
Policy Representation and
Reasoning with

Preferences and Reactivity

Von der

Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation von

Dipl.-Inf. Philipp Kärger
geboren am 6. September 1981 in Leipzig

L3S Research Center, 2010

mailto:kaerger@L3S.de

1. Reviewer: Prof. Wolfgang Nejdl

2. Reviewer: Prof. Matthew Smith

Day of the defense: 30.11.2010

Keywords: policies, preferences, reactivity

Schlagworte: Policys, Präferenzmodellierung, Reaktive Sprachen

ii

Abstract

Policy-based privacy protection in open decentralized information sys-
tems such as the Web attracted a lot of research effort in the last years.
Policies provide a flexible means to define access control conditions,
to realize advanced trust-establishment techniques, and to describe
and guide the behaviour of systems.

The change in the use of the Web and its movement from a static
information system to a user generated, highly dynamic environment
requires policy-based techniques to keep step. New requirements to
policy specification and reasoning are set up because, on the one hand,
users expose more and more personal data and, on the other hand,
the role of the Web as a communication platform gained momentum
yielding an increasing dynamicy.

In this thesis, the limitations of nowadays’ policy frameworks are an-
alyzed towards two fundamental principles, the specification of pref-
erences and the representation of reactive behaviour. Based on these
observations two new approaches for policy representation and reason-
ing are introduced, namely preference-enabled policies and reactive
policies. These approaches allow to incorporate arbitrary preference
statements in policy specifications expressed by rule-based languages.
They further extend policies to the dimension of events and reactions
to go beyond the rather strict grant-or-deny-access principle of current
policy-based systems. It is further described how both, preference-
enabled and reactive policies can be exploited in policy-based Trust
Negotiation, and policy languages as well as protocols for advanced
trust establishment based on preference-enabled and reactive policies
are developed.

Finally, this thesis describes how policies in general and reactive poli-
cies in particular can be exploited for privacy control and trust es-
tablishment in dynamic Social Web applications and showcases these
findings by describing implementations of the new principles in the
context of online Social Networks.

2

Zusammenfassung

Die Forschung im Bereich Policy-Sprachen und Policy-basierte Zu-
gangskontrolle für offene verteilte Systeme hat in den letzten Jahren
stark an Dynamik und Bedeutung gewonnen. Neueste Erkenntnisse
konnten vor allem die Zugangskontrolle und die Sicherstellung von
Trust sowie die Beschreibung und Steuerung von Systemprozessen
mit Hilfe von Policys stark verbessern.

Die Änderung des Nutzerverhaltens im größten offenen verteilten Sys-
tem—dem World Wide Web—stellt aber neue Anforderungen sowohl
an Policy-basierte Systeme als auch an die formale Definition von Pol-
icys und das Policy-Reasoning. Denn heute ist das Web nicht mehr
nur ein statisches Informationssystem, in dem hauptsächlich Infor-
mationen konsumiert werden, sondern es ist zu einer dynamischen
Kommunikationsplattform geworden, in der immer mehr persönliche
Daten veröffentlicht werden.

Unter diesen Vorzeichen werden in der vorliegenden Dissertation zwei
neue Konzepte für die Policy-Definition und das Reasoning mit Poli-
cys vorgestellt. Zunächst wird untersucht, in welcher Form Präferen-
zen in der Definition von Policys verwendet werden können. Auch
werden Ansätze für das Einbinden von Präferenzen in allgemeine
regelbasierte Policy-Sprachen als auch in Policy-basierte Verhandlun-
gen vorgestellt. Des Weiteren führt diese Arbeit eine reaktive Er-
weiterung der klassischen Policys ein, in der das Ergebnis einer Policy-
Auswertung nicht mehr nur “ja” oder “nein” ist, sondern wo Policy-
basierte Systeme auf allgemeine Ereignisse reagieren und beliebige
Reaktionen initiieren können. Wie auch bei den Präferenzen wird das
Prinzip der reaktiven Policys sowohl auf regelbasierte Policy-Spachen
als auch auf policy-basierte Verhandlungen angewendet.

Im letzten Teil dieser Arbeit wird analysiert, wie Policys im Allge-
meinen und reaktive Policys im Speziellen die Kontrolle von Anwen-
dungen im sogenannten Social Web vereinfachen und so eine stark
personalisierte und höhere Sicherheit gewährleisten können. Weiter-
hin werden konkrete Implementierungen beschrieben, die die Prinzi-
pien der reaktiven Policys im Social Web realisieren.

4

Danksagung

Die Arbeit an dieser Promotion wäre kaum möglich gewesen ohne die
Unterstützung von Kollegen, Freunden und meiner Familie. Zunächst
bedanke ich mich bei Professor Wolfgang Nejdl für die Möglichkeit
einer Promotion und seine Förderung und Betreuung während meiner
Zeit am L3S. Bei Professor Matthew Smith bedanke ich mich für die
wertvollen inhaltlichen Hinweise zu dieser Arbeit und seinen Einsatz
als Korreferent. Einen großen Anteil am Abschluss dieser Arbeit hat
Daniel Olmedilla, der mich von Anfang an zielorientiert betreut hat
und mich sowohl methodisch als auch inhaltlich mit Wissen und Fer-
tigkeiten versorgte. Auch Wolf Siberskis Betreuung am Ende meiner
Promotion habe ich sehr geschätzt. Daniel und Wolf gilt mein her-
zlicher Dank für die Unterstützung und Förderung, ohne die ich nicht
soweit gekommen wäre.

Die Zusammenarbeit mit Axel Polleres habe ich sehr genossen, und
durch ihn habe ich viel gelernt. Ich möchte mich ganz besonders für
seine geduldigen Erklärungen und seine Gastfreundschaft bei meinen
Forschungsaufenthalten in Irland bedanken. Ein weiterer herzlicher
Dank geht an Professor Piero Bonatti. Mit Axel und Piero vor dem
Whiteboard erschlossen sich mir viele interessante, wertvolle und für
diese Arbeit notwendige Erkenntnisse.

Meinen netten Kollegen am Forschungszentrum L3S habe ich das
Arbeitsklima zu verdanken, das durch eine perfekte Mischung aus
neuem, vielseitigen Input und fokussierter Forschungsarbeit an meiner
Promotion erheblich mitgewirkt hat. Ein besonderer Dank gilt un-
seren Administratoren Marko Brosowski, Olaf Jansen-Olliges und Di-
mitar Mitev: ihre Hilfsbereitschaft, Fachkompetenz und Freundlichkeit
bilden eine bemerkenswerte und seltene Kombination, die mir oft
eine große Hilfe war. Auch bei meinen Studenten Miao Li, Tri-
Thong Truong, VenkatRam Yadav, Emily Kigel und Philipp Bähre
bedanke ich mich; sie haben mich oft durch Fragen und Interesse mo-
tiviert und mich im Implementierungsteil dieser Arbeit unterstützt.

Der Abschluß meiner Promotion wäre ohne meine Familie nicht möglich
gewesen. Ein Dank geht daher an meine Eltern und Geschwister, die
mich von Beginn an unterstützt haben. Ganz besonders danke ich
Fine: für ihre Zeit mit mir und all die Kraft, die sie mir gegeben hat.

6

Contents

1 Introduction 9

2 Background 17
2.1 Policy Specification and Reasoning 17

2.1.1 Types of Policies . 18
2.1.2 Policies for Security and Trust Management on the Web . 20
2.1.3 Policy-based Trust Negotiation 21

2.2 Preference Modelling . 26
2.2.1 Properties of Preferences 27
2.2.2 Preferences in Database Retrieval 28
2.2.3 Preferences in Logic Programming 31

2.3 The Social and the Semantic Web 34

3 Preference-enabled Policies 37
3.1 Exploiting Preferences for Policy-based Trust Negotiation 38

3.1.1 Problem Definition and Requirements 39
3.1.2 A Preference Model for Trust Negotiation 41
3.1.3 Filtering out Non-Preferred Disclosure Sets 45
3.1.4 Revisiting the Scenario . 48
3.1.5 Implementation and Experiments 49

3.2 Partial Order Preferences for Rule-Based Policies 53
3.2.1 Syntax and Semantics of DLPODs 54
3.2.2 Encoding Partial Order Preferences into DLPODs 60
3.2.3 Implementation . 61
3.2.4 Complexity Results for DLPODs 65
3.2.5 Partial Order Preferences under the Stable Model Semantics 66

4 Reactive Policies 69
4.1 A Framework for Reactive Policies 70

4.1.1 Syntax . 72
4.1.2 Semantics . 73

4.2 Reactive Policies on the Social Semantic Web 82

7

CONTENTS

4.2.1 Problem Definition and Requirements 84
4.2.2 Policies Acting on the Social Web 86
4.2.3 SPoX—a Skype Policy Extension 89

5 Related Work 95
5.1 Policies and Preferences . 96

5.1.1 Preferences in Negotiations 97
5.1.2 Preferences in Logic Programming 98

5.2 Policies and Reactivity . 99
5.2.1 Reactive Rules on the Web 99
5.2.2 Policy Languages with Reactivity 101

6 Conclusions and Outlook 107

Bibliography 111

Publications 125

8

Chapter 1

Introduction

Since the advent of the Internet, the amount of data published online grew
tremendously thus posing new challenges to the automated handling of such data
and to the control of who has access to which portion of data. Together with
this tendency, applications got more and more interleaved with the Web leading
to a growing complexity and distributivity. On top of that, the users of online
systems changed from specialized IT experts to average people who—more often
than not—are not sufficiently aware of privacy risks. At the same time, the ubiq-
uitous access to online resources amplifies the continuous growth of the number
of users and the amount of data. All these factors form a big challenge to secure
data handling and privacy control in modern information systems.

In the last years, policy-based security control emerged as one of the most
promising and flexible solution for privacy protection in open systems. Policies
are declarative statements defining the behaviour of a system thus offering the
flexibility to separate the actual implementation of a system from its behaviour
description which is represented by means of policies. Among the various advan-
tages of policy-based systems one can find that

• for changing the behaviour of a system, only the policies need to be modified
without the need to re-compile and re-deploy the whole application;

• policies act as a formal representation of the system’s behaviour and can
thus be exploited to formally verify software systems or automatically detect
potential errors.

Policies are pervasive in security related applications, however, they are able to
serve for a variety of general purposes wherever systems feature a high level of
autonomy to act on a user’s behalf. Such applications are ranging from the
rather simple e-mail filters in Outlook to highly complex and dynamic control
of multi-agent systems. Although policies are all-purpose means to define a sys-
tem’s behaviour, nowadays, they are mostly applied in scenarios settled around

9

1. INTRODUCTION

security and access control. Here, by means of rule-based policy languages with
a declarative, well-defined semantics, policies are exploited to exactly define un-
der which conditions a potential requester is allowed to perform a certain action,
for example to access data. As a matter of fact, policy-based systems have to
keep step with the rapid and constant changes in the online world. Thus the
expressiveness of existing policy languages has to meet all requirements set up
by the ever growing dynamicy of the Web and by the large amount of potentially
sensitive data published nowadays.

Due to this fact, the principles behind policy-based systems attracted a lot of
research efforts. Formal languages have been analyzed to investigate their capa-
bilities to serve as policy languages. Knowledge representation techniques have
been extended to serve as means for policy specification. Collaborative solutions
originally developed in the realm of multi-agent systems have been studied and
exploited for policy evaluation, policy enforcement, and the automated establish-
ment of trust among users and systems in distributed information systems.

The work described in the present thesis is carried out in context of this
movement. It comprises investigations of existing policy languages and identifies
two important principles which are pervasive for complex information systems
but have not yet been sufficiently addressed and supported in policy-based so-
lutions. Related areas which potentially provide solutions are considered and,
where applicable, adopted and integrated to cater for advanced policy represen-
tation and reasoning. On top of that, new techniques are developed for policy
systems thus extending the state-of-the-art in policy languages and providing new
insights into application areas where the new advanced policy principles improve
behaviour control and privacy protection compared to traditional approaches. In
this thesis, the two principles which are investigated to this respect are prefer-
ences and reactivity. First, it is investigated why both principles are important
aspects in modern policy-based information systems and, second, solutions for
both directions are developed and applied to various scenarios.

For a policy-based system it is crucial to offer a policy language that is a well-
balanced compromise between two contrary dimensions: the expressiveness of the
language and its complexity. Concerning the expressiveness of a language, it is
required that it offers all the features needed in order to capture the particular
domain of interest. There are various examples for such features, starting with
more formal properties like the support of negation or approaches for conflict
resolution. More practical features include the coverage of conditions which may
vary, e.g., conditions may only be allowed to refer to a requester or they may be
more general and include external conditions like the temporal context or legacy
data sources. Some policy languages support delegation of decisions or the au-
tomated information exchange with other systems in order to reach a decision.
However, as it will be pointed out in the course of this thesis, features supporting

10

preference expressions and reactive behaviour definition are not sufficiently pro-
vided in existing policy frameworks and are thus subject to research. Both issues
are briefly sketched in the following, starting with preferences.

Preferences. Requests that are handled by automated policy evaluation some-
times lead to several alternative options to be taken as reaction. In such cases,
it is cumbersome to interfere with the automated evaluation process and request
the user to decide which of the possible actions to take. Contrarily, a priori state-
ments shall be supported that allow users to arbitrarily rank alternative reactions.
Such statements are called preferences: they allow an intuitive representation of
a user’s intention which data to disclose or which reaction to take for a given
request in case several options are valid.

Preference expressions are a well-studied formalism to represent a user’s likes
and dislikes in a well-defined manner. They are means to express soft constraints
and typically rank options a priori before a solution is provided by a system. A
typical example for a preference statement is

“I prefer green cars to yellow cars, and I prefer yellow cars to any
other color.”

Given a user searching for a car, a system—following the standard preference
semantics—will try to satisfy the preference statement at best. That is, roughly
speaking, it will return green cars. Only in case no green cars are available at
all, yellow cars will be considered and returned. Further, only in case no car in
either of both colors is available, the result set will contain cars in other colors.
Such preference expressions have been exploited for database search because they
provide a very flexible way to express queries whose result set is unlikely to be
empty. Other applications of preferences are multi agent systems and planning
problems. Here, the behaviour of an agent can be nicely described by a preference
order like

“Prefer to perform step A, if A is not possible, try B, and so on.”.

In general, preference statements have been proven to be intuitive models of user
intentions. This thesis shows that for the definition of behaviour in the context
of policy-based systems, the use of preferences is promising as a fundamental
extension to existing policy principles. Consequently, such extensions are given
for two important aspects:

1. preferences for the credential handling in policy-based Trust Negotiations
and

2. the incorporation of expressive preferences in general Logic Programs which
serve as a basis for many advanced policy languages.

11

1. INTRODUCTION

Trust Negotiation is a process that helps systems to automatically establish
trust without knowing each other in advance. This is important for sensitive
transactions like buying goods or booking a flight online. Here, both parties need
to trust each other because sensitive information like payment details (e.g., credit
card number), personal data (e.g., home address for shipping), or other sensitive
information (e.g., travel date and time, personal interests exposed with the desired
book) are disclosed. Trust Negotiation is typically carried out by the exchange of
digital credentials which are set as preconditions for one of the partners to trust
the other. In policy-based Trust Negotiations these conditions are expressed by
means of policies guiding the behaviour of the negotiating agent and the exchange
of messages on behalf of real users. However, more often than not, situations
arise where more than one credential potentially makes the negotiation succeed.
In such a situation, a policy-driven agent cannot easily decide which option to
chose: the disclosure conditions of several credentials are fulfilled but only one
of those is required to be disclosed for a successful negotiation. A user, however,
may not be indifferent among those options, for example, one may in general
prefer to provide a less sensitive credential if it is among the alternatives. It
turned out that such a scenario is not sufficiently supported in existing policy-
based systems. To this end, in this thesis, a methodology will be introduced
allowing to incorporate preference statements about credential disclosure into a
policy-based Trust Negotiation process.

Preferences are not only important for policy-based negotiations, they should,
in general, be first-class citizens of policy languages in order to support any kind
of preference-enhanced behaviour description. Although a few policy languages
support preference expressions already, they are not sufficiently expressive to cater
for advanced behaviour definition. To this end, the present thesis introduces a
new Logic Programming language allowing to define preference extensions inside a
policy definition. Particular emphasis will be placed on partial order preferences,
which include the expression of indifferences. An example partial order preference
is

“I am indifferent between green and red cars, but I prefer both to yellow
cars.”

where, in fact, two options are incomparable (i.e., the user is indifferent between
green and red). This is in contrast to total order preferences where any two pos-
sible options are comparable. It turned out that so far no Logic Programming
language is able to easily capture partial order preferences which are required
for indifferences. Moreover, they are also not well supported in nowadays’ policy
frameworks; in particular, in combination with policy-based Trust Negotiation.
Hence, partial order preferences for Logic Programming as they are introduced
in this thesis broaden the expressiveness of policy languages based on Logic Pro-
gramming.

12

Reactivity. The traditional way of using policies for privacy control is to define
conditions that a requester has to fulfill in order to be allowed to perform a certain
action. Consequently, a policy-based system’s output is binary only, namely,
given a policy and a certain request, access is either granted or denied. This
principle works well for classical access control scenarios where privacy control is
concerned only with granting or denying access to certain resources. But such
a request may, on the one hand, not intentionally be a request to access some
private resource rather than be part of a general event observed by the system.
And, on the other hand, the reaction to such a general event may not only
include the acceptance or denial of the request: general reactions like granting
access only to a certain extent or further complementary method calls may form
a result of a policy evaluation. As an example, a phone call which is received by
a system cannot only be allowed or not: reactions may look different dependent
on the user’s policies and the context of the call; for instance, the call may be
forwarded, put on the answering machine, or simply be held. As another example,
the request to view a user’s profile in an online Social Network platform may lead
to several reactions beyond grant and deny. It may, for example, lead to showing
only parts of the profile, notifying the profile’s owner, or charging the profile
visitor.

One of the most prominent examples for policies and, at the same time, the
most common application of policies, is the use of filter rules on e-mail clients
like Outlook or Thunderbird. Looking at these policies, they also offer more
reactions than just allow and deny: e-mails can be moved to folders and can
be automatically tagged or deleted. On top of that, the way communication
happens on the Internet is not anymore restricted to e-mail: with the advent
of social applications such as Twitter, Skype, and Facebook, the possibilities
to communicate via Internet increased dramatically, and so did the number of
kinds of requests a user may face. These so-called Social Network applications
typically offer plenty of ways to communicate among their members, examples
are chat messages, wall posts, and micro-blogging posts. Moreover, in addition to
such messages, a lot of communication happens via notifications. For example, in
Skype the change of a contact’s online status is shown in a small notification pop-
up. Other kinds of notifications include friendship requests, notifications about
being tagged in a picture, etc. In any case, independently of whether a message
comes from a single user or if it is a notification generated by the Social Network
application, users typically want to canalize the way such messages approach
them, just like they are used to with e-mail filters.

Policy languages that are designed for the classical binary access control deci-
sions do not serve for general scenarios like these. For such behaviour descriptions,
the definition of reactive behaviour is required which takes into account general
events and supports reactions, i.e., rules defining upon which event a certain ac-
tion is to be executed. Such behaviour is typically expressed by means of so-called

13

1. INTRODUCTION

Event-Condition-Action rules. As an example, an Event-Condition-Action policy
stating that calls from people who are not students are put on the answering
machine looks as follows

ON call comes in IF not student DO put on answering machine.

To support general policy scenarios beyond the traditional binary evaluations,
in this thesis, the classical principle of policy evaluation is amalgamated with the
theory of reactive behaviour control: a policy framework is defined supporting
Trust Negotiations and complex policy evaluation in combination with Event-
Condition-Action rules. This framework has been successfully exploited to enforce
reactive policies on the Social Network and communication tool Skype. With this
framework, a user is enabled to first provide fine-grained policy specifications
stating who is allowed to send calls or chat messages dependent on the particular
situation and, second, to specify reactions to events happening in the Social
Network.

This thesis is structured as follows. In the next chapter, background infor-
mation will be given on theories important for the research described in this
thesis including the areas policy-based systems, Trust Negotiation, preference
modelling, and the Social and Semantic Web. For all these fields, important
terms and notations will be introduced and set in context. Subsequently, in
Chapter 3, preference-enhanced policies will be introduced and discussed, in par-
ticular the use of preferences for policy-based Trust Negotiation and for general,
Logic Programming-based policy languages. Chapter 4 deals with reactive poli-
cies by first introducing a framework for specifying and evaluating policies in the
form of Event-Condition-Action rules and, second, by discussing this framework’s
applicability to Social Web scenarios and its implementation for policy-based be-
haviour control in Skype. An extensive review of related work will be given in
Chapter 5 where the two areas preference handling and reactive behaviour con-
trol are both considered and respective intersections with policy handling are
highlighted and compared to the solutions given in this thesis.

The approaches presented in this thesis have been published in various sci-
entific publications at conferences and in journals. In what follows, the list of
publications which prominently contributed to this thesis’ content is given. A
thorough list of scientific papers which have been published during the course of
the presented thesis is provided at the end of this thesis on page 125.

• Section 3.1:
Philipp Kärger, Daniel Olmedilla, and Wolf-Tilo Balke. Exploiting Prefer-
ences for Minimal Credential Disclosure in Policy-driven Trust Negotiations.
In VLDB Workshop on Secure Data Management (SDM), Lecture Notes in
Computer Science, Springer, Auckland, New Zealand, August 2008.

14

• Section 3.2:
Philipp Kärger, Nuno Lopez, Axel Polleres, and Daniel Olmedilla. To-
wards Logic Programs with Ordered and Unordered Disjunction. In ICLP
Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP), Udine, Italy, December 2008.

• Section 4.1.2:
Piero Bonatti, Philipp Kärger, and Daniel Olmedilla. Reactive Policies for
the Semantic Web. In 7th Extended Semantic Web Conference (ESWC2010),
Heraklion, Crete, Greece, June 2010.

• Section 4.2:
Philipp Kärger and Wolf Siberski. Guarding a Walled Garden - Semantic
Privacy Preferences for the Social Web. In 7th Extended Semantic Web
Conference (ESWC2010), Heraklion, Crete, Greece, June 2010.

• Chapter 4:
Jose Julio Alferes, Ricardo Amador, Philipp Kärger, and Daniel Olmedilla.
Towards Reactive Semantic Web Policies: Advanced Agent Control for the
Semantic Web. In Poster and Demo Session of the 7th International Se-
mantic Web conference (ISWC 2008), Karlsruhe, Germany, October 2008.

• Section 4.2:
Philipp Kärger, Emily Kigel, and Daniel Olmedilla. Reactivity and Social
Data: Keys to Drive Decisions in Social Network Applications. In 2nd
International ISWC Workshop on Social Data on the Web (SDoW2009),
Washington, DC, USA, October 2009.

• Section 4.2:
Philipp Kärger, Emily Kigel, and VenkatRam Yadav Jaltar. SPoX: Com-
bining Reactive Semantic Web Policies and Social Semantic Data to Control
the Behaviour of Skype. In International Semantic Web Conference (ISWC
2009), Poster and Demo Session, Washington, DC, USA, October 2009.

15

1. INTRODUCTION

16

Chapter 2

Background

This chapter provides background information and introduces notations which
will serve as context and basis for the theory described in the subsequent chapters.
To this end, first, the term policy and its context is made clear, subsequently, focus
will be given to the theory of preference modelling. Finally, the terms Social
Web and Semantic Web will be explained since they will serve as application
environment of the policy approaches developed.

2.1 Policy Specification and Reasoning

Generally speaking, a policy is the description of a system’s behaviour [36]. In
computer science, policies are used to describe the intended behaviour of a sys-
tem: for policy-based systems, a formal policy specification is exploited to govern
a system’s choices in behaviour [55]. The key-feature of policies in an automated
system is the separation of the behaviour description (the policy) and the sys-
tem interpreting this description and thus realizing the actual behaviour (policy
enforcement). This separation facilitates the dynamic change of behaviour in au-
tomated systems and permits it to adapt to evolutionary changes in the system
and to new application requirements [122]. A very practical implication of this
fact is that changes in the behaviour of the system do not require a stop or even
a re-implementation of the system but solely a change in the policy specification.
Moreover, if the specification of a system’s behaviour is represented in a policy,
formal processes such as validation or conflict detection can be executed fully
automated.

According to Damianou et al. [55], the difference between the policies ruling a
system and the actual implementation of the system lies in the abstraction level
of the instructions that are given to the system. Policies on the one hand define
the choices in the behaviour at a rather abstract level, typically in terms of the
conditions under which predefined operations or actions are invoked. Whereas, on

17

2. BACKGROUND

the other hand, the actual implementation of a system describes the functionality
and the actual operations themselves which are be performed while running the
system.

Policies are often used as a means to implement flexible and adaptive sys-
tems for management of Internet services, distributed systems, and security sys-
tems [55]. Although computer security is the most popular application area of
policies (termed “security policies”), the use of policies is established in many
aspect of information systems. This is due to the fact that by means of policies
any kind of behaviour can be encoded, ranging from business rules and quality of
service specifications to access control rules and trust management policies [36].

2.1.1 Types of Policies

There are a lot of different types of policies and for each application area differ-
ent policy languages with different properties have been developed. It is worth
noting that there is no common agreement on the borders between the categories
of policies and policy languages. Following the main scenarios addressed by the
different types, the terms network or routing policies [127], management poli-
cies [123], and security policies [126] have been coined in different contexts and
eras of policy research. The principles behind those policy types are always the
same: a declarative way of describing a system’s behaviour which can easily be
modified to change the management approach without recoding the management
system [55].

Semantic policies

An obvious and common differentiation among policy languages in research is the
one between policy languages featuring a well-defined semantics (semantic policy
languages) and those that do not. Following the distinction presented in [33]
and [117], a policy language’s semantics is considered well-defined if the meaning
of a policy written in that language is independent of the particular implementa-
tion of the language [117]. Providing a formal semantics is very important when
using a policy language in automated systems due to the following reasons.

• It is important to ensure that the same policy ruling two different systems
have the same effects on both systems, that is, the same semantics.

• A well-defined semantics is a requirement for provability: given a policy, it
has to be well-defined what consequences will apply given a certain situa-
tion; thus, proofs can be provided stating that a certain behaviour will be
a consequence or not. Such proofs are typically the basis for explanation
generation in policies (cf. [37]), where natural language text is generated
justifying the result of a policy evaluation.

18

2.1 Policy Specification and Reasoning

• Policy-based automated agent interaction (e.g., Trust Negotiation), is im-
possible without a common understanding of policies among the interacting
peers. Thus, for instance, if Bob has confidence, that he satisfies Alice’s
policies (e.g., since he has the required credentials), Alice should also con-
clude that this is the case—otherwise, Bob’s actions to fulfill Alice’s policy
(e.g., by sending his credentials) may not necessarily give access as he be-
lieved [117].

Typically, semantic policy languages are built on knowledge representation
frameworks that per se feature a well-defined semantics, such as Logic Programs,
Description Logics, and Relational Algebra. Throughout this thesis, only seman-
tic policies will be considered, hence the terms “policy” and “semantic policy”
respectively “policy language” and “semantic policy language” will be used in-
terchangeably.

Policy enforcement

A second important distinction among the existing policy languages and frame-
works is dealing with a policy’s influence in a system. Policies can act as an
upfront enforcement mechanism or as a right expression mechanism [119]. Policy
frameworks of the second type are not concerned with the enforcement of the
policy itself (cf. [119, 135]); they rather comprise a formal language to express
policies and a mechanism to check if certain situations or conditions satisfy the
policy. Such frameworks are used where enforcement is impossible or very diffi-
cult. For example, a policy stating that a certain resource exposed on a Web site
is not allowed to be copied cannot be easily enforced. Typically, if the resource
is copied, solely a notification is shown to the user informing about the violation
of the policy.

A widely-used framework of this type is the Platform for Privacy Prefer-
ences (P3P) [54]. This framework enables users to specify which personal data
may be used by service providers while they are browsing the Web. In a pri-
vacy preference used in context of the P3P system, a user defines which personal
data—e.g., address or age—is allowed to be accessed by a service provider. On
top of that, the purpose why the provider is requesting the data and what is going
to happen with it, can be part of the P3P preference as well. Consequently, for
every Web site visited, the policy of the Web site provider stating which data is
required and the policy of the visitor stating the conditions for providing the data
are matched and in case of conflicts, a notification is shown to the user. How-
ever, P3P does not deal with the fact that the Web site provider can violate its
own policy and still use the data for other purposes than specified in the policy.
(Further details on P3P, in particular its use of preferences, will be also given in
the related work chapter, see Section 5.1.)

19

2. BACKGROUND

An endeavour similar to P3P is been carried out by the Internet Engineering
Task Force (IETF), in particular its GeoPriv working group [110]. Here, privacy
policies are defined in PIDF documents (presence information data format) in the
form of usage rules which describe acceptable usage of location information, such
as whether retransmission of the data is allowed or at what date the information
expires and must be discarded [61]. Just like P3P, this approach does not provide
any means to force a receiver of data to comply with the privacy policy that is
attached to it.

In contrast, policy approaches that actually enforce policies do not rely on
regulatory pressure to ensure privacy protection [61]: they act as guards in the
system and decide to either allow some action or not. Upon a certain request
or action, which is protected by a policy, the policy’s evaluation is triggered and
only if the evaluation gives a positive result, the request is allowed, otherwise, it is
not. In the following, unless stated otherwise, this thesis restricts its elaborations
on policy frameworks dealing with policy enforcement.

2.1.2 Policies for Security and Trust Management on the
Web

Security policies play a role in all facets of today’s Web. Access control policies
are needed to protect any system open to the Internet. The early policy-based
systems like KeyNote [26] and PolicyMaker [28] were already introduced in the
nineties of the last century and provided a separation between the access decision
to be made and the actual enforcement of the policy. However, the early policy
frameworks were rather decision support systems than systems for declarative
behaviour control [34]. Nowadays, there is a wide offer of policy languages that
have been developed addressing the general requirements for a semantic policy
language acting on the Web, namely high expressiveness, simplicity, enforceabil-
ity, scalability, and analyzability [132]. For the most prominent frameworks han-
dling semantic policy languages, the reader is referred to KAoS [134], Rei [79],
PeerTrust [67], and Protune [35, 32]. These policy languages allow for automated
reasoning and, with most of them, policies can also be exchanged between enti-
ties which is essential for self-initiated agent interaction and negotiations on the
Web. Therefore, they are typically based on languages with well-defined seman-
tics; that is in most of the cases Description Logics (e.g., KAoS and Rei) or Logic
Programming semantics (e.g., Cassandra [16], PeerTrust, and Protune), but also
Relational Algebra (e.g., P3P [140]).1

In this thesis, elaborations focus on policies expressed by means of rules.
A rule-based policy representation is commonly regarded as the best approach
to formalizing policies due to its flexibility, formal semantics and closeness to

1For a more comprehensive overview and comparison of policy languages see [52].

20

2.1 Policy Specification and Reasoning

the way people think [36]. Another reason is that with Logic Programming, a
well-understood declarative semantics can be given to rule-based policies. And,
moreover, there are efficient tools for computing solutions of Logic Programs thus
easing the implementation of policy evaluation system [124]. On top of that, basic
requirements to distributed trust management such as automated exchange of
policies and credentials (as it is required for Trust Negotiation, see Section 2.1.3)
are more easily expressible in a rule-based fashion that are evaluated according
to a Logic Programming-inspired semantics [117].

