
Dynamic Reconfiguration Methods

for Active Camera Networks

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte Dissertation

von Dipl.-Ing. Michael Wittke, M. Sc.

geboren am 19. März 1980 in Itzehoe

2011

Referent: Prof. Dr. rer. nat. Jörg Hähner
Korreferentin: Prof. Dr.-Ing. habil. Monika Sester
Tag der Promotion: 20. Juli 2011

In Erinnerung an meine Mutter Ludmila

Acknowledgements

First of all I would like to thank my advisor Jörg Hähner for giving me the opportunity

to work on this dissertation in his group. I would also like to thank him for his guidance

and many fruitful discussions about my work. I would also like to thank Monika Sester,

Helena Szczerbicka, and Christian Müller-Schloer for their work as my co-advisors.

Many thanks go to my exceptional colleagues who helped me at countless occasions

with valuable suggestions and lots of motivation. In particular I would like to thank

Alvaro del Amo Jimenez, Christian Becker, Yvonne Bernard, Jürgen Brehm, Emre Çakar,

Yaser Chaaban, Carsten Grenz, Martin Hoffmann, Björn Hurling, Uwe Jänen, Lukas

Klejnowski, Monika Lorenz, Lars Maasjost, Moez Mnif, Sascha Radike, Monika Steinberg,

Sven Tomforde, Fritz Webering, and Ioannis Zgeras for many valuable discussions.

I would also like to thank the Bundesministerium für Bildung und Forschung (BMBF)

for funding my work within the project CamInSens.

Finally, I would like to thank Sabrina Nolting, my family, and all dear friends for their

constant encouragement and understanding.

Danksagung

Zuallererst möchte ich mich bei meinem Doktorvater Jörg Hähner für den Freiraum be-

danken, den er mir während meiner Forschung ließ, sowie seinen Ideen und konstruktiven

Vorschlägen, die er stets mit mir teilte. Hiermit möchte ich mich auch bei Monika Sester,

Helena Szczerbicka und Christian Müller-Schloer für deren Arbeit als Prüfungskommis-

sionsmitglieder bedanken.

Zusätzlich möchte ich mich bei allen Projektpartnern des Forschungskonsortiums Cam-

InSens für den wertvollen Austausch auf den Zwischentreffen bedanken sowie dem Bun-

desministerium für Bildung und Forschung (BMBF), welches das Projekt im Programm

Forschung für die zivile Sicherheit im Rahmen der High-Tech-Strategie gefördert hat.

Mein besonderer Dank gilt der Dagstuhl Clique, die mich stets ermutigte und eine

familiäre Atmosphäre am Institut schuf, insbesondere Emre Çakar, Lukas Klejnowski und

Sven Tomforde.

Darüber hinaus möchte ich mich bei den folgenden Mitgliedern der Distributed Smart

Camera Forschungsgruppe für die tolle Zusammenarbeit bedanken: Alvaro del Amo

Jimenez, Carsten Grenz, Martin Hoffmann, Uwe Jänen, Sascha Radike und Fritz We-

bering.

Genauso möchte ich mich auch bei den restlichen Kollegen bedanken, die für mich

immer ein offenes Ohr hatten: Christian Becker, Yvonne Bernard, Jürgen Brehm, Yaser

Chaaban, Björn Hurling, Monika Lorenz, Lars Maasjost, Moez Mnif, Monika Steinberg

und Ioannis Zgeras.

Darüber hinaus danke ich meiner Familie und allen Freunden für deren Unterstützung.

Mein letzter Dank gilt aber meiner größten Stütze in den letzten 4 Jahren, meiner

Freundin und zukünftigen Frau, Sabrina Nolting. Sie war immer für mich da und hat

mich in jeder Phase begleitet und mich mit voller Kraft unterstützt. Ich weiß, dass ich

sie zeitweise sehr strapaziert und vieles unbewusst von ihr vorausgesetzt habe, was nicht

selbstverständlich ist. Dennoch waren wir immer ein TEAM. Ich möchte mich hiermit

für ihre unerschöpfliche Geduld und Zuneigung bedanken. Ich freue mich auf unsere

gemeinsame Zukunft. TE QUIERO IGUAL!

i

Zusammenfassung

Schlagworte: Aktive Kameranetze, dynamische Rekonfiguration, verteilte Kontrollalgo-

rithmen, Rahmensynchronisierung

Diese Dissertation behandelt dynamische Rekonfigurationsmethoden für aktive Kame-

ranetze. Aktive Kameranetze bestehen aus autonomen Fahrzeugen (z.B. zu Land, in der

Luft oder zu Wasser), die mit einem Bildsensor ausgestattet sind und untereinander über

ein drahtloses Netz kommunizieren können, um kollaborativ Überwachungsaufgaben zu

lösen. Mögliche Anwendungsszenarien liegen in der Überwachung von öffentlichen Plätzen

oder jeglicher anderer Infrastruktur, die proaktiven Schutz benötigt.

Bisher ungelöst war die Aufgabe, eine Vielzahl aktiver Kameras so zu koordinieren,

dass jedes Objekt im Überwachungsbereich genau einmal abgelichtet wird. Hierfür müssen

die Kameras sich untereinander abstimmen und den idealen Ort zur Aufnahme eines Bildes

des bewegten Objekts finden. Die Bewegung des Objekts erschwert es darüber hinaus, eine

akzeptable Bildaufnahmequalität zu erreichen. Eine mathematische Betrachtung dieses

Problems zeigt auf, dass es zu der Klasse der NP-vollständigen Probleme gehört. Deshalb

kann die optimale Lösung nicht in akzeptabler Zeit gefunden und die Lösung muss mit

Hilfe von Heuristiken angenähert werden. Der Entwurf und die Evaluierung einer solchen

Methode wird in dieser Arbeit vorgestellt.

Mittels Positionsmanagement aktiver Kameras können auch Systemaufgaben, wie z.B.

die zeitliche Synchronisierung von Kameras, durchgeführt werden. Im Rahmen dieser Ar-

beit wurde eine Rekonfigurationsmethode entwickelt, welche auf Basis von visuellen In-

formationen einen Uhrenabgleich zwischen benachbarten Kameras mit demselben Sicht-

bereich durchführen kann. Hierzu werden saliente Raum-Zeit-Informationen im Beobach-

tungszeitraum herangezogen. Damit auch eine einzelne Kamera sich mittels visueller

Informationen synchronisieren kann, wurde eine optische Bake entwickelt, welche einen

Zeitstempel auf Basis optischer Signale kodiert. Diese Methodik erreicht ausreichende

Synchronisierungsgenauigkeit für Szenarien der Personenüberwachung.

ii

Abstract

Keywords: Active Camera, dynamic reconfiguration, distributed control algorithms, frame

synchronization

This thesis presents dynamic reconfiguration methods for Active Camera Networks. Ac-

tive Camera Networks consist of autonomous vehicles - each one equipped with a visual

sensor - communicating wirelessly with each other in order to perform surveillance tasks

in a collaborative way. Recent advances in the area of robotics have led to the develop-

ment of autonomous vehicles and unmanned aerial vehicles that can be used to explore

operational environments such as urban areas or unknown building structures.

This thesis is devoted to the development of dynamic reconfiguration methods, which

allow for distributed control of collaborating cameras in dynamic environments. Thus,

they act self-organizing and with the least a priori information in terms of their environ-

ment. The focus is on the wide-area target acquisition of moving targets in a surveillance

area. It addresses application scenarios where events unfold over a large geographic area

and close-up views have to be acquired for biometric tasks such as face detection. The

main problem is to coordinate numerous cameras in order to reach a system behavior

that only one capture of each target is acquired. This problem is proven to be related to

the NP-complete Hamiltonian Path problem and can hardly be solved in acceptable time

with the computing capacities of today’s computing systems. Therefore, a distributed

control heuristic is described which approximates close to optimal solutions to this prob-

lem. On the basis of controlling the positions of Active Cameras actively, a reconfiguration

method for active frame synchronization is presented utilizing visual cues in the camera’s

field of view. This allows for self-configuration in terms of the camera’s local clock, since

this method does not rely on specific hardware. A synchronization accuracy within tens

of milliseconds can be achieved which is sufficient for scenarios, where visual events are

triggered by human beings moving with a velocity in the order of few meters per second.

iii

List of Abbreviations

α Camera Orientation - component along x axis

β Camera Orientation - component along y axis

γ Camera Orientation - component along z axis

2-D Two-Dimensional

3-D Three-Dimensional

AC Active Camera

ACN Active Camera Network

CCD Charge-Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CRC Cyclic Redundancy Check

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

GPRS General Packet Radio Service

LED Light-emitting Diode

LS Least-Squares

MANet Mobile Ad-hoc Network

NRZI Non-Return-to-Zero-Invert

NTP Network Time Protocol

PTZ Pan-Tilt-Zoom

Qimg Imaging Quality Function

QCIF Quarter Common Intermediate Format

RLL Run Length Limited

TAR Target Acquisition Ratio

TIM Target Information Message

ToI Target of Interest

TR Target Request

UAV Unmanned Air Vehicle

UUV Unmanned Underwater Vehicle

UTC Coordinated Universal Time

iv

List of Publications

1. M. Hoffmann, M. Wittke, J. Hähner and C. Müller-Schloer: ”Spatial Partitioning

in Self-organising Camera Systems”, IEEE Journal of Selected Topics in Signal

Processing, 2008

2. M. Hoffmann, M. Wittke, J. Hähner and C. Müller-Schloer: ”Spin-off: Autonomous

Smart Camera Systems”, Industrial Track of the 5th International Conference on

Autonomic and Trusted Computing, 2008

3. M. Wittke, J. Hähner and C. Müller-Schloer: ”Towards Smart Camera

Networks of Mobile Internet Devices”, ICDSC ’08, PhD Forum - Second

ACM/IEEE International Conference on Distributed Smart Cameras,

2008

4. M. Wittke, M. Hoffmann, J. Hähner and C. Müller-Schloer: ”MID-

SCA: Towards a Smart Camera Architecture of Mobile Internet Devices”,

ICDSC ’08, Second ACM/IEEE International Conference on Distributed

Smart Cameras, 2008

5. M. Hoffmann, M. Wittke, Y. Bernard, R. Soleymani and J. Hähner: ”DMCtrac:

Distributed multi camera tracking”, ICDSC ’08, Second ACM/IEEE International

Conference on Distributed Smart Cameras, 2008

6. M. Wittke, S. Tomforde, Y. Chaaban and J. Brehm: ”Visual Twittering

Using Mobile Phones in Pervasive Environments”, in Proceedings of GI

Jahrestagung, 2009

7. M. Hoffmann, M. Wittke and J. Hähner: ”Design and Evaluation of a Notification

System for Alarm Management in Distributed Vision Networks”, in Proceedings of

ICDCS Workshops, 2009

8. M. Wittke, U. Jänen, A. Duraslan, E. Cakar, M. Steinberg and J. Brehm:

”Activity Recognition using Optical Sensors on Mobile Phones”, in Pro-

ceedings of GI Jahrestagung, 2009

9. M. Wittke and J. Hähner: ”Distributed Vision Graph Update in Mobile

Vision Networks”, ARCS ’10, 23th International Conference on Archi-

tecture of Computing Systems, Workshop Proceedings, 2010

v

10. M. Wittke and J. Hähner: ”Self-balancing Reconfiguration Mechanisms

for Active Vision Systems”, DEBS ’10, PhD Forum - 4th ACM Interna-

tional Conference on Distributed Event-Based Systems, 2010

11. U. Jänen, C. Paul, M. Wittke and J. Hähner: ”Multi-Object Tracking Using Feed-

Forward Neural Networks”, International Conference on Soft Computing and Pat-

tern Recognition (SoCPaR), 2010

12. M. Wittke, C. Grenz and J. Hähner: ”Towards Organic Active Vision

Systems for Visual Surveillance”, ARCS ’11, 24th International Confer-

ence on Architecture of Computing Systems, 2011

13. M. Wittke and J. Hähner: ”Self-organising Distributed Smart Camera

Systems”, in Organic Computing - A paradigm shift for complex systems

(Chapter 6.1.10), Birkhäuser Verlag, 2011

14. M. Wittke, S. Radike, C. Grenz and J. Hähner: ”DRofACN: Dynamic

Reconfiguration of Active Camera Networks”, Elsevier Journal for Com-

puter Communications - Special Issue on Wireless Sensor and Robot

Networks: Algorithms and Experiments, 2011 (submitted)

15. M. Wittke, A. del Amo Jimenez, S. Radike, C. Grenz and J. Hähner:

”ENRA: Event-based Network Reconfiguration Algorithm for Active Cam-

era Networks”, ICDSC ’11, Fifth ACM / IEEE International Conference

on Distributed Smart Cameras, 2011 (accepted)

vi

Contents

Zusammenfassung . i

Abstract . ii

List of Abbreviations . iii

List of Publications . iv

1 Introduction 1

1.1 Motivation: Active Camera Networks . 1

1.2 Problem Statement and Contribution . 4

1.3 Classification and Scientific Focus . 6

1.4 Overview of the Thesis . 8

2 Active Camera Networks 9

2.1 Definition: Active Camera . 9

2.2 Detecting Targets . 12

2.3 Position Control and Image Acquisition . 13

2.3.1 Sensor Control . 14

2.3.2 Examples for Mobile Entities . 15

2.4 Image Interpretation . 18

2.4.1 Smart Camera Prototypes . 18

2.4.2 Computer Vision . 22

2.5 Summary . 25

3 System Model 27

3.1 Active Cameras . 27

3.1.1 Field of View . 28

3.1.2 Camera’s State . 30

3.1.3 Clock Synchronization . 30

3.2 Perceiver Nodes . 31

3.2.1 Target Requests . 32

3.2.2 Modeling Perceiver-Observation Uncertainty 33

vii

viii CONTENTS

3.3 Summary . 33

4 System Architecture for Active Cameras 35

4.1 Requirements of Active Camera Networks 35

4.2 Adaptive Location Management Architecture 36

4.2.1 Architecture Overview . 37

4.2.2 Layer 0: Active Sensing . 39

4.2.3 Layer 1: Communication . 39

4.2.4 Layer 2: Positioning . 40

4.2.5 Layer 3: Coordination . 44

4.2.6 Cross-Layer Event Handler . 45

4.3 Summary . 45

5 Dynamic Reconfiguration Methods 47

5.1 Problem Statement: Wide-Area Target Acquisition 47

5.1.1 Formal Description . 48

5.1.2 Proof of Problem Complexity . 51

5.2 DRofACN . 52

5.2.1 Asynchronous Scheduling Process 54

5.2.2 IDLE Mode . 58

5.2.3 MOVING Mode . 58

5.2.4 OBSERVATION Mode . 59

5.2.5 Correctness . 60

5.2.6 Phenomena Adaptivity (ENRA) . 61

5.3 Active Frame Synchronization . 64

5.3.1 Problem Statement: Frame Synchronization 66

5.3.2 ACFSync: Active Camera Frame Synchronization 66

5.3.3 Beacon-assisted Clock Synchronization Algorithm 68

5.3.4 Cooperative Frame Synchronization Algorithm 76

5.4 Summary . 82

6 Evaluation 83

6.1 Performance Metrics . 83

6.2 DRofACN . 87

6.2.1 Experimental Setup . 87

6.2.2 Scalability . 90

6.2.3 Packet Loss . 95

CONTENTS ix

6.2.4 Motion of Targets . 95

6.2.5 Target Speed . 98

6.2.6 Phenomena Adaptivity (ENRA) . 102

6.3 ACFSync (operation mode 1) . 105

6.3.1 Experimental Setup . 105

6.3.2 Synchronization Accuracy . 106

6.3.3 Error Rate . 108

6.3.4 Time Complexity . 109

6.3.5 CPU and Memory Utilization . 112

6.4 ACFSync (operation mode 2) . 112

6.4.1 Experimental Setup . 112

6.4.2 Noise . 113

6.4.3 Perspective . 113

6.4.4 Number of Targets . 118

6.4.5 Real-world Experiment . 120

6.4.6 CPU and Memory Utilization . 121

6.5 Summary . 122

6.5.1 DRofACN . 122

6.5.2 ACFSync . 124

7 Related Work 125

7.1 Dynamic Reconfiguration . 125

7.1.1 Scheduling . 125

7.1.2 Dynamic Vehicle Routing Problem with Time Windows 127

7.1.3 Sensor Planning for Visual Surveillance 128

7.2 Operating System and Middleware . 130

7.2.1 General-Purpose Middleware . 130

7.2.2 Middleware for Embedded Systems 132

7.2.3 Middleware for Organic Systems . 132

7.3 Active Cameras and Active Vision . 133

7.3.1 Optimal Placement . 133

7.3.2 Active Cameras . 135

7.3.3 Active Vision Agents . 136

7.4 Time Synchronization in Sensor Networks 137

7.4.1 Sender-to-Receiver Synchronization 139

7.4.2 Receiver-to-Receiver Synchronization 140

7.5 Summary . 142

x CONTENTS

8 Conclusion 145

8.1 Summary of Contributions . 146

8.2 Future Research Opportunities . 148

List of Figures

1.1 Screenshot of a simulated Active Camera Network at Hannover Main Sta-

tion. Here, 9 Active Cameras (big triangles) are positioned at the front

yard in order to detect targets of interest (small triangles). The number

of cameras may vary - for a complete surveillance of the Main Station

hundreds of them are needed. Source: Google Earth 2

2.1 Active Camera concept . 10

2.2 Measurement variables for a proximity sensor [1] 12

2.3 Caroline - Autonomous car from the University of Braunschweig [2] 15

2.4 AR drone from Parrot A.S. - controllable through Wi-Fi 16

2.5 Bluefin-12 UUV with a Buried Object Scanning Sonar (BOSS) integrated

in two wings . 17

2.6 Generic architecture of a Smart Camera [3] 19

2.7 Image, camera, and world coordinate frames [4] 23

3.1 System model: Active Cameras, perceiver nodes, and dynamic targets . . . 29

3.2 Geometry of an Active Camera’s field of view [5] 30

4.1 Single Active Camera: Adaptive Location Management Architecture 37

4.2 Optimal target-to-camera distance . 42

4.3 An example of the location-dependent quality for observing a target in the

camera’s actuation range . 43

4.4 An example of the location-dependent quality for observing a target in the

camera’s actuation range on the basis of the target’s current position . . . 43

4.5 Target Information Message (TIM) and corresponding information of a tar-

get. The target’s ID is unique and defined by the perceiver node detecting

the target’s first occurrence. 44

5.1 Two targets of interest (ToIs) are observed (observation condition is true)

in an Active Camera Network of two Active Cameras (ACs) in [t′, t′′) . . . 49

xi

xii LIST OF FIGURES

5.2 A Hamiltonian path (red) over a graph. 51

5.3 State machine of the DRofACN method 53

5.4 Quality function of target-to-camera distance [6] (red points correspond to

computer vision success rates for the x-values respectively and are support-

ing points for the construction of the quality function) 56

5.5 Quality function of the view angle [7] (red points correspond to computer

vision success rates for the x-values respectively and are supporting points

for the construction of the quality function) 57

5.6 Computation of the best center of movement 64

5.7 Ratio of client and server single trip times: (a) Asymmetric GPRS network

link (b) Ideal symmetric link (line through origin). 65

5.8 Overview about the ACFSync method . 67

5.9 Conceptual overview about the sender-to-receiver approach based on beacon-

assisted clock synchronization . 69

5.10 The effect of exposure time on signal sampling 70

5.11 The entire sampling process illustrated . 73

5.12 Concept of the beacon-assisted clock synchronization algorithm based on

the receiver and sender component . 75

5.13 Temporal analysis and masking . 77

5.14 Example for calculating the frame offset by correlation 78

5.15 Spatial offsets of a person entering the camera’s field of view 78

5.16 Movement detection of an Active Camera 80

6.1 Experiments with targets entering the surveillance area on straight-lines

(left picture) or parabolic trajectories (right picture) 87

6.2 ACs are positioned in a grid on the surveillance area. The actuation ranges

of neighboring ACs overlap by a quarter of the actuation radius and de-

creases with the number of ACs. 88

6.3 Relation of target generation rate and resources needed for achieving a

specific TAR ratio: For target acquisition ratios up to 80 %, the number

of ACs needed increases proportionally to the number of ToIs. For a TAR

> 90 % significantly more resources are needed. 89

6.4 Relation of target generation rate and resources needed for achieving a

specific mean target detection time: For a mean target detection time

below 20 s the number of ACs increases proportionally to the number of

ToIs. For mean detection times below 10 s significantly more ACs are needed. 90

6.5 System size and influence on load . 91

LIST OF FIGURES xiii

6.6 System size and influence on imaging quality 92

6.7 Number of unobserved targets for low target generation rates for an ACN

consisting of 16 cameras in relation to the target’s distance at time of

becoming salient before leaving . 93

6.8 Number of unobserved targets for high target generation rates (overload)

for an ACN consisting of 16 cameras in relation to the target’s distance at

time of becoming salient before leaving . 94

6.9 AC-to-AC packet loss and the influence on TAR. In case of 100 % of packet

loss, the observation condition is not met any more but the TAR ratio only

decreases to 80 % of the original value (in scenarios with more than 16 ACs). 96

6.10 Perceiver-to-AC packet loss and influence on TAR. In case of 100 % of

packet loss, no target requests reach the ACs any more. 96

6.11 Perceiver-target localization error and its influence on the system’s perfor-

mance: An error of up to 20 cm does not influence the TAR ratio significantly. 97

6.12 Perceiver-target localization error and its influence on the system’s per-

formance: An error of up to 20 cm does not influence the mean target

detection time significantly. 98

6.13 Evaluation of TAR in relation to the target speed and system size (sensing

range: two times the actuation range). 99

6.14 Evaluation of TAR in relation to the target speed and system size (sensing

range: five times the actuation range) . 100

6.15 Evaluation of the target detection time in relation to the target speed and

system size (sensing range: five times the actuation range) 101

6.16 System performance (TAR) without network reconfiguration (target gen-

eration rate: 6ToIs/s; the spread represents the trajectory’s width and

targets enter the surveillance area uniformly distributed over this width) . 103

6.17 System performance (TAR) with network reconfiguration (target genera-

tion rate: 6ToIs/s; the spread represents the trajectory’s width and targets

enter the surveillance area uniformly distributed over this width) 104

6.18 Photo of the experimental beacon sending a time stamp every 2 seconds [8] 105

6.19 Zoom levels of the PTZ camera utilized to change the signal area 106

6.20 Experimental setup of a beacon and a Smart Camera capturing the beacon

signal. A time stamp is sent by the beacon every 2 seconds. 106

6.21 Histogram of offsets between received time stamp and wall clock 107

6.22 Error rate over signal area (represented by different zoom levels) 108

6.23 Error rate over LED intensity with fixed mask 109

xiv LIST OF FIGURES

6.24 Normal and over-exposed mode (for zoom level 6x) 110

6.25 Packet reception duration over LED intensity, normal exposure 110

6.26 Packet reception duration over LED intensity, over-exposed 111

6.27 Person moving with 1.5 m
s

from right to left through a camera’s field of view112

6.28 Different noise levels . 113

6.29 Frame offset for autocorrelation under the influence of additive normally

distributed noise . 114

6.30 36 cameras positioned each 10 degrees around the surveillance area 115

6.31 Calculated frame offset between the 0◦ camera and cameras 10◦ to 350◦ (on

a circle around the surveillance area) . 115

6.32 15 cameras positioned on an arc over the surveillance area vertically to the

direction of movement . 116

6.33 Calculated frame offset between the 0◦ camera and 15 cameras positioned

on an arc vertically to the direction of movement 117

6.34 15 cameras positioned on an arc over the surveillance area horizontally to

the direction of movement . 117

6.35 Calculated frame offset between the 0◦ camera and 15 cameras positioned

on an arc horizontally to the direction of movement 118

6.36 Calculated frame offset between the 0◦ camera and cameras 10◦ to 350◦ on

a circle around the surveillance area with two persons (pair scene) 119

6.37 Calculated frame offset between the 0◦ camera and cameras 10◦ to 350◦ on

a circle around the surveillance area with 7 persons (crowded scene) 119

6.38 Relation of event duration and frequency of occurrence in an office hallway

scenario . 121

6.39 Average synchronization error with standard deviation in an office hallway

scenario . 122

7.1 General-purpose middleware layers [9] . 131

7.2 Critical path of traditional time synchronization protocols 138

7.3 Overview of related work . 144

List of Algorithms

1 Heartbeat Algorithm . 41

2 DRofACN - Target Cache Thread . 54

3 DRofACN - Asynchronous Scheduling Process 55

4 IDLE Mode . 58

5 MOVING Mode . 58

6 OBSERVATION Mode . 59

7 ENRA - Reconfiguration Process . 63

8 Beacon Algorithm (operation mode 1) . 74

9 Beacon-AC Algorithm (operation mode 1) 76

10 Local Algorithm of ACj (operation mode 2) 80

11 AC-AC Algorithm (operation mode 2) . 81

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

”I move, therefore I see.” (Hamada 1992)

1.1 Motivation: Active Camera Networks

Organic Computing is based on the insight that we will soon be surrounded by large

collections of autonomous systems which are equipped with sensors and actuators [10].

In this respect, sensor systems provide a key feedback to allow autonomous systems to be

aware of their environment and react to it. Without sensor-based feedback, these systems

could only operate in the most controlled conditions since they could not perceive and

respond to changes in their workspace. In order to achieve these goals, these systems would

have to act more independently, flexibly, and autonomously. They will have to exhibit life-

like properties, i.e. self-x properties like self-organization, self-adaptation, or self-healing.

Those systems are called ”organic”. A good example of using sensors for increasing

reliability and flexibility is in Smart Cameras [11, 12]. In contrast to traditional cameras,

Smart Cameras are equipped with on-board processing and communication units. The

combination of recent advances that have been achieved in the areas of computer vision,

image understanding (e.g. object recognition, object tracking, and scene analysis), and

computer architecture provide the basis to allow Smart Cameras to detect variations in

their workspace by utilizing real-time sensor feedback. Thus, they are able to process

incoming vision data on-board in terms of anomalous situations and communicate this to

the system’s operator.

Currently, camera networks try to cover the entire area or the most important parts

of it with a set of passive image sensors. Consequently, they have difficulties in acquiring

high-resolution shots selectively. Therefore, system designers have to select the number

of cameras and their placement based on a priori information considering the require-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Screenshot of a simulated Active Camera Network at Hannover Main Station.
Here, 9 Active Cameras (big triangles) are positioned at the front yard in order to detect
targets of interest (small triangles). The number of cameras may vary - for a complete
surveillance of the Main Station hundreds of them are needed. Source: Google Earth

1.1. MOTIVATION: ACTIVE CAMERA NETWORKS 3

ments of the underlying surveillance task, e.g. number and frequency of targets occurring

and the so-called hot spots of occurrence. This approach is applicable in controlled and

static environments. Nevertheless, a priori information becomes less useful in dynamic

environments, since dynamics such as a varying number of targets may occur at runtime.

The broad range of requirements, that algorithms have for the interpretation of scenes

from multiple perspectives, adds up to these difficulties and again increases the number of

necessary cameras. One viable and cost-effective alternative to just increasing the number

of cameras to the demands of surveillance applications is to make efficient use of position

drives, i.e. by adding pan/tilt/zoom drives or attaching cameras to mobile entities such

as ground or air vehicles.

Recent advances in the area of robotics have led to the development of autonomous ve-

hicles and unmanned aerial vehicles that can be used to explore operational environments

such as urban areas or unknown building structures. For that purpose, such vehicles are

equipped with a large number of sensors and actuators. While each autonomous vehicle

is able to explore the environment individually, wireless communication between multiple

vehicles allows for networking them into a collaborative multi-vehicle system. This makes

way for accomplishing goals that cannot be achieved by a single vehicle. As an example

consider that several distant parts of the operational environment have to be monitored

by sensors at the same time due to several distinct events. Additionally, visual sensors

(cameras) and advances in image processing in particular are an important driving force

for many applications. In that context, we consider systems of multiple autonomous vehi-

cles - each one equipped with a visual sensor - as Active Camera Networks. Applications

of such systems are manifold and include, for example, the exploration and surveillance

of large areas. Key components to robustly implement such applications are distributed

control algorithms that adapt the system’s behavior to changing environmental condi-

tions and efficiently coordinate the usage of system resources, in particular the available

cameras. In general, we assume that the operational environment cannot be captured by

the sensors in the system at once due to its size. However, the mobility of vehicles in the

system can be used to dynamically focus the cameras’ sensing ranges to different locations

over time. One advantage of using a dynamically self-configurable network is that the set-

up cost can be reduced significantly. It would be prohibitively expensive to have a static

set-up that handles all possible situations. For example, suppose the imaginary network is

deployed at Hannover Main Station’s front yard as depicted in Figure 1.1 and we need to

focus on one person’s face in order to perform a biometric task. The person walks around

the front yard and the network’s goal is to obtain a high-resolution image of this person

while also observing other activities going on at the front yard. In order to fulfill this

4 CHAPTER 1. INTRODUCTION

task, an Active Camera Network can dynamically reconfigure the parameters of cameras

which are in range of the person. Thus, it is possible to capture high-resolution imagery

of the person irrespective of where it is in the front yard. Using a static camera network

for this task would be very expensive and a huge waste of resources, both technically and

economically.

Smart Cameras extended by activity control are called Active Smart Cameras. In the

remainder of this thesis, we will simply use the term Active Camera, camera or AC as an

abbreviation for Active Smart Camera. The use of camera networks often raises important

privacy concerns, e.g. camera-based applications can potentially violate the privacy of

observed individuals. Therefore, useful mechanisms for addressing these concerns have to

be provided. Nevertheless, this problem has not been addressed in this thesis, but it is

clear that it is a source of concern for many people, as information about their private

life can be accessed through the network. Due to this reason, this problem is addressed

in other research projects (e.g. [13, 14]) explicitly focusing on these socio-ethical issues.

1.2 Problem Statement and Contribution

The main goal of a reconfiguration method is to select the suitable operation modes of the

system tasks in order to optimize a certain global objective function. For example, in case

of visual surveillance, a global objective function can be defined measuring the successful

completion of a face recognition task (e.g. finding subjects from a system-wide watch list).

For this purpose, images have to be captured across the network. In addition, temporal

correctness has to be guaranteed to allow for data fusion mechanisms between cameras.

Thus, a given quality of service is associated with each task, e.g. there is a difference

for system-wide face recognition if a high-quality frontal view image with a correct time

stamp is available in contrast to images without any time information showing the back of

a person. These different operation modes of an Active Camera capturing an image of a

moving target can be expressed by multiple configurations, each configuration exhibiting a

system benefit and requiring a different reconfiguration cost, e.g. the cost for repositioning

the Active Camera.

Nevertheless, visual surveillance takes place in dynamic environments and must pro-

vide mechanisms to detect and identify motion image patterns of moving targets, e.g.

objects like humans. This is achieved by sophisticated computer vision algorithms mak-

ing way for target detection, object association, and data fusion across multiple cameras.

The monitored targets may activate different variants for image processing, each one pro-

viding a given quality of service and system benefit. The target type, its distance to the

1.2. PROBLEM STATEMENT AND CONTRIBUTION 5

camera, speed, or the current luminance are examples of parameters of a dynamic en-

vironment that may trigger some appropriate mechanisms. Fault-tolerance requirements

are another aspect present in Active Camera Networks. Failure detection or determining

the loss of clock synchronization may trigger recovery tasks that must be executed by a

given deadline. Additionally, Active Camera Networks may work under eventual over-

load conditions (e.g. target tracking of hundreds of people) and must be highly adaptive,

ensuring temporal correctness while exhibiting graceful degradation.

Perhaps one of the first initiatives to investigate how technical systems can be equipped

with so-called life-like properties in order to pave the way for adaptability and self-

configuration within these systems was the research initiative Organic Computing (DFG

SPP 1183) [15]. The Organic Computing initiative aims at overcoming drawbacks of

current top-down engineering approaches. Instead of designing a system as a static and

thoroughly planned automaton with predefined states and behavior, more flexible ap-

proaches are investigated. An Organic Computing system is able to develop and adjust

itself to changing environmental influences by adding organic features allowing for:

• self-organization,

• self-adaptation, and

• self-configuration.

These self-x properties can be translated into concrete design features for Active Cam-

era Networks to provide a basis for dynamic reconfiguration. In addition, the integration

of these self-x properties into a holistic system architecture is an important aspect of

Organic Computing. They have been implemented as part of this thesis as follows:

Active Cameras are able to collaborate on target acquisition in wide-area scenarios

autonomously. Therefore, they can be used for capturing images of dynamic targets

by reconfiguring their location in terms of their position and orientation. These Active

Cameras self-organize their location. The user or system administrator can set up con-

straints (e.g. size and position of actuation ranges), but does not need to supervise this

reconfiguration process in detail.

Active Cameras are further able to manage their position so that optimal target ac-

quisition is achieved in wide-area scenarios. For this purpose, they have to collaborate

and decide in real-time which target to observe next. In Section 5.1.2, it is shown that

the process of acquiring exactly one image of each target entering a surveillance area is

an NP-complete derivative of the Hamiltonian Path problem. A distributed control algo-

rithm based on dynamic reconfiguration that helps to find close to optimal solutions to

6 CHAPTER 1. INTRODUCTION

this problem is presented in Section 5.2. This heuristic is an example for an algorithm

enabling self-adaptation properties for Active Camera Networks.

Self-Configuration in Active Camera Networks implies that Active Cameras are able

to detect configuration failures in advance. For example, a potential loss of clock syn-

chronization has to trigger recovery tasks, since synchronized clocks are the basis for data

fusion and aggregation across multiple cameras. Section 5.3 introduces a frame synchro-

nization method which is able to maintain Active Cameras’ clocks synchronized. Since

this method uses visual data for clock synchronization only, it can be used in distributed

scenarios where no infrastructure for time synchronization is available.

This thesis introduces a class of dynamic reconfiguration methods that enable Active

Cameras to collaborate in surveillance scenarios by relying on Organic Computing features

as introduced above. The following section summarizes the major contributions of this

work and explains its scientific focus.

1.3 Classification and Scientific Focus

Today’s surveillance networks rely on passive cameras. Therefore, system designers have

to select the number of cameras and their placement based on a priori information con-

sidering the requirements of the underlying surveillance task, e.g. number and frequency

of targets occurring and so-called hot spots of occurrence. The current research focuses

on the usage of Active Cameras in order to overcome these placement constraints. This

thesis presents a novel system architecture for Active Camera Networks, which is tailored

to suit the needs arising in dynamic surveillance scenarios. Active Smart Cameras form a

wireless mobile ad-hoc network (MANet) and self-organize their position and orientation.

This novel approach to the architecture of Active Camera Networks serves as a basis

for dynamic reconfiguration methods which are needed to cope with constantly changing

environments and observe a surveillance area collaboratively. The following three main

aspects are addressed in this thesis and contribute to dynamic reconfiguration in Active

Camera Networks:

1. Software architecture for Active Camera Networks: Active Camera Net-

works as introduced above consist of a high number of Active Cameras in order

to cooperatively solve surveillance tasks, which could not be achieved by a single

camera or only through considerably more stationary cameras. Our system architec-

ture as presented in Chapter 4 modularizes the various functions needed. Relating

mobility, cameras can change their orientation as well as their position. A realistic

1.3. CLASSIFICATION AND SCIENTIFIC FOCUS 7

sensing performance metric is integrated that models the actual coverage character-

istics of the camera from a computer vision’s perspective. Thus, the requirements

of the underlying computer vision algorithms can be encapsulated into the sensing

constraints. The system architecture consists of four layers and runs on each camera

independently. This distributed design allows for scalability concerning the num-

ber of cameras and adaptability in terms of the environment. These are important

properties of an organic system.

2. Wide-area target acquisition: A reconfiguration method was developed allowing

for dynamic and distributed control of nodes in Active Camera Networks with the

goal of capturing high quality images of moving targets. It addresses application

scenarios where events unfold over a large geographic area and close-up views have

to be acquired for biometric tasks such as face detection. There is no central unit

accumulating and analyzing all the data. The overall goal is to capture all targets of

interest in the region of deployment of the cameras exactly once, while maintaining

a high imaging quality according to the requirements of the underlying computer

vision algorithm. Utilizing Active Cameras in such a scenario makes way for efficient

use of resources. Nevertheless, this control cannot be based on separate analysis of

the sensed imagery in each camera. They must act collaboratively to be able to

acquire exactly one capture of each target of interest. Simulations with up to 100

Active Cameras show the scalability and reliability of the proposed method. The

performance of different target generation rates is analyzed and it is shown that

an Active Camera Network of 100 nodes can handle up to 2,500 targets of interest

simultaneously with a target acquisition ratio of 90 % and a mean target detection

time of less than 10 seconds.1 After having shown in Section 5.1.2, that the wide-

area target acquisition problem is NP-complete, a heuristic is presented in Section

5.2 to approximate solutions to this problem in real-time.

3. Active frame synchronization: In this thesis, novel algorithms for frame-level

and visual cue-based clock synchronization have been developed. This makes way

for Active Camera Networks, which are based on distributed vision networks with-

out a centralized server to synchronize the cameras. Two methods are proposed in

Section 5.3: (1) a beacon-based clock synchronization method and (2) a cooperative

synchronization method where Active Cameras sharing the same field of view syn-

chronize their clocks on the basis of correlating detected salient events. Since both

1A network of 100 pan/tilt/zoom cameras, i.e. they are able to pan in order to change their viewing
direction but not to move, achieves only a target acquisition ratio of 50 % in such a setting.

8 CHAPTER 1. INTRODUCTION

methods utilize optical events, they do not rely on specific hardware other than the

visual sensor itself. The beacon-based approach achieves a synchronization accu-

racy of one frame in 70 % of the cases. Thereby, the accuracy of the method only

relies on the visual sensor’s sampling rate. If participating cameras capture their

environment with a frame rate of 25 frames per second, the beacon-based approach

achieves an accuracy of 40ms. A synchronization accuracy within tens of millisec-

onds is sufficient for scenarios, where visual events are triggered by human beings

moving with a velocity in the order of few meters per second. The cooperative

approach achieves good synchronization results if the difference of the view angles

of both cameras is less than 45◦ or counterpart.

1.4 Overview of the Thesis

Initially, this thesis discusses general aspects of Active Camera Networks before presenting

a unified system model for those. Based on this, we present a software architecture for

Active Camera Networks allowing for scalability and self-organization. After this, the

dynamic reconfiguration methods are presented and evaluated which have been embedded

in the distributed software architecture. More precisely, this thesis is structured as follows:

Chapter 2 gives a definition for Active Cameras and a broad overview of their compo-

nents. We present how activity can support the image acquisition step. For this purpose,

examples for mobile entities such as unmanned vehicles are given.

