec 0.291
FSQ-2nd 330.420 GT-word2vec 19.852 GEO 0.093 FSQ-2nd 0.154 WP-BERT 0.279
WP-BERT 343.307 WT-word2vec 20.011 WT-jaccard 0.093 WP-BERT 0.147 FSQ-2nd 0.264
GT-word2vec 346.955 FSQ-2nd 20.625 GT-word2vec 0.088 GT-word2vec 0.139 GT-word2vec 0.263
TF 395.841 WT-BERT 20.818 WT-BERT 0.081 WT-BERT 0.139 WT-BERT 0.243
GT-BERT 396.375 TF 21.409 TF 0.075 TF 0.113 TF 0.231
WT-BERT 402.159 GT-BERT 21.477 GT-BERT 0.074 GT-BERT 0.103 GT-BERT 0.202
GT-jaccard 408.943 GT-jaccard 21.864 GT-jaccard 0.067 OSM-2nd 0.099 OSM-2nd 0.195
7FM-2018 457.909 OSM-2nd 22.375 7FM-2018 0.065 Nomadlist 0.092 GT-jaccard 0.187
Nomadlist 461.830 Nomadlist 22.420 OSM-2nd 0.065 OSM-TOP 0.090 7FM-2018 0.187
FSQ-TOP 506.500 FSQ-TOP 22.864 Nomadlist 0.063 GT-jaccard 0.087 OSM-TOP 0.180
OSM-TOP 516.114 7FM-2018 22.966 OSM-TOP 0.063 7FM-2018 0.086 Nomadlist 0.169
OSM-2nd 521.273 OSM-TOP 23.045 FSQ-TOP 0.054 FSQ-TOP 0.060 FSQ-TOP 0.122
RANDOM 649.398 RANDOM 23.341 RANDOM 0.039 RANDOM 0.033 RANDOM 0.073

The textual data models derived from Wikipedia, Wikitravel, and Google Travel, as well
as the geographic location, performed best, followed by the 2nd-level aggregation of
Foursquare and the factual ones. OSM and the Foursquare top-level categories conclude
the ranking with the random model, unsurprisingly, performing worst.

The general stability of the ranking among the rank agreement metrics is high, but
the absolute values of the data sources and the random baseline are quite close in some
metrics, which we attribute to the small signal-to-noise ratio in the data: the rankings
have only been computed based on 10 – 14 items out of 140.

Depending on the perspective, there are many nuances in the results that are note-
worthy, which we elaborated on in the original publication [39]. Our main take on
this is that there are notable differences between the data sources, and developers of
recommender systems should choose ones that best emulate the recommender system’s
domain. The results of our study reveal that data models of previously deployed desti-
nation recommender systems [129, 100] are outperformed concerning the concept of
touristic experience. This is a concern, as it reveals a mismatch between the features and
the user’s understanding of the destinations, whereas, e.g., textual data sources seem to
do a better job of encoding the characteristics of a city.

To summarize, the proposed rank agreement metrics for top-𝑘 lists have been suc-
cessfully employed in determining the quality of the data sources with respect to the
expert-elicited concept. They produce comparable rankings as established information
retrieval metrics, such as MRR and Precision. The advantage is that the rank agreement
metrics operate on ranked lists instead on sets, making them conceptually more adequate
to employ than MRR, Precision, or similar metrics.

4.4.3 Optimization of Data Models
With this tooling established, there is now potential to refine existing data models
based on tourism facts and the venue distributions. The idea is that by learning the
importance of the respective features, the target concept can be better emulated. By
assigning different weights to the features based on their importance in computing
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similarity metrics, rich models with several features can be fine-tuned towards the
expert-elicited concept. This is useful since standard similarity metrics in content-based
recommendation, such as the Euclidean Distance, give the same weight to all features.
Naturally, one can only adjust weights if the features are explicitly present. For this
reason, the textual data sources and the geographic distance cannot be optimized since
there are no directly usable features that can be weighted differently.

Given the combinatorial explosion of the search space for weights, we have used
black-box learning, namely Simulated Annealing [76], for tuning the weights [0, 1] of the
data sources with explicit features. The proprietary TF and 7FM-2018 sources were only
provided to us as rankings; thus, we could not optimize those.

Table 4.4: Optimization towards the Expert Opinion using Spearman’s Footrule top-𝑘

Model Unoptimized Optimized Improvement

Nomadlist 461.83 426.27 7.70%
FSQ-TOP 506.50 503.33 0.63%
FSQ-2nd 330.42 312.47 5.43%
OSM-TOP 516.11 508.38 1.50%
OSM-2nd 521.27 490.33 5.94%

The optimization tabulated in Table 4.4 works better with more features, as can be
seen with Nomadlist, FSQ-2nd, and OSM-2nd. We attribute the small relative changes in
FSQ-TOP and OSM-TOP to the fact that they capture slightly orthogonal concepts to the
expert-elicited baseline, and due to their smaller number of features, they are harder
to optimize toward this concept. However, since the domain has a high signal-to-noise
ratio, these small relative improvements become relevant in the overall comparison.
Concretely, the optimized version of FSQ-2nd would be the third most competitive data
model in Table 4.3.

Furthermore, even with minor contributions to the overall performance, the learned
weights for the features give further analytic insight into their importance. Features with
a very low weight could be dropped, while the feature selection of a potential combined
data model of several data sources should be guided by the learned weights.

The results of this in-depth analysis of the weights are certainly quite specialized with
respect to the target concept and the intricacies of the respective data sources. Thus,
we do not further elaborate on the other optimized models but refer the reader to the
original publication [39]. Finally, we want to emphasize the generalizability of the
methods to further domains, where the data source’s features are known, and a baseline
exists in the form of ranked lists.

4.5 Summary
This chapter raises concerns about the underlying data used in content-based destina-
tion recommender systems. Motivated by the question of model choice in destination
recommender systems, we proposed methods to make such data models of destinations
comparable against each other and against a – potentially latent – concept that the
recommender system should emulate when computing content-based recommendations.
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In our evaluation, we collected data from various online data sources and instantiated
18 variants of possible city characterizations. We evaluated the commonalities of the data
sources, through which it became apparent that, for example, articles about destinations
on Wikipedia and Wikitravel encode much geographic information.

Furthermore, we conducted an expert study that provided us with partial rankings
of similar destinations, which we could use to assess how well each data model ap-
proximates the touristic experience of a city using variants of rank agreement metrics.
According to the expert opinion, the touristic experience was best approximated using
the textual similarities from Wikipedia, Wikitravel, and the geographic location. This
means that when simply retrieving the most similar destinations according to the touristic
experience, one can choose one of the top-ranked entries from Table 4.3.

Finally, we could show that it is possible to optimize the distance metric of a content-
based recommender system towards a desired concept if the features characterizing the
city are available.

From a recommender systems research perspective, the results show that existing
destination recommender systems do not necessarily use data models that capture
the concept of similar touristic experience very well. This might be intentional if the
system’s purpose is to capture a different concept or possibly due to the previous lack
of a concrete instantiation of the concept. A limitation of the top-ranked textual or
geographic characterizations is that they do not come with specific features the user
can interact with. This is a drawback since it means that they cannot directly place the
user’s preferences and the items in a common vector space to perform content-based
recommendation as frequently done in travel recommender systems [19]. Furthermore,
standard recommendation techniques such as critiquing [25], i.e., giving a system
feedback about the features of a suggested item, are only possible if a fixed number of
features characterize the items.

Our work has provided the community with adequate tools to optimize feature-based
data models towards a desired concept, such as the similar touristic experience. The
methodological contribution is not limited to recommender systems in the tourism
domain but can be applied in other domains similarly as the proposed metrics operate
on ranked lists. Latent similarity concepts are prevalent in many domains such as
music [158] or leisure activities [15]; generally anywhere, where the accuracy of the
information retrieval system depends on the embeddings of items in a search space.

In the next chapter, we present a content-based destination recommender system that
relies on the conversational interaction of the user with explicit features describing the
destinations. Thus, this section is an important basis for determining which data model
to choose in such a system.
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Nowadays, much of the online content served to users is the outcome of some more or
less personalized recommendation algorithm. Irrespective of the web page or application,
providers try to optimize the shown items to improve online metrics, such as click-
through, user retention, or other, possibly very specialized goals [59]. Inspecting and
consuming the items, users are typically unaware of what these recommendations are
based on and have little means to adjust the presented items. From an algorithmic
perspective, such systems have gained impressive performance in finding suitable items
for a user from sparse rating matrices. Therefore, they are widely used in recommender
systems for online content, such as news, products, or music. These personalized
algorithms help show relevant items to users, thereby hiding the plethora of items that
are likely not of interest. While this mitigates information overload and decreases the
need for expensive content curation, there are various scenarios where such algorithms
are not well suited for satisfying users’ needs.

In this chapter, we investigate a different type of recommender systems, where the
users explicitly interact with the system to fulfill an information need to make a conscious
decision about which items to choose. The aforementioned classic recommendation
algorithms rely on the availability of interaction data, which is not always available.
In such a case, these systems typically fall back to various non-personalized baseline
strategies, such as recommending popular items or curated content. Thus, in a complex
domain, such as travel and tourism, the algorithmic advances of the previous decades
are of lesser value. When recommending destinations, there are no clear interaction
signals simply because items are not so well defined in terms of their scope. As we have
discussed in Section 3.4, the reality of travel regions is that they do not necessarily match
administrative boundaries. Furthermore, the travel market is segmented into regional
tourism boards, each promoting the interests of their own members. The consequence is
that destination marketing information is biased toward influencing users to visit their
own destination. This federated structure on the business side also means that there is
no source for meaningful ratings for destinations. How can a hypothetical rating of 4.5
of one city be compared with a 3.6 in another continent?

Given that traveling is a relatively rare phenomenon and a high-stakes recommendation
domain [19], it has also been shown that users demonstrate different decision-making
behavior compared to purchasing physical products [150]. These challenges necessitate
employing sophisticated preference elicitation strategies, and content-based recommen-
dations have been shown to be more useful in assessing the suitability of an item. Since
users often struggle to declare their true preferences [130], the system should provide
users with the opportunity to familiarize themselves with the items in the domain and
support the decision-making process by allowing them to actively refine their preferences.
Thus, the problem of recommending a city for travel is a perfect fit for the conversational,
content-based recommendation paradigm.

Throughout this chapter, we describe the CityRec system, a conversational recommender
system (RS) that performs content-based recommendations of destinations based on
features evaluated in Chapter 4. Following up on the observation that critiques with
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concrete examples can be useful [147], we compare traditional unit critiquing [18] with
a more sophisticated approach, which informs users about the trade-offs involved in
their critiquing choices.

The primary motivation is to overcome the “wishful thinking” problem in such ex-
ploratory information systems: having an image of a “dream vacation” on their mind,
users will specify their preferences accordingly; however, these possibly naïve specifi-
cations can easily define the empty set. Thus, a system should show users the various
trade-offs involved, such as popularity and crowdedness, quality and price. To overcome
this problem, we present a novel concept to navigate the item space that we call “Naviga-
tion by Revealing Trade-offs.” Unlike much of recommender systems research which either
focuses on the interface or the algorithms, this paradigm requires a seamless integration
of the user interface and corresponding recommendation algorithms.

5.1 User Interaction
The user interface is designed to assist the user in expressing and refining their travel
preferences using concrete destinations and features that characterize these items.

Figure 5.1: The initial preference elicitation screen.

5.1.1 Initial Preference Elicitation
In all our experimental conditions, we used an initial screen that showed 12 cities from
the item space (cf. Figure 5.1). This initial seed of 12 destinations is not random but a
diverse representation of the data set. Thus, it is a first step for the user to get familiar
with the items available for selection. The diversity is guaranteed since the cities are
selected from groups derived from a cluster analysis on the available features [35]. The
optimal result of the cluster analysis was obtained with five groups, which are used to
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generate numerous, diverse, but equivalent shortlists because each cluster is represented
at least twice. To get an initial user profile, we ask the user to choose three to five that
best reflect their preferences.

This selection provided all subsequent algorithms with a starting point for the conver-
sational exploration of the search space.

5.1.2 Unit Critiquing

The original CityRec system [35] would now show a set of four destinations, which are
closest to the current user model according to the similarity metric for the cities (see
Section 5.2.1). The users have control over their preference profile by critiquing the
features one after another with different intensities from “much lower” — “lower” — “just
right” — “higher” to “much higher.”

Figure 5.2: The original refinement screen. [35]

As seen in Figure 5.2, the user now has more information about the cities, enabling
her to make informed decisions. Using this feedback, the system would update the user
profile scores by −0.2, −0.1, 0, 0.1, or 0.2 and show an updated set of cities in the next
step.

In the initial publication [35], this unit critiquing system was evaluated against a non-
critiquing baseline. For the main evaluation, we further developed it to be comparable
with the other conversation algorithms: we removed all images of cities, as they might
introduce a bias by shifting the users’ attention away from the features. Furthermore,
it is very hard to find images that adequately capture the multitude of aspects a city
has [131].
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5 Navigation by Revealing Trade-offs

Figure 5.3: The refinement screen in the user study. [36]

Figure 5.3 shows the consolidated unit user interface for the large-scale user study. Now
only one city is shown, and each feature can be critiqued simultaneously. Furthermore,
the user can take unlimited critiquing cycles until she is satisfied with the outcome.

5.1.3 Revealing Trade-offs
Figure 5.4 shows the interface element for our conversational “Navigation by Revealing
Trade-offs” approach. At the top of the page, the currently recommended city is shown;
below is the novel user interface. This component shows the current city along with
five other cities recommended based on the utility function. For each feature, the
five candidate items are shown in an ordered list from low to high, depending on the
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5 Navigation by Revealing Trade-offs

score. Users can select an item to see the feature value differences in all feature spaces
compared to the currently recommended city. An increase in feature value is indicated
using a green shade; a decrease is shown in red.

If the user is satisfied with the current recommendation, the user can choose not to
continue with refining but to confirm the current recommendation. In this case, the user
is forwarded to the final recommendation page.

5.2 Algorithms

Having discussed the front-end of CityRec, we now turn our attention to the algorithmic
solutions that drive the exploration of the search space.

5.2.1 Content-based Filtering

In content-based RS, all recommendations are computed based on the current user model
and the features that characterize the respective items. The typical distance metric is
the Euclidean Distance based on the vector space defined by the destination features.
The Navigation by Revealing Trade-offs approach also operates in the same vector space,
however, the goal of this interface concept is to present the user with various candidates
that drive the exploration through the search space in a more efficient and effective way.
The following section describes the proposed candidate selection strategies to progress
the search for suitable recommendations.

5.2.2 Candidate Selection Strategy

One issue with a purely content-based recommendation strategy is that it does not
consider the user preference variations during the refinement. Furthermore, a simple dis-
tance metric will return the most similar items to a query, which hinders the exploration
of the search space. Thus, we propose a candidate selection strategy, which we call the
“Variance Bi-distribution” utility function, to enable the exploration of the search space
towards items the user is interested in. This utility function (Equation 5.3) is defined
by two normal distributions per feature, each representing an increase or decrease of
feature value. The two normal distributions are given as ∽ 𝑁(𝜇1, 𝜎2) and ∽ 𝑁(𝜇2, 𝜎2),
where 𝜇1 and 𝜇2 define the position of the bell curves on the normalized value range of
the feature, and 𝜎 defines the shape of the curve.

The distance between the currently selected reference item, ref𝑘, and the respective
bell curves are computed by adding or subtracting an offset computed in Equation 5.1.
This offset between ref𝑘 and 𝜇 is the standard deviation of each feature value 𝑓 of all
previous items in the conversational history 𝐻 by the number of previous conversational
iterations 𝑛 moderated by a constant 𝐶𝑚, which can be empirically determined for each
data set. The value of 𝐶𝑚 depends on the size of the data set as well as the distribution
of the feature values. Intuitively, it can be regarded as a moderator for the step size
similar to the learning rate in machine learning [69].

The behavior of this aspect of the algorithm can be summarized as follows: the mean
of the normal distribution is farther from the currently selected items if the variance of a
feature is higher, however, this effect becomes less with each conversational cycle.
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𝜇1 = 𝑟𝑒𝑓𝑘 −

√︁
𝑉 𝑎𝑟(𝑓 ∈ 𝐻) · 𝐶𝑚

𝑛
𝜇2 = 𝑟𝑒𝑓𝑘 +

√︁
𝑉 𝑎𝑟(𝑓 ∈ 𝐻) · 𝐶𝑚

𝑛
(5.1)

The second parameter of the normal distributions, 𝜎, is computed in a similar way
(cf. Equation 5.2). This has the effect that with higher variance, we obtain a flatter
distribution and, thus, a lower impact of this feature on the utility score.

𝜎 =

√︁
𝑉 𝑎𝑟(𝑓 ∈ 𝐻) · 𝐶𝑠

𝑛
(5.2)

The intuition behind this is that if the user has a strong preference regarding a feature
having a certain value and consistently picks cities with a high temperature, the system
is quite certain of this user’s preference toward temperature and, thus, should put high
weight on this feature. Conversely, suppose a user has selected cities with another feature
having both low and high values resulting in a high variance. In that case, it can be
seen as a signal that the user has no specific preferences toward the feature as it is
unimportant to the user. Thus, the impact of such a high-variance feature should be
smaller than a low-variance feature. Over time, we increase this effect by dividing by the
number of previous iterations 𝑛. This further helps the algorithm converge.

Figure 5.5: Variance Bi-Distribution

The maximum score of the two distribution functions for a given item feature is taken
as the utility score of the respective feature. This is visualized in Figure 5.5: the two bell
curves have their maxima shifted to the left and right from the current city (reference𝑘),
giving cities whose feature values are closer to 𝜇1 and 𝜇2 a higher utility weight for this
feature.

We then compute the overall utility of each item as the sum of all feature scores of the
utility function.

utility =
∑︁
𝑓∈𝐹

𝑠(𝑓) (5.3)

The effect of this utility function is that it balances fast exploration in the beginning
and fine-tuning in later stages of the search. If a feature variance is high and the number
of iterations small model adjusts 𝜇1 and 𝜇2 further away from the reference item, with a
higher 𝜎 resulting in a flatter distribution of the feature’s utility function. In this case,
items far away in the feature space also would get higher utility scores, ensuring users
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are presented with cities more spread across the feature space. With a larger number of
iterations, the user preferences for particular features are converging, i.e., the user will be
presented with an increasingly narrower band of feature values to refine the preferences.
As a result, 𝜇1 and 𝜇2 are closer to the feature value of the current recommended item,
and with a smaller 𝜎, items with similar feature values receive substantially higher utility
scores than the items with dissimilar feature values. However, if a feature’s variance is
still high, the curve will stay quite flat, giving this feature less weight, thus recognizing
that the user is rather indifferent toward this feature. This convergence behavior can be
observed in Figure 5.4 back on page 55. After some iterations, the algorithm determined
that the user has a clear preference for high scores in the food and temperature aspects
and low scores in nightlife, outdoor & recreation, and cost. Thus, the refining candidates
are quite close to each other, whereas they are spread along the spectrum of the “Arts &
Entertainment feature.”

5.2.3 Elimination of Candidates
To further improve the convergence, we propose a variant that eliminates items whose
feature values have been refined in a contrary way. The reasoning behind this elimination
of candidates is that if a user refines a feature of an item, it becomes explicit information
that the value of the feature is unsatisfactory and should take only values toward the
direction of the refinement. Thus, we can compute candidates just as before, however,
items with a lower (or higher) value than the original item ref𝑘 are removed from the
search space. For example, if the user refines the value of Arts & Entertainment of Manila
in Figure 5.4b in favor of Jakarta, the system will assume that all cities that have a lower
value in Arts & Entertainment than Manila should be excluded from future suggestions,
which can quickly reduce the search space.

5.3 Evaluation & Results
A user study was set up to compare the three systems: Unit Critiquing, Trade-off Refining,
and Trade-off Refining with the Elimination Variant. The experiment was conducted in
December 2020 with 600 participants on the online experimentation platform Prolific1.
After quality checks, 419 valid submissions were analyzed regarding the dependent
variables, which comprised the ResQue Questionaire and the interaction behavior with
the system.

5.3.1 Quantitative Analysis
Regarding the number of conversational cycles, we observed that all sessions using the
Trade-off interface were finished by the users within six cycles, with a mean value of
2.38/2.46, whereas the baseline unit critiquing interface needed more cycles with a mean
value of 4.44 cycles. Thus, the Trade-off UI reduced the iterations by 46.4% (44.6% in
the Elimination Variant), which is a significant reduction when testing the hypothesis
using a t-test.

For the survey items, we computed cross-wise Wilcoxon rank sum tests for independent
populations using the three independent variables. The null hypotheses were that there

1https://www.prolific.co/
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Table 5.1: Hypothesis testing of the dependent variables between the baseline unit critiquing and
the two variants of the Trade-off Refinement. The mean values of the survey items
coded as integers from 1 to 5 are for informative purposes only.

Baseline Trade-offs Trade-offs w. Elim.

Variable mean mean p w mean p w

(Q1) Interest match 3.81 4.12 0.002 7378 4.07 0.005 8727.5
(Q2) Better than friend 3.26 3.25 0.939 9053.5 3.26 0.749 10212.5
(Q3) Cities are familiar 4.09 4.14 0.605 8794.5 4.22 0.187 9572
(Q4) Rec. cities are attractive 4.06 4.18 0.314 8524 4.05 0.538 10816.5
(Q5) Discover new Cities 3.66 3.76 0.42 8608 3.71 0.711 10179
(Q6) Adequate layout 3.78 3.45 0.003 10917.5 3.56 0.044 11765
(Q7) Easy to modify preferences 4.14 3.59 < 0.001 11846.5 3.66 < 0.001 13235
(Q8) Became familiar quickly 4.19 3.67 < 0.001 11681 3.60 < 0.001 14125
(Q9) Influenced selection 3.44 3.64 0.043 9104.5 3.63 0.044 9104.5
(Q10) Overall satisfaction 3.82 3.84 0.743 8910.5 3.77 0.534 10824.5
Number of Conversational Cycles 4.44 2.38 < 0.001 - 2.46 < 0.001 -

is no differences in the medians of the responses. Since we could not find significant
differences between the Trade-off Refining and Trade-off Refining with the Elimination
Variant, we only tabulated the outcomes in Table 5.1 with respect to the baseline unit
critiquing. Besides the analysis of the number of conversational cycles, we could refute
the null hypothesis in favor of the Trade-off Variants in (Q1) and (Q9), while the baseline
received better responses in (Q6), (Q7), and (Q8). This mixed result can be summarized
in a way that the Trade-off interface had superior perceived recommendation accuracy
at the expense of the users’ perceived ease of use.

5.3.2 Discussion

The superior perceived accuracy measured by (Q1) at about 45% fewer conversational
cycles underlines the merit of our proposed user interface. However, the subjects rated
the usability-related metrics of the unit critiquing system higher (Q6 – Q8). We suspect
that this is because unit critiquing has already been employed in various RSs, so it is
quite possible that many users were already familiar with this concept. Dealing with a
new refinement interface involving reasoning about trade-offs certainly involves more
cognitive effort and, thus, might need more familiarization (Q8) than only one session.
The study was designed in a way that users could only submit the survey once, and we
did not familiarize the users with the system before their session to avoid learning effects.
The significant difference in (Q9) “This recommender system influenced my selection
of cities.” in favor of the Trade-off interface is likely an artifact of the comparative
lengthy search in the unit critiquing since both values are in the center of the Likert Scale.
Interestingly, there were no significant differences in any dependent variables between
the Trade-off Refinement and its Elimination Variant. We attribute this to the low number
of conversational cycles needed to come up with a satisfactory result. In the given data
set of 180 cities, the elimination of candidates was probably not necessary, as the utility
function was able to recommend attractive items after two or three cycles. Nevertheless,
we are confident that eliminating parts of the search space based on the users’ choices
could be useful, and we plan to analyze the merit of the Elimination Variant with larger
item sets of over 1000 items.
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5.4 Summary
The success of modern recommender systems depends on the seamless integration of
algorithms and user interface elements. Given that existing critiquing systems have often
neglected to inform users about the trade-offs of the critiquing actions explicitly, we de-
veloped the Navigation by Revealing Trade-offs system, which integrates a user interface
concept with a utility function to compute refinement candidates. The evaluation shows
that perceived accuracy is better than the unit critiquing baseline at similar reductions
in the number of conversational cycles as other advanced critiquing approaches have
demonstrated [92, 161].
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6 Conclusions
In this dissertation, we motivated, analyzed, and resolved various challenges within the
field of destination recommendation. The three major parts revolved around traveler
mobility analysis, destination characterization, and a conversational destination recom-
mender system. In the following, we revisit the identified challenges from the beginning
of this thesis to highlight how we resolved them, particularize potential limitations of our
solutions, and indicate future research directions should be taken based on our work.

6.1 Traveler Mobility Analysis Using LBSN Data
Traditionally, researchers were limited in their abilities to analyze the individual mobility
of a large number of travelers on a global scale due to the lack of suitable data. With
the proliferation of location-based social networks in the last two decades, a new data
source emerged which enables the analysis of global mobility patterns.

Challenge 1: How can LBSN data be used to determine the behavior of domestic
and international travelers? The advantage of analyzing mobility from LBSNs is that the
data is both available in sufficient quantity and the possibility to capture traveler mobility
on a planet-scale. Due to the low frequency of the check-in-based data, different methods
need to be used than for analyzing GPS-based data or call data records. We developed
the tripmining library, which combines geotagged posts into trips and assesses these
trips regarding their data quality and the underlying mobility characteristics of the user
(Section 3.1). We were able to determine which LBSNs are suitable for which analysis
and established guidelines for the quality parameters for different use cases. The library
was used with various LBSN data sets within this thesis (Sections 3.2, 3.3, 3.4, 3.5) as
well in further publications [34, 33, 37, 127, 121, 148]

Challenge 2: Given the behavior of travelers; which groups can be identified? In
Section 3.2, we performed two cluster analyses on data sets from Twitter and Foursquare
to segment trips into distinct groups using a cluster analysis approach. The results reveal
three clusters of trips in the Twitter data set and six in the Foursquare data set, which
enriches the mobility features with the type of venues the travelers have visited. The
determined groups are well-distinguishable by their feature values and provide domain
insights into how frequent different types of trips are within the observed populations.
The number of clusters seems to depend on the amount of information the algorithm
can use to discriminate groups. We conclude that the higher number of clusters in the
Foursquare study is due to the additional social aspects available through the visited
venues since the mobility features were similar in the two studies.

Performing a cluster analysis on the users’ past mobility behavior can be very useful to
obtain an automatic characterization of a user and, thus, increase the personalization
possibilities of a travel recommender system in cold-start scenarios without requiring
user interaction. Based on our findings, we encourage collecting more features for
the clustering since it gives opportunity to refine the characterization towards more
specialized groups.
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Challenge 3: What is the effect of establishing different groups of users on POI
recommendation performance? Using a similar approach as in the previous challenge,
we used a cluster analysis to identify different sub-groups within groups of travelers
and local users, respectively. Note that in this study, the local users were not derived
using the tripmining library since this group comprised people within their home city.
Guided by the hypothesis that different groups of locals and travelers who visit a city
should show different behavior in visiting POIs, we quantified the effect of the user
type identification on the accuracy and fairness of POI recommendations (Section 3.3).
Due to the popularity bias in this domain, it turns out that it is easier to make relevant
recommendations to groups of travelers even though way less training data is available
for these groups of users compared to the different types of locals.

This is an important insight since it questions the validity of standard evaluation
procedures in POI recommendation: we argue that travelers visiting a city have differ-
ent recommendation needs compared to people who are home in a city. Yet, studies
evaluating POI recommendation approaches treat all these users in the same way, report-
ing aggregated results over all users. By discovering sub-groups within the two main
categories of travelers and locals, we were able to determine notable differences in the
recommendation performance between these sub-groups.

Although this study only used one data set and analyzed five major cities, it clearly
questions current practices of POI evaluation. If the problem can be confirmed with
other data sets, it would be imperative to develop more rigorous evaluation practices in
this domain based on our findings. One direct implication of our study is that at least
locals and visitors need to be discriminated in future POI recommendation studies.

Challenge 4: How does the map of global travel regions look like? To answer this
question, we transformed the mined trips into a mobility graph and ran the Infomap
community detection algorithm [119] to cluster the world’s cities into hierarchical travel
regions (Section 3.4). We argue that using these travel regions in travel recommender
systems would be more useful than using administrative regions. Since the discovered
travel regions reflect which cities are often visited in combination, they align better with
the user’s understanding of travel destinations, where national or administrative borders
are of lesser importance. The obtained world map reveals in which areas national borders
are relevant and where international travel is common.

This map could be further refined with more data: we observe that more data is
advantageous to form more detailed regions, and the absence of data from, e.g., China
entirely prevents forming regions in such areas. In the future, it would be interesting
to observe how this travel region world map evolves over time since tourism is an
ever-changing phenomenon – which should be reflected in such a data-driven product.

Challenge 5: What are the recommended durations of stay at one specific desti-
nation? The mined trips also reveal how long people stay at a specific destination. By
computing the distributions of stay durations, it is possible to recommend a personalized
duration of stay for a specific city based on the user’s past trips. Section 3.5 describes a
statistical approach for this problem using LBSN data; however, this problem is worth
evaluating on a larger scale with various other methods, including supervised learning.

With the development of the tripmining library, we were able to analyze various LBSN
data sources regarding the mobility of the users. Although we were able to show that
not all data sources are suitable, it is possible to determine this using the quality metrics
of the library and make informed decisions on whether the data quality is adequate for
the current use case. Indeed, it would have been interesting to analyze some of the most
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popular online social networks. Unfortunately, data from Facebook, Instagram, or TikTok
is kept sealed by the respective companies. At the same time, the more open policies
of Twitter, Foursquare, and Flickr allowed us to analyze the mobility of these platforms’
users.

We showcased three major applications of collecting and analyzing trips from LBSNs.
First, a cluster analysis method to find distinctive groups of trips and travelers, which in
itself gives relevant domain insights and can provide the opportunity for personalization
in cold-start recommendation scenarios. We used the same method to evaluate the impact
of discriminating groups of users within the POI recommendation domain. Second,
we proposed a method to propose an alternative map of the World’s travel regions
using a community detection algorithm based on the global mobility graph between
14,558 nodes. Third, we proposed a method to utilize the number of stays at different
destinations to derive recommendations regarding the personalized duration of stay at a
destination. The fact that the analysis of only a few available data sets could reveal so
much information about travel showed that global LBSN mobility analysis is an excellent
method to learn about the travel domain, and we were able to use this information to
make substantial contributions to future travel recommender systems. Since we were
limited to publicly available data, we expect that our methods can yield even better data
if used in conjunction with proprietary large-scale data sets of travel organizations or
global internet platforms that constantly track the locations of the users.

6.2 Destination Characterization
There are various approaches to characterize destinations, yet it was entirely unclear
which one is the best from a domain perspective. We argue that the data model of a
content-based recommender system should emulate the domain as closely as possible
to enable transparent and unbiased decision-making. To the best of our knowledge, we
are first to analyze this problem in the travel recommendation domain and establish a
ground truth data set in the area of destination recommendation.

Challenge 6: What data sources are suitable to characterize destinations? In
Section 4.1, we describe how we constructed 18 data models to characterize 140 cities
using online data sources of three categories: textual data, factual data, and data models
based on the distribution of venues within a destination. Our approach to compare
the data models using rank agreement metrics revealed commonalities encoded within
different data sources, e.g., articles about cities on Wikipedia and Wikitravel include
much geographic information.

We found it surprisingly simple to construct data models to characterize destinations
using open data; however, there is no systematic way of determining which features to
include in a data model and which ones to omit. It would be very interesting to explore
additional data sources to characterize cities in an unbiased way. Especially pictorial
data and topological features would be promising to explore. Furthermore, it would
again be interesting to capture the evolution of destinations as they increase or decline
in popularity or in the audience they attract.

Challenge 7: How can a latent concept such as the touristic experience of a
destination be elicited? As it was necessary to obtain a ground truth for evaluating the
performance of the data models, we invited experts in travel and tourism to give their
opinion on this concept. Since it is very difficult to elicit a ground truth for similarity of
items, the proposed web-based system required careful design to support the experts in
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completing the difficult task without biasing them in a systematic way. Since, to the best
of our knowledge, only one previous study has approximated a ground truth for item
similarity in the movie domain [155], this system constitutes an important contribution
to evaluation techniques in recommender systems. We argue that due to that outcome in
our system are ranked lists of similar items, the approximation is more adequate than
the approach with pairwise comparisons in the work of Yao and Harper [155]. We were
successful in collecting 164 destination rankings, processing them, and also quantifying
potentially involved biases to ensure a reliable response quality (Section 4.2).

In the future, this system could be adapted to different domains and established as
a generic tool to capture ground truth information about latent concepts using skilled
experts and large-scale crowd intuition.

Challenge 8: How can data models be evaluated against the expert opinion? Recall
that the outcome of the expert study was a list of most similar cities to a base city. To
address this special case of measuring the distance between a complete permutation and
a top-𝑘 list, we proposed variants of established rank agreement metrics to enable a direct
comparison between the data models and the target concept. The advantage of these
metrics is that, in contrast to traditional information retrieval metrics such as Precision or
Mean Reciprocal Rank, the internal ordering of the rankings is considered. Interestingly,
our evaluation in Section 4.4.2 indicates that our textual sources outperform the data
models collected from previous destination recommender system studies. We see this
as an indication that these documents are already well targeted to inform prospective
travelers about the touristic experience.

