
Engineering Adaptive Web
Applications

Von Fakultät für Elektrotechnik und Informatik der
Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation von

Peter Dolog

geboren am
28. August 1976 in Brezno, Slowakische Republik

2006

Referent: Prof. Dr. Wolfgang Nejdl (Universität Hannover)
Korreferent: Prof. Dr. Kurt Schneider (Universität Hannover)
Korreferentin: Prof. Ing. Mária Bieliková PhD.

(Slowakische Technische Universität Bratislava)
Tag der Promotion: 6. März 2006

UNIVERSITY OF HANNOVER,

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Peter Dolog

Engineering Adaptive Web
Applications

Dr. rer. nat. Dissertation

2006

Zusammenfassung: Nutzer von Web-Anwendungen stammen sich aus verschiedensten Nut-
zergruppen, die sich in ihrem Hintergrund, ihrer technischen Ausstattung, ihrem politischen
und sozialen Kontext, ihren Interessen und Zielen, usw. unterscheiden. Dementsprechend
haben unterschiedliche Nutzertypen auch unterschiedliche Anforderungen an Web-Anwen-
dungen. Diese Anforderungen können durch das Angebot mehrerer Varianten dieser Anwen-
dungen erfüllt werden. Die Implementierung und Wartung dieser Varianten macht die Ent-
wicklung solcher Anwendungen allerdings komplexer, und erfordert daher die Einführung
spezieller Ansätze, um trotz der zusätzlichen Komplexität effizienten Entwurf und Entwick-
lung zu gewährleisten. Die bisher vorgeschlagenen Methoden zur Entwicklung von Web- An-
wendungen berücksichtigen die Problematik der Nutzerheterogenität und der Notwendig-
keit, darauf angepasste Anwendungsvarianten parallel zu entwickeln, nicht.

In dieser Arbeit schlagen wir ein neues Framework zum Entwurf solcher Anwendungen
vor, das den Entwicklungsprozess um spezielle Techniken für den Entwurf adaptiver, indivi-
duell anpassbarer Web- Anwendungen erweitert. Die Adaptivität und Anpassbarkeit wird as
Auswahl aus Feature-Varianten entsprechend eines Nutzerprofiles aufgefasst, die als Teil der
Web-Anwendung angeboten werden.

Das Framework basiert auf dem Ansatz des Domain Engineering. Für die Anwendung im
Bereich adaptiver Web-Anwendungen wurde diese Methode wurde um zusätzliche Entwurfs-
abstraktionen erweitert, die es ermöglichen, die von der Anwendung angebotenen Informa-
tionen, die Art der Informationsausgabe sowie Benutzereigenschaften vollständig getrennt
voneinander zu modellieren.

Die Adaption basiert auf der Anwendung von Feature-Modellen, wobei generelle Featu-
res die allgemeinen Teile der Anwendung repräsentieren, und variable Features diejenigen
Teile der Anwendung, die zur Design- oder Laufzeit an die Benutzer adaptiert werden. Für
die Modellierung der adaptiven Benutzerführung und der Adaption des präsentierten Con-
tents stellen wir Modellierungsrichtlinien vor. Als Modelle für die adaptive Navigation werden
dabei endliche Zustandsautomaten verwendet. Die Feature-Konfiguration wird durch Cons-
traints an den Zuständen und Zustandsübergängen spezifiziert. Abhängig von im Benutzer-
profil modellierten Eigenschaften bestimmen diese Constraints, welche Links aktiv sind, wel-
che Zuständsübergänge möglich sind, usw. Über als Seiteneffekte spezifizierte Aktionen wird
festgelegt, wie sich das Benutzerprofil verändert.

Die adaptive Konfiguration der Content-Bestandteile wird mit Hilfe von Kollaborations-
diagrammen spezifiziert. Durch die Kollaboration der Features, die für die Beschreibung des
Contents verwendet werden, mit denen, die für Spezifikation der Content-Umgebung ver-
wendet werden, wird festgelegt, aus welchen Content-Bestandteile ein Hypertextknoten zu-
sammengesetzt wird. Constraints auf den Kollaborations-Nachrichten bieten eine Abstrakti-
on, um Content-Bestandteile auf Basis des Benutzerprofils gezielt ein- oder auszublenden.

Die Anwendbarkeit dieses neuen Ansatzes wird an mehreren Anwendungen gezeigt. Ein
Generator für adaptive Benutzerführung durch elektronische Lerneinheiten wurde auf der
Grundlage dieses Verfahrens entworfen und implementiert. Die vorgeschlagenen Entwurfs-
abstraktionen können als Ergänzung zu bestehenden Methoden eingesetzt werden; dies wird
durch Integration mit dem WebML-Ansatz belegt. Weiterhin wird diskutiert, wie die durch
Feature-Modelle ermöglichte Variabilität im Zusammenhang eines Reasoning-Ansatzes ver-
wendet werden kann, um adaptive Annotationen, Benutzerführung und automatische An-
fragen nach bestimmten Informationen in einer verteilten Umgebung zu generieren. In die-
sem Zusammenhang wird auch die serviceorientierte Architekture dargestellt, innerhalb de-
rer diese Modelle basierend auf Semantic-Web-Beschreibungssprachen eingesetzt werden.

Schlagworte: Domain Engineering, Adaptive Web Applications, Conceptual Modeling

Abstract: Applications on the Web are accessible for users with different background, tech-
nical environment used, political, social environment where they reside, interests, goals and
so on. The different user types have slightly different requirements for features which such a
Web application should have. The different requirements might be satisfied by different vari-
ants of features maintained and provided by Web applications. An adaptive Web application
can be seen as a family of Web applications where application instances are those generated
for particular user based on his characteristics relevant for a domain.

In this thesis, we propose a new framework which extends a development process of Web
applications with techniques required when designing such adaptive customizable Web ap-
plications.

The framework is based on domain engineering. The domain engineering approaches
proposed so far have been applied to product family engineering with variability resolution
at the application design time. We propose a domain engineering approach for adaptive Web
applications where some variability is resolved also at the run-time taking a user profile into
account. The framework is provided with design abstractions which deal separately with in-
formation served by the Web application, environment used to deliver the information, and
user characteristics which are observed and used to constrain the information and the envi-
ronment selection.

Our customization approach is based on the feature models. Common features are pro-
vided to all users of the Web application and the variable features represent different variants
which are selected according to a user profile either at the design or at the run-time. We
propose guidelines for modeling adaptive navigation and adaptive content configuration for
Web applications. The adaptive navigation is modeled by the state machines. The resolution
of variable features and variation points is specified by constraints on states and transitions
where characteristics of a user are checked. The constraints determine whether particular
link is accessible, which state should be taken as a target state, which state can be entered
and so on. Furthermore, side-effect actions specify changes of user profiles; i.e., evolution of
user profiles.

The adaptive configuration of content fragments is specified by the collaboration dia-
grams. The features, used for a content description and environment to deliver the content,
collaborate among one another to provide information fragment requested within a hypertext
node. Some of the collaboration messages may be constrained. This provides abstraction for
enabling/suppressing some content fragments according to information about a user.

The use of the approach is demonstrated on a generator provided for the adaptive guide
through an electronic course. Complementariness of the proposed design abstractions to the
other methods is demonstrated on the case of integration with the WebML platform. The
variability in feature models is also discussed in the context of a reasoning approach over the
domain, the resource, the navigation, and the user models to generate adaptive annotations,
navigation support, and queries for information in distributed environments. The service
oriented architecture, where those models are used, is also introduced utilizing semantic Web
description formats for information exchange.

Keywords: Domain Engineering, Adaptive Web Applications, Conceptual Modeling

Acknowledgements

I would like to thank Prof. Dr. Wolfgang Nejdl for the wonderful research environ-
ment he provided me at the L3S Research Center and at the University of Hanover and
for many scientific discussions. I also would like to thank for his continuous support
which allowed me to visit many conferences, scientific project meetings, standard-
ization meetings, and other institutes to deepen my knowledge in the field, exchange
the ideas, and meet interesting people.

I am very grateful to Prof. Dr. Kurt Schneider, the second supervisor, for very
helpful comments which he provided on the draft of my thesis.

I am also very grateful to Prof. Ing. Mária Bieliková PhD. for her support and the
discussions we had at the beginning of my research work at the Slovak University of
Technology in Bratislava.

I would also like to thank to many colleagues I cooperated with either from the
University of Hanover or from other universities and institutes. First of all, I would
like to thank Franziska Pfeffer from University of Hanover, Katia Cappelli, and Iris
Zieseniss from L3S Research Center for their support and help with many issues re-
lated to the university administration.

Special thanks go to Prof. Dr. Stefano Ceri and Dr. Maristella Matera from Politec-
nico di Milano, Italy who provided me with unlimited support during my research
visits in Milan. The joint work resulted in a Best Paper award from web engineering
conference in 2004 and provided valuable contribution to my thesis. I would like to
thank Prof. Dr. Nicola Henze from University of Hanover with whom I had many
discussions on the semantic web and logical foundations for adaptive web-based ap-
plications. I would also like to thank Michael Sintek for his support, discussions, and
joint work we have performed on realizing the personalized search component based
on models, metadata, and reasoning on the semantic web during my visit at the Ger-
man Research Center for Artificial Intelligence (DFKI) Kaiserslautern in Germany. Dr.
Wolf-Tilo Balke and Wolf Siberski from L3S Research Center, University of Hanover,
Dr. Martin Drozda from University of Hanover and Dr. Valentino Vranić from Slovak
University of Technology in Bratislava, Slovakia have my acknowledgements for their
valuable comments and support in social life and for numerous scientific discussions
about many topics not limited just to this thesis.

I would also like to thank Charles Warcup from REALisation Projects in Utting,
Germany who helped me with his comments and suggestions on how to improve the
English of this thesis

Last but not least, I would like to thank Europe Commission for its IST work pro-
gramme and its frameworks which supported my research performed within my the-
sis. In particular, I am grateful to framework 5 research project ELENA - Creating
Smart Spaces for Learning (Contract no.: IST- 2001- 37264) and framework 6 network
of excellence PROLEARN on professional learning (Contract no.: IST-2004-507310).

Contents

Zusammenfassung i

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problems Addressed in this Thesis . 2
1.2 Contributions . 6
1.3 Thesis Structure . 7

I Adaptive Web-Based Application Design 9

2 Adaptive Web-Based Applications 11
2.1 User Adapted Web-Based Hypermedia 12
2.2 User Adapted eCommerce Systems . 14
2.3 User Adapted Search and Exploration Systems 17
2.4 Requirements for Design Methodology 17

3 Web Application Development 19
3.1 Application Domain Model . 21
3.2 Navigation Model . 23
3.3 Presentation Model . 24
3.4 Dependencies between Models . 25

4 Summary 29
4.1 Static Structure Models . 29
4.2 Behavior Models . 30

vii

viii CONTENTS

II Conceptual Modeling for User-Adapted Web Applications 31

5 Domain Engineering and Adaptive Web Applications 33
5.1 Domain Engineering vs. Application Engineering 34
5.2 Domain Engineering for Adaptive Web Applications 36

6 Domain Analysis for Adaptive Web Applications 41
6.1 Conceptual Modeling . 41
6.2 Feature Modeling . 46
6.3 Conceptual and Feature Models in Web Application Solution Domains 51

7 Domain Design 53
7.1 Application and Environment Domain Design 54
7.2 User Domain Design . 54
7.3 Navigation Domain Design . 56
7.4 Variability at Runtime: Personalization 59

7.4.1 Active Information Objects and their Collaborations 59
7.4.2 Personalized Navigation Design for Web Applications 63

7.5 Domain Design and State Diagrams . 69
7.5.1 Side Effect Actions with Domain Design Objects 69
7.5.2 Concepts from Domain Design Models in Tagged Values 72

8 Summary 77

III Use Cases for the Conceptual Models 79

9 Generating Adaptive Navigation from State Diagrams 81
9.1 Visualization of the Navigation Map . 82
9.2 Transforming State Diagrams into Navigation Map 83
9.3 System Implementation . 86
9.4 Lessons Learned . 87

10 Domain Specific Languages with the UML-Guide 89
10.1 Generating Adaptive Navigation over WebML Generated Application . 90
10.2 System Implementation . 91
10.3 Visualization of Integrated Application 93
10.4 Lessons Learned . 93

11 Domain Engineering and Adaptive Semantic Web IS 97
11.1 The Model for Semantic Web Metadata 97
11.2 Reasoning on the Semantic Web . 99
11.3 Models and Semantic Web Application Components 100
11.4 Ontologies . 101
11.5 Metadata . 104

CONTENTS ix

11.6 Services . 106
11.7 Applications . 111
11.8 Lessons Learned . 112

12 Summary 115

IV Outlook 117

13 Conclusions 119
13.1 Contributions . 119
13.2 Wider Implications . 120

14 Further Directions 121

A Metamodel for Feature Model 133

B Lebenslauf 135

List of Figures

1.1 Phases, Workflows and Products in Web Development Process 3

2.1 An adaptive annotation of links to lesson units in the Interbook system 12
2.2 An adaptive presentation and annotation of content and links within a

lesson unit in the Interbook system . 13
2.3 An example of a product record from a SETA system 14
2.4 An example of a user record from a SETA system 15
2.5 An example of a user stereotype from a SETA system 16

3.1 Web application development space with notation axis 20
3.2 High-level dependencies between core Web-based application models. 26
3.3 Extending core Web-based application models. 27

5.1 Software development based on domain engineering according to [Wit94]. 35
5.2 Domain engineering approach for adaptive Web-based application. . . 37

6.1 An excerpt from a conceptual application domain model which de-
scribes content on JAVA object oriented programming 43

6.2 An excerpt from a conceptual environment/information model 44
6.3 An excerpt from a user (learner) domain model specific to the eLearn-

ing domain. 45
6.4 An excerpt of Object feature model . 49
6.5 An excerpt from the Course feature model 50
6.6 An excerpt from a user (learner) feature model specific to the eLearning

domain. 51

7.1 An excerpt from a domain design models (a/ application domain b/
environment domain) for an adaptive content management system . . 54

7.2 A user model for a simple e-lecture. 55
7.3 An excerpt from a learner (user) model for learning performance. . . . 56
7.4 An excerpt from a metamodel of the WebML hypertext schema 57
7.5 An excerpt from a collaboration model showing features from the Ob-

ject feature model . 61
7.6 An excerpt from a collaboration between features from the Course and

Object feature models . 62

xi

xii LIST OF FIGURES

7.7 A basic interaction scheme. 65
7.8 Part of an adaptive navigation model for a JAVA e-lecture. 67
7.9 An excerpt from a navigation model for browsing assets in a CRM ap-

plication. 70
7.10 An excerpt from an application domain model of a CRM application. . 71
7.11 An excerpt from a user domain model of a CRM application. 72
7.12 WebML Data schema for the e-learning application. 72
7.13 The WebML specification of the hypertext interface for the e-learning

application. 73
7.14 A navigation model for a Java tutorial in the UML state diagram notation. 74
7.15 Excerpt from the UML-Guide state diagram extended with tagged val-

ues representing WebML concepts. 76

9.1 Visualization of navigation graph for java e-lecture. 82
9.2 A part of the XMI document for the state diagram of the Java e-lecture:

SW Requirements simple state with reference of incoming and out-
going transition. 84

9.3 The example of XSLT template part for transforming simple state as a
target of a transition. 85

9.4 A general architecture of generator and final application. 86

10.1 Excerpt of the UML-Guide state diagram extended with tagged values
representing WebML concepts. 91

10.2 Architecture of the composed system. 92
10.3 Visualization of navigation graph for java e-lecture. 92
10.4 Adaptive application design process. 95

11.1 Example of an RDF graph . 98
11.2 Correspondences between the models created in domain engineering

process for adaptive web applications and semantic web ontologies,
metadata, and application processing services 101

11.3 An excerpt from an application domain ontology for a Java e-lecture . . 102
11.4 An excerpt from an environment ontology as a document types hierar-

chy for eLearning applications . 102
11.5 An excerpt from an environment domain ontology for documents . . . 103
11.6 Ontology for learner performance . 104
11.7 Ontology for observations . 105
11.8 A collaboration diagram from a current implementation. 107
11.9 A prototype user interface for search operations. 112
11.10Screenshot of the Personal Reader, showing the adaptive context of a

learning resource in a course. 113

A.1 A metamodel for a feature model in UML 134

List of Tables

3.1 Summary of techniques for application domain modeling. 22
3.2 Summary of techniques for navigation modeling. 23
3.3 Summary of techniques for presentation modeling. 24

7.1 Some basic WebML content units. The whole set of units is described
in [CFB+02]. 58

xiii

Chapter 1

Introduction

The World Wide Web has had an extremely significant impact on access to informa-
tion and information services. Web-based applications are influencing many do-
mains such as business, commerce, banking and learning. The Web has simplified
access to information and information services, enabling a variety of users with dif-
ferent backgrounds, social situations, and so on to participate.

The increasing complexity of such applications calls for engineering methods for
developing efficient high quality software applications with all the appropriate per-
formance, features and services which are required. The methods are required to
handle the application development process in an efficient manner to meet time,
budget and resources criteria. Web engineering is an area whose purpose is to answer
the questions connected with the Web application engineering problems mentioned.

Web engineering is a multi-disciplinary area influenced by several communities
such as multimedia, hypertext/hypermedia, human-computer interaction, software
engineering and, information engineering. Information on the Web is disseminated
by means of media (i.e. text items, video or audio sequences, images, and their com-
binations) actively interconnected by links. Usability issues, navigation and interac-
tion support are other characteristics which are to be considered in Web-based sys-
tems. Each of these aspects can be engineered separately as an orthogonal activity in
systematic methodologies.

The most significant feature of information intensive applications on the Web is
the possibility of non sequential navigation among items of information or different
documents; i.e. there is no definite order that determines a sequence in which the
text is read. The applications provide rather exploratory user interfaces which are of-
ten adapted to different audiences or different devices according to the ’anywhere,
anytime and anybody’ paradigm. The applications for the Web are developed for
multiple platforms with several accessing approaches to information bases. Infor-
mation content constitutes not only regularly structured data but often unstructured
(multimedia) items in the applications. The development of such applications has to
take into account also aesthetic and cognitive aspects as well that traditional software
engineering environments do not support [NN95].

The new conditions introduced by the Web applications have meant that the “one
size fits all” approach is not suitable for building such applications any more. The
applications should reflect the different requirements of users with different back-

1

2 Chapter 1. Introduction

grounds, technical, political and social environments, interests, goals and so on. As a
result, a Web engineering method should meet following requirements:

Support for common and variable features of Web applications. A method for en-
gineering Web applications should be able to handle common and variable fea-
tures which are requested by current and potential users and shareholders of
Web applications at design time.

Support for personalization. It is not always possible to determine which features
are needed and which are not needed at design time. Sometimes, this decision
has to be postponed to the final application (to its runtime). The decision is usu-
ally made according to maintained user features, thus personalization should
be addressed in development methods as well.

1.1 Problems Addressed in this Thesis

The central goal of this thesis is to develop a methodology capable of supporting a
design which takes account of common features and variabilities in a Web system
family as well as personalization.

Customization and personalization can be seen as a selection over variants of Web
application features. The variants can be selected according to shareholders’ require-
ments or dynamic and evolving user profiles. The Web applications are usually a kind
of information serving systems where the information items are served according to
a hypertext paradigm possibly utilizing multimedia. To support better orientation of
a user, information is usually served by using an environment. The environment can
for example support users by providing information about a level or structural unit he
is currently dealing with. It can indicate the current position of a user within informa-
tion space and environment level. It can provide further functions and links, simpli-
fying navigation to other levels, backtracking and so on. Environments for delivering
the same information can differ either by employed features or their configuration.
The customization design considers in addition variability in binding information to
environment features as well as the way in which selection depends on a user inter-
action.

Customizable and adaptive Web applications can be seen as members of a Web
application family in a particular domain (serving content from the domain) where
all of them share a common part (common features) and they differ in variable parts
and/or feature selection mechanisms left for the dynamic runtime environment.

Domain engineering based methods proposed for software systems such as the
product line practices [Wit96, BFK+99, PBvdL05] or generative programming [CE00]
deal with product families. Based on the above discussion, the Web software applica-
tions bring new dimensions to the development and system design.

Web solutions have often been used for achieving availability of a (large amount
of) information from several distributed sources, serving users who might be dis-
tributed as well. Recently, Web applications connecting/orchestrating several Web
services have emerged as well.

In order to cover the peculiar characteristics of Web applications, the generic soft-
ware processes need to be refined and augmented with activities to create particu-

1.1. Problems Addressed in this Thesis 3

Requirements

Analysis

Implementation

Design

Test

Transition

Construction

Elaboration

Inception

NavigationApplication Domain Presentation

Workflows

Phases

Products

Figure 1.1: Phases, Workflows and Products in Web Development Process

lar components/views/layers. There have been several proposals for Web develop-
ment methods, describing specific activities for Web application development, such
as OOHDM [SR98], WebML [CFM02], and UML-based Web Engineering [HK00], or
reference models like the IMPACT-A method [LBW99]. All these methods have in
common three high level activities, referring to the engineering of the application
domain, navigation, and presentation.

Figure 1.1 depicts the dimensions of the Unified Process [JBR99] supplemented
with the dimensions reflecting the Web development activities:

• Application Domain Engineering deals with analysis, design, implementation
and authoring of concepts which are related to the information content to be
made accessible through the Web application, and functions to process, access
and guide through;

• Navigation Engineering deals with activities related to analysis, design, imple-
mentation and testing of the modality through which users will navigate through
the available information and services. Navigation engineering is concerned
with grouping information fragments and functions into navigation nodes (hy-
pertext nodes, contexts, views) and interconnecting them by means of links;

• Presentation Engineering is concerned with analysis, design, implementation
and testing of the way in which information fragments, functions and their re-
sults appear to a user. The presentation model defines spatial layout and con-
tent of information fragments related to the user interface. It also defines pre-
sentation classes or objects, spatial relationships among them and content as-
sociated with them.

4 Chapter 1. Introduction

The above mentioned concerns are developed through all the workflows of the
software process. The application domain is analyzed and structured according to
one or several conceptual models. The conceptual models are refined to use cases
and workflows (how to work with particular information from the application do-
main). A database can be designed and implemented to store the information de-
scribed by the conceptual models or an API can be developed to access external in-
formation sources to be analyzed. Navigation over information is analyzed based on
workflows and use cases connected with the information. An analysis model may
serve as a tool to structure navigation requirements. The navigation is designed and
implemented based on the available environment, e.g., ordinary Web pages accessed
from a web server, or on the fly generated pages from a database. Presentation is an-
alyzed, designed and implemented in a similar fashion based on requirements posed
by information to be served by a Web application, users, navigation and the environ-
ment used to deliver particular information.

An application domain model is usually mapped into the content. If we look
on the content from the variability point of view, several concepts from the appli-
cation domain model can appear or describe different content fragments (informa-
tion nodes). Moreover, the same content can be represented by different media and
this content can evolve in time. The content can be also presented in different for-
mats, e.g., as a book, lecture, or an article. Also overall access to the content can be
managed through different patterns such as a digital library, an e-course (virtual uni-
versity), on-line help, etc.

The Web application can be used by different types of users. Each user or user
group may require different information to browse, a different composition of pre-
sented information (local navigation), and differing order and interconnections among
information fragments (global navigation). Different navigation styles can also be de-
termined by the target environment where the information is served to a user.

Similarly, different target groups may require information fragments to have dif-
fering appearance, layout, presentation and organization of the information to be
viewed. The target environment can also restrict possible presentation variants. Thus
it is important to capture this kind of variability as well.

The current Web application development methods conform to a single system
development approach, i.e., the focus is put on the development of single systems
rather than models for classes or families of systems where a certain variation among
the members of a family can occur. Current methods can handle the requested vari-
ability in customized and/or adapted applications to a certain extent at the concep-
tual level as supported by known frameworks like structural techniques for UML, E-R
models, or views where query language is used to query conceptual models for a par-
ticular subset of entities, components, use cases and so on.

Variability can also occur at the implementation level. It requires the existence of
versions of a system’s components and system releases. Version control in the hyper-
media domain has been studied at the document level in several works [Nel, SRS00].
All mentioned works provide a model of versions and a model of configuration, which
define how the versions contribute to the final configuration.

As the variability in adaptive Web application can occur at several levels, this as-
pect has to be studied from the point of view of what is actually required and contin-

1.1. Problems Addressed in this Thesis 5

uously refined from the anylysis and design stages through to implementation and
maintenance. The variability should determine the development, deployment and
run time of the adaptive Web applications. For this reason, the current Web appli-
cation engineering methods should be extended by means of methods for variability
engineering.

According to the above mentioned requirements, the following problems have
been identified:

Problem 1 How to extend the techniques for modeling Web applications by means
of commonality and variability modeling?

To be able to define explicitly variable and common features in different design
views, we need to extend the modeling techniques used in Web engineering meth-
ods with additional modeling views and concepts used in the views. This increases
the expressiveness of the modeling language and provides further information in the
model. On the other hand, additional information in the model may raise its com-
plexity. The extension should be separated into separate, possibly orthogonal models
in order to be able to plug modules in or exclude them according to the requirements
of a project.

Problem 2 How to model user centered personalization of Web based applications?

The static variability modeling considered in the previous problem would support
just different customers of the Web application. Internal diversity in requirements of
one customer may result in installation of extended set of system features and the
decision about which feature will be presented to particular user should be given to
the application runtime. Thus, there is a great need for a modeling technique which
will be able to describe the dynamic decision based on user and/or system behavior.

Problem 3 Can the models used for systematic descriptions of the Web based appli-
cations be utilized in the implementation for some of the personalization deci-
sions or designer support?

Additional information in respect of personalization and common and variable
features of a system and/or domain where the Web-based application will be used
may be beneficial for reasoning and decision making. The designer might be able to
make use of existing software components described by the design models and search
for them according to the information in those models. Web-based application may
utilize the models according to rules implemented in the application.

Problem 4 Is it possible to support the extensions using industry standards or their
extensions at the model and at the implementation level?

The success of the World Wide Web has been supported by standard protocols and
formats. Current trends follow W3C standard recommendations such as XML, RDF,
or OWL. Systems design practices adopted by industry are also widely supported by
standards. The methodology would benefit if current technology standards either at
the modeling level (UML) or at the implementation level (XML, RDF, OWL) can be
supported.

6 Chapter 1. Introduction

1.2 Contributions

The main contributions of this thesis are fourfold. First, a domain engineering method
for adaptive Web-based information intensive applications is introduced. The method
uses additional feature models in information modeling which are based on the idea
of an information product line and are inspired by domain engineering approaches
for building software systems like generative programming [CE00] or product line
practices [Wit96] where feature models play an important role. Our method is also
based on the idea that an item of information is usually communicated to a user us-
ing several concepts. We use the UML collaboration diagrams to model such a design
view where information features combine to fulfill a main information goal. Our ap-
proach is based on:

• Two views on information: application domain and environment;

• User domain view which determines which user features are considered for
adaptation decisions;

• Feature models which model common and variable features of concepts and
variation points in three views;

• Collaboration diagrams which refine and integrate feature models of both in-
formation views and constrain the collaboration messages with evaluation of
features from the user’s viewpoint.

The feature and collaboration models allow us to specify conditions in which fea-
tures from two separate models can be used. The conditions determine which com-
binations of features provide us with meaningful information. Different configura-
tions of features and roles represent possible Web-based applications which form an
application family. Such an approach provides us with following advantages:

• The separation of the application domain and environment models allow us to
reason about application domain concepts independently of the environment
used to deliver application domain content;

• The separation allows for connecting the content to different environments when
instantiating a particular application;

• Mandatory and optional features together with variation points in both models
allow us to maintain information which reflects different successful implemen-
tations of Web-based application;

• Instance roles and their collaborations allow us to maintain information as to
how domain features in information serving environments installed at a cus-
tomer site are combined.

Secondly, the thesis introduces the UML state diagram based approach for mod-
eling of personalized navigation guides where user features are considered and mod-
eled in a connected user domain design class diagram. The state diagrams provide
facilities to express variability which will be resolved at run time by means of transi-
tion branches, splits and joins, and guards used to specify constraints based on user

1.3. Thesis Structure 7

features. Side effect actions provide us with a means to to update user profiles dy-
namically.

Thirdly, we explain how the models (UML state diagram models for navigation
and class diagrams for user modeling) can be utilized for generation of adaptive nav-
igation sequences. The method utilizes the availability of XML based standards for
storing UML models — XMI. This enables us to take full advantage of XML technology
which is very popular amongst designers of Web based applications. The generator is
studied in the context of two platforms: Web pages and the WebML platform.

Fourthly, a reasoning method is introduced which uses the domain, resource, nav-
igation, and user models to generate adaptive annotations, navigation support, and
queries for information in a distributed environment. The service oriented architec-
ture, where those models are used, is also introduced based on Semantic Web de-
scription formats.

1.3 Thesis Structure

The thesis contains three parts. Part I is concerned with the design of Web-based ap-
plications. Chapter 2 discusses several prototypes of adaptive Web-based systems
from the design and conceptual point of view. Chapter 3 surveys modeling tech-
niques and methods used in present day Web engineering. Chapter 4 contrasts the
state of the art in Web application development with the future demands which are
emerging on the design and development of adaptive applications.

Part II discusses the domain engineering conceptual framework for adaptive Web
based applications. Chapters 5 and 6 deal with aspects of the problem 1 identified in
this thesis. Chapter 5 discusses activities of the domain engineering framework for
adaptive Web applications and relates it to generic domain engineering approaches.
Chapter 6 covers domain analysis activity of the proposed framework, which consists
of conceptual modeling and feature modeling. The extension of the UML, which is de
facto industry standard for modeling software systemsm, is used for feature model-
ing. Chapter 6 concentrates on application, environments and user domains. At the
end other domains relevant for Web applications are taken into consideration. We
introduce the conceptual and the feature models first. The feature models reflect the
common features and variabilities at design time which are required in Web-based
application. Then we explain how to use them to model two aspects of Web-based
applications — the application domain and the respective environment which are
concerned with content and its (re-) presentation. Finally, the user domain view de-
scribes features which parameterize adaptation.

Chapter 7 discusses domain design activity in the proposed framework contribut-
ing to the problem 2 identified in this thesis. First it defines domain design models.
Then, it discusses the variability at run time. The decisions as to which of variable fea-
tures to choose is made according to operational models and restriction rules based
on user profiles. Two techniques are discussed in this: the state diagram approach
and the collaboration diagrams. The chapter also discusses how the state diagram ap-
proach for adaptive navigation modeling can be conceptually integrated with other
methods on the WebML example. Chapter 8 summarizes the contributions of the
part II.

8 Chapter 1. Introduction

Part III discusses several experiments performed with the proposed conceptual
framework. The whole part contributes to solving the problems 3 and 4 identified in
the thesis. Chapter 9 discusses how the UML state machines can be used to generate
adaptive navigation guides in Web based application utilizing its XML representation
and XSLT. Chapter 10 discusses the integration of adaptive navigation guides into
model driven frameworks for Web applications based on the WebML [CFB00]. The
generator again benefits from standards for Web technologies and helps designers to
prototype adaptive Web applications. Chapter 11 discusses synergies between con-
ceptual models used in the design of Web application and their Semantic Web rep-
resentations. Moreover, the models transformed to the Semantic Web representation
formats are directly utilized for personalization decisions performed by automatic
reasoning. This chapter provides a comprehensive study for the most of the products
of the proposed framework. Chapter 12 summarizes applications of the conceptual
models.

Part IV ends with a summary and remarks on open issues still to be resolved.

Part I

Adaptive Web-Based Application
Design

9

Chapter 2

Adaptive Web-Based Applications

The purpose of the research being undertaken in adaptive Web based systems is to
find answers to questions relating to the heterogeneous needs of many different Web
users. Applications and information which are provided on the Web according to the
’one size fits all’ approach are not appropriate to such a heterogeneous environment.
Several researchers have tried to address personalization issues in their research and
have developed a number of adaptive Web-based applications.

Adaptive Web-based applications are an alternative to the traditional “one-size-
fits-all” static approach in the development of applications [Bru01] and aim to leave
some of the features of such applications at the design stage in the form of variables
which are dependent on several criteria. Thus a distinctive feature of such an adap-
tive application is its ability to adapt itself to certain conditions. The most commonly
used criteria to determine which features of an application will be used are user cen-
tered criteria. User-centered adaptive applications utilize user features to determine
appropriate information presentation and navigation sequences for exploring a suf-
ficiently complete set of information. They update a user model in accordance with
user interaction and the information which he or she has provided.

Adaptive Web-based applications match conceptual descriptions of adaptive parts
of the applications with related descriptions of a user. In some cases, there is an exact
match between information description and user features but mostly some similarity
measures are applied in addition. Based on the matching results, some further pro-
cessing is applied, usually at the presentation level. Such processing is classified into
several techniques.