Throughout this thesis, a standard policy specification will be used (similar to
the ones used in [35] and adopted from [141, 31]); policies are written like Logic
Programming rules of the following form.

condition← condition1, . . . , conditionn.

(with n ≥ 0), meaning that the condition condition holds if all conditions
conditioni are satisfied.2 As an example, the policy

allow(access(Requester,Resource))← friend(Requester), family picture(Resource).

states that a requester can access a resource if the requester is a friend and the re-
source is a family picture.3 Adding the following facts family picture(′holiday.jpg′).
and friend(′Bob′). will allow Bob to access the picture holiday.jpg.

As stated above, policies are well suited to protect digital credentials which
may be required to be disclosed in order to establish trust in an online transac-
tion. In the following section, first the term trust is set in context and second,
the process of policy-based Trust Negotiation will be introduced which allows a
mutual disclosure of credential leading to an automated establishment of trust
among strangers.

2.1.3 Policy-based Trust Negotiation

Classical approaches to authorization, like role-based access control do only work
well in a closed environments with rather static settings. Access control lists for
example do only work if all potential requesters are known in advance and if it has

2As syntactic sugar and for the sake of readability, in some places in this thesis a semicolon ;
is used to express disjunction of conditions in a rule’s body. Following the standard Logic
Programming semantics [97], a rule H ← B1; . . . ;Bn. is a shortcut for the list of n rules of the
form H ← Bi. (1 ≤ i ≤ n).

3According to the standard Logic Programming conventions, terms starting with a capital
letter refer to variables; that is, Resource indicates that the policy applies at least to every
resource.

21

2. BACKGROUND

been decided for each requester whether she is on the list or not. For role-based
access control a similar limitation applies: before such a system can be used, for
each user who shall be able to access to system, a role has to be defined and
assigned.

In open environments such as the Web, it is not always the case that two
parties know each other before an interaction is started. This makes it difficult
to set up a trust relationship needed for a transaction. Consider for example an
online shop and a customer who first visits this shop: both have yet no information
about the other party. There is no registration telling the shop who the customer
is and what rights (e.g., access rights or discounts) to grant. And similarly, the
customer has no information about the shop which is needed to decide if, for
example, she is willing to give access to personal data such as address, age, or
her credit card number.

Trust

The term trust is used to generally describe what is missing in such a situation.
Before Trust Negotiation is explained in detail, this paragraph will first introduce
the understanding of trust which is used in this thesis in the context of Trust
Negotiation. As a matter of fact, there is no common understanding of the term
trust. However, in trust management and policy-based systems, the following
formulation has been established in [72]: trust is the firm belief in the competence
of an entity to act dependably, securely, and reliably within a specified context.
In the context of this thesis, decisions made based on policy evaluation may
involve the consideration of trust. That is, in order to make a policy true or
applicable, trust may be required and may potentially be set up first. Such policy
decision may for example be concerned with authorization [72]: if I develop a trust
relationship with a particular student, I may authorize her to perform a certain
action. Authentication is another example for a policy-based decision which may
be built on trust: here a trusted entity needs to issue some identifying certificate.
Again, a trust decision is part of a complete policy evaluation. In the following,
Trust Negotiation will be introduced as a policy-based means to check and to
establish trust by exchanging information.

Exchanging information

To automatically estimate a potential trust relationship between two parties, typ-
ically the exchange of information is required. Returning to the scenario above,
on the one hand, the buyer may for example check if the shop can provide a
specific certificate proving that it belongs to some trusted trading organization
like the Better Business Bureau. On the other hand, the shop may require the

22

2.1 Policy Specification and Reasoning

customer to prove that she is older than 18, registered at a university, or mem-
ber of a specific customer program like a frequent-flyer program. In general, the
service provider as well as the service requester may both require the other peer
to prove specific attributes. These proofs can be realized by providing digitally
signed credentials [137, 27]. Such credentials are issued by authorities and form
verifiable, unforgeable statements about the owner’s properties. In a Trust Ne-
gotiation scenario, the involved parties are assumed to have available a digital
wallet containing different kinds of credentials. Since a credential can contain
sensitive information, its disclosure is governed by an access control policy that
specifies the credential combination that the other party must disclose before the
credential is provided [117]. This is an iterative procedure and Trust Negotiation
is the process of credential exchange being the result of a request for a resource.
The goal of the credential exchange is to make the request succeed, that is, to
make the resource owner confident that the requester is trustworthy for getting
access to the resource. In a policy-based Trust Negotiation, each party specifies
policies defining conditions for disclosing a specific credential or resource. For
example, the condition for disclosing a specific book at an online book store may
be that the purchaser is over 18 and provides a valid credit card. On the other
hand, a customer’s policy protecting her credit card may perfectly say that her
credit card is only to be disclosed to parties providing a valid VeriSign certificate.
The two policies must be matched in order to find out whether a negotiation ex-
ists that satisfies both parties’ policies and leads to the provision of the resource
initially requested.

A formal model of this process has been introduced in several research pa-
pers, for example [138, 141, 35, 51]. All these models share the basic principles of
rule-based policies which are protecting credentials and a protocol for exchanging
information about policies and the credentials themselves. The formal consider-
ations in this thesis will be based on the Trust Negotiation model first presented
in [35] and further extended in [51]. In these publications, Trust Negotiation
is presented as a distributed prove based on the exchange of portions of Logic
Programs. These programs represent the particular parts of the policy rules that
are needed to be communicated among the partners for a specific request. This
process—called policy filtering—will be explained in detail in Section 4.1.2. To
further illustrate the negotiation process, an example scenario is detailed in the
following; it will serve as running example throughout this thesis.

A negotiation scenario

This section presents a detailed example scenario illustrating the process and the
message exchanges and highlighting some of the problems to be addressed during
a negotiation.

23

2. BACKGROUND

purchase ← pregister, ppayment.
pregister ← (cname, cbdate, (cemail; cpcode));

cid;
cpassport;
((cname; cemail), cid).

ppayment ← (cbank name, cbank account);
(ccredit card, cpin).

cbbb ← true.
cosc ← true.

Figure 2.1: The book store’s policies.

cname ← true.
cbirthdate ← cbbb.
ctelephone ← cbbb.

cemail ← cbbb.
cpost code ← cbbb.

cid ← cbbb.
cpassport ← cbbb.

cbank name ← cbbb, cosc.
cbank account ← cbbb, cosc.
ccredit card ← cbbb, cosc.

cpin ← cbbb, cosc.

Figure 2.2: Alice’s
policies.

A user named Alice wants to buy a book in an online book store. For com-
mitting the transaction the store requires users to register and also to specify
the payment information in order to be charged with the price of the book. The
store accepts several registration possibilities involving the disclosure of several
different credentials: registration can be achieved by some sort of identification of
the user; this is possible by specifying the name, the date of birth4 and the user’s
country code or her e-mail address (from which the country of registration can be
extracted). Identification can also be achieved via the personal ID card number
or the passport number. In addition, registration is automatically performed, if
either name or e-mail address, and an ID card number are provided. (Although
in this simple example it may be evident that this last possibility of registration
overlaps with other policies, it may not be so evident for more complex policies or
policy languages, or when the whole policy is specified by more than one single
administrator.) Regarding payment, the book store offers two options: either
bank account information together with the bank’s name or a credit card num-
ber together with a PIN must be provided. These combinations of credentials
which are required for a transaction are represented as the book store’s policy in
Figure 2.1.

As stated above, not only a service provider may protect resources with poli-
cies but also requesters like Alice may protect their credentials with policies in a
similar way. In the present scenario, Alice defined policies protecting her creden-
tials, just like the book store. First of all, Alice does not mind to share her name
with anyone, but she specifies some conditions before other information about

4Note that in some cases it is possible to apply zero-knowledge proofs (e.g., [95]) in order to
avoid disclosure of information (e.g., whether a user is older than 18). This is orthogonal to the
present approach since here it is dealt with situations where the actual value must be retrieved
(e.g., name).

24

2.1 Policy Specification and Reasoning

?

?

?
1.

2.

3.

4.

5.

6.

Figure 2.3: One possible successful negotiation between Alice (left) and the book
store (right).

her is disclosed. She is willing to provide her general personal information to any
entity that is certified by the Better Business Bureau (BBB) seal program that
guarantees that its members will not misuse or redistribute disclosed information.
However, in order to disclose her bank account or credit card, she defines that an
additional Online Security Certificate (OSC) must be disclosed, ensuring that the
store Web site is secured and nobody else will be able to retrieve her information
during the transaction. Alice’s policies are shown in Figure 2.2.

The goal of a Trust Negotiation is, given these policies and Alice’s request
for a book, to find a way such that Alice finally gets the book. Consequently,
a set of credentials need to be exchanged among the two parties in order to
satisfy all policies involved in the negotiation. An example exchange for this
scenario is shown in Figure 2.3 where Alice asks for the book in Step 1, the
book store’s negotiation agent replies with a request for an ID card and credit
card information in Step 2, and Alice in turn asks for the BBB and the OSC
credential in the following Step 3. In Step 4 the book store finally discloses
both certificates since no conditions are provided in the store’s policies for cbbb
and cosc. Since now, after Step 4, Alice’s conditions for disclosing her credit card

25

2. BACKGROUND

information and her ID are satisfied, her agent discloses both credentials in Step 5
and finally, in Step 6, the book store discloses the book. It is obvious that this is
only one potential successful negotiation between the two parties. This scenario
will be used later in this thesis to motivate the use of preferences in policy-based
negotiations (see Section 3.1). In the next section, a detailed introduction into
the area of preference modelling will be provided.

2.2 Preference Modelling

Preferences are a way to model a user’s needs, wishes, and expectations. Beyond
the specification of a preferred, single desired value or behaviour (such as “I
like green.”) the notion of preference that is exploited in the present thesis
supports alternatives (such as “If possible, I prefer green. Otherwise, yellow is
fine as well.”). According to Chomicki in [49], the handling of user preferences
is becoming an increasingly important issue in present-day information systems.
Among others, preferences are used for information filtering and extraction to
reduce the volume of data presented to the user. They are also used to keep
track of user profiles and formulate policies to improve and automate decision
making. Preferences provide means for expressing soft constraints (as opposed
to hard constraints). Preference orders, which are built up by assembling several
preferred alternatives, represent precise knowledge about what a user would like
to get. However, the term “if possible, . . . ” already suggests that precise and
meaningful semantics of these preference orders has to be provided: the soft
constraints have to be relaxed step by step until the most preferred option, or
rather the most preferred combination of attributes, is found.

As basis for the work presented in this thesis, two different application areas
of preference modelling are exploited for rule-based policy representation and
evaluation:

1. Preferences in database retrieval, typically exploited for selecting the
set of optimal objects from a database given a so-called preference query;
example applications are e-learning [85, 1] and e-commerce [60].

2. Preferences in Logic Programming, in particular for non-monotonic
reasoning paradigms. Preferences are pervasive in commonsense reasoning
and have a decidedly non-monotonic flavor [58]. Typically, several conclu-
sions drawn from a set of facts are listed in a preference order where the
most preferred conclusion is only neglected, if a logical contradiction makes
the conclusion impossible. Only in this case, the second preferred option
is considered, and so on. Example applications of those principles can be
found in algorithmic planning [125] or network policies [25].

26

2.2 Preference Modelling

bdate

pcode

e­mail

ID

passport

bank account

credit card

Name +
email

cname,
cbdate, cemail

ID passport

BBB

bank accountCredit card

OSC

name

telephone

purchase

pregister

ppayment

pin

bank name

i f

¬

bd
at

e
if

 b
da

te

Figure 2.4: An example for qualitative, conditional, partial order preferences
stating which credentials are preferably disclosed in a negotiation: the higher a
credential in the order, the more preferred.

In the following, different properties of preferences will be explained which hold

for preferences in both areas. Subsequently, the two application domains of pref-

erences are introduced in detail and definitions reused in later chapters are pro-

vided.

2.2.1 Properties of Preferences

In the following, some important properties of preferences are detailed which

will be relevant in later sections of this work. Figure 2.4 serves as an example

preference: it shows a preference relation among credentials involved in the Trust

Negotiation example from Section 2.1.3.

Quantitative vs. qualitative preferences. The way alternatives in a prefer-

ence are sorted can either be quantitative or qualitative. In a quantitative (also

called weighted or numerical) model of a user’s preferences, the value to what

extent a user prefers one alternative over another is explicitly given. In a quanti-

tative model, typically numeric scores are associated to the alternatives available.

In contrast, qualitative preferences between options are specified directly using

preference relations (see Section 2.2.2) [49]. The qualitative approach is strictly

more general than the quantitative one since one can define qualitative preference

relations in terms of scoring functions but not every intuitively plausible prefer-

ence relation can be captured by scoring functions (e.g., partial order preferences

have no such representation). This lack of expressiveness is well known from util-

ity theory [66, 49]. Moreover, from a usability point of view, it is not desirable

that a user has to specify a numerical representation for each attribute and each

attribute’s value to indicate how much a certain alternative is preferred. This

thesis contributes to the qualitative approach to preferences.

27

2. BACKGROUND

Total vs. partial orders. A preference relation defined among a set of alter-
natives can be a total order or a partial order relation. In a total order, any
two alternatives are comparable whereas in a partial order there may be pairs
of alternatives where no preference is given. As an example, Figure 2.4 shows a
partial order preference on the left hand side (no preference between postal code
and date of birth) and two total order preferences. From a user perspective, it
may be difficult to define a total order preference for all the attributes; this is a
time consuming process and it may well be the case that people are indifferent
for some attributes—total orderings cannot capture such preferences. Requiring
total order preferences is a restriction that does not fit the world of subjective
expressions. Total order preferences do not allow for cases where for several op-
tions it is not known which one is preferred, be it due to incomplete information
about the world or due to the lack of decision of a user between options. Some
parts in this thesis focus on exactly this point: which extensions are needed in a
preference theory to allow for indifferences.

Conditional preferences. A preference among two options is not always true
per se; it may vary depending on some circumstances. In Figure 2.4, the prefer-
ence whether the e-mail address or the postal code is preferred to be disclosed,
depends on the fact if the date of birth is additionally disclosed or not. Such
preferences are called conditional since they depend on some context.

2.2.2 Preferences in Database Retrieval

The notion of retrieval preferences in the context of databases and information
systems has been formalized, e.g., by Kießling [89] and Chomicki [49], to describe
users’ preferences in a way exploitable for selecting optimal objects from a data
set. Selecting the right action in a Trust Negotiation or during policy evaluation
is basically similar to those personalization techniques, like for instance retriev-
ing the best object out of a database or a digital product catalog. In this thesis,
Chomicki’s approach presented in [49] will serve as a basis for object comparison
in the context of automated Trust Negotiation. In Chomicki’s extension to Rela-
tional Algebra, preferences are expressed on object level as binary relations over
a set of objects O showing certain attributes with particular values.

Definition 2.1 (Object-Level Preference). Let A = {A1, . . . , An} be the
set of available attributes of the elements in O, and Ui, 1≤i≤n the respective
domain of possible values of Ai. Then any binary relation � which is a subset
of (U1 × . . . × Un) × (U1 × . . . × Un) is a qualitative preference relation over the
object set O.

28

2.2 Preference Modelling

Typically, preference relations are not directly defined on object level. In the
area of database retrieval, users usually need to explicitly provide their preferences
on the attribute values of each object attribute. For example, concerning the
attribute “model of the car” a user needs to explicitly state that she prefers a
Volkswagen to a Nissan. (The attribute preference concerning the model of the
car is opposed to the object-level preference that is—in this example—comparing
whole cars.) Therefore, preferences are rather stated with respect to the attribute
values of each single attribute (in this case the model of the car). Certain values
are preferred over others, thus forming a partial order of attribute values:

Definition 2.2 (Attribute Level Preference). Let A be the set of available
attributes of the elements in O and Ai ∈ A an attribute in such set with Ui its
respective domain of possible values. The attribute level relation �i, which is a
subset of Ui × Ui, is a qualitative preference relation over the value set of Ai.

The extension of an attribute level preference to respective object level prefer-
ences generally follows the well-known ceteris paribus semantics [102] (”all other
things being equal”). The ceteris paribus condition states that a domination re-
lationship between two objects can only be applied, if one object dominates the
other in one attribute and the remaining attributes of both objects show exactly
the same values. That is, if xi �i yi and xj = yj(∀j 6= i) then x is preferred to y.

Preference composition

After defining preferences with respect to each attribute, objects have to be com-
pared considering all attribute preferences. Therefore it is needed to combine
the attribute preferences and build up an object level preference. For such a
composed preference, the combined attribute level preference relations are called
dimensions of the resulting preference relation. Two multidimensional composi-
tions are common [49]: lexicographic composition combines any two dimensions
by strictly considering one as more important than the other. Pareto composition
allows to combine two preference relations without imposing a hierarchy on the
dimensions: all dimensions are considered as being of equal importance.

A lexicographic composition �L is based on the assumption that one relation
can be considered more important than the other, i.e., there is a total ordering
between all attributes. Thus, objects are generally ranked according to the more
important attribute and only in case of ties the less important attribute is used
for ranking. This ranking follows the general idea of the alphabetic order: if the
first letter in word A has a higher position in the alphabet than the first letter in
word B then A is strictly better than B independent of the subsequent letters.

Definition 2.3 (Lexicographic Composition). Given the preference rela-
tions �1,. . . ,�n over the attributes A1, . . . , An and assuming a total order among

29

2. BACKGROUND

A1, . . . , An, the lexicographic composition �L is defined as x �L y iff
x �1 y ∨ (x1 = y1 ∧ x �2 y) ∨ (x1 = y1 ∧ x2 = y2 ∧ x �3 y)∨

. . . ∨ (x1 = y1 ∧ . . . ∧ xn−1 = yn−1 ∧ x �n y).

In contrast, Pareto composition yields a new preference relation following
the fair principle of Pareto domination: an object X is said to Pareto-dominate
another object Y iff X shows better or equal values than Y with respect to all
attribute preferences and is strictly better with respect to at least one attribute
preference.

Definition 2.4 (Pareto Composition). Given �1,. . . ,�n as preference re-
lations over the attributes A1, . . . , An, the Pareto composition �P is defined as:

x �P y ⇔ (∀i : x �i y ∨ x =i y) ∧ ∃j : x �j y.

The evaluation of Pareto composition for database retrieval is often referred
to as “skyline queries” and is a direct application of the maximum vector prob-
lem [91]. Like for the preference modeling recently a lot of research has been
invested to find efficient skylining algorithms, as e.g., [39, 106, 14].

Amalgamating preference relations

Specifying preferences for each single attribute leads to the challenge of combining
them on the object level. But if an object is better than another in terms of
one attribute and worse in terms of another, there is no way to compare both
although the first attribute may be considered more important than the second.
As an example, a user may want to state that although she prefers a Volkswagen
to a Nissan, this preference may be disregarded in favor of the preference for
a cabriolet. For instance, given the preference that a cabriolet is preferred to a
coupe, a Nissan cabriolet may still be better than a Volkswagen coupe—although,
from a Pareto point of view, both are incomparable.

To overcome this problem, the concept of preference amalgamations (or trade-
offs) has been proposed in [12] forming a useful extension of Pareto composition.
It does not only consider all attributes equally desirable, it additionally allows the
user to specify a connection between two or more attributes. This is especially
helpful, because in many practical applications, users are willing to perform trade-
offs, i.e., relax their preferences in one or a set of attributes in favor of an object’s
better performance in another set of attributes.

Definition 2.5 (Amalgamated Preference). Given the preference relations
�1,. . . ,�n over the set of attributes A1,. . . ,An, a set of amalgamated dimen-
sions µ ⊆ {1, . . . , n} with cardinality k, as well as two k−dimensional tuples
Xµ, Yµ restricted to attributes with indices in µ, then (with π as the projection
in the sense of Relational Algebra) the function AmalPref(Xµ, Yµ) is defined as:

30

2.2 Preference Modelling

AmalPref(Xµ, Yµ) := {(x, y) | ∀i ∈ µ : (πAi(x) = πAi(Xµ) ∧ πAi(y) = πAi(Yµ))∧
∀j ∈ {1, . . . , n}\µ : (πAj(x) = πAj(y)∨πAj(x) �j πAj(y))}.

An amalgamated preference is a relation denoted by �Xµ,Yµµ such that

x �Xµ,Yµµ y ⇔ (x, y) ∈ AmalPref(Xµ, Yµ).

In general, the intuition of this definition is that given two tuples Xµ , Yµ
from the same amalgamated dimensions given in µ, the relation �X,Yµ is a set of
pairs of the form (o1, o2) where the attributes of o1 projected on the amalgamated
attributes equal those of Xµ, the attributes of o2 projected on the amalgamated
dimensions equal those of Yµ, and furthermore all other attributes (which are not
within the amalgamated dimensions defined in µ) are identical in o1 and o2. The
last requirement again denotes the ceteris paribus condition (cf. page 29), i.e., the
dominated object has to show equal values with respect to all non-amalgamated
attributes.

2.2.3 Preferences in Logic Programming

In the area of Logic Programs, as one of the major ways to represent policies,
preferences have been introduced as well to express orders between possible out-
comes or consequences of a reasoning process. This is in particular interesting
for non-monotonic reasoning techniques where default assumptions are allowed,
that is, facts that are true unless their contrary is explicitly expressed. In such
a setting, preferences are applied between defeasible consequents of rules such
that the most preferred non-defeasible consequents survive. Thus, rules or facts
that may be contradictory without preferences, lead, empowered with prefer-
ences, to an optimal solution. For a general overview of preferences used in
non-monotonic reasoning approaches the reader is referred to [58]. In the present
thesis, preferences for non-monotonic Logic Programming with so-called stable
model semantics (known as Answer Set Programming) has been applied. This
section introduces the terminology and background information on Answer Set
Programming needed for later elaborations in this thesis and introduces LPODs,
a way to formulate preferences in Answer Set Programming.

Stable model semantics

The stable model semantics extends the typical least model semantics for Logic
Programs (where all rules are definite, i.e., negation-free Horn clauses) such that
so-called Normal Logic Programs, i.e. programs allowing negation as failure in
rule bodies, get an intuitive semantics. Logic programming under the answer
set semantics, often referred to as “Answer Set Programming”, further extends
the stable model semantics by features such as various forms of disjunction. In
the following, first, Disjunctive Logic Programs (DLPs) are shortly introduced

31

2. BACKGROUND

together with some extensions used later in this thesis. Subsequently, an approach
for preferences under the stable model semantics will be introduced, namely Logic
Programs with Ordered Disjunction (LPOD).

Disjunctive Logic Programming

Disjunctive Logic Programs (DLP) extend standard Normal (disjunction-free)
Logic Programs such that disjunction in a rule’s head is supported. DLPs allow
for representing problems of lower complexity in a simple and more natural fash-
ion [59]. In this thesis, the standard notation for Disjunctive Logic Programs is
used (cf. [15, 113]). Roughly speaking, a DLP is a set of rules of the form

h1 ∨ . . . ∨ hl ← b1, . . . , bm, not bm+1, . . . , not bn.

Its syntax is formally defined as follows. Given disjoint sets of predicate and
constant symbols, σpred, σcon respectively, atoms can be defined as p(t1, . . . , tk)
where p ∈ σpred, t1, . . . , tk ∈ σcon and k is called the arity of p. Atoms such that
k = 0 are called propositional. A literal is either an atom a or its negation ¬a
where ’¬’ represents classical negation.

Definition 2.6 (DLP). A Disjunctive Logic Program (DLP)5 P is defined as a
set of rules r of the form

h1 ∨ . . . ∨ hl ← b1, . . . , bm, not bm+1, . . . , not bn

where each hi (bj) is a literal and not represents negation as failure. It is further
defined:

• Head(r) to be {h1, . . . , hl},

• Body+(r) to be {b1, . . . , bm},

• Body−(r) to be {bm+1, . . . , bn}, and

• Lit(P) to be the set of all literals occurring in P .

The semantics of DLPs is defined by its disjunctive stable models, also called
answer sets. A set of literals S is an answer set of P if and only if it is a minimal
model of the Gelfond-Lifschitz reduct P S. In this thesis, a formal definition of
stable model semantics is not given, the reader is referred to [69, 113] for further
details.

5In this thesis, elaborations and examples on answer set programs are restricted to proposi-
tional programs. As usual in answer set programming, rules containing variables—also called
rule schemata—may be considered as representations of their instantiations where variables are
replaced by the constants occurring in the program and the semantics is defined in terms of the
set of all possible rule instantiations (also called the program’s grounding).

32

2.2 Preference Modelling

Head-cycle freeness. Head-Cycle Free Logic Programs [19] are a special kind
of Disjunctive Logic Programs which will be of interest later in this thesis. They
are defined based on the notion of a program’s dependency graph:

Definition 2.7 (Dependency graph). The dependency graph of a Logic Pro-
gram P is defined as a directed graph where every literal that occurs in P is
represented as node l and there is an edge from l′ to l if there is a rule in P such
that l ∈ Head(r) and l′ ∈ Body+(r).

Definition 2.8 (Head-Cycle Free Programs). P is head-cycle free if its
dependency graph does not contain directed cycles that go through two literals
occurring in the same rule head.

Cardinality constraints. Later in this thesis, a specific syntax extension for
DLPs will be exploited, called cardinality constraints [120]. This extension allows
heads of rules to be a cardinality constraint of the form L {l1, . . . ln} U . Here,
l1, . . . , ln are literals and L (lower bound) and U (upper bound) are natural num-
bers. The intuition is that this statement holds if at least L and at most U of
the literals l1, . . . , ln are satisfied.

Logic Programs with Ordered Disjunction (LPOD)

There is a lot of work about modeling and exploiting preferences in Logic Pro-
grams with stable model semantics, the reader is referred to [58, 105] for a com-
plete overview; more details are also given in Section 5.1.2. The most prominent
work which also serves as a basis for the present thesis was presented by Brewka
et al. in [44]. Brewka describes so-called Logic Programs with Ordered Disjunc-
tion (LPOD) for expressing preferences in Logic Programming based on a special
kind of disjunction called ordered disjunction (denoted by ×). It expresses a dis-
junction while at the same time building up a preference order between the single
disjuncts. This ordered disjunction is—similar to DLP—only allowed to appear
in a rule’s head. A typical example rule is

cname × ctelephone × cbdate.

This rule states that cname is preferred to be true, i.e., is preferred to be contained
in the answer set. If for some reason cname can not hold, for example the policy for
disclosing it is not satisfied or it is not required to make the negotiation succeed,
ctelephone would be the second option, and so on.

Given several such rules in a program, the preference which is built up by ×
acts like an attribute level preference (cf. Definition 2.2) and each rule having the
×-sign sets up a new attribute. The object level preference (cf. Definition 2.1)
acts on the actual answer sets which are models for the program: given two

33

2. BACKGROUND

answer sets which both are models of the program, one answer set is better than
the other if for each rule a “better” literal is satisfied—that is, if the leftmost
literal satisfied in the answer set appears before the leftmost literal satisfied in
the other answer set. A formal presentation of LPODs and their semantics can
be found in [44].

2.3 The Social and the Semantic Web

Parts of the scenarios developed in the present thesis play an important role in a
specific aspect of the World Wide Web. In particular, the contribution of reactive
policies is shown in an application acting on the Social and Semantic Web. This
section introduces both terms and explains them in detail.

The Web, as the most prominent open information system, is increasingly
becoming social: there has been a shift from just existing on the Web to partic-
ipating on the Web [29]. Indicator of this movement is the popularity of online
tools like wikis, blogs, sharing platforms, or Social Networking sites [90]. These
applications typically offer the same basic functionality: network of friends list-
ings, person surfing, private messaging, discussions in forums or communities,
event management, blogging, commenting and resource sharing [40]. The term
Social Web has been introduced to refer to this particular part of the Web that
is highly social, conversational and participatory [41]. Beyond the social aspects
of the Web’s use, in this thesis also the social aspects of the information acces-
sible on the Web will be of particular interest. Thereby, it is referred to social
information for any personal data that is describing persons or the relationships
among persons. Thus, the Social Web can be considered a repository of social
data available to the public.

An extensive exploiting of this information is hindered by one of the major
limitations of nowaday’s Social Web [40]: Web sites storing social data of various
kinds do not make use of common data formats and knowledge representation
standards. Thus, although social information is visible to a Web site’s visitor, it
is not at all machine-understandable, and automated systems are not enabled to
grasp and reuse this information. This is an instantiation of a general problem
of the current Web: it lacks a well-defined representation of its content. To
address this problem, an extension to the traditional Web has been proposed
by Tim Berners Lee in 2001 [21]: the so-called Semantic Web, “an extension
of the current Web in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.” The last couple of years
have seen large efforts going into the definition of foundational standards aiming
at a universal data exchange among heterogeneous systems. Currently, a well-
defined Semantic Web technology stack exists [41] (see Figure 2.5), ranging from
metadata standards and associated vocabularies to reasoning mechanisms on Web

34

2.3 The Social and the Semantic Web

data and semantic techniques for privacy, provenance, and trust establishment
(e.g., semantic policies in Section 2.1.1). Among the findings and developments
of the Semantic Web research community there are vocabulary standards which
achieved wide deployment. The following three standards are widespread for
social information:

FOAF (Friend-of-a-Friend)6 is an ontology for describing people and the rela-
tionships among them.

SIOC (Semantically-Interlinked Online Communities)7 is another ontology defin-
ing concepts to uniformly represent information about blogs, forums, and
mailing lists [29].

DOAP (Description-Of-A-Project)8 is a standard to describe software projects
and people working in them.

Below all those vocabularies, as the standard way to represent semantic informa-
tion on the Web, RDF (Resource Description Framework) [100] is used (cf. the
tower in Figure 2.5). In RDF, information is stored by means of triples statements
(subject, predicate, object). The subject is an identifier for a resource, predicate
is an identifier referring to a relationship, and object is the resource that relates
to the subject. A set of such triples builds up a so-called RDF graph consisting
of nodes which are URIs, blank nodes or literals, and edges which are URIs re-
ferring to relationships. To provide a common understanding of RDF statements
among different sources, the so-called RDF-schemas are typically used. They are
expressed in RDFS9, a language that allows for defining the semantics of RDF
statements and therefore serves as an ontology language. One layer higher, the
web ontology language OWL10 extends RDFS with more advanced constructs for
knowledge representation. This way, one is empowered to, for example, specify
that two URIs refer to the same resource using the owl:sameAs predicate. In fact,
FOAF, SIOC, and DOAP are all provided in form of RDFS or OWL ontologies.
The standard technology to query RDF data sources is SPARQL11 (SPARQL
Protocol and RDF Query Language), a query language for RDF graphs. RDF
data is typically exposed on the Web in form of Web services wrapping an RDF
repository, the so-called SPARQL endpoints.