These results can also be seen as a mandate for data scientists to improve the current
state of data models of content-based destination recommender systems. Generally, the
quality of data models in content-based recommender systems needs to be evaluated
to whether the features of the items sufficiently approximate the desired concept of the
domain.

Challenge 9: To what extent can data models describing destinations be optimized
to better capture the touristic experience? Without altering the input data, an
obvious way to improve the data models with explicit features is to adjust the distance
function of the recommender system. Commonly used distance metrics in content-based
recommender systems such as the Euclidean Distance use all features with the same
weight. We argue that this is unrealistic, as naturally some aspects of a city, e.g., the
quality of restaurants, are more relevant for the touristic experience than others. In
Section 4.4.3, we were able to show that by learning the weights, a better alignment
of the recommendation function to the desired concept can be achieved, making some
feature-based models competitive.

This optimization could be enhanced by selecting high-quality features from different
data sources to construct a combined data model. Since we aimed to determine which
data models are best, this was out of scope in our study, however, we are confident that
this would be a fruitful approach in future works.

Constructing data models for content-based recommendation should not be based
on intuition or by simply including all available domain features. By collecting and
constructing different data models for characterizing destinations, we analyze this
problem systematically using rank agreement metrics that capture the similarity of
the resulting rankings. Since we were able to elicit the latent concept of the touristic
experience, we could assess how well the data models from existing recommender
systems and online sources perform in direct comparison. The results show that common
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information for travelers, such as Wikipedia articles about destinations, better captures
the touristic experience; however, it is possible to learn the relative importance of
respective features to make existing data models of destination recommender systems
competitive.

Since there are so far few studies related to the ground truth of the data and rec-
ommendation models in recommender systems [155], it is hard to predict how much
potential there is in improving data and algorithms to capture the respective domains
better. Certainly, users get confused if there is a divergence of certain aspects of items
with reality. Thus, mitigating such discrepancies are important in recommender systems,
and we provide a toolbox of methods to do so.

6.3 Navigation by Revealing Trade-offs

We developed a novel paradigm for conversational recommendation to support prospec-
tive travelers in deciding where to travel. This paradigm, “Navigation by Revealing
Trade-offs,” was motivated by the “wishful-thinking” problem and helped to inform
the users about the trade-offs involved in choosing one item over another. Since users
directly interact with features of the items, the characterization of the destinations from
Chapter 4 served as the foundation for the used data sets. The proposed paradigm is
based on the seamless integration of user interface elements and algorithms to drive the
algorithmic convergence towards recommendations that fulfill the users’ needs.

Challenge 10: How can a user interface of a conversational recommender system
be designed to enable exploration and visualize the trade-offs involved in choos-
ing one destination over another? The user interface of the CityRec conversational
recommender system informs users about the relevant features of candidate cities (Sec-
tion 5.1). When users determine the direction in which they want to refine the current
recommendations, the changes in the feature value are visualized so they can consider
the potential downsides of choosing one item over another. Since the refining is always
towards a possible item, the user can not establish a configuration that is not available
in reality.

Challenge 11: How can the exploration of the search space be directed so that
the users are able to understand the extent of the search space, with a gradual
convergence towards the user’s preferences? As described in Section 5.2, we proposed
a utility function in CityRec to determine which candidate items should be presented to
the user. The design of the utility function was chosen in a way that it initially allows the
exploration of the search space but gradually converges towards the user’s preferences
with an increasing number of conversational iterations. Furthermore, it learns which
features are important to the user and decreases the impact of features that are irrelevant
to the user.

To evaluate the “Navigation by Revealing Trade-offs” paradigm, we conducted a large-
scale user study with 600 participants on a 140 destinations data set. The results of
our study show that the perceived recommendation accuracy is better than the unit
critiquing baseline; however, the less complex unit critiquing system receives better
usability ratings. Thus, we can conclude that the ideas that shaped the prototype have
merit, which should be further investigated in subsequent studies. Results from different
domains can help to understand the trade-offs of a more complex system with better
accuracy against a less accurate one with better usability.
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These promising results we could obtain in a between-subject design show that the
paradigm combining algorithms and user interface elements works. Nevertheless, to
deploy this in a commercial system, the individual aspects, especially in the user inter-
actions, need more detailed human-computer interaction (HCI) studies to understand
in what scenarios they work best and how they can be adapted to balance the business
goals with the user intentions.

6.4 Perspectives on Destination Recommender Systems
Travel and tourism are among the largest industries, with many regions being econom-
ically dependent on the tourism sector. Countless destinations all around the world
compete for visitors, and in today’s age of digitalization, peoples’ habits drift towards
planning their trips online, marking a declining influence of traditional travel agen-
cies [21, 13]. Consequently, the online ecosystem for travel and tourism provides
different services to support travel-minded users. Destination marketing organizations
typically promote their own regions, whereas commercial online platforms for travelers
focus on tourism products that they can make a profit on through commissions such as
transportation, accommodation, and venue recommendation. Despite some efforts of
these platforms to support users earlier in the travel planning and booking funnel, such
features have not gained widespread adoption, and recommendations are typically not
personalized. This is not surprising, given the enormous complexities in travel planning
and decision-making. In this thesis, we proposed various building blocks to overcome
these complexities by utilizing the mobility of users, for which we could showcase var-
ious data-driven applications. We evaluated the quality of different data models for
destination characterization and designed a conversational recommender system that
helps users to familiarize themselves with destinations, thus, empowering them to choose
travel destinations that fit their interests, even though they have not been there.

We envision that in the near future, travel planning applications will help users
design personalized trips in a similar way as travel agencies have done. Since this is an
immensely complex decision-making problem, it can only be solved through cooperative
interaction between users and computer systems. Herein, the challenge is to win the
users’ trust by being transparent with respect to how the system operates [29], e.g., by
providing explanations of the recommendations [142] and educating users about the
domain using visualizations [99]. As shown in the example of our CityRec system, the
success of such systems depends on the seamless integration of user interface aspects
and algorithms. Since tourism is a dynamic field, the information powering such systems
must be constantly updated; thus, highly automated solutions must be achieved to
allow scaling. Our contributions showcase that data-driven solutions can be realized for
many aspects of travel recommender systems, such as characterizing traveler mobility,
determining travel regions, recommending the duration of stay, and characterizing
destinations. With minor adaptations, they can be deployed within travel platforms to
aid users in planning their trips and recommend fitting items such as accommodations
and attractions.

Commercial trip planning systems will face additional challenges, such as ensuring
that the recommendations on such platforms give a fair amount of exposure to individual
items [6] and balance the interests of multiple stakeholders [165], such as mitigating the
negative effects of overtourism [96]. Given the extent to which recommender systems
influence the behavior of users, such platforms will have a high impact on tourism, which

66



6.4 Perspectives on Destination Recommender Systems

means that they must embrace their ethical responsibility [97]. In the context of travel
recommender systems, this includes efforts to mitigate the climate crisis by providing
users with recommendations that are similar in experience but minimize greenhouse gas
emissions.
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Summary
In this work, we present a data-driven method to mine trips from location-based social
networks to understand how tourists travel the world. The obtained insights can be
relevant building blocks for destination recommender systems, i.e., automatic preference
elicitation, defining travel regions, and general traveler behavior. The primary artifact of
this paper is the tripmining library, which quantifies collected trips with several metrics
to capture the underlying mobility and assess the quality of the data.

We showcase two applications that utilize the mined trips. The first is an approach
for clustering travelers in two case studies, one of Twitter and another of Foursquare,
where the pure mobility metrics are enriched with social aspects, i.e., what activities
the users have done. Clustering 133,614 trips from Twitter, we obtain three distinct
groups of travelers based on the pure mobility trace. In the Foursquare data set, which
includes the type of venues the users have checked in, six clusters can be determined.
The second application area is the spatial clustering of destinations around the world.
These discovered regions are solely formed by the mobility patterns of the trips and are,
thus, independent of administrative regions such as countries. We identify 942 regions
as destinations that can be directly used as a hierarchical region model in a destination
recommender system.

Author Contributions
LD was the main author of the manuscript and supervised the individual research projects
of AS and RR. LD developed the tripmining library, initiated the data collection, and
performed all statistical analyses. RR developed the initial version of the trip clustering
approach under the supervision of LD and helped to adapt the method for the novel
data set. AS helped with the data collection from Twitter and developed the method
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Abstract
It is important to learn the characteristics of travelers and touristic regions when 
trying to generate recommendations for destinations to users. In this work, we first 
present a data-driven method to mine trips from location-based social networks to 
understand how tourists travel the world. These trips are quantified using a number 
of metrics to capture the underlying mobility patterns. We then present two applica-
tions that utilize the mined trips. The first one is an approach for clustering travelers 
in two case studies, one of Twitter and another of Foursquare, where the pure mobil-
ity metrics are enriched with social aspects, i.e., the kinds of venues into which the 
users checked-in. Clustering 133,614 trips from Twitter, we obtain three distinct 
clusters. In the Foursquare data set, however, six clusters can be determined. The 
second application area is the spatial clustering of destinations around the world. 
These discovered regions are solely formed by the mobility patterns of the trips and 
are, thus, independent of administrative regions such as countries. We identify 942 
regions as destinations that can be directly used as a region model of a destination 
recommender system. This paper is the extended version of the conference article 
“Characterisation of Traveller Types Using Check-in Data from Location-Based 
Social Networks” presented at the 26th Annual ENTER eTourism Conference held 
from January 19 to February 1, 2019 in Nicosia, Cyprus.

Keywords  Mobility modeling · Cluster analysis · Spatial clustering · Recommender 
systems

1  Introduction

Analyzing the mobility of travelers reveals a lot of information about their behavior, 
preferences, and the destinations they visit. This is interesting for a number of different 
purposes. Municipalities can obtain information about the popularity of destinations 

 *	 Linus W. Dietz 
	 linus.dietz@tum.de
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within their district to build infrastructure and provide services in an informed way. 
Destination marketers can learn more about the context of their prospective guests and 
make improved offers to attract more visitors. Tourist agencies or travel recommender 
systems can characterize their clients and suggest serendipitous, yet accurate destina-
tions to visit. Finally, prospective travelers can benefit from useful recommendations 
when planning their trips.

Tourist mobility can be observed in different ways. Analyzing the number of accom-
modation bookings in a city, tracking ticket sales of flights or trains, or analyzing the 
congestion of highway connections only captures aggregate travel patterns of one des-
tination or the connections between them. To provide insights into individual travel, we 
analyze the movement of individual travelers with data from location-based social net-
works (LBSNs). Our definition of LBSNs follows the one of Roick and Heuser (2013), 
which includes both social networks that allow the geotagging of contents, such as 
Twitter or Flickr, as well as geosocial networking sites, such as Foursquare.

The basic idea of our approach is to chronologically sort all of a user’s geotagged 
content into a stream of check-ins and to segment it into periods of being at home 
and of travel. Consecutive check-ins outside of one’s home are combined into 
a trip that can be characterized using different metrics (Dietz et  al. 2018a). Such 
trips can be used to find the destinations visited together, to derive the durations of 
stays (Dietz and Wörndl 2019), to cluster them into discernible groups (Dietz et al. 
2018b), or to discover larger travel regions (Sen and Dietz 2019).

In this paper, we refine and extend the aforementioned approaches. After review-
ing the most relevant literature on the respective topics, we describe three major 
contributions in the following sections: First, we thoroughly describe the method 
for deriving trips from various LBSNs, such as Foursquare, Twitter and Flickr. We 
describe metrics to quantify the quality of trips and compare the mobility metrics of 
several data sets in Sect. 3. Second, we extend the approach of Dietz et al. (2018b) 
to cluster the mined trips by social aspects and a second case study on a Twitter data 
set in Sect. 4. Third, in Sect. 5, we present a novel approach to transform the mobil-
ity patterns manifested in trips into a network of tourist flows and use a community 
detection approach to discover tourist destinations that are defined by actual tourist 
mobility as opposed to political and administrative boundaries. Finally, we conclude 
our findings in Sect. 6.

The contributions of this paper can be used to improve the personalization of 
destination recommender systems. By observing a large number of travelers, we 
learn how real users travel and should be able to make more realistic recommenda-
tions. The spatial clustering of cities to larger travel regions can be directly used as a 
region model within a destination recommender system that was formerly dependent 
on political boundaries (Wörndl 2017; Dietz 2018).

2 � Related work

The motivation of this work is to improve several aspects of tourist recommender 
systems. For making good travel recommendations, we need deeper insights as to 
how people travel, what types of travelers exist, and which regions one should travel 
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to. This section discusses the literature on tourist recommender systems, the analysis 
of human mobility, characterizing travelers, and previous approaches to discovering 
and defining travel regions.

2.1 � Tourist recommender systems

Individual tourism is a challenging domain for recommender systems due to the 
substantial complexities of planning an independent trip and the huge economic 
importance of the travel and tourism industry (Chaudhari and Thakkar 2019). Big 
commercial player such as Booking, Tripadvisor, and Skyscanner focus on recom-
mending single items, such as hotels, restaurants, and flights. Nowadays, the aca-
demic community is more concerned with recommendations of various touristic 
items, such as attractions, tourist packages, and composite trips (Borràs et al. 2014). 
Since these items are often not as well defined as hotels or restaurants, collabora-
tive filtering methods have proven to be less suited. In addition, most people usually 
travel less frequently than e.g., consuming music or movies, making collaborative 
recommendations even less reliable due to the cold start problem. Instead, content-
based and knowledge-based recommendation techniques are often employed (Burke 
and Ramezani 2011), or in case it is possible, hybridization (Kbaier et al. 2017).

To facilitate the content-based paradigm, users and items need to be placed in 
the same feature space that allows for the calculation of a similarity metric. This is 
usually done using a common categorization, and the similarity measure determines 
the ranking of the recommended items. This categorization problem is nontrivial, 
since it requires reliable information about both the user and the candidate items. It 
can, however, overcome the cold start problem (Burke 2007), since, unlike in a col-
laborative filtering approach, one can design intelligent systems that efficiently and 
effectively capture the user’s preferences (Braunhofer et al. 2014). For example, it is 
possible to characterize users based on their past trips (Dietz and Weimert 2018), or 
to define a more elaborate mapping between classes of users and destinations (Sert-
kan et al. 2017). Also, the information about a user’s social network and previously 
visited places can be used (Bao et al. 2015; Tsai et al. 2019). Dietz (2018) proposed 
a data-driven destination recommender system that would suggest composite trips 
of destinations to users. This paper contributes to the outlined ideas by improving 
the personalization of the recommendations, especially the duration of stay at the 
respective destination depending on the traveler type. Furthermore, in Sect. 5, we 
propose an approach to constructing a hierarchical model of travel regions.

2.2 � Human mobility analysis

The analysis of human mobility gives insights into various aspects of everyday life. 
Before the advent of online social networks on GPS-enabled devices, data sources 
like mobile phone communication records (González et  al. 2008), Wi-Fi usage 
(Zhang et al. 2012), and raw GPS trajectories (Zheng et al. 2009) have been used 
to analyze individual human mobility. Given today’s availability of LBSN data that 
enriches a pure location trace with further information, such as user-posted content 
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and the user’s social network, much research has been done analyzing mobility using 
data from Twitter, Foursquare, and other platforms (Hess et al. 2015).

A prominent research objective is the predictability of human mobility. Song 
et al. found that individual mobility patterns follow reproducible scaling laws (Song 
et al. 2010a) and described the limits of the extent to which human mobility can be 
predicted (Song et  al. 2010b). More recently, Ouyang et  al. (2016) have analyzed 
mobility data to predict travel trajectories using a deep learning framework. Similar 
approaches to predicting the next visited place exist for tourists as well (Zheng et al. 
2017) The correlation of locations with a social activity that can be studied with 
LBSN data promises interesting insights into social behavior. Cheng et  al. (2011) 
found recurring daily and weekly patterns of activity and Wang et al. (2011) found 
a positive pairwise correlation between social connectedness, i.e., the strength of 
interactions, and mobility. Noulas et  al. analyze activity patterns of Foursquare 
users, such as the spatial and temporal distances between two check-ins (Noulas 
et  al. 2011). They discover place transitions that could well be used to predict or 
recommend the future locations of users. The general idea behind their approach is 
quite similar to ours, however, their motivation was to uncover recurring patterns of 
human mobility, thus the resulting metrics go in a different direction.

LBSN mobility data have been used to improve recommender systems (Bao 
et al. 2015). Zheng and Xie (2011) studied spatial co-occurrences that can also be 
used to identify similar users and generate implicit ratings for collaborative filtering 
algorithms. Bao et al. (2012) matched the travelers in a foreign city to local experts 
based on their respective home behaviors to improve the accuracy of a point of inter-
est recommender. LBSN data has also been used to capture cross-border movement 
(Blanford et  al. 2015). The authors demonstrate how the movement dynamics of 
people in a country can be analyzed, however, this study is not about tourists and is 
limited to one country, Kenya. Hsieh et al. (2012) used past LBSN data to recom-
mend traveling paths, while Zheng et al. (2019) proposed heuristics to approximate 
the similarity of tourist trips. For this they present solutions to derive the popularity, 
the proper time of day to visit, the transit time between venues and the best order 
to visit the places. In contrast to our scenario, the routes contain single points of 
interest in urban areas and they leave determining durations of stay at one place to 
future work. Recently, Dietz et al. (2018a) have proposed a metric-based approach 
that extracts foreign trips from LBSN data. In this paper, they analyze tourist mobil-
ity patterns with the goal of investigating the popularity and co-occurrences of tour-
ist destinations in composite trips.

2.3 � Tourist roles

The characterization of tourists has been discussed in literature for decades with 
an increasing level of complexity. One of the first works was Cohen’s four differ-
ent social roles of tourists: the “organized mass tourist”, “individual mass tourist”, 
“explorer”, and “drifter” (Cohen 1972). Pearce used fuzzy set theory to define 15 
different travel roles (Pearce 1982), while McKercher used an approach motivated 
by cultural sciences to classify tourists based on the importance of cultural motives 
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when deciding which destination to visit and the depth of cultural experience gath-
ered by the tourist (McKercher 2002). Finally, Yiannakis and Gibson (1992) took a 
sociological perspective to observe which roles—they identify 17—are enacted by 
people when they travel; and associated these with different psychological needs.

With such diversity of tourist categorizations in the literature, the best grouping 
of tourist preferences and needs to improve destination recommendation is unclear. 
More importantly, none of the existing categorizations have been validated with 
observational data (Neidhardt et  al. 2014), so it is unclear whether the categories 
apply to real travelers. To address this challenge, Neidhardt et  al. developed the 
Seven Factor Model of tourist behavioral patterns (Neidhardt et al. 2014) based on 
the Big Five Factor Model (McCrae and John 1992) from psychology and a factor 
analysis of the 17 tourist roles proposed by Yiannakis and Gibson (1992); Gibson 
and Yiannakis (2002). With a destination recommender system in mind, they elic-
ited user preferences through an image classification task, where the users are to 
pick the most appealing travel-related photos from a collection. The classification of 
these pictures along the Seven Factors has been previously determined using a ques-
tionnaire. Thus, the user’s selection of images constitutes a personalized mixture of 
taste model, allowing for content-based recommendation of points of interests that 
were rated by experts along the Seven Factors in the design stage. Continuing this 
line of research, Sertkan et al. used unsupervised learning to cluster 561 tourist des-
tinations from a rich commercial data set based on 18 motivational and 7 geographi-
cal attributes (Sertkan et al. 2017). Using an expert mapping of the Seven Factors 
to these destinations, they could distill associations between destination attributes 
and the Seven Factor Model that indicate travel behaviors. The Seven Factor Model 
relies heavily on expert knowledge, which is a drawback if this information is not 
available or costly to obtain. To overcome these limitations, Dietz et al. (2018b) pro-
pose trips mined from LBSNs to cluster trips into distinct groups using mobility 
metrics. To obtain good cluster quality, they perform a correlation analysis of the 
mobility features and identify four important features: the number of countries vis-
ited, the duration of travel, the radius of gyration, and the displacement from home. 
The resulting clusters are “Vacationers”, “Explorers”, “Voyagers”, and “Globetrot-
ters”. We improve upon this research by also analyzing domestic trips and compare 
a pure mobility-based cluster analysis with social aspects, i.e., to which kinds of 
establishments the travelers have checked-in during their trip.

2.4 � Touristic region discovery via community detection

Researchers have already attempted to define regions based on human mobility 
data for various purposes such as administrative region discovery (del Prado and 
Alatrista-Salas 2016), topical region discovery (Taniguchi et al. 2015), and political 
redistricting (Joshi et al. 2009). Closest to our region discovery approach is the work 
of Hawelka et al. (2014), who aim to find larger regions of mobility by combining 
several countries. We aim to find touristic regions that are smaller and potentially 
independent of countries.
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There are various algorithms to perform community detection in networks, such 
as the Louvain method (Blondel et al. 2008), GDBSCAN (Orman et al. 2011), and 
Infomap (Rosvall et al. 2009). The complexity of these methods is O(n log n) . GDB-
SCAN is less flexible compared to the two others, since it requires to use the dis-
tance between spatial points to form clusters that are geographically contiguous. 
This is a limitation that the other two methods do not have, since the weights of the 
edges can be chosen at the analyst’s will. In the end, we decided to use Infomap, 
since it has been reported that it outperforms the Louvain method in the quality of 
the communities (Fortunato and Hric 2016), and there is an up-to-date implementa-
tion available.1 This implementation of Infomap can recursively apply the algorithm 
to the detected clusters to detect hierarchies of clusters. This mitigates the resolu-
tion limit problem, where the size of communities depends on the size of the graph. 
Thus, the Infomap implementation was our choice to be used without modification 
in the spatial clustering of tourist destinations of Sect. 5.

3 � Trip mining

In this section, we explain our method to mine trips from various LBSNs, namely 
Foursquare, Twitter and Flickr. Geo-tagged posts in LBSNs provide an incomplete 
view of a user’s mobility, since a user’s location is only recorded when she decides 
to share it. However, given the prevalent use of LBSNs on mobile devices, users 
often leave a nearly continuous spatio-temporal trace behind them. For example, if 
a user tweets using a mobile device and decides to enable the “Tweet with loca-
tion” feature, her location will be recorded with every sent tweet. Similarly, if a user 
checks in at Foursquare venues, her presence at the venue at a particular time is 
recorded.

These posts can be seen as a continuous stream of check-ins: a check-in is a tuple 
of the unique identifier of a user, a location, and a timestamp. The precision of a 
location’s coordinates does not have to be exact, but can also be on the granularity of 
destinations, such as cities or small islands. Since the data set does not include addi-
tional metadata, such as user profiles, users’ home countries must be solely deter-
mined from the check-in stream. Literature lists several strategies for that, such as 
Plurality, the geometric median, or nDays (Kariryaa et al. 2018). Segmenting users’ 
check-in stream into trips by periods of travel before returning home can then be 
done; however, the derived trips need to be checked for data quality, as some users 
might check in rarely, thus, their true location might be concealed.

3.1 � Data sets

Human mobility has been of great interest to the scientific community, as it explains 
a lot about people’s habits; however, location data is inherently privacy-sensitive and 

1  https​://www.mapeq​uatio​n.org/code.html.
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anonymizing it for research purposes is challenging, since correlating trajectories 
with single data points introduces many de-anonymization opportunities (de Mont-
joye et al. 2013). For this reason, location-based social networks are usually quite 
restrictive towards querying user location and enforce more or less strict API limits. 
In this paper, we analyze three data sets: a Foursquare data set from 2012/13 (Yang 
et al. 2015), the YFCC100M Flickr data set (Thomee et al. 2016), and a self-crawled 
Twitter data set from 2018/19. Bao et al. (2015) list further data sets stemming from 
LBSNs.

The raw data sets of Foursquare and Flickr are available following the respective 
references. Furthermore, we published the mined trips from all three data sets with 
redacted user identifiers and dates to protect the users’ privacy.2 Table 1 shows an 
general overview of the data sets. In the case of Flickr and Twitter, we sorted the 
check-ins chronologically and discarded the first 0.1%, since they were very sparse 
and potentially wrong, such as 1970-01-01 (the Unix timestamp 0).

3.1.1 � Foursquare

Yang has published a check-in data set3 stemming from Foursquare (Yang et  al. 
2015). It contains check-in data spanning 18 months (April 2012–September 2013) 
and 266,909 users at 3,680,126 venues in 77 countries; however, the data set only 
contains check-ins from the 415 most popular cities on Foursquare and, therefore, 
does not include data from travelers seeking recreation in the countryside. Table 2 
shows how the distribution of the travelers’ origin is influenced by the original data 
collection. The data set is interesting, because it features many users not residing in 
the Western countries. The large number of users in countries like Turkey and Indo-
nesia is in line with reports on the regional popularity of Foursquare.

3.1.2 � Flickr

The YFCC100M data set is described as the “largest public multimedia collec-
tion ever released” (Thomee et al. 2016). It comprises 100 million media objects, 
less than half of them enriched with geotags. The images were uploaded to Flickr 

Table 1   Characteristics of the data sets

aLeft 0.1% quantile

Feature Foursquare Flickr Twitter

Number of users 266,909 214,204 2,662,741
Number of check-ins 33,263,633 48,469,177 263,926,396
Observation period 2012-04-03–2013-

09-17
2001-07-22a–2014-

04-26
2011-05-16a–2019-04-28

2  https​://githu​b.com/Linus​Dietz​/JITT2​020-Minin​g-Trips​-Repli​catio​n.
3  https​://sites​.googl​e.com/site/yangd​ingqi​/home/fours​quare​-datas​et.
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between 2004 and 2014 and have been published under a Creative Commons 
license. We only analyze the metadata of geotagged images for our purpose, since 
we are not interested in the images themselves. The distribution of user origin, cf. 
Table  3, is more diverse than in the other two data sets, with most users coming 
from highly developed countries.

3.1.3 � Twitter

Twitter has been frequently used to analyze the individual mobility of the platform’s 
users. The reasons for this are that—in contrast to other social media platforms for 
private communication—the content on Twitter is mostly public. Twitter also offers 
APIs to query information about it’s users, including the approximate location of 

Table 2   Distribution of 
travelers’ home country 
Foursquare

Home country Fraction of 
travelers in %

Turkey 15.15
Brazil 14.28
USA 11.14
Japan 10.16
Indonesia 8.31
Chile 5.59
Malaysia 5.20
Mexico 4.71
Russia 2.85
Thailand 1.95
Other 20.66

Table 3   Distribution of 
travelers’ home country Flickr

Home country Fraction of 
travelers 
in %

USA 27.49
Great Britain 8.00
Spain 5.38
France 4.64
Canada 4.03
Germany 3.83
Japan 3.63
Australia 3.56
Italy 2.82
Brazil 2.49
Other 34.14
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their tweets if they have enabled sharing the geolocation of their tweets. By query-
ing the timelines of these users, we can follow their movement patterns.

We have continuously collected timelines of Twitter users since mid-2018 to 
build up a database of 267,853 timelines. These users tweet in all regions of the 
world, and the individual check-ins are matched to 24,186 cities with over 15,000 
inhabitants each using the GeoNames Gazetteer.4 As can be seen in Table 4, most 
users come from the United States, where Twitter is highly popular.

3.2 � Method details

The chronologically sorted list of the check-ins of each user is segmented into peri-
ods of being at home and periods of travel. To determine the home location of the 
user, we use the plurality strategy, i.e., choosing the city with the highest number of 
check-ins. While this is the simplest heuristic to compute, literature shows that its 
accuracy is on par with more sophisticated methods such as the geometric median 
(Kariryaa et  al. 2018). It may, however, be susceptible to the effects of commut-
ing and users who predominately use social media when traveling. To reduce such 
false classifications, we discard travelers whose check-ins at home are fewer than a 
predefined threshold, in our case 50%. This threshold is an aggressive reduction of 
the data set, discarding about 95% of the users whose home city is unclear to us. It 
is, however, necessary, since incorrect classification of the user’s home would have 
severe consequences on the forthcoming analyses. The 50% cut-off could be lowered 
for analyses that are not so much dependent on the correct classification of the home 
location or the home location can be retrieved using other channels, such as a field 
in the user profile.

Table 4   Distribution of 
travelers’ home country Twitter

Home country Fraction of 
travelers 
in %

USA 60.38
Great Britain 11.39
Japan 4.20
Canada 2.91
Brazil 2.23
Germany 1.96
Mexico 1.72
Netherlands 1.62
Australia 1.51
Spain 1.32
Other 10.77

4  http://downl​oad.geona​mes.org/expor​t/dump/readm​e.txt.
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Figure 1 exemplifies a check-in stream of a user from Munich. We define a num-
ber of continuous check-ins at one location as a block, which can be while traveling 
or while at home. In our example, the user’s check-in stream starts on day 0 ( d0 ) 
in Munich and is followed by a block of 9 days ( d3–d11 ) in Paris. In this case, the 
block is terminated by a check-in in Munich on the next day ( d12 ). Since Munich is 
the user’s home location, the first trip is considered completed. This trip, thus, only 
consists of one block.

Staying at home for 83 days, the user is then observed checking-in in Paris on 
d101 and a few hours later in New York City. Since she was located in Munich the 
day before, it seems quite probable that she traveled from Munich to New York City 
with a stopover in Paris. The check-in stream shows several check-ins in New York 
City until d105 and continues with check-ins in Washington, D.C. from d109–d118 , 
before the trip is again terminated by the return to Munich on d120 . Thus, this trip 
has a duration of 18 days and consists of three blocks.

The design decision to include short stopovers in the main trip was made due to 
the fact that stopovers can be often extended for several days without an increase in 
the flight ticket price. In fact, some travelers actively choose a city as a destination 
for the stopover; thus making it part of the trip. Having said that, there are some 
other uncertainties. As previously described, we only know the location of the user 
if she decides to check-in, tweet, or take a photo with a GPS tag. During a block, this 
is not much of an issue, since we assume that sequential check-ins at the same loca-
tion mean that the user has not moved. The transition time, i.e., the time between two 
blocks, is more important, as it determines the duration the user has been at a loca-
tion. In Fig. 1, we denote the transition time with a →

t
 , where t is the days between 

the last check-in of the first block and the first check-in of the subsequent block. Trip 
2 starts with perfect information: We know where the user was on all days from d100 
to d105 . What we do not know is where she was on d106–d108 , because the next check-
in was just on d109 in Washington, D.C. Regarding the temporal segmentation of the 
blocks and trips, we follow a conservative strategy, which means that the block is 
terminated with the last check-in without the transition time. We think this strategy 
is sound, because it does not involve any speculation about the traveler’s location. 
For example, at the end of trip 2, it is not clear when the traveler flew back from the 
United States to Munich. All we know that she was in Washington D.C. on d118 and 

Home︷ ︸︸ ︷
Munich d0 →2

Block︷ ︸︸ ︷
d3 Paris d11︸ ︷︷ ︸

Trip 1

→0

Home︷ ︸︸ ︷
d12 Munich d100 →0

→0

Block︷ ︸︸ ︷
d101 Paris d101 →0

Block︷ ︸︸ ︷
d101 New York City d105 →3

Block︷ ︸︸ ︷
d109 Washington, D.C. d118︸ ︷︷ ︸

Trip 2

→1

→1

Home︷ ︸︸ ︷
d120 Munich → . . .

Fig. 1   Example of a user’s check-in stream with two trips
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in Munich on d120 . Since we do not have any evidence of the user’s location, we do 
not add d119 to any of these blocks. The drawback of this is that the sum of the dura-
tions of a trip’s blocks can be shorter than the duration of the trip.

3.3 � Trip quality assurance

Using the aforementioned trip heuristic, one would potentially get a lot of trips com-
prising of only a single check-in. To filter out typical business trips, we only ana-
lyze trips with a minimum duration of 7 days. The maximum duration of the trips is 
set to 365 days, since longer durations are not considered a “visit” anymore in the 
recommendations for tourism statistics by the United Nations Department of Eco-
nomic and Social Affairs (2010). Furthermore, we require the user to display rela-
tively steady check-in behavior during travel. Thus, this section is about metrics that 
ensure a minimum quality of the check-in behavior.

The check-in frequency shown in Eq. (1) is not robust against a multitude of check-
ins on 1 day, which makes it unsuitable for assessing the reliability of the check-in 
stream. In this regard, the better measure is the check-in density (Eq. 2), as it captures 
the fraction of days with a check-in during a trip. Thus, it captures how steady the 
check-in stream is, which is more important than having several check-ins at the same 
location on 1 day. We exclude trips that fall under the minimum check-in density of 
0.2, which means that the user must have checked-in at least once in 5 days on average.

The minimum value of check-in density should be chosen depending on the use 
case. For the purpose of analyzing global mobility patterns, we analyzed the con-
sequences of enforcing a minimal check-in density. Figure 2 depicts the cumulative 
density function of the check-in densities of the trips. Since the curve is smooth and 
without an obvious “elbow”, we set the threshold at 20%, which discards 32.88% of 
the trips. Recalling our initial goal with this heuristic, we reduced the mean transi-
tion time from 9.80 to 3.39 days while still keeping 67.12% of the trips.