The first group of techniques is intended to improve a user’s local navigation and
orientation in the currently presented page or fragment. For example, such adaptive
systems can provide different text or media variants which serve information at dif-
ferent levels of detail to users with varying levels of knowledge or expertise in some
field. They can switch between different media types according to differing user pref-
erences or learning styles. They are able to hide or appropriately annotate certain
parts of presented information items based on values of user features maintained by
a system. These techniques are called adaptive presentation techniques [Bru01].

The subsequent group of techniques have the purpose of enhancing the user’s
global orientation in hyperspace. That is to say, they are designed to provide a user
with support in exploring required information. This includes techniques such as

11

12 Chapter 2. Adaptive Web-Based Applications

enabling, disabling, showing, hiding, annotating or removing links when it is ap-
propriate and applying priorities to them according to different user features. The
techniques also deal with generating appropriate information subsequent to the one
currently being presented which then provides a further aid to guide a user. These
techniques are called adaptive navigation techniques [Bru01].

2.1 User Adapted Web-Based Hypermedia

User adapted applications can be found for example in the domain of educational hy-
permedia where learning instructions and navigation are provided adaptively based
on learning related features and the preferences of a user.

Figure 2.1: An adaptive annotation of links to lesson units in the Interbook system

Examples of user adapted Web based hypermedia systems in the educational do-
main are the Interbook [BES98] and the ELM-ART [WB01]. Both can adapt course pre-
sentation and navigation according to the user’s background knowledge. The adap-
tation is made possible by formal representation of knowledge about the learning ob-
jects, users, and domains being taught. Learning objects are structured into smaller
pieces, e.g., units, sections and chapters. Each can be indexed by concepts from an
application domain model. The application domain model is a graph of related con-
cepts linked by dependency relations. Each concept used for indexing can play a
certain role in a learning object. In case of Interbook, it is either an outcome or a
prerequisite. An outcome is usually a concept being presented to a user and a prereq-
uisite is a concept required to understand the material being presented.

2.1. User Adapted Web-Based Hypermedia 13

There are several guidance and personalization techniques which are supported
in the Interbook. Figure 2.1 depicts a personalized recommendation of links to units
of an ACT-R lesson in a form of outline. The traffic light metaphor is employed to
cluster links which are recommended (green color), not recommended (red color),
and other colors which inform about recommendation levels in between. The color is
determined according to prerequisites required by particular units. The background
is represented as a list of knowledge items needed in order to be able to grasp particu-
lar units. The background knowledge items required by a unit are compared with the
user overlay model and if it matches fully then a green color is suggested. Other col-
ors are suggested if there is something missing in the user background and if the color
shown is red then there is no particular match. In addition, the user history within the
course is maintained and visualized by means of checked items. An indication as to
where a user is in his lesson is also supported.

Figure 2.2: An adaptive presentation and annotation of content and links within a
lesson unit in the Interbook system

Figure 2.2 depicts an example of Interbook unit presentation. Several guidance
techniques are supported here. First of all, a user knows which background he should
have and what the expected knowledge outcomes of the unit are by examining the list
of knowledge concepts listed under those categories. The position of the user within
the unit is highlighted as well. Similarly to the lesson outline, traffic light annotations
are used to indicate parts of the unit which are recommended for reading or not. The
system is able to recommend an assessment item to test user knowledge when he
or she is at the end of the unit. Furthermore, the system is able to organize a learn-
ing path through a unit based on the structure of a course and a user’s background

14 Chapter 2. Adaptive Web-Based Applications

knowledge after pressing the “teach me” button. The user then follows the suggested
path step by step. The path also contains the items which are missing in the user
background if they are required by a certain section of a unit.

2.2 User Adapted eCommerce Systems

Personalization has also been implemented in industry applications using eCom-
merce. Systems like amazon recommend products, items and information related
to customer interests and buying history, price preferences and availability.

In [AG00], knowledge about products or items, user preferences, user background
knowledge about the products and presentation preferences are maintained accord-
ing to prescribed structures. The product features are matched with features main-
tained about a user, user groups, and user stereotypes. Similarity measures are em-
ployed to obtain an order of product items. In addition, presentation styles are some-
times taken into account, for example to reduce complex information presented by
applying natural language processing.

Record1:
Name: Facile;
Code: 100025;
Features:
Price: LIT. 108000
Color: grey, black;
. . .
Properties:
Quality: high;
Ease of use: high;
Cost: medium;
Design: high;
. . .

Figure 2.3: An example of a product record from a SETA system

An information record about products in the SETA [AG00] has a prescribed struc-
ture which is split into three main categories: basic information, features and proper-
ties. The basic information refers to the name and code of the product. The features
of the product reflect the product’s color, price, etc. The properties refer to qualitative
characteristics like quality, ease of use, cost, design, etc. The properties can usually
take on a stereotypical value selected from a set {high, medium, low }. An example of
an information record about a product is depicted in fig. 2.3. The product record is
about a product called Facile. The Facile is available in gray and black colors and for
a price of 108000 LIT. The quality, ease of use, and design properties are set to high
and the cost to medium. The SETA system also maintains information about users in
precisely defined structures.

Figure 2.4 depicts an example of such a user record. The record includes an iden-
tification subrecord, personal data and user features such as characteristics, knowl-

2.2. User Adapted eCommerce Systems 15

Identification:
First Name: Paul;
Family Name: Smith;
Personal data:
Age: 55–64;
Gender: male;
Job: employee;
Education Level: high_school;
User features:
Characteristics:
Receptivity:
Values: low: 0.5; medium: 0.25; high: 0.5;
Sight:
Values: low: 0.3; medium: 0.4; high: 0.3;
. . .
Knowledge:
Expertise:
Values: low: 0.5; medium: 0.3; high: 0.2;
Interests:
Technical Interest:
Values: low: 0; medium: 0.4; high: 0.3;
Aesthetic Interest:
Values: low: 0.3; medium: 0.3; high: 0.4;
. . .
Preferences:
Quality:
Importance: 0.8;
Values: low: 0; medium: 0.4; high: 0.6;
Ease of Use:
Importance: 1;
Values: low: 0; medium: 0.25; high: 0.75;
Cost:
Importance: 0.7;
Values: low: 0.5; medium: 0.3; high: 0.2;
Design:
Importance: 1;
Values: low: 0; medium: 0.8; high: 0.2;
. . .
User classification:
life style:
Values: yuppie: 0.2; average: 0.6; modest: 0.2;
domain expertise:
Values: ...

Figure 2.4: An example of a user record from a SETA system

edge and interests. Characteristics in a user record are for example receptivity for
recording user’s ability to absorb large amount of information, and sight for recording
user’s ability to read small text. The user’s knowledge is represented as a stereotypical
expertise where a propensity for expertise is distributed over three linguistic values:
low, medium or high . Other user properties such as technical and aesthetic interests,
preferences such as quality, ease of use, cost and design, and user classification to
stereotypes are measured similarly. The structures of user properties are extensible
and can be defined by a store designer.

To overcome the “cold start problem”, the SETA system maintains a stereotypi-
cal knowledge base. The knowledge base clusters user properties of homogeneous
customer groups into hierarchically structured stereotypes. The stereotypes are de-
scribed from two viewpoints: (a) the properties belonging to individuals and (b) pre-
dictions; i.e., the properties which describe user features and preferences which are

16 Chapter 2. Adaptive Web-Based Applications

relevant to a particular stereotype. The population can be clustered into stereotypes
according to multiple viewpoints. An example of a stereotype profile for a novice user
is depicted in the fig. 2.5. The stereotypes are used to predict user preferences for
users when they first enter the system. The users fill in an entry questionnaire. The
information from the questionnaire is used to classify the new user to several stereo-
types. His own user profile is updated with a prediction based on features and likeli-
hoods merged from several stereotypes. The merging is calculated based on matching
degrees of the user profile and the stereotypes.

NOVICE USER
Profile:
Age:
Values: less_than_24: 0.1; 25-34: 0.05; 35-44: 0.05;; 45-54: 0.15;
Job:
Values: employee: 0.3; retired: 0.3; student: 0.1; teacher: 0.05; ...;
. . .
Prediction Part:
User features:
Domain Expertise:
Values: low: 0.8; medium: 0.15; high: 0.05;
Technical Interest:
Values: low: 0.5; medium: 0.4; high: 0.1;
. . .
Preferences:
Ease of Use:
Importance: 1;
Values: low: 0; medium: 0.3; high: 0.7;
. . .

Figure 2.5: An example of a user stereotype from a SETA system

The recommendation process is based on how closely product features match
user preferences. The matching degree is used to determine in which order particu-
lar products should be presented and how the information pertaining to the products
should be arranged. The SETA system generates different kinds of pages to be shown
to different users which contain information content specific to the respective user.
SETA also provides and orders links to related products. The degree of matching be-
tween product features and user features is utilized for link ordering. User receptivity
and user expertise contribute to decisions about how complex information should
be presented, i.e. how many product features to present and in which way. Similarly
to product information, information about the structure of pages is maintained as
well. Product features (the technical features, functional features, aesthetic features
and generic features) are evaluated based on user interests: each feature is character-
ized by its importance in the product taxonomy and importance in the user profile.
This information is used to order information to be presented to a user. The user re-
ceptivity is used to evaluate how many information items can be presented at a user
interface simultaneously and what should be generated as a next step in a dialog ac-
cessible via more links (steps in navigation). Linguistic descriptions are generated
based on user expertise. Presentation layouts are maintained in different configura-
tions and a specific one is offered based on matching with user profile features like
life-style and color preferences.

2.3. User Adapted Search and Exploration Systems 17

2.3 User Adapted Search and Exploration Systems

Search system prototypes can also benefit from personalization. The most commonly
used search prototypes concentrate on searching for documents which match to a
user query and order them according to user preferences. An example of a personal-
ized search system on the Web is the ifWeb [AT97] system. It is concerned with stored
knowledge about documents. The knowledge about the documents is represented
by interconnected concepts which the document is describing. The ifWeb also con-
siders a knowledge about a user where a user preferences are modeled as a graph of
concepts.

There are two personalization decisions performed by the ifWeb system. The first
one is concerned with the recommendation of documents which best match prefer-
ences in a user profile. Graphs of documents and user preferences are compared.
Similarity measures between user preferences and documents determine whether
documents are recommended, not recommended or provided with additional an-
notations. The second personalization decision facilitates the list ordering of docu-
ments based on links between them and a degree of likelihood that a user will follow
a particular link. The degree of likelihood is analyzed again by means of matching
with a learner preference graph. Additional annotation is computed from the history
of paths which lead to the document being analyzed. Threshold values are set to clas-
sify the documents into several classes like interesting, indifferent, not interesting, or
a class to record that analysis was terminated from a particular document. The docu-
ments are organized in a hierarchy based on the links chosen as promising and with
annotation based on document classification to enable a user to explore them.

Another example of a search and exploration system is the INTRIGUE [AGP+03]
system for personalized tourist guides. The system dynamically generates multilin-
gual tourist attraction catalogues and recommends tours which suit the preferences
of various user groups. As with the ifWeb system, the INTRIGUE personalization
decisions are based on knowledge about tourist items and knowledge about users
and their classification into groups. The recommendation is based on fuzzy evalua-
tion functions for ranking the tourist attractions. The knowledge about the items is
split into the global domain (meta-) knowledge about tourist attractions and concrete
knowledge chunks about single tourist items. Each item is characterized by features.
Each feature is represented in structures prescribed by a conceptual model and con-
tains a name, type, domain and measure unit. The type refers to which class a feature
belongs to. The type distinguishes between geographic, essential, basic features, spe-
cific characteristics and properties. The classification reflects which purpose the fea-
tures in any particular category have, e.g., properties are used for recommendations,
geographical features for selection criteria and so on. Similarly, the user group de-
scriptions are maintained as features which represent preferences and values which
reflect to what extent a group of users considers a particular feature to be important.

2.4 Requirements for Design Methodology

The applications mentioned above share several features from the design point of
view. The adaptation is usually a decision for a particular information item or func-

18 Chapter 2. Adaptive Web-Based Applications

tion based on knowledge about the items being recommended. The knowledge about
items usually contains what particular information items or functions have in com-
mon and where they differ. The properties which differ from item to item determine
the source for adaptation. The selection of an appropriate item is based on results
from matching to user properties. Different users have different properties or differ-
ent property values associated with them. The differences determine a selection of
different information items or functions which best fit to particular user features ac-
cording to a chosen selection strategy. As the user’s behavior pattern evolves, recom-
mended items may change. This is ensured by continuous updating and evolution
of a user’s profile based on his or her behavior as traced by the application. In this
way, the user always receives up to date information items or functions matching the
current state of his profile.

Analyses of the applications described above resulted in the following require-
ments for engineering methodology:

• Support for common and variable features — A designer should determine which
application parts are common to all users and which are variable (variants suit-
able for different users). To be able to take decisions about the common and
variable features, an appropriate modeling technique should be provided. The
technique should support the notion of common and variable features and a
notion of feature dependencies when a selection of one feature influences a se-
lection of another one.

• Support for several domain models — A Web application usually serves informa-
tion from several domains. The term “user model” stands for another domain
considered especially in the context of adaptive Web-based applications. Also
an environment for information delivery and arrangement of the environment
sometimes differ. Separation of the features according to the domains to which
they belong helps the designer to focus on features which are important for a
particular domain.

• Support for dynamic connectors between several domains — The separation of
several domains allows for better decision making about features in a partic-
ular domain. When designing particular (instance of) a Web application, the
domain features have to be connected (configured) in a certain manner suited
to the context of the (instantiated) Web application. Appropriate design tech-
nique which supports connectors and collaborations between domains should
be provided. Such a technique will help to reason about connections between
domains which might encourage their reuse. The connections can be further
constrained where the constraints are to be evaluated at run time. The tech-
nique should also support the specification of composition of information fea-
tures into meaningful items of information suitable for presentation.

• Support for navigation design in connected domains — the composed informa-
tion fragments should be further linked to form possible navigation paths. The
navigation paths can be further constrained where constraints are to be eval-
uated at run time. The constraints can be of different kinds but the focus is
especially directed to constraints which evaluate user features.

Chapter 3

Web Application Development

We have identified several requirements for a methodology which should support
the adaptive Web-based application engineering in section 2.4. In this section we
will look at current proposals for Web-based application design available in research
community and will analyze how they support the requirements.

It is widely accepted that models constitute important mechanism in the process
of a system development. Models help us understand the system by omitting some
details. The choice of what to model has a significant effect on understanding a prob-
lem and suggesting the solution. Significant influence on the solution has also the
matter when particular model is created. According to answers on “what” and “when”
questions, particular notation is chosen. A notation determines the level of formality
of particular model. Notation is also determined by a decision about whether struc-
tural or behavioral model is developed.

The notation and technique determine how we can express certain features of a
system. Regarding to our requirements for the engineering methodology for adaptive
Web-based systems, it is important that a notation and technique provide a possi-
bility to express the variable and common features in a domain information which
will be provided within a Web application. Also the technique should provide a pos-
sibility to model several domains separately as the Web application is usually build
on top of several information and/or serving domains. In addition, it should provide
notions for expressing variability in connections between the different domains and
in navigation in the information space determined by the domains.

The questions “when”, “how”, and “what” provide dimensions for analysis of ex-
isting techniques used in development of Web applications:

• Phase dimension follows the question “when”. It reflects the fact that a mod-
eling technique is applied in particular phase in development of a system (i.e.,
inception, elaboration, construction, or transition). Not all techniques can be
applied in each phase;

• Workflow dimension follows the question “when” from the point of view of work-
flows in software engineering. It reflects the fact that a modeling technique is
applied in particular workflow of development (i.e., requirements, analysis, de-
sign, or implementation). Not all techniques can be applied in each workflow;

19

20 Chapter 3. Web Application Development

Requirements

Analysis

Implementation

Design

Test

Transition

Construction

Elaboration

Inception

NavigationApplication Domain Presentation

Workflows

Phases

Products

Class Diagrams

Activity graphs
State Diagrams

CRC Cards

Use Cases

...

Notation/Technique

Figure 3.1: Web application development space with notation axis

• Notation/Technique dimension emphasizes modeling technique and correspond-
ing notation used. The techniques can be grouped into two aspects: structural
and behavioral. Structural models describe structure of a system (e.g., subsys-
tems, packages) and structural relationships between them (e.g., inheritance,
dependency and associations). Behavioral models describe reactions of a sys-
tem to external or internal events such as collaborations or message passing in
the system or the system’s reactions to user interactions.

• Web Application Products dimension is concerned with the question “what” to
model. Tiers, which are commonly discussed in the Web-based application per-
spective, are application domain, navigation and presentation. Not all tech-
niques are useful for description of particular product;

Figure 3.1 depicts an extended space for Web application development from fig. 1.1
with the technique dimension. As pointed above, not all techniques are useful in each
phase, workflow or for each product.

As discussed in chapter 1, the Web-based application development is character-
ized usually as an integrated set of activities producing three products of a Web appli-
cation: application domain models, navigation models, and presentation models. In
the following, the Products dimension is analyzed with respect to the modeling tech-
nique dimension. Several modeling techniques have been proposed to cover several
views in requirements, design and implementation of software systems (see for ex-
ample [Wie98, Myl98] for survey). Here we will concentrate on some of those which
are used in the most prominent proposals for Web application development.

3.1. Application Domain Model 21

Mentioned perspectives or their categories can be further refined. For example,
behavioral techniques can be divided according to semantics of a technique. There
are three types of semantics: axiomatic, denotational, and operational [Goo94]. Ax-
iomatic semantics map programs directly to properties, which characterize their be-
haviors. Denotational semantics map programs onto the functions, from which input-
output behavior can be derived. Operational semantics allow that behavior can be
derived from the sequence of transitions a program may perform. Formal models can
be classified according to formal model or formal theory used as a base for modeling
language. The basic categories are set theory, logic, algebras, graphs and automatons.

3.1 Application Domain Model

Application domain model comprises abstract concepts, which are provided as in-
formation in a Web-based system. Moreover, the application domain model could
serve as a model for indexing content items. The content items can be considered as
instances of particular concepts, or as sets of structural features of concepts describ-
ing them. Application domain model may also involve models of tasks, which may
serve as a base for later navigation and predefined interaction between a user and the
target system.

Application domain modeling as a component of application domain engineering
is discussed in [CE00]. Simplified view of the application domain model is that it is a
consistent set of requirements for the system in particular application domain1. This
holds in Web-based application engineering too.

Table B provides a summary of notations and primitives used for application do-
main modeling.

Concepts’ static structure of an application domain is mostly modeled by two ap-
proaches: (i) application of semiformal techniques such as class diagrams or entity-
relationships diagrams, or (ii) application of graph formalism for semantic nets. Semi-
formal techniques are based on the notion concepts as classes or objects with their
attributes. Concepts are interconnected by several types of relationships (association,
subtyping or generalization/specialization and containment).

The Relationship Management Methodology (RMM) adopts entity-relationship
diagrams (ERD) [IKK97]. Hypermedia Design Method (HDM) [GP93] employs cus-
tomized ERD. Hypermedia application often involves unstructured information. HDM
introduces entities, which derive its content from its components. Components can
be for example sections of documents. Entities represent objects in the real word (ex-
emplar perspective of a concept). Entities can be grouped into entity types. The dis-
tinction between entities in classical ERD and entity types in HDM is that HDM entity
types have more complex inner structure formed by entities, their components and
perspectives. Web modeling Language (WebML) [CFB00] is also based on ER model.
The generators from WebML to Java Server Pages and Microsoft Active Server Pages
templates have been implemented.

Methods such as Object-Oriented HDM (OOHDM) [SR98], UML-based Web Engi-

1Czarnecki refers to them as feature models.

22 Chapter 3. Web Application Development

Method/Model Notation Primitives

OOHDM Class Diagram Class, Association, Aggregation,
Generalization/Specialization

SOHDM CRC, Scenario Diagram CRC Card, Relationship, Task, Flow
RMM ERD Entity, Relationship
HDM Customized ERD Entity, Component, Perspective,

Collection, Relationship
W2000 Class Diagram, State Diagram Class, Association, Aggregation,

Generalization/Specialization, State,
Transition

HDM-lite Customized ERD Entity, Component, Perspective,
Collection, Relationship

UWE Class Diagram Class, Association, Aggregation,
Generalization/Specialization

WebML Customized ERD Entity, Relationship
WSDM Class diagram Class, Association, Aggregation,

Generalization/Specialization
WCML Component Diagram Component, Relationship, Aggregation,

Inheritance

Table 3.1: Summary of techniques for application domain modeling.

neering (UWE) [HK00], W2000 [BGP01] (successor of HDM)2 employ class diagrams.
Web Composition Markup Language (WCML) [GG99] is based on component ori-

ented modeling. Main element in the WCML language is a component with prop-
erties and declarations of behavioral features. The components can inherit from
other components or aggregate other components. Special property for the com-
ponent content is introduced too. WCML model can be compiled into target en-
vironments [GSG00]. The mappings from OOHDM designs to WCML were intro-
duced [SG00].

One of the first approaches for a hypertext application modeling – the NodeCards
system – is graph based. NodeCards system developed in Xerox PARC [HMT87] allows
to model application domain by so called NodeCards. The notion of file boxes was
adopted by the NoteCards. The file box is intended to be used as a container for node
cards. Each NodeCard in the system has to be associated to at least one file box. The
file boxes can contain other file boxes. Information is embedded in the NodeCard.
NodeCards together with file boxes form directed acyclic graph. Another graph-based
model with domain semantics is proposed in [WR98]. The domain is modeled as a
graph with associated domain labels for nodes and links. Besides the ordinatry nodes
which model information items, there are also the grouping nodes which are used
to model encapsulation of related information itme nodes. Nested Context Model
(NCM) [SRS00] models structure of document as a tree.

Behavioral models of an application domain mostly express activities. They are
represented by activity diagrams or flow charts. These models describe processes, ac-
tivities or scenarios in particular domain. The navigation can be derived from these
models, or they can serve as organizing framework for incorporation of Web-based
application into an organization. Scenario-Based Object-Oriented Hypermedia De-

2In W2000 the hyperbase information design is counterpart of conceptual modeling.

3.2. Navigation Model 23

sign Methodology (SOHDM) [LLY99] employs scenario diagrams (similar to activity
graphs in the UML) for task and activity specification.

3.2 Navigation Model

Navigation models usually describe possible navigation paths and navigation sup-
port through information space determined by the application domain model. The
navigation in Web-based application is considered at two levels: local and global.
This categorization reflects the principles identified for example in [THH95, Kra97].
In both cases, the navigation support needs to build on a large local (currently pre-
sented information) and global (all information) coherence and a low cognitive over-
head with additional tasks performed at the user interface when navigating large in-
formation spaces.

Two aspects are commonly employed in modeling the navigation. The former is
based on structuring information into contexts, which represent coherent informa-
tion chunks/nodes interconnected by meaningful links — static structure of naviga-
tion. The latter is based on operational semantics, i.e., to which navigation node the
system will get when particular user or system generated event will raise a transition
— behavioral aspect of navigation (interactions). Table 3.2 provides a summary of
analyzed techniques for navigation modeling.

Method/Model Notation Primitives

OOHDM Class Diagram View, Navigation Class, Navigation
Context, Link, Index, Guided Tour

SOHDM Class Diagram, Graph Object Oriented View, Access Structure
Node, Link

RMM M-Slices Slices, Links
HDM Graph Node, Structural Link, Application Link,

Perspective Link, Collection, Component
W2000 Traversals, Collections Collection, Traversal
HDM-lite Traversals, Collections Collection, Traversal
UWE Class Diagram Navigation Class, Index,

Guided Tour, Link
WebML Compositions, Link models Unit, Page, Site View, Link, Selector
WSDM Component Diagram Component, Link, Navigation Track
Trellis Petri Net Place, Transition
XHMBS/M Extended State Diagram, State, Transition, Navigation Class,

Class Diagram Navigation Context, Link,
Index, Guided Tour

Table 3.2: Summary of techniques for navigation modeling.

Structural techniques are used for navigation modeling in most of the methods for
Web application engineering. The navigation in OOHDM [SR98] is specified by two
different views: navigation class schema and navigation context schema. In the for-
mer, the object oriented view mechanism is employed [AB91]. The navigation classes
are views over structural models of an application domain model. They also incorpo-
rate derived attributes and additional attributes relevant for navigation, which do not
appear in the application domain model. Navigation context schema is intended to

24 Chapter 3. Web Application Development

group navigation classes into contexts and access structures such as indexes, guided
tours and so on. Similar principle for specifying navigation is employed in UWE [HK00]
and WebML [CFB00]. There is only a little difference in the notation and modeling
language employed. WebML in addition introduces Web specific modeling elements.
Object-oriented views are also used in SOHDM [LLY99]. The contexts are specified
by access structure nodes, which are interconnected by links. RMM-based method-
ologies (see for example [IKK97, HBFV03]) use slices to denotate the contexts. Slices
group entities and their attributes from content model. In [HBFV03], the slices and
relationships may be constrained with user features to provide adaptive navigation.
HDM [GP93] provides perspectives for its components and entities. It means that the
entity can have different contents in different contexts (perspectives).

Behavioral specification for navigation is based especially on the state-transition
models and their equivalents, such as the petri nets. The notion of path is employed.
Stotts and Furuta [SF89] proposed a model (called Trellis model) to specify so called
browsing semantics. The binary petri nets proposed for such specification was later
extended with colored petri nets to support collaboration specification [SF98] and
context adaptation [NF00]. XHMBS (eXtended Hyperdocument Model B based on
Statecharts) [PMdO99] have been proposed as a hypermedia related extension of the
Harel’s state machines. This approach integrates structural features of state machines
(AND and OR composition of states) and behavioral features (events and transitions).
The path can be reconstructed at several levels according to a composition tree of a
state machine.

3.3 Presentation Model

Presentation model for a Web application describes visual characteristics of informa-
tion presented by Web application, such as the layout configuration of information
items presented and their appearance. Table 3.3 presents summary of mentioned
techniques for presentation modeling.

Method/Model Notation Primitives

OOHDM Abstract Data Views, ADVCharts View, Object, State, Transition
SOHDM User Interface design UI objects (button, image, list. . .)
HDM HMTL slot, frame, generated HTML
W2000 HTML Page Types, HTML elements
HDM-lite HMTL Page Types, HTML elements
UWE Class diagram Presentation class, Framesets
WebML Pages, Style Sheets Entity, Relationship
W3DT Simplified HTML Metamodel Pages, Diagrams, Forms, Layouts

Table 3.3: Summary of techniques for presentation modeling.

OOHDM [SR98] uses Advanced Data Views (ADV) for presentation modeling which
allows to derive attributes from several navigation and/or domain classes. The con-
figuration diagrams are used in [CHB92]. The attributes for expressing visual char-
acteristics can extend the specification of such configuration objects. ADVCharts
are used for expressing possible states of specific presentation objects (such as but-
tons) with definition of a message, which is sent to another object when the state is

3.4. Dependencies between Models 25

changed. However, state-based modeling is used in OOHDM only for ADV behav-
ior modeling. HDM-lite, as a successor HDM adopts structural modeling to specify
the user interfaces on the Web. The presentation model is represented by three ba-
sic types: component page- types, collection pages, traversal page-types [FP00]. The
UML class diagram is employed in [HK00] with stereotypes for presentation and nav-
igation elements. The UML class is extended by frame sets as counterpart to HTML
frame sets and presentation classes. The state charts are used only for specific ob-
jects similarly to OOHDM. WebML [CFB00] incorporates presentation modeling too.
The models of presentation are represented by two types of style sheets: untyped style
sheets—models and typed style sheets. The former are generic and independent from
the content. The latter are intended for specific concepts (information items).

Traditional Dexter-based reference models such as Dexter hypertext model [HS94],
Amsterdam hypermedia model [HBR94], and Adaptive hypermedia application model
(AHAM) [BHW99], incorporate the runtime layer where presentation of a component
is seen as an instance of the component. Two fundamental constructs are introduced—
an instance and a session. The instance is used as a mechanism for instantiation and
mapping components and links to anchors. The session is used to map the instance
to a corresponding component. RMM [IKK97], HDM [GP93], or W2000 [BGP01] con-
sider HTML as presentation modeling language.

The abstraction of HTML can be found in visual modeling language — World Wide
Web Design Technique (W3DT) [BN96]. The approach is based on top-down princi-
ple of large scale Web site decomposition. The W3DT modeling language incorpo-
rates elements for modeling Web site, which may contain one or more diagrams. It
means that the site is modeled by several diagrams (directory structure, linkage of
pages, etc.). The diagrams are structured into pages, which can have optionally one or
more layouts. Pages (form, index or menu) may be linked to other pages. The authors
distinguish static and dynamic elements. Jim Conallen provides stereotypes for mod-
eling Web application architectures using UML [Con99]. His approach is based on
the architectural and programming elements supported by Web environment. Archi-
tecture model depends on whether the site is dynamic or static. Several stereotypes
for relationships are provided such as link, target, builds, etc.

3.4 Dependencies between Models

The modeling techniques described above are used in the models, which are com-
mon for any Web-based application. We denote them as core Web-based applica-
tions models. Relationships between mentioned models (sometimes denoted as lev-
els [RS00]) are very important. Models’ relationships and possibilities of transforma-
tions were not studied extensively in case of Web-based modeling. High level depen-
dencies between core models are depicted in Figure 3.2. We use the UML notation
where dashed arrows represent dependencies and boxes represent packages. The ar-
rows point from the dependent (source) package to another (target) package. Each
package of one of the core model is split into two subpackages. These packages rep-
resent two aspects in each core model: structure and behavior.

The structural model of concepts expresses the dependencies between concepts.
The concepts from application domain form the base of a Web-based application.

26 Chapter 3. Web Application Development

Application domain model Navigation model Presentation model

Concepts Activities
Navigation

structure
Interactions Layout

Layout

evolution

Figure 3.2: High-level dependencies between core Web-based application models.

Concepts index and describe the content of the Web-based application. The struc-
tural model of concepts serves besides modeling concepts per se also as an interface
for accessing the information in the Web-based application.

The dependency between the model of activities and the structural model of con-
cepts in an application domain means that the activities model references concepts,
which describe the activities. The activities are linked usually by transitions. This al-
lows to look at the application domain from different perspectives (the relationships
in the model have different semantics).

The navigation structure model references and merges concepts from modeled
in the conceptual model. The concepts are merged into navigation views, packages
or higher level nodes. The navigation model also instantiates the relationships be-
tween concepts from the conceptual model. Higher level navigation nodes partici-
pate in different contexts according to specific conditions. The nodes and contexts
are interconnected by relationships from conceptual model or by specific navigation
shortcuts.

The model of interactions enriches the navigation structure model by events, which
raise particular link (transition) between contexts and nodes. The nodes and contexts
are transformed into superstates and substates. The interactions can be derived from
higher level activities models. The navigation in the information space is performed
according to the activities in the domain.

The navigation objects from the navigation structure model are mapped to sev-
eral layout objects, which describe also the appearance of navigation objects. The
symbolic alternatives of the presentation can be represented by several alternative
substates of a user interface. The information (concept) presented in particular con-
text in particular navigation view can change its layout and appearance. The layout
evolution model models such a view. Layout evolution is performed according to the
user interactions when he or she browses the information space of content provided
by a Web application.

User modeling is very active research area especially in the field of adaptive Web-
based systems. However, a little attention has been paid to the guidelines for model-
ing adaptive Web-based applications.

User models are very closed to the navigation models because the user model in-
fluences interactions within a system on the one hand while being updated dynami-
cally according to the user interaction on the other hand.

The classes and associations are used for user modeling in [Koc98]. User model-

3.4. Dependencies between Models 27

ing is based on the user model component of the Adaptive Hypermedia Application
Model (AHAM) [BHW99]. Each user has a separate table in this model where a con-
cept, the level of knowledge about the concept, whether it is read or whether the user
is ready to read it are referenced. WebML [CFB00] introduces more specific modeling
elements: a user and a group, which are directly applied in user access. User features
are used to specify constraints on navigation guides in [HBFV03].

Bayesian networks are employed in [HN99]. The Bayesian network is used as an
index to the conceptual network of content. Conditional probabilities determine to
what extent a user is ready to read next concept presented in an information chunk.
The probability is updated in accordance to what concept a user read. The user model
evolution is modeled in [Koc98] by a state chart. The state of a user model can be
changed according to an event generated from a user interface.

As pointed in chapter 1, environment domain model is another domain model
useful for adaptive Web-applications to describe different environments which are
used to deliver the content adaptively.

Core hypermedia

application models

User model

Environment

model

Figure 3.3: Extending core Web-based application models.

