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Abstract

We prove the converge of abstract dynamical systems to their associated quasistationary
approximations and apply these results to a moving boundary problem modeling the
growth of avascular tumors.
Moreover, we introduce the notion of maximal continued solutions of moving boundary
problems in the sense that we characterize what inhibits global in time existence of
solutions. Again, our test object is the tumor model.
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Zusammenfassung

Wir beweisen die Konvergenz abstrakter dynamischer Systeme gegen ihre assoziierten
quasistationären Approximationen und geben eine Anwendung auf ein freies Randwert-
problem, welches das Wachstum avaskularer Tumoren beschreibt.
Darüberhinaus erklären wir den Begri� der maximal fortgesetzten Lösung eines freien
Randwertproblems. Wir charakterisieren, welche Phänomene die globale Existenz von
Lösungen verhindern und diskutieren diese am Beispiele des Tumor Modells.

Stichworte: Freies Randwertproblem, blow-up, quasistationäre Approximation
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1 Preface

The theory of partial di�erential equations as the probably most important mathemat-
ically tool to describe various processes in nature, has already been developed to be
a very extensive and multifarious theory. Nevertheless, many problems are still very
hard to treat, in particular those problems, which involve an unknown domain as a part
of the di�erential equations. One of the simplest examples of these so called 'moving
boundary problems' is the well understood mean curvature �ow V = H: One looks
for a family of surfaces whose normal velocity equals their mean curvature. In suitable
coordinates this simple law turns out to be a complicated nonlinear parabolic equation,
and solutions will have a �nite life span in general. In deed, under this law any convex
initial geometry shrinks into a round point in �nite time as Gerhard Huiskens was able
to prove, see [Hu1984]. This also means �nite time blow-up of the surfaces curvature.
Much less is known in the case of more complicated systems. Recently, an abstract
functional analytic view has been successfully applied to the famous Stefan problem, so
called Hele-Shaw �ows, the averaged mean curvature �ow and models of avascular tu-
mor growth, just to mention a few, c.f. [K2007], [EsSi97a], [EsSi98], [MaSi00], [Es2000].
This semigroup theory based method seems to be the right tool not only to prove exis-
tence and smoothness properties of local solutions, but also to understand equilbrium
states of these problems.
Nevertheless, many questions have not yet been answered. One major thing is the
nonexistence of a general well posedness statement analogous to the ordinary case of
�xed domains, stating, that a solution or some derivative must blow up, if it has a �nite
life span only. In the case of a moving boundary problem, blow-up can obviously also
mean the development of a singularity in the moving boundary. In the second part of
this work we shall give a �rst approach to such a theorem, c.f. Theorem 4.2. It should
be mentioned, that, although we do only consider one special model, the method of the
proof does apply to all the problems numbered above.
Another problem is the precise relation between the so called full problems and their
'quasistationary approximations'. In order to point out qualitative properties, it is still
necessary in many cases formally to drop out a disturbing time derivative of a function
describing the development of some involved physical quantity. In many cases, a physi-
cal justi�cation of this procedure can be given by reasoning, that this quantity evolves
along a di�erent time scale than the boundary manifold, and therefore is approximately
in a stationary state relative to the development of the boundary. In the �rst part of this
work we shall introduce a small parameter and prove convergence of the corresponding
solution to a solution of the quasistationary model, if this parameter tends to zero. This
result, although stated in a rather general setting, applies �rst of all to the special model
which we consider in this work. This special model will be explained in the introduction.
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2 Introduction

Throughout this work we will consider the following moving boundary problem:

(2.1)


−4p = f(v) in Ω(t)

ε∂tv −4v = −h(v) in Ω(t)
V = −∂νp on Γ(t)
p = cH on Γ(t)
v = ψ on Γ(t),

where we set Γ(t) := ∂Ω(t). The system is completed by the initial conditions v(0, ·) =
v0, Γ(0) = Γ0. System (2.1) is a model describing the growth of an avascular tumor:
Ω(t) is the domain occupied by the tumor at time t. By p we denote the cell pressure
and v describes the concentration of a nutrient, for example glucose, di�using through
the tumor. The normal velocity of the family {Γ(t)} and the mean curvature of the
surface Γ(t) are denoted by V and H = H(t), respectively. The functions h and f are
known: the rate of consumption of the nutrient and of cell-proliferation.
The model (2.1) was introduced by Greenspan in [Gr1956] and [Gr1976]. The idea is
to study tumor growth from the point of view of �uid dynamics: The tumor cells are
considered as particles of an incompressible �uid, while the tumor itself is a moving
domain, whose velocity �eld is commensurate with the pressure gradient. Forces of
surface tension counteract the internal cell pressure.
Cell proliferation makes the cellular tissue grow, fed with some nutrient by di�usion.
Thus, the cell proliferation rate f can be interpreted as the source term in the balance
of mass equation. To illustrate this, let

vol(t) :=
∫

Ω(t)
1 dx

measure the volume of the tumor. Then it is well known that d/dt vol(t) =
∫

Γ(t) V dσ,

c.f. [EsSi97a]. Thus, by the equations in (2.1) and the divergence theorem,

d/dt vol(t) =
∫

Ω(t)
f(v(t, x)) dx,

meaning, that in dependence on the present concentration of the nutrient, f acts as a
source or as a sink. A typical choice would be f(v) = −µ0(v − v̄), where µ0, v̄ are
positive constants, but may also be of logistic type, see [ByCh95], [ByCh96].
Next, let us comment on the positive constants c, ε. At �rst, c > 0 is the surface tension
coe�cient related to cell to cell adhesive forces. In this work we are not interested in

4



the dependence of the system (2.1) on c and thus normalize it to be 1. This is di�erent
in the case of ε, which determines the time scale where the evolution of the nutrient
takes place. As already mentioned in the preface, a huge part of this work is devoted
to prove the convergence of the solution (vε, pε,Γε) of (2.1) to a solution of the model
obtained by setting ε = 0, as ε tends to 0.
Finally, let us discuss some results which are already available. First of all, in the
situation of a constant consumption rate h(v) = λv, λ > 0, (2.1) has already been
studied in [Es2000], where the existence of smooth local solutions has been proved. A
radially symmetric setting for a quasi stationary analogue of (2.1) has been investigated
in [MatA08]. In fact, it is shown there, that in case the tumor is a disc and there is a
critical rate of cell death, then the tumor domain will vanish. The corollary 4.3 of this
work may be viewed as a �rst approximation of a generalization of this result.
This work is organized as follows: Section 3 is devoted to the study of the problems
dependence on the parameter ε. In Section 3.1 we shall de�ne an abstract Banach space
setting which allows the treatment of a quite general formulation of a dynamical system
in Section 3.2. These results are applied to system (2.1) in Section 3.3.
In Section 4 we develop the notion of maximal continued solutions. The results we
obtain are stated in Section 4.1. Section 4.2 will be used to de�ne much of our notation
and to discuss some helpful di�erential geometric material. Section 4.3 will deal with a
proof of our main theorem.
Finally, Section 5 is needed to �ll some gaps.
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3 Singular limits in nonlinear dynamical systems

3.1 The abstract setting and linear equations

Let Σϑ := {z ∈ C; | arg(z)| ≤ ϑ+ π/2} ∪ {0}. Troughout this section we shall assume

• E1, E0 are Banach spaces, E1
d
↪→ E0;

• J is a perfect subinterval of R+ containing 0, 0 < ρ < 1;

• There are M,η > 0 as well as ϑ ∈ (0, π/2) such that

(3.1)


A ⊂ Cρ(J,H(E1, E0)), ‖A‖Cρ(J,L(E1,E0)) ≤ η,

Σϑ ⊂ ρ(−A(s))

‖A(s)‖L(E1,E0) + (1 + |λ|)1−j‖(λ+A(s))−1‖L(E0,Ej) ≤M,

where (s, λ,A) ∈ J × Σϑ ×A and j = 0, 1.

Here, H(E1, E0) denotes the set of all bounded linear operators A ∈ L(E1, E0), such
that −A, considered as a closed operator in E0 generates a strongly continuous analytic
semigroup of operators on E0, i.e. in L(E0), which we shall denote by e−tA. The symbol
ρ(A) denotes the resolvent set of A, and, given metric spaces X,Y , Cρ(X,Y ) is the set
of ρ - Hölder continuous functions. (3.1) has the well-known implication

(3.2) 1/M‖x‖E1 ≤ ‖A(s)x‖E0 ≤M‖x‖E1 ,

(s, x,A) ∈ J × E1 ×A.
It is also well known, that (3.1) guarantees the existence of a parabolic fundamental
solution UA(t, s) possessing E1 as a regularity subspace for any A ∈ A. A detailed
construction can be found in [LaQPP]. Moreover, estimates are proven, whose impor-
tance is revealed in the study of quasilinear problems. In the sequel we shall use these
techniques to derive estimates of the fundamental solutions belonging to a family of the
form 1

a · A, a > 0, A ∈ A. In deed, Lemma III 2.2.1 in [LaQPP], (3.1), (3.2) and the
fact that semigroup and generator commute, lead to the following statement:

Lemma 3.1 There exist C = C(k,M), σ = σ(ϑ,M) > 0 such that
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(3.3) ‖[tA(s)]ke−tA(s)‖L(Ej) + t‖[tA(s)]ke−tA(s)‖L(E0,E1) ≤ C · e−σt,

k ∈ N, (t, s, A) ∈ R>0 × J ×A, j = 0, 1.

Let X,Y, Z be Banach spaces and J∗4 := {(t, s) ∈ J × J ; s < t}. If f : J∗4 → L(Y,Z)
and g : J∗4 → L(X,Y ) are suitable functions, let

(f ? g)(t, s) :=
∫ t

s
f(t, τ)g(τ, s) dτ

denote their convolution. First just formally we de�ne for (t, s) ∈ J∗4

i) aA(t, s) := e−(t−s)A(s)

ii) kA(t, s) := −[A(t)−A(s)]e−(t−s)A(s)

iii) wA(t, s) :=
∑

j(Fi=1..j kA(t, s))

iv) eA(t, s) := A(t)e−(t−s)A(t) −A(s)e−(t−s)A(s),

A ∈ A, and notice, that the equality

UA(t, s) = aA(t, s) + (aA ? wA)(t, s)

holds true for A ∈ A. Let ε > 0, A ∈ A and Aε := 1
εA. The fact

e−t(Aε)(s) = e−
t
ε
A(s)

is behind the following lemma:

Lemma 3.2 There exist δ = δ(M,ϑ, ρ) > 0, ε0 = ε0(M,η, ϑ, ρ) > 0, such that

(3.4)

‖(aAε ? wAε)(t, s)‖L(E0) ≤ C · (t− s)ρ · e−δ(t−s)/ε

‖(aAε ? wAε)(t, s)‖L(E1,E0) ≤ C · (t−s)ρ+1

ε · e−δ(t−s)/ε
‖(aAε ? wAε)(t, s)‖L(E0,E1) ≤ C · ε · (t− s)ρ−1 · e−δ(t−s)/ε
‖(aAε ? wAε)(t, s)‖L(E1) ≤ C · (t− s)ρ · e−δ(t−s)/ε

hold true for (t, s) ∈ J∗4, A ∈ A and
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• ε < ε0 and a constant C = C(M,η, ρ) > 0 in the case J = [0,∞)

• ε > 0 and a constant C = C(M,η, ρ, T ) > 0, monotone increasing in T > 0 in
the case J = [0, T ].

In order to prove Lemma 3.2 we shall use the following techniquality:

Lemma 3.3 There are C = C(ϑ) > 0 and b = b(ρ, σ) > 0 such that

‖eAε(t, s)‖L(E0) ≤ C · (t− s)ρ
2−1 · e−b(t−s)/ε,

(t, s) ∈ J∗4.

The two lemmata will be proved at the very end of the thesis. At the moment, we
need some more notation: If X,Y are sets, Y X is the set of all mappings of X into
Y . P(X) denotes the set of all subsets of X. Given metric spaces (X, dX), (Y, dY ), let
Cue(X,Y ) ⊂ P(Y X) be the set of all uniformly equicontinuous families of maps from
X to Y , and let Caue(X,Y ) ⊂ P(Y X), a > 0, be the set of all equi-Hölder continuous
families of maps from X to Y , that is the set of families {vb : X → Y ; b ∈ B} satisfying

sup
b∈B

dY (vb(x), vb(y)) ≤ c · dX(x, y)a, x, y ∈ X.

Finally, let Eθ, θ ∈ [0, 1], be admissible interpolation spaces between E1 and E0. The
open ball in the space Eθ with radius R is denoted by BRθ . The next theorem generalizes
a result of S. G. Krein (see Theorem 4.4.5 in [Pazy]):

Theorem 3.4 (The Linear Case) Let 0 < δ < T , J := [0, T ], Jδ := [δ, T ], α0 ∈
(0, 1). Assume (Bε)ε>0 ⊂ A to be a net in A and (Fε)ε>0 ⊂ (E0)J such that for some
R > 0 and µ ∈ (0, 1)

i) {Fε} ∈ Cue(Jδ,BR0 ) ∩ P(C(J,BR0 ))

or

ii) {Fε} ∈ Cue(Jδ,BRµ ) ∩ P(C(J,BRµ )).

Further, there may exist a pair (B,F ) ∈ (Lis(E1, E0))J\{0} × (E0)J\{0}, such that

(Bε, Fε)(t)
ε→0−→ (B,F )(t) holds true in L(E1, E0) × E0, uniformly on Jδ. If uε is the

mild solution of
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εu′(t) +Bε(t)u(t) = Fε(t), u(0) = u0 ∈ Eα0 , t ∈ J,

then uε(t)
ε→0−→ B(t)−1F (t) uniformly on Jδ with respect to

- the topology on Eα in the case i) for all α ∈ [0, 1),

- the topology on E1 in the case ii).

Notice that in the case ii) the mild solution is a classical one.