3.4 � Mobility metrics

Using this data-driven method, we obtain trips from each data set which we sum-
marize in Table 5. The number of trips is the highest in the Twitter data set; the least 
amount of trips come from Flickr. The ratio of the number of foreign trips to domes-
tic ones is about 1:19. While the metrics from the previous section were all about 
the quality of the users’ check-in stream, the following metrics capture the mobility 
patterns of the users. We visualize the distribution of all metrics using the empirical 
cumulative distribution function (ECDF).

(1)Check-in frequency =
check-ins

days

(2)Check-in density =
days with check-in

days
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3.4.1 � Trip duration

The trip duration is the number of days between the first and the last check-in of the 
trip. Figure 3 shows the cumulative distribution function of the trip durations. One 
can see the sharp increase in the curves of all three data sets. Overall, 90% of all 
trips are shorter than 30 days and 62% are shorter than 2 weeks. Flickr has an overall 
high mean duration of 31.59 days, followed by Twitter with 18.45 and Foursquare. 
When looking at the median, the data sets are quite similar with a value of 9 Four-
square, 11 for Twitter, and 12 in the case of Flickr. The main reason for the higher 
mean value of Flickr is that it has more very long trips in comparison to the other 
data sets. This is an indication that Flickr is used in a different way than the other 
LBSNs. It might also be that trips are not segmented correctly, possibly due to pho-
tographers mostly taking pictures when on travel as opposed to being at home.

3.4.2 � Locations, blocks, and countries visited

We also analyzed the number of distinct locations, blocks, and countries within a 
trip. The number of locations is naturally lower than the number of blocks, since 
one location can be visited in several noncontiguous blocks of a trip. Figure 4 also 
reveals that in all data sets most trips span very few countries.

3.4.3 � Check‑in distance and radius of gyration

Check-in distance measures the mean geographic distance between two consecutive 
check-ins. This metric is heavily influenced by the check-in frequency. Thus, we pre-
fer to use the radius of gyration for measuring how far the users traveled within a 
trip. To do so, we follow the definition of González et al. (2008). In simple terms, 
the radius of gyration measures the mean distance between the mean location of the 
trip to all other check-ins. It is, thus, more robust against skewed distributions of 
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Fig. 2   Empirical distribution function of the check-in densities in the Foursquare data set
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check-ins than the check-in distance. In Fig. 5, one can see that the Twitter trips have 
the largest radius of gyration followed by the Flickr trips and the Foursquare trips.

3.4.4 � Displacement

Displacement measures the distance between the user’s home location and the mean 
position of the places visited during the trips. In our data, a similar trend as in the 
radius of gyration emerges: the Twitter users travel farther than the Foursquare and 
the Flickr users; however, Twitter shows a clearly slower increase of the distribution 
function than in the radius of gyration. The reason for this big difference is unclear. 
Possibly, the socio-economic background of some Twitter users is a different one 
than of the Foursquare users allowing them to make more intercontinental trips.

Table 5   Trip statistics

The first three rows showcase the amount of data pruning in com-
parison to Table 1

Feature Metric Flickr Foursquare Twitter

Number Trips 1254 20,317 133,614
Number Travelers 1254 10,508 23,178
Number Check-ins 96,111 101,759 2,665,987
Duration Mean 31.59 11.70 18.45
Duration SD 54.14 8.14 26.65
Duration Max 362 222 364
Checkins Mean 76.64 5.01 19.95
Checkins SD 138.81 5.20 37.67
Checkins Max 1063 355 991
Locations Mean 22.39 3.16 5.27
Locations SD 58.96 1.92 5.84
Locations Max 942 25 284
Blocks Mean 1.83 2.37 1.75
Blocks SD 3.53 2.08 2.35
Blocks Max 80 95 165
Countries Mean 1.43 1.06 1.40
Countries SD 1.33 0.28 0.93
Countries Max 22 9 32
Checkin density Mean 0.41 0.34 0.50
Checkin density SD 0.22 0.13 0.23
Checkin density Max 1.00 1.00 1.00
Radius of gyration Mean 424.46 121.70 703.35
Radius of gyration SD 1258.09 603.44 1435.82
Radius of gyration Max 12,735.39 12,871.49 15,834.70
Displacement Mean 295.19 186.58 1349.55
Displacement SD 894.25 921.24 2484.86
Displacement Max 13,183.50 16,279.58 19,430.03
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3.4.5 � Venue information

Finally, we looked at the types of venues checked into according to Foursquare’s cat-
egorization.5 Naturally, this information is only available for the Foursquare data set. 
Out of the ten top-level Foursquare categories, we took a subset of four of the most 
relevant categories to characterize a trip: Food, which comprises of restaurants and 
cafés, Nightlife, which are mostly bars and clubs, Arts and Entertainment, which 
also encompasses all kinds of cultural sites, and Outdoors and Recreation, which 
are parks and other sports-related sites. As can be seen in Fig. 6, Food is the most 
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Fig. 4   ECDF of the number of visited locations and countries

5  https​://devel​oper.fours​quare​.com/docs/api/venue​s/categ​ories​.
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common venue type, followed by Outdoors, Nightlife, and Arts and Entertainment 
check-ins. Furthermore, each trip typically has few check-ins that fall under these 
categories.

3.5 � Summary

The proposed approach makes it possible to mine trips from the check-in stream 
of LBSN users. We have derived a number of metrics for the trips and have distin-
guished two types of metrics: first, metrics that capture the quality of the data, and 
second, metrics that capture the underlying mobility of the travelers. Making use of 
the former ones, we could determine which trips are plausible and sound, whereas 
the latter ones enable us to do further analyses in this domain.
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The algorithms described in this section are implemented in a Python module, 
published under the permissive MIT License on Github.6 It provides functionality 
for parsing the aforementioned data sets and can be extended for parsers of other 
data sets in about 30–50 lines of Python code.

We learned that not all LBSNs are equally good for such analysis, since users of 
a geosocial network like Foursquare comprise a different population than Twitter. 
As a consequence, Twitter users travel further and more often compared to users of 
Foursquare. Flickr is not well suited for this kind of analysis, since we observe that 
few people post geotagged pictures of their home. This makes it hard to determine 
their home locations with the information we have at hand and, thus, making this 
data set not well-suited for our further applications. Naturally, this sampling of trips 
based on the respective LBSN limits the generalizability of the findings. The pro-
posed trip mining approach is tailored to LBSN data in large quantities. Since most 
of the data is not travel-related per se, the heuristics to filter the check-in information 
for touristic trips will inevitably throw away most of the data points. Furthermore, 
the data is not suitable for all analyses. For example, short holiday trips of 3–4 days 
are hard to distinguish from business trips of the same duration. For these reasons, 
we opted to only analyze long trips of a duration of at least 7 days.

The mined trips can serve as starting points for various improvements to recom-
mender systems. First of all, they show the relative popularity of cities throughout 
the year. This can be used to increase the diversity of recommendations and, thus, 
avoid peak season visits for travelers who are sensitive to mass tourism. Further-
more, it shows patterns of destinations that are often visited together. In the compos-
ite destination recommendation scenario (Herzog et al. 2019; Dietz 2018), this can 
provide information on which cities should be combined. Finally, the trip data gives 
cues on how many destinations should be visited within a trip of a given length and 
also how long one should stay at each destination (Dietz and Wörndl 2019).

In the next section, we perform a cluster analysis to identify different kinds of 
trips. This can be useful for distinguishing traveler types in the preference elicitation 
phase of a travel recommender system. Another application for which we use the 
mined trips is touristic region discovery, which we describe in Sect. 5.

4 � Clustering of traveler types

The first application of the mined trips for use in touristic information systems is a 
cluster analysis. Cluster analysis is the task of finding groups of data objects, where 
each group comprises similar objects, whereas the groups themselves are dissimilar 
to each other. This technique can uncover a structure within unlabeled data and is 
therefore categorized as unsupervised machine learning (Jain and Dubes 1988).

By revealing different kinds of tourist trips, we can offer insights about the gen-
eral characteristics of different types of travelers. While this is an analytic result 
on its own, it can be directly used as part of user modeling within a recommender 

6  https​://githu​b.com/Linus​Dietz​/tripm​ining​.
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system. But what kind of travelers are there? To answer this, we analyze trips from 
two data sources: Twitter and Foursquare. In the former, we have a pure mobility 
trajectory with a check-in granularity of cities, whereas in the latter, the check-ins 
are attributed to specific venues within a city with further information about the type 
of the venue.

4.1 � Method

In both analyses, we follow the method introduced by Dietz et al. (2018b). The trips 
are characterized by several features derived from the check-in stream; however, not 
all metrics are useful for the analysis. Since the goal is to capture the underlying 
phenomena of the users’ travel behavior, we only use the metrics from Sect. 3.4 that 
capture the users’ mobility instead of the quality of data.

Among the remaining metrics, we perform a correlation analysis and remove 
redundant features, i.e., those whose correlation to another feature is very high. The 
threshold for this was set at a Pearson correlation coefficient > 0.75 . The reason for 
this exclusion is that highly correlated features will not improve the segregation in 
the clustering algorithm.

Having decided upon the metrics, we normalize all features using min–max nor-
malization and then run the K-means clustering algorithm with a different number 
of expected clusters. We evaluate the quality of the determined clusters in terms of 
the within-cluster sums of squares and the average silhouette (Rousseeuw 1987). 
The silhouette width measures how well a data object fits into its labeled cluster as 
opposed to all other clusters. Therefore, it is a robust and easy to interpret method 
that gives a broad overview of the overall solution quality, as well as information 
about each data object.

4.2 � Case study 1: Twitter trips

As already mentioned, the trips from Twitter are the most numerous. Due to mem-
ory limitations, we drew a random sample of 40,000 trips to run the clustering using 
K-means clustering. Since this is almost half of the trips, the sample is representa-
tive for the overall number of trips.

4.2.1 � Features

As already mentioned, this case study is about the pure mobility of the travelers. 
After the correlation analysis, we could retain the four metrics for capturing the 
mobility: the duration of the trip, the number of locations, the number of blocks, the 
radius of gyration, and the displacement from home.

4.2.2 � Results

Analyzing the results of the clustering from K = 2 to K = 7 clusters, there is 
always one dominant cluster and several smaller ones. According to the silhouette 
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width in Fig.  7a, the solution with two or three clusters has a higher quality, 
before it decreases to a lower plateau for K ≥ 4. Thus, we chose the result of 
K = 3 as our final result.

Since we do not discriminate between international and domestic trips, unsur-
prisingly, most trips from the dominant cluster in green (cf. Fig. 7b) are domes-
tic trips, with a low mean displacement of 565.57  km and only 1.22 countries 
on average. This result is potentially an outcome of most Twitter users residing 
in the USA. The two other clusters are smaller in number and more specialized. 
The Globetrotters travel further, visit the most countries, and display the highest 
radius of gyration. With 35 days duration, these trips are also the longest. Finally, 
the Distant Vacationers travel furthest from home, but are not so active during 
their travel. Their radius of gyration is only one third of the Globetrotters, despite 
visiting nearly as many distinct locations. Note that these names are only one way 
to name these clusters. We gave the clusters names to make it easier to refer to 
them and did our best to choose names that reflect the nature of the trips accord-
ing to the clustering result (Table 6).

4.3 � Case study 2: Foursquare trips

As opposed to the Twitter study and a previous analysis of Foursquare trips 
(Dietz et al. 2018b), we want to analyze what clusters are formed when taking the 
activities of the travelers into account.

4.3.1 � Features

For this analysis, we use the mobility features of the trips enriched with the type 
of venues the travelers checked into on Foursquare. This results in the following 

Fig. 7   Twitter: choosing the best number of clusters
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features: duration, countries visited, the displacement, the radius of gyration, and 
the number of check-ins in the categories Food, Nightlife, Arts and Entertainment, 
and Outdoors and Recreation. No features had to be removed after the correlation 
analysis.

4.3.2 � Results

With this data set the results were more nuanced and a bigger number of clusters 
was found. The determination of the number of clusters using the silhouette width 
in Fig. 8a suggested six clusters. Analyzing the results summarized in Table 7 more 
closely, again a dominant cluster of “Short Domestic” trips arises with 76% of all 
trips residing in this group. These trips are on average the shortest, have the smallest 
radius of gyration, and are almost exclusively in the home country of the traveler, 
since the displacement is on average as small as 40 km. The other clusters are low in 
number and highly specialized.

The “Party” trips are about 2-week long trips that visit around four cities in one 
country. They are distinguished by their high number of food check-ins and very 
high number of nightlife check-ins.

The “City” trips are quite similar to the domestic short trips, however, they visit 
more cities and these destinations are more distant to their home town.

The “Foreign” trips are about 2 week long trips to several cities located about 
1700 km away from home. People travel quite extensively, as the radius of gyration 
of about 1300 km indicates.

The “World” trips are quite similar to the “Globetrotters” from Twitter. They visit 
the highest number of locations, travel the farthest, and also have the highest radius 
of gyration with nearly 4000 km.

Finally, there is the cluster of the “Long Domestic” trips that last about 6 weeks, 
which corresponds pretty well to the summer holidays of students at school or uni-
versity. The small radius of gyration and the high number of outdoors and food 

Table 6   Twitter: resulting clusters

Mean value/standard deviation

Domestic Globetrotters Distant vacationers

Ratio 87.1% 6.4% 6.5%
Silhouette width 0.83 0.25 0.38
Duration 19.65/53.45 34.99/96.03 25.05/59.18
Locations 5.13/6.6 9.73/12.35 8.18/7.92
Blocks 1.46/1.83 4.89/6.93 3.34/4.07
Countries 1.22/0.6 3.04/2.01 2.39/1.48
Radius of gyration 329.2/541.36 5172.25/2435.53 1677.74/1428.58
Displacement 565.57/887.83 5262.2/2323.11 8733.89/2834.18
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check-ins indicates that these trips might be monothematic vacations, e.g., at a beach 
resort during summer holidays.

4.4 � Summary

This section described a method for finding tourist types using LBSN data. We pre-
sented two case studies of international and domestic trips stemming from Twitter 
and Foursquare. On Twitter, only three clusters emerged, whereas on Foursquare 
most trips resided in two clusters, with four more very specialized ones.

This method could be used to characterize prospective travelers from data about 
their past trips. Thus, it can be applied for preference elicitation and user modeling 
within recommender systems in tourism. Moreover, the analysis requires no user 
interaction, which is good for the user experience and is also computationally cheap; 
however, it requires access to the user’s check-in history. This can be achieved 
through an app permission by which the user grants access to their timeline on an 
LBSN that they have been using, e.g., through a third-party Facebook or Twitter 
application. Obtaining the data in such a way, a classifier trained with this paper’s 
approach can be used to classify the current user and, thus, be a foundation for pro-
viding personalized recommendations.

We have noticed that the cluster analysis results strongly depend on the input data. 
Developers of recommender systems should carefully evaluate only to include fea-
tures that are useful for the preference elicitation and the recommendation outcome. 
Otherwise, the approach is at risk to overfit the data and reports outlier groups as 
happened in the Foursquare analysis. Finally, it seems to us that this kind of analysis 
is more suitable for analyzing international trips, as reported by Dietz et al. (2018b).

Fig. 8   Foursquare: choosing the best number of clusters
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5 � Region discovery

The mobility of travelers manifested in the trips can be used for further applications. 
In this section, we describe a methodology to obtain a map of the world’s travel 
regions that is entirely based on tourist travel behavior instead of political regions. 
With this approach we aim to uncover implicit tourist regions that are independent 
of administrative boundaries, e.g., in areas where travel can occur irrespective of 
national borders, such as the Schengen Area of Europe.

To achieve this, we construct a graph of flows from the trips and use a community 
detection algorithm to cluster single destinations into coherent travel regions (Sen 
and Dietz 2019). We use the Twitter data set described in Sect. 3.1.3, as it is the 
largest, most widespread, and most recent.

5.1 � Method

As the Infomap algorithm (Rosvall et al. 2009) uses a weighted graph for commu-
nity detection, we convert the trips into a graph of flows. Transforming the tourist 
trips into a graph is relatively straightforward, however, there are several options for 
quantifying the weights between the nodes.

5.1.1 � Community detection

Infomap is a graph community detection algorithm that is designed to discover the 
underlying structure of the nodes and edges (Rosvall et al. 2009). It can be applied to 
large directed or undirected graphs and can yield multi-level hierarchies for commu-
nities. The algorithm accounts for weights of the edges and, thus, seems to be quite 
suitable for our application to the weighted flows and distances of tourist movement 
between cities. The algorithm tries to optimize communities to have more flows 
within themselves than other communities by using a random walker that traverses 
the graph. Since it uses a probabilistic model to find communities, the algorithm 
runs ten times to reduce the probability of obtaining a local minimum. Infomaps 
picks the best solution according to it’s internal quality measure, the description 
length (Rosvall et al. 2009). In our approach, a community corresponds to a set of 
cities that form a region. Since the results of Infomap are hierarchical, it will return 
a tree of regions and subregions, depending on a graph-theoretic termination crite-
rion. Choosing the right granularity of regions depends on the use case.

5.1.2 � Graph creation

We transform the trips into an undirected graph, where each city is a node. To form 
the edges, we try to map the traveled-together relation, i.e. that two cities have been 
visited within the same trip, as closely as possible. The flow between two cities is 
computed by summing up the co-occurrences of the two nodes in a clique formed 
by all cities in a trip, over all trips. For example, if a trip consisted of travel from 
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Munich to Berlin via Nuremberg, we would also count the flow from Munich to 
Berlin. The alternative of not adding this transitive connection to the weight is not 
appealing for us, since we think the traveled-together relation more accurately mod-
els the underlying mobility than one-to-one connections. In our example, this would 
mean that we lose the information that Munich and Berlin have been visited within 
the same trip. The final weight of each edge is the amount of flow divided by the 
Euclidean Distance between the two cities. Including the distance in the edge weight 
reduces the noise in the flow graph introduced by distant traffic hubs, such as air-
ports. Transforming the mobility patterns into this graph-based representation ena-
bles us to run the Infomap community detection algorithm to see which cities form 
coherent clusters.

5.1.3 � Graph description

The resulting graph consists of 14,558 nodes and 3,624,909 edges. The degree dis-
tribution depicted in Fig. 9 is long-tailed with very few high degree nodes and 87% 
of nodes having a degree of less than 1000. The graph density of 0.034 also indi-
cates a sparse graph.

5.2 � Results

The communities computed by the Infomap algorithm show four top-level regions 
that align well with existing continental boundaries. These are then further subdi-
vided into a region hierarchy of up to five levels; however, for our purposes, level 
three and four are the interesting ones. On the second level, many regions are analo-
gous to countries but there are a few interesting variations from this rule. The next 
level of regions tends to align mostly with travel destinations within federal states. 
The hierarchy and the discovered regions are discussed in detail in the following.
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Table 8 gives an overview of the hierarchy of the discovered regions. The South 
American region consists of the fewest cities, the European cluster has most. The 
number of second-level regions is small with the average number of cities in each 
region varying from 208 in South America to 470 in Europe. The third-level regions 
are clusters of about ten cities in South America, while the mean number of cities in 
the North American cluster and the European clusters is 17, and even 28 in Asia and 
Oceania. Most third-level clusters do not contain any sub-regions and most regions 
at lower-hierarchy levels are very small.

5.2.1 � Level 1: continents

The four major regions found at the first level are loosely aligned with existing con-
tinental and cultural boundaries (cf. Fig.  10). The division between the Americas 
is a perfect cut between North and Central America and South America. Africa is 
under-represented in the data because it has only a few check-ins in Morocco, Alge-
ria, Ghana, Nigeria, Kenya, and South Africa. These countries are merged in the 
European cluster with the exception of Kenya, which is in the Asian region. The 
European cluster is merged with all of Russia, Turkey, and the Arabian Peninsula. 
The Asian region comprises the Indian subcontinent, South East Asia, South Korea, 
Japan, Australia, and New Zealand.

On this level, the geography and the accessibility of the cities plays a dominant 
role. This explains the Arabian countries, which belong in the European cluster due 
to the major aviation hubs. The distance factor introduced to the edge weights seems 
to have a lower impact than the actual flows within the regions, since even the east-
ernmost parts of Russia are clustered with Europe. Unfortunately, the lack of data 
from Africa and selected countries in Central Asia hinders the formation of clusters 
in these areas. We will discuss this limitation at the end of this section.

5.2.2 � Level 2: countries

At the second level of the region hierarchy, we found that many regions align with 
national boundaries; however, there are exceptions observed in each of the top-level 
clusters.

In Europe a large second-level cluster is found spanning the countries of 
Germany, Austria, Switzerland, Hungary, the Czech Republic, Poland, and 

Table 8   Numerical description of the four top-level regions

Region name Cities 2nd-level 
regions

3rd-level 
regions

4th-level regions

South America 1873 9 193 19
North and Central America 4193 17 254 145
Europe and West Africa 6591 14 381 116
Asia and Oceania 3201 13 114 196
World 15,858 53 942 476
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Romania  (cf. Fig.  11). The Scandinavian countries are clustered together with 
Russia and the Baltic countries. Italy forms one region with Serbia, however, the 
unavailability of data from Croatia possibly influenced this result in an unpre-
dictable manner. The Iberian countries are clustered with Morocco, which could 
be attributed to immigration patterns and the very cheap flight and ferry prices 
between these countries. Belgium and the Netherlands form another region, and 
also the British Isles are clustered together. France, Turkey and Greece, however, 
form regions identical to their national borders.

The second-level regions formed in North America in Fig. 12 mostly disregard 
national boundaries. Mexico is in one region with other Central American coun-
tries, while the USA and Canada are divided into fourteen clusters. The western 
Canadian states are merged together with Oregon and Washington, while Cali-
fornia is split into two major clusters with the southern cluster expanding down 
to Tijuana and Mexicali in Mexico. Mexican cities on the borders of Arizona and 
Texas are also members of predominantly American clusters. Several other well-
known regions, such as the New England states, Florida and the Great Lakes area 
form their own clusters.

In Asia (see Fig.  13), the Indian subcontinent and Pakistan are grouped 
together, which is surprising given the geopolitical context. Australia and New 
Zealand are clustered together, while the countries in South East and East Asia 
form their individual regions.

The second-level regions reveal that there are some countries that are trave-
led to exclusively, but other countries are more frequently traveled to together. In 
very large countries like Brazil and the USA, we observe a subdivision into mul-
tiple subregions at the second level. This is proof that the approach works well for 
domestic tourism regions.

Fig. 10   The top-level regions
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5.2.3 � Level 3: destinations

The regions formed at the third level of the hierarchy can be already seen as tour-
ism destinations; however, the results show varying granularities in different parts 
of the world with some regions containing further subregions.

The third-level clusters of the big Central European cluster in Fig. 14 are var-
ied in terms of the size and density of cities. The dense regions are typically very 
contiguous and are centered around a major city. For example, the region contain-
ing Munich is comparatively large and includes southern Bavaria. Large areas of 
the Czech Republic, Poland, and Hungary form homogeneous clusters with no 
further subregions.

Figure 15 shows that Belgium forms two regions at the third level, however, 
the Netherlands is divided into six regions that align well to the local divisions. 

Fig. 11   The second-level community structure of Europe
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Fig. 12   The second-level communities of North America

Fig. 13   The second-level community structure of South Asia
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Similar contiguous subdivisions are found in the British Isles, Spain, and 
Italy. The clustering of Morocco, cf. Fig.  16, with Gibraltar and Andalusia is 
interesting.

The third-level clusters in North America and South America show similar pat-
terns to those in Europe with clusters being centered around cities, as can be seen in 
Fig. 17.

Pakistan and India are separated at this level with India forming four subregions 
(Fig. 18). In Thailand, one region is formed by places along the touristically very 
active coast, while the inland regions are divided into numerous smaller regions. 
The regions formed in Japan are similar to the political Japanese regions. Australia 
consists of three regions, one in Western Australia and two in the South East, while 
New Zealand forms it’s own region.

The third-level hierarchical result generally provides regions that can be seen as 
coherent tourist destinations. At this level, they become small enough to visit them 
exhaustively within few days and most do not contain further subregions.

5.2.4 � Further levels

Some regions are further subdivided, which we discuss for the sake of complete-
ness. In the third-level region of New York State, a fourth-level region with the Bur-
roughs Manhattan, Bronx, Brooklyn, Queens, Staten Island, and Jersey City, which 
is not a part of New York City, is formed (cf. Fig. 19). Long Island contains two 
more regions, while four other regions surround New York City. This shows that if 
the Infomap algorithm obtains sufficient data, it is capable of discovering very fine-
grained regions. This example of New York city is an artifact of the high-population 
density, the municipality structure, and the large amount of Twitter data in this area.

Fig. 14   The third-level community structure of the Central European cluster
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5.3 � Summary

The first three levels of the cluster hierarchy roughly align to continents, coun-
tries, and travel destinations. At the second level of the hierarchy, we find that 
many countries form their own region, while larger and more populous countries, 
such as the USA and Brazil are subdivided at this level. India stands out, pos-
sibly due its lower per capita Twitter usage, and is only subdivided at the third 
level. Belgium and Netherlands as well as the Iberian countries forming common 

Fig. 15   The third-level community structure of the British and the Benelux cluster

Fig. 16   The third-level community structure of the Iberian and Italian clusters
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regions indicates a tendency for people to travel within countries that have close 
cultural ties. A similar grouping is formed by the German speaking countries of 
Austria, Switzerland, and Germany; however, the inclusion of Poland, Hungary, 
and Romania in the same cluster also underlines the high mobility within the 
European Union.

Sometimes, we would have expected different borders to be drawn, such as a 
clear separation at the outer border of the European Union. This is not the case 
in the countries around the Baltic Sea (cf. Fig. 11), where the Baltic States and 

Fig. 17   The third-level community structure of south-east USA and Central America

Fig. 18   The third-level community structure of South Asia
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Russia are merged together on the second level of Europe. We attribute this to the 
high number of Russians living in these countries.

In some cases, also a fourth or fifth level exists in the hierarchy. The destination 
regions containing cities such as Los Angeles and London are found at the third 
level, while the third-level cluster containing New York consists of multiple fourth-
level clusters, with the city of New York forming a cluster that is quite well aligned 
to the city burroughs. In India, the popular tourist states of Kerala and Rajasthan 
form fourth level clusters, while the rest of the country is decomposed to tourism 
destinations. These observations make a termination criterion for subdividing the 
regions an important problem. Additionally to this, a useful criterion would take into 
account whether the resulting areas fulfill a certain threshold for with regards to the 
area, the number of cities, and other metrics relevant to the purpose for the cluster-
ing. In our opinion, this cannot be decided with the current data, but requires a use-
case-specific analysis of the regions; however, the third-level clusters are already 
very well defined and form understandable regions.

The stability of the algorithm’s output is quite high over several runs. We exper-
imented a lot with Infomap and have not experienced noteworthy changes in the 
clustering given the same input parameters. This is mostly due to the fact that the 
algorithm does not recurse to deeper levels if the results become unstable due to 
insufficient data.

An important limitation of this approach is missing data. If the underlying data 
source is missing check-ins from a country for any reason, the algorithm does not 
have good means to counter this. In the case of China, where Twitter is a target of 
censorship (Bamman et al. 2012), independent clusters simply form around the large 

Fig. 19   The fourth-level community structure of New York
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country. In the case of small countries with missing data such as Croatia or Belarus, 
the algorithm can ignore the missing data resulting in clusters that encompass the 
area, such as a sea.

Thus, this approach provides a fine-grained map of touristic travel regions in any 
information system concerning travel. Since the region model is hierarchical, its 
application scenarios are flexible and developers can pick the hierarchy that suits 
their needs best.

6 � Conclusions

This paper presented three major contributions in the field of tourist recommender 
systems, mobility analysis and user modeling. The first is a metric-driven method 
to mine trips from various location-based social networks. We show how to extract 
domestic and international trips and ensure that the quality is sufficient for further 
analyses. By comparing several data sets, we find that the users display different 
mobility behavior on different platforms and that not all platforms are equally suited 
for this kind of analysis. For example, Flickr users typically have too few geotagged 
images, which results in only 1254 trips out of over 48 million check-ins.

Second, we present two case studies of cluster analyses of trips from Twitter and 
Foursquare. The purely mobility-based data set from Twitter revealed three clusters, 
while the Foursquare data that contained information about the type of venues was 
segmented into six clusters. This shows that the result is highly dependent on feature 
selection, which should be accounted for when using this method to classify users.

Finally, we presented an approach for the spatial clustering of touristic regions 
from Twitter trips. To the best of our knowledge, this is the first application of geo-
located tweets to find travel regions with data spanning the whole world. The analy-
sis of results reveals a hierarchy of regions, with tourist destinations residing on the 
third level. These results confirm that the use of volunteered geographic information 
to find traveler mobility patterns and define regions based on the patterns is a feasi-
ble approach.

The findings of this paper reveal much about how different user groups travel 
throughout the world. We have established a methodology that extracts travel tra-
jectories from incomplete information sources. Naturally, not all LBSN sources are 
equally good for different use cases, but we have provided researchers and tourism 
analysts tools to evaluate this. Working with imperfect knowledge about the travel-
ers’ mobility has some limitations. Since we had to filter out many trips due to data 
quality issues, the results might be biased towards the behavior of travelers who 
continuously share their location on LBSNs. A generalization of the results should, 
thus, be done with care. Furthermore, the availability of spatio-temporal user data 
for independent research purposes is on the decline (Freelon 2018). For this rea-
son, we had to work with two out-of date static data sets in the case of Foursquare 
and Flickr and had to put a lot of effort into building our own data set of Twitter 
trips using the official APIs. Other popular LBSNs, such as Facebook, Instagram, or 
Snapchat do not permit independent content extraction.
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The cluster analyses of the trips provide tools to classify users in any tourism infor-
mation system. This is useful, since knowing the type of traveler can be used to filter 
which items should be shown to the user. Performing the classification of a user can 
be done via the analysis of her past travel data, such as booking information or LBSN 
profiles, but also using a self-assessment of the traveler type. In the future, we plan 
to implement this in a global destination recommender system for composite trips, 
thereby extending previous approaches (Dietz 2018; Dietz et al. 2019). The results of 
the trip clustering approach showed a high dependence on choosing the right features 
for the given use case. For this reason, the resulting clusters should not necessarily be 
taken as a generally valid segmentation of traveler types; instead, the proposed method 
can be applied to determine the groups of users of one’s own information system.

The discovered regions provide a hierarchical model of touristic regions. The 
advantage of this region model is that it is specific to the travel domain and is, thus, 
the preferable choice for visualizing regions in a travel recommender system over 
e.g., administrative boundaries. This resolves a problem, where previous systems 
had to make ad-hoc decisions on how to reasonably split large countries into smaller 
areas (Herzog and Wörndl 2014; Wörndl 2017). We think that this region model can 
help users to select their preferred travel destinations, especially in a composite trips 
scenario (Herzog et al. 2019) and to visualize various trends of global travel in more 
meaningful ways. While the output of the community detection algorithm itself were 
quite stable, the results might change with other data sources. Again, by using Twit-
ter as the sole data source, people not active on this platform do not contribute to the 
region model. This is an important limitation, since this threatens the generalization 
of the results. In future, the results of different data sets should be compared system-
atically and also contrasted to official statistics about tourism movement.

Acknowledegments  Open Access funding provided by Projekt DEAL.