In the last years, Semantic Web standards started to get woven into the So-
cial Web: more and more social data is stored and exposed by means of semantic
technology and thus form the so-called Social Semantic Web [41]. Parts of this

6http://www.foaf-project.org
7http://sioc-project.org
8http://trac.usefulinc.com/doap
9http://www.w3.org/TR/rdf-schema/

10http://www.w3.org/2004/OWL
11http://www.w3.org/TR/rdf-sparql-query

35

http://www.foaf-project.org
http://sioc-project.org
http://trac.usefulinc.com/doap
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL
http://www.w3.org/TR/rdf-sparql-query

2. BACKGROUND

Figure 2.5: The Semantic Web Layer Tower [9] introduced by Tim Berners-Lee:
upper layers add semantics to lower layers while reusing the formalisms of the layers
below. For example, vocabularies are defined by means of RDF whereas deduction
and proofs in turn exploit those vocabularies to handle implicit knowledge.

thesis will investigate how this fact can be exploited for policy-based privacy pro-
tection and behaviour control in applications acting on the Social Web. These
co-called Social Network applications include Web platforms which directly act
on the Social Web like Facebook, but also any other application based on Social
Networks such as Skype. The principle of policy-based privacy control is a good
candidate for privacy control on the Social Web. It is flexible enough to capture
various situations and user preferences. On top of that, the social data semanti-
cally exposed on the Web can be exploited by a policy system thus incorporating
arbitrary social information into the policy decision.

36

Chapter 3

Preference-enabled Policy
Representation and Reasoning

Preference models are widely used for the representation of user intentions, be
it for searching in databases or for the personalization of systems. In particular
qualitative preferences which do not require the user to define numeric degrees
of preference can be easily stated by users and still be exploited for automated
decisions or option selection. Thus, preferences are a good candidate to be ex-
ploited in policy-based behaviour control: they offer a straightforward way to
rank options that otherwise were equal alternatives. But preference models do
not only allow for an a priori ranking of alternative reactions, they also support
expressions ranking specific properties of alternatives which are generalized in
order to do an a posteriori comparison among objects. Thus, expressing prefer-
ences in policy languages is a promising extension that eases a lot the process in
encoding user intentions in formal languages.

This chapter describes an approach which incorporates preferences into the
policy specification and reasoning process. Particular emphasis is placed on the
expression and the evaluation of partial order preferences (cf. Section 2.2.1), not
only because all the existing solutions are restricted to total order preferences but
also because indifferences (which are only possible in partial orders) are pervasive
in user-expressed preferences. In Section 3.1 in this chapter, a formal approach
is described that incorporates preferences in a Trust Negotiation process. Here,
preferences are exploited in order to automatically decide which of the possible
next steps is the most preferred. This decision happens right after the policy is
evaluated and the alternative steps are computed. The considerations about how
preferences are evaluated in a Trust Negotiation directly lead to the elaborations
and findings in the subsequent section: in Section 3.2, the problem of how such
preferences can be generally encoded in a rule-based policy is tackled. Therefore,
a more general view is taken and arbitrary Logic Programs are considered. To
this end, DLPOD is introduced, a language for Logic Programs that allows to

37

3. PREFERENCE-ENABLED POLICIES

specify arbitrary partial order preferences on logical predicates inside a policy. To
achieve this, an approach for encoding total order preferences in Logic Programs
is extended towards partial order preferences.

The following contributions will be presented in this chapter:

• an approach for credential selection in automated Trust Negotiation based
on qualitative partial order preferences featuring preference composition,
preference amalgamation, and conditional preferences (first presented in [86]);

• an extension to Logic Programs with Ordered Disjunction, called DLPOD
(Disjunctive Logic Programs with Ordered Disjunction) which supports par-
tial order preferences among literals in rules’ heads (first presented in [84]).

3.1 Exploiting Preferences for Policy-based Trust

Negotiation

The process of Trust Negotiation is based on credential exchange which is guided
by the policies. Policies, as it has been made clear in the former sections, are
declarative statements which—in the context of Trust Negotiation—define condi-
tions for requesters to access a resource or credential. However, in some cases, it is
not exactly determined what credential to disclose; then, additional information
has to be provided by the user indicating which option to chose. For example,
the work by Yu et al. [141] allows users to define generic strategies that influ-
ence the message exchange of a negotiation beyond the actual policies which are
protecting the resources. Yu’s approach is thus giving the user the possibility to
generally specify a negotiation’s behaviour, for example by means of criteria when
to stop a negotiation or when to disclose an unlocked credential (speeding up the
negotiation with less or more cautious strategies). Still, the particular problem
of personalization in terms of which successful negotiation path to choose among
several alternatives has not been studied in [141].

Looking back at the example negotiation from Section 2.1.3, one can see that
in order to register, Alice has at least two options: either she provides her passport
credential or her digital ID. And in case the bookstore already disclosed a BBB
credential, she is offered two options in order to register at the online book store.
Generally speaking, there are situations where two or more reactions are possible
in a Trust Negotiation.

Picking the right, i.e., the preferred action in a Trust Negotiation is similar
to the personalization techniques known as preference queries which return for
instance the optimal objects from a database or the most preferred good from a
digital product catalog. In the situation of Trust Negotiation, the objects are the
sets of possible negotiation steps and their attributes are the different credentials

38

3.1 Exploiting Preferences for Policy-based Trust Negotiation

that either have to be disclosed in a step or not. In the following section, the
requirements for a solution will be defined based on the negotiation scenario
presented in Section 2.1.3.

3.1.1 Problem Definition and Requirements

By matching the policies of both, the book store and Alice, one can find all pos-
sible negotiation paths, that is, all the credential disclosure sets that will make
the negotiation succeed. How to extract such a negotiation path is a standard
process (cf. Section 2.1.3). The matching of the two example policies presented in
Section 2.1.3 returns several possible negotiation paths and there exist 12 differ-
ent credential disclosure sets (see Table 3.1) leading to a successful negotiation.
Therefore, Alice has to select among 12 different possibilities that would all make
the negotiation succeed. However, not all of them may be necessarily equally
desirable to her. In fact, Alice has several preferences concerning the disclosure
of her credentials: for example she prefers to disclose her ID card number instead
of her passport number and she prefers to provide her bank account instead of
paying via credit card. This information is not given by her policies. Generally
speaking, a user may be interested in always disclosing the less sensitive credential
in case there is a choice. Moreover, personal preferences for certain credentials
may play a role as well. These preferences act orthogonal to the actual policies:
policies specify that access to resources is granted if certain conditions are sat-
isfied but not how to decide which credential to disclose in case only k out of
n satisfied conditions are required. Alice’s trust agent would have to ask Alice
to decide which of all the 12 alternatives she prefers to disclose. And as soon
as complex policies come into play, she may be easily overloaded with too many
options. Furthermore, many of these options are already overruled by others so
the user does not even need to consider them. Therefore, Alice’s preferences shall
be exploited in order to rule out suboptimal negotiations. The following require-
ments sum up what has to be taken into account when providing a solution to
Alice.

Partial order preferences. It may be difficult for Alice to define a total or-
der preference for all her credentials. First, it is time consuming, and second,
indifferences shall be supported because it may be impossible to say whether a
frequent-flyer card is more or less sensitive than a video club card. Moreover, it is
useless to specify such a preference since it is unlikely that they will be given as an
alternative to each other. Therefore, it should be possible to reason over Alice’s
preferences even if only a partial ordering among her credentials is available.

39

3. PREFERENCE-ENABLED POLICIES

1 2 3 4 5 6 7 8 9 10 11

n
a
m

e

b
d

a
te

te
le

p
h

on
e

e-
m

a
il

p
o
st

co
d

e

id p
a
ss

p
or

t

b
a
n

k
n

am
e

b
a
n

k
a
cc

o
u

n
t

cr
ed

it
ca

rd

p
in

S1 × × × × ×
S2 × × × × ×
S3 × × × × ×
S4 × × × × ×
S5 × × ×
S6 × × ×
S7 × × ×
S8 × × ×
S9 × × × ×
S10 × × × ×
S11 × × × ×
S12 × × × ×

Table 3.1: The 12 possible disclosure sets S1 − S12 for a successful negotiation
between the book store and Alice. The crosses indicate if a credential is contained
in the corresponding set.

Preferences among more than one credential. Generally, preferences among
disclosure sets of credentials (and not only among single credentials) should be
allowed, too. For instance, it could be preferred to disclose the e-mail address
instead of the date of birth together with the postal code (since postal code and
date of birth are considered a quasi-identifier [130]).

Conditional preferences. Contrarily to this preference, in case the date of
birth is not disclosed, Alice may strongly prefer to disclose her postal code instead
of her e-mail address. However, if she also has to disclose her date of birth, she
would switch her preference and prefer to disclose her e-mail instead of her post
code because the latter together with her date of birth is a quasi-identifier. Even
more general, preferences may depend on other situational attributes such as the
party the user is negotiating with. Therefore, a preference-based approach should
allow for conditional preferences such as “This preference only holds if my date
of birth is disclosed, too. In all other cases, I have the opposite preference.”.

Qualitative preferences. It may be clear that Alice considers her ID card less
sensitive than her passport. However, quantifying the sensitivity of a credential
is difficult (e.g., sid = 10, spassport = 11 or sid = 10, spassport = 51), especially when
dealing with a large number of credentials. Furthermore, the aggregation of this

40

3.1 Exploiting Preferences for Policy-based Trust Negotiation

quantification for sets of credentials is even more difficult: calculating the cost
of disclosing two (or more) credentials using arbitrary quantitative aggregation
methods is difficult to understand by users (assigning sensitivity 11 or 51 to
spassport may have a great difference later on). Therefore, qualitative preferences
among credentials should be allowed.

Selecting the optimum. Finally, any solution provided to Alice has to meet a
trivial but very important requirement, i.e., to reduce the number of negotiations
by strictly following the users preferences: any procedure should ensure that
no preferred alternative is ruled out and no suboptimal disclosure set should be
contained in the selected alternatives.

After identifying the problem and the requirements for preferences in a policy-
based Trust Negotiation, the following section will explain an extension to pref-
erence theory (as it has been detailed in Section 2.2) which will be needed to
completely meet the scenario’s requirements.

3.1.2 A Preference Model for Trust Negotiation

In what follows, the preference theory introduced so far will be extended in order
to handle credential disclosure sets and to find the most preferred negotiations out
of the set of all possible negotiations. For this, a model for credential disclosure
will be described and a model for the various types of preferences involved. This
model will be based on qualitative preferences defined over single credentials (such
as “I prefer to give my bank account information. My credit card number would
be the second choice.”) or over sets of credentials (such as “Giving my e-mail is
preferred to disclosing my postal code together with my date of birth.”).

Modeling credential disclosure sets

Let C = {c1, . . . , cn} be the set of credentials a party of a negotiation owns. The
set of credentials a party has to disclose during the whole negotiation in order
to succeed is a subset of C. Following the representation in Table 3.1, a set
of credentials is represented as a bit vector with n dimensions comprising one
dimension for each single credential such that setting a bit i to 1 means that
during the negotiation the credential ci is disclosed.

Definition 3.1 (Credential Disclosure Vector). Let S be a credential
disclosure set over the set of credentials C. The Credential Disclosure Vector
representing S is the bit vector X = (x1, . . . , xn) (n = |C|) such that xi = 1 iff
ci ∈ S and xi = 0 otherwise.

41

3. PREFERENCE-ENABLED POLICIES

Example 3.1. In the scenario, the set of credentials Alice owns is
C = {cname, cbdate, cphone, cemail, cpcode, cid, cpassport, cbank name, cbank account, ccc, cpin}.
Mapping this set into a vector allows one to easily represent the disclosure set S1

from Table 3.1 as (1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0). In the following, this order (as it is
also depicted in Table 3.1) will be assumed for the following examples. �

These bit vectors represent objects (credential disclosure sets) for which each
attribute dimension is the credential name and only two possible values exist:
either 0 (a certain credential is not disclosed) or 1 (a credential is disclosed). In
the following, credential disclosure sets and their bit representation will be used
interchangeably.

Modeling preferences

As it has been shown so far, preference relations act on two different levels: on the
object level and on the attribute level (cf. Definitions 2.2 and 2.1). This section
introduces preferences on both levels as well as other preference types needed for
comparing disclosure sets.

Object level preferences. Preference relations on the object level act among
disclosure sets or, more precisely, on their bit vectors. These preferences are
computed out of attribute level preferences given by the user. Since object level
preferences cannot be easily defined by the user, preferences on the attribute level
are used to build up preferences on object level.

Attribute level preferences. Preferences on attribute level act among cre-
dentials, that is, whether the disclosure of one credential is preferred or not.
Privacy plays a main role in Trust Negotiations and it may be assumed that a
user always prefers “not to disclose” a credential in a negotiation. Therefore, in
the running scenario the attribute level preference 0 �i 1 is assumed for each cre-
dential ci. However, a user may want to specify the opposite preference for some
credentials in order to force the negotiation to select a negotiation path in which
a specific credential is disclosed.1 Therefore, this theory allows for attribute level
preferences in both directions.

The composition of the attribute level preferences allows to compare disclo-
sure sets on the object level. But the two composition paradigms Pareto and
lexicographic composition (see page 29 in Section 2.2.2) form the extreme cases
of possible compositions: whereas a lexicographic order adheres to a strict rank-
ing between the preferences, the Pareto composition assumes no order at all.

1This may be the case for vouchers or discount credentials that may allow the user to receive
a discount or even a free purchase when performing a transaction.

42

3.1 Exploiting Preferences for Policy-based Trust Negotiation

However, for the application in Trust Negotiation both paradigms are problem-
atic: by focusing on the highly preferred attributes the lexicographic order biases
towards negotiations that will not disclose a very sensitive credential, even if they
disclose all other credentials. Given the fact that the set of credentials disclosed
should be kept rather small this is definitely not a desirable behaviour. The
Pareto composition on the other hand is too careful: by considering the disclo-
sure of each credential as equally problematic, a lot of incomparability between
different negotiations is introduced and the user has to choose between loads of
possible negotiations. In fact, the result sets of Pareto compositions are known to
grow exponentially with the number of dimensions (here: the number of possible
credentials) [20]. The solution to reduce the amount of incomparable disclosure
sets is achieved by amalgamated preferences: it is possible for the user to specify
a preference order over the attributes themselves and thus distinguish between
more or less preferred (i.e., sensitive) credentials.

Amalgamated preferences. In the presented Trust Negotiation setting, amal-
gamated preferences connect two credentials with a preference relation. In Fig-
ure 2.4 on page 27, Alice’s amalgamated preferences are represented in a graphical
manner.2 Amalgamated preferences in the considered setting represent the fact
that a disclosure set can be more or less preferred depending on which creden-
tials are contained in this disclosure set (and not only whether one credential is
disclosed or not, which is considered in the comparison following the Pareto com-
position). In order to better understand the concept of amalgamation (given in
Definition 2.5), a detailed example in the context of Trust Negotiation is provided
as follows.

Example 3.2. Alice may state that a negotiation where she has to disclose her
credit card and not her bank account is less preferred than a negotiation where
she does not disclose her credit card but her bank account. Mind that these
two disclosure sets are incomparable from the Pareto composition point of view
because in the bank account dimension the first is better (it does not include
the disclosure of the bank account and the other does) but in the credit card
dimension the second is better (the second set does not contain the credit card).
Hence, Alice relaxed her preference for not disclosing her bank account instead
of disclosing it in favor of the fact that the credit card is not disclosed.

The formal specification of this amalgamated preference relation following
Definition 2.5 looks as follows. The numbers of the different dimensions in µ rely
on the order in Table 3.1 (as it is done for the vectors representing the credential

2The representation in Figure 2.4 is a way to present the amalgamated preferences of the
scenario in a reader-friendly way. However, for amalgamated preferences over more than two
dimensions this kind of representations may become more difficult to understand. The reader
is pointed to [13] for further details about this issue.

43

3. PREFERENCE-ENABLED POLICIES

disclosure sets) starting with 1. Hence, the bank account’s dimension is 9, the
credit card’s dimension is 10, and the amalgamated preference relation is denoted
as �(1,0),(0,1)

{9,10} . This relation amalgamates the two dimensions 9 and 10 and allows
to decide between two negotiations where in one the credit card is disclosed but
the bank account is not and in the other the bank account is disclosed but the
credit card is not; according to the ceteris paribus condition, all dimensions except
the amalgamated ones 9 and 10 have to show equal values in both disclosure sets
to be compared. �

Conditional preferences. The notion of amalgamated preferences also allows
for conditional preferences in the context of Trust Negotiation. In Figure 2.4,
conditional preferences are depicted as dotted arrows with a condition attached.
Alice’s preference concerning post code and email depends on whether the date
of birth is additionally disclosed or not. For each value of the condition, a new
amalgamated preference is introduced as follows. For the case where date of birth

is disclosed �(1,1,0),(1,0,1)
{2,4,5} is introduced and for the other case �(0,0,1),(0,1,0)

{2,4,5} . This

example solves the quasi-identifier problem presented in Section 3.1.1. However,
conditions may be even more complex: they may be situational [74] and therefore
include the external context of a negotiation. For example, it may play a role
whom one is negotiating with (e.g., one prefers to disclose the bank account to
the credit card number if the requester is the bank and vice versa otherwise).
These kinds of conditions can easily be modeled with the presented framework
as additional dimensions in the vectors to be compared.

Possible conflicts. As soon as one considers more than one preference in or-
der to build up a concise knowledge base of all the user’s preferences, one has to
resolve possible conflicts between the given preferences. This is because a contra-
dicting preference relation may lead to cycles in the object level preference and
therefore does not allow for concise comparison anymore: finding the optimal
object in a given set of objects becomes non-deterministic.

Example 3.3. One example could be that two amalgamations given by the user
directly contradict, such as �(1,0),(0,1)

{2,3} and �(0,1),(1,0)
{2,3} . �

But even in cases where amalgamated preferences do not directly contradict,
they may still conflict when considering a transitive chain as in the following
example.

Example 3.4. Assume there already exists one amalgamated preference �(1,0),(0,1)
{2,3} .

Adding the amalgamation �(1,0,1),(0,1,0)
{1,2,3} leads to an indirect contradiction:

(0, 1, 0) �(1,0),(0,1)
{2,3} (0, 0, 1) �1 (1, 0, 1) holds but this directly contradicts the amal-

gamation to be added which states the opposite: (1, 0, 1) �(1,0,1),(0,1,0)
{1,2,3} (0, 1, 0). �

44

3.1 Exploiting Preferences for Policy-based Trust Negotiation

In order to avoid possible conflicts in a set of preferences, a preference to be
added to this set has to meet certain conditions:

Definition 3.2 (Consistent Preferences). Let O be a set of objects and
P ⊆ O2 a preference relation on these objects. Let further P conv be the converse
relation wrt. to P such that (x, y) ∈ P ↔ (y, x) ∈ P conv. A preference relation
S ⊆ O2 is called consistent wrt. P iff

1. ∀x, y ∈ O : (x, y) ∈ S → (y, x) 6∈ S and

2. S ∩ (P ∪ P conv) = ∅.

It will become obvious later (see Remark 3.2) that the first condition in this
definition takes care of cases like the one in Example 3.3 and the second condition
corresponds to Example 3.4.

Combining preferences transitively. Based on this condition, one is able
to consistently add preferences to a knowledge base and incrementally build up
one single preference relation which is called Incremented Preference Relation
in the following. This relation includes the transitive closure of the preferences
incrementally added:

Definition 3.3 (Incremented Preference Relation). Let O be a set of
objects, P ⊆ O2 a relation on these objects, and S ⊆ O2 the set of object pairs
representing the preference to be added to P . Let further be S consistent wrt. P
and let T be the transitive closure T := (P ∪ S)+. The Incremented Preference
Relation of P incremented by S is defined as P ∗ := {(x, y) ∈ T |(y, x) 6∈ T}.

3.1.3 Filtering out Non-Preferred Disclosure Sets

This section explains how the theoretical basis such as Pareto composition, amal-
gamated preferences, and incremented preferences is used to select the non-
dominated objects, i.e., the most preferred disclosure sets according to the given
preferences. At the end of this section the preference relation �� will be defined
which allows to compare any two disclosure sets according to a set of preferences
given by a user. Based on this relation, a formal definition of the set of optimal
disclosure sets will be given.

The following example shows how Pareto dominance helps to rule out non-
preferred disclosure sets in the running scenario:

Example 3.5. Given the two disclosure sets S6 and S10 from Table 3.1,
S6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1) and S10 = (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1), and the set of
attribute level preference relations over ci {0 �cname 1, . . . , 0 �cpin 1} it is obvious

45

3. PREFERENCE-ENABLED POLICIES

to infer that S6 � S10 holds since S6 �1 S10 and S6 =i S10 for all i 6= 1. In any
case, it is possible to automatically infer that a user always prefers to disclose
only a subset of credentials, i.e., only ID card number and bank account. �

Remark 3.1. It is important to point out that the general preference of a subset
of credentials only holds since the preference 0 �i 1 is assumed on attribute
level, i.e., not disclosing a credential ci is always preferred to disclosing it. Given
these preferences over the binary value space for attributes, computation of Pareto
domination is reduced to simple set containment checks.

The following example shows how taking the amalgamated preferences into
account eliminates additional dominated objects:

Example 3.6. Given the sets (from Table 3.1) S5 = (0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0) and

S7 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0) , and the amalgamated preference �(1,0),(0,1)
{6,7} (that

is, it is preferred to disclose the ID card number to the passport number) it is
possible to infer that S5 � S7. Therefore, it is possible to automatically infer
that the user would prefer to disclose her ID and bank information instead of
disclosing her passport and bank information. �

Pareto composition (in Example 3.5) and preference amalgamation (in Exam-
ple 3.6) applied in isolation to filter out dominated disclosure sets is not sufficient
in some cases—as it is shown in the following example.

Example 3.7. S5 and S6 cannot be compared with the mechanisms given so far:
there is no way to combine Alice’s amalgamated preference concerning bank name
and credit card and her amalgamated preference concerning bank account and
pin without utilizing a transitive application of two or more preferences. �

This example motivates the exploitation of incremented preferences (see Def-
inition 3.3) in order to further reduce the number of disclosure sets. According
to Definition 2.5, only one amalgamated preference is applied at a time; for
the remaining dimensions the ceteris paribus condition fires. However, it may
be possible that several preferences—be it simple attribute level preferences or
amalgamated ones—need to be applied over the same two disclosure sets in or-
der to compare them. Therefore, the transitive combination of preferences is
exploited. This combination is provided by the incremented preference relation.
The following example shows how an incremented preference relation is used to
compare the two disclosure sets from Example 3.7.

Example 3.8. In order to compare S5 and S6 one needs to combine two of Al-
ice’s preferences; for example her preference saying that bank name is preferred
to credit card (p1 = �(1,0),(0,1)

{8,10}) and her preference saying that bank account is

46

3.1 Exploiting Preferences for Policy-based Trust Negotiation

preferred to pin (p2 = �(1,0),(0,1)
{9,11}). To achieve this combination the definition of

an incremental preference relation (see Definition 3.3) is applied in the following
way. First, p1 is added to an (initially empty) incremented preference P ∗0 . From
the definition of amalgamated preferences (Definition 2.5) and from the fact that
P ∗0 is empty, it is obvious that p1 is consistent wrt. P ∗0 . Adding p1 yields the
incremented preference P ∗1 = p1. In the second step, p2 is added to P ∗1 in order
to construct the incremental preference P ∗2 . Similarly to the first step, p2 is con-
sistent wrt. P ∗1 . This is due to the ceteris paribus condition in the definition of
amalgamated preferences: for any pair in p1 the dimensions 9 and 10 are equal
where for any pair in p2 they are different. Therefore, no pair in p1 contradicts
a pair in p2. By applying the transitive closure in order to construct P ∗2 the pair
(S5, S6) is introduced as an element of P ∗2 . This is due to the transitive chain built
from the following two pairs: p1 contains the pair (S5, (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0))
and p2 contains ((0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0), S6). By transitively combining p1 and
p2 to P ∗2 one gets the desired relation (S5, S6) ∈ P ∗2 . �

This example forms a base case and provides evidences that the extension of an
isolated application of the Pareto domination and the amalgamated preferences
given by the user is needed. In order to provide all possible combinations of all
given preferences, it is required to build up an incremented preference relation
called Complete Preference Relation �� which is defined as follows.

Definition 3.4 (Complete Preference Relation). Let �P be the Pareto
composition of attribute level preferences �1, . . . ,�n. Let further P = {p1, . . . , pm}
be a set of amalgamated preferences. The Complete Preference Relation �� is
defined as the incremented preference relation of �P incremented by

⋃
P .

Remark 3.2. Because of the conditions in Definitions 3.2 and 3.3, this Definition
covers two implicit requirements:

1. Each amalgamated preferences must not contradict another, i.e., pn ∩ pconvm

must be empty for all n,m. This case matches Example 3.3 and Condi-
tion 1 in Definition 3.2: it implies that the framework requires user-given
amalgamated preferences to not directly contradict each other.

2. The union of the amalgamated preferences has to be consistent wrt. the
Pareto composition. This restriction ensures that the incremented prefer-
ence relation does not contain any cycles [12]. Instantiated for this thesis’
scenario, this restriction requires that no amalgamated preference stated by
the user contradicts the Pareto domination (i.e., each amalgamated prefer-
ence has to be consistent wrt. the Pareto composition of the attribute level
preferences). This requirement corresponds to Example 3.4 and to Condi-
tion 2 in Definition 3.2.

47

3. PREFERENCE-ENABLED POLICIES

Further, these two requirements imply that adding new preferences to the incre-
mented preference relation is a monotonic process [12]: adding new preferences
will never make former comparisons invalid, it will always add comparable pairs
and never remove some. This is in particular helpful for an incremental prefer-
ence elicitation process: after adding new preferences provided by the user it is
not needed to recompute the whole set of optimal disclosure sets. Instead, one can
simply remove those objects from the disclosure set which are now dominated.

The incremented preference relation forms the basis for the intended object
level preference relation among disclosure sets. From its definition it is clear
that it comprises the Pareto dominance relation as well all single amalgamated
preference relations given by the user. It additionally contains all combinations
of these base preferences. Therefore, it filters out all the disclosure sets which are
not preferred:

Definition 3.5 (Optimal Disclosure Sets). Let O be a set of disclosure sets
and �� a complete preference relation. The set of optimal disclosure sets O��
is defined as follows: O�� := {o ∈ O| 6 ∃o′ ∈ O : o′ �� o}.

In the following section the Trust Negotiation scenario from Section 2.1.3 will
be revisited in detail and it will be shown how undesired disclosure sets are ruled
out in the framework presented so far.

3.1.4 Revisiting the Scenario

In the following, the techniques and concepts defined in previous sections will be
exemplified by applying them to the disclosure sets S1, . . . , S12 which all yield a
successful negotiation. This is to find out the optimal negotiations for Alice given
these sets.

As it is shown above, the incremented preference relation contains the Pareto
composed attribute level preferences as well as the amalgamated preferences.
However, in order to see the improvement of each preference concept introduced
in the previous section, the process of ruling out dominated disclosure sets is
divided into three steps: it is shown

(A) how objects are ruled out by Pareto composition,

(B) how objects are ruled out by single amalgamated preferences, and

(C) how the transitive combination in the incremented preference relation rules
out the remaining dominated objects.

48

3.1 Exploiting Preferences for Policy-based Trust Negotiation

Pareto composition. Using the attribute level preferences 0 �i 1 which al-
ways prefers not disclosing a credential (cf. considerations on page 42 in Sec-
tion 3.1.2), Pareto composition can be applied to remove dominated sets. From
Pareto domination one can conclude that disclosure set S10 can be removed since
it is dominated by the set S6 (all dimensions are equally good in S6 and in S10

except dimension 1 (cname) in which S6 is preferred to S10). This may be consid-
ered straightforward since S10 additionally requires Alice to disclose cname which
is an unnecessary disclosure. In addition, also S9 can be removed since it is dom-
inated by S5. Furthermore, S6 Pareto dominates S12 and S5 Pareto dominates
S11. Hence, Pareto composition alone is already able to filter out four dominated
disclosure sets, namely, S9, S10, S11, and S12.

Amalgamated preferences. In addition to Pareto composition, the amalga-
mated preferences specified by Alice are exploited to further reduce the number of
disclosure sets. From Alice’s preference for disclosing her ID card number instead

of her passport number (amalgamated preference �(1,0),(0,1)
{6,7}), one can conclude

that S7 is dominated by S5 and that S8 is dominated by S6. Furthermore, Al-
ice has an amalgamated preference over three dimensions because of her fear of

being quasi-identified: �(1,1,0),(1,0,1)
{2,4,5} . From this preference one can infer that S2

dominates S4 and S1 dominates S3. This way it is possible to remove yet another
four dominated disclosure sets, namely S3, S4, S7, and S8.

Transitive combination of preferences. After having performed the previ-
ous steps, the remaining disclosure sets are S1, S2, S5, and S6. Among the inferred
preferences, there is the preference transitively combined out of the preferences

‘bank name is preferred to credit card’ (�(1,0),(0,1)
{8,10}) and ‘bank account is preferred

to pin’ (�(1,0),(0,1)
{9,11}). Applying both preferences transitively enables us to rule out

S2 because it is dominated by S1 and S6 because it is dominated by S5 (as it is
shown in Example 3.8).

The procedure described in this section is able to filter out ten non-preferred
credential disclosure sets based on qualitative preferences, therefore facilitating
Alice’s interaction with her negotiation agent. However, two disclosure sets are
still remaining: S1 and S5. Both are not comparable according to the specified
preferences.

3.1.5 Implementation and Experiments

A prototype has been implemented computing preferred credential disclosure sets
given a set of successful negotiation paths and a set of preferences specifying

49

3. PREFERENCE-ENABLED POLICIES

which credential’s disclosure is preferred to another’s. The user interface is web-
based and the logical core of the approach is implemented in Prolog. Given a
set of credentials a connected policy engine provides all disclosure sets yielding
a successful negotiation. From this set the Prolog engine computes the non-
dominated and therefore preferred disclosure sets. In case there exists one single
non-dominated disclosure set, this one will be used automatically. Otherwise, the
user has to choose one disclosure set.

The efficiency of the presented preference approach was tested along two di-
mensions:

• in terms of how many disclosure sets are ruled out and

• in terms of execution time.

The first number is crucial since the approach is only effective if a considerable
set of suboptimal negotiations is actually ruled out. The second number gives
evidences about the applicability in a realistic scenario. Since there is no Trust
Negotiation benchmark available which may serve for experiments, nor any avail-
able real data about disclosure sets (due to high sensitivity even if anonymized),
generated data was used as follows.

In a Trust Negotiation, typically only one client credential of a certain type
is needed. E.g., it is either required to disclose the passport number or the
ID card number, rather than both. Therefore the set of client credentials C
was partitioned into k disjoint subsets T called credential types. Further, it was
assumed that for the success of a negotiation exactly one credential for each
credential type has to be disclosed. Following this, it is obvious that each type
should at least contain two credentials—otherwise this single credential will be
contained in each disclosure set and will be disregarded in the comparison process.
Further, for each credential type a totally ordered preference was assumed on the
client side.