Chapter 3 presents a unified system model for the discussion of aspects related to

Active Camera Networks.

In Chapter 4, we show how the requirements of Active Camera Networks can be

encapsulated into a decentralized software architecture paving the way for dynamic re-

configuration methods.

Chapter 5 is devoted to in-detail examinations of the dynamic reconfiguration methods.

After formulating the general problem statement, we present a reconfiguration method

for wide-area target acquisition and active frame synchronization in detail.

Chapter 6 evaluates the performance of our system architecture and reconfiguration

methods. Several performance metrics are introduced and research questions are raised

for each algorithm.

Chapter 7 presents related work in the area of dynamic reconfiguration. First, we give

a general literature overview and then we review related work for each of our contributions.

Chapter 8 concludes this thesis by summing up the contributions. An outlook on

future work is provided.

Chapter 2

Active Camera Networks

Camera networks are undergoing a transition from pure static rectilinear cameras to

hybrid solutions that include other sensor types, different camera resolutions, and Active

Cameras. In the recent past, pan/tilt/zoom (PTZ) camera networks have been considered

for their ability to cover large areas and capture high-resolution information of regions

of interest in dynamic scenes. This chapter gives a broad overview about Active Camera

Networks. Section 2.1 defines Active Cameras and explains how the control of the camera’s

position can alleviate the image interpretation. In Section 2.2, we explain from a technical

perspective how sensors can detect targets in a surveillance area. In Section 2.3, we present

the mechanical hardware which can be used to control a camera’s position. In Section 2.4,

the electronic hard- and software, i.e. Smart Cameras and computer vision algorithms,

are presented which process data captured by a camera. Afterwards, we close with a

summary.

2.1 Definition: Active Camera

Active Camera Networks possess mechanisms that are able to actively control camera pa-

rameters. Thereby, cameras of such networks are reconfigurable regarding their position

and orientation, and indirectly, this includes the baseline (in a two camera system) ac-

cording to the requirements of the system goal. They may also be equipped with spatially

variant (foveal) sensors. More broadly, Active Camera Networks encompass attention, i.e.

selective sensing in space, resolution, and time. This is achieved by modifying physical

camera parameters, i.e. the way data is captured [16].

Visual data captured by cameras contains information about patterns, motions, depths,

colors, etc. - just to mention a few. Due to this, visual data is

1. information-rich (i.e. it contains far more data than it can be analyzed by a practical

9

10 CHAPTER 2. ACTIVE CAMERA NETWORKS

Figure 2.1: Active Camera concept

vision system in real-time),

2. highly redundant,

3. and episodic.

Episodic means that visual events usually occur as bursts, i.e. they tend to be clumped

in space (objects of interest) and time (events of interest). Therefore, computer vision

algorithms require selective processing of regions of interest, since the camera’s sensing

range is usually lower than the area under observation.

To achieve selective sensing over space and time (e.g. to allow for wide-area target

acquisition or multi-view computer vision algorithms such as stereo or 3-D reconstruction),

cooperative gaze control of the participating cameras is necessary. Gaze control in its

most general form is the alteration of imaging parameters to aid in the performance of

visual tasks. These include the six degrees of freedom for camera position (x, y, z) and

orientation (α, β, γ), see Section 2.3.1. The primary goal of gaze control is to actively

manipulate the imaging system in order to acquire images which are well-suited to the

tasks being performed. Due to this, the system is able to select a working domain in

terms of image acquisition on its own, where it may achieve its highest performance for

the underlying task, i.e. the image interpretation step. As depicted in Figure 2.1, we

define a camera as an Active Camera, if it is able to manipulate the position control step

and analyze the image data on-board. The process of image interpretation is implemented

by using the concept of a Smart Camera [17], i.e. integrating processing capabilities into

the sensor.

In this thesis, we will develop dynamic reconfiguration methods that are able to control

the camera’s location, i.e. based on the manipulation of position drives, in order to aid in

2.1. DEFINITION: ACTIVE CAMERA 11

the performance of visual tasks. The Active Camera’s location is reconfigurable in terms

of position (x, y, z) and orientation (α, β, γ) (see Section 2.3.1), whereas β and γ are

assumed to be fixed in this thesis. By changing the position on demand, Active Cameras

are able to meet the requirements for computer vision algorithms given through an imaging

quality function, which depends on the underlying application. The mobile entity could

be an unmanned vehicle, e.g. a mobile robot or an unmanned ground/air/underwater

vehicle as described in Section 2.3.2. By using the concept of Smart Cameras for image

interpretation, each Active Camera contains a computing unit in order to carry out image

analysis and handle the organization of the mobile entity as well as cooperative tasks. An

overview of existing Smart Camera prototypes is given in Section 2.4.1. Based on these

components, reconfigurable Active Camera Networks can be built, which belong to this

thesis.

The following list summarizes several of the advantages of Active Cameras [16]:

• Overcome limited field of view / occlusions: Any given camera system pro-

vides only a limited field of view of a scene. Active Camera Networks are able to

overcome the restricted sensing range of one camera by repositioning it and can con-

sequently capture new portions of a surveillance area. Additionally, repositioning

of a camera often helps to overcome problems of occlusion.

• Reduce computational complexity: Using Active Camera Networks, it becomes

possible to shift the system’s attention to areas of activity. Thus, tracking times of

objects can be increased. E.g. this may alleviate the process of handovers of objects

between neighboring cameras by reducing the computational complexity of object

association.

• Multi-view algorithms: Active Cameras can align themselves through movements

in order to make way for multi-view computer vision algorithms, e.g. stereo or 3-

D reconstruction. Additionally, controlling the aperture, zoom, and shutter speed

(or lighting) can be used to manipulate the depth of field. E.g. large depth of field

alleviates the use of stereo-based algorithms, whereas shallow depth of field increases

the accuracy of object segmentation or detection.

In the following three sections, we explain from a technical perspective how targets

can be detected in a surveillance area of a camera network and how the position control

(including the image acquisition) and the image interpretation step can be realized.

12 CHAPTER 2. ACTIVE CAMERA NETWORKS

Figure 2.2: Measurement variables for a proximity sensor [1]

2.2 Detecting Targets

In recent years, the integration of other low-cost sensor typologies is particularly inter-

esting and promising for coping with issues and limitations emerging in camera networks.

Thus, these low-cost sensors can be used for the fast and accurate detection of potential

observation targets, which are fed into a high-cost camera system for visual observation.

Thereby, the camera resources can be planned and used more efficiently.

Especially, for the detection of targets within a camera network’s workspace, three-

dimensional proximity measurement sensors can be used delivering the range, bearing,

and elevation to a target from a known sensor pose, i.e. a known sensor position and

orientation. As depicted in Figure 2.2, the range r is the linear distance between the target

and the sensor frame. The angular difference between the orientation of the sensor’s axis

in relation to the x− z plane is αs and θ in relation to the target’s position, respectively.

The elevation φ is the angular difference between the orientation of the sensor’s axis with

respect to the x− y plane, βs, and the target’s position. Thus, the Cartesian position of

a target relative to the world coordinate frame can be determined as follows:

2.3. POSITION CONTROL AND IMAGE ACQUISITION 13

x0 = xs + r cos(θ + αs) cos(φ+ βs) (2.1)

y0 = ys + r sin(θ + αs) cos(φ+ βs) (2.2)

z0 = zs + r sin(φ+ βs) (2.3)

Various non-contact sensors are available, which can be used to measure the proxim-

ity of a target. Generally, they are based on laser-triangulation, phase- or amplitude-

modulation based electro-optical transducers or ultrasonic transducers [18]. A pair of

calibrated CCD cameras can also be used in combination with stereo image-processing

techniques to estimate the distance between a target and a center point between the

cameras [19].

Utilizing data fusion, multi-modal sensor data stemming from multiple, imprecise

sensors, e.g. motion detectors, can be combined or refined by map data (e.g. from the

area of deployment) to create position estimations of targets at lower costs [20]. Data

fusion methodologies, which are suitable for this kind of parameter estimation, contain

the least squares estimator (LS) or similar approaches. Uncertainties of the measurement

process can be considered through an ellipsoidal volume. The Kalman Filter (KF), and

Extended Kalman Filter (EKF) for non-linear systems, are additional popular techniques

for the fusion of multisensor data [21]. Kalman filtering is especially suited for real-time

applications due to its iterative approach.

Based on the output of these sensors, cameras are able to plan their next position

more efficiently. In the following section, we describe how the position control and image

acquisition can be realized technically.

2.3 Position Control and Image Acquisition

Position control and image acquisition encompass mechanisms for controlling the camera’s

location in terms of its orientation and position. Therefore, hardware beyond the visual

sensor itself is required to allow for this control. In this context, the term control refers

to be the change of the viewing direction - called sensor control - as introduced in Section

2.3.1 or the Active Camera’s repositioning as considered in Section 2.3.2. For both,

mechanical hardware is needed, e.g. a motor controlled pan/tilt head to point the camera’s

head or a mobile entity to change the camera’s position.

14 CHAPTER 2. ACTIVE CAMERA NETWORKS

2.3.1 Sensor Control

Regarding the camera’s orientation, the three orientational degrees of freedom (α, β, γ)

(α = camera’s viewing direction and angle of rotation around the vertical axis, β = angle

of rotation around the horizontal axis, γ = angle of rotation around the optical axis) must

be controlled. Nevertheless, this thesis considers only the camera’s viewing direction

α in terms of sensor control. These parameters are important to point a camera at

features of interest. The basic mechanical properties of sensor control are listed below. An

ideal sensor control platform could allow for actively adjusting each of these parameters.

Nevertheless, the more parameters can be controlled, the more complexity is introduced

into the system. Examples of these parameters are given as follows:

• For each camera:

– pan (viewing direction α and angle of rotation around the vertical axis)

– tilt (β, i.e. angle of rotation around the horizontal axis)

– roll (γ, i.e. angle of rotation around the optical axis)

– focus

– aperture

– zoom

– optic axis calibration adjustments

• For multi-head platforms:

– baseline

Certainly, the following characteristics can be considered as the most important as-

pects on the list: pan, tilt, aperture, and focus [16]. In addition to the mechanical features

listed above, a sensor control platform should try to minimize its power consumption. The

availability of commercial mechanical and optical hardware suitable for building Active

Camera Networks has improved significantly over the last years1. In case of a network

camera, the camera parameters can be computer controlled by establishing a network

connection.

1E.g. the Axis PTZ 214 network camera offers pan/tilt/zoom capabilities for less than EUR 1,000.

2.3. POSITION CONTROL AND IMAGE ACQUISITION 15

Figure 2.3: Caroline - Autonomous car from the University of Braunschweig [2]

2.3.2 Examples for Mobile Entities

Concerning activity control through mobile entities, the Active Camera’s positional de-

grees of freedom, (e.g. x, y, z), become controllable. In terms of inter-camera control,

the baseline of neighboring cameras can be manipulated. This is important for multi-view

computer vision algorithms such as stereo or 3-D reconstruction.

Unmanned Ground Vehicles Relating unmanned ground vehicles, we will present

two autonomous, self-driving cars which participated in real traffic in 2010:

• Caroline from the University of Braunschweig

• Google car

Caroline is a standard 2006 Volkswagen Passat station wagon equipped with a variety

of sensors, actuators, and computers to function as an autonomous mobile robot [2]. In

its front, two multilevel laser scanners, one multibeam LIDAR sensor, and one radar sen-

sor cover a field of view up to 200 meters for approaching traffic or stationary obstacles.

In addition, four cameras detect and track lane markings in order to allow for precise

lane keeping. The stereo vision system behind the windshield and another color camera

combined with two laser scanners mounted on the roof were installed to provide infor-

mation about the terrain in front of the vehicle. Very similar to the front of the vehicle,

one multilevel laser scanner, one-medium-range radar, one LIDAR, and two radar-based

blind spot detectors enable Caroline to detect obstacles at the rear. All these sensors are

depicted in Figure 2.3. The sensor data is processed locally and only based on this data

the car decides how to drive.

16 CHAPTER 2. ACTIVE CAMERA NETWORKS

Figure 2.4: AR drone from Parrot A.S. - controllable through Wi-Fi

In contrast to Caroline, the self-driving car from Google is based on a Toyota Prius and

uses map data in addition to sensor data, which are provided by the Google data centers.

Nevertheless, the Google cars drove 140,000 miles with occasional human interventions

and 1,000 miles fully autonomously [22].

Both of the aforementioned cars could serve as mobile entities for Active Cameras.

Unmanned Air Vehicles With respect to activity control, technology from the field

of unmanned air vehicles (UAVs) becomes more and more relevant. In the recent past,

computer controlled quadro- and octocopters emerged, which can be navigated through

mobile phones. A quadrocopter called AR Drone from the company Parrot A.S. can be

controlled wirelessly and costs less than EUR 500 (depicted in Figure 2.4). Nevertheless,

it is restricted in terms of its load-bearing capacity (maximum 250 g).

In addition to the aforementioned low-cost UAV, various companies (e.g. Cassidian)

offer UAVs varying in terms of their size and weight ranging from kilograms to tons,

which are less restricted in terms of their load-bearing capacity. In the research project

DEMUEBP, Cassidian Air Systems2 (formerly part of EADS) uses several UAVs in order

to investigate their applicability for police missions.

UAVs could serve as a mobile entity for Active Cameras. In comparison to unmanned

ground vehicles, aerial navigation is less complicated due to a lower frequency of obstacles

in the actuation range. However, the cost of UAVs with acceptable load-bearing capacities

is higher than for unmanned ground vehicles. Additionally, in order to operate outside

”restricted” airspace, cumbersome procedures and regulations have to be passed, since

it is critical that UAVs do not endanger other users of national airspace systems (e.g.

2http://www.cassidian.com

2.3. POSITION CONTROL AND IMAGE ACQUISITION 17

Figure 2.5: Bluefin-12 UUV with a Buried Object Scanning Sonar (BOSS) integrated in
two wings

commercial air traffic, cargo operations, and business jets) or compromise the safety of

persons or property on the ground [23].

Unmanned Underwater Vehicles The first unmanned underwater vehicle (UUV)

was developed at the Applied Physics Laboratory at the University of Washington as

early as 1957 by Stan Murphy. Currently, UUVs as depicted in Figure 2.5, are used to

operate autonomously in the ocean, e.g. for mine searching.

Hundreds of different UUVs have been designed over the past 50 years, but only a

few companies sell a noticeable number of these vehicles. There are about 10 companies

that sell UUVs on the international market, including Kongsberg Maritime, Hydroid (now

owned by Kongsberg), Bluefin Robotics, International Submarine Engineering Ltd. and

Hafmynd.

Vehicles range in size from man portable lightweight UUVs to large diameter vehicles

of over 10 meters length. Once popular amongst the military and commercial sectors, the

smaller vehicles are now losing popularity. It has been widely accepted by commercial

organizations that to achieve the ranges and endurances required to optimize the efficien-

cies of operating UUVs, a larger vehicle is required. However, smaller, lightweight and

less expensive UUVs are still common as a budget option for universities. These smaller

vehicles could be used as mobile entities for Active Cameras. Nevertheless, the under-

water world is undoubtedly a difficult and challenging environment for computer vision

18 CHAPTER 2. ACTIVE CAMERA NETWORKS

algorithms due to the restricted sensing range including diffuse lighting.

2.4 Image Interpretation

Based on the quality of the image acquisition step, which can be improved by actively

controlling the camera’s position, image interpretation makes way for extracting informa-

tion of the captured images. For image interpretation, the concept of Smart Cameras is

chosen. Thereby, each Active Camera contains a computing unit in order to carry out im-

age analysis and handle the organization of the mobile entity as well as cooperative tasks.

An overview of existing Smart Camera prototypes is given in Section 2.4.1. Section 2.4.2

introduces single- and multi-camera computer vision algorithms for image interpretation.

2.4.1 Smart Camera Prototypes

Since the 1990s, Smart Cameras have attracted significant interest from research groups,

universities, and many industry segments especially in video surveillance and manufactur-

ing industries. The reason is that they offer distinct advantages over normal (or standard)

cameras by performing not just image capturing but also image analysis and event/pat-

tern recognition, all in one compact system. The growing popularity can be attributed

to the progress made in semi-conductor process technology and embedded computer vi-

sion techniques, along with socio-economic factors such as the society’s need for safety

and security. Due to this reason, Smart Cameras are well-suited for image interpretation

on Active Cameras. In addition to their powerful sensing, processing and communication

units, they offer off-the-shelf interfaces like RS232 or USB to connect mechanical hardware

like pan/tilt/zoom drives.

A generic architecture for a Smart Camera is depicted in Figure 2.6 consisting of a

sensing, processing, and communication unit [3]. The concept of Smart Cameras, i.e.

distributing the sensing, processing and communication resources throughout the camera

network, enables the creation of scalable solutions in terms of image interpretation [24].

The image sensor may be integrated in either CMOS or high-resolution CCD tech-

nology and represents the data source of the processing pipeline. The raw data from the

image sensor is read and pre-processed by the sensing unit. The pre-processing often

comprises standard computer vision algorithms such as white balance or color transfor-

mations. The sensing unit also controls the setting of the image sensor with parameters

such as the sampling rate. The main image processing tasks are performed at the process-

ing unit. Here, computer vision algorithms are fed with images delivered by the sensing

2.4. IMAGE INTERPRETATION 19

Figure 2.6: Generic architecture of a Smart Camera [3]

unit. The output consists of abstracted data that is transfered to the communication unit,

which provides various external interfaces like USB, Ethernet, WLAN, or FireWire. This

abstracted data may be used for various purposes. In the most basic form, it is delivered

to a human user and utilized for further evaluation, e.g. in case of a surveillance scenario.

Nevertheless, the data may also be used for activity control without human intervention,

e.g. triggering event-based reconfigurations. Thus, effective closed-loop systems can be

created.

Various prototypes have been built for different fields of applications. A number of

research projects focused on the problem of building high performance, stationary Smart

Cameras for performing computing-intensive computer vision algorithms. These systems

are usually based on popular computing platforms such as field programmable gate arrays

(FPGAs), digital signal processors, and/or micro-processors. Due to their high demand for

energy, they are stationary and connected directly to the mains. Recently, a new research

direction came up focusing on building wireless Smart Cameras with very small size, at low

cost and with low power consumption. The remainder of this section presents prototypes

of wireless Smart Cameras, since they are best-suited for building Active Cameras.

Wireless Smart Cameras In order to increase the flexibility and mobility of camera

networks, wireless communication has become an important design feature. Table 2.1

presents an overview of selected Smart Cameras using wireless communication and so

being able to run in battery mode.

The processing unit of Meerkats [25] is based on an Intel Stargate mote which is

equipped with a 400MHz StrongARM processor, 64MByte SDRAM, and 32MByte

Flash. An embedded Linux system serves as operating system. Wireless communication

is realized by an 802.11b standard PCMCIA card. The sensing unit consists of a con-

sumer USB webcam with 640x480 pixels. Objective of the development of this prototype

20 CHAPTER 2. ACTIVE CAMERA NETWORKS

Table 2.1: Examples of wireless Smart Camera prototypes
System Sensor CPU Communi-

cation
Power Appli-

cation
Meerkats
[25]

Webcam
640x480
pixels

StrongARM
at
400MHz

802.11b Battery Local im-
age analy-
sis, Collab-
orative ob-
ject track-
ing

Cyclops
[26]

Color
CMOS,
352x288
pixels

ATmega128
at
7.3MHz

None
on-board
(802.15.4
via MicaZ
mote)

Battery Collabo-
rative
object
tracking

MeshEye
[27]

2 x low
resolution
sensor, 1 x
VGA color
CMOS
sensor

ARM7 at
55MHz

802.15.4 Battery Unknown

WiCa [28] 2 x color
CMOS
sensor,
640x480
pixels

Xetal 3D
(SIMD)

802.15.4 Battery Local pro-
cessing,
Collab-
orative
reasoning

CMUcam3
[29]

Color
CMOS,
352x288
pixels

ARM at
60MHz

None
on-board
(802.15.4
via FireFly
mote)

Battery Local
image
analysis,
Inter-node
collabora-
tion

CITRIC
[30]

OV9655
color
CMOS
sensor,
1280x1024
pixels

XScale
PXA270

802.15.4 Battery
(482-
970
mW)

Compres-
sion,
Tracking,
Localiza-
tion

2.4. IMAGE INTERPRETATION 21

was to evaluate the power consumption of different tasks such as Flash memory access,

image acquisition, wireless communication, and image data processing. In order to detect

moving objects, the image data is processed locally on the camera itself. A master-slave

mechanism is implemented to allow for collaboration between nodes, e.g. collaborative

object tracking. Furthermore, the image data is compressed and transmitted to a central

sink for potential post-processing.

In [26], Rahimi et al. present a Smart Camera called Cyclops. It is equipped with a

low-performance ATmega128 8 Bit RISC microcontroller with 7.3MHz and 4 kByte of

on-chip SRAM, and 60 kByte of external RAM. The sensing unit delivers 24 Bit RGB

images at CIF resolution (352x288 pixels). The communication unit is not on-board but

can be attached by means of a MicaZ mote. A group of Cyclops cameras is used to

implement an object tracking application.

At Stanford Wireless Sensor Networks Laboratory, Aghajan et al. [27] developed a

Smart Camera prototype called MeshEye mote. The processing unit consists of an Atmel

AT91SAM7S controller, which incorporates an ARM-7TDMI Thumb processor. The 32

Bit RISC processor can be clocked up to 55MHz. The sensing unit consists of three

image sensors. Two of them are low quality sensors acquiring images of 30x30 pixels

with 6 Bit grayscale depth. The third one is a CMOS sensor with a VGA resolution,

i.e. 640x480 pixels. There are eight additional slots for the integration of low quality

sensors in order to observe a greater part of the surrounding area. Once an object has

been detected, a second low-resolution sensor is activated and the location of the detected

object is estimated using stereo vision. Then, the VGA sensor is activated in order to

capture high quality images. The communication unit contains an IEEE 802.15 (ZigBee)

device and is connected to the main processor’s USB hub. The main advantage of this

approach is that power consumption can be kept at a minimum as long as there are no

objects in the camera’s field of view.

Kleihorst et al. developed the WiCa wireless Smart Camera [28]. This is equipped

with a SIMD processor IC3D operating at 80MHz. This processor contains 320 RISC

processing units, which are able to operate on the captured image data in parallel. The

image data is stored in line memory. A 8051 microcontroller is available for general-

purpose computations and communication tasks. The communication interface consists

of an 802.15.4 device. The WiCa platform aims at low power consumption and is able

to run in battery mode. Four WiCa Smart Cameras are used to build an application for

distributed gesture recognition, i.e. collaborative reasoning.

In [29], a Smart Camera called CMUcam3 was developed. It consists of a color CMOS

sensor, which is capable of delivering 50 frames per second at a resolution of 352x288 pix-

22 CHAPTER 2. ACTIVE CAMERA NETWORKS

els. The processing unit is an ARM7 microcontroller and operates at 60MHz. The

CMUcam3 is equipped with 64 kByte of RAM and 128 kByte of Flash memory. It con-

tains a software layer with ready-to-use vision algorithms such as color tracking, frame

differencing, and image compression. The communication unit is an 802.15.4 device, which

can be attached to the serial communication channel. An application was set up for home

activity monitoring.

The CITRIC Smart Camera [30] is a wireless camera hardware platform with an SXGA

OmniVision CMOS sensor as sensing unit. The processing unit is an XScale processor

equipped with 64MByte of RAM and 16MByte of Flash memory. An 802.15.4 device is

connected to the CITRIC board. The CITRIC prototype has been demonstrated in image

compression and applications such as single-target tracking via background subtraction

and camera localization using multi-target tracking.

As can be seen from the aforementioned systems, several prototypes that operate as

nodes in wireless Smart Camera networks have been proposed and tested in real-world

scenarios. Wireless Smart Cameras deliver the flexibility and mobility needed to create

Active Cameras as considered in this thesis. Especially, the Meerkats and the CITRIC

Smart Camera are suitable to build Active Smart Camera networks, since they possess

enough computational power to handle sophisticated computer vision algorithms and cap-

ture images with a resolution of up to 1,280x1,024 pixels. Furthermore, standard image

processing libraries such as Intel’s OpenCV (Open Source Computer Vision) [31] can eas-

ily be ported to these cameras. Additionally, they are equipped with good communication

abilities, e.g. the Meerkats Smart Camera uses IEEE 802.11 WLAN. Thus, enough band-

width is available for fast and high-load message exchange between cameras collaborating

on a surveillance task. The setting of both cameras is very similar to the technical setting

of the quadrocopter depicted in Figure 2.4. Thus, code developed for both Smart Cameras

could be ported and run on-board on the quadrocopter.

2.4.2 Computer Vision

Since image interpretation based on computer vision is an integral part of Active Camera

Networks, we present a short overview about single- and multi-camera algorithms in this

section. This is to provide a deeper understanding of the calculus caused by computer

vision algorithms.

Single-Camera Algorithms Single- and multi-camera computer vision algorithms are

usually based on the assumption that cameras are calibrated. The basic idea behind cam-

era calibration is to calculate real world distances from an image that has been captured

2.4. IMAGE INTERPRETATION 23

Figure 2.7: Image, camera, and world coordinate frames [4]

by an image sensor, see Figure 2.7. The calibration process includes two steps. First, the

intrinsic parameters such as focal length are estimated to allow for transforming the im-

age coordinate system into the camera coordinate system. Secondly, the estimation of the

extrinsic parameters such as the camera’s position, translation and rotation allow for the

reconstruction of the world coordinates from the camera coordinates. Various methods

and algorithms have been proposed for camera calibration. The method presented by Tsai

[32] is useful for estimating the camera’s external position and orientation relative to the

object’s reference coordinate system as well as the focal length, radial lens distortion, and

image sensing parameters. Cheng et al. [33] investigated a method for obtaining vision

graphs for distributed Smart Camera networks to make way for network calibration. The

vision graph allows to determine, which cameras share overlapping fields of view. This is

especially important in case of system-wide object tracking.

In order to detect objects and their movements, methods of segmentation and motion

detection are used. A common approach is background subtraction. Toyama, Krumm,

Brumitt, and Meyers give a good overview and comparison of many techniques [34]. In

order to perform background subtraction, a model of the background must be ”learned”.

Once learned, objects can be separated from the background by computing the difference

between the current frame and the background of the scene. The objects left after sub-

traction are presumably new foreground objects. Although background modeling methods

work fairly well for simple scenes, they suffer from an assumption that is often violated,

24 CHAPTER 2. ACTIVE CAMERA NETWORKS

i.e. that all the pixels are independent. This assumption does not hold due to the fact

that the brightness of pixels depends on their neighbors. Therefore, sophisticated models

exist to take this into account. However, since these models come at extra cost in terms of

memory consumption and computational effort, they are usually avoided and the simple

background subtraction model is used in practice. In the case of moving cameras, optical-

flow-based algorithms [35] are used for dynamic background subtraction, e.g. for obstacle

avoidance in cluttered environments [36]. Optical flow is the pattern of apparent motion

of objects, surfaces, and edges in a visual scene caused by the relative motion between an

observer (an eye or a camera) and the scene. The concept of optical flow was first stud-

ied in the 1940s and ultimately published by American psychologist James J. Gibson as

part of his theory of affordance. Optical flow techniques such as motion detection, object

segmentation, time-to-collision and focus of expansion calculations, motion compensated

encoding, and stereo disparity measurement utilize this motion of the objects, surfaces,

and edges. In Section 5.3.4 of this thesis, the concept of optical flow is used to detect the

offset of feature points over time to compute so-called saliency curves for collaborative

time synchronization between neighboring cameras.

Object detection is an important capability of Smart Cameras. Detecting objects

means to identify their positions in an image and to identify the object itself. Object de-

tection has matured over the last years and is now commercially available. Even standard

digital cameras for the consumer market offer sophisticated object detection algorithms

such as face detection3. A very promising approach for object detection was developed

by Viola and Jones [37] and is based on so-called Haar-like features. These features are

sums of pixels in rectangular areas and can be used to construct decision trees (called

classifier cascades) encoding sophisticated object shapes.

Based on the output of single-camera algorithms, multi-camera algorithms can be

set up for network-wide object association and tracking allowing for cooperative image

interpretation.

Multi-Camera Algorithms Object association and tracking across multiple cameras

is important due to the limited fields of view of single cameras and object occlusions in real

scenes. Therefore, single cameras are not able to completely observe an area of interest

on their own. Instead, multiple cameras are used to widen the active area of observation.

To enable cooperative sensing among multiple cameras, objects have to be recognized

among them. This is done by the process of object association. Hereby, a more coherent

understanding about what is occurring in the observed scene can be constructed. Several

3E.g. Casio EXILIM EX-Z1

2.5. SUMMARY 25

approaches with varying constraints have been proposed. For instance, the problem of

associating objects across multiple stationary Smart Cameras with overlapping fields of

view has been addressed in a number of tracking applications, e.g. [38, 39]. If the problem

of object association is extended to cameras with non-overlapping fields of view, geometric

and appearance-based approaches are used [40, 41]. Usually, this is based on trying to

associate data of the object, e.g. its color histogram, feature points etc., among the

participating cameras. Camera motion has also been studied where correspondence of

pixels is estimated across pan/tilt/zoom cameras [42]. Modern approaches try to use

machine learning techniques, such as neural networks, in order to improve the assignment

of actual objects to tracked objects in terms of object association, e.g. [43].

The problem of shape reconstruction from pairs of images (e.g. of neighboring cameras)

is known as stereo vision, which is one of the oldest in computer vision [44]. In order to

achieve this, the correspondence problem has to be solved, i.e. finding areas of each

image corresponding to the same point in the scene. If such a correspondence has been

found, the point can be triangulated to determine its coordinates in three dimensions.

The corresponding output is a depth map computed from all the correspondences found

between the images. For static scenes, approaches known as dense stereo and feature

matching are used. Since Active Cameras are able to move, dynamic stereo can be used.

Dynamic stereo uses motion cues in the image to aid in the depth map construction,

either from a dynamic scene or from a moving camera [45].

2.5 Summary

This chapter contained a description of the basic components of Active Camera Networks.

First, we explained how the concept of Active Cameras can help to alleviate computer

vision in terms of image acquisition and interpretation. Afterwards, hardware platforms

for Active Cameras have been introduced to give an insight in how far reconfiguration can

be used and which prerequisites need to be met. In terms of image interpretation, the

concept of Smart Cameras was introduced to extract image information near the image

sensor. Extracting these information can be achieved by a number of computer vision

algorithms, which have been presented at the end of the chapter.

We concluded that there are sophisticated Smart Camera prototypes and mobile en-

tities, such as unmanned ground/air/underwater vehicles, which can be used to build

Active Camera Networks. Since they are based on off-the-shelf hardware, e.g. ARM-

based chipsets, standard image processing libraries such as Intel’s OpenCV (Open Source

Computer Vision) can easily be ported to these platforms. This alleviates the process of

26 CHAPTER 2. ACTIVE CAMERA NETWORKS

developing image processing algorithms for these devices. In addition, mobile entities -

such as the AR Parrot’s quadrocopter - are equipped with powerful on-board communi-

cation and computing resources. Thus, the Smart Camera concept can be integrated into

these entities. Furthermore, the available communication abilities make way for enough

bandwidth within the network for fast and high-load message exchange between cameras

collaborating on surveillance tasks.

Based on this outcome, the following chapter introduces the system model and ex-

plains which assumptions are made to model Active Camera Networks as they have been

presented in this chapter.

Chapter 3

System Model

Visual surveillance of targets deals with image acquisition and interpretation of captured

data of moving targets. In this thesis, a set of Active Cameras cooperates with a set of

so-called perceiver nodes generating target requests. Perceiver nodes are low-cost sensors

acquiring proximity measurements of targets by appropriate sensor technology at spe-

cific demand instants. Since they are low-cost, they can be deployed on the surveillance

area in high numbers. Active Cameras react on requests to the perceiver nodes in their

actuation range to acquire high-quality target imageries. In order to achieve this, they

exchange information about their current state (alignment, position of targets, etc.). In

the remainder of this chapter, the components of such a system are described in detail.

3.1 Active Cameras

Each Active Camera is an autonomous node containing a mobile entity (e.g. a quadro-

copter as depicted in Figure 2.4) and a camera with integrated processing capabilities

(CPU, memory etc.) and a communication interface, i.e. a Smart Camera. They are

initially deployed on a spatial area, the Active Camera Network’s surveillance area. The

use of broadcast communication allows for an efficient usage of the wireless communica-

tion channel and enables the Active Cameras to establish local neighborhoods. Broadcast

communication is realized on layer two of the protocol stack, where packets are not re-

peated upon communication failures, sent within a bounded randomization interval, and

are queued in a finite interface queue. Local neighborhoods carry out tasks cooperatively.

The network connecting Active Cameras is a wireless mobile ad-hoc network (MANet),

since this allows for fast and dynamic reconfiguration. In such a MANet, we assume the

transmission range of an Active Camera to be at least two times its actuation range to

avoid network partitioning.

27

28 CHAPTER 3. SYSTEM MODEL

The region of the surveillance area that an Active Camera can travel to is referred

herein as actuation range, see Figure 3.1. The Active Camera’s actuation range is defined

by its actuation radius and center of movement, whereas the center of movement is the

camera’s position of deployment. The actuation range defines the camera’s reachable re-

gion by repositioning, see Section 3.1.2. Local neighborhoods resulting from spontaneously

connected cameras in sending/receiving range do not posses any knowledge beyond their

own communication range. Active Cameras communicate with neighboring nodes via a

wireless communication channel. For the used communication technology, it is assumed

that the delay jitter δlat is bounded. This can, for example, be achieved by using broadcast

communication on layer two of the protocol stack as explained before. Thus, packets are

not repeated upon communication failures, sent within a bounded randomization inter-

val, and are queued in a finite interface queue. The assumption of a bounded delay jitter

will be used to prove the correctness, see Section 5.2.5, of our reconfiguration algorithm

introduced in Section 5.2.

Each Active Camera has information about its current position. This may be obtained

by appropriate technologies such as GPS (or Galileo that should be operational by 2013)

in outdoor scenarios or by IEEE 802.11 LAN positioning in indoor scenarios [46]. Fur-

ther, it is assumed that the coordinate system is a metric space that allows to calculate

the Euclidean distance between any given pair of cameras. Additionally, we assume all

cameras are calibrated, see Section 2.4.2. Thereby the position and size of targets can be

derived from images captured by the camera. Cameras are able to focus on a target of a

certain size at a particular world location. Typically, the 3-D location of a target is its

center point. E.g. for biometrics, this would be the center point of the face.

An Active Camera prototype can be based on a quadrocopter as depicted in Figure

2.4. It contains an ARM9 processor with 468MHz, 128MByte of DDR RAM and Wi-Fi

b/g. The frontal camera is able to capture images of 640x480 pixels and the device is

running Linux. As image processing library Intel’s OpenCV (Open Source Computer

Vision) can be chosen, see [31], since this is a widely-used open source project with a high

reputation in the computer vision community and can be easily cross-compiled for the

ARM chipset.

3.1.1 Field of View

As depicted in Figure 3.2, we assume the camera’s field of view and its geometry can

be simplified according to De Floriani’s definition [5]. The algorithms proposed in this

thesis rely on 2-dimensional geometries, i.e. z = 0. It can be extended to a 3-dimensional

model, which would make way for a more sophisticated model for dynamic reconfiguration.

3.1. ACTIVE CAMERAS 29

Figure 3.1: System model: Active Cameras, perceiver nodes, and dynamic targets

Nevertheless, the computation of volumetric fields of view does in return require a much

higher computational effort [47]. Due to this reason, this has not been investigated further

in context of this thesis.

In our case, the node’s ground plane view is approximated by a triangular shape.

Although real world experiments show that it is rather similar to a trapezoid, this simpli-

fication has only minor impact on the accuracy for alignment and positioning. In [48, 33],

for example, the camera’s field of view is modeled as a triangular shape serving as a

basis for the implementation of a positioning and calibration algorithm. Thus, an Active

Camera’s field of view is characterized by its pose, i.e. location (x, y), orientation δ, span

angle α, and the distance d (determined by the camera’s focal length) as described in

Figure 3.2. The following three linear constraints define the area covered by the Active

Camera’s field of view and can be used to check whether a dynamic target with position

(x, y) can be seen or not:

cos(δ)(x− cx) + sin(δ)(y − cy) ≤ d (3.1)

− sin(δ)(x− cx) + cos(δ)(y − cy) ≤
a

2d
[cos(δ)(x− cx) + sin(δ)(y − cy)] (3.2)

− sin(δ)(x− cx) + cos(δ)(y − cy) ≥ −
a

2d
[cos(δ)(x− cx) + sin(δ)(y − cy)] (3.3)

30 CHAPTER 3. SYSTEM MODEL

Figure 3.2: Geometry of an Active Camera’s field of view [5]

3.1.2 Camera’s State

We assume that Active Cameras are installed in a way that collisions are avoided during

reconfiguration in case of overlapping actuation ranges. Furthermore, they know about

obstacles initially (preconfigured by maps) or from the images they collect and analyze.

Due to the distributed architecture we use, each camera only needs to know about ob-

stacles in its own sensing range and no global knowledge of all obstacles in the system is

required. For the detection of obstacles, advanced techniques need to be used.

The Active Camera’s state, AC.state, is represented by the following vector:

AC.state = (d, Ar, p) (3.4)

Center of movement d is the AC’s position of deployment.

Actuation range Ar is the AC’s actuation range defining its reachable region by repo-

sitioning. The actuation range is influenced by the AC’s actuation radius and its

center of movement (circular area around d).

Current position p = (x, y, z, α) is the AC’s current position (x, y, z) in its actuation

range including the orientation α.

3.1.3 Clock Synchronization

The majority of today’s computer systems (including Active Cameras) are based on

clocked circuits and hence contain hardware clocks. The cameras’ local clocks are a

3.2. PERCEIVER NODES 31

valuable tool for visual surveillance, since they offer time stamps for visual events. Based

on these time stamps, visual events can be ordered locally or fused across multiple cam-

eras. A typical hardware clock consists of a crystal-stabilized oscillator and a counter

that is incremented by one every oscillation period (e.g. upon detection of a falling or

rising edge). Based on the periodic time T of the oscillator, the counter h can be used

to obtain approximate measurements of real-time intervals in multiples of T . Thus, the

clock counter has the value h(t) at real time t and is incremented by one with a frequency

of f . The rate of the counter is defined as f(t) = dh(t)/dt. An ideal clock would have

rate of one at all times, but the rate of a real clock fluctuates over time due to changes in

supply voltage or temperature - just to mention a few. Usually, the deviation of the rate

from the standard rate 1 is assumed to be bounded. This deviation is called the clock’s

drift ρ(t) = f(t)− 1 = dh(t)/dt− 1, and denotes the corresponding bound with ρmax [49].