Compliance with ethical standards 

 Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

Bamman D, O’Connor B, Smith N (2012) Censorship and deletion practices in Chinese social media. 
First Monday. https​://doi.org/10.5210/fm.v17i3​.3943

A.1 “Mining Trips from Location-based Social Networks for Clustering Travelers and
Destinations”

117



164	 L. W. Dietz et al.

1 3

Bao J, Zheng Y, Wilkie D, Mokbel M (2015) Recommendations in location-based social networks: a sur-
vey. GeoInformatica 19(3):525–565. https​://doi.org/10.1007/s1070​7-014-0220-8

Bao J, Zheng Y, Mokbel MF (2012) Location-based and preference-aware recommendation using sparse 
geo-social networking data. In: 20th international conference on advances in geographic information 
systems, ACM, New York, NY, USA, SIGSPATIAL ’12, pp 199–208. https​://doi.org/10.1145/24243​
21.24243​48

Blanford JI, Huang Z, Savelyev A, MacEachren AM (2015) Geo-located tweets. enhancing mobility 
maps and capturing cross-border movement. PLoS One 10(6):1–16. https​://doi.org/10.1371/journ​
al.pone.01292​02

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large net-
works. J Stat Mech Theory Exp 10:1–12. https​://doi.org/10.1088/1742-5468/2008/10/P1000​8

Borràs J, Moreno A, Valls A (2014) Intelligent tourism recommender systems: a survey. Expert Syst 
Appl 41(16):7370–7389. https​://doi.org/10.1016/j.eswa.2014.06.007

Braunhofer M, Elahi M, Ricci F (2014) Techniques for cold-starting context-aware mobile recommender 
systems for tourism. Intelligenza Artificiale 8(2):129–143. https​://doi.org/10.3233/IA-14006​9

Burke RD (2007) Hybrid web recommender systems. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The 
adaptive web: methods and strategies of web personalization. Springer, Berlin, pp 377–408. https​://
doi.org/10.1007/978-3-540-72079​-9_12

Burke RD, Ramezani M (2011) Recommender systems handbook, chap matching recommendation tech-
nologies and domains. Springer, Boston, pp 367–386. https​://doi.org/10.1007/978-0-387-85820​
-3_11

Chaudhari K, Thakkar A (2019) A comprehensive survey on travel recommender systems. Arch Comput 
Methods Eng. https​://doi.org/10.1007/s1183​1-019-09363​-7

Cheng Z, Caverlee J, Lee K, Sui DZ (2011) Exploring millions of footprints in location sharing ser-
vices. In: Fifth international conference on weblogs and social media, AAAI, Palo Alto, CA, USA, 
ICWSM ’11, pp 81–88

Cohen E (1972) Towards a sociology of international tourism. Soc Res 39(1):164–182
de Montjoye YA, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the crowd: the privacy bounds 

of human mobility. Sci Rep 3(1):1–5. https​://doi.org/10.1038/srep0​1376
del Prado MN, Alatrista-Salas H (2016) Administrative regions discovery based on human mobility pat-

terns and spatio-temporal clustering. In: 13th international conference on mobile ad hoc and sensor 
systems, IEEE, MASS’16, pp 65–74. https​://doi.org/10.1109/mass.2016.019

Dietz LW (2018) Data-driven destination recommender systems. In: 26th conference on user modeling, 
adaptation and personalization, ACM, New York, NY, USA, UMAP ’18, pp 257–260. https​://doi.
org/10.1145/32092​19.32135​91

Dietz LW, Weimert A (2018) Recommending crowdsourced trips on wOndary. In: RecSys workshop on 
recommenders in tourism, Vancouver, BC, Canada, RecTour’18, pp 13–17

Dietz LW, Wörndl W (2019) How long to stay where? On the amount of item consumption in travel rec-
ommendation. In: ACM RecSys 2019 late-breaking results, pp 31–35

Dietz LW, Herzog D, Wörndl W (2018a) Deriving tourist mobility patterns from check-in data. In: 
WSDM workshop on learning from user interactions, Los Angeles, CA, USA

Dietz LW, Roy R, Wörndl W (2018b) Characterisation of traveller types using check-in data from loca-
tion-based social networks. In: Pesonen J, Neidhardt J (eds) Inf Commun Technol Tour. Springer, 
Cham, pp 15–26

Dietz LW, Myftija S, Wörndl W (2019) Designing a conversational travel recommender system based on 
data-driven destination characterization. In: ACM RecSys workshop on recommenders in tourism, 
pp 17–21

Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659(11):1–44. 
https​://doi.org/10.1016/j.physr​ep.2016.09.002

Freelon D (2018) Computational research in the post-API age. Political Commun 35(4):665–668. https​://
doi.org/10.1080/10584​609.2018.14775​06

Gibson H, Yiannakis A (2002) Tourist roles: needs and the lifecourse. Ann Tour Res 29(2):358–383
González MC, Hidalgo CA, Barabási AL (2008) Understanding individual human mobility patterns. 

Nature 453(7196):779–782. https​://doi.org/10.1038/natur​e0695​8
Hawelka B, Sitko I, Beinat E, Sobolevsky S, Kazakopoulos P, Ratti C (2014) Geo-located Twit-

ter as proxy for global mobility patterns. Cartogr Geogr Inf Sci 41(3):260–271. https​://doi.
org/10.1080/15230​406.2014.89007​2

A Embedded Publications

118



165

1 3

Mining trips from location-based social networks for clustering…

Herzog D, Wörndl W (2014) A travel recommender system for combining multiple travel regions to a 
composite trip. CBRecSys@RecSys. Foster City, CA, USA, pp 42–48

Herzog D, Dietz LW, Wörndl W (2019) Tourist trip recommendations—foundations, state of the art and 
challenges. In: Augstein M, Herder E, Wolfgang W (eds) Personalized human–computer interaction. 
de Gruyter Oldenbourg, Berlin, pp 159–182

Hess A, Hummel KA, Gansterer WN, Haring G (2015) Data-driven human mobility modeling. ACM 
Comput Surv 48(3):1–39. https​://doi.org/10.1145/28407​22

Hsieh HP, Li CT, Lin SD (2012) Exploiting large-scale check-in data to recommend time-sensitive routes. 
In: ACM SIGKDD international workshop on urban computing, ACM, New York, NY, USA, Urb-
Comp ’12, pp 55–62. https​://doi.org/10.1145/23464​96.23465​06

Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Upper Saddle River
Joshi D, Soh LK, Samal A (2009) Redistricting using heuristic-based polygonal clustering. In: Ninth 

IEEE international conference on data mining, IEEE, pp 830–835. https​://doi.org/10.1109/
ICDM.2009.126

Kariryaa A, Johnson I, Schöning J, Hecht B (2018) Defining and predicting the localness of volunteered 
geographic information using ground truth data. In: Conference on human factors in computing sys-
tem, ACM, CHI’18. https​://doi.org/10.1145/31735​74.31738​39

Kbaier MEBH, Masri H, Krichen S (2017) A personalized hybrid tourism recommender system. In: 2017 
IEEE/ACS 14th international conference on computer systems and applications (AICCSA), pp 244–
250. https​://doi.org/10.1109/AICCS​A.2017.12

McCrae RR, John OP (1992) An introduction to the five-factor model and its applications. Personality 
60(2):175–215. https​://doi.org/10.1111/j.1467-6494.1992.tb009​70.x

McKercher B (2002) Towards a classification of cultural tourists. Int J Tour Res 4(1):29–38. https​://doi.
org/10.1002/jtr.346

Neidhardt J, Schuster R, Seyfang L, Werthner H (2014) Eliciting the users’ unknown preferences. In: 8th 
ACM conference on recommender systems, ACM, New York, NY, USA, RecSys ’14, pp 309–312. 
https​://doi.org/10.1145/26457​10.26457​67

Noulas A, Scellato S, Mascolo C, Pontil M (2011) An empirical study of geographic user activity pat-
terns in Foursquare. In: Fifth international conference on weblogs and social media, AAAI, Palo 
Alto, CA, USA, ICWSM ’11, pp 570–573

Orman GK, Labatut V, Cherifi H (2011) On accuracy of community structure discovery algorithms. J 
Converg Inf Technol 6(11):283–292. https​://doi.org/10.4156/jcit.vol6.issue​11.32

Ouyang X, Zhang C, Zhou P, Jiang H (2016) Deepspace: an online deep learning framework for mobile 
big data to understand human mobility patterns. CoRR abs/1610.07009

Pearce PL (1982) The social psychology of tourist behavior. In: International series in experimental 
social psychology, vol, 3. Pergamon Press

Roick O, Heuser S (2013) Location based social networks—definition, current state of the art and 
research agenda. Trans GIS 5(17):763–784. https​://doi.org/10.1111/tgis.12032​

Rosvall M, Axelsson D, Bergstrom CT (2009) The map equation. Eur Phys J Spec Top 178(1):13–23. 
https​://doi.org/10.1140/epjst​/e2010​-01179​-1

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. 
Comput Appl Math 20(1987):53–65. https​://doi.org/10.1016/0377-0427(87)90125​-7

Sen A, Dietz LW (2019) Identifying travel regions using location-based social network check-in data. 
Front Big Data. https​://doi.org/10.3389/fdata​.2019.00012​

Sertkan M, Neidhardt J, Werthner H (2017) Mapping of tourism destinations to travel behavioural 
patterns. In: Stangl B, Pesonen J (eds) Information and communication technologies in tourism. 
Springer International Publishing, Cham, pp 422–434. https​://doi.org/10.1007/978-3-319-72923​
-7_32

Song C, Koren T, Wang P, Barabási AL (2010a) Modelling the scaling properties of human mobility. Nat 
Phys 6(10):818–823. https​://doi.org/10.1038/nphys​1760

Song C, Qu Z, Blumm N, Barabási AL (2010b) Limits of predictability in human mobility. Science 
327(5968):1018–1021. https​://doi.org/10.1126/scien​ce.11771​70

Taniguchi Y, Monzen D, Ariestien LS, Ikeda D (2015) Discover overlapping topical regions by geo-
semantic clustering of tweets. In: 29th international conference on advanced information networking 
and applications workshops, IEEE, pp 552–557. https​://doi.org/10.1109/waina​.2015.85

Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D, Borth D, Li LJ (2016) YFCC100M: 
the new data in multimedia research. Commun ACM 59(2):64–73. https​://doi.org/10.1145/28128​02

A.1 “Mining Trips from Location-based Social Networks for Clustering Travelers and
Destinations”

119



166	 L. W. Dietz et al.

1 3

Tsai CY, Paniagua G, Chen YJ, Lo CC, Yao L (2019) Personalized tour recommender through geotagged 
photo mining and LSTM neural networks. MATEC Web Conf. https​://doi.org/10.1051/matec​
conf/20192​92010​03

United Nations Department of Economic and Social Affairs (2010) International recommendations for 
tourism statistics 2008. https​://unsta​ts.un.org/unsd/trade​kb/Knowl​edgeb​ase/50551​/IRTS-2008

Wang D, Pedreschi D, Song C, Giannotti F, Barabási AL (2011) Human mobility, social ties, and link 
prediction. In: 17th ACM SIGKDD international conference on knowledge discovery and data min-
ing, ACM, New York, NY, USA, KDD’11, pp 1100–1108. https​://doi.org/10.1145/20204​08.20205​
81

Wörndl W (2017) A web-based application for recommending travel regions. In: Adjunct publication of 
the 25th conference on user modeling, adaptation and personalization, ACM, New York, NY, USA, 
UMAP ’17, pp 105–106. https​://doi.org/10.1145/30990​23.30990​31

Yang D, Zhang D, Chen L, Qu B (2015) NationTelescope: monitoring and visualizing large-scale 
collective behavior in LBSNs. J Netw Comput Appl 55:170–180. https​://doi.org/10.1016/j.
jnca.2015.05.010

Yiannakis A, Gibson H (1992) Roles tourists play. Ann Tour Res 19(2):287–303. https​://doi.
org/10.1016/0160-7383(92)90082​-z

Zhang Y, Wang L, Zhang YQ, Li X (2012) Towards a temporal network analysis of interactive WiFi 
users. Europhys Lett. https​://doi.org/10.1209/0295-5075/98/68002​

Zheng Y, Xie X (2011) Learning travel recommendations from user-generated GPS traces. ACM Trans 
Intell Syst Technol 2(1):1–29. https​://doi.org/10.1145/18896​81.18896​83

Zheng W, Huang X, Li Y (2017) Understanding the tourist mobility using GPS: where is the next place? 
Tour Manag 59:267–280. https​://doi.org/10.1016/j.tourm​an.2016.08.009

Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from 
GPS trajectories. In: 18th international world wide web conference, ACM, New York, NY, USA, 
WWW’09. https​://doi.org/10.1145/15267​09.15268​16

Zheng W, Zhou R, Zhang Z, Zhong Y, Wang S, Wei Z, Ji H (2019) Understanding the tourist mobil-
ity using GPS: how similar are the tourists? Tour Manag 71:54–66. https​://doi.org/10.1016/j.tourm​
an.2018.09.019

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

A Embedded Publications

120



A.2 “Travelers vs. Locals: The Effect of Cluster Analysis in Point-of-Interest
Recommendation”

A.2 Publication 2: “Travelers vs. Locals: The Effect of
Cluster Analysis in Point-of-Interest
Recommendation”

© Pablo Sánchez and Linus W. Dietz. Reprinted with permission.
Pablo Sánchez and Linus W. Dietz. “Travelers vs. Locals: The Effect of Cluster Analysis
in Point-of-Interest Recommendation.” In: 30th ACM Conference on User Modeling,
Adaptation and Personalization. UMAP’22. New York, NY, USA: ACM, July 2022, pp. 132–
142. DOI: 10.1145/3503252.3531320
This thesis includes the published version under the publication license agreement
between the authors and the Association of Computing Machinery.

Summary
The involvement of geographic information differentiates point-of-interest recommen-
dation from traditional product recommendation. This geographic influence is usually
manifested in the effect of users tending toward visiting nearby locations, but further
mobility patterns can be used to model different groups of users. In this study, we
characterize the check-in behavior of local and traveling users in a global Foursquare
check-in data set. Based on the features that capture the mobility and preferences of the
users, we obtain representative groups of travelers and locals through an independent
cluster analysis. Interestingly, for locals, the mobility features analyzed in this work
seem to aggravate the cluster quality, whereas these signals are fundamental in defining
the traveler clusters. To measure the effect of such a cluster analysis when categorizing
users, we compare the performance of a set of recommendation algorithms, first on all
users and then on each user group separately in terms of ranking accuracy, novelty, and
diversity. Our results on the Foursquare data set of 139,270 users in five cities show that
locals, despite being the most numerous groups of users, tend to obtain lower values
than the travelers in terms of ranking accuracy while they also seem to receive more
novel and diverse POI recommendations. For travelers, we observe the advantages of
popularity-based recommendation algorithms in terms of ranking accuracy by recom-
mending venues related to transportation and large commercial establishments. However,
there are considerable differences in the respective traveler groups, especially between
predominantly domestic and international travelers. Due to the considerable influence
of mobility on the recommendations, this article underlines the importance of analyz-
ing user groups differently when making and evaluating personalized point-of-interest
recommendations.
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ABSTRACT
The involvement of geographic information differentiates point-of-
interest recommendation from traditional product recommenda-
tion. This geographic influence is usually manifested in the effect of
users tending toward visiting nearby locations, but further mobility
patterns can be used to model different groups of users. In this
study, we characterize the check-in behavior of local and travel-
ing users in a global Foursquare check-in data set. Based on the
features that capture the mobility and preferences of the users, we
obtain representative groups of travelers and locals through an
independent cluster analysis. Interestingly, for locals, the mobil-
ity features analyzed in this work seems to aggravate the cluster
quality, whereas these signals are fundamental in defining the trav-
eler clusters. To measure the effect of such a cluster analysis when
categorizing users, we compare the performance of a set of recom-
mendation algorithms, first on all users together, and then on each
user group separately in terms of ranking accuracy, novelty, and
diversity. Our results on the Foursquare data set of 139,270 users
in five cities show that locals, despite being the most numerous
groups of users, tend to obtain lower values than the travelers in
terms of ranking accuracy while they also seem to receive more
novel and diverse POI recommendations. For travelers, we observe
the advantages of popularity-based recommendation algorithms
in terms of ranking accuracy, by recommending venues related
to transportation and large commercial establishments. However,
there are huge differences in the respective travelers groups, espe-
cially between predominantly domestic and international travelers.
Due to the large influence of mobility on the recommendations, this
article underlines the importance of analyzing user groups differ-
ently when making and evaluating personalized point-of-interest
recommendations.

CCS CONCEPTS
• Information systems → Recommender systems; Retrieval
effectiveness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UMAP ’22, July 4–7, 2022, Barcelona, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9207-5/22/07. . . $15.00
https://doi.org/10.1145/3503252.3531320

KEYWORDS
Point-of-Interest recommendation, User Modeling, Humanmobility
analysis, Offline evaluation

ACM Reference Format:
Pablo Sánchez and Linus W. Dietz. 2022. Travelers vs. Locals: The Effect of
Cluster Analysis in Point-of-Interest Recommendation. In Proceedings of
the 30th ACM Conference on User Modeling, Adaptation and Personalization
(UMAP ’22), July 4–7, 2022, Barcelona, Spain. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3503252.3531320

1 INTRODUCTION
Recommender systems are prevalent in numerous areas including
videos or movies (Netflix, Youtube), books (Goodreads), consumer
products (Amazon), or social contact recommendations (Twitter,
LinkedIn) [28]. In the travel and tourism domain, point-of-interest
(POI) recommendation is an interesting challenge, where the items
to be recommended are venues to be visited when the users arrive
at a specific city or region [5, 33]. To perform POI recommenda-
tions, much of the data available to the scientific community stems
from location-based social networks (LBSNs), such as Foursquare,
Gowalla, or Yelp [3, 31]. LBSNs are so frequently used in research
because the data usually comprises of several countries and pro-
vides additional information about social interactions between the
users. Despite the richness and availability of LBSN data, POI rec-
ommendation has specific aspects that differ from the conventional
recommendation of movies, books, or music that affect the rec-
ommenders’ performance, including, the implicit information and
repeated interactions, as users may check into at the same venue
more than once; the relevance of external influences, such as social,
temporal, sequential, and, most importantly, the geographical influ-
ence, since users tend to visit nearby locations [18, 19, 31]. Finally,
the sparsity of the interaction data is typically more severe: For
example, the global check-in Foursquare data set from [35] has a
density of 0.0034%, making recommendations more difficult than
the traditional scenario, such as the well-known Movielens25M
data set1 with a density of 0.2489%.

In addition to the abovementioned issues that affect the perfor-
mance of the recommenders, we must also consider the different
types of users that can be found in LBSNs. Traditionally, when
measuring the recommendation quality in offline settings, all users
are treated in the same way; hence, there is hardly a recommender
systems study that does not report accuracy metrics for each algo-
rithm such as Precision or nDCG averaged over all users, although
the focus of evaluation has shifted from only accuracy to further

1Movielens25M data set: https://grouplens.org/datasets/movielens/
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measures, such as novelty, diversity, or serendipity [12, 16]. Re-
cently, researchers have pointed to the importance of analyzing
the characteristics of different types of users, e.g., based on their
age, gender, and cultural diversity, to detect a possible bias toward
certain users in the models [9, 10, 23].

Considering these issues, analyze the extend the performance
of POI recommendation algorithms differs among different user
clusters obtained by analyzing various features. For this we use a
set of well-known cities, namely Istanbul, Mexico City, Tokyo, New
York, and London, and separate the users into locals and travelers
based on them being in their home city or on a visit. For discover-
ing groups within these two categories, we characterize the two
user groups based on the behavior they exhibit using various fea-
tures, thereby focusing on mobility patterns and the types of visited
venues. In the cluster analysis, we obtain different user clusters
which we use to analyze the performance of different recommen-
dation algorithms in each of the obtained subclusters in terms of
ranking accuracy, novelty, and diversity.

The structure of this paper is as follows: After positioning our
approach within literature in Section 2, we describe the process
to compute the behavioral metrics and to obtain the different user
groups according to the check-ins they performed in Section 3. In
Section 4, we explain the experimental procedure followed in the
experiments and describe the results obtained in Section 5. Finally,
we present our conclusions and future research directions.

2 RELATEDWORK
In the tourism domain, there is a considerable variety of catego-
rizing the behavior of many types of travelers visiting a particular
region. Such types of travelers have been identified using various
methods, such as factor analyses or clustering [11, 14]. For exam-
ple, tourists have been categorized based on their cultural motives
and their cultural depth experience [22], while Yiannakis and Gib-
son used a three-dimensional scaling analysis between familiarity-
strangeness, stimulation-tranquility, and structure-independence
to identify 13 different touristic roles [36]. A more recent article
by Neidhardt et al. developed the “Seven Factor Model” wherein the
tourist profiles were derived from seven basic factors in which the
score of each factor was determined by a set of images selected by
the user whose factor score was previously decided by experts [24].
These approaches, thus, established frameworks for categorizing
tourists, however, the identified categories are based on a different
data source to the domain of the actual recommender system.When
developing a new tourism recommender system, one would need
to find mappings for both the items and the users to be able to
utilize such categorizations. Hence, in this study we would like to
determine whether it is possible to obtain different user groups by
applying clustering techniques on the same data that is also used in
the recommender system. For this, we analyze the user behavior in
a Foursquare data set [35], discover groups using cluster analysis
and then train and evaluate POI recommenders on the same data
set to detect if there are major differences in the recommendations
produced to these groups in terms of relevance, novelty and di-
versity. We are aware that there are other POI recommendation
works that apply clustering, like [21, 32, 39]. However, in those
articles, the researchers used these techniques to find user groups

with common behavior to generate recommendations, while in our
work, we identify these user groups based on whether they exhibit
a more traveler or local behavior and detect if there are substantial
differences in the recommendations received by them.

This article extends and combines two previous studies: In the
first one [8], we established trip mining algorithms for LBSN data
and already used the global Foursquare check-in data set [35] to
identify four different trip types based on trip trajectories. In this
work, however, our focus was solely on travelers, not considering
the mobility of users while being at their home cities. The other
study [30] analyzed the needs of different user types in POI recom-
mendations, by categorizing Foursquare users into different cities
into tourists and locals and analyzing the performance of the recom-
menders in both locals and foreigners. However, as there are many
different types of users within these groups [8, 24, 36], we refine
this initial analysis by investigating the performance of different
recommendation algorithms in each of the user groups in detail.
For this, we perform two independent cluster analyses within the
travelers and locals, which is driven by the behavior of the users
on the global check-in Foursquare data set.

3 USER BEHAVIOR CHARACTERIZATION
AND CLUSTER ANALYSIS

In this first step, we aim to find coherent groups of users that can
be discriminated based on information that is relevant to POI rec-
ommendation and can be extracted from LBSNs. When performing
cluster analysis, the features selected shape the outcome, so it is
imperative to compute features that actually help to define the
user characteristics. Using a global-scale check-in data set from
Foursquare2 made public by the authors [35], we aim to determine
expressive features to characterize different sub-groups within two
distinct classes of users: travelers and locals. This separation of
travelers and locals is necessary, because the behavior on LBSNs
differs significantly depending on the user being home at a city
or if she is on a visit. Consequently, there are different features to
capture the user behavior.

3.1 Data Preprocessing
This Foursquare data set contains a total of 33M check-ins from
415 different cities globally. Starting from the complete data set,
we performed the following preprocessing steps to eliminate noise
and ensure a higher data quality: We first removed users with
consecutive check-ins of less than 60s, as well as consecutive check-
ins in the same POI and check-ins with an unrealistic transition
speed of more than 343 m/s. Next, we enforced 10-core for users
and POIs, i.e., removed interactions so that ultimately all remaining
users have at least 10 interactions and each POI has at least 10
visits. Finally, we split the processed data set following a temporal
partition in which 80% of the most ancient interactions are sent to
the training set, whereas the other 20% is used as the test set.

Using the information in the training set, we performed two
cluster analyses, independently for locals and travelers. To perform
this study correctly, it is essential to know a user’s home because
only check-ins of the home city of a user should be used to compute
2Foursquare: global-scale check-in data set: https://sites.google.com/site/yangdingqi/
home/foursquare-dataset
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their behavior as a local; likewise, a user’s travel behavior should
solely be characterized using check-ins outside of the home city.
For determining a user’s home in the context of LBSN check-in
data, several methods exist [17]; however, taking the city where
most check-ins are done consistently produces highly accurate
results when used along with a threshold. As such, we determined
exactly one city for each user as home city using a threshold of at
least 50% of check-ins needed to be performed in the most frequent
city. This step excludes another 8,548 (6.20%) users with an unclear
home from the training data, resulting in 129,294 valid users in the
training set.

3.2 Local Behavior Cluster Analysis
To discover distinct groups of user activity in their home town, we
exclusively analyzed check-ins they have performed in their home
cities and computed various features including mobility metrics,
such as the radius of gyration, the mean distance from the city cen-
ter, and the mean distance between consecutive check-ins. Further
features describe the activity of the users, e.g., the mean time be-
tween check-ins, the activity period, the number of check-ins, and
the number of unique POIs visited. Finally, we also count check-ins
in relevant categories separately, such as visiting POIs labeled with
“Arts & Entertainment,” “Outdoors & Recreation,” “Food,” “Nightlife
Spot,” and “Shops & Services.”

First, we analyze correlations between features and eliminate
those that have a high correlation > 0.7, as they are redundant.
Likewise, we eliminate features that are orthogonal to all other ones
identified by very low correlations with other attributes [−0.1; 0.1].
These features essentially treated as noise by the clustering al-
gorithm and, thus, decrease the quality of the discovered groups.
Concretely, this step resulted in the elimination of the following
metrics: mean check-ins per day, total number of check-ins, and
the number of check-ins in “Colleges & Universities.”

Using the k-means algorithm, we systematically analyzed the
outcome of the algorithm using the Euclidean Distance and min-
max normalized features. Observing the quality of the resulting
clusters using different values for k , we observed that the quality of
the segmentation quality to be very low, despite having performed
the relevant steps of the prior correlation analysis. Experimenting
with different feature combinations, the silhouette width ranged in
the area of 0.3 for 3–4 clusters and further dropped with a higher
k . However, when dropping the mobility features (radius of gyra-
tion, mean check-in distance, and mean distance to city center),
we obtained clearly better results, and finally choose the optimal
configuration of a silhouette width of 0.57 for k = 3. We plot the
silhouette width against k in Figure 1a and refer to the details of
the final result in Table 1.

There are three clusters, two which respectively make up about
a quarter of the users and one larger one, containing the remaining
46.6% of the locals. We interpret the fact that the mobility features,
such as the radius of gyration and the distance to the city center
prevented the algorithm from finding an acceptable segmentation
of the locals, as a clear indication that these features are unsuitable
for distinguishing different resident groups in the data set at hand.
This may be due to several reasons: residents might be more active
in their respective districts making it hard to characterize their

behavior with metrics in relation to the entire city. In addition,
commuting introduces noise, which is difficult to eliminate given
the volatile usage of LBSNs during leisure and work time. Finally,
the mobility metrics to characterize residents of five different cities
might need more careful deliberation: cultural and geographic cir-
cumstances could be too different to find universal clusters across
all cities. This means that the clustering result of the locals is mostly
influenced by the user activity level.

(a) Locals: k = 3 was chosen as final result, since this was the last
value above 0.5 and with larger values for k , the silhouette width
only decreases gradually.

(b) Travelers: We chose k = 4, since with higher k , the silhouette
width plateaus.

Figure 1: Determining the number of clusters using the sil-
houette width.

3.3 Traveler Behavior Cluster Analysis
Similar to the locals, we analyzed the behavior of the users when
traveling outside of their respective home cities. The processing
was performed using the tripmining library3, which segments
the user’s check-ins into periods of being at home and in other
cities [8]. Consecutive periods abroad are regarded as trips, provided
3tripmining library: https://github.com/LinusDietz/tripmining
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Table 1: Cluster results of the 129,294 locals. In the absence of mobility features, the segmentation is mostly driven by the
activity level of the users. Values represent the mean/standard deviation.

L1 L2 L3

Name Low Medium High
Ratio 25.3% 28.0% 46.6%

Activity Duration 79.74/40.47 205.65/38.98 341.86/30.75
Unique POIs 14.36/ 9.89 20.63/12.68 26.03/16.66
Arts & Entertainment 1.30/2.70 2.11/3.49 3.58/5.54
Outdoors & Recreation 4.18/ 7.43 5.87/10.01 6.55/12.23
Food 6.65/ 9.03 10.45/12.40 13.67/18.48
Nightlife Spot 1.42/3.60 2.38/4.83 3.73/7.38
Shops & Service 4.43/ 6.27 6.43/ 8.01 8.74/11.61

certain data quality criteria are met. Unlike the analysis of the local
behavior, these quality criteria are necessary because we need to
know the location of the user at any time. However, the nature of
check-in-based data is that we only know the user location when
she used the Foursquare app, thus, we have an incomplete view of
the periods between the check-ins. This uncertainty is acceptable
in a global travel scenario, since users typically only travel to a
few cities per day and it is possible to quantify the date quality
using various metrics. In this case, we used the default settings of
the tripmining library: A minimum check-in density of 0.5, which
means that there is on average at least one check-in in two days
during the trip, a minimum duration of two calendar days between
the first and the last check-ins of a trip, and a maximum of three
days without any check-in. These metrics limit the uncertainty
involved when working with incomplete information, which is
inherent to check-in based data. As a result, we obtained 38,903
travelers who did a total of 64,316 trips.

We aggregated all trips of a traveler as their traveler profile,
and again used the same method used for the locals to select the
features. The number of stays in cities (non-distinct) and the number
of “Food” check-ins were eliminated due to a high correlation to
the number of trips. The final features lead to four clusters with a
silhouette width of 0.68. We chose K = 4 as the optimal number
of clusters, as the silhouette width was just slightly lower than
K = 3 (0.73), but clearly higher for K ≥ 5, which was around 0.5
(cf. Figure 1b).

The four traveler clusters tabulated in Table 2 show similar
groups as the clustering of Dietz et al. [8], although their work
clustered trips, whereas we aggregated the trip metrics per traveler
before clustering. With around 81% of the traveling users, T3 (Do-
mestic) is the most numerous group comprising travelers whose
trips were almost exclusively domestic close to their home cities.
T1 (Foreign Cities) are infrequent travelers with only 1.33 trips that
are mainly international, where the users were quite stationary at
their destination, as can be seen in the low radius of gyration. T4
(Globetrotters) is similar; however, this group of intercontinental
travelers, was more into POIs of the “Arts & Entertainment” cat-
egory than T1. The high radius of gyration in Globetrotters can
be an artifact of airfare stopovers because such check-ins are also
included in the trips. Finally, T2 (Active Vacationers) is also a small
cluster, but it has the most active travelers with 2.77 trips visiting
many unique cities both in their own country and abroad.

3.4 Summary
We characterized Foursquare users by features that can be com-
puted exclusively from analyzing their check-ins. The independent
characterization of the users’ check-in behavior in their home city
and during travel allowed us to discover three and four distinct
groups for locals and travelers, respectively. Our main takeaway
from the cluster analysis is that the mobility metrics explored in
our work seem to be unsuitable for characterizing locals in our
LBSN check-in data set, as the clustering algorithms struggle to
find distinct groups using these features. This also implies that
if we mix travelers and locals users when evaluating POI recom-
mendation algorithms, we will likely observe disparate results due
to the fact that we may not adapt well to the interests of any of
them, as – quite unsurprisingly – their behavior differ consider-
ably. We use these groups to systematically investigate the effect
of using such cluster information of users on the performance of
POI recommender systems.

4 EXPERIMENTAL SETTINGS
Once we establish different user groups applying the clustering, we
now describe the setup followed for performing POI recommenda-
tions. The global-scale check-in data set from Foursquare comprises
a total of 33M check-ins from over 415 different cities around the
world. Starting from the complete data set, we performed the pre-
processing steps and the temporal split, as stated in Section 3.
With the processed data set, for producing the recommendations,
we decided to select a set of large metropolises from around the
world with different densities: Istanbul, Mexico City, Tokyo, New
York, and London. We decided to work with these cities indepen-
dently (training and testing the recommenders separately for each
city) because as the geographical information is exploited by many
POI recommendation approaches, it may be counterproductive to
mix check-ins from geographically distant regions. In Table 3, we
present the statistics of the different cities, showing the number
of total users users, venues, check-ins, unique check-ins, and both
the training and test sets used in each independent city. Note that
the filtered dataset was used to generate the locals and travelers
clusters. Notably, this table includes all users found in each city,
even those that home towns are unclear (and hence no traveler
nor local cluster associated). Because we performed a temporal
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Table 2: Cluster results of the 38,903 travelers. The discovered groups shed light on the preferred type of trips the users did.
Values are the mean/standard deviation.

T1 T2 T3 T4

Name Foreign Cities Active Vacationers Domestic Globetrotters
Ratio 11.1% 5.0% 80.6% 3.2%
Ratio Domestic Trips 0.09% 55.36% 99.94% 0.46%

Displacement 1324.58/1086.56 1746.56/1806.27 503.19/ 673.21 7599.87/2715.97
Radius of Gyration 263.34/ 556.04 1783.14/2029.40 108.96/ 285.24 1968.35/2818.53
Number of Trips 1.33/1.01 2.77/1.20 1.64/1.44 1.30/0.89
Unique Cities 1.64/0.96 3.45/1.54 1.58/0.94 2.30/1.44
Arts & Entertainment 0.44/0.85 0.89/1.29 0.38/0.81 0.72/1.35
Outdoors & Recreation 0.75/1.33 1.53/2.18 0.95/1.92 0.80/2.31
Nightlife Spot 0.27/0.76 0.68/1.25 0.44/1.12 0.37/1.93
Shops & Service 0.90/1.62 1.65/2.22 0.98/1.80 0.90/1.62

split, there might be new users in the test set with no user clus-
ter associated, as the cluster analysis was performed solely on the
training set. Analyzing the values in this table, we want to highlight
some relevant observations before showing the actual experimental
results. First, from Table 3, the check-in repetitions represent a
relevant percentage of the interactions (the percentage of unique
check-ins reach at most 60%), making it difficult to recommend new
POIs to users. Further, only a total of 38,903 users were observed to
be traveling in the training period, providing the algorithms less
training data than the locals.

4.1 Algorithms
In this section, we briefly list the algorithms used in our experi-
ments, which can be categorized into classic and POI recommenda-
tion algorithms. For their exact formulations, we refer the reader
to the respective references.

• Classic recommendation algorithms:
– Rnd: performs recommendations of venues randomly.
– Pop: recommends to the target user the venues that have
been visited by the largest number of users.

– UB/IB: non-normalized user and item-based neighborhood
approaches [2, 25].

– HKV: matrix factorization (MF) algorithm that uses Alter-
nate Least Squares for optimization (from [15]).

– BPRMF: Bayesian Personalized Ranking (a pairwise per-
sonalized ranking loss optimization algorithm) using a
MF approach (from [27]). We used the version from the
MyMedialite4 library.

• Specific algorithms for POI recommendation:
– IRENMF: weighted MF method from [20]. This method in-
corporates geographical information in two different ways:
instance level influence (users tend to visit neighboring
locations) and region-level influence (they assume that
the user preferences are shared in the same geographical
region).

– GeoBPR: geographical BPR. POI recommender optimized
using BPR [37]. It analyzes the POIs visited by the target

4MyMedialite library: http://www.mymedialite.net/

user and assumes that she will prefer to visit new POIs
that are close to the ones she visited previously.