The possibility for extensions of core Web applications models can be seen in fig-
ure 3.3. The core Web-based application models can be connected to other models
by means of conceptual elements in these models (concrete classes, their operations,
events, transitions, etc.). The similar connection can be made in other models, which
extend the core models (e.g., user model, and environment model). These conceptual
models serve then as interfaces to the models. They can be referenced directly in the
core models or can extend the models. The interfaces are represented by circle ended
line (the UML notation for an interface). The bidirectional arrow between interfaces
represents their usage by packages at both sides.

We can take the integration between the user model and the navigation model as
an example. Interactions cause update of the user model. The user profile structure
is updated according to the concepts visited during his browsing in a Web-based ap-
plication. An update of the user profile structure is performed by methods and oper-
ations from the user profile structure model. The user profile can be in several states.
The states and transitions between them form the profile evolution model (depen-
dency between the user profile structure model and user profile evolution model).

Chapter 4

Summary

This section summarizes the reviewed techniques according to the notations used
and the requirements posed on the engineering method for the adaptive Web appli-
cations.

4.1 Static Structure Models

Commonalities and Variabilities. The class diagram technique and the extended
E-R models are the structural modeling techniques used usually to model several
viewpoints on web applications. They are graphs where the nodes represent enti-
ties/classes of domain interest specified by their properties or attributes which are
usually typed. Edges represent dependencies between entities which are usually of
different kinds like association, generalization/ specialization, composition, aggrega-
tion, and so on. In web applications, they usually represent either information which
is going to be served by a web application or an organization of a domain in an envi-
ronment (e.g. courses and lectures in eLearning applications, books and chapters in
eBooks, and pages, navigation and presentation classes in generic web applications).

The reviewed methods provide modeling techniques, which allow variability mod-
eling partially at the conceptual level by means of generalization/specialization rela-
tionship or xor constraints between aggregation or association relationships. How-
ever, the specialization relationship is rather implementation oriented technique for
variability modeling. Moreover, specialization explicitly prescribes that the particular
concept instance may belong only to the one specialized sub concept. Similarly can
be seen the xor constraint. The variability at the attribute level cannot be modeled
by techniques employed in mentioned methods. Another technique where variability
can be partially captured is views modeling.

Some methods borrowed the view mechanism known from databases. The views
are mostly described by an object query language. Such a query language is used to
select and constrain the concepts and attributes from the domain model to be pre-
sented at the navigation or the presentation level. The views are used usually to orga-
nize the domain information to chunks which can be presented at once in particular
context. The context is either set as a presentation context or as a context given by
associations among several concepts describing the information items. The variabil-

29

30 Chapter 4. Summary

ity in views is considered sometimes at the navigation level where it is parameterize
by attributes from a user profile. As the current methods do not consider several do-
mains to be analyzed for the web application also the views are made just over the
one domain model.

Multiple Domains and Connectors between them. Current methods for web appli-
cation development distinguish between an information organization (environment)
domain and a navigation domain. Some of them recognize a domain of a user to a
certain extent. They suggest to connect the domains through a navigation domain
model where the concepts from the information domain and the user domain mod-
els are used. This approach is very common but have several limitations:

• Strong coupling of the user parameters and the domain model with the naviga-
tion model makes it difficult to refactor the models for new customers;

• The fact that the constrains which are used to model adaptive decisions are
specified just at the attribute level of navigation model makes it difficult for a
designer to explore the adaptivity point of view in design and dependencies be-
tween the adaptive features;

• No explicit notion of common and variable parts is supported; therefore it is
difficult for a designer to easily extract and reason about the variability which is
embodied in one single model.

4.2 Behavior Models

Behavior models are considered to a limited extent as a supplement to navigation
structure models in reviewed methods. Some methods replace traditional behav-
ior models with their own extensions which are semantically equivalent to the ex-
isting behavioral techniques. While the event/ condition/ action paradigm of state-
transition models and the notion of interaction employed in collaboration and se-
quence diagrams are naturally suited for user oriented run-time adaptation, they
have not been employed by the reviewed methods. The behavior models are used to a
limited extent for example to model evolution of user profiles or to model navigation
in information chunks but without considering adaptation features and variability in
the models.

Part II

Conceptual Modeling for
User-Adapted Web Applications

31

Chapter 5

Domain Engineering and Adaptive
Web Applications

The World Wide Web is becoming a more and more popular platform for providing
applications to an ever wider spectrum of users. This development brings with it
several challenges in terms of the handling requirements and preferences of the wider
spectrum of users. The significance of personalization of the information provided
by the application and navigation in the applications is of increasing importance as a
means of responding to the needs of different users.

A Web application is an application which is accessible for users on the World
Wide Web, usually through a Web browser. An adaptive Web application is one which
adapts some of its features by taking knowledge about user and his requirements into
account.

In this thesis, we view adaptation of Web applications from two perspectives:

• Adaptation by humans to the changed requirements of stakeholders;

• Dynamic system adaptation to the changed parameters of environment or con-
text.

The main motivation for studying domain engineering principles as reported in
the literature has been the reuse of modules in software development processes. The
essential characteristic of domain engineering processes is “engineering for reuse”,
while that of application engineering processes is “engineering with reuse”. Here, the
emphasis is laid on the idea that components designed for reuse should be customiz-
able for new software applications and extensible with new components developed as
custom components for specific customers according to their specific requirements.

In our view, the engineering of adaptive (Web) applications should have this point
in common — the application being ready for customization for different customers
but still retaining some parts in common at all the installation sites. However, the
customization idea should be taken beyond the static customization done by a de-
velopment team. True adaptive Web applications, as reviewed in chapter 2, adapt to
changed environments, user features and other parameters on the fly according to
knowledge gathered from their “sensors”. This situation and some specific features of
Web application processes lead us to investigate how domain engineering principles

33

34 Chapter 5. Domain Engineering and Adaptive Web Applications

can be adapted to the new conditions which engineering of adaptive Web applica-
tions brings. In this chapter we define a domain engineering method for adaptive
Web applications.

5.1 Domain Engineering vs. Application Engineering

Domain engineering concentrates on providing reusable solutions for families of sys-
tems. There are several definitions for domain engineering. According to [SEI00],
domain engineering is an activity for building reusable components. For that activ-
ity to be successful, teams must understand common and variable features of the
components used to build software applications. According to [BFK+99], domain
engineering relies on the notion of the application domain to scope a reusable in-
frastructure. An application domain bounds all possible applications in that domain.
Domain engineering relates closely to software product lines where it was adopted
for software family engineering. According to [MA02], product line engineering sup-
ports systematic development of a set of similar software systems by understanding
and controlling their common and distinguishing characteristics as inspired by con-
cepts from the real-world domain of the software products which are used to tackle
main reuse challenges. We have adopted a definition from [JGJ97, CE00].

Definition 1 (Domain Engineering) According to [JGJ97], domain engineering is a sys-
tematic way of identifying a domain model, commonality and variability, potentially
reusable assets and an architecture to enable their reuse.

The idea behind this approach is that the reuse of components between appli-
cations occurs in one or more application domains. The components created dur-
ing domain engineering activities are reused during a subsequent application sys-
tem engineering phase. Several approaches to domain engineering for software sys-
tems have appeared, for example the Model Based System Engineering [Wit94] of SEI,
which was later replaced by the Framework for Software Product Line Practice [Wit96].
Generative programming [CE00] also adopts domain engineering which supports a
generative way of producing programs. Figure 5.1 summarizes software development
based on domain engineering or product line software engineering.

We adopt a process referenced by [Wit94, CE00] where domain engineering con-
sists of three main activities:

• domain analysis defines a set of reusable requirements for the systems in the
domain;

• domain design establishes a common architecture for the systems in the do-
main;

• domain implementation implements reusable components, domain-specific lan-
guages, generators, and a reuse infrastructure.

There are several other approaches to software product line and domain engineer-
ing. Product Line Software Engineering (PuLSE) [BFK+99] characterizes processes in

5.1. Domain Engineering vs. Application Engineering 35

Domain Analysis Domain Design Domain Implementation

Requirements Analysis Design Analysis

Custom Design

Integration and Test

Custom Development

Domain

Knowledge

Customer

Requirements

Domain

Model

Domain

Model

New

Requirements

Features

Product

Configuration

Domain

Architrecture(s)

Product

Domain-specific

languages,

generators,

components

Domain

Architrecture(s)

Domain Engineering

Application Engineering

Figure 5.1: Software development based on domain engineering according to [Wit94].

four phases: initialization, infrastructure construction, infrastructure usage, evolu-
tion and management. The ooutcome of the initialization process is an enterprise
baseline. Infrastructure construction defines, models and designs the product line in-
frastructure. Infrastructure usage implements the infrastructure to build product line
members. Evolution and management focus on changes in the infrastructure. These
activities are supported by technical components to operationalize the product line
development such as customizing, scoping, modeling, architecting, and instantiat-
ing. Furthermore, PuLSE defines additional support components such as guidelines,
project entry points, and maturity scales.

PuLSE is used and developed further in [MA02] where it provides for two pro-
cesses: family engineering and application engineering. Family engineering results
in domain models and product line infrastructure for building a software family in an
application domain. Application engineering is a process which leads to instances of
products in the family.

In [PBvdL05], domain analysis is described as “domain requirements engineer-
ing”. In this way, the importance of requirements is stressed in respect of further de-
velopment of a product line. The result of domain analysis is a domain model. This
model represents common and variable properties of the systems in the domain and
relationships between them. Domain analysis starts with a selection of the domain
being analyzed. Concepts from the domain and their mutual relationships are ana-
lyzed and modeled. The domain concepts in the model may represent a domain vo-
cabulary. Each concept is then extended by its common and variable features and the
dependencies between them. This is the key concept of domain engineering. Vari-
able features determine the configuration space for the systems family.

Domain design and domain implementation are closely related and are some-
times presented as one phase (e.g. product line infrastructure construction [BFK+99,
MA02]). Domain realization is used to denote domain implementation in [PBvdL05].

The domain design produces generic abstract architecture for the family of sys-
tems according to commonly accepted architectural patterns (layered, model-view
controller, etc.). Domain implementation implements the architecture by applying
appropriate technology in specific environments. Sometimes, domain implementa-

36 Chapter 5. Domain Engineering and Adaptive Web Applications

tion is followed by domain testing in a process description (see e.g. [PBvdL05]). We
see testing as an activity which cuts across all the activities of domain engineering;
thus it is an integral part of the activities. We do not focus further attention on this
aspect in this thesis.

In addition, several other domain engineering methods have been developed.
This includes for example Organizational Domain Modeling [STA96], Domain Spe-
cific Software Architecture [TC92] and others. Please refer also to [PBvdL05] for more
details on software product lines and domain engineering.

Definition 2 (Application Engineering) According to [Wit94], application engineer-
ing develops software applications from software assets created by the domain engi-
neering process.

Similarly, in product line engineering, application engineering is a sub-process
of software product line engineering in which the applications of the product line
are built reusing domain artifacts and exploiting product line variability. Application
engineering follows traditional approaches to single software application engineering
with the requirements engineering, design and implementation, integration and test,
but takes the further step of applying the product line infrastructure to select and
instantiate reusable software assets.

5.2 Domain Engineering for Adaptive Web Applications

The basic principle of adaptation is to select appropriate variants of particular fea-
tures or a combination of features (either by a human or a system) to satisfy user
needs. Features which are adaptable are the ones which vary and thus to be consid-
ered as being the variable features of the application. The features which stay un-
adapted can be considered to be the common features of the application. This sim-
ilarity to domain engineering methods lead us to study how they can be adapted to
provide domain engineering guidelines for adaptive Web application families.

The domain engineering activities framework is general enough for any class of
software applications. The main differences are to be found within the generic activi-
ties. There are three distinctive features of adaptive Web software applications which
require more thorough examination of the domain engineering methods:

• The World Wide Web is document centric which means that any kind of ap-
plication has to conform the to standardized HTML presentation styles when
generating the user interface; This implies the existence of a specific solution
domain which has to be adopted and considered in the engineering methods.

• The standardized browsers of WWW documents do not prescribe nor define any
environment, displays or dialogs to be used in any application; This implies that
for each application, an environment has to be defined. Therefore environment
domain engineering should become an integral part of the engineering meth-
ods as well.

5.2. Domain Engineering for Adaptive Web Applications 37

• Adaptation to a user requires that an adaptive application should be able to col-
lect, maintain and work with knowledge about a user to be able to decide about
variants provided within the application.

The first two features are related to all Web applications. The third one is related
specifically to adaptive Web applications.

We propose a domain engineering framework for adaptive Web applications which
adopts the above mentioned principles. The framework incorporates established
Web based application modeling aspects into activities of domain engineering. Fig-
ure 5.2 depicts a framework for engineering adaptive Web-based information-intensive
product lines [DB02b, DN04].

Domain analysis for Web-based applications involves application, environment,
and user domain conceptual and feature models where:

• Conceptual models are used to model concepts and their mutual relationships
in a particular domain and serve as vocabularies for later feature models and
domain designs;

• Feature models are used to encode configuration knowledge; i.e., are used to
maintain common and variable features of concepts and their dependencies
such as a company’s stored experience; While the configuration specification
is user-regulated in application and environment domains, it is regulated by
adaptation requirements in user domains.

Application Domain Modeling

Environment Domain Modeling

User Domain Modeling Story Collaboration Design

Navigation Design

Navigation Trails DesignUser Domain Design

Application Domain Design

Environment Design

Domain Analysis Domain Design

Figure 5.2: Domain engineering approach for adaptive Web-based application.

The purpose of the conceptual models is to document domain and environment
vocabulary used in all other models. For example, the domain/content presented
in a training suite in the case of a Java lecture implies that the domain conceptual
model will refer to concepts from the Java programming language. As the lecture is
accessible in a course environment, the course structure and some other concepts
will be depicted in the environment conceptual model.

The purpose of the feature models is to document presentation relations of all
concepts from the conceptual models to other concepts in that model in the case of
the application domain and environment domain feature models; i.e., which other

38 Chapter 5. Domain Engineering and Adaptive Web Applications

concepts are used to articulate particular concept, e.g. on Java objects. The user do-
main feature models document configuration aspects according to the requirements
of adaptation functionalities; i.e., which features and which combinations of features
are required for certain adaptation strategies.

Domain design for Web-based applications involves the navigation design, the
user design, the application domain design, and the environment design. The navi-
gation domain design produces an architecture which enables the hypertext solution
domain to generate HTML documents for particular environments with relevant con-
tent. The user domain design produces an architecture for user models to be used
with applications in the domain. The application domain design produces an archi-
tecture to access content as an instance of application domain concepts and features.
The architecture can be domain specific, i.e. based on vocabulary defined in an appli-
cation domain conceptual model from domain analysis or it can be generic in order
to access any content. The environment design defines an architecture for accessing
and manipulating the environment.

Further refinements of domain design concentrate on content composition and
navigation between content components. The domain design elements are used to
bind the domains concerned together to produce reusable units of Web applications.
The application domain and environment domains are bound together to create con-
tent and an environment story collaboration models as content components.

The domain design also incorporates mappings of the collaboration models to
navigation trails which specify the sequences of content components to be presented
to a user. The state diagram approach is adopted for this purpose. The access to con-
tent components and links between them is constrained by guards. They are further
annotated by functions updating user profile, information presentation and access
environment appearance. Further, the trails are bound to hypertext designs and pre-
sentation options to specify a concrete realization on the WWW hypertext platform.

Domain implementation includes construction of parameterized implementa-
tion components with their mutual dependencies. Parameterization of implementa-
tion components can be realized for example as HTML templates, active server tem-
plates, WAP templates or components in other implementation languages. Domain
implementation should also incorporate domain specific languages such as query
languages or languages for selecting and integrating components for a given applica-
tion from the application family. All the mentioned models and their parameteriza-
tion are transformed into these implementation components. We will demonstrate
some aspects of the realization of components or services for adaptive Web applica-
tions in some case studies.

Application engineering is a subsequent activity following domain engineering
activities when a particular contract for an application is made. The Web-based ap-
plication is built according to the requirements which are specific to a particular ap-
plication. Similar to software systems, the requirements are split into those which

• can be satisfied by the components from the application family framework cre-
ated during the domain engineering process,

• should be satisfied by a custom development.

Results of the framework generation and custom development are integrated into the

5.2. Domain Engineering for Adaptive Web Applications 39

final product. Some prototypes of adaptive applications built according to such prin-
ciples will be shown in part III.

Chapter 6

Domain Analysis for Adaptive Web
Applications

This chapter describes the domain analysis part of our method which is governed
by conceptual and feature models. Those models are used to manage the common
and variable features of the applications. The conceptual and feature modeling is ex-
plained by use of examples. Note that the examples used in this chapter are descrip-
tive and not prescriptive, i.e., they merely illustrate the introduced modeling models
for Web-based applications. Other teams may conclude with different models which
are more suitable for their context.

Features which can be denoted as adaptable are the ones which vary and are
thus regarded as the variable features of the application. The features which stay un-
adapted are common and are thus regarded as the common features of the applica-
tion. The commonalities and variabilities of software families are the main concern
in domain engineering methods.

The process of such information modeling can be summarized in the following
steps [DN04]:

1. Define a conceptual model for an application, user and environment (e.g. con-
cepts used to teach the Java programming language served in a course as an
environment and concepts for a learner’s learning performance for adaptation
purposes);

2. Define a feature model for all concepts from the application, user and applica-
tion domain conceptual models being used in the applications;

3. Update conceptual and feature models of domain and environment if new con-
cepts and/or features have been developed.

6.1 Conceptual Modeling

Conceptual models represent abstracted knowledge of the real world. Entities of in-
terests are mapped one to one to concepts in the conceptual models. Similarly, the
relations of interest between the entities are mapped to associations (relations) in the
conceptual models.

41

42 Chapter 6. Domain Analysis for Adaptive Web Applications

Conceptual models are used in many disciplines to provide an artificial reason-
ing framework for problem analysis and/or problem solving. Usually, they are used
to represent knowledge about a certain area. In software engineering they are used
to describe knowledge about software artifacts developed throughout a software pro-
cess.

Conceptual models in Web applications are usually concerned with information
or its representation being served including information chunks representation and
software artifacts which help to support the access to information.

Information is usually comprised of one or more concepts from a domain where
general conceptual models, taxonomies or ontologies may already exist. For example,
a Java tutorial serves information which belongs to the domain of computer science.
There are several taxonomies which are used for example to classify computer science
literature (ACM CCS1) or to describe a body of computing knowledge and curricula 2.
Companies also use their own conceptual models to communicate terminology used
in their information systems. Information delivery environments can also feature dif-
ferent concepts which are related to each other.

We employed the Unified Modeling Language (UML) to model the application do-
main and environment domain models. A concept is modeled by a class, which is
stereotyped by the «Concept» stereotype. Concepts can be connected by one of the
following relationship types: association, generalization/specialization or aggrega-
tion relationships in order to support the known abstractions of model domains.

Furthermore, some domains provide information which is more of a ’procedural
knowledge’ character. For those domains, we employed activity diagrams to model
activity concepts with control flow relations between them.

Application Domain Modeling. We refer to an application domain as a domain of
information (or content) which is to be served by a Web application. Conceptual
modeling of an application domain models the domain in terms of concepts which
are relevant to the content (are described by a content) served by a Web application.

Definition 3 (Application Domain Model) An Application Domain Model is a set of
structural and behavioral models. The structural domain models model concepts and
relationships from a domain which depicts the content presented by a Web applica-
tion. The behavioral models (usually activity models) represent procedural knowledge
about the application domain. They model concepts which are activities from the ap-
plication domain interconnected by control flow relationships. The control flows can
be branched by decision symbols and the branches can be constrained by conditions.

Figure 6.1 depicts an excerpt from such an application domain conceptual model,
showing content of a page fragment on basic object-oriented programming (in JAVA).
It is modeled by the UML class diagram with concepts annotated by the «Concept»
stereotype and their mutual relationships. The figure expresses one possible view on
relationships between Object, Class, object’s State and Behaviour. Methods
and Variables are used as additional concepts to describe those relationships, later
realized by content fragments.

1http://www.acm.org/class/1998/
2http://www.computer.org/education/cc2001/

6.1. Conceptual Modeling 43

«Concept»
Object

«Concept»
State

«Concept»
Behaviour

«Concept»
Method

«Concept»
Instance Method

«Concept»
Class Method

«Concept»
Class

«Concept»
Variables

+isDefinedBy

*
+has*

+belongsTo+classifies

*+has

*

+isDefinedBy

*

Figure 6.1: An excerpt from a conceptual application domain model which describes
content on JAVA object oriented programming

The process of application domain modeling differs from application to applica-
tion and from organization to organization. It may well be that the conceptual models
are created according to content which already exists in some applications (having al-
ready been supplied by a particular organization). In this case, the models are created
for the purpose of reuse and customization, to document what has been already de-
veloped. But on the other hand it may well be that an organization foresees that its
applications will be partially reused and already uses models from the beginning of
development process.

The following shows the main activities in application domain modeling:

• Collecting information sources on the application domain3

• Analyzing the information sources

• Extracting instances of concepts of interests from the information sources

• Classifying/categorizing the instances into concepts

• Creating relationships of interests between the concepts

• Refining the conceptual models

In some domains, information is rather of procedural or workflow character (pro-
vides procedural knowledge). In those cases, it is very useful to document the content
and conceptual models by means of an activity model view.

Information/Environment Domain Modeling. We refer to an information or envi-
ronment domain as a domain for representation and organization of information in
the context of a delivery platform. An example of an environment is a course with
its lectures or modules. Another example might be an e-Book with its chapters. In a
customer support domain, an environment can be a problem ticket with its subprob-
lems, activities, contracts and so on.

Definition 4 (Environment Domain Model) An Environment Domain Model is a set
of models with concepts interconnected by association, aggregation and generaliza-
tion/specialization relationships. The concepts and the relationships are from a do-
main which is used to organize the content either for presentation, delivery or man-
agement purposes in a Web application.

3this may involve the existing content or references to be used as a source for a new content

44 Chapter 6. Domain Analysis for Adaptive Web Applications

«Concept»
Course

«Concept»
LearningResource

«Concept»
Lecture

«Concept»
Module

«Concept»
LearningObject

1

+hasPart

*

«Concept»
Person

* +Garant*

*

+Lecturer

*

* +Provider *

Figure 6.2: An excerpt from a conceptual environment/information model

An example of an environment conceptual model in a training suite is depicted
in fig. 6.2. As the training suite can be provided with several possible virtual envi-
ronments, a development company team needs to communicate how the environ-
ments are structured. An example of such an environment suitable for a Java tutorial
can be a virtual course. Concepts such as Course, Lectures, Modules, Learning
Object, Lecturer, and Provider would then appear in a similar UML class dia-
gram for the environment conceptual model.

A process of information/environment modeling can consist of the following ac-
tivities:

• Identifying existing and planned environments within a Web products portfolio

• Analyzing of organization patterns for such environments

• Identifying typical instances of concepts for such environments

• Classifying/categorizing the instances into concepts

• Creating relationships between the concepts

• Refining the environment conceptual models

User Domain Modeling. User centered adaptation strongly depends on the process
of user modeling. The user model attempts to capture and structure the various char-
acteristics of a user. User modeling is understood from two different points of view
in the literature. The first concerns a conceptual modeling view which is suitable for
analysis and design of application. The second point of view is focussed on modeling
by application. Such a user model is relevant at the instance level, being either a very
simple stereotypic model or a more complex one, represented as interlinked objects
describing the observed state of a user. This kind of model is dynamic (changes over
time) and evolves according to the observations collected by sensors or the applica-
tion itself and additional inferences applied on the collected facts. This model is a
source of knowledge for decision making about which variant of a feature to choose
when a particular user or user type is using the application.

In this section, we concentrate on the first point of view, i.e. guidelines for design-
ing user modeling components for user-centered adaptation. As reviewed in chap-
ter 2, there are several ways to represent such a user model. In some applications, a

6.1. Conceptual Modeling 45

probabilistic model is used to classify users under certain features. In other applica-
tions, a more object-oriented approach is used and the user is represented as a class
with associations to further classes described by properties belonging to them.

A user model is created in a similar way to the application domain and environ-
ment model. The main characteristic of a user model then concerns the concepts and
features which will be used as parameters for adaptation.

Definition 5 (User Domain Model) A User Domain Model is a set of models with con-
cepts interconnected by association, aggregation and generalization/specialization re-
lationships. The concepts and the relationships are taken from a domain which char-
acterizes the users, their behavior and features, knowledge and so on. The concepts are
selected according to whether they are used in current Web applications or will be used
in future Web applications to parameterize adaptation processes.

«Concept»
Learner

«Concept»
User

«Concept»
Group

+GroupMember

*

+Role

*
+Who

*

+Preference

*

«Concept»
Performance

«Concept»
Preference

«Concept»
Measured_Preference

«Concept»
ConceptPreference

«Concept»
LanguagePreference

«Concept»
DevicePreference

«Concept»
ResourcePreference

+Who*

+LearningActivity*

«Concept»
MeasuredConceptPreference

«Concept»
MeasuredLanguagePreference

«Concept»
MeasuredDevicePreference

«Concept»
MeasuredResourcePreference

«Concept»
Certificate

+Subject0..1

+Certificate*

Figure 6.3: An excerpt from a user (learner) domain model specific to the eLearning
domain.

An example of such a user model specific to eLearning domain is depicted in
fig. 6.3. A Learner is a subclass of the generic User. The user usually belongs to one
of several role groups. Learner’s learning performance is represented by the Perfor-
mance class. The learning performance is sometimes certified by Certificates.
Each learner has own Preference-s. These can be specialized into specific sub-
classes. ConceptPreference refers to a learner’s preference about a certain study
concept. It can be further specialized to account for different learning style prefer-
ences in respect of different concepts. Similarly, LanguagePreference defines a
user’s preference for a particular language, DevicePreference records a user’s pref-
erence for a particular device to be used for running a Web application or a device
to be used in implementing additional external features connected to the applica-
tion. ResourcePreference records a preference for a specific information resource
which might also be used for recommendations. Further specialization is catered for
via the MeasuredPreference class which accommodates metrics used to measure
preferences of all kinds.

46 Chapter 6. Domain Analysis for Adaptive Web Applications

6.2 Feature Modeling

As mentioned in chapter 2, adaptation components in adaptive Web applications
usually recommend one of the options for links, content fragments in a content com-
position or information items which are configurable in the Web application based
on a user profile or the possibilities offered by a specific environment.

This means that there are parts of the content, environment and software com-
ponents which are stable or common for any user or customer and parts which are
variable depending on certain factors (mostly the values of user features).

To plan such an application, a designer should be able to think and reason about
those common and variable parts. As pointed out in section 5.2, there is a similarity
between domain engineering approaches concentrating on reuse and adaptive appli-
cation engineering. In domain engineering, feature modeling takes a prominent role.
The main reason for employing feature modeling in current domain engineering ap-
proaches is to handle variability in and dependencies between concept features of a
system family resulting from different requirements of stakeholders using the appli-
cations from the family.

In adaptive applications, the customization has an even broader scope; i.e. in ad-
dition to the customization based on the explicit requirements of stakeholders there
is still some variability which is left until runtime to be exploited according to an
evolving user profile or other factors.

From the system point of view, variability has been studied in the context of the
software configuration management community. In such cases, variability is han-
dled at the systems components level by means of versions which which conttribute
to different system releases. Version control in the document oriented hypermedia
domain has been studied in several works [Nel, SRS00]. All the works mentioned pro-
vide a model of versions and a model of configuration, which defines how the versions
contribute to the final configuration.

The variability considered in feature models has a broader sense when considered
at the application level. At this level it is taken into consideration in several modeling
aspects of Web applications and not just in the context of source code and changes to
be made to the source code [DN04, DB02a].

Definition 6 (Variability) Variability in product lines is defined as a measure of how
members of a product family may differ from each other [WL99].

Variability can occur in all the significant aspects (products) of the Web applica-
tion engineering process; i.e., in the application domain, navigation and presenta-
tion.

In the application domain, different content can be used to communicate the
same information to people with different backgrounds. Moreover, the same con-
tent can be represented by different media and this content can evolve in time. The
content can also be presented in different environments using different media, e.g.,
as a book, lecture, or an article. Also overall access to the content can be managed
through different patterns such as a digital library, an e-course (virtual university),
on-line help etc.

6.2. Feature Modeling 47

Each user group may require different information fragment to browse, a differ-
ent composition of the presented information (local navigation) and a different order
and interconnections between information chunks (global navigation). Also, differ-
ent navigation styles can be determined according to the target environment where
the information is served to a user.

Similarly, it may be appropriate to supply different user types with specific display
designs, layouts and organisation of the information to be read. The target environ-
ment can also restrict presentation possibilities. Thus it is important to take accout
of this kind of variability as well.

There have been several proposals for techniques to model variability and com-
monality in software systems. Feature Oriented Domain Analysis (FODA) [KCHN90]
employs a type of feature modeling where an AND/OR graph is used to denote vari-
able features of domain concepts and variation points are used to depict dependen-
cies between concepts. A Story Board is used to model variability in PuLSE [BFK+99].
The story boards reflect the basic ideas behind the PuLSE methodology where incre-
mental development of architecture is guided by scenarios. The story boards model
the scenarios with alternative paths. Variation points and variants are considered
as first class entities in associations between assets and components in [BGdPL+03].
These concepts are used in requirements, architecture and implementation views as
extensions for artifacts which are variable. There have been several extensions of
UML for feature modeling (see e.g. [GFdA98]). In our work, we employ feature mod-
eling and define a metamodel in UML which closely accords with the FODA version
(Appendix A).

Definition 7 (Feature Model) A feature model is a set of models which represent con-
figuration aspects of concepts from domains analyzed in Web application engineering.
Each feature model has one concept and its respective features. The concept and fea-
tures are connected to each other by a composition relationship. Configuration rela-
tions between features and concept are represented as variation points. The concepts
and features in feature models are mapped onto the concepts and relationships from
the conceptual model.

Definition 8 (Concept in Feature Model) A concept in feature models represents:

• in an application domain model — an information item which is part of the
main purpose (main information goal) of the content which an author had when
he/she authored that content,

• in an environment/information model — a main structural unit of content in a
particular Web-based application (different representations are modeled by dif-
ferent concepts),

• in a user domain model — a main concept governing an adaptation process (e.g.
user preference for recommendation of items, or learner performance to recom-
mend the next step in a learning path).

A feature model has to be maintained for all concepts of a conceptual model
which are going to be depicted as main information entities in a Web application
environment.

48 Chapter 6. Domain Analysis for Adaptive Web Applications

Definition 9 (Feature) A Feature is a prominent or distinctive user-visible aspect, qual-
ity, or characteristic of a software system or systems [Her98].

Definition 10 (Feature in a Feature Model for Web Applications) A Feature in feature
models represents:

• in an application domain model — information fragments which are needed to
communicate effectively a concept of a feature model,

• in an environment/information model — supporting structural units of con-
tent in a particular Web-based application,

• in a user domain model — qualitative and quantitative features which are needed
for decisions about a certain adaptation strategy within an adaptation process
(e.g. a competence acquired within learner performance to decide whether a user
is able to grasp a particular content item or exercise or metrics of the performance
for finer recommendations relating to the next learning steps).

The fact that there are some features which are common to all configurations and
that some vary is reflected by:

• mandatory features — form common or core features for all situations which
are to be considered in our applications (application family), and

• optional features — form variable features needed only within a specific context.

Sometimes some features need to be presented together with other information
features to provide sufficient explanatory material to enable the user to understand
the presented information. Some other information features cannot be presented to-
gether because they could confuse a learner. In some cases, the combination of fea-
tures is not so relevant. To distinguish between these cases, variability relationships
have been introduced between features and they are usually denoted as variation
points [Wit94] or variations [GFdA98].

Definition 11 A variation point is a point/stage in design artifacts where a specific de-
cision has been narrowed to several options but the option to be chosen for a particular
system has been left open [Atk01].

The variation point can define:

• mutually exclusive variants (XOR),

• mutually required features (AND), and

• mutually inclusive features (OR).

The semantics of the variation point types defined in the literature is usually the
same, but the labels used to denote them sometimes differ. For example, [BGdPL+03]
defines several types of variation point as well but denotes them as excludes (XOR),
requires (AND), and ensures. To achieve a consistent and unified framework for mod-
eling, we maintain our feature models in UML. UML does not directly support feature

6.2. Feature Modeling 49

models, so it required us to provide a lightweight extension of the class diagrams of
UML by using additional stereotypes (see Appendix A for the feature model profile).
The «Concept» stereotype remains from the conceptual models. Features are anno-
tated according to type by «MandatoryFeature» and «OptionalFeature» stereo-
type. A variation point is annotated by «VariationPoint» and its kind (XOR, AND,
OR). The concepts, features and variation points are connected by directed edges
which stand for composition. The direction indicates the parts of the composition.
In some cases, the whole configuration of features (variation point with all the con-
nected features) may be considered optional. In that case, the whole configuration
can be excluded from the Web application. If no stereotype is mentioned, then it is
considered to be a mandatory configuration and the rules implied by using such a
variation point have to be observed.