Proof: For simplicity let Uε := U 1
ε
Bε
, aε := a 1

ε
Bε

and so on. Then

uε(t) = Uε(t, 0)u0 + 1
ε

∫ t
0 Uε(t, s)Fε(s) ds

= Uε(t, 0)u0 + 1
ε

∫ t
0 [aε(t, s) + (aε ? wε)(t, s)].Fε(s) ds.

Interpolation gives Uε(t, 0)u0
ε→0−→ 0 in C([a, T ], Eβ), 0 < a < T , 0 ≤ β ≤ 1. From

Lemma 3.2 we conclude

‖1
ε

∫ t
0 (aε ? wε)(t, s)Fε(s) ds‖E1 ≤ C ·

∫ t
0 (t− s)ρ−1 · e−δ(t−s)/ε ‖Fε(s)‖E0 ds

≤ CR · ερ ·
∫∞

0 xρ−1 · e−δx dx
ε→0−→ 0.

In order to get along with the remaining term we set

1
ε

∫ t
0 aε(t, s)Fε(s) ds = 1

ε

∫ t
0 aε(t, s)[Fε(s)− Fε(t)] ds+ 1

ε

∫ t
0 aε(t, s)Fε(t) ds

=: Iε,1(t) + Iε,2(t)

and treat Iε,1 at �rst. Assume

Fε ∈ Cue(Jδ,BR0 ): Then, by interpolation of the morphism aε(t, s) : (E0, E0)→ (E0, E1)
we get

‖Iε,1(t)‖Eα ≤ C
ε · ε

α ·
∫ t

0 (t− s)−α · e−σ(t−s)/ε ‖Fε(t)− Fε(s)‖E0 ds

= C
ε · ε

α ·
∫ t

0 x
−α · e−σx/ε ‖Fε(t)− Fε(t− x)‖E0 dx

≤ C
ε · ε

α ·
∫ rε

0 x−α · e−σx/ε ‖Fε(t)− Fε(t− x)‖E0 dx
+2CR ·

∫∞
r x−α · e−σx dx

≤ C ·
∫ r

0 y
−α · e−σy ‖Fε(t)− Fε(t− εy)‖E0 dy

+2CR ·
∫∞
r x−α · e−σx dx,
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r > 0. If b > 0 is given, we choose r > 0 big enough, such that the second integral
is smaller than b/2. Then, by our knowledge about Fε, we can choose ε > 0 small

enough that the �rst integral is smaller than b/2, too. Thus Iε,1(·) ε→0−→ 0 in C(Jδ, Eα),
0 ≤ α < 1. Assume

Fε ∈ Cue(Jδ,BRµ ): In this case we �nd

‖Iε,1(t)‖E1 ≤ 1
ε ·
∫ t

0 ‖e
−(t−s)Aε(s)‖L(Eµ,E1) ‖Fε(t)− Fε(s)‖Eµ ds

≤ C
ε · ε

1−µ ·
∫ t

0 (t− s)µ−1 · e−σ(t−s)/ε ‖Fε(t)− Fε(s)‖Eµ ds

and continue as before. Let us consider Iε,2(t) to be an element of E0 auf. Setting

Iaε,2(t) :=
1
ε
·
∫ t−a

0
aε(t, s)Fε(t) ds,

we have Iaε,2(t) ∈ E1 as well as

Iaε,2(t) = 1
ε · (Bε(t))

−1 [
∫ t−a

0 [Bε(t)−Bε(s)]aε(t, s)Fε(t) ds]
+(Bε(t))−1 [

∫ t−a
0

1
εBε(s)aε(t, s)Fε(t) ds]

=: (Bε(t))−1 Jaε,1 + (Bε(t))−1 Jaε,2.

We calculate

Jaε,2(t) = −
∫ t−a

0 eε(t, s)Fε(t) ds+
∫ t−a

0
1
εBε(t)e

−(t−s)/εBε(t)(t, s)Fε(t) ds
= −

∫ t−a
0 eε(t, s)Fε(t) ds+ [e−a( 1

ε
Bε)(t)Fε(t)− e−t(

1
ε
Bε)(t)Fε(t)].

Sending a→ 0, from the estimates

‖
∫ t

0 eε(t, s)Fε(t) ds‖E0 ≤ CR ·
∫ t

0 (t− s)ρ2−1 e−c(t−s)/ε ds

≤ CR · ερ2 ·
∫∞

0 xρ
2−1 e−cx dx

as well as

‖1
ε ·
∫ t

0 [Bε(t)−Bε(s)]aε(t, s)Fε(t) ds‖E0 ≤ CR
ε ·

∫ t
0 (t− s)ρ−1 · ε · e−σ(t−s)/ε ds

≤ CR · ερ ·
∫∞

0 xρ−1 e−σx dx

we conclude that uε(t)
ε→0−→ B(t)−1F (t). In the last step we have also used the continuity

(in fact analyticity) of the inversion map.
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We close this section by proving a simple inequality of Gronwall-type:

Lemma 3.5 Let J be a bounded perfect subinterval of R≥0 containing 0, and let a, u ∈
L∞(J,R) satisfy

u(t) ≤ a(t) + C ·
∫ t

0
(t− τ)−α · u(τ) dτ,

C > 0, t ∈ J , α ∈ (0, 1). Then

‖u‖L∞(J,R) ≤ c · ‖a‖L∞(J,R),

c = c(C,α, sup(J)).

Proof: Let k(t, s) := C · (t − s)−α. By Lemma II 3.2.1 in [LaQPP], w(t, s) :=∑∞
j=1 Fj

i=1k(t, s) is well de�ned. Let b := a + k ? u − u. Then b ≥ 0 and w ≥ 0, since
k ≥ 0. From Theorem II 3.2.2 in [LaQPP] we know that u = (a − b) + w ? (a − b).
Moreover, Theorem II 3.2.1 in [LaQPP] implies, that w is integrable. Thus, u ≤ a+w?a
and the assertion follows.

3.2 Quasilinear systems

From now on we focus on a system of the form

(3.5)


εu̇+A(ρ)u = F (u, ρ)
ρ̇+B(ρ)ρ = G(u, ρ)

u(0) = u0

ρ(0) = ρ0.

Our assumptions are as follows:

• E0, E1, F0, F1 are Banach spaces and and the embeddings E1
d
↪→ E0, F1

d
↪→ F0 are

compact;

• 0 < γ ≤ β < α ≤ 1, Yβ is open in Fβ ;

• given δ ∈ (β, 1], Yδ := Yβ ∩ Fδ carries the topology of Fδ;

• A ∈ C1−(Yβ,H(E1, E0)), B ∈ C1−(Yβ,H(F1, F0));
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• F ∈ C1−(Eβ × Yβ, Eγ), G ∈ C1−(Eβ × Yβ, Fγ);

• (u0, ρ0) ∈ Eα × Yα.

Here, Eθ, Fθ are interpolation spaces of exponent θ ∈ (0, 1) with respect to any admis-
sible interpolation functor. We want to call a setM⊂ H(E1, E0) regularly bounded, if
there exist M > 0, ϑ ∈ (0, π/2), ω ∈ R, such that

(3.6)


ω + Σϑ ⊂ ρ(−C)

‖ω + C‖L(E1,E0) + (1 + |λ|)1−j‖(λ+ ω + C)−1‖L(E0,Ej) ≤M

holds true, whenever (λ,C, j) ∈ Σϑ ×M × {0, 1}. Clearly, �nite unions of regularly
bounded sets are regularly bounded. It is known, that any C ∈ H(E1, E0) possesses a
regularly bounded neighborhood (c.f Corollary I 1.4.3 in [LaQPP]).

Let ρ ∈ Cν([0, T ], Yβ), T > 0, ν ∈ (0, 1). Then

Fρ,T (t, u) := F (ρ(t), u) ∈ Cν,1−([0, T ]× Eβ, Eγ).

Thus (cf. [Ama88]), the equation

(3.7)

{
εu̇+A(ρ)u = Fρ,T (t, u)

u(0) = u0

possesses a unique maximal continued solution uε,T (ρ) ∈ C([0, t+ε ), Eα)∩Cα([0, t+ε ), E0).
Fixing this notation, we can proceed as follows:

Given a regularly bounded neighborhood U of B(ρ0) in H(F1, F0), we choose a closed,
convex and bounded neighborhood X of ρ0 in Yβ such that B[X] ⊂ U and set

W ν
X(U),T := {r ∈ C([0, T ], X)| ‖r(t)− r(s)‖Fβ ≤ |t− s|

ν},

which is not the empty set, because it contains the constant function t 7→ ρ0. We have

Lemma 3.6 The set W ν
X(U),T is a closed, bounded and convex subset of C([0, T ], Yβ).
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Proof: W ν
X(U),T is bounded, since X is bounded. It is convex, since X is convex

and

‖(b · r0 + (1− b) · r1)(s)− (b · r0 + (1− b) · r1)(t)‖Fβ ≤ [b+ (1− b)]|t− s|ν .

To see that it is closed, let (rn) ⊂ W ν
X(U),T converge to some r ∈ C([0, T ], X). Then,

given δ > 0, there exists n ∈ N such that

‖r(t)− r(s)‖Fβ ≤ 2‖r − rn‖C([0,T ],X) + ‖rn(t)− rn(s)‖Fβ ≤ δ + |t− s|ν

and the assertion follows by sending δ to 0.

We now make the cruical assumption:

• Given ρ ∈W ν
X(U),T , there is a C = C(X), such that

(3.8) ‖uε,T (ρ)(t)‖Eα ≤ C, 0 < t < t+ε (ρ),

where C(X) ≤ C(X̃), provided X ⊂ X̃.

Finally, we use the abbreviations Ba := B̄Fβ (ρ0, a) as well as W ν
a(U),T := W ν

Ba(U),T . The
symbol '↪→↪→' means compact embedding.

Theorem 3.7 There is a positive time t∗ independent of ε, such that, given ε >
0, system (3.5) possesses a unique classical solution (uε, ρε) ∈ C([0, t∗], Eα × Yα) ∩
Cα([0, t∗], E0 × F0).

Moreover,
⋃
ε>0 uε[[0, t

∗]] × ρε[[0, t∗]] is a bounded subset of Eα × Yα. If, given 0 <
δ < t∗, there is a number µ > 0, such that uε ∈ Cµue([δ, t∗], E0), then there is a pair
(u, ρ) ∈ C((0, t∗], E1)× C([0, t∗], Yα) with the following properties:

- (uε, ρε)(t)→ (u, ρ)(t) in Eα×Yα, locally uniformly on (0, t∗], after possibly passing
to a subnet;

- ρ(0) = ρ0;

- (u, ρ) satis�es (3.5) in the case ε = 0 pointwise on t ∈ (0, t∗].
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Proof: Let regularly bounded neighborhoods U of B(ρ0) in H(F1, F0) and W of
A(ρ0) in H(E1, E0), r0 ∈ (0, α − β) as well as a > 0 be chosen such that B[Ba] ⊂ U ,
A[Ba] ⊂W . Moreover, we may assume A,B to be Lipschitz continuous on Ba. We set

Wa,T := W r0
a(U),T .

(3.8) implies the global existense of the function uε,T (ρ), ρ ∈ Wa,T , i.e. on [0, T ].
Moreover, the set

Ma :=
⋃
ε > 0

r ∈Wa,T

uε,T (r)[[0, T ]]

is bounded in Eα and thus relatively compact in Eβ . Thus, we can choose a > 0 in a
way, that F,G are Lipschitz continuous on Ma ×Ba.
Next we prove that, given ε > 0, the mapping

ρ 7→ uε,T (ρ) : Wa,T → C([0, T ], Eα)

is Lipschitz continuous. In deed, from the Variation of Constants (VoC) formula we
know that

uε,T (ρ)(t) = UA(ρ)ε(t, 0)u0 + 1/ε
∫ t

0
UA(ρ)ε(t, s)Fρ,T (s, u(s)) ds.

Thus, Lemma II 5.1.4 in [LaQPP] tells us

‖[uε,T (ρ)− uε,T (σ)](t)‖Eα
≤ C ·

[
‖A(ρ)ε −A(σ)ε‖L∞(0,T,L(E1,E0)) · {‖u0‖Eα

+
∫ t

0 (t− s)γ−α‖Fω,ρ,T (s, uε,T (ρ))(s)‖Eγ ds
}

+
∫ t

0 ‖U[A(σ)+ω]ε(t, s)‖L(Eγ ,Eα)‖Fω,ρ,T (s, uε,T (ρ))(s)− Fω,σ,T (s, uε,T (σ))(s)‖Eγ ds
]
,

for a suitable ω ∈ R and Fω,σ,T (s, v) := Fσ,T (s, v) + ωv. Thus,

‖[uε,T (ρ)− uε,T (σ)](t)‖Eα ≤ C · [‖ρ− σ‖C([0,T ],Yβ)

+
∫ t

0 (t− s)γ−α‖[uε,T (ρ)− uε,T (σ)](s)‖Eα ds],
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where C = C(ε, T, γ, α) is independent of ρ, σ ∈Wa,T . Lemma 3.5 �nally gives

‖[uε,T (ρ)− uε,T (σ)](t)‖Eα ≤ C̃ · ‖ρ− σ‖C([0,T ],Yβ).