– FMFMGM: probabilistic MF with multi-center Gaussian
model. It is an hybrid approach proposed by [6] that com-
bines Probabilistic MF (PMF) with a Multi-center Gaussian
Model technique (MGM).

– RankGeo-FM: a ranking-based MF model proposed in [18].
They model the geographical influence by exploiting the
geographical neighbors POIs with respect to the target
POI using an additional latent matrix for the users.

– PGN: popularity, geographical, and user-based neighbor-
hood. Hybrid approach that combines the popularity al-
gorithm (Pop), user-based neighborhood (UB), and a ge-
ographical recommender that recommends to the target
user the venues closer to the average geographical posi-
tion of all the venues visited by the user. The final score is
an aggregation of every item score provided by each rec-
ommender after normalizing its values by the maximum
score of each method.

4.2 Experimental Setup
As we mentioned in Section 4, we applied a temporal split in which
we selected the 80% of the most ancient interactions of the filtered
data set as the training set and the rest as the test set. Afterward, we
selected the check-ins for each city and trained the recommenders
using the data of each city independently, as done in many state-
of-the-art POI recommendation studies [18, 20, 37, 38], where the
authors test their approaches in a subset of cities or regions. We
followed the “TrainItems” methodology [29], in which we consider
for each user u all venues of the training set that have not been
visited byu. We firmly believe that this approach is suitable because
as opposed to repeated consumption of items, in e.g., the music
domain, the inherent value of POI recommendation is to suggest
new places for users to be discovered. Finally, as we mentioned
above, we will not only measure the performance of the recom-
mendations in terms of nDCG, but also we will analyze the novelty
(in terms of EPC), the diversity (in terms of Aggregate Diversity,
or Item Coverage, IC) and the user coverage (UC) of the different
algorithms. Unless stated otherwise, the results of all metrics are
shown @5. The novelty and diversity metrics are defined as:
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Table 3: Statistics of the data set and cities used in the experiments. |U|, |V|, |C|, and |C |
|U | · |V |% represent the number of users,

venues, check-ins, and the density, respectively. As in LBSNs, some users may check-in in the same venue more than once, we
also report in column |C|u the number of unique check-ins and |C |u

|U | · |V |% represents the density with the unique check-ins.

City Split |U| |V| |C| |C|u
|C |

|U | · |V |%
|C |u

|U | · |V |%

Filtered data set
Full 139,270 251,115 9,266,149 4,354,336 0.02650 0.01245
Training 137,842 248,692 7,412,919 3,596,596 0.02162 0.01049
Test 108,213 196,945 1,853,230 1,134,909 0.00870 0.00532

Istanbul
Full 29,307 20,366 1,569,015 821,683 0.26288 0.13767
Training 26,894 19,976 1,189,646 645,536 0.22144 0.12016
Test 21,780 17,226 379,369 248,157 0.10112 0.06614

Mexico City
Full 5,944 7,978 286,638 147,850 0.60445 0.31178
Training 5,690 7,948 237,188 125,675 0.52447 0.27789
Test 4,018 6,442 49,450 32,616 0.19104 0.12601

Tokyo
Full 6,631 5,543 227,391 122,814 0.61866 0.33414
Training 6,213 5,534 186,248 103,768 0.54169 0.30180
Test 4,194 4,831 41,143 28,211 0.20306 0.13924

New York
Full 8,170 3,557 109,611 68,988 0.37718 0.23739
Training 7,238 3,548 92,790 59,342 0.36133 0.23108
Test 3,319 2,867 16,821 12,728 0.17677 0.13376

London
Full 4,235 1,612 43,794 26,472 0.64150 0.38776
Training 3,520 1,607 35,516 21,697 0.62786 0.38357
Test 1,749 1,361 8,278 6,108 0.34776 0.25660

• Expected Popularity Complement (EPC): a novelty metric
that gives a higher value (and hence, more novel) to those
items that are less popular [34]. It is formulated as: 1/|Ru |∑
i ∈Ru (1 − |Ui |/|Utr |), where Ru denotes the recommen-

dation list of a user, Utr represents the set of users in the
training set, and Ui is the set of users who rated item i in
the training set. However, in this study, we will show a nor-
malized EPC value by applying the min-max normalization.

• IC (Item Coverage, also referred to as Aggregate Diversity)
diversity metric that measures the number of different items
that an algorithm is able to recommend [13]. It is formulated
as |⋃u ∈Ur ec Ru |, where Itr denotes the set of items in the
training set and Ur ec represents the set of users to whom
we have provided recommendations.

• UC (User Coverage): measures the number of users that
the recommender is able to provide recommendations. It is
formulated as |Ur ec |.

5 ANALYSIS OF RESULTS
5.1 Performance of Recommenders in Each

City
Before showing the results obtained for each of the user clusters, in
Tables 5 and 6, we present the results obtained by the recommenders
in the five aforementioned cities. In this case, the value of each
metric is computed for every recommended user (represented in
the UC metric) and then returning the average, as is the standard in
the literature. Analyzing these results, we first note the low values

obtained in nDCG. This is due to several causes: the high sparsity
of data, the temporal split in which is common to find new relevant
venues that cannot be recommended as they do not appear in the
training set, and tendency of users checking-in in the same POI
repeatedly. As we use the “TrainItems” methodology, those venues
are unsuitable to be recommended, as the objective is to recommend
new venues to users.

Only the Rnd, Pop, and PGN have complete coverage at the user
level because when a temporal split is performed, there are users
in the test set that do not appear in the training set. Both Rnd and
Pop are not personalized, so they can perform recommendations
to new users. Although PGN is a personalized recommender, it
will fall back to recommend popular POIs to cold-start users in
the test set, but not on the training set. With respect to ranking
accuracy, novelty, and diversity, we note that the Pop recommender,
which is generally the best in terms of relevance in all cities, except
Istanbul, in which the best algorithm is the PGN model obtaining
0.044 in nDCG (showing the strong popularity bias existing in this
domain), is the worst in both novelty and diversity. Moreover, PGN
always obtains competitive results in ranking accuracy, whereas it
obtains higher values in novelty and diversity than Pop (although it
is not the best model in any dimension). This illustrates one of the
fundamental problems in recommendation, which is that it is nearly
impossible to find a model that obtains the best performance in all
metrics, making it indispensable to define algorithms that exhibit a
balance between the different dimensions being analyzed [13].

Regarding the other recommenders, we can observe that in gen-
eral, POI recommendation algorithms tend to obtain better results
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Table 4: Parameters tested in the recommenders. The best configurations are selected by maximizing nDCG@5.

Rec Parameters

UB/IB/PGN Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}
HKV Iter = 20, Factors = {10, 50, 100}, λ = {0.1, 1, 10}, α = {0.1, 1, 10, 100}
BPRMF Factors = {10, 50, 100}, BiasReg = {0, 0.5, 1}, LearnRate = 0.05, Iter = 50, RegU = RegI = {0.0025, 0.001, 0.005, 0.01, 0.1}, RegJ = RegU/10
IRENMF Factors = {50, 100}, geo-α = {0.4, 0.6}, λ3 = {0.1, 1}, clusters = {5, 50}

FMFMGM Factors = {50, 100}, α = {0.2, 0.4}, θ = {0.02, 0.1}, dist = 15, iter = 30, α2 = {20, 40}, β = 0.2, sigmoid = False, LearnRate = 0.0001

RankGeo-FM Factors = {50, 100}, α = {0.1, 0.2}, c = 1, ϵ = 0.3, neighs = {10, 50, 100, 200} iter = 120, decay = 1, boldDriver = True, learnRate = 0.001

Table 5: Results of the recommenders for Istanbul, Mexico City, and Tokyo. In bold, we show the highest value for each city
in each classic and POI types of recommenders in each metric. In bold with a dagger, we show the highest values in each city.

Istanbul Mexico City Tokyo
Type Rec nDCG EPC IC UC nDCG EPC IC UC nDCG EPC IC UC

Classic

Rnd 0.000 †0.995 †19,886 †21,780 0.000 †0.988 †7,286 †4,018 0.000 †0.990 †5,422 †4,194
Pop 0.033 0.129 25 †21,780 †0.051 0.291 14 †4,018 †0.051 0.274 19 †4,194
UB 0.040 0.537 2,491 19,279 0.026 0.693 2,308 3,764 0.041 0.439 855 3,776
IB 0.036 0.605 9,247 19,362 0.019 0.842 4,765 3,764 0.037 0.633 3,151 3,776

BPRMF 0.036 0.568 3,154 19,367 0.038 0.331 156 3,764 0.044 0.338 414 3,776
HKV 0.025 0.713 950 19,367 0.018 0.820 704 3,764 0.028 0.576 78 3,776

POI

IRENMF 0.043 0.541 1,243 19,367 0.034 0.635 923 3,764 0.043 0.519 1,220 3,776
GeoBPR 0.042 0.626 722 19,367 0.041 0.421 196 3,764 0.046 0.403 300 3,776

FMFMGM 0.028 0.356 259 19,367 0.019 0.591 300 3,764 0.039 0.375 117 3,776
RankGeo-FM 0.039 0.567 2,324 19,367 0.022 0.673 1,578 3,764 0.033 0.593 1,870 3,776

PGN 0.051 0.435 2,242 †4,018 †0.044 0.228 3,032 †21,780 0.050 0.377 1,559 †4,194

Table 6: Results of the recommenders for New York and London. The same configuration as in Table 5.

New York London
Type Rec nDCG EPC IC UC nDCG EPC IC UC

Classic

Rnd 0.000 †0.991 †3,509 †3,319 0.003 †0.959 †1,603 †1,749
Pop †0.114 0.436 13 †3,319 0.046 0.168 11 †1,749
UB 0.056 0.688 964 2,317 0.036 0.538 546 1,033
IB 0.032 0.853 2,407 2,386 0.035 0.766 1,166 1,033

BPRMF 0.080 0.489 388 2,387 0.039 0.189 11 1,034
HKV 0.038 0.776 402 2,387 0.015 0.717 88 1,034

POI

IRENMF 0.070 0.617 477 2,387 0.034 0.541 379 1,034
GeoBPR 0.076 0.502 155 2,387 0.046 0.301 102 1,034

FMFMGM 0.024 0.683 108 2,387 0.028 0.468 203 1,034
RankGeo-FM 0.028 0.773 1,892 2,387 0.020 0.673 1,117 1,034

PGN 0.108 0.542 1,505 †3,319 †0.050 0.241 332 †1,749

than the classical recommenders, excluding Pop, at least in terms of
ranking accuracy. Nevertheless, some classic recommenders, such
as the UB are still competitive. Although this shows that classic
recommender algorithms are still useful to be considered as base-
lines, it is a clear indication of the importance of considering the
geographical influence in the POI recommendation domain. With
respect to these models, we can observe that besides PGN, the
IRENMF recommender is one of the best in all dimensions. This re-
sult is consistent with previous findings [19, 30], where it obtained
a good balance between accuracy, novelty and diversity. Neverthe-
less, we observe that GeoBPR, in general, outperforms IRENMF in
terms of ranking accuracy with the exception of Istanbul.

In the next section, we will perform an in-depth analysis of the
performance of the most representative models in different groups
of both travelers and locals shown in Sections 3.2 and 3.3.

5.2 Performance of Recommenders in Specific
User Groups

Having shown the results of the recommenders by computing the
average among all the users, we turn our focus on analyzing the
value obtained in each metric for the different cluster groups for
both locals and travelers. Hence, we show these results in Fig-
ures 2, 3, 4, 5, and 6 for the five abovementioned cities. For those
figures, we show the performance of the clusters of the travelers
(denoted with T1, T2, T3, and T4), the locals (L1, L2, and L3), and all
users in the test set (all). We present three metrics in those figures:
nDCG (for ranking accuracy), EPC (novelty), and IC (diversity). Re-
garding this last metric, notably, according to its formulation, as it
does not compute the average between the users to whom we have
recommended, it may obtain different results in each user cluster
depending on the number of users who belong to each group. For
example, if we compare the diversity between T3 and T1 using this
original formulation, we would obtain a much lower diversity in
T1, because the number of travelers in the first cluster is lower than
in the third one. To mitigate this lack of normalization, we compute
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Figure 2: Results for Istanbul.

Figure 3: Results for Mexico City.

Figure 4: Results for Tokyo.

Figure 5: Results for New York City.
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Figure 6: Results for London.

this metric performing different subsamples. Hence, we selected for
each major group (travelers and locals) the cluster with the smallest
number of users and then computed the value of the IC for this
number of random users. The final value is the mean after repeating
the sampling 1, 000 times, thereby making the values comparable.
This is why instead of the “all” label, we use two additional ones
when representing the IC metric, “MT” (mean of travelers) and “ML”
(mean of locals), which would be used for selecting a subsample
of all users with the size of the lowest traveler and local group,
respectively. We repeat this process 1, 000 times, and then the result
shown is the average of the 1, 000 runs. Finally, due to the large
number of recommenders, we decided to show for each city the
performance of Pop and BPRMF from the classical recommenders
and GeoBPR and PGN from the POI recommenders, as they are the
algorithms which generally obtain the best nDCG results.

Analyzing the figures, we can observe interesting effects. First
of all, travelers generally obtain higher values than locals in terms
of accuracy in most cities (e.g., in Istanbul and in Mexico City all
traveler groups obtain higher values in terms of nDCG than any
local cluster), despite being the group with less users (e.g., 7% in
the case of Mexico City and 24% of New York users in the test
set are travelers). However, notably, travelers generally have a
slightly lower novelty than locals, indicating that they tend to
receive recommendations of more popular POIs. This makes sense,
because when a tourist visits a city, she is more likely to visit the
most popular venues than if she is a local. Besides, we analyzed the
top-5 most popular venues in each city and we observed that most
of them belong to transport and commerce categories. For example,
both airports (e.g., Kennedy, Atatürk and Benito Juárez, in NewYork,
Istanbul, and Mexico City respectively) and train stations (Euston
Railway Station in New York and Akihabara Station in Tokyo)
are the venues that have received most visits in the training sets.
In addition, shopping malls and commerce districts like Harrods
(London), Perisur (Mexico City), and Times Square (New York) are
also in the top-5 most popular venues.

Moreover, we can observe how locals tend to receive more di-
verse recommendations. This again may be because locals are com-
monly sightseeing extensively within their home city. Furthermore,
locals are more likely to have visited numerous different POIs in
the training set (including the most popular ones), which are then
unavailable for recommendation in the test set. By contrast, most
travelers will visit a city for the first time during the evaluation

period; thus, it is more probable that they visit one of the recom-
mended popular POIs, which will result in a decrease in novelty
and diversity. Finally, as there are far fewer travelers than locals,
it is normal that despite having computed the IC metric using the
subsamples, we obtain much lower results for travelers than for
locals, making a direct comparison between them impossible.

In general, the big picture of these results tends to support the
findings of [30], although we performed a different data prepro-
cessing, splitting methodology, and also a different analysis and
characterization of travelers and locals. Hence, in addition to the
analysis performed for travelers and locals, it is also interesting
to study the behavior of the models among the different types of
travelers and locals, i.e., all clusters shown in Tables 1 and 2.

First, regarding the travelers, there is no a common behavior
in the different cities. For example, T4 is the group that obtains
the highest values in nDCG for New York in all recommenders,
whereas, in other cities, such as Istanbul and Mexico City, there
are some models which obtain very low values for these users.
Regarding novelty and diversity, T1 obtains the worst results in
the cities of Tokyo and New York, whereas, in London it is one of
the best group in both aspects. Despite these discrepancies among
the travelers, we also perceive common behavior, such as T2 and
T3 generally obtaining similar results. This may be explained by
the features shown in Table 2, where we can observe that these
two groups have the highest ratio of domestic trips, whereas T1
and T4 tend to make more abroad travels, visiting more popular
POIs as we can observe in the performance in both nDCG and EPC
metrics. In fact, except for Mexico City, in the rest of the cities the
Pop algorithm achieve higher values in EPC for both T2 and T3.

Regarding the locals, in all cities, except Mexico City, L3 is the
cluster that obtains the lowest levels in nDCG, comparing it with
all locals and travelers groups whereas, in general, it also obtains
higher levels of novelty than the other clusters. Besides, for L3,
all models have similar nDCG performance, thus, exhibiting much
fewer variations in this group than in any other group. From Table 1,
besides L3 being the most numerous, it is also the cluster that, in
general, contains the most active users (represented by the “Unique
POIs” feature). Hence, it is more probable to recommend these users
less popular venues given the probability that they have visited
more venues before than the other two groups with a lower activity
level, making more difficult to recommend to them both novel and
relevant venues.
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5.3 Discussion
According to the results obtained, if we segment the Foursquare
users into different clusters of travelers and locals, we observe well-
differentiated behaviors. As most users have been mostly active
only in their home cities, there are fewer users to be analyzed
belonging to the traveler groups than locals.

When analyzing the recommendations, we found that travelers
tend to get higher values in terms of accuracy and lower values in
terms of novelty and diversity. Nevertheless, we also observed that
for both travelers and locals, the performance of the recommenders
is rather low and sometimes the best performing algorithm in the
basic popularity recommender, which confirms the trend observed
in [30]. This emphasizes the role of the popularity bias in POI
recommendation, although we believe that this bias would be worth
analyzing more in-depth for this domain, as it has been done in
other traditional recommendation scenarios [1, 4].

A relevant insight of this study is that by assessing the quality
of the clustering results, it is imperative to use different features
to derive the clusters of travelers and locals. For the travelers, we
note that the geographical information was especially relevant,
as we found four highly differentiated groups according to the
ratio of domestic trips and the geographic displacement. Regarding
this, we observed that T2 and T3 tend to make more domestic
trips, having comparable results in the evaluation metrics of the
recommendations. For locals, we found that that the most important
features were regarding the activity level, especially in terms of
activity duration and the number of unique POIs visited. In this
sense, we observed that L3, which was the most numerous, exhibits
the highest values in the abovementioned features, whereas it also
obtains the lowest performance in terms of ranking accuracy.

Possibly most importantly, with this analysis using an LBSN
data set, we showed that different user groups exhibit very different
behavior; therefore, it would be misleading to measure the per-
formance of recommendation algorithms for all users as a whole.
Especially, when the recommendations should be tailored to specific
groups, a “one-size-fits-it-all” algorithm, which seemingly produces
good recommendations, might fail for a specific user group. Con-
cretely, we could measure differences of > 400% between different
user groups in terms of nDCG, such as in London and New York us-
ing GeoBPR recommender or Mexico City using the PGN algorithm.
Besides, we also observed some important differences between user
groups when measuring EPC (although generally smaller than in
nDCG), in the case of Tokyo for the PGN and BPRMF algorithms.
Further, in view of the analyses and results obtained, we would like
to raise concerns that this Foursquare data set may not be appro-
priate to be used in the tourism domain because the vast majority
of them have barely checked-in in more than one city, cf. Tables 1,
and 2. However, although this data may ill-suited for obtaining
general conclusions about the mobility patterns of travelers in a
real-world environment, we do believe that LBSN data might help
tourism applications to recommend novel and diverse venues to
users exploiting the interactions of locals, as they will have more
knowledge about the interesting venues in a city [26].

6 CONCLUSIONS & FUTUREWORK
In this paper, we have presented a study on the POI recommendation
by classifying Foursquare users into different groups of travelers
and locals. To obtain these groups, we analyzed different mobility
features for travelers derived from the trips they have done during
the observation period. For locals, we observed that the geographi-
cal information used in this work is not helpful in computing the
different clusters, so we decided to use the information related to
the different types of POIs visited by users and the activity level
they exhibited. Besides, we analyzed the performance of a wide
range of classic and POI-specific recommendation models in the
abovementioned travelers and locals clusters in terms of ranking
accuracy, novelty and diversity. Regarding the results obtained, we
have observed that this Foursquare data set is mostly formed of
users who are local to a given city, meaning that this type of data
may less-suited for analyzing tourism patterns travelers. However,
we verified that despite less available training data for travelers, it
is easier to recommend them relevant venues compared to the lo-
cals, which we attribute to travelers being more impacted impacted
by popularity bias, represented by venues related to transporta-
tion and with shops & services. Moreover, we have also observed
performance differences among the discovered traveler and local
subclusters. Thus, regarding the locals, we have detected that it is
more difficult to produce relevant recommendations to the users
who have spent much time in their home city. Similarly, recommen-
dations are generally easier to compute for international travelers
than for domestic ones, despite most travel being domestic.

Generally, this study strengthens the conclusions of some pre-
vious studies [7, 30], but at the same time shows that POI rec-
ommendation using LBSN data is more intricate than how many
approaches tackle the problem. Different user groups have different
needs, which need to be considered by the recommendation algo-
rithms. As future work, we argue that it would be essential to extend
this analysis to other LBSNs, such as Gowalla5 or Brightkite6, to see
if we can obtain similar user groups to the ones discovered in our
work. Other data sources might exhibit other features to character-
ize the users, which raises the research question of which features
can be regarded as universal between multiple LBSNs. Finally, we
believe that it might be useful to analyze additional features to
create the clusters, including geographical, temporal (e.g., add more
temporal and geographical restrictions to derive the home cities of
the users) and/or the POI categories visited by each of the different
types of users, to detect additional biases in the recommendations.
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Summary
Recommender systems could benefit from not only recommending the most fitting items
but also in what quantity the user should consume them. In this paper, we tackle the
problem of recommending the personalized duration of stay at a destination. We present
a data-driven solution to this problem based on mining trips from location-based social
networks. To determine the recommended duration of stay at a destination, we use a
statistical approach based on how long travelers typically stay in different cities and how
much time the current user generally spends visiting cities. The method can serve as an
extension of personalized travel planning systems by not just recommending which city
one should travel to but also how much time to spend there.
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ABSTRACT
Recommender systems could benefit from not only recommending the most fitting items, but also
in what quantity the user should consume them. For example, a personalized travel recommender
system could indicate not just which city one should travel to, but also how much time to spend
there. We present a data-driven solution to this problem based on mining trips from location-based
social networks. To determine the recommended duration of stay at a destination, we consider how
long travelers typically stay at different cities and how much time the current user generally spends
visiting cities.

KEYWORDS
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INTRODUCTION
Recommender systems research is mostly concerned with predicting the ratings for items of an active
user, determining an optimal ranking of items, and presenting top-ranked items in an appealing
way. This challenge of finding the “best” item according to any metric is essential in virtually all
recommender system domains. However, items can also be recommended multiple times, such as if
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favorite artists appear repeatedly in a long music playlist. In this case, the assumption is that an item
should be watched, listened to or experienced as a whole, not only parts of it.
In some scenarios, it is important to decide not just which items should be recommend, but how

much of an item should be consumed. For example, a destination recommender should not only
recommend where to go, but also the optimal duration of one’s stay at each location. The duration
can vary depending on the relevance of the item and other domain-related factors, such as the type of
traveler [4]. Furthermore, items may be recommended multiple times within a travel package [8]. For
example, a recommendation regarding the perfect day at an amusement park might call for riding on
the same attraction multiple times.
In this paper, we examine the problem of determining the personalized amount of recommended

item consumption in recommender systems, since previous approaches have not solved this problem
convincingly. We then present a way to derive the duration of stays in the domain of destination
recommendation. Finally, we discuss the generalizability of our method and draw conclusions.

RELATED WORK
There is very limited related work with regard to determining the amount of item consumption in
recommender systems for travel and tourism.
Melià-Seguí et al. have investigated the typical duration of stays for tourists visiting different

point-of-interest categories using a Foursquare data set; for example, they considered the average
amount of time that users spent in restaurants [7]. Google Maps also presents information on how
much time visitors spent at selected venues in its search results. However, this information represents
only the duration of visits to individual locations or categories of locations; it cannot be used directly
to construct recommendations on how long to stay in a city or travel region.
There are several approaches to recommending travel packages, such as the Tourist-Area-Season

Topic (TAST) Model [6]. The idea underlying this model is to analyze features of travel packages with
regard to their item and user representations, which can then be utilized in a recommender system.
In this and similar work, features such as seasonality and item prices are often taken into account,
but the duration of stay is either fixed and predetermined, or not considered at all. A related problem
is to combine several destinations in a single composite trip. Since travelers’ time availability and
budget are usually constrained, this recommendation problem can be modeled as a knapsack problem
with a scoring function that balances the benefit and cost of items within the package. Herzog and
Wörndl have presented an approach to scoring travel regions based on user preferences and then
combining them into a longer trip [5]. The score of a region is gradually decreased on a weekly basis,
so different regions with lower initial scores may be added to the knapsack. However, this adjustment
of the duration of stay is very coarse and not adapted to item or user characteristics in more detail.
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When recommending a sequence of travel-related items, such as an itinerary for a city visit, the
problem of how much time to spend at individual locations arises as well. For example, De Choud-
hury et al. have analyzed Flickr photo streams to reconstruct paths of tourists in a city [1]. This
information is useful for creating an interesting itinerary once a tourist has already selected a city to
visit, but it does not tackle the problem of where to go on a trip or for how long. The determination
of the duration of stay is an open research problem [2], which could be resolved through mobility
analysis of traveler data [3]. To the best of our knowledge, no existing approach adequately addresses
the problem raised here.

DERIVING THE DURATION OF STAY IN A DESTINATION RECOMMENDER SYSTEM

Figure 1: Distribution of the durations of
blocks of trips in all 3,938 cities

Figure 2: Distribution of the durations of
blocks of trips in Tokyo, Japan

Having analyzed the related work, we will now sketch our ideas as to how to resolve the problem in
the domain of destination recommendation. Our proposed solution addresses the question of making
personalized recommendations regarding the duration of a tourist’s visit to a city by considering two
factors: the typical time that all tourists spend in that city and the particular user’s average length of
stay at a given destination. Initially, we need to know the distribution of the durations of people’s stay
at a destination, since there can be substantial differences between destinations as to how long one
needs to explore it. For example, a smaller city can be covered within a day or two, whereas a major
metropolis might require more time. The second aspect is the pace at which the particular traveler
visits destinations. Some tourists want to immerse themselves deeply into a culture and therefore stay
at each location for a longer time, whereas others want to visit as many different places as possible
during their holidays. To quantify these behaviors, we need a database of previous trips to establish a
distribution of how long people stay at a specific destination, such as a country or a city.
We employ our previously proposed approach to mine trips from a data set stemming from

Foursquare [3], a location-based social network (LBSN), where people can check in at venues all over
the world. However, the analysis presented in that paper is at a country-level granularity, whereas
we look at the duration of stays at the city level. Using a Foursquare data set of 33,278,683 check-ins
by 266,909 users [9], we mine 223,688 domestic and 10,963 international trips, requiring a minimum
duration of seven days to mitigate the confounding effect of short business trips. These trips are
further segmented into blocks, which are consecutive check-ins at the same municipality with over
15,000 inhabitants. The trips have a mean value of 2.944 blocks, resulting in a total of 690,897 blocks
for further analysis. The bar plot in Figure 1 shows the distribution of the durations of all blocks,
regardless of the city. The logarithmized counts show a bimodal distribution, with most blocks being
one day long and another peak at seven days. This second peak can be attributed our decision to set
the minimum duration of the whole trip at seven days.
The next step is to determine the pace at which our particular user typically travels, i.e., the

distribution of the duration the individual traveler’s past blocks. To obtain this information, we can
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either ask the traveler to provide some information about past trips directly, or we can request access
to the individual’s mobility patterns from her profile on a LBSN. Once we have this information about
past trips, we can derive the user’s pace by comparing it to the quantiles of all other travelers who
have visited the same destinations. This essentially establishes a collaborative filtering method to
derive the duration of stays from actual user behavior.

Figure 3: Distribution of the durations of
stay of blocks in Jakarta, Indonesia

Figure 4: Distribution of the durations of
stay of blocks in London, United Kingdom

Figure 5: Distribution of the durations of blocks of tourist stays in Washington, D.C., USA

Example. To visualize our approach, we show how the algorithm would calculate the personalized
duration of a sample user’s visit to Washington, D.C. To that end, we calculate the quantiles of the
previously visited cities. In our example, the user made three previous visits, spending 16 days in
Tokyo, 10 days in Jakarta, and 7 days in London. We have visualized the distributions of the durations
of blocks in the three cities in Figures 2, 3, and 4. The durations of these trips reveal that our user
is a relatively slow-paced traveler compared to others, as her lengths of stays are toward the right
side of the distributions. The trip to Tokyo was at 97%, the stay in Jakarta at 81%, and the visit to
London at 96% of the cumulative distribution function. To aggregate the user’s pace over the previous
trips, we can calculate the mean percentile, which is 91%. We can then find that percentile in the
distribution of visits to Washington, D.C., where the 91th percentile of the distribution is at 10 days
(see Figure 5). Therefore, this would be the recommended duration of stay.

CONCLUSIONS
In this paper, we have identified and examined the problem of determining the amount of item con-
sumption in recommender systems. To solve this problem, additional information about the domain
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and the user’s preferences is required. We showcased an approach to determining the personalized
duration of a stay in a city, based on the analysis of mobility data from location-based social networks.
The underlying method is, however, generalizable to similar problems, given the availability of appro-
priate data. We argue that such data are indeed often available, especially in commercial recommender
systems. In the tourism sector, airlines and hotel portals have a long history of user data and, which
they could easily leverage when making recommendations. After all, the proposed approach can
be used in any recommender systems domain, where the amount of the recommendation matters
and where information about the distribution of the quantity is available for both all users and the
particular user of interest.
In the future, we plan to extend our analysis using more trips from different LBSNs and to assess

our approach by using offline evaluations that involve cross-validation as well as user studies.
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Summary
Characterizing items for content-based recommender systems is challenging in complex
domains such as travel and tourism. In the case of destination recommendation, no
feature set can be readily used as a similarity ground truth, which makes it hard to
evaluate the quality of destination characterization approaches. Furthermore, the process
should scale well for many items, be cost-efficient, and, most importantly, correct.
To evaluate which data sources are most suitable, we investigate 18 characterization
methods that fall into the following categories: venue data, textual data, and factual data.
We make these data models comparable using rank agreement metrics and reveal which
data sources capture similar underlying concepts. To support choosing more suitable
data models, we capture the desired concept using an expert survey and evaluate our
characterization methods toward it. We find that the textual models to characterize
cities perform best overall, with data models based on factual and venue data being less
competitive. However, we show that data models with explicit features can be optimized
by learning weights for their features.
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Characterizing items for content-based recommender systems is a challenging task in

complex domains such as travel and tourism. In the case of destination recommendation,

no feature set can be readily used as a similarity ground truth, which makes it hard

to evaluate the quality of destination characterization approaches. Furthermore, the

process should scale well for many items, be cost-efficient, and most importantly correct.

To evaluate which data sources are most suitable, we investigate 18 characterization

methods that fall into three categories: venue data, textual data, and factual data. We

make these data models comparable using rank agreement metrics and reveal which

data sources capture similar underlying concepts. To support choosing more suitable

data models, we capture a desired concept using an expert survey and evaluate our

characterization methods toward it. We find that the textual models to characterize cities

perform best overall, with data models based on factual and venue data being less

competitive. However, we show that data models with explicit features can be optimized

by learning weights for their features.

Keywords: destination characterization, rank agreement metrics, expert evaluation, data mining, recommender

systems, content-based filtering

1. INTRODUCTION

The performance of data-driven systems is inherently determined by the underlying quality
of data, which is becoming increasingly hard to judge in the current era of big data. When
deciding on which features to use in the data model of an information retrieval or content-based
recommender system, there are often several options to choose from. Out of the many options
how to model a domain, how can one determine which instantiation of the available data is the
best? The data-driven characterization of real-world items should capture each entity as closely as
possible with respect to the user task supported by the system. As a principle, similar items in the
physical world should also be similar in the information space, despite the loss of information and
granularity. Thus, authors of content-based filtering algorithms (Pazzani and Billsus, 2007) should
evaluate whether their data model matches the user goals, since a divergence might cause confusion
and inevitably decrease the trust in and satisfaction with the system. Sometimes, the mapping to
the physical world is obvious. When recommending a computer configuration, the feature values,
such as the available memory or number of USB outlets have clear meaning and can be easily
interpreted by the users and algorithms (Zhang and Pu, 2006). In other domains, however, a
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ground truth for items similarity is hard to capture, which is
a fundamental problem (Yao and Harper, 2018): What are the
movies most similar to “Fight Club”? Which cities are most
similar to Munich? We as humans might have an intuition
about such similarity concepts, but it is hard to develop
recommendation algorithms that emulate such, possibly latent,
concepts. Evaluating this is an under-researched challenge in the
area of content-based recommendation, especially in the travel
and tourism domain, where items such as destinations or travel
packs are often not as clearly defined as consumer products.
Approaches that rely on a history of explicit or implicit user
interactions, such as collaborative filtering or bandit algorithms
do not face this problem since there is a clear connection between
the item and the user’s rating (Su and Khoshgoftaar, 2009). Still,
in cold-start situations, i.e., when too little interaction data is
available for employing such approaches, a common strategy
used is hybridization, which again requires using content-based
algorithms to compute the initial recommendations (Çano and
Morisio, 2017).