«Concept»
Object

«MandatoryFeature»
State

«MandatoryFeature»
Behaviour

«OptionalFeature»
Encapsulation

«VariationPoint»
MethodTypes
{Kind = AND}

«MandatoryFeature»
Methods

«OptionalFeature»
Instance

«OptionalFeature»
InformationHiding

«OptionalFeature»
Instance Method

«OptionalFeature»
Class Method

«OptionalFeature»
Object-Oriented Design

«OptionalFeature»
Modularity

«OptionalFeature»
BehaviourResults

«OptionalFeature»
Class

«MandatoryFeature»
Variables

Figure 6.4: An excerpt of Object feature model

An example of a feature model is depicted in fig. 6.4. It is an excerpt of a feature
model for the Object concept for Java lecture. The Object concept is usually de-
scribed with the help of the concept of its State and Behaviour. Both appear as
concepts in the conceptual model in fig. 6.1.

TheState andBehaviour are considered to be mandatory features. TheObject-
Oriented Design, Encapsulation, Class and Instance) concepts are consid-
ered to be optional features; i.e. they do not have to appear in all applications.

Figure 6.4 depicts a variation point shown for the Methods mandatory feature.
The model defines that the Methods also have to be described on the context of the
Instance Method and Class Method.

All other concepts from the conceptual model (Fig. 6.1) usually have such feature
models if they are communicated to learners as they become available in the appli-
cation. Note also that the models depicted in our examples are not intended to deter-
mine the only possible solution, but just to exemplify how to create custom feature
models which generate best practice guidance for information being served in Web
based applications.

Similarly, a feature model is needed for the information/environment concepts.
Figure 6.5 depicts an excerpt of such a feature model of a virtual environment for the
Course concept. Usually, the information feature model for one virtual environment
consists of just one feature model for the most general concept. The Course has

50 Chapter 6. Domain Analysis for Adaptive Web Applications

«Concept»
Course

«MandatoryFeature»
Lectures

«OptionalFeature»
Modules

«VariationPoint»
CourseParts
{Kind = OR}

«MandatoryFeature»
LearningObjects

«MandatoryFeature»
Garant

«OptionalFeature»
Lecturer

«MandatoryFeature»
Provider

Figure 6.5: An excerpt from the Course feature model

to have a Provider and also a Garant (modeled by so called mandatory features).
Then, if another customer stated such requirements, theCourse can consist of either
Lectures, where some of them can be encapsulated into thematic Modules or just
from Lectures alone (this is reflected by the OR variation point of the Course). The
Lecture can be provdided with a Lecturer who plays a role of a tutor when some-
body needs further information or support related to the lecture. BothLectures and
Modules refer to learning objects.

A process of feature modeling can consist of the following activities:

• Identifying the concepts from the conceptual models which are of the main in-
formation entities to be communicated by Web application and mapping them
on the concepts in feature models

• Identifying supporting concepts and relationships from conceptual models for
each concept created for the feature models and mapping them to features in
feature models

• Analyzing whether features are mandatory or optional in existing and planned
applications

• Specifying mandatory and optional features according to the previous step

• Analyzing dependencies and composition relations between features of current
and planned applications

• Specifying variation points and their kinds based on the results of previous steps

• Specifying composition relations between the identified concepts, features and
variation points

• Refining the feature models

Similar to the domain models described in previous section, the user model is re-
fined to the feature models level as well to provide explicit information on how it can
be configured. Here, the variability dimension to be considered is based on which

6.3. Conceptual and Feature Models in Web Application Solution Domains 51

adaptation strategies are involved in Web applications, which are mandatory and op-
tional features, and what dependencies exist between them.

«Concept»
Learner

«MandatoryFeature»
Performance

«OptionalFeature»
Certificate

«OptionalVariationPoint»
Preference
{Kind = OR}

«OptionalVariationPoint»
MeasuredPreference

{Kind = AND}

«OptionalFeature»
ConceptPreference

«OptionalFeature»
LanguagePreference

«OptionalFeature»
ResourcePreference

«OptionalFeature»
ResourcePreference

«MandatoryFeature»
LearningExperience

«OptionalFeature»
MeasuredPerformance

«MandatoryFeature»
Metric

«OptionalVariationPoint»
Preferences
{Kind = XOR}

Figure 6.6: An excerpt from a user (learner) feature model specific to the eLearning
domain.

An example of a feature model excerpt for a learner is depicted in fig. 6.6. The ex-
ample indicates that adaptation of an eLearning application must at least be based on
a learner’s learning performance. The learning performance consists of a report on
a learning experience, which is a mandatory feature. The experience can be certified
and measured (two optional features). In addition, the adaptation can be comple-
mented by a strategy based on learner preferences (Preferences optional XOR vari-
ation point). The preferences can be simply stated in a user profile (Preference op-
tionalOR variation point) or can be measured, for example by a degree of relevance for
a learner. If the Preference variation point is chosen then one or more preference
subtypes are chosen as well. On the other hand, when the MeasuredPreference
AND variation point is chosen, both Metric feature and Preference variation point
have to be selected.

The process of the user domain analysis/modeling is similar to the application
domain or environment modeling. It is, however, worth mentioning that the user
model can be useful just when it reflects real latent factors which might lead to the
recommendations. Thus creating a user model for a particular class of applications is
very challenging and usually involves at least some of research. The source of factors
suitable for adaptation or, in other words, the source of factors which differentiate
people from each other are sociological studies, demographic studies or psychologi-
cal studies.

6.3 Conceptual and Feature Models in Web Application Solu-
tion Domains

The variability can also be considered at the presentation and navigation level. The
navigation design defines groupings of information chunks into higher level contexts,
which are interconnected by links. Links can be derived from semantical relation-
ships between the concepts and/or features, or from the composition and variability
relationships defined in the feature models. Presentation design has the purpose of

52 Chapter 6. Domain Analysis for Adaptive Web Applications

specifying presentation objects. These abstract presentation objects have appear-
ance features and are also associated with spatial relationships.

Variability is expressed in a manner similar to that described for the examples
from environment, user, and application domain models. Presentation and naviga-
tion objects can have their own features, which are variable or common with respect
to the variability relationships between them. The features of the spatial relationship
can also be considered as variation points.

Presentation and navigation objects are mapped to a subset of the concepts and
features from information and application domain models. Mapping is performed
at a design time or at bind time according to the specified rules. The mapping at
design time is performed by choosing a particular set of the presentation features
and its mapping to navigation or presentation objects. The mapping at bind time is
performed by choosing a set of variable presentation features with association rules
which are applied when a particular feature is current.

Furthermore, variability can be considered in the context of target run-time envi-
ronments and technology employed or models used in design. For example, [ABGK02]
considers variation, apart from the structural model view, also in activity and asset
views for business processes. In [BGdPL+03] choices are considered at the imple-
mentation level as well. Similarly, variability can be considered for Web technologies
and environments for alternative decisions in JAVA, Java Beans, .NET or JSP.

Chapter 7

Domain Design

This chapter deals with the second aspect of customization: dynamic runtime adap-
tation design. In general, the driving force behind this may be multidimensional. So
far we have concentrated on user centered adaptation. User centered adaptation can
be also referred to as personalization; the application behaves according to items of
knowledge about a person and adapts itself to them.

This chapter will provide a description of domain design techniques for appli-
cation domains, environment domains, and user domains under consideration for
adaptive web applications. It will discuss dynamic content composition using dy-
namic connectors between the application domain and environment domain models
in terms of stories and environment access roles modeled by collaboration diagrams.
Furthermore, it will discuss adaptive navigation modeling. State transition diagrams
are employed for that purpose and are connected to the collaboration roles and user
models for the purpose of accessing information content and user features for deci-
sions about variants to be presented/followed at run time.

The feature models of the application domain and the environment domain have
to be refined into the domain design. There are many ways of doing this. One way to
go is to consider a domain design according to the methods reviewed in chapter 3. In
our work, we follow the object oriented principles and the guidelines for using UML
to expand domain analysis to domain design and further to application design.

Domain design also is also dependent on the situation and plans for the various
domains we have described. For example, if for each feature a company plans to have
just one content fragment it is probably vital to implement access through environ-
ment classes and to have just one class handling abstraction of a given content. On
the other hand if there is a big pool of content objects implementing particular fea-
tures from an application domain, it is probably necessary to make classes for all the
features described.

Definition 12 (Web Application Family Domain Design) Web Application Family Do-
main Design is concerned with design for particular domains considered in the context
of domain analysis for adaptive web applications (environment, application, navi-
gation) and their integration. Domain design represents a refinement of the domain
analysis feature models and is adapted to the architecture and implementation tech-
nologies used within the web application family.

53

54 Chapter 7. Domain Design

There are several implementation technologies available for building web appli-
cations, such as like Microsoft Active Server Pages, Microsoft .NET, Sun Java Server
Pages, PHP, J2EE and Java Beans. The architecture can be considered as a domain-
view-controller, three-tiered architecture with business application servers and so on.
All of them bring specific characteristics which may influence the domain design for
the application family.

7.1 Application and Environment Domain Design

+Show()
+Hide()

-Content : object

ContentFragment

+Animate()

MultimediaContentFragment

+GetObject(in UserKnowledge, in Topic) : LearningObjects

-Name[1] : string
-Content[1] : object
-Metadata[*] : object

«Collection»
LearningObjects

+Access(in LearnerProfile : object) : Lectures

Lectures

a) b)

Figure 7.1: An excerpt from a domain design models (a/ application domain b/ envi-
ronment domain) for an adaptive content management system

Figure 7.1 depicts an excerpt from an application domain and environment do-
main design model for very simple access to the content and environment of an ap-
plication. The environment domain design more or less follows the concepts from
environment domain analysis. It distinguishes the generic learning object interface
and specific lecture interface. However, the application domain design model de-
scribes only the management interface to the content and access to particular con-
tent fragments is realized through an indexing mechanism using feature models. The
feature models serve as metadata and can be represented in an appropriate format,
e.g., XML or RDF metadata. In case there are multiple content fragments of the same
features, features will be transformed into classes in design models. In addition, the
same interface will be realized to access them, as depicted in figure 7.1a).

7.2 User Domain Design

To allow an application perform a user modeling task and for run time adaptation, the
user feature models have to be mapped onto one of the implementation technologies.

One possibility is to map a user feature model onto a class diagram. There are two
steps involved in creating an application user model:

7.2. User Domain Design 55

• Create user model implementation classes and user model management envi-
ronment specifications for all the features and concepts which are to be or may
need to be delivered to your customers

• Select those classes and user management environments which are particularly
relevant for your current application

In case of more complex user models, the classes can be packaged according to
subdomains. For example the user preference management can be encapsulated into
a preference modeling package while the learner performance management can be
included in a different package.

+CurrentLOK(in topic) : double
+SetLOK(in topic, in LOK)

+FragmentId : String
-Level_Of_Knowledge : String
+Read : Boolean

UserKnowledge

+Name : String
+Id : String

User

+Name : String
+Id : String

Role*

-isMemberOf

*

+Has*+Has*

{xor}

Figure 7.2: A user model for a simple e-lecture.

Clearly, there are many possible ways to map user model features and concepts
onto implementation classes and relationships between them. A simple example
which reflects a learner’s learning performance in terms of the level of knowledge
gained is depicted in fig. 7.2. The UserKnowledge class directly maps onto the per-
formance feature. The User class maps onto the user concept and the Role class
maps onto the role feature which is enclosed in a bigger user feature model (not de-
picted in fig. 6.6). The Role class is intended to represent a user group. When a user
is a member of the role group his or her own level of knowledge cannot be associ-
ated with his person because he/she is then assigned the level associated with the
role ({xor}). The user model also contains access operations for reading the current
state of user characteristics and for updating user characteristics.

Another example follows, in contrast, the conceptual model depicted in fig. 6.3.
It expands the concepts to include those additional attributes and access functions
needed to maintain quantitative user features. An excerpt from the performance
model concept is depicted in fig. 7.2. More on this topic will be described later in
case studies. The framework implementing the user model for all the concepts is de-
scribed in [DS05]. The user model is composed of the classesUser andPerformance,
plus an association expressing that a learner can have several performance records
based on the acquired LearningExperience and Competence. The Performance
class stores the user’s level of knowledge about the concepts described by the tutorial.

56 Chapter 7. Domain Design

+Competence : String
+LearningExperience : String
+RecordedDate : Date
-PerformanceValue : double
+PerformanceMetric : String

Performance

+SetLOK(in competence, in LOK, in learningExperience)
+CurrentLOK(in competence) : double

+Name : String
+Id : String

User

+Has

*

Figure 7.3: An excerpt from a learner (user) model for learning performance.

If an application follows the probabilistic approach instead and classifies a user
according to particular domain features, the user model has to be extended by means
of orthogonal application domain models which will provide domain features for user
classification. The simpler case is when the same application domain is used for user
features (this is the case for example for knowledge items in eLearning applications).
However, if the domain of user classification differs — with the emphasis laid on buy-
ing stereotypes or personality stereotypes (e.g. collaborative person) — then such a
model has to be created. Another application domain conceptual model is needed
for such a model. The model is then mapped onto the feature model containing con-
figuration knowledge. Furthermore, each feature has to be given a parameter which
will be used for quantifying the likelihood of a user is characterized by such a feature.

7.3 Navigation Domain Design

The web is accessible mainly through document centric interfaces where information
is provided in the form of hypertext, which is not programmable in any programming
language but rather encoded in HTML. For this reason many of the design languages
concentrating on hypertext or navigation design can be regarded as domain specific
languages for the Web. The respective navigation or hypertext design can be seen as
a solution domain for Web applications.

Navigation domain design should be performed with closer attention to the hy-
pertext paradigm; i.e. to allow the generation of suitable business logic objects lead-
ing to an appropriate hypertext user interface. As reviewed in chapter 3, there are
several methods for achieving hypertext or navigation design ranging from instances
of concepts designed for web pages to access structures such as menus, guided tours
and indexes. Here we show just one of many possibilities which is based on a meta-
model of WebML [CFB+02]. WebML is a design language for data-intensive web sites.

Figure 7.4 depicts an excerpt from the WebML metamodel for hypertext partly
described in UML. The WebMLPage-s are grouped under the WebMLSiteView-s and
WebMLArea-s. The site views are used to specify different hypertexts for different
user groups. The areas are used to conceptual grouping of pages which are related to
particular topics. The WebMLPage is a container for a specific content. The content is
generated according to WebMLUnit-s. Each unit is associated with a database entity
which models the data storage. There are several kinds of units, each of which has
different presentation options: DataUnitmodels a content fragment which presents

7.3. Navigation Domain Design 57

WebMLSiteView

+Landmark : Boolean
+Homepage : Boolean
+Default : Boolean

WebMLPage
*

1

-SuperPage

0..1

-SubPage*

+Landmark : Boolean
+Default : Boolean

WebMLArea

0..1

*

-SuperArea_1
0..1

-SubArea_1
*

-siteView0..1

-area*

{WebMLPage.allInstances->
select(homepage=true)->
size<=1
WebMLPage.allinstances->
select(default=true)->
union(self.area.allInstances
(default=true))->size<=1}

1

-alternative

*

{WebMLPage.allinstances->
select(default=true)->
union(self.area.allInstances
(default=true))->size<=1}

Unit

DataUnit IndexUnit MuliDataUnitHierarchicalUnit

1

*

Entity

*
1

WebMLLink

Link Automatic Link Transport Link

+target

1

1
+source1
1

Selector

Attribute

1

0..1

1..*
1

OKLink KOLink

Operation Parameter

1 *

Relation
-source

* 0..1
-target

* 0..1

1

-source1-source 1

1

1

-target

1

1

-target

1

1

-target

1

-attribute : Attribute
-predicate : Predicate
-value

Condition

1..*
1

Figure 7.4: An excerpt from a metamodel of the WebML hypertext schema

58 Chapter 7. Domain Design

exactly one instance of a database entity, IndexUnitmodels a list of entity instances,
HiearchicalUnitmodels a nested index, and MultiDataUnit models a fragment
of multiple instances of a database entity.

Table 7.1 summarizes visual syntax for some of the WebML concepts. WebML
Pages and Units can be connected by links. Pages are connected by non-contextual
links. Units are connected by contextual links which transport parameters (usually
those of a clicked instance of a database entity generated by a unit). The context
parameters are then used to select an appropriate instance from a database entity
which is assigned to a unit where a user is about to arrive.

Table 7.1: Some basic WebML content units. The whole set of units is described
in [CFB+02].

Unit name Visual Notation Description

Data unit
Entity

[Selector]

Data unit

Displays a set of attributes for a single
entity instance.

Multidata unit

Multidata unit

Entity

[Selector]

Displays a set of instances for a given
entity.

Index unit

Index unit

Entity

[Selector]

Displays a list of properties, also called
descriptive keys, of a given set of entity
instances.

Hierarchical Index unit

HierarchicalIndex

Entity1

[Selector1]

NEST Entity2

[Selector2]

A variant of the index unit, which dis-
plays a list of properties of instances se-
lected from multiple entities, nested in
a multi-level tree.

Scroller unit

Scroller unit

Entity

[Selector]

Represents a scrolling mechanism,
based on a block factor, for the
elements in a set of instances.

Besides classic links, there are special types of links in WebML: AutomaticLink,
and TransportLink. The automatic link is used when two connected units have to
display data right after accessing the page without further interaction by a user. The
transport link is a link which just passes on contextual parameters but is not displayed
within the anchor for interaction. This is especially useful when some actions are
invoked which have to collect data and parameters from several units.

Similarly KOLink and OKLink are used with operations as automatic links after
success or failure of the operation. Operation models particular actions a user can
invoke by a button or a link at a user interface. There are several elements provided
for several kinds of operations such as delete, connect data, insert and so on.

7.4. Variability at Runtime: Personalization 59

7.4 Variability at Runtime: Personalization

Personalization in the sense of resolving variability at runtime is concerned with two
main areas of adaptive functionalities:

• content adaptation — variants of content fragments, their presentations and
combinations are examined and selected according to knowledge about user
features,

• navigation adaptation — variants associated with navigation directions in trails,
the link annotations and their combinations are examined and selected accord-
ing to conditions based on knowledge about user features.

The content adaptation and composition is modeled in the form of content stories
as collaboration diagrams. The navigation trails are constructed as state diagrams
connecting the stories into navigation guides.

7.4.1 Active Information Objects and their Collaborations

In chapter 5 we have described two domains which are used in web applications: the
application domain and the environment domain. We have provided guidelines to
make conceptual and feature models for both domains separately. The reason behind
this is provided by the following particular advantage: the content can be plugged
into any environment which we maintain as appropriate and vise versa.

Similarly, at the end of the previous section we pointed out that, especially with
probabilistic approaches, we need two domains as well. However, for a concrete ap-
plication or set of applications the connections have to be designed.

We introduce the idea that the application domain features “perform” a story in a
particular environment. They collaborate between each other to communicate cer-
tain information with the help of the environment. Developing this concept of col-
laboration [DN04], we employ the collaboration diagrams to be found in UML.

Definition 13 (Story Collaboration Model) A Story Collaboration Model is a set of col-
laboration diagrams which define dynamic content chunks accessible in a particular
environment. The story collaboration diagrams contain collaborations between roles
created as instance roles of features and concepts from an application domain feature
model linked to instance roles of features and concepts from an environment feature
model.

In the case of user models, the user domain feature model plays the role of an
environment feature model if such collaboration is needed.

At runtime, the feature instances collaborate to create a content. The idea of col-
laboration is based on the notion of active learning objects which provide a defined
interface to access their content and presentation. With this idea in mind, dependen-
cies from the domain feature models can be transformed into collaboration links.

Roles are used to model different purposes of a particular feature or concept in an
environment/ information component. We use the following notation:

O/R : P :: C

60 Chapter 7. Domain Design

where O is a Classifier or Feature instance,

R is a Classifier or Feature role,

P (optional) is a Package name to which Feature or Classifier belongs, and

C is a Classifier or a Feature.

Roles terminology can form complex structures. The UML class diagram can be
employed to model such a structure [ADN+03]. This model can be used in a similar
way to the domain and environment/ information conceptual models; i.e. as a means
for communicating the roles terminology to be used in the web-based training suite.

The collaboration models are created as refinements of the feature models. The
refinement consists of:

• Instantiating concepts and features from a feature model;

• Identifying roles of the instances in collaborations;

• Transforming associations between features and concept in feature models into
collaboration links.

In the following we will explain the process of story modeling with the help of the
examples used in domain and feature models in the previous section.

Domain Features Collaborations

The first refinement of the feature models involves refinement into the domain fea-
tures collaborations. The refinement consists of defining concept and feature in-
stances and roles and links between them as instances of associations between the
concept and the features.

Instances and Roles. Figure 7.5 depicts an excerpt from a collaboration model of
features from the Object feature model (the feature model depicted in fig. 6.4). Roles
of domain features used in the collaborations are definition, example, exercise, de-
scription and so on. The Definition and Example roles played by the Object
concept instances are used to model a situation where a term JavaObject is de-
fined and then shown using the example. The term JavaObject is defined using the
JavaObjectState and JavaObjectBehaviour definitions. The Variable defini-
tion is used to define the state variables.

The JavaObjectBehaviour definition collaborates with the JavaMethod defi-
nition at the moment when the behavior of an object is exposed by its methods. The
JavaInstanceMethod and JavaClassMethod descriptions are provided as two al-
ternatives for the Java methods (they play a descriptive role in collaboration with the
JavaMethod definition). In addition, a comparison of the class method and instance
method is provided to help clarify the difference between these kinds of methods.
This is reflected by the additional comparison role of the JavaClassMethod in col-
laboration with the JavaInstanceMethod.

7.4. Variability at Runtime: Personalization 61

«Concept»
JavaObject/Definition : Object

«MandatoryFeature»
JavaObjectState/Definition : State

state

«MandatoryFeature»
JavaObjectBehaviour/Definition : Behaviour

be
ha

vi
ou

r

«MandatoryFeature»
Variable/Definition : Variables

«MandatoryFeature»
JavaMethod/Definition : Methods

«OptionalFeature»
JavaInstanceMethod/Description : Instance Method

«MandatoryFeature»
JavaClassMethod/Description : Class Methods

«Concept»
JavaObject/Example : Object

«MandatoryFeature»
JavaClassMethod/Comparison : Class Methods

Figure 7.5: An excerpt from a collaboration model showing features from the Object
feature model

Links. The collaboration links are usually defined as straightforward mappings from
associations in the feature model. Special attention has to be paid where there are
several instances and roles of the domain features in the model. A designer has to de-
cide which roles and instances will be linked together. In our example, two instances
of the Object concept appear in the collaboration model. We created a link just be-
tween the Definition roles of the JavaObject and the JavaObjectBehaviour.
The Example role of the JavaObject contributes only to the collaboration with the
Definition role of the JavaObject role in our example application, so the link
to JavaObjectBehaviour is not created. Similarly, the AND variation point in the
feature model from Fig. 6.4 was resolved as several links between the participating
feature instance roles.

Names of the links are suppressed in the model except those of the state link be-
tween JavaObject and JavaObjectState and the behaviour link between Ja-
vaObject andJavaObjectBehaviour, which we will use descriptive purposes later.

Collaboration of Domain Features with Information/Environment features.

The second refinement of the abstract feature models which follows the domain fea-
ture collaborations described above is the refinement into so called information com-
ponents. By information components we mean accessible environment components
which are accessed through their interfaces and are able to deliver concrete informa-
tion about particular domain concepts.

This is achieved by linking the instances of the domain features to the instances
of the environment /information features. The refinement augments the above de-
scribed collaboration models with:

• Instance roles of environment/information features mainly to model the peda-
gogical style and purpose of the information component;

• Links between instance roles of environment/information features and domain
features instance roles which replace some of the links between domain feature
roles (collaboration is delegated to the information components);

• Messages being sent between environment/information feature roles and do-
main feature roles when a user initiates an interactive sequence.

62 Chapter 7. Domain Design

«MandatoryFeature»
JavaObject/NarrativeText : LearningObjects

«Concept»
JavaObject/Definition : Object

«MandatoryFeature»
JavaObjectState/Definition : State

«MandatoryFeature»
JavaObjectBehaviour/Definition : Behaviour

«MandatoryFeature»
Variable/Definition : Variables

«MandatoryFeature»
JavaMethod/Definition : Methods

«OptionalFeature»
JavaInstanceMethod/Description : Instance Method

«MandatoryFeature»
JavaClassMethod/Description : Class Methods

«Concept»
JavaObject/Example : Object

2.
1:

 S
ho

w
()

«MandatoryFeature»
ObjectState/NarrativeText : LearningObjects

3.2: S
how

()

3.1: Show()

«MandatoryFeature»
ObjectBehaviour/NarrativeText : LearningObjects

4.
1:

 S
ho

w
()

4.2: Show()

4.
3:

 S
ho

w
()

4.4.2.1 [UserKnowledge>ReqValue]: Hide()
4.4.1 [else]: Show()

«MandatoryFeature»
OOConcepts/Instruction : Lectures

2: GetObject(UserKnowledge, Topic)

3: G
etO

bject(UserKnowledge, Topic)

4:
 G

et
O

bj
ec

t(
U

se
rK

no
w

le
dg

e,
 T

op
ic

)

2.2.1 [UserKnowledge>ReqValue]: Show()
2.2.2 [else]: Animate()

«MandatoryFeature»
JavaClassMethod/Comparison : Class Methods

4.4.2.2: Show()

JavaTutorial::Learner

1: Access(LearnerProfile)

Figure 7.6: An excerpt from a collaboration between features from the Course and
Object feature models

Instance Roles of Environment/Information Features. The roles of information
features in collaborations with domain features usually consist of container, provider
or more domain specific roles such as narrative text, simulation, problem statement,
instruction and so on. Some of the roles are only suitable for higher level information
objects like lecture or module. An example of this is the instruction role which refers
to the learning theory used to construct an information component. Similar concepts
are used in the learning object metadata standard [IEE02].

Figure 7.6 depicts an excerpt from such a collaboration model which links envi-
ronment features to domain features. The NarativeText role is introduced for the
JavaObject, the ObjectState, and the ObjectBehaviour instances of Learn-
ingObjects. The learning objects can be accessed through the OOConcepts in-
struction which is an instance role of Lectures. In a final training suite this lecture
of the Java tutorial collaborates with other lectures.

Additional Links — Collaboration Delegation. The three learning objects intro-
duced in Fig. 7.6 are linked to the corresponding domain features and/or concepts.
TheJavaObject is linked to theDefinition role of theJavaObject. TheObject-
State is linked to theDefinition role of theJavaObjectState. TheDefinition
role of the JavaObjectBehaviour is linked to the ObjectBehaviour. Note how
these domain features are connected by thestate and thebehaviour links in Fig. 7.5.
These links are replaced by introduced environment feature instance roles and the
collaborations are delegated to information feature roles accessible by a user (in this
case the OOConcept/Instruction). Remaining links between domain features are

7.4. Variability at Runtime: Personalization 63

derived from the objects depicted in fig. 7.5.
The collaboration links between environment/information features are created as

instances of the associations in environment/information feature models. As in the
case of the domain features collaborations, collaboration links have to be resolved by
a designer when several roles and instances of one feature or concept appear in the
collaboration model and when a variation point has to be transformed.

Messages. In addition, links are annotated by messages which are sent between
the roles. User interaction generates the Access(...) message to be sent to the
OOConcepts lecture. The OOConcepts lecture generates several GetObject(...)
messages which are sent to the learning objects. Those learning objects request a
content from the domain feature instance roles like JavaObject by sending for ex-
ample the Show() messages. A content item is propagated to the user as the result of
interaction between the instance roles. The messages used in examples are instances
of the functions from domain design models depicted in fig 7.1.

The personalization of a content is reflected in the collaboration diagrams by con-
straining messages. The LearnerProfile parameter of the Access(...) message
is propagated by several GetObject(...) messages to domain features instance
roles. Just fragments of the profile relevant to prerequisite competencies and/or top-
ics of the learning objects are transferred by the GetObject(...) messages. These
fragments are used to determine which presentation options are valid for a learner
with a particular level of knowledge, e.g. the two conditionally constrained messages
at the link between the Definition and Example roles of the JavaObject. The
UserKnowledge parameter is used to determine whether the example is shown as a
static Show() message or animated Animate() message. The ReqValue is a prede-
fined constant which determines which level of knowledge is required to switch be-
tween the presentation options. The conditionally constrained messages at the link
between the JavaMethod and the JavaInstanceMethod can be interpreted simi-
larly.

7.4.2 Personalized Navigation Design for Web Applications

One possible way of looking at navigation is in the context of browsing. Browsing in a
web application can be seen in terms of following a certain path in a hypertext graph.
From this point of view, a navigation model should concentrate on a user interaction
during hypertext presentation or on a change of a hypertext state when the user per-
forms the act of navigating. Nodes in such a path can be either single or composed
of several subnodes. A node can also represent subpaths. Navigation models of the
browsing scheme display the possible paths through information chunks and their
contextual grouping.

Adaptation considered as handling variability at runtime is concerned with dif-
ferent possibilities for presentation of particular information pages or fragments, dif-
ferent possibilities for annotating the fragments and links, different link destinations
and so on. This variability is a subset of the variability modeled by variable features
of concepts from the conceptual feature model described in the previous chapter. A
subset of different aspects of information modeled in the conceptual model can be

64 Chapter 7. Domain Design

selected and placed into the navigation model. These features are then connected by
links. Information nodes and links can be constrained with parameters based on user
features from the user domain design model.

State Diagrams and Navigation in Web Application

The content fragments, which are composed according to the collaboration models
described in the previous section, are connected into navigation trails. The UML state
diagrams provide a useful abstraction for designing browsing/navigation trails con-
cerning information or environment in web applications. The main elements of the
navigation trail are the navigation state and transition between the states.

Definition 14 (Navigation State) A navigation state for a user is an information chunk
observed by a user at a hypertext node at a given time.

Definition 15 (Transition in a Navigation Trail) A Transition in a Navigation Trail is
a transition between one navigation state and another. The transition is usually caused
by a user interaction event or by another event (e.g. time event). When the transition is
fired it leads to the production of a new hypertext node for a user — the new navigation
state.

Transitions represent active interconnections between information chunks, and
usually correspond to associations in the application domain model.

Events cause transitions in a state machine; they include user-generated or system-
generated events, and the latter include time events.

Atomic states can be grouped into superstates. States usually refer to concepts
of an application domain. The superstate may comprise of substates arranged in an
alternating or parallel fashion.

The variability in the navigation trails is modeled by the alternate (OR) states and
by decision symbols which can split transition to several alternative transitions. In
this way, the navigation trails can contain alternative navigation paths and infor-
mation chunks constrained by conditions referring to certain user features, content
features, device features, or environment features. From the point of view of user
handling, this means that each trail can be adapted by taking into account the user’s
background, level of knowledge, preferences and so on [DN03].

Parallel substates represent information chunks to be presented simultaneously.
Fork and join pseudostates are used respectively for splitting and joining computa-
tions and enabling parallelism. The SyncState pseudostate is used for synchronizing
substates of parallel regions. It means that a navigation state as the product of infor-
mation chunks can be composite; i.e., the navigation state can present an informa-
tion chunk using several content fragments of different media types.

Guards can be used to constrain transitions, entry, and exit actions of states by
adaptation rules. Usually, they consist of a predicate concerning user profile attributes
or context information.

The transitions and events on states are useful abstractions for assigning sensors
to observe user evolution. Each transition can have a side effect action. Actions can
also be performed at entry, exit and as an internal transition side effect of a state.

7.4. Variability at Runtime: Personalization 65

User Entry User Tracker Course Composer

Enter Course

Get Assesment Method

Perform Assesment Task

Generate Navigation Map

Click
Update User Features

Finish

Regenarate Navigation Map

Dereference Course

Store Current Position

Figure 7.7: A basic interaction scheme.

The side effect can be for example the modification of a user profile, or the choice of
presentation styles for a given chunk of information. Actions can also process param-
eters used in guards stationed at the exits of branches. Side effect actions, as well as
adaptation rules, can be assigned to entry, exit, and do actions of states.

Tagged values are domain-specific properties used to extend the semantics of el-
ements in UML diagrams. These values can refer, for example, to concepts of the
structural model of the application domain, or to specific terminologies which might
be useful in identifying additional navigation requirements.

A Process of Adaptive Navigation Design

We propose six basic steps in the navigation modeling process: identifying interaction
schemes, identifying states, identifying transitions, identifying events, creating a user
model, and mapping the user model elements to the state diagram. These steps can be
performed in parallel and in iterations.

