USABILITY AND EXPRESSIVENESS IN

DATABASE KEYWORD SEARCH: BRIDGING THE GAP

Von der Fakultat fur Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des Grades

DOKTORIN DER NATURWISSENSCHAFTEN

Dr. rer. nat.

genehmigte Dissertation
von

M.Sc. Elena Demidova

geboren am 29. June 1974, in St. Petersburg, Russland

2013

Referent: Prof. Dr. techn. Wolfgang Nejdl
Korreferent: Prof. Dr. Heribert Vollmer
Tag der Promotion: 30 Januar 2013

ABSTRACT

With increasing availability of structured data on the Web, in organizations and enterprises
end users gained direct and independent access to scientific data in a variety of domains,
data warehouses in enterprises as well as services and entertainment facilities on the Web.
Existing database systems enable expert users to efficiently interact with structured data,
obtain information with well-defined semantics and directly use this information to perform
follow-up transactions. However, database query construction is a laborious and error-prone
process, which cannot be performed well by most end users. Database keyword search
alleviates the usability problem at the price of query expressiveness. As keyword search
algorithms do not differentiate between the possible informational needs represented by a
keyword query, users may not receive adequate results. This observation motivated us to
develop new approaches to enable end users going beyond the most likely interpretations. In
this thesis we tackle four important usability aspects of database keyword search, namely: (i)
How to enable users to incrementally refine a keyword query into the intended interpretation
on the target database? (ii) How to provide database search results with an increasing level
of novelty? (iii) How to enable efficient and scalable query construction solutions for large
scale data?, and (iv) How to enrich a large scale database with semantic information?

We start with a presentation of IQP - a novel approach to bridge the gap between us-
ability of keyword search and expressiveness of database queries. IQP enables end users to
start with an arbitrary keyword query and incrementally refine it into a structured query
through an interactive interface. In this thesis we present the detailed design of IQP, and
demonstrate its effectiveness and scalability through extensive experiments and a user study.
We continue with DivQ - a scheme to balance the relevance and novelty of keyword search
results over structured databases. We introduce a scheme to diversify search results by re-
ranking query interpretations, taking into account redundancy of query results. Then, we
propose new metrics taking into account graded relevance of subtopics. Our evaluation on
two real-world datasets demonstrates that search results obtained using the proposed algo-
rithms better characterize possible answers than the results of the initial relevance ranking.

Then, we present FreeQ that further develops interactive query construction approach of
IQP by incorporating a set of novel techniques to boost the scalability of query construction
over large scale data. We construct an abstract ontology layer over the database schema to
ensure the efficiency of user-computer interaction. We also introduce a search mechanism
to enable efficient exploration of query interpretation spaces over large scale data. We show
through the extensive experiments that our approach scales well on Freebase - an open
database containing more than 7,000 relational tables in more than 100 domains. Finally,
to provide more semantic information for Freebase, we connect it to the YAGO ontology that
contains more than 360,000 classes. We analyze the structure of YAGO in more depth and
show how to match YAGO categories and Freebase tables. We make our YAGO+F structure
available online in the hope that it can provide a good starting point for future applications
which build upon a wide variety of Freebase data clearly arranged in the semantic categories
of YAGO.

Keywords: Keyword search in relational databases, incremental query construction, di-
versification of search results.

ZUSAMMENFASSUNG

Mit der zunehmenden Verfiigbarkeit von strukturierten Daten im Web, Organisationen und
Unternehmen, haben die Benutzer einen direkten und unabhéngigen Zugang sowohl zu wis-
senschaftlichen Daten und universellen Datenbanken, als auch zu den webbasierten Service-
und Unterhaltungsanwendungen bekommen. Bestehende Datenbankmanagementsysteme
ermoglichen es den fachkundigen Benutzern mit den strukturierten Daten effizient inter-
agieren zu konnen, Informationen mit eindeutig definierter Semantik zu bekommen und diese
Informationen in den darauffolgenden Transaktionen zu verwenden. Gleichzeitig stellt die
Formulierung komplexer Datenbanksuchanfragen eine aufwendige und fehleranfillige Auf-
gabe dar, die von einem Endbenutzer nicht effektiv erfiillt werden kann. Volltextsuche in re-
lationalen Datenbanken erhoht zwar die Benutzerfreundlichkeit der Datenbankschnittstelle,
jedoch wird dabei die Ausdrucksfahigkeit der Suchanfragen verringert. Um die Benutzerfre-
undlichkeit sowie die Ausdrucksfahigkeit der Volltextsuche in relationalen Datenbanken zu
verbessern, in dieser Dissertation untersuchen wir vier Fragen, ndmlich: (i) Wie kénnen wir
es einem Endbenutzer ermoglichen, eine komplexe Suchanfrage an eine relationalen Daten-
bank mit Hilfe der Volltextsuche zu formulieren? (ii) Wie kénnen wir in einem Suchergebnis
einen Uberblick iiber die suchanfragerelevanten Datenbankinhalte liefern? (iii) Wie kénnen
wir eine interaktive Erstellung komplexer Suchanfragen an sehr grofien relationalen Daten-
banken effizient unterstiitzen?, und (iv) Wie kénnen wir eine grofe relationale Datenbank
mit semantischen Informationen anreichern?

Wir beginnen mit der Darstellung von IQP - einem Ansatz, der es den Endbenutzern
ermoOglicht, mit einer beliebigen Volltextsuchanfrage anzufangen, und diese in einem interak-
tiven Prozess in eine strukturierte Datenbankanfrage umzuwandeln. In dieser Dissertation
stellen wir ein detailiertes Design von IQP vor und demonstrieren seine Effizienz anhand von
umfangreichen Experimenten und einer Benutzerstudie. Desweiteren stellen wir DivQ vor -
ein System, das die Relevanz und Neuigkeit der Suchergebnisse der Datenbankvolltextsuche
ausbalanciert. Wir présentieren eine Diversifikationstechnik um die Suchergebnisse unter
Berticksichtigung deren Redundanz einzuordnen. Um die Qualitat der Diversifikationsergeb-
nisse zur beurteilen, schlagen wir zwei neue Mafle vor, welche eine Beriicksichtigung der
Relevanz der Unterkategorien in einem Suchergebnis ermdglichen. Eine Auswertung mit
realen Daten zeigt, dass unsere Diversifikationsergebnisse die verfiigbare Datenmenge besser
beschreiben, als die herkémmliche Suchergebnisse.

Danach stellen wir FreeQ vor - ein System, das den IQP Ansatz weiterentwickelt und
eine Menge von Methoden zur Verfiigung stellt um eine interaktive Erstellung komplexer
Suchanfragen an die sehr groflen relationalen Datenbanken effizient zu unterstiitzen. FreeQ
erstellt eine Ontologie-basierte Schicht iiber das Datenbankschema, welche die Effizienz der
Mensch-Computer-Interaktion steigert. Wir demonstrieren die Skalierbarkeit der vorgestell-
ten Algorithmen anhand von Experimenten mit Freebase — eine Datenbank mit {iber 7000
relationalen Tabellen in mehr als 100 Domains. Letztendlich reichern wir die Freebase
Datenbank mit der semantischen Kategorien der sehr grofen YAGO Ontologie an, weiche
mehr als 360 000 Klassen beinhaltet. Wir analysieren die Struktur von YAGO und Freebase
und zeigen wie die beiden Schemata in einer neuen Struktur, YAGO+F benannt, miteinan-
der verkniipft werden kénnen. Wir hoffen, dass YAGO+F ein Ausgangspunkt fiir viele
zukiinftige Anwendungen darstellen kann, welche von der Vielfalt der Freebase Daten, die
mit der semantischen YAGO Kategorien angereichert sind, profitieren kénnen.

Schlagworter: Volltextsuche in relationalen Datenbanken, interaktive Erstellung kom-
plexer Suchanfragen, Diversifizierung der Suchergebnisse.

ACKNOWLEDGMENTS

First, I am deeply grateful to my supervisor, Prof. Dr. techn. Wolfgang
Nejdl for giving me the opportunity of being part of L3S Research Center and
Gottfried Wilhelm Leibniz University of Hannover, for guiding me in how to
pursue excellent research, and for supporting me during these past six years.

My sincere thanks are due to Prof. Dr. Heribert Vollmer, my second
supervisor, for providing very useful comments on the draft of my thesis, and to
Prof. Dr.-Ing. Bernardo Wagner for being a part of the dissertation committee.

I wish to express my warm and sincere thank to Dr. Xuan Zhou for his
continuous support throughout my thesis work, for his knowledge, scientific
advice, fruitful discussions, and collaborations. I also would like to thank Dr.
Peter Fankhauser for his collaboration and many insightful discussions and
suggestions. A special thank to Prof. Marianne Winslett for her advice and
fruitful collaborations starting from the very beginning of my Ph.D. studies.
I also would like to thank Dr. Daniel Olmedilla for greatly supporting me at
the initial stage of my work at the L3S Research Center.

I am grateful to my colleagues from the L3S Research Center and Gottfried
Wilhelm Leibniz University of Hannover for providing an excellent and inspir-
ing working atmosphere, for their support and valuable comments not limited
just to this thesis. Many thanks to the colleagues working in the adminis-
trative and technical departments, especially to Anca Vais, Michaela Kleiner,
Angelika van Agen, and Iris Zieseniss for their support and help.