To make these considerations concrete, take a destination
recommender system as an example. The CityRec system (Dietz
et al., 2022), allows users to refine their travel preferences based
on six features that were obtained and derived from various
sources such as Foursquare and open data portals: “Nightlife,”
“Food,” “Arts and Entertainment,” “Outdoor and Recreation,”
“Average Temperature,” and “Cost.” However, when developing
this system, we faced the issue of determining which data set and
features are the most accurate and useful for prospective travelers
to reason about destinations. Given that recommendations are
computed using the cities’ features and the users base their
decisions on them, inaccuracies in the data model negatively
impact the trust in the system. To the best of our knowledge, this
two-fold challenge of choosing accurate data sources to quantify
specific aspects travel destinations, as well as choosing which
features to incorporate in a content-based recommender system
has not been analyzed in a systematic way (Yao and Harper,
2018). This motivated us to develop this toolbox of methods to
compare data sources with each other and also with respect to
what is important in the domain of such a recommender system.

To make our contributions generalizable for different data
models in various domains, we rely on rank agreement
methods (Kendall, 1970), which operate on ranked lists based
on the similarity measure of the recommender system. The
proposed methods quantify correlations between conceptually
diverse characterization methods to enable informed decision
making with respect to which one to employ. For example,
if it turns out that two characterization methods are highly
correlated, i.e., both capture the same underlying concepts using
different features, one could go ahead and exchange one for
another without introducing disruptive changes in the resulting
recommendations.

Furthermore, we propose a method to assess the quality of
data models with respect to a desired concept. We argue that
a destination recommender system should use a data model
that results in recommendations that emulate the destination

Abbreviations: LBSN, location-based social network; OSM, OpenStreetMap.

experience as closely as possible. To achieve this, it is imperative
to assess which available data source and feature set approximate
the concept of touristic experience best. However, such a “gold
standard” is readily not available and typically can only be elicited
for a small subset of the recommendation items. We elicit the
concept of touristic experience using an expert study and propose
methods to assess the quality of the characterization methods
with such incomplete information.

To showcase the utility of our approach, we exercise the
methods within the particularly challenging domain of content-
based destination recommendation (Le Falher et al., 2015; Liu
et al., 2018), where recommendations are solely computed based
on the items’ characteristics as opposed to rating or interaction
data in collaborative filtering approaches. For this, we introduce
18 destination characterization methods for 140 cities, which we
have collected from literature or constructed ourselves. Using
well-established rank correlation methods (Kendall, 1970), we
compute their pairwise similarities, thereby revealing families of
similar data sources. To evaluate the data sources with respect
to how tourists experience a destination, we conduct an expert
study to elicit this latent concept. Using variants of established
top-k rank agreement methods, we are able to assess the quality
of the data sources by their similarity to the expert opinions.

The main contributions of this work are as follows:

• We propose a method to assess the similarities and the
quality of data models characterizing items in content-based
recommender systems.

• We introduce, instantiate, and compare 18 different
destination characterization methods using the proposed
methodology.

• We conduct a survey among travel experts to establish a
similarity baseline of the different destination characterization
methods. Using this expert-elicited concept, we assess and
optimize the data sources with respect to this concept.

While we use destination characterization as our running
example, our methods are not specific to this domain, since the
proposed methods operate on ranked lists of any kind.

The structure of the paper is the following: after discussing
the prior work in Section 2, we provide a description of the data
for destination characterization. In Section 4, we introduce our
methodology of how we made the data sources comparable using
rank agreement metrics. The expert study in Section 5 shows
how we elicited our desired concept. In Section 6, we present the
analysis of which data sources capture similar concepts andwhich
approximates the concept of touristic experience best. Finally, we
conclude our findings and point out future work in Section 7.

2. RELATED WORK

In recommender systems research, most algorithms traditionally
use the collaborative filtering paradigm, i.e., interpreting user
ratings (or similar explicit feedback) of items. However, in cold-
start recommendation situations, where such interaction
data does not exist to sufficient degree, content-based
algorithms (Lops et al., 2011) play a role to be able to generate
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meaningful and personalized recommendations to the users.
This research is motivated by practical challenges of content-
based information retrieval systems, especially personalized
recommender systems.

Concerning the similar item recommendation problem, Yao
and Harper have shown that content-based algorithms have
outperformed ratings- and clickstream-based ones with respect
to the perceived similarity of items and the overall quality of
the recommendations in the movie domain (Yao and Harper,
2018). Our work goes one step further: We provide a framework
that allows to compare different data models of the same items
with respect to the similarity according to a desired concept and
additionally provide means to optimize the feature weights to
approximate the concept even better.

We use the travel and tourism recommendation domain
as a running example; however, other domains face similar
challenges. In their survey, Borràs et al. (2014) identify four
different tasks that tourism recommender systems have to cope
with: recommending travel destinations or travel packages (Liu
et al., 2011), suggesting attractions (Massimo and Ricci, 2018;
Sánchez and Bellogín, 2022), planning trips (Gavalas et al.,
2014; Dietz and Weimert, 2018), and accounting for social
aspects (Gretzel, 2011). We aim to contribute to the feature
engineering challenges of the first task: recommending travel
destinations. We focus on the characterization of destinations,
which is the task to establish the underlying data model
for destination recommender systems. Herein, “destination”
refers to cities. Key challenges in recommending cities are the
intangibility of the recommended item, high consumption costs,
and high emotional involvement (Werthner and Ricci, 2004).

Burke and Ramezani (2011) suggest the content-based
recommendation paradigm as one of the appropriate ones for the
tourism domain. Content-based recommenders need a domain
model and an appropriate distance measure to enable effective
matchmaking between user preferences and items to generate
recommendations without details rating or interaction data.
For this reason, they can be successful in situations where
the interaction with the recommender is very rare and short-
term and the user model can be derived from alternative
information sources. Domain models in recommenders have
been constructed using various data sets (Dietz et al., 2019)
derived through analyses and user studies (Neidhardt et al., 2014,
2015) or realized through ontologies (Moreno et al., 2013; Grün
et al., 2017). In this work, we compare different data-driven
destination characterization methods, which project destinations
onto the respective search spaces using different types of
data, cf. Section 3.

Naturally, the question of which features are useful to
characterize a destination for efficient retrieval in an information
system arises. Dietz (2018) mentions challenges of characterizing
destinations: the destination boundaries must be clearly defined,
the data needs to be kept up-to date, and the features should
be relevant with respect to the recommendation goal. Analyzing
LBSN data to characterize cities and their districts has been an
active topic in previous years (Silva et al., 2019). It has been
shown that such data is quite useful to unveil characteristics
of certain districts within a city (Le Falher et al., 2015).

McKenzie and Adams (2017) suggested the use of Kernel density
estimation models of check-ins to identify thematic areas within
a city.

A related line of research is concerned with capturing and
visualizing intangible concepts in urban areas: Quercia et al.
(2015) used LBSN data and Google Street View imagery1

to determine intangible concepts such as the smell, the
soundscape (Aiello et al., 2016), and general happiness (Quercia
et al., 2014) on a street granularity. Analogously, street imagery
can also be reliably used to measure distributions of income,
education, unemployment, housing, living environment, health
and crime as Suel et al. (2019) have demonstrated. Finally, it
has been shown that it possible to automatically distinguish
cities based on their architectural elements learned from street
imagery (Doersch et al., 2015). Using features derived from
such approaches could also be used to compute similarities of
cities and their districts. Obtaining Google Street View images
is feasible on a small and medium scale, however, the costs
to do such an analysis on a global scale prevented us from
experimenting with this data source.

In the area of content-based characterization of destinations
for use in recommender systems there are so far few
approaches. Sertkan et al. (2017) characterized a huge data set
of 16,950 destinations based on 26 motivational ratings and
12 geographical attributes within the Seven Factor Model of
tourism motifs. They proposed a cluster analysis and regression
analysis to map the destinations to the vector space of the
Seven Factor Model (Neidhardt et al., 2015). The framework
was recently also used by Grossmann et al. (2019) to elicit
preferences of prospective tourists using picture of destinations
While modeling the user’s interests using travel-related pictures
has been shown to be possible, obtaining a representative set of
images of global destinations in an automated fashion is an open
research problem (Sertkan et al., 2020a,b). The development of
the CityRec recommender system (Dietz et al., 2019, 2022) partly
motivated investigating different data models for recommender
system: CityRec uses a domainmodel based on Foursquare venue
categories and further information such as a cost index or climate
data collected from web APIs (Dietz et al., 2019). This data
model is used both to elicit user preferences via conversational
refinement, i.e., turn-based adjustment of the preferences in a
dialogue with the system and to compute the recommendations
in a content-based way.

It is striking that researchers invest a lot of energy into
capturing signals from various online sources to approximate
complex, intangible concepts. To the best of our knowledge, these
data models are rarely systematically verified as to what extend
they approximate the recommendation domain. In this paper, we
propose a collection of several methods to provide researchers
with tools to evaluate this.

3. DATA SOURCES

To characterize destinations, we used various online data sources
showcased in Table 1. Our selection criteria for the data sources

1https://www.google.com/streetview/

Frontiers in Big Data | www.frontiersin.org 3 April 2022 | Volume 5 | Article 829939

A Embedded Publications

142



Dietz et al. Comparative Study of Data-Driven Models

were that they should have touristic relevancy, i.e., prospective
travelers should be able to use them to familiarize themselves
with a destination, or that they are already part of travel-related
information systems, as is the case with the data set from
Foursquare and the data sources in the factual category.

To obtain a balanced collection of destinations on all
continents that would reflect the cultural differences of the travel
destinations, we initially gathered an extensive list of prominent
cities such as capital cities or relevant travel destinations.
Unfortunately, not all cities could be characterized with all
methods. Several destinations were not included in Nomad List
and OpenStreetMap did often not have proper city boundaries
for several cities in Asia and Africa. Our proposed approaches
to make the destination characterization methods comparable,
however, require complete data for each city. Thus, our data
set for this study comprises a set of 140 cities, which are those
that could be characterized with all data sources. Looking at
Figure 1, the distribution of destinations on the planet is missing
cities in Central Asia and Africa that had to be excluded due
to this requirement, otherwise the distribution would roughly
correspond to the world’s population density. The full list is
available in the replication pack.

Throughout this paper, we work with ranked lists of the cities
most similar to one city. Such lists are based on one data source
and start with the base city followed by the 139 other cities. This
means that for each data source there are 140 such ranked lists. In
the following, we describe the data sources and howwe computed
the similarity metrics between the cities.

3.1. Venue Data
The first type of data we used to characterize destinations is
venue-based data. Intuitively, the variety of venues one can visit
at a destination might reflect the experience of a traveler. The
underlying assumption is that a destination can be characterized
using the distribution of all its touristic venues. The following
characterization methods rely on the assumption that the larger
the variety of, e.g., restaurants or cultural sites of a city is, the
better the score should be in these categories. This also means
that we do not aim to assess the quality of the venues, since most
venues do not come with quality indications such as ratings.

3.1.1. Foursquare
Foursquare is a LBSN that offers a rich, well-structured taxonomy
of venue categories and also allows reasonably generous API rate
limits to crawl data from it. Using the “search venues” endpoint2,
we were able to obtain a collection of each city’s venues using
a recursive algorithm that exhaustively queried all Foursquare
venues specified within a bounding box. Using this method, we
collected 2,468,736 venues in 140 cities that had at least 5,000
venues each.

To create the specific set of lists, we needed to establish an
association between the cities and the venue types. Foursquare
provides a well-defined venue category hierarchy3, which allows
us to map every venue to a top-level category, e.g., Science

2https://developer.foursquare.com/docs/api/venues/search
3https://developer.foursquare.com/docs/resources/categories

Museum → Museum → Arts & Entertainment. We use the
tourism-related subset of these categories to create a feature set
that enables us to characterize the cities, shown in Figure 2. These
features can be conceptualized as a multi-dimensional vector
space, however, to perform reasonable comparisons the data
must be normalized to make large and small cities comparable.
By normalizing the number of venues in each category using the
total venue count of the city, we obtain the percentage of each
category in the city’s category distribution. This approach relies
on the assumption that a larger number of venues in a certain
category improves the touristic experience while visiting it. A
simple example helps in demonstrating this: The cities in our data
set have a certain distribution of venue categories; if the number
of venues labeled with “Arts & Entertainment” in a city is on the
high end of that distribution, it can be assumed that it likely offers
a larger number of opportunities and should, thus, get a higher
score in this category. Figure 2 shows the category distributions
of a few cities of different continents and sizes that we have
chosen as illustrative examples. Note that, unlike in the data
model, this visualization is not normalized with respect to the
number of venues. Examining Figure 2, one can see that many
cities have a somewhat similar distribution of venue categories,
where “Food” and “Shops & Service” dominate in general. To
eliminate this effect, we apply min-max scaling to the calculated
percentages. This way we obtain the final city scores for each of
the features, which take values in [0, 1].

Using this method, we constructed two data models from
Foursquare. The first on the four top-level categories –
“Arts & Entertainment,” “Food,” “Outdoors & Recreation,” and
“Nightlife” – and another one using the 337 second-level
categories as aggregation target.

3.1.2. OpenStreetMap
With OSM, we used a similar approach as with Foursquare.
To obtain all map features, we set up our own OSM server
and developed a querying client to obtain the entities within
the city relations. The map entities are again hierarchically
categorized on three levels4. The 27 top-level categories are
subdivided into several subcategories which finally contain 1,032
types of map features. For example, the “amenity” category has
several subcategories, such as “Healthcare,” “Transportation,” and
“Entertainment, Arts and Culture.” These subcategories again
contain numerous entities, uniquely identified by the full path,
for example “amenity:entertainment/arts” and “culture:cinema.”
As opposed to the Foursquare characterization, we also had exact
city boundaries, so we could compute the area of the destination.

Leveraging this hierarchy, we again built a top-level model,
which collapses the map entities to tourism-related categories:
“tourism,” “leisure,” “historic,” “natural,” and “sport” as well as
the venue count and the area. The second-level model comprises
entities of 14 tourism-related subcategories as well as the venue
count and area.

4https://wiki.openstreetmap.org/wiki/Map_Features
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TABLE 1 | Overview of the data sources for characterizing cities.

Type Name Category Data objects Number of objects Acronym

Venue Foursquare LBSN Venues 2,468,736 FSQ

Data OpenStreetMap Collaborative map Map entities 3,106,856 OSM

Textual Wikipedia Collaborative encyclopedia Documents 1,150,719 words WP

Wikitravel Travel-related Wiki Documents 984,777 words WT

Google travel Travel information Documents 56,499 words GT

Factual Webologen Travel information provider City features 49 tourism facts/city TF

Nomad list Collaborative travel information City features 8 features / city Nomadlist

Seven factor model Scientific characterization Derived factors 7 factors / city 7FM-2018

Geographic location Geographic location Latitude, longitude 1 coordinate pair / city GEO

FIGURE 1 | Geographic distribution of the characterized cities. Map data © OpenStreetMap contributors, see https://www.openstreetmap.org/copyright.

3.2. Textual Data
Using document similarity assessments such as the Jaccard
Distance, Word2Vec embeddings and a transformers-based
approach on texts describing a destination, we are able to
compute pairwise similarities between the cities. As textual
basis, we used three online resources: Wikipedia, Wikitravel, and
Google Travel.

3.2.1. Wikipedia
We used the articles of the English Wikipedia5 about the 140
cities to compute the similarity between cities. The mean length
of the articles about our destinations was 8,219 words.

5https://en.wikipedia.org

3.2.2. Wikitravel
This collaborative travel guide6 provides useful information
about touristic destinations. It is free of charge and offers detailed
information about possible activities, recommended restaurants,
and general advice for traveling. Some cities have sub-pages about
their districts, however, we have only used the main articles to
maintain comparability. The mean length of the articles was
7,034 words.

3.2.3. Google Travel
Another popular platform for learning about travel destinations
and planning trips is Google Travel7. Based on actual traveler
visits and local insights, the platform provides a list of most

6https://wikitravel.org
7https://www.google.com/travel
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FIGURE 2 | Venue category distribution for a subset of cities.

iconic attractions. In this work, we used the short description
of each attraction at a destination. For example, the description
of Schönbrunn Palace in Vienna is “Baroque palace with opulent
interiors.” Since there are often myriads of attractions in a city,
we concatenated these descriptions into one document to obtain
the overall description of the considered city. This resulted in one
document per city with a mean length of 404 words.

3.2.4. Text Processing and Similarity Measures
For the raw text of the three text sources, we used the same pre-
processing steps. After theHTML tags were removed, the text was
put in lower case and stripped of all special characters, such as line
breaks and punctuation marks. Then, the terms were tokenized
using a standard word tokenizer and the stop words eliminated
to reduce noise.

For the Jaccard models, the document term matrix was
computed based on the cleaned text and then the similarity
between the cities was computed using the Jaccard Distance.

We use pre-trained Word2Vec and BERT-based models
as zero-shot encoders to embed the documents. In case
of the Word2Vec-based models, we aggregated the pre-
trained word embeddings using mean-pooling to obtain the
document embedding and used the cosine similarity to compute
the similarity. We utilize the open-source library spaCy8

and in particular the english-core-web-large model, which
outputs 300-dimensional vectors and is trained on OntoNotes
5 (Weischedel et al., 2011), ClearNLP Constituent-to-Dependency
Conversion (Choi et al., 2015), WordNet 3.0 (Miller, 1995), and
GloVe Common Crawl (Pennington et al., 2014). This means,
that there was no need to fine-tuning the models; the default
hyperparameters of Spacy could be re-used.

The BERT-based sentence encoder (Yang et al., 2021) we
employed was also pre-trained on Wikipedia and Common
Crawl9 to encode the documents, thus, again making further

8https://spacy.io
9https://commoncrawl.org

fine-tuning of (hyper-) parameters obsolete. We use the cosine
similarity to rank the cities. Thus, we obtained nine textual
ranked lists: three data sources× three similarity measures.

3.3. Factual Data
The third category is factual data with a focus on travel and
tourism. This group comprises data sources that had readily
available facts about destinations, such as rated features or geo-
social features relevant for travelers. However, this does not imply
that the quality of the data is beyond scrutiny.

3.3.1. Webologen Tourism Facts
The former German eTourism start-up Webologen compiled a
data set of 30,000 cities, which are described by 22 geographical
attributes and 27 “motivational” ratings. The geographical
attributes have binary values indicating the presence or absence
of various geographical attributes: sea, mountain, lake, island,
etc. The motivational ratings were assessed using proprietary
methods at Webologen, taking into account infrastructure,
climate, marketing, and economic data. With a score between
0 and 1, the motivational ratings, such as nightlife, wellness,
shopping, nature and landscape, measure the quality of those
touristic aspects at a destination. The higher the value, the better
this aspect is for a traveler. Given this multitude of features, this
data set provides a very detailed image of a tourism destination.
Since there are multiple types of data (i.e., binary and interval
scale), we use the Gower Distance (Gower, 1971) to compute the
similarity for the city rankings.

3.3.2. Nomad List
As opposed to Webologen’s approach, Nomadlist10 employed
a mixture of own data modeling and crowdsourcing to
characterize cities for their suitability for digital nomadism.
Built as a specialized platform for this community, it offers
rich information about the cities in its database. We crawled

10https://nomadlist.com
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the publicly available data and were able to obtain the
following features for each city: “Nomad Score,” cost, fun, life
quality, air quality, healthcare, happiness, and nightlife. Since
these features were already available in a normalized interval
format, we used the Euclidean Distance to compute the city
similarity rankings.

3.3.3. Seven Factor Model
This model was previously developed by Neidhardt et al.
(2014, 2015) to capture the preferences and personality of
tourists, but also to project touristic recommendation items
such as destinations and attractions. Both user preferences
and items are embedded into the same vector space using
seven orthogonal dimensions: Sun and Chill-Out, Knowledge
and Travel, Independence and History, Culture and Indulgence,
Social and Sports, Action and Fun, Nature and Recreation. These
factors were derived from a factor analysis of the well-known
“Big Five” personality traits (Goldberg, 1990) and 17 tourists
roles of traveler behavior (Gibson and Yiannakis, 2002). In
subsequent work, they showed that tourism destinations can
be mapped onto the Seven Factor Model using tourism facts
based on the Webologen data set (Sertkan et al., 2019). We
used the same mapping mechanism to reproduce the Seven
Factor representations for each destination in our data set.
Given that the resulting representation is a seven-dimensional
vector [0, 1], we use the Euclidean Distance to compute the city
similarity rankings.

3.3.4. Geographical Distance
The geographic position of the destinations certainly also plays
a role assessing the similarity among them. Intuitively, cities
close to each other might have a higher similarity than those
far apart. While this model might not provide much insight
into the characterization of destinations, it still serves as an
interesting baseline in assessing the similarities of other methods.
We used the Haversine Distance (Robusto, 1957) based on the
cities’ geographic coordinates to compute this distance.

4. COMPARING RANKED LISTS

Each data source described in the previous section establishes
a pairwise similarity for all cities. Selecting a city, we can rank
all other cities based on these similarity scores. We want to
compute metrics that capture the similarity of ranked lists,
thus, revealing which data models capture a similar concept.
In literature, one can find various methods to compute the
agreement of two ranked lists. They are also known as rank
“correlation” methods and essentially capture a notion of
similarity between the ordering of items within two lists. For
complete permutation groups, i.e., both lists have the same items
and the same length, there are several established metrics, such as
the Kendall’s Tau Distance (Kendall, 1970), Spearman’s Footrule
Distance (Spearman, 1906), and Spearman’s ρ (Spearman, 1904).
Based on these measures, myriad other methods have been
proposed to cater the needs of more specialized domains and
other assumptions.

To precisely describe the methods, we briefly discuss our
assumptions and introduce a terminology that is inspired
by Fagin et al. (2003). Throughout this work, we consider ranked
lists of 140 cities, which are our fixed domain D. We analyze
several data models, which express their similarity in form of
ranked lists rl ∈ RL, of which we ultimately would like to find
which would be most suitable to be employed in a content-based
recommender system. Each ranked list is a permutation of the set
of permutations SD of D. rl(i) denotes the rank of a city i in the
ranked list rl. rl(1) is always the city based on which the model
was created.

4.1. Rank Agreement of Complete Ranked
Lists
The simplest problem to determine the correlation between
two ranked lists is comparing two permutations (Kendall, 1970;
Diaconis, 1988). We will briefly recapitulate two common
measures for this, as they are the foundation of our proposed
metrics for the agreement of top-k lists with a full permutation.

4.1.1. Kendall’s Tau Distance
It is defined as the minimum number of pairwise adjacent
transpositions needed to transform one list into the
other (Kendall, 1970). It counts the number of pairs of
items P(i, j), such that rl1(i) < rl1(j) and rl2(i) > rl2(j). This
is equivalent to the number of swaps required for sorting a list
according to the other one using the Bubble Sort algorithm (Lesh
and Mitzenmacher, 2006).

T(rl1, rl2) =
∑

i,j∈P

T̄i,j(rl1, rl2),

where P = {{i, j}|i 6= j and i, j ∈ D}, and T̄i,j(rl1, rl2) = 1 if i and j
are in the opposite order, and 0 otherwise.

4.1.2. Spearman’s Footrule Distance
Intuitively, this metric is defined over the distance of the ranks of
the same item in the two lists (Spearman, 1906).

F(rl1, rl2) =

n∑

i=1

|rl1(i)− rl2(i)|

Despite being conceptually different it has been shown
that in practice, both metrics yield similar results for full
permutations (Kendall, 1970). In our evaluation in Section 6,
we will use them to determine which data models capture
similar underlying concepts and they form the foundation for our
proposed rank agreement methods of incomplete rankings.

4.2. Rank Agreement of Incomplete
Rankings
In their original definition, the rank agreement methods
introduced in Section 4.1 are defined over two complete
permutations of the same finite list. This assumption does not
generally hold, since we were unable to characterize all cities with
all data sources resulting in missing characterization of cities.
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We sidestepped this problem by considering only a subset of
destinations that could be characterized with all methods.

4.2.1. Problem Formulation
The outcome of the expert study (cf. Section 5) is a collection of
top-k lists. Each top-k list contains the k ≥ 10 most similar cities
to the city the expert characterized. To find out which data model
is the most similar to the experts’ opinions, we need to modify the
rank agreement methods to cope with this scenario. Concretely,
this means that we need to compute the rank agreement between
an expert’s top-k ranking τ , where 10 ≤ k ≤ 139 and a complete
permutation of length 140. To the best of our knowledge, we are
first to systematically analyze this special case.

4.2.2. Approaches in Literature
In literature, similar problems have been tackled in the area
of biostatistics and information retrieval. Critchlow was first
to establish a theoretical basis for such rankings (Critchlow,
1985), assuming a fixed domain of items D. One of the most
comprehensive papers on the rank agreement of top-k lists is the
one of Fagin et al. (2003). Unlike Critchlow and us, they did not
assume a fixed domain of items and, thus, proposed very general
distance measures for top-k lists that are not directly useful to
our scenario. The authors also proved that in the general case, the
measures for top-k lists reside in the same equivalence class and
showcased further applications of these measures in the context
of the rank aggregation problem (Dwork et al., 2001; Lin and
Ding, 2008).

An important property of Kendall’s Tau and Spearman’s
Footrule is that all ranks are treated equal, i.e., they do not
take the potentially non-uniform relevancy of top-ranked or
bottom ranked into account. In many domains, the assumption
of uniform relevancy does not hold, thus, several other measures
have been proposed. Iman and Conover (1987) proposed a
concordance measure that prioritizes rank agreements at the
top of the rankings, while Shieh proposed a weighted variant of
Kendall’s Tau, where the analyst can prioritize either low-ranked
or high-ranked items (Shieh, 1998). The Average Precision (AP)
correlation is another importantmeasure in information retrieval
that more heavily penalizes differences of top-ranked items
compared to Kendall’s Tau (Yilmaz et al., 2008).

In our domain at hand, the issues motivating the
aforementioned papers are not present. Since our top-k
lists are very short, we do not need to come up with additional
weights based on the position within the list. Furthermore, given
the underlying data sources and similarity measures used, the
probability of tied ranks in the lists is very low so that this case
can be neglected as well (Urbano and Marrero, 2017).

The alternative to dealing with the rank agreement problem of
a top-k list and a permutation would be to disregard the inherent
order of the ranked list and view it as a set. This would open
the door to interpret each element of the list as an independent
query, on which traditional information retrieval metrics can
be computed such as Precision or the Reciprocal Rank. By
repeating this process for each item, one could assess the quality
of the expert’s selection just as it is frequently done with search
engines or recommender systems resulting in metrics, such as the

Precision (Precision@K) or the Mean Reciprocal Rank (MRR).
Instead, we aim to retain the ranking information by the experts
and discuss various methods to compute metrics that operate on
the ranked list semantics.

4.2.3. Proposed Methods
Under the assumptions that 1) we have a fixed domain of items,
and 2) only the relative ranking in the ranked lists matters, i.e.,
the concrete values of the agreement are not of importance,
there is the option to randomly fill the missing items of a top-
k list τ with the remaining items {D − τ } (Ekstrøm et al.,
2018). This essentially constructs two permutations, which can
then be assessed with the standard metrics from Section 4.1. By
repeating this process a large number of times, the effect of the
random items at the tail of the list is eliminated and, finally, the
ranking is computed based on the mean value of all iterations.
This simple idea would be a permissible option for our scenario;
however, it requires much overhead computation and does not
provide concrete values for the rank agreement, since only the
top k items contribute to the signal, while the remaining ones
are pure noise.

Thus, an analytic solution for this problem would be
preferable. In our scenario, we can always assume that we have
a fixed domain of items, since each data model will be able to
produce similarity scores between all items. Thus, our problem
is similar to the one Fagin et al. resolve in their approach, i.e.,
comparing one top-k list τ of length k with a ranked list rl (Fagin
et al., 2003, Section 3.1), however, due to the fixed domain
assumption, we only need to discriminate three cases. This results
in a simpler problem without any room for uncertainty that
might arise from having items that are in one top-k list, but not
in the other.

• Case 1: i ∈ τ , and rl(i) ≤ k (the item is in the top-k list and the
rank of the item in the permutation is at most k)

• Case 2: i ∈ τ , but rl(i) > k (the item is in the top-k list but the
rank of the item in the permutation is greater than k)

• Case 3: i /∈ τ (the item is not in the top-k list)

Using this insight, we propose variants to Kendall’s Tau and
Spearman’s Footrule distance for top-k lists.

• Modified Spearman’s Footrule Distance

If a city is in the top-k list (Case 1 & 2), we can compute the
distance between τ (i) and rl(i) as before, since all information
is still available. In Case 3, we do not add any penalty, since we
have no information about which penalty should be applied.
Thus, F′(τ , rl) is simply the footrule distance between all
elements of τ and the corresponding elements in rl.

F′(τ , rl) =

k∑

i=1

|τ (i)− rl(i)|

Fagin et al. (2003) discuss another variant, F(l), the footrule
distance with location parameter l, where they set l =

k + 1. This is not applicable in our scenario, since we
have a fixed domain and have already applied a penalty for
each element τ .
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• Modified Kendall’s Tau Distance

For a modified Kendall’s Tau Distance, we again count the
number of discordant pairs between τ and rl. This situation is
similar to the modified footrule distance, as only the penalties
from the elements of τ are applied.

T′(τ , rl) =
∑

i,j∈P

T̄i,j(τ , rl),

where P = {{i, j}|i 6= j and i, j ∈ D}, and T̄i,j(τ , rl) = 1 if i and
j are in the opposite order, and 0 otherwise.

Table 2 at the end of the following section exemplifies howwe use
these derived rank agreement metrics adapted to our scenario to
compare top-k lists with complete permutations in Section 6.2.

5. ELICITING A DESIRED CONCEPT
THROUGH EXPERT OPINIONS

Now, we want to find out which data source is best suited for
the domain of destination recommendation. To do so, we have
developed a web-based expert study to capture a very specific
concept we are interested in: “similar experience when visiting
cities as a tourist.” To make this latent concept explicit, we asked
experts from the travel and tourism domain to give their opinion
on this matter, by selecting the most similar destinations to a
given city.

In a pilot study, we realized that even for experts, the task to
rank the k most similar destinations from a list of 140 cities in
world be challenging. Therefore, to obtain a sufficient number
of characterizations per city, we restricted the characterization of
our expert study to 50 prominent cities. Naturally, we would have
preferred to perform a characterization of all cities in the data set,
but given that the experts’ time was limited, we focused on the 50
cities, which we expected our experts to be most familiar with.

5.1. Expert Survey Instrument
We now describe the user interface of the online survey
application and elaborate on the design choices that influenced
the system.

5.1.1. Landing Page
The experts were contacted via email and, when they followed
the link, they were presented with a landing page, which
contained general instructions and the contact data of the
authors. They were allowed to choose either from the 50 cities to
be surveyed, or in the case of local experts a predefined city they
should characterize.

5.1.2. City Similarity Ranking Task
After selecting the city to be characterized, the experts were
presented with their task, as shown in Figure 3. First, they were
asked to provide their familiarity with the given city on a five-
point named Likert Scale. Then the concrete task followed, which
was to be completed by ranking the cities using three columns.
The left “Most Similar Cities” column was initially empty. The
middle column contained a precomputed candidate list of 30
cities, that were the most similar to the base city according

to the aggregation of all methods. The decision to introduce
this column – as opposed to a two-column solution – was not
taken lightly. It was necessary, though, since going through an
unordered list of 139 items is not practical for human experts,
as it would have taken a long time depleting their concentration.
For this reason, we added this shortlist in a randomized order
to ease the task for the experts without introducing bias in
favor of a specific data source. We chose 30 as length of this
shortlist, since this is three times longer than the minimum of
10 cities that needed to be dragged to the left result column.
These precautions prevent biasing the results toward a specific
datamodel. Finally, the right column contained all remaining 109
cities in alphabetical order, to provide the experts the possibility
to incorporate them into their ranking.

When the experts finished dragging at least 10 cities to the
left column and indicated their familiarity with the base city,
a prominent “Submit” button became available. The minimum
number of 10 cities was chosen to give the partial rank agreement
methods sufficient information to compute meaningful results
and to limit the time it takes for the experts to complete a city
ranking. It also corresponds to the reality of information retrieval
or recommender systems, where only few highly relevant items
are of importance. When clicking the button, the results were
not yet finally submitted; instead, a modal pop-up window
appeared, where the users were asked to adjust the ranking of
their current shortlist: “Please adjust the order of the cities in this
list before submitting.” We decided to introduce this additional
step, because when we observed test subjects in our pilot runs,
it became apparent that some users simply dragged the cities
into the left column without taking much care of the internal
ordering of the left column. By explicitly reminding the user to
revise this result, we aimed to improve the ranking, as otherwise
the left column might have had set semantics instead of a
ranked list semantics.

5.2. Sampling of Tourism Experts
To obtain a high-quality ranking data set, we reached out
to experts having relevant experience with global tourism in
three ways: first, we distributed leaflets to tourism experts
and researchers at the ENTER eTourism Conference held in
January 2020 in Guildford, United Kingdom. Second, we directly
contacted representatives and researchers on the tourism boards
of the 50 cities and their respective regions. Our reasoning
was that these experts in the local tourism boards know best
whom they compete with, and we hope this helped to establish
higher diversity of where the participants of our study originated
from. This group did receive a special link to the survey, which
forced them to first complete the ranking of their local city,
before having the chance to rank other cities as well. Finally, we
also shared the user study with the TRINET Tourism Research
Information Network11 mailing list of accreditedmembers of the
international tourism research and education community.

We are confident that this rigorous sampling method ensured
that both the quality and the quantity of the responses are very
high, despite being a web-based study conducted during the
Covid-19 Pandemic.