Identifying an interaction scheme. The basic interaction scheme identifies a basic
interaction pattern between user and web application component roles. The main
purpose of this step is to understand how content of the web application will be
accessed and instantiated within a specific navigation state when the user interacts
with the application. This step may therefore be identical with the story collaboration
modeling. When a product line management team decides that the story collabora-
tion design is not necessary in their context, the interaction scheme might be reduced
to a sequence diagram connecting the environment roles. This is especially the case
in the simple domain design example which we have shown in fig 7.1. Figure 7.7 de-
picts an example of such a sequence diagram, although with slightly changed role
names. These roles can be seen simply as instances of added interfaces which are
implemented by classes from the domain design.

Figure 7.7 depicts three basic system roles (the Entry, the User Tracker and
the Course Composer) and the User role. When a user enters the system an as-
sessment test is generated. The user then performs an assessment task. A course is

66 Chapter 7. Domain Design

generated according to the assessed user feature values. This means that the course
content is packaged into a navigation sequence (path). When a user interacts with
the system by clicking on a particular navigation object, the system evaluates and
changes the user model state and regenerates the navigation sequence and other nav-
igation supporting features.

Identifying states. The states are mapped to information or navigation domain mod-
els. There are two possibilities for mappings from an information model:

• a superstate mapped to a class which instantiates content with substates mapped
to class attributes, and

• a superstate mapped to a class instance (role) with substates mapped to class
instance attributes.

The second case applies in collaboration story models. Parallel substates are map-
ped to attributes of a class or its instances, which are presented simultaneously. At-
tributes which do not need to be presented simultaneously are grouped into ordinary
substates. Those classes which are aggregated by another class are mapped to par-
allel or ordinary substates of that class’s state. In addition, these substates are de-
termined by the cardinality of the aggregation relationship. Specialized classes are
mapped to ordinary substates. Special information chunks derived from several at-
tributes and/or classes or special states needed for the purposes of navigation can
also be considered. States can be augmented with a history. The history indicates
that a user can restart his browsing at the point where he exited the system in a pre-
vious session.

Identifying Transitions. Association relationships from domain design models or
links from the collaboration models are transformed to transitions. Where needed,
additional transitions can be incorporated into the model. The fork and join pseudo-
states and SyncState are intended for modeling the synchronization of parallel states.
The first two are intended for splitting or joining transitions. The latter is for synchro-
nizing substates of parallel regions. It means that whenever there is an interaction
within fragments which are presented simultaneously with others and the interac-
tion causes a transition which also influences the parallel content fragments, syn-
chronization should be implemented between the fragments. The elements already
mentioned are used in the specifications for such situations.

Identifying Events. Events can be directly mapped to presentation elements with
associated actions, i.e. an event is specified for each required interaction element at
each navigation state. The events are mediators between the navigation model and
the presentation model of actions. Events can be joined to a generalization/ special-
ization tree. An event can be mapped to more than one transition. There are two
types of events which can be considered: those caused by user interaction or caused
by a system (e.g. time event or an event raised by an action performed by a system).

7.4. Variability at Runtime: Personalization 67

Parameterization: Mapping User Model Elements to a State Diagram. Accessible
features of user model classes are mapped to guard conditions. The guards represent
constraints on variable features of information and variable destinations of links. The
guards are tested for specific values, which have to be satisfied when a transition is
raised or when a particular state is entered or left. Operations are mapped to actions
of transitions and states. They are used for upgrading the user model state or for
specific operations with the user model and/or information chunks. Operations for
retrieving the current user model state can also be used in guard conditions. Guard
conditions of transition and state specify local rules of adaptation. Global rules of
adaptation can be specified as guards for internal transitions, points of entry, exits or
do actions and conditions of superstates.

Navigation Model of an Adaptive Java e-Lecture

Fig. 7.8 depicts an adaptive navigation model for a simple JAVA e-lecture (introduc-
tion to JAVA). This is part of an e-lecture which was provided as a script for a JAVA
course at the University of Hanover whose content was created by the course lectur-
ers.

A First O-O Analysis

Streams

SW
Requirements

next

next

Classes
Class

Diagrams

First Attributes
entry/
[CurrentLOK(`classes´)>0.5]

Variables and
Types

Operators

Data Type
Reference

First Methods
entry/
[CurrentLOK(`attributes´)>0.5]

Methods

Constructors

Objects

Strings

Control Structures
entry/
[CurrentLOK(`attributes´)>0.5]

If-Else

Switch

For

While

Do-While

ArraysAccesibility

Introduction
Character
and Byte
Streams

Data and
Processing

Streams

Java Application

I/O Streams

Inheritance

Simple

Multiple

Simple

Multiple
[CurrentLOK(`Simple Inheritance´) > 0]

Simple/[else]

Multiple
[CurrentLOK(`Simple Inheritance´) > 0]

inheritance

Sun: Programming
Concepts

Sun: Creating
Classes

next

next

next

Classes as
applications

Main()

i/o streams

next

Next

next

Streams in general

Sun:
Prog. Concepts

Sun:
Classes

entry/[CurrentLOK(`arrays´)>0.5 and CurrentLOK(`attributes´)>0.5]

entry/
[CurrentLOK(`attributes´)>0.5]

entry/
[CurrentLOK(`attributes´)>0.5]

Figure 7.8: Part of an adaptive navigation model for a JAVA e-lecture.

The lecture describes the main concepts of object-oriented programming in JAVA
using the example of a software version of a BINGO game. The role ofRequirements
in software projects is described at the beginning of the lecture based on the require-
ments for the BINGO game. The lecture continues with A First O-O Analysis
where requirements for the BINGO game are analyzed and transformed into classes.

68 Chapter 7. Domain Design

This part of the lecture conveys the concept of the Classes and Class Diagrams.
Students can request an explanation for Inheritance, of which simple and also
multiple inheritance are possible. This part also refers to essential programming con-
cepts in an external Sun JAVA introduction. The lecture then goes into more detail on
basic concepts in O-O programming, namely the First Attributes, the First
Methods, theControl Structures, theArrays, theAccessibility (public, pri-
vate, protected) and the Streams.

The following parts of the lecture: Inheritance, A First O-O Analysis, and
Streams are modeled as substate machines; i.e., they constitute sub-sequences in
this JAVA e-lecture. Only one of the concepts modeled as substates is displayed at
any given time. The content fragments about the First Attributes, the First
Methods and the Control Structures are presented in one window and thus the
fragments are modeled as concurrent states. The fragments can be represented for
example using audio or video media. In such a case the concurrent states can model
separate presentation channels. When synchronization between these channels is
needed, synchronization symbols are used to model such situation.

There are several variabilities depicted in the model. Here, we consider variabil-
ity in the case of the Inheritance. When a user already has some knowledge about
inheritance1 (CurrenLOK(’Simple Inheritance’)>0), he/she is guided to the
learning state on Multiple inheritance and otherwise to Simple inheritance. The
user can switch between these two fragments. The transition (link) from Simple in-
heritance to Multiple inheritance is constrained as well.

Variability is considered in all states except of the SW requirements and the A
first O-O Analysis. The guards in the entry actions of states thus represent
constraints on displaying/showing/hiding/annotating media (text) fragments.

The rules in the entry actions are depicted only in the high level states. There
are several different ways of understanding the scope of such guards. The guard can
be valid for a high level state alone or propagated into its substates because a user is
prevented from invoking the subparts. Another interpretation may be that they are
propagated by an automatic generator and thus the same rules appear for all the sub-
states in an implementation. Alternatively, similar rules may be written for substates.
This is especially useful when they differ from those introduced at higher level states.
More complex rules on variability can be introduced in longer courses.

Operations for updating a user profile are not presented in the figure (are col-
lapsed) for simplicity’s sake. They are usually modeled as actions of transitions or as
exit actions of states. A user profile can be updated as a result of a particular link being
clicked or when an information fragment modeled by a state is exited. For example,
in the state diagram of Figure 7.8, the user level of knowledge about “Classes and In-
heritance" can be acquired in the Inheritance module. Exit Procedures for these
states do indeed contain similar update operations, such as in the following example:

CurrentUser.SetLOK(“Classes and Inheritance”,0.8,Content).

Time events can generate an update of a user profile as well. For example a level

1The personalization specification within the JAVA eLecture state diagram can be based on the user
model depicted in Figure 7.3.

7.5. Domain Design and State Diagrams 69

of knowledge about a certain topic can be increased after a period of time spent in a
certain state.

7.5 Domain Design and State Diagrams

Let us take a closer look at the interaction of state diagram elements and content
instances. Each state should generate a content fragment which fits to the current
navigation state and user features. As states are abstractions they have to be con-
nected/mapped to content generation components.

In general, there are three ways of doing this:

• To assume that the content is generated and accessible through an identifier or
a query. That identifier or query can be used for tagging a state.

• To assume that the content is generated by instances of classes from navigation
domain models, environment domain models and application domain models.
The appropriate classes have to be instantiated within the entry actions of a
state and appropriate methods for displaying the content called.

• To assume that the content is generated by external services. If the services have
an application programming interface, this reduces to the previous case and
the interface instances have to be used appropriately within the entry actions
of states. If the services are provided with design annotations, the symbols of
particular functions or concepts from the design annotations can be used to
annotate the states and thus link them with the content generation service.

The tagged values represent the most suitable extension mechanism to annotate
the states according to the first and third option as they are very close to state vari-
ables. Side effect actions are on the other hand best suited for the second approach
and also the third approach where a service interface exists.

Content Package. A Content tag (as a state variable) can be used to maintain iden-
tifiers or queries for content intended to be displayed within a particular state. If the
content is parametrized via the query, the query parameters can be used for content
adaptation based on a user profile.

7.5.1 Side Effect Actions with Domain Design Objects

States in state diagrams can have entry actions. Scripts within the entry actions have
to be employed to instantiate a given content.

Figure 7.9 depicts an excerpt from a state diagram representing a navigation model
for account managers and product managers of a CRM application. The diagram rep-
resents one usage case: browsing daily assets. Each day, an account manager looks
for accounts to contact in order to provide them with support. The application pro-
vides a view of a list of the accounts (the AccountNameIndex state). The manager
can browse into account details if he needs them for communication with account

70 Chapter 7. Domain Design

Accounts

/cSession:=new Session();
cUser:=cSession.getUser();

cRole:=cUser.getRole();

[cRole=“AccMgr“]/
myAccnt:=new Accounts(cUser, cRole)

AccountNameIndex Details(AccId)/CAccnt:=
new Account(AccId)

AccountDetails

[cRole=“ProductMgr“]/
myProd:=new Products(cUser; cRole)

Accounts

Products(CAccnt)

Finish

Products

Finish

entry/myAccnt.GetNameIndex()

entry/myAccnt.GetDetails(CAccnt)

*

Figure 7.9: An excerpt from a navigation model for browsing assets in a CRM applica-
tion.

representatives (the AccountDetails state). As the details should be displayed si-
multaneously with the list of accounts, two concurrent regions are depicted in the
model. They are synchronized on clicking according to an account identifier taken
from the record which was clicked (the transition from the AccountNameIndex state
raised by the Details(AccId) event). As an aid to improving customer support, he
can browse details about products sold, problems reported and so on (the Products
state is displayed in abbreviated (collapsed) form due to space limitations). Prod-
uct managers enter the system at a point covering those products which they have to
support with a summary of the accounts which have bought the products.

The content is instantiated by calling methods of classes from the application do-
main design model. Similarly, transitions are annotated by guards with classes and
methods from the user domain design model to resolve variability in the presenta-
tion order of states based on a user’s profile.

An excerpt from the CRM application design model relating to the scenario men-
tioned above is depicted in fig 7.10. The main entities in the domain are Account
for managing customers and Product for maintaining products respectively. Prod-
uct and Account entities are associated with their business logic collection entities
Accounts and Products. Those are used to retrieve a specific subset of instances of
the products and accounts, e.g. the GetNameIndex(...) function used in the state
diagram of the navigation model to generate a link index of account names for a par-
ticular account manager or the GetDetails(...) function used to generate details
of an account which has been selected by a user from the account name index.

Similarly, fig 7.11 depicts an excerpt from a user domain model for a CRM ap-
plication from our navigation model. The user model borrows the SalesMan entity
from the application domain as the users of the application are sales managers and
the application is expected to adapt to them according to their roles. A generic User

7.5. Domain Design and State Diagrams 71

+Account()
+getAccountObject(in AccountId : string) : Account
+GetDetails(in Account : Account) : object
+GetName() : string

-Name : string
-Code : string
-LegalForm : string
-Industry
-Revenue
-Type
-Employees
-Status
-AccountId

Account

+Accounts()
+getAccount(in AccountId : string) : Account
+Accounts(in SalesMan : SalesMan, in Role : string) : Accounts
+getAccountManager() : SalesMan
+getNameIndex(in Accounts : Accounts) : object

Accounts

+SalesMan()
+getSalesManObject(in SalesManId) : SalesMan
+getRole() : string

-Name : string
-Role : string
-SalesManrId : string

SalesMan

-Name : string
-Price : float
-Items : int
-Type : string
-Description : string
-ProductId : string

Product

Products

+soldProduct

*
+Member

*

+AccountSet1..*

*

+AccountManager*
*

+AccountManager

*

+MemberProduct*

+ProductSet*

*

+ProductManager

*

*

+ProductManager

*

Figure 7.10: An excerpt from an application domain model of a CRM application.

entity with login information and History entities are used to track user behavior.
The adaptation rules may be based on history or simply on a time of the day which is
matched with the account and history records. Furthermore, the recommendations
of accounts and products based on the date and status might play an important role
in improving the effectiveness of the customer support. An additional entity used
particularly for run time purposes is Session. The session class is used for example
to identify a current user in the transition from the initial state of the state diagram
shown in fig. 7.9. This information is used later in the decision branches of the state
diagram to decide which state will be entered first according to whether the user is a
product or an account manager.

A navigation model modeled by the state diagram with the scripts for instantiating
content using domain design classes is still at a logical level. It is close to implemen-
tation, but implementation at the level of business logic. It remains necessary to map
to presentation styles and pages. A designer has to decide which states to map to
pages, at which level of composition to do this as well as which transitions should be
mapped to physical links and which should be mapped to functions, buttons, menus
and so on. Again, the simplest way is to use tagged values to annotate states with
the page concept. A more automated option would be to create generative templates
which, for example, create a page for each top level state. Other strategies for assign-
ing states to pages are also possible depending on application, domain and customer
requirements.

72 Chapter 7. Domain Design

-Login : string
-Password : string
-UserId : string

User

-Type : string
-PlanedDate : Date
-CompletedDate : Date
-Description : string
-Status : string

History

+getSessionObject() : Session
+getUser() : User
+Session()

-SessionId : long

«Singleton»
Session

+Title

1 *

+LoggedUser1
*

*

+Responsile

*

*

+Worker *

+SalesMan()
+getSalesManObject(in SalesManId) : SalesMan
+getRole() : string

-Name : string
-Role : string
-SalesManrId : string

CRMApplicationDomain::SalesMan

Figure 7.11: An excerpt from a user domain model of a CRM application.

7.5.2 Concepts from Domain Design Models in Tagged Values

The last but not least important option we have listed is to use domain design con-
cepts for tagging states. This means that instead of having just one Content tag,
we will have more tags depending on which design method a development team
chooses.

We experimented with WebML, where content is generated according to hypertext
specifications. We used the concepts from the WebML metamodel as a source for
tag names and instances of attributes as a source for values to identify appropriate
content for connection to a navigation state [CDMN04, CDMN05].

WebML is a visual language for specifying the content structure of a Web ap-
plication and the organization and presentation of content in one or more hyper-
texts [CFB+02]. The design process based on WebML starts with the specification
of a data schema, expressing the organization of contents by means of the Entity-
Relationship primitives. The WebML Hypertext Model then allows for a description of
how content, previously specified in the data schema, is to be published as hypertext
by the application using pages and units as described in section 7.3.

Category

OID
name
description1:N 1:N

1:N

LO

OID
description
language
title
subject
type
author
source
points

1:N

Content

OID
language
title
subject
type
text
image

1:N

1:N

Figure 7.12: WebML Data schema for the e-learning application.

An example of a data schema of WebML which corresponds to the application
domain design in our terminology is depicted in fig. 7.12. The data schema spec-
ifies the database of an e-learning application and is centered on the concept of a
Learning Object (LO). The LO entity represents descriptions of learning objects using

7.5. Domain Design and State Diagrams 73

CourseLectures
Courses

Subject LO

LO

[Category2LO]

[Type=”Course”]

Lecture Modules

LO

Lecture Name

Categories

Category Index

Category
 Category

Category Details

L

LO

Course description
 Course Lectures

LO

[LO2LO]

[Tipe=”Lecture”]

Lecture Modules

LO

[LO2LO]

[Type=”LectureModule”]

LectureContent

Contents

Content

[LO2Content]

Module Scroller

LO

[LO2LO]

[Type=”LectureModule”]

LO

Module Title

Examples

LO

[LO2LO]

[Type=”Example”]

Tests

LO

[LO2LO]

[Type=”Test”]

To Example Page

To Test Page

Definitions

LO

[LO2LO]

[Type=”Definition”]

NEST Content

[LO2Content]

Excercises

LO

[LO2LO]

[Type=”Exercise"]

To Excercise Page

L

Figure 7.13: The WebML specification of the hypertext interface for the e-learning
application.

attributes in accordance with the LOM standard2. Amongst these the attribute type
covers the different types of LOs (e.g. lectures, lecture modules, definitions, exercises,
tests) published by the application. Each LO has associations with other LOs: for ex-
ample, a lecture module can be associated with some related definitions, exercises,
examples or tests. The entity Content then represents the contents (texts, images,
files) which comprise a LO. In order to facilitate LO access, the schema also includes
the entity Category: This stores the ACM categories that classify the LOs published
by the e-learning application.

Figure 7.13 shows a simplified excerpt from the WebML hypertext schema which
corresponds to navigation domain design in our terminology and is defined for the
e-learning application; it refers to pages for selecting a lecture module and access-
ing its contents as well as associated definitions, exercises examples, and tests. The
lecture module selection is governed by means of a navigation chain, in which users
progressively select a subject category (Categories page), then a course that refers
to the selected category (Courses page), then a lecture (CourseLectures page),
and finally the lecture module they are interested in (LectureModules page). Some
pages like Categories and LectureModules are marked with an “L" label, which
indicates that they are landmark pages. This property specifies that the pages will be
reachable from any other page of the hypertext by means of landmark links.

The contents of the selected lecture module are shown in pageLectureContent.
Via the Module Scroller unit users can browse lecture modules in a Guided Tour
navigation that allows moving forward and backward in the (ordered) set of modules
available for the currently selected lecture. For each module, the data unit Module

2http://ltsc.ieee.org/

74 Chapter 7. Domain Design

Overview
{CourseStructure=Tutorial,

LearningPresentation=Summary}

Object Oriented Programming Concepts

What Is an
Object

What Is a
Message

What Is a Class
{CourseStructure=Content,

LearningPresentation=Definition}

Relations To Code

next

next

next

Questions

next

next

Language Basics

Variables Operators

Control FlowExpressions

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

Object Basics and Simple Data Objects

Object Life Cycle
Characters and

Strings

NumbersArrays

next

next

next

next

next [CurrentUser.CurentLOK
 (”Language Basics”)>0]

[CurrentUser.CurrentLOK
 (”Language Basics”)>0]

Classes and Inheritance

Creating
Classes

Managing
Inheritance

Implementing
Nested Classes

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Basics and Simple Data Objects”)>0]

[CurrentUser.CurrentLOK
 (”Object Basics and Simple Data Objects”)>0]

Common
Problems

Interfaces and Packages

Creating
Interfaces

Creating and
Using Packages

nextnext
Problems

[CurrentUser.CurrentLOK
 (”Classes and Inheritance”)>0]

next [CurrentUser.CurrentLOK
 (”Classes and Inheritance”)>0]

next

Finish

Finish

entry/
if(CurrentUser.CurrentLOK
(procedures)<0.5)
show(”procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2,
Content)

Figure 7.14: A navigation model for a Java tutorial in the UML state diagram notation.

Title shows the title and a short description of the learning object, the Contents
multidata unit shows texts and images that compose the module, while the hierarchi-
cal index of Definitions shows titles of the definitions associated with the module
and, nested, the corresponding contents. Three index units then show the lists of ex-
amples, tests and exercises available for the current lecture module. The selection
of one item from such lists leads users to a different page where the corresponding
contents are displayed.

The domain and navigation domain design concepts are used within the state di-
agrams in a similar way as in the example depicted in fig. 7.14. The state diagram
of fig. 7.14 is another example of a personalized learning environment for teaching
object-oriented programming in JAVA, borrowed from a well-known Sun tutorial 3.
We have already described another example of a Java eLecture in section 7.4.2 which
followed a different instruction path. The personalization example chosen here fo-
cuses on link adaptation.

The tutorial starts with an overview of available lectures, as represented by the
Overview state, which summarizes the available lectures in the tutorial, as repre-
sented by the Summary value in the LearningPresentation tagged value. It also
presents the high level tutorial steps (Tutorial value in the CourseStructure tag-
ged value). Links from the overview point not only to the first section of the tutorial,

3See http://java.sun.com/docs/books/tutorial/java/index.html.

7.5. Domain Design and State Diagrams 75

but also to the other main sections; all these links, except for the first one, are asso-
ciated with guard conditions that check that the user has enough knowledge to jump
directly to the respective lectures.

The next step after the Overview is a lecture on Object Oriented Program-
ming Concepts. This state is accessible without the user needing to satisfy any
criteria in respect of background knowledge; it is a composite state containing four
steps, represented by four substates: What is an Object, What is a Message,
What is a Class, andRelations to Code. TheRelations to Code state also
exposes an entry procedure addressing content level adaptation. The procedure
applies to a learning step about building programs; it states that if the current user
does not have sufficient knowledge on basic concepts about object-oriented pro-
gramming procedures, then learning content on procedures will be added.

The next step from theObject Oriented Programming Concepts is the com-
posite state Language Basics. The transition between the two states features a
next event and a guard. The guard specifies a link level adaptation rule, saying that
the link is recommended when the user’s current knowledge level is greater then zero.
The other learning steps modeled in the state diagram can be interpreted similarly.

The personalization specification within state diagrams is again based on the user
model depicted in Figure 7.3.

A performance value is used to determine if a transition into a new state is appro-
priate and must be suggested to a given user. For example, the following condition:

[CurrentUser.CurrentLOK(“Classes and Inheritance”)>0]

is a guard in the state diagram that determines whether a link can be followed be-
tween theClasses and Inheritance state and theInterfaces and Packages
state, based on the user’s current knowledge level. ThePerformance class also main-
tains the levels of competence, recorded date and a metric used to measure the level
of competence.

The User class provides operations to set and get the acquired level of knowledge
or level of competence. These operations are used in guards and actions for adap-
tivity rules, and for updating the learner profile. For example, in the state diagram of
Figure 7.14, the user’s level of knowledge about “Classes and Inheritance" can be ac-
quired either in the Object Oriented Programming Concepts lecture or in the
Classes and Inheritance lecture. Exit Procedures of these states indeed contain
similar update operations such as the following:

CurrentUser.SetLOK(“Classes and Inheritance”,0.2,Content).

The state diagram from figure 7.14 still uses application domain concepts. To map
states to the pages and units generating content, the state diagram must be extended
with tagged values to be used as pointers to content. This activity must be performed
by UML-Guide designers, typically in the course of the transformations required for
“implementing” navigation trails starting from their high-level descriptions.

It is worth noting that state diagrams augmentation does not require a complete
mapping between the state diagram components and WebML conceptual primitives.

76 Chapter 7. Domain Design

Object Oriented Programming Concepts
{PageIName=LectureModules, EntityID=LO, Parameter=LO.OID,

LO.Title=“Object Oriented Programming Concepts“}

What Is an Object
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What Is an Object“}

What Is a Message
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“What Is a

Message“}

What Is a Class
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What is a Class“}

Relations To Code
{PageName=LectureContent, EntityName=LO,

Parameter=LO.OID, LO.Title=“Relations To Code“}

next next

next

Questions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Questions“}

next

next

Language Basics
{PageName=LectureModules, EntityName=LO, Parameter=LO.OID,

LO.Title=“Language Basics“}

Variables
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“Variables“}

Operators
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Operators“}

Control Flow
{PageName=LectureContent

, EntityName=LO,
Parameter=LO.OID,

LO.Name=“Control Flow“}

Expressions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Expressions“}

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

entry/ if(CurrentUser.CurrentLOK
(procedures)<0.5) show(”LO.Title=Procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2, Content)

Figure 7.15: Excerpt from the UML-Guide state diagram extended with tagged values
representing WebML concepts.

Navigation designers just need to specify the IDs of those WebML elements that are
to be used for URL construction, i.e. pages, source entities from which page contents
are extracted and entity attributes that are used in conditions for querying contents.

Figure 10.1 depicts an excerpt from a state diagram extended with tagged val-
ues for WebML concepts needed for computing WebML links. For instance, Object
Oriented Programming Concepts is a lecture. The corresponding page name is
LectureModules from the WebML hypertext model. The entity used to store lec-
tures in the WebML data model is LO. The title used as an attribute to identify the
lecture is the same as the state name. Entry and exit actions are transformed if they
send parameters into WebML links, as in the case of Relations To Code (where
the parameter of the show method is replaced by the specific WebML parameter
&LO.Title=Procedures, used for selecting LOs about Java procedures). Although
in our example tagged values for page and entity names are constant values, in more
complex cases they can be specified as parametric selectors as well, so that they can
automatically retrieve their values from the WebML specification based on specific
conditions.

Chapter 8

Summary

We have proposed a domain engineering framework for adaptive web applications.
The framework has following features:

• It defines the domains of concern in domain analysis for web applications: ap-
plication domain, environment, and user domain. The application domain is a
domain of information to be served in the web application. The environment
domain is a domain of information organization and delivery. The user domain
is a domain of user features which drive the adaptation in web application.

– It uses conceptual models which are used to model concepts (vocabulary)
of interest in the domains and linguistic relations between them.

– It treats adaptation as the configuration aspect modeled in feature models
where optionality, variation points, and configuration dependencies be-
tween features represent adaptable (variable) aspect of adaptive web appli-
cations while mandatory features represent the common aspect of adaptive
web applications in a family. The adaptation is considered as static, i.e.,
adaptation (customization) by a designer, and dynamic, i.e., adaptation at
runtime to certain features of a user.

• It defines an approach to specify dynamic connectors between the domains in
terms of story collaborations in collaboration diagrams. The connectors are links
and messages which bind together features, which represent content fragments
with a certain role in a content, and environment features, which represent the
access structures to the content fragments. Furthermore, the links and messages
are constrained by user domain features to constrain fragments which are op-
tional or variable. This features adaptive content composition specification for
web application.

• It features state diagrams to specify adaptive navigation trails over information
space. The states in state diagrams represent a user step in a navigation trail and
a transition represents a move between the steps. The state diagrams bind con-
tent story collaborations to sequences of the stories which lead to a particular
information goal. The optional and variable transitions and states can be con-
strained by user domain features. This features adaptive navigation specification
for web application.

77

78 Chapter 8. Summary

Advantage for Designers. The main advantage of the framework is that it allows
to reason about domains and adaptation separately but still provides a possibility
to connect separate domains. Each domain can be considered as a close domain
which is put into wider context when a particular application is instantiated. The
context can be defined by different customers, which is another advantage of having
the domains separated. An analyst or a developer can use the domain specifications
in conceptual and feature models to communicate which options a customer already
have and what should be still developed. In addition, it sets a common ground also
for negotiation purposes about adaptation, i.e., which features of application should
be provided just to some users and which to all.

Besides the reasoning, documentation, and communication purposes, the mod-
els can be used also for generating some aspects of the application. The models
(especially the collaboration and state diagrams), when given in appropriate repre-
sentation, provide information about software and information components of final
application which can be used for generating environments, pages, and adaptation
decisions. Some generators will be shown in our case studies in part III. The gen-
erators provide a rapid prototyping solutions so that developers can very promptly
react to changed requirements of a customer by providing him with quick possibility
to touch an application.

Advantage for Applications. The fact that the models can be applied in generators
and metadata implies that more generic applications interpreting the models can be
build. The domain models plug in the domains into the applications, so the applica-
tion infrastructure can be based on generic software components and HTML genera-
tors. Furthermore, the models can be used:

• for search purposes — to search for information about certain story,

• provision purposes — to provide information, environments, stories, and trails
to external parties, and

• integration purposes — to semi automatically integrate information sources and
applications which use them.

This usage of models in metadata, services, and adaptation will be shown in the
case study in chapter 11.

Advantage for a Process. First of all, the framework features an approach to sys-
tematically identify and manage adaptation aspects of web applications even by sep-
arating them in particular domains. The cross domain adaptation occurs then in
the models which connect the domains. This allows for having team roles which
are directly responsible for the adaptation aspects and can concentrate on them.
Furthermore, if the adaptation aspects are not needed to be considered, the activ-
ities concerned with them can be omitted in the development process due to self-
containment of the activities. In addition, the activities which are concerned with
the adaptation aspects can be plugged into other methods for web application devel-
opment as they have well defined interface in terms of concepts and models created
within them. This aspect will be studied in case study in chapter 10.

Part III

Use Cases for the Conceptual
Models

79

Chapter 9

The UML-Guide: Generating
Adaptive Navigation from State
Diagrams

The main purpose of the software design models and abstractions which they provide
is to understand, reason about, and document the design views of software applica-
tions to be developed and deployed.

We have introduced a new engineering framework with new models to be used to
design adaptive Web applications. The purpose of this case study is to show that one
of the newly introduced models is generative, i.e., it can be used also for generating
running Web application code for the aspect modeled by the model in addition to its
documentation purpose.

Since UML models can be stored in XMI file, the OMG standard XML metadata
interchange format files, it is possible to process and manipulate the files by standard
XML processing tools (XML parsers, XSLT parsers and so on) [Ste03]. This simplifies
a construction of generators of run-time software artifacts based on UML models in-
cluding production of (adaptive) Web applications.

In this chapter we explain how the models (UML state diagram models for naviga-
tion and class diagrams for user modeling) can be utilized for generation of adaptive
navigation sequences. The method utilizes the availability of the XML based stan-
dard for storing UML models — the XMI. This enables to take full advantage of XML
technology which is very popular for making Web-based applications.

The adaptive navigation model presented in section 7.4.2 represents adaptive se-
quence of steps through the Web site of the Java course (or through the content items
provided within the course). In this chapter we discuss a visualization of such a model
on an adaptive Web site map (graph). We discuss a method which transforms the
state diagram model into the Web site graph (navigation map). We describe an im-
plementation of the generator provided as a transformation method utilizing the XMI
and the XSLT. We discuss an implementation of a system which uses the generator
to adaptively (re-)generate the navigation map as well. As the main purpose of the
generator is to provide adaptive navigation guides by utilizing the UML models, we
named the generating system the UML-Guide.

81

82 Chapter 9. Generating Adaptive Navigation from State Diagrams

Figure 9.1: Visualization of navigation graph for java e-lecture.

9.1 Visualization of the Navigation Map

One approach to the visualization of the navigation map is depicted in fig. 9.1. We
distinguish [DN03]:

• Folder symbol — which represents a composite information fragment composed
from other composite information fragments, simple information fragments,
groups of links or simple links;

• Dashed box symbol — which represents a composite information fragment, which
has to be presented concurrently with other composite information fragments
(the dashed boxes) depicted on the same level;

• Document symbol — which represents a simple information fragment; only links
can be nested under the simple information fragment;

• Arrow symbol — which represents a simple link to another composite or simple
information fragment; the arrow symbols can be nested under the folder when
they represent different alternatives of link destination from particular docu-
ment (e.g. grayed folder Inheritance with two link alternatives: Simple and
Multiple);

A composition is represented by the plus/minus symbol for showing/hiding en-
closed items and by the left hand indent of enclosed items.

A content can be associated to each symbol. A content and a name of correspond-
ing target node is associated to arrows. The “/next” string is added to the names of

9.2. Transforming State Diagrams into Navigation Map 83

the arrows which represent guidance to the next fragment according to the course
sequence.

We have implemented described structure for Web browsers. We have also im-
plemented the functions for filling this structure and for interpreting the user actions
on this structure. Current position of the user in the navigation graph is indicated by
grayed background of the presented element. As it is obvious from Fig. 9.1, the navi-
gation map was generated from the navigation model of JAVA e-lecture in UML state
diagram depicted in Fig. 7.8.

The generator parameters are used to switch between several adaptive navigation
techniques. For example, the links can be either annotated by appropriate color from
traffic light metaphor or showed, hidden or sorted according to values assigned to
different user features used in adaptation constraints. The green symbol annotates
the documents which are appropriate for a user. The red symbol annotates the doc-
uments which are not appropriate for a user. Yellow or other symbols can be used to
indicate other information about the document, e.g., already read. The actions as-
signed to the transitions or to entry or exit events of the states are transformed to the
calls for operations over internal representation of the navigation map. The skeleton
for implementation of such operations is generated as well. The code of this opera-
tions has to be filled manually. Operations are created as member functions of user
model classes according to their specifications. We have implemented operations
from the user model depicted in the figure 7.2.