For each run of the experiment the following steps were performed:

1. randomly create k credential types T1, . . . , Tk for the n credentials,

2. create a set of amalgamations such that for each type Ti the relation�(1,0),(0,1)
j,j+1

is added for all cj, cj+1 ∈ Ti,

3. create a set O of n disclosure sets such that each disclosure set contains one
randomly chosen credential for each credential type,

4. rule out all dominated disclosure sets following the definition of �� (Defi-
nition 3.4).

In the setting of the experiment parameters of the following dimensions were
alternated:

50

3.1 Exploiting Preferences for Policy-based Trust Negotiation

<Sj�S�¯ÆÝSô�"ô9P¯g~Æ�ô¬gÃ���ÃÚjSôñS¯Ãô"�jô� ô6ôM

/F

]/F

t/F

�/F

]M t/ tM �/ �M ¢/ ¢M M/ MM
¹�g¯gÆ�ôÐÚ~çSjô�"ô¬gÃ���ÃÚjSôñS¯Ã

�6]t
�6]¢
�6]þ

<Sj�S�¯ÆÝSô�"ô9P¯g~Æ�ô¬gÃ���ÃÚjSôñS¯Ãô"�jô� ô6ôM

/F
]/F
t/F
�/F
¢/F
¹/F

]¹ t/ t¹ �/ �¹ ¢/ ¢¹ ¹/ ¹¹
Ð�g¯gÆ�ôçÚ~þSjô�"ô¬gÃ���ÃÚjSôñS¯Ã

�6]�
�6],
�6t/

Figure 3.1: Optimal disclosure sets for k = 5 (left) and k = 7 (right). n is
the number of credentials and k is the maximal number of credentials that can be
disclosed during a negotiation.

Number of credentials n. The higher the number of credentials the higher the
number of dimensions of the vectors to be compared. Increasing this value
yields an increasing of incomparable pairs in the set of disclosure sets. For
the experiments the number of credentials was chosen to be between 12
and 20.

Number of credential types k. This number actually determines how many
credentials are definitely disclosed in each negotiation. Increasing this value
also decreases the amount of suboptimal objects because the probability
that an object is ‘bad’ in one credential type but ‘good’ in another becomes
higher which leads to more incomparable pairs. In the experiments, 5 and
7 credential types were selected to cover negotiations where exactly 5 or
7 credentials have to be exchanged in each negotiation.

Number of disclosure sets. The number of disclosure sets represents how many
different negotiation paths exist and would have been shown to the user for
selection, in case no preference filtering was applied.

Several experiments were performed with varying values, 20 runs for each
setting; see the graphs in Figure 3.1 for the results of some representative settings.
It turned out that the average percentage of optimal disclosure sets is 18.3%.
Hence, on average 81.7% of the alternatives a user has to chose from are ruled
out. This is a huge improvement: instead of, e.g., 30 disclosure sets with obvious
suboptimal alternatives only 6 sets are shown to the user. Moreover, removing the
24 dominated possibilities is not only important from a usability perspective—it
is also suggestive from a privacy point of view: if the user selected one of the
suboptimal negotiations, she would definitely disclose more sensitive information
which she would not have to disclose to make the negotiation succeed.

51

3. PREFERENCE-ENABLED POLICIES

<Sj�S�¯ÆÝSô�"ô9P¯g~Æ�ô¬gÃ���ÃÚjSôñS¯Ãô"�jô� ô6ôM

/Ã

/FMÃ
]Ã

]FMÃ
tÃ

tFMÃ

]M t/ tM �/ �M ¢/ ¢M M/ MM
¹�g¯gÆ�ôÐÚ~çSjô�"ô¬gÃ���ÃÚjSôñS¯Ã

�6]t
�6]¢
�6]þ

<Sj�S�¯ÆÝSô�"ô9P¯g~Æ�ô¬gÃ���ÃÚjSôñS¯Ãô"�jô� ô6ôM

/Ã
FÃ
]Ã
tÃ
�Ã
MÃ
¢Ã

FM]/]M t/ tM �/ �M M/ MM
¹�g¯gÆ�ôÐÚ~çSjô�"ô¬gÃ���ÃÚjSôñS¯Ã

�6F¢
�6Fþ
�6]/

Figure 3.2: Computation Time for k = 5 (left) and k = 7 (right). n is the
number of credentials and k is the maximal number of credentials that can be
disclosed during a negotiation.

These results show that for a relatively big number of possible disclosure
sets (a higher number will rarely occur in reality), the presented approach filters
out a considerable subset of suboptimal alternatives and therefore reduces the
work load for the user. Furthermore, it turned out that for the experimental
setting the average computation time was about 2.3 seconds (see Figure 3.2). The
implementation does not consider any of the numerous optimization strategies
available for skyline computation (e.g., [106]) which would make the computation
even faster.

Complexity

The complexity of qualitative preference composition is quadratic in the worst
case. While this may be an issue in large database systems with million records, it
is typically acceptable for the analysis of credential disclosure sets since the total
number of successful negotiations is considerably small compared to databases.
It is also important to note that it is only restricted to the preferences concerning
the credentials in successful negotiation paths. The time the comparison of two
objects takes depends on the amount of amalgamations given. However, this
amount is also not too big and acts as a constant value that does not dramatically
increase complexity.

Discussion

The modeling of Trust Negotiation in the presented experiments has several sim-
plifications compared to a real scenario. Redundant policies as they are intro-
duced in the book store scenario were not considered, hence, Pareto domination
was never applied in the experiment which would even lead to a higher number
of suboptimal disclosure sets.

52

3.2 Partial Order Preferences for Rule-Based Policies

Further, credential types are assumed to be independent. In real scenarios,
as soon as one credential of a certain type is disclosed it is often not needed to
disclose a credential of another type (e.g., as soon as the passport is provided
it is not needed to additionally disclose name, address, or date of birth because
this information is already contained in the passport credential). These kinds of
dependencies were not considered in the experiment’s setting.

Furthermore, the experiment does not reflect preferences among different cre-
dential types, which one can assume in a realistic setting and therefore more
objects would be ruled out according to these preferences. Finally, the client’s
preferences are considered a total order for each credential type. As is has been
motivated, this is also rarely the case since preferences are typically partially
ordered.

The selection of credential disclosure sets in Trust Negotiations is a difficult
task. Only allowing for total orders over the set of owned credentials or linear
aggregation (as it is the case for existing approaches, cf. related work in Sec-
tion 5.1) is undesirable. In this section an approach has been presented based
on qualitative partial order preferences including preference composition, amal-
gamated preferences, and conditional preferences. It was further demonstrated
with the help of the example scenario how this approach can be used to solve the
problem of finding optimal disclosure sets. This solution eases the task of select-
ing among possibly many alternatives in a Trust Negotiation by exploiting the
user’s preferences. Although the preference framework is applied in the realm
of Trust Negotiation, this preference scheme can be used in any other domain
where objects need to be compared or selected based on preferences specified on
the objects’ attributes.

With this framework at hand, it is still an open question, how preference ex-
pressions can be placed inside a policy such that policy evaluation interferes with
computing preferred solutions. The following section provides a logic framework
that allows to incorporate preference expressions inside a policy language.

3.2 Partial Order Preferences for Rule-Based

Policies

Representing semantic policies by means of rules is known as the most straightfor-
ward way of turning a human’s intention of a system’s behaviour into a computer-
understandable set of instructions [36]. As far as the semantics of rules is con-
cerned, policy languages—in particular policy languages supporting Trust Nego-
tiation—apply the standard Logic Programming semantics for stratified programs
where stable model semantics and well-founded semantics coincide [62].

To this end, in this section, the stable model semantics of Logic Programs will
be extended to cater for partial order preferences to be expressed between literals

53

3. PREFERENCE-ENABLED POLICIES

in heads of rules. It is important to note that the application of this extension
is not limited to the expression of policies but serves as a logical framework to
express any kind of Logic Program with partial order preferences among literals.
In the following, DLPOD (Disjunctive Logic Programs with Ordered Disjunction)
will be presented. DLPOD is a Logic Programming language which extends the
Answer Set paradigm with means to express partial order preferences. For this,
the LPOD approach of Brewka et at. [44] (see page 33 in Section 2.2.3) will
be combined with general disjunctions. Roughly speaking, DLPOD allows both
operators in rule heads:

• ordered disjunctions indicated by the operator × as they are used in LPODs
and

• normal disjunctions indicated by the operator ∨ known from standard Dis-
junctive Logic Programs (DLPs).

Thus, in DLPOD it is allowed to define rules like3

cname × (ctelephone ∨ cpcode)← not cosc. (3.1)

By the combination of the two operators, an indifference can be introduced be-
tween the two options ctelephone and cpcode. This policy states, intuitively, in case
the body of the rule is true (i.e., the OSC credential is not provided), the user
prefers cname to be true, that is, to be contained in the answer set and thus dis-
closed to a negotiation partner. If cname can not be satisfied (e.g., another policy
rule protects the disclosure of cname), it is considered equal if either of the options
ctelephone and cpcode are true. Consequently, both options, disclosing the telephone
number and disclosing the postal code are equally preferred thus forming two
answer sets. In the following, first a detailed definition of the syntax of DLPOD
rules will be provided and second, their semantics will be defined.

3.2.1 Syntax and Semantics of DLPODs

The syntax of DLPODs straightforwardly extends Logic Programs with Ordered
Disjunction from [44] by the common disjunction ∨ used in Disjunctive Logic
Programming. To this end, the syntactic constructs allowed in the head of rules
is extended as follows.

Definition 3.6 (Ordered Disjunctive Term). An ordered disjunctive term
is a (possibly nested) term of literals C1, . . . , Cn connected by ∨ or ×. Such terms
are recursively defined as follows.

3In this section, the preferences and policies introduced as a scenario in Section 2.1.3 and
Figure 2.4 are used as basis for examples. However, for the sake of overview, only parts of those
policies and preferences are reused in this section.

54

3.2 Partial Order Preferences for Rule-Based Policies

• Any literal l is an Ordered Disjunctive Term.

• If F and G are Ordered Disjunctive Terms, then (F ×G) and (F ∨G) are
Ordered Disjunctive Terms as well.

DLPOD programs are defined as extended Logic Programs allowing rules with
Ordered Disjunctive Terms in the heads:

Definition 3.7 (Disj. Log. Program with Ordered Disjunction). A
Disjunctive Logic Program with Ordered Disjunction (DLPOD) P is a set of rules
of the form

r = Headr ← Bodyr.

where Bodyr = B1, . . . , Bm, not Bm+1, . . . , not Bk such that all Bi (1 ≤ i ≤ k)
are literals and Headr is an Ordered Disjunctive Term. Further

• Body+(r) is defined as {B1, . . . , Bm} and

• Body−(r) as {Bm+1, . . . , Bk}.

Defining the semantics of DLPODs follows a two steps approach. First, the
potential optimal answer sets (or candidate answer sets) are defined. Subse-
quently, a preference relation is defined upon those candidate answer sets (acting
as an object-level preference, cf. Definition 2.1) in order to identify the optimal
answer sets. For the potential answer sets of DLPODs, a semantics based on split
programs is provided in the following section.

Split programs of a DLPOD

The answer sets of a DLPOD are defined based on an extended notion of split
programs as they are introduced in [44]. For defining split programs of a DLPOD,
first the Ordered Disjunctive Normal Form (ODNF) of a rule is defined. Then,
it is shown how to transform each rule’s head into this normal form. Based on
rules given in this normal form and on the definition of the option of such a rule,
split programs of a DLPOD will be defined.

Definition 3.8 (Ordered Disjunctive Normal Form (ODNF)). The Or-
dered Disjunctive Normal Form of an Ordered Disjunctive Term is

n∨
i=1

mi×
j=1

Ci,j = (C1,1 × . . .× C1,m1) ∨ . . . ∨ (Cn,1 × . . .× Cn,mn)

Further, (Ci,1 × . . .×Ci,ki) is called the i-th Ordered Disjunct of the ODNF and
a rule r is defined to be in ODNF if Head(r) is in ODNF.

55

3. PREFERENCE-ENABLED POLICIES

Nested DLPOD rules are treated arbitrarily as shorthand for DLPOD rules

in ODNF. I.e., given an ordered disjunctive term S and subterms a, b and c of S

the following rewriting rules can be used to expand a nested rule into ODNF:

a× (b ∨ c)⇒ (a× b) ∨ (a× c) (3.2)

(a ∨ b)× c⇒ (a× c) ∨ (b× c) (3.3)

(a× b)× c⇒ a× b× c (3.4)

a× (b× c)⇒ a× b× c (3.5)

Example 3.9. By exhaustive application of these rules, any rule in a program can
be transformed into ODNF. For instance

cname × (ctelephone ∨ cpcode)← not cosc. (3.6)

yields the following rule in ODNF:

(cname × ctelephone) ∨ (cname × cpcode)← not cosc. (3.7)

�

Using the rewriting rules (3.2)–(3.5), hereafter, the semantics of a DLPOD P

will be defined in terms of rules in ODNF only.

In what follows the definition of the split programs of a DLPOD P will be

given. Before that, the notion of a rule’s option has to be defined, since, intuitively

speaking, a split program denotes the combinations of all options of each rule:

Definition 3.9 (Option of a rule). Let r be a DLPOD rule in ODNF:

n∨
i=1

mi×
j=1

Ci,j ← body.

where mi is the number of literals in the i-th Ordered Disjunct of r. An option

56

3.2 Partial Order Preferences for Rule-Based Policies

of r is any rule of the form (ji ≤ mi):

C1,j1 ∨ C2,j2 ∨ . . . ∨ Cn,jn ← body,

not C1,1, not C1,2, . . . , not C1,j1−1,

not C2,1, not C2,2, . . . , not C2,j2−1,

. . .

not Cn,1, not Ci,2, . . . , not Cn,jn−1.

Example 3.10. The ODNF rule (3.7) has the following four options (for illustration
purposes repeated atoms are not removed in the example):

cname ∨ cname ← not cosc.

cname ∨ cpcode ← not cosc, not cname.

ctelephone ∨ cname ← not cosc, not cname.

ctelephone ∨ cpcode ← not cosc, not cname, not cname.

�

Definition 3.10 (Split program of a DLPOD). A split program P ′ of a
DLPOD P is obtained by replacing each rule in P by one of its options.

It is important to note that the split programs of DLPODs are disjunctive
Logic Programs whereas split programs of classical LPODs (as defined in [44])
are normal Logic Programs which are not disjunctive.

Example 3.11. Given the DLPOD P =

cname × (ctelephone ∨ cpcode)← not cosc.

cid ∨ ccredit card ← cosc.

the following four programs are split programs of P :

1. ctelephone∨cpcode ← not cosc, not cname.
cid ∨ ccredit card ← cosc.

2. ctelephone∨cname ← not cosc, not cname.
cid ∨ ccredit card ← cosc.

3. cname ← not cosc.
cid ∨ ccredit card ← cosc.

4. cname∨cpcode ← not cosc, not cname.
cid ∨ ccredit card ← cosc.

�

To estimate upper bounds in the complexity attribution of DLPOD, it will be
needed to have a notion for head-cycle free DLPODs. Analogously to Disjunctive
Logic Programs, head-cycle-freeness [19] for DLPODs is defined as follows:

57

3. PREFERENCE-ENABLED POLICIES

Definition 3.11 (Head-Cycle Free DLPODs). Let a DLPOD’s dependency
graph be defined as in Definition 2.7. A DLPOD P is head-cycle free if its depen-
dency graph does not contain directed cycles that go through two literals occurring
in two ordered disjuncts Ci and Cj (i 6= j) of the same rule head.

The following observation can be easily verified:

Proposition 3.1. Split programs of head-cycle free DLPODs are head-cycle free.

Similar to LPODs, the possible optimal answer sets of a DLPOD are the
answer sets of all split programs. In the following section it will be explained in
detail which answer set is called optimal according to the original DLPOD.

Optimal candidate answer sets of a DLPOD

For the definition of the semantics of a DLPOD it has not yet been stated what
is called a preferred answer set of a DLPOD. So far, the possible answer sets of a
DLPOD have been defined as the answer sets of its split programs. This section
will detail how to compare these possible answer sets in order to find the optimal
ones; i.e., the most preferred answer sets according to the ordered and unordered
disjunctions in the rules’ heads. According to the definition of attribute and
object-level preferences (see Definitions 2.1 and 2.2), the object-level preference
among answer sets has to be deduced from the attribute level preferences acting
on literal level expressed in the rules’ heads.

First, the Satisfaction Degree Vector is introduced as a measure for how much
an answer set satisfies a DLPOD rule:

Definition 3.12 (Satisfaction Degree Vector). Let r be a DLPOD rule
of the form

r =
n∨
i=1

mi×
j=1

Ci,j ← A1, ..., Al, not B1, ..., not Bk

and let S be a set of literals. The satisfaction degree vector D of r in S is a
vector of the form D = (d1, . . . , dn) representing degrees of satisfaction for each
disjunct in r’s head where each di is either a natural number or the constant ε.
The dimensions of the Satisfaction Degree Vector are defined as follows:

1. D = (1, . . . , 1) if S 6|= r or otherwise

2. di = ε if S 6|= Ci,j for all 1 ≤ j ≤ mi,

3. di = min{t|Ci,t ∈ S}.

The Satisfaction Degree Vector of r in S is denoted by DegS(r).

58

3.2 Partial Order Preferences for Rule-Based Policies

Intuitively, in this definition, a penalty is assigned to each Ordered Disjunct
thus representing how much the answer set satisfies it. For each rule, these
penalties build up a vector of degree values with one dimension for each Ordered
Disjunct. The degree ε is chosen for head disjuncts which do not overlap with
S (cf. Condition 2). With ε it is indicated that a particular disjunct does not
tell anything about how much an answer set is preferred. Further, like in [44],
the best satisfaction degree (i.e., the vector (1, . . . , 1)) is assigned in case a rule’s
body is not satisfied (cf. Condition 1): there is no reason to be dissatisfied if a
rule does not apply for a particular answer set.

Example 3.12. Considering again the rule

cname × (ctelephone ∨ cpcode)← not cosc.

Since this rule has two Ordered Disjuncts, any Satisfaction Degree Vector has two
dimensions. The sets of literals {cname} and {cosc} both satisfy this rule to degree
(1, 1) (applied Condition 3 and Condition 1, respectively). The set {ctelephone}
satisfies r to degree (2, ε) and the set {cpcode} satisfies r to degree (ε, 2). �

Definition 3.13 (Preference acc. to a rule). A set of literals S1 is pre-
ferred to another set of literals S2 according to a rule r (denoted S1 �r S2)
iff DegS1(r) = (d1

1, . . . , d
1
n) Pareto-dominates DegS2(r) = (d2

1, . . . , d
2
n). That is

∀i d1
i ≤ d2

i ∧ ∃i d1
i < d2

i .

Intuitively, all dimensions in DegS1(r) are required to show a smaller or equal
number than in DegS2(r) and in at least one dimension DegS1(r) has to show
a strictly smaller number than DegS2(r) (cf. the principle of Pareto domination
in Definition 2.4). The constant ε plays the role of a placeholder which is not
comparable to any number except that it is equal to itself. As it will become
obvious in Section 3.2.2, this ε provides the “incomparability” needed to capture
partial orders.

Now, finally the preference notion is extended to a relation comparing sets of
literals (answer sets) according to a whole DLPOD:

Definition 3.14 (Preference acc. to a program). A set of literals S1 is
preferred to another set of literals S2 according to a set of rules R = {r1, . . . , rn}
(denoted S1 � S2) iff ∃i(S1 �ri S2) ∧ ¬∃j(S2 �rj S1).

The conditions in both definitions follow again the fair principle of Pareto
optimality (cf. Definition 2.4): an object is preferred if it is better or equal to
another in all attributes (in the presented case in all Ordered Disjuncts or in
all rules, respectively) and strictly better in at least one attribute. Finally, a
preferred answer set of a program P is defined as follows:

59

3. PREFERENCE-ENABLED POLICIES

Definition 3.15 (Preferred Answer Set). Given a DLPOD P , its set of
split programs P, and an answer set S of a split program in P. S is called a
preferred answer set (of P) if there is no answer set S ′ of any split program in P

for which S ′ � S holds.

3.2.2 Encoding Partial Order Preferences into DLPODs

As hinted already earlier in this chapter, DLPOD-programs extend the approach
of preferences in Logic Programming towards partial order preference relations.
This section details how to actually model partial order preference relations with
Ordered Disjunctive Terms. For this, a transformation of a partial order of literals
into a Disjunctive Normal Form is specified yielding a partial order preference
statement in a rule’s head.

Definition 3.16 (Transformation of a Partial Order). Given a Partial
Order < over a set of literals S and its corresponding covering relation <∗ (that
is, <∗ contains the transitive reflexive reduction of <), the transformation P of <
into an Ordered Disjunctive Term is defined as: P (<,S) =

∨n
j=1(Cj,1×. . .×Cj,kj)

such that (Cj,1 × . . .× Cj,kj) ∈ P (<,S) iff

• ∀i, j : Cj,i ∈ S,

• ∀j : (¬∃C : C <∗ Cj,1) ∧ (¬∃C : Cj,kj <∗ C), and

• ∀i < kj, j : Cj,i <∗ Cj,i+1 ∧ (¬∃C : Cj,i <∗ C <∗ Cj,i+1).

Intuitively speaking, given a partial order preference relation represented by
its Hasse-diagram [121, Chapter 5.4.2], for each possible path from an element
with no incoming edges to an element with no outgoing edges, an Ordered Dis-
junct (C1 × . . .×Ck) is created where C1 is a node with no incoming edge, Ck is
a node with no outgoing edge, and there is an edge between any pair Ci, Ci+1.

Example 3.13.

Given the preference relation < over the set of literals
S = {A,B,C,D,E} as depicted in the Hasse diagram
on the right hand side, the transformation P (<,S) yields
the following Ordered Disjunctive Term:

(A×B × C × E) ∨ (A×D × E).

A

C

D
B

E �

This transformation provides the means for modelling partial order preferences
in DLPODs: now every partial order preference expressed for literals can be
formulated as the head of a rule in a DLPOD.

60

3.2 Partial Order Preferences for Rule-Based Policies

3.2.3 Implementation

This section provides a theoretical basis for computing optimal answer sets of
DLPODs. Based on these elaborations, a prototype has been implemented4 de-
livering preferred answer sets provided a DLPOD. The principle behind the im-
plementation is to construct a set of Disjunctive Logic Programs out of a given
DLPOD in a way that both, the set of DLPs and the DLPOD have same seman-
tics. The presented implementation adopts the work from Brewka et al. on the
implementation of LPOD [43]; this extension is, however, not entirely straight-
forward. More precisely, in [43] the LPOD semantics is implemented on top of
a standard solver for non-disjunctive Logic Programs based on the observation
that each split program corresponds to guessing exactly one degree for each rule
with an ordered disjunction. In contrast, in the present work, a vector of degrees
needs to be guessed which results in a Disjunctive Logic Program.

As far as similarities are concerned, the two approaches DLPOD and [43]
basically share the following procedure to compute a preferred answer set given
a program P :

1. Guess a satisfaction degree vector for each rule (i.e., guessing a split) and
compute the answer sets for this guess. This is encoded in a program called
generator G(P).

2. For each answer set S, check whether there is no split program which yields
a better answer set than S. This is encoded in a program T (P, S) called
tester, which is called in an interleaved fashion for each answer set generated
by G(P). Whenever the tester does not find a better answer set than S,
then S is a preferred answer set.

Regarding these two points, the implementation of DLPOD and LPOD follow
the same principles. However, three major differences have to be pointed out.
First, in order to generate all possible splits, the DLPOD approach needs to
guess a satisfaction degree vector per rule (instead of a single degree value).
Second, for DLPODs the answer sets for each split needs to be generated, and a
split program is—as opposed to LPODs—a Disjunctive Logic Program. Third,
the tester program which establishes whether a better answer set can be found
needs to be modified.

Before adapting the formal definitions of Brewka et al.’s generator and tester,
two lemmata are provided. The first lemma states that one can replace a head
symbol h in a disjunctive rule of a program P with a new symbol h′ by adding
some extra rules without changing the semantics of P :

4see http://www.L3S.de/~kaerger/DLPOD/

61

http://www.L3S.de/~kaerger/DLPOD/

3. PREFERENCE-ENABLED POLICIES

Lemma 3.1 (Ground head atom replacement). Let P be a a Disjunctive Logic
Program and r = h1∨. . .∨hi∨. . .∨hn ← Bodyr. a rule in P such that hi is ground.
Let further P ′ = P \ r ∪ {h1 ∨ . . . ∨ h′i ∨ . . . ∨ hn ← Body. h′i ← hi. hi ← h′i.}
such that h′i does not occur in P . Then S is an answer set of the Disjunctive
Logic Program P iff S ′ = S ∪ {h′i | hi ∈ S} is an answer set of P ′.

Similarly, it is true that a part of the body of r can essentially be “outsourced”
to an external rule, as stated in the following lemma:

Lemma 3.2 (Body replacement). Let r = Head← Body1, Body2. be a rule in a
Disjunctive Logic Program P , and let further

P ′ = P \ r ∪ {Head← b′, Body2.b
′ ← Body1.}

such that b′ does not occur in P . Then S is an answer set of P if and only if
S ′ = S ∪ {b′ | Body1 true in S} is an answer set of P ′.

The generator program is now defined using these lemmata. The following
definition makes use of the cardinality constraint notation L{l1, . . . ln}U (see Sec-
tion 2.2.3) .

Definition 3.17 (Generator Program, adapts [43, Def. 10]). Let r be
the rule of a DLPOD of the form

H1,1 × . . .×H1,m1∨
...
Hi,1 × . . .×Hi,mi∨
...
Hn,1 × . . .×Hn,mn

← Bodyr.

Then the transformation G(r) is defined as the following set of rules:

(a) { 1{cr,i(1), . . . , cr,i(mi)}1← Bodyr. | 1 ≤ i ≤ n}
(b) ∪ { hr,1 ∨ . . . ∨ hr,n ← br,1, . . . , br,n, Bodyr.}
(c) ∪ { hr,i ← Hi,j , cr,i(j). Hi,j ← hr,i, cr,i(j). | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}
(d) ∪ { br,i ← cr,i(j), not Hi,1, . . . , not Hi,j−1. | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}
(e) ∪ { ← not H1,1, . . . , not H1,m1 , . . . ,

not Hi−1,1, . . . , not Hi−1,mi−1 ,
not Hi,1, . . . , not Hi,j−1,
Hi,j , not cr,i(j),
not Hi+1,1, . . . , not Hi+1,mi+1 , . . .
not Hn,1, . . . , not Hn,mn , Bodyr. | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

62

3.2 Partial Order Preferences for Rule-Based Policies

Finally, the transformation G(P) of a complete DLPOD is the union of all its
transformed rules:

G(P) =
⋃
{G(r)|r ∈ P}.

Here, the auxiliary predicates cr,i, hr,i, br,i (1 ≤ i ≤ n) stand for “choice”,
“head”, and “body” auxiliary symbols. Whereas cr,i plays the role of modeling
the choice of an actual degree vector, the hr,i and br,i predicates are auxiliary
symbols used according to Lemmas 3.1 and 3.2 for a particular choice. The
Rules (a) are guessing a particular choice option forming a split. Using this
choice, the Rules (b)–(e) represent the actual rules in the split program for the
particular choice, by using Lemma 3.1 in Rules (c) and Lemma 3.2 in Rules (d).
Finally, the Rules (e) ensure that—in case all other ordered disjuncts k 6= i are
false—Hi,j has to be added if no better literal Hi,l in disjunct i with l < j is
already in the model.5

Example 3.14. Considering the following rule r = (A × B) ∨ (C × D) ← Body.
the transformation G(r) looks as follows:

(a) 1{cr,1(1), cr,1(2)}1← Body.
1{cr,2(1), cr,2(2)}1← Body.

(b) hr,1 ∨ hr,2 ←br,1, br,2, Body.
(c) hr,1 ← A, cr,1(1). A← hr,1, cr,1(1).

hr,1 ← B, cr,1(2). B ← hr,1, cr,1(2).
hr,2 ← C, cr,2(1). C ← hr,2, cr,2(1).
hr,2 ← D, cr,2(2). D ← hr,2, cr,2(2).

(d) br,1 ← cr,1(1).
br,1 ← cr,1(2), not A.
br,2 ← cr,2(1).
br,2 ← cr,2(2), not C.

(e) ←A,not cr,1(1), not B, not C, not D,Body.
←not A,B, not cr,1(2), not C, not D,Body.
←not A, not B,C, not cr,2(1), not D,Body.
←not A, not B, not C,D, not cr,2(2), Body.

�

Proposition 3.2. Let P be a DLPOD. Then

(i) G(P) is polynomial in the size of P and

(ii) S is an answer set of G(P) if and only if S ∩ Lit(P) is a potential answer
set of P.

5For the interested reader, Rules (a) roughly correspond to the rule in Equation (8) in [43],
Rules (b)–(d) to Rule (4) in [43], and finally Rules (e) correspond to Rule (5) in [43].

63

3. PREFERENCE-ENABLED POLICIES

Proof 3.1. Proposition (i) is obvious: in the generator’s Rules (a)–(e), for each
rule r in the original program only a constant number of rules are generated.

The proof for (ii) is similar to the analogous Proposition 2 in [43] with an
additional application of Lemma 3.1 and 3.2. Intuitively, each guess of the cr,i(j)
in the Rules (a) yields a split program in the sense that each rule not belonging
to that particular guess is projected away by putting cr,i(j) in the bodies of the
Rules (c) and (d). By the Lemmas 3.1 and 3.2 now, Rule (b) exactly corresponds
to the guess rule in the split program corresponding to the guess modeled in
Rule (a). �

Each answer set S of G(P) is subsequently tested by a tester program T (P, S)
for whether it is a preferred answer set. The tester program is generated for each
potential answer set S and only if the tester has no answer set, S can be considered
optimal since no better, i.e., no more preferred answer set can be constructed.

Definition 3.18 (Tester Program). Let P be a DLPOD and S be a set of
literals. The tester program checking whether there is a better answer set than S
is defined as follows:

T (P, S) = G(P)
∪ {Oi,j . | ci,j ∈ S} ∪ {rule(r). | r ∈ P}
∪ {better(r)← rule(r), Oi,j , ci,k. | j > k, r ∈ P, 1 ≤ i ≤ n, 1 ≤ k, j ≤ mi}
∪ {worse(r)← rule(r), Oi,j , ci,k. | j < k, r ∈ P, 1 ≤ i ≤ n, 1 ≤ j, k ≤ mi}
∪ {betterRule(R)← better(R), not worse(R).

worseRule(R)← worse(R), not better(R).
worseSet← worseRule(R).
betterSet← betterRule(R), not worseSet.
← not betterSet.

Intuitively, the predicate better(r) fires if there is a dimension i in r’s satisfac-
tion degree vector according to S such that T (P, S) found an answer set S ′ with
a satisfaction degree vector that is better in position i. Conversely, worse(r) fires
if a dimension i can be found where S ′ is worse. It is worth noting that it is not
required to encode ε in the tester, since the rules defining better(r) and worse(r),
respectively, are only constructed for comparable and unequal options (here, pairs
of literals are compared occurring in the same disjunct of the same rule but at
difference positions). Next, S ′ �r S (expressed by betterRule(r)) holds if there
is a dimension where S ′ is equal or better and there is no dimension where S ′

is worse. Analogously, worseRule(r) determines rules r such that S �r S ′ (cf.
Definition 3.13). The two remaining rules and the final constraint ensure that
the answer set S ′ only “survives” if it is better in some rule and not worse in
any other rule. Thus, only those answer sets S ′ � S pass (cf. Definition 3.14).
Finally, if no such answer set S ′ is returned by the tester, S is optimal. From
those observations, the following proposition can be stated.