11https://tim.hawaii.edu/about-values-vision-mission-accreditation/trinet/
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TABLE 2 | Three expert opinions on the city of Munich are contrasted with the WP-jaccard ranked lists. The ranking of Expert 1 is closer to the ranked list than the two

others.

WP-jaccard Expert 1 Expert 2 Expert 3

1 Vienna Salzburg Vienna Frankfurt

2 Dusseldorf Vienna Milan Brussels

3 Leipzig Cologne Dusseldorf Heidelberg

4 Berlin Graz Paris Budapest

5 Frankfurt Milan Boston Hamburg

6 Heidelberg Edinburgh Luxembourg Barcelona

7 Cologne Dusseldorf Berlin Vienna

8 Nuremberg Hamburg Cologne Prague

9 Salzburg Amsterdam Vancouver Berlin

10 Copenhagen Brussels Dubai Rome

F ′(τ ,m) x = 233.67 146 292 263

T ′(τ ,m) x = 16.33 14 15 20

FIGURE 3 | User interface of the expert survey.

5.3. Data Preparation and Cleaning
In total, we received 164 destination rankings from the survey.
Since it was a web study, we took the following precautions to
protect the data quality against potential low-effort submissions:
We excluded responses that were completed in shorter time than
1 min and all those who did not adjust the internal ordering

within the results column at all. Furthermore, we removed
responses where the experts indicated their familiarity with the
city on the “Very unfamiliar” or “Unfamiliar” levels. Looking
at the number of completed rankings by destination, we have
28 cities with at least two submissions. Excluding the rankings
of cities that were only ranked once, the results in Section 6.2
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are based on the final 88 rankings of 28 cities coming from 37
different IP addresses. The characterizations done by the experts
are available in the supplementary material.

The median time the experts needed to rank one city was 3m
14s and the number of re-rankings in the left results column
had a median value of 4. Most submissions (74) comprised the
minimum number of 10 most similar cities; eleven characterized
11–12, and the remaining three rankings were of length 13–
14. The top five most characterized cities were London, UK;
New York City, NY, USA; Miami, FL, USA; Barcelona, Spain;
and Nice, France.

5.4. Example
To concertize the approach, we show the experts’ rankings for
the city of Munich in Table 2. The first column shows the first 10
cities of the Wikipedia-jaccard list. To obtain the score of a data
model with respect to the expert’s opinion, we compute the two
modified rank agreement metrics between the ranked list and the
experts’ partial rankings. The overall score is the mean value of
the rank agreement metric of all experts and all cities. The lower
part of the table shows individual values and the aggregation:
In this example, the opinion of Expert 1 is quite close to the
ranked list according to both metrics. According to the modified
Kendall’s Tau, Expert 2’s ranking is closer than Expert 3, however
themodified Footrule distance is lower for Expert 3. This is due to
the potentially exotic choices of Expert 2 to include Dubai (rank
48 in the ranked list), Vancouver (rank 54), and Boston (rank 84),
which are heavily penalized in Footrule distance.

The final score of a data model according to one of the
metrics is computed by the mean value of all expert rankings
over all cities.

5.5. Expert Ranking Behavior
To provide some insights into the expert opinions, we first
tabulate the number of cities that came from the 30 destination
shortlist against the cities that were in the right column of
Figure 3. Overall, the expert rankings comprised 80% of cities
from the shortlist, whereas they still included 20% from the
arguably more arduous longer list of 109 alphabetically sorted
items. We see this as a confirmation that the recruited experts
were serious about their task and did not only follow the ranking
provided by the shortlist. Nevertheless, the shortlist might still
have influenced the reviewers in a way that we cannot quantify
using this study design.

In the right column of Table 3, we quantify the level of
agreement among the experts. Since this ranking task is different
from traditional rating data, where the agreement could be
quantified using metrics such as Fleiss’ kappa (Fleiss, 1971), we
use a set-theoretic measure to quantify the agreement of the
experts for each city. We compute the agreement as the pairwise
size of the intersection over the union of two annotators. The
reported number is the mean value over all pairs to make results
of cities with a different number of annotators comparable. The
agreement ranges between 11% in the case of Brussels, Mumbai,
and Osaka, while it reaches up to 54% in the case of San Diego.
On average, the experts’ lists had an overlap of about 25%, which
we consider as quite good, given that they chose at most 14

TABLE 3 | Expert annotators behavior: amount of cities selected from the shortlist

vs. the full alphabetical list and percentages of the same cities selected.

City name Alphabetical list % Shortlist % Expert agreement %

Amsterdam 20.00 80.00 17.65

Bangkok 30.43 69.57 27.78

Barcelona 40.00 60.00 12.57

Berlin 0.00 100.00 36.51

Brussels 55.00 45.00 11.11

Chicago 30.00 70.00 17.65

Copenhagen 22.73 77.27 15.79

Hamburg 23.33 76.67 27.78

Hong Kong 0.00 100.00 40.00

London 8.06 91.94 21.92

Madrid 18.00 82.00 29.50

Miami 48.00 52.00 26.59

Moscow 10.00 90.00 25.00

Mumbai 20.00 80.00 11.11

Munich 23.33 76.67 17.92

New York City 13.33 86.67 24.39

Nice 28.85 71.15 14.41

Osaka 10.00 90.00 11.11

Oslo 0.00 100.00 37.50

Paris 9.38 90.62 31.02

Rome 20.00 80.00 21.69

Saint Petersburg 43.33 56.67 17.92

San Diego 35.00 65.00 53.85

Seville 3.12 96.88 46.98

Singapore 11.63 88.37 30.72

Stockholm 12.50 87.50 32.83

Vancouver 10.00 90.00 26.32

Vienna 18.92 81.08 37.16

Overall 20.18 79.82 25.88

out of 139 other cities. Agreeing on about one-fourth of the
most similar destinations both shows that there is clear common
ground among the experts, but also that an intangible concept
such as the touristic experience cannot be determined in a purely
objective way. Finally, it should be noted that our proposed rank
agreement metrics deal well with potentially diverging opinions
about a concept.

6. RESULTS

We evaluate our work in three ways: first, an exploratory
approach using pairwise comparisons of the ranked lists to
capture commonalities between them. Second, the comparison
of each individual data model against the top-k lists that
encode the expert-elicited concept, and, finally, the results of
black-box optimization of selected data sources against the
expert-elicited concept.
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FIGURE 4 | Crosswise-analysis of all data models using Kendall’s Tau method. The entries are sorted using hierarchical clustering; the dendrogram reveals families of

data sources. The colors are scaled according to Kendall’s Tau with the bright yellow corresponding to 0 (the diagonal) and dark red representing no correlation

(Random).

6.1. Assessing the Similarity of Data
Sources
To reveal correlations, we compare our data sources for each
city against each other using the rank agreement metrics for full
permutations. In this particular case, we chose Kendall’s Tau,
but we could have likewise chosen Spearman’s Footrule distance,
which gives a similar picture. The heatmap in Figure 4 visualizes
the mean pairwise distances among all ranked lists derived from
the data models. The sort order was adjusted using hierarchical
clustering using the Euclidean Distance, which is also the basis
of the dendrogram on the top. The values in the cells are the
Kendall’s Tau distance, rounded to integers.
We now describe the resulting clusters. RANDOM is clearly
separated from all other data models, since it has no correlation
to any of them. The first group is the family of textual data
sources together with GEO. The respective ranked lists (Jaccard,
Word2vec, and BERT) are based on the same data source and
closest to each other. Within this family, one can also see that
those based on Google Travel are a bit further away from the
remaining ones. We attribute the very close grouping of GEO
with the ones from Wikipedia and Wikitravel to the amount

of geographic information that is encoded within the articles
describing the cities. Nomadlist seems to be unrelated to any
other data source in particular, but unlike RANDOM still has
a low correlation to all other data models. The remaining three
clusters are the ones of Foursquare, OSM, and the ranked
lists based on the Webologen data (TF). The high agreement
between TF and 7FM-2018 is interesting, because it shows
that the tourism facts are still manifested in the Seven Factor
Model of the destinations. This analysis is a very compact
representation of the similar concepts behind the respective data
sources and their instantiation. Thus, we want to outline some
further observations:

It seems that the choice of document similarity, i.e., Jaccard

distance vs. cosine similarity based on word vectors, is more

important in the Google Travel documents than in theWikitravel

or Wikipedia, which can be attributed to the topic, but also to

the length of documents. Google Travel descriptions are around
400 words compared to 7,000 in the case of Wikitravel and
8,200 in Wikipedia.

When we compare the similarities between the top-level
aggregation of OSM and Foursquare to their second-level
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variants, the distances are quite small between the two OSM
aggregations, however, relatively large between the Foursquare
aggregations. Revisiting the data, this can be explained with the
very huge branching factor of the Foursquare’s category tree,
where the four top-level features are expanded into 337 second-
level features. In the case of OSM, the four top-level categories
are only expanded to 14 second-level features. This makes the
Foursquare data models more dissimilar to each other than the
ones from OSM.

This analysis was interesting to get a broad overview of
the data sources and their commonalities. The hierarchical
clustering grouped the data models in well-comprehensible
families; however, the pairwise comparisons also revealed that
some models that one could have expected to be quite similar,
such as the top-level and second-level aggregation of Foursquare,
are indeed not that similar. The benefit of this analysis is that
an analyst can quickly recognize whether data models capture
similar concepts to make a decision if they can be interchanged
in case of them being highly correlated.

6.2. Comparison With the Touristic
Experience
Finally, we get to answer which characterization method would
be most suited to use within a content-based information
retrieval system such as a destination recommender. Having
elicited the concept of “similar experience when visiting cities as
a tourist” with the expert study, we can now compare the partial
rankings of the experts with our characterization methods. We
use the two proposed methods from Section 4 that compare a
full permutation with a top-k list. Furthermore, we also tabulate
the Mean Reciprocal Rank (MRR), and Precision to comparison
baselines. Precision@1 was very near to 0 for all characterization
methods. Note that the MRR and Precision do not capture the
internal rankings provided by the experts. To compute them,
we treated the rankings provided by the experts as a set and
aggregated the metrics over all cities included in the lists, treating
each element as an individual query.

Note that the expert study is only one way to determine such
a latent concept. In other domains, there are potentially different
ways to elicit a baseline, but we argue that it is commonplace that
a latent concept is only partially observable with respect to the set
of rated items and the list of most similar items per item.

Generally, the results in Table 4 confirm the picture that was
already painted in Figure 4: the versions that have shown to
be similar there also rank similarly in the comparison to the
expert ranking. The textual data models derived fromWikipedia,
Wikitravel and Google Travel, as well as the geographic location
performed best, followed by the 2nd-level aggregation of
Foursquare, and the factual ones. OSM and the Foursquare top-
level categories conclude the ranking with the random model
unsurprisingly performing worst.

The general stability of the ranking among the rank agreement
metrics is high. This should not come as a surprise, since the
metrics do capture the same concept; thus, we can confirm the
findings of Fagin et al. (2003) that distance measures within the
same equivalence class behave similarly. The absolute values of

the data sources and the random baseline are quite close in some
metrics, which we attribute to the small signal-to-noise ratio in
the data: the rankings have only been computed on the basis of
10 – 14 items out of 140. Comparing the results to the MRR and
Precision baselines, the overall trends are also similar. We again
attribute this to the low signal-to-noise ratio in the evaluation of
top-k lists, however, one can already see that, for example, the
geographic distance becomes less successful when the ordering
of the experts’ lists is not taken into account.

The fact that the most successful data models according to
the rank agreement with the expert study stem from freely
available textual descriptions of the destinations, as well as the
geographic location, is an interesting finding. The good result of
the geographic location can be explained using the intuition that
nearby destinations are often within a similar culture and climate
and, thus, also have a similar experience when visiting them
according to our expert rankers. The articles in the Wikipedia
and Wikitravel also do a good job of emulating the expert-
elicited concept. Many travelers already use such sources to
inform themselves about potential destinations and we attribute
the consistently higher ranking of the Wikipedia over Wikitravel
to the different target audiences. As a travel guide, Wikitravel is
more oriented toward travelers already at the destination seeking
practical travel information such as restaurant suggestions, while
the Wikipedia offers a more comprehensive overview of the
culture, history, and attractions of a city.

We now can also see that the differences between the
two document similarities, cosine similarity based on word
vectors and the Jaccard Distance, do matter with respect to
the baseline. For the shorter Google Travel documents, the
word embeddings outperformed their counterpart, whereas the
Jaccard Distance was slightly better for the longer Wikipedia and
Wikitravel texts.We attribute the lesser performance of the BERT
transformer encoder architecture due to the fact that the touristic
information is mostly encoded within the terms, thus, using
full contextual embeddings does not benefit the performance
of the characterization.

When looking at the expressiveness of the data sources, we
see no connection between the amount of information that
is explicitly encoded within the features of a data model and
its performance. This suggests that more information is not
needed to build a successful data model, but features that are
of high quality with respect to the target concept. The highly
successful geographic distance only consists of two floating
numbers [−180; 180], but of course, implicitly encodes much
relevant information for travelers such as the culture and climate
of a city. As we will see in the next section, this analysis can
be used to improve the performance of some data models by
dropping features that are not useful toward the target domain.

Why were the factual and venue-based destination
characterization methods, of which some are already employed
in destination recommender systems (Sertkan et al., 2019;
Myftija and Dietz, 2020) outperformed? The reason lies within
the very specific concept that we elicited using the expert survey.
The factual and venue-based data models could not have been
optimized toward the concept of “touristic experience” based
on the insights from the survey, since when constructing them,
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TABLE 4 | Ranking of the different data sources using the modified rank agreement methods for top-k lists as well as MRR and Precision.

Spearman’s FR top-k Kendall’s Tau top-k Mean Reciprocal Rank Precision@5 Precision@10

WP-jaccard 297.011 GEO 18.284 WP-jaccard 0.101 WP-word2vec 0.186 WP-jaccard 0.304

GEO 304.091 WP-jaccard 18.750 WP-word2vec 0.101 WT-word2vec 0.182 GEO 0.302

WP-word2vec 318.080 WP-word2vec 19.068 WT-word2vec 0.100 WP-jaccard 0.178 WT-jaccard 0.297

WT-word2vec 322.489 WT-jaccard 19.227 FSQ-2nd 0.094 GEO 0.162 WT-word2vec 0.297

WT-jaccard 330.057 WP-BERT 19.568 WP-BERT 0.093 WT-jaccard 0.161 WP-word2vec 0.291

FSQ-2nd 330.420 GT-word2vec 19.852 GEO 0.093 FSQ-2nd 0.154 WP-BERT 0.279

WP-BERT 343.307 WT-word2vec 20.011 WT-jaccard 0.093 WP-BERT 0.147 FSQ-2nd 0.264

GT-word2vec 346.955 FSQ-2nd 20.625 GT-word2vec 0.088 GT-word2vec 0.139 GT-word2vec 0.263

TF 395.841 WT-BERT 20.818 WT-BERT 0.081 WT-BERT 0.139 WT-BERT 0.243

GT-BERT 396.375 TF 21.409 TF 0.075 TF 0.113 TF 0.231

WT-BERT 402.159 GT-BERT 21.477 GT-BERT 0.074 GT-BERT 0.103 GT-BERT 0.202

GT-jaccard 408.943 GT-jaccard 21.864 GT-jaccard 0.067 OSM-2nd 0.099 OSM-2nd 0.195

7FM-2018 457.909 OSM-2nd 22.375 7FM-2018 0.065 Nomadlist 0.092 GT-jaccard 0.187

Nomadlist 461.830 Nomadlist 22.420 OSM-2nd 0.065 OSM-TOP 0.090 7FM-2018 0.187

FSQ-TOP 506.500 FSQ-TOP 22.864 Nomadlist 0.063 GT-jaccard 0.087 OSM-TOP 0.180

OSM-TOP 516.114 7FM-2018 22.966 OSM-TOP 0.063 7FM-2018 0.086 Nomadlist 0.169

OSM-2nd 521.273 OSM-TOP 23.045 FSQ-TOP 0.054 FSQ-TOP 0.060 FSQ-TOP 0.122

RANDOM 649.398 RANDOM 23.341 RANDOM 0.039 RANDOM 0.033 RANDOM 0.073

the respective authors had no instantiation of the concept
available or potentially decided to optimize toward a different
concept. For example, the Nomad List characterization is aimed
at digital nomads instead of tourists. Thus, it would have been be
surprising if it was in a front runner position, as digital nomads
have different information needs than a typical tourist does. For
the same reason, the OSM performed quite poorly. Instead of the
touristic experience, they simply captured the similarity of the
distribution of the different map entities. On the contrary, the
textual data sources are there to learn about the characteristics
of a city, so it is not surprising that they encode the most
useful information for travelers. This means that the proposed
methods are able to discriminate between similar and somewhat
orthogonal concepts and do so by quantifying the distance. Since
some features of Nomad List, OSM, and Foursquare were not
aimed at encoding the same concept that we have elicited in the
expert study, it is just natural that these data sources perform
underwhelmingly in our initial comparison. Our methods reveal
the degree to which the expert-elicited concept is not (well)
encoded within the features, but since the characterizations are
somewhat related to traveling, they are not orthogonal.

To summarize, the proposed rank agreementmetrics for top-k
lists have been successfully employed in determining the quality
of the data sources with respect to the expert-elicited concept.
They produce comparable rankings as established information
retrieval metrics, such as MRR and Precision. The advantage
is that rank agreement metrics operate on ranked lists instead
on sets, making them conceptually more fitting than MRR, and
Precision or similar metrics.

6.3. Optimization of Data Models
With this tooling established, there is now potential to refine
existing data models based on tourism facts and the venue

TABLE 5 | Optimization toward the Expert Opinion using Spearman’s Footrule

top-k.

Model Unoptimized Optimized Improvement

Nomadlist 461.83 426.27 7.70%

FSQ-TOP 506.50 503.33 0.63%

FSQ-2nd 330.42 312.47 5.43%

OSM-TOP 516.11 508.38 1.50%

OSM-2nd 521.27 490.33 5.94%

distributions by learning the importance of the respective
features or even constructing a composite data model with
features from different data sources. By assigning different
weights to the features based on their importance in computing
similarity metrics, rich models with several features can be fine-
tuned toward the expert-elicited concept. This is useful, since
standard similarity metrics in content-based recommendation,
such as the Euclidean Distance give same weight to all features.
In practice, however, not all features equally contribute to the
expert-elicited concept of the touristic experience. By decreasing
the weights of less-relevant features, the similarity metric can be
improved to emulate the expert concept even better.

Given the combinatorial explosion of the search space for
weights, we have used black-box learning, namely Simulated
Annealing (Kirkpatrick et al., 1983) for tuning the weights [0,1]
of the data sources with explicit features. The proprietary TF and
7FM-2018 sources were only provided to us as rankings, thus, we
could not optimize those.

The optimization tabulated in Table 5 works better with more
features, as can be seen with Nomadlist, FSQ-2nd, and OSM-2nd.
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We attribute the small relative changes in FSQ-TOP and OSM-
TOP to the fact that they capture slightly orthogonal concepts
to the expert-elicited baseline and due to their smaller number
of features, they are harder to optimize toward this concept.
However, as discussed before, this domain has a high signal-to-
noise ratio, making these small relative improvements relevant
in the overall comparison. Concretely, the optimized version
of FSQ-2nd would be the third most competitive data model
in Table 4.

What is more, even with minor contributions to the overall
performance, the learned weights for the features gives further
insight into their importance. Features with a very low weight
could be dropped, while the feature selection of a potential
combined data model of several data sources should be guided
by the learned weights.

To exemplify the insights from this analysis, we discuss the
learned weights of the Nomadslist data: The features “cost,”
“life quality,” “air quality,” and “happiness” got relatively high
values ranging from 0.58 to 0.75, while the other features,
“nomad score,” “fun,” “healthcare,” and “nightlife” were reduced
to low weights ranging between 0.2 and 0.35. Such low values
indicating that they are not in line with the elicited concept
of the expert study. In FSQ-TOP, which is employed in the
CityRec system (Dietz et al., 2019), “food” gets a very low
weight, which is an indication that it could be dropped from the
recommendation algorithm.

The results of this in-depth analysis of the weights are certainly
quite specialized with respect to the target concept and the
intricacies of the respective data sources. For this reason, we
do not further elaborate on the other optimized models but
refer the reader to the full results of this optimization tabulated
in the reproducibility material. The method, however, is again
generalizable for any domain, where the data source’s features are
known and a baseline exists in the form of ranked lists.

7. CONCLUSIONS

We presented a comprehensive overview of data-driven methods
to characterize cities at scale using online data. Motivated by the
question of model choice in destination recommender systems,
we proposed methods to make such data models of destinations
comparable against each other as well as against a – potentially
latent – concept, that the recommender system should emulate
when computing content-based recommendations. To derive
this concept, we conducted an expert study that provided us
with partial rankings and provided us opportunity to further
optimize the data models that are based on explicit features. The
decision of eliciting this baseline using experts instead of large-
scale crowd-sourcing was done due to the difficulty of the task.
Since this is the first study analyzing latent concepts encoded
in features of content-based recommender systems, we decided
to elicit a high-quality data set with less noise, than having a
large-scale data set that is less to be trusted.

In a first step, we were able to unveil commonalities of data
sources, through which it became apparent that, for example,
articles about destinations on Wikipedia and Wikitravel encode

much geographic information. The second contribution are
methods to compare top-k lists with permutations in our specific
scenario. We used these to show that, according to the expert
opinion, the touristic experience was best approximated using
the textual similarities from Wikipedia, Wikitravel, and the
geographic location. This means that when simply retrieving the
most similar destinations according to the touristic experience,
one can choose one of the top-ranked entries from Table 4.
Finally, we were able to show that it is possible to optimize the
distance metric of a content-based recommender system toward
a desired concept.

From a recommender systems research perspective, the results
show that existing destination recommender systems do not
necessarily use data models that capture the concept of similar
touristic experience very well. This might be intentional, if the
system’s purpose is to capture a different concept, or possibly
due to the previous lack of a concrete instantiation of the
concept. A limitation of the top-ranked textual or geographic
characterizations is that they do not come with specific features
the user can interact with. This is a drawback, since it means
that they cannot directly place the user’s preferences and the
items in a common vector space to perform content-based
recommendation as frequently done in travel recommender
systems (Burke and Ramezani, 2011). Furthermore, common
recommendation techniques such as critiquing (Chen and Pu,
2012), i.e., giving a system feedback about the features of a
suggested item, are only possible if the items are characterized
with a fixed number of features.

Our work has provided the community with adequate
tools to optimize feature-based data models toward a
desired concept such as the similar touristic experience.
The methodological contribution, is, however, not limited
to recommender systems in the tourism domain, but can
be applied in other domains similarly as the proposed
metrics operate on ranked lists. Latent similarity concepts
are prevalent in many domains such as music (Yoshii
et al., 2006) or leisure activities (Brítez, 2019); generally
anywhere, where the accuracy of the information retrieval
system depends on the embeddings of items in a
search space.

A logical continuation of this work would be to investigate
the potential to construct better, potentially combined data
models. This research can help to improve all kinds of data-
driven characterizations of travel destinations as it provides
direct feedback about the data quality with respect to the
touristic experience. While this time we used an expert study,
we also plan to apply these methods in other domains
in a large-scale crowd-sourcing setting. Finally, it would be
worthwhile to perform an analysis of the effect of improved
data model quality with respect to further evaluation metrics
such as accuracy.
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ABSTRACT
Recommending complex, intangible items in a domain with high
consequences, such as destinations for traveling, requires additional
care when deriving and confronting the users with recommenda-
tions. In order to address these challenges, we developed CityRec, a
destination recommender that makes two contributions. The first is
a data-driven approach to characterize cities according to the avail-
ability of venues and travel-related features, such as the climate
and costs of travel. The second is a conversational recommender
system with 180 destinations around the globe based on the data-
driven characterization, which provides prospective travelers with
inspiration for and information about their next trip. An online user
study with 104 participants revealed that the proposed system has
a significantly higher perceived accuracy compared to the baseline
approach, however, at the cost of ease of use.
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1 INTRODUCTION
In complex recommendation domains, such as the recommenda-
tion of tourist destinations, tweaking the algorithmic accuracy
ad ultimo brings diminishing returns. It has been shown that the
embedding of the algorithm in an adequate user interface is of
similar importance [16]. Thus, in this paper, we present a data-
driven conversational destination recommender system that has
two contributions: it presents a novel, data-driven approach for
characterizing destinations on user-understandable dimensions and
shows how this characterization can be facilitated in a conversa-
tional recommender. This approach can be seen as an evolution of
Burke’s FindMe Approach [3] in the area of tourism. We thoroughly
evaluated the system from the users’ perspective to understand the
effect of critiquing on the perceived accuracy of the recommenda-
tions and the satisfaction of the users from using the system.

After the literature review in the subsequent section, we will
present the proposed method for characterizing destinations to
realize content-based recommendations. Section 4, presents the the
design and evaluation of the conversational recommender system
that heavily relies on the previous characterization. We conclude
our findings and point out future work in Section 5.

2 RELATEDWORK
Tourism recommendation is inherently complex and has several
facets. Borràs et al. enumerate four general functionalities of tourism
recommender systems [2]: recommend travel destinations and

tourist packs [17, 31], suggesting attractions [18], trip planners [10,
12], and social aspects [13]. In this paper, we focus on the first as-
pect and acknowledge that there are further definitions [1]. Herein,
“destination” refers to cities. The challenge in recommending cities
to a user at home arises from the intangibility of the items and the
high emotional involvement [33]. It has been shown that leisure
travel has a positive effect on an individual’s happiness; however,
it does not impact the overall life satisfaction, which has been at-
tributed to poor tourism products [23]. An alternative conclusion
could be that travelers visit the wrong places. This gives rise to
researching improved destination recommender systems that can ef-
ficiently and effectively capture the user’s preferences to overcome
the cold start problem [5]. Given the characteristics of this domain,
Burke and Ramezani suggested either the content-based [27] or the
knowledge-based [3] paradigm [7].

In traditional information retrieval or static content-based rec-
ommendation, continuously querying for relevant items does not
necessarily lead to better results [4]. Instead, a directed exploration
of the search space using a conversational method is more promis-
ing [8, 11]. Burke et al. proposed and evaluated the FindMe ap-
proach [6], which allows the critiquing of single items so that the
user can refine the recommendations iteratively until she is satisfied
with the result. More advanced approaches on this topic are those of
McCarthy et al., who propose a method to generate compound cri-
tiques [19], and McGinty and Smyth, who use the adaptive selection
strategy to ensure diverse, yet fitting recommendations over the
course of several critiquing cycles [21]. Recently, Xie et al. showed
that incorporating the user experience into a critiquing system can
improve the performance and recommendations at a reduced effort
by the user [35]. In this study, we present a recommender system
leveraging the potentials of the interplay between data science and
user interface design. The items are characterized by a multidimen-
sional space of features, which are intuitively understandable by
the user and can then be critiqued in any direction. To overcome
the problem of skeptical users hesitating to reveal their complete
preferences [29] and the observation that users find it difficult to
assess their exact preferences until when they are dealing with
the actual set of offered options [26], the proposed method uses a
mixture of explicit preference elicitation methods.

Using the content-based recommendation paradigm, one has to
choose a domain model and distance metric to compute the most
fitting items for the user. Such models can be realized through on-
tologies as done in SigTur [22] or in a the work of Grün et al. [14].
The latter is an example of ontologies being used to refine user
profiles by enriching the generic preferences of a tourist through
more specific interests. More often, items are simply characterized
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Table 1: Raw values of exemplary cities

City Venues Arts Food Nightlife Outdoors Cost Index Temperature Precipitation
Rome 36,848 1,995 12,264 2,063 3,482 69.03 15.7°C 798mm
Mexico City 213,612 12,158 83,225 16,780 19,330 34.18 15.9°C 625mm
Cologne 16,163 966 4,107 1,144 2,127 67.36 10.1°C 774mm
Penang 50,647 2,193 21,389 1,686 5,273 43.98 25.7°C 1,329mm
Cordoba 3,636 246 1,282 427 379 55.11 17.8°C 612mm

using a multidimensional vector space model. In this case, the chal-
lenge is how to assign each item a value on each dimension, which
is commonly done using expert knowledge. For instance, Herzog
and Wörndl [15, 34] characterized regions using travel guides and
their own expert knowledge. Neidhardt et al. developed the Seven
Factor Model of tourist behavioral roles [24] based on the Big Five
Factor Model [20] and a factor analysis of existing tourist roles [36].
Although they showed its merit in subsequent publications [25], a
common drawback with approaches based on expert judgment is
their scalability to large quantities of items and the dependency on
the accuracy of human judgment. To overcome this, they proposed
a strategy [32] for characterizing destinations within the Seven
Factor Model. Using a huge data set of 16,950 destinations anno-
tated with 26 motivational ratings and 12 geographical attributes,
they proposed two competing methods, cluster analysis and regres-
sion analysis, to map the destinations to the vector space of the
Seven Factor Model. In terms of destination characterization, this
approach is the most similar to the one we proposed. The main
difference is that our data model is directly defined via the data
from the destinations and we are not dependent on expert ratings,
which is an advantage when scaling the approach [9].

3 DESTINATION CHARACTERIZATION
The characterization of destinations such as regions or cities is a
challenging task. What are the characteristics of a city for tourists
to base their decision on whether to visit it or not? Previous ap-
proaches have relied on expert assessment [15, 32], but the short-
comings are a potential lack of objectivity and scalability as it is
quite costly to rate myriads of destinations around the world. Thus,
we propose a data-driven approach to characterize cities on the
basis of the variety of venues per category. The underlying assump-
tion is that, in a city with many restaurants, the travelers have
plenty of options; thus, the quality of experience in the food cate-
gory is high. Conversely, a city with very few cultural sites will be
less interesting to a traveler that is interest in this topic. This section
discusses how we collected data about venues and aggregated them
to determine the touristic value of each city.

3.1 Collecting Venue Information
There are several providers of information about destinations. Af-
ter performing a comparison of providers, such as Google Maps,
Facebook Places, Yelp, OpenStreetMap, and some others, we de-
cided to use the Foursquare Venue API1, as it offers sufficient rate
limitations and allows us to specify coordinates of a bounding box
in the request parameters. The deciding argument for Foursquare
was the detailed categorization of venues from its taxonomy2.
1https://developer.foursquare.com/docs/api/venues/search
2https://developer.foursquare.com/docs/resources/categories

3.2 Characterizing Cities Based on Venue Data
We collected a data set of 5,723,169 venues in 180 cities around
the world. Foursquare organizes its venues in a tree of 10 top-level
categories, however, we only analyzed the ones relevant for charac-
terizing the cities for travelers: Arts & Entertainment, Food, Nightlife,
and Outdoors & Recreation. We intend to conceptualize these fea-
tures as a multidimensional vector space model and represent each
city as a point in this space. The characterization should approxi-
mate the expected experience that a tourist will have at a city.

To determine a city’s score for a feature, we analyzed the distri-
bution of the venue categories. Using the distribution instead of the
absolute number of venues per category, we eliminated the effect
of city size on the category features. Thus, we obtained the ratio
of each feature in the city’s category distribution by dividing the
number of venues per each top level category by the total number
of venues in that city. The underlying assumption is that these
percentages are indicators of the association level of the city with
the feature. This requires the cities to be of at least a certain size
as the distribution of small cities is less reliable. Thus, the smallest
city considered had at least 1,000 venues, with the median being
7,137. We did not analyze the quality of the venues, i.e., through
ratings, as we expected having differences in the assessment of the
quality owing to cultural differences.

Characterizing the cities according to their attractions is a first
step; however, further features are of the travelers’ interest. Us-
ing Climate-Data.org3, we characterized each city using the mean
yearly temperature and the mean yearly precipitation. Furthermore,
we used Numbeo’s “Cost of Living Index”4, which is a relative cost
indicator calculated by combining metrics like consumer goods
prices, restaurants, transportation, and so on as an approximate
price level of visiting the city. Finally, to account for the city size,
we also used the number of venues as a proxy feature for the size
of the city. Table 1 shows the raw values of the features.

3.3 Cluster Analysis
To evaluate the characterization of the 180 cities, we performed
a cluster analysis, an unsupervised learning method whose goal
is to group data items in a way that within the same group, the
items are similar to each other, whereas the groups are dissimilar.
Because the features of the destinations that we considered have
different value ranges, we first applied min-max scaling to give
each feature the same weight. To find the best segmentation, we
experimented with common clustering algorithms, such as k-means,
k-medoids, and hierarchical clustering. To evaluate the quality of
the resulting clusters, we looked into metrics like the within-cluster
sums of squares and the average silhouette width [30]. The former
3https://en.climate-data.org
4https://www.numbeo.com/cost-of-living/rankings.jsp
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Figure 1: Normalized values of selected destinations

is a measure of the variability of the instances within each cluster,
whereas the latter is a measure of how well the instances fit into
their assigned cluster, as opposed to all the other clusters.

Using a systematic approach, we obtained the best results using
hierarchical clustering and five clusters. The clusters named after
the city closest to the centroid are “Cologne, Germany,” with 74
Central European and North American cities; “Rome, Italy” with 35
cities in the Mediterranean and Oceania; “Penang, Malaysia” with
48 destinations residing mostly in Asia; “Mexico City, Mexico” with
five metropoleis all around the world; and “Cordoba, Spain,” with
18 small and relatively warm cities in different continents. Figure 1
shows the normalized values of the five characteristic cities.