9.2 Transforming State Diagrams into Navigation Map

A Method. The input to the transformation method is a state diagram. The output
is a navigation map. The transformation is carried out according to the following
method:

1. Find the initial pseudostate and transform it to the Folder symbol. Embed out-
going transitions from the initial state as Arrow symbols under the created Folder
symbol. Set the content of the Arrow-s to the content of outgoing transitions tar-
get. Make visible the Arrows whose guards of transitions are satisfied or anno-
tate the Arrows by appropriate symbol from traffic lights metaphor (red, green,
and yellow).

2. Transform each composite state to:

(a) The Folder symbol if it is a state with alternative substates or substatema-
chine.

(b) The Dashed box symbol if it is a concurrent region.

Apply these rules for all substates recursively. Put substates under their compos-
ite ancestor. Make visible the components whose entry guards are satisfied or
annotate the symbols by appropriate symbol from traffic lights metaphor (red,
green, and yellow).

84 Chapter 9. Generating Adaptive Navigation from State Diagrams

3. Transform each simple state to the Document symbol. Make visible the frag-
ments, whose entry guards are satisfied, or annotate the nodes by appropriate
symbol from traffic lights metaphor (red, green, and yellow).

4. Transform each transition to the Arrow symbol:

(a) If the target of a transition is a state, assign the content target of this state
to the symbol.

(b) If the target is a peseudostate (junction, choice, join, fork), transform it
to as much Arrow symbols as the number of outgoing transitions of the
pseudostate. Group the arcs under the Folder symbol with the name of the
incoming transition of the pseudostate. Assign the content of the outgoing
transitions target states to these Arrow symbols.

Associate the Arrow-s to their sources (make them subelements of their sources)
and make visible the Arrow-s whose guard is satisfied or annotate the Arrow-s
by appropriate symbol from traffic lights metaphor (red, green, and yellow).

5. Find the final state and transform it to the Document symbol. Associate content
to it and make visible the document whose guard is satisfied or annotate the
Document by appropriate symbol from traffic lights metaphor (red, green, and
yellow).

...
<UML:SimpleState xmi.id = ’a53’ name = ’SW Requirements’

isSpecification = ’false’>
<UML:ModelElement.taggedValue>
<UML:TaggedValue xmi.id = ’a54’ isSpecification = ’false’

dataValue = ’127-0-0-1-206be6:f479423af6:-7ffb’>
<UML:TaggedValue.type>

<UML:TagDefinition xmi.idref = ’a39’/>
</UML:TaggedValue.type>

</UML:TaggedValue>
<UML:TaggedValue xmi.id = ’a55’ isSpecification = ’false’

dataValue = ’Course-2/course_info1/lesson_01/sco01.htm’>
<UML:TaggedValue.type>

<UML:TagDefinition xmi.idref = ’a51’/>
</UML:TaggedValue.type>

</UML:TaggedValue>
</UML:ModelElement.taggedValue>
<UML:StateVertex.outgoing>

<UML:Transition xmi.idref = ’a56’/>
</UML:StateVertex.outgoing>
<UML:StateVertex.incoming>

<UML:Transition xmi.idref = ’a52’/>
</UML:StateVertex.incoming>

</UML:SimpleState>
...

Figure 9.2: A part of the XMI document for the state diagram of the Java e-lecture: SW
Requirements simple state with reference of incoming and outgoing transition.

9.2. Transforming State Diagrams into Navigation Map 85

XMI. The UML model is represented by an XMI (XML Metadata Interchange) docu-
ment [Gro00b]. An XMI document is an XML document where the tags are elements
from the UML metamodel. An example of the XMI document fragment for the state
diagram is depicted in Fig. 9.2. The XMI document can be generated directly using
a CASE tool (e. g. ArgoUML [arg], or its commercial version Poseidon [pos]). Fig-
ure 9.2 depicts the SW Requirements simple state as the one of the state machine
subvertexes together with the outgoing and the incoming transition references.

XSLT Templates as Generation Rules. XSLT templates are used to transform one
XML document to another XML, HTML or text document. The XSLT templates con-
tain transformation rules for transforming the XMI file to code fragments for filling
the navigation map. The rules are interpreted by an XSLT parser which generates
functions for inserting symbols into the navigation map structure.

...
<xsl:template match="UML:SimpleState" mode="transition">
<xsl:param name="levelp"/>
<xsl:param name="namep"/>
<xsl:param name="stateidp"/>
<xsl:param name="transnamep"/>
<xsl:variable name="fldname" select="@name"/>
<xsl:variable name="cond" select=
"UML:State.entry/UML:CallAction/UML:Action.script/
UML:ActionExpression/@body"/>

<xsl:choose>
<xsl:when test="$cond">
<xsl:text>if (</xsl:text><xsl:value-of select="$cond"/>
<xsl:text>) {</xsl:text>
<xsl:value-of select="concat(’aux’, $levelp+1)"/> =
insDoc(<xsl:value-of select="concat(’aux’, $levelp)"/>,
gLnkLnk(2, "<xsl:value-of select="$fldname"/>
<xsl:if test="$transnamep=’next’">/
<xsl:value-of select="$transnamep"/></xsl:if>",
"<xsl:apply-templates select=
"UML:ModelElement.taggedValue"/>",
"<xsl:value-of select="$fldname"/>",
"<xsl:if test="$visibitity">green</xsl:if>",
"<xsl:value-of select="$stateidp"/>"))

<xsl:text>}
</xsl:text>
<xsl:text>else{
</xsl:text>
...

</xsl:when>
...

</xsl:choose>
</xsl:template>
...

Figure 9.3: The example of XSLT template part for transforming simple state as a tar-
get of a transition.

86 Chapter 9. Generating Adaptive Navigation from State Diagrams

User Model
Schema

(XMI) User
Model
(XML)

XSLT
Parser

XSLT
Parser

Navigation
model
(XMI) Navigation

Model
(TreeView)

User
Interface
Control

Generation
Rules

(XSLT)

input

input

output

Generation
Rules

(XSLT)

input

input
output

User Model
Schema
(XMLS)

uses

TreeView
Manipulation

Regenartion of TreeView

User Model
Manipulation

UML Case Tool
Save/Export

of State Machine

Save/Export
of Class Diagram

User
Interface
Events

Figure 9.4: A general architecture of generator and final application.

Figure 9.3 depicts a fragment of a template where an arrow symbol is generated
(gLnkLnk(...) function in the template). The template applies for a target sim-
ple state of a transition (mode="transition"). The levelp parameter determines
where the arrow symbol has to be enclosed (under folder, document, or group of
transitions). Target information fragment of the link (arrow) is passed to the tem-
plate through namep parameter. The stateid parameter is used to identify the exact
position of the target information fragment in the map. This is used to change the
indication of current position of the user in the map. If “next” event is associated to a
transition then this string is added to the target state name to indicate the next infor-
mation fragment according to the planned path. The global visibility parameter
is used to switch between the presentation options (annotation by traffic lights or
showing/hiding).

9.3 System Implementation

Figure 9.4 depicts an architecture of the implemented system. The central parts of
the system are user interface control over the navigation map and XSLT parser, which
regenerates the navigation map according to the current state of a user profile. The
navigation map is regenerated according to rules described in previous sections. The
XML schema for user profile structure is generated from the user model class dia-
gram.

We use standard library for manipulating user records in XML. The user records
are maintain at the client side during browsing. They are transmitted to the server
database when user closes the course in whichever state. When a user opens the
course again his profile is initialized from server database. The navigation map is
manipulated at the client side as well but it is possible to implement it at the server
side as well.

When a user enters the system first time, initial navigation map is generated. The
initial generation is derived from the entry state and according to the rules for nodes
visibility, annotations, and collapsing. The user profile is initialized according to the
entry user assessment (entry form).

9.4. Lessons Learned 87

Events generated by user actions at the user interface invoke associated actions
which process and store new values to the user profile. They also initiate regeneration
of the navigation map according to the new values from the user profile.

The XMI document is generated by standard export facility of Poseidon UML tool.
We have implemented the XSLT templates for transforming the XMI representation
to the format described in the section 9.1 (Visualization of the navigation map). We
have also developed the user interface control mechanism, which interprets user ac-
tions over navigation model (tree).

9.4 Lessons Learned

State Diagrams and Other Approaches. The key issue which is addressed by this
case study is the focus on user interaction and user’s and system’s generated events
in navigation. This can be naturally described by utilizing the UML state diagrams.

The important aspect of in navigation is also how content items are grouped in
certain navigation nodes and relationships between such composite structures. This
has been addressed by means of views in OOHDM [SR98] or navigation classes in
UWE [Koc01]. In this chapter, the content was referenced by a content identifiers in
the introduced “Content” tagged value of a state. To fully benefit also from a dynamic
content generation, the state diagram approach should be aided with the structural
methods (for example OOHDM [SR98], UWE [Koc01], WebML [CFB00], W2000 [BGP01]
or other methods which are reviewed in chapter 3). The integration can be made as
addressed in section 7.5 by introducing concepts from the domain design models, for
example operations used as the side effect actions in a state machine or as additional
tagged values to enhance the state machines produced.

The introduced state diagrams complement the structural methods for navigation
modeling by focusing user interaction and traversing events while the structural ap-
proaches are more focused on composition and structural relationships between the
navigation structures. The guidelines for integration of both views can provide useful
understandings of Web application engineering processes. This issue is the main con-
cern of our second case study on the integration of the adaptive navigation modeling
with the WebML reported in the next chapter. Similarly, our state diagram approach
can also aid the navigation analysis based on a user aim introduced in [CK02].

The importance of behavioral modeling techniques as a complement to the struc-
tural techniques was recognized by other authors as well. For example, the WebML
has been extended by workflow oriented modeling approach in [BCC+03].

Several XML based transformation methods have been introduced for the Web-
based information systems such as the generators for WCML [SG00] or WebML [CFB00].
Another approach to rapid prototyping has been introduced in [SL02]. It is based on
use case models, activity diagrams and Web site structure models. An approach to
generate HTML pages from page and data graphs was presented in [LFS+98]. Our ap-
proach is based on the XSLT transformation templates. Tools employed are similar to
those transformation approaches based on the XML. Our transformation templates
are similar to the Abstract Presentation Diagram Refinement [GCP01]. They employ

88 Chapter 9. Generating Adaptive Navigation from State Diagrams

rule based approach1 to refine the diagrams taking specific conditions of target envi-
ronment into account. We follow two level rule based approach. Adaptation (restric-
tion) rules based on user model are specified in the state diagrams. Transformation
rules are encoded in the XSLT templates, which serve for transformation of the state
diagrams to navigation maps as one possible visualization.

Visualization. There are other possibilities to visualize and implement a navigation
support. For example the navigation map can be restricted just to the nodes which re-
flect actual position of a user with links to the next and related information fragments
and the folders to which the currently presented information fragment belongs to. If
a user clicks a link which brings him to an information fragment which has not been
contained in the presented map, the map is regenerated to visualize a new context of
the user.

Generator. The generator can be further parametrized to generate just outgoing
and incoming links as a navigation guide. The generator generates scripts for cre-
ating the folder structure for HTML content referenced in the navigation map. It can
be further extended to generate HTML files with anchors for links modeled by tran-
sitions and division tags for blocks modeled by substates. Adaptation operations can
be generated as parameters of events for such anchors. The page skeletons with gen-
erated anchors can be then filled with a content. All this variability at the generator
level can be captured by the XSLT template parameters.

More complex presentations require more than one generator template. Consider
for example a situation when the most read topics for last three days should be dis-
played and sorted according to user preferences and number of visits for a particular
information node. This can be achieved by three templates. One template will trans-
form user models stored in XML format to another XML document, which will con-
tain topics, URLs of the content items which present the topics, and count of users
who visited the topics. Another XSLT template can enhance this file by generating
additional annotations from XMI file (e.g. links between the topics, subparts of the
text fragments, and so on). Sorting mechanism of the XSLT templates can be finally
applied in third template, which will sort the XML document according to conditions
which have been set by a designer during the design phase(e.g. count of users).

1They use a language similar to OCL.

Chapter 10

Domain Specific Languages with
the UML-Guide

The UML is a modeling language very close to the object-oriented programming en-
vironments. However, the Web, especially from presentation point of view, does not
provide an execution environment similar to the operating systems where applica-
tions can run as binary distributions. The Web applications are accessible through
document centric hypertext pages though recently extensions of applications servers
allowed to use a sort of object-oriented principles within Java Server Pages (JSP), Ac-
tive Server Pages or other technologies. Researchers started intuitively to look at ex-
tensions or languages which are closer to the hypertext domain and document cen-
tric presentation facilities of the Web.

According to [vDKV00, DK02], a domain-specific language is a programming or
executable specification language that offers, through appropriate notation and ab-
straction, expressive power focused on, and usually restricted to a particular problem
domain. According to that definition, the languages, which are provided with exten-
sions to the Web servers to provide execution environment for the models/programs
described by them can be called domain-specific languages for the Web, the naviga-
tion, or the hypertext domain.

WebML [CFB+02] is one of the languages which can be classified as a domain-
specific language for data-intensive Web applications. WebML-based development
is supported by a CASE tool [CFB+03], which offers a visual environment for drawing
the WebML conceptual schemas, and supports the automatic generation of server-
side code. The generated applications run in a standard runtime framework on top
of Java 2 application servers, and have a flexible, service-based architecture allow-
ing components customization. The domain specificity is located especially in the
hypertext schema specification which is executable in the extensions of the Tomcat
Web server and its JSP engine and Microsoft .Net platform.

The UML is on the other hand application domain independent. The UML state
diagrams for adaptive navigation trails with class diagrams for user models have to be
specialized or mapped to the models which are executable on the Web. In previous
chapter, we have described how to generate Web-based user interface for adaptive
navigation from the navigation guides specified by the state diagrams. In that study,
we have not explored the content generation part to full extent.

89

90 Chapter 10. Domain Specific Languages with the UML-Guide

In this chapter we present a case study, which maps the UML state machines on
the WebML application and hypertext model executable at the WebML platform. The
main purpose of this study is to show whether:

• State diagrams can be expanded with the content generation concepts and thus
to provide more generic solution for adaptive Web-based application design.

• State diagrams complement existing structural solutions for the navigation de-
sign and as such can be plugged in or out of the development process as needed.

10.1 Generating Adaptive Navigation over WebML Generated
Application

We have studied the integration of WebML with the UML-Guide at composing an e-
learning WebML application with the UML-Guide that is focused on a specific learn-
ing goal [CDMN04, CDMN05]. The users are offered with the user interface generated
by the WebML engine, populated by content spawning a large body of knowledge.
More focused learners are offered with a guide, available on an interface that can be
opened “aside” the main one, and that points to pages and contents published by
the WebML-generated interface, according to a specific learning objective and user
experience.

The case study is based on the conceptual models from section 7.5.2. To remem-
ber, the excerpt of a state diagram from section 7.5.2, which is taken for integration
purposes, is depicted in fig. 10.1. The states are extended with tagged values for
WebML concepts as pointed in section 7.5.2. The process consists of two steps: iden-
tifying application domain concepts to be used to identify content and identifying
hypertext elements to be used to present the content.

For instance,Object Oriented Programming Concepts is a lecture. The cor-
responding page name is LectureModules from WebML hypertext model. The en-
tity used to store lectures in the WebML data model is LO. The title used as an at-
tribute to identify the lecture is the same as the state name. Entry and exit actions
are transformed if they send parameters into WebML links, as it is in the case of
Relations To Code (where the parameter of the show method is replaced by the
specific WebML parameter &LO.Title=Procedures).

Generating Links. The existing UML-Guide generator described in previous case-
study in chapter 9 accessed the content through URLs assigned to each symbol of
the navigation map. To be able to reuse the generator, links have to be generated ac-
cording to the tagged values used in states. The WebML runtime works similarly, it
generates URLs out of the link specifications in the WebML hypertext schemas point-
ing to the pages which are targets of particular link. Therefore, each page in WebML
runtime is accessible through a link generated from object identifier of the page and
URL of the Web application. WebML links take the format:

ApplicationURL/page_identifier.do?ParameterList

10.2. System Implementation 91

Object Oriented Programming Concepts
{PageIName=LectureModules, EntityID=LO, Parameter=LO.OID,

LO.Title=“Object Oriented Programming Concepts“}

What Is an Object
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What Is an Object“}

What Is a Message
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“What Is a

Message“}

What Is a Class
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What is a Class“}

Relations To Code
{PageName=LectureContent, EntityName=LO,

Parameter=LO.OID, LO.Title=“Relations To Code“}

next next

next

Questions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Questions“}

next

next

Language Basics
{PageName=LectureModules, EntityName=LO, Parameter=LO.OID,

LO.Title=“Language Basics“}

Variables
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“Variables“}

Operators
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Operators“}

Control Flow
{PageName=LectureContent

, EntityName=LO,
Parameter=LO.OID,

LO.Name=“Control Flow“}

Expressions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Expressions“}

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

entry/ if(CurrentUser.CurrentLOK
(procedures)<0.5) show(”LO.Title=Procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2, Content)

Figure 10.1: Excerpt of the UML-Guide state diagram extended with tagged values
representing WebML concepts.

where page_identifier denotes a WebML page and ParameterList is a list of
tag-value pairs, in the form entity_id.attribute=parameter. Thus, UML-Guide
state diagrams must be extended with tagged values to be used as pointers to WebML
concepts.

The UML-Guide generator must be supplemented with additional procedure con-
cerned with the generation of WebML links “pointing” to the WebML-controlled por-
tion of the application, to be addressed while building the UML-Guide interface.

The links are generated by submitting queries for retrieving OID’s of the WebML
concepts. The OIDs of pages are retrieved from the WebML design documents while
the content OIDs and parameters are retrieved from an application database. The
XMI document containing the UML state diagram is rewritten to add a Content tagged
value containing the generated link. After that step, the original UML-Guide genera-
tor for visualizing navigation map can be used as is.

10.2 System Implementation

The implementation is based on integration of the original UML-Guide engine im-
plemented as combination of JSP, JavaScript and Java and the WebML Web Ratio
platform. The integration is loose and preserves the distinctive features of the two
systems. In particular, some nodes and links in the UML-Guide state diagram point
to content that is managed in the WebML e-learning application; therefore, the in-
tegration of UML-Guide with WebML requires UML-Guide adopting WebML con-
cepts, such as page identifiers and content identifiers. In this way, concepts used as
state names or as tagged values within UML-Guide are mapped to learning resources
stored in the database generated from the WebML data model.

In the resulting application, the user-specific adaptation occurs in UML-Guide.
The proposed solution is an example of how client-side computations, specified at
high-level in UML, can integrate WebML-designed solutions. As such, this experi-
ment can be replicated for many other applications and the focus on UML-Guide can
pursue different objectives.

92 Chapter 10. Domain Specific Languages with the UML-Guide

UMLGuide
User

Interface

TreeView
Manipulation

UML Case
Tool

UMLGuide
Design Models

in XMI

WebML Case
Tool

WebML Run
Time Support

WebML Link

WebML
Formatted
Content

WebML
Executable

Code

WebML Link
Generator

UMLGuide
Code

Generator

WebML
User

Interface

UML Guide XMI
Extended with

WebML Concepts
and Links

WebML Concepts

WebML Code
Generator

WebML Design
Models
in XML

WebML Page and Unit IDs,
Content OIDs

WebML
Specifications

UMLGuide
Specifications

WebML
Content

UML Guide
XSLT

User
Profile Changes

User
Profile

Figure 10.2: Architecture of the composed system.

Figure 10.3: Visualization of navigation graph for java e-lecture.

Figure 10.2 describes the system architecture. The high-level WebML and UML-
Guide specifications are mapped into XML-based internal representations, respec-
tively built by the code generator component of WebRatio [CFB+03] and by the XMI
generator of Poseidon.

The WebML run-time component runs JSP templates (also embedding SQL), and
uses XSL style sheets for building the application’s presentation. The XMI representa-
tion of a UML-Guide drives a run-time adaptation engine, written in XSLT, which dy-
namically changes the content of the profile variables and produces the UML-Guide
user interface. The WebML and UML-Guide interfaces are then composed and pre-
sented to the user.

10.3. Visualization of Integrated Application 93

10.3 Visualization of Integrated Application

The user profile records are maintained at the client side. When users begin a new
session, their profile is initialized from a client-side XML-based database. The navi-
gation map is manipulated at the client side as well. Java script is used to implement
the user interface control and user profile manipulation. The events, which are gen-
erated by user actions on the user interface, invoke profile adaptation actions, which
possibly process and add new values to the user profile. They also trigger regenera-
tion of the navigation map, according to the newly computed values.

The navigation map responds to changes in user profile by changing recommen-
dation annotations (e.g., changing colors of nodes or showing/hiding nodes). When
specific requirements, for example those set by conditions in entry actions of states,
are met, the WebML vertical adapts delivered content based on additional parame-
ters that UML-Guide is able to send to the server-side application.

Figure 10.3 highlights a lecture on “What is an Object”. The UML-Guide panel
placed on the left shows the position of the user reading the material for the mod-
ule by the shaded background. The content of the lecture is delivered by the WebML
vertical based on the generated link that is assigned to the document symbol at the
“What is an Object” entry. The symbol is generated from the simple state with the
same name depicted in Figure 10.1. The state has a transition to the next state “What
is a Message”, which in the UML-Guide panel is depicted as an outgoing arrow, under
the symbol of the current lesson. As the user has sufficient background knowledge
needed to understand the next step in his learning path, the direct next steps are an-
notated by a green ball. Further rules apply for additional entries to hide documents
and folders which are not relevant to the user’s learning goals.

The simple state “What is an Object” is a substate of the “Object Oriented Pro-
gramming Concepts” state, which is rendered as a folder symbol in the navigation
map. The constraints and side effect actions are transformed into conditions and
procedure calls in the UML-Guide which dynamically generates the traffic-light an-
notations. Other symbols and their grouping under folders are generated similarly
from the state diagram according to the method described in 9.2.

10.4 Lessons Learned

State Diagram and Content Generation. We have shown that the integration of the
UML guide and the WebML can be achieved. Furthermore, we have shown that the
integration can be done at the conceptual level by reusing concepts of the WebML
inside the UML-Guide to provide concept interoperability, and the URL generation
technique of the WebML runtime inside the UML-Guide XSL code to provide sys-
tems interoperability and the content generation. The state diagrams augmentation
does not require a complete mapping between the UML-Guide components and the
WebML conceptual primitives. The UML-Guide designers just need to specify IDs
of those WebML elements that are used for the URL construction, i.e., pages, source
entities from which page contents are extracted, and entity attributes that are used
in parametric selectors for retrieving page contents. The resulting application gen-
erator can be considered an “adaptive hypermedia generator” in full strength, whose

94 Chapter 10. Domain Specific Languages with the UML-Guide

potential expressive power goes well beyond this experiment.

Complementariness. The combination of the two methods offers several benefits.
Among them the most relevant one is the orthogonality of the adaptation design with
respect to the content and the hypertext design. This is particularly useful in the e-
Learning domain where, in order to increase the application effectiveness, the pro-
vision of LOs by courseware companies must be accompanied by the definition of
personalized learning paths or individual curriculum sequences [WB01], based both
on local learning strategies as well as on specific user competencies. These two re-
quirements are not easy to identify by companies offering e-Learning services, while
they are generally well-contextualized within organizations exploiting the services.
The availability of customization extensions therefore enables the latter to customize
the application locally, according to their learning goals and the knowledge level of
their members. The UML-Guide state diagrams constitute an easy to use specifica-
tion tool, especially due to the popularity of UML. Also, these diagrams allow defi-
nition of learning paths and conditions for state transitions without mastering the
complexity of the server-side application design, keeping the specification at a higher
level of abstraction. This case study also proves that the adaptive navigation design
proposed in this thesis can be used to extend existing methods for Web application
engineering even without employing further methods or the whole domain engineer-
ing framework.

Software Process. The case study also provides contribution to the software process
of Web applications. Let us describe the process on a scenario. Figure 10.4 depicts the
design process for building adaptive applications intermixing the UML-Guide with
the WebML specifications and platforms [CDMN05].

The courseware company develops its e-Learning vertical according to well de-
fined top-down steps suggested by the WebML, consisting of designing the data con-
tent first, then the hypertext and finally the presentation. Such a process can be
paired with the use of the WebRatio tool, which automatically generates the database
for storing learning objects and the hypertext composing site views, Web pages, and
the content chunks presented to the user.

Then, of course, the courseware company also authors the learning objects in par-
ticular domains (e.g. modules about "Programming in Java"). The authoring consists
of adding, changing or excluding learning objects and also managing their metadata,
like classifying the objects according to topic, title, description, difficulty, background
required, related learning objects and so on.

The SMEs start the design of the adaptive guide by collecting knowledge and back-
ground data of their employees, and then proceed by selecting bottom-up relevant
contents from the body of learning objects that are made available. The SME de-
signers gather information about the employee’s skills and needs (e.g., the integra-
tion of Java programming and Oracle 9i), and build the adaptive user guides to be
used throughout the SME, then they select personalized portions of such guides and
install each of them on the employee’s client application. This application is able to
keep trace of the employees’ progresses into the correspondent user model while they
perform learning activities.

10.4. Lessons Learned 95

SMECourseware Company

Data Modeling

Hypertext Modeling

Presentation Modeling

Generation of eLearning System

Adaptive Guides Modeling

User Modeling

Generation of Adaptive Guides

Learning Object Authoring Requesting New/Modified Learning Object

Figure 10.4: Adaptive application design process.

If a SME encounters a need for alteration or additions of new learning object, the
request for that activity is submitted to the courseware company. The courseware
company alters/adds the new learning object and updates its metadata. The database
of the e-Learning vertical is updated at the courseware side and the curricula devel-
opers are notified about the new learning objects. In case the SMEs’ curricula speci-
fications have to be updated, the generation of user guides is repeated.

This case study also proves the hypothesis given by the Web application modeling
framework highlighted in fig. 3.1 used to review currently established Web applica-
tion model driven development methods. The hypothesis is that the combination
of methods into a Web application software process depends a development team,
project, and company context. In this case study, we have described a specific con-
text given by a courseware company providing a generic application and SMEs cus-
tomizing the application to their specific needs where combination of WebML and
the UML-Guide suits well. In other contexts, other methods might be suited for inte-
gration better.

Chapter 11

Domain Engineering and Adaptive
Semantic Web Information Systems

The idea behind the Semantic Web [TLHL01] is to endow information on the web with
a “well-defined meaning, better enabling computers and people to work in coopera-
tion”. The Semantic Web is regarded as a new Web generation which graduates from
interlinked HTML pages to networks of objects which can be described according to
a subject, object, predicate schema.

The aim of this case study is to show how the web application conceptual models
proposed in this thesis relate to the idea of the Semantic Web. The hypotheses behind
the study are:

• The identification and separation of different aspects into a number of differ-
ent domains can be helpful in order to obtain semantic web metadata about
information and computation resources.

• The instantiation of the separate domains in resource metadata serves the same
purpose as the story collaboration model — to provide a story which is depicted
in the resource.

• The variability in feature models which is to be resolved at run-time corresponds
to adaptation reasoning rules for semantic web metadata.

• The domain design models guide web service design for adaptive semantic web
applications.

11.1 The Model for Semantic Web Metadata

Semantic web technologies like the Resource Description Format (RDF) [LS] or RDF
Schema (RDFS) [BG02] provide us with appropriate modeling constructs to model
and represent the domain of the resources, the resources themselves, as well as users
and links. RDF is used to describe specific resources; an RDF Schema serves to define
domain-specific vocabularies for the metadata records represented as RDF descrip-
tions. The following paragraphs summarize the basic principles of semantic web rep-
resentation formats which we will use to describe vocabularies needed for person-

97

98 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

http://www.l3s.de/~dolog/ Peter Dologhttp://purl.org/dc/elements/1.1/author

Figure 11.1: Example of an RDF graph

alized access to web resources. For more information we refer the reader to [Cha01,
W3C03].

On the Web, each resource is provided with its own identifier, specified as a Uni-
fied Resource Identifier (URI) which is globally unique. Descriptions about resources
are represented as triples consisting of subject, object, and predicate.

For example, an assertion about the fact that the website of Peter Dolog was au-
thored by Peter Dolog is depicted in figure 11.1. The subject of this triple is http://
www.l3s.de/~dolog, the predicate is author (the dublin core namespace is used
to encode the predicate) and the object is Peter Dolog as a literal. Object values
can be resources or literals. Literals are strings of text, resources are referenced
by URIs. Triples can be embedded in HTML files in an appropriate XML serialization.

Concepts and vocabularies can be provided explicitly on the semantic web and
used for these RDF descriptions. The semantic web metadata model distinguishes
three types of concepts: fundamental concepts, schema definition concepts, and utility
concepts. Each concept has its own identifier in the form of an URI. The concept
definitions are grouped into schemas or namespaces which are identified by URIs as
well. It is possible to use abbreviated syntax for the concepts where a namespace is
abbreviated into a string and separated from the concept identifier by a colon.

The fundamental concepts define the RDF triples, providing rdf:Resource as a sub-
ject, and rdf:Property as predicate. A triple statement can be represented by rdf:State-
ment for the purpose of reification. These concepts are mandatory for all agents
which are developed for the semantic web.

The schema definition concepts are used to define custom vocabularies to be used
with metadata descriptions. These concepts are usually domain specific and will be
understood only by the domain specific agents, e.g. web applications for particu-
lar purposes. The new vocabulary is defined by means of classes (rdfs:Class). The
classes can be extended to include properties by defining a domain of properties
(rdfs:domain); i.e. their inclusion in a particular class. Properties can be further
restricted by defining their range of values (rdfs:range). Classes and properties can
be specialized by using subclassof and subpropertyof predicates (rdfs:subClassOf and
rdfs:subPropertyOf). Any property defines a relation between resources. Subproper-
tyof defines a subset of the property range. Similarly, the subclassof relation between
classes is defined to allow for subset inclusion. Classes define sets of resources of a
certain kind. rdf:type is used to denote that a resource is an instance of a class or in
other words that it belongs to a certain set of resources. Furthermore, the resources
types give the resource a meaning in a certain context, defined and constrained by a
schema.

The utility concepts are additional concepts used to define collections and for de-
ploying RDF vocabulary on the web. Collections can be defined by one of the sub-
classes of the rdfs:Container as a bag (rdf:Bag), ordered sequence (rdf:Seq), or alter-

11.2. Reasoning on the Semantic Web 99

natives (rdf:Alt). rdfs:seeAlso and rdfs:isDefinedBy are used to point to alternative de-
scriptions of a resource. rdfs:label and rdfs:comment are used to add human readable
descriptions of a resource.

The Web Ontology Language (OWL) extends RDFS with restrictions on properties,
equality between classes and properties, intersection of classes, property character-
istics, 0 and 1 cardinality restrictions, and versioning in a light version. OWL Full and
DL (relates to description logic) add class axioms, arbitrary cardinality, filler informa-
tion and boolean combination of class expressions.

11.2 Reasoning on the Semantic Web

Several query and reasoning languages have been introduced to query for and reason
with metadata on the semantic web. The semantics of the language are often based
on Datalog, as used in the Edutella Query Language (QEL) [NWQ+02, NS03], and ex-
tended rule and logic programming languages.

QEL offers a full range of predicates as well as equality, general Datalog rules, and
outer join (see [NS03]). An example for a simple QEL query regarding resources is the
following:

s(X, <dc:title>, Y),
s(X, <dc:subject>, S),
qel:equals(S, <java:OO_Class>).

The query tries to find resources where dc:subject equals java:OO_Class.
The prefixes qel:, dc:, and java: are abbreviations for URIs of the schemas used.
The variable X will be bound to URIs of resources, variable Y will be bound to titles of
the resources, and variable S will be bound to subjects of the resources.

A rule language especially designed for querying and transforming RDF models is
TRIPLE [SD02]. Rules defined in TRIPLE can perform reasoning operations in respect
of RDF-annotated information resources; translation tools from RDF to TRIPLE and
vice versa are provided.

TRIPLE supports namespaces by declaring them in clause-like constructs of the
form namespaceabbrev := namespace; resources can use these namespaces abbrevia-
tions.

sun_java := "http://java.sun.com/docs/books/tutorial".

Statements show a similarity to F-Logic object syntax: An RDF statement (which
is a triple) is written as subject[predicate → object]. Several statements with the same
subject can be abbreviated in the following way:

sun_java:’index.html’[rdf:type->doc:Document;
doc:hasDocumentType->doc:StudyMaterial].

RDF models are explicitly available in TRIPLE: Statements that are true in a spe-
cific model are written as "@model", e.g.

100 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

doc:OO_Class[rdf:type->doc:Concept]@results:simple.