I owe my deepest gratitude to Prof. Dr. Jiirgen Biermann, one of the best
Professors I met at the Osnabriick University of Applied Science who believed
in me and supported my studies of Computer Science. My special thank to
Prof. Roland Schwénzl, who founded the Information Engineering program
and supported my studies at the University of Osnabriick.

I am also very grateful to my family. My loving thanks are due to my par-
ents and my daughter Danielle for supporting me, and especially for standing
by me along this Ph.D. I owe my loving thanks to my husband Sergej for his
understanding, support, and valuable advices.

The work on this thesis was partly funded by the European Commission

under the projects ARCOMEM (contract no. 270239), LivingKnowledge (con-
tract no. 231126), and OKKAM (contract no. 215032).

FOREWORD

The algorithms presented in this thesis have been published or are under
review at various conferences and journals, as follows:

In Chapter 3 we structure the presentation of incremental query construc-
tion around the following papers:

e A Probabilistic Scheme for Keyword-Based Incremental Query Construc-
tion. Elena Demidova, Xuan Zhou, Wolfgang Nejdl. In IEEE Trans.
on Knowl. and Data Eng. (TKDE), 24(3):426-439, March 2012. DOI:

10.1109/TKDE.2011.40 (©)2012 IEEE. Reprinted with permission. [DZNonb)].

e [QF: Incremental Query Construction, a Probabilistic Approach. Elena
Demidova, Xuan Zhou, Wolfgang Nejdl. In: Proceedings of the 26th
IEEE International Conference on Data Engineering, March 1-6, 2010,
Long Beach, California, USA. DOI: 10.1109/ICDE.2010.5447929 (C)2010
IEEE. Reprinted with permission. [DZNona).

The presentation of diversification of keyword search results over structured
data in Chapter 4 is built upon the work published in:

e DivQ: Diversification for Keyword Search over Structured Databases.
Elena Demidova, Peter Fankhauser, Xuan Zhou, Wolfgang Nejdl. In:
Proceedings of the 33rd Annual ACM SIGIR Conference, 19-23 July
2010, Geneva, Switzerland [DFZN10].

Then, Chapter 5 describes contributions that enable to increase scalability
of interactive query construction to large scale data included in:

e FreeQ): An Interactive Query Interface for Freebase. Elena Demidova,
Xuan Zhou, Wolfgang Nejdl. In: Proceedings of the 21st International
World Wide Web Conference, 16-20 April 2012, Lyon, France [DZN12a].

e Scaling Interactive Query Construction on a Very Large Database. Elena
Demidova, Xuan Zhou, Wolfgang Nejdl. In submission [DZN12b].

Finally, Chapter 6 describes a mapping between a large scale Freebase
dataset and the YAGO ontology to support interactive query construction
over large scale data included in:

vii

YAGO meets Freebase: Combining a Large Scale Database with an Ontol-

ogy. Irina Oelze, Elena Demidova, Wolfgang Nejdl. In submission [ODN12].

During the early stages of the Ph.D. studies I have also published a number
of papers investigating interoperability and confidentiality aspects of federated
keyword search. These aspects are not touched in this thesis due to space
limitations. The complete list of publications follows:

Journal articles

A Probabilistic Scheme for Keyword-Based Incremental Query Construc-
tion. Elena Demidova, Xuan Zhou, Wolfgang Nejdl. In IEEE Trans. on
Knowl. and Data Eng. (TKDE), 24(3):426-439, March 2012. (©)2012
IEEE. [DZNonb]

Social Software for Lifelong Competence Development: Challenges and
Infrastructure. Ivana Marenzi, Elena Demidova, Wolfgang Nejdl, Daniel
Olmedilla, Sergej Zerr. In: International Journal of Emerging Technolo-
gies in Learning (iJET), Vol 3 (2008). ISSN: 1863-0383. [MDN*08b]

Conference papers

Privacy-Aware Image Classification and Search. Sergej Zerr, Stefan
Siersdorfer, Johnathon Hare, Elena Demidova. In: Proceedings of the
35th Annual International ACM SIGIR Conference, August 2012, Port-
land, Oregon, USA. [ZSHD12]

FreeQ): An Interactive Query Interface for Freebase. Elena Demidova,
Xuan Zhou, Wolfgang Nejdl. In: Proceedings of the 21st International
World Wide Web Conference, 16-20 April 2012, Lyon, France. [DZN12a]

FEvaluating Evidences for Keyword Query Disambiguation in Entity Cen-
tric Database Search. Elena Demidova, Xuan Zhou, Irina Oelze, Wolf-
gang Nejdl. In: Proceedings of the 21st International Conference on
Database and Expert Systems Applications (DEXA 2010), 30 August -
3 September 2010, Bilbao, Spain. [DZON10]

Div@: Diversification for Keyword Search over Structured Databases.
Elena Demidova, Peter Fankhauser, Xuan Zhou, Wolfgang Nejdl. In:
Proceedings of the 33rd Annual ACM SIGIR Conference, 19-23 July
2010, Geneva, Switzerland. [DFZN10]

IQF: Incremental Query Construction, a Probabilistic Approach. Elena
Demidova, Xuan Zhou, Wolfgang Nejdl. In: Proceedings of the 26th
[EEE International Conference on Data Engineering, March 1-6, 2010,
Long Beach, California, USA. (©)2010 IEEE. [DZNona]

viii

SUITS: Faceted User Interface for Constructing Structured Queries from
Keywords. Elena Demidova, Xuan Zhou, Gideon Zenz, Wolfgang Nejdl.
In: Proceedings of the 14th International Conference on Database Sys-
tems for Advanced Applications (Best Demo Award), 21-23 April 2009,
Brisbane, Australia. [DZZN09]

LearnWeb 2.0: Integrating Social Software for Lifelong Learning. Ivana
Marenzi, Elena Demidova, Wolfgang Nejdl. In: Proceedings of the World
Conference on Educational Multimedia, Hypermedia and Telecommuni-
cations, Vienna, Austria, 2008. [MDNO08a|

Zerber: r-Confidential Indexing for Distributed Documents. Sergej Zerr,
Elena Demidova, Daniel Olmedilla, Wolfgang Nejdl, Marianne Winslett,
Soumyadeb Mitra. In: Proceedings of the 11th International Conference
on Extending Database Technology (EDBT 2008), March 25-30 2008,
Nantes, France. [ZDO*08]

Services for Knowledge Resource Sharing & Management in an Open
Source Infrastructure for Lifelong Competence Development. Elena Demi-
dova, Philipp Kéarger, Daniel Olmedilla, Stefaan Ternier, Erik Duval,
Michele Dicerto, Carlos Mendez, Krassen Stefanov. In: Proceedings of
the 7th IEEE International Conference on Advanced Learning Technolo-
gies (ICALT 2007) July 18-20 2007, Niigata, Japan, pp. 691-693, 2007,
IEEE Computer Society, 978-0-7695-2916-5. [DKO*07]

Workshop papers

Preservation of Social Web Content based on Entity Extraction and Con-
solidation. Stefan Dietze, Diana Maynard, Elena Demidova, Thomas
Risse, Wim Peters, Katerina Doka, Yannis Stavrakas. In: Proceedings
of the 2nd International Workshop on Semantic Digital Archives (SDA)
in conjunction with the 16th International Conference on Theory and
Practice of Digital Libraries (TPDL), September 2012, Pafos, Cyprus.
[DMD+12]

deskWeb2.0: Combining Desktop and Social Search. Sergej Zerr, Elena
Demidova, Sergey Chernov. In: Proceedings of the Desktop Search
Workshop, in conjunction with the 33rd Annual ACM SIGIR, Confer-
ence, 23 July 2010, Geneva, Switzerland. [ZDC10]

Usability and Ezpressiveness in Database Keyword Search: Bridging the
Gap. Elena Demidova, Wolfgang Nejdl. In: Proceedings of the VLDB
2009 PhD Workshop, In conjunction with VLDB 2009, 24 August 2009,
Lyon, France. [DN09]

e Do We Mean the Same? Disambiguation of Extracted Keyword Queries
for Database Search. Elena Demidova, Irina Oelze, Peter Fankhauser.
In: Proceedings of the First International Workshop on Keyword Search
on Structured Data (KEYS 2009), 28 June 2009, Providence, Rhode
Island, USA. [DOF09]

e Social Software for Lifelong Competence Development: Scenario and
Challenges. Ivana Marenzi, Elena Demidova, Wolfgang Nejdl, Daniel
Olmedilla. In: Empowering Learners for Lifelong Competence Develop-
ment: pedagogical, organisational and technological issues. Proceedings
of the 4th TENCompetence Open Workshop Madrid, Spain, April 2008.
ISBN 978-90-6813-8474. [MDNOOS|

e Integration of Heterogeneous Information Sources into a Knowledge Re-
source Management System for Lifelong Learning. Elena Demidova, Ste-
faan Ternier, Daniel Olmedilla, Erik Duval, Michele Dicerto, Krassen
Stefanov, Naiara Sacristan. In Proceedings of the 2nd TenCompetence
Workshop, January 11-12, 2007, Manchester, United Kingdom. [DTO*07]

e Integrating RDF Querying Capabilities into a Distributed Search Infras-
tructure. Elena Demidova, Wolfgang Nejdl. In: Proceedings of the “Web
Search Technology - from Search to Semantic Search” Workshop, in con-
junction with the 1st Asian Semantic Web Conference (ASWC 2006),
September 3-7, 2006, Beijing, China. [DN06]

Technical reports

o SUITS: Constructing Structured Queries from Keywords. Xuan Zhou,
Gideon Zenz, Elena Demidova, Wolfgang Nejdl. In: Technical Report at
the L3S Research Center, 2008. [ZZDNO§]

Manuscripts under review

e Scaling Interactive Query Construction on a Very Large Database. Elena
Demidova, Xuan Zhou, Wolfgang Nejdl. In submission [DZN12b].

o YAGO meets Freebase: Combining a Large Scale Database with an Ontol-
ogy. Irina Oelze, Elena Demidova, Wolfgang Nejdl. In submission [ODN12].