In general, of course, C̃ will tend to in�nity as ε tends to 0. Nevertheless, denoting by
σε,T (ρ) the unique solution of the equation

σt +B(ρ)σ = G(uε,T (ρ), ρ), σ(0) = ρ0,

the VoC formula, interpolation and Lemma II 5.1.4 in [LaQPP] imply the Lipschitz
continuity of the mapping

Φε : Wa,T → C([0, T ], Yβ), ρ 7→ σε,T (ρ),

c.f. Theorem II 5.2.1 in [LaQPP]. Again, the corresponding Lipschitz constants will
depend on ε > 0 in general. But, following Theorem II 5.3.1 in [LaQPP], thanks to
(3.8) and 0 < r0 < α− β, we �nd that

(3.9)
⋃
ε>0

Φε[Wa,T ] ⊂Wa,T ∩ C([0, T ], Pα),

where Pα denotes a bounded subset of Yα containing ρ0, provided a, T > 0 are small
enough. Since Wa,T is a convex, closed and bounded subset of C([0, T ], Yβ) by Lemma
3.6, and since any of the mappings Φε is compact due to (3.9), F1 ↪→↪→ F0 (thus also
Fα ↪→↪→ Fβ) and Simons compactness theorem (vgl. [Si88]), there exists a family of
�xed points ρε inside Wa,T . Thus, if ε > 0 is given, the pair (uε, ρε) is a solution of
(3.5), where uε := uε,T (ρε). The uniqueness and regularity results from Theorem 12.1
in [Ama93] complete the proof of the theorems �rst statement.
Let us now �x two su�ciently small numbers a, T and denote them by A, t∗. By
construction, it is clear, that the set {ρε| ε > 0} is relatively compact in C([0, t∗], Yβ).
It follows from ρε ∈Wa,T ,

ε(uε)t +A(ρε)uε = F (uε, ρε)

and (3.8), that ‖uε(t)‖Eα ≤ C(A) , t ∈ [0, t∗], ε > 0. Given 0 < δ < t∗, let Jδ :=
[δ, t∗] and J := [0, t∗]. Assume that uε ∈ Cµue(Jδ, E0). Then the set {uε| ε > 0} is
relatively compact in C(Jδ, Eβ). Therefore we �nd a subnet (uε′ , ρε′)ε′>0, again denoted
by (uε, ρε)ε>0, satisfying
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(uε, ρε)
ε→0−→ (u, ρ) ∈ C(Jδ, Eβ)× C(J, Yβ)

in C(Jδ, Eβ)×C(J, Yβ). Let (uεk , ρεk)εk>0 be a sequence in (uε, ρε)ε>0 such that εk → 0.
Denote this sequence again by (uε, ρε). It is not di�cult to see, that the set

(3.10) A[ρ[J ]]×B[ρ[J ]] ∪
⋃
ε>0

A[ρε[J ]]×B[ρε[J ]]

is a compact subset of H(E1, E0) × H(F1, F0). Thus, we �nd ω ∈ R, such that the
operators ω + A(ρε), ω + B(ρε) as well as the limits ω + A(ρ), ω + B(ρ) satisfy the

assumptions of Theorem 3.4. Moreover, F (uε, ρε)
ε→0−→ F (u, ρ) in Eγ uniformly on Jδ.

Remember that the set
⋃
ε>0 uε[J ] is bounded in Eα. Thus {uε| ε > 0} ∈ Cµβ/αue (Jδ, Eβ):

‖uε(t)− uε(s)‖Eβ ≤ ‖uε(t)− uε(s)‖
1−β/α
Eα

· ‖uε(t)− uε(s)‖β/αE0
≤ C · |t− s|µβ/α,

t, s ∈ Jδ. By construction, the set {ρε|Jδ ; ε > 0} is equi - r0 - Hölder continuous with
respect to the topology of Yβ . Thus,

F (uε, ρε) ∈ Cmin{r0,µβ/α}
ue (Jδ, Eγ),

and Theorem 3.4 implies

u(t) ε←0←− uε(t)
ε→0−→ (ω +A(ρ(t)))−1(F (u(t), ρ(t)) + ω · u(t)),

where the right arrow represents convergence in C(Jδ, E1). Therefore, the left arrow
has to represent convergence in C(Jδ, E1), too. Thus, u ∈ C(Jδ, E1), and so (δ has been
arbitrary) u ∈ C((0, t∗], E1). We are left to show that the pair (u, ρ) solves the second
equation, but this is an easy consequence from the VoC-formula and the continuous
dependence of the evolution operator on the family of generating operators (cf. Lemma
5.1.4 in [LaQPP]).

Remember that, thanks to (3.8), uε[[0, t∗]] is a bounded subset of Eα, uniformly in
ε > 0. Thus, u[(0, t∗]] is bounded in Eα, too, and we �nd a convergent sequence u(hk),
hk → 0 with respect to the topology in Eβ . Denoting its limit by x := u(0) ∈ Eβ ,
continuity implies that
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u(0) = (ω +A(ρ(0)))−1(F (u(0), ρ(0)) + ω · u(0)).

Thus x ∈ E1 as well as A(ρ0)x = F (x, ρ0). Unfortunately, we cannot guarantee uniform
continuity of u. In applications, the uniqueness and continuous dependence of the
solution of the problem Ay = F (y) on the data A and F may help us to identify
x = u(0) as a real continuation.

The following observation will be usefull in applications:

Corollary 3.8 Let ρ ∈ W ν
a(U),T be given, T > 0, ν ∈ (0, 1). We assume, there exists

a Banach space V such that E0
d
↪→ V and an interpolation functor F of exponent

µ ∈ (0, 1), such that

- there is a δ0 ∈ [0, α] such that F(Eδ0 , V ) ↪→ Eβ′ for some β′ > β,

- there is a Banach space Z, Eβ ⊂ Z ⊂ V , such that F can be continued to a
function F̃ : Z×Yβ → V . Moreover, given y ∈ Yβ, there may exist a neighborhood
U ⊂ Yβ of y, such that F̃ (·, z) is bounded on bounded subsets of Z uniformly with
respect to z ∈ U ,

- A ∈ C1−(Yβ,H(Eδ0 , V )).

Then, if (3.8) is replaced by

‖uε,T (ρ)(t)‖Z ≤ C, 0 < t < t+ε (ρ), C = C(a),

the statement of Theorem 3.7 still holds true. In fact, in order to establish the conver-
gence result, it su�ces to possess the a priori information

uε ∈ Cµue(Jδ, V ), δ ∈ (0, t∗), µ ∈ (0, 1).

Notice that Z is not needed to be an interpolation space.

Proof: Again, let regularly bounded neighborhoods U of B(ρ0) and W of A(ρ0)
(and also the corresponding constants M,ω), r0 ∈ (0, α− β) as well as a > 0 be chosen
small enough, that B[Ba] ⊂ U , A[Ba] ⊂W and

⋃
ε > 0

r ∈Wa,T

(F ◦ (uε,T (r), r))[[0, T ]] + ω · uε,T (r)[[0, T ]]

17



is bounded in V . It follows

‖uε,T (r)(t)‖Eβ′ ≤ C(a) + 1/ε
∫ t

0 ‖U(ω+A(r))ε(t, s)‖L(V,F(Eδ0 ,V )) · C(a) ds
≤ C(a) + C(a) · εµ−1

∫ t
0 [(t− s)−µ + (t− s)(ρ−1)µ]e−σ(t−s)/ε ds

≤ C(a) + C(a) · (1 + ερµ) · [
∫∞

0 x−µ · e−σx dx+
∫∞

0 x(ρ−1)µ · e−σx dx]
≤ C(a).

From E1 ↪→↪→ E0 (thus also Eβ′ ↪→↪→ Eβ) we conclude, that F ◦ (uε,T (r), r) is actually
bounded in Eγ , uniformly with respect to r ∈ Wa,T . Thus we �nd even boundedness
of uε,T (r) in Eα as before. We can proceed as in the proof of the last theorem. The
second statements proof is straight forward.

Finally, let us consider an important special case:

Corollary 3.9 Under the assumptions of Corollary 3.8 we assume the nonlinearity F
to possess the the following structure:

F (u, ρ) = ε ·H(u, ρ) + J(u, ρ),

where

- J(·, z) : V → V is bounded on bounded sets, locally uniformly with respect to
z ∈ Yβ;

- H : Z × Yβ → V , and, given z ∈ Yβ there is a neighborhood Y of z in Yβ such
that

‖H(v, y)‖V ≤ C · (‖v‖Z + 1),

where C > 0 can be chosen independent of y ∈ Y , but may depend on ‖v‖V ;

- (H|Eβ×Yβ , J |Eβ×Yβ ) ∈ C1−(Eβ × Yβ, [Eγ ]2).

Assuming

‖uε,T (ρ)(t)‖V ≤ C, 0 < t < t+ε (ρ), C = C(a)

all the statements of Corollary 3.8 remain valid in the sense, that the corresponding
limit is a solution of the system
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(3.11)


A(ρ)u = J(u, ρ)

ρ̇+B(ρ)ρ = G(u, ρ)
ρ(0) = ρ0.

Proof: The assumptions imply

‖uε,T (ρ)(t)‖Z ≤ C(a) + C(a) · ε‖uε,T (ρ)‖L∞(0,t,Z),

which o�ers an estimate of ‖uε,T (ρ)(t)‖Z , provided ε < ε0. We proceed as before.

Remark 3.10 Statements, similar to those of Theorem 3.7, Corollary 3.8 and 3.9 could
be achieved in another way avoiding the usage of the estimates of Lemma 3.2: One could
replace the arguments from the proofs of Corollary 3.8, 3.9 by a 'real' scaling argument.
Of course, to establish the converge results, stronger a priori estimates, containing at
least the information

sup
0<ε<ε0

‖u̇ε‖L∞(Jδ,V ) <∞

are necessary in this case. Also, the linear case would not be covered by this approach.
Moreover, analyzing the above proofs, one recognizes that it is in fact enough to possess
the a priori information

{uε} ∈ Cue(Jδ, V ).

From this point of view, our results seem to be nearly optimal.

3.3 Application to the tumor model

In this Section we want to identify system (2.1):


−4p = f(v) in Ω(t)

ε∂tv −4v = −h(v) in Ω(t)
V = −∂νp on Γ(t)
p = cH on Γ(t)
v = ψ on Γ(t)

as a special case of Corollary 3.9. Local existence for the case ε = 1, h(v) = λv, λ > 0,
has already been shown in [ES2000]. We make some general assumptions which we keep
�xed afterwards:
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• n ≥ 2, q > n+ 1;

• f ∈ C∞(R), h ∈ C∞(R), ψ ∈ C∞(Rn,R), c = 1.

Throughout this section we use the same symbol '·' to denote the scalar products in all
Rl, where l ∈ N.
Let us introduce some function spaces. Given q ∈ (1,∞) and s ≥ 0, Hs

q denotes the
Bessel potential space, built over Lq. Remember that this space coincides with the
Sobolev space W s

q provided s is a natural number. Moreover, if p ≥ 1 and s ∈ R, Bs
pp

is the Besov space as introduced in [Trie1], [Trie2]. Observe that Bs
∞∞ = BUCs, if

s > 0 is not a natural number. Letting s = k + s′, where k ∈ N and s′ ∈ (0, 1), BUSs

stands for the space of all continously di�erentiable functions up to the order k, having
s′- Hölder continuous derivatives of order k. As usual, function spaces, built over a
manifold, are de�ned by means of a su�ciently smooth atlas.
We want to make a short discussion about the initial state of system (2.1): Given a
domain D with smooth boundary Σ and a tubular neighborhood N of Σ with radius
a, i.e. dist(∂N,Σ) = a, let Ad(Σ) := {ρ ∈ C2(Σ); ‖ρ‖C1(Σ) < a/4}, Γρ := θρ[Σ] and
Ωρ := θρ[D], ρ ∈ Ad. Here θρ denotes the Hanzawa di�eomorphism:

θρ(y) =
{
P (y) + ρ(P (y)) · [Λ(y) + ϕ(Λ(y))] · µ(P (y)), y ∈ N

y y 6∈ N,

where ϕ ∈ D(R) satis�es ϕ|[−a,a] = 1, supp(ϕ) ⊂ (−3a, 3a) and µ is the outward unit
normal �eld of Σ. P = P[Σ] and Λ = Λ[Σ] are the metric projection map and the signed
distance function with respect to Σ. Especially, θρ(y) = y + ρ(y) · µ(y), if y ∈ Σ.
We assume a to be small enough, that P and Λ are smooth function in N̄ and mention,
that the surface Γρ is the zero-levelset of the function

ϕρ : N → R, x 7→ Λ(x)− ρ(P (x)),

ρ ∈ Ad. Finally, we set ND := N ∩D. Let Ω0 be a domain in Rn of class B
4−1/q
qq . We

assume that there is a smooth hypersurface Σ and a function ρ0 ∈ B4−1/q
qq (Σ)∩Ad such

that ∂Ω0 = Γ0 = Γρ0 .
At the moment, this is only an assumption. In Section 4.2 we will discuss in detail
how restrictive it is. Also the notions from di�erential geometry which we use here are
explained there in more detail.
Finally, the pressure p at time t = 0 is uniquely determined by the solution of the
elliptic problem

{
−4p = f(v0) in Ω0

p = HΓ0 on Γ0.
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Let us now consider time dependent functions ρ : J ⊂ R≥0 → Ad and de�ne

Ωρ,J :=
⋃
t∈J

({t} × Ωρ(t)).

We give a �rst notion of a solution of system (2.1). LetW 2
q,0(Ω0) := {u ∈W 2

q (Ω0); u|Γ0 =
0}.

De�nition 3.11 Let (v0 − ψ) ∈ W 2
q,0(Ω0). A triple (vε, pε,Γε) is called a classical

solution of system (2.1), if there is an interval Jε := [0, Tε) and a function ρε ∈
C1(Jε, C(Σ)) ∩ C(Jε,Ad), such that

- Γε(t) = Γρε(t), t ∈ Jε,

- vε ∈ C∞(Ωρε,J̇ε
),

- vε(t, ·), pε(t, ·) ∈W 2
q (Ωρε(t)), t ∈ Jε and

- (vε, pε,Γε) satisfy the equations in (2.1) pointwise on
⋃
t∈Jε({t} × Ωρε(t)).