4 A DATA-DRIVEN CONVERSATIONAL
DESTINATION RECOMMENDER SYSTEM

Having characterized the destinations on eight dimensions, we
facilitate it in a content-based critiquing recommender system.
CityRec is implemented as a web application using NodeJS5 and
ReactJS6 in the frontend. The codebase comprises about 3,500 lines
of code and is available on Github7. A demo can be viewed at
http://cityrec.cm.in.tum.de.

4.1 User Interaction with CityRec
The recommender system has three steps: (1) initial preference
elicitation, shown in Figure 2 (a); (2) refinement through critiquing,
shown in Figure 2 (b); and (3) a results page. In Step (1), we obtain
the initial scores for the user profile by asking the user to select the
destinations that best reflect her preferences from a set of 12 cities.
We then construct an initial user model by averaging the feature
values of the selected cities. This initial seed of 12 destinations
is not random, but a diverse representation of the data set. We
fill in the first nine slots by selecting two cities from each of the
five previously established destination clusters (one in the case
of the small “Mexico City” cluster). The remaining three slots are
randomly selected cities to account for the size differences of the
clusters. Using this approach, we can generate numerous, diverse,
but equivalent shortlists because each cluster is represented. From
these 12 cities, the users may choose three to five that best reflect
their preferences. If a user does not recognize many cities, she can

5https://nodejs.org/en/
6https://reactjs.org/
7https://github.com/divino5/cityrec-prototype

request another set of cities. Furthermore, a tooltip encourages the
user to select cities that she finds generally interesting, including
those she has already visited. This ensures that the system has
enough data to work with for generating the initial user profile but
avoids cases where users select many displayed cities, which end
up in generic profiles with averaged-out feature values. The result
of this step is an initial profile of the user that resides in the same
vector space as the items.

In Step (2), we display a set of four initial destinations, computed
using the Euclidean Distance. To give the users more control over
their preference profile, we ask them to provide feedback on the
initial recommendations by critiquing the cities’ features one after
another on a five-point Likert Scale: “much lower” – “lower” — “just
right” — “higher” — “much higher.” As can be seen in Figure 2 (b), the
user now has more information about the cities, which establishes
transparency and enables her to more informed decisions compared
to in the first step. Using this feedback, we statically update the user
profile scores by −0.2, −0.1, 0, 0.1, or 0.2 to attain a more refined
preference model for the user.

Finally, in the last step, Step (3), the user is presented with a re-
sults page that shows a ranked list of the top five recommendations
and their attributes, which can be explored. This page also contains
the questionnaire for the evaluation.

4.2 Experimental Setup
The independent variable of the experiment is the version of the
recommender system. Because we wanted to investigate the poten-
tial advantages and drawbacks of using critiquing in this domain,
we created a baseline system in addition to the previously described
critiquing-based recommender. The only difference in the baseline
system was that the critiquing step, Step (2), is entirely skipped;
that is, the outcome of the initial preference elicitation of Step (1)
is the final result and is displayed in the same way as in Step (3).

The dependent variables are the usage metrics, such as the
choices made at each step, the time taken to specify the preferences,
and the number of clicks. Furthermore, we asked the user to fill
out a subset of the ResQue Questionnaire, a validated, user-centric
evaluation framework for recommender systems [28].
(Q1) The travel destinations recommended to me by CityRec

matched my interests
(Q2) The recommender system helped me discover new travel

destinations
(Q3) I understood why the travel destinations were recommended

to me
(Q4) I found it easy to tell the system what my preferences are
(Q5) I found it easy tomodifymy taste profile in this recommender

system
(Q6) The layout and labels of the recommender interface are ade-

quate
(Q7) Overall, I am satisfied with this recommender system
(Q8) I would use this recommender system again, when looking

for travel destinations

4.3 Results
A total of 104 individuals participated in the online survey from De-
cember 2018 to March 2019. Participants (44% females, 56% males)
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Figure 2 (a): Selection of favorable cities, Step (1) Figure 2 (b): Critiquing of initial recommendations, Step (2)

were recruited by sharing the user study on social media and among
groups of friends and colleagues. The self-reported ages were 0–
20 (7%), 21–30 (69%,) 31–40 (9%), and 41–50 (5%). Random assign-
ment of the systems was performed after a landing page and had
almost equal (51% versus 49%) completion of the survey.

Table 2: Differences between the two systems

Variable Basel. Critiqu. p W Sig.

(Q1) Interest match 3.58 3.88 0.043 645 ∗
(Q2) Novelty 3.44 3.75 0.118 705 ns
(Q3) Understanding 3.46 3.77 0.073 673.5 ns
(Q4) Tell prefs. 3.73 3.90 0.328 775 ns
(Q5) Modify profile 3.24 3.48 0.17 723.5 ns
(Q6) Interface 4.15 3.62 0.009 1,044 ∗∗
(Q7) Satisfaction 3.66 3.92 0.037 649 ∗
(Q8) Future use 3.49 3.67 0.166 724 ns
Time to results 60.92s 184.07s <0.001 ∗ ∗ ∗
Clicks 6.32 21.35 <0.001 ∗ ∗ ∗
PCC Food -0.11 -0.01 0.341 ns
PCC Arts 0.05 0.38 0.066 ns
PCC Outdoors 0.02 0.45 0.024 ∗
PCC Nightlife 0.2 0.57 0.028 ∗
Significance levels: ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001

The upper part of Table 2 shows the differences in the mean
values and the significance tests of the dependent variables. The
mean values of the ordinal answers to the questionnaire (Q1–Q8) are
for viewing purposes only; the test statistic was calculated using the
Wilcoxon rank sum test with continuity correction for independent
populations. The null hypotheses were that the medians of variables
of the two groups are equal. In three cases, (Q1), (Q6), and (Q7),
we could refute the null hypothesis, which provides interesting
insights into the users’ assessment of the system.

In the survey, we also asked the participants to rate their personal
importance of tourism-related aspects. Thus, we could compute the
Pearson Correlation Coefficient (PCC) between the actual profile
from the system and the self-assessment from the survey. The lower
part of Table 2 shows these correlations per system and the result
of the one-sided Fisher’s r-to-Z test for independent samples.

4.4 Discussion
The significant difference in (Q1) shows that the perceived recom-
mendation accuracy is higher, when using the proposed critiquing
recommender system, however, at the cost of worse interface ad-
equacy (Q6). This is attributable to the overhead of the critiquing
step, Step (2), as it takes triple the time to complete the first two
steps and more than triple the number of clicks. Interestingly, the
users value higher accuracy more than the adequacy of the inter-
face and the effort as can be seen in the significantly higher user
satisfaction (Q7) and the similar levels of potential future use (Q8).

Furthermore, we observed that the user profiles of the critiquing
system are significantly higher correlated with the self-assessment
in the case of Outdoors & Recreation and Nightlife. This is further
evidence that the critiquing recommender version performs better
in capturing the preferences of the user. In conclusion, the critiquing
version should be preferred as it provides better recommendations
from the users’ perspective.

5 CONCLUSIONS
In this paper, we proposed an approach for tackling the problem
of recommending complex items in the domain of travel recom-
mendation. We characterized destinations around the globe in a
user-understandable way and directly used this characterization
in an online recommender system. From the evaluation experi-
ments conducted, we discovered an interesting trade-off between
the perceived recommendation accuracy and the perceived ade-
quacy of the user interface; however, the users seemed to favor
better recommendations over less effort to obtain them.

Because CityRec’s source code has been released, it can also serve
as a foundation for the community to investigate conversational
recommender systems based on data-driven item characterization.
The destination characterization showed decent results; however,
it would be worthwhile to investigate further useful features of
destinations that can be derived from other data sources. In this
study, we found that, despite higher perceived accuracy (Q1), the
interface adequacy (Q6) was rated lower in the critiquing system.
Thus, we regard this study as a first step that is to be extended with
a more sophisticated preference elicitation approach using active
learning. Furthermore, the behavior of the algorithm, with respect
to the diversity of the recommendations, should be analyzed as
well.
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Summary
Tourism is a complex domain for recommender systems because of the high cost of
recommending an unsuitable item and the absence of ratings to learn user preferences.
Conversational recommender systems have been introduced to provide users with an
opportunity to give feedback on items in a turn-based dialog until a final recommendation
is accepted. In a scenario such as recommending a city to visit, conversational content-
based recommendation may be well-suited since users often struggle to specify their
preferences without concrete examples. However, critiquing item features comes with
challenges. Users might request item characteristics during recommendation that do not
exist in reality, for example, demanding very high item quality for a very low price. To
tackle this problem, we present a novel conversational user interface that focuses on
revealing the trade-offs of choosing one item over another. The recommendations are
driven by a utility function that assesses the user’s preference toward item features while
learning the importance of the features to the user. This enables the system to guide
the recommendation through the search space faster and accurately over prolonged
interaction. We evaluated the system in an online study with 600 participants and
found that our proposed paradigm leads to improved perceived accuracy and fewer
conversational cycles compared to unit critiquing.
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Abstract. Conversational recommender systems have been introduced
to provide users the opportunity to give feedback on items in a turn-based
dialog until a final recommendation is accepted. Tourism is a complex
domain for recommender systems because of high cost of recommending
a wrong item and often relatively few ratings to learn user preferences. In
a scenario such as recommending a city to visit, conversational content-
based recommendation may be advantageous, since users often struggle to
specify their preferences without concrete examples. However, critiquing
item features comes with challenges. Users might request item charac-
teristics during recommendation that do not exist in reality, for exam-
ple demanding very high item quality for a very low price. To tackle this
problem, we present a novel conversational user interface which focuses on
revealing the trade-offs of choosing one item over another. The recommen-
dations are driven by a utility function that assesses the user’s preference
toward item features while learning the importance of the features to the
user. This enables the system to guide the recommendation through the
search space faster and accurately over prolonged interaction. We evalu-
ated the system in an online study with 600 participants and find that our
proposed paradigm leads to improved perceived accuracy and fewer con-
versational cycles compared to unit critiquing.

1 Introduction

Nowadays, the algorithmic side of (RSs) research has reached an impressive
maturity, such that it has become virtually impossible to tell which algorithms
are objectively the best [1]. However, this improvement primarily applies to tra-
ditional RSs domains, such as e-commerce, movies, and to some extent music. For
recommendations in complex domains, such as tourism, the algorithmic advances
of the earlier decades are of lesser value. This is because there are insufficient
ratings available, the items are not so well defined in terms of their scope, and
it has also been shown that users demonstrate different decision making behav-
ior compared to purchasing physical products [2]. These challenges necessitate
employing sophisticated preference elicitation strategies, and instead of collabo-
rative filtering algorithms, recommendations are often computed with a content-
based or knowledge-based paradigm. Given that traveling is a relatively rare,
emotional, and high-stakes decision making scenario, RSs should provide users
c© The Author(s) 2022
J. L. Stienmetz et al. (Eds.): ENTER 2022, Information and Communication
Technologies in Tourism 2022, pp. 149–161, 2022.
https://doi.org/10.1007/978-3-030-94751-4_14

A Embedded Publications

164



150 L. W. Dietz et al.

with the opportunity to familiarize themselves with the items in the domain and
refine their initial preferences, since users often struggle to declare their true
preferences [3]. For instance, recommending which city to travel, is a very good
fit for the conversational, content-based recommendation paradigm, since there
are no ratings available, despite the existence of several data sets [4, Table 2].

Conversational RSs allow a directed search through the item space using
some kind of dialog between the system and user [5]. Early approaches, such as
FindMe [6], allow users to critique certain aspects of suggested items, whereas
more sophisticated approaches allow for compound critiques [7]. Based on the
observation that critiques with concrete examples can be useful [8], we are aston-
ished that not much attention has been paid to informing users about the trade-
offs involved in their critiquing choices. For example, many users would love to do
a dream vacation to a buzzing city with outstanding cultural attractions, great
food, a buzzy nightlife scene, favorable climate, at an affordable price tag. In
reality, the combination of such features might be an empty set, thus, requiring
compromising between conflicting preferences.

In this paper, we present a novel concept to navigate the item space that we
call “Navigation by Revealing Trade-offs.” The motivation for this combination
of a novel user interface and a corresponding recommendation algorithm stems
from the observation that conversational RSs tend to neglect informing their
users about the trade-off involved in their critiquing choices.

After surveying the related work in Sect. 2, we present the user interface in
Sect. 3, and describe the recommendation algorithms in Sect. 4. We choose the
destination recommendation domain, as there are suitable data sets available and
it inherently requires to make trade-offs between certain aspects of the trip. The
experimental setup of a large-scale user study with 600 participants is described
in Sect. 5 and we present the results in Sect. 6. Finally, we conclude our findings
and point out future work in Sect. 7.

2 Related Work

In this work, our application domain is recommending cities for tourist destina-
tions. As opposed to the recommendation of hotels or point of interests [9], cities
as items have no meaningful ratings, thus, the user profile and items need to be
matched based on elicited preferences and features of the items. To improve the
user modeling, Neidhardt et al. [10] proposed a factor analysis for tourist roles
and personality traits to reveal seven tourist behavioral patterns. The authors
used a set of travel-related pictures, which were assigned to each of the seven
factors by experts. Since the destinations were also characterized in the feature
space of the Seven Factor model [11], they could perform content-based filter-
ing for destination recommendation. Herzog and Wörndl [12] proposed another
travel RS where travel plans of multiple destinations satisfy user constraints such
as budget and duration. The user modeling was done by binary indications of
interest, i.e., check boxes, and the items were characterized using expert opin-
ions and literature. Such expert-driven models are quite costly, thus, automated
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approaches are preferable to scale the item characterization. Prior approaches
using mainly location-based social network (LBSN) data have been successfully
employed in point-of interest recommendation [13] or to characterize cities [14].
The previously proposed city characterization approach [14] is based on the dis-
tribution of its venues, where a higher amount of venue relative to the city size
leads to a higher scoring. The corresponding user study also suggested that unit
critiquing is a fruitful approach in the destination recommendation domain. In
this work, we re-use the prototype1 and domain model of CityRec [14] to build
a conversational RS.

Critiquing is a popular approach of eliciting and refining user preferences in
a conversational manner. It is usually associated with content-based filtering,
although there are some research incorporating collaborative approaches [15] or
even unstructured item descriptions [16]. One of the early systems, FindMe [6]
introduced the concept of unit critiquing that can be seen as the start of con-
versational exploration of the search space in RSs research. The static unit cri-
tiquing was quite successful in several domains [6,17], but there is opportunity
to perform a smarter exploration of the item space [18]. For example, McCarthy
et al. [7] proposed dynamic critiquing, to show how compound critiques can
be generated dynamically, cycle-by-cycle by mining the feature patterns of the
remaining products.

The evolution of dynamic compound critiques is the multi-attribute utility
theory (MAUT) [19], which introduced a utility function to rank a list of multi-
attribute products. Once the user selects a critique, the corresponding product is
set as the current preference product in the user model and a new set of critiques
is generated using a utility function. The MAUT was successfully evaluated
against dynamic critiquing [7] thereby reducing the number of critiquing cycles.
Chen et al. extended the MAUT-based approach and called it “preference-based
organization interfaces” [20]. In their approach, the authors organized all poten-
tial critiques in a trade-off vector showing whether the features were compro-
mised or improved in comparison to the current recommendation. That enabled
them to determine useful compound critiques and successfully evaluate it using a
computer configuration data set. However, we feel that such an approach is more
suited for products with clear specifications, since in tourism, relative differences
between the features values of items are of higher importance.

One major issue with critiquing is the divergence of the intended direction
of exploration. McGinty et al. [21] studied selection strategies for recommending
items in critiquing. Their Adaptive Selection approach resulted in a reduction in
critiquing cycles and they could prove that their critiquing-based approaches
would converge faster than preference-based approaches. Another important
insight of their work was that the user should not lose the progress, i.e., the
previous recommendation should be included in the upcoming cycle.

Based on these observations, we introduce a paradigm to navigate the search
space that we call “Navigation by Revealing Trade-offs.” We propose a user inter-
face element that visualizes the trade-offs involved in choosing one item instead of

1 https://github.com/myftija/cityrec-prototype.
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another in a less technical way than the preference-based organization interfaces
by Chen and Pu [20]. Distinctively, our proposed interface gives the user an indica-
tion of the search space, i.e., where the current item’s feature are located within the
whole feature space, which was not given in the dynamic and compound critiquing
approaches [7,22]. Furthermore, we used a utility function that determines the pro-
posed items, aimed to resolve the “wishful-thinking problem” of users requesting
item characteristics from the RS that do not exist in reality.

3 A User Interface Concept for Revealing Trade-Offs

3.1 Domain Model

The pure content-based paradigm requires each item to be characterized along
the same features to compute recommendations. In our case, we used an avail-
able data set of already characterized 180 cities all over the world [14]. This
dataset comes with a score for each city in the categories of “Food”, “Nightlife”,
“Arts & entertainment”, “Outdoor and recreation”, “Cost of living”, “Shops and
services”, “Average temperature”, “Average precipitation”, and “Venue count”.
The domain of traveling successfully motivates our approach, since these fea-
tures are natural in competition, i.e., a larger city with abundant cultural scene
usually has higher cost of living, or, conversely, the nightlife options might be
limited in small cities.

3.2 User Interaction

The user interaction through a web browser2 goes through three major steps:

Step (1): An initial user Preference Elicitation Page, where the system learns
general user preferences,

Step (2): Conversational Refining of the recommendations, where the user can
refine preferences and learn about the trade-offs in choosing an alter-
native destination, and

Step (3): Final Recommendation Page, where the user is shown the result.

The contribution of this paper focuses on Step (2), the Conversational Refining.
However, this key step must be seen in the context of the whole interaction
design, which we now present step-by-step.

Initial Preference Elicitation. Before the user can start refining, an initial
item needs to be determined. Ideally, the system would already have an estab-
lished user profile based, e.g., through previous interactions. As we have no prior
information about the user, we used a previously proposed approach to present
the user with an initial seed of destinations where the user can select 3–5 [14].
This seed comprises of randomly selected candidates of various clusters. By this,
2 The system is available under http://conversational-cityrec.cm.in.tum.de.
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the diversity of the sample is warranted, as the user is presented with a rep-
resentative set of items to choose from. Also, this method is quite fitting for
the domain and the initial set of selected cities can directly serve as input for
the utility functions of Step (2). We do not aim to evaluate this method from
literature [14], as we used it in the same way in all experimental conditions.

(a) Preference Refining Page. This is shown
to the user at the beginning of each conver-
sational cycle. The current city is marked
bold, and five alternatives are displayed on
the spectrum of each feature.

(b) Trade-off Visualization. The green and
red shades indicate the trade-off involved
should the user choose Jakarta instead of
Manila. The user explores various alterna-
tives before continuing.

Fig. 1. User interface of navigation by revealing trade-offs. (Color figure online)

Navigation by Revealing Trade-Offs. Figure 1 shows the interface element
for our conversational “Navigation by Revealing Trade-offs” approach. At the
top of the page, the currently recommended city is shown; below is the novel
user interface. This component shows the current city along with five other cities
recommended based on the utility function. For each feature the five candidate
items are shown in an ordered list from low to high depending on the score.
Users can select an item to see the feature value differences in all feature spaces
compared to the currently recommended city. An increase in feature value is
indicated using a green shade, a decrease is shown in red.

If the user is satisfied with the current recommendation, the user can choose
not to continue with refining, but to confirm the current recommendation. In
this case, the user is forwarded to the final recommendation page.

Final Recommendation Page. This page shows the final recommendation to
the user along with a survey to measure the performance of the recommendation
approaches. The final recommended city is shown with details such as the city
name, country and feature values.
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Baseline System. To evaluate our proposed approach, we used a modified
version of the “CityRec” destination RS [14], where one could critique features of
several destinations to refine them by buttons indicating “much lower”, “lower”,
“just right”, “higher”, “much higher”. As the source code of this system was
readily available, we used it as foundation for our experiments. We re-used the
system architecture and the front-end for the initial Preference Elicitation page
Step (1), and the Final Recommendation page in Step (3). However, notable
differences in the user interface are that we did not use photos of cities to avoid
bias due to the selection of images. Furthermore, we re-worked the unit critiquing
algorithm to make it more comparable with our system. The critiques can be
selected below using the same labels and logic for the adjustment as in the
original approach [14], although, it is possible to adjust all features at once and
the user is not limited in the number of critiquing cycles, thus, can refine the
items until she is satisfied with the recommendation.

4 Algorithms

Having described the user interface elements, this section presents the machinery
that computes the recommendation and, therefore, directs the path the user
takes through the search space. To enable reproducibility, the system and the
study data set are available under an open-source license as a Dockerized software
project on Github.3

4.1 Cold-Start User Modeling

Recall that in Step (1) of the system the initial input comprises a set of 3–5 items
that are characterized along the aforementioned eight features. This already
allows us to compute an initial user model by simply representing the user model
as an eight dimensional vector with the mean feature values of the initial cities.
Nevertheless, this method is quite simple and could be interchanged with any
other strategy if more information about the user’s preferences is available. Since
this is not the case in our evaluation prototype, we used this simple method from
literature.

4.2 Candidate Selection Strategy

The next step in the user interface requires finding candidates of which the user
can choose one to progress the search for suitable recommendations. In typi-
cal content-based recommendation style, one could naively use any similarity
metric, such as the Euclidean Distance on normalized feature values to com-
pute some cities similar to the current user model. The top items can then be
shown as alternatives to the user. One issue with this strategy is, that it does
not consider the user preference variations during the refinement. Furthermore,

3 https://github.com/LinusDietz/conversational-cityrec.
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the convergence of the algorithm will be poor, since it presents the user with
similar items to the current recommendation, thus, the user will not have the
option to select a city with a significantly different feature value. Instead, we
propose the “Variance Bi-distribution” utility function (Eq. 3) whose value is
defined by two normal distributions per feature, each representing an increase of
decrease of feature value. The two normal distributions are given as !N(µ1,σ2)
and !N(µ2,σ2), where µ1 and µ2 define the position of the bell curves on the
normalized value range of the feature, and σ defines the shape of the curve.

The distance between the currently selected reference item, refk and the
respective bell curves are computed by adding or subtracting an offset com-
puted in Eq. 1. This offset is the standard deviation of each feature value f of
all previous items in the conversational history H by the number of previous
conversational iterations n. The numerator of the offset needs to be moderated
by a constant Cm, which we empirically determine for the dataset in Sect. 5.1.
To summarize, the mean of the normal distribution is farther from the current
user model if the variance of a feature is higher.

µ1 = refk −
√

V ar(f ∈ H) · Cm

n
µ2 = refk +

√
V ar(f ∈ H) · Cm

n
(1)

The second parameter of the normal distributions, σ, is computed in a similar
way (cf. Eq. 2). This has the effect that with a higher variance, we obtain a
flatter distribution and, thus, a lower impact of this feature on the utility score.

σ =
√
V ar(f ∈ H) · Cs

n
(2)

The intuition behind this is that if the user has a strong preference regard-
ing a feature having a certain value and consistently picks cities with a high
temperature, the system is quite certain of this user’s preference toward temper-
ature and, thus, should put high weight to this feature. Conversely, if a user has
selected cities with another feature having both low and high values resulting in
a high variance, it can be seen as a signal that the user has no specific prefer-
ences toward the feature as it is not of importance to the user. Thus, the impact
of such a high-variance feature should be smaller than a low-variance feature.
Over time, we increase this effect by dividing through the number of previous
iterations n. This further helps the algorithm converge.

The maximum score of the two distribution functions for a given item feature
is taken as the utility score of the respective feature. We then compute the overall
utility of each item as the sum of all feature scores of the utility function.

utility =
∑

f∈F

s(f) (3)

Convergence Behavior. The effect of this utility function is that it balances
exploration in the beginning and fine-tuning in later stages of the search. If
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a feature variance is high and the number of iterations small model adjusts
µ1 and µ2 further away from the reference point, with a higher σ resulting in
a flatter distribution of the feature’s utility function. In this case, items far
away in the feature space also would get higher utility scores, ensuring users
are presented with cities more spread across the feature space. With a larger
number of iterations, the user preferences for particular features are converging,
i.e., the user will be presented with an increasingly narrower band of feature
values to refine the preferences. As a result, µ1 and µ2 are closer to the feature
value of the current recommended item, with a smaller σ, such that items with
similar feature values have a substantially higher utility score than the cities with
dissimilar feature values. However, if the variance of a feature is still high, the
curve will stay quite flat giving this feature less weight, thus, recognizing that
the user is rather indifferent toward this feature. This convergence behavior can
be observed in Fig. 1. After some iterations, the algorithm determined that the
user has a clear preference for high scores in the food and temperature aspects,
and low scores in nightlife, outdoor & recreation, and cost. Thus, the refining
candidates are quite close by each other, whereas they are spread along the
spectrum in the arts & entertainment spectrum.

Elimination of Candidates. To further improve the convergence, we propose a
variant that eliminates items whose feature values have been refined in a contrary
way. The reasoning behind this elimination of candidates is that if a user refines
a feature of an item, it becomes an explicit information that the value of the
feature is unsatisfactory and should take only values toward the direction of the
refinement. Thus, we can compute candidates just as before, however, items that
have a lower (or higher) value than the original item refk are removed from the
search space. For example, if the user refines the value of Arts & Entertainment
of Manila in Fig. 1b in favor of Jakarta, the system will assume that all cities
that have a lower value in Arts & Entertainment than Manila should be excluded
from future suggestions.

5 User-Centric Evaluation

For the evaluation of the system, we chose a between-subject design to perform
a large-scale online user study. First, we need to determine the constants of the
Variance Bi-distribution Model for the current data set.

5.1 Instantiation for the Domain

During the development of the system, we noticed that using only the standard
deviation divided by the number of iterations in Eq. 1 and 2, µ1 and µ2 would be
too extreme, which will result in items recommended that are too far away from
the current city. To moderate this effect, the constants Cm and Cs of Eqs. 1 and
2 were introduced for the Variance Bi-distribution Model. This step ensures an
efficient navigation should be seen as an adjustment of the algorithmic properties
to the data set at hand, as different domains can have different characteristics,
i.e., a different number of items.
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Determining Constants. The values of Cm and Cs can be determined in an
offline setting using a simulation. This is because by systematically altering the
values of Cm and Cs, we can see how quickly the algorithms converge from an
initial setting after Step (1) to a desired item while making consistent decisions.
In the context of the simulation, we define consistent decisions by choosing the
item that is nearest to the target item using the distance metric of the RS. Thus,
the simulator chooses candidates toward the target recommendation, just as a
real user would, until that recommendation is part of the set of candidate items.
For the cities, we used user interaction data to perform a realistic simulation [14].
The data set of 63 user sessions contained the initial city selections by the user
and the final recommendation the user had selected. Having historic data for the
simulation, we can now train the parameters using relevant scenarios, as opposed
the randomized or exhaustive simulation strategies.

Result. Regarding parameters of the simulation, we varied Cm from 2 to 6, and
Cs from 4 to 20, both in 0.5 intervals. For each these parameters’ configuration,
we recorded the session length of the 63 user sessions of the data set. The result
of the simulation reveals a global optimum at Cm = 3 and Cs = 8.

5.2 Online User Study

We conducted the user study using the online experimentation platform Prolific.4
We used a between-subject design and invited participants of the platform who
had indicated “Traveling” as one of their hobbies. Only one independent vari-
able was randomly assigned to the users, i.e., the critiquing system in Step (2).
The three options5 were the baseline unit critiquing system and the trade-offs
UI using the Variance Bi-distribution Model without and with the elimination
variant. As dependent variables, we used metrics about the user interaction and
a subset of the ResQue Questionnaire (cf. Table 1), which is a validated, user-
centric evaluation framework for RSs [23], where users indicate their agreement
with each statement on a Five-point Likert Scale.

6 Results

The user study was conducted in December 2020 with 600 participants. Out
of the 600 participants, we excluded 181 responses, which failed an attention
check, showed very low interaction with the system, i.e., an interaction of less
than 35 s, and did not use a desktop browser as instructed. This left us with
419 valid submissions (59.9% female, 39.1% male, 1% other) from 42 different
countries. The users predominantly came from Europe, due to the time zone
when the survey was initiated. The age distribution was 20.8% of below 21 year
olds, 55.6% were 21–30, 13.1% were 31–40, 6.2% were 41–50, 3.1% were 51–60,

4 https://prolific.co/.
5 The variants can be tested under http://conversational-cityrec.cm.in.tum.de.
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Table 1. Hypothesis testing of the dependent variables between the baseline unit
critiquing and the two variants of the Trade-off refinement. The mean values of the
survey items coded as integers from 1 to 5 are for informative purposes only.

Variable Baseline Trade-offs Trade-offs w. Elim.

Mean Mean p w Mean p w

(Q1) Interest match 3.81 4.12 0.002 7378 4.07 0.005 8727.5

(Q2) Better than friend 3.26 3.25 0.939 9053.5 3.26 0.749 10212.5

(Q3) Cities are familiar 4.09 4.14 0.605 8794.5 4.22 0.187 9572

(Q4) Rec. cities are attractive 4.06 4.18 0.314 8524 4.05 0.538 10816.5

(Q5) Discover new Cities 3.66 3.76 0.42 8608 3.71 0.711 10179

(Q6) Adequate layout 3.78 3.45 0.003 10917.5 3.56 0.044 11765

(Q7) Easy to modify preferences 4.14 3.59 <0.001 11846.5 3.66 <0.001 13235

(Q8) Became familiar quickly 4.19 3.67 <0.001 11681 3.60 <0.001 14125

(Q9) Influenced selection 3.44 3.64 0.043 9104.5 3.63 0.044 9104.5

(Q10) Overall satisfaction 3.82 3.84 0.743 8910.5 3.77 0.534 10824.5

Number of conversational cycles 4.44 2.38 <0.001 – 2.46 <0.001 –

and 1.2% were 61 years or older. With respect to the independent variables, 140
were assigned to the baseline unit critiquing, 130 to the Trade-off Refinement,
and 149 to the Elimination Variant.

Quantitative Analysis. Regarding the number of conversational cycles, we
observed that all sessions using the Trade-off interface were finished by the users
within 6 cycles, with a mean value of 2.38/2.46, whereas the baseline unit cri-
tiquing interface needed more cycles with a mean value of 4.44 cycles. Thus,
the Trade-off UI reduced the iterations by of 46.4% (44.6% in the elimination
variant), which is a significant reduction when testing the hypothesis using a
t-test (cf. last row of Table 1). Note that the user interface was set up in a way,
so that at least one interaction cycle had to be performed, before the users could
accept the current recommendation as final result.

For the survey items, we computed cross-wise Wilcoxon rank sum tests
for independent populations using the three independent variables. The null
hypotheses were that there is no difference in the median of the responses.
Since we could not find significant differences between the Trade-off refining
and Trade-off refining with the Elimination variant, we only tabulated the out-
comes in Table 1 with respect to the baseline unit critiquing. Besides the analysis
of the number of conversational cycles, we could refute the null hypothesis in
favor of the Trade-off Variants in (Q1) and (Q9), while the baseline received
better responses in (Q6), (Q7), and (Q8). This mixed result can be summarized
in a way, that the Trade-off interface had superior perceived recommendation
accuracy at the expense of the users’ perceived ease of use.
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Discussion. The superior perceived accuracy measured by (Q1) at about 45%
fewer conversational cycles, underlines the merit of our proposed user interface.
However, the subjects rated the usability-related metrics of the unit critiquing
system higher (Q6–Q8). We suspect that this due to that unit critiquing has
already been employed in various RSs, so it is quite possible that many users
were already familiar with this concept. Dealing with a new refinement interface
involving reasoning about trade-offs certainly involves more cognitive effort and,
thus, might need more familiarization (Q8) than only one session. The study
was designed in a way that users could only submit the survey once and we did
not familiarize the users with the system before their session to avoid learning
effects. The significant difference in (Q9) “This recommender system influenced
my selection of cities.” in favor of the Trade-off interface is likely an artifact of
the comparative lengthy search in the unit critiquing, since both values are in
the center of the Likert Scale. Interestingly, there were no significant differences
in any dependent variables between the Trade-off refinement and its Elimination
variant. We attribute this to the low number of conversational cycles that were
needed to come up with a satisfactory result. In the given data set of 180 cities,
the elimination of candidates was probably not necessary, as the utility function
was able to recommend attractive items after two or three cycles. Nevertheless,
we are confident that the concept of elimination of parts of the search space
based on the users’ choices could be useful and we plan to analyze the merit of
the Elimination variant with larger item sets of over 1000 items.

7 Conclusions

The success of modern recommender systems depends on the seamless integra-
tion of algorithms and user interface elements. Given that existing critiquing
systems have often neglected to explicitly inform users about the trade-offs of
the critiquing actions, we developed the Navigation by Revealing Trade-offs sys-
tem, which integrates a user interface concept with a utility function to compute
refinement candidates. The evaluation shows that perceived accuracy is better
than the unit critiquing baseline at similar reductions in the number of conversa-
tional cycles as other advanced critiquing approaches have demonstrated [19,21].

Based on this promising result, further analyses of this refinement paradigm
should follow with larger item sets to analyze the merits of the Elimination
variant. Since our study followed a between-subject design, we also can not
answer whether the higher ratings for the interface adequacy are due to that
unit critiquing being conceptually easier to understand or users are more familiar
with such a long-established paradigm. Therefore, the usability and learnability
should be investigated in a usability analysis in a controlled laboratory setting.
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or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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