The usual connectives and quantifiers for building logical formulae from state-
ments are allowed, i.e. ∧, ∨, ¬, ∀, ∃, etc. For TRIPLE programs in plain ASCII syntax,
the symbols AND, OR, NOT, FORALL, EXISTS, <-, ->, etc. are used. All variables must
be introduced via quantifiers, therefore marking them is not necessary.

11.3 Models and Semantic Web Application Components

The models created as products of the domain engineering process for adaptive web
applications can be used on the Semantic Web. The notion of objects as instances of
particular classes from an ontology is similar to object orientation principles in soft-
ware engineering methodologies. Furthermore, the configuration knowledge main-
tained by the domain feature models can be mapped to adaptation rules which en-
able decisions to be made about appropriate variants of a feature according to knowl-
edge available about a user.

Figure 11.2 depicts relations between domain engineering models, semantic web
ontologies, metadata, adaptation rules and services which collaborate in an applica-
tion to serve a user. The domain conceptual models correspond to ontologies and
schemas; i.e., the application domain model corresponds to the application domain
ontology, the environment domain model corresponds to the environment domain
ontology and the user domain model corresponds to the user domain ontology. The
application uses interfaces to access the ontologies, therefore appropriate interfaces
and services to access the ontologies have to be provided (application domain, envi-
ronment, and user domain ontology services). The services may be parts of frame-
works to access the ontologies and their instances. The configuration information of
the services in the framework is based on the feature models of the domains.

As with the domain analysis models, the ontologies are instantiated and refined
into metadata. The instances in the metadata correspond to the story collaboration
models as they describe what a resource is about and how the concepts appear in the
resource content. Furthermore, concepts and content sequencing information are
also provided within the metadata which correspond to the navigation trail models.
The adaptation rules and constraints used in the collaboration models and naviga-
tion trail models correspond to the adaptation rules which are used to perform rea-
soning operations on metadata and content fragments. Both navigation and content
composition have to be realized by appropriate services, i.e. a navigation generation
service and a content composition service.

The navigation trail and collaboration models may contain side effect actions and
messages to user observation components. The event specification which supple-
ments the state diagram model is a source for the observation ontology and its obser-
vation service. The observation service generates user metadata instances (which are
inserted into a user profile) based on the observation and user domain ontologies.
Observation services are very often integrated with user modeling frameworks.

11.4. Ontologies 101

Application Domain
Conceptual Model

Application Domain
Ontology

Environment
Domain

Conceptual Model

Application Domain
Ontology Service

Environment
Domain Ontology

Environment
Domain Ontology

Service

User Domain
Conceptual Model

User Domain
Ontology

Content
Composition

Service

User Domain
Ontology Service

Products of Domain
Engineering for Adaptive

Web Applications

Corresponding Semantic
Web Realization

Corresponding Processing
Unit

Navigation
Generation Service

Metadata

Content fragments

Adaptation Rules

User Pofile

Story Collaboration
Model

Navigation Trail
Model

Observation
Service

Observation
Ontology

Figure 11.2: Correspondences between the models created in domain engineering
process for adaptive web applications and semantic web ontologies, metadata, and
application processing services

11.4 Ontologies

As suggested in section 6.1, specific domain information is usually described by con-
cepts and their mutual relationships. The semantic web vocabularies (ontologies) in
RDFS or OWL serve the purposes of domain specific models [HDN04]. The domain
ontologies are usually described by classes (classifies objects from a domain) and re-
lationships between them in a manner similar to our conceptual models.

The Application Domain. Figure 11.3 depicts an excerpt from the Java program-
ming domain following on from our eLearning examples from part II. We show just
a fragment of a domain knowledge base covering Java programming concepts with
an isa (subConceptOf) relationship between these concepts. Figure 11.3 depicts the
Programming
_Strategies concept with its subconcepts: Object_Oriented, Imperative, Lo-

102 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

Concept
Programming_Strategies

Concept
Imperative

Concept
Logical

Concept
Functional

Concept
OO_Class

Concept
OO_Method

Concept
Object_Oriented

Concept
OO_Object

Concept
OO_Inheritance

Concept
OO_Interface

subConceptOfsubConceptOf subConceptOf subConceptOf

subConceptOf subConceptOf subConceptOf
subConceptOf subConceptOf

Figure 11.3: An excerpt from an application domain ontology for a Java e-lecture

gical, and Functional. OO_Class, OO_Method, OO_Object, OO_Inheritance,
and OO_Interface are depicted as subconcepts of Object_Oriented. Other re-
lations between concepts might be useful for personalization purposes as well, e.g.,
sequencing or dependency relations.

DocumentType
Educational Material

DocumentType
ExaminationMaterial

DocumentType
StudyMaterial

DocumentType
Example

subTypeOf

DocumentType
ProjectTask

subTypeOf

DocumentType
Exam

subTypeOf

ObjectProperty

ConsistOf

DocumentType
Exam Task

domainrange

subTypeOf

DocumentType
CourseMaterial

DocumentType
LectureNotes

DocumentType
Lecture

DocumentType
Course

DocumentType
Exercise

DocumentType
ProjectAssignment

subTypeOf

subTypeOf

subTypeOf subTypeOf
subTypeOf

subTypeOf

subTypeOf

subTypeOf

Figure 11.4: An excerpt from an environment ontology as a document types hierarchy
for eLearning applications

The Environment Domain. Figure 11.4 depicts the ontology for document types in
an educational domain. Educational Material as the most general document
type has two subtypes: Course Material and Examination Material. Exami-
nation Material can be further specialized to Project Task, Exam Task and
Exam. The Exam can consist of the Exam Task-s. Course Material can be fur-
ther specialized into Lecture, Example, LectureNote, Course, Exercise and
Project Assignment.

An ontology for documents and their relationships to other components is de-
picted in fig. 11.5. The ontology represents a context of learning material which is
usually provided as a document. The class Document is used to annotate a resource
which is a document. The documents describe some sort of concepts. We use the
class Concept to annotate concepts. Concepts and documents are related through

11.4. Ontologies 103

Class
Document

Class
DocumentType

ObjectProperty

hasDocumentType

ObjectProperty

hasKeyword
Class

Concept

Class
ConceptRole

ObjectProperty

isPlayedBy

domain

range

domain

range

domain

ObjectProperty

hasLearningDependency
domain

range

range

ObjectProperty

hasPrerequisite

domain range subConceptOf

ObjectProperty

range

domain

ObjectProperty

subTypeOf
domain

range

ObjectProperty

subConceptRoleOf

domain rangeObjectProperty

isPlayedIn

domain

range

ObjectProperty

hasType
Class

ConceptRoleTyperange

domain

Figure 11.5: An excerpt from an environment domain ontology for documents

the hasKeyword property.
Documents can be ordered by means of the hasPrerequisite property. Multi-

plicity is allowed to provide for different ordering per and within an application. The
hasPrerequisite property is intended for navigation purposes. The ordering relation
values are derived from the state machines which are used for navigation modeling in
our approach.

Concepts and documents have certain roles to play in their mutual collaboration.
This reflects the idea of story collaborations modeled in our conceptual modeling ap-
proach. The concrete instances are derived from the collaboration models. In the
ontology, we represent these facts by instances of the ConceptRole class and its two
properties: isPlayedIn and isPlayedBy. Document properties can be extended
further by assigning a DocumentType. Similarly, the roles can be extended by speci-
fying their types. Concepts, concept role types, and document types can form hierar-
chies. We define subTypeOf, subConceptRoleOf, and subConceptOf properties
for these purposes.

The User Domain. Data about a user serves the purpose of deriving contextual struc-
tures. It is used to determine how to adapt the presentation of hypertext structures.
Here we define an ontology for a user profile based on IEEE Personal and Private In-
formation (PAPI) [IEE]. PAPI distinguishes between personal, relations, security, pref-
erence, performance and portfolio information. The personal category contains infor-
mation about a user’s names, contacts and addresses. The Relations category serves
as a category for specifying relationships between users (e.g. classmate, teacherIs,
teacherOf, instructorIs, instructorOf, belongsTo, belongsWith). Security aims to pro-
vide slots for credentials and access rights. Preference indicates the types of devices
and objects which the user is able to recognize. Performance is for storing informa-
tion about the measured performance of a user obtained via learning material (i.e.
what a user knows). Portfolio is for accessing the previous experience of a user. Each
category can be extended. For more discussion on learner modeling standards see
for example [DS05].

Figure 11.6 depicts an example of an ontology for a learner profile. The ontol-
ogy is based on the performance category of PAPI. We are storing sentences about
a learner who has achieved a certain Performance. The Performance is based on

104 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

Class
Learner

domain
Class

Concept

Class
Performance

ObjectProperty
hasPerformancedomain range

Class
Document

ObjectProperty
learningExperienceIdentifierrange

domain

ObjectProperty
PerformanceValue

External
xsd:Float

range

domain

ObjectProperty
learningCompetencyrange

Restriction

onProperty

subClassOf

Class
Over 0

hasClass

Restriction

Class
Bellow 1

subClassOf

onProperty

hasClass

ObjectProperty
CertifiedBy

Class
Certificate

domain

range
Class

Institution

ObjectProperty
IssuedBy domain

range

Figure 11.6: Ontology for learner performance

learning experience (learningExperienceIdentifier) which is obtained from a
particular document. The experience implies that a Concept has been learned. This
is maintained by learningCompetency property. The Performance is certified by
a Certificate, which is issued by a certain Institution. The Performance has
a certain PerformanceValue, which in this context is defined as a floating point
number and restricted to the interval from 0 to 1.

Observations. During runtime, users interact with a web system. The user’s interac-
tions can be used to draw conclusions about possible user interests, about his or her
goal, task, knowledge, etc. The facts gathered about a user can be used for providing
personalized views on hypertexts. An ontology of observations should therefore pro-
vide a structure of information about possible user observations, and - if applicable -
their relations and/or dependencies.

A simple ontology for observations is depicted in fig. 11.7. The ontology allows
us to instantiate facts as follows: that a Learner has interacted (hasInteraction
property) with a particular Document (isAbout property) via an interaction of a
specific type (InteractionType). Examples of InteractionTypes are access,
bookmark, an-
notate. The information that an interaction has taken place during a time interval
is maintained by the beginTime and endTime properties. The ObservationLevel
describes a particular activity type which was the purpose of the interaction. Possible
instances of ObservationLevel are that a user has visited a page, has worked on a
project, has solved some exercise, etc.

11.5 Metadata

The ontologies described above are used in annotations of concrete information re-
sources. The annotation metadata serves as a knowledge base about domain infor-
mation, collaborations and navigation which involve particular resources.

11.5. Metadata 105

ObjectProperty

isAbout

domain

range

Class
Interaction

Class
Document

ObjectProperty

beginTime
ObjectProperty

endTime

domain domain

range

External
Xsd:dateTime range

ObjectProperty

Level

domain

Class
ObservationLevel

range

ObjectProperty

subLevelOf

rangedomain

ObjectProperty

hasType

Class
Learner

ObjectProperty

hasInteractiondomain

range

Class
InteractionType

domain

range

Figure 11.7: Ontology for observations

Story Collaborations. The feature collaborations in a particular resource represent
concrete content realization or composition in that resource. An example of such a
resource could be a page describing sun_java:’java/ concepts/class.html’.

The following example shows how such a page can be annotated by means of im-
plementing ontologies.

sun_java:’java/concepts/class.html’[rdf:type->doc:Document;
hasTopic->doc:OO_Class].

doc:OO_Class[rdf:type->doc:Concept;
doc:subConceptOf->doc:Classes_and_objects].

doc:ClassesIntroduction[rdf:type->doc:ConceptRole;
doc:isPlayedBy->doc:OO_Class;
doc:isPlayedIn->sun_java:’java/concepts/class.html’;
doc:hasType->doc:Introduction].

doc:Introduction[rdf:Type->doc:ConceptRoleType;
doc:subConceptRoleOf->doc:Cover].

The page is a document (RDF typeDocument). The type prescribes through which
environment the documents can be accessed. The document describes information
about classes (OO_Class concept). The OO_Class concept is annotated with the
type Concept and is a subconcept of the Classes_and_objects concept.

The collaboration knowledge is represented by the ClassesIntroduction re-
source which is of type ConceptRole. The OO_Class concept plays an introduc-
tory role (the Introduction role type) in the document which is annotated by us-
ing the properties isPlayedBy and isPlayedIn respectively, invoking references to the
OO_Class concept and the document . TheIntroduction is of typeConceptRole-
Type and means that the concept is covered in the content to a certain extent. There-
fore, the Introduction is a subtype of the Cover concept role type — a generic
role type used for stating that a concept is covered in a document content.

Navigation. The navigation relations are derived from the navigation trails spec-
ified by state diagrams. Each transition is transformed into a hasPrerequisite

106 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

(or inverse property isPrerequisiteFor) of a concept or resource depending on
what is used as a reference for identification of navigation trails. In our example, the
OO_Class concept is a prerequisite for the OO_Inheritance. Thus the example
mentioned above is extended using the instance of this property.

sun_java:’java/concepts/class.html’[rdf:type->doc:Document;
hasTopic->doc:OO_Class].

doc:OO_Class[rdf:type->doc:Concept;
doc:subConceptOf->doc:Classes_and_objects;
doc:isPrerequisiteFor->doc:OO_Inheritance].

doc:ClassesIntroduction[rdf:type->doc:ConceptRole;
doc:isPlayedBy->doc:OO_Class;
doc:isPlayedIn->sun_java:’java/concepts/class.html’;
doc:hasType->doc:Introduction].

doc:Introduction[rdf:Type->doc:ConceptRoleType;
doc:subConceptRoleOf->doc:Cover].

Runtime User Model. To be able to personalize access to resources, a run-time user
model has to be maintained. The run- time user model instantiates the user domain
model selected for a particular application. An example of a simple learner profile
could look like this:

user:user2[rdf:type -> learner:Learner;
learner:hasPerformance -> user:user2P].

user:user2P[rdf:type->learner:Performance;
learner:learningExperienceIdentifier->

sun_java:’java/concepts/object.html’;
learner:learningCompetency->doc:OO_Object;
learner:CertifiedBy->KBScerturi:C1X5TZ3;
learner:PerformanceValue->0.9].

KBScerturi:C1X5TZ3[rdf:type->learner:Certificate;
learner:IssuedBy->KBSuri:KBS].

KBSuri:KBS[rdf:type->learner:Institution].

The learner user2 has the performance record (user2P). The performance con-
tains a learning experience about the KBS Java objects resource. The concept cov-
ered in the resource is stored in the performance as well. Then a certificate about the
performance containing the performance value and the institution which issued the
certificate is stored in the learner performance as well.

11.6 Services

The metadata described above is used by services which collaborate in the web ap-
plication to serve a user. Figure 11.8 depicts a UML collaboration diagram showing a
message flow between service providers which we have implemented for a personal
learning assistant. Boxes represent service providers, lines represent links between
the providers. The direction of a message or invoking operation is indicated by a small
arrow on top of a line with the name and parameters of that operation. We use two
kinds of arrows in fig. 11.8. The normal arrow (→) is used to indicate a plain message.

11.6. Services 107

PersonalizedSearchService

1: userQuery(user, list, personalization)
1.3: refinedQuery(user, conceptList)

PLAService

1.2 [Free text typed] displayConcepts(user,conceptList)
8: displayResults(QELResults)

2. query(user, conceptList)

ACMOntologyService

1.1 [Free text typed] conceptList:=getSimilarConcepts(List)

QueryRewritingService

QueryService MappingServiceRecommendationService

4: QELQuery:=rewriteQEL(user, query)

3: QELQuery:=generateQEL(conceptList)
7.1: [personalization] LOMMetadata:=transformToLOM(QELResults)

7.3: [personalization] QELResults:=transformToQELResults(LOMMetadata)

5: sendQuery(QELquery)

7.2: [personalization] addRecommendation(user, LOMMetadata)

6: sendResults(QELquery)

7: [personalization] personalizeResults(user, QELResults)

Figure 11.8: A collaboration diagram from a current implementation.

The “harpoon” (⇁) indicates explicitly that a message is asynchronous. Square brack-
ets are used to indicate a condition which determines whether a certain message is
to be passed: If the condition is not satisfied then the message is not sent.

The PersonalizedSearchService provides a user interface for searching and
displaying personalized results to a user. A user can send two messages through the
user interface provided. First the message (userQuery) notifies thePersonalized-
SearchService about the user, text typed in fields or concepts selected from the
ACM classification hierarchy, and whether to provide personalization information
or not. If the user typed free text into fields which are provided at the user inter-
face, the PersonalizedSearchService contacts an ontology service (in our case
the ACMOntologyService) to retrieve concepts similar to the text typed (the mes-
sage getSimilarConcepts). The PersonalizedSearchService then displays
these concepts to a user to refine his/her query. After selecting precise concepts
from suggested entries from the ontology, the user can send a refined request to the
PersonalizedSearchService.

ThePersonalizedSearchServicenotifies thePLAService about the user qu-
ery (the query message). The PLAService first makes use of the MappingService
provider to generate a QEL query by sending the generateQEL message. The ser-
vice constructs an appropriate QEL query from the concepts list. In addition, the
PLAService contacts the QueryRewritingService provider after receiving the
QELQuery to rewrite the QELQuery according to a learner profile, adding additional
constraints to the QELQuery.

The PLAService sends a message with the rewritten QELQuery to a QuerySer-
vice, in our case the Edutella query service which propagates the query into the
Edutella P2P resource provision network. The Edutella QueryService returns all
query results.

If the learner prefers recommendation information to be included with the qu-
ery results, the PLAService contacts the RecommendationService to derive such
recommendation information according to the learner profile or to group profiles
(collaborative recommendation). When such personalized results are available, the
PLAService notifies the PersonalizedSearchService to display the results to a
learner.

108 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

Personalization Services. The personalization services are services which decide
about variable features of web applications at runtime based on user profiles. The
adaptation decisions are specified as reasoning rules in TRIPLE which is an extension
of the horn logic based on the XSB prolog with namespaces and views.

A query rewriting service adds additional constraints to a QEL query created ac-
cording to which concepts a user selected. These constraints reflect concepts and
language preferences maintained in user profiles. They restrict a search space in the
metadata and ensure that only resources which are relevant for a user are selected.
The example below is based on a language feature variation point which specifies
alternative language features of a resource.

We illustrate the query rewriting principle using the following simple restriction
profile, implemented in TRIPLE.

@edu:p1 {
edu:add1[rdf:type -> edu:AddSimpleRestriction;

rdf:predicate -> dc:lang;
rdf:object -> lang:de].

edu:add2[rdf:type -> edu:AddTopicRestriction;
edu:addTopic -> acmccs:’D.1.5’].}

This heuristic is used to extend a QEL query with a constraint which restricts the
results to learning resources in the German language (restriction edu:add1).

Another restriction derived from the user profile is a restriction on resources about
object-oriented programming (edu:add2). The ACM Computer Classification Sys-
tem [oCm02] is used to encode the subject mentioned. In this classification system,
object-oriented programming can be found in the category D which covers software.
The subcategory D.1 covers programming techniques, with the fifth subcategory be-
ing object-oriented programming. Heuristics for query rewriting are usually more
complex, especially in the case of concept or subject restrictions. They depend on
concepts being selected or typed as a user query.

The derived restrictions profile is used in a TRIPLE view which takes the profile
and QEL query model as input. One of the rules for reasoning processes in respect
of language restrictions profiles is illustrated below. The view @edu:p1 encapsulates
the restrictions model.

FORALL QUERY, VAR, PRED, OBJ, NEWLIT
QUERY[edu:hasQueryLiteral -> edu:NEWLIT] AND
edu:NEWLIT[rdf:type -> edu:RDFReifiedStatement;

rdf:subject -> VAR;
rdf:predicate -> PRED;
rdf:object -> OBJ]

<-
EXISTS LITERAL, ANY (
QUERY[rdf:type -> edu:QEL3Query;

edu:hasQueryLiteral -> LITERAL]
AND
LITERAL[rdf:type -> edu:RDFReifiedStatement;

rdf:subject ->
VAR[rdf:type -> edu:Variable];

11.6. Services 109

rdf:predicate -> dc:ANY])
AND
EXISTS A
A[rdf:type -> edu:AddSimpleRestriction;
rdf:predicate -> PRED;
rdf:object -> OBJ]@edu:p1

AND
unify(NEWLIT, lit(VAR,PRED,OBJ)).

The recommendation service provides the following functionality: It can annotate
learning resources for a user according to their educational state. For instance, it can
recommend a resource to a specific user, or give a less strong recommendation like
might be understandable. Furthermore, it can not recommend a learning resource or
point out that this learning resource leads to a page that the user has already visited.
The annotation property again reflects a variation point where resource metadata can
vary and the variation is resolved according to an adaptation rule.

The appropriate recommendation annotations are derived according to the de-
gree to which a user mastered prerequisite concepts for a learning resource. The
lr:isPrerequisiteFor relationships of concepts covered in a learning resource
are analyzed and compared to a user performance profile and competencies acquired.

One example of a recommendation rule is a rule which determines learning re-
sources which are Recommended. A learning resource is recommended if all prereq-
uisite concepts of all those concepts which it covers have been mastered by a user:

FORALL LR,U learning_state(LR, U, Recommended) <-
learning_resource(LR) AND user(U)
AND NOT learning_state(LR, U, Already_visited)
AND FORALL Ck (prerequisite_concepts(LR, Ck) ->

p_obs(Ck, U, Learned)).

Predicates used in the rule derive concepts like learning resource, concepts, users,
observations and learning states from metadata based on types taken from the on-
tologies described in section 11.4.

We have implemented other rules to compute less strong recommendations. This
includes, for instance, a recommendation that a resource Might_be_understand-
able if at least one prerequisite concept has been learned.

This kind of recommendation can be used for example as a link annotation tech-
nique in the area of adaptive hypermedia, or to annotate query results with the rec-
ommendation information. On the user interface side, it is often implemented using
the traffic lights already mentioned.

Link Generation, or in other words a Navigation Generation Service connects a
learning resource to other learning resources, or it connects a learning resource to a
context, e.g. within a course with links to previous and next steps. As an example
of a Link Generation Service, we have implemented a service that relates a learning
resource to other resources which provide related examples of the learning resource’s
content.

One example for deriving such an example-relation for a resource R involves en-
suring that each concept on R is covered by the example E:

110 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

FORALL R, E example(R,E) <-
LearningResource(R) AND example(E) AND
EXISTS C1 (R[dc:subject->C1]) AND
FORALL C2 (R[dc:subject->C2]->E[dc:subject->C2]).

The optionality of the resource is made dependent on similarity between con-
cepts. If they are similar in concept, then the feature is considered; if they are not, the
feature is suppressed. The second line in the rule above ensures thatR is aLearning-
Resource and E is an Example (using the ontology for learning resources described
in section 11.4). The third rule verifies that R really is about some concept - i.e. there
exists a metadata annotation like dc:subject. The fourth line then expresses what
our rule should check: Whether each concept in R will be explained in the example E.

The example feature can be expanded further and considered as a variation point.
One of the options in the variation point might be a best_example. A user profile
can be taken into account when generating the example relationship. A personalized
pedagogical recommendation of an example might include an example showing new
things to learn in a context of concepts which are already known or have been newly
learned: This would embed the concepts to learn in the previous learning experience
of a user. The rule for deriving this best_example follows.

FORALL R, E, U best_example(R,E,U) <-
LearningResource(R) AND example(E) AND user(U)
AND example(R,E) AND FORALL C (
(E[dc:subject->C] AND NOT R[dc:subject->C])->

p_obs(C, U, Learned)).

Further rules for generating personalized hypertext associations can be imple-
mented. Other relationships, classes and properties from the domain, user, and learn-
ing resource ontology can be used for these purposes [DHN03]. The isa relationship
in the concept-ontology of the Java application domain can be utilized to recommend
learning resources covering either more general concepts, e.g. introducing a concept
of programming strategies, or more specific ones. The sequencing relationship can
be used to recommend learning resources in the following way: A resource which de-
scribes a concept (the concept appears in the dc:subject property for the resource)
from the beginning of the sequence will be recommended earlier than a resource
which describes a concept from the end of such a sequence. A dependency relation-
ship referring to whether a concept depends on another concept can be used as well
to recommend learning resources which describe dependent concepts together with
a learning resource describing a concept which was recommended by another rule.

Supporting Services. The Edutella P2P infrastructure [NWQ+02] allows us to con-
nect peers which provide RDF metadata about resources. Edutella also provides us
with a powerful Datalog-based query language, RDF-QEL, provided within a Query
Service. A query can be formulated in RDF format as well, and it can reference several
schemas. An example for a simple query about resources is the following:

s(X, <dc:title>, Y),
s(X, <dc:subject>, S),
qel:equals(S, <java:OO_Class>).

11.7. Applications 111

The query tries to find resources where dc:subject equals to java:OO_Class.
The prefixes qel:, dc:, and java: are abbreviations for URIs of the schemas used.
Variable X will be bound to URIs of resources, variable Y will be bound to titles of the
resources, and variable S will be bound to subjects of the resources.

We have implemented a mapping service for mapping QEL variable bindings to
LOM RDF bindings and vice versa. This was needed because our recommendation
service accepts input in LOM RDF bindings. On the other hand, additional recom-
mendation information plus LOM metadata have to be transformed back to QEL vari-
able bindings because the personalized search service uses QEL variable bindings as
a result set. These transformations are again performed in TRIPLE.

Concept mappings between different subject ontologies, different ontologies for
describing learners, and different learning resource ontologies are important as well.
The TRIPLE view/model mechanism allow us to specify and implement models which
embed rules for mappings between those ontologies [MNZS03]. Currently we are im-
plementing such mapping heuristics between the ontologies used in different sys-
tems connected within the ELENA network.

We have implemented a simple version of an ontology service for the ACM classifi-
cation system and its RDF LOM bindings. The current version of our ontology service
supports requests for getting the whole ontology using the HTTP protocol as well as
requests for deriving concepts from the ontology which are “similar” to the submitted
text string.

11.7 Applications

Personal Learning Assistant (PLA). The purpose of the PLA [DHNS04b] is to con-
nect and integrate the services which are needed to perform the learning support
task. Personalized Search for example connects mapping, query rewriting, query and
recommendation services.

Figure 11.9 depicts a user interface for formulating a user query to search for a
particular concept or competence a user would like to acquire, combined with a
user interface providing results with recommendations represented by the traffic light
metaphor. Using this metaphor, a green ball indicates recommended learning re-
sources, a red ball indicates non-recommended learning resources and a yellow ball
indicates partially recommended learning resources.

The user interface is generated by a service which uses the ontology service cho-
sen (the ACM ontology service). A list of learners who have a learner profile main-
tained at the PLA service chosen is displayed as well.

Users can type free text into three available fields or they can select concepts from
one of the ontologies provided (in our example figure the user typed “intelli agent”).

The user interface returning the results is generated according to the concepts
chosen and includes the query results returned by the query service and personalized
by the recommendation services chosen through the PLA service. The personal rec-
ommendation is depicted in the first column (PReco). The second column (labeled
as “Reco”) provides learners with a group-based recommendation.

112 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

Figure 11.9: A prototype user interface for search operations.

The Personal Reader. We have experimented with the annotation instances within
the personal reader framework [DHNS04a]. The personal reader enables the learner
to work with learning resources in an embedding context generated according to the
metadata described above. In the local context, more details related to the topics
of the learning resource, the general topics the learner is currently studying, exam-
ples, summaries, quizzes, etc. are generated and enriched with personal recommen-
dations according to the learner’s current learning state, as shown in Fig. 11.10.

Link generation in the framework can be configured to take several properties into
account. One of them is the hasPrerequisite relation mentioned previously. However,
other relations might be useful as well. The isa/subclassOf hierarchy of the Java on-
tology can be taken into account to generate more detailed or more general resources
on a particular topic.

11.8 Lessons Learned

This case study description was created in the context of the Elena project (http://
www.elena-project.org) and it represents part of the much larger task of creating
semantic models and a service network for smart spaces for learning. Final schemas
and services are documented in the project documentation [DNe05, DNe04].

11.8. Lessons Learned 113

Figure 11.10: Screenshot of the Personal Reader, showing the adaptive context of a
learning resource in a course.

Variability. We discovered that there are other dimensions of variability in such in-
formation spaces in addition to the user-centered variability. This includes variability
between conceptual models employed by the connected systems, conceptual models
of exchange models between the systems, and requirements relating to user applica-
tions such as different personal learning assistants. The feature models have been
very helpful aids in the task of analyzing existing information models of standards
in eLearning domains, user requirements relating to the way search processes and
queries for learning resources should be performed and conceptual schemas of con-
nected systems. Furthermore, the natural variability (known as heterogeneity in the
semantic web community) led us to study further non-user adaptation services such
as mappings between different vocabularies.

Representation. This case study shows that semantic web representation is very
close to the domain engineering models. We have shown correspondences between
ontologies, conceptual models, and metadata and navigation trails, and content com-
positions. In addition, we have shown that the semantic web representation is very
well suited to the task of considering variable features of content and navigation on
the web. Selected variable and optional features are examided according to adapta-
tion rules embedded in application services which decide whether to present them
to a particular user or not based on his or her background. Furthermore, the case
study has shown that the models aid the design of search processes which enable a
user to find resources more effectively, because they can exploit and expose informa-
tion about story collaborations and links to further relevant resources which can be
compared with the user’s history, preferences and goals.

Software Process. The case study has also shown that the domain engineering pro-
cess for adaptive Web applications proposed in this thesis is feasible. The application
family consists currently of two applications — the Personal Reader and Personal

114 Chapter 11. Domain Engineering and Adaptive Semantic Web IS

Learning Assistant, developed according to the guidelines presented in part II. The
conceptual models and its instances have been used in the development process to
reason about information provided in the applications, the environment which sup-
ports its provision, adaptation strategies, user models which give rise to them and
services which support and realize them. Furthermore, the instances of the models
are also used by the final application for presentation and navigation purposes as well
as decision making in respect of adaptation requirements.

Chapter 12

Summary

This part has provided three case studies showing different aspects of the domain
engineering framework for adaptive Web applications.

The first case study has shown how the state diagrams together with the adapta-
tion rules employing the concepts from the class diagrams of user domains can be
utilized for generating an adaptive navigation map for a Web-based application. The
generator can be considered as a domain implementation for an adaptive navigation
support with features of an adaptive content selection. It has shown that besides the
modeled adaptivity in the navigation model, the generator itself can be adaptive and
parametrized for different presentation options such as a whole map, a local context,
or a guide panel. The case study has shown, that the models created as the products
of the domain engineering framework for adaptive Web applications proposed in this
thesis are also useful for generating purposes besides their documentation, commu-
nication, and reasoning purpose.

Furthermore, the second case study has shown that the adaptive navigation trails
specified by the state diagrams can be integrated with existing Web application en-
gineering methods like the WebML. The interoperability between the specifications
created according to such methods and the state diagrams approach is realized by
tagged values; i.e., concepts from the models created according to the other methods
are encoded as tagged values in the UML state diagrams. Existing generator can be
easily modified to include additional steps to transform the tagged values to run time
references such as links and queries. Besides these domain implementation features,
the process of the adaptive navigation trail design has been successfully integrated
into the WebML method which has shown complementariness of the adaptive navi-
gation specifications to the existing methods.

The third case study has shown a comprehensive guide through the instance of
the domain engineering process for adaptive eLearning semantic Web applications.
It shows correspondences between the models and the semantic Web implementa-
tion technologies, the rules to reason on top of the semantic Web metadata as coun-
terpart to variation points and optionality resolution, and Web services interacting
in the semantic Web applications. Two applications are build within the family, the
personalized search service of a personal learning assistant and the personal reader.
Both applications share the application domain, the environment, and the user do-
main features. They also share the adaptation rules to resolve variation at runtime

115

116 Chapter 12. Summary

and services to support the final user-adapted application. They differ in the real-
ized function, PLA is used to search for learning resources while the personal reader
is used to guide users through the resources.

Part IV

Outlook

117

Chapter 13

Conclusions

We have proposed a domain engineering framework for adaptive Web applications in
this thesis. We have successfully applied it in three different cases focusing on three
different aspects of the framework.

13.1 Contributions

The main contribution of the thesis is an adoption of feature models and their vari-
ability and commonality modeling for the purpose of adaptation. Adaptation means
a selection of appropriate variants and their combinations for a user, based on his
user profile. The profile can be considered as requirements profile or as a dynamic
evolving user model observed during runtime of a Web application. Therefore, the
variability and commonality notion in feature modeling is a straightforward tech-
nique for modeling the variants and their combinations for adaptive applications.
This has not been up to our knowledge proposed by anybody so far.