Given σ ∈ Ad, let θ∗σ, θ
σ
∗ denote the pull-back and push-forward operators induced by

θσ, i.e. θ∗σ f = f ◦ θσ, θσ∗ g = g ◦ θ−1
σ . If suitable functions b, ρ are time dependent,

i.e. b = b(t, x), ρ = ρ(t, x), we de�ne [θ∗ρ b](t, x) := [θ∗ρ(t) b(t, ·)](x), analogue for θρ∗.

It is already known, that, using the Hanzawa di�eomorphism, system (2.1) can be
transformed to the system

(3.12)



A(ρ)r = f(w) in J ×D
ε∂tw +A(ρ)w = εR(w, r, ρ)− h(w) in J ×D
∂tρ+B(ρ)r = 0 on J × Σ

r = H(ρ) on J × Σ
w = χ(ρ) on J × Σ

w(0, ·) = w0 in D
ρ(0, ·) = ρ0 on Σ,

involving the transformed quantities w0 := θ∗ρ0
v0, w := θ∗ρv, r := θ∗ρp. Here: A(ρ)u :=

−θ∗ρ(∆(θρ∗u)), B(ρ)u := −θ∗ρ(∇(θρ∗u)) · ∇ϕρ), H(ρ) := θ∗ρH[Γρ] and χ(ρ) := θ∗ρ ψ, c.f.
[Es2000]. We mention that A(ρ) is just the Laplace-Beltrami operator with respect to
the Riemannian metric induced by θρ. The term R arises from the transformation of
the time derivative vt and is determined by
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R(w, r, σ)(y) = r0(B(σ)r,Bµ(σ)w)(y), y ∈ D

for r, w ∈ C1(D̄), σ ∈ Ad and

(3.13) r0(h, k)(y) :=
{
ϕ(Λ(y)) · h(P (y)) · k(y), if y ∈ ND

0, if y ∈ D \ND,

Bµ(σ)v(y) = θ∗σ∇(θσ∗ v)(y) · (µ ◦ P )(y), y ∈ N.

Further, letting S and T be the solution operators of the elliptic problems

(3.14)

{
A(ρ)r = f in D

r = 0 on Σ,

(3.15)

{
A(ρ)r = 0 in D

r = h on Σ,

the function r(w, ρ) := S(ρ)f(w) + T (ρ)H(ρ) is the unique solution of the elliptic
problem

(3.16)

{
A(ρ)r = f(w) in D

r = H(ρ) on Σ.

The precise regularity properties of the operators S and T can be found in Lemma 3.1,
[Es2000] and in (2.9) and Lemma 2.3 in [EsSi97a]. Using (3.16) we get

(3.17)


ε∂tw +A(ρ)w = εR(w, r(w, ρ), ρ)− h(w) in J̇ ×D

w = χ(ρ) on J × Σ
∂tρ+B(ρ)T (ρ)H(ρ) = B(ρ)S(ρ)f(w) on J̇ × Σ

w(0, ·) = w0 in D
ρ(0, ·) = ρ0 in Σ.

Letting u := w − χ(ρ) we have
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(3.18)



ε∂tu+A(ρ)u = εR(uχ, r(uχ, ρ), ρ)− h(uχ)
−A(ρ)χ(ρ)− εQ(u, ρ) in J̇ ×D

u = 0 on J × Σ
∂tρ+B(ρ)T (ρ)H(ρ) = B(ρ)S(ρ)f(uχ) on J̇ × Σ

u(0, ·) = w0 − χ(ρ0) in D
ρ(0, ·) = ρ0 in Σ,

where we used the notation uχ := uχ(ρ) := u + χ(ρ). Here Q results from the dif-
ferentiation of the transformed boundary-data χ(ρ) with respect to time and is given
by

Q(w, σ)(y) := [ϕ ◦ Λ] · [B(σ)r(wχ(σ), σ) ◦ P ] · [(θ∗σ∇ψ) · (µ ◦ P )](y), y ∈ ND,

Q(v, σ)(y) = 0, y ∈ D \ND. Considering (3.18) as the system

(3.19)


ε∂tu+A(ρ)u = εR(uχ, r(uχ, ρ), ρ)− h(uχ)

−A(ρ)χ(ρ)− εQ(u, ρ) in J̇ ×D
∂tρ+B(ρ)T (ρ)H(ρ) = B(ρ)S(ρ)f(uχ) on J̇ × Σ

u(0, ·) = w0 − χ(ρ0) in D
ρ(0, ·) = ρ0 in Σ

over a suitable function space with zero-boundary-condition, we arrive at

(3.20)


ε∂tu+A(ρ)u = F (u, ρ) in J̇ ×D

∂tρ+B(ρ)T (ρ)P (ρ)ρ = G(u, ρ) on J̇ × Σ
u(0, ·) = w0 − χ(ρ0) in D
ρ(0, ·) = ρ0 in Σ,

if we make use of the decomposition H(ρ) = P (ρ)ρ+K(ρ) which has been introduced
in [EsSi97a], Lemma 3.1, and set

F (u, ρ) := εR(uχ, r(uχ, ρ), ρ)− h(uχ)−A(ρ)χ(ρ)− εQ(u, ρ)
G(u, ρ) := −B(ρ)[T (ρ)K(ρ)− S(ρ)f(uχ)].

We de�ne
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De�nition 3.12 Let ρ0 ∈ B
4− 1

q
qq (Σ) ∩ Ad und w0 ∈ W 2

q (D). A pair (uε, ρε) is called a
classical solution of system (3.20), if there is a nontrivial interval Jε such that

- ρε ∈ C(Jε, B
4− 1

q
qq (Σ)∩Ad)∩C1(Jε, B

1− 1
q

qq (Σ))∩C∞(J̇ε, B
4+k− 1

q
qq (Σ)) for any k ∈ N

- uε ∈ C(Jε, H2
q (D)) ∩ C1(Jε, Lq(D)) ∩ C∞(J̇ε, H2+k

q (D)) for any k ∈ N

- uε(t)|Σ = 0 for t ∈ Jε und

- (uε, ρε) satisfy the equations of (3.20) pointwise on Jε.

It is obvious how to obtain a classical solution of (2.1) from a classical solution of (3.20).
In order to apply Corollary 3.9, we make the additional assumptions

• v0 ≥ 0, ψ ≡ 1

• h(0) = 0, h′ > 0.

Notice that these assumptions are biologically reasonable: the nutrient concentration
u cannot be negative. Moreover, if there is no nutrient, there cannot be consumption,
and the more nutrient is present, the more will actually be consumed. Moreover, it is
convenient to assume the nutrient concentration outside the tumor tissue to be constant.
The assumptions can be dropped at the end of this Section.
Let us proceed by choosing appropriate numbers 0 < γ < β < α < 1, s > 0 (cf.
[ES2000], section 4) and de�ne

• E1 := H2+2s
q,0 (D), E0 := H2s

q (D)

• F1 := B
4+3s−1/q
qq (Σ), F0 := B

1+3s−1/q
qq (Σ)

• Yβ := Fβ ∩Ad.

Here Eθ, Fθ are, say, complex interpolation spaces of exponent θ ∈ (0, 1). The setting
is made to obtain Eα × Fα = H2

q,0(D) × B4−1/q
qq (Σ), see [Es2000], Lemma 4.1 and the

considerations after the proof of Lemma 4.2 for more information. Moreover, Theorem
5.5.3, 1 and 2 in [RuSi] imply

h ∈ C∞(Eβ, Eγ),

where h denotes now the Nemytskij Operator induced by the function h.
Using the Lemmata 4.4 -4.6 in [Es2000], we �nd, that the mappings A,BTP, F,G satisfy
the assumptions from the beginning of the last Section:
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(A,BTP ) ∈ C∞(Yβ,H(E1, E0)×H(F1, F0)), (F,G) ∈ C∞(Yβ × Eβ, Eγ × Fγ).

Further, letting

• Z := BUC1(D), V := Lq(D), Ṽ := BUC(D),

one easily veri�es that

• Eβ
d
↪→ Z

d
↪→ Ṽ

d
↪→ V

• A ∈ C∞(Yβ,H(Eα, V ))

• [Eα, V ]µ ↪→ Eβ′ for β
′ > β, the complex interpolation functor [·, ·]µ and µ close

enough to 1.

Let ρ ∈ W ν
a(U),T be given, and let uε := uε(ρ) ∈ C([0, t+ε ), Eα) ∩ C1([0, t+ε ), V ) be the

unique solution of the �rst equation in (3.20) with respect to that function ρ. Letting

• J := [0, S], 0 < S < t+ε (ρ), and

• P[J ×D] be the parabolic boundary of the set J ×D,

we get

Lemma 3.13

sup
0<t<t+ε

|uε(t)|C(D̄) ≤ max{max v0, 1} =: M.

Proof: Let u := uε, w := u+ 1, for simplicity. Then w is a solution of the �rst two
equations in (3.17). Considering w as a function on J ×D and writing again w instead
of w|J×D, we �nd w ≥ 0:
It su�ces to show, that w cannot be negative in all points (t0, x0) ∈ J×D\P[J×D]. In
deed, we have Fβ ↪→ BUC3(Σ). Since Eα = H2

q,0(D) ↪→ BUC1+τ (D), the function x 7→
R(u(t), r(u(t), ρ(t)), ρ(t))(x) − h(u(t))(x) belongs to the space BUCτ (D) (cf. the end
of this Section). The regularity of the coe�cients of A(ρ) and parabolic theory imply,
that w possesses a continuous second x - di�erential in all points (t, x) ∈ (0, S]×D. If
now minw = w(t0, x0) for some (t0, x0) ∈ J ×D \ P[J ×D], it follows that

wt(t0, x0) ≤ 0, R(w(t0), r(w(t0), ρ(t0)), ρ(t0))(x0) = 0.
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The assumption w(t0, x0) ≤ 0 then implies that−h(w(t0, x0)) ≥ 0, i.e. A(ρ(t0))w(t0, x0) ≥
0. But this contradicts the ellipticity of A(ρ(t0)), since it is an operator without zero
order terms, i.e.

A(ρ(t0)) =
n∑

i,j=1

aij(t0, x)∂i∂j + aj(t0, x)∂j .

Analogously we see, that w must achieve its maximal value on P[J × D]. Since 0 <
S < t+ε was arbitrary, we �nd all in all:

0 ≤ w ≤ max{maxw0, 1} = max{max v0, 1},

giving the assertion.

In order to verify the remaining assumptions of Corollary 3.9 we need to have a closer
look onto the nonlinearities R and Q in (3.20). First observe, that Q ≡ 0, since ψ is
constant. Remember the de�nition of the mapping

r0(h, k)(y) :=
{
ϕ(Λ(y)) · h(P (y)) · k(y), if y ∈ ND

0, if y ∈ D \ND.

It is clear that this mapping, considered as a subset of (C(Σ) × C(N̄D)) × C(D̄), is
bilinear and bounded. Moreover, remember

R(u, r, ρ)(y) = r0(B(ρ)r,Bµ(ρ)u)(y).

It is not di�cult to verify, that the action of the operators B(σ) and Bµ(σ) for σ ∈ Yβ
is determined by

B(σ)v(s) = ~bσ(s) · ∇v(s), s ∈ Σ

and

Bµ(σ)v(y) = (Bσ(y)∇v(y)) · µ(P (y)), y ∈ ND,

respectively, where,

σ 7→ (~bσ, Bσ) ∈ C∞(Yβ, Cτ (Σ,Rn)× Cτ (D̄,L(Rn))).
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Thus, we �nd a constant C = C(σ) with the property

‖B(σ)v‖C(Σ) ≤ C · ‖∇v‖C(Σ),

‖Bµ(σ)v‖C(N̄D) ≤ C · ‖∇v‖C(D̄),

v ∈ C1(D̄), locally uniformly with respect to σ ∈ Yβ , by continuity. Standard elliptic
theory implies, that

‖r(vχ≡1, σ)‖C1(D̄) ≤ C(σ, ‖f(vχ≡1)‖∞),

locally uniformly with respect to σ ∈ Yβ , (cf. Theorem 8.33 in [GilTru]). Therefore

‖R(vχ≡1, r(vχ≡1, σ), σ)‖C(D̄) ≤ C(σ,M) · (‖v‖C1(D̄) + 1),

locally uniformly with respect to σ ∈ Yβ . Finally, we observe A(σ)χ(σ) = A(σ)1 = 0,
and we �nd the mapping

J(·, σ) := v 7→ h(v) : C(D̄)→ C(D̄),

σ ∈ Yβ , obviously to be bounded on bounded sets, locally uniformly with respect to
σ ∈ Yβ . Summarizing, we have shown:

Theorem 3.14 Let ρ0 ∈ B
4− 1

q
qq (Σ)∩Ad and w0 ∈W 2

q (D). Then, given ε > 0 there is a
unique classical solution of system (3.20) on some nontrivial interval [0, t∗] independent
of ε > 0.

Therefore:

Theorem 3.15 Let Ω0 be of class B4−1/q
qq and v0 − 1 ∈ W 2

q,0(Ω0). Then, given ε > 0,
system (2.1) possesses a unique classical solution (vε, pε,Γε) on some nontrivial interval
[0, t∗] independent of ε > 0. Moreover, vε ≥ 0.