Contents

Table of Contents xi
List of Figures XV
List of Tables xvil

1 Introduction 1
1.1 Problems Addressed in this Thesis 2
1.2 Proposed Solution 4
1.3 Thesis Structure 5

2 General Background
2.1 Database Usability - An Overview

2.2 Keyword Search in Databases - A General Characterization 11
2.2.1 Data Indexing using an Inverted Index 11

2.2.2 Data-based Approaches. L. 12

2.2.3 Schema-based Approaches 13

2.2.4 Ranking of Queries and Search Results 15

2.2.5 Top-k Query Processing 18

2.2.6 Materializing and Presenting Search Results 19

2.2.7 Query Expressiveness L. 19

2.2.8 Evaluation Techniques 20

3 Incremental Query Construction 21

x1

xii

3.1 Imtroduction 21
3.2 Summary of IQP Contributions 23
3.3 Specific Backgroundo oo 24
3.3.1 Faceted Search oo 24
3.3.2 Incremental Query Construction 24
34 Overview of IQP 25
3.5 Query Construction Framework 27
3.5.1 From Keywords to Structured Queries 27
3.5.2 Query Interpretation Generation 29
3.5.3 Sub-Query Relationship 30
3.5.4 Query Construction Plan. 31
3.5.5 Query Construction vs. Ranking 34
3.6 Estimating Query Probability 35
3.6.1 A Probabilistic Query Interpretation Model 35
3.6.2 Probability Estimation 0oL 37
3.7 Query Construction Algorithms 38
3.7.1 Brute-Force Algorithm 38
3.7.2 Greedy Algorithm 39
3.7.3 Computation of Information Gain 41
3.8 Evaluation 43
3.8.1 Datasets and Keyword Queries 43
3.8.2 Effectiveness of the Probability Estimates 44
3.8.3 Query Construction vs. Query Ranking 46
3.8.4 Usability of Query Construction 49
3.8.5 Scalability 51
3.8.6 Quality of the Greedy Algorithm 53
3.9 Discussion 54
Diversification of Search Results over Structured Data 57
4.1 Introduction 57
4.2 Summary of DivQQ Contributions 58
4.3 Specific Background o oo 59
4.4 The Diversification Scheme 0L 61
4.4.1 Bringing Keywords into Structure 62
4.4.2 Estimating Query Relevance. 62

4.4.3 Estimating Query Similarity 63

xiii

4.4.4 Combining Relevance and Similarity 64
4.4.5 The Diversification Algorithm 64
4.5 Evaluation Metrics 66
4.5.1 Adapting Gain for alpha-NDCG-W 66
4.5.2 Weighted S-Recall 67
4.6 Experiments 68
4.6.1 Dataset and Querieso 68
4.6.2 User Study 69
4.6.3 alpha-nDCG-W 69
4.6.4 WS-Recall 73
4.6.5 Balancing Relevance and Novelty 73
477 DISCUSSION . . . v v vt 75

Scaling Interactive Query Construction on a Very Large Database 77

5.1 Introduction 7
5.2 Summary of FreeQQ Contributions 79
5.3 Specific Background Lo o 80
5.4 Preliminaries of Interactive Query Construction 81
54.1 The Model 81
5.4.2 Limitations of the Existing Approaches 86
5.5 Efficiency of QCOs 87
5.5.1 Generation of Ontology-Based QCOs 87
5.5.2 A Measure of QCO Efficiency 88
5.5.3 Effects of Ontology-based QCOs 89
5.6 Generation of Structured Queries 91
5.6.1 Query Hierarchy for the QCOs Generation 91
5.6.2 Efficient Hierarchy Traversal 93
5.6.3 Probability Estimation 97
5.7 Experimental Evaluation 97
5.7.1 Experiment Setup 97
5.7.2 Effectiveness of Ontology-based QCOs. 98
5.7.3 Performance of the System 101
5.8 Discussion 102
Combining a Large Scale Database with an Ontology 105

6.1 Introduction and Motivation 105

xiv

A

6.2 Summary of YAGO+F Contributions.
6.3 Specific Backgroundo o
6.4 Concepts and Instances in YAGO
6.4.1 Concept Structure of YAGO
6.4.2 Instance Distribution in YAGO
6.4.3 Instance-Based Overlap between YAGO and Freebase
6.5 Matching YAGO and Freebase
6.6 Describing and Characterizing the YAGO+F Hierarchy
6.6.1 The Concepts and the Instances in the YAGO+F Hierarchy
6.6.2 Matching Quality

6.7 DISCussion

Conclusions and Future Work
7.1 Summary of Contributions

7.2 Open Research Directions

Curriculum Vitae

Bibliography

127
127
130

131

133

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

6.1
6.2

List of Figures

An Inverted Index Example, . 12
A Schema Graph Example 14
IQP User Interface 25
A Query Hierarchy Example 31
Query Construction Plan as a Binary Tree 32
Query Construction Plan as an N-ary Tree 33
Evaluation of the Probability Estimates 45
Interaction Cost of IQP and SQAK Ranking 48
Usability of Query Construction 51
Selecting Meaningful Query Interpretations 70
a-NDCG-W for Diversification and Ranking 72
WS-recall for Ranking and Diversification 74
Relevance vs. Novelty 75
FreeQ User Interface 82
Efficiency of QCO and Interaction Cost vs. Schema Size 90
An Example of a Query Hierarchy using Ontology-based QCOs 92
Interaction Cost of Query Construction over Freebase 100
Response Time of Query Construction over Freebase 101
Examples of YAGO and Freebase Concepts 106
Distribution of Shared Instances in Freebase 116

XV

xvi LIST OF FIGURES

6.3 Matching YAGO and Freebase Concepts 117
6.4 Matching Quality 123

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3

6.1
6.2
6.3

List of Tables

Example Tasks for the User Study 50
Performance of the Greedy Algorithm vs. Database Size 52
Performance of the Greedy Algorithm vs. the Number of Keywords . 53
Result Quality of the two Algorithms 54
Top-k Structured Interpretations for a Keyword Query 61
A Query Construction Example using Ontology-based QCOs 88
Complexity of Keyword Queries 98
Ontologies of Different Size 99
Distribution of Categories in YAGO 112
Distribution of Instances in YAGO 114
Distribution of the Categories and Instances in YAGO+F 121

XVvil

Introduction

With an increasing availability of structured data on the Web, in organizations, and
enterprises, end users gained direct and independent access to scientific data in a va-
riety of domains, data warehouses, as well as services and entertainment facilities on
the Web. Existing database systems enable expert users to efficiently interact with
structured data, obtain information with well-defined semantics and directly use this
information to perform follow-up transactions. To this extent, database systems typ-
ically expose structured query interfaces such as SQL with a high expressive power to
the expert users. On the one hand, this expressive power comes at the price of a fairly
complex internal data structures and query languages which are typically beyond the
expertise of end users. On the other hand, predefined query structures such as forms,
typically exposed to end users, lack flexibility. In this context, database usability
becomes crucial to enable novice users to take an advantage of the expressiveness of
structured query languages and to effectively interact with structured data.

Database usability attracted an increased research attention over the last decade.
New interfaces and algorithms such as natural language query interfaces, query auto-
completion techniques, and flexible forms were developed to provide end users with a
more flexible way to access structured data [And95, NJ07, JJO8]. Another recently de-
veloped technique to access structured data in a user-friendly way is database keyword
search [YQC10a]. In contrast to structured queries, keyword search requires neither
a-priori schema knowledge nor any specific query writing skills and can be performed
efficiently by novice users. Compared with typical Web search applications, database
search can provide several advantages, such as more complex query semantics, more
precise and complete query answers, as well as structured results [JCE*07].

Despite the high usability, keyword queries lack expressiveness to precisely de-
scribe users’ informational needs, and may return irrelevant or incomplete results.
To take advantage of both, i.e. expressiveness of structured queries and usability of
keyword search, some database keyword search approaches perform keyword query
disambiguation, where the system first translates keyword queries against a database

2 Chapter 1 Introduction

into structured queries, which are likely to represent the user’s informational need ini-
tially expressed by keywords [KKR*06, TL08, TCRS07, ZWX*07]. Effective keyword
query disambiguation can enable end users to precisely specify their informational
needs using a simple query language and obtain search results with well-defined se-
mantics.