Another contribution of this thesis is a separation of three domains (application,
environment, and user) within domain analysis. Though the domains are used in
connection to each other in the final applications, the separation has advantages
especially in the development process. One reason for separating the application
domain and environment domain is the fact that the standardized browsers do not
support delivery and structuring environments like dialogs, function menus, control
panels, or eLearning related course and module access environments. While such
environments are usually provided as frameworks for programming other software
applications, they have to be designed and developed for Web applications sepa-
rately. Another reason for having the two domains separated is that the content can
be delivered in different environments, so the separation allows for later integration
according to the requirements of specific customer. The proposed separations help
analysts and designers to reason about both domains separately by using appropri-
ate techniques proposed by this thesis. The reviewed methods do not consider this
separation which results in a raising complexity of models when developing adap-
tive applications and applications where information fragments are considered to be
delivered through several environments.

The proposed framework also considers the run time variability resolution which

119

120 Chapter 13. Conclusions

can be specified in state diagrams and collaboration diagrams. This is a contribution
to a conceptualization of adaptation at run time. The adaptation is considered in
the content composition and bindings to the environment by means of the messages
which are constrained by the features from user profile. The constrains either allow
some features to be accessed in the runtime or they disable the access. Adaptive navi-
gation specification is supported by state diagrams which model the navigation trails
for users. The variable transitions and alternative states are realization of the variable
features and the variation points. They are constrained by the guards which specify
under which conditions transitions are allowed and which from alternative substates
to chose. The guards again use the features from a user profile. Up to our knowledge,
this was not realized before.

We have also shown that the models can be utilized for adaptation purposes in im-
plementation in our case studies. The state diagrams are utilized for the generation
of the adaptive navigation guides on the Web and in the integration with the WebML
platform by employing the widely accepted W3C XML standard and the processing
technologies for the XML documents. Furthermore, the domain, the collaboration,
and the state diagram models correspond directly to the semantic Web ontologies,
metadata, and services realized in the W3C standards like RDF or OWL. The adap-
tation rules are derived from variation points of the feature models. We have also
developed an extension of the UML class diagrams for feature models used in the
domain engineering framework proposed within this thesis.

13.2 Wider Implications

The proposed domain engineering framework for adaptive Web applications fits to
the generic domain engineering frameworks. The basic activities like the domain
analysis, the domain design, and the domain implementation stay untacked. The
framework proposed in this thesis suggest different internal activities within the generic
phases. This better reflects peculiarities and requirements of the World Wide Web en-
vironment.

The framework activities are self-contained enough to be taken as components
and integrated with other methods. We have shown an example of such an integra-
tion on the adaptive navigation trail modeling with the WebML. Similarly, the feature
modeling can be approached by other methods as well, as it has a clear purpose: con-
figuration knowledge about domain features.

We have also shown that the conceptual approach and separation of concerns
adopted in the framework can help also to organize semantic Web metadata about
Web resources in a way which improves search results and automated reasoning on
the adaptation in Web applications, as the information provided by the models is
richer; i.e., the models provide more information needed for decision purposes.

Chapter 14

Further Directions

The domain engineering framework presented in this thesis should further supported
by more tools which realize refinements between its models. Semi-automatic solu-
tions for some of the refinements would be very helpful in the design process. It
would also be interesting to provide a semiautomatic re-engineering methods to con-
struct the models from existing Web applications.

The domain specific languages for domains which we have considered should be
designed too to allow domain experts to be more involved in the construction of such
models. For example eLearning experts on specific area would not be able to use the
raw UML.

Several dimensions of variability in Web applications should be studied as well.
For example in the more open Web environment, there is at least one additional vari-
ability given by the different conceptual models and metadata provided on the Web.
If more dimensions of the variability would be considered, a problem of conflicting
variation points might arise.

We have studied the models created within the framework proposed in this thesis
in the context of information and its description on the semantic Web. Further stud-
ies on computing descriptions as the collaboration models and state diagrams would
bring light whether they might be helpful for semantic Web services and their loca-
tion, retrieval, composition, and orchestration. We have made some prospects re-
garding to the state machines and conceptual models in that area already in [Dol04].
However, further investigations are needed.

Finally, more generators in the domain implementation are needed to supple-
ment the ones developed within this thesis. The additional generators would provide
more options to select from and to choose the most appropriate one for different ap-
plications in an application family.

121

Bibliography

[AB91] Serge Abiteboul and Anthony Bonner. Objects and views. In J. Clifford
and R. King, editors, Proc. of the ACM SIGMOD International Confer-
ence on Management of Data, pages 238–247, San Francisco, California,
March 1991. ACM Press.

[ABGK02] Colin Atkinson, Christian Bunse, Hans-Gerhard Groß, and Thomas
Kühne. Towards a general component model for web-based applica-
tions. Ann. Software Eng., 13(1-4), 2002.

[ADN+03] Heidrun Allert, Peter Dolog, Wolfgang Nejdl, Wolf Siberski, and
Friedrich Steimann. Role-oriented models for hypermedia construc-
tion — conceptual modeling for the semantic web. Technical report,
Learninglab Lower Saxony, University of Hannover, February 2003.

[AG00] Liliana Ardissono and Anna Goy. Tailoring the interaction with users in
web stores. User Model. User-Adapt. Interact., 10(4):251–303, 2000.

[AGP+03] Liliana Ardissono, Anna Goy, Giovanna Petrone, Marino Segnan, and
Pietro Torasso. Intrigue: Personalized recommendation of tourist at-
tractions for desktop and hand held devices. Applied Artificial Intelli-
gence, 17(8-9):687–714, 2003.

[arg] ArgoUML CASE tool web page. Available at: http://www.argouml.org/.

[AT97] Fabio A. Asnicar and Carlo Tasso. ifweb: a prototype of user model-
based intelligent agent for document filtering and navigation in the
world wide web. In Workshop on Adaptive Systems and User Modeling on
the World Wide Web at Sixth International Conference on User Modeling,
Chia Laguna, Sardinia, 1997.

[Atk01] Colin Atkinson. Component-Based Product Line Engineering with UML.
The Component Software Series. Addison Wesley, November 2001.

[BCC+03] Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali, and Ioana
Manolescu. Specification and design of workflow-driven hypertexts.
Journal of Web Engineering, 1(2):163–182, April 2003.

[BES98] Peter Brusilovsky, John Eklund, and Elmar Schwarz. Web-based edu-
cation for all: A tool for developing adaptive courseware. Computer
Networks and ISDN Systems (Proceedings of Seventh International World
Wide Web Conference), 30(1–7):291–300, April 1998.

123

124 BIBLIOGRAPHY

[BFK+99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. Pulse: A method-
ology to develop software product lines. In SSR, pages 122–131, 1999.

[BG02] D. Brickley and R. V. Guha. Resource Description Framework
(RDF) Schema Specification 1.0, 2002. http://www.w3.org/TR/
rdf-schema.

[BGdPL+03] Felix Bachmann, Michael Goedicke, Julio Cesar Sampaio do Prado Leite,
Robert L. Nord, Klaus Pohl, Balasubramaniam Ramesh, and Alexander
Vilbig. A meta-model for representing variability in product family de-
velopment. In Frank van der Linden, editor, Software Product-Family
Engineering, 5th International Workshop, PFE 2003, volume 3014 of Lec-
ture Notes in Computer Science, pages 66–80, Siena, Italy, November
2003. Springer.

[BGP01] Luciano Baresi, Franca Garzotto, and Paolo Paolini. Extending UML for
modeling web applications. In Proc. of 34th Anual Hawaii International
Conference on System Sciences (HICSS’34), Maui, Hawai, January 2001.
IEEE Press.

[BHW99] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A dexter-
based reference model for adaptive hypermedia. In K. Tochtermann,
J. Westbomke, U.K. Wiil, and J. Leggett, editors, Proc. of ACM Conference
on Hypertext and Hypermedia, pages 147–156, Darmstadt, Germany,
February 1999.

[BN96] Martin Bichler and Stefan Nusser. Modular design of complex web-
application with W3DT. In Proc. of IEEE 5th Workshops on Enabling
Technology: Infrastructure for Collaborative Enterprises (WET ICE 96),
Standford, California, USA, June 1996.

[Bru01] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-
Adapted Interaction, 11(1-2):87–100, 2001.

[CDMN04] Stefano Ceri, Peter Dolog, Maristella Matera, and Wolfgang Nejdl.
Model-driven design of web applications with client-side adaptation.
In Nora Koch, Piero Fraternali, and Martin Wirsing, editors, ICWE 2004
- International Conference on Web Engineering, volume 3140 of LNCS,
pages 201–214, Munich, Germany, July 2004. Springer.

[CDMN05] Stefano Ceri, Peter Dolog, Maristella Matera, and Wolfgang Nejdl.
Adding client-side adaptation to the conceptual design of e-learning
web applications. Journal of Web Engineering, 4(1):21–37, 2005.

[CE00] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programing: Prin-
ciples, Techniques, and Tools. Addison Wesley, 2000.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Lan-
guage (WebML): a modeling language for designing web sites. Computer
Networks and ISDN Systems, 33(1–6):137–157, June 2000.

BIBLIOGRAPHY 125

[CFB+02] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera.
Designing Data-Intensive Web Applications. Morgan Kauffmann, 2002.

[CFB+03] S. Ceri, P. Fraternali, A. Bongio, S. Butti, R. Acerbis, M. Tagliasacchi,
G. Toffetti, C. Conserva, R. Elli, F. Ciapessoni, and C. Greppi. Archi-
tectural issues and solutions in the development of data-intensive web
applications. In Proceedings of CIDR 2003, January 2003, Asilomar, CA,
USA, 2003.

[CFM02] Stefano Ceri, Piero Fraternali, and Maristella Matera. Conceptual mod-
eling of data-intensive web applications. IEEE Internet Computing, 6(4),
August 2002.

[Cha01] Pierre-Antoine Champin. Rdf tutorial. http://www710.univ-
lyon1.fr/ champin/rdf-tutorial/rdf- tutorial.html, April 2001.

[CHB92] Derek Coleman, Fiona Hayes, and Stephen Bear. Introducing ob-
jectcharts or how to use statecharts in object-oriented design. IEEE
Transactions on Software Engineering, 18(1):9–18, January 1992.

[CK02] Cristina Cachero and Nora Koch. Conceptual navigation analysis: a de-
vice and platform independent navigation specification. In D. Schwabe,
O. Pastor, G. Rossi, and L. Olsina, editors, Proc. of Second Interna-
tional Workshop on Web-oriented Software Technology (IWWOST02),
June 2002.

[Con99] Jim Conallen. UML extension for web applications, March 1999. White
paper.

[DB02a] Peter Dolog and Mária Bieliková. Hypermedia modelling using UML. In
Petr Hanáček, editor, Proc. of ISM’2002 - Information Systems Modelling,
pages 79–86, Rožnov pod Radhoštěm, Czech Republic, April 2002.

[DB02b] Peter Dolog and Mária Bieliková. Towards variability modelling for
reuse in hypermedia engineering. In Yannis Manolopoulos and Pavol
Návrat, editors, Proc. ADBIS 2002 — Advances in Databases and Infor-
mation Systems : 6th East European Conference, volume 2435 of LNCS,
pages 388–400, Bratislava, Slovakia, September 2002. Springer.

[DHN03] Peter Dolog, Nicola Henze, and Wolfgang Nejdl. Logic-based open hy-
permedia for the semantic web. In Proc. of International Workshop on
Hypermedia and the Semantic Web, Hypertext 2003 Conference, Nottin-
ngham, UK, August 2003.

[DHNS04a] Peter Dolog, Nicola Henze, Wolfgang Nejdl, and Michael Sintek. The
personal reader: Personalizing and enriching learning resource using
semantic web technologies. In Wolfgang Nejdl and Paul De Bra, edi-
tors, Proc. of AH2004 — International Conference on Adaptive Hyperme-
dia, volume 3137 of LNCS, Einghoven, The Netherlands, August 2004.
Springer.

126 BIBLIOGRAPHY

[DHNS04b] Peter Dolog, Nicola Henze, Wolfgang Nejdl, and Michael Sintek. Person-
alization in distributed e-learning environments. In Proc. of WWW2004
— The Thirteen International World Wide Web Conference, New Yourk,
May 2004. ACM Press.

[DK02] A. van Deursen and P. Klint. Domain-specific language design requires
feature descriptions. Journal of Computing and Information Technol-
ogy, 10(1):1–17, 2002.

[DN03] Peter Dolog and Wolfgang Nejdl. Using UML and XMI for generat-
ing adaptive navigation sequences in web-based systems. In Perdita
Stevens, Jon Whittle, and Grady Booch, editors, Proc. of UML 2003 —
The Unified Modeling Language. Model Languages and Applications. 6th
International Conference, volume 2863 of LNCS, pages 205–219, San
Francisco, CA, USA, October 2003. Springer.

[DN04] Peter Dolog and Wolfgang Nejdl. Using UML-based feature models and
UML collaboration diagrams to information modelling for web-based
applications. In Proc. of UML 2004 — The Unified Modeling Language.
Model Languages and Applications. 7th International Conference, LNCS.
Springer, October 2004.

[DNe04] Peter Dolog, Wolfgang Nejdl, and Daniel Olmedilla (eds.). Artefacts and
service network v3 (d2.3). Deliverable of fp5 eu/ist Elena project ist-
2001-37264, L3S Research Center, University of Hannover, Hannover,
Germany, June 2004. http://wwww.elena-project.org.

[DNe05] Peter Dolog, Wolfgang Nejdl, and Daniel Olmedilla (eds.). Schema dis-
tribution and evaluation report (d2.7). Deliverable of fp5 eu/ist Elena
project ist-2001-37264, L3S Research Center, University of Hannover,
Hannover, Germany, May 2005. http://wwww.elena-project.org.

[Dol04] Peter Dolog. Model-driven navigation design for semantic web ap-
plications with the uml-guide. In Maristella Matera and Sara Comai,
editors, Engineering Advanced Web Applications, pages 75–86. Rinton
Press, 2004.

[DS05] Peter Dolog and Michael Schäfer. A framework for browsing, manipu-
lating and maintaining interoperable learner profiles. In Liliana Ardis-
sono, Paul Brna, and Antonija Mitrović, editors, Proc. User Modeling
2005: 10th International Conference, UM 2005, volume 3538 of LNAI,
Edinburgh, Scotland, UK, July 2005. Springer.

[FP00] Piero Fraternali and Paolo Paoliny. Model-driven development of web
applications: The autoweb system. ACM Transactions on Information
Systems, 28(4):323–382, October 2000.

[GCP01] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual modeling
of device-independent web applications. IEEE Multimedia, 8(2):26–39,
April–June 2001.

BIBLIOGRAPHY 127

[GFdA98] Martin L. Griss, John Favaro, and Massimo d’ Alessandro. Integrating
feature modeling with the RSEB. In P. Devanbu and J. Poulin, editors,
Proc. of 5th International Conference on Software Reuse, pages 76–85,
Victoria, Canada, June 1998. IEEE Computer Society Press.

[GG99] Hans-Werner Gellersen and Martin Gaedke. Object-oriented web appli-
cation development. IEEE Internet Computing, 3(1):60–68, 1999.

[Goo94] Kees G. W. Goossens. Structure and behaviour in hardware verification.
In J.J. Joyce and C.-J.H. Seger, editors, International Workshop on Higher
Order Logic Theorem Proving and its Applications, volume 780, pages
73–87, Vancouver, Canada, 1994. Springer-Verlag.

[GP93] Franca Garzotto and Paolo Paolini. HDM — a model-based approach
to hypertext application design. ACM Transactions on Information Sys-
tems, 11(1):1–26, January 1993.

[Gro00a] Object Management Group. OMG unified modelling language specifi-
cation, version 1.3, March 2000. Available at http://www.omg.org/. Ac-
cessed on June 1, 2001.

[Gro00b] Object Management Group. OMG XML metadata interchange
(XMI) specification, version 1.1, November 2000. Available at
http://www.omg.org/. Accessed on June 1, 2002.

[GSG00] Martin Gaedke, Chrstian Segor, and Hans-Werner Gellersen. WCML:
Paving the way for reuse in object-oriented web engineering. In Proc.
of 2000 ACM Symposium on Applied Computing (SAC 2000), Villa Olmo,
Como, Italy, March 2000.

[HBFV03] Geert-Jan Houben, Peter Barna, Flavius Frasincar, and Richard Vdov-
jak. Hera: Development of semantic web information systems. In Juan
Manuel Cueva Lovelle, Bernardo Martin Gonzalez Rodriguez, Luis Joy-
anes Aguilar, Jose Emilio Labra Gayo, and Maria del Puerto Paule Ruiz,
editors, Proceedings of International Conference on Web Engineering,
ICWE 2003, number 2722 in LNCS, pages 529–538, Oviedo, Spain, July
2003. Springer Verlag.

[HBR94] Lynda Hardman, Dick C.A. Bulterman, and Guido Van Rossum. The
Amsterdam Hypermedia Model: Adding time and context to the dexter
model. Comunications of the ACM, 37(2):50–64, February 1994.

[HDN04] Nicola Henze, Peter Dolog, and Wolfgang Nejdl. Towards personalized
e-learning in a semantic web. Educational Technology and Society Jour-
nal. Special Issue on Ontologies and the Semantic Web for E-learning,
7(4), October 2004.

[Her98] American Heritage. The american heritage dictionary. Houghton Mif-
flin, Boston, MA, 1998.

128 BIBLIOGRAPHY

[HK00] Rolf Hennicker and Nora Koch. A UML-based methodology for hyper-
media design. In S. Stuart A. Evans and B. Selic, editors, Proc. of UML
2000 Conference, York, England, October 2000. Springer LNCS 1939.

[HMT87] Frank Halasz, T. Moran, and R. Trigg. Notecards in a nutshell. In Proc. of
CHI and GI Conference, pages 45–52, Toronto, Canada, April 1987.

[HN99] Nicola Henze and Wolfgang Nejdl. Bayesian modeling for adaptive
hypermedia systems. In Proc. of LWA’99: Lernen, Wissensentdeckung
und Adaptivität — ABIS’99: 7ter Workshop Adaptivität und Benutzer-
modellierung in interaktiven Softwaresystemen, Magdeburg, Germany,
September 1999.

[HS94] Frank G. Halasz and Meyer Schwartz. The Dexter Hypertext Reference
Model. Comunications of the ACM, 37(2):30–39, February 1994.

[IEE] IEEE. IEEE P1484.2/D7, 2000-11-28. draft standard for learning
technology. public and private information (papi) for learners
(papi learner). Available at: http://ltsc.ieee.org/archive/
harvested-2003-10/working_groups/wg2.zip. Accessed on
December 20, 2003.

[IEE02] IEEE Learning Technology Standards Committee. IEEE standard for
learning object metadata (IEEE 1484.12.1–2002). http://ltsc.ieee.org/,
July 2002.

[IKK97] Tomás Isakowitz, A. Kamis, and M. Koufaris. Extending the capabilities
of RMM: Russians dolls and hypertext. In Proceedings of the 30th Annual
Hawaii International Conference on System Sciences, January 1997.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Soft-
ware Development Process. Addison Wesley, Massachusetts, 1999.

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Archi-
tecture, Process and Organization for Business Success. ACM Press, 1997.

[KCHN90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, and William E. Novak.
Feature-oriented domain analysis (foda) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, ESD-90-TR-222, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 1990.

[Koc98] Nora Koch. Towards a methodology for adaptive hypermedia sys-
tems development. In Timm and Marc Rössel, editors, Proc. of ABIS-
98: Adaptivität und Benutzermodellierung in interaktiven Softwaresys-
temen, October 1998.

[Koc01] Nora Koch. Software engineering for adaptive hypermedia systems? In
Paul De Bra, editor, Proc. of Third Workshop on Adaptive Hypertext and
Hypermedia, 8th International Conference on User Modeling, July 2001.

[Kra97] Miloš Kravčík. Internet based collaboration: the presence and perspec-
tives. In Proc. of WebNet 97, Toronto, Canada, November 1997.

BIBLIOGRAPHY 129

[LBW99] David B. Lowe, Andrew J. Bucknell, and Richard G. Webby. Improv-
ing hypermedia development: a reference model-based process assess-
ment method. In Proceedings of the ACM International Conference on
Hypertext and Hypermedia(Hypertext ’99), pages 139–146, Darmstadt,
Germany, February 1999.

[LFS+98] Alon Levy, Daniela Florescu, Dan Suciu, Jaewoo Kang, and Mary Fer-
nandez. Catching the boat with Strudel: experiences with a web-site
management system. In In SIGMOD’98, 1998.

[LLY99] Heeseok Lee, Choongseok Lee, and Cheonsoo Yoo. A scenario-based
object-oriented hypermedia design methodology. Information and
Management, 36(3):121–138, September 1999.

[LS] O. Lassila and R.R. Swick. W3c resource description frame-
work (rdf) model and syntax specification. Available at:
http://www.w3.org/TR/REC-rdfsyntax/. Accessed on October 25,
2002.

[MA02] Dirk Muthig and Colin Atkinson. Model-driven product line architec-
tures. In Gary J. Chastek, editor, Software Product Lines, Second Inter-
national Conference, SPLC 2, volume 2379 of Lecture Notes in Computer
Science, pages 110–129, San Diego, CA, USA, August 2002. Springer.

[MNZS03] Zoltán Miklós, Gustaf Neumann, Uwe Zdun, and Michael Sintek. Query-
ing semantic web resources using TRIPLE views. In Proceedings of the
2nd International Semantic Web Conference (ISWC2003), Sanibel Island,
Florida, USA, October 2003.

[Myl98] John Mylopoulos. Information modeling in the time of the revolution.
Inf. Syst., 23(3-4):127–155, 1998.

[Nel] Theodor Holm Nelson. Xanalogical Structure, Needed Now
More than Ever: Parallel Documents, Deep Links to Con-
tent, Deep Versioning and Deep Re-Use . Available at:
http://www.sfc.keio.ac.jp/ ted/XUsurvey/xuDation.html. Accessed
on March 1, 2002.

[NF00] Jin-Cheon Na and Richard Furuta. Context-aware hypermedia in
dynamically-changing environment supported by a high-level petri net.
In Proc. of 11th ACM Conference on Hypertext and Hypermedia, pages
222–223, San Antonio, Texas, June 2000.

[NN95] Jocelyne Nanard and Marc Nanard. Hypertext design environments and
the hypertext design process. Communications of the ACM, 38(8):49–56,
August 1995.

[NS03] Michael Nilsson and Wolf Siberski. RDF Query Exchange Language
(QEL) - Concepts, Semantics and RDF Syntax. Available at: http:
//edutella.jxta.org/spec/qel.html. Accessed: 20th September
2003, 2003.

130 BIBLIOGRAPHY

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Micahel Sin-
tek, Ambjoern Naeve, Michael Nilsson, Matthias Palmér, and Tore Risch.
EDUTELLA: a P2P Networking Infrastructure based on RDF. In In Proc.
of 11th World Wide Web Conference, Hawaii, USA, May 2002.

[oCm02] Assosiation of Computing machinery. The acm computer classification
system. http://www.acm.org/class/1998/, 2002.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering Foundations, Principles and Techniques. Springer
Verlag, 2005.

[PMdO99] Fabiano Borges Paulo, Paulo Cesar Masiero, and Maria Cristina Ferreira
de Oliviera. Hypercharts: Extended statecharts to support hypermedia
specification. IEEE Transactions on Software Engineering, 25(1):33–49,
January–February 1999.

[pos] Poseidon for UML CASE tool web page. Available at:
http://www.gentleware.com/.

[RS00] W. Retschitzegger and W. Schwinger. Towards modeling of dataweb ap-
plications - a requirements’ perspective. In Proc. of the Americas Con-
ference on Information Systems (AMCIS), Long Beach, California, August
2000.

[SD02] Michael Sintek and Stefan Decker. TRIPLE—A query, inference, and
transformation language for the semantic web. In Ian Horrocks and
James A. Hendler, editors, Proc. of ISWC 2002 — 1st International Se-
mantic Web Conference, volume 2342 of LNCS, Sardinia, Italy, June 2002.
Springer.

[SEI00] Carnegie-Mellon University Software Engineering Institute. Do-
main engineering and domain analysis, September 2000. URL:
http://www.sei.cmu.edu/str/descriptions/deda-body.html.

[SF89] P. David Stotts and Richard Furuta. Petri-net-based hypertext: Docu-
ment structure with browsing semantics. ACM Transactions on Infor-
mation Systems, 7(1):3–29, January 1989.

[SF98] P. David Stotts and Richard Furuta. Hyperdocuments as automata: Ver-
ification of trace-based browsing properties by model checking. ACM
Transactions on Information Systems, 16(1):1–30, January 1998.

[SG00] Christian Segor and Martin Gaedke. Crossing the gap - from design to
implementation in web-application development. In Proc. of Informa-
tion Resources Management Association International Conference 2000,
Anchorage, USA, May 2000.

[SL02] Tim Schattkowsky and Marc Lohmann. Rapid development of modu-
lar dynamic web sites using uml. In J.-M. Jézéquel, H. Hussmann, and
S. Cook, editors, In Proc. of 5th International Conference on UML 2002

BIBLIOGRAPHY 131

- The Unified Modeling Language, pages 336–350. Springer, LNCS 2640,
October 2002.

[SR98] Daniel Schwabe and Gustavo Rossi. An object-oriented approach to
web-based application design. Theory and Practise of Object Systems
(TAPOS), Special Issue on the Internet, 4(4):207–225, October 1998.

[SRS00] Luiz Fernando G. Soares, Rogério F. Rodrigues, and Débora
C. Muchaluat Saade. Modeling, authoring and formatting hyper-
media documents in the HyperProp system. ACM Multimedia System
Journal, 8(2):118–134, March 2000.

[STA96] Unisys STARS. Software technology for adaptable reliable systems. or-
ganization domain modeling (ODM) guidebook, version 2.0. Technical
Report STARS-VC-A025/001/00, Unisys STARS, 1996.

[Ste03] Perdita Stevens. Small-scale xmi programming: A revolution in uml tool
use? Automated Software Engineering, 10:7–21, 2003.

[TC92] W. Tracz and L. Coglianese. Domian-specific software architecture engi-
neering process guidelines. Technical Report ADAGE-IBM-92-02, Loral
Federal Systems, 1992.

[THH95] Manfred Thüring, Jörg Hannermann, and Jörg M. Haake. Hyperme-
dia and cognition: Design for comprehension. Communications of the
ACM, 38(8):57–66, August 1995.

[TLHL01] T.Berners-Lee, J. Hendler, and Ora Lassila. The semantic web. Scientific
American, May 2001.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. SIGPLAN Notices, 35(6):26–36,
2000.

[W3C03] W3C. Owl web ontology language semantics and abstract syntax. Tech-
nical Report. Available at: http://www.w3.org/TR/owl-semantics/. Ac-
cessed: 20th September 2003, August 2003.

[WB01] Gerhard Weber and Peter Brusilovsky. Elm-art: An adaptive versatile
system for web-based instruction. International Journal of Artificial In-
telligence in Education, 12(4):351–384, 2001.

[Wie98] Roel Wieringa. A survey of structured and object-oriented software
specification methods and techniques. ACM Comput. Surv., 30(4):459–
527, 1998.

[Wit94] James V. Withey. Implementing model based software engineer-
ing in your organization: An approach to domain engineering,
1994. CMU/SEI-94-TR-01, see also http://www.sei.cmu.edu/
mbse/index.html.

132 BIBLIOGRAPHY

[Wit96] James V. Withey. Investment analysis of software assets for product
lines, 1996. CMU/SEI-96-TR-010.

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engi-
neering: A FamilyBased Software Development Process. Addison Wesley,
August 1999.

[WR98] Weigang Wang and Roy Rada. Structured hypertext with domain seman-
tics. ACM Transactions on Information Systems, 16(4):372–412, October
1998.

Appendix A

Metamodel for Feature Model

We use standard extension mechanism of the UML — the stereotypes to define the
feature metamodel. For explanation purposes we use the class diagram to relate
introduced stereotypes to existing metamodel elements similarly to [Gro00a]. Fig-
ure A.1 depicts a metamodel for feature models. We omit several attributes of meta-
classes, which are defined at the metamodel level. They can be found in [Gro00a]. The
newly introduced elements are marked by stereotype stereotype. The metaclasses
already defined in the UML metamodel are marked by metaclass stereotype.

First of all, the «Concept» element is a stereotype of the Class. We need to differ-
entiate the «Concept» from the Class because we assign features to the «Concept»
differently from the Class. Although we associate features to a concept differently
from UML, we do not restrict classical possibilities to assign attributes to a concept.

We need to associate features to the Concept-s or to other features. We need to
define dependencies between features as well. This is not possible with the Feature
element as it is defined in the UML. The aggregation relationship of the Feature to
the Classifier at the metamodel level prescribes the way how the Feature can be
associated (aggregated) into the Classifier. If features are inserted into a class at
the model level, they are mandatory for the class. A class can have features in a model
but relationships between features are not allowed.

We define the «ConceptualFeature» as an abstract stereotype of the ModelEl-
ment. The «ConceptualFeature» can be either the «MandatoryFature» or the
«OptionalFeature». This definition of the «ConceptualFeature» allow us to dis-
tinguish it from the UML Feature element and to model associations (by means of
the Association and its AssociationEnd-s) between features as well.

To model dependencies between features we introduce the «VariationPoint».
The «VariationPoint» represents constraints on feature configurations, i.e. it some-
how relates features. Because of this, we define «VariationPoint» as a stereotype
of the Association. It means that it has at least two features or concepts associated.
It differs from normal association by its root element, which represents the element
for which a configuration of features is relevant. It has the VariationKind attribute
of the type VariationKind, which is enumerated from exclusive or (XOR), inclusive
or (OR), and conjunction (AND). This attribute is represented as tagged value at the
model level. The «VariationPoint» is also a stereotype of the Classifier to be
able to model associations between different variation points. This is useful for ex-

133

134 Appendix A. Metamodel for Feature Model

«metaclass»
Class

«stereotype»
Concept

«metaclass»
Classifier

«metaclass»
ModelElement

«stereotype»
ConceptualFeature

«stereotype»
MandatoryFeature

«stereotype»
OptionalFeature

«metaclass»
Association

«metaclass»
AssociationEnd

+association

*

+participant

1

+specification

*

+specifiedEnd

*

1

+connection2..*

+VariationKind : VariationKind

«stereotype»
VariationPoint

«stereotype»
FeatureRole

+VariabilityPoint*

+Root1

+VariabilityPoint *+Root1

+specifiedEnd

1

+specification

*+participant

*

+association

*

* +base 1..*

«stereotype»

«stereotype»

«stereotype»

«stereotype»

Figure A.1: A metamodel for a feature model in UML

ample when we want to assert that some features are mutually required but one or
more features have alternative possibilities.

As the features are further refined to collaboration diagrams, they have to be re-
lated to existing elements for the collaboration diagrams in the UML. We model roles
similarly to collaboration diagrams at the specification level. It means that we use the
ClassifierRole, the AssociationRole, and the AssociationEndRole simi-
larly to the UML. The metamodel of mentioned elements can be found in [Gro00a].

We introduce the «FeatureRole» as a stereotype of the Classifier for feature
roles modeling. The relationship to features is modeled similarly to theClassifier-
Role metaclass. We cannot use the ClassifierRole metaclass for modelling fea-
ture roles, because feature is not defined as a kind of theClassifier and theClass-
ifierRole is defined just for the Classifier-s.

Appendix B

Lebenslauf

Peter Dolog, geboren am 28. August 1976 in Brezno, Slowakische Republik.

1994 – 1998 Bachelor Studium Informatik, Slowakische Technische Universität,
Bratislava, Slowakische Republik

1998 Bachelor Diplom in Informatik (Bc.)
Title der Bachelorarbeit: Informationssysteme für kleine Firmen

1997 – 2002 Software Developer, Quality Auditor, CRM Consultant,
TTC spol. s r. o., Slowakische Republik

1998 – 2000 Master Studium Informatik, Slowakische Technische Universität,
Bratislava, Slowakische Republik

2000 Ingenieur Diplom in Informatik (Dipl.-Ing.)
Titel der Diplomarbeit: Performance-Aspekte
einer Application-Server-Implementierung basierend auf
der Oracle Application Server Designer Technology

2000 – 2002 Promotion Studium, Informatik, Slowakische Technische Universität,
Bratislava, Slowakische Republik

2002 – Wissenschaftliche Mitarbeiter am Forschungszentrum L3S,
Universität Hannover

Aug. 2003 Forschung Aufenthalt am DFKI, Michael Sintek
May 2004 Forschung Aufenthalt am Politecnico di Milano, Stefano Ceri
Jul. 2004 – Best Paper Award, 4th International Conference on Web Engineering,

ICWE’2004, Münich, Germany
Nov. 2004 Forschung Aufenthalt am Politecnico di Milano, Stefano Ceri
Sep. 2005 Forschung Aufenthalt am Vrije Universiteit Amsterdam,

Heiner Stuckenschmidt, Holger Wache, headed by Frank van Harmelen

135