Finally, we want to prove convergence of the solutions. Assume (uε, ρε) to solve (3.20).
It su�ces to derive an L∞([a, T ]×D)-bound for (uε)t, if [a, T ] ⊂ (0, t∗] is given.
First of all, due to the abstract theory (c.f. Theorem 3.7, Corollary 3.8, 3.9), we know
that the set

(3.21)
⋃

ε0>ε>0

ρε[[0, t∗]]× ρ̇ε[[0, t∗]]× uε[[0, t∗]]× εu̇ε[[0, t∗]]× εu̇ε[[a, t∗]]

27



is a bounded subset of c3+τ (Σ)× cτ (Σ)×H2
q,0(D)× Lq(D)×BUC(D) for some small

positive τ . We can bootstrap to �nd uniform bounds in an arbitrary strong topology,
provided, we are away from 0. Letting wε := uε + 1 and vε := wε ◦ θ−1

ρε (i.e. vε solves
the original model (2.1)), we have

(3.22) zε(t, x) := (vε)t(t, x) = (wε)t(t, θ−1
ρε(t)

(x)) +R(wε, rε(wε, ρε), ρε)(t, θ−1
ρε(t)

(x)),

(cf. the proof of Lemma 2.1 in [Es2000]), where rε = r(wε, ρε) is de�ned by (3.16).
Since zε obviously solves

εżε −∆zε + h′(vε) · zε = 0 in Ωρε,(0,t∗),

since h′ ≥ α0 > 0, the parabolic maximum principle (c.f Theorem 2.10, 2.11 in [Lieb96])
implies

sup
Ωρε,[δ,T ]

|zε| ≤ sup
P[Ωρε,[δ,T ]]

|zε|,

δ ≥ 0. But wε|(0,t∗]×Σ = 1, so

sup |(wε)t| |(0,t∗]×Σ = 0.

.

Thus, it su�ces to estimate u̇ε near t = a, where a > 0 is as small as we want it to be.
Given b > 0, we may assume ‖ρ0‖C2(Σ) < b (c.f. Theorem 4.6). Since h′ ≥ α0 > 0 and
A(0) = −4, we therefore have

−α0/2 ∈
⋂

ε0>ε>0, t∈[J ]

ρ(−[A(ρε(t)) + h′(uε(t))]),

where J := [0, t0] ⊃ [0, a] is su�ciently small. Here A(ρ(t)) is considered as a closed
operator in Lq(D). Moreover, thanks to (3.21), we can �nd suitable corresponding
resolvent estimates. Setting R̃(u, ρ) := R(uχ≡1, r(uχ≡1, ρ), ρ), u̇ε solves

ε(u̇ε)t + [A(ρε) + h′(uε + 1)]u̇ε = εDR̃(uε, ρε)(u̇ε, ρ̇ε)
−DA(ρε)(ρ̇ε)uε

and the abstract theory (analogously to the proofs of corollary 3.8, 3.9) yields that at
least
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‖u̇ε(a+ h)‖BUC(D) ≤ C1 · ‖u̇ε(a)‖Lq(D) · e−(c(α0,b)·h)/ε + C2 ≤ C3/ε · e−(c·h)/ε + C2,

a > 0, t0 ≥ h > 0.

Thus, we have shown:

Theorem 3.16 Given ε > 0, let (uε, ρε)(u0, ρ0) be the unique classical solution of
(3.20) from Theorem 3.14. Then, given δ ∈ (0, t∗], {uε} ∈ C1−

ue ([δ, t∗], Ṽ ) ⊂ Cue([δ, t∗], V ).

Notice that our abstract theory only guarantees H2
q × B

4−1/q
qq - convergence of the

(uε, ρε). But of course, thanks to our considerations behind (3.21), we can bootstrap to
�nd all in all:

Theorem 3.17 Given ε > 0, let (vε, pε,Γε) be the unique classical solution of (2.1)
from Theorem 3.15. Let J := [0, t∗]. There exists ρ ∈ C(J,B4−1/q

qq (Σ)) ∩C1(J̇ , C∞(Σ))
such that (v, p,Γρ) solve (2.1) with ε = 0, where

• (v(t), p(t)) ∈ BUC∞(Ωρ(t)), t > 0;

• v(0) and p(0) are determined by the unique solution of the elliptic problem{
−4(p, v) = (f(v),−h(v)) in Ω0

(p, v) = (HΓ0 , 1) on Γ0.

• Letting (wε, rε), as at the beginning of this section, we have

(wε, rε, ρε)(t)→ (v ◦ θρ, p ◦ θρ, ρ)(t) in BUC∞(D)×BUC∞(D)×C∞(Σ),

uniformly on compact subsets of (0, t∗].
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4 The blow-up mechanism of moving boundary problems

4.1 The main result

Let us �rst supplement our general assumptions from the beginning of Section 3.3 by

• β0 > 1− 1/q.

We re�ne the notion of a classical local solution of system (2.1):

De�nition 4.1 Let Ω0 be a domain in Rn of class c3+β0 and u0 − ψ ∈ W 2
q,0(Ω0). A

classical solution of problem (2.1) is a triple (v(t, x), p(t, x),Γ(t)) de�ned on a nontrivial
interval J := [0, S) such that

i)
⋃
t∈J̇({t} × Γ(t)) is a smooth submanifold of Rn+1

ii) {Γ(t), t ∈ J} is of class (mb)(3,β0)

iii) v is smooth on
⋃
t∈J̇({t} × Ω(t))

iv) v(t, ·), p(t, ·) ∈W 2
q (Ω(t)) for t ∈ J and

v) (v, p,Γ) satisfy the equations (3.1) pointwise on
⋃
t∈J({t} × Ω(t)).

The class (mb)(k,α) is a convenient tool to measure the spatial regularity of a family of
hypersurfaces in Rn+1. The precise de�nition of this class is provided in Section 4.2.
Clearly, a classical solution is maximally continued, if there is no proper extension of it.
In this case, t+ denotes the maximal time of existence.

Theorem 4.2 Let Ω0 be a domain in Rn of class c3+β0 and v0 − ψ ∈ W 2
q,0(Ω0). Then

there exists a unique maximal continued classical solution of problem (2.1). If t+ <∞,
then either

• ‖v(t)‖BUC1(Ω(t)) + ‖p(t)‖BUC1(Ω(t)) −→∞ as t→ t+

or

• A(Γ(t)) −→ 0 as t→ t+.

The quantity A(Γ) measures the maximal possible size of spheres which intersect with
Γ only at one point, see Section 4.2. Therefore, the second condition contains the
situation where di�erent regions of the tumor grow together, mathematically speaking
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the occurrence of self-intersection. This has been the case in numerical experiments,
see [CrLoNi]. The condition can also describe shrinking to a point or the development
of singularities in Γ(t):

Corollary 4.3 Let n = 2 and c > 0. Assume v0 ≡ c, ψ ≡ c, h(c) = 0 and f(c) =
−α0 < 0. Let (v, p,Γ) be the unique classical solution of system (2.1) corresponding to
some initial surface Γ0. Then

A(Γ(t))−1 + ‖∇p‖C(Γ(t)) →∞

as t→ t+.

4.2 Notations and helpful material

In the following by a Ck+α [ck+α] -domain Ω we mean a bounded connected open subset
of Rn such that its boundary Γ := ∂Ω is a compact embedded hypersurface of regularity
Ck+α [ck+α]. If U ⊂ Rn is an open set, ck+α(U) denotes the little Hölder space, that
is the closure of BUC∞(U) in the usual Hölder norm. If M is a su�ciently smooth
manifold, the spaces ck+α(M) are de�ned by means of a (su�ciently) smooth atlas for
M .

If Ω is a domain, we de�ne a tubular neighborhood of Γ to be an open set N which is
the di�eomorphic image of the map

X : Γ× (−δ, δ)→ Rn, (x, a) 7→ x+ a · ν(x),

where ν(x) is the outer unit normal vector at x ∈ Γ and δ > 0 is su�ciently small. We
decompose the inverse of X into X−1 = (P[Γ],Λ[Γ]), where P[Γ] is the metric projection
of a point x onto Γ and Λ[Γ] is the signed distance function with respect to Γ. Clearly,
if im(X) is a tubular neighborhood of Γ, so is im(X|Γ×(−a,a)), if a < δ. The set of all
tubular neighborhoods of a surface Γ is denoted by T N (Γ).

We say that Ω ⊂ Rn satis�es an interior sphere condition (ISC) if for any x ∈ Γ
there is a ball Bx ⊂ Ω̄ such that Γ∩Bx = {x}. It satis�es an exterior sphere condition
(ESC), if the complement has ISC. For a suitable domain Ω and x ∈ Γ, let Ri(x) [Re(x)]
be the supremum over all radii of possible interior [exterior] spheres at x and de�ne

Ai(Γ) := inf
x∈Γ

Ri(x), Ae(Γ) := inf
x∈Γ

Re(x)

as well as
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A(Γ) := min{Ai(Γ), Ae(Γ)}.

Finally, if N ∈ T N (Γ), r(N) := dist(∂N,Γ) is the radius of N .

De�nition 4.4 We say that a family {Γα, α ∈ A} of submanifolds of Rn has uniformly
bounded Ck-geometry, if there exists numbers m ∈ N, K,L > 0 such that

• for each α ∈ A there is a Ck-atlas (U lα, ϕ
l
α) for Γα where 1 ≤ l ≤ m;

• if ϕlα ∈ di�k(V l
α,W

l
α) (i.e. U lα = (ϕlα)−1[W l

α]∩ Γα), then ‖ϕlα‖Ck(V lα) + ‖(ϕlα)−1−
xlα‖Ck(W l

α) ≤ K for (l, α) ∈ {1, ...,m} × A and some xlα ∈ V l
α;

• for each α ∈ A there is a partition of the unity {πlα}, 1 ≤ l ≤ m, subordinated to
the above covering, such that ‖πlα ◦ (ϕlα)−1‖Ck(W l

α) ≤ L for (l, α) ∈ {1, ...,m}×A.

Lemma 4.5 Let µ > 0 be given and let {Ωα, α ∈ A} be a family of C2-domains in Rn.
Assume Γα to be the boundary of Ωα and suppose

• inf
α∈A

min(Ai(Γα), Ae(Γα)) ≥ µ.

Then for each α ∈ A we �nd Nα ∈ T N (Γα) such that inf
α∈A

r(Nα) ≥ µ.

Moreover, if N ∈ T N (Γα) satis�es r(N) ≤ a < µ, the quantity

sup
Γβ⊂N

‖Λ[Γα]‖C2(Γβ)

is estimated from above in terms of the numbers a and µ. Finally, if supα∈A area(Γα) <
∞, then {Γα} has uniformly bounded C2-geometry. Here area(Γ) :=

∫
Γ 1.

Proof: The �rst statement can be easily seen by a careful reading of chapter 14.6
in [GilTru]. For the second one we notice

sup
Γβ⊂N

‖Λ[Γα]‖C(Γβ) ≤ r(N) ≤ a.

Let κ1(xα), ..., κn−1(xα) be the principal curvatures of the surface Γα at xα ∈ Γα. Inside
N we have

∇(Λ[Γα])(x) = ν(zα),
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where zα := P[Γα](x), as well as

D2(Λ[Γα])(x) = diag[
−κ1(zα)

1− κ1(zα)Λ[Γα](x)
, ...,

−κn−1(zα)
1− κn−1(zα)Λ[Γα](x)

, 0]

with respect to a principal coordinate system centered at zα, since |κi| ≤ 1/µ. Thus,
to prove the second statement, it su�ces to construct a suitable C2-atlas for each of
the surfaces Γα. We �x α ∈ A. Because translation (since supα∈A dist(Γα, 0) <∞) and
rotation will not in�uence our estimates we may work nearby 0 ∈ Rn, which we assume
to be an element of Γα.
Let Γα be locally the graph of some C2-function g satisfying g(0) = 0, ∇g(0) = 0. For
x ∈ Γα �x a principal coordinate system of unit length {v1(x), ..., vn−1(x)} centered at
x. Then

(4.1)
D2g(x)√

1 + |∇g(x)|2
· vi(x) = κi(x)(I +∇g(x)(∇g(x))t) · vi(x),

provided, the evaluations of g and its partial derivatives at x are well de�ned. Keep in
mind that |κi| ≤ 1/µ. Let V be the largest open set where g can be de�ned. It is not
di�cult to see, that |∇g(x)| → ∞ as x→ ∂V. Let

W :=
⋃
{U ∈ U(0) ∩ V; ‖∇g‖C(U) ≤ 1} ∩ B(0, 1).

Here, U(0) denotes the neighbourhood �lter of 0 ∈ Rn−1. Let y ∈ ∂W be given. Then,
then, if |y| < 1, it follows from (4.1) and the mean-value theorem, that |y| ≥ µ/(2

√
2).

Moreover, ‖g‖C2(W ) ≤ max{1, (2
√

2)/µ}. Since this estimate is independent of α ∈ A,

we get the second assertion by constructing a suitable family πlα of partitions of the
unity, subordinated to the sets g[W ]. This is possible because of the lower bound for
the size of W . To prove the last statement, we �x an open real interval J containing 0
and de�ne local coordinates by

ϕ−1 : W × J → Rn, (x, y) 7→ (x, y + g(x)).

Clearly, ϕ(x, y) = (x, y−g(x)), (x, y) ∈ ϕ−1[W×J ] ⊂ Rn. Moreover, if supα∈A area(Γα) <
∞, we can cover each surface Γα by, say, m ∈ N charts constructed as above, because,
if not, there would be a sequence (αn) ⊂ A such that

∫
Γαn

1 =
aαn (n)∑
l=1

∫
supp(πlαn )

πlαn ≥ aαn(n) · C,
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where aαn(n) ≥ n and C = C(min{1, µ/(2
√

2)). This completes the proof.

Let k ∈ N and α ∈ (0, 1). Given any manifold M of class Ck, let Bkε(M) be the open
ball in Ck(M) with radius ε > 0. The next theorem ensures that any hypersurfaceM of
class ck+α with k ≥ 2 can always be represented as a graph of a ck+α-function in normal
direction of an analytic surface. The proof is based on a level set approximation of M
and the implicit function theorem. Because the idea of the proof is due to Matthias
Bergner and not to the author of this thesis, a precise proof is omitted here. It will be
given in an article containing the natural generalization of the techniques which we use
here, see [SEM] for its probable title.