64

3.2 Partial Order Preferences for Rule-Based Policies

Proposition 3.3. Let S be an answer set of G(P). If T (P, S) does not have any
consistent answer sets, then S is an optimal answer set of P .

It is further noted that LPODs are just a special case of DLPODs:

Proposition 3.4. LPODs are a special case of DLPODs and the preferred answer
set of an LPOD computed by G(P) and T (P, S) correspond 1-to-1 to the preferred
answer sets computed by the generator and tester presented in [43].

Proof 3.2. This is easy to see by the correspondence of G(P) and T (P, S) 3.2,
i.e., the answer sets of the generator and tester programs outlined in [43] only
differ by the auxiliary symbols hr,i and br,i which are introduced according to
both lemmata. �

Based on this result, DLPODs can easily be implemented using a standard
solver for Disjunctive Logic Programming. A prototype DLPOD solver has been
implemented in the course of this thesis; it is based on DLV [94], a Disjunctive
Logic Programming system implementing the stable model semantics. The DL-
POD implementation is available for download at
http://www.L3S.de/~kaerger/DLPOD/.

3.2.4 Complexity Results for DLPODs

In the following, some complexity results for DLPODs are given which partly
derive from lifting respective results from normal LPODs to the disjunctive case
of DLPODs.

Considering the complexity of finding an optimal answer set for DLPODs
one can observe the following. First, it is easy to see that determining whether
an optimal answer set exists is not more difficult than determining whether any
answer set exists because if there is an answer set, there is also at least one
optimal one. Thus Theorem 1 from [43] can be straightforwardly lifted by the
Σp

2-completeness of disjunctive Logic Programs [64].

Theorem 3.1. Deciding whether a DLPOD P has an optimal answer set is Σp
2-

complete.

Secondly, the same lifting to the second level of the polynomial hierarchy also
works for checking whether S is optimal.

Theorem 3.2. Deciding whether an answer set S of a DLPOD is optimal is
Πp

2-complete.

65

http://www.L3S.de/~kaerger/DLPOD/

3. PREFERENCE-ENABLED POLICIES

Proof 3.3. This proof is analog to the membership proof of Theorem 2 in [43].
Πp

2-hardness follows because (in variation of the proof for co-NP-hardness for
the non-disjunctive LPOD case, see [43, Proof of Theorem 2]) it is possible to use,
instead of a reduction of SAT, a variation of the standard disjunctive encoding
of QSAT with two quantifier alternations into ASP, see e.g. [65]. �

Theorem 3.3. Given a DLPOD P and a literal l ∈ Lit(P), deciding whether
there exists an optimal answer set S such that l ∈ S is in Σp

3.

Proof 3.4. First, note that the algorithm from [43] can, with slight modifications,
be used to solve exactly this decision problem. Namely, one needs to simply add
to the outer G(P) computation the constraint “← not l.” thus invalidating answer
sets that do not contain l in the initial guess to G(P). Obviously, this modification

yields an algorithm which is in the complexity class Σp
2

Σp2 . This indeed boils down

to Σp
3 = NPΣp2 because instead of Σp

2
Σp2 = (NPNP)Σp2 one can simply use the outer

Σp
2 oracle also to compute the inner NP oracle calls. �

It is important to note that head-cycle free DLPODs preserve better computa-
tional properties than general DLPODs. Actually, all example rules and policies
in this thesis are head-cycle free and thus fall in this class of programs. For this
reason it is worth to explicitly state the following theorem.

Theorem 3.4. Given a head-cycle free DLPOD P and a literal l ∈ Lit(P),
deciding whether there exists an optimal answer set S such that l ∈ S is Σp

2-
complete.

Proof 3.5. Hardness follows immediately from hardness of this problem for non-
disjunctive LPODs because any head-cycle free DLPOD can be transformed into
an LPOD with the same answer sets (cf. [19, 63]). As for membership, it has
been stated already in Proposition 3.1 that each split program of a head-cycle
free program is again head-cycle free. Thus, one can observe that guessing a
split and checking whether an answer set S exists such that l ∈ S is in NP and,
likewise, checking non-existence of a better answer set is in co-NP. Consequently,
since a co-NP and an NP problem are combined in an interleaved fashion, the
overall problem is in Σp

2. �

3.2.5 Partial Order Preferences under the Stable Model
Semantics

To the best of the author’s knowledge, none of the existing approaches to pref-
erence handling in Logic Programs allows for general partial order preference

66

3.2 Partial Order Preferences for Rule-Based Policies

expressions on attribute level.6 This section describes related work and potential
other ways to encode partial orders in Answer Set Programming. More detailed
elaborations on general approaches for preference expressions in policy handling
will be given later in Section 5.1.

When discussing partial order encoding of preferences under the answer set
semantics, it is worth referring to the work presented in [25] and [103]. There,
LPODs are used as a basis for the policy language PPDL (Preference Policy
Definition Language) which is describing the behaviour of a network node and
therefore allowing for preference definitions between possible actions a node can
perform. This approach allows to model only a subset of partial order preferences
by ordered disjunctions of disjunctions. This way, levels are assigned to elements
of distinct branches of the partial order (see [25, Section 4.4]) and hence not all
partial order preferences are covered. For instance, the one described in Exam-
ple 3.13: there is no unique level assignment that keeps B and D as well as C and
D incomparable. However, the semantics of partial orders requires both pairs to
be incomparable.

In the following, further discussions on potential ways to encode subsets of
partial order preferences will be given in the form of counterexample for some
naive encodings.

First, one conceivable approach would be to introduce auxiliary predicates
for any set of literals one is indifferent about. That way, the example cname ×
(ctelephone ∨ cpcode). would be encoded by two rules:

cname × aux.
1{ctelephone, cpcode}1← aux.

However, by this modeling one cannot capture partial orders similar to Exam-
ple 3.13: would aux model the choice between B and D or between C and D?
In both cases the modelling is incorrect since either D dominates C or B domi-
nates D.

Second, modeling the paths of the partial order from Example 3.13 could be
realized by several unconnected ordered disjunctions, e.g.,

A×B × C × E.
A×D × E.

However, this does not lead to the expected behaviour either: assuming one would
add a constraint “← A.” to the program, this encoding would produce a single

6Of course, object level preferences (in contrast to attribute level preferences), such as the
relation � from Definition 3.14, can perfectly form a partial order preference with existing
approaches such as LPOD.

67

3. PREFERENCE-ENABLED POLICIES

optimal answer set {B,D}, instead of the two expected optimal answer sets {B}
and {D}.

One might now try to exclude the literals from the respective other paths by
adding the literals with a default negation to the bodies, e.g.,

← A.

A×B × C × E ← not D.

A×D × E ← not B, not C.

This encoding though may cause the exclusion of valid paths. For example, adding
the fact “C.” prevents the second path rule from being satisfied and returns
{C,B} as the only optimal answer set, although one would also expect {C,D}
as answer set.

Finally, encoding all the paths of a partial order into a cardinality constraint of
an LPOD delivers the same candidate answer sets as a DLPOD encoding but fails
to correctly compare those answer sets. For example, the partial order preference
defined by the DLPOD “(A×B)∨ (C×D).” could be simulated by the following
LPOD with cardinality constraints:

1{aux1, aux2}1.
A×B ← aux1.

C ×D ← aux2.

However, if the constraint “← A.” was added to the program, according to the
LPOD semantics the answer set {B, aux1} are dominated by {C, aux2} although
B and C would be incomparable in the presented partial order. Hence, this LPOD
would return {C, aux2} as the single optimal answer set excluding {B, aux1}
which is expected to be optimal as well.

It is further important to note that this work focuses on a Pareto semantic-
based preference notion. In [44] two other preference notions are introduced,
namely cardinality-preferred and inclusion-preferred. However, in [44] both pref-
erence notions are proven to be not general enough (see the motivation for Def-
inition 10 and 11 in [44]). Moreover, these two preference definitions are based
on counting and hence do not reflect the qualitative nature of partial order pref-
erences.

68

Chapter 4

Reactive Policies

Semantic Policies are declarative behaviour descriptions for automated systems.
In the past, different policy languages have been described as a powerful means
to express a system’s behaviour by defining statements about how the system
must behave given different conditions and situations. Existing policy frameworks
allow for the evaluation of complex conditions including external dependencies
such as location of the requester, the time of the request, ontological definitions
of concepts, etc. Typically, a request or requester has to fulfill these conditions
in order to let the request being executed (e.g., access is granted). With the
growing dynamics of the Web the need for a reactive control based on changing
and evolving situations arises. Thus, as it will become clear later in this chapter,
an advanced policy language shall support reactivity. Roughly speaking, it is
important to not only define the condition of whether something is true, but
to include the event that triggers the evaluation of this condition as well as
its reaction in the definition of the policy. This specification of policies is a
shift from classical, purely binary grant-or-deny semantics to a more detect-and-
react manner of policy-based behaviour control. Among the existing powerful
semantic policy languages, none includes semantics for reactivity (see Section 5.2
for detailed elaborations on this particular statement). This chapter explains how
the traditional policy model has to be extended to so-called reactive policies.

Reactive policies—in contrast to the standard policies—allow to

1. define events triggering the evaluation of conditions and

2. actions that are taken as reactions for such an evaluation.

Reactive policies make it possible to declaratively define the reactions to a specific
situation or event within one single language while at the same time relying on
well-established security and trust mechanisms. This way, reactive policies reflect
the dynamics of the Web: updates in the knowledge stored on some peer are
turned into reactions in the real world, thus closing the gap between semantic

69

4. REACTIVE POLICIES

knowledge and behaviour on the Web as well as ensuring trusted and policy-
compliant communication. The requirement for reactive semantic policies, based
on reactive rules, has been formulated already in several publications [35, 34, 6,
81], however, a unified policy language that combines reactive behaviour control
with advanced trust establishing techniques was not developed up to now.

To this end, in the following section, a policy language is presented for defin-
ing declarative, exact, and detailed behaviour descriptions by means of Event-
Condition-Action rules (ECA rules [136]). The presented language combines ideas
from reactive languages on the Web [7] or on database systems [136] with ad-
vanced policy reasoning and Trust Negotiations in a way that reactivity is based
on secure evidences. To achieve this, a policy language is formally defined that
features an extension to the formal Trust Negotiation process [51, 35] and is based
on an interplay between negotiations and reactive rule evaluation. As negotia-
tion model, a standard message exchange framework will be adopted which was
presented in [51, 35].

After this language is introduced, Section 4.2 will further illustrate how the
presented language can be used in a Social Web scenario. This scenario will show
nicely how the language’s reactivity features can be exploited in combination with
the management of distributed systems, such as automated peer interaction and
gathering of distributed information from the Web. Subsequently, the language’s
implementation is described and its use in the application SPoX [82]. In SPoX,
reactive policies are enforced for the Social Network and communication tool
Skype.

The following contributions will be presented in this chapter:

• a formal framework for expressing and enforcing reactive policies with sup-
port for Trust Negotiation (partially published in [30, 6, 81, 5]);

• an approach for privacy protection on the Social Web exploiting reactivity
and social data (first presented in [83, 87]);

• SPoX (Skype Policy Extension), an implementation of the formal frame-
work and its application to Skype (presented in [82]).

4.1 A Framework for Reactive Policies

In this section, a policy framework will be defined which combines reactive be-
haviour control with policy evaluation and policy-based Trust Negotiation. The
framework consists of a policy language and a protocol for exchanging Trust Ne-
gotiation messages based on policy evaluations. Before the framework is formally
defined, an informal description of the policy language’s syntax and the evalu-
ation procedure is presented followed by a motivating example illustrating the
basic principles of the approach.

70

4.1 A Framework for Reactive Policies

At a glance, in the presented policy language, policies have the form

ON Event IF Condition DO Action

and are interpreted according to the standard Event-Condition-Action rule se-
mantics [136]: in case Event occurs and, at the same time, Condition is evaluated
to true, the action Action is performed.

Events are any kind of change in the environment that is propagated by exploit-
ing the infrastructure of the Internet such as “a flight is rescheduled”, “an
auction will end in 10 minutes”, or “a money transaction is completed”.

Conditions on the one hand, make use of information exposed on the Web
such as “is the requester listed in my FOAF profile?” or “is there an
alternative flight connection available?” and, on the other hand, they will
allow for security checks that may, for example, only be carried out by a
Trust Negotiation, such as “is the flight change notification coming from
an authorized peer belonging to the airline?” or “is the requester a citizen
of the city Hannover?”. To prove such properties, typically the exchange
of signed credentials is required which may only be carried out given an
appropriate level of trust. Finally, the

Actions will turn the knowledge into real world changes such as “rebook the
flight according to my preferences”, “redirect the call to my mobile phone”,
or “dispatch the goods”.1

An example policy expressed in the presented language is given in Figure 4.1.
There, it is stated in a reactive rule that phone calls from students are auto-
matically accepted on Wednesday morning. If a call comes in, in order to let
the ECA Rule (4.1) apply, the predicate isStudent() has to be proven which
requires the predicate credential(,) to be true. The intuition behind this predi-
cate is, that it is true if the peer given in the first argument provided a credential
(which in turn will be bound to the second argument). In such a case, the fact
credential(peer, cred) would be added to the state or knowledge of the system.
Typically, in an initial state, when a call comes in, credential(,) is not true.
Thus, the policy owner’s agent will initiate a counter-request asking for a creden-
tial. The goal of the procedure is to make credential(,) true, i.e., adding it as
a fact to the system’s state. Then, the reply to the initiator (i.e., the counter-
request) of the call comprises two parts: the request for proving isStudent() and
the policy itself that tells the other peer how to prove isStudent(). The idea
behind this reply is that the policy owner asks the caller about evidences help-
ing to prove isStudent(). From the policy that is sent along with the response,

1The reader is referred to [5] where more examples are given for the use of reactive policies.

71

4. REACTIVE POLICIES

ON callArrives(Time, Call, Caller)

IF isStudent(Caller), (4.1)

isWednesdayMorning(Time)

DO letThrough(Call).

isStudent(Person)← credential(Person, Credential),

Credential.issuer =′ uni− hannover′, (4.2)

Credential.type =′ studentid′.

knowsPassword(Person)← declaration(Person, Password), (4.3)

(Password =′ let me in′).

allow(letThrough(Call)). (4.4)

callArrives(X, Y, Z)⇐ callArrivesOnSkype(X, Y, Z). (4.5)

letThrough(Call)→ showNotification(Call),

activateHeadSet(), (4.6)

passToSkype(Call).

Figure 4.1: An example policy with a reactive policy rule that automatically
accepts student’s calls on Wednesday morning.

the caller learns that a student credential is required. If available, the caller’s
agent sends back the credential and the negotiation is successful. Of course, the
credential itself can again be protected by another policy (e.g., the calling peer
may disclose a student credential only to university employees) which would lead
to a request back forming a multi-step negotiation. Finally, if the negotiation is
successful and it is Wednesday morning, the action part of Rule (4.1) is executed.
The execution of actions needs to undergo a policy check again since automated
re-actions have to be checked to ensure execution safety (as it will be discussed
later in this section). Hence, for each action a that is going to be executed, the
predicate allow(a) has to be proven. In this example, accepting the call is always
allowed (see the empty body in Rule (4.4)).

The language will now be defined in detail, first starting with its syntax and
subsequently providing its semantics.

4.1.1 Syntax

In the following, the syntax of the reactive policy language is defined. For the
sake of completeness, the EBNF2 of the language definition is given in Figure 4.2.

2extended Backus Naur Form, see [76]

72

4.1 A Framework for Reactive Policies

The language is composed of three different types of rules:

• reactive rules in ECA form (e.g., Rule (4.1) in Figure 4.1),

• definition rules to define complex events (Rule (4.5)) and complex actions
(Rule (4.6)),

• implication rules (Rules (4.2–4.4)) which form the declarative part of the
policy and are processed like standard Logic Programming rules.

The detailed syntax is defined as follows.

Definition 4.1 (Syntax). A policy P is a set of definition rules, reactive rules
and inference rules. A definition rule is either an event definition or an action
definition. Let Ea, Ec (atomic and complex events, respectively), Aa, Ac (atomic
and complex actions, respectively) be sets of atoms and let ea,ec,aa,ac be respective
elements of those sets.

The set of events E over Ea and Ec is the set of atoms e of the form
e ::= ea | e1 5 e2 | ec where e1, e2 are arbitrary elements of E. Given e ∈ E, an
event definition is any expression of the form “ec ⇐ e.”.

A set of actions A over Aa and Ac is the set of atoms of the form
a ::= aa | a1, a2 | ac where a1, a2 are arbitrary elements of A. Given a ∈ A, an
action definition is any expression of the form “ac → a.”.

Let Cond be a set of atoms. A reactive rule r is any rule of the form
“ON e IF c1, . . . , cm, not cm+1, . . . , not cn DO a.” with c1, . . . , cn ∈ Cond.

An implication rule is of the form “head← c1, . . . , cm, not cm+1, . . . , not cn.”
with head ::= c0 | allow(a) and ci (0 ≤ i ≤ n) ∈ Cond, a ∈ Aa ∪ Ac.

4.1.2 Semantics

In this section, first, a procedural description of the policy evaluation process is
given. Subsequently, this description will be detailed by a formal definition of the
semantics.

Procedurally, the evaluation of a reactive policy happens as follows:

1. If an event occurs, the event expressions of all reactive rules are evaluated to
determine if the event expression matches the event happened. All reactive
rules whose event part applies are called pending.

2. For all pending reactive rules r all the evidences from the condition part
are collected which are not known from the current state but can be proven
by other peers (for example, the evidence stating that the origin of a signal
is a student and thus can provide a student ID credential).

73

4. REACTIVE POLICIES

Policy ::= Rule | Rule Policy

Rule ::= ECARule

| EventDefinition

| ActionDefinition

| ImplicationRule

ECARule ::= ’ON’ EventExpression

’IF’ ConditionExpression

’DO’ ActionExpression ’.’

EventDefinition ::= EventAtom ’⇐’ EventExpression ’.’

EventExpression ::= EventAtom

| EventExpression ’5’ EventExpression

EventAtom ::= EventName {’(’ ArgumentList? ’)’}?

ActionDefinition ::= ActionAtom ’→’ ActionExpression ’.’

ActionExpression ::= ActionAtom

| ActionExpression ’,’ ActionExpression

ActionAtom ::= ActionName {’(’ ArgumentList? ’)’}?

ConditionExpression ::= BodyLiteral | BodyLiteral ’,’ ConditionExpression

BodyLiteral ::= ’not’? Literal

Literal ::= PredicateName {’(’ ArgumentList ’)’}?

ImplicationRule ::= Head ’.’ | Head ’←’ ConditionExpression ’.’

Head ::= Literal | ’allow(’ Literal ’)’

ArgumentList ::= Term | Term ’,’ ArgumentList

Term ::= Constant | Variable

Figure 4.2: Syntax of the reactive policy language in EBNF.

3. Those requests together with the corresponding policy are sent to the parties
defined in the evidence’s peer variable and thus initiate a negotiation.

4. If the condition of r is not true but there are remaining evidences that can
be proven by other peers, the negotiation goes on.

5. If the condition of r evaluates to true, its variable results are bound to
the action part, it is checked if the action execution is authorized (i.e.,
allow(action) is true) and the actions in question are executed.

As stated above, the presented approach relies on the negotiation model pre-
sented in [51, 35]. For the sake of completeness, two fundamental principles of
this model, namely state predicates and policy filtering are detailed and recalled
in the following.

State predicates

A distinguished subset of predicates, called state predicates, may change their
extension dynamically (as a consequence of message exchanges, updates, etc.).
State predicates comprise credential, declaration, the in predicate, as well

74

4.1 A Framework for Reactive Policies

as predicates that define the attributes of compound objects like credentials and
declarations (like the attribute issuer of a credential in Rule (4.2)) .

Policies can be based on a variety of properties provided by other peers. Some
of them can be encoded in digital credentials; called strong evidence as its va-
lidity and authenticity can be certified by means of cryptographic techniques.
On the opposite side of the spectrum (weak evidence) unsigned declarations are
found such as those commonly issued in copyright agreements just by clicking a
button in a pop-up window [32]. The state predicates supported in the presented
framework are adopted from [35] and their descriptions are provided as follows.

credential: The state predicate credential appearing in an atom part of a
condition represents that some peer needs to provide a credential in order
to make this atom true.

declaration: The predicate declaration is analogous but it does not require a
signed certificate rather than a semi-structured object to be sent by another
peer. Such objects can be strings when, for example, a password is required
by another peer as for the predicate knowsPassword() in Rule (4.3). Here,
the other peer is requested to send a string which will be compared to
the correct password. Other examples are retrieving a peer’s address or
company. However, a declaration—as opposed to a credential—does not
provide means to prove that a given object is certified, e.g., it does not
include evidences about the correctness of the given address.

in: The in-predicate allows to consider external data sources as given facts in
the state of the knowledge base. With this predicate, ground facts do
not have to be present explicitly but can be retrieved on demand from
external sources during the reasoning process. Later, in Section 4.2 this
predicate is used to incorporate social data from the Web into the reasoning
process. However, it can also be used to interact with arbitrary systems if,
for example, the policy framework requires to reason on legacy data. For
the in-predicate the syntax introduced in [129] is adopted (cf. Rule (4.9)
on page 88 later in this thesis).

Compound objects: For accessing attributes of compound objects (for exam-
ple the student ID credential in Figure 4.1), a FLORA-like syntax is sup-
ported as in [32], as follows. One can express by X.attr : v the fact that X
has an attribute attr with value v (which is handled internally as syntactic
sugar for attr(X, v)).

Conceptually, in the logical model, state predicates are defined by sets of
ground facts, while their actual implementation may be ad hoc or cast into the
system on evaluation time. For simplicity, it is assumed that policy rules do

75

4. REACTIVE POLICIES

not change during negotiations. On the contrary, the dynamics of the system is
reflected in the state predicates whose validity may change.

In contrast to traditional non-reactive Trust Negotiation approaches, in the
reactive case, peer interactions are triggered by a variety of events instead of re-
quests only (cf. Section 2.1.3). For example, in the standard negotiation model
described in [35, 51], the other peer (there expressed by the meta-term peer) is
in general clearly identified by the requester in the negotiation’s context. Con-
versely, in the reactive approach, sources for policy evaluations may not only
be requests with a single requester peer. Therefore, binary state predicates are
used for representing credentials and declarations, where the first argument ex-
plicitly mentions the peer in charge of providing missing evidence and the second
argument denotes the evidence itself. For example, a peer may try to make a
condition credential(p, c) true by asking peer p for the credential c. Accordingly,
any variable occurring as the first argument of credential or declaration in a
rule r’s body will be called peer variable of r.

Provisional predicates are state predicates that are proven by another peer—
typically declarations or credentials. Although the presented policy language
implements negation as failure in general, negation of provisional predicates is
prohibited. As it has been stated in [35], this restriction ensures that policies
are monotonic, that is, as more credentials are released the set of permissions
does not decrease. Moreover, the restriction on negations makes the implication
rules build a stratified program; therefore negation as failure has a clear, PTIME
computable semantics that can be equivalently formulated as the least model
semantics, the well-founded semantics or the stable model semantics [15].

Sending and filtering policies

As described in the example above, the negotiation principle implies that a request
for evidences from another peer comprises the policies whose evaluation requires
those evidences. This is needed in order to provide the peer receiving the request
with reasons why the request is sent (otherwise, in Figure 4.1, a calling student
would not be able to understand the benefit of providing her student credential).
Another reason is that the policy rules implicitly contain all possible options (e.g.,
sets of credentials or declarations to disclose) to fulfill them. Thus, the policy
itself is a far more compact representation of the options making a negotiation
succeed. In summary, sending the policy along with the negotiation messages has
the advantages that [32]:

• user agents can see at once multiple alternative ways of fulfilling a policy and
select those that more closely match the user’s preferences (cf. Chapter 3);

76

4.1 A Framework for Reactive Policies

• this can be done without paying the price of combinatorial explosions of

compound requests, which may decrease performance because of an in-

creasing number of messages and/or size of messages

However, policies are sensitive resources and it may be necessary to hide

parts of them [35]. That policies are sensitive becomes obvious in example Policy

Rule (4.3): since the password itself is part of the policy, sending a non-filtered

policy would unintentionally disclose the password. Moreover, not all parts of the

policies are important for the receiver of a request which is another motivation for

filtering. The standard strategy here is to disclose only those parts of the policy

which are necessary for the current negotiation state. In the following, a policy

which is sent along with a negotiation message will be called filtered policy and

will be referred to as a function FilteredPol turning a peer’s policy into a filtered

policy suited for the particular negotiation step. The mechanism how to specify

and decide if a policy rule needs to be filtered is described in detail in [35] and

is adopted for the presented approach. In the following, this work will focus on

the interplay between negotiation message exchange and reactivity rather than

on the creation of the message’s content. The mechanisms how a filtered policy

is used to select a “promising” set of credentials from a portfolio are discussed in

detail in Chapter 3.

In what follows, the semantics of the reactive policy language will be pre-

sented by starting with the event, condition, and action parts and subsequently

by defining the message exchange and event handling in a negotiation.

Events

An event triggers the evaluation of a rule if it matches the rule’s event part as

follows:

Definition 4.2 An event expression e is true for a given atomic event eA and a
reactive policy P , denoted e `P eA, if one of the following conditions is true

1. e is an atomic event and there is a substitution σ such that eσ = eA

2. e is an event expression of the form e1 5 e2 and there is a substitution σ
such that e1σ `P eA ∨ e2σ `P eA (disjunctive connection of events)

3. there is a substitution σ, an event definition ec ⇐ edef . ∈ P , and ecσ = e
as well as e `P edef holds.

77

4. REACTIVE POLICIES

Condition evaluation

In the following, it is defined what satisfies a condition part of a reactive rule and

what message exchanges and negotiations are triggered during the evaluation.3

Definition 4.3 (State atom, context, support). A state atom (respectively
state literal) is an atom (respectively literal) whose predicate is a state predicate.
A goal is a set of ground atoms and a context is a set of ground state atoms.4 A
support of a goal G from a set of implication rules P is a goal Gn containing state
literals only and occurring as the last step in a complete, finite SLD-derivation
G,G1, G2, . . . , Gn . With a slight abuse of notation, goals will be identified with
the set of literals constituting the goal (instead of a sequence of literals).

Contexts will be used to express the set of facts that are true for the current

state of the negotiation (sometimes also called negotiation state). Supports will

be used to denote the set of predicates that are collected from the policy and that

are not true (yet). Those predicates are candidates for requests to other peers

in order to collect evidences to prove the initial goal. For example, if a student

Alice calls the peer owning the policy in Figure 4.1 on a Wednesday 11AM, the

peer’s context contains the fact isWednesdayMorning(′11AM ′), the support for

the goal isStudent(alice) contains credential(alice, Credential) with Credential

being a variable and thus not instantiated. As soon as Alice provides a credential

c, the instantiated fact credential(alice, c) will be added to the policy owner’s

context.

In general, a support is not always a context because a support is not nec-

essarily ground but may still contain unbound variables. Roughly speaking, the

support of a goal is the set of literals that are to be verified in order to prove

the goal. A goal can only be verified, if the literals in its support hold in the

context. Hence, starting from the support of G, the problem of deriving G from

the context is reduced to pattern matching against the current context. This is

formalized by the following lemma describing the validity of a goal G given a

policy and a context.

Lemma 4.1. Let P be a set of implication rules of a policy and let C be a context.
Then P ∪ C |= G iff there exists a support S of G from P and a substitution σ
such that Sσ ⊆ C.

3In this section, the reader is assumed to be familiar with SLD-derivations and the most
general unifier (mgu) [15].

4Note that a context is a Herbrand model containing only state atoms.

78

4.1 A Framework for Reactive Policies

Resulting actions

Now, since it is stated clearly how an event part and a condition part of a reactive
rule is satisfied, the language’s semantics is defined by stating which actions are
executed and which messages are exchanged given

• a certain policy,

• a local negotiation state, and

• a history of events and exchanged messages.

The formal framework consists of the following components:

• a (global) history (of message/signal exchanges) H;

• a mapping Pol associating each peer p with its policy Pol(p);

• a mapping Ctx that for each peer p and time t returns a context Ctx (p, t)
(called the negotiation state);

• a multiset of pending rules Pending(p, t) for each peer p and time point t;

• a set of executed actions Exe(p, t) for each peer p and time point t.

The history H is a finite set of messages 〈p1, p2,M, t〉, where p1 is the sender,
p2 is the recipient, M is the message content, and t ∈ N represents a time point.

Beyond the agents potentially participating in negotiations, the set of peers
also comprises some special peers called environmental peers that represent the
system and the environment in which the system is situated. This contrasts with
traditional Trust Negotiation models where only peers involved in a negotiation
can trigger a negotiation. Here, the environmental peers act as transmitters
of events which account for specific events called signals : events that are not
requests or disclosures generated by an agent in the system. Examples for signals
are notifications about environmental changes, updates in a database, an arriving
call (as in Figure 4.1), or the change of the online status of a peer.

In summary, the set of possible messages comprises:

• signals where M is a ground event and p1 is an environmental peer;

• requests where M = 〈G,FilteredPol〉; intuitively, p1 asks p2 for evidence
that can help in proving G from the filtered policy FilteredPol ;

• disclosures where M is a context consisting of a logical description of a set
of credentials and declarations.

79

4. REACTIVE POLICIES

Message exchange

The system’s behaviour is further constrained due to the interplay of messages
and events as follows:

Pending and executing rules. At any time, a signal may activate a reactive
rule thus making the rule pending; i.e., its condition part needs to be evaluated
as a goal against the set of implication rules (see Lemma 4.1). This has several
effects, including the start of a negotiation. Formally, for all signals 〈p1, p2, e, t〉 ∈
H (where e is an event) and for all pending rules R = (ON e′ IF G DO a) in Pol(p2)
such that e `Pol(p2) eA and mgu(eA, e

′) = σ, if Gσ has at least one support from
Pol(p2) then it holds that:

• p2 has to request for evidences that are to be provided by other peers.
Or, more formally, there have to be requests for all peers p3 occurring in
some support of Gσ from Pol(p2). Further, H must contain a request
〈p2, p3,m, t

′〉, with t′ < t, m = 〈Gσ,FilteredPol〉, and FilteredPol is a
filtering of Pol(p2) satisfying the faithfulness condition below. To iden-
tify correctly the recipients p3, the first argument of all credential and
declaration atoms must be ground in all supports (guaranteed by the
call-safeness conditions discussed later in this section);

• the set of pending rules is cumulative, that is

Pending(p2, t) := Pending(p2, t− 1) ∪ {Rσ}

for all R that are pending at time t. It may be noted that in a real sys-
tem, pending rules may not always be simply accumulated: they may be
eliminated when the corresponding negotiations terminate or a timeout oc-
curs. However, this conceptual simplification is made here for the sake of
simplicity.