− ρmax ≤ ρ(t) ≤ ρmax ∀t (3.5)

A reasonable additional assumption is ρ(t) > −1 for all times t. This means that

a clock can never stop (ρ(t) = −1) or run backward (ρ(t) < −1). The oscillator’s rate

is given by the hardware manufacturer. Typically, Active Cameras contain off-the-shelf

oscillators, and thus we have ρmax ∈ [1ppm, 10ppm]1 [49]. The frequency fsync for re-

synchronization in order to guarantee a clock deviation of less than δ seconds can be

computed as follows: fsync = ρmax/δ. In this thesis, we assume a bounded clock drift ρmax

of 10ppm and a maximum acceptable clock deviation of δ = 40ms, i.e. one frame in case

of frame rate of 25 fps. This means that its maximum drift is 10µs per second, which

corresponds to 40ms in 4,000 seconds. Since we assume that the Active Cameras sample

their environment with a frame rate of 25 fps, the Active Cameras should be synchronized

with a frequency of fsync = 0.25mHz. Therefore, this synchronization procedure has to

be scheduled by the camera hourly as recovery task.

3.2 Perceiver Nodes

The Active Cameras’ task is to cooperatively observe targets of interest (ToIs), i.e. tar-

gets which have become salient on their way through the surveillance area, see Figure 3.1.

Whether a target is salient or not depends on the surveillance scenario, e.g. on public

places salient targets could be people running. To detect these ToIs, Active Cameras in-

teract with perceiver nodes. Perceiver nodes could be security personnel, smart sensors to

1Parts per million, that is 10−6. A clock with a drift of 10 ppm drifts 10 seconds in a million seconds,
or 10µs in one second.

32 CHAPTER 3. SYSTEM MODEL

identify and quantify perceivable events in their vicinity, stationary camera-based systems

used for object tracking or three-dimensional proximity measurement sensors as presented

in Section 2.2. We assume that a perceiver node is deployed at each AC’s center of move-

ment with a sensing range defined as twice the camera’s actuation range. Thus, they are

distributed throughout the workspace to ensure sampling the entire target trajectory of

moving targets. Moreover, they are able to identify and quantify occurring perceivable

events in their vicinity.

We assume that perceiver nodes are three-dimensional proximity measurement sensors

delivering the range, bearing, and elevation to a target from a known sensor pose, i.e.

a known sensor position and orientation. In addition to the position, the time of the

position estimation has to be added by the perceiver nodes. Therefore, we assume that

the perceiver nodes are synchronized by means of traditional network synchronization like

NTP [50]. Position estimations of targets within the perceiver nodes’ ranges are delivered

at a specific frequency, since target requests are sent with a frequency of fpHz. This is

necessary to allow for data fusion within the network. Perceiver nodes deliver the position

of targets containing a time stamp.

The next section explains how this data is used to generate target requests for the

Active Camera Network.

3.2.1 Target Requests

If a target is characterized by a perceiver node as a target of interest (TOI) due to a

salient behavior or by exceeding a pre-defined threshold of the sensor, a target request

is generated. A unique identifier is generated for each target as soon as it enters the

range of a perceiver node in the first place. It is assumed that perceiver nodes are able

to maintain the target’s identifier across demand instants locally and network-wide by

estimating future positions, e.g. based on Kalman filtering. Thus, a target request TR

consists of a target identifier ID, the location p (a three-dimensional vector including x,

y, and z) and a time stamp tocc:

TR = (ID, p, tocc) (3.6)

In this thesis, targets are assumed to be created dynamically during runtime rather

than being given initially. This makes the system as independent as possible from a

priori knowledge. The performance of the Active Camera Network depends on fulfilling

its observation objectives (all target requests that are valid for a demand instant) in order

to be able to capture the necessary imagery for the surveillance task. Target requests are

3.3. SUMMARY 33

generated by perceiver nodes and sent to the Active Camera Network through a dedicated

communication channel.

3.2.2 Modeling Perceiver-Observation Uncertainty

Position estimations from perceiver nodes can contain errors. This may be due to un-

expected changes or unmeasured variances in the perceiver itself. Since we assume that

the perceiver nodes are calibrated, systematic errors stemming from calibration errors are

neglected. Nevertheless, the sensor’s observation can also be influenced by random errors.

Random errors are the property of the perceiver and, thus, cannot be altered. Therefore,

the perceiver’s parameter estimation is modeled for a target’s location by pe, which is the

correct value p corrupted by a random localization error modeled by a circle of radius h

around p (see Section 6.2.1 for results).

3.3 Summary

In this chapter, our system model has been introduced, which will be used as a basis for

the system architecture and dynamic reconfiguration methods in the following chapters.

Our system model consists of Active Cameras, which interact with low-cost perceiver

nodes. Perceiver nodes are three-dimensional proximity measurement sensors delivering

a location and time stamp of targets within the camera network’s surveillance area. A

perceiver node is deployed at each camera’s center of movement with a sensing range

defined as twice the camera’s actuation range. In case of the detection of a target, a

target request is generated by a perceiver node and sent to the camera network. Based

on the concept of perceiver nodes and target requests, highly dynamic surveillance areas

can be modeled.

Each Active Camera is an autonomous node containing a mobile entity (e.g. a quadro-

copter) and a camera with integrated processing capabilities (CPU, memory, etc.) and

a communication interface, i.e. a Smart Camera. Active Cameras are able to exchange

messages with neighboring nodes. Thereby, local neighborhoods can be established. Local

neighborhoods carry out tasks cooperatively. The network connecting Active Cameras is a

wireless mobile ad-hoc network (MANet). In such a MANet, we assume the transmission

range of an Active Camera to be at least two times its actuation range to avoid network

partitioning.

Based on this system model, we present our system architecture in the following chap-

ter.

34 CHAPTER 3. SYSTEM MODEL

Chapter 4

System Architecture for Active

Cameras

The most important design feature of an Active Camera Network as introduced here is

to support the reconfiguration of participating nodes in terms of their pose, i.e. orien-

tation and position. The system architecture presented in the following allows for this

reconfiguration and relies on a network of Active Cameras and perceiver nodes. Active

Cameras need to reconfigure their pose in order to observe dynamic targets cooperatively

and consider target requests sent by perceiver nodes, such as proximity sensors. This

chapter presents basic functionalities concerning positioning and coordination of Active

Cameras. This serves as a basis for the dynamic reconfiguration methods as introduced

in Chapter 5. In Section 4.1, we discuss requirements for Active Camera Networks. Sec-

tion 4.2 introduces our system architecture, which has been implemented as middleware.

Finally, Section 4.3 concludes the chapter with a summary.

4.1 Requirements of Active Camera Networks

In comparison to traditional middleware implementations, a middleware for Active Cam-

era Networks has to fulfill additional requirements. This is not merely due to different re-

source constraints but is also a consequence of the application domain [3]. Active Camera

Networks are intended for processing captured images close to the sensor. This requires

the support of sophisticated image processing algorithms through the middleware. In

addition, wireless communication is relatively expensive compared to processing and is

thus used sparingly (e.g. in case of certain events or to send aggregated sensor data to a

base station). Collaboration of individual nodes is typically inherent to the application.

Active Camera Networks demand higher communication bandwidth in order to exchange

35

36 CHAPTER 4. SYSTEM ARCHITECTURE FOR ACTIVE CAMERAS

features extracted from images, or even streaming of the video data.

Typical Active Camera Network applications consist of tens to hundreds of Active

Cameras (e.g. in wide-area scenarios such as airports or train stations), and various

different tasks have to be executed. Assigning tasks manually to the Active Cameras

is almost impossible. Due to this reason, a user should simply define the system goal

through a set of tasks that have to be carried out (e.g. person tracking) combined with

some restrictions and action rules to define the behavior in case of an event. The Active

Camera Network itself then has to allocate the tasks to the Active Cameras. If a task

cannot be performed by a single camera (e.g. creating a multi-view perspective of a scene),

Active Cameras have to organize themselves and collaborate to fulfill the demands. This

makes way for a self-organizing system, which should be based on a distributed and

decentralized control in order to increase the robustness of the system.

The following list summarizes the requirements of Active Camera Networks:

• Support of sophisticated image processing algorithms

• Process and aggregate data before communication

• Simple definition of the system goal by the user

• Usage of distributed and decentralized control algorithms for scalability and robust-

ness of the system

Our system architecture has been designed as middleware for Active Camera Networks.

This is situated between the application and the underlying operating system, network

protocol stack, and hardware. It aims at bridging the gap between application programs

and the lower-level hardware and software infrastructure in order to ease the development

of distributed systems [51]. The following section introduces our system architecture

fulfilling the aforementioned requirements.

4.2 Adaptive Location Management Architecture

Given the previously introduced requirements for Active Camera Networks, it is obvious

that a different kind of middleware is necessary. Middlewares for wireless sensor networks

(cf. Section 7.2.2-7.2.3) are not intended to handle advanced image-processing tasks

and sending large amounts of data. On the other hand, adapting a general-purpose

middleware (cf. Section 7.2.1) is feasible and could fulfill the aforementioned requirements,

although the introduced overhead does not yield efficient resource utilization. Therefore,

4.2. ADAPTIVE LOCATION MANAGEMENT ARCHITECTURE 37

Figure 4.1: Single Active Camera: Adaptive Location Management Architecture

we introduce a new software architecture for Active Camera Networks in the remainder

of this section, which has been implemented as middleware for the ARM chipset, paving

the way for scalability and adaptivity in these networks.

4.2.1 Architecture Overview

The reconfiguration methods presented in this thesis have been integrated into our mid-

dleware [52] that is presented in Figure 4.1. It shows a block diagram of the software

components forming a single Active Camera. Its distributed Observer/Controller design

makes way for scalability and adaptivity in these networks. Our design consists of the

following layers:

• Layer 0: This layer contains the basic functionalities for active sensing and pro-

cessing such as the capturing and low-level analysis of image data and the physical

reconfiguration of the camera’s pose, i.e. the position and orientation. The low-level

analysis of image data can be pre-processing of imagery such as white balance or

color transformations, see Section 2.4.1.

• Layer 1: The layer is responsible for the communication and contains the Transport

Manager and the Neighborhood Cache. The main purpose of the layer is to keep

information about neighboring nodes, since their mobility may lead to frequent state

changes.

• Layer 2: In this layer, the Mapping Engine and Pose Manager are included, which

aim at determining the optimal pose of an Active Camera for visual surveillance

38 CHAPTER 4. SYSTEM ARCHITECTURE FOR ACTIVE CAMERAS

of a corresponding target within the workspace. For this purpose, the camera’s

current location, motion capabilities, point in time of requested observation, and

the model of the environment are considered. In order to map the camera’s position

to real-world coordinates, a map of the camera’s actuation range must be available.

This could be given by the user initially or generated at runtime by sophisticated

reconstruction mechanisms as presented by Sester et al. [53]. In case of a cluttered

environment, the Mapping Engine would also be responsible to detect obstacles

within the camera’s actuation range. In order to learn the locations of obstacles,

range sensors and similar techniques as presented in [54] could be used. Such a laser

ranging device could be mounted on the Active Camera.

• Layer 3: The objective of this layer is to handle incoming requests and organize the

execution of available reconfiguration methods in order to maximize the system’s

overall performance. In this layer, the dynamic reconfiguration methods of Chapter

5, i.e. DRofACN and ACFSync, are situated.

Nevertheless, other methods could be added to this layer to be scheduled by the

Reconfiguration Manager. In many surveillance applications, for example, it is of

high interest to analyze spatio-temporal datasets for recurring patterns, e.g. to

automatically extract pedestrian trajectories. In [55], Sester et al. present a cen-

tralized approach, which is able to examine spatio-temporal datasets for movement

patterns. The key feature of the approach is that it is highly adaptive, i.e. patterns

are not specified in advance (as meaningful semantic patterns) but established from

the data set. Adding an algorithm to the Reconfiguration Manager gathering all rel-

evant spatio-temporal data from neighboring nodes, would pave the way for utilizing

such methods for distributed pattern recognition across the network. Nevertheless,

this has not been investigated in this thesis.

• Cross-Layer Event Handler: Context data acquired by Active Cameras or other

integrated sensors can be used through this component in every layer. Thereby,

applications beyond the scope of classical wireless sensor networks become feasible.

For instance, an optical compass (cf. [56]) or other activity recognition based algo-

rithms [57], which would be situated in Layer 2 or Layer 3 but using visual data

from Layer 0, could be realized.

The core layers making way for reconfiguration within Active Camera Networks are

Layer 2 and Layer 3. The coordination layer is responsible for determining how many

and - even more important - which cameras are to be used for target observation in order

4.2. ADAPTIVE LOCATION MANAGEMENT ARCHITECTURE 39

to optimize the performance of the surveillance system for current and upcoming target

requests. The positioning layer helps to determine the optimal pose of each node for

active target requests.

The following sections give a detailed description of each layer.

4.2.2 Layer 0: Active Sensing

The Actuators component is implemented as standalone process able to control IP-based

position drives. As one example, an interface for controlling the position drive of the

Axis PTZ 214 camera 1 has been implemented. Currently, the pan and tilt angle, and

the zoom setting can be controlled. Apart from the camera’s PTZ abilities, control for

other settings like built-in autofocus and white balance have been implemented. Future

versions could contain software for controlling more sophisticated mobile entities, such as

the Parrot’s AR Drone2, see Section 2.3.2. A socket-based communication scheme is used

as unified interface.

For the Sensors component, an extensive software library for computer vision (OpenCV

[31]) is used for image acquisition and interpretation. OpenCV contains various computer

vision algorithms which incorporate many functions for image acquisition and interpre-

tation as introduced in Section 2.4. Additionally, OpenCV is able to save still images,

record video streams, and encode them in different ways. This data can be accessed by

the Cross-Layer Event Handler, which is presented in Section 4.2.6, in order to forward

them to subscriber components of other layers. For invocation and data transfer purposes,

a socket based communication scheme is used. The exchange of image data between the

sensor elements and other elements is done in shared memory. The shared memory block

can be accessed from all components that need to work on image data.

4.2.3 Layer 1: Communication

As stated in Chapter 3, Active Cameras communicate via wireless ad-hoc networks. Net-

work functionalities are of major importance for a self-organizing system.

Message exchange is coordinated by the Transport Manager which is a thread running

on each Active Camera managing a message bag for outgoing messages. As soon as the

thread is started, a timer is initialized. In case the timer expires, all messages that have

been collected in the message bag are sent. Messages are sent using broadcast communi-

cation, since this allows for an efficient usage of the wireless communication channel and

1http://www.axis.com/products/cam 214/
2http://ardrone.parrot.com

40 CHAPTER 4. SYSTEM ARCHITECTURE FOR ACTIVE CAMERAS

enables the Active Cameras to establish local neighborhoods. Broadcast communication

is realized on layer two of the protocol stack, where packets are not repeated upon com-

munication failures, sent within a bounded randomization interval, and are queued in a

finite interface queue, see Section 3.1. In case the message bag was empty, the following

heartbeat message is sent in order to inform neighboring nodes that the camera is still

alive:

• Sender ID

• Message ID

• Time stamp

• Position (x,y,z)

• Orientation δ

• Span angle α

• Actuation radius

• Center of movement

The total length of a heartbeat message is 40 Byte, since all parameters contain integer

values. Data from received heartbeat messages are stored in the Neighborhood Cache of

each neighboring camera.

The Neighborhood Cache component is a data structure. It collects various information

relevant to the reconfiguration methods, such as the position of the neighboring nodes.

The Neighborhood Cache can be extended to perform specific query and update tasks of its

data for other elements. Algorithm 1 gives a short overview about the algorithm in pseudo

code. Further background information about the implementation of the Neighborhood

Cache can be found in [58].

4.2.4 Layer 2: Positioning

The objective of the Positioning Layer is to determine the optimal pose of a node for the

surveillance of a particular target, i.e. to fulfill the sensing objective, which was given

by the User, see Figure 4.1. For this purpose, the Active Camera’s current location, its

motion capabilities (e.g. whether it is a pan/tilt/zoom camera or a mobile robot), the

time until the specific target request is obsolete, and the model of the environment have

to be considered.

4.2. ADAPTIVE LOCATION MANAGEMENT ARCHITECTURE 41

Algorithm 1 Heartbeat Algorithm

1: init:
2: set timer //timer for broadcasting heartbeat message, e.g. 2.5s
3: set TTL //time to live, e.g. 10s
4: set NC ← empty //start with empty neighborhood cache
5:

6: on incoming heartbeatMsg :
7: if NC contains information about neighbor already
8: update information about neighbor in NC
9: else

10: add neighbor to NC
11: end if
12: set time-to-live of neighbor to TTL
13: end on
14:

15: on timerexpire :
16: broadcast a heartbeat message
17: delete neighbors with expired TTL
18: end on

In order to fulfill the sensing objective, the various requirements of the computer

vision algorithms which are responsible for the image interpretation step, see Section 2.4,

have to be translated into concrete requirements for the positioning of the camera. An

optimal position is achieved by maximizing the probability of successfully completing

the addressed sensing objective, which is encapsulated into expected capture conditions,

including distance at which a subject is imaged, angle of capture, and several others.

For a tracking application, for example, the sensing objective could be translated into

requirements for the positioning as follows: People have to be captured from a side view

in order to alleviate the process of background subtraction, since the object’s motion is

pronounced stronger from such a perspective.

In this thesis, we assume the sensing objective for visual surveillance to be frontal

face detection. For frontal face detection, we assume the requirements of the algorithm

presented in [6]. This algorithm requires that a face in the Active Camera Network’s

workspace has to be mapped to at least 20x20 pixels in the image, see Figure 4.2, and

a view angle of less than 15 degrees. We assume that a human face has a size of 20x20

centimeters. That means that 1 cm of the face has to be mapped to 1 px in the image, i.e.

lres = 0.01m. Given the camera’s angular field of view in horizontal direction α (e.g. 48◦

in case of an Axis PTZ 214 with a focal length of 4.1mm), and the image size in pixels

(e.g. 4CIF: 704x576 pixels, i.e. wpx = 704), we can compute the maximum distance d

up to which a camera can reliably perform the face detection algorithm (in horizontal

42 CHAPTER 4. SYSTEM ARCHITECTURE FOR ACTIVE CAMERAS

Figure 4.2: Optimal target-to-camera distance

direction), using the following relationship [54]:

tan
α

2
=
a/2

d
=

(wpx ∗ lres)/2
d

(4.1)

Thus, the maximum distance d is 7.9 meters in this specific case (only considering the

horizontal view).

Thus, we are able to derive the requirements for the Positioning Layer from the sensing

objective including the computer vision algorithm. Figure 4.3, for example, presents the

combination of both requirements, i.e. a maximum distance of 7.9 meters and a view

angle of less than 15 degrees.

The Mapping Engine must also consider the Active Camera’s dynamic motion capabil-

ities, e.g. the maximum velocity vmax, acceleration a, and the time span until the specific

target leaves the camera’s actuation range.

Based on this model, the Mapping Engine determines the possible points in its ac-

tuation range where the Active Camera can travel to before the target leaves. This is

triggered each time a target enters the Active Camera’s actuation range. After the Map-

ping Engine has determined the possible points for traveling, the Pose Manager evaluates

them in terms of the imaging quality function, see Figure 4.3, defined by the User through

the system goals, see Figure 4.1. This is depicted in Figure 4.4 through a heat map. For

instance, in case a biometrical algorithm, such as a frontal face detection algorithm, is

used, images of targets should be captured at a maximum distance of 7.9m with a view

angle of 0◦. Yellow areas denote preferred areas, where the imaging quality will be maxi-

4.2. ADAPTIVE LOCATION MANAGEMENT ARCHITECTURE 43

Figure 4.3: An example of the location-dependent quality for observing a target in the
camera’s actuation range

Figure 4.4: An example of the location-dependent quality for observing a target in the
camera’s actuation range on the basis of the target’s current position

mal and the reconfiguration cost minimal. The target’s future positions are extrapolated

based on its previous positions. Therefore, the heat map has to be recalculated for every

state change of the target. The creation of this heat map is driven by the system goals

which are defined by the User, e.g. by the aforementioned imaging quality functions. In

addition to static parameters, such as the target-to-camera distance or view angle (see

Section 5.2.1 for quality functions concerning the DRofACN method), dynamic parame-

ters could be added. This can be the current illumination within the actuation range or

dynamic obstacles. Nevertheless, this has not been investigated in terms of this thesis.

44 CHAPTER 4. SYSTEM ARCHITECTURE FOR ACTIVE CAMERAS

Figure 4.5: Target Information Message (TIM) and corresponding information of a target.
The target’s ID is unique and defined by the perceiver node detecting the target’s first
occurrence.

4.2.5 Layer 3: Coordination

The Coordination Layer contains the Reconfiguration Manager, which can be configured

by the User through system goals, see Figure 4.1. In this thesis, the Reconfiguration

Manager was defined with the system goal to periodically synchronize the Active Camera’s

clock to avoid inaccuracies in terms of data fusion. In case no infrastructure for clock

synchronization is available, the Reconfiguration Manager shall chose our reconfiguration

method ACFSync presented in Section 5.3, which is based on visual events. These visual

events can either stem from a visual beacon or from natural events in the surveillance

area. In the second case, the synchronization has to be performed in a cooperative manner

by neighboring Active Cameras.

The second system goal given by the User is to capture exactly one image of each target

of interest in the surveillance area. This is achieved by the reconfiguration method DRo-

fACN which has to be executed by the Reconfiguration Manager constantly. It enables

the Active Cameras to cooperatively observe multiple, dynamic targets in a cooperative

manner. If a target leaves the actuation range of an Active Camera and has not been

observed yet, neighboring Active Cameras take over the target to achieve a system-wide

observation. The DRofACN method is presented in detail in Section 5.2.

The Target Cache is used to receive incoming target requests at runtime. As ex-

plained in Chapter 3, perceivers communicate with the Active Cameras on a separate

4.3. SUMMARY 45

communication channel in contrast to the camera-to-camera communication. Incoming

target-information-messages (TIM) as depicted in Figure 4.5, e.g. target requests from

perceiver nodes or target updates from neighboring cameras, are handled by a separate

thread running on each Active Camera in order to add new target requests to the target

cache or update existing ones. The TIM messages include spatio-temporal information

about the target (e.g. its position and speed, a time stamp and status parameters such

as its observation state or if it has been scheduled for observation). The exchange of

TIM messages allows the cameras to collaborate on target acquisition, e.g. to avoid that

a target is scheduled for observation by two (neighboring) cameras. TIM messages are

rather small having a length of 30 Bytes each, since seven fields contain integer values

and the last two ones booleans.

4.2.6 Cross-Layer Event Handler

Visual data or, in general, sensor data acquired by the sensors of an Active Camera can

be used locally or in a cooperative manner. Therefore, the task of the Cross-Layer Event

Handler is to allow components of all layers to subscribe to sensorial data. E.g. in [56],

the Mapping Engine contains an optical compass and is subscribed to the image sensor in

order to detect rotation changes by visual means, which cannot be detected by GPS. In

addition, sophisticated activity recognition algorithms have been implemented using this

concept, see [57]. Thus, components can subscribe to specific activities such as left or right

turnings. Furthermore, visual context data acquired by Active Cameras in a cooperative

manner could be used for other tasks like key generation for encryption as filed for a

patent [59]. Thus, smart activity-based applications beyond the scope of classical camera

networks become feasible.

4.3 Summary

This chapter presented a system architecture for Active Camera Networks. Given the re-

quirements for Active Camera Networks, we concluded that a different kind of middleware

is necessary, since middlewares for wireless sensor networks are not intended to handle

advanced image-processing tasks and sending large amounts of data. On the other hand,

adapting a general-purpose middleware is feasible and could fulfill the aforementioned re-

quirements, although the introduced overhead does not yield efficient resource utilization.

Therefore, we introduced a new software architecture for Active Camera Networks, which

has been implemented as middleware for the ARM chipset, paving the way for scalability

and adaptivity in these networks.

46 CHAPTER 4. SYSTEM ARCHITECTURE FOR ACTIVE CAMERAS

The system architecture is encapsulated into four layers and runs on each camera in-

dependently. Its distributed Observer/Controller design allows for scalability concerning

the number of cameras and adaptivity in terms of the environment. Layer 0 contains the

basic functionalities for active sensing and processing such as the capturing and low-level

analysis of image data and the physical reconfiguration of the camera’s pose. Layer 1 is

responsible for the communication. In Layer 2, components are included aiming at deter-

mining the optimal pose of an Active Camera for visual surveillance of a corresponding

target within the workspace. The objective of Layer 3 is to handle incoming requests

and organize the execution of available reconfiguration methods in order to maximize the

system’s overall performance.

Based on this architecture, dynamic reconfiguration methods have been developed and

integrated in Layer 3 which are introduced in the following chapter.

Chapter 5

Dynamic Reconfiguration Methods

This chapter presents dynamic reconfiguration methods that make way for self-organization

and self-configuration in Active Camera Networks. Since the underlying problem of opti-

mal wide-area target observation in dynamic environments is NP-complete [60], a heuristic

approach has been pursued. A method that is approximating solutions to chose the next

target to be observed in the most efficient way is DRofACN. Afterwards, the reconfigu-

ration method ACFSync is presented for active frame synchronization in Active Camera

Networks. This method is able to synchronize the frames of neighboring cameras on the

basis of visual events. Utilizing visual events for frame synchronization comes along with

several advantages compared to traditional synchronization protocols like NTP [50].

In Section 5.1, we will state the formal problem statement for wide-area target acqui-

sition, which is NP-complete. Afterwards, we present the heuristic DRofACN in Section

5.2, which approximates solutions for this problem. In Section 5.3, we introduce a method

for active frame synchronization called ACFSync. Finally, we close with a summary.

5.1 Problem Statement: Wide-Area Target Acquisi-

tion

Dynamic reconfiguration for wide-area target acquisition is needed when the number of

observation targets exceeds the number of Active Cameras in the surveillance area. In this

case, camera scheduling and control become nontrivial, since the following requirements

have to be met for visual surveillance:

• none of the given targets should be neglected,

• targets should not receive excessive preference over other targets,

• the quality of captures should be optimized, and

47

48 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

• the assignment of cameras to targets should consider their capacity restrictions (e.g.

available observation time) to meet the quality requirements.

Targets may be variable in terms of their speed and entrance points of the Active

Camera’s actuation range. Thus, the camera has to cope with variable reaction times. In

case of multiple targets entering its actuation range at the same time, the reconfiguration

problem can be modeled as the classical Knapsack problem [61], where the camera’s

reconfiguration time (including time for repositioning the camera and image processing)

represents the knapsack size and the quality of captures the values. These values are

defined by the requirements of the underlying image processing function. In case of

performing biometric tasks, for example, imagery captured below a maximum distance

receives a higher value than imagery captured above this distance. Thus, the goal is that

the sum of all values (of those captures) is as large as possible and that there is a capture

of every target before leaving the surveillance area. Therefore, this problem is derived

from the problem faced by someone who is constrained by a fixed-size knapsack and must

fill it with the most useful items.

This means that neighboring cameras should be able to communicate with each other

and exchange information about targets. Targets, which have been observed and detected

successfully, should receive lower preference in the neighboring actuation range. This

makes way for object observation in wide-area surveillance scenarios such as airports

or train stations. Typically, this kind of scenarios consists of tens to hundreds of Active

Cameras [62]. Thus, cooperative target acquisition is important in high-load, multi-target

scenarios in which one camera is not able to detect all targets in its actuation range due

to constrained capacities.

The following section states this problem formally.

5.1.1 Formal Description

In this section, we formulate the problem of dynamic reconfiguration of Active Cameras

(ACs) for wide-area target acquisition. The goal is to make exactly one capture of each

target of interest (ToI) while moving through the Active Camera Network’s surveillance

area exceeding a minimum of required imaging quality. Before we state the problem

formally, we give an illustrative example: Consider an Active Camera Network of two

Active Cameras as depicted in Figure 5.1. In a time interval [t′, t′′), there are two ToIs

assumed to be persons entering the Active Camera Network’s surveillance area. ToI 2 is

processed by AC 1. Since ToI 1 and ToI 2 enter the actuation range of AC 1 at nearly

the same point of time, AC 1 has to decide which ToI to observe. Since it moves to ToI 2

5.1. PROBLEM STATEMENT: WIDE-AREA TARGET ACQUISITION 49

Figure 5.1: Two targets of interest (ToIs) are observed (observation condition is true) in
an Active Camera Network of two Active Cameras (ACs) in [t′, t′′)

(due to achieving a higher imaging quality than for the other target), ToI 1 cannot be

observed and has to be covered by AC 2. Since AC 1 informs AC 2 that ToI 2 has been

observed, AC 2 can focus on the observation of ToI 1. Thereby, both ToIs are captured

by collaboration before leaving.

The main goal of our reconfiguration method is to optimize the Target Acquisition

Ratio (TAR) (see Equation 5.1), measuring the number of successfully observed ToIs

leaving in relation to the total number of targets, which have entered the surveillance

area. In case of TAR = 1, there is a high-quality close-up view of each ToI that has

entered the Active Camera Network’s workspace. The observation condition in Equation

5.2 is evaluated to 1 (i.e. targeti.observed(t) = 1), if the target has been observed in the

time interval [t′, t) by an AC j when leaving at time t. This holds, if there is one capture

of an AC j, i.e. targeti.observedBy(camj) = 1, exceeding the minimum required imaging

quality qmin for t′ ≤ t < t′′. Whether the capture of AC j of target i exceeds the threshold

qmin, is evaluated by the imaging quality function Qimg
ij . Qimg

ij is a time-dependent function

evaluating the ToI’s position while passing the AC j’s actuation range. For this purpose,

the ToI’s position in terms of the view angle and viewing distance is investigated, since

both parameters are crucial for successful image processing, e.g. face detection.

Part 2 of the observation condition (
∑

camj∈AC targeti.observedBy(camj) = 1), i.e.

assuming that each target is observed exactly once before leaving the surveillance area,

comes with the following advantages from a practical and theoretical perspective:

Practical issues: The condition that every target has to be observed exactly once

allows for local and network-wide load balancing within the camera network. By cooper-

ating on target acquisition, overload situations can be avoided/handled more efficiently,

50 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

since the exchange of information paves the way for target prioritization. In addition,

restricting the number of captures to one makes way for efficient resource utilization,

since mechanical problems due to dynamic fatigue of the camera mechanics (e.g. for

repositioning) are reduced.

Theoretical issues: Furthermore, the observation condition is used to prove the

NP-hardness in Section 5.1.2. The problem of wide-area target acquisition is equivalent

to the Hamiltonian path problem, since an instance of the Hamiltonian path problem is

given by a graph G = (V,E) and a vertex v, and it has to be decided if there exists a

path starting from v that visits all vertices exactly once. This is similar to an instance

of the wide-area target acquisition problem, since an AC could be placed at a vertex v

and the remaining |V | − 1 vertices could be the designated targets. Thus, an edge means

that the target is observed with an imaging quality exceeding qmin and before leaving the

surveillance area.

Formally, the problem stated above can be defined as follows:

Given n ToIs (targets of interest) entering and leaving the surveillance area of an

Active Camera Network in the time interval [t′, t′′) (time is assumed to be discrete and

represented as non-negative integers):

Maximize:

TAR =
1

n

t′′∑
t=t′

∑
targeti ∈ targets

targeti.observed(t) (5.1)

Subject to:

Observation condition (5.2)

(1) Observed before leaving the surveillance area:

targeti.observed(t) = 1↔ ∃ camj ∈ AC :

Qimg
ij > qmin ∧ targeti.observedBy(camj) = 1

(2) Observed by exactly one AC:

∀targeti :∑
camj∈AC

targeti.observedBy(camj) = 1

5.1. PROBLEM STATEMENT: WIDE-AREA TARGET ACQUISITION 51

Figure 5.2: A Hamiltonian path (red) over a graph.

5.1.2 Proof of Problem Complexity

Optimizing the target acquisition ratio (TAR) for wide-area target acquisition under the

observation condition is NP-hard, as shown by the following theorem.

Theorem 1: There is no polynomial time algorithm for solving the wide-area target

acquisition problem optimally with the TAR objective under the observation condition,

unless P = NP.

Proof: We show that a polynomial time algorithm for wide-area target acquisition

with the TAR objective implies a polynomial time algorithm for Hamiltonian path, a well

known NP-complete problem.

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is

a path in an undirected graph that visits each vertex exactly once, see Figure 5.2. A

Hamiltonian cycle (or Hamiltonian circuit) is a cycle in an undirected graph which visits

each vertex exactly once and also returns to the starting vertex. There is a simple relation

between the two problems. The Hamiltonian path problem for graph G is equivalent to

the Hamiltonian cycle problem in a graph H obtained from G by adding a new vertex

and connecting it to all vertices of G. The Hamiltonian cycle problem is a special case of

the traveling salesman problem, obtained by setting the distance between two cities to a

finite constant if they are adjacent and infinity otherwise.

Our proof is analog to the one used by Lagoudakis et al. [63] who presented that the

multi-robot routing problem is NP-complete. Without loss of generality, we make the

following assumptions for simplification, which do not lead to an overall reduction of the

problem complexity:

52 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

1. The Active Camera Network consists of one AC only and its actuation range Ar =∞
(wide-area).

2. Time is not considered.

Considering time or adding more ACs with restricted actuation ranges increases the

problem complexity, since the combinatorial complexity rises, e.g. by adding time the

correct sequence of observations has to be found or by adding cameras the allocation

of ToIs to cameras has to be determined. Thereby, the problem is transferred into the

knapsack problem as explained in Section 5.1. Nevertheless, this is not considered in this

proof.

An instance of a Hamiltonian path problem is given by a graph G = (V,E) and a

vertex v, and it has to be decided if there exists a path starting from v that visits all

vertices exactly once. We reduce it to an instance of wide-area target acquisition as

follows. Let G′ = (V, c) be the complete (i.e. contains an edge between all pairs of

vertices) weighted graph on V with costs c(u,w) = 1, if (u,w) ∈ E of the graph G, and

c(u,w) > 1, otherwise. The AC is placed at vertex v and the remaining |V | − 1 vertices

are designated as ToIs. The weights in G′ satisfy the triangle inequality and a weight of

one, c(u,w) = 1, means that the ToI is observed before leaving the surveillance area with

an imaging quality exceeding qmin (observation condition (1)). A Hamiltonian path in G

exists if and only if the optimal solution for wide-area target acquisition in G′ has a cost

of |V | − 1, i.e. every ToI is visited only once (observation condition (2)). In case a ToI

is visited twice, the path is not a Hamiltonian path. A Hamiltonian path in G is also an

optimal solution for wide-area target acquisition in G′ with cost |V | − 1, since this means

the observation condition is fulfilled for each ToI and TAR = 1. Vice versa, if G does

not have a Hamiltonian path, then any path in G′ that starts from v and visits all the

vertices exactly once has to use some edge of cost greater than one in G′ or of one edge

twice. Therefore, the cost of an optimal solution will be at least |V |. �

Given this hardness result, the following section introduces a lightweight heuristic

for dynamic and distributed reconfiguration for solving instances of the wide-area target

acquisition problem.

5.2 DRofACN

DRofACN is a distributed control algorithm for dynamic reconfiguration of cooperating

Active Cameras (ACs) [64]. The basic idea of DRofACN is that a set of ACs collaborates

for acquiring close-up views of targets in a surveillance area. The AC control is based on

5.2. DROFACN 53

Figure 5.3: State machine of the DRofACN method

the output of perceiver nodes, i.e. generated target requests, estimating the position of

salient targets, i.e. ToIs (see Section 3.2), within the ACs’ actuation ranges. The main goal

is to acquire views for object tracking or for biometric purposes, such as face detection.

E.g. in case of face detection, there should be one capture of each ToI’s face before it

leaves the Active Camera Network’s surveillance area. In case of object tracking, targets

have to be captured in a way alleviating the process of foreground-background subtraction

for trajectory composition.

DRofACN is based on a state-machine which will be described in detail in the fol-

lowing. Figure 5.3 shows an overview about the different states of the state-machine. A

timer is initialized (see Algorithm 2 line 3) and the AC is set to IDLE mode waiting

for observation tasks. In case the timer expires (Algorithm 3 line 1), all target requests

within the target cache are processed in order to find the next observation task, i.e. the

most-promising target request for image acquisition. A timer is chosen in order to reduce

CPU load by triggering the scheduling process in discrete time steps only. Thus, it al-

lows for scalability in overloaded scenarios. In case a target request is found exceeding a

pre-defined imaging quality threshold, the AC changes to MOVING mode. In this mode,

the AC informs neighboring ACs about its intention to observe the target and starts to

move towards the target in order to acquire close-up views. After arriving, the AC enters

54 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

OBSERVATION mode in order to acquire high-quality imagery. Afterwards, it returns

to IDLE mode.

5.2.1 Asynchronous Scheduling Process

In this section, we present the scheduling process, which is performed asynchronously to

allow for short reaction times in dynamic environments. The scheduling process operates

on data in the target cache stemming from the perceiver nodes. These communicate with

the Active Cameras on a separate communication channel in contrast to the camera-

to-camera communication. Incoming target-information-messages (TIM), as explained

in Section 4.2.5, are handled by a separate thread running on each Active Camera, see

Algorithm 2.

Algorithm 2 DRofACN - Target Cache Thread

1: init:
2: set ID //unique device identifier of local AC
3: set timer //triggering replanning each 500ms
4: init TC //start with empty target cache
5: init Ar, p //p with orientation (x, y, z, α)
6: init state← IDLE
7: trcur ← empty, qcur ← 0
8:

9: on incoming TIM : //from perceivers/ACs
10: if TIM.targetID ∈ TC
11: update TC //data from neighbors
12: else //new target
13: add targetRequest to TC
14: end if
15:

16: //conflict with neighboring AC
17: if trcur.targetID ≡ TIM.targetID ∧ TIM.scheduled
18: trcur.cameraID ← min(ID, TIM.cameraID)
19: if trcur.cameraID 6= ID //neighbor wins
20: state← IDLE //stop moving
21: qcur ← 0, trcur ← empty //start replanning
22: else
23: //nothing to do
24: end if
25: end if
26: end on

The TIM messages include spatio-temporal information about the target (e.g. its

position and speed, a time stamp and status parameters such as its observation state or if

5.2. DROFACN 55

it has been scheduled for observation). The exchange of TIM messages allows the cameras

to collaborate on target acquisition, e.g. to avoid that a target is scheduled for observation

by two ACs. Incoming messages are processed immediately on their arrival. Thus, part 2

of the observation condition as defined in Equation 5.2 is fulfilled. Nevertheless, conflicts

can occur in case a neighboring Active Camera has scheduled the same ToI for observation,

see Algorithm 2 line 16. In this case, the conflict is resolved as follows: The ToI is allocated

to that camera possessing the lower device identifier, see Algorithm 2 line 18. The other

camera starts replanning.

Algorithm 3 DRofACN - Asynchronous Scheduling Process
1: on timerexpire :
2: qmax ← 0, trmax ← empty
3: forall tri ∈ TC do
4: if tri.observed ≡ true ∧ tri is about to leave Ar
5: broadcast TIM(tri) //forward observed targets
6: delete TC.tri
7: else //examined w.r.t. imaging quality
8: qi ← expc1·d

2 ∗¬tri.scheduled //d : target distance
9: if qi > qcur

10: forall pj ∈ Ar do
11: tp ← now() + predictArrivalOfCam(pj)
12: ptr ← predictTargetPos(tri, tp) //with orientation
13: qtemp ← Qimg(p, ptr)
14: if ptr ∈ Ar ∧ qtemp > qmax
15: qmax ← qtemp, trmax ← tri
16: end if
17: end forall
18: end if
19: end if
20: end forall
21: if qmax > qcur ∧ qmax > qmin ∧ ¬trmax.scheduled
22: qcur ← qmax, trcur ← trmax
23: trcur.scheduled← true //is scheduled
24: broadcast TIM(trcur) //inform all neighbors
25: state←MOV ING
26: end if
27: set timer //reset timer
28: end on

Based on the data in the target cache, the scheduling process is executed each time

the timer expires, see Algorithm 3 line 1. This timer is set after initialization of the AC,

see Algorithm 2 line 3. The scheduling process is responsible for finding the ToI with the

highest imaging quality. In case a ToI exists in the target cache that has already been

56 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Figure 5.4: Quality function of target-to-camera distance [6] (red points correspond to
computer vision success rates for the x-values respectively and are supporting points for
the construction of the quality function)

observed, i.e. by a neighboring AC, and the ToI is about to leave the AC’s actuation

range, see Algorithm 3 line 4, the target request is broadcasted to all neighboring ACs

(local neighbors only). Thus, knowledge about observed targets is transmitted to the

local neighbors. Afterwards, it is deleted from the AC’s target cache.

If the ToI has not been observed yet, it is examined in terms of its imaging quality,

see Algorithm 3 line 7. For this purpose, the target-to-camera distance is computed and

evaluated according to the function depicted in Figure 5.4 (f(d) = expc1·d
2
). Generally,

the quality of images captured by an AC degrades as the distance d between the target

and AC increases. The parameter c1 is chosen empirically and depends on the AC’s pre-

defined actuation range. The second factor, in Algorithm 3 line 8, considers if the ToI

has already been scheduled by a neighboring AC. If it has been scheduled, this factor

evaluates to zero and thus the imaging quality, too. This mechanism avoids that ToIs are

scheduled twice. In case a neighboring AC has scheduled the ToI but this information

has not been disseminated through the network, there are two mechanisms to resolve this

conflict: (1) After selecting the ToI for observation, a final check based on the updated

target cache data is performed whether the ToI has not been scheduled by another AC,

see Algorithm 3 line 21, and (2) in case the ToI has been scheduled for observation, the

conflict is resolved when the TIM of the neighboring AC arrives, see Algorithm 2 line 16.

5.2. DROFACN 57

Figure 5.5: Quality function of the view angle [7] (red points correspond to computer
vision success rates for the x-values respectively and are supporting points for the con-
struction of the quality function)

If the distance of the ToI stored in tri is lower than all previous ones in the target cache,

the arrival times for all points in its actuation range are computed, Algorithm 3 line 11,

and the target position is estimated for these times, see Algorithm 3 line 12. The target-

to-camera distance and the view angle are computed on the basis of all future positions

of the target. These positions are predicted based on linear extrapolation, i.e. the most

recent two target requests are utilized for calculating the moving direction and velocity

of the target. Based on this data, a linear extrapolation is performed. In addition,

this extrapolation could also be based on more sophisticated data such as aggregated

trajectories, see [65]. Nevertheless, this is beyond the scope of this thesis. The imaging

quality can be estimated according to the following function:

Qimg = qdist ∗ qangle (5.3)

A specific imaging quality function can be as follows:

Qimg = expc1·d
2 ∗ expc2·β

2

(5.4)

whereas d is computed and evaluated as described before and the view angle β =

tri.p(α) − p(α) is evaluated according to the function depicted in Figure 5.5 (α is the

58 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

orientation of the target and AC respectively).

If there exists a point within the AC’s actuation range exceeding the imaging qualities

of all points of previous target requests, it is stored in trmax, see Algorithm 3 line 15. After

evaluating all target requests and observation points for each target respectively, a final

check on the updated target cache is performed, see Algorithm 3 line 21, and the target

request with the highest imaging quality is scheduled for observation, see Algorithm 3

line 23. This is disseminated to all neighboring ACs (local neighbors only) and the AC

enters the mode MOVING. During being in this mode, the AC can still be interrupted to

resolve conflicts with neighboring ACs.

An important property of DRofACN is that it does not require a closed-form expres-

sion for the imaging quality function, but may proceed using only a numerical compu-

tation. Thus, DRofACN can be utilized in realistic scenarios, where nonlinearities can

arise in terms of the imaging quality function, e.g. due to static or dynamic obstacles.

Nevertheless, this is not considered in this thesis.

5.2.2 IDLE Mode

Algorithm 4 IDLE Mode

1: wait for next observation task

In IDLE mode, the AC waits for the next observation task. IDLE mode is joined

initially and after successful image processing from OBSERVATION mode. If the AC

is in MOVING mode and the task it is moving to becomes obsolete, e.g. because it is

scheduled by a neighboring AC, it changes to IDLE mode, too.

5.2.3 MOVING Mode

Algorithm 5 MOVING Mode

1: while trcur.cameraID ≡ ID do
2: change own position to trcur
3: end while
4:

5: on targetDestinationReached :
6: state← OBSERVATION
7: end on

The MOVING mode is entered from IDLE mode. An AC turns to MOVING mode

in case an observation task, i.e. a ToI stored in trcur, is chosen for observation. When

5.2. DROFACN 59

the MOVING mode is entered, the AC begins moving toward the calculated best position

for capturing close-up views of the ToI. In case the target is reached, i.e. the event

targetDestinationReached occurs, the AC changes its state to OBSERVATION. While

the AC is in state MOVING, it continues with the scheduling process as described in

the previous section. Thereby, the AC is highly adaptive in terms of changes in its

environment, since it can revise its decision at any time in case a ToI with a higher

observation quality appears. A rescheduling is only performed if the computed imaging

quality of a new target is greater than the current one, i.e. the distance of the new

target has to be lower than the one of the current target. Nevertheless, the more the AC

approaches the ToI the more unlikely this is, since the quality of the ToI increases. In

addition, by choosing the greater operator, possible oscillations in terms of rescheduling

are avoided.

5.2.4 OBSERVATION Mode

Algorithm 6 OBSERVATION Mode

1: while trcur.cameraID ≡ ID do
2: capture imagery of ToI
3: end while
4:

5: on imageProcessingF inished :
6: trcur.observed← true
7: broadcast TIM(trcur) //to all neighbors
8: qcur ← 0, trcur ← empty
9: delete TC.tri

10: state← IDLE
11: end on

An AC enters the OBSERVATION mode, if it has reached its predetermined position

for observation. Then, it starts capturing high-quality imagery in order to process them.

As described before, the quality of the imagery depends on the view angle and distance.

After finishing the image processing, e.g. a face detection algorithm, the observed con-

dition of the target request for the corresponding ToI is set to true and an update is

broadcasted to all neighboring ACs (local neighbors only). Thereby, they can update

their target cache and avoid the redundant observation of ToIs. Afterwards, the current

observation task is set to empty and the AC enters the IDLE mode in order to wait for

the next observation task.

60 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

5.2.5 Correctness

In this section, we show that DRofACN allows the target detection ratio (TAR) to increase

monotonically due to fulfilling the observation condition. Even though ACs may plan

their observation tasks without any global coordination, the observation condition is not

violated. Additionally, TAR will reach a local maximum, though not necessarily the

global one, which is hard to ensure without global coordination. We prove DRofACN ’s

capability to fulfill the observation condition at all times.

Theorem 2 (Correctness of DRofACN): Under DRofACN execution, the ob-

servation condition is always fulfilled, i.e. each target is observed at most once with a

sufficient imaging quality.

Proof: The validity of this theorem can be shown with the help of the Algorithms

in Section 5.2.1-5.2.4. While moving through the surveillance area, a target traverses

the actuation ranges (Ar) of different ACs. Since the actuation ranges cover the whole

surveillance region and may overlap themselves, the target is at least inside one Ar at

a time. This proof distinguishes between the target residing in only one AC’s actuation

range (1) and residing in more than one AC’s actuation ranges (2).

1. If a target becomes salient (see Section 3.2) while being in exact one Ar only or

enters only one Ar while being salient, a notion of this target exists only in one

AC’s target cache. Depending on the current situation, this AC may schedule the

target.

(a) If it does schedule the target, the AC sends a TIM. Thus, the neighbors know

about the target being scheduled/captured. This ensures the observation con-

dition.

(b) Otherwise, the target leaves Ar without being scheduled/observed. This means,

it enters at least one actuation range of a neighboring AC and case (1) or (2)

reapply for the target depending on the actuation range’s topology.

2. If a target becomes salient while moving through more than one Ar or enters more

than one Ar while being salient, all concerned ACs may schedule the target during

its presence. Without loss of generality, the ACs are numbered in the order in which

they enter their on timerexpire methods whose run schedules the target in question.

(a) If the first camera enters its on timerexpire method more than δlat (worst-case

latency for sending a TIM message, see Section 3.1) before all other ACs enter

it, AC 1 schedules the target and sends the TIM. Because of the message delay

5.2. DROFACN 61

of δlat, all other ACs, which may schedule the target, too, receive the message

before entering their on timerexpire method. These can only be neighboring

nodes due to our communication model. Thus, they update their target cache

appropriately and cannot schedule the target anymore. Thereby, the observa-

tion condition holds.

(b) A set of ACs entering their on timerexpire methods in a time interval [t′, t′′)

with t′′ − t′ < δlat, which is shorter than the message propagation time, may

lead to temporary inconsistent target caches. This happens, because all of

them may schedule the target, see Algorithm 3 line 21, if no better target is in

range. All ACs, which scheduled the target, send a TIM message and change

to MOVING mode. While moving, each AC receives all of the TIM messages

(after the message propagation delay) and updates its target cache accordingly.

Lines 16 to 25 in Algorithm 2 ensure a clean conflict resolution, since only the

camera with the smallest identifier remains to have the target scheduled. All

other cameras return to the IDLE state and plan their next target. They

cannot reschedule the target, since their target caches regained consistency

w.r.t. the target, and the evaluation of the target’s quality in Algorithm 3 line 8

will return zero. The worst case w.r.t. the consistency condition is one or more

ACs, which schedule the target concurrently and are located in the optimal

position to capture an imagery of the target. This would lead to an immediate

change from the IDLE mode to the OBSERVATION mode. However, the ACs

will regain target cache consistency upon TIM delivery. Since observation time

� δlat (message delay assuming a wireless sensor network for data exchange),

no AC could have finished the capturing. Therefore, the conflict resolution

(see above) leads to only one remaining AC capturing the target. Thus, the

observation condition holds. �

5.2.6 Phenomena Adaptivity (ENRA)

In this section, we present a mechanism called ENRA for paving the way for phenomena

adaptivity of the aforementioned DRofACN algorithm [66]. Based on the number of

events occurring in the workspace, ACs increase or decrease so-called spatial redundancy

regions with neighboring nodes to balance the network’s load. As will be shown in Section

6.2.6, this mechanism is able to increase the overall system’s performance.

62 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Control of the Center of Movement

For this purpose, we assume that the AC can additionally control its center of movement

d in terms of its internal state AC.state = (d, Ar, p), see Section 3.1.2. Thereby, the

actuation range is influenced by the AC’s actuation radius ar and its center of movement

(circular area around d). p = (x, y) is the AC’s current position (x, y). Overlapping

actuation ranges of neighboring cameras are called spatial redundancy regions, which can

be utilized by the cameras to cooperate on improving the system’s utility and where

conflicts with neighboring cameras, i.e. so-called spatial conflicts, can occur. By adapting

the center of movement AC.state.d at runtime, ACs are able to create these regions based

on self-organization.

ENRA

ENRA’s objective is to find the optimal network configuration, i.e. the optimal position

of the ACs’ center of movement, in order to increase the performance of the DRofACN

algorithm, which is responsible for choosing the next target for observation.

In order to calculate the optimal center of movement, the number of events is counted

which occurred within the actuation range of the node and its neighbors. This is triggered

in case a target request arrives (see Algorithm 7 line 9) and relevant data is stored in the

matrix E (see Algorithm 7 line 16-20). The weight factors, i.e. 0.1 and 0.9, define whether

the node should focus on creating spatial redundancy regions with neighboring nodes or

on maximal coverage. In our case, 0.1 and 0.9 are chosen such that higher priority is

set on creating spatial redundancy zones. Based on the data in E, the optimal center of

movement is computed when the timer, i.e. the time to update (TTU), expires (Algorithm

7 line 23).

When the timer expires, the reconfiguration process is executed. For this purpose, the

utility of each point within the node’s potential actuation range Arpot is calculated. Arpot

contains the points for all possible center of movements, i.e. AC.state.d± δ ∀ 0 ≤ δ ≤
nd · ar, see Algorithm 7 line 24. nd is called the node distance. E[p] contains all data in

range of the AC.

Based on the computed utilities of each point, the optimal center of movement is

computed in Algorithm 7 line 27-32. In order to achieve this, the weighted arithmetic

mean is computed for each row and column of the matrix U . Afterwards, the mean value

of these elements is computed and the new optimal position is achieved as illustrated

in Figure 5.6. This new position is used for reconfiguration and sent to all neighboring

nodes.

5.2. DROFACN 63

Algorithm 7 ENRA - Reconfiguration Process

1: init: //added to the DRofACN configuration
2: set timer ← TTU //e.g.10s
3: init E ← empty, U ← empty
4:

5: on incoming COMmsg : //from neighboring ACs
6: update neighborhood cache
7: end on
8:

9: on incoming TIM : //from perceivers/ACs
10: if TIM.targetID ∈ TC
11: update TC //data from neighbors
12: else //new target
13: add targetRequest to TC
14: end if
15: //update E
16: if p = TIM.(x, y) ∈ Ar of neighbors
17: E[p]← E[p] + 0.9 //for spatial redundancy
18: else
19: E[p]← E[p] + 0.1 //for maximal coverage
20: end if
21: end on
22:

23: on timerexpire : //reconfiguration process
24: forall p = (x, y) ∈ Arpot do
25: U [p]← U [p] + E[p], E[p]← 0
26: end forall
27: foreach row i ∈ U do
28: X[i] = compute weighted mean of i
29: end foreach
30: foreach column j ∈ U do
31: Y [j] = compute weighted mean of j
32: end foreach
33: d = (mean X, mean Y)
34: change COM to d
35: send COMmsg d to neighbors
36: set timer //reset timer to TTU
37: end on

64 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Figure 5.6: Computation of the best center of movement

ENRA is a very basic mechanism for phenomena adaptivity in camera networks. Nev-

ertheless, it could be replaced by more sophisticated mechanisms for the analysis of spatio-

temporal recurring patterns, e.g. as presented by Sester et al. in [55].

5.3 Active Frame Synchronization

In this section, we introduce a method called ACFSync (Active Frame Synchronization

of Active Cameras), which is able to synchronize the frames of Active Cameras (ACs) on

the basis of visual events. Utilizing visual events for frame synchronization comes along

with several advantages compared to traditional synchronization protocols. Traditional

synchronization protocols are based on the exchange of communication messages and

the estimation of transmission times. Nevertheless, these methods assume symmetric

communication links and suffer from non-deterministic errors like message delays [67].

Wireless communication services, e.g. such as General Packet Radio Service (GPRS) in

3G cellular communication systems, may suffer from high asymmetry in terms of the

communication link as depicted in Figure 5.7. 1,000 packets have been sent from a mobile

phone (client) using a GPRS link to a server with Internet connection (Desktop PC) and

back and the single trip times have been measured based on the initially synchronized

clocks of client and server. As illustrated in Figure 5.7, one can see that GPRS possesses a

strong link-asymmetry. For strong link-symmetry, the results need to form a line through

origin.

ACFSync is only based on image information and provides a solution for Active Cam-

era Networks without suffering from synchronization errors due to message-based com-

5.3. ACTIVE FRAME SYNCHRONIZATION 65

Figure 5.7: Ratio of client and server single trip times: (a) Asymmetric GPRS network
link (b) Ideal symmetric link (line through origin).

munication, since image information propagates with speed of light and arrives at the

image sensor of cameras sharing the same field of view nearly at the same point of time.

Traditional message-based communication is only used to exchange status messages but

not for extracting timing information for time synchronization. ACFSync utilizes the

spatio-temporal properties of the events for estimating the internal frame offset. Visual

events can be actively triggered by an optical beacon or passively by moving target objects

within the surveillance area.

Physical time plays an important role in Active Camera Networks, since the basic

operation is data fusion. Data from multiple ACs is agglomerated to form a single mean-

ingful result. In order to fuse captured frames, they need to be timestamped in the first

place. Practically, there exists a latency for capturing a frame, e.g. due to exposure time.

This time delay is determined by the camera’s frame rate. E.g. in case of a frame rate

of 25 fps, this time delay is 40ms. This means that every frame has to be timestamped

with a time interval [t, t+ 1/fps] (t stems from the AC’s internal clock). In order to fuse

data of several ACs, these time intervals have to be synchronized. This process is called

frame synchronization. In order to avoid time ambiguity during frame synchronization,

this can be achieved as follows:

• Synchronizing the ACs’ internal clock (i.e. managing the t of the time interval

[t, t+ 1/fps] by clock synchronization mechanisms)

66 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

• Aligning the frames of multiple ACs (i.e. aligning the time intervals [t, t + 1/fps]

to each other by data alignment mechanisms)

After presenting the problem statement in Section 5.3.1, we introduce our method in

Section 5.3.2. Our method is able to align video sequences of neighboring cameras. In

addition, it is able to synchronize the camera’s internal clock to an optical beacon signal.

5.3.1 Problem Statement: Frame Synchronization

The problem of frame synchronization is stated in this section formally. We assume to

have two video sequences S and S ′, whereas S is the reference signal the video sequence S ′

is going to be synchronized to. For frame synchronization, we have to find the temporal

transformation for correlating both sequences. For this purpose, we have to solve the

following equation whereas cS(t) is the time of capturing the reference sequence S, c′S(t)

is the time of capturing the sequence S ′, ∆t is a constant time offset and s is the drift:

c′S(t) = ∆t+ s · cS(t) (5.5)

The goal is to find the time offset ∆t between the clocks cS(t) and c′S(t), which corre-

sponds to the frame offset (measured in frames) of both sequences.

5.3.2 ACFSync: Active Camera Frame Synchronization

In this section, we present the reconfiguration method for visual event-based frame syn-

chronization of Active Cameras - called ACFSync. It is based on image information only

and provides a solution for Active Camera Networks without suffering from synchroniza-

tion errors due to message-based communication. Visual events and their spatio-temporal

properties are used for synchronization. Thus, the propagation time is removed from the

time-critical path, which dominates the delay in wide-area networks (e.g. including the

queuing and switching delay at each router as the message transits through the network).

This method consists of two distributed algorithms and combines a sender-to-receiver and

receiver-to-receiver approach (see Section 7.4) to allow for scalability and robustness. It

enables participating ACs to synchronize their clocks with reference to an optical broad-

cast signal (sender-to-receiver approach) and reason about frame offsets of neighboring

ACs sharing the same field of view (receiver-to-receiver approach).

The basic idea of the algorithm is not to synchronize the local clocks of the ACs

through traditional message-based synchronization schemes, but instead use visual cues of

the environmental scene. Visual events correspond to communication messages, whereas

5.3. ACTIVE FRAME SYNCHRONIZATION 67

Figure 5.8: Overview about the ACFSync method

the visual event is the sender and ACs in visual range are the receivers. The advantage

of using visual events is that they propagate with speed of light and consequently arrive

at each image sensor at approximately the same point of time (and so reducing the send,

access and propagation time from the time-critical path). The method proposed in this

thesis consists of two algorithms as depicted in Figure 5.8 allowing for robust, scalable,

and accurate frame synchronization in Active Camera Networks:

1. Beacon-assisted clock synchronization algorithm (operation mode 1)

2. Cooperative frame synchronization algorithm (operation mode 2)

Operation mode 1 requires infrastructure in form of optical beacons. Operation mode

2 does not require such an infrastructure, since it is based on visual events which are

triggered by moving targets and frames are synchronized in a cooperative manner. By

combining both approaches, a robust method for visual event-based frame synchronization

of Active Cameras is obtained.

Concerning the beacon-assisted clock synchronization (operation mode 1), visual events

are represented by blinking beacons (based on LEDs). The blinking of the beacons is con-

trolled in order to transmit messages, e.g. numerical values, through the optical channel.

68 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

By sending these messages at specific points of time, temporal information is piggybacked.

Thus, the beacons are utilized as senders broadcasting time stamps. Theses time stamps

are received by ACs in visual range (receivers) and decoded to obtain the encoded time

stamp. Since the optical messages are received at all receivers nearly at the same point

of time due to the low propagation time, the point of time of sending this message can be

correlated with the time stamp. Afterwards, the local clocks are set. Re-synchronization

is needed frequently due to the AC’s clock drift. For example, in case of drifting 10µs

per second (see Section 3.1.3), the ACs have to be synchronized once an hour in order to

avoid mis-assignments of frames of neighboring cameras sampling their environment with

25 frames per second.

Cooperative frame synchronization (operation mode 2) is used, if no beacons are ac-

cessible/reachable by the ACs or operation mode 1 is likely to deliver error-prone results

due to high visual load in the surveillance area. Operation mode 2 uses visual events

for frame synchronization stemming from moving targets, e.g. humans moving through

the cameras’ field of view. Moving targets generate spatio-temporal information in the

cameras’ field of view observing the same event. Since visual information propagate with

speed of light, it is received at each camera at approximately the same point of time.

The visual event’s spatio-temporal data is extracted by computer vision algorithms and

utilized to cooperatively reason about the cameras’ clock offset.

The following two subsections present our synchronization methods in detail.

5.3.3 Beacon-assisted Clock Synchronization Algorithm

Figure 5.9 gives an conceptual overview about the sender-to-receiver approach based on

the beacon-assisted clock synchronization. The beacon is the sender and contains a Ref-

erence Clock. If the Reference Clock is synchronized to UTC, external synchronization

is possible. The Channel Encoder transforms the beacon’s local time into time stamps

consisting of so-called optical bits. Optical bits are transferred to rectangular brightness

signals by the Light Source. A sequence of optical bits forms an optical message containing

the time of the beacon at transmission time. This message is sent as undirected broadcast

via the optical channel. All receivers, i.e. ACs in visual range, receive this message and

sample it using their Camera. The captured image sequence is processed by the Image

Processor to restore the encoded bit sequence from the image. Afterwards, it is decoded

by the Channel Decoder to get the reference time. If the message is reconstructed without

any errors, the AC’s local clock is set according to the content of the message by the Local

Clock component.

5.3. ACTIVE FRAME SYNCHRONIZATION 69

Figure 5.9: Conceptual overview about the sender-to-receiver approach based on beacon-
assisted clock synchronization

Receiver Component The ACs in visual range sample the beacon’s time-dependent

rectangular brightness signal by capturing images with a specific frame rate. In contrast

to the traditional sampling problem of analog signals, additional difficulties arise. On

the one hand, the rectangular signal makes way for stable signal levels, allowing for

robust sampling and so alleviating the decoding process. On the other hand, despite

the advantage of stable signal levels, rectangular signals have the obvious disadvantage

of containing extremely high frequencies (infinite in theory) each time the signal state

changes. Thus, the sampling theorem – which would provide a sufficient condition for

perfect signal reconstruction [68] – is not useful in this case, since the image sensor samples

its environment with a lower frequency, i.e. the frame rate.

In addition, cameras are not ideal sampling systems, since they do not return the

value of the sampled signal instantaneously, but collect light during an exposure time.

Nevertheless, the concept of exposure time can be used to reduce the camera back to

an ideal sampling system. This is done by the Image Processor component. Given the

constants c1, c2, c3, c4 and the intensity of the rectangular signal generated by the beacon

s(t), it is assumed that the following three conditions hold at all points of interest in time

t:

1. the rate of signal photons emitted by the beacon is φe(t) = c1 s(t) + c4,

2. the rate of signal photons per time arriving at the image sensor is φs(t) = c2 φe(t),

3. the brightness of the pixel values recorded by the image sensor during a time interval

70 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Figure 5.10: The effect of exposure time on signal sampling: (a) original signal gener-
ated by the beacon sampled at 103.77% its clock rate (arrows, see text for details); (b)
sample values (black), illustrated as zero-order hold values (gray); (c) pseudo signal as
per Equation 5.6; (d) sampled pseudo signal as in (b) with high and low reference levels
(dashed)

[t, t+T] is proportional (with factor c3) to the amount of photons hitting the sensor

during that interval.

Based on these assumptions, it is possible to transfer the rectangular brightness signal

into the following more robust signal form:

σ(t) = f

 t+T∫
t

c3φs(t) dt

+ n(t)

= f

 t+T∫
t

c2c3φe(t) dt

+ n(t)

= f

 t+T∫
t

c1c2c3s(t) + c2c3c4 dt

+ n(t)

= f

 t+T∫
t

as(t) + b dt

+ n(t) (5.6)

The exposure time is modeled by integrating the amount of light on the image sensor

over the exposure time T . s(t) is the light energy reaching the image sensor at a given

time t. n(t) is an additive noise term for the image sensor. f(x) is an image sensor-

5.3. ACTIVE FRAME SYNCHRONIZATION 71

specific function considering non-linearities like saturation. While at a first glance, the

signal distortion caused by the exposure time may appear detrimental to the decoding

process, the new signal form makes way for a more robust sampling. For instance, the

robustness for signal sampling and decoding is improved by the low pass filtering effect

of the σ function (see Equation 5.6), allowing the complete reconstruction even in the

presence of variations of the crystal frequency due to noise, temperature, aging, voltage

change, etc. resulting in clock drift. This is illustrated by the example shown in Figure

5.10(a), where a signal is sampled at a sample rate of 1.0377 times the signal clock rate

caused by variations in the crystal frequency. As a consequence, two low bit appear

in the sampled signal xs(nT) in Figure 5.10(b) at the sixth and seventh sample point,

although there is only one in the original signal s(t). φs(t) is created in Figure 5.10(c).

Integrating and sampling φs(t) - based on the assumption of low dynamic ranges of the

LED and a noise-free exposure process - leads to σ(t) as depicted in Figure 5.10(d) with

values anywhere in the range between high and low reference values, as indicated by the

horizontal dashed (red) lines.

High and low reference levels have to be generated at runtime, since there is no refer-

ence signal level available. In traditional electronic systems, for example, these high and

low signal levels are defined at different voltages. Depending on lighting conditions and the

current perspective, the same optical bit can appear completely different in terms of its dy-

namic range and brightness considering only raw values extracted from an image sequence.

Therefore, the high and low reference levels have to be reconstructed from series of sam-

ples of nearly equal brightness at runtime. The three most recently captured brightness

values xt, xt−1, xt−2 and the mean of the N most recent values m = (xt + . . .+xt−N+1)/N

are used to derive reference values from the input stream at runtime (the value of N

depends on the specific scenario; we set it to N = 25 to consider the values of the last

second). If xt ≥ xt−1 ≤ xt−2 and xt < m then xt−1 is considered a low value and added

(with weight µ) to the previous estimate for the low reference σlow (weight 1− µ) (in our

scenario, we set µ = 1/3 to set a higher priority on previous estimates). Analogously,

local maxima above m are weighted into the existing high reference estimate σhigh.

The Channel Decoder reconstructs the original signal from the σ(t) representation. For

this purpose, we have to differentiate between runs of high values σhigh and runs of low

values σlow. First, the sum below the curve of σ(t) is computed for nT between the start

of the rising edge of the run and the end of the falling edge. Calculating the beginning

and end of this time range is possible by examining the relative changes of the sample

values. For instance, the third sample in Figure 5.10 (d) is higher than the second, hence

it marks the beginning of a run of high values. Equally, the sixth sample marks the end

72 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

of the high run and thus the last of the ns = 3 samples have to be included. The value

ns ·xlow is subtracted from the sum. The result, divided by the dynamic range σhigh−σlow

and rounded to the nearest integer, is the number of clock cycles of the sequence nclk.

Sender Component From the requirements and limitations of the receiver component

described so far, a number of constraints for the sender component can be derived:

1. Signal Changes: The image processing algorithm needs several intensity changes

per second in order to locate and track the signal source.

2. Peak Values: In order to reconstruct high and low reference values, occasional

peak values are needed.

3. Run Length: Noise and variations of the crystal frequency due to noise, tempera-

ture etc. make the detection of long runs of the same signal state difficult.

Constraints 1 and 3 are essentially equivalent in the sense that long sequences without

a state transition must be avoided. The exact value of the length limit depends on the

environment of the system, such as dynamic range of the signal and non-signal activity in

the captured scene, but lower maximum lengths increase robustness in any case. On the

other hand, condition 2 demands a minimum length of sequences of the same value. In

particular, when sampling a σ(t)-filtered signal, the intensity level has to be constant for

at least two clock cycles in order to guarantee at a minimum one sample at the extreme

value.

Codes that guarantee a minimum and maximum run length have been subject to

research for roughly 40 years and are called (d, k) run-length limited (RLL) codes [69]. A

(d, k) RLL code ensures that there are at least d and at most k zero bits between two one

bits. One common example of a (2,10) RLL code is the eight-to-fourteen modulation from

the Compact Disc standard that encodes eight data bits into fourteen channel bits plus

three padding bits [70]. In order to increase the efficiency of such codes, RLL encoded bit

streams are typically modulated with the non-return to zero inverted (NRZI) modulation

that generates a state transition for each one bit and keeps the current signal level on a

zero bit. When interpreted this way, the RLL code ensures that the time between two

edges in the signal is at least d+ 1 and at most k + 1 clock cycles in every case [71].

To select a code for the system developed in this thesis, three factors need to be

considered. First, d ≥ 1 in order to meet condition 2 stated at the beginning of this

section. Secondly, k should be reasonably small. And thirdly, the number of data bits per

channel bit r should be reasonably high. Since the last two properties are contradictory,

5.3. ACTIVE FRAME SYNCHRONIZATION 73

Figure 5.11: The complete sampling process illustrated, apart from the adjustments nec-
essary to account for the physical properties of image sensor saturation.

74 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Data Bits Channel Bits

00 101
01 100
10 001
11 010

00 00 101 000
00 01 100 000
10 00 001 000
10 01 010 000

Table 5.1: One possible encoding table for a (1, 7) run-length limited code.

a compromise is necessary. One code that meets the requirements sufficiently is the (1, 7)

RLL code [71]. It has a code rate of r = 2
3
, encoding every two data bits into three channel

bits according to Table 5.1. Since the code is not prefix-free, it is important to check the

four bit substitution table starting from the bottom. If no match is found, the two bit

replacement from the top four rows of the table are chosen. This is necessary to ensure

the d = 1 property, as, for instance, encoding 1001 solely with the standard encoding

table would yield 001100 [71].

The entire coding and decoding process is summarized in Figure 5.11.

A synchronization marker (01 0000 0000 10) is added to indicate the start of a code

word. The first and last two bits serve two purposes: On the one hand, the two one bits

define the exact length of the sequence of 8 zeros ; and on the other hand, the zero at the

very beginning and end ensures that codewords ending or beginning with a one do not

violate the d = 1 condition at the transition to the synchronization marker.

Algorithm 8 Beacon Algorithm (operation mode 1)

Require: Beacon has synchronized time
1: init:
2: run← true
3:

4: while run == true do
5: sec← readSecondsSinceMidnight() // local time
6: if ts mod 2 == 0 then
7: ts← sec/2
8: ot0 ← encode(ts) // adding CRC8 and synchronization marker
9: opticalSend(ot0)

10: end if
11: end while

5.3. ACTIVE FRAME SYNCHRONIZATION 75

Figure 5.12: Concept of the beacon-assisted clock synchronization algorithm based on the
receiver and sender component

Algorithm This subsection presents the algorithms for the aforementioned receiver and

sender components. As depicted in Figure 5.12, the beacon (sender component) transmits

one time stamp t0 in such a way that the beginning of the first bit marks time t0 for which

the time stamp is valid. The AC (receiver component) measures the complete duration

∆t of the transmission (with some error e) and then adjusts the received time stamp by

this measured ∆t.

Subsequently, a protocol is presented that transmits an optical message containing a

time stamp every two seconds. At a granularity of two seconds per time stamp, a day

can be encoded using 16 bit to encode the 43,200 possible values (43,200 corresponds to

the number of seconds passed since midnight divided by two). Nevertheless, this method

can be adapted for higher or lower granularities. Taking a granularity of two seconds and

assuming a frame rate of 25 fps, the resulting 16 bits take up 24 of the 50 clock cycles

available in two seconds. Adding the synchronization marker (01 0000 0000 10), requires

another 12 cycles. This leaves 14 clock cycles – equivalent to 8 bits and 2 cycles – which

are used to store an 8 bit cyclic redundancy check (CRC) digest. The remaining 2 clock

cycles are integrated into the synchronization marker by appending two zeros at the end.

The beacon algorithm is presented in Algorithm 8. The time stamp is – as discussed

above – equal to the seconds passed since midnight of the current day, divided by two

(cf. Algorithm 8 line 7). For the ease of use, the time stamp is based on the local time

instead of UTC. Nevertheless, this can be modified for future versions. The high byte of

the 16 bit word is sent first, the low byte second.

Before processing the optical message, the beacon signal has to be found. This is

performed by a dynamic mask creation process (see Figure 5.13), which is responsible for

finding the relevant pixels in the imagery and constructing the optical message. Since

the details of the underlying algorithms are beyond the scope of this thesis, the reader is

76 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

referred to [8]. The output of this process is the opticalReceive event, which is used in

Algorithm 9.

Algorithm 9 Beacon-AC Algorithm (operation mode 1)

Require: AC has been repositioned and possesses free view on the beacon signal, beacon
signal is found

1: on opticalReceive(ot0) :
2: if isCRCValid(ot0) then
3: tloc ← convertTS(ot0) // transform time stamp to time
4: end if
5: end on

The proper error detection method uses an eight bit cyclic redundancy check (CRC8)

of the 16 data bits with the generator polynom 0x97 [72]. The resulting checksum is

appended directly to the packet, without further modifications (cf. Algorithm 8 line 8).

Validating the code on the AC is conducted by running the same calculation on the first

two received bytes and comparing the result to the third byte; on mismatch the received

message is discarded (cf. Algorithm 9 line 2).

However, as with all digital signature schemes, there is a small, but finite, probability

that a data corruption that inverts a sufficient number of bits in just the right pattern

will occur and lead to an undetectable error [72]. While this encoding uses only 43,200

discrete numbers and does not exploit the whole range of 16 bit integers, it allows for an

additional layer of error detection at the receiver side: should a faulty transmission yield

a correct checksum but a time stamp over 43,199, it is certainly invalid.

Since the beacon-assisted clock synchronization requires the deployment of infrastruc-

ture (i.e. beacons) within the workspace, the following section presents an approach

that is independent of such an infrastructure in order to increase the overall method’s

robustness.

5.3.4 Cooperative Frame Synchronization Algorithm

This section explains the implementation of operation mode 2 for cooperative frame syn-

chronization. It does not require specific infrastructure like optical beacons for synchro-

nization, since it is based on the observation of visual events. Each AC passively keeps

track of activity in its environment and calculates saliency values based on visual changes.

This saliency value is based on the computation of the optical flow vector field (see Section

2.4.2) between the most recently captured frame and the previous one. If this saliency

value increases noticeably, the AC interprets that frame as a salient event and communi-

cates this conclusion to its visual neighbors, along with a copy of its recent saliency history.

5.3. ACTIVE FRAME SYNCHRONIZATION 77

Create
Mask

Sum up

0 255

Multiply

Difference
+ Filter

Multiply

Figure 5.13: The mask creation and multiplication technique. A mask is constructed from
a series of frame differences, multiplied with the corresponding frame and then aggregated

The neighboring ACs will then correlate the received curve with their own and determine

the frame offset at which the correlation is at its maximum, see Figure 5.14. This frame

is then registered as the potential clock difference between the receiving camera and the

originator of the curve.

First, we will present the methodology for calculating the saliency values based on

moving targets within the AC’s field of view. Secondly, the algorithm for determining the

frame offset in a cooperative manner is explained.

Visual Saliency of Moving Targets The core aspect of coping with visual saliency

of moving targets is to detect and quantize them. A moving target is characterized by its

high variation in space in one frame to its successive frame. These motions are mostly

unique between two frames and may pronounce themselves from different viewpoints. A

low-level computer vision algorithm that utilizes adjacent frames for motion estimation

is the optical flow algorithm [35]. Motion estimation is a major aspect of optical flow

research. The optical flow field is superficially similar to a dense motion field derived by

techniques like motion estimation. In addition, optical flow is a common technique used

in active vision research and available on many platforms.

The basic approach to calculate the optical flow is to compute the spatial offset between

so-called feature points of the current image and a previously captured one. Feature points

are characteristic high-frequency information such as lines or corners within the image.

The spatial offset shows where each feature point in the original image moved to, see

78 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Figure 5.14: Example for calculating the frame offset by correlation

Figure 5.15: Spatial offsets of a person entering the camera’s field of view

5.3. ACTIVE FRAME SYNCHRONIZATION 79

Figure 5.15. Based on the Lucas-Kanade algorithm [73], the absolute value of the spatial

offset sotp of a feature point p at time t (e.g. pt−1
y denotes a feature point p at time t− 1

for the y-dimension) can be derived as follows:

∥∥sotp
∥∥ =

√
(pt−1
y − pty)

2 + (pt−1
x − ptx)

2 (5.7)

For a frame ct and its preceding frame ct−1, the absolute values of all feature points

are clustered into groups and the histogram ht is created. ht is the basis for forming

the frame-based optical flow distribution P (ht). P (ht) and P (ht−1) are the histograms’

relative frequencies of absolute values at the specific times t and t− 1. P (ht) and P (ht−1)

are used to compute a time-dependent saliency measure Sj(t) for each ACj at time t:

Sj(t) = Sj(ct, ct−1, ct−2) = KL(P (ht), P (ht−1)) = P (ht)log
P (ht)

P (ht−1)
(5.8)

KL (the Kullback-Leibler divergence, also called relative entropy) measures the differ-

ence between the histograms P (ht) and P (ht−1). E.g. if there is no difference between

both histograms, the fraction P (ht)
P (ht−1)

will be one and log(1) is zero.

We define the KL of two histograms as follows: for each entry of the numerator

and denominator, the normalized value p and q is computed, respectively (whereas the

normalization is achieved by dividing the value by the sum of all entries in the histogram).

p represents values of the numerator and q of the denominator. Afterwards, the distance

dist = p · (log(p) − log(q)) is computed. The sum of all of these distances is the KL of

both histograms.

Storing the values of the saliency measure allows for creating a saliency curve for each

AC. The saliency curves of two neighboring ACs, ACi and ACj, sharing the same field of

view can now be correlated as follows:

Ψij(∆t) =
1

2T

∫ T

−T
Si(t) · Sj(t+ ∆t) (5.9)

The frame offset ∆t (see Figure 5.14) is an integer within the interval [−d+1, d−1]. d is

the number of correlated frames. It is defined by the time interval (e.g. 2 seconds) that is

to be correlated multiplied by the frame rate. ∆t is defined as follows, that it is positive if

ACi lags behind and vice versa if ACi runs ahead. The ∆t at which our correlation function

reaches its maximum, is the estimation of the frame offset ∆tmax = argmaxΨij(∆t).

Algorithm The algorithm consists of the local saliency curve computation and the

cooperative correlation of saliency curves of neighboring ACs.

80 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

Figure 5.16: Movement detection of an Active Camera

Algorithm 10 Local Algorithm of ACj (operation mode 2)

Require: AC has at least one neighboring AC with same field of view
1: init:
2: ct−2 ← empty
3: ct−1 ← empty
4: V j ← empty // array for storing saliency values
5:

6: on captureFrame(ct):
7: if ct−1 6= ct then
8: V j ← V j ⊕ Sjt (ct, ct−1, ct−2)
9: if Sjt (ct, ct−1, ct−2) > δs

10: sendSyncMessage(V j)
11: end if
12: ct−2 ← ct−1

13: ct−1 ← ct
14: end if

5.3. ACTIVE FRAME SYNCHRONIZATION 81

The saliency measure is computed locally as described in Algorithm 10. In each frame,

see Algorithm 10 line 6, ACj computes the saliency measure with the most recent two

frames and stores the last d = 50 calculations (FIFO buffer of size d, d = 2 s · 25 fps).

If an optical event occurs and a specific threshold δs value is reached (δs depends on the

scenario and is set according to which kind of spatio-temporal pattern is salient in the

setting), see Algorithm 10 line 9, ACj sends its saliency curve (including time stamps for

each saliency value) to ACi using a synchronization message, see Algorithm 10 line 10.

The step of computing the saliency curve for a frame is dominated by the image size, since

the computational complexity of the optical flow algorithm is proportional to the image

size, i.e. O(width ∗ height). The next step of calculating the correlation is dominated by

the number d of frames, which are to be correlated, since the complexity of our correlation

is O(d2). Experiments show that measured times are feasible as presented in the Section

6.4.6.

Algorithm 11 AC-AC Algorithm (operation mode 2)

Require: ACj and ACi share the same view the last 2 seconds (state Listening)
1: on receiveSynMessage(V i):
2: if isNeighbor(i) then
3: sendSyncMessage(V j) // V j is local visual saliency curve
4: ∆tmax ← argmaxΨij(∆t)
5: end if

Since it is very difficult to detect salient events whilst ACs move, ACs have to share

the same field of view for at least 2 seconds. Relative movements distort the optical

flow measurement process. Since ACs’ movements are a very important aspect of Active

Camera Networks, two states haven been introduced for an AC: Moving and Listening.

If an AC is in state Moving, it does not search for salient events. This state can be

recognized by sensors like accelerometers or visually by calculating the loss of feature

points (i.e. difference of the number of retrieved feature points in two consecutive frames)

in the camera’s field of view. The optical flow measurement gives results about the

movement’s velocity and change of direction, see Figure 5.16. If the loss is constantly

below 5 % (i.e. for more than 2 seconds, e.g. 50 frames), we assume that the AC’s

movement is over and change to the state Listening. This state is marked with A in

Figure 5.16. In this state, the AC tries to detect salient events. The state Moving is

marked with B in Figure 5.16. Here, a loss of feature points is observed, which is above

a specific treshold (e.g. > 5%, marked by the red line). In state Listening and at arrival

of a synchronization message, ACj sends its local saliency curve to the sender and starts

a correlation in order to determine its own frame offset ∆tmax, see Algorithm 11 line 4,

82 CHAPTER 5. DYNAMIC RECONFIGURATION METHODS

which is used for correcting the AC’s local clock.

5.4 Summary

This chapter contains the description of two dynamic reconfiguration methods for Active

Camera Networks.

First, a distributed control algorithm called DRofACN was presented, which is able

to solve the wide-area target acquisition problem by means of dynamic reconfiguration.

DRofACN allows for scalable and dynamically self-configurable Active Camera Networks

without utilizing a priori information. Thereby, drawbacks of passive camera networks

can be overcome. The basic idea of DRofACN is that a set of ACs collaborates for

acquiring close-up views of targets in a surveillance area. The AC control is based on the

output of perceiver nodes, i.e. generated target requests, estimating the position of salient

targets within the ACs’ actuation ranges. The main goal is to acquire views for object

tracking or for biometric purposes. Furthermore, we have presented a mechanism called

ENRA for paving the way for phenomena adaptivity of the DRofACN algorithm. Based

on the number of events occurring in the workspace, Active Cameras increase or decrease

so-called spatial redundancy regions with neighboring nodes to balance the network’s load.

Secondly, a reconfiguration method called ACFSync for visual event-based frame syn-

chronization has been presented. With ACFSync, Active Cameras can utilize spatio-

temporal properties of visual events for frame synchronization. ACFSync enables partici-

pating nodes to synchronize their clocks according to an optical broadcast signal (sender-

to-receiver approach) and reason about frame offsets of neighboring cameras sharing the

same field of view (receiver-to-receiver approach). ACFSync is only based on image in-

formation and provides a solution for Active Camera Networks without suffering from

synchronization errors due to message-based communication, since image information

propagates with speed of light and arrives at the image sensor of cameras sharing the

same field of view nearly at the same point of time. Traditional message-based communi-

cation is only used to exchange status messages but not for extracting timing information

for time synchronization.

The following chapter contains an evaluation of both reconfiguration methods.

Chapter 6

Evaluation

This chapter is devoted to examine the performance of the proposed architecture and

reconfiguration methods. Initially, relevant metrics that allow to measure and analyze

the system’s performance are introduced. Afterwards, the conducted experiments are

presented. The experiments that comprise the evaluation are derived from application

scenarios for Active Camera Networks, e.g. surveillance of public places. The evaluation

of the algorithm DRofACN has been carried out in a simulated environment, whereas the

frame synchronization method ACFSync has been evaluated on artificial and real video

sequences from multiple cameras. Simulation experiments as well as artificial video se-

quences allow for the investigation of large networks with tens to hundreds of cooperating

Active Cameras.

6.1 Performance Metrics

Distinct metrics can be applied in order to measure the performance of the system pre-

sented in this thesis. The overall architecture can be evaluated in terms of scalability, e.g.

by increasing the number of Active Cameras (ACs) or targets of interest (ToIs) within the

surveillance area. For the frame synchronization method ACFSync, the synchronization

accuracy is of major interest, i.e. how accurate the camera’s clock can be synchronized

on the basis of visual data.

Each of the following subsections contains a short introduction to the investigated

reconfiguration method and a number of performance metrics. Each subsection closes

with formulating research questions, which are answered in this chapter.

Performance Metrics for DRofACN Several metrics have been applied to measure

the performance of the DRofACN method, which is a heuristic for the wide-area target

83

84 CHAPTER 6. EVALUATION

acquisition problem introduced in Section 5.2:

• Target acquisition ratio (TAR): The quality of the dynamic reconfiguration

is described by the target acquisition ratio (TAR), whereas the minimum imag-

ing quality qmin is set to 0.75 (0.75 means that a reconfiguration has to be cho-

sen possessing a computer vision success rate of at least 75 %). A TAR ratio

of one means that every target entering the surveillance area is observed before

leaving. According to the definition in Equation 5.1, the target acquisition ratio

TAR is defined as the ratio of successfully observed targets to the total number

of targets entering the surveillance area in the time period [t′, t′′), i.e.: TAR =
1
n

∑t′′

t=t′
∑

targeti ∈ targets targeti.observed(t)

• Mean target detection time: Another metric is the mean target detection time.

This metric measures how much time is needed to acquire a picture of the target

after becoming a target of interest.

• Captures per target: The number of captures per target is measured. This metric

is important to investigate how far the observation condition is fulfilled in case of

disturbances such as packet loss.

• Load: Finally, the system’s load is measured by investigating the total non-idle

time of all ACs. If an AC is not in the mode IDLE, it is active and maximizes the

system’s performance. Therefore, this metric is important to measure the system’s

overall utilization.

The following research questions are to be answered in this chapter:

• How scalable is the system in terms of the number of nodes and the target genera-

tion rate? The target generation rate describes the number of targets entering the

surveillance area.

• How robust is the system towards localization uncertainty/errors of the perceiver

nodes? Perceiver nodes are prone to errors, since they estimate the targets’ location

on the basis of low-cost sensor technology such as motion detectors.

• How well can the system cope with distinct types of trajectories? Human targets

may not always move on a straight line due to pathways or obstacles.

• How does the target speed influence the system’s performance? Usually, humans

move with a velocity of 1.5 m
s

. Nevertheless, running humans or bicyclists may move

with a target speed of up to 15 m
s

.

6.1. PERFORMANCE METRICS 85

• How does the loss of packets influence the system’s performance? Packet loss on

the camera-to-camera communication channel may disturb the cooperation among

cameras. On the other hand, packet loss on the perceiver-to-camera communication

channel leads to a loss of target requests.

Performance Metrics for ACFSync (operation mode 1)

• Synchronization accuracy: The synchronization accuracy measures the differ-

ence between the encoded time in the time stamp and the point of time at which

the AC is able to set its clock. Inaccuracies may arise due to delays on the link

between the image sensor and the AC’s processing unit.

• Error rate: This metric measures the number of successfully decoded packets in

relation to the total number of synchronization messages sent by the beacon.

• Time complexity: This metric measures the time period needed to detect and

decode an optical message.

• CPU and memory utilization: This metric is important to verify the algorithm’s

real-world applicability.

The following research questions are investigated in this chapter:

• How much time does it take to retrieve image data from an IP camera through an

Ethernet link, since this influences the synchronization accuracy?

• How does the signal strength, i.e. the amount and brightness of pixels in the video

stream stemming from the beacon, influences the number of successfully decoded

optical messages? Is the error rate influenced by distinct lighting conditions?

• How long does it take to detect and decode an optical message on a Smart Camera?

Is the time complexity influenced by different lighting conditions?

Performance Metrics for ACFSync (operation mode 2)

• Calculated frame offset: This metric is used to measure the offsets of the video

sequences of neighboring ACs. In relation to the ground truth, i.e. the real frame

offset of the video sequences, the accuracy of the method can be examined by

correlation.

86 CHAPTER 6. EVALUATION

• Certainty scale (of frame offset): This metric measures the ratio between the

amplitudes of the two highest correlation peaks Apeak1 and Apeak2, i.e. certoffset =

(Apeak1/Apeak2) − 1. A peak is a maximum if there are only smaller values in its

neighborhood. If both peaks have the same height, certoffset is 0. If the first peak is

two times higher, certoffset is 1 etc. This metric is used to illustrate the distance of

the calculated frame offset from its nearest neighbor in the result space. Thereby,

it indicates the certainty of the calculated frame offset and thus characterizes the

method’s robustness.

• CPU and memory utilization: This metric is important to verify the algorithm’s

real-world applicability.

The following research questions are investigated in this chapter:

• How does the synchronization accuracy depend on the duration of the visual event?

• How does the perspective influence the accuracy of the cooperative frame synchro-

nization mechanism? How do signal distortions, e.g. stemming from varying il-

lumination or JPEG/MPEG coding algorithms etc., influence the accuracy of the

cooperative frame synchronization mechanism?

Several parameters influence the performance of the aforementioned reconfiguration

methods. All above introduced metrics are measured under the influence of at least one

of the following parameters:

• System size in number of cameras: The system size influences the communica-

tion effort within the network. The more camera are available the more coordination

is needed within the network.

• Number (and dynamics) of targets in the surveillance area: The number

(and dynamics) of targets is responsible for the load induced into the network. The

more targets are within the surveillance area the more target requests are generated.

The velocity and trajectory of the target determine how much time is available for

observing the target while traversing the surveillance area.

• Message loss of the communication channel: Message loss of the communica-

tion channel is an important disturbance in terms of the reconfiguration methods,

since the communication between neighboring nodes is restricted. Thereby, they are

less able to cooperate on target observation.

6.2. DROFACN 87

Figure 6.1: Experiments with targets entering the surveillance area on straight-lines (left
picture) or parabolic trajectories (right picture)

• View angle and distance of the camera capturing imagery / Signal strength

(signal area in image and brightness): Both parameters have strong influence

on the quality of the underlying image processing algorithms.

6.2 DRofACN

6.2.1 Experimental Setup

Prior to the presentation and discussion of experimental results, the experimental setup

is introduced.

The area to be observed is 250× 250 square meters. This is a common size for public

places, e.g. such as the front yard of the Hannover Main Station as depicted in Figure 1.1.

ACs are positioned on a grid of this area, whereas the actuation ranges of neighboring ACs

overlap by a quarter of the actuation radius (as depicted in Figure 6.2). The system size

is varied between 1×1, ..., 10×10 ACs. The actuation radius of each camera is calculated

as follows: ar = 1
2
·250m/camsInRow. E.g. in a 10×10 ACs scenario, 10 cameras are in a

row. Thus, the actuation range is ar = 12.5m in this case. The actuation range decreases

with the number of ACs in order to support dynamic reconfiguration. Nevertheless, the

number of spatial conflicts (see Section 5.2.6) and communication per area is increased.

ToIs entering the surveillance area are generated with a specific target generation rate.

This rate varies between 0.05ToIs/s, ..., 27.5ToIs/s. Since the ToIs move with a speed

of 1.5 m
s

, they need approx. 166 s traversing the surveillance area in case of a straight-

line trajectory. Thus, a rate of 0.05ToIs/s corresponds to a total number of 8.3ToIs

88 CHAPTER 6. EVALUATION

Figure 6.2: ACs are positioned in a grid on the surveillance area. The actuation ranges
of neighboring ACs overlap by a quarter of the actuation radius and decreases with the
number of ACs.

in steady state. In case of a rate of 27.5ToIs/s, up to approx. 4, 500 ToIs are within

the surveillance area in steady state. Assuming a surveillance area of 250 × 250 square

meters with a potential capacity of 65, 000 persons (assuming that a person requires

space of 1m2 [74]), a rate of 27.5ToIs/s means that one out of twenty targets is a ToI.

Targets become ToIs on their way crossing the surveillance area. Target requests are sent

by the perceiver nodes with a frequency fp = 1Hz. A frequency of 1Hz is a realistic

value for perceiver nodes based on off-the-shelf sensors as introduced in Section 2.2. By

increasing this frequency, the load within the camera network is increased, too, since the

number of generated target requests raises. The point of time, when becoming salient, is

distributed over their entire way in a uniformly way. In order to investigate the robustness

of DRofACN, two different trajectory variations of ToIs have been considered. Usually,

ToIs move on a straight-line. Nevertheless, in one experiment they move on a parabolic

trajectory. In both cases, ToIs enter the surveillance area from all sides, whereas the

entrance point is randomly chosen. An example for both types of trajectories can be

found in Figure 6.1. Table 6.1 shows the experimental setup in a compacted form.

6.2. DROFACN 89

Experimental setup
Scalability Robustness

System size System size
Number of ACs 1 ... 100 Number of ACs 4 ... 36
Target generation
rate

0.5ToIs/s ...
27.5ToIs/s

Target generation
rate

6ToIs/s

Packet loss Packet loss
AC-AC 0 % AC-AC 0...100 %
Perceiver-AC 0 % Perceiver-AC 0...100 %

Targets Targets
Trajectory straight Trajectory straight, parabo-

lic
Localization un-
certainty/error h

±0 cm Localization un-
certainty/error h

±0 cm...± 1m

Table 6.1: Experimental setup

Figure 6.3: Relation of target generation rate and resources needed for achieving a specific
TAR ratio: For target acquisition ratios up to 80 %, the number of ACs needed increases
proportionally to the number of ToIs. For a TAR > 90 % significantly more resources are
needed.

90 CHAPTER 6. EVALUATION

Figure 6.4: Relation of target generation rate and resources needed for achieving a specific
mean target detection time: For a mean target detection time below 20 s the number of
ACs increases proportionally to the number of ToIs. For mean detection times below 10 s
significantly more ACs are needed.

6.2.2 Scalability

Scalability with respect to the target generation rate is an important factor for Active

Camera Networks. Scalability concerns both the quality of the solution found for the

wide-area target detection problem (i.e. resulting in a high TAR and low target detection

times) as well as the number of resources needed. Results can be found in Figure 6.3 and

6.4. These figures depict the relation of resources needed, i.e. ACs, to the algorithm’s

quality of service in terms of the number of observed targets (TAR) and the mean target

detection time.

The following example illustrates how these results have to be interpreted: We assume

that a surveillance scenario, e.g. a public place of 250× 250 square meters, is given where

approx. 10 targets enter the surveillance area per second, i.e. a target generation rate of

10ToIs/s. In addition, an image of 90 % of the targets has to be acquired within a mean

target detection time of less than 10 seconds. As depicted in Figure 6.3, a system size of

50 cameras is needed to achieve a TAR ratio of 90 % for the given target generation rate

of 10ToIs/s. A system of 50 cameras is able to achieve a mean target detection time

below 10 seconds for target generation rates below (approx.) 5ToIs/s, see Figure 6.4.

Nevertheless, in order to achieve this for a target generation rate of 10ToIs/s, the number

6.2. DROFACN 91

Figure 6.5: System size and influence on load

of resources within the camera network has to be increased to approx. 80 cameras.

The load induced into the system is depicted in Figure 6.5. A TAR ratio of up to

80 % can be achieved by increasing the number of ACs in the network according to the

target generation rate. In order to achieve a TAR ratio higher than 80 %, the number

of resources needed for a specific target generation rate does not increase linearly any

more. Here, significantly more resources are needed. The reason is that it must be

guaranteed that targets which are about to leave have to be captured, too. This can

only be achieved by a high AC density, since only small actuation ranges can guarantee

that these ToIs are observed. In order to achieve mean target detection times below 10

seconds, significantly more resources are needed. The target detection time consists of the

time needed to capture and to process the image of the ToI successfully after becoming

salient. This time period includes the time for receiving the target request (up to 1 s, since

perceiver nodes send target requests with a frequency of 1Hz), the time for repositioning

the AC (depends on the AC’s actuation range), and the time for processing the image

(1, 000ms = 1 s). A mean target detection time of 10 seconds means that the majority of

ToIs is detected in the neighboring actuation range at the latest after becoming salient.

For this purpose, neighboring nodes must not be in an overload situation. To guarantee

this, a high number of ACs is needed.

92 CHAPTER 6. EVALUATION

Figure 6.6: System size and influence on imaging quality

Additionally, the results show that the imaging quality decreases if the number of

ACs is increased, see Figure 6.6. This observation is caused by the decrease of the AC’s

actuation range, too, which leads to a decrease of the area available for finding the optimal

position for image capturing. Nevertheless, the imaging quality increases with increasing

load (i.e. target generation rate), as an AC has more choices for observation.

Why can a TAR ratio of 100 % hardly be achieved? A TAR ratio of 100 % is

hard to achieve by the DRofACN algorithm due to the targets’ saliency model. Targets

become salient when traversing the ACN’s surveillance area. The point of time when

becoming salient is distributed over their entire way in a uniformly manner. This means

that a target can become salient exactly before leaving the surveillance area. In this case,

the AC can only capture an image of the target if it is nearby by accident. Nevertheless,

this is very unlikely since the AC can be at any location of its actuation range. In Figure

6.7, for example, the number of unobservable targets (and their distances before leaving

when becoming salient) is presented. In case of low target generation rates, i.e. not an

overloaded scenario for the ACN consisting of 16 cameras, only targets which become

salient approx. 30 meters before leaving cannot be observed. 30 meters is the actuation

radius of an AC in an ACN consisting of 16 cameras. These targets cannot be observed

6.2. DROFACN 93

4
0

5
0

6
0

7
0

8
0

0
.1

 T
o

Is
/s

Number of unobserved targets[1]

0

1
0

2
0

3
0

4
0

0

7,5

15

22,5

30

37,5

45

52,5

60

67,5

75

82,5

90

97,5

105

112,5

120

127,5

135

142,5

150

157,5

165

172,5

180

187,5

195

202,5

210

217,5

225

232,5

240

247,5

0
.1

 T
o

Is
/s

0
.5

 T
o

Is
/s

1
 T

o
Is

/s

D
is

ta
n

c
e

[m
]

Number of unobserved targets

Figure 6.7: Number of unobserved targets for low target generation rates for an ACN
consisting of 16 cameras in relation to the target’s distance at time of becoming salient
before leaving

94 CHAPTER 6. EVALUATION

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

5
 T

o
Is

/s

Number of unobserved targets[1]

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

0

7,5

15

22,5

30

37,5

45

52,5

60

67,5

75

82,5

90

97,5

105

112,5

120

127,5

135

142,5

150

157,5

165

172,5

180

187,5

195

202,5

210

217,5

225

232,5

240

247,5

5
 T

o
Is

/s

1
0

 T
o

Is
/s

5
0

 T
o

Is
/s

D
is

ta
n

c
e

[m
]

Number of unobserved targets

Figure 6.8: Number of unobserved targets for high target generation rates (overload) for
an ACN consisting of 16 cameras in relation to the target’s distance at time of becoming
salient before leaving

6.2. DROFACN 95

if the AC, for example, is situated at the opposite side of its actuation range. This effect

may be reduced by increasing the AC’s moving speed, which has not been investigated in

this thesis.

However, in overloaded scenarios (as depicted in Figure 6.8), the number of unobserved

targets (and also the distances to their exit points) increases strongly. The reason is that

the DRofACN algorithm is not able to schedule the targets due to the high load. This

leads to a decrease of the overall TAR ratio in overloaded scenarios.

6.2.3 Packet Loss

Results show that packet loss concerning the AC-to-AC communication has minor impact

on the system’s performance, i.e. the TAR ratio. Figure 6.9 illustrates the observation.

The TAR ratio is only decreased by 10 % for scenarios with up to 9 cameras. Nevertheless,

packet loss has a higher impact on the TAR ratio, if the number of ACs is increased. For

a network consisting of 36 ACs, TAR is decreased by approx. 20 %. This is caused by the

fact that networks which are comprised of a higher number of cameras are affected in a

stronger way, since packet loss has a negative impact on the coordination among the nodes.

Thus, scheduling messages (i.e. whether a target has been or is planned to be scheduled)

cannot be exchanged between nodes. The results also show that the observation condition

is not met any more in case of 100 % of packet loss, since the observations per ToI reach

a value of 2.11 captures/ToI. This redundant capturing of ToIs causes the TAR ratio to

decrease, since resources are wasted due to multiple captures.

Packet loss concerning the perceiver-to-AC communication leads to a decreased system

performance, too. In case of 100 % of packet loss, the TAR ratio becomes zero, since no

target requests reach their destinations any more. Nevertheless, 90 % of packet loss only

decreases the TAR ratio to 70 % of the original value, which proves the robustness of

DRofACN towards packet loss. Figure 6.10 illustrates this observation.

6.2.4 Motion of Targets

Since perceiver nodes estimate the targets’ position based on sensor technology, estimation

errors become inevitable. In addition, targets may not move on a straight line as assumed

in the previous experiments. Since DRofACN utilizes the last two positions of a ToI for

predicting its future location in a linear way, the target motion may influence the system’s

performance. As depicted in Figure 6.11, target localization errors of up to 20 cm can

be tolerated by the system. The more resources are available, the less is the influence of

localization errors on the system’s performance. Localization errors of up to 20 cm can

96 CHAPTER 6. EVALUATION

Figure 6.9: AC-to-AC packet loss and the influence on TAR. In case of 100 % of packet
loss, the observation condition is not met any more but the TAR ratio only decreases to
80 % of the original value (in scenarios with more than 16 ACs).

Figure 6.10: Perceiver-to-AC packet loss and influence on TAR. In case of 100 % of packet
loss, no target requests reach the ACs any more.

6.2. DROFACN 97

Figure 6.11: Perceiver-target localization error and its influence on the system’s perfor-
mance: An error of up to 20 cm does not influence the TAR ratio significantly.

arise in perceiver networks consisting of LASER scanners. Localization errors of up to

1m are common for perceiver networks based on acoustic sensors or motion detectors.

In case of localization errors of up to 1m, the TAR ratio is decreased to only 50 % of

the original value (for a network consisting of 36 ACs). The impact of localization errors

on the target detection time is higher in networks with more than 10 nodes, see Figure

6.12. This is caused by the fact that the ratio of the localization error to actuation range

decreases in small networks.

Parabolic trajectories have a similar effect on the system’s performance, since the

assumption of linear movement of the targets is violated. Thereby, inaccuracies in terms

of extrapolating the target’s position occur. In a camera network consisting of 36 cameras,

the TAR ratio is decreased to approx. 80 % which corresponds to a localization error of

50 cm, see Figure 6.11. This is a reasonable value, since targets move with 1.5 m
s

and

target requests are generated with a frequency of fp = 1Hz. Thereby, depending on the

curvature of the trajectory, the localization error is between 0m and 1.5m. Nevertheless,

this effect can be decreased by increasing the frequency fp = 1Hz of generating target

requests, since the higher this frequency is the lower is the impact of the trajectory’s

curvature on predicting the object’s future position.

98 CHAPTER 6. EVALUATION

Figure 6.12: Perceiver-target localization error and its influence on the system’s per-
formance: An error of up to 20 cm does not influence the mean target detection time
significantly.

6.2.5 Target Speed

In this section, we investigate how the TAR ratio is influenced by the target speed. In the

evaluations in Sections 6.2.2-6.2.4, the target speed was set to 1.5 m
s

and the AC speed to

5 m
s

. In this section, the AC speed is still set to 5 m
s

but the target speed is varied between

0.5 m
s

and 35 m
s

(i.e. approx. 1.8 km
h

and 126 km
h

). The target generation rate is constantly

set to 1ToIs/s. As explained in Section 3.2, a perceiver node is deployed at each AC’s

center of movement with a sensing range defined as twice the camera’s actuation range.

As depicted in Figure 6.13, the TAR ratio increases for low target speeds, since the

load in the network is decreased. Furthermore, increasing the number of cameras (i.e.

resources) in the network leads to an additional improvement of the TAR ratio. Never-

theless, if the target speed exceeds a specific value, namely 8 m
s

, this effect does not hold

any more. In this case, the TAR ratio cannot be improved by increasing the number of

resources in the network. Furthermore, for high target speeds (> 20 m
s

), an increase of

resources within the network decreases the overall performance. This behavior is associ-

ated with the sensing range of the ACs. As explained in Section 3.2, a perceiver node

is deployed at each AC’s center of movement with a sensing range defined as twice the

AC’s actuation range. Thereby, target requests outside of the region are ignored by the

6.2. DROFACN 99

Figure 6.13: Evaluation of TAR in relation to the target speed and system size (sensing
range: two times the actuation range).

100 CHAPTER 6. EVALUATION

Figure 6.14: Evaluation of TAR in relation to the target speed and system size (sensing
range: five times the actuation range)

AC, since they are not sensed. By increasing the number of cameras within the network,

the AC’s actuation range is decreased (see Section 6.2.1). The actuation radius of each

camera is calculated as follows: ar = 1
2
· 250m/camsInRow. E.g. in a 10 × 10 ACs

scenario, 10 cameras are in a row. Thus, the actuation range is ar = 12.5m in this case.

However, a lower actuation range also means less reaction times for a camera to detect

ToIs. Through the low sensing ranges (being twice the actuation range), the cameras

notice the ToIs very late and they are missed. Nevertheless, this is no problem for low

target speeds (e.g. below 5 m
s

as considered in the previous evaluations).

By increasing the sensing range (e.g. setting it to five times the actuation range), the

reaction time for the camera is increased. Thereby, the aforementioned problem can be

solved for high target speeds as illustrated by Figure 6.14. Nevertheless, by increasing

the sensing range, the computational effort of the asynchronous scheduling process to

compute the next observation task (see Section 5.2.1) rises. Additionally, it depends

on the underlying sensors used as perceiver nodes in how far the sensing range can be

increased.

As explained in Section 6.2.2, the target detection time can be decreased by increasing

the number of resources in the network. This effect also holds for high target speeds.

6.2. DROFACN 101

Figure 6.15: Evaluation of the target detection time in relation to the target speed and
system size (sensing range: five times the actuation range)

102 CHAPTER 6. EVALUATION

Target speed TAR [%] Target detection time [s]
Average Standard deviation

0.5 m/s 97.9781 6.1686 1.1510
1.5 m/s 95,3780 6.1937 1.2782
5 m/s 84.6782 6.6133 2.0729
7 m/s 79.6277 7.4134 2.1878
15 m/s 61.6986 6.3644 1.8380
20 m/s 47.7547 6.0576 1.6548
25 m/s 31.1684 5.7385 1.5612
30 m/s 14.1184 5.3744 1.3705
35 m/s 05.4181 4.9492 1.2182

Table 6.2: Mean target detection time and standard deviation for different target speeds
(target generation rate of 1ToIs/s and 100 ACs; sensing range is five times the actuation
range)

Nevertheless, in case the target speed exceeds the velocity of the ACs (> 5 m
s

), a static

delay (up to 5 seconds for a camera network consisting of only one camera) is added to

the overall detection time. This is illustrated by Figure 6.15.

Additionally, overload leads to an overall decrease of the mean target detection time,

since the cameras have to perform less reconfiguration for capturing images of targets.

Whether a low mean target detection time is evoked by an overload situation or sufficient

resources, is indicated by the reaction time’s standard deviation. Table 6.2 shows the

corresponding values for the standard deviations of Figure 6.15 of a network consisting of

100 cameras.

6.2.6 Phenomena Adaptivity (ENRA)

In this section, we present the results of the evaluation of the mechanism for phenomena

adaptivity, which has been presented in Section 5.2.6. We conducted experiments for dif-

ferent node placements and spreads. Figures 6.16 and 6.17 show that the TAR ratio can

be improved significantly in case of trajectories with small spreads. The node distance nd

is set to 1.95, i.e. ACs are able to select the optimal center of movement in an area having

a size of π · [(1 + nd)ar]
2. The reconfiguration process is executed every 10 seconds, i.e.

TTU = 10 s. The spatial density of the trajectory is defined by its spread. The spread

represents the trajectory’s width and targets enter the surveillance area uniformly dis-

tributed over this width. In our experiment, the trajectories are straight-line trajectories

entering the scenario from east, west, north and south as depicted in Figure 6.1. The

spread of the trajectories varies between 2.5m up to 250m.

6.2. DROFACN 103

Figure 6.16: System performance (TAR) without network reconfiguration (target gener-
ation rate: 6ToIs/s; the spread represents the trajectory’s width and targets enter the
surveillance area uniformly distributed over this width)

104 CHAPTER 6. EVALUATION

Figure 6.17: System performance (TAR) with network reconfiguration (target genera-
tion rate: 6ToIs/s; the spread represents the trajectory’s width and targets enter the
surveillance area uniformly distributed over this width)

The improvement for common path widths of trajectories induced by humans, e.g.

2.5m up to 12m, is much higher than for spreads of 100m up to 250m. This demonstrates

the real-world applicability of our algorithm.

By decreasing the spread of the trajectories, the target density is increased. The

reason is that the same number of targets is distributed over a smaller area. Despite this

fact, ENRA is able to increase the system’s performance for spreads below 75m. As the

spread of the trajectories decreases, the ACs have to reconfigure their center of movement

to achieve the optimal position and generate new spatial redundancy regions to balance

the load. These redundancy zones make way for cooperation between nodes and increase

the TAR ratio. On the other hand, for widths over 75m, the scenario is overflowed with

targets, and the nodes do not need to reconfigure their center of movement. For these

values, the improvement achieved by ENRA is small. Nevertheless, this improvement is

driven by collaboration between neighboring nodes. In case the trajectory’s spread is

increased, cooperation is decreased.

Additionally, as illustrated in Figure 6.17, camera networks having an odd number of

elements achieve higher performance improvements. For camera networks of 3x3 and 5x5

cameras, the node placement is centered in the surveillance area. Thus, the ACs in the

6.3. ACFSYNC (OPERATION MODE 1) 105

center row possess a higher number of neighboring cameras to collaborate with. Thereby,

for instance in case of 25 cameras, an optimal use of resources is achieved and the system’s

performance is increased.

6.3 ACFSync (operation mode 1)

6.3.1 Experimental Setup

Figure 6.18: Photo of the experimental beacon sending a time stamp every 2 seconds [8]

The beacon used for testing purposes is depicted in Figure 6.18. The beacon contains

a RS232 serial link, LEDs, an external 32.768 kHz watch crystal, and a microcontroller.

In normal operation, all LEDs are switched on and off synchronously in order to maximize

the area of the signal source detectable by the camera.

A Smart Camera, which consists an off-the-shelf laptop (Intel Pentium Atom, 1.6MHz)

attached to an Axis PTZ214 camera via Ethernet, is situated in a distance of approx. 6

meters to the beacon (with free field of view). Both, the beacon and the camera, are

mounted at a height of approx. 2.5 meters. The Axis PTZ214 camera captures its en-

vironment with CIF resolution (352x288 pixels). The beacon sends an optical message

containing a time stamp. The optical message is directly received by the camera, since it

propagates with speed of light. As explained in Section 5.3.3, an optical message is sent

every two seconds. Each optical bit has a length of 20ms. After the image sensor of the

IP camera has received the optical message, the image data is retrieved by the laptop via

106 CHAPTER 6. EVALUATION

Figure 6.19: Zoom levels of the PTZ camera utilized to change the signal area

Camera

Signal

t2t1
Processor

time

P

C S

Figure 6.20: Experimental setup of a beacon and a Smart Camera capturing the beacon
signal. A time stamp is sent by the beacon every 2 seconds.

Ethernet, timestamped, and decoded in order to extract the time stamp. Afterwards, the

laptop’s local clock is set accordingly.

6.3.2 Synchronization Accuracy

In order to synchronize the local clock to the received time stamp, the client needs to be

able to exactly determine that point in time – in terms of the local clock – of the first

rising edge of the message received. Since this edge conforms to exactly one frame – or

the time between two frames – captured by the camera, the necessary information is the

exact time that passes between capturing a frame and the arrival of that frame in the

part of the algorithm that manages this timing information.

This delay between capturing and processing a frame ultimately depends on the nature

of the link connecting the camera sensor (the IP camera) to the processing unit (the

laptop). Consequently, the precise value needs to be measured – separately for each type

of client – during some form of calibration phase. Such initialization may be unnecessary if

the image capturing, the time keeping, and the image processing components are located

6.3. ACFSYNC (OPERATION MODE 1) 107

Figure 6.21: Histogram of offsets between received time stamp and wall clock

in the same domain, one example is a single FPGA (field programmable gate array) due

to the tighter coupling of the parts. Nevertheless, it is crucial to measure this delay in

our setup, since it determines the synchronization accuracy.

The experiment as depicted in Figure 6.20 has been conducted to measure this delay.

For this purpose, a camera is pointed at the beacon’s source signal and a simple image

processing algorithm has been implemented reacting on sharp changes in brightness. The

camera as well as the beacon are connected to the same processing unit, whereas the

beacon is connected to the serial port. One time stamp is taken at the time the signal

is generated and another one is taken once the frame containing the change is detected.

This process is repeated 100 times. The average time difference corresponds to the delay

of reception (140ms). Figure 6.21 presents the frequency of occurring deviations. In 71 %

of the cases, an offset of ±20ms arises, i.e. ± the camera’s frame rate. The offsets above

50ms stem from TCP/IP network latencies on the link between the IP camera and the

laptop. Thus, a synchronization accuracy of ±20ms can be achieved in 71 % of the cases,

if the delay of reception is known.

108 CHAPTER 6. EVALUATION

Figure 6.22: Error rate over signal area (represented by different zoom levels)

6.3.3 Error Rate

The strength of the beacon signal is driven by the LED intensity and the zoom level of

the PTZ camera. The zoom levels as illustrated by Figure 6.19 determine the amount

of pixels in the imagery stemming from the beacon signal. The error rate measures how

many optical messages can be decoded successfully, i.e. the fraction passing the CRC

check. The experiment was conducted for two types of mask creation: (1) the algorithm

had to find the optical beacon signal in the imagery on its own (see Figure 5.13), and

(2) the algorithm was pointed to the beacon signal manually. In case of dynamic mask

creation, the algorithm needs a beacon signal which has a size of at least 20 pixels in the

captured image (see Figure 6.22), since a lower signal area leads to instabilities in terms

of signal detection (e.g. due to thermal noise and low pass filtering). In case of a fixed

mask, a beacon signal of 5 pixels is sufficient to achieve error rates below 5 %.

In addition to the signal area in pixels, the signal strength is driven by the LED

intensity. The error rate has been measured for a fixed mask setting, i.e. the algorithm

did not have to find the beacon signal on its own (see Section 5.3.2 for an explanation of

dynamic mask creation). The camera captured the images in normal and over-exposed

6.3. ACFSYNC (OPERATION MODE 1) 109

0
5

10

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100

E
rr

or
 r

at
e

(p
er

ce
nt

)

LED intensity (percent)

Error rate over LED intensity with different imaging and processing parameters

Fixed mask
Fixed mask, overexposed

Figure 6.23: Error rate over LED intensity with fixed mask

mode (see Figure 6.24) in order to test the sensitivity of the algorithm in terms of different

lighting conditions. As depicted in Figure 6.23 for low LED intensities, i.e. below 10 %

of the maximum LED intensity, the over-exposed mode performs better than the normal

mode. The reason is that the contrast of the signal is improved by over-exposition. In

terms of high LED intensities, i.e. higher than 60 %, over-exposition leads to an increased

error rate due to non-linearities in terms of the image sensor. Therefore, the beacon signal

(i.e. the camera’s zoom level and the beacon’s LED intensity) has to be adapted to the

environmental conditions to achieve low error rates (i.e. the illumuniation and viewing

distance).

6.3.4 Time Complexity

The time complexity is investigated in terms of the synchronization time. The synchro-

nization time measures the time period between signal detection and successful decoding,

i.e. the CRC check. This experiment has been conducted for varying LED intensities

and different lighting conditions, which are emulated by changing the exposure time of

the camera. The different exposure times are illustrated by Figure 6.24. The beacon sent

110 CHAPTER 6. EVALUATION

Figure 6.24: Normal and over-exposed mode (for zoom level 6x)

Figure 6.25: Packet reception duration over LED intensity, normal exposure

6.3. ACFSYNC (OPERATION MODE 1) 111

Figure 6.26: Packet reception duration over LED intensity, over-exposed

optical messages constantly, whereas the Smart Camera captured 100 optical messages at

points of time that were randomly distributed over a time period of 10 minutes. Thus,

we emulated the situation of an Active Camera arriving at a beacon. As depicted in

Figure 6.25, low LED intensities lead to high packet reception durations in normal ex-

posure mode. This is caused by the high error rates which arise for low intensity values

as explained in the previous section. For high LED intensities, the synchronization time

decreases to 3.2 s (the theoretical optimum is 3 s, assuming that the AC arrives in 50 % of

the cases too late, and too early, respectively), whereas the standard deviation decreases

as well.

In case of over-exposition, a synchronization time of 3.2 seconds can already be

achieved for LED intensities above 10 % due to the improved signal contrast by over-

exposition (see Figure 6.26). Nevertheless, over-exposition leads to non-linearities in terms

of the image sensor and the mean synchronization time does not increase significantly for

high LED intensies, only the standard deviation increases.

112 CHAPTER 6. EVALUATION

Figure 6.27: Person moving with 1.5 m
s

from right to left through a camera’s field of view

6.3.5 CPU and Memory Utilization

The CPU and memory utilization have been measured on the Smart Camera for different

resolutions and 600 seconds. In case of CIF resolution (352x288 pixels), the average

CPU utilization is 36.09 % with a standard deviation of 3.57. In case of 2CIF resolution

(704x288 pixels) the average CPU utilization increases to 63 %, whereas the standard

deviation increases to 6.47. According to the amount of pixels, the CPU utilization is

increased as well. The memory utilization is about 11MByte for CIF resolution and

15MByte for 2CIF resolution.

6.4 ACFSync (operation mode 2)

6.4.1 Experimental Setup

To evaluate the performance of ACFSync in terms of operation mode 2, i.e. the coopera-

tive frame synchronization mechanism, a 3-D scene was set up consisting of one or more

persons in a surveillance area, see Figure 6.27. By using the 3-D software Blender [75],

various virtual cameras can be positioned around a scene capturing synchronized video

sequences from different perspectives. This is illustrated by Figure 6.30. The persons

traversing the surveillance area are based on a 3-D model of a person, which is depicted

in Figure 6.27. In case of scenarios consisting of one person, the 3-D person enters the

surveillance area and moves with a speed of 1.5 m
s

. After 2 seconds of moving, it stops to

look at his watch. Hence, a salient behavior is generated.

Virtual cameras are positioned on a height of 6 meters above the scene and have

free field of view on the scene. They capture their environment with CIF resolution,

6.4. ACFSYNC (OPERATION MODE 2) 113

Figure 6.28: Different noise levels

i.e. 352x288 pixels, at 25 frames per second. Each video sequence has a length of 180

frames, whereas the correlation horizon is set to 50 frames, i.e. 2 seconds. All videos are

post-processed using a standard Gaussian noise (see Section 6.4.2) to emulate a minimal

thermal noise of realistic cameras.

6.4.2 Noise

A virtual camera is positioned vertically to the moving person. It corresponds to the

camera 0◦ as depicted in Figure 6.30. Different noise levels are added to the captured

video sequence. Afterwards, autocorrelation is used for calculating the frame’s offset and

its certainty. The noise levels are presented in Figure 6.28. The noise is a Gaussian white

noise that is added to every pixel value. The standard deviation is increased to a value of

up to 100, which is added to each pixel’s intensity value. The results are shown in Figure

6.29.

As illustrated by Figure 6.29, the calculated frame offset is zero for noises up to 20

and the certainty that this frame offset is correct is high. A noise higher than 30 leads to

incorrect frame offsets. The noise interferes with the workflow of the underlying optical

flow algorithm. Due to the noise, the optical flow algorithm is not able to find significant

feature points any more. Original feature points are cropped as well as new artificial ones

are added. Nevertheless, a noise level higher than 20 corresponds to a very strong noise

(see Figure 6.28), which is usually not produced by thermal noise.

6.4.3 Perspective

In order to investigate the performance of the method towards different perspectives, three

settings were chosen:

114 CHAPTER 6. EVALUATION

-50

-25

0

25

50

0 10 20 30 40 50 60 70 80 90 100

C
al

cu
la

te
d

of
fs

et
 (

fr
am

es
 a

t 2
5

fp
s)

Standard deviation of the normally distributed noise (gray levels)

 0

0.5

be
tte

r

Certainty that the calculated value is correct

Figure 6.29: Frame offset for autocorrelation under the influence of additive normally
distributed noise

1. 36 cameras are aligned on a circle around the surveillance area and each video

sequence is correlated to the video sequence of the 0◦ camera (see Figure 6.30)

2. 15 cameras are aligned on an arc over the surveillance area vertically to the animated

walker’s direction of movement (see Figure 6.32)

3. 15 cameras are positioned on an arc over the surveillance area horizontally to the

animated walker’s direction of movement (see Figure 6.34)

The results of aligning 36 cameras on a circle around the scene are depicted in Figure

6.31. A frame offset of zero and the highest certainty value are achieved for the auto-

correlation of camera 0◦ with itself. The correct frame offset is achieved for a perspective

of up to 45◦. Afterwards, the frame offsets are between 25 and 50 frames. Due to the

perspective, the saliency curve of the salient motion (looking at the watch) varies. Since

looking at the watch lasts about 2 seconds (approx. 50 frames), the frame offset varies in

this interval. Good results can be achieved by correlating video sequences of perspectives

between 170◦ and 200◦ with 0◦. In case of 180◦, the maximal certainty is obtained, since

it is the counterpart to the 0◦ camera. In summary, counterpart cameras, i.e. cameras

which have an offset of 180◦ to each other, can be correlated with high accuracy and

6.4. ACFSYNC (OPERATION MODE 2) 115

Figure 6.30: 36 cameras positioned each 10 degrees around the surveillance area

-50

-25

0

25

50

0 30 60 90 120 150 180 210 240 270 300 330 360

C
al

cu
la

te
d

of
fs

et
 (

fr
am

es
 a

t 2
5

fp
s)

Position of the non-fixed camera on the circle (degrees)

 0

0.5

be
tte

r

Certainty that the calculated value is correct

Figure 6.31: Calculated frame offset between the 0◦ camera and cameras 10◦ to 350◦ (on
a circle around the surveillance area)

116 CHAPTER 6. EVALUATION

Figure 6.32: 15 cameras positioned on an arc over the surveillance area vertically to the
direction of movement

certainty. In addition, good results are achieved for correlating cameras having an offset

of less than 45◦ to each other.

Since the best results are achieved for correlating the 0◦ camera with the 180◦ camera,

we investigated whether the frame offset and certainty can be improved if the 180◦ camera

is varied in terms of its z-axis’ view angle. Therefore, 15 virtual cameras are positioned on

an arc over the surveillance area as depicted in Figure 6.32, whereas a z-axis’ view angle

of 15◦ corresponds to the 0◦ camera in the circle setup and a z-axis’ view angle of 175◦

to the 180◦ camera in the circle setup. The results are given in Figure 6.33. Since the

15◦ camera corresponds to the 0◦ camera in the circle setup, the best result is achieved

for correlating this pair. Afterwards, the higher the z-axis’ view angle is the worse is the

correlation of the video sequences of both cameras. Thus, the best correlation results

are achieved if the z-axis’ view angle is increased up to 30◦, since the person’s motion is

pronounced in a stronger way in such a setup.

In order to find the local minimum, 15 cameras have been aligned horizontally to the

direction of movement, i.e. according to the 90◦ camera in the circle setup (see Figure

6.34). The z-axis’ view angle is changed. A z-axis’ view angle of 15◦ corresponds to the

view angle of the 90◦ camera in the circle setup, whereas an z-axis’ view angle of 175◦

corresponds to 180◦ in the circle setup. As depicted in Figure 6.35, there is no view angle

along this arc improving the correlation results, since a view angle of 90◦ in the circle

6.4. ACFSYNC (OPERATION MODE 2) 117

-50

-25

0

25

50

0 30 60 90 120 150 180

C
al

cu
la

te
d

of
fs

et
 (

fr
am

es
 a

t 2
5

fp
s)

Position of the non-fixed camera on a arc over the target (degrees)

 0

0.5

be
tte

r

Certainty that the calculated value is correct

Figure 6.33: Calculated frame offset between the 0◦ camera and 15 cameras positioned
on an arc vertically to the direction of movement

Figure 6.34: 15 cameras positioned on an arc over the surveillance area horizontally to
the direction of movement

118 CHAPTER 6. EVALUATION

-50

-25

0

25

50

0 30 60 90 120 150 180

C
al

cu
la

te
d

of
fs

et
 (

fr
am

es
 a

t 2
5

fp
s)

Position of the non-fixed camera on a arc over the target (degrees)

 0

0.5

be
tte

r

Certainty that the calculated value is correct

Figure 6.35: Calculated frame offset between the 0◦ camera and 15 cameras positioned
on an arc horizontally to the direction of movement

setup does not pronounce the person’s movement in a strong way. Thus, the optical flow

algorithm has weak motion vectors.

6.4.4 Number of Targets

In order to investigate the robustness of the method in terms of the number of targets in

the surveillance area, two scenes have been set up:

1. A scene with two persons (pair scene)

2. A scene with seven persons (crowded scene)

Nevertheless, only one target has the salient behavior, i.e. looking at his watch. The

rest of the persons only traverse the scene. As depicted in Figures 6.36 and 6.37, increasing

the number of targets within in surveillance area significantly reduces the quality of the

correlation results. In the pair scene (see Figure 6.36), our method still achieves correct

frame offsets for correlating the 0◦ camera with its counterpart camera, but the certainty

that this correlation is correct is decreased. Increasing the number of targets to seven

leads to unacceptable correlation results, since the salient behavior is disturbed by the

motion vectors of the other targets within the scene.

6.4. ACFSYNC (OPERATION MODE 2) 119

-50

-25

0

25

50

0 30 60 90 120 150 180 210 240 270 300 330 360

C
al

cu
la

te
d

of
fs

et
 (

fr
am

es
 a

t 2
5

fp
s)

Position of the non-fixed camera on the circle (degrees)

 0

0.5

be
tte

r

Certainty that the calculated value is correct

Figure 6.36: Calculated frame offset between the 0◦ camera and cameras 10◦ to 350◦ on
a circle around the surveillance area with two persons (pair scene)

-50

-25

0

25

50

0 30 60 90 120 150 180 210 240 270 300 330 360

C
al

cu
la

te
d

of
fs

et
 (

fr
am

es
 a

t 2
5

fp
s)

Position of the non-fixed camera on the circle (degrees)

 0

0.5

be
tte

r

Certainty that the calculated value is correct

Figure 6.37: Calculated frame offset between the 0◦ camera and cameras 10◦ to 350◦ on
a circle around the surveillance area with 7 persons (crowded scene)

120 CHAPTER 6. EVALUATION

Nevertheless, in order to avoid this situation in real-world scenarios, mechanisms could

be used to detect time intervals with crowded scenes [76] and avoid a resynchronization

during these periods. During time periods with reduced activity, the aforementioned

synchronization method could be started yielding good synchronization accuracies.

6.4.5 Real-world Experiment

In order to evaluate the real-world applicability of our method, we conducted the follow-

ing experiment: We performed experiments with two PTZ Axis 214 IP cams capturing

pictures (QCIF resolution, 176x144 pixels) of an office hallway. The IP cams were situ-

ated in an office with an open door. Hence, they have a free field of view on the hallway.

The cameras were situated on an office table with a distance of 25 cm to each other.

Their axis of view were parallelized and they possessed overlapping fields of view with-

out any particular calibration. Thus, the difference of their view angles is less than 45◦,

which leads to good correlation results as described in Section 6.4.3. Every IP cam was

connected via the university’s WLAN (IEEE 802.11g) to a laptop (Intel Pentium Atom,

1.6MHz) (the building is covered by the university’s WLAN access points (APs) using

channel 11 on 802.11g). Besides these APs, the environment contains microwave ovens,

wireless sensors, and Bluetooth devices that may potentially interfere with the wireless

transmissions of our IP cams. The laptops retrieve the JPEG-compressed pictures from

the IP cams via HTTP and perform our frame synchronization algorithm. Both devices

are synchronized via NTP (NTP server: time1.rrzn.uni-hannover.de). We expect that

such a rather ”chaotic” wireless environment is typical for a real-world deployment of

embedded Smart Cameras (given increased popularity of home APs, wireless sensors, and

community meshes).

Pictures are captured with a frame rate of 25 fps. After having observed 100 events

(especially persons crossing the cameras’ field of view on their way to the kitchen), these

events were used to measure the method’s accuracy. The video streams of both cameras

were evaluated in terms of their saliency curves and the frame synchronization method

was executed on this data. One result is that video streams with events of short duration

(< 10 frames) occur very seldom, see Figure 6.38, but lead to high synchronization

accuracies (i.e. 2.5 frames, standard deviation of 2.12 frames). Events of long duration

(> 10 frames), see Figure 6.39, occur more often but lead to high synchronization errors.

The mean synchronization error is 6.62 frames with a standard deviation of 2.74 frames.

If we consider events with a maximum length of 10 frames only, the mean error is about

2.5 frames with a deviation of 2.12 frames. To avoid inaccuracies due to long events, they

could be filtered online on the Smart Camera, by only considering events with significant

6.4. ACFSYNC (OPERATION MODE 2) 121

Figure 6.38: Relation of event duration and frequency of occurrence in an office hallway
scenario

peaks below the length of 10 frames. Another solution can be to configure the cameras’

field of view in a way that events can only occur in short time periods, e.g. by using the

camera’s zoom functionality.

6.4.6 CPU and Memory Utilization

Our experiments for measuring the CPU and memory utilization were carried out in the

same setup as described in the previous section. We captured pictures with a frame rate

of 25 fps for 20 minutes. Every minute, a correlation computation was executed on the

device to emulate the appearance of a salient event in the video data stream, which is

to be synchronized with the video data stream of another device. The mean length of

these events is approx. 50 frames. The data of the other’s device saliency curve is loaded

via a SOAP interface. The CPU utilization varies between 50 % and 60 %. The mean

CPU utilization is about 54.99 %. Although this is a high CPU utilization, future Smart

Cameras will be equipped by more powerful processors. Thus the CPU utilization is

assumed to decrease on future systems. Nevertheless, this will always account for a basic

CPU utilization of approx. 50 % to 60 %, since our application scenario is dominated

by surveillance tasks (i.e. capturing pictures and image processing like object detection

or tracking) constantly. The memory utilization is about 20MByte. As today’s Smart

122 CHAPTER 6. EVALUATION

Figure 6.39: Average synchronization error with standard deviation in an office hallway
scenario

Cameras are equipped with at least 1 GByte of RAM and future systems are assumed to

possess more RAM, this is a reasonable value.

6.5 Summary

In this chapter, we have presented an extensive evaluation of both dynamic reconfiguration

methods, the DRofACN and ACFSync method, which are described in Chapter 5. For

the experiments, the important system parameters of DRofACN (e.g. system size and

induced load) as well as important parameters of ACFSync (e.g. view angle and the

beacon’s signal strength) have been varied. In this section, we present a summary of the

results and give recommendations for ideal conditions of both methods.

6.5.1 DRofACN

In Section 6.2.2, we analyzed the scalability in terms of different target generation rates

and system sizes and showed that an Active Camera Network of 100 nodes can handle up

to 2,500 targets of interest simultaneously with a TAR ratio of 90 % and a mean target

detection of less than 10 seconds. In order to increase the method’s performance, i.e.

6.5. SUMMARY 123

the TAR ratio or the mean target detection time, the number of resources has to be

increased within the network. A TAR ratio of up to 80 % can be achieved by increasing

the number of cameras in the network according to the target generation rate. In order to

achieve a TAR ratio higher than 80 %, the number of resources needed for a specific target

generation rate does not increase linearly any more. Here, significantly more resources

are needed.

In Section 6.2.3, we showed that packet loss concerning the camera-to-camera commu-

nication has minor impact on the system’s performance, i.e. the TAR ratio. For scenarios

with up to 9 cameras, the TAR ratio is only decreased by 10 %. Nevertheless, if the num-

ber of ACs is increased, packet loss has a higher impact on the TAR ratio. For example,

for a network consisting of 36 ACs, TAR is decreased by approx. 20 %. The reason is

that networks which consist of a higher number of cameras are affected in a stronger way,

since packet loss has a negative impact on the coordination among the nodes.

In Section 6.2.4, we investigated how localization errors of targets stemming from

perceiver nodes influence DRofACN ’s performance. Target localization errors up to 20 cm

can be tolerated by the system. The more resources are available the less is the influence

of localization errors on the system’s performance. Localization errors up to 20 cm can

arise in perceiver networks consisting of LASER scanners.

In Section 6.2.5, we analyzed DRofACN ’s performance, if the speed of targets is

increased. For low values (< 5 m
s

), the load induced by the increased target speed can

be compensated by increasing the number of cameras within the network. If the target

speed exceeds a specific value (8 m
s

), this effect does not hold any more. This behavior is

associated with the sensing range of the perceiver nodes connected to the cameras. By

increasing the sensing range, scalability can also be achieved for high target speeds.

In Section 6.2.6, we showed that mechanisms for phenomenon adaptivity can be used

to increase DRofACN ’s performance. We conducted experiments for different node place-

ments and spreads and showed that the TAR ratio can be improved significantly in case

of trajectories with small spreads (varied between 2.5m and 250m).

In summary, it can be concluded that using DRofACN is attractive, if a TAR ratio

of less than 80 % and a mean target detection time of less than 20 seconds is sufficient.

In order to achieve a TAR ratio higher than 80 %, the number of resources does not

increase linearly any more. Additionally, in systems that are exposed to high packet loss

concerning the communication channel or localization errors (in terms of the targets), it

showed to be very robust.

124 CHAPTER 6. EVALUATION

6.5.2 ACFSync

In Section 6.3, we showed that concerning the beacon-based synchronization method

(ACFSync operation mode 1) a synchronization accuracy of ±20ms, i.e. ± the camera’s

frame rate, can been achieved in 71 % of the cases. Additionally, we anaylzed the error

rate, i.e. of wrong decoding of the optical messages, in case of dynamic mask creation

and fixed mask creation. The algorithm needs a beacon signal which has a size of at least

20 pixels in the image captured, since a lower signal area leads to instabilities in terms of

signal detection. In case of a fixed mask, a beacon signal of 5 pixels is sufficient to achieve

error rates below 5 %.

In Section 6.4, we presented evaluations for the cooperative frame synchronization

method based on visual events (ACFSync operation mode 2). This method achieves good

correlation results for counterpart cameras, i.e. cameras which have a viewing offset of

180◦ to each other. Good results can also be achieved for correlating video sequences of

cameras having a viewing offset of less than 45◦ to each other. Nevertheless, increasing the

number of targets within the surveillance area leads to unacceptable correlation results.

The reason is that the salient behavior is disturbed by the motion vectors of the other

targets within the scene. Furthermore, we investigated the real-world applicability of the

algorithm. In terms of short visual events (i.e. below 10 frames), good synchronization

accuracies can be achieved. Nevertheless, long events (i.e. above 10 frames) lead to

inaccuracies. To avoid inaccuracies due to long events, they can be filtered online on

the Smart Camera, by only considering events with significant peaks below the length of

10 frames. Another solution can be to configure the cameras’ field of view in a way that

events can only occur in short time periods, e.g. by using the camera’s zoom functionality.

In summary, it can be concluded that using ACFSync is attractive in non-crowded

scenes. This is important to detect and decode the beacon-signal correctly as well as

for the correlation algorithm of the frame synchronization method. Nevertheless, in non-

crowded scenarios frame accuracy can be achieved.

Chapter 7

Related Work

First, we review the state of the art of research fields related to the problem of dynamic

reconfiguration in Section 7.1. In the past, dynamic reconfiguration has been used in

real-time systems as well as for planning issues in the realm of vehicle routing and sensor

planning.

Secondly, we review the state of the art relevant for our system architecture as intro-

duced in Chapter 4. For this purpose, we discuss middlewares for embedded and organic

systems in Section 7.2, since they are most related to our system architecture for Active

Cameras.

Afterwards, in Section 7.3 and 7.4, related work in the field of Active Cameras and

Active Vision as well as time synchronization is presented and discussed in relation to the

dynamic reconfiguration methods we developed in Chapter 5.

Finally, we conclude with a summary.

7.1 Dynamic Reconfiguration

In this section, we present a broad overview about research fields related to the general

problem of dynamic reconfiguration.

7.1.1 Scheduling

Scheduling is the process of deciding how to commit resources between a variety of possible

tasks. Time can be specified (with hard time constraints) or floating as part of a sequence

of events. Therefore, we review state of the art of scheduling mechanisms in (non) real-

time systems in the following two subsections.

125

126 CHAPTER 7. RELATED WORK

Real-time Systems

Modern real-time systems are designed for adaptivity by using dynamic reconfiguration.

This reconfiguration allows to react to aperiodic events in a predictable manner. Thus,

graceful degradation in overload scenarios can be guaranteed whenever needed. In this

context, they are structured as a set of multiversion tasks in order to implement services

with various levels of quality. In overloaded scenarios, for instance, a lower quality service

may be scheduled for execution keeping the system’s correctness and providing graceful

degradation. The goal of the reconfiguration mechanisms is to select the versions of tasks

that lead to the maximum benefit for the system at runtime.

A very simple strategy for dynamic reconfiguration of real-time systems is temporal

protection. Here, admission control mechanisms reject or cancel tasks if needed [77, 78].

This approach is used for soft real-time applications due to their tolerance to missing

deadlines. Nevertheless, this is not appropriate for all classes of real-time systems due to

this behavior.

The solution proposed by Jehuda and Israeli [79] also deals with multiple versions of

tasks. The solution aims at maximizing the system benefit subject to the schedulabil-

ity conditions, which are expressed as processor utilization bounds. The reconfiguration

problem is modeled as the classical knapsack problem, where the boundaries of the pro-

cessor utilization represent the knapsack’s size. Nevertheless, this approach is not able to

deal with aperiodic tasks, which is necessary for dynamic environments.

Rusu et al. [80] proposed a reconfiguration mechanism for energy-aware real-time

systems. The system benefit is optimized considering both schedulability and energy

constraints. The authors provide reconfiguration at the scheduler level. Nevertheless, all

tasks are required to have the same periods and deadlines, which is not an acceptable

assumption for dynamic environments.

Lima et al. [81] propose a reconfiguration mechanism, which selects appropriate task

versions that maximize the global benefit for the system. The system schedulability

conditions are evaluated at runtime by means of dynamic programming techniques. Nev-

ertheless, the reconfiguration mechanism runs a single scheduler. Thus, the mechanism

does not scale in contrast to our method.

Non Real-time Systems

Scheduling is not only used in real-time systems. Load balancing can be interpreted as

a specific form of scheduling, e.g. for a parallel system it is one of the most important

problems which has to be solved in order to enable the efficient use of parallel computer

7.1. DYNAMIC RECONFIGURATION 127

systems. Load balancing is a computer networking methodology to distribute workload

across multiple resources, e.g. computers, computer cluster or other resources. The goal

is to achieve optimal resource utilization, maximize throughput, minimize response time,

and avoid overload. Using multiple components with load balancing, instead of a single

component, may increase reliability through redundancy.

A broad overview can be found in [82]. Nevertheless, Active Camera Networks come

with specific requirements in terms of computer vision and time constraints, e.g. to

allow for image processing tasks, which are not fulfilled by traditional load-balancing

mechanisms.

7.1.2 Dynamic Vehicle Routing Problem with Time Windows

The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) addresses the

problem of dynamic reconfiguration [83]. The Vehicle Routing Problem (VRP) is a com-

binatorial optimization problem in distribution logistics. A VRP aims to get the best

vehicle routing and scheduling for one or several vehicles driving from a depot to cus-

tomers and back to the depot without exceeding the vehicles’ capacity constraints. The

Dynamic Vehicle Routing Problem (DVRP) has drawn more attention in the recent past.

It allows vehicles to update services based on renewed information [84]. The input pa-

rameters are predefined and static in typical VRPs. Allowing the change of parameters,

e.g. customer demands, during runtime leads to the DVRP. It is also called the real-time,

or the on-line problem [83].

In order to solve the DVRP mainly two strategies are followed:

1. Adapt algorithms from the typical VRP domain to trigger the re-optimization pe-

riodically

2. Use of stochastic methods

In terms of adapting algorithms from the typical VRP domain, several approaches have

been proposed, e.g. [85, 86]. They are based on standard heuristics such as simulated

annealing, tabu search, genetic algorithms or ant colony optimization and use wrapping

mechanisms in order to trigger re-optimization from time to time. The second strategy

is based on stochastic methods, such as the Markov Decision Process and Stochastic

Programming [87]. However, these approaches are limited in handling large-scale dynamic

scenarios.

The Vehicle Routing Problem with Time Windows (VRPTW) is an extension of the

classical VRP and is defined as follows: Given a set of depots, a homogeneous fleet of

128 CHAPTER 7. RELATED WORK

vehicles and a set of known demand locations, find a set of closed routes, originating and

ending at the depots, that service all demands and minimize the travel cost; in addition,

the service at each demand location must start within an associated time window. All

problem parameters, such as demand locations and time windows, are assumed to be

known with certainty. Time window’s constraints are indeed common in many applica-

tions, including bank deliveries, postal deliveries, grocery distribution, dial-a-ride service,

bus routing, and repairmen scheduling. The VRPTW has generated significant research

interest over the years [88, 89, 90], resulting in major contributions in the area of combina-

torial optimization. However, many scenarios in the realm of the VRPTW are not static

and deterministic such as routing problems [91]. In fact, requests for service often arrive

sequentially in time, and these arrival epochs may be stochastic. Additionally, locations

of future demands may be unknown or known only probabilistically.

Due to this reason, researchers combined both problems and created the Dynamic

Vehicle Routing Problem with Time Windows (DVRPTW). E.g. in [92], the problem

of designing motion strategies for a team of mobile agents is studied, in order to fulfill

requests for on-site service in a given planar region. Each service request is generated

by a spatio-temporal stochastic process and remains active for a certain deterministic

amount of time, and then expires. An active service request is fulfilled when one of the

mobile agents visits the location of the request. Nevertheless and in contrast to our work,

they assume the on-site service time to be zero. In our work, the on-site service time is

assumed to be non-zero for applicability of computer vision algorithms. In addition, we

assume the expiration time of the target to be dynamic, since it depends on the velocity

of the targets moving through the workspace.

7.1.3 Sensor Planning for Visual Surveillance

Traditionally, dynamic reconfiguration has also been utilized for active sensor planning

to determine the configuration of a set of sensors in static or dynamic surveillance envi-

ronments. Therefore, we also review the state of the art and recent developments in this

research field.

The primary focus of the sensor planning domain was focused on the analysis of

placement constraints in static environments. These constraints were mainly resolution,

focus, field of view, visibility, and conditions for light source placement in 2-D space

[93]. This was driven by the requirement to place a viewpoint in an acceptable space,

whereas several prerequisites should be satisfied. In [94] several approaches are presented

in terms of sensing strategies, which were developed between 1987 and 1991. Among these

approaches, Cowan et al. [95] investigated the computation of acceptable viewpoints for

7.1. DYNAMIC RECONFIGURATION 129

satisfying optical requirements concerning the sensor, i.e. sensor placement constraints.

E.g. the lens aperture setting or light position region were determined in order to achieve

adequate illumination conditions. Abrams et al. [96] proposed to compute the viewpoints

in relation to other optical constraints such as resolution, focus (depth of field), field of

view, and detectability. In summary, early work focused on optical constraints rather

than coordination issues. In contrast to our method, a static environment was assumed.

Recently, there has been greater interest in sensor planning in dynamic environments

[97, 98], especially for tracking applications. Nevertheless, the majority of systems utilize

methods developed for sensor planning in static environments. E.g. the system presented

in [97] is based on an off-line heuristic, which computes sensor motions in 2-D fed by an a

priori known object trajectory. The on-line controller of the system is responsible for the

re-adjustment of the sensor motions in case of deviations of the actual object’s trajectory

from the expected one. In contrast, a system is presented in [99] that does not require any

a priori knowledge about the target’s trajectory in order to fulfill the sensor-planning task.

The system splits up the workspace in discrete sectors and in case an object enters a sector,

sensors responsible for the surveillance of this sector provide information about the object.

In [100], a system is proposed, which is based on multiple sensors. These sensors are able

to determine their path independently through a triangulation method. Thus, they are

able to avoid obstacles. The system described in [101] aims at optimizing the amount

of the targets that can be observed at any given time. This is accomplished through a

coordination mechanism, which is based on negotiation techniques. In [102], a system is

presented, which handles both, sensor placement with constraints and the pose estimation

of the target, by using a Bayesian network for task-specific sensor planning. The Bayesian

network is reconstructed at a constant rate in order to consider dynamics concerning the

target’s pose and position. Based on this, the active sensors are repositioned in a way that

the target visibility is maximized and the sensing cost (i.e. movement of the sensor) is

minimized. In [1], a method is presented for selecting and positioning groups of sensors in a

coordinated manner for the surveillance of a maneuvering object. The object’s trajectory

is estimated on the basis of historical data and divided into time slots. These time slots are

assigned to a sub-group of sensors, which are repositioned in order to observe the object.

No a priori information is needed. Nevertheless, in case a priori information is available,

the system is able to calculate initial sensor locations and orientations to increase the

system’s performance. In [103], a system is reported for sensor planning, which is used

to compute the optimal positions for inspection tasks using known imaging sensors and

feature-based object models. The initial setting is generated off-line, and on-line plans

are computed for more complex tasks, called inspection scripts. Viewpoint optimality

130 CHAPTER 7. RELATED WORK

is defined as a function of feature visibility and measurement reliability. In [104], a

methodology based on the notion of attention-based behavior is presented. Attention-

based behavior systems rely on a supervisor to dynamically reconfigure the system, e.g.

by selecting a single target for all the sensors to focus on for a certain period of time.

Thus, a multi-target problem can be reduced to a single-target one. For instance, the

system presented in [105] is based on a fuzzy controller to dynamically select targets on

the basis of a set of expert rules. Afterwards, the orientations and settings of the cameras

are reconfigured to optimize the resolution and the visibility of the targets.

In contrast to our method, none of the aforementioned systems uses reconfiguration

in order to maximize the cameras’ imaging quality. This means that their sensing perfor-

mance metric does not take the requirements of the underlying computer vision algorithm

into account. Moreover, our system offers dynamic reconfiguration for clock synchroniza-

tion, since clock drift is an important driver for errors in terms of data fusion in surveillance

systems.

7.2 Operating System and Middleware

In this section, we review the state of the art of middleware implementations. Section 7.2.1

gives background information on general-purpose middlewares. Secondly, middleware

implementations for embedded systems are introduced in Section 7.2.2. Finally, we close

with middleware implementations for organic systems in Section 7.2.3.

7.2.1 General-Purpose Middleware

Usually, middleware systems have to run on different hardware platforms and support

various communication channels and protocols. In addition, they must be able to bridge

applications running on different platforms, possibly in different programming languages,

into a common distributed system. Due to this reason, a layered architecture is often used

in order to support software flexibility on different levels. A very general partitioning into

different layers of abstraction is depicted in Figure 7.1 as introduced in [9].

The operating system along with its hardware drivers, concurrency mechanisms, and

communication channels is the basis of each middleware. In this layer, drivers for the un-

derlying hardware platform are encapsulated. Furthermore, basic mechanisms for device

access, concurrency, process and thread management are provided. The host infrastructure

layer contains the low-level system calls in reusable modules. It also hides non-portable

aspects of the operating system and is the first step toward a portable and platform-

7.2. OPERATING SYSTEM AND MIDDLEWARE 131

Figure 7.1: General-purpose middleware layers [9]

independent middleware. The distribution layer integrates multiple network hosts into

a distributed system and defines higher-level models for distributed programming. The

common middleware service layer augments the underlying distribution layer by defining

domain-independent components and services which can be reused in applications and,

thereby, simplify development. In terms of distributed applications, this could contain,

for example, logging and global resource management. The domain specific layer provides

services to applications of a particular domain in order to simplify their development. The

highest level of this architecture is the application layer, where individual applications for

a distributed system are implemented using services provided by the lower layers.

In terms of general-purpose middlewares, various middleware implementations have

evolved during the last decades picking up some of the aforementioned layers. Probably

the most prominent middleware standard is OMG’s Common Object Request Broker

Architecture (CORBA) [106]. CORBA is a distributed object system that allows objects

on different hosts to interoperate across the network. In addition to CORBA, Real-

Time CORBA (RT-CORBA) and Minimum CORBA haven been specified for resource-

constrained real-time systems [107, 108]. Another middleware for networked systems is

Microsoft’s Distributed Component Object Model (DCOM) [109]. It runs on Window

platforms only and allows communication of software components over a network via

remote method invocation. Java Remote Method Invocation (RMI) [110], promoted by

132 CHAPTER 7. RELATED WORK

Sun, follows a similar approach. RMI allows invocation of an object method in a different

Java virtual machine, possibly on a different host. Hereby, the development of distributed

Java applications is simplified.

Nevertheless, Active Camera Networks come with specific requirements in terms of a

system architecture, e.g. to allow for image processing tasks, which are not fulfilled by

general-purpose middlewares.

7.2.2 Middleware for Embedded Systems

The requirements for middlewares for embedded systems, e.g. wireless sensor networks,

are significantly different compared to those in general-purpose computing systems. These

middleware systems usually focus on reliable services for ad-hoc networks and energy

awareness [111], since wireless sensor networks are an inherently distributed system where

individual sensors have to collaborate. The resources and capabilities of the nodes are very

limited. In [112], Molla et al. have surveyed recent research on middlewares for wireless

sensor networks. A result was that most implementations are based on TinyOS [113],

a component-oriented, event-driven operating system for sensor nodes (motes). Several

interesting approaches have been implemented and evaluated. The spectrum ranges from

a virtual machine on top of TinyOS – in order to hide platform and operating system

details – to more data-centric approaches for data aggregation.

Nevertheless, middlewares for embedded systems are not intended to cope with ad-

vanced image processing tasks and sending large amount of data as it is required by Active

Camera Networks.

7.2.3 Middleware for Organic Systems

To allow for flexibility and adaptivity in terms of dynamic environments, various middle-

wares for organic systems have been presented. Furthermore, several of them might be

suited for Active Camera Networks. To name a few, BASE [114], ORCA [115], and OCµ

(former AMUN) [116] have been developed in this context. They offer many of those

functionalities which are needed for Active Camera Networks. Nevertheless, they still

lack some important points. For instance, OCµ offers a vast variety of functions which

allow for designing Organic Computing systems. E.g. in [117], OCµ is used as integra-

tion platform of an artificial immune system. Other middleware architectures, such as

BASE, offer a component-based approach. A system based on the BASE architecture

could be designed according to the unit construction principle, which suits the needs of

Active Camera Networks. In addition, the ORCA middleware delivers components for

7.3. ACTIVE CAMERAS AND ACTIVE VISION 133

the control of mobile entities in a decentralized manner. Hoffmann [118] proposes a Smart

Camera middleware allowing for self-organization in terms of spatial partitioning. Nev-

ertheless, mobile Smart Cameras, dynamic environments as well as position control for

improved image acquisition are not considered.

In general, it remains unclear how well existing middleware approaches can cope with

the demands arising in Active Camera Networks. Especially, real-time capabilities are

still subject to ongoing research. Another important aspect of a middleware for Active

Camera Networks is the close coupling of all algorithms to the image data that is acquired

by the image sensor. This data has to be analyzed in real-time and needs to be accessible

from different components throughout the middleware. Apart from detecting events of

interest, several system components can benefit from context information. Due to this

reason, an image data centric approach seems to be most appropriate, which has been

chosen in the context of this thesis. In addition, a new middleware has been designed

focusing on the dynamic reconfiguration of Active Cameras and hence allowing for mobile

scenarios. Thereby, in contrast to the aforementioned approaches, a lightweight and highly

specialized middleware has become available, that exactly suits the needs arising in Active

Camera Networks.

7.3 Active Cameras and Active Vision

Active Camera Networks are an expanding field of research. An extensive overview of

current and past research is provided by Aghajan and Cavallaro [119]. First, we present

related work in the realm of active cameras. This intends to show how the computer

vision community utilizes activity of cameras to solve the placement problem. Secondly,

related work in the field of active vision agents is presented, which focuses on the use of

mobile robots for advanced target tracking.

7.3.1 Optimal Placement

The problem of finding optimal placement of stationary cameras within an observation

area has long been studied. Once mounted in place, these cameras have a fixed position,

orientation, and focal length. The earliest examination can be traced back to the ”art

gallery problem” in computational geometry. The problem is concerned with the question

of how to place cameras in an arbitrary-shape polygon so as to cover the entire area [120].

Chvátal proved that the upper bound of the number of cameras is bn/3c [121]. Never-

theless, determining the minimum number of cameras turns out to be an NP-complete

134 CHAPTER 7. RELATED WORK

problem [122]. The problem of camera placement transforms to camera selection by incor-

porating additional constraints such as sensing range or priority of observation areas into

the problem. Thus, the problem is reduced to the well-known set-cover problem [123].

Such a set-cover problem is again NP-hard. In the following, we present approaches for

camera placement and selection.

The theoretical difficulties of camera placement are well understood, and many ap-

proximate solutions have been proposed. Nevertheless, few of them can be directly applied

to real-world scenarios, since they are based on a priori knowledge and cannot guarantee

the coverage of a predefined space inside a specific area with a minimum level of imaging

quality such as image resolution, which is crucial for computer vision algorithms. Camera

placement has been also studied in the field of photogrammetry for building accurate 3-D

models. Various metrics such as the visual hull [124] and the viewpoint entropy [125] have

been developed, and optimizations are performed by distinct types of ad-hoc searching

and heuristics [126].

Based on these metrics, sophisticated modeling schemes for camera placement and

selection were developed. Nevertheless, the sophistication of their visibility models comes

at a high computational cost for the optimization. For instance, the simulated annealing

scheme used by Mittal et al. [127] lasts several hours to find the optimal placement of four

cameras in a room. Other optimization schemes such as hill climbing [128], semidefinite

programming [129], and evolutionary approaches [130] are computationally intensive and

prone to local minima.

Alternatively, the optimization can be performed in the discrete domain. Hörster et al.

[131], for example, developed a flexible camera placement model by discretizing the space

into a grid and denoting the possible placements of the camera as a binary variable over

each grid point. Thus, integer linear programming can be used to compute the optimal

camera configuration. Different constraints and cost functions can be integrated. Similar

approaches have been published in [132, 133].

All of these techniques are based on assuming a very dense placement of cameras.

Therefore, they are not applicable to real-world scenarios, which usually suffer from a

sparse placement of cameras due to wide-areas or financial reasons. Nevertheless, these

algorithms can be seen as the first configuration algorithms for Active Camera Networks,

since they are able to compute an initial starting position for the system, although this

is based on a priori knowledge and its quality decreases over time.

7.3. ACTIVE CAMERAS AND ACTIVE VISION 135

7.3.2 Active Cameras

In case of stationary cameras, a very dense placement is necessary to achieve the re-

quired image resolution for the underlying computer vision algorithms. Therefore, active

pan/tilt/zoom cameras have been used to make way for dynamic camera selection at run-

time. These cameras can rotate around their horizontal (tilt) and vertical (pan) axis using

servos. Some of them are also equipped with an adjustable focal length (zoom) limited

by a certain range.

A significant number of work in the literature has focused on object detection and

tracking [134, 135, 136, 137]. Especially multi-target, multi-camera tracking in the context

of multi-camera surveillance systems was investigated [138, 139, 140]. Accurate detection

and tracking is crucial for these systems, since the extracted tracking information provides

a basis for event detection [141, 142]. Additionally, tracking data is required in order to

control a set of active cameras to acquire high-quality imagery [143] and object association

within the system, e.g. through biometric signatures as presented in [144]. Ram et

al. [145] proposed a framework to study the performance of visual coverage in wide-

area scenarios, which unlike previous techniques, takes the orientation of the object into

account. They defined a metric to compute the probability of observing an object of

random orientation from one sensor and used it to recursively compute the performance

of multiple sensors.

The integration of active cameras into stationary camera networks is usually based on

a setup termed master-slave [146]. For this purpose, fixed and PTZ cameras are combined,

which are calibrated beforehand by a human using calibration marks. Many researchers

use a master-slave camera configuration with two [147, 148] or more cameras [149, 150]

and assign targets to PTZ cameras based on scheduling algorithms. These heuristic-based

algorithms provide a simple and tractable way of computing schedules. Nevertheless, they

quickly become non applicable as the number of targets increases and exceeds the number

of PTZ cameras, in which case the scheduling problem becomes increasingly nontrivial. A

lack of PTZ resources must be considered when designing a scheduling strategy that aims

at maximizing the number of captures per target and capturing as many targets as possible

[94]. To solve this problem, researchers like Hampapur et al. [151] proposed a number

of different camera-scheduling algorithms designed for various application goals. As one

example, a round-robin method is described that assigns cameras to targets sequentially

and periodically in order to achieve uniform coverage. Qureshi et al. [152] proposed an

approach, where priorities are assigned to the targets by ordering them in a priority queue,

e.g. depending on their arrival time. Bimbo et al. [153] ordered the targets according to

the estimated deadlines by which they leave the area of observation. An optimal subset of

136 CHAPTER 7. RELATED WORK

targets, which satisfies the deadline constraint, is obtained through an exhaustive search.

In the recent past, Li et al. proposed an dynamic camera assignment method using game

theory [154]. Various criteria characterizing the performance of PTZ camera imaging and

target tracking are presented in order to define utility functions. These functions are

optimized through a bargaining mechanism in a game. The scheduling problem can be

further complicated by crowded scenes in the real world, e.g. due to occlusions arising in

such scenarios. Lim et al. [150] proposed a method using prediction in order to estimate

such occlusions. This is followed by the construction of a visibility interval for each

capture, which is defined complementary to the occlusion moment, being the input for

the subsequent scheduling mechanism using a greedy graph search method.

In contrast to our work, all of the aforementioned approaches suffer from the fact

that the image acquisition process cannot be controlled in terms of the camera’s (x,y,z)-

position. The mobility is restricted to panning or tilting. Additionally, the overall per-

formance in terms of wide-area target acquisition has not been investigated, since sophis-

ticated collaboration and coordination mechanisms are needed for this purpose. Similar

to our work, Krahnstoever et al. [135] model the imaging process by utilizing quality

functions considering the distance and view angle of targets. Nevertheless, their system

is based on PTZ cameras and a centralized architecture. Therefore, their system is not

scalable and evaluated in terms of four cameras only. Our reconfiguration method has

been evaluated by simulations of up to 100 Active Cameras.

Since all of the approaches mentioned before become non applicable as the number

of targets increases and exceeds the number of PTZ cameras, methods based on active

vision agents have been proposed, which are presented in the following section. Due to

their ability to change their position as well as orientation at runtime, they are able to

compensate this drawback by means of coordination.

7.3.3 Active Vision Agents

Active vision agents are a relatively new research field. Since the number of participating

cameras increases, the use of a centralized planner for dynamic camera placement and

selection becomes more difficult. Due to this reason, a number of agent-based approaches

has emerged in the literature, trying to address the problem of on-line camera planning

in order to decrease complexity and increase robustness and scalability. These agents

are reconfigurable in terms of their position and orientation. They are based on the idea

of distributed vision networks, where the participating nodes cooperate to achieve the

system’s objective. Real-world scenarios are usually motivated by application scenarios

of mobile robots or autonomous vehicles.

7.4. TIME SYNCHRONIZATION IN SENSOR NETWORKS 137

In the past, multi-agent planning and negotiation techniques have become common

in the Artificial Intelligence literature but have not been integrated into computer vision

work. Some research has focused on developing centralized and distributed methods

for multi-agent planning specifically in the context of unmanned vehicles [155, 156]. For

example, multiple mobile robots (autonomous vehicles) cooperate with each other to fulfill

their navigation tasks in [157], which means that each mobile robot plans its path based

on other robots’ navigation information.

In [158], the problem of tracking and estimating the motion of a moving target is

investigated. For this purpose, a team of mobile robots is used. Each robot is equipped

with a directional sensor (e.g. a camera) with limited range. A sensor fusion scheme

based on the interrobot communication is proposed to obtain the accurate real-time in-

formation of the target’s position and motion. Betser et. al. [159] present a method for

controlling several unmanned autonomous vehicles flying in formation and utilizing visual

information. Flying vehicles in following mode track the leaders via visual means. In

[160], Ng et. al. present a method, which is able to coordinate the movements of multiple

robots in order to follow a search tactic in a collective manner. This is performed in an

unknown and cluttered environment. First, individual robot reactive behaviors are devel-

oped, which allow for coordinated movements. Each robot is programmed with the same

set of primitive behaviors: (1) obstacles negotiation, (2) homing, (3) flocking, and (4)

searching, with obstacles negotiation being the most important and searching being the

least important step. According to different environmental stimulants, the robots adopt

one of these behaviors at a time according to their order of importance for the cooperation

purposes.

In summary, approaches in this research domain focused on planning for navigation of

the vehicles and not on investigating mechanisms for dynamic reconfiguration to support

underlying computer vision algorithms, i.e. the wide-area target acquisition problem,

which we considered in this thesis.

7.4 Time Synchronization in Sensor Networks

In the last years, various time synchronization schemes have been developed for the use

in wireless sensor networks [67]. One feature that can be used to classify them is to

examine whether a time synchronization scheme uses a sender-to-receiver or a receiver-

to-receiver approach. The former, rather traditional approach, is used by traditional time

synchronization schemes such as NTP [50]. Receiver-to-receiver approaches have recently

gained more interest by the research community, since they support system scalability

138 CHAPTER 7. RELATED WORK

[67].

Traditional synchronization algorithms are based on the estimation of transmission

times. Any transmission of a network packet can be divided into four phases with each

taking a different amount of time, as it is described by v. Greunen and Rabaey [161]:

Send time The time spent on assembling the message at the sender, which includes

processing and buffering time.

Access time The delay associated with accessing the channel.

Propagation time The time for the signal to propagate across the physical medium

between the two nodes.

Receive time The processing time required to receive the message from the channel and

notify the host of its arrival.

Figure 7.2: Critical path of traditional time synchronization protocols

Together, these four phases make up the so-called time-critical path, which is the path

of a message that contributes to non-deterministic errors in the protocol like message

delays [67]. On the one hand, the uncertainty of the send time, access time and receive

7.4. TIME SYNCHRONIZATION IN SENSOR NETWORKS 139

time is driven by the uncertainty of the hardware and hardware settings of the network

nodes which can be a major problem in heterogeneous networks or pervasive applications.

On the other hand, the propagation time depends significantly on the communication

medium that might depend on the scenario and external influences.

Most existing methods synchronize a sender with a receiver by transmitting the current

clock values as time stamps. As a consequence, these methods are vulnerable to variances

in message delay. Using the traditional sender-to-receiver approach involves the estimation

of the whole transmission time of sender packets as depicted in Figure 7.2. Newer methods

perform synchronization among receivers using the time at which each of them receives

the same message. Such an approach reduces the time-critical path, which is the path

of a message that contributes to non-deterministic errors in the protocol. Nevertheless,

the sender-to-receiver synchronization method is claimed to be more precise than the

receiver-to-receiver synchronization.

The following two subsections present the state of the art in both domains.

7.4.1 Sender-to-Receiver Synchronization

Principally, sender-to-receiver approaches involve some sender transmitting network pack-

ets to receiver nodes. For instance, these packets contain a reference time or are used in

some other way for synchronization purposes.

Genlock and NTP Genlock [162] is a technique that is preferably used for frame

synchronization of video sources like cameras. NTP [50] is preferably used in computer

networks. Both approaches are based on a centralized approach. With the help of Gen-

lock, it is possible to synchronize television picture sources like cameras, video recorders

or digitizers by using an external synchronization signal. All connected television picture

sources use that so-called genlock signal as a kind of central clock and adapt their ver-

tical, horizontal, frame and color synchronization to create a proper standard composite

video signal. NTP enables clock synchronization of computer systems by periodically

transmitting network packets with timing information. The underlying structure of NTP

is hierarchical and is composed of different strata of network nodes. At the top of this

hierarchical structure, atomic and radio-controlled clocks are located which provide the

correct reference time. The network nodes in the bottom strata represent the end-users

or, in our case, the Active Cameras.

Sensor Networks Several researchers proposed message-based sender-to-receiver ap-

proaches for sensor networks in the recent years [67].

140 CHAPTER 7. RELATED WORK

The protocol proposed by Römer et al. has been implemented for the use in mobile ad-

hoc networks and is based on an innovative time transformation algorithm for achieving

clock synchronization [163]. This protocol is especially effective in environments with

strict resource constraints. Nodes can either be in the role of being a sender or a receiver.

A sender transmits a message and attaches a specific time stamp to each message. This

time stamp contains a time interval. Synchronization is performed pairwise between nodes

(a sender and a receiver) whenever time stamps are exchanged.

Ping et al. [164] developed a protocol for maintaining a uniform notion of time among

nodes that participate in a network. A global time stamp provides the basis for merging

individual sensor readings into a database. For this purpose, a leader is chosen among a

set of communicating nodes and this leader broadcasts its local clock value to the other

nodes. All receiving nodes compare their local clock values relative to the leader’s time

and if the delays in the path from one node to another node can be estimated accurately,

the two nodes can be synchronized. When the message is broadcasted, the sender of the

packet will be synchronized with all nodes receiving its packet.

Li and Rus have defined a so-called rate-based diffusion protocol in which nodes achieve

synchronization by flooding their neighbors with information about each node’s local clock

value [165]. After each node has learned the clock values of all its neighbors, the node

can use a mutually agreed consensus value to adjust its clock. Examples of consensus

values suggested by the authors include the highest clock reading in the net, the lowest

clock reading, or some statistical value based on the clock readings (e.g. the average or the

median of the readings). According to the authors, using the highest or the lowest reading

yields the simplest synchronization algorithm; however, this strategy lacks robustness. A

malicious or erratic node may impose an abnormally high (or low) clock value on the

whole network.

In contrast to our method, all aforementioned sender-to-receiver approaches use mes-

sage-based synchronization schemes and timing information of these messages. Usually,

they are based on the assumption of symmetric round-trip times. Our approach does

not depend on these timing information, since it utilizes visual events. Therefore, timing

information of the underlying communication network are irrelevant for our approach

and we are not prone to disturbances (e.g. network latencies) influencing this timing

information.

7.4.2 Receiver-to-Receiver Synchronization

The receiver-to-receiver synchronization exploits the property of the physical broadcast

medium that if any two nodes receive the same message in single-hop transmission, the

7.4. TIME SYNCHRONIZATION IN SENSOR NETWORKS 141

message arrives at approximately the same time. Instead of interacting with a sender,

nodes exchange the time at which they received the same message and compute their

offset based on the difference in reception times. The obvious advantage is the reduction

of the message-delay variance. These protocols are only vulnerable to the propagation

delay to the various receivers and the differences in receive time.

Video Synchronization and Visual Temporal Calibration In [166], Polleyfeys et

al. use space-time interest point distributions for video synchronization. They correlate

space-time interest points between videos and show that by detecting, selecting, and

correlating the distribution of space-time interest points, videos from different viewpoints

can be automatically synchronized. An approach in the Fourier domain has been presented

by Kuthirummal et al. [167], which needs to compute weak calibration in the form of the

trilinear tensor before alignment, thus requiring at least seven stationary corresponding

points in three views. Additionally, a point needs to be tracked over a number of frames in

three views. Lee et al. [168] use geometric constraints to align the tracking data in time.

This method requires knowledge about the intrinsic camera parameters. Accuracy can be

affected by the height of the objects and the object-to-camera distance. Velipasalar et al.

[169] describe a method for temporally calibrating video sequences from unsynchronized

cameras by image processing operations. They propose a method in which foreground

objects are tracked. A point of interest is extracted for each object as its current location,

and the corresponding location of the object in the other sequence is obtained by using

projective invariants

All of the aforementioned algorithms are based on centralized system architectures,

which cannot be guaranteed in Active Camera Networks. Additionally, their methods do

not contain active optical elements (such as an optical beacon) for supporting synchro-

nization based on visual cues.

Sensor Networks One of the most popular representatives in the receiver-to-receiver

domain is the reference broadcast synchronization algorithm (RBS) [170]. In case of RBS,

a transmitter (e.g. a time server) broadcasts a reference packet to multiple receivers. Each

receiver records the time at which the reference packet is received according to its local

clock. Afterwards, these observed times are exchanged between the receivers. The clock

offset between two receivers is computed as the difference between the local times at which

the nodes received the same message [67]. Using RBS eliminates the uncertainty of the

sender by its removal (including the send and access time) from the critical path.

The probabilistic clock synchronization service in sensor networks defined by PalChaud-

142 CHAPTER 7. RELATED WORK

huri et al. [171] extends RBS by providing means to set protocol parameters. Thus, it is

possible to derive an appropriate number of messages used for clock offset and clock skew

estimation between the local clocks from probabilistic models. This gives a better control

on the synchronization overhead. Mock et. al. [172] defined a protocol for continuous

clock synchronization in wireless sensor networks by extending the IEEE 802.11 standard

for wireless local area networks. Though the design of their protocol is different from

RBS, Mock et al. also exploit the tightness of the communication medium when using

reference broadcasts. Quite different is the time-diffusion synchronization protocol (TDP)

[173]. TDP contains different algorithms and induces a common notion of system-wide

time with the help of cyclically executed diffusions of timing messages that help the sev-

eral nodes to converge their local times. The self-organizing features of this protocol are

very distinctive and even allow the establishment of a common notion of time without

external time servers. Nevertheless, it is also prone to errors due to link-asymmetry in

terms of the communication link.

All receiver-to-receiver synchronization protocols above have in common that they are

based on the assumption of the tightness of the communication medium. Nevertheless,

this assumption does not hold in all cases for network communication. RBS, for example,

assumes that the reference packet is received by multiple receivers nearly simultaneously

and the propagation time of each received message is the same. Nevertheless, this assump-

tion might not be tenable in application scenarios where the communication medium is

exposed to severe external influences and hence the propagation time is very uncertain.

For instance, this is the case in forest fire surveillance scenarios [174]. Finally, the propa-

gation time is a function of the distance and can vary strongly due to motion of network

nodes. This drawback is overcome by our method of active frame synchronization by

utilizing visual events for time synchronization.

7.5 Summary

The aforementioned research fields cover aspects of dynamic reconfiguration. Figure 7.3

shows an overview of selected related works and the abilities they lack in comparison to

the methods presented in this thesis.

Real-time systems utilize dynamic reconfiguration at the scheduler level. Thus, they

make way for flexibility and adaptivity. Nevertheless, tasks are often assumed to have

the same periods and deadlines, which is not an acceptable assumption for dynamic

environments. In addition, the reconfiguration methods usually run in a single scheduler.

In contrast to our methods, they lack from scalability and applicability for decentralized

7.5. SUMMARY 143

system structures.

The Dynamic Vehicle Routing Problem with Time Windows addresses the problem

of dynamic reconfiguration, too. Vehicles have to be routed and scheduled to customers

without exceeding temporal and spatial constraints. In contrast to our work, these ap-

proaches usually assume the on-site service time to be zero. The on-site service is assumed

to be non-zero for applicability in our work, e.g. for computer vision algorithms. In addi-

tion, we assume the expiration time of the targets (i.e. customers in the vehicle routing

problem domain) to be dynamic, since it depends on the velocity of the targets (e.g.

humans, moving through the surveillance area).

In the realm of sensor planning for visual surveillance, dynamic reconfiguration is

utilized for active sensor planning to determine the configuration of a set of sensors in static

or dynamic surveillance environments. In contrast to our methods, sensing performances

of proposed systems do usually not take the requirements of the underlying computer

vision algorithm into account.

Furthermore, we reviewed the state of the art in the field of time synchronization. One

feature that can be used to classify approaches in this domain is to examine whether a time

synchronization scheme uses a sender-to-receiver or a receiver-to-receiver approach. The

former, rather traditional approach, is used by traditional time synchronization schemes

such as NTP. Receiver-to-receiver approaches have recently gained more interest by the

research community, since they support system scalability.

In contrast to our method, the reviewed sender-to-receiver approaches use message-

based synchronization schemes and timing information of these messages. They are based

on the assumption of symmetric round-trip times. Our approach does not depend on these

timing information, since it utilizes visual events. Therefore, our approach is not prone to

disturbances (e.g. network latencies) influencing the symmetry of round-trip times. The

presented receiver-to-receiver synchronization protocols are based on the assumption of

the tightness of the communication medium. This assumption might not be tenable in

applications where the communication medium is exposed to severe external influences

and hence the propagation time is very uncertain, as given in Active Camera Networks.

Finally, the propagation time is a function of the distance and can vary strongly due to

motion of network nodes. This drawback is overcome by our method by utilizing visual

events for time synchronization.

144 CHAPTER 7. RELATED WORK

D
y

n
a

m
ic

 R
e

co
n

fi
g

u
ra

ti
o

n

 T

im
e

 S
y

n
ch

ro
n

iz
a

ti
o

n

S
ca

la
b

le

S
u

p
p

o
rt

 o
f

a
p

e
ri

o
d

ic
 T

a
sk

s

G
ra

ce
fu

l

D
e

g
re

d
a

ti
o

n

C
o

n
si

d
e

ra
ti

n
 o

f

o
n

-s
it

e
 S

e
rv

ic
e

S
u

p
p

o
rt

 o
f

C
o

m
p

u
te

r
V

is
io

n

P
o

si
ti

o
n

M
a

n
a

g
e

m
e

n
t

S
e

n
d

e
r-

to
-

R
e

ce
iv

e
r

R
e

ce
iv

e
r-

to
-

R
e

ce
iv

e
r

U
se

 o
f

V
is

u
a

l

E
v

e
n

ts

Je
h

u
d

a
 e

t
a

l.
n

o
n

o
y
e
s

n
o

n
o

n
o

R
u

su
 e

t
a

l.
n

o
n

o
n

o
n

o
n

o
n

o

Li
m

a
 e

t
a

l.
n

o
n

o
n

o
n

o
n

o
n

o

P
a

v
o

n
e

 e
t

a
l.

n
o

y
e
s

y
e
s

n
o

n
o

y
e
s

M
a

ts
u

y
a

m
a

 e
t

a
l.

U
p

 t
o

 1
0
 n

o
d

e
s

y
e
s

y
e
s

n
o

n
o

y
e
s

H
o

rl
in

g
 e

t
a

l.
U

p
 t

o
 1

0
 n

o
d

e
s

y
e
s

y
e
s

n
o

n
o

y
e
s

B
a

k
h

ta
ri

 e
t

a
l.

U
p

 t
o

 1
0
 n

o
d

e
s

y
e
s

y
e
s

n
o

n
o

y
e
s

H
ö

rs
te

r
e

t
a

l.
n

o
n

o
n

o
n

o
n

o
n

o

K
ra

h
n

st
o

e
v

e
r

e
t

a
l.

n
o

y
e
s

y
e
s

y
e
s

y
e
s

n
o

N
g

.
e

t
a

l.
U

p
 t

o
 1

0
 n

o
d

e
s

y
e
s

y
e
s

n
o

n
o

y
e
s

M
il

ls
 e

t
a

l.
y
e
s

n
o

n
o

R
ö

m
e

r
e

t
a

l.
y
e
s

n
o

n
o

E
ls

o
n

 e
t

a
l.

n
o

y
e
s

n
o

P
o

ll
e

y
fe

y
s

e
t

a
l.

n
o

y
e
s

y
e
s

V
e

li
p

a
sa

la
r

e
t

a
l.

n
o

y
e
s

y
e
s

W
it

tk
e

A
t

le
a
s
t

u
p

 t
o

1
0
0
 n

o
d

e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

Figure 7.3: Overview of related work

Chapter 8

Conclusion

Based on advances in the research areas of robotics and computer vision, this work in-

troduces a system architecture that serves as a basis for Active Camera Networks. Ap-

plications of such systems are manifold and include, for example, the exploration and

surveillance of large areas. Key components to robustly implement such applications are

dynamic reconfiguration methods for distributed control that adapt the system’s behav-

ior to changing environmental conditions and efficiently coordinate the usage of system

resources, in particular the available cameras. Currently, passive camera networks try

to cover the entire area or at least the most important parts of it. Therefore, system

designers have to determine the number of cameras and their placements based on a

priori information considering the requirements of the underlying surveillance task, e.g.

number and frequency of targets occurring and so-called hot spots of occurrence. This

approach is applicable to controlled and static environments. Nevertheless, a priori in-

formation becomes less useful in dynamic environments, since dynamics such as a varying

number of targets may occur at runtime. The broad range of requirements, which algo-

rithms for the interpretation of scenes from multiple perspectives have, adds up to these

difficulties and again increases the number of cameras that are necessary. One viable

and cost-effective alternative to just increasing the number of cameras to the demands of

surveillance applications is to make efficient use of Active Camera Networks and dynamic

reconfiguration methods as presented in this thesis. These methods enable Active Cam-

eras to collaborate in surveillance scenarios by relying on Organic Computing principles

such as self-configuration, self-organization, and self-adaptation.

145

146 CHAPTER 8. CONCLUSION

8.1 Summary of Contributions

Two reconfiguration methods have been investigated and analyzed thoroughly. They allow

for self-organizing wide-area target acquisition and self-configuring frame synchronization

based on visual events. Special prerequisites have been considered to enable a coping of the

methods with dynamic environments such as moving observation targets. An evaluation

with a realistic model in terms of computer vision and camera repositioning shows that

these methods are suitable for Active Camera Networks consisting of up to 100 Active

Cameras. They are robust towards common disturbances in dynamic environments and

exceed static camera systems in terms of flexibility and efficiency.

Various conclusions can be drawn in the end of this work. In order to build Active Cam-

era Networks that are equipped with organic system properties such as self-organization,

self-adaptation, and self-configuration, several issues have to be considered. As stated at

the beginning of this thesis, three main problems have been addressed in this thesis:

• System architecture: Active Camera Networks, as introduced in Section 2, com-

prise a high number of Active Cameras in order to cooperatively solve surveillance

tasks, which could not be achieved by a single camera or only through considerably

more stationary cameras. For this purpose, the camera’s mobility plays an essential

role and has to be managed regarding the camera’s orientation and position. A

concept for implementing realistic sensing performance metrics has been introduced

and integrated into the dynamic reconfiguration methods. Thus, the requirements

of the underlying computer vision algorithms have been integrated into the sensing

constraints. Furthermore, a distributed software architecture has been presented,

which can be executed on each camera independently. This distributed design al-

lows for scalability regarding the number of cameras and adaptability in terms of

the environment.

• Wide-area target acquisition: Based on a suitable system architecture, the prob-

lem of wide-area target acquisition has been discussed. Solutions to this problem,

which is NP-complete (see Section 5.1.2), can be approximated by the distributed

control heuristic DRofACN. This method has been developed to allow for dynamic

and distributed control of nodes in Active Camera Networks. It is based on the

objective to capture high quality images of moving targets. Application scenarios

have been investigated where events unfold over a large geographic area and close-

up views are acquired for biometric tasks such as face detection. Utilizing Active

Cameras in such a scenario makes way for efficient use of resources. Nevertheless,

8.1. SUMMARY OF CONTRIBUTIONS 147

this control cannot be based on separate analysis of the sensed imagery in each

camera. They act collaboratively to be able to acquire exactly one capture of each

target. Simulations with up to 100 Active Cameras show the scalability and relia-

bility of the proposed method. The performance of different target generation rates

is analyzed and it is shown that an Active Camera Network of 100 nodes can handle

up to 2,500 targets simultaneously with a detection rate of 90 % and a mean target

detection time of less than 10 seconds.

• Active frame synchronization: In order to pave the way for self-configuration

in Active Camera Networks, novel algorithms for frame-level and visual cue-based

clock synchronization have been developed called ACFSync. Thus, no centralized

time synchronization server is needed any more. Two methods have been proposed

in Section 5.3: (1) a clock synchronization method based on an optical beacon, and

(2) a synchronization method where Active Cameras sharing the same field of view

can synchronize their clocks cooperatively. One aspect that both methods have in

common is that they utilize optical events. Hence, they do not rely on specific

hardware. The beacon-based approach achieves a synchronization accuracy of one

frame in 70 % of the cases. If participating cameras capture their environment with

a frame rate of 25 frames per second, the active approach achieves an accuracy of

40ms. A synchronization accuracy within milliseconds is sufficient for scenarios

where visual events are triggered by human beings moving with a velocity in the

order of few meters per second. It has been shown that the second approach achieves

good synchronization results if the difference of the view angles of both cameras is

less than 45◦ or if they are counterpart.

With the reconfiguration methods presented in this thesis, a toolkit for building Ac-

tive Camera Networks has been introduced. All methods have been evaluated in scenarios

derived from real-world applications. For the algorithm DRofACN, presented in Section

5.2, a main station’s front yard has been considered. This wide-area set-up has to be

protected against potentially dangerous situations induced by humans. Simulation exper-

iments show that collaborating Active Cameras are well suited for this task. The target

acquisition ratio becomes close to optimal so that an image exceeding a pre-defined min-

imum quality is captured for the majority of relevant targets. Based on the number of

Active Cameras used, the average target detection time can be reduced to less than 10

seconds.

The cooperative frame synchronization method has been simulated with realistic 3-D

models of persons moving through a camera’s field of view. Multiple cameras capture this

148 CHAPTER 8. CONCLUSION

scene and synchronize their camera clocks on the basis of visual cues derived from this

video sequence. The impact of the number of persons within the video sequence as well

as their perspective’s offset have been investigated. On the basis of an optical beacon

that has been developed, Active Cameras can synchronize their clock on their own. For

this purpose, they have to decode an optical message containing a time stamp. The

efficiency and correctness of this method has been investigated in real-world experiments.

With this thesis, dynamic reconfiguration methods have been presented allowing for self-

organization and self-optimization in Active Camera Networks even in large systems with

up to 100 cameras.

8.2 Future Research Opportunities

Future research opportunities arise based on the reconfiguration methods presented in the

previous chapters. For both reconfiguration methods presented in this thesis, ideas for

future research are discussed in the following.

Wide-Area Target Acquisition Future work might focus on extending DRofACN

by more intelligent, i.e. self-learning, mechanisms for phenomenon adaptability, since

classical surveillance scenarios are usually characterized by high- and low-activity zones.

Adding dynamic and adaptive actuation ranges to DRofACN can balance this load. For

this purpose, dominant motions have to be learned from the past and cameras have to self-

adapt their actuation ranges in order to build spatial redundancy zones to balance the load

of target observation between neighboring cameras. In addition, the size of the actuation

ranges could be increased. Nevertheless, network partitions could arise in this case, which

have to be handled by routing mechanisms. Furthermore, the current mechanism for

phenomenon adaptability (ENRA, see Section 5.2.6) could be investigated in terms of

optimal configuration parameters, e.g. how the adaptability of the algorithm is influenced

by varying the time to update parameter. As presented in Section 5.2, DRofACN makes

use of imaging quality functions to achieve optimal imaging conditions. Optimality is

achieved by maximizing the probability of successfully completing the addressed vision

task (e.g. a biometric task), which is determined by an objective function according to

capturing conditions. These conditions contain the distance at which the target is imaged

and the view angle. Nevertheless, more parameters could be modeled on the basis of

this function. On example is given by the estimated deadlines of targets by which they

leave the surveillance area. Additionally, parameters could be added for maximizing the

observation time of targets across multiple cameras for creating multi-view scenarios for

8.2. FUTURE RESEARCH OPPORTUNITIES 149

object reconstruction. The function might also consider obstacles, lighting conditions or

other workspace-specific information.

Beacon-based Clock Synchronization A reconfiguration method for active frame

synchronization based on an optical beacon has been introduced in Section 5.3.3. This

method can be enhanced to achieve an increased synchronization performance and ac-

curacy. The specific shape of the waveform used to modulate the brightness signal is a

rectangle wave which does not need to be the optimum. The implemented line encoding

is based on codes used in hard-drives during the 1970ies. Therefore, more current en-

coding schemes could potentially be used here, for example, Turbo Codes or low-density

parity-check (LDPC) codes. The beacon signal could also be used as smart landmarks

for self-localization of autonomous mobile robots. Thus, traditional landmarks for self-

localization could be enriched with additional information. Additional colors or timing

information could be investigated to increase the information density of the beacon signal.

Cooperative Frame Synchronization A reconfiguration method for cooperative frame

synchronization has been presented in Section 5.3.4. On the basis of the optical flow mo-

tion field, saliency curves are computed and correlated. Other low-level features such

as brightness values of the picture could be integrated to increase the robustness of the

method. In addition to low-level features, high-level features such as detected objects

within the image could also serve as input. Since the saliency measure is independent

from the data types, heterogeneous sensor data could be utilized. One example is given

by data stemming from audio or temperature sensors or other optical sensors such as

thermal cameras. Furthermore, IP camera networks suffer from the problem of dynamics

concerning the image capturing process. Thus, synchronized cameras can acquire im-

age sequences asynchronously, e.g. due to maximum CPU usage or changing lighting

conditions. This asynchronity might be detected and corrected by a cooperative frame

synchronization method.

This list of research opportunities is way too short to cover all possible issues that

need to be investigated in future. It contains some ideas that arose in the context of this

thesis and might be considered in upcoming research projects. Especially, a lot of work

still needs to be done in the fields of collaborative behavior for multi-vehicle systems and

active vision.

150 CHAPTER 8. CONCLUSION

Bibliography

[1] Michael D. Naish, Elizabeth A. Croft, and Beno Benhabib, “Coordinated dispatch-

ing of proximity sensors for the surveillance of maneuvering targets,” in Proceedings

of Robotics and Computer Integrated Manufacturing, 2003, vol. 3, pp. 283–299. xi,

12, 129

[2] Fred W. Rauskolb, Kai Berger, Christian Lipski, Marcus Magnor, Karsten Cor-

nelsen, Jan Effertz, Thomas Form, Fabian Graefe, Sebastian Ohl, Walter Schu-

macher, Jörn-Marten Wille, Peter Hecker, Tobias Nothdurft, Michael Doering, Kai

Homeier, Johannes Morgenroth, Lars Wolf, Christian Basarke, Christian Berger,

Tim Gülke, Felix Klose, and Bernhard Rumpe, “Caroline: An autonomously driv-

ing vehicle for urban environments,” Journal of Field Robotics, vol. 25, pp. 674–724,

September 2008. xi, 15

[3] Bernhard Rinner and Markus Quaritsch, “Embedded middleware for smart camera

networks and sensor fusion,” in Multi-Camera Networks - Principles and Applica-

tions, Academic Press, Ed. 2010, pp. 511–537, Elsevier. xi, 18, 19, 35

[4] Ardevan Bakhtari, “Multi-target surveillance in dynamic environments: Sensing-

system reconfiguration,” Ph.D. thesis, Department of Mechanical and Industrial

Engineering, University of Toronto, 2006. xi, 23

[5] Leila De Floriani and Paola Magillo, “Algorithms for visibility computation on

terrains: a survey,” Environment and Planning B: Planning and Design, vol. 30,

no. 5, pp. 709–728, 2003. xi, 28, 30

[6] DoHyung Kim, Woo han Yun, and Jaeyeon Lee, “Tiny frontal face detection for

robots,” in Proceedings of 3rd International Conference on Human-Centric Com-

puting (HumanCom), August 2010, pp. 1–4. xii, 41, 56

[7] Sooraj Kumar and Andreas Savakis, “Face recognition with variation in pose an-

gle using face graphs,” M.S. thesis, Department of Computer Engineering, Kate

151

152 BIBLIOGRAPHY

Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY,

2009. xii, 57

[8] Fritz Webering, “Beacon-assisted optical clock synchronization in smart camera

networks,” B.S. thesis, Institute of Systems Engineering / SRA, Leibniz Universität

Hannover, September 2010. xiii, 76, 105

[9] Douglas C. Schmidt, “Middleware for real-time and embedded systems,” Commu-

nications of the ACM – Adaptive middleware, vol. 45, pp. 43–48, June 2002. xiv,

130, 131

[10] Hartmut Schmeck, “Organic Computing - Vision and Challenge for System Design,”

in PARELEC, 2004, p. 3. 1

[11] Stephan Hengstler and Hamid Aghajan, “A Smart Camera Mote Architecture

for Distributed Intelligent Surveillance,” in Working Notes of the International

Workshop on Distributed Smart Cameras (DSC), 2006. 1

[12] Michael Wittke and Jörg Hähner, “Self-organising distributed smart camera sys-

tems,” in Organic Computing - A paradigm shift for complex systems, Chris-

tian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, Eds., pp. 609–610.

Birkhäuser Verlag, 2011. 1

[13] Web, “MUViT: Mustererkennung und Video Tracking: Sozialpsychol-

ogische, soziologische, ethische und rechtswissenschaftliche Analysen,”

http://www.bmbf.de/de/14395.php, 2010. 4

[14] Sergio A. Velastin, Boghos A. Boghossian, Benny P. L. Lo, Jie Sun, and Maria A.

Vicencio-Silva, “PRISMATICA: toward ambient intelligence in public transport

environments,” IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, vol. 35, no. 1, pp. 164–182, January 2005. 4

[15] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, and Holger Prothmann, “Or-

ganic Computing - Addressing Complexity by Controlled Self-Organization,” in

Proceedings of Second International Symposium on Leveraging Applications of For-

mal Methods, Verification and Validation (ISoLA), November 2006, pp. 185–191.

5

[16] Michael J. Swain and Markus A. Stricker, “Promising directions in active vision,”

International Journal of Computer Vision, vol. 11, pp. 109–126, 1993. 9, 11, 14

BIBLIOGRAPHY 153

[17] Michael Bramberger, Andreas Dobl, Arnold Maier, and Bernhard Rinner, “Dis-

tributed embedded smart cameras for surveillance applications,” Computer, vol.

39, pp. 68–75, 2006. 10

[18] John G. Webster, The measurement, instrumentation and sensors handbook, CRC

Press, 1999. 13

[19] D. M. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from

a moving vehicle,” International Journal of Computer Vision, vol. 73, pp. 41–59,

June 2007. 13

[20] Ambareen Siraj, Rayford B. Vaughn, and Susan M. Bridges, “Intrusion sensor data

fusion in an intelligent intrusion detection system architecture,” in Proceedings of

Hawaii International Conference on System Sciences, vol. 9, 2004. 13

[21] Eduardo Monari, Jochen Maerker, and Kristian Kroschel, “A robust and efficient

approach for human tracking in multi-camera systems,” in Proceedings of the Sixth

IEEE International Conference on Advanced Video and Signal Based Surveillance

(AVSS), Washington, DC, USA, 2009, pp. 134–139, IEEE Computer Society. 13

[22] Mark Brown, “Technology: Google has travelled 140,000 miles in self-driving cars,”

http://www.wired.co.uk/news/archive/2010-10/11/google-self-driving-cars, October

2010. 16

[23] Les Dorr and Alison Duquette, “Fact sheet - unmanned aircraft systems (uas),”

http://www.faa.gov/news/fact sheets/, December 2010. 17

[24] Markus Quaritsch Benrhard Rinner, “Toward pervasive smart camera networks,” in

Multi-Camera Networks - Principles and Applications, Academic Press, Ed. 2010,

pp. 483–496, Elsevier. 18

[25] C. B. Margi, X. Lu, G. Zhang, G. Stanek, and K. Obraczka, “Meerkats: A power-

aware, self-managing wireless camera network for wide area monitoring,” in Pro-

ceedings of the International Workshop on Distributed Smart Cameras, 2006. 19,

20

[26] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, Juan C. Garcia, Jay War-

rior, Deborah Estrin, and Mani Srivastava, “Cyclops: in situ image sensing and

interpretation in wireless sensor networks,” in Proceedings of 3rd ACM Conference

on Embedded Networked Sensor Systems (SenSys), November 2005. 20, 21

154 BIBLIOGRAPHY

[27] Stephan Hengstler, Daniel Prashanth, Sufen Fong, and Hamid Aghajan, “Mesheye:

a hybrid-resolution smart camera mote for applications in distributed intelligent

surveillance,” in Proceedings of the 6th International Conference on Information

Processing in Sensor Networks (IPSN), New York, NY, USA, 2007, pp. 360–369,

ACM. 20, 21

[28] Richard Kleihorst, Anteneh Abbo, Ben Schueler, and Alexander Danilin, “Camera

mote with a high-performance parallel processor for real-time frame-based video

processing,” in Proceedings of the IEEE Conference on Advanced Video and Signal

Based Surveillance (AVSS), Washington, DC, USA, 2007, pp. 69–74, IEEE Com-

puter Society. 20, 21

[29] Anthony Rowe, Adam G. Goode, Dhiraj Goel, and Illah Nourbakhsh, “CMUcam3:

An open programmable embedded vision sensor,” Tech. Rep. CMU-RI-TR-07-13,

Robotics Institute, Pittsburgh, PA, May 2007. 20, 21

[30] Phoebus Chen, Parvez Ahammad, Colby Boyer, Shih-I Huang, Leon Lin, Edgar

Lobaton, M. Lenore Meingast, Songhwai Oh, Simon Wang, Posu Yan, Allen Yang,

Chuohao Yeo, Lung-Chung Chang, Doug Tygar, and S. Shankar Sastry, “Citric:

A low-bandwidth wireless camera network platform,” in Proceedings of the Sec-

ond ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC),

September 2008, pp. 1–10. 20, 22

[31] Gary Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

22, 28, 39

[32] Roger Y. Tsai, “A versatile camera calibration technique for high-accuracy 3d

machine vision metrology using off-the-shelf tv cameras and lenses,” IEEE Journal

of Robotics and Automation, pp. 221–244, 1992. 23

[33] Zhaolin Cheng, Dhanya Devarajan, and Richard J. Radke, “Determining vision

graphs for distributed camera networks using feature digests,” EURASIP Journal

on Advances in Signal Processing, vol. 2007, no. 1, pp. 220–231, 2007. 23, 29

[34] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers, “Wallflower:

Principles and practice of background maintenance,” in Proceedings of the Seventh

IEEE International Conference on Computer Vision, Los Alamitos, CA, USA, 1999,

vol. 1, pp. 255–261, IEEE Computer Society. 23

[35] Berthold K. P. Horn and Brian G. Schunck, “Determining optical flow,” ARTIFI-

CAL INTELLIGENCE, vol. 17, pp. 185–203, 1981. 24, 77

BIBLIOGRAPHY 155

[36] Erdogan Dur, “Optical flow-based obstacle detection and avoidance behaviors for

mobile robots used in unmaned planetary exploration,” in Proceedings of the 4th

International Conference on Recent Advances in Space Technologies (RAST), June

2009, pp. 638–647. 24

[37] Paul Viola and Michael Jones, “Robust real-time face detection,” International

Journal of Computer Vision, vol. 57, pp. 137–154, 2004. 24

[38] Q. Cai and J.K. Aggarwal, “Tracking human motion in structured environments

using a distributed-camera system,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 21, no. 11, pp. 1241–1247, November 1999. 25

[39] Ting-Hsun Chang and Shaogang Gong, “Tracking multiple people with a multi-

camera system,” in IEEE Workshop on Multi Object Tracking, 2001, pp. 19–26.

25

[40] Robert Collins, Alan Lipton, and Takeo Kanade, “A system for video surveillance

and monitoring,” in American Nuclear Society 8th Internal Topical Meeting on

Robotics and Remote Systems, 1999. 25

[41] Timothy Huang and Stuart Russell, “Object identification in a bayesian context,”

in Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-

gence. 1997, pp. 1276–1283, Morgan Kaufmann. 25

[42] Robert T. Collins, Omead Amidi, and Takeo Kanade, “An active camera system

for acquiring multi-view video,” in Proceedings of the International Conference on

Image Processing, 2002, pp. 517–520. 25

[43] Uwe Jänen, Christian Paul, Michael Wittke, and Jörg Hähner, “Multi-object track-

ing using feed-forward neural networks,” in Proceedings of the International Con-

ference on Soft Computing and Pattern Recognition (SoCPaR), Paris, France, 2010,

pp. 176–181, IEEE Computer Society. 25

[44] Andreas Koschan, “What is new in computational stereo since 1989: A survey on

current stereo papers,” Tech. Rep., Technische Universität Berlin and Technischer

Bericht, 1993. 25

[45] Enrico Grosso and Massimo Tistarelli, “Active/dynamic stereo vision,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 1117–1128,

November 1995. 25

156 BIBLIOGRAPHY

[46] Antii Kotanen, Marko Hannikainen, Helena Leppakoski, and D. Timo Hamalainen,

“Positioning with IEEE 802.11b wireless LAN,” in Proceedings of IEEE Personal,

Indoor and Mobile Radio Communications (PIMRC), September 2003, vol. 3, pp.

2218–2222. 28

[47] Alan T. Murray, Kamyoung Kim, James W. Davis, Raghu Machiraju, and

Richard E. Parent, “Coverage optimization to support security monitoring,” Com-

puters, Environment and Urban Systems, vol. 31, no. 2, pp. 133–147, 2007. 29

[48] Uǧur Murat Erdem and Stan Sclaroff, “Automated camera layout to satisfy task-

specific and floor plan-specific coverage requirements,” Computer Vision and Image

Understanding - Special issue on omnidirectional vision and camera networks, vol.

103, no. 3, pp. 156–169, 2006. 29

[49] Kay Römer, Philipp Blum, and Lennart Meier, “Time synchronization and calibra-

tion in wireless sensor networks,” in Handbook of Sensor Networks: Algorithms and

Architectures, Ivan Stojmenovic, Ed., pp. 199–237. John Wiley & Sons, September

2005. 31

[50] David L. Mills, Internet Time Synchronization: The Network Time Protocol, RFC

Editor, United States, 1989. 32, 47, 137, 139

[51] Richard E. Schantz and Douglas C. Schmidt, “Research Advances in Middleware for

Distributed Systems,” in Proceedings of the IFIP 17th World Computer Congress

- TC6 Stream on Communication Systems: The State of the Art, Deventer, The

Netherlands, 2002, pp. 1–36, Kluwer, B.V. 36

[52] Michael Wittke, Carsten Grenz, and Jörg Hähner, “Towards organic active vision

systems for visual surveillance,” in Architecture of Computing Systems - ARCS

2011, Mladen Berekovic, William Fornaciari, Uwe Brinkschulte, and Cristina Sil-

vano, Eds., vol. 6566 of Lecture Notes in Computer Science, pp. 195–206. Springer

Berlin / Heidelberg, 2011. 37

[53] Monika Sester and H. Neidhart, “Reconstruction of building ground plans from

laser scanner data,” in Proceedings of the AGILE, Girona, Spain, 2008. 38

[54] Aman Kansal, William Kaiser, Gregory Pottie, Mani Srivastava, and Sukhat Gau-

rav, “Reconfiguration methods for mobile sensor networks,” ACM Transactions on

Sensor Networks, vol. 3, October 2007. 38, 42

BIBLIOGRAPHY 157

[55] Radoslaw Rudnicki, Monika Sester, and Volker Paelke, “Visual interactive explo-

ration of spatio-temporal patterns,” in International Workshop on Visual Languages

and Computing, Redwood City, USA, 2009. 38, 64

[56] Michael Wittke and Jörg Hähner, “Distributed vision graph update in mobile vi-

sion networks,” in Workshop Proceedings of the 23th International Conference on

Architecture of Computing Systems (ARCS), 2010. 38, 45

[57] Michael Wittke, Uwe Jänen, Aret Duraslan, Emre Cakar, Monika Steinberg, and

Jürgen Brehm, “Activity recognition using optical sensors on mobile phones,” in

Proceedings of GI Jahrestagung, 2009, pp. 2181–2194. 38, 45

[58] Martin Hoffmann and Jörg Hähner, “ROCAS: A Robust Online Algorithm for Spa-

tial Partitioning in Distributed Smart Camera Systems,” in Proceedings of the First

ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC),

September 2007, pp. 267–274. 40

[59] Lars Friedrichs, Jörg Hähner, Michael Wittke, and Martin Hoffmann, “Method

for distributed generation of data for e.g. mobile telephone, in distributed vision

network, involves using correlated data for data encryption and/or error detec-

tion by detecting devices communicating with each other,” Patent (DPMA), , no.

102009005978, 2009. 45

[60] Michael Wittke, Sascha Radike, Carsten Grenz, and Jörg Hähner, “DRofACN:

Dynamic Reconfiguration of Active Camera Networks,” Elsevier Journal for Com-

puter Communications - Special Issue on Wireless Sensor and Robot Networks: Al-

gorithms and Experiments (submitted), 2011. 47

[61] Richard M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, Eds. 1972, pp. 85–103,

Plenum Press. 48

[62] Sergio A. Velastin, Benny P. L. Lo, and Jie Sun, “A flexible communications pro-

tocol for a distributed surveillance system,” Journal of Network and Computer

Applications, vol. 27, no. 4, pp. 221–253, 2004. 48

[63] Michail G. Lagoudakis, Evangelos Markakis, David Kempe, Pinar Keskinocak,

Anton Kleywegt, Sven Koenig, Craig Tovey, Adam Meyerson, and Sonal Jain,

“Auction-based multi-robot routing,” in Robotics: Science and Systems, 2005, pp.

343–350. 51

158 BIBLIOGRAPHY

[64] Sascha Radike, “Entwurf eines Protokolls zur lokalen räumlichen und zeitlichen

Rekonfiguration aktiver Kameras,” M.S. thesis, Institute of Systems Engineering /

SRA, Leibniz Universität Hannover, April 2011. 52

[65] Mark de Berg, Jörg-Rüdiger Sack, Bettina Speckmann, Anne Driemel, Maike

Buchin, Monika Sester, and Marc van Kreveld, “10491 Results of the break-out

group: Aggregation,” in Representation, Analysis and Visualization of Moving Ob-

jects, Jörg-Rüdiger Sack, Bettina Speckmann, Emiel Van Loon, and Robert Weibel,

Eds., Dagstuhl, Germany, 2011, number 10491 in Dagstuhl Seminar Proceedings,

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. 57

[66] Alvaro del Amo Jimenez, “Design of a Protocol for event-based Network Reconfig-

uration of Active Vision Systems,” M.S. thesis, Institute of Systems Engineering /

SRA, Leibniz Universität Hannover, April 2011. 61

[67] Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani, “Clock synchroniza-

tion for wireless sensor networks: A Survey,” Ad Hoc Networks (Elsevier), vol. 3,

pp. 281–323, 2005. 64, 137, 138, 139, 141

[68] Claude E. Shannon, “Communication in the presence of noise,” Proceedings of the

IRE, vol. 37, no. 1, pp. 10–21, 1949. 69

[69] John M. Harker, Dwight W. Brede, Robert E. Pattison, George R. Santana, and

Lewis G. Taft, “A quarter century of disk file innovation,” IBM Journal of Research

and Development, vol. 25, no. 5, pp. 677–690, 1981. 72

[70] ECMA, “Data Interchange on Read-only 120 mm Optical Data Disks (CD-ROM)

second edition,” Tech. Rep. ECMA-130, ECMA, June 1996. 72

[71] Shan X. Wang and Aleksandr M. Taratorin, Magnetic information storage technol-

ogy, Academic Press, 1999. 72, 74

[72] Philip Koopman and Tridib Chakravarty, “Cyclic redundancy code (CRC) polyno-

mial selection for embedded networks,” in International Conference on Dependable

Systems and Networks, 2004, pp. 145–154. 76

[73] Bruce D. Lucas, Generalized Image Matching by the Method of Differences, Ph.D.

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July 1984.

79

BIBLIOGRAPHY 159

[74] Dirk Helbing, Illes Farkas, and Tamas Vicsek, “Simulating Dynamical Features of

Escape Panic,” Nature, vol. 407, pp. 487–490, Sep 2000. 88

[75] Ton Roosendaal and Stefano Selleri, The Official Blender 2.3 Guide: Free 3D

Creation Suite for Modeling, Animation, and Rendering, No Starch Press, June

2004. 112

[76] Anil M. Cheriyadat and Richard J. Radke, “Detecting dominant motions in dense

crowds,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 4, pp.

568–581, August 2008. 120

[77] Guillem Bernat, Alan Burns, and Albert Llamosi, “Weakly hard real-time systems,”

IEEE Transactions on Computers, vol. 50, pp. 308–321, April 2001. 126

[78] Moncef Hamdaoui and Parameswaran Ramanathan, “A dynamic priority assign-

ment technique for streams with (m, k)-firm deadlines,” IEEE Transactions on

Computers, vol. 44, no. 12, pp. 1443 –1451, December 1995. 126

[79] Jair Jehuda and Amos Israeli, “Automated meta-control for adaptable real-time

software,” Real-Time Systems, vol. 14, pp. 107–134, March 1998. 126

[80] Cosmin Rusu, Rami Melhem, and Daniel Mosse, “Multiversion scheduling in

rechargeable energy-aware real-time systems,” in Proceedings of the 15th Euromicro

Conference on Real-Time Systems, July 2003, pp. 95–104. 126

[81] George Lima, Eduardo Camponogara, and Ana C. Sokolonski, “Dynamic reconfigu-

ration for adaptive multiversion real-time systems,” in Proceedings of the Euromicro

Conference on Real-Time Systems (ECRTS), July 2008, pp. 115–124. 126

[82] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson,

James D. Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio, “New

challenges in dynamic load balancing,” Applied Numerical Mathematics - Adaptive

methods for partial differential equations and large-scale computation, vol. 52, pp.

133–152, February 2005. 127

[83] Harilaos N. Psaraftis, “Dynamic vehicle routing: Status and prospects,” Annals of

Operations Research, vol. 61, pp. 143–164, 1995. 127

[84] Warren B. Powell, Patrick Jaillet, and Amedeo Odoni, “Chapter 3 stochastic and

dynamic networks and routing,” in Network Routing, C.L. Monma M.O. Ball,

T.L. Magnanti and G.L. Nemhauser, Eds., vol. 8 of Handbooks in Operations Re-

search and Management Science, pp. 141 – 295. Elsevier, 1995. 127

160 BIBLIOGRAPHY

[85] Robert B. Dial, “Autonomous dial-a-ride transit introductory overview,” Trans-

portation Research Part C: Emerging Technologies, vol. 3, no. 5, pp. 261 – 275,

1995. 127

[86] Eric Taillard, Philippe Badeau, Michel Gendreau, Francois Guertin, and Jean-Yves

Potvin, “A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time

Windows,” TRANSPORTATION SCIENCE, vol. 31, no. 2, pp. 170–186, 1997. 127

[87] Timon C. Du, Eldon Y. Li, and Defrose Chou, “Dynamic vehicle routing for online

b2c delivery,” Omega, vol. 33, no. 1, pp. 33–45, February 2005. 127

[88] Marius M. Solomon, “Algorithms for the vehicle routing and scheduling problems

with time window constraints,” Operations Research, vol. 35, pp. 254–265, 1987.

128

[89] Olli Braysy and Michel Gendreau, “Vehicle Routing Problem with Time Windows,

Part I: Route Construction and Local Search Algorithms,” TRANSPORTATION

SCIENCE, vol. 39, no. 1, pp. 104–118, 2005. 128

[90] Olli Braysy and Michel Gendreau, “Vehicle Routing Problem with Time Windows,

Part II: Metaheuristics,” TRANSPORTATION SCIENCE, vol. 39, no. 1, pp. 119–

139, 2005. 128

[91] Dimitris Bertsimas and Garrett Van Ryzin, “Stochastic and dynamic vehicle routing

in the euclidean plane with multiple capacitated vehicles,” Working papers 3287-

91., Massachusetts Institute of Technology (MIT), Sloan School of Management,

1991. 128

[92] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler, “A stochastic and dynamic vehicle

routing problem with time windows and customer impatience,” Mobile Networks

and Applications, vol. 14, pp. 350–364, June 2009. 128

[93] Chung-Yi Lin, Sheng-Wen Shih, Yi-Ping Hung, and Gregory Y. Tang, “A new

approach to automatic reconstruction of a 3-d world using active stereo vision,”

Computer Vision and Image Understanding, vol. 85, no. 2, pp. 117–143, 2002. 128

[94] Konstantinos A. Tarabanis, Peter K. Allen, and Roger Y. Tsai, “A survey of sensor

planning in computer vision,” IEEE Transactions on Robotics and Automation, vol.

11, no. 1, pp. 86–104, February 1995. 128, 135

BIBLIOGRAPHY 161

[95] Cregg K. Cowan and Peter D. Kovesi, “Automatic sensor placement from vision task

requirements,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 10, no. 3, pp. 407–416, May 1988. 128

[96] Steven Abrams, Peter K. Allen, and Konstantinos Tarabanis, “Computing camera

viewpoints in an active robot work-cell,” International Journal of Robotics Research,

vol. 18, pp. 267–285, 1999. 129

[97] Takashi Matsuyama, Toshikazu Wada, and Shogo Tokai, “Active image capturing

and dynamic scene visualization by cooperative distributed vision,” in Advanced

Multimedia Content Processing, Shojiro Nishio and Fumio Kishino, Eds., vol. 1554

of Lecture Notes in Computer Science, pp. 252–288. Springer US, 1999. 129

[98] Ardevan Bakhtari, Matthew Mackay, and Beno Benhabib, “Active-vision for the

autonomous surveillance of dynamic, multi-object environments,” Journal of Intel-

ligent and Robotic Systems, vol. 54, pp. 567–593, 2009. 129

[99] Bryan Horling, Régis Vincent, Roger Mailler, Jiaying Shen, Raphen Becker, Kyle

Rawlins, and Victor Lesser, “Distributed sensor network for real time track-

ing,” in Proceedings of the Fifth International Conference on Autonomous agents

(AGENTS), New York, NY, USA, 2001, pp. 417–424, ACM. 129

[100] John R. Spletzer and Camillo J. Taylor, “Dynamic sensor planning and control for

optimally tracking targets,” International Journal of Robotic Research, vol. 22, no.

1, pp. 7–20, 2003. 129

[101] Mohamed Kamel and Lovell Hodge, “A coordination mechanism for model-based

multi-sensor planning,” in Proceedings of the IEEE International Symposium on

Intelligent Control, 2002, pp. 709–714. 129

[102] Hongjun Zhou and Shigeyuki Sakane, “Sensor planning for mobile robot localization

using bayesian network representation and inference,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2002, vol. 1, pp. 440–

446. 129

[103] Emanuele Trucco, Manickam Umasuthan, Andrew M. Wallace, and Vito Roberto,

“Model-based planning of optimal sensor placements for inspection,” IEEE Trans-

actions on Robotics and Automation, vol. 13, no. 2, pp. 182–194, April 1997. 129

162 BIBLIOGRAPHY

[104] Trevor Darrell and Alex P. Pentland, “Attention-driven expression and gesture anal-

ysis in an interactive environment,” in Proceedings of the International Workshop

on Automatic Face and Gesture Recognition, 1995, pp. 135–140. 130

[105] Steven G. Goodridge, Ren C. Luo, and Michael G. Kay, “Multi-layered fuzzy behav-

ior fusion for real-time control systems with many sensors,” in IEEE Transactions

on Industrial Electronics, 1996, vol. 43, pp. 387–394, no. 3. 130

[106] Alan LaMont Pope, The CORBA reference guide: understanding the Common

Object Request Broker Architecture, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1998. 131

[107] Douglas C. Schmidt and Fred Kuhns, “An overview of the real-time corba specifi-

cation,” Computer, vol. 33, pp. 56–63, 2000. 131

[108] Minimum CORBA, “Minimum corba specification,”

http://www.omg.org/technology/documents/, [Online; accessed 14-December-

2010]. 131

[109] Roger Sessions, COM and DCOM: Microsoft’s vision for distributed objects, John

Wiley & Sons, Inc., New York, NY, USA, 1998. 131

[110] Esmond Pitt and Kathy McNiff, The CORBA reference guide: understanding the

Common Object Request Broker Architecture, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2001. 131

[111] Yang Yu, Bhaskar Krishnamachari, and V.K. Prasanna, “Issues in designing mid-

dleware for wireless sensor networks,” IEEE Network, vol. 18, no. 1, pp. 15–21,

January 2004. 132

[112] Mohammad M. Molla and Sheikh Iqbal Ahamed, “A survey of middleware for sensor

network and challenges,” in Proceedings of the International Conference Workshops

on Parallel Processing, Washington, DC, USA, 2006, pp. 223–228, IEEE Computer

Society. 132

[113] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo, David

Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler, “Tinyos: An operat-

ing system for sensor networks,” in Ambient Intelligence, Werner Weber, Jan M.

Rabaey, and Emile Aarts, Eds. Springer Verlag, 2004. 132

BIBLIOGRAPHY 163

[114] Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rothermel, “BASE -

a micro-broker-based middleware for pervasive computing,” in Proceedings of the

First IEEE International Conference on Pervasive Computing and Communications

(PerCom), March 2003, pp. 443–451. 132

[115] Florian Mösch, Marek Litza, Adam El Sayed Auf, Erik Maehle, Karl-Erwin Großpi-

etsch, and Werner Brockmann, “Orca - towards an organic robotic control archi-

tecture,” in IWSOS/EuroNGI, 2006, pp. 251–253. 132

[116] Wolfgang Trumler, Faruk Bagci, Jan Petzold, and Theo Ungerer, “AMUN-

autonomic middleware for ubiquitous environments applied to the smart doorplate

project,” Advanced Engineering Informatics, vol. 19, pp. 243–252, July 2005. 132

[117] Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer, “An artificial immune

system and its integration into an organic middleware for self-protection,” in Pro-

ceedings of the 8th annual Conference on Genetic and Evolutionary Computation

(GECCO), New York, NY, USA, 2006, pp. 129–130, ACM. 132

[118] Martin Hoffmann, System Management Algorithms for Distributed Vision Networks,

Ph.D. thesis, Institute of Systems Engineering / SRA, University of Hannover, 2010.

133

[119] Hamid Aghajan and Andrea Cavallaro, Multi-Camera Networks: Principles and

Applications, Academic Press, 2009. 133

[120] Joseph O’Rourke, Art gallery theorems and algorithms, Oxford University Press,

Inc., New York, NY, USA, 1987. 133

[121] V. Chvatal, “A combinatorial theorem in plane geometry,” Journal of Combinatorial

Theory Series B, vol. 18, pp. 39–41, 1975. 133

[122] D. T. Lee and Arthur K. Lin, “Computational complexity of art gallery problems,”

IEEE Transactions on Information Theory, vol. 32, no. 2, pp. 276–282, 1986. 134

[123] Héctor González-banos, “A randomized art-gallery algorithm for sensor placement,”

in Proceedings of the Seventeenth annual Symposium on Computational Geometry

(SCG), 2001, pp. 232–240. 134

[124] Danny Yang, Jaewon Shin, Ali Ozer Ercan, and Leonidas Guibas, “Sensor tasking

for occupancy reasoning in a camera network,” in Proceedings of IEEE/ICST 1st

Workshop on Broadband Advanced Sensor Networks (BASENETS), 2004. 134

164 BIBLIOGRAPHY

[125] Pere-Pau Vázquez, Miquel Feixas, Mateu Sbert, and Wolfgang Heidrich, “View-

point selection using viewpoint entropy,” in Proceedings of the Vision Modeling and

Visualization Conference (VMV). 2001, pp. 273–280, Aka GmbH. 134

[126] Jeff Williams and Won-Sook Lee, “Interactive virtual simulation for multiple camera

placement,” in IEEE International Workshop on Haptic Audio Visual Environments

and Their Applications, 2006. 134

[127] Anurag Mittal and Larry S. Davis, “A general method for sensor planning in multi-

sensor systems: Extension to random occlusion,” International Journal of Computer

Vision, vol. 76, pp. 31–52, January 2008. 134

[128] Robert Bodor, Andrew Drenner, Paul Schrater, and Nikolaos Papanikolopoulos,

“Optimal camera placement for automated surveillance tasks,” Journal of Intelli-

gent and Robotic Systems, vol. 50, pp. 257–295, 2007. 134

[129] Ali O. Ercan, Danny B. Yang, Abbas El Gamal, and Leonidas J. Guibas, “Optimal

placement and selection of camera network nodes for target localization,” in DCOSS,

2006, pp. 389–404. 134

[130] Enrique Dunn and Gustavo Olague, “Pareto optimal camera placement for auto-

mated visual inspection,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), August 2005, pp. 3821–3826. 134

[131] E. Hörster and R. Lienhart, “On the optimal placement of multiple visual sensors,”

in Proceedings of the 4th ACM international workshop on Video Surveillance and

Sensor Networks (VSSN), New York, NY, USA, 2006, pp. 111–120, ACM. 134

[132] Mohammad Al Hasan, Krishna Ramachandran, and John Mitchell, “Optimal place-

ment of stereo sensors,” Optimization Letters, vol. 2, pp. 99–111, 2008. 134

[133] Ugur Murat Erdem and Stan Sclaroff, “Optimal placement of cameras in floorplans

to satisfy task requirements and cost constraints,” in Proceedings of OMNIVIS

Workshop, 2004. 134

[134] Tao Zhao and Ram Nevatia, “Tracking multiple humans in complex situations,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 1208–

1221, 2004. 135

[135] N. Krahnstoever, P. Tu, T. Sebastian, A. Perera, and R. Collins, “Multi-view

detection and tracking of travelers and luggage in mass transit environments,” in

BIBLIOGRAPHY 165

Proceedings of the 9th IEEE International Workshop on Performance Evaluation of

Tracking and Surveillance and CVPR, June 2006. 135, 136

[136] Peter Tu, Fred Wheeler, Nils Krahnstoever, Thomas Sebastian, Jens Rittscher,

Xiaoming Liu, and Amitha Perera, “Surveillance video analytics for large camera

networks,” SPIE Newsletter, 2007. 135

[137] Ting Yu, Ying Wu, N.O. Krahnstoever, and P.H. Tu, “Distributed data association

and filtering for multiple target tracking,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2008, pp. 1–8. 135

[138] John Krumm, Steve Harris, Brian Meyers, Barry Brumitt, Michael Hale, and Steve

Shafer, “Multi-camera multi-person tracking for easyliving,” in Proceedings of the

Third IEEE International Workshop on Visual Surveillance (VS), Washington, DC,

USA, 2000, p. 3, IEEE Computer Society. 135

[139] Martin Hoffmann, Michael Wittke, Yvonne Bernard, Ramin Soleymani, and Jörg

Hähner, “DMCtrac: Distributed multi camera tracking,” in Proceedings of Sec-

ond ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC),

September 2008, pp. 1 –10. 135

[140] Martin Hoffmann, Michael Wittke, Jörg Hähner, and Christian Müller-Schloer,

“Spatial partitioning in self-organising camera systems,” IEEE Journal of Selected

Topics in Signal Processing, vol. 2, pp. 480–492, August 2008. 135

[141] Shaogang Gong, Jamie Sherrah, and Jeffrey Ng, “On the semantics of visual be-

havior, structured events and trajectories of human action,” Image and Vision

Computing, vol. 20(12), pp. 873–888, 2002. 135

[142] Gerard Medioni, Isaac Cohen, and Ram Nevatia, “Event detection and analysis from

video streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 23, no. 8, pp. 873 –889, August 2001. 135

[143] Andrew Senior, Arun Hampapur, and M. Lu, “Acquiring multi-scale images by

pan-tilt-zoom control and automatic multi-camera calibration,” in Proceedings of

Seventh IEEE Workshops on Application of Computer Vision (WACV/MOTIONS

), January 2005, vol. 1, pp. 433–438. 135

[144] S. J. D. Prince, J. H. Elder, Y. Hou, and M. Sizinstev, “Pre-attentive face detection

for foveated wide-field surveillance,” in Proceedings of Seventh IEEE Workshops

166 BIBLIOGRAPHY

on Application of Computer Vision (WACV/MOTIONS), January 2005, vol. 1, pp.

439 –446. 135

[145] Siva Ram, K. R. Ramakrishnan, P. K. Atrey, V. K. Singh, and M. S. Kankan-

halli, “A design methodology for selection and placement of sensors in multimedia

surveillance systems,” in Proceedings of the 4th ACM international workshop on

Video Surveillance and Sensor Networks (VSSN), New York, NY, USA, 2006, pp.

121–130, ACM. 135

[146] L. Marchesotti, L. Marcenaro, and C. Regazzoni, “Dual camera system for face

detection in unconstrained environments,” in Proceedings of the International Con-

ference on Image Processing (ICIP), September 2003, vol. 1, pp. 681–684. 135

[147] Xuhui Zhou, Robert Collins, Takeo Kanade, and Peter Metes, “A master-slave

system to acquire biometric imagery of humans at distance,” in ACM International

Workshop on Video Surveillance, ACM, Ed., November 2003. 135

[148] Julie Badri, Christophe Tilmant, Jean-Marc Lavest, Quonc-Cong Pham, and

Patrick Sayd, “Camera-to-camera mapping for hybrid pan-tilt-zoom sensors cal-

ibration,” in Proceedings of the 15th Scandinavian Conference on Image Analysis

(SCIA), Berlin, Heidelberg, 2007, pp. 132–141, Springer-Verlag. 135

[149] P. Peixoto, J. Batist, and H. Aralujo, “Real-time active visual surveillance by

integrating peripheral motion detection with foveated tracking,” IEEE Workshop

on Visual Surveillance, vol. 0, pp. 18, 1998. 135

[150] Ser-Nam Lim, L. S. Davis, and A. Elgammal, “Scalable image-based multi-camera

visual surveillance system,” in Proceedings of the International IEEE Conference

on Advanced Video and Signal Based Surveillance, July 2003, pp. 205 – 212. 135,

136

[151] Arun Hampapur, Sharat Pankanti, Andrew Senior, Ying-Li Tian, Lisa Brown, and

Ruud Bolle, “Face cataloger: multi-scale imaging for relating identity to location,”

in Proceedings of the International IEEE Conference on Advanced Video and Signal

Based Surveillance, July 2003, pp. 13–20. 135

[152] Faisal Z. Qureshi and Demetri Terzopoulos, “Surveillance camera scheduling: a

virtual vision approach,” in Proceedings of the third ACM international workshop

on Video Surveillance and Sensor Networks (VSSN), New York, NY, USA, 2005,

pp. 131–140, ACM. 135

BIBLIOGRAPHY 167

[153] Alberto Del Bimbo and Federico Pernici, “Towards on-line saccade planning for

high-resolution image sensing,” Pattern Recognition Letters, vol. 27, no. 15, pp.

1826 – 1834, 2006, Vision for Crime Detection and Prevention. 135

[154] Yiming Li and B. Bhanu, “Utility-based dynamic camera assignment and hand-

off in a video network,” in Proceedings of the Second ACM/IEEE International

Conference on Distributed Smart Cameras (ICDSC), September 2008, pp. 1–9. 136

[155] D.J. Cook, P. Gmytrasiewicz, and L.B. Holder, “Decision-theoretic cooperative

sensor planning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 18, no. 10, pp. 1013 –1023, October 1996. 137

[156] N. Ukita and T. Matsuyama, “Real-time cooperative multi-target tracking by com-

municating active vision agents,” in Proceedings of the 16th International Confer-

ence on Pattern Recognition, 2002, vol. 2, pp. 14–19. 137

[157] Zhen Jia, A. Balasuriya, and S. Challa, “Recent developments in vision based target

tracking for autonomous vehicles navigation,” in Proceeedings of the International

IEEE Conference on Intelligent Transportation Systems (ITSC), September 2006,

pp. 765–770. 137

[158] Jr. Mazo, M., A. Speranzon, K.H. Johansson, and Xiaoming Hu, “Multi-robot

tracking of a moving object using directional sensors,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), April 2004, vol. 2,

pp. 1103–1108. 137

[159] A. Betser, P. Vela, and A. Tannenbaum, “Automatic tracking of flying vehicles using

geodesic snakes and kalman filtering,” in Proceedings of the 43rd IEEE Conference

on Decision and Control (CDC), December 2004, vol. 2, pp. 1649–1654. 137

[160] Wee Kiat Ng, G.S.B. Leng, and Yee Leong Low, “Coordinated movement of multiple

robots for searching a cluttered environment,” in Proceedings of IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), September 2004,

vol. 1, pp. 400–405. 137

[161] Jana van Greunen and Jan Rabaey, “Lightweight time synchronization for sensor

networks,” in Proceedings of the 2nd ACM International Conference on Wireless

Sensor Networks and Applications (WSNA), New York, NY, USA, 2003, pp. 11–19,

ACM. 138

168 BIBLIOGRAPHY

[162] Jérémie Allard, Valérie Gouranton, Guy Lamarque, Emmanuel Melin, and Bruno

Raffin, “Softgenlock: active stereo and genlock for pc cluster,” in Proceedings of

the workshop on Virtual Environments (EGVE), New York, NY, USA, 2003, pp.

255–260, ACM. 139

[163] Kay Römer, “Time synchronization in ad hoc networks,” in Proceedings of the

2nd ACM international symposium on Mobile ad hoc networking and computing

(MobiHoc), New York, NY, USA, 2001, pp. 173–182, ACM. 140

[164] S. Ping, “Delay Measurement Time Synchronization for Wireless Sensor Networks,”

Intel Research IRB-TR-03-0133, Networked and Embedded Systems Lab (NESL),

University of California, Los Angeles (UCLA), 2003. 140

[165] Qun Li and Daniela Rus, “Global clock synchronization in sensor networks,” IEEE

Transactions on Computers, vol. 55, pp. 214–226, February 2006. 140

[166] J. Yan and M. Pollefeys, “Video synchronization via space-time interest point

distribution,” Advanced Concepts for Intelligent Vision Systems, 2004. 141

[167] S. Kuthirummal, C.V. Jawahar, and P.J. Narayanan, “Video frame alignment in

multiple views,” in Proceedings of the International Conference on Image Process-

ing, 2002, vol. 3, pp. 357–360. 141

[168] L. Lee, R. Romano, and G. Stein, “Monitoring activities from multiple video

streams: establishing a common coordinate frame,” Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 22, no. 8, pp. 758–767, 2000. 141

[169] Senem Velipasalar and Wayne Wolf, “Frame-level temporal calibration of video

sequences from unsynchronized cameras by using projective invariants,” in Proceed-

ings of the International IEEE Conference on Advanced Video and Signal Based

Surveillance (AVSS), September 2005, pp. 462–467. 141

[170] Jeremy Elson, Lewis Girod, and Deborah Estrin, “Fine-grained network time syn-

chronization using reference broadcasts,” in Proceedings of the 5th symposium on

Operating systems design and implementation of ACM SIGOPS Operating Systems

Review (OSDI), New York, NY, USA, 2002, vol. 36, pp. 147–163, ACM. 141

[171] Santashil Palchaudhuri, Amit Saha, and David B. Johnson, “Probabilistic Clock

Synchronization Service in Sensor Networks,” Tech. Rep., Department of Computer

Science, 2003. 142

BIBLIOGRAPHY 169

[172] Michael Mock, Reiner Frings, Edgar Nett, and Spiro Trikaliotis, “Continuous Clock

Synchronization in Wireless Real-Time Applications,” in Proceedings of the 19th

IEEE Symposium on Reliable Distributed Systems (SRDS), Washington, DC, USA,

2000, p. 125, IEEE Computer Society. 142

[173] Weilian Su and Ian F. Akyildiz, “Time-diffusion synchronization protocol for wire-

less sensor networks,” IEEE/ACM Transactions on Networking (TON), vol. 13, no.

2, pp. 384–397, 2005. 142

[174] David W. Casbeer, Derek B. Kingston, Al W. Beard, Timothy W. Mclain, Sai ming

Li, and Raman Mehra, “Cooperative forest fire surveillance using a team of small

unmanned air vehicles,” International Journal of Systems Sciences, vol. 37, pp. 360,

2006. 142

170 BIBLIOGRAPHY

Curriculum Vitae

Name: Michael Wittke

Date of birth: 19.03.1980

Place of birth: Itzehoe, Germany

School: 1992 - 1999

Grammar school (Kaiserin Auguste Victoria), Celle; Abitur

PhD and University: 10/2007 - 07/2011

Research Fellow for the Faculty for Electrical Engineering

and Computer Science at the University of Hanover, Germany

10/2000 - 03/2007

Double degree in Information System Technology and

Computer Science at the Carolo-Wilhelmina University

in Braunschweig, Germany

09/2003 - 02/2004

Term abroad (Erasmus) at the Polytecnica de Valencia,

Computer Science

Work Experience: Since 08/2011

Research Assistant at Volkswagen AG in Wolfsburg, Germany

08/2007 - 10/2007

Overseas Internship at Viagogo Ltd. in London

	Zusammenfassung
	Abstract
	List of Abbreviations
	List of Publications
	Introduction
	Motivation: Active Camera Networks
	Problem Statement and Contribution
	Classification and Scientific Focus
	Overview of the Thesis

	Active Camera Networks
	Definition: Active Camera
	Detecting Targets
	Position Control and Image Acquisition
	Sensor Control
	Examples for Mobile Entities

	Image Interpretation
	Smart Camera Prototypes
	Computer Vision

	Summary

	System Model
	Active Cameras
	Field of View
	Camera's State
	Clock Synchronization

	Perceiver Nodes
	Target Requests
	Modeling Perceiver-Observation Uncertainty

	Summary

	System Architecture for Active Cameras
	Requirements of Active Camera Networks
	Adaptive Location Management Architecture
	Architecture Overview
	Layer 0: Active Sensing
	Layer 1: Communication
	Layer 2: Positioning
	Layer 3: Coordination
	Cross-Layer Event Handler

	Summary

	Dynamic Reconfiguration Methods
	Problem Statement: Wide-Area Target Acquisition
	Formal Description
	Proof of Problem Complexity

	DRofACN
	Asynchronous Scheduling Process
	IDLE Mode
	MOVING Mode
	OBSERVATION Mode
	Correctness
	Phenomena Adaptivity (ENRA)

	Active Frame Synchronization
	Problem Statement: Frame Synchronization
	ACFSync: Active Camera Frame Synchronization
	Beacon-assisted Clock Synchronization Algorithm
	Cooperative Frame Synchronization Algorithm

	Summary

	Evaluation
	Performance Metrics
	DRofACN
	Experimental Setup
	Scalability
	Packet Loss
	Motion of Targets
	Target Speed
	Phenomena Adaptivity (ENRA)

	ACFSync (operation mode 1)
	Experimental Setup
	Synchronization Accuracy
	Error Rate
	Time Complexity
	CPU and Memory Utilization

	ACFSync (operation mode 2)
	Experimental Setup
	Noise
	Perspective
	Number of Targets
	Real-world Experiment
	CPU and Memory Utilization

	Summary
	DRofACN
	ACFSync

	Related Work
	Dynamic Reconfiguration
	Scheduling
	Dynamic Vehicle Routing Problem with Time Windows
	Sensor Planning for Visual Surveillance

	Operating System and Middleware
	General-Purpose Middleware
	Middleware for Embedded Systems
	Middleware for Organic Systems

	Active Cameras and Active Vision
	Optimal Placement
	Active Cameras
	Active Vision Agents

	Time Synchronization in Sensor Networks
	Sender-to-Receiver Synchronization
	Receiver-to-Receiver Synchronization

	Summary

	Conclusion
	Summary of Contributions
	Future Research Opportunities