Theorem 4.6 Let Ω be a Ck+α [ck+α] -domain in Rn, k ≥ 2, and let ε > 0 be given.
Then there exists

• a domain D whose boundary Σ is an analytic embedded hypersurface

• a tubular neighborhood N of Σ containing ∂Ω

• a function ρ ∈ Ck+α(Σ) [ρ ∈ ck+α(Σ)]

such that the map

θρ : Σ→ ∂Ω, x 7→ x+ ρ(x) · ν(x)

is a Ck+α [ck+α] -di�eomorphism. After having �xed a norm on Ck(Σ) one can choose
ρ ∈ B1

ε(Σ).

In view of Theorem 3.16 it should be remarked, that it is in fact possible to assume
ρ ∈ B2

ε(Σ), provided, k ≥ 3. However, we are now ready to introduce the classes
(MB)(k,α):

De�nition 4.7 Let J be a real interval. The family {Γ(t), t ∈ J} is of class (MB)(k,α),
if, given t0 ∈ J \ sup J , there is a smooth manifold Σ = Σ(t0), a positive number
δ = δ(t0), and a function

ρ ∈ C([t0, t0 + δ), Ck+α(Σ)) ∩ C1([t0, t0 + δ), C(Σ))

such that Γ(t0 +h) = θρ(h)[Σ] for h ∈ [0, δ). It is of class (mb)(k,α) if this holds true for
the little Hölder spaces ck+α.

The abbreviation 'MB' should remind on 'moving boundary'.

34



4.3 Localizations in time

Let the data of the problem be given and �x a smooth manifold Σ, a tubular neigh-
borhood N of Σ containing Γ0, and a function ρ0 ∈ c3+β0(Σ) such that θρ0 is a c3+β0-
di�eomorphism from Σ onto Γ0. If a := r(N), by Theorem 4.6 we may assume that
‖ρ0‖C1(Σ) < a/5. Notice that, thanks to Theorem 4.6, the existence of ρ0 is no longer an
assumption (as in section 3.3) but a fact. Unfortunately, it seems to be harder to prove
Theorem 4.6 in the regularity scale of Besov spaces. Therefore, we decide to choose
our initial domain to be a bit more regular than needed in order to apply the abstract
theory.
We remember from section 3.3 that inside N the di�eomorphisms θρ(·) transform prob-
lem (2.1) into (3.20). We shall de�ne now a slightly modi�ed setting:

We choose b := max{2‖ρ0‖C1+β0 (Σ), a/5} and let

U := H2
q,0(D)× {ρ ∈ B4−1/q

qq (Σ); ‖ρ‖c1+β0 (Σ) < b; ‖ρ‖c1(Σ) < a/5},

abbreviated by U := H2
q,0(D)×A. Then U is an open subset of D := H2

q,0(D)×B4−1/q
qq (Σ)

and it contains (u0, ρ0). Now, as in section 3.3, one shows the existence of a unique
solution of (3.20), that means a pair of functions (u, ρ) de�ned on a nontrivial interval
J := [0, T ) such that

- ρ ∈ C(J,B
4− 1

q
qq (Σ) ∩ A) ∩ C1(J,B

1− 1
q

qq (Σ)) ∩ C∞(J̇ , B
4+k− 1

q
qq (Σ)) for all k ∈ N

- u ∈ C(J,H2
q (D)) ∩ C1(J, Lq(D)) ∩ C∞(J̇ , H2+k

q (D)) for all k ∈ N

- u(t)|Σ = 0 for t ∈ J and

- (u, ρ) satisfy the equations in (3.20) pointwise in J .

Moreover, modifying Lemma 4.6 in [Es2000] in an obvious way and using the generation
properties of the operator B(·)T (·)P (·) in the Hölder space setting which are stated for
example in [EsSi97a], one gets the maximal regularity of the distance function ρ at 0
by standard arguments based on interpolation and the variation-of-constants formula:
ρ ∈ C(J, c3+β0(Σ)). Further, following the abstract theory, T can be chosen maximal
in the sense that

(4.2) ‖(u(t), ρ(t))‖D
t→T−→∞ or (u(t), ρ(t)) t→T−→ ∂U ,

provided, T <∞, c.f. [Ama93], Section 12. Notice, that the transformation of problem
(2.1) was made in such a way, that, if (u, ρ) is a solution to (3.20) in the sense stated
above and r = r(u, ρ) is given by (3.16), then
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(v(t), p(t),Γ(t)) := (u(t) + χ(ρ(t)) ◦ θ−1
ρ(t), r(t) ◦ θ

−1
ρ(t), θρ(t)[Σ])

solves (2.1). Let us introduce the notion of time-local solutions:

De�nition 4.8 A solution (u, ρ) of (3.20) corresponding to the initial value (u0, ρ0) is
said to be a time-local solution of (2.1).

Lemma 4.9 Let (u, ρ) be a time-local solution of (3.20) and assume T <∞. If (u, r) ∈
L∞(J,BUC1(D) × BUC1(D)), then (u, ρ) extends to a continuous function on J :=
[0, T ] with values in H2

q (D)× c3+β0(Σ). Moreover, ρ(T ) ∈ ∂A.

Proof: By de�nition, ρ takes its values in the set A. Thus, ρ is bounded in c1+β0(Σ).
Therefore, the set {ρ(t); t ∈ [0, T )} is relatively compact in c1+β′(Σ) for 0 < β′ < β0.
Notice, that the mappings P (·), K(·) and σ 7→ θσ can be de�ned on the closure of A in
the norm of c1+β′(Σ). Therefore

sup
δ∈J
‖θρ(δ)‖C1(D,Rn) + ‖θ−1

ρ(δ)‖C1(Ωρ(δ),Rn) <∞.

Direct calculations (see [Kn2007]) show, that from this and from our assumption on
r we get a bound for B(ρ)r in the norm of C(Σ), so that the velocity ρt is bounded
in the same norm, cf. the third equation in (3.12). Also, from P (ρ)ρ = r − K(ρ)
and well-known generation properties of the operator P (ρ), we are allowed to conclude
‖ρ‖C(J,c2+µ(Σ)) < ∞ for some µ > 0. Thus, interpolating C(Σ) against c2+µ(Σ) and

using the mean value theorem, we �nd, that ρ ∈ BUCε(J, c2+µ′(Σ)), where µ > µ′ > 0
and ε is a suitable positive number. Thus, our assumption with respect to u implies,
that G(u, ρ) is bounded in cµ

′
(Σ). Since the mapping B(·)T (·)P (·) can be de�ned on

the closure of A in the norm of c2+µ′(Σ), the second equation in (3.20) and the gener-
ation properties of B(ρ)T (ρ)P (ρ) provide a (two times) variation of constants formula
based bootstrapping procedure ending up at a bound for ρ in the norm of c3+β0(Σ).
Turning to the function u, we �nd, that F (u, ρ) is bounded in Lq(D). Since A(·) can
be de�ned on the closure of A in the norm of c2+µ′(Σ), a (two-times) variation of con-
stants formula based bootstrapping procedure leads to a bound for u in the H2

q (D)-
norm, so we also get a bound for the time derivative ut in the norm of Lq(D). There-
fore u ∈ BUCε′(J,Hs

q ) for s < 2 and suitable ε′ > 0.
By a bootstrapping argument we conclude, that in fact (u, ρ) ∈ BUCε′′(k)([γ, T ), Hk

q (D)×
ck(Σ)) is true for any positive γ < T , k ∈ N and an interpolation exponent ε′′ > 0 de-
pending on k. Thus, ρ(T ) ∈ ∂A by (4.2).
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Remark 4.10 The a priori estimates for ρ which we used in the proof of the last lemma
depend highly on the geometry of Σ. As we will see later, we don't need them to be
uniform with respect to that manifold in any sense. What we need to be uniform, is
just the property of P (σ), B(σ)T (σ)P (σ), σ ∈ A, to generate an analytic semigroup.
We will comment on this in more detail at the very end of this chapter, when we will
have de�ned the necessary notation, cf. Remark 4.11.

In order to proof our main result, we need to remember the following important rela-
tion between the original problem and its transformed version: If (u, ρ) is a time-local
solution of (2.1), then the surface Γ(t) = θρ(t)[Σ] is the zero-levelset of the function

ϕρ(t) : N → R, x 7→ Λ[Σ](x)− ρ(t)(P[Σ](x)).

From this we conclude easily V (t, x) = ρt(t)(P[Σ](x))

|∇(ϕρ(t))(θρ(t)(x))| (see again [Es2000]). We are

now prepared for the

Proof [of Theorem 4.2]:

Let the initial data of the problem be given and �x a suitable reference manifold Σ as
described in this section. The existence result for time-local solutions ensures, that we
�nd a solution of problem (2.1) either on [0,∞) or on some �nite interval [0, T ). Then
the maximal interval of existence is

[0, t+) :=
⋃
T>0

{[0, T ), (2.1) has a solution on [0, T )},

where the property of being a solution is to be understood in the sense of De�nition
4.1. Let us �rst take care of uniqueness: Since any solution of problem (2.1) is of
class (mb)(3,β0), the uniqueness of time-local solutions implies, that on some nontrivial
interval [0, τ) there can only be one solution. Let us assume, that there are two di�erent
maximal solutions, say (v1, p1,Γ1), (v2, p2,Γ2). Then continuity implies, that

D := {t; (v1, p1,Γ1)(t) 6= (v2, p2,Γ2)(t)}

is an open subset of [0, t+). Thus t∗ := inf D 6∈ D. But we can use (v1, p1,Γ1)(t∗) =
(v2, p2,Γ2)(t∗) as initial value for a unique time-local solution, existing on, say, [t∗, t∗+
τ ′). Thus, we can extend (v1, p1,Γ1) to a unique classical solution on [0, t∗ + τ ′). But
[t∗, t∗ + τ ′) ∩D 6= ∅, which is a contradiction.

Now, let N(t) be a tubular neighborhood of Γ(t) and suppose that there are constants
C, ε0 > 0 such that
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i) ‖v(t)‖BUC1(Ω(t)) + ‖p(t)‖BUC1(Ω(t)) ≤ C

ii) A(Γ(t)) ≥ ε0.

Let us assume t+ to be �nite. First of all we observe (c.f. [EsSi97a], Section 1)

| d
dt

area(Γ(t))| = | d
dt

∫
Γ(t)

1| = |
∫

Γ(t)
V (t) ·H(t)| ≤ 1/ε0 · C · area(Γ(t)),

i.e supt∈[0,t+) area(Γ(t)) <∞, since t+ <∞. Therefore, invoking Lemma 4.5 and (4.4)

below, the family {Γ(t)} has uniformly bounded C2-geometry. We �x a smooth atlas
for each surface Γ(t) and a corresponding partition of the unity as they have been
constructed in the proof of Lemma 4.5. In particular, we choose appropriate numbers
m,K,L according to Lemma 4.5. Keep in mind that the norms of the function spaces
built over the Γ(t) are �xed from now on. If now t∗ ∈ [0, t+) is given, then for some
δ∗ = δ∗(t∗) > 0 the solution has a time-local representation (u∗, ρ∗) in the form (3.20)
on some intervall J(t∗) := [t∗, t∗ + δ∗), where u∗0 = v(t∗) − ψ, ρ∗0 = 0, since Γ(t∗) is
smooth. By ii) we may assume that r(N(t∗)) = ε0. For technical reason (cf. Lemma
4.5) we choose r(N(t∗)) = a0, where 0 < a0 < ε0. Then (u∗, ρ∗) is arranged to take
values in the set

U(t∗) := H2
q,0(Ω(t∗))× {ρ ∈ B4−1/q

qq (Γ(t∗)); ‖ρ‖c1+β(Γ(t∗)) < a0/5},

but our assumptions imply even stronger a priori bounds: Later on we will see, that for
some number ε̃

(4.3) sup
t∗∈[0,t+)

sup
x∈N(t∗),h∈J(t∗)

|∇(ϕρ∗(h))(x)| ≤ ε̃.

From this, V = −pν and i) we conclude

(4.4) sup
t∗∈[0,t+)

sup
J(t∗)
|ρ∗t | <∞,

meaning, that ‖ρ∗(·)‖C(J(t∗),C(Γ(t∗))) will vanish as t∗ → t+. We will see at the very end
of the proof, that also the quantity

(4.5) ‖ρ∗‖C(J(t∗),C1+β0 (Γ(t∗)))
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will vanish as t∗ → t+.

On the other hand, if t∗ ∈ [0, t+) is given, as in the proof of Lemma 4.9 the de�nition
of the mapping σ 7→ θσ immediately implies

sup
δ∈J(t∗)

‖θρ∗(δ)‖C1(Ω(t∗),Rn)
+ ‖θ−1

ρ∗(δ)‖C1(Ω(t∗+δ),Rn)
<∞.

This estimate may depend on t∗. Nevertheless, (r∗, u∗) ∈ L∞(J(t∗), BUC1(Ω(t∗)) ×
BUC1(Ω(t∗))), and we can arrange the time-local solution (u∗, ρ∗) to exist until it
reaches the boundary of U(t∗), thanks to Lemma 4.9, contradicting (4.5).
We are left to prove (4.3), (4.5):
Fix t∗ ∈ (0, t+) and let x ∈ N(t∗). Let {(W1, ϕ

−1
1 ), ..., (Wmx , ϕ

−1
mx)} be those charts of

Γ(t∗) that contain P[Γ(t∗)](x), that is

P[Γ(t∗)](x) ∈
mx⋂
l=1

Wl ∩ Γ(t∗).