1.1 Problems Addressed in this Thesis

Despite many research efforts, some important usability aspects of database key-
word search, and, more specifically, keyword query disambiguation, have not been
sufficiently addressed by the existing work. These aspects include incremental query
construction, diversification of search results over structured data, efficient incremen-
tal query refinement for large scale databases, and enrichment of large scale databases
with semantic information. State-of-the-art query disambiguation approaches typi-
cally assess the likelihood of the possible structural query interpretations and select
the most likely query interpretation(s) to retrieve their results from the database.
While this approach performs reasonably well for the most simple and straightfor-
ward keyword queries, it does not provide end users with any means to retrieve results
of the less probable interpretations or to obtain an overview of the data available in
the database. This problem becomes even more critical in face of large scale datasets,
where the space of the possible interpretations of a keyword query can become too big
to be completely materialized and ranked. The big and flat schemas of heterogeneous
large-scale databases cannot provide an informative overview of the data stored.

For solving these problems additional techniques are needed, namely incremental
query construction, diversification of search results over structured data, scalable algo-
rithms for incremental query construction over large scale datasets, and enrichment of
large scale databases with semantic information. Incremental query construction ad-
dresses the scenario in which the keyword query interpretation intended by the user
is not found within the top ranked results. This technique enables users to clarify
their search intents step by step, and to obtain the intended structural interpreta-
tion even if this interpretation is less probable. Diversification of search results over
structured data aims at minimizing the risk of users’ dissatisfaction by balancing rele-
vance and novelty of search results. Using diversification, the users can obtain a quick
glance at the relevant search results within a database. Scalable algorithms for inter-
active query construction over large scale datasets are needed to ensure an efficient
query construction procedure for the real-world large scale heterogeneous datasets
such as, for example, Freebase [BEP*08], DBpedia [BLK*09], WikiTaxonomy [PS08],
Probase [WLWZ12|, and others. Finally, enrichment of large scale databases with se-
mantic information can help to increase efficiency of incremental query construction
over large scale data, and also provide a good starting point for future applications
which can be build upon a wide variety of relational data clearly arranged in the
semantic categories.

1.1 Problems Addressed in this Thesis 3

This thesis will thus aim at solving the following problems:

Problem 1. How to enable the user to incrementally refine a keyword query into the
intended interpretation on the target database?

Existing approaches to keyword query disambiguation over structured data au-
tomatically translate a keyword query in a ranked list of the most likely structural
interpretations and execute some of these interpretations to retrieve results from a
database. While a query ranking approach is sufficient for the most simple and
straightforward keyword queries, intended interpretations of ambiguous queries may
not be found within the top ranked results. If the query interpretation intended by
the user does not receive a good rank, the system should enable users to clarify their
search intents step by step. Using incremental query construction, the user could con-
struct structured queries efficiently, without necessarily knowing the database schema
in advance or mastering a structured query language.

Can we offer interactive solutions addressing the shortcomings of the existing
query disambiguation approaches?

Problem 2. How to provide database search results over structured data with an
increasing level of novelty?

Keyword queries over structured data are notoriously ambiguous. No single inter-
pretation of a keyword query can satisfy all users, and multiple interpretations may
yield overlapping results. The key challenge here is to give users a quick glance of
the major plausible interpretations of a keyword query in the underlying database,
to enable user to effectively select the intended interpretation. To address similar
problem in Information Retrieval, a technique called diversification is used. Diversifi-
cation aims at minimizing the risk of user’s dissatisfaction by balancing relevance and
novelty of search results. Whereas diversification of search results on unstructured
documents is a well-studied problem, diversification of search results over structured
databases attracted much less attention.

Can we provide such search result diversification methods for structured data?

Problem 3. How to enable efficient incremental query construction over large scale
databases?

With an increasing amount of structured data available on the Web, interactive
query construction approaches mentioned above in Problem 1 need to become highly
scalable to perform well on databases containing thousands of tables and millions of
entities efficiently.

On the one hand, when the database schema graph is very big, the user inter-
action options generated by the query construction system need to become highly
informative to enable an efficient reduction of the search space. On the other hand,
the interpretation space of a keyword query in a very big database is usually too big

4 Chapter 1 Introduction

to be materialized completely, such that approaches to incremental query construc-
tion need to be adapted to materialize and explore a very large query interpretation
space incrementally.

Can we offer scalable and efficient solutions to these problems?

Problem 4. How to enrich a large scale database with the semantic categories of an
ontology?

When the schema graph of the database is big, a keyword can have a large number
of occurrences spread across the database. Given a large scale database such as
Freebase, it becomes crucial to provide effective and efficient structures that give
users a quick and informative overview of the data available and provide a backbone
for the wide variety of applications such as incremental query construction over large
scale data described above in Problem 3, as well as schema summarization, question
answering, and many others. Using these applications users who are not familiar with
an internal database schema can efficiently narrow down the search space and retrieve
the desired data quickly and accurately.

Ontologies are typically used for organizing large scale information and knowledge
in a wide variety of domains. In this thesis we consider this problem at the example
of the large scale Freebase dataset and the YAGO ontology. The YAGO ontology
is a natural choice for organizing Freebase data, as both YAGO and Freebase share
a large number of instances originating from Wikipedia. In related work, YAGO
and Freebase were brought together in the context of Linked Data [BHBLO09] that
loosely connects their shared instances through the DBpedia references. However,
the mapping of these datasets on the schema level does not exists.

Can we create such ontological layer over a large database schema?

1.2 Proposed Solution

Our proposed solutions to the above mentioned problems are based on probabilistic
models, efficient algorithms, and ontologies.

In this thesis we will analyze in detail the characteristics of different database
search systems and propose novel methods using probabilistic models, efficient algo-
rithms, and ontologies. Research for efficient and effective database search is necessary
for quite a lot of application environments, e.g. the World Wide Web, Enterprise Net-
works, Digital Libraries, Social Networks, Multimedia Repositories, and others. For
all these and especially for the domain of large scale relational databases available on
the Web, current query disambiguation and diversification algorithms are still rather
poor or even inexistent, although at the same time they are more and more required
due to the rapidly growing amount of data stored and searched for each of these
particular scenarios.

The contributions of this thesis are manifold:

1.3 Thesis Structure 5

e First of all, we provide a detailed analysis of related research in the area of
database usability in general and, in particular, database keyword search and
discuss the benefits of incremental query construction over structured data.

e Then, we propose novel algorithms for incremental query construction. Us-
ing these algorithms, novice users can create structured queries over relational
databases step-by-step starting from simple keywords without knowing the
database schema a-priori or mastering a structured query language.

e In the next step, we propose advanced algorithms for search result diversification
over structured data. This approach provides a quick overview of the variety of
differently structured keyword search results available in the relational database.

e We evaluate our approaches to incremental query construction and search result
diversification on real-world medium-sized datasets such as IMDB and Lyrics
and show that they outperform the baseline ranking approaches in the related
work and are scalable for the datasets with up to 100 tables.

e Following that, we move towards large scale data and address the problem of
scalability of the initial approaches to incremental query construction in face
of large scale databases containing thousands of tables. We further increase
scalability and efficiency of incremental query construction proposed in this
thesis to cope with the challenges resulting from the increased scale of data. We
evaluate our approach on Freebase - a large scale datasets containing thousands
of tables and confirm its efficiency through extensive experiments.

e Finally, in order to further increase efficiency of incremental query construction
over large scale data, we enrich the wide variety of Freebase data with the
semantic categories of the large scale YAGO ontology. We make the mapping
between YAGO and Freebase datasets resulting from this work available to the
community in the hope that this mapping can possibly facilitate many other
future applications.

1.3 Thesis Structure

In Chapter 2 we start by introducing general notions in the context of database
usability and database keyword search in general and describe some of the charac-
teristics of database keyword search systems, essential for understanding the rest of
the dissertation. First of all, in Section 2.1, we review the aspects of database us-
ability in general. Then, in Section 2.2 we focus on the various aspects of database
keyword search. We start with data indexing techniques in Section 2.2.1. Follow-
ing that, we discuss data-based and schema-based approaches to database keyword
search in Sections 2.2.2 and 2.2.3, respectively. Then, we review ranking techniques in

6 Chapter 1 Introduction

Section 2.2.4. After that, in Section 2.2.5, we discuss state-of-the-art top-k query pro-
cessing. In Section 2.2.6 we present current approaches of materializing and presenting
search results. Then, in Section 2.2.7 we discuss aspects of query expressiveness in
database keyword search. Finally, in Section 2.2.8, we present evaluation techniques
typically applied in this context. More detailed reviews of specific related work are
included in each of the next four chapters, centered on the four problems we aim to
solve:

The first problem (Problem 1), namely incremental query construction, is ad-
dressed in Chapter 3, where we start with introducing the reader into the topic in
Section 3.1. Following that, in Section 3.2 we provide a summary of contributions con-
tained in this chapter. Then, we review relevant literature in Section 3.3. We provide
an overview of the IQP system for incremental query construction in Section 3.4. In
Section 3.5 we present the conceptual framework for probabilistic incremental query
construction. Section 3.6 introduces a probabilistic model for assessing the likelihood
of a structural query interpretation, which is required in order to enable an efficient
query construction procedure. Section 3.7 presents the algorithms for generating
(near-) optimal query construction plans. We evaluate the methods we introduced in
Section 3.8 and discuss the results in Section 3.9.

Then, in Chapter 4 we aim at providing database search results with increasing
novelty to address Problem 2. After introducing the reader into the topic (Sec-
tion 4.1), in Section 4.2 we provide a summary of contributions contained in this
chapter. A detailed review of the literature follows in Section 4.3. In Section 4.4
we present our diversification scheme which enables obtaining relevant and diverse
search results from a database. Section 4.5 introduces an adaptation of the evalua-
tion metrics such as a-nDCG and S-recall, typically used to evaluate the quality of
diversification over unstructured data, to a database scenario. Section 4.6 contains
the results of our empirical investigation and confirms the quality of the proposed
methods. We discuss the results presented in this chapter in Section 4.7.

Afterwards, in Chapter 5 we move towards large scale data and present a set
of techniques to boost the scalability of interactive query construction first proposed
in Chapter 3 in face of a large scale dataset to address Problem 3. First of all, we
introduce the reader into the topic in Section 5.1. Then, in Section 5.2 we provide
a summary of contributions. Following that, we review related work in Section 5.3.
Then, in Section 5.4, we review the query construction model that was first introduced
in Chapter 3 and discuss its advantages and limitations. Section 5.5 talks about the
efficiency of the query construction options and introduces an ontological layer at the
top of the database schema that can significantly improve the efficiency of interactive
query construction in face of a large scale dataset. Then, Section 5.6 presents efficient
algorithms that enable incremental exploration of very large query interpretation
spaces. Finally, we experimentally evaluate the efficiency of the proposed solution in
Section 5.7 and discuss the results in Section 5.8.

Following that, in Chapter 6 we focus on the Problem 4 of enrichment of large

1.3 Thesis Structure 7

scale data with the semantic categories to advance the efficiency of query construction
over large scale data presented in Chapter 5, and ensure portability of our solution to
databases that are not associated with any ontological layer a-priori. We exemplify
this problem using Freebase dataset and YAGO ontology. We introduce the reader
into the topic and motivate our approach in Section 6.1. Following that, we summarize
the contributions of this chapter in Section 6.2. Then, in Section 6.3 we provide a brief
overview of the specific background from the area of schema matching. Following that,
in Section 6.4 we perform a detailed analysis of the concept and instance distribution
in the YAGO ontology. Then, in Section 6.5, we present matching techniques used
to align YAGO and Freebase. In Section 6.6 we analyze the concept and instance
distribution in the resulting YAGO+F structure combining YAGO and Freebase and
provide an evaluation of the matching quality. Lastly, we discuss the matching results
in Section 6.7.

Finally, in Chapter 7 we provide a conclusion to the thesis with an enumeration
of the contributions, while also discussing some possible future research directions
and open challenges associated with these topics.

General Background

Databases are widely used in enterprises, organizations and on the Web to collect
and disseminate scientific data, as well as information about real-world entities, such
as people, products, publications and genes. In enterprises, database technology
facilitates reporting and analysis; on the Web, databases enable transactions such as
ticket booking and hotel reservation services as well as shopping and price comparison
applications to name just a few examples. Recently, user created databases, such as
DBpedia [BLK*09] and Freebase [BEP*08] gain on popularity, enabling end users to
directly share structured data containing a lot of textual information in a variety of
domains.

Structured queries are a powerful tool to precisely describe a user’s informational
need and retrieve the intended information from a database. However, manual cre-
ation of a structured query is a labor-intensive and error-prone task. This task requires
exact knowledge of the database schema as well as proficiency in a query language,
which are typically beyond the expertise of end users. In this context, it becomes
increasingly important to create ways enabling novice users to work with structured
data, taking advantage of the rich and well-defined semantics encoded in the data
structures.

In this chapter we review state-of-the-art techniques aimed at enhancing database
usability. We pay specific attention to database keyword search that became espe-
cially important with increasing availability of structured data on the Web.

2.1 Database Usability - An Overview

Database usability is a long-term research issue [JCE*07]. One of the early approaches
to address this problem was the Query by Example (QBE) interfaces [BCCO05, Zlo75].
QBE [Z10o75] provides a way for a user to perform queries without knowing a query
language. The user of a QBE interface formulates the query by filling in the ap-

9

10 Chapter 2 General Background

propriate skeleton tables with an example of a possible answer. XQBE [BCCO05] is
a visual interface to create XQuery expressions for XML data inspired by QBE. Al-
though Query by Example interfaces free the user from learning the syntax of a query
language, they still require users to comprehend schema information presented by the
system. To address a similar problem, some commercial database products, e.g. Mi-
crosoft Access, offer visual query builder interfaces, which allow users to construct
a query by combining graphical elements, without writing the actual SQL query ex-
pression. However, query graphs in a typical visual query builder interface have to
be created starting from scratch. The user has to study the database schema and
manually put together pieces of the query graph.

More recent approaches to database usability include Natural Language Query In-
terfaces [And95, AMEOQ7, Blu99, LYJ06, LCY*07], query auto-completion [BCSW07,
NJO07], and adaptive forms [JJ08]. Natural Language Query Interfaces [And95, AMEQ7,
Blu99, LYJO06] are intended to enable users to specify structured queries in a human
language. These systems use a variety of statistical and machine learning techniques
to translate a user query written in a human language into the corresponding SQL ex-
pression intended by the user. Although Natural Language Query Interfaces provide
certain flexibility for database access, state-of-the-art techniques still require users
to use terminology compatible with the database schema and to form grammatically
well-formed sentences. Moreover, supervised machine learning techniques applied in
order to segment and label the elements of the natural language query expression
mostly require labeled data from the specific domain for training to achieve a high
precision in translation.

Query auto-completion [BCSWO07, NJO7] assists users to form structured queries,
by suggesting possible structures or terms based on the already entered sub-query.
The goal of auto-completion if twofold: on the one hand it reduces the typing effort of
the user; on the other hand it guides the user’s typing towards the schema elements
and values available inside the target database. This way, auto-completion techniques
enable users to create database queries without complete schema knowledge. Initial
auto-completion techniques relied on the user to provide correctly spelled prefixes
in order to offer completion suggestions. A more recent technique [CK09] relaxes
this assumption and enables correction of mistakes in the user input. However, auto-
completion techniques still require users to use a dedicated query language to form
structured queries.

Forms are typically used to query databases through a pre-defined query template.
Form-based interfaces enable users to query a database without mastering a query
language and knowing how the data is structured. Typically, the forms are static
and their expressiveness is limited by the query templates defined a-priori. Recently,
adaptive forms [JJO8] were proposed to alleviate this problem. When the existing
forms do not support a user query, adaptive forms can be used to perform a form
modification. Another recent form-related approach is a combination of keyword
search and a form interface where user keywords are used in the first step to identify

2.2 Keyword Search in Databases - A General Characterization 11

the forms relevant to the user query [CBC*09].

2.2 Keyword Search in Databases - A General Char-
acterization

One of the most flexible techniques enabling novice users to access structured data
is keyword search. Keyword search interfaces found wide adaptation on the Web
in the context of Information Retrieval, where user query targets are unstructured
documents ordered with respect to some objective function [MRS08]. Recently, inte-
gration of Information Retrieval and DB technologies to provide users with flexible
access to structured and semi-structured data attracted a lot of research attention
(e.g. [HGP03, CRW05, AYCR*05, AYS05, Wei07, CD09, CWLL09, YQC10a]). Com-
pared with typical Web search scenarios, database keyword search can provide several
advantages, such as more complex query semantics, more precise and complete an-
swers, as well as structured results [JCE+07]. Keyword search also become a popular
way to access semi-structured data such as XML [HPB03, AYS05] and RDF [KKD11].
In this section we review enabling techniques of database keyword search.

In a typical database keyword search application, user keyword queries are an-
swered in several steps. In an initial pre-processing step, query cleaning [PY08] or
query segmentation [YS09] can be applied to identify meaningful query segments.
Then, the search system identifies the database units (e.g. tables, attributes or tu-
ples) containing any valid query segments. This step is typically performed using
an inverted index created a-priori. In the next step, the valid join paths connecting
the keyword occurrences are enumerated. These connections can be identified in two
alternative ways, namely either data-based or schema-based [YQC10b]. Finally, the
search results corresponding to the identified join paths are retrieved, ranked accord-
ing to some objective function and presented to the user. In what follows, we describe
these steps in more details.

2.2.1 Data Indexing using an Inverted Index

In order to identify database units containing users’ keywords, existing search ap-
plications use indexing techniques. They can use either a separate index on each
textual database attribute (column) (e.g. in [HP02]), or an inverted index over the
whole database content (e.g. in [SA02, TLO8]). The index is created a-priori in a
pre-processing step.

A typical inverted index consists of a dictionary and posting lists [MRS08]. The
dictionary contains a set of terms extracted from the cells of the textual attributes
of the database tables. Optionally, the terms can be normalized using information
retrieval techniques such as stop word removal, stemming, and others [MRS08]. The
granularity of the postings in an inverted index may vary dependent on the specific

12 Chapter 2 General Background

keyword search application. For each term ¢ in the dictionary, a posting list with
either names of the database tables, attributes, or identifiers of the tuples (rows)
containing the term ¢ can be employed. The granularity of the postings influences
the space consumption and the efficiency of the index. A comparison between the
row-based and the column-based indexes can be found e.g. in DBXplorer [SA02].

Figure 2.1 exemplifies a part of an inverted index containing the postings rele-
vant to the keyword query “hanks terminal”. In this example, an indexing unit is a
database attribute, such that each posting represents the attribute in which the term
occurs.

hanks —— actor.name director.name
terminal —— film.name company.name location.name
'_ _'_.' ______ - - ____,/
Dictionary Postings

Figure 2.1 An Inverted Index Example. The figure exemplifies dictionary
terms and postings relevant for the query ‘“hanks terminal”. The postings
represent the names of the attributes. For example, the term “hanks” occurs
in the attributes “actor.name” and “director.name”.

As Figure 2.1 shows, the term “hanks” is contained in the attributes “actor.name”,
and “director.name”, whereas the term “terminal” occurs in the columns
“film.name”, “company.name”, and “location.name”.

2.2.2 Data-based Approaches

In the next step, single keyword occurrences identified using the inverted index are
connected to the query structures that include join operations. The join structures
connecting tuples that collectively contain user’s keywords are known as Join Tuple
Trees (JTTs). The data-based approaches, such as e.g. [ABC*02, BHN*02, HWY Y07,
KPC*05, DXYW*07, LOF*08, TWRC09, LT11, FLW11], work on the data graph and
identify search results using graph search algorithms.

The data-based keyword search approaches represent the data as a weighted
directed graph G(V,FE). In a relational database, the nodes of the graph repre-
sent database tuples. The edges represent foreign to primary key relationships con-
necting tuples. The weights of the edges can reflect tuple proximity [BHN*02,
DXYW+*07]. The node and edge weights can be assigned using PageRank [BP9S]
or ObjectRank [BHP04].

The aim of keyword search is then to identify the minimal cost JTTs connecting
the user’s keywords. These JTTs are in fact the sub-tree(s) of the data graph. In

2.2 Keyword Search in Databases - A General Characterization 13

the literature, the minimality of JTTs is typically linked to relevance, as minimality
reflects the closeness of the user’s keywords in a search result. Thus the problem of
finding optimal search result(s) is the Minimum Group Steiner Tree Problem [HRZ98]
or Top-k Group Steiner Tree Problem [DXYW+07]. These problems are required to
find the minimum cost interconnection(s) for a given set of objects. The Minimum
Group Steiner Tree Problem is NP-complete [CSRLO1], such that an efficient algo-
rithm to solve this problem optimally in polynomial time is not known.

To compute search results efficiently, existing approaches relax the minimality con-
dition [KPC*05, KS06, HWYY07, GKS08, LOF*08] and employ greedy graph search
algorithms (e.g. [DXYW+*07, KS06]) and index structures [HWYYO07]. For exam-
ple, BANKS employs [BHN*02] Backward Expanding Search Algorithm that creates
rooted JTTs using Dijkstra’s algorithm [Dij59] for shortest paths finding starting from
each node containing keywords in the data graph. BANKS2 [KPC*05] uses bidirec-
tional expansion to reduce the size of the search space and improve the efficiency.

The data-based approaches are schema-agnostic as they operate directly on the
data, and thus are applicable not only to relational databases [BHN*(02], but also to
semi-structured data [TWRC09] as well as to the combinations of structured, semi-
structured and unstructured data [LOF*08]. In case of XML, the nodes of the data
graph (tree) correspond to the XML elements and the edges reflect element contain-
ment, or IDREF links [KPC*05]. The result of a keyword query over XML data is a
subtree of the data graph rooted at the Lowest Common Ancestor (LCA) of a set of
nodes that collectively match query keywords [BLCL09, CMKS03, GSBS03, KGMO09,
LY J04, LCO08, SCGO7, XP05, XP08]. In RDF, the user’s keywords are mapped to the
nodes of the RDF graph and the neighborhood of these nodes is explored to extract
subgraph(s) of the data graph containing all the user’s keywords [KKD11]. Thus, the
aim of keyword search over semi-structured data is to extract the minimal subtree(s)
or subgraph(s) including all the user’s keywords [AYS05, KKD11].

As data-based approaches operate on the data graph, the search results, i.e. JTTs,
subtrees, or subgraphs become available in this step directly.

2.2.3 Schema-based Approaches

As keyword search interfaces do not offer sufficient expressiveness for the users to pre-
cisely specify their informational needs, the data-based approaches discussed above
may return irrelevant or incomplete results. To cope with this limitation, schema-
based approaches [SA02, HP02, HGP03, LYMC06, AME0O7, KKR*06, TZC*06, LLWZ07,
TCRS07, ZWX*+07, CBC*09, QYC09], perform keyword query disambiguation before
retrieving any tuples from the database. The disambiguation process first translates

a keyword query into a set of structured database queries, also known as Candidate
Networks (CNs), which are likely to expresses the user’s informational need. Then
the structured queries can be executed to retrieve the search results (i.e. JTTs) from
the database.

14 Chapter 2 General Background

Compared to the data-based keyword search, an advantage of the schema-based
approaches is an increased expressiveness of the structured queries that can be used
to interpret keywords. We discuss expressiveness of query interpretations in Sec-
tion 2.2.7. The other advantage is that the optimization capabilities of the underly-
ing database engine can be fully utilized to retrieve search results of the structural
query interpretation. In this thesis, we focus on the schema-based keyword search
approaches.

In the literature, a tuple is called non-free with respect to a keyword query K if it
contains at least one keyword k; € K. A database table is called non-free if it contains
at least one non-free tuple. Otherwise, the tuples and tables are called free. Join
structures connecting non-free database tables are typically called Candidate Net-
works (CNs). CNs were first discussed in DISCOVER [HP02] and DBXplorer [SA02],
where they are called join trees. The connections between the non-free tables in a CN
are established using foreign to primary key relationships as defined by the database
schema. The CNs are in fact relational algebra expressions.

In order to answer a keyword query, the schema-based approaches first identify a
set of valid CNs. The validation criteria for the CNs vary dependent on the expressive-
ness of the particular keyword search approach. For example, the valid CNs typically
have to comply to the minimality condition, mining that no empty leaf nodes in the
join tree are allowed. Usually, all user keywords need to be included (completeness
condition). In addition, the maximal length of the joining path is normally restricted
to enable efficient processing.

For example, consider the schema graph G in Figure 2.2. This graph contains five
entity tables, such as “actor”, “director”, “film”, “company”, and “location” as well
as four relational tables, such as “acts”, “directs”, “employed_by”, and “situated_in”.
Based on the inverted index shown in Figure 2.1, we can associate the tables of this
graph with the terms of the user’s query “Hanks Terminal”.

We use the notation a x b to denote that table a joins with table b on their
primary key to foreign key relationship. In the example above, the candidate networks
generated for the query “Hanks Terminal” include:

e actor: “hanks”= acts w film: “terminal”,
o director: “hanks” w directs w film: “terminal”,
e actor: “hanks” w employed_by w company: “terminal”, and

o director: “hanks” x employed_by » company: “terminal”.

In the small and medium-sized datasets, such as IMDB [IMD] and DBLP [Ley09],
the candidate networks for a keyword query can be enumerated by performing Breadth-
First-Search (BFS) on the schema graph [SA02, HP02, HGP03, LYMCO06]. Qin et

2.2 Keyword Search in Databases - A General Characterization 15

actor:
— acts [~

»hanks" | film:
| terminal”

| employed by

| director: _
company: |/ —| directs |

terminal” | whanks”
n

location:
Lterminal®

\ situatedin [—

Figure 2.2 A Schema Graph Example. The figure exemplifies an undirected
schema graph with 9 tables populated with keyword occurences for the query
“Hanks Terminal”. The nodes of the schema graph represent the database
tables and the edges represent the foreign key relationships.

al. [QYC09] use SQL to compute all the interconnected tuple structures for a given
keyword query.

In the schema-based approaches, the SQL statements corresponding to the iden-
tified candidate networks can be executed to retrieve search results.

2.2.4 Ranking of Queries and Search Results

Due to the ambiguity of keyword search, given a keyword query, there usually exist a
large number of structural interpretations and search results in a database. With an
increasing size of the data and schema, ranking became increasingly important. To
this extent, existing keyword search approaches employ various scoring functions that
assess the relevance of the possible structural query interpretations and search results.
Using scoring functions keyword search approaches can obtain the most relevant query
answers efficiently.

In practice, a variety of statistics related to data nodes, query results, and query
logs can be utilized to make relevance assessment. The statistics related to the data
nodes include TF-IDF (term frequency and inverse document frequency [MRS08]),
PageRank [BP98], and others. The query results are often ranked based on the num-
ber of edges, weights on edges, size normalization, and redundancy penalty [BLCL09,
CMKS03, DKS08, DXYW*07, GKS08, GSBS03, HWY Y07, KS06, LOF*+08, LFWZ08,
LYMCO06, LLWZ07, SLDG07, SGB*07, TL08, VOPT08, WPZ*06, WSR07, YLST07].
The query log based statistics can make use of frequencies of the query patterns found
in search logs.

The weighting factors used in the state-of-the-art ranking functions can be classi-
fied as structure-related, taking into account structural patterns of the query interpre-

16 Chapter 2 General Background

tations and results, and keyword-related, considering statistics of keyword occurrences.

The structure-related weighting factors include:

e Tuple tree size [SA02, HP02, LYMCO06, LLWZ07]. Using this factor, the CNs
and JTTs are considered as more relevant if the database elements containing
keywords are closely connected. Initial approaches used a simple size normaliza-

tion such as 1/size(X), where size(X) is a number of joins in the corresponding
CNor JTT.

This factor can also be adjusted to take into account the number of free and
non-free nodes separately [LLWZ07].

e PageRank [BHN*02, HHPO0§]. In Information Retrieval, PageRank consid-
ers the global importance of pages in the Web graph [BP98|. Applied to
the databases, the PageRank-based techniques consider the global importance

of the tables and tuples based on their connections in the schema and data
graphs [YPS09).

e Query log analysis. The logs of a database search system is a valuable source
to learn structural patterns (templates) used in user’s queries. In addition,
the logs can be used in order to improve the query segmentation, that, as a
consequence, could improve the overall ranking [YS09]. However, the query
logs are rarely available, such that the majority of the existing keyword search
approaches make use of other available statistics.

The most commonly used keyword-related weighting factors are:

e Relevance [HGP03, LYMC06, MdSdM*07, LLWZ07]. In Information Re-
trieval, in order to estimate the relevance of a search result to a query, term
frequency (TF) is typically used [MRSO08]. TF is the number of times the term
appears in a search result. The intuition behind TF is that the documents that
are most relevant to the query should contain the query terms more often than
the less relevant documents. Dependent on the document collection, this fre-
quency can be further normalized. In database keyword search TF is used to
assess the relevance of a tuple or a table attribute.

e Document length normalization [LYMCO06]. As observed in Information
Retrieval research, the keywords tend to occur more frequent in longer docu-
ments. In order not to over-estimate longer search results, document-length
normalization can be applied to TF. In the database context, the length of the
tuple or attribute can be used to perform such normalization.

e Document frequency (DF) [MdSdM*07]. In the context of a relational
database, a tuple can be viewed as a document, and a set of tuples in a database
table can be viewed as a document collection. Then, the document frequency

2.2 Keyword Search in Databases - A General Characterization 17

of a term in a database table is the number of tuples in this table containing
the term. In case a keyword is very frequent in a database table, the match in
this table can be considered as more typical.

e Inverse document frequency (IDF) [HGP03, LYMC06, MdSdM*07]. This
factor reflects selectivity of a keyword in the database and is inversely propor-
tional to DF. In case a keyword is very selective in a database table, the match
in this table can be considered as more specific.

e Matching schema terms [LYMCO06, TLO8]. In case a keyword matches a
schema term, such as an attribute or a table name, the match can be considered
as more important than a match in an attribute value. For example, schema-
based document frequency assigns a term matching a name of a text column or
a table name with the largest document frequency value among all the terms in
this column or table correspondingly.

e Phrase-based ranking. Phrase-based search has been shown to improve
search effectiveness in Information Retrieval [BP98, LLYMO04]. In database
keyword search, modifications of term frequency values can be applied to as-
sign higher weights to the phrase matches as opposed to the individual term
matches [LYMCO06].

e Completeness [LLWZ07]. Completeness gives higher weight to the CNs and
JTTs including more user’s keywords. This factor can be used to adjust seman-
tic of the query towards either the OR or AND semantics.

In the literature, typical ranking functions for CNs and JTTs use several structure-
related and keyword-related weighting factors in a combination. These ranking
functions can be monotonic, e.g. [HGP03, LYMCO06] and non-monotonic [LLWZ07,
LWL*11].

Ranking techniques for effective database search evolved over the last decade. To
rank query results, initial approaches such as DBXplorer [SA02], and DISCOVER [HP02]
simply used the number of joins in the query interpretations and search results. In-
tuitively, the shorter joining sequences are considered to be more relevant than the
longer sequences because they imply a closer association of the user’s keywords [HP02].
Most of the follow-up approaches used the number of joins as one of the factors in
ranking of query results and query interpretations.

Different works exploited the structure of the data and schema graphs to assess
importance of the results. For example, BANKS [BHN*02] used a combination of
tuple weights and edge weights in a tuple tree in a PageRank [BP98]| style method to
give higher weights to the highly connected tuples. In [HHPOS§], the authors extended
PageRank for database keyword search in databases for which there is a natural flow
of authority between their objects. In general, these methods consider the better
connected tables and tuples within a database to be more important.

18 Chapter 2 General Background

Ranking of search results has a long tradition in the field of Information Retrieval.
DISCOVER2 [HGPO03] first incorporated state-of-the-art Information Retrieval rank-
ing formula in database search. The ranking formula was subsequently improved by
Liu et al. [LYMCO6] by using several refined weighting schemes specifically developed
for the database keyword search. Compared to DISCOVER2, Liu et al. proposed
normalizations of the TF-IDF weighting in the database context.

Various ranking methods can be applied to both, structured queries interpreting
keywords (i.e. CNs) and search results (JTTs). Ranking search results is discussed
in [HGP03, LYMCO06, LLWZ07]. The approaches to keyword query disambiguation
employed ranking of query interpretations (CNs) rather than JTTs. A crucial step
of keyword query disambiguation is to assess the likelihood of the possible interpre-
tations and pick the most probable ones to be executed against the database. In
LABRADOR [MdSdM*07], the authors employed probabilistic models to estimate
the likelihood of the possible structural query interpretations.

2.2.5 Top-k Query Processing

As an interpretation space of a keyword query in a database is typically large, it is
oft not feasible to completely materialize the search space. To this extent, existing
keyword search approaches employ various techniques to efficiently obtain the top-k
most relevant query answers.

Li et al. considered the problem of generation of search results in the decreasing
order of their individual ranks in the context of Web documents and XML [LCVA02].
In the data-based keyword search, the focus of the top-k processing is to quickly
materialize the most relevant search results (JTTs) using the data graph. The
algorithms for the top-k JTT generation apply heuristics to obtain the most rel-
evant search results efficiently without the complete materialization of the search

space [HGP03, LLWZ07].

In the schema-based keyword search, existing approaches assume that it is feasible
to enumerate and rank the entire space of possible query interpretations (CNs) if the
maximal length of the join path is restricted [LLWZ07]. However, given a large-scale
database, this assumption may not hold anymore. In order to enumerate all valid
CNs, DISCOVER [HP02] proposed a Breadth-First (BF) algorithm that finds all
valid subgraphs of the schema graph of size n by traversal of the schema graph in a
breadth first order. This technique found application in many further schema-based

works, e.g. [HGP03, LYMCO06, LLWZ07, LWLO0g].

Given a CN, one can execute the SQL query corresponding to this CN to retrieve
search results. Thus, the focus of top-k query processing in the schema-based ap-
proaches is, given a ranked list of CNs, to find a query execution strategy to retrieve
the overall top-k search results efficiently. Given a list of CNs, a naive solution to
find top-k query answers is to issue a SQL query for each CN, to union the search
results of these queries, and to sort the results according to their scores. Given a big

2.2 Keyword Search in Databases - A General Characterization 19

number of CNs and large result sizes, this approach can become inefficient.

In the literature, the top-k query processing algorithm was first introduced by
Fagin [Fag99]. Given multiple lists of ranked results and a monotone score aggregating
function, Fagin’s algorithm and Threshold Algorithm (TA) can retrieve the top-k
objects efficiently by early stopping the query execution process as soon as the top-
k results were found [Fag99, Fag02]. While Fagin’s algorithm evaluates the top-k
objects in each list, TA uses the score upper bound to determine criteria for early
stopping.

DISCOVER2 [HGP03] introduced query evaluation strategies optimized for early
stopping the query execution in line with TA. The idea is to define an upper bound
score, such that any potential result from the future execution of a CN will not have
a higher score. Then the query execution can stop immediately as soon as k results
with the scores higher than upper bound are retrieved. This optimization technique
found application for other variants of top-k queries [LYMC06, CMKS03, XIG09].

Majority of the existing top-k approaches assume the ranking functions for JTTs
to be monotone [Fag99, MCYC06, BMS*06, XCH06, DGKT06, NCS*01, TAE04,
CHO2]. In the context of keyword search monotonicity means that the higher scores
of the individual tuple in a JTT will result in a higher score of the JTT as a
whole [HGP03, LYMCO06]. SPARK [LLWZ07, LWL*11] addresses the problem of
top-k processing in presence of a non-monotone ranking function that aggregates
relevance, completeness and size normalization factors in a non-linear combination.

2.2.6 Materializing and Presenting Search Results

In the majority of cases, a result of database keyword search is a joining network
of tuples (JTT). A special case of JTT is a minimal total joining network of tuples
(MTJINT) that does not contain any empty leaf nodes, and includes all keywords of
the user query [HP02].

In the data-based approaches, such as BANKS [ABC*02], this result is directly
available by search on the data graph. In the schema-based keyword search, the result
needs to be materialized in an extra step. In fact, a candidate network corresponds to
a single SQL statement that joins the tables as specified in the CN tree, and selects
those rows that contain the keywords. The search results retrieved by this procedure
can be ranked according to some objective function as discussed in Section 2.2.4.

Besides retrieval of the tuples explicitly matching user’s keywords, some studies
focused on identifying data that do not match keywords, but are implicitly relevant

to user queries [HPBO03, KSI06, LC07, LWCO07, TY09].