If Gσ does not have any support, that is, if the condition part of R is not fulfilled,
then the event e does not cause the execution of the pending rule R.

Faithfulness. Filtered policies always correctly approximate the real policy in
the following sense: for all requests 〈p1, p2, 〈G,FilteredPol〉, t〉 ∈ H, and for all
contexts C, it holds that

FilteredPol ∪ C |= G implies Pol(p1) ∪ C |= G .

Note that the converse is not required to hold: not all conclusions that are valid
in Pol(p1)∪C also hold in the filtered version FilteredPol ∪C. This is due to the
fact that policy filtering may remove relevant information from Pol(p1) during

80

4.1 A Framework for Reactive Policies

filtering either for confidentiality or efficiency (see page 76 in Section 4.1.2 for
details on policy filtering).

Disclosure safety. Each disclosure during a negotiation process must be autho-
rized by the local policy. Formally, for all 〈p1, p2, C, t〉 ∈ H (where C is a context),
and for all atoms P (p1, e) ∈ C where P ∈ {credential, declaration},

Pol(p1) ∪ Ctx (p1, t) |= allow(release(e)) .

Relevance. No evidence should be disclosed without need, that is, any disclosed
evidence should be relevant to some previous request. This notion of relevance is
justified by Lemma 4.1: since all the proofs of a goal G depend on some support,
all disclosed evidence are required to occur in some of those supports. Formally,
for all disclosures 〈p1, p2, C, t〉 ∈ H (where C is a context), and for all atoms
P (p1, e) ∈ C where P ∈ {credential, declaration}, there must exist a time
point t′ < t and a request 〈p2, p1, 〈G,FilteredPol〉, t′〉 ∈ H such that P (p1, e)
belongs to a support of G from FilteredPol .

Evidence acquisition. The context is cumulative as well, i.e., facts are never
removed from the context: Ctx (p, t) := Ctx (p, t − 1) ∪

⋃
{C | 〈p1, p, C, t〉 ∈ H}.

This is again a conceptual simplification: in real systems the elements of a con-
text are first cryptographically verified, and—as a consequence—some may be
discarded and thus removed from the set of facts in the context; moreover, con-
text elements may be eliminated when the corresponding credential expires. Con-
siderations in that direction have been presented for example in [93]. However,
such issues will be relevant for efficiency discussions and are out of the scope of
this work.

Execution safety. Exe(p, t) is the set of all actions that are executed as a
result of a pending rule’s successful evaluation. Formally, Exe(p, t) is the set
of all actions a such that for some reactive rules R = (ON e IF G DO a.) in
Pending(p, t), the following two conditions hold

1. Pol(p) ∪ Ctx (p, t) |= G

2. Pol(p) ∪ Ctx (p, t) |= allow(execute(a)).

All other reactive rules remain pending. Accordingly, Pending(p, t + 1) is the
multiset of all rules in Pending(p, t) whose condition is not true (yet), or formally,
all rules such that either G or allow(execute(a)) is not a logical consequence of
Pol(p) ∪ Ctx (p, t).

81

4. REACTIVE POLICIES

Call safeness. As it has been stated before, the peer responsible for providing
a state predicate has to be instantiated (grounded) in some argument of the atom.
For defining this formally, in the following, call safeness is introduced based on a
notion of call typing.

A call typing is a mapping τ : Pred → ℘(N) that associates each predicate
symbol p to a set of argument indexes. Intuitively, if τ(p) = {1, 3} then the first
and third argument of p needs to be ground in each call to p. As stated before,
the first argument of specific provisional predicates is required to be ground in
order to identify the party responsible for the provision; formally:

τ(credential) = τ(declaration) = {1} .

The operator τ is extended to atoms in the natural way: if τ(p) = {i1, . . . , ik}
then for all atoms A = p(t1, . . . , tn) let τ(A) = {ti1 , . . . , tik} .

An implication rule R with head A is call safe iff for all atoms B occurring
in the body of R and for all variables X occurring in B, X ∈ τ(B) implies
X ∈ τ(A) . Moreover, a goal G is call safe iff for all atoms A occurring in G,
τ(A) is ground.

Proposition 4.1. If a goal G is call safe, then all of its supports from a call safe
program are call safe, too. In particular, the first arguments of all credential
and declaration predicates in the support are ground.

A reactive rule ON e IF G DO a is call safe iff for all atoms B occurring in G
and for all variables X ∈ τ(B), X occurs in e.

This guarantees that the most general unifier of e and the occurred event
makes G call safe and, consequently, all credential and declaration predicates
in G are associated to specific peers. This condition ensures that at any stage
during a negotiation, the receivers of request messages are determined.

In summary, this formal framework models the message exchange needed for
Trust Negotiation and the flow of events and reactions in a single setting. In the
next section, it will be shown how this framework can be exploited to improve
behaviour control and privacy protection on the Social Semantic Web.

4.2 Reactive Policies on the Social Semantic Web

In the last years, the way people use the Web changed from pure consumption of
content to an active participation in the generation of content. With the advent
of Web 2.0 technology the Web became more and more a communication infras-
tructure rather than a collection of Web pages. Blogs, networking platforms, and
social software emerged and are currently one of the most frequently used ways
of communication. However, the well-established privacy preserving techniques

82

4.2 Reactive Policies on the Social Semantic Web

that were developed for the conservative way of communication cannot be di-
rectly applied to this new way of information exchange. For example, personal
data is ubiquitously disclosed in social platforms and it is difficult to control who
is going to access whose data. Resources, such as pictures or videos are pub-
lished and shared; but access to those resources needs to be restricted carefully.
Furthermore, the new opportunities of communications do not only raise issues
for privacy protection but also issues of protection from undesired messages and
filtering of communication flow. More precisely, following the ideas from [131],
the user’s attention itself is to be considered a particular resource that needs to
be protected against the overload of undesired messages [109].

The problem of access control or behaviour control is typically addressed
in Social Network applications by offering their users ways to express simple
preferences or policies about which notification they are interested in and which
user or message is allowed to approach them in certain ways and contexts. Such
privacy preferences are typically limited in several respects:

• First of all, the notion of events is not reflected in current privacy settings.
Although there are fine-grained options available for tuning who is allowed
to see the details of one’s user profile or to access files uploaded to a plat-
form, the fact that being approached by other people is a privacy issue is
not reflected.

• Second, Social Network applications suffer from a so-called walled garden:
information available in one social platform is not available in another.
Thus, privacy settings cannot refer to properties of users or objects stored in
a different platforms, hence, although it was stated that friends are allowed
to see the profile on one platform, a user who is a friend on a different
platform may not be allowed to see it only because she is not redundantly
defined to be a friend on both platforms.

• Third, the fact that users are registered at different platforms requires
means for platform independent authentication, e.g., by means of strong
evidences; otherwise, it is impossible to identify users across the borders of
social network applications.

This section describes the Social Web as a particular environment where reac-
tive policies can be put in place to improve the user experience in both, privacy
protection and system behaviour control. To this end, two aspects are considered:

1. how reactivity helps to guide the behaviour of Social Web applications to
provide a privacy-aware and trust-enabled communication and data protec-
tion;

83

4. REACTIVE POLICIES

2. how social data semantically exposed on the Web can serve as input to
policy evaluation processes thus improving privacy protection capabilities;

3. how Trust Negotiation can be exploited to establish authentication and
authorization crossing the borders of Social Web platforms.

In the following, first the problems and requirements will be outlined by the
hand of a set of example policies. Subsequently, it is detailed how the pre-
sented approach provides the intended features and finally, a prototype will be
described showing how Skype can be enhanced by fine-grained and security-driven
behaviour control. There, the policy framework presented in the previous section
is acting in order to enforce policies on Skype such as the one given in Figure 4.1:
calls, notifications, and chat messages are either accepted or initiated only if
certain conditions are fulfilled.

4.2.1 Problem Definition and Requirements

As sketched above, the limitations in the current privacy settings on the Social
Web are manifold [50]. To showcase how reactive policies are particularly helpful
to overcome these limitations, the following set of simple policies will be used
throughout this section. These policies are controlling the flow of messages and
the disclosure of information in the context of Social Network applications and
make obvious the scenario which will be addressed with the concept of reactive
policies.

(A) Do not accept Skype calls unless the caller is either in my Skype contact
list or listed as friend in one of my Social Network profiles. For all other
people calling me, deny the call and open a chat connection instead.

(B) Show notifications about emails arriving and contacts going online on Skype
only if the origin is either in my family group on Flickr or in my family
category on Skype. Never show such notifications if my computer is in
presentation mode.

(C) Do not allow wall posts on my Facebook profile that contain a word that is
listed in a specified collection of bad words.

(D) Automatically accept friend requests on any platform if I ever wrote a paper
with the requester or if the requester’s Web site is a blog I regularly comment
on.

(E) Only people who attended the International Semantic Web Conference are
allowed to comment on this blog and to see pictures tagged with ISWC.

84

4.2 Reactive Policies on the Social Semantic Web

(F) Forward tweets from Twitter to my mobile phone if I am offline and the
author of the tweet is listed in my FOAF profile.

(G) Do not accept calls by students unless they are calling during my consulta-
tion hours.

(H) Show this blog entry only to friends who are students at the University of
Hannover.

The Social Web as a walled garden

Stating for one Social Network application that only friends are allowed to per-
form a certain action in one’s profile does not cover people defined as friends
on another application. Skype, as used in example Policy (A), is only aware of
contacts explicitly listed in Skype. Consequently, it may happen that a call from
someone who is a friend on Facebook or listed in one’s FOAF profile is blocked.
This only happens because one did not explicitly (and redundantly) add the caller
as a Skype contact as well.

But when looking at the example policies, privacy preferences may perfectly
be based on data scattered over the Social Web. And, moreover, it becomes
obvious that not only data stored in the Social Networks is required for privacy
decisions. In Policy (D) data about publications and in Policy (F) data about
conferences attendees is used. Generally speaking, any kind of social data that
can be gathered from the Web shall be considered for policy decisions. Recent
studies on interruptions in mobile phone usage actually show that disturbance
of messages heavily depends on the social context of their origin [131, 47]. For
example, one may not mind to be approached by people one follows on Twitter;
or accept friendship requests from people who regularly post in one’s blog (see
Policy (D)).

As a matter of fact, all this information about social contacts and context is
available on the Web: with whom one discusses in forums (e.g., represented in
SIOC), who one knows (e.g., represented in FOAF profiles), with whom one is
working, be it on publications (e.g., listed on the computer science bibliography
Web site DBLP5) or on software projects (e.g., DOAP). Unfortunately, current
solutions for privacy preferences do not make use of this data [71] and thus suffer
from the “walled garden” of Social Networks [40, 87].

Reactivity on the Social Web

Communication in Social Network applications such as Twitter, Skype, and Face-
book plays an increasing role. Such applications typically offer plenty of ways to
communicate among their members, examples are chat messages, wall posts, and

5accessible via SPARQL Endpoints, such as dblp.L3S.de/d2r/

85

4. REACTIVE POLICIES

micro blogging. Moreover, in addition to such messages, a lot of communication
happens via notifications. For example, in Skype the change of a contact’s on-
line status is shown in a small notification pop-up. Other kinds of notifications
include friendship requests, notifications about being tagged in a picture, etc. In
any case, independently of whether a message comes from a single user or if it is
a notification generated by the Social Network application, in order to fight this
information overload [109], users typically want to canalize the way such mes-
sages approach them and may want a system to automatically reject messages,
automatically accept or deny friendship request, etc. However, such advanced
reactivity-driven privacy preferences are not easily expressible in current Social
Web applications although they are purely reactive: events occur and they typi-
cally require (semi-)automatic handling by the users (or the application doing it
on their behalf).

4.2.2 Policies Acting on the Social Web

As stated before, reactive policies extend the classical grant-or-deny-access poli-
cies by the notion of events and (re-)actions. This extension fits the event-driven
nature of Social Networks [71] that includes the reaction to interactions and no-
tifications. Here, the classical approach of allowing or denying access does not
apply anymore since communication attempts, tagging people on pictures, or
posting on forums requires more advanced control including event observation
and reaction triggering. The policy framework presented in the previous sections
is able to express simple yet powerful reactive policies reflecting this situation as
shown in the following example.

Example 4.1. Recalling Scenario (A): a reactive policy that changes a call into a
chat based on a local contact list or based on information gathered from a Social
Network may look as follows:

ON callComesIn(User, Call)

IF not isInMyContactList(User),

not isMySocialNetworkFriend(User) (4.7)

DO denyCall(Call), sendChatMessage(′Hello . . .′ , User).

�

Guiding and controlling the behaviour of social software requires conditions
for policy decisions to be based on the information which is available on social
software applications. Moreover, as most people use more than one social plat-
form bearing their social data, the immense volume of data available, if combined,
can lead to more fine-grained policies. This data consists of personal data and

86

4.2 Reactive Policies on the Social Semantic Web

Social Network information on the one hand and, on the other hand, it consists
of user-generated content, like bookmarks, tags, reviews, photos, and blogposts
(the so-called object-centered Social Network [40]). Furthermore, with the advent
of the Semantic Web, and the Linked Data movement6 in particular, this social
data can be linked to more general concepts revealing information like what is a
blog post about, in which country was a picture taken, etc.

Semantic Web technologies provide standards and models to make social in-
formation easily accessible. Information about users is described in standard
formats like RDF, which allows to deal with data from different sources in a
uniform way. In addition, due to the emergence of new Web technologies in the
era of Web 2.0, many Social Web applications open their platforms for external
developers by providing an API in order to access the platform’s data.

In the policy evaluation process all this data, either extracted from proprietary
Social Platforms or exposed on the Semantic Web, is not isolated anymore. Once
the data is retrieved, a policy reasoner can combine the retrieved data from multi-
ple sources of the Social and Semantic Web to evaluate advanced, fine-grained and
user-adjusted policies. This is based on the observation that relationships among
people are not only extracted from explicitly mentioned links in the network but
“citizens form relationships and self-organize into communities around shared
interests” [40] thus following the principle of augmented Social Networks [78].

For example, looking at the policies (A)–(H), a reaction to a message or to an
event in the Social Network may depend on social data about the network, be it
if someone is a FOAF friend (as used in Scenario (A)), a student (Scenario (G)),
attended an event (E) , or co-wrote a paper (D). Consequently, the condition
part of a reactive policy needs to retrieve such data in order to contribute to the
decision about whether to execute the action or not. By interleaving reactive rules
with implication rules, one is able to combine the definition of reactive behaviour
with the declarative definition of policies. As shown in the following example,
social data can be combined in order to support complex policy decisions.

Example 4.2. Implication rules allow to further define what is meant by the pred-
icate isMySocialNetworkFriend() that was used in Policy (4.7) in the previous
example as follows:

isMySocialNetworkFriend(Person)← iAmFollowingOnTwitter(Person).

isMySocialNetworkFriend(Person)← isMyDBLPCoAuthor(Person). (4.8)

isMySocialNetworkFriend(Person)← isFacebookFriend(Person).

In a similar way, one may not only define the concept “MySocialNetwork-
Friend” but also “FOAF friend of a FOAF friend of mine” or “person living

6http://linkeddata.org

87

4. REACTIVE POLICIES

in my city”, etc. Looking back at Scenario (D), one may, for example, define
the concepts of “interest-sharers” [40] similar to the concept “MySocialNetwork-
Friend” in Policy (4.8) in the following way: from the Skype profile of a caller,
one can retrieve her Web site. Based on SIOC data exposed on this Web site one
can find out if it is a blog one regularly comments on [29]. The second condition
in Scenario (D) can be determined by a SPARQL query to DBLP that delivers
all published papers of a person. Based on this, it is possible to decide if a caller
ever was a co-author of the person to be called. �

Looking back at Example 4.1 and at Policy (4.8), in order to evaluate the pred-
icate iAmFollowingOnTwitter(·), it has to be connected to the actual Twitter
API. For this the in-predicate (see page 74 in Section 4.1.2 on state predicates)
is exploited to connect to Twitter during the policy evaluation process and to
retrieve details about users, e.g., if one is another user’s so-called follower 7 on
Twitter. Following this approach, Policy (4.8) has to be extended with an impli-
cation rule as follows.

iAmFollowingOnTwitter(Person)←
in([Friend], TwitterWrapper : getPeopleIAmFollowing()), (4.9)

Person = Friend.

For the evaluation of the in-predicate, a wrapper is required to be implemented
that offers a method getPeopleIAmFollowing(). The results of this method are
bound to the variable Friend and, internally, for each result ri a fact is added to
the policy of the form

in([ri], TwitterWrapper : getPeopleIAmFollowing()).

More details on such wrappers will be given in the following section. However,
in the implementation presented later, the translation and replacement of such
predicates is done automatically. Moreover, the creation of Logic Programming-
style policies is kept away from users; instead, they are supported by means of a
graphical policy editor.

The problem of identifying users across different social platforms is deliv-
ered by the framework’s handling of strong evidences. This approach assumes
each user owning credentials which are certifying her name on a certain plat-
form. This way, one can, for example, define an implication rule for the predicate
isMyDBLPCoAuthor() as follows.

7A user A is called a follower of another user B if A subscribed to regularly receive the micro
blogging messages of B.

88

4.2 Reactive Policies on the Social Semantic Web

isMyDBLPCoAuthor(Person)←
credential(Person, C),

C.dblpIdentifier = Dblp Id, (4.10)

in([], DBLPWrapper : isMyCoAuthor(Dblp Id)).

This rule shows how a credential can be used to exactly determine a user’s
identifier on DBLP. As explained in Section 4.1.2, the state predicate credential
will trigger a negotiation message telling another peer (to be specified in the
predicate’s first argument) that a credential is required. Given this credential
is disclosed to the policy owner, it is added to the negotiation state and sub-
sequently its attribute dblpIdentifier is used to query the DBLPWrapper for
co-authorship.

The concept of reactive policies has been realized and implemented in the
context of the Social Web as described in the following section.

4.2.3 SPoX—a Skype Policy Extension

The presented approach of controlling the behaviour of Social Network applica-
tions by exploiting social data is promising to be applied to the Social Network
and communication tool Skype. First, Skype’s privacy policies controlling who is
allowed to do what are very limited: a contact of a Skype user can belong to three
classes only: a user’s friend, a foreigner, or a person who was blocked by the user.
For example, one cannot set up filtering rules based on attributes of contacts such
as which category does a contact belong to (see scenario Policy (B)). Moreover,
the way a user is allowed to approach another cannot be filtered. For example,
either both, chats and calls, are blocked or none of both (see scenario Policy (A)).
Second, Skype offers an API which eases the retrieval of social data about other
users on the one hand and, on the other hand, it allows to easily influence Skype’s
behaviour. Third, Skype offers a channel separated from chat messages and call
streams, that allows to transfer data to other peers. This is particularly helpful
in order to exchange negotiation messages since no additional channel has to be
set up between two peers.

This section presents SPoX, a prototype which applies the idea of reactive
policies to Skype. With policies formulated for SPoX a user can state, for exam-
ple, that only friends on Twitter and Flickr or people listed in the user’s FOAF
profile are allowed to call and calls from all other users are automatically blocked
and turned into a chat (cf. Policy (A) and see the policy in Figure 4.5). Another
example policy allowed in SPoX is the filtering of status change notifications:

89

4. REACTIVE POLICIES

Figure 4.3: The control panel (bottom) and the policy panel with an overview of
the current SPoX policies (top).

during working hours one may only want to be notified about colleagues going
online and not about family members or friends.

SPoX policies can be expressed based on such semantic Social Network infor-
mation as well as social data about other users exposed on the Web or accessible
via APIs of proprietary Social Network applications. Further, context informa-
tion like local time, day of the week, or online status can be used for policy
specification. Based on this information, SPoX automatically reacts to events
in Skype’s Social Network according to user-defined reactive policies.

Architecture

SPoX8 [82] is implemented as a stand alone program which connects to the Skype
client running on the local system (see Figure 4.4). It consists of a reactive policy
engine influencing the behaviour of the local Skype client. SPoX’ policy engine
is an implementation of the framework presented in Section 4.1. The engine’s
core is a reactive extension of the (non-reactive) policy engine Protune [32, 35].
Further, the engine features wrappers to access and reason on Semantic Web data
(via SPARQL endpoints or RDF files) and social data (via the proprietary Social
Platform APIs of Flickr, Skype, and Twitter) and to trigger actions at the local
Skype client.

8http://www.L3S.de/~kaerger/SPoX

90

http://www.L3S.de/~kaerger/SPoX

4.2 Reactive Policies on the Social Semantic Web

“Allow calls
from people
in my FOAF
profile only.”

“Deny
calls from
strangers and
open a chat
instead.”

“Show me a
pop up if one
of my Flickr
friends goes
online.”

SPoX
Actions

Events
Deny calls
from strangers
and open a
chat instead.

Allow calls
from people
in my FOAF
profile.

Show me a
pop up if one
of my Flickr
friends goes
online.

Skype Client

Policies

Skype Client

SPoX
Actions

Events
Deny calls
from strangers
and open a
chat instead.

Allow calls
from people
in my FOAF
profile.

Show me a
pop up if one
of my Flickr
friends goes
online.

Skype Client

Policies

RDF, SPARQL

Twitter API Flickr Exporter

FOAF SIOC DBLP ...

...

Semantic Web

Social Platforms

Calls, Chats

Skype Events

SPoX
Deny calls
from strangers
and open a
chat instead.

Allow calls
from people
in my FOAF
profile.

Show me a
pop up if one
of my Flickr
friends goes
online.

Policies

Skype Game Channel for Negotiations

SPoX – Controlling Skype Over-Notification
with Social Semantic Web Policies

http://www.L3S.de/~kaerger/SPoX

Contact: Philipp Kärger
Forschungszentrum L3S
Appelstrasse 9a
30167 Hannover, Germany
phone: +49. (0)511. 762-17727
email: kaerger@L3S.de

Philipp Kärger, Emily Kigel, VenkatRam Yadav Jaltar – Forschungszentrum L3S, Hannover/Germany

Solution:
SPoX – Skype Policy Extension: Reactive Semantic
Web Policies based on Social Semantic Web data

• User can set up reactive policies in an Event-
Condition-Action fashion

• Decisions can be based on
– Social Semantic Web data (FOAF, DBLP)
– Proprietary Social Network APIs

(Twitter, Flickr, Skype)
• Behaviour of Skype is driven accordingly via

Skype's Java API
• Advanced policy negotiations are carried out over

the Skype application channel
• Allows for digitally signed credentials
• Based on a rule based policy engine (Protune)

Problem:
• Skype client offers only limited control about

who can call you, which chats get through,
which notifications show up

• It considers only “Skype friends” – but what
about the friends on Flickr, my followers on
Twitter, my FOAF friends?

• No way to automatically react to calls
(e.g., forwarding, cancelling)

Figure 4.4: The architecture of SPoX: two peers are negotiating and utilizing
the negotiation context retrieved from the Social Web and the Semantic Web.
Negotiations are carried out exploiting Skype’s game channel.

The connection from the policy engine to the Skype client is achieved via the
the open Skype Java API9, a Java implementation representing the Skype Client
API. This connection

1. observes events from Skype and passes them to the policy engine,

2. uses the Skype-inherent application channel10 for transferring negotiation
messages and

3. performs actions in Skype, such as cancelling a call, changing the mood
message, or sending a chat message.

From a GUI perspective, SPoX is equipped with a

• graphical policy editor (see Figure 4.5), with a

• policy panel providing an overview of all policies for modifying and activat-
ing single policies (see Figure 4.3 top), and with a

• control panel for activating or de-activating SPoX (see Figure 4.3 bottom).

Gathering Social and Semantic Web data in SPoX

To allow social data to be incorporated into the policy reasoning process of SPoX,
the policy engine features wrappers for several data sources. Logically, the gath-
ering of this data is triggered whenever the evaluation has to decide if an in-
predicate (see Section 4.1.2) is true or not.

9http://developer.skype.com/wiki/Java_API
10This channel is typically used for game information, see http://skype.easybits.com/.

91

http://developer.skype.com/wiki/Java_API
http://skype.easybits.com/

4. REACTIVE POLICIES

Semantic Web data. In order to incorporate social data exposed on the Web
into the policy decision process of SPoX, a general wrapper was developed which
queries SPARQL endpoints. This wrapper is used to incorporate co-authorship
data from DBLP’s Semantic Web endpoint. To this end, the SPARQL endpoint
mirroring the DBLP dataset11 is queried. A second Semantic Web wrapper is of-
fered which accesses arbitrary RDF files. This wrapper is used to check friendship
relations stored in FOAF profiles.

Proprietary Social Web data. Further, Social Web data which is not seman-
tically exposed on the Web per se but accessible via social platform APIs is made
available to SPoX by the following wrappers.

Twitter a wrapper accessing the API of Twitter12 in order to determine if a user
is a follower of another user on Twitter;

Skype a wrapper for gathering personal data from Skype, for example if some-
body is listed as a contact or if a user was blocked;

OpenSocial a wrapper extending SPoX for gathering social data from any
OpenSocial13 platform has been added;

Flickr information about a user’s contacts on Flickr are retrieved in form of
SPARQL queries to FOAF profiles which are created on the fly by a Flickr
RDF exporter 14.

Defining reactive policies in SPoX

When launching SPoX the user is presented with a small control panel for acti-
vating or de-activating SPoX and for opening the policy panel (see Figure 4.3).
In this panel, policies can be activated and de-activated by means of the check
boxes on the left, and they can be deleted or modified. Most prominently, SPoX
comes along with an easy-to-use reactive policy editor (see Figure 4.5). It is
inspired by the design of classical e-mail filters in mail clients like Outlook or
Thunderbird. On the left-hand side, events, conditions, and actions can be se-
lected and added to the policy that is compiled on the right. The underlined
words can be modified in a pop-up window which appears when the links on
corresponding words are clicked. Conditions and actions can be applied either to
the initiator of the events (named “the caller” in Figure 4.5) or to an arbitrary
Skype user. The conditions can be changed between conjunctive and disjunctive

11see dblp.L3S.de/d2r/
12see apiwiki.twitter.com
13see www.opensocial.org
14see apassant.net/home/2007/12/flickrdf

92

dblp.L3S.de/d2r/
apiwiki.twitter.com
www.opensocial.org
apassant.net/home/2007/12/flickrdf

4.2 Reactive Policies on the Social Semantic Web

Figure 4.5: The SPoX policy editor for setting up a new policies. The interface
is similar to message filters known from e-mail clients.

connection (by clicking on “one of” respectively “all”) and conditions can be
negated (by clicking on “is not” respectively “is”).

Not all conditions one may impose on a person approaching via Skype can be
expressed by such a user interface. Therefore, SPoX supports the definition of
arbitrary predicates which can be used in conditions. This way, arbitrary con-
cepts like “interest-sharer” can become part of the user-defined policies. This way,
new concepts can be defined and exploited for decisions SPoX has to take. This
has been done in Policy (4.8) where the concept isMySocialNetworkFriend is
further defined by implication rules. SPoX allows to add such predicate defini-
tions to the user’s policy via the link “Edit my Protune policies” (see Figure 4.3)
that opens the Protune policy editor. This editor allows the user to add more
fine-grained policies and concept definitions by means of implication rules. In a
SPoX policy’s condition, one can refer to these predicates by means of a special
condition where predicates can be freely typed. The semantics implemented in
SPoX evaluates the policies in the order they are listed, and, Skype behaves as
if there were no policies unless a policy contradicts.

Trust Negotiation within SPoX

The Trust Negotiation protocol presented in Section 4.1 is used in SPoX for two
specific tasks, for strong authentication with digital certificates and for retrieving
additional information from other peers.

Digitally signed credentials are used in SPoX for strong authentication by
exploiting Trust Negotiation as follows. In Policy (H), for example, a call to a
user’s Skype client requires the caller to prove (by means of a digitally signed

93

4. REACTIVE POLICIES

credential) that she is a student of a particular university. This example exactly
corresponds to the implication rule in Figure 4.1. In SPoX, such a policy is
evaluated as follows.

Assuming the policy engine facing an implication rule of the following form:

isStudent(Person)←credential(Person, Credential),

Credential.issuer =′ uni− hannover′, (4.11)

Credential.type =′ studentid′.

Given an event which requires the evaluation of the predicate isStudent(), the
SPoX client informs the requester (which is bound to the variable Person) that
the performance of the credential predicate is required. If the requester’s condi-
tions to disclose the credential are fulfilled, the credential is sent (if not, a second
step of the negotiation is triggered). Consequently, if the attributes of the trans-
mitted credential fulfill the last two atoms in Policy 4.11, the SPoX client will
let Skype accept the call. In SPoX, negotiation messages and credentials are
well transferred using the Skype game channel, so no separate communication
channel is needed.

The concept of declarations is exploited in SPoX to link users across different
Social Web platforms. In Policy (A), for example, one may state in SPoX that
only Flickr friends are allowed to call. In order to find out if a caller is a Flickr
friend, a state predicate flickrName(Peer,Name) is used that, according to the
semantics definition and Lemma 4.1, leads to a request to the call initiator. The
SPoX client on the caller’s peer will receive the request for the declaration and,
if provided by the caller, will send back the instantiated fact thus disclosing her
Flickr name. Of course, disclosing the Flickr name can again be protected by
a policy and would lead to a multistep negotiation. It has to be noted that for
such a declaration there is no easy way to verify if a requester’s Flickr name is
actually the one provided. However, there are technologies such as OpenID that
provide solutions in this case (see Chapter 6 where this discussion is revisited).

In general, the application of strong authentication via data exchange and
Trust Negotiation, as it is needed for an advanced policy control in Skype, is
provided by an interplay of triggering events and negotiation message exchange.
The formal model ensures that any action taken in Skype fulfills the given policies,
either by adding facts gathered from the Semantic Web to the negotiation state
or by exchanging evidences thus mutually and automatically establishing trust
among Skype peers.

94

Chapter 5

Related Work

The research presented in this thesis was carried out in a context which touches
manifold related research areas; most prominently, the field of formal policy spec-
ification and reasoning which has been introduced in detail in Section 2.1. This
chapter provides an overview and a review of the state of the art on research
approaches related to the present thesis. Further, a comparison of those existing
approaches to the present work will be given thus justifying this thesis’ introduc-
tion of new methodologies; this includes the following two areas:

Policies and Preferences There are several approaches introducing some no-
tion of preferences for policy specification and the according reasoning pro-
cess. Besides that, a number of rule-based languages (independent of their
use as policy languages) support preferences in their semantics. It needs to
be made explicit, what justifies the introduction of new methodologies as
done in this thesis. However, as it will be shown later, existing approaches
do either not completely support partial order preferences or do not fit the
needs of advanced policy handling or Trust Negotiation.

Policies and Reactivity Reactive behaviour control in distributed systems is
a well-studied area which applies techniques related to the present work.
Moreover, supporting reactivity in policies has been done—similarly to
the present work—for some policy languages. However, providing a well-
defined, semantic understanding of reactivity as a semantic policy lan-
guage’s first-order citizen has not been done so far. And, on top of that, an
interleaved evaluation of reactive rules and negotiation messages is a new
topic.

In the following, both directions will be reviewed in detail.

95

5. RELATED WORK

5.1 Policies and Preferences

Preference models nicely capture potentially complex user intentions. There-
fore, extending policy representation techniques with such models is considered
suggestive and attracted a lot of research work. This section gives a general
overview on research where this combination has been investigated and it further
provides a comparison of these approaches to the one taken in the present thesis.
Subsequently, in the Sections 5.1.1 and 5.1.2, particular emphasis will be given
first on the use of preferences for automated agent interaction and negotiations
and, second, on the use of preferences to extend the expressiveness of rule-based
languages.

Platform for Privacy Preferences (P3P). The most prominent approach
which appears to combine privacy policies with preferences is P3P, the Platform
for Privacy Preferences [54]. P3P was developed by the World Wide Web consor-
tium (W3C). It is a protocol that allows Web sites or Web services to explicitly
define for what purpose data is stored that is exposed by visitors of their sites.
The goal is to give the user more control over the data she is disclosing by brows-
ing the Web. This is achieved by providing users the possibility to define their
preferences concerning their data. For example, such a preference may be that a
user’s name shall only be stored for certain purposes (e.g., for customer care but
not for advertisements of interested third party companies) or only for a specific
time span. To express these preferences, the W3C proposed a language called
APPEL [92] which was proven to be error prone even for simple privacy prefer-
ences in [3]. On top of that, in [3], an alternative language based on XPath was
presented.

Compared to the present thesis, P3P shares only the term preference and
the concept of privacy protection. In contrast to the policy systems considered
in this thesis, P3P does not enforce policies: it solely compares the statements
provided by a Web site host with a user’s preferences. Whether the disclosed
data is handled as pretended by the P3P statement cannot be checked after the
disclosure (see also page 19 on policy enforcement). The second difference lies
in P3P’s interpretation of the term preference. This interpretation is opposed
to the preferences-enabled policies as described in Chapter 3. P3P does not
support an ordering of alternatives; instead, preferences are rather simple static
configurations comprising no information about a user’s options.

Preference Policy Description Language (PPDL). In [25] a policy lan-
guage is introduced that combines policy enforcement with actual preferences
among potential steps in a policy evaluation. PPDL straightforwardly extends
PDL, the Policy Description Language, that was already introduced in 1999 by
Lobo and Chomicki [98] (see also page 101 in Section 5.2.2, where the reactivity

96

5.1 Policies and Preferences

of PDL is reviewed). In PPDL preferences are applied in the context of policy-
driven network control. The authors introduce the extension to PDL in order
to allow for preference definitions between possible actions preventing hazardous
network situations which may be generated by a policy. However, compared to
the work presented in Chapter 3, PPDL is restricted in several terms.

First, preferences in PPDL cannot be expressed among all possible predicates:
they are only allowed to be defined among actions in the so-called consistency
monitors. That is, only in case of hazardous network situations, these policies
are evaluated and the most preferred action is blocked in order to prevent the
hazard. If this blocking is not possible (i.e., the most preferred action has to be
performed), the second option is chosen [25], and so on.

The second restriction is PPDL’s limitation to total order preferences. As
stated already in Section 3.2.5, PPDL focuses solely on total orders. It provides
a leveling approach for partial orders but this leveling does not work for all sets
of partial order preferences.

5.1.1 Preferences in Negotiations

Policy-based Trust Negotiation is a process influenced by various parameters. It
is not only the partners’ policies which need to be aligned, it is also the strategies
the partners follow. This strategy influences the negotiation including whether
one is rather unassertive in disclosing credentials or more interested in a success-
ful negotiation without caring too much about a potential loss of privacy. An
overview how such general dimensions can be modeled and how they influence
the negotiation has been given in [141]. The particular dimension that takes into
account a preference order among credentials involved in a negotiation in order to
decide which negotiation path to follow is not provided in [141]. In the following,
research work will be reviewed that incorporates preferences into the negotiation
process in order to ease an automated decision if the policies alone do not give
enough evidences to decide for a unique next negotiation step.

A quantitative approach for comparing negotiation paths has been described
in [48]. In this approach numerical weights are attached to credentials as well as
to policies. Then, accumulated costs of negotiation paths are compared in order
to decide which path to follow, that is, which credential to disclose. However, this
approach requires to assign numbers to all credentials which is rather complex
and unintuitive for users [88] compared to a qualitative partial order. Moreover,
assuming the linear aggregation of numerical weights as a measurement for the
composition of objects is undesirable. Looking back at the negotiation scenario
in Section 2.1.3, for cases like the quasi-identifier, it may even yield a lack of
security if weights are just aggregated. Such cases could only be avoided if weights
would also be assigned to combinations of credentials, thus letting disclosure sets
containing only one of the two quasi-identifier credentials be more preferred than

97

5. RELATED WORK

a set containing both. In general, conditional preferences as they are allowed
in this thesis’ approach are not included in [48]. Finally, using weights in [48]
implies the preference order to be a total order which is too restrictive since it
may not be possible to express a preference between every two credentials (cf. for
instance [66]). Similar approaches have been presented in

• [139] where a point-based trust management model is introduced enabling
the users to quantitatively distinguish the sensitivity of their credentials by
assigning a certain amount of points to each credential; and in

• [99] where preference elicitation for negotiating agents and case studies con-
cerning how to acquire knowledge about the user’s preferences are described.

Due to the quantitativeness of the sensitivity values used, both approaches basi-
cally share the same drawbacks as the quantitative one presented in [48].

5.1.2 Preferences in Logic Programming

Preferences have been introduced to formal knowledge representation frameworks
since 1980 already, when preferences were applied in Circumscription or Default
Logic. Later, the emphasis was shifted to Logic Programs and Extended Logic
Programs under the Answer Set Semantics [58].

The most notable distinction to be drawn among the countless approaches for
preference expressions in Logic Programs (see [58] for an overview) is according
to the objects, preference relations are imposed on. The majority considers pref-
erences among rules. This is practical wherever it is important for the knowledge
to cover which rules to apply in preference to another. In policy languages, these
sorts of preferences have been applied in order to solve conflicts among possibly
contradicting policy rules; for example, if one rule states that access is denied
and another states that access should be granted. A prominent solution for this
problem is to always prefer a policy not granting access to a policy granting it
(”denial takes precedence” [8, Section 2.2]), as it is applied, for example, in the
TAB system [22] or in the Hierarchical Temporal Authorization Model [24].

Only the minority of logical frameworks with preferences actually allows pref-
erences among literals. Besides LPOD which was used as a basis in this thesis,
the common approaches for preferences on atom or literal level instead of rule
level are

1. Sakama and Inoue 2000 [116] for extended Logic Programs under the An-
swer Set semantics,

2. Pradhan and Minker [112] for definite Logic Programs (i.e., Logic Programs
without negation),

98

5.2 Policies and Reactivity

3. Lifschitz [96] for circumscription,

4. Inoue and Sakama 1999 [75] for abduction (according to [58] this is equiv-
alent to Sakama and Inoue 2000), and

5. Brewka 2004 [42] for extended Logic Programs under the Answer Set se-
mantics.

However, for the approaches 1–4, it holds that preferences are applied statically.
That is, the knowledge model consists of two disjunct parts, the rules and the
preferences and no reference can me made from the preference knowledge to the
world knowledge. This makes it impossible to capture conditional preferences
(cf. Section 2.2.1) where specific preference relations only hold given certain states
in the world. The only alternative approach to LPOD was presented by Brewka
in [42]. There, a more general notion for preferences in extended Logic Programs
is given where the generation of answer sets and the evaluation of preference
expressions is not amalgamated anymore (as it is in LPOD). [42] presents a
logical framework that actually covers LPODs. However, as for all approaches
mentioned so far in this thesis, partial order preferences are not covered in [42].

5.2 Policies and Reactivity

The concept of reactive policies lies in the intersection of two research areas,
namely advanced policy reasoning and trust management on the one side and
reactive rules on the Web on the other. In the following, first, approaches to
reactivity on the Web will be detailed and subsequently, general policy languages
will be reviewed that support a certain notion of reactivity.

5.2.1 Reactive Rules on the Web

In order to specify the reactive behaviour of systems acting on the Web, the
concept of Reactivity on the (Semantic) Web has been introduced [73, 11, 101, 7].
Adding declarative, reactive rules to enrich systems with reactivity features is not
at all a new issue. In fact, reactive rules have been extensively studied in the 90s in
the area of database systems, in particular in the field of Active Databases [136].
However, the differences in the requirements and the new challenges posed by
the Web, and in particular by the Semantic Web, justified the proposal of several
specific new approaches. In fact, unlike in databases, reactivity on the Semantic
Web must cope with a highly distributed and heterogeneous environment, where
heterogeneity is present both in data and languages. Moreover, actions and events
are not anymore restricted to the database domain only (e.g., updates of a field)

99

5. RELATED WORK

but have to include far more general actions and events which have to be made
available to and handled by a Semantic Web reactivity framework.

The most promising approach to represent reactivity on the Web is using
Event-Condition-Action rules (ECA rules) as it has been stated in [45]. These
rules provide a suitable common model for reactivity, with modularization into
clean concepts, with a well-defined information flow, and a clear and well under-
stood semantics. However, in early approaches, ECA rule languages resembled
the triggers developed for active databases, where events were always related to
the modification of data (e.g., updates in XML or RDF documents stored on the
Web).

A first attempt to shift database techniques for reactivity to a Web context
was Active XQuery [38] which used the same syntax and switches as standard SQL
triggers [7]. A later work worth to be mentioned was done by Wood et al. who
explored ways to express reactive rules acting on homogeneous data; but, unlike
the former reactive database languages, they do not supervise edits in database
tables but on XML data [11] (and later also on RDF [111]). Wood’s XML-
ECA language is based on XPATH expressions for both, event and condition
part of the rules. These expressions are evaluated on XML data in order to
trigger rules or to check if a rule’s condition part holds. The action part of a
rule is represented as an XQuery which is in charge of modifying XML data
accordingly. Rules are triggered as soon as a data edit matches the XPATH
expression in a rule’s event part. This data is then bound to a variable $delta

which can be reused in the condition and action part of the rule. The XML-
ECA language can be directly applied to RDF data if it is represented in XML.
However, [111] also presents an ECA language acting on sets of triples, i.e., acting
on graphs. There, the event part contains a path pattern of the graph (using the
language RDFPath), the condition part is a condition on the graph (potentially
referring again to the $delta variable), and the action part is a set of instructions
adding or deleting triples. This approach was shifted to a distributed setting by
means of the language RDFTL (RDF triggering language) [107]. RDFTL allows
to define ECA rules on RDF data in a P2P environment.

Soon it was realized that the Web required more general forms of events than
simple data edits. On the Web, an event should be the (volatile) perception of an
external occurrence that may be a change of data but may also be a manifestation
of an executed action or simply an incoming message. Hence, several advanced
languages and frameworks have been developed to represent and evaluate reactive
rules in a Web context. For example, in order to cater for complex events which
are formed by combining simple events, more advanced reactive rule languages
have been defined for database systems, e.g., SnoopIB [2], as well as for the Web,

e.g., XChangeEQ [46, 10], the ruleCore Markup Language (rCML) [118], and
Reaction RuleML [108]. A further step towards more complex events has been
carried out in [114] where quantitative temporal event statements are used in a

100

5.2 Policies and Reactivity

rule’s event part. These statements incorporate quantitative ranges of time that
allow to model real-time constraints, for example, timeouts and duration. On
top of that, rule evaluation frameworks have been developed such as r3 [4] and
MARS [18], accounting for the Web’s heterogeneous environment as well as for
complex events.

All these approaches, however, share the strategy of reactive policies pre-
sented in Section 4.1, that is, they provide reasoners for reactive rules. But a
general difference is that the present work adds a level of trust on top of reactive
rule reasoning by advanced policy reasoning and trust handling. This additional
level features an explicit handling of credentials, interactions among agents, con-
textual disclosure of information, and the exchange of policies and evidences.
In contrast, the approaches to reactivity on the Web provide general-purpose
frameworks which meet at most basic requirements for reactive policies such as
declarativity or reactivity. However, these are mechanisms provided in order to
enable a general-purpose reasoner for reactive rules but they cannot be directly
applied for behaviour control of automated agents: they miss many features to
support trusted interaction as they are delivered by the work presented in this
thesis.

5.2.2 Policy Languages with Reactivity

Supporting reactive behaviour description in a policy language or in policy-based
systems is not a completely new field. In this section, policy languages and
policy-based systems are reviewed that support a certain level of reactivity or
incorporate temporal notions, events, or action control. On top of that, these
approaches are compared to the work carried out in the present thesis.

The Policy Description Language (PDL)

The policy description language (PDL) was already introduced at the end of
the last century [98]. PDL is a formal policy language based on ECA rules. It
combines three other formal languages, namely

1. the composite temporal event language by Motakis and Zaniolo [104] to
define event expressions,

2. the state language of Geffner and Bonet [68] from the area of AI planning
which is suited to express constraints concerning the system’s state in order
to trigger a rule,

3. the action description language A by Gelfond and Lifschitz [70, Section 2]
to express the effects of a rule’s evaluation.

101

5. RELATED WORK

PDL’s semantics if defined as a transition function that is a mapping of a series
of events into a set of actions. The major motivation for PDL is its application
to network control, thus acting as a network policy language (cf. Section 2.1.1).
PDL’s complexity as well as an implementation by means of a simple Prolog pro-
gram is given in [98]. PDL is a policy language that features a well-defined formal
semantics including definition of events and actions; this makes it a close relative
of the language proposed in this thesis’ Section 4.1. However, since PDL does
not support agent interaction required for trust establishment via negotiations, it
addresses scenarios of low-level behaviour control for network peers rather than
high-level trust establishment with message and credential exchange required for
the scenarios addressed in this thesis. Another difference is the use of variables in
PDL: it restricts the policy author to only use constants in a policy’s action part
thus PDL does not allow for variable bindings crossing events, condition, and
action expressions. This feature is essential for policies where actions to be taken
depend either on the triggered event or on the result of a condition evaluation. As
an example, see Policy 4.7 on page 86 where the action “sending a chat message”
can only be executed if the variable User is bound to the actual caller triggering
the event callComesIn.

Ponder and obligation policies

Ponder [56] and its successor Ponder2 [133] are policy languages for pervasive
systems. Both distinct two kinds of policies, authorization policies and obliga-
tion policies. Authorization policies express standard, non-reactive access control
conditions, like which actor is allowed to perform which action on certain objects.
Obligation policies, in contrast, specify actions that must be performed when cer-
tain events occur. Obligation policies are supported by several policy frameworks
and are typically expressed by means of reactive behaviour descriptions. Due to
this fact, Ponder and obligation policies in general deserve a deeper analysis in
the context of this thesis.

In general, obligation policies are policies specifying the actions that must or
most not be performed by components or subjects within a system when certain
events occur. They provide the ability to respond to changing circumstances [56],
for example, deactivating an account after three consecutive login fails. It is
remarkable that these actions are considered to happen inside the system in
contrast to general reactive policies which allow arbitrary actions to be executed.

Other policy approaches employ an even weaker notion of obligation policies.
As examples, SPL [115] as well as the policy model presented in [77], do not
even consider the policy system to be in charge of executing the obligated action.
There, the only duty of the policy system is to observe if the action is eventually
executed by a subject in charge. And in case it is not, some granted rights may
be revoked [115] (see [77, Example 14]).

102

5.2 Policies and Reactivity

The general relation between obligation policies and the approach of reactive
policies presented in this thesis is as follows. Reactive policies can well be used to
express obligation policies. Obligations are primarily intended to detect security
violations and to inform manager components about the steps to be performed in
the system as a consequence to the violation. Still, the means to express obligation
policies in Ponder do not suffice for general reactive policies including credential
exchange. The main drawback of Ponder is that it does not belong to the category
of semantic policy languages: no well-defined semantics for the Ponder language
is given. For example, a formal specification of the event and action operators
available can not be found. On top of that, similar to PDL, Ponder does not
support automated message exchange and agent interaction which is needed for
Trust Negotiation.

Protune and provisional actions

Protune is a policy framework with a Logic Programming-inspired policy lan-
guage [32, 35] and a protocol for exchanging credentials in order to support
agent negotiation and automated trust establishment. Of all non-reactive pol-
icy languages, Protune shares to most features with the idea of reactive policies.
It supports strong and lightweight evidences and employs the same negotiation
mechanisms as the approach presented in this thesis (cf. Section 4.1.2 and [51]).
Moreover, the principle of provisional actions [35] that is exploited in Protune
suggests a certain level of action control and a step towards reactivity. However,
in the following, the most important differences between Protune and the ap-
proach presented in this thesis will be given. Focus will be directed towards the
questions why Protune is not able to capture reactivity and, in particular, why
actions and events are not first-order citizens in Protune.

Actions in Protune. Similar to the presented approach, Protune supports
so-called provisional actions which are part of the condition evaluation rather
than reactions of such evaluations. In Protune’s policy language, these actions
are represented by provisional predicates providing means to reason on activities
required by a negotiation partner in order to establish trust, such as sending a
credential, providing a password (cf. Section 4.1.2, where provisional predicates
are introduced as a special case of state predicates). These actions are not re-
actions in the sense of reactive policies. They rather contribute to the policy
evaluation process and capture the idea of cooperative policy evaluation: facing
a request the policy owner sends back information about the provisional actions
that are required to be executed by the requesting peer. If the requester executes
those actions, it contributes to a successful policy evaluation. In contrast, reac-
tive policies as they are presented in this thesis, support reactivity by means of
actions being executed after a successful negotiation. However, it is worth noting

103

5. RELATED WORK

that the reactive policies from Section 4 also have provisional actions since the
Trust Negotiation principles there are used in Protune as well.

Using Protune alone to specify reactions to policy evaluations is not possi-
ble due to the following reasons. Provisional actions are not suitable to model
reactions: they are part of the evaluation process and their execution is not de-
terministic but depend on the implementation of the policy reasoner. Protune’s
actual reactions to requests are limited to the acceptance or the denial of a re-
quest. Unlike reactive policies, in Protune a call can only be accepted or not but
it can not be, for example, put on the answering machine or into a delay loop
as alternative reactions. Moreover, reactive policies also allow the request for an
access to a resource to be granted only to several extents, like, for example, access
is granted but with charging a specific cost or only for a certain time interval.
On top of that, defining complex actions in form of action definition rules (see
Definition 4.1) is not allowed in Protune.

Events in Protune. Protune basically offers only one single event, namely the
arrival of a negotiation message, be it a request or a negotiation reply. However,
simple single atomic events could be simulated in Protune by defining a specific
request for each event. This requires an additional component that triggers re-
quests in case the according event happens. Although such a simulation could
be easily achieved, it would not support reasoning on events including variable
bindings or the evaluation of complex events as they are supported in reactive
policies by event operators and event definition rules (see Definition 4.1). Re-
active policies are designed to directly and pro-actively react to changes in the
world such as rebooking flight tickets if a flight is cancelled or the expiration
of a credential triggers the re-negotiation of access. In Protune, such behaviour
cannot be defined.

Further related approaches with reactivity

Combining notions of events and actions with policies have been considered in
other work as well. Some more approaches strongly related in this context will
be sketched in the following.

TRBAC - Temporal Role-Based Access Control. TRBAC [23] is an ex-
tension to the classical role-based access control model. It additionally supports
periodic role enabling and disabling and temporal dependencies among such ac-
tions. Although TRBAC is not a reactive policy language per se, it is still relevant
in the context of reactive policies since it provides an access control mechanism
that allows for event-based constraints.

104

5.2 Policies and Reactivity

Classical role-based access control (RBAC) has well-recognized advantages,
most prominently, it nicely captures the organizational structures of most insti-
tutions. However, RBAC models do not reflect the temporal dimension of such
structures which may require roles to expire, to be activated or deactivated upon
certain conditions. To this end, TRBAC supports so-called role triggers which
may be either executed immediately, or deferred by an explicitly specified time
span. Compared to this thesis’ approach, TRBAC acts on a lower level: reactiv-
ity is not used to express reactions to requests or general situations but serves as
means for managing roles where conditions are temporal periodic expressions and
reactions are always either the activation or the deactivation of a role. The ac-
tual access control enforcement in TRBAC is still delivered by simple role-based
policies not allowing for credential handling.

Event- and Time-based Policy Model. Another approach along the lines of
TRBAC is presented in [77] where a policy model is introduced that allows for the
dynamic change of policies either over time or on the occurrence of events. This
model exploits an advanced temporal logic for specification of time dependent
policy validity, to define, for example, when a policy or its parts become valid.
Although this way policies are combined with a reactive behaviour, reactivity is
not part of the policies themselves rather than acting on top of them. Addition-
ally, as opposed to reactive policies, reactions are restricted to the validation or
deactivation of policies or parts thereof.

Security Policy Language (SPL). An approach that also suffers from the
problem that reactions to events are limited is SPL [115]. SPL is an event driven
policy language that supports access control as well as obligation policies [55]. In
SPL, an event is considered an access request to some resource. SPL’s semantics
is based on an event monitor that, for each event, decides to either ignore, allow,
or disallow the event [55]. SPL’s obligation policies are implemented as additional
conditions to the access control constraining events happening in the future [115].
Consequently, these obligation policies are different from the ones used in Ponder
(cf. page 102): they are not obligations for managers or agents who are obliged
to execute specific actions on the occurrence of system events [55], but they are
used to keep the system in a stable state by withdrawing actions if obligations
are not fulfilled. In summary, the notion of events used in SPL do not suffice to
make it a reactive policy language in the sense of Chapter 4.

105

5. RELATED WORK

106

Chapter 6

Conclusions and Outlook

In this thesis, limitations of current policy-based privacy protection and behaviour
control solutions are analyzed and addressed. In particular, research results in the
area of formal policy languages and automated trust establishment are presented,
extended, and applied to realistic scenarios such as the Social Web. The main
contributions of this thesis are as follows:

1. Development and implementation of a Trust Negotiation model support-
ing qualitative partial order preferences among credentials. Influencing the
behaviour of a policy-based system featuring Trust Negotiation becomes
complex as soon as user-given preferences have to be considered. In order
to not interfere with the negotiation process, the approach presented in this
thesis supports arbitrary preference statements among credentials. These
statements help to guide the automated negotiation in a way that user pref-
erences are considered. Hence, only relevant and most-preferred steps are
taken by the negotiation agent. Experiments show that preference handling
does not add considerably to the complexity and performance of the nego-
tiation process, in particular compared to bothersome interventions forcing
the user to manually select her preferred option during the negotiation.

2. Definition of a Logic Programming language based on stable model seman-
tics and Answer Set Programming supporting qualitative partial order pref-
erences. Logic Programming languages are one of the most popular ways
to represent policies. Still, possibilities to encode preferences in Logic Pro-
grams are limited to several extents, most prominently the ability to express
partial order preferences. With DLPOD, this thesis presents an extension
to the Logic Programming paradigm Answer Set Programming. DLPOD
basically forms a careful union of Disjunctive Logic Programs and LPODs
(Logic Programs with Ordered Disjunction) in order to model partial or-
der preference expressions in non-monotonic reasoning. It is shown how to

107

6. CONCLUSIONS AND OUTLOOK

transform a DLPOD into an interleaved Disjunctive Logic Program which
allows normal answer set solvers to interpret DLPODs in order to compute
preferred answer sets. This transformation is the basis for the presented
DLPOD implementation. This implementation exploits a Disjunctive Logic
Program reasoner and computes answer sets of any given DLPOD.

3. Definition of a reactive policy language supporting Trust Negotiation. Reac-
tive behaviour control with policy features or, contrariwise, policy languages
featuring reactivity have not been extensively considered in policy research
so far. In this thesis, a declarative policy language with well-defined se-
mantics is presented which constitutes a union of reactive rule reasoning
and policy enforcement. By establishing an interplay between message ex-
change (for Trust Negotiation and credential exchange) and event handling,
this language acts as a powerful means for basing behaviour control on se-
cured evidences. To this end, a well-established negotiation scheme was
extended and combined with ECA rule reasoning and was further extended
to support multiple peers.

4. Development of a framework supporting reactive policies crossing platforms
on the Social Web. The walled garden of social platforms makes it difficult
to refer to several platform’s information for policy decisions. This thesis
presents a framework which makes use of a reactive policy language and
supports the consideration and seamless integration of distributed social
data for policy decisions. This framework allows the definition of behaviour
control by using reactive rules which, among others, gives the user the
opportunity to provide fine-grained privacy policies, to rely on strong au-
thentication, to reuse social data, and to let the framework automatically
guide the information flow by means of reactive filtering rules.

5. Integration of reactive policies into Skype for supporting inter-platform pri-
vacy protection and behaviour control. Skype, as one of the most popular
IP-based communication tools [17], provides only a few predefined options
for privacy protection and call filtering. In the context of this thesis, the
Skype extension SPoX has been developed. By exploiting the principles of
reactive policies and Trust Negotiation, SPoX users are offered the possibil-
ity to freely define ECA rules for filtering disturbing Skype calls or rejecting
chat requests while relying either on social information gathered from the
Web, on strong authentication, or on arbitrary context information.

In the following, future directions to continue the research carried out in the
context of this thesis as well as to exploit the presented results are pointed out.

Since formal policy languages are tools which are rather tailored for computer
experts, in-depth investigation towards human-computer interaction in general

108

and computer-aided policy authoring in particular is an important next step.
First achievements in this context have been made in the combination of policies
and natural language handling. One direction is to allow users to author policies
in natural languages or, more feasible, in a subset of natural language such as
controlled natural language1. This has been done in [53, 57], where controlled
natural English is allowed as policy language and a policy editor helps the user
by showing the possible applicable next terms while typing in a policy. A second
direction in the intersection of natural language handling and policies is to provide
explanations for the outcomes of policy reasoning, as it has been done in [37, 80].
The motivation of this work is to make the reason for a denial of access transparent
to the user. Since policies are declarative, they can not only serve as basis for
reasoning in order to make a decision; they can in addition be exploited to show
a natural language proof tree explaining how the decision was actually reached.

Both directions are worth investigating for reactive policies as well. Although
supporting the authoring of reactive policies is already provided by SPoX’ policy
editor, a general translation of natural language policies into reactive policies is a
desired feature and subject to future research. Similarly, generating explanations
from reactive policies in order to better communicate reactions automatically
executed by the policy-driven system is a future research field building on this
thesis. Such a system may adopt ideas from [37] for the condition part of reactive
policies, however, the verbalization of event detection and action triggering has
to be orchestrated accordingly.

The use of Trust Negotiation techniques relies on the pervasiveness of digital
signed credentials and online certificates. Today, such authentication mechanisms
are commonly used in company intranets but did not yet reach full worldwide
acceptance among online service providers and consumers. Most prominently and
important for the context of this thesis, the use of certificates is not yet common
for Social Web platforms. In order to fully exploit the potentials of this thesis,
such an authentication infrastructure is needed since bridging the walled garden
of the Social Web for policy reasoning requires a way of identifying the requester
and to further prove her identity. As an example, determining if a caller on Skype
is a friend in one’s FOAF profile or on Facebook requires information about the
caller’s identity on other platforms. Future work in this direction may combine
upcoming authentication standards with Social Web technology and to further
exploit those standards for policy reasoning. Potential solutions are OpenID2

which may be exploited to identify persons across Social Network boundaries.
Alternatively, FOAF+SSL [128] can be used to authenticate requesters using SSL
certificates and FOAF networks. FOAF+SSL enables a server to authenticate
a client given a simple URL which can then be used directly for policy-based
authorization.

1see http://sites.google.com/site/controllednaturallanguage/ for an overview
2http://openid.net/

109

http://sites.google.com/site/controllednaturallanguage/

6. CONCLUSIONS AND OUTLOOK

110

Bibliography

[1] Fabian Abel, Eelco Herder, Philipp Kärger, Daniel Olmedilla, and Wolf
Siberski. Exploiting preference queries for searching learning resources. In
2nd European Conference on Technology Enhanced Learning (EC-TEL),
volume 4753 of Lecture Notes in Computer Science, pages 143–157, Crete,
Greece, Sep 2007. Springer.

[2] Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based
event specification and detection for active databases. Data Knowl. Eng.,
59(1):139–165, 2006.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
An xpath-based preference language for p3p. In WWW ’03: Proceedings
of the 12th international conference on World Wide Web, pages 629–639,
New York, NY, USA, 2003. ACM.

[4] José Júlio Alferes and Ricardo Amador. r3- A foundational ontology for
reactive rules. In ODBASE’07, LNCS 4803. Springer.

[5] José Júlio Alferes, Ricardo Amador, Philipp Kärger, and Daniel Olmedilla.
Towards reactive semantic web policies—motivation scenario and imple-
mentation details. Technical report, L3S Research Center, 2008.

[6] José Júlio Alferes, Ricardo Amador, Philipp Kärger, and Daniel Olmedilla.
Towards reactive semantic web policies: Advanced agent control for the
semantic web. In Poster and Demo Session ISWC 2008, Karlsruhe, Ger-
many. CEUR Workshop Proceedings, October 2008.

[7] José Júlio Alferes and Wolfgang May. Evolution and reactivity for the web.
In Reasoning Web, pages 134–172, 2005.

[8] Grigoris Antoniou, Matteo Baldoni, Piero A. Bonatti, Wolfgang Nejdl, and
Daniel Olmedilla. Rule-based policy specification. In Ting Yu and Sushil
Jajodia, editors, Secure Data Management in Decentralized Systems, vol-
ume 33 of Advances in Information Security. Springer, 2007.

111

BIBLIOGRAPHY

[9] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. MIT
Press, Cambridge, MA, 2. edition, 2008.

[10] James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Patranjan.
Flavours of xchange, a rule-based reactive language for the (semantic) web.
In RuleML, pages 187–192, 2005.

[11] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An event-
condition-action language for xml. In WWW, pages 486–495, 2002.

[12] Wolf-Tilo Balke, Ulrich Güntzer, and Christoph Lofi. Incremental trade-off
management for preference based queries. International Journal of Com-
puter Science and Applications (IJCSA), 4(1), 2007.

[13] Wolf-Tilo Balke, Ulrich Güntzer, and Christoph Lofi. User interaction sup-
port for incremental refinement of preference-based queries. In RCIS, pages
209–220, 2007.

[14] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient distributed
skylining for web information systems. In EDBT, Heraklion, Greece, 2004.

[15] Chitta Baral. Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, 2003.

[16] Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control
policies with tunable expressiveness. In POLICY’04: Proceedings of the
Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks, pages 159–168, 2004.

[17] Stephan Beckert. International phone traffic growth slows, while skype
accelerates. TeleGeography’s CommsUpdate, January 2010.

[18] Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An eca
engine for deploying heterogeneous component languages in the semantic
web. In EDBT Workshops, pages 887–898, 2006.

[19] Rachel Ben-Eliyahu and Rina Dechter. Propositional Semantics for Dis-
junctive Logic Programs. Annals of Mathematics and Artificial Intelligence,
12:53–87, 1994.

[20] Jon Louis Bentley, H. T. Kung, Mario Schkolnick, and Clark D. Thompson.
On the average number of maxima in a set of vectors and applications.
Journal of the ACM (JACM), 25(4), 1978.

[21] Tim Berners-Lee, Jim Hendler, and Ora Lassila. The semantic web. Scien-
tific American, May 2001.

112

BIBLIOGRAPHY

[22] Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati.
An access control model supporting periodicity constraints and temporal
reasoning. ACM Trans. Database Syst., 23(3):231–285, 1998.

[23] Elisa Bertino, Piero A. Bonatti, and Elena Ferrari. TRBAC: A temporal
role-based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191–
233, 2001.

[24] Elisa Bertino, Piero Andrea Bonatti, Elena Ferrari, and Maria Luisa Sapino.
Temporal authorization bases: from specification to integration. J. Comput.
Secur., 8(4):309–353, 2000.

[25] Elisa Bertino, Alessandra Mileo, and Alessandro Provetti. PDL with pref-
erences. In POLICY 2005, Los Alamitos,USA. IEEE Computer Society.

[26] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust
management for public-key infrastructures (position paper). In Security
Protocols, 6th International Workshop, volume 1550 of Lecture Notes in
Computer Science, pages 59–63, Cambridge, April, 1998. Springer.

[27] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-
agement. In In Proceedings of the 1996 IEEE Symposium on Security and
Privacy, pages 164–173. IEEE Computer Society Press, 1996.

[28] Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance checking
in the policymaker trust management system. In Financial Cryptography,
Second International Conference, volume 1465 of Lecture Notes in Com-
puter Science, pages 254–274, Anguilla, British West Indies, February 1998.
Springer.

[29] Uldis Bojars, John G. Breslin, Aidan Finn, and Stefan Decker. Using the
semantic web for linking and reusing data across web 2.0 communities. Web
Semant., 6(1):21–28, 2008.

[30] Piero Bonatti, Philipp Kärger, and Daniel Olmedilla. Reactive policies
for the semantic web. In Proceedings of the 7th Extended Semantic Web
Conference (ESWC2010), Heraklion, Crete, Greece, June 2010.

[31] Piero Bonatti and Pierangela Samarati. Regulating service access and in-
formation release on the web. In CCS ’00: Proceedings of the 7th ACM
conference on Computer and communications security, pages 134–143, New
York, NY, USA, 2000. ACM.

[32] Piero A. Bonatti, Juri L. De Coi, Daniel Olmedilla, and Luigi Sauro. A
rule-based trust negotiation system. IEEE Transactions on Knowledge and
Data Engineering, to appear, 2010.

113

BIBLIOGRAPHY

[33] Piero A. Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro.
Rule-based policy representations and reasoning. In Francois Bry and Jan
Maluszynski, editors, Semantic Techniques for the Web. The REWERSE
Perspective, volume 5500 of Lecture Notes in Computer Science, pages 201–
232. Springer, 2009.

[34] Piero A. Bonatti, Claudiu Duma, Norbert Fuchs, Wolfgang Nejdl, Daniel
Olmedilla, Joachim Peer, and Nahid Shahmehri. Semantic web policies -
a discussion of requirements and research issues. In 3rd European Seman-
tic Web Conference (ESWC), volume 4011 of Lecture Notes in Computer
Science, Budva, Montenegro, June 2006. Springer.

[35] Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional
trust negotiation with metapolicies. In 6th IEEE Policies for Distributed
Systems and Networks (POLICY 2005), pages 14–23, Stockholm, Sweden,
June 2005. IEEE Computer Society.

[36] Piero A. Bonatti and Daniel Olmedilla. Rule-based policy representation
and reasoning for the semantic web. In Reasoning Web, Third International
Summer School 2007, volume 4636 of Lecture Notes in Computer Science,
pages 240–268, Dresden, Germany, September 2007. Springer.

[37] Piero A. Bonatti, Daniel Olmedilla, and Joachim Peer. Advanced policy
explanations on the web. In 17th European Conference on Artificial Intel-
ligence (ECAI 2006), pages 200–204, Riva del Garda, Italy, Aug-Sep 2006.
IOS Press.

[38] Angela Bonifati and Stefano Paraboschi. Active xquery. In Web Dynamics,
pages 249–274. 2004.

[39] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline
operator. In International Conference on Data Engineering, Heidelberg,
Germany, 2001.

[40] John Breslin and Stefan Decker. The future of social networks on the
internet: The need for semantics. IEEE Internet Computing, 11(6):86–90,
2007.

[41] John G. Breslin, Alexandre Passant, and Stefan Decker. The Social Seman-
tic Web. Springer, ISBN: 978-3-642-01171-9, 2010.

[42] Gerhard Brewka. Complex preferences for answer set optimization. In
Principles of Knowledge Representation and Reasoning: Proceedings of the
Ninth International Conference (KR2004), Whistler, Canada, June 2-5,
2004. AAAI Press.

114

BIBLIOGRAPHY

[43] Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Implementing or-
dered disjunction using answer set solvers for normal programs. In JELIA
’02: Proceedings of the European Conference on Logics in Artificial Intelli-
gence, pages 444–455, London, UK, 2002. Springer-Verlag.

[44] Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic programs
with ordered disjunction. Computational Intelligence, 20:335–357(23), May
2004.

[45] François Bry and Michael Eckert. Twelve theses on reactive rules for the
web. In EDBT Workshop Reactivity on the Web, Munich, Germany, 2006,
pages 842–854, 2006.

[46] François Bry and Michael Eckert. Rule-based composite event queries: The
language xchangeeq and its semantics. In RR, pages 16–30, 2007.

[47] Scott W. Campbell and Tracy C. Russo. The social construction of mobile
telephony: an application of the social influence model to perceptions and
uses of mobile phones within personal communication networks. Commu-
nication Monographs 7 (4), 317-334, 2003.

[48] Weifeng Chen, Lori Clarke, Jim Kurose, and Don Towsley. Optimizing
costsensitive trust-negotiation protocols. In Annual Joint Conference of
the IEEE Computer and Communications Societies, 2005.

[49] Jan Chomicki. Preference formulas in relational queries. ACM Trans.
Database Syst., 28(4):427–466, 2003.

[50] Juri L. De Coi, Philipp Kärger, Daniel Olmedilla, and Sergej Zerr. Semantic
web policies for security, trust management and privacy in social networks.
In Workshop on Privacy and Protection in Web-based Social Networks in
conjunction with the 12th International Conference on Artificial Intelligence
& Law (ICAIL), Barcelona, Spain, June 2009.

[51] Juri L. De Coi and Daniel Olmedilla. A flexible policy-driven trust negoti-
ation model. In IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Silicon Valley, CA, USA, November 2007.

[52] Juri L. De Coi and Daniel Olmedilla. A review of trust management, secu-
rity and privacy policy languages. In International Conference on Security
and Cryptography (SECRYPT 2008). INSTICC Press, July 2008.

[53] Juri Luca De Coi, Philipp Kärger, Daniel Olmedilla, and Sergej Zerr. Using
natural language policies for privacy control in social platforms. In ESWC
Workshop on Trust and Privacy on the Social and Semantic Web (SPOT
2009), 2009.

115

BIBLIOGRAPHY

[54] Lorrie Faith Cranor and Lawrence Lessig. Web Privacy with P3P. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[55] Nicodemos Damianou, Arosha K Bandara, Morris Sloman, and Emil C
Lupu. A survey of policy specification approaches. Technical report, De-
partment of Computing at Imperial College of Science Technology and
Medicine, 2002.

[56] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
The ponder policy specification language. In POLICY, pages 18–38, 2001.

[57] Juri Luca De Coi, Peter Fankhauser, Tobias Kuhn, Wolfgang Nejdl, and
Daniel Olmedilla. Controlled natural language policies. In In: Proceedings
of the 16th ACM Conference on Computer and Communications Security,
CCS 2009, Chicago, IL, USA, 2009.

[58] James P. Delgrande, Torsten Schaub, Hans Tompits, and Kewen Wang.
Towards a classification of preference handling approaches in nonmonotonic
reasoning. Computational Intelligence, 20:308–334, 2003.

[59] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald
Pfeifer. Aggregate functions in disjunctive logic programming: Semantics,
complexity, and implementation in dlv. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico,
2003.

[60] Sven Döring, Timotheus Preisinger, and Markus Endres. Advanced prefer-
ence query processing for e-commerce. In SAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, New York, NY, USA, 2008. ACM.

[61] Matthew Duckham and Lars Kulik. Location privacy and location-aware
computing. Dynamic & Mobile GIS: Investigating Change in Space and
Time. CRC Press, Boca Raton, page 3551, 2006.

[62] Phan Minh Dung. On the relations between stable and well-founded se-
mantics of logic programs. Theoretical Computer Science, 105(1):7 – 25,
1992.

[63] Thomas Eiter and Michael Fink. Uniform equivalence of logic programs
under the stable model semantics. In International Conference on Logic
Programming, pages 224–238, 2003.

[64] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.
ACM Transactions on Database Systems, 22(3):364–418, September 1997.

116

BIBLIOGRAPHY

[65] Thomas Eiter and Axel Polleres. Towards automated integration of guess
and check programs in answer set programming: a meta-interpreter and
applications. Theory and Practice of Logic Programming (TPLP), 6(1-
2):23–60, 2006.

[66] Peter Fishburn. Preference structures and their numerical representations.
Theoretical Computer Science, 217:359–383, 1999.

[67] Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and
Marianne Winslett. No registration needed: How to use declarative policies
and negotiation to access sensitive resources on the semantic web. In ESWS
2004, Heraklion, Crete, Greece. Springer.

[68] Hector Geffner and Blai Bonet. High-level planning and control with in-
complete information using pomdps. AAAI Technical Report WS-98-02,
1998.

[69] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing, 9:365–385,
1991.

[70] Michael Gelfond and Vladimir Lifschitz. Representing action and change
by logic programs. Journal of Logic Programming, 17:301–322, 1993.

[71] Tyrone Grandison and E. Michael Maximilien. Towards privacy propaga-
tion in the social web. In Workshop on Web 2.0 Security and Privacy at
the 2008 IEEE Symposium on Security and Privacy. Oakland, California,
USA, 18-21 May 2008.

[72] Tyrone Grandison and Morris Sloman. A survey of trust in internet appli-
cations. IEEE Communications Surveys and Tutorials, 3(4), 2000.

[73] Torsten Grust, Hagen Höpfner, Arantza Illarramendi, Stefan Jablonski,
Marco Mesiti, Sascha Müller, Paula-Lavinia Patranjan, Kai-Uwe Sattler,
Myra Spiliopoulou, and Jef Wijsen, editors. EDBT Workshops, Reactiv-
ity on the Web, Munich, Germany, March 26-31, 2006, Revised Selected
Papers. Springer.

[74] Stefan Holland and Werner Kießling. Situated preferences and preference
repositories for personalized database applications. In ER, pages 511–523,
2004.

[75] Katsumi Inoue and Chiaki Sakama. Abducing priorities to derive intended
conclusions. In In Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI99), pages 44–49. Morgan Kaufmann
Publishers, 1999.

117

BIBLIOGRAPHY

[76] ISO/IEC 14977:1996(E). The standard of extended BNF. ISO, Geneva,
Switzerland.

[77] Helge Janicke, Antonio Cau, François Siewe, Hussein Zedan, and Kevin
Jones. A compositional event & time-based policy model. In POLICY,
pages 173–182, 2006.

[78] Ken Jordan, Jan Hauser, and Steven Foster. The augmented social network:
Building identity and trust into the next-generation internet. First Monday,
8, 2003.

[79] Lalana Kagal, Timothy W. Finin, and Anupam Joshi. A policy based
approach to security for the semantic web. In ISWC 2003, Sanibel Island,
FL, USA, 2003, Lecture Notes in Computer Science. Springer, 2003.

[80] Lalana Kagal, Chris Hanson, and Daniel J. Weitzner. Using dependency
tracking to provide explanations for policy management. In 9th IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks
(POLICY 2008), June 2008, Palisades, New York, USA, 2008.

[81] Philipp Kärger. Advanced semantic web policies: Evolution reactivities,
and priorities. In Doctoral Consortium at the 7th International Semantic
Web Conference, Karlsruhe, Germany, Lecture Notes in Computer Science.
Springer, 2008.

[82] Philipp Kärger, Emily Kigel, and VenkatRam Yadav Jaltar. Spox: com-
bining reactive semantic web policies and social semantic data to control
the behaviour of skype. In ISWC, Demo Session, Washington, DC, USA,
October 2009.

[83] Philipp Kärger, Emily Kigel, and Daniel Olmedilla. Reactivity and social
data: Keys to drive decisions in social network applications. In Second
ISWC Workshop on Social Data on the Web (SDoW2009).

[84] Philipp Kärger, Nuno Lopes, Daniel Olmedilla, and Axel Polleres. To-
wards logic programs with ordered and unordered disjunction. In Workshop
on Answer Set Programming and Other Computing Paradigms (ASPOCP
2008), 24th International Conference on Logic Programming (ICLP 2008),
Udine, Italy, 12 2008.

[85] Philipp Kärger, Daniel Olmedilla, Fabian Abel, Eelco Herder, and Wolf
Siberski. What do you prefer? using preferences to enhance learning tech-
nology. IEEE Transactions on Learning Technologies, 1(1), 2008.

118

BIBLIOGRAPHY

[86] Philipp Kärger, Daniel Olmedilla, and Wolf-Tilo Balke. Exploiting prefer-
ences for minimal credential disclosure in policy-driven trust negotiations.
In VLDB Workshop on Secure Data Management (SDM), Lecture Notes in
Computer Science, Auckland, New Zealand, August 2008. Springer.

[87] Philipp Kärger and Wolf Siberski. Guarding a walled garden - semantic
privacy preferences for the social web. In Proceedings of the 7th Extended
Semantic Web Conference (ESWC2010), Heraklion, Crete, Greece, June
2010.

[88] Ralph Keeney and Howard Raiffa. Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs. Wiley, 1976.

[89] Werner Kießling. Foundations of preferences in database systems. In Inter-
national Conference on Very Large Data Bases, Hong Kong, China, 2002.

[90] Josef Kolbitsch and Hermann A. Maurer. The transformation of the web:
How emerging communities shape the information we consume. J. UCS,
12(2):187–213, 2006.

[91] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the
maxima of a set of vectors. Journal of the ACM (JACM), 22(4), 1975.

[92] Marc Langheinrich, Lorrie Cranor, and Massimo Marchiori. Appel: A p3p
preference exchange language. W3C Working Draft, April 2002.

[93] Adam J. Lee and Marianne Winslett. Enforcing safety and consistency
constraints in policy-based authorization systems. ACM Trans. Inf. Syst.
Secur., 12(2), 2008.

[94] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The dlv system for knowledge
representation and reasoning. ACM Trans. Comput. Log., 7(3):499–562,
2006.

[95] Jiangtao Li and Ninghui Li. Oacerts: Oblivious attribute certificates. IEEE
Trans. Dependable Sec. Comput., 3(4), 2006.

[96] Vladimir Lifschitz. Closed-world databases and circumscription. Artif.
Intell., 27(2):229–235, 1985.

[97] John W. Lloyd. Foundations of logic programming. Springer-Verlag New
York, Inc., New York, NY, USA, 1984.

[98] Jorge Lobo, Randeep Bhatia, and Shamim Naqvi. A policy description
language. In In Proc. of AAAI, pages 291–298, 1999.

119

BIBLIOGRAPHY

[99] Xudong Luo, Nicholas R. Jennings, and Nigel Shadbolt. Knowledge-based
acquisition of tradeoff preferences for negotiating agents. In International
Conference on Electronic Commerce, New York, NY, USA, 2003. ACM
Press.

[100] Frank Manola and Eric Miller, editors. RDF Primer. W3C Recommenda-
tion. World Wide Web Consortium, February 2004.

[101] Wolfgang May, José Júlio Alferes, and François Bry. Towards generic query,
update, and event languages for the semantic web. In PPSWR, pages 19–33,
2004.

[102] Michael McGeachie and Jon Doyle. Efficient utility functions for ceteris
paribus preferences. In Conference on Artificial Intelligence and Conference
on Innovative Applications of Artificial Intelligence, Edmonton, Canada,
2002.

[103] Alessandra Mileo and Torsten Schaub. Qualitative constraint enforcement
in advanced policy specification. In 9th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertaint,(ECSQARU),
Hammamet, Tunisia, pages 695–706, 2007.

[104] Iakovos Motakis and Carlo Zaniolo. Temporal aggregation in active
database rules. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Tucson, Arizona, USA, 1997.

[105] Ilkka Niemelä. Language extensions and software engineering for ASP.
Technical report, European Working group on Answer Set Programming,
2005.

[106] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal
and progressive algorithm for skyline queries. In ACM SIGMOD, San Diego,
CA, USA, 2003.

[107] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-
condition-action rules on rdf metadata in p2p environments. Computer
Networks, 50(10):1513–1532, 2006.

[108] A. Paschke, A. Kozlenkov, H. Boley, S. Tabet, M. Kifer,
and M. Dean. Reaction RuleML. RuleML Initiative,
http://ibis.in.tum.de/research/ReactionRuleML/, 2007.

[109] Alexandre Passant, Philipp Kärger, Michael Hausenblas, Daniel Olmedilla,
Axel Polleres, and Stefan Decker. Enabling trust and privacy on the social
web. In W3C Workshop on the Future of Social Networking, Barcelona,
Spain, January 2009.

120

BIBLIOGRAPHY

[110] Jon Peterson. A presence-based geopriv location object format. Internet
Engineering Task Force, RFC 4119, December 2005.

[111] Alexandra Poulovassilis, George Papamarkos, and Peter T. Wood. Event-
condition-action rule languages for the semantic web. In Reactivity on the
Web, EDBT Workshop, pages 855–864, 2006.

[112] Shekhar Pradhan and Jack Minker. Using priorities to combine knowledge
bases. Int. J. Cooperative Inf. Syst., 5(2&3), 1996.

[113] Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. New
Generation Computing, 9:401–424, 1991.

[114] Ying Qiao, Hongan Wang, Kang Zhong, and Xiang Li. Visual event-
condition-action rules with temporal events. In Eighth Real-Time Linux
Workshop, Lanzhou, 2006.

[115] Carlos Ribeiro, Andre Zuquete, Paulo Ferreira, and Paulo Guedes. Spl:
An access control language for security policies and complex constraints.
In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2001, San Diego, California, USA. The Internet Society 2001.

[116] Chiaki Sakama and Katsumi Inoue. Prioritized logic programming and
its application to commonsense reasoning. Artif. Intell., 123(1-2):185–222,
2000.

[117] Kent E. Seamons, Marianne Winslett, Ting Yu, Bryan Smith, Evan Child,
Jared Jacobson, Hyrum Mills, and Lina Yu. Requirements for policy lan-
guages for trust negotiation. In POLICY, pages 68–79, 2002.

[118] Marco Seiriö and Mikael Berndtsson. Design and implementation of an eca
rule markup language. In RuleML, pages 98–112, 2005.

[119] Oshani Seneviratne, Lalana Kagal, and Tim Berners-Lee. Policy-aware
content reuse on the web. In 8th International Semantic Web Conference,
ISWC 2009, Chantilly, VA, USA, October 25-29, 2009, pages 553–568.

[120] Patrik Simons. Extending the smodels system with cardinality and weight
constraints. In Logic-Based Artificial Intelligence, pages 491–521. Kluwer
Academic Publishers, 2000.

[121] Steven Skiena. Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica. Addison-Wesley, 1990.

[122] Morris Sloman. Policy driven management for distributed systems. Journal
of Network and Systems Management, 2:333–360, 1994.

121

BIBLIOGRAPHY

[123] Morris Sloman and Emil Lupu. Security and management policy specifica-
tion. IEEE Network, 16(2):10–19, March 2002.

[124] Tran Cao Son and Jorge Lobo. Reasoning about policies using logic pro-
grams. In Proceedings of the 1st Intl. Answer Set Programming Workshop,
Stanford, 2001.

[125] Tran Cao Son and Enrico Pontelli. Planning with preferences using logic
programming. Theory and Practice of Logic Programming, 6(5):559–607,
2006.

[126] Daniel F. Sterne. On the buzzword ’security policy’. In Research in Security
and Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium
on, pages 219–230, May 1991.

[127] G.N. Stone, B. Lundy, and G.G. Xie. Network policy languages: a survey
and a new approach. Network, IEEE, 15(1):10–21, Jan/Feb 2001.

[128] Henry Story, Bruno Harbulot, Ian Jacobi, and Mike Jones. FOAF+SSL:
RESTful Authentication for the Social Web. In Proceedings of the
First Workshop on Trust and Privacy on the Social and Semantic Web
(SPOT2009), Heraklion, Crete. CEUR-WS.org/Vol-447, 2009.

[129] V. S. Subrahmanian, Piero A. Bonatti, Jürgen Dix, Thomas Eiter, Sarit
Kraus, Fatma Ozcan, and Robert B. Ross. Heterogenous Active Agents.
MIT Press, 2000.

[130] Latanya Sweeney. Guaranteeing anonymity when sharing medical data, the
datafly system. Journal of the American Medical Informatics Association,
1997.

[131] Alessandra Toninelli, Deepali Khushraj, Ora Lassila, and Rebecca Monta-
nari. Towards socially aware mobile phones. In First Workshop on Social
Data on the Web (SDoW), 2008.

[132] Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari,
Niranjan Suri, and Andrzej Uszok. Semantic web languages for policy rep-
resentation and reasoning: A comparison of KAoS, Rei, and Ponder. In
International Semantic Web Conference, pages 419–437, 2003.

[133] Kevin P. Twidle, Emil Lupu, Naranker Dulay, and Morris Sloman. Ponder2
- a policy environment for autonomous pervasive systems. In POLICY,
pages 245–246, 2008.

122

BIBLIOGRAPHY

[134] Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Niranjan Suri,
Patrick J. Hayes, Maggie R. Breedy, Larry Bunch, Matt Johnson, Shrini-
was Kulkarni, and James Lott. Kaos policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and en-
forcement. 4th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), page 93, 2003.

[135] Claudia Wagner and Enrico Motta. Data Republishing on the Social Se-
mantic Web. In Proceedings of the First Workshop on Trust and Privacy
on the Social and Semantic Web (SPOT2009), Heraklion, Crete. CEUR-
WS.org/Vol-447, 2009.

[136] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Trig-
gers and Rules For Advanced Database Processing. Morgan Kaufmann,
1996.

[137] William H. Winsborough and Ninghui Li. Automated trust negotiation. In
In DARPA Information Survivability Conference and Exposition, volume I,
pages 88–102. IEEE Press, 2000.

[138] William H. Winsborough and Ninghui Li. Safety in automated trust nego-
tiation. ACM Trans. Inf. Syst. Secur., 9(3):352–390, 2006.

[139] Danfeng Yao, Keith Frikken, Mike Atallah, and Roberto Tamassia. Point-
based trust: Define how much privacy is worth. In International Conference
on Information and Communications Security (ICICS ’06). Springer. North
Carolina, USA, 2006.

[140] Ting Yu, Ninghui Li, and Annie I. Antón. A formal semantics for p3p. In
SWS ’04: Proceedings of the 2004 workshop on Secure web service, pages
1–8, New York, NY, USA, 2004. ACM.

[141] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable strategies
in automated trust negotiation. In CCS, 2001.

123

BIBLIOGRAPHY

124

Publications

1. Philipp Kärger and Wolf Siberski. Guarding a Walled Garden - Semantic
Privacy Preferences for the Social Web. In 7th Extended Semantic Web
Conference (ESWC2010), Heraklion, Crete, Greece, June 2010.

2. Piero Bonatti, Philipp Kärger, and Daniel Olmedilla. Reactive Policies for
the Semantic Web. In 7th Extended Semantic Web Conference (ESWC2010),
Heraklion, Crete, Greece, June 2010.

3. Philipp Kärger, Daniel Olmedilla, Alexandre Passant, Axel Polleres (eds.).
Proceedings of the Second Workshop on Trust and Privacy on the Social
and Semantic Web (SPOT2010), Heraklion, Greece, May 31st, 2010, CEUR
Workshop Proceedings, ISSN 1613-0073, online CEUR-WS.org/Vol-447/.

4. Philipp Kärger, Emily Kigel, and Daniel Olmedilla. Reactivity and Social
Data: Keys to Drive Decisions in Social Network Applications. In 2nd
International ISWC Workshop on Social Data on the Web (SDoW2009),
Washington, DC, USA, October, 2009.

5. Philipp Kärger, Emily Kigel, and VenkatRam Yadav Jaltar. SPoX: Com-
bining Reactive Semantic Web Policies and Social Semantic Data to Control
the Behaviour of Skype. In International Semantic Web Conference (ISWC
2009), Poster and Demo Session, Washington, DC, USA, October, 2009.

6. Juri L. De Coi, Philipp Kärger, Daniel Olmedilla, and Sergej Zerr. Se-
mantic Web policies for Security, Trust Management and Privacy in Social
Networks. In Workshop on Privacy and Protection in Web-based Social
Networks in conjunction with the 12th International Conference on Artifi-
cial Intelligence and Law (ICAIL), Barcelona, Spain, June 2009.

7. Michael Hausenblas, Philipp Kärger, Daniel Olmedilla, Alexandre Passant,
Axel Polleres (eds.). Proceedings of the First Workshop on Trust and Pri-
vacy on the Social and Semantic Web (SPOT2009), Heraklion, Greece, June
1, 2009, CEUR Workshop Proceedings, ISSN 1613-0073, online CEUR-
WS.org/Vol-447/.

125

BIBLIOGRAPHY

8. Juri Luca De Coi, Philipp Kärger, Daniel Olmedilla, Sergej Zerr. Using
Natural Language Policies for Privacy Control in Social Platforms. In:
Proceedings of the First Workshop on Trust and Privacy on the Social
and Semantic Web (SPOT2009), Heraklion, Greece, June 1, 2009, CEUR
Workshop Proceedings, ISSN 1613-0073.

9. Alexandre Passant, Philipp Kärger, Michael Hausenblas, Daniel Olmedilla,
Axel Polleres, and Stefan Decker. Enabling Trust and Privacy on the Social
Web. In W3C Workshop on the Future of Social Networking, Barcelona,
Spain, January 2009.

10. Philipp Kärger, Nuno Lopez, Axel Polleres, and Daniel Olmedilla. To-
wards Logic Programs with Ordered and Unordered Disjunction. In ICLP
Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP), Udine, Italy, December 2008.

11. Jose Julio Alferes, Ricardo Amador, Philipp Kärger, and Daniel Olmedilla.
Towards Reactive Semantic Web Policies: Advanced Agent Control for the
Semantic Web. In Poster and Demo Session of the 7th International Se-
mantic Web conference (ISWC 2008), Karlsruhe, Germany, October 2008.

12. Jose Julio Alferes, Ricardo Amador, Philipp Kärger, and Daniel Olmedilla.
Towards Reactive Semantic Web Policies—Motivation Scenario and Im-
plementation Details. Technical Report, L3S Research Center, Hannover,
Germany, October 2008.

13. Philipp Kärger, Daniel Olmedilla, and Wolf-Tilo Balke. Exploiting Prefer-
ences for Minimal Credential Disclosure in Policy-driven Trust Negotiations.
In VLDB Workshop on Secure Data Management (SDM), Lecture Notes in
Computer Science, Auckland, New Zealand, August 2008. Springer.

14. Philipp Kärger. Advanced Semantic Web Policies: Evolution, Reactivity,
Priority. PhD Symposium of the 7th International Semantic Web Confer-
ence (ISWC 2008), Karlsruhe, Germany, October 2008.

15. Philipp Kärger, Daniel Olmedilla, Fabian Abel, Eelco Herder, and Wolf
Siberski. What do you prefer? Using Preferences to Enhance Learning
Technology. IEEE Journal for Transactions on Learning Technologies, 1(1),
2008.

16. Juri L. De Coi, Philipp Kärger, Arne W. Koesling, and Daniel Olmedilla.
Control your e-learning environment: Exploiting Policies in an Open In-
frastructure for Lifelong Learning. IEEE Transactions on Learning Tech-
nologies, 1(1), 2008.

126

BIBLIOGRAPHY

17. Eelco Herder and Philipp Kärger. Hybrid Personalization for Recommen-
dations. Proc. of the 16th Workshop on Adaptivity and User Modeling in
Interactive Systems (ABIS), 2008, Würzburg, Germany.

18. Juri Luca De Coi, Philipp Kärger, Arne W. Koesling, Daniel Olmedilla. Ex-
ploiting Policies in an Open Infrastructure for Lifelong Learning. Creating
New Learning Experiences on a Global Scale, Second European Conference
on Technology Enhanced Learning, EC-TEL 2007, Crete, Greece, Septem-
ber 17-20, 2007.

19. Fabian Abel, Eelco Herder, Philipp Kärger, Daniel Olmedilla, Wolf Siberski.
Exploiting Preference Queries for Searching Learning Resources. In: Cre-
ating New Learning Experiences on a Global Scale, Second European Con-
ference on Technology Enhanced Learning, EC-TEL 2007, Crete, Greece,
September 17-20, 2007.

20. Elena Demidova, Philipp Kärger, Daniel Olmedilla, Stefaan Ternier, Erik
Duval, Michele Dicerto, Carlos Mendez, Krassen Stefanov. Services for
Knowledge Resource Sharing & Management in an Open Source Infras-
tructure for Lifelong Competence Development. In: Proceedings of the
7th IEEE International Conference on Advanced Learning Technologies
(ICALT), July 2007, Niigata, Japan.

127

BIBLIOGRAPHY

128

	1 Introduction
	2 Background
	2.1 Policy Specification and Reasoning
	2.1.1 Types of Policies
	2.1.2 Policies for Security and Trust Management on the Web
	2.1.3 Policy-based Trust Negotiation

	2.2 Preference Modelling
	2.2.1 Properties of Preferences
	2.2.2 Preferences in Database Retrieval
	2.2.3 Preferences in Logic Programming

	2.3 The Social and the Semantic Web

	3 Preference-enabled Policies
	3.1 Exploiting Preferences for Policy-based Trust Negotiation
	3.1.1 Problem Definition and Requirements
	3.1.2 A Preference Model for Trust Negotiation
	3.1.3 Filtering out Non-Preferred Disclosure Sets
	3.1.4 Revisiting the Scenario
	3.1.5 Implementation and Experiments

	3.2 Partial Order Preferences for Rule-Based Policies
	3.2.1 Syntax and Semantics of DLPODs
	3.2.2 Encoding Partial Order Preferences into DLPODs
	3.2.3 Implementation
	3.2.4 Complexity Results for DLPODs
	3.2.5 Partial Order Preferences under the Stable Model Semantics

	4 Reactive Policies
	4.1 A Framework for Reactive Policies
	4.1.1 Syntax
	4.1.2 Semantics

	4.2 Reactive Policies on the Social Semantic Web
	4.2.1 Problem Definition and Requirements
	4.2.2 Policies Acting on the Social Web
	4.2.3 SPoX—a Skype Policy Extension

	5 Related Work
	5.1 Policies and Preferences
	5.1.1 Preferences in Negotiations
	5.1.2 Preferences in Logic Programming

	5.2 Policies and Reactivity
	5.2.1 Reactive Rules on the Web
	5.2.2 Policy Languages with Reactivity

	6 Conclusions and Outlook
	Bibliography
	Publications