If {πj ; 1 ≤ j ≤ m} is the corresponding subordinated partition of the unity, and if
supp(πl) ⊂Wl ∩ Γ(t∗) for 1 ≤ l ≤ mx, the assertion follows from the decomposition

ρ∗(t) ◦ P[Γ(t∗)] = (
∑mx

l=1 πl)ρ
∗(t) ◦ ϕ−1

l ◦ ϕl ◦ P[Γ(t∗)]

= [
∑mx

l=1(πl · ρ∗(t)) ◦ ϕ−1
l ] ◦ [ϕl ◦ P[Γ(t∗)]],

due to the bounded geometry of {Γ(t)}, Lemma 4.5 and ‖ρ∗‖C(J(t∗),C1(Γ(t∗))) ≤ a0/5.
An estimate for DP[Γ(t∗)] in termes of the principal curvatures of Γ(t∗) (dominated by
1/ε0) can be obtained by inverting equation (14.97) in chapter 14.6 in [GilTru].
In order to prove (4.5), let us economize our notation and drop t∗, l out of it, provided,
it is not imperative. Let Y := ϕ[Γ ∩ ϕ−1[W ]] ⊂ Rn−1 and write again ϕ−1 instead of
ϕ−1|Y . If ϕ−1(x) = (x, g(x)) ⊂ Tp Γ×Np Γ for some p ∈ Γ, a careful inspection of the
proof of Lemma 4.5 shows, that, given δ0 > 0, we may assume

• ‖∇g‖C(Ȳ ) ≤ δ0;

• Y = B(0, R) for some R = R(δ0) > 0;

•
⋃m
l=1 ϕ

−1(l, t∗)[Yε] = Γ(t∗), where Yε := B(0, R− ε), 0 < ε < R;

• π is subordinated to to ϕ−1[Yε].

Then, in order to prove (4.5), it su�ces to show, that for some constant K̃
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‖ρ∗(h) ◦ ϕ−1(l, t∗)‖W 2
q̃ (Yε) ≤ K̃, l ∈ {1, ...,m}, h ∈ J(t∗),

where K̃ depends on the global constants K,L, a0 and q̃ is big enough such that W 2
q̃ ↪→

c1+γ where γ > β0.
Let G(x, z) := g(x)− z, x ∈ Y , z ∈ R, |z| < R. Then Γ ∩ ϕ−1[Y ] = G−1[{0}]. Choose
δ0 > 0 in such a way, that the matrix

aij(ζ) := δij − (ζiζj)/(1 + |ζ|2), ζ ∈ Rn−1,

is positive de�nite for |ζ| ≤ δ0 (δij being the Kronecker symbol). Then, the operator A
de�ned by

H(x, g(x)) = div( ∇g(x)√
1+|∇g(x)|2

)

= 1/|∇G| ·
∑n−1

i,j=1 aij(∇g(x))∂i∂jg(x)
=: Ag(x),

is uniformly elliptic in Y . Moreover, maxi,j ‖aij(∇g(x))‖C1(Ȳ ) ≤ c, c = c(K), and

∇Ag = A(∇g) +B,

where B = B(D2g) is also uniformly bounded in terms of K. From the fourth equation
in (2.1) and our assumption on p we know, that ∇[H ◦ (x, g(x))] = [A∇g + B](x) is a
priori bounded in terms of K and C. Thus, elliptic theory implies, that

‖∂kg‖W 2
q̃ (Yε) ≤ c, c = c(K,n,C, ε, q̃), 1 ≤ k ≤ n− 1.

Now, let ν = ν(t∗) be the outward unit normal vector �eld of Γ = Γ(t∗), let ν̂ :=
ν ◦ ϕ−1, ρ̂ := ρ∗(h) ◦ ϕ−1. Let µ̂ be the outward unit normal vector �eld of the surface
θρ̂[Γ]. Then ‖ν̂j‖W 2

q̃ (Yε) is estimated from above in terms of c = c(K,n,C, ε, q̃). Since

‖ρ∗(h)‖c1+β0 ≤ a0, interpolation yields, that

‖ρ∗(h) ◦ ϕ−1(t∗)‖C1(Ȳ )

will vanish as t∗ reaches t+, thanks to (4.4). Observe

0 = ∂j1 = ∂j(ν̂ · ν̂) = 2∂j ν̂ · ν̂

and thus
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(∂j(ϕ−1 + ρ̂ν̂)) · ν̂ = ∂j ρ̂.

Therefore, since the left factor in the last equation is tangential to θρ̂[Γ], we may assume
ν̂ · µ̂ to be close to 1. As in the proof of Lemma 4.5 it can be seen, that the coordinate
representation of the second fundamental form of the surface θρ̂[Γ]:

[II(θρ̂[Γ])]ij := (∂i∂jϕ−1 + ∂i∂j ρ̂ν̂ + ∂iρ̂∂j ν̂ + ∂j ρ̂∂iν̂ + ρ̂∂i∂j ν̂) · µ̂

is estimated in terms of ε0 and K. The desired estimate of ∂i∂j ρ̂ follows immediately.

Remark 4.11 We use the same notation as at the end of the last proof and let ρ :=
ρ∗(h). Moreover, D(ρ̂) denotes the localized version of the operator D, D ∈ {P,BTP},
i.e. (D(ρ)f) ◦ ϕ−1 = D(ρ̂)(f ◦ ϕ−1), where f denotes a su�ciently regular function on
Γ(t∗). From [EsSi97a] we know that the operator P (ρ̂) is elliptic in x ∈ Y , if ρ̂ is a
priori bounded in C1(Ȳ ) and the matrix [wjk(x)]−1 with

wjk(x) := [∂jϕ−1 · ∂kϕ−1 + ρ̂(h)(∂j ν̂ · ∂kϕ−1 + ∂kν̂ · ∂jϕ−1) + ρ̂(h)2(∂j ν̂ · ∂kν̂)](x)

is positive de�nite, cf. the proof of Lemma 3.2 in [EsSi97a]. Thus, the generation
property of P (ρ) depends on a smallness assumption for ρ which can be made uniformly
with respect to a uniformly bounded C2-geometry of the family {Γ(t)}. Basically, three
facts guarantee the generation property of B(ρ)T (ρ)P (ρ) for ρ ∈ c2+ε(Γ):

i) ellipticity of P (ρ̂);

ii) ellipticity of A(ρ);

iii) positivity of ~b(ρ) · ν,

where~b(ρ) de�nes the action ofB(ρ) byB(ρ)w = ~b(ρ)·∇w. Notice that the requirements
ii) and iii) are automatically full�lled, if θρ is a di�eomorphism - they do not need a
further smallness assumption for ρ.
We want to discuss the su�ciency of i)-iii) in some detail: First of all, given κ ∈ (0, a0],
the atlas for Γ := Γ(t∗) induces an atlas for the set

Nκ := X[Γ× [−κ, 0]]

via the local charts
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ϕ̃−1(x, r) := ϕ−1(x) + r · ν̂(x), x ∈ Y, r ∈ [−κ, 0].

Here X denotes the map (y, r) 7→ y + r · ν(y). This is to be done in order to control
the coe�cients of A(ρ̂) near Γ, where A(ρ̂) is the localized version of A(ρ) via ϕ̃−1, i.e.
A(ρ̂)(g ◦ ϕ̃−1) = (A(ρ)g) ◦ ϕ̃−1.
Let us assume 0 := 0Rn−1 ∈ Y , without loss of generality. Let (ajk, pjk, bj) be the
coe�cients of A(ρ̂), P (ρ̂), B(ρ̂) and set (a0

jk, p
0
jk, b

0
j ) := (a0

jk(0, 0
R), p0

jk(0), b0j (0)). If T0g
denotes the unique solution of the elliptic problem

{
(1−

∑n
j,k=1 a

0
jk∂j∂k)u = 0 in Rn−1 × R>0

u = g on Rn−1,

and if B0 and P0 are the constant coe�cient operators de�ned by freezing the coe�cients
of B and P at 0 ∈ Y , we can build the nicely behaving operator B0T0(1− P0). In fact,
this operator is a Fourier multiplier, and the properties of its symbol guarantees a
suitable generation property, cf. Lemma 5.1, Lemma 5.2 in [EsSi97a]. The proof of this
fact precisely needs the following set of information:

• ellipticity of P0;

• ellipticity of A0;

• positivity of b0n.

To achieve now the generation property of B(ρ)T (ρ)P (ρ), Escher and Simonett apply
a pertubation argument: Observe that this operator 'can be de�ned on C2', roughly
speaking. Letting ρ take its values in c2+ε, the di�erence

(πB(σ)T (σ)P (σ)h) ◦ ϕ−1 −B0T0P0((πh) ◦ ϕ−1),

h ∈ c3+ε̃(Γ), can be controlled by the size of Y and the value of κ, cf. the estimates
(5.6), (5.7) in [EsSi97a]. More precisely, one makes a subtile partition of the above
di�erence analogous to that one in step b) in the proof of Lemma 5.1 in [EsSi97b].
After that one estimates the di�erence of the freezed and variable coe�cients. Here,
the treatment of the di�erence between T (ρ) and T0 makes essential use of an obvious
generalization to the higher dimensional case of formula a) in Lemma 6.6 in [EsSi95].
The arguments from the proof of Lemma 6.7 in the same paper, used to estimate the
di�erence ajk − a0

jk, can be carried over by using continuity aspects of multiplication
(even in the little Hölder spaces of negative real exponent) stated in Theorem 2.8.2 in
[Trie1]. We emphasize, that shrinking the chart domain and thus changing also the
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corresponding partition of the unity leads to equivalent norms built over the special
surface we are working on. These things cannot be done uniformly for our hole family
{Γ(t)}, but they do require only the function ρ to belong to a certain regularity class
built over the special surface and not any further smallness assumption.
Thats why we don't have to worry about i) - iii) when choosing the number a0 in the
proof of the preceeding theorem.

Proof [of Corollary 4.3]: First observe that u ≡ c. We have

d/dt vol(t) =
∫

Γ(t) V (t) dx
= −

∫
Γ(t) pν(t, x) dσ(x)

= −
∫

Ω(t) ∆p(t, x) dx
=

∫
Ω(t) f(v(t, x)) dx

= −α0 vol(t).

Thus, if t+ = ∞, then vol(Ω(t)) → 0 as t → ∞, thus A(Γ(t)) → 0: In deed, if not,
there would be a ball B ⊂ Ω̄(t) for all t ∈ [0, t+) and vol(Ω(t)) ≥ vol(B). Let us assume
t+ <∞, but A(Γ(t)) ≥ a0 and ‖∇p(t)‖C(Γ(t)) ≤ C.
Since

|d/dt area(t)| = |
∫

Γ(t)H(t)V (t) dx|
= | −

∫
Γ(t)H(t, x)pν(t, x) dσ(x)|

≤ area(Γ(t)) · C · 1/a0,

and t+ <∞, it follows ( since n = 2 )

D := sup
t

diam(Ω(t)) ≤ sup
t
area(Γ(t)) <∞.

Thus |p(t, x)| ≤ C1(α0, a0, D) (cf. Theorem 3.7 in [GilTru]). Moreover, observe that
∂ip(t) is harmonic in Ω(t) for i = 1, ..., n, meaning that

sup
t
|∇p(t, x)| ≤ C2, x ∈ Ω(t),

C2 = C2(C,D) (cf. again Theorem 3.7 in [GilTru]), contradicting Theorem 4.2. This
completes the proof.
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5 Proofs

The thesis will be closed by giving the missing proofs. It must be emphasized that
the following is just a variation of the construction of parabolic fundamental solutions
which can be found in [LaQPP]. We shall use the notation from chapter 3 (which is also
taken from [LaQPP]).

Proof [of Lemma 3.2]:
We use the notations from (3.1), set aε := aAε , kε := kAε , etc. First we conclude from
(3.1), (3.2)

‖kε(t, s)‖L(E0) ≤ η · C · (t− s)ρ−1 · e−σ(t−s)/ε

as well as

‖kε(t, s)‖L(E1,E0) ≤
η · C
ε
· (t− s)ρ · e−σ(t−s)/ε,

where C = C(M), σ = σ(ϑ,M). Using induction, it is easy to see that

‖Fn
j=1kε(t, s)‖L(E0) ≤

e−σ(t−s)/ε

t− s
· [C · (t− s)ρ]n

Γ(n · ρ)
,

where Γ denotes the Eulerian Gamma function. Here, C = C(M,η). Because of

∞∑
n=1

xn

Γ(n · β)
≤ C(β) · x · e2x1/β

,

x ≥ 0, 0 < β < 1, it follows

(5.1)

‖wε(t, s)‖L(E0) = ‖
∑∞

n=1 Fn
j=1kε(t, s)‖L(E0) ≤ e−σ(t−s)/ε

t−s · C · C(ρ) · (t− s)ρ · e2[C(t−s)ρ]1/ρ

= C · C(ρ) · (t− s)ρ−1 · e(2C1/ρ−σ/ε)·(t−s).

This leads to

‖wε(t, s)‖L(E0) ≤ C · C(ρ) · (t− s)ρ−1 · e
−σ
3·ε ·(t−s),

ε ≤ σ/3 · C−1/ρ, C = C(M,η), and in the case J = [0, T ]
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‖wε(t, s)‖L(E0) ≤ C̃ · (t− s)ρ−1 · e−σ(t−s)/ε,

where C̃ = C(M,η) · e2C1/ρT . Denoting C̃ again by C, we �nd that C = C(M,η, ρ, T )
is monotone increasing in T . Because of

wε = kε + kε ? wε = kε + wε ? kε

(cf. chapter 4.3 in [LaQPP]) we �nd

‖wε(t, s)‖L(E1,E0) ≤ C
ε · (t− s)

ρ · e−σ(t−s)/ε

+
∫ t
s ‖wε(t, τ)‖L(E0) · ‖kε(τ, s)‖L(E1,E0) dτ

≤ C
ε · (t− s)

ρ · e−σ(t−s)/ε

+C ·
∫ t
s e
−σ(t−τ)/(3ε) · (t− τ)ρ−1 · Cε (τ − s)ρ · e−σ(τ−s)/(3ε) dτ

≤ C
ε · (t− s)

ρ · e−σ(t−s)/ε

+C
ε · e

−σ(t−s)/(3ε) · (t− s)ρ ·
∫ t
s (t− τ)ρ−1 dτ

≤ C
ε · (t− s)

ρ · e−σ(t−s)/ε

+C
ε · e

−σ(t−s)/(3ε) · (t− s)ρ · (t− s)ρ
≤ C

ε · (t− s)
ρ · e−σ(t−s)/ε

+C
ε · e

−σ(t−s)/(3ε) · (t− s)ρ · eρ·(t−s)
≤ C

ε · (t− s)
ρ · e−σ(t−s)/ε

+C
ε · e

−σ(t−s)/(12ε) · (t− s)ρ
≤ C

ε · (t− s)
ρ · e−σ(t−s)/(12·ε),

ε ≤ σ/(4 · ρ), C = C(M,η, ρ). In the case J = [0, T ] we have

‖wε(t, s)‖L(E1,E0) ≤
C

ε
· (t− s)ρ · e−σ(t−s)/ε,

C = C(M,η, ρ, T ) monotone increasing in T . From this we see

‖aε ? wε(t, s)‖L(E0) ≤ C ·
∫ t
s e
−σ(t−τ)/ε · (τ − s)ρ−1 · e−σ(τ−s)/(3·ε) dτ

≤ C · e−σ(t−s)/(3·ε) · (t− s)ρ

as well as

‖aε ? wε(t, s)‖L(E1,E0) ≤ C ·
∫ t
s e
−σ(t−τ)/ε · (τ−s)ρ

ε · e−σ(τ−s)/(12·ε) dτ

≤ C
ε · e

−σ(t−s)/(12·ε) · (t− s)ρ+1.