In the context of Web search, a search result is typically presented as a snippet
- a brief passage representing the content of the result. The snippets give users
a possibility to get a quick glance at the returned results and judge their rele-
vance. Generation of snippets has been considered in the context of XML keyword

20 Chapter 2 General Background

search [HLCO08a, HLCO8b].

Another useful technique to organize database keyword search results is cluster-
ing [XP05, HKPS06, KZGMO09]. The clusters help to disambiguate the query auto-
matically, grouping together similar search results.

2.2.7 Query Expressiveness

There is a natural trade-off between the expressiveness and the usability of database
search interfaces [JCE*07]. The expressiveness of query interpretations used in database
keyword search approaches has evolved greatly over the last decade.

The first works on database keyword search had very limited expressiveness and
focused on keyword queries in which all keywords were contained in the same tu-
ple [GSVGMO98, MV00a, MV0Ob]. Following that, DBXplorer [SA02], DISCOVER [HP02]
and BANKS [ABC*02, BHN*02] considered join trees that included tuples from dif-
ferent relations and collectively contained keywords of the user query.

DBXplorer [SA02], DISCOVER [HP02] and BANKS [ABC*02, BHN*02] assumed
AND semantics for an answer, whereas DISCOVER2 [HGP03| enabled OR seman-
tics. The methods for interpreting keywords evolved from considering attribute values
only (e.g. [SA02]), to include schema terms (e.g. [LYMCO6]) and aggregation opera-
tors [TLOS].

DBXplorer considered exact and prefix matches between keywords and attribute
values. BANKS [ABC*02, BHN*02] also took the matches between keywords and
metadata, such as column, table and view names, into account.

Labeled keyword search [CMKS03, LWL08, LY J04] enabled users who are familiar
with the database schema to explicitly specify the mapping between keywords and
metadata labels in the query, thus mapping the keywords exclusively to the attributes
complying with the specific label.

Analytical keyword queries [WSRO07, TLO8] enable grouping and aggregation of
search results, either based on user’s keywords or based on the search results.

Natural Language query interfaces such as [And95, Blu99, LY J06, AMEQ7, LCY*07]
enable users to put structured queries complying with the database schema in a nat-
ural query language.

Finally, structured query languages such as SQL, XQuery, and SPARQL provide
the most expressive querying capabilities, requiring detailed knowledge of the schema
and query language from the user.

2.2.8 Evaluation Techniques

Empirical evaluation of database keyword search is typically performed using a bench-
mark. In the context of XML keyword search, an established benchmark is provided

2.2 Keyword Search in Databases - A General Characterization 21

by INEX (INitiative for the Evaluation of XML Retrieval) [GKST11]. In the con-
text of database keyword search, popular datasets used for evaluation are e.g. IMDB
(The Internet Movie Database) [IMD], Lyrics [LYMCO06], DBLP [Ley09], and others.

Still, development of benchmarks for keyword search on structured data is an open
issue [CWLL09].

Another type of keyword search evaluation is a theoretical evaluation, that rea-
sons about a keyword search approach formally [L.LCO8, TWC11]. For example, [LCOS§]
proposes four properties, such as data monotonicity, query monotonicity, data con-
sistency, and query consistency that an XML keyword search strategy should ideally
satisfy. Termehchy et al. [TWC11] provides a theoretical framework to measure the
amount of design independence provided by a schema-free query interface.

Incremental Query Construction

3.1 Introduction !

Structured queries are a powerful tool to precisely describe a user’s informational need
and retrieve the intended information from a database. However, manual creation of
a structured query is a labour-intensive and error-prone task. This task requires exact
knowledge of the database schema as well as proficiency in a query language, which
are typically beyond the expertise of end users. Keyword queries on the other hand
require neither a-priori schema knowledge nor query construction skills and can be
performed efficiently by novice users. However, keyword search lacks expressiveness to
precisely describe a user’s informational need, and may return irrelevant or incomplete
results.

To take advantage of both, i.e., expressiveness of structured queries and usability of
keyword search, recent schema-based approaches [KKR*06, TL0O8, TCRS07, ZWX*07]
translate a keyword query into a ranked list of structured queries, such that the user
can select the query that best represents her informational need. While a query rank-
ing approach is sufficient for the most simple and straightforward keyword queries,
intended interpretations of ambiguous queries may not be found within the top ranked
results. This can happen for two reasons: first, as each keyword can potentially occur
in any textual attribute of a database, the number of structural interpretations grows
sharply with the complexity of the database schema and the length of the keyword
query. In fact, with a complex database and a lengthy keyword query, it is computa-
tionally infeasible to materialize and sort all possible structural query interpretations

! Chapter 3 includes material reprinted with permission from the following papers: Elena Demi-
dova, Xuan Zhou, Wolfgang Nejdl. A Probabilistic Scheme for Keyword-Based Incremental Query
Construction. In IEEE Trans. on Knowl. and Data Eng. (TKDE), 24(3):426-439, March 2012,
DOLI: http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.40. (€)2012 IEEE; Elena Demidova,
Xuan Zhou, Wolfgang Nejdl. IQ': Incremental Query Construction, a Probabilistic Approach. In:
Proceedings of the 26th IEEE International Conference on Data Engineering, March 1-6, 2010, Long
Beach, California, USA. DOIL: 10.1109/ICDE.2010.5447929. (©2010 IEEE.

23

24 Chapter 3 Incremental Query Construction

in online query processing. Second, even a theoretically optimal ranking algorithm
can, at best, rank the most common query interpretations highest; whereas the users
with less frequent informational needs may not receive adequate results. For example,
if the majority of users who issued the keyword query “London” were interested in
a city guide of London, the results referring to Jack London as a book author will
receive a low rank. In case a ranking function fails to identify the user intended query
interpretation within the top results, the user will need to examine all interpretations
prior to the intended one, which is tedious and error-prone for the user.

In this chapter we present IQP, a novel system aimed at bridging the gap between
usability of keyword search and expressiveness of database queries. Using IQP a user
can benefit from both, a conventional ranking interface and a more controllable query
construction interface. The former allows the user to immediately identify the most
common interpretation of her query. The latter enables the user to clarify her search
intent step by step, which is highly helpful when the intended query interpretation
is not found within the top ranked results. For instance, if a user issues a keyword
query “London Age”, IQP would ask a small number of questions, such as “Is London
a person?” or “Are you looking for a city’s age?”. Based on the user’s responses,
IQP is able to accurately identify the structured query representing the user’s infor-
mational need. Using IQP, users are able to construct structured queries efficiently,
without necessarily knowing the database schema or mastering a query language.

The algorithms presented in this chapter thus focus on addressing Problem 1
presented in Chapter 1, namely enabling users to incrementally refine a keyword query
into the intended interpretation on the target database. Our IQP system consists
of three components: (1) a probability-based framework that formally defines the
process of incremental query construction, which does not require any a-priori schema
knowledge or proficiency in a query language; (2) a probabilistic model to estimate the
probabilities of structural query interpretations, so as to identify meaningful items for
users to interact with; (3) an algorithm for generating the optimal query construction
plan, which enables a user to obtain the intended structured query within a minimal
number of interactions. In this chapter, we present the detailed design of these
components. We also show the effectiveness of our system through a user study
and extensive experiments using real world datasets.

The rest of this chapter is organized as follows: Section 3.2 provides a summary
of contributions contained in this chapter. Section 3.3 summarizes related work. Sec-
tion 3.4 gives an overview of the IQP system. Section 3.5 presents the conceptual
framework for incremental query construction. Section 3.6 introduces a probabilistic
model for assessing the likelihood of a structural query interpretation. Section 3.7
presents algorithms for generating (near-) optimal query construction plans. Our ex-
periment results are reported in Section 3.8. Finally, Section 3.9 provides a discussion
of the results.

3.2 Summary of IQP Contributions 25

3.2 Summary of IQP Contributions

The IQP system proposed in this chapter mainly contributes to the areas of database
usability described in Section 2.1, and database keyword search discussed in Sec-
tion 2.2.

Several state-of-the-art approaches described in Section 2.1 aim at enhancing
database usability and assist users in creation of structured queries. However, these
approaches typically require prior knowledge of the database schema and/or a ded-
icated query language. These approaches include Query by Example (QBE) inter-
faces [BCCO05, Zlo75]), visual query builder interfaces, e.g. Microsoft Access, Nat-
ural Language Query Interfaces [And95, AMEO7, Blu99, LYJO06], and query auto-
completion [BCSW07, NJO7, CK09]. In contrast to these approaches, IQP proposed
in this chapter requires neither prior knowledge of the database schema, nor a struc-
tured query language, and assists users in creation of structured queries starting from
simple keywords.

In database keyword search, users’ keyword queries can be very ambiguous hav-
ing many different interpretations in the underlying database, leading to a big variety
of differently structured search results. As state-of-the-art approaches to database
keyword search mainly focus on retrieval of a few most likely structured queries
and/or search results ([HGP03, LYMC06, HWYYO07, ZWX*07, TL0S], etc.), exist-
ing approaches can only satisfy the users issuing the most simple and straightforward
keyword queries. At the same time, informational needs of the users searching for
less typical interpretations of ambiguous keyword queries may remain unsatisfied, as
the user intended interpretations of these queries are not always found within the
top ranked results. Whereas state-of-the-art approaches to database keyword search
do not offer users opportunities to clarify