The estimates for the case J = [0, T ] can be obtained in an obvious way.
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Let us now estimate ‖aε ? wε‖L(Ej ,E1). We have

ε−1A(aε ? wε) = ε−1AUε − ε−1Aaε
= −∂1Uε − ε−1Aaε
= −∂1aε − ε−1Aaε − ∂1(aε ? wε)
= kε − ∂1(aε ? wε)

and therefore A(aε ? wε) = εkε − ε∂1(aε ? wε), meaning, that

‖aε ? wε‖L(Ej ,E1) ≤ ε · C(M) · ‖kε‖L(Ej ,E0) + ε · C(M) · ‖∂1(aε ? wε)‖L(Ej ,E0).

Observe (cf. (4.3.26), (4.3.30) in chapter II.4 of [LaQPP])

ε∂1(aε ? wε) = ε · e−(t−s)ε−1A(t)wε(t, s)
+ε ·

∫ t
s eε(t, τ)wε(τ, s) dτ

+
∫ t
s A(t)e−(t−τ)ε−1A(t)[wε(t, s)− wε(τ, s)] dτ.

=: J1 + J2 + J3.

It is clear how to estimate J1 and J2. In order to estimate J3 we make use of the
decomposition (cf. (4.3.8), (4.3.22) in chapter II.4 in [LaQPP])

wε(t, s)− wε(τ, s) = kε(t, s)− kε(τ, s)
+
∫ τ
s [kε(t, ω)− kε(τ, ω)]wε(ω, s) dω

+
∫ t
τ kε(t, ω)wε(ω, s) dω.

=: I1 + I2 + I3,

where s < τ < t. Note that

kε(t, s)− kε(τ, s) = ε−1[A(τ)−A(t)]aε(t, s)− ε−1[A(τ)−A(s)][aε(t, s)− aε(τ, s)],

where s < τ < t. We have

‖ε−1[A(τ)−A(t)]aε(t, s)‖L(Ej ,E0) ≤ η · C(M) · ε−j · [(t− s)j−1(t− τ)ρ] · e−σ(t−s)/ε,

j = 0, 1. Moreover, since aε(t, s) − aε(τ, s) = −ε−1
∫ t
τ A(s) e−(ω−s)ε−1A(s) dω, Lemma

3.1 gives us
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‖aε(t, s)− aε(τ, s)‖L(Ej ,E1) ≤ C(M) · ε1−j ·
∫ t
τ (ω − s)j−2 e−σε

−1(ω−s)︸ ︷︷ ︸
≤1

dω

≤ C(M) · ε1−j · [(t− τ)(τ − s)j−2].

Thus,

(5.2) ‖ε−1[A(τ)−A(s)][aε(t, s)−aε(τ, s)]‖L(Ej ,E0) ≤ η ·C(M)·ε−j ·[(t−τ)(τ−s)j−2+ρ].

On the other hand, clearly,

(5.3)
‖ε−1[A(τ)−A(s)][aε(t, s)− aε(τ, s)]‖L(Ej ,E0) ≤ η · C(M) · [(τ − s)ρ ε−1]·

[[(ε/(t− s))1−j e−σε
−1(t−s)]

+[(ε/(τ − s))1−j e−σε
−1(τ−s)]]

≤ (τ − s)ρ−1+j ε−j e−σε
−1(τ−s).

Therefore, by the multiplication (5.2)ρ · (5.3)1−ρ, we arrive at

‖ε−1[A(τ)−A(s)][aε(t, s)−aε(τ, s)]‖L(Ej ,E0) ≤ η·C(M)·ε−j ·[(t−τ)ρ(τ−s)j−1]·e−σ(1−ρ)ε−1(τ−s),

and thus

(5.4) ‖kε(t, s)−kε(τ, s)‖L(Ej ,E0) ≤ η ·C(M) ·ε−j · [(t− τ)ρ(τ −s)j−1] ·e−σ(1−ρ)ε−1(τ−s),

where s < τ < t. Since, obviously,

(5.5)

‖kε(t, s)− kε(τ, s)‖L(E0) ≤ η · C(M) · [(t− s)ρ−1 + (τ − s)ρ−1] · e−σε−1(τ−s)

≤ 2 · η · C(M) · (τ − s)ρ−1 · e−σε−1(τ−s),

by taking the product (5.4)1/2 · (5.5)1/2, we also get

‖kε(t, s)− kε(τ, s)‖L(E0) ≤ η · C(M) · [(t− τ)ρ/2(τ − s)ρ/2−1] · e−σ(1−ρ/2)ε−1(τ−s),
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s < τ < t. In the sequel we shall make frequently use of the following simple facts: If
t > τ > s > 0 and a > ã > 0, then

e−σa(t−s) ≤ e−σa(τ−s), e−σab ≤ e−σãb, b > 0.

Moreover, we denote the number σ/12 again by σ. We calculate

‖I1‖L(E0) ≤ c · [(t− τ)ρ/2(τ − s)ρ/2−1] · e−σ(1−ρ/2)ε−1(τ−s),

where c = c(M,η),

‖I2‖L(E0) ≤ c ·
∫ τ
s (t− τ)ρ/2(τ − ω)ρ/2−1e−σ(1−ρ/2)ε−1(τ−ω) · (ω − s)ρ−1e−σε

−1(ω−s) dω

≤ c · (t− τ)ρ/2e−σ(1−ρ/2)ε−1(τ−s) ·
∫ τ
s (τ − ω)ρ/2−1 · (ω − s)ρ−1 dω

= c · (t− τ)ρ/2(τ − s)3ρ/2−1 · e−σ(1−ρ/2)ε−1(τ−s) · B(ρ/2, ρ)
≤ c · (t− τ)ρ/2(τ − s)ρ/2−1 · eρ(τ−s) · e−σ(1−ρ/2)ε−1(τ−s) · B(ρ/2, ρ),

where c = c(M,η, ρ) (c = c(M,η, ρ, T ) in the case J = [0, T ]) and B denotes the
Eularian Beta function. Finally,

‖I3‖L(E0) ≤ c ·
∫ t
τ (t− ω)ρ−1(ω − s)ρ−1 · e−σε−1(t−s) dω

≤ c · (τ − s)ρ−1 · e−σε−1(t−s) ·
∫ t
τ (t− ω)ρ−1 dω

≤ c · [(t− τ)ρ(τ − s)ρ−1] · e−σε−1(t−s)

≤ c · [(t− τ)ρ/2(τ − s)ρ/2−1] · eρ/2(t−s) · e−σε−1(t−s),

c = c(M,η, ρ) (c = c(M,η, ρ, T ) in the case J = [0, T ]). Summing up, we �nd

‖wε(t, s)− wε(τ, s)‖L(E0) ≤ c · [(t− τ)ρ/2(τ − s)ρ/2−1] · e−σa(ρ)ε−1(τ−s),

where c = c(M,η, ρ) and ε < ε0 = ε0(M,η, ρ, ϑ) in the case J = [0,∞), c = c(M,η, ρ, T )
monotone increasing in T > 0 and all ε > 0 in the case J = [0, T ], respectively.
Moreover,

‖I1‖L(E1,E0) ≤ c · ε−1 · (t− τ)ρ · e−σ(1−ρ)ε−1(τ−s),

‖I2‖L(E1,E0) ≤ c · ε−1 ·
∫ τ
s (t− τ)ρ/2(τ − ω)ρ/2−1e−σ(1−ρ/2)ε−1(τ−ω) · (ω − s)ρe−σε−1(ω−s) dω

≤ c · ε−1 · (t− τ)ρ/2e−σ(1−ρ/2)ε−1(τ−s) ·
∫ τ
s (τ − ω)ρ/2−1 · (ω − s)ρ dω

= c · ε−1 · (t− τ)ρ/2(τ − s)3ρ/2 · e−σ(1−ρ/2)ε−1(τ−s)
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and

‖I3‖L(E1,E0) ≤ c · ε−1 ·
∫ t
τ (t− ω)ρ−1(ω − s)ρ · e−σε−1(t−s) dω

≤ c · ε−1 · (t− s)ρ · e−σε−1(t−s) ·
∫ t
τ (t− ω)ρ−1 dω

≤ c · ε−1 · [(t− τ)ρ(t− s)ρ] · e−σε−1(τ−s),

c = c(M,η, ρ) (c = c(M,η, ρ, T ) in the case J = [0, T ]). Since

‖wε(t, s)− wε(τ, s)‖L(E1,E0) ≤ ‖I1‖L(E1,E0) + ‖I2‖L(E1,E0) + ‖I3‖L(E1,E0),

putting everything together and using the symbol a(ρ) to denote a 'generic constant',
we arrive at

‖J3‖L(E0) ≤ c · ε ·
∫ t
s (t− τ)ρ/2−1 · e−σa(ρ)ε−1(t−τ) · (τ − s)ρ/2−1 · e−σa(ρ)ε−1(τ−s) dτ

≤ c · ε · e−σa(ρ)ε−1(t−s) ·
∫ t
s [(t− τ) · (τ − s)]ρ/2−1 dτ

= c · ε · (t− s)ρ−1 · B(ρ/2, ρ/2) · e−σa(ρ)ε−1(t−s),

‖J3‖L(E1,E0) ≤ c · [
∫ t
s e
−σε−1(t−τ) · (t− τ)ρ−1 · e−σε−1(1−ρ)(τ−s) dτ

+
∫ t
s e
−σε−1(t−τ) · (t− τ)ρ/2−1(τ − s)3ρ/2 · e−σε−1a(ρ)(τ−s) dτ

+
∫ t
s e
−σε−1(t−τ) · (t− τ)ρ−1(t− s)ρ · e−σε−1a(ρ)(τ−s) dτ ]

≤ c · [e−σa(ρ)ε−1(t−s) · (t− s)ρ

+(t− s)ρ · e−σa(ρ)ε−1(t−s) ·
∫ t
s (t− τ)ρ/2−1(τ − s)ρ/2 dτ

+(t− s)ρ · e−σa(ρ)ε−1(t−s) ·
∫ t
s (t− τ)ρ−1 dτ ]

≤ c · [(t− s)ρ · e−σã(ρ)ε−1(t−s)],

where c = c(M,η, ρ) and ε < ε0 = ε0(M,η, ρ, ϑ) in the case J = [0,∞), c = c(M,η, ρ, T )
monotone increasing in T > 0 and all ε > 0 in the case J = [0, T ], respectively.

Proof [of Lemma 3.3]:
We shall use again the notation from (3.1) and denote by C a generic constant. First
of all, given ε > 0 and ϑ ∈ (0, π/2), we �nd that ε · Σϑ = Σϑ and because of

λ+Aε(t) = λ+
1
ε
A(t) =

1
ε
· (ελ+A(t))

also

‖(λ+Aε(t))−1‖L(E0,Ej) ≤M · ε · (1 + ε|λ|)j−1,
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where j ∈ {0, 1}, λ ∈ Σϑ, t ∈ J . This implies

‖(λ+Aε(t))−1 − (λ+Aε(s))−1‖L(E0)

≤ ‖(λ+Aε(t))−1‖L(E0) · ‖Aε(t)−Aε(s)‖L(E1,E0) · ‖(λ+Aε(s))−1‖L(E0,E1)

≤ M2 · ε · η · (t− s)ρ · 1
1+ε|λ| .

From

‖Aε(t)e−(t−s)Aε(t) −Aε(s)e−(t−s)Aε(s)‖L(E0)

= ‖ 1
2πi

∫
Γ λe

λ(t−s)[(λ+Aε(t))−1 − (λ+Aε(s))−1] dλ‖L(E0)

as well as ε|λ|
1+ε|λ| ≤ 1 and |eλ(t−s)| ≤ C · e<(λ)(t−s), λ ∈ Γ, it follows (theorem 4.1.1 in

[LaQPP]) that

‖eε‖L(E0) ≤ C ·M2 · (t− s)ρ−1.

Here, Γ ⊂ Σϑ \{0} runs from∞e−i(ϑ+π/2) to∞ei(ϑ+π/2). On the other hand, we clearly
have (cf. Lemma 3.1)

‖eε‖L(E0) ≤ C · (t− s)−1 · e−σ(t−s)/ε.

All in all

‖eε(t, s)‖L(E0) ≤ ‖eε(t, s)‖
ρ
L(E0) · ‖eε(t, s)‖

1−ρ
L(E0)

≤ C · (t− s)ρ2−ρ · (t− s)ρ−1 · e−σ·(1−ρ)·(t−s)/ε

= C · (t− s)ρ2−1 · e−b(t−s)/ε,

b = σ · (1− ρ).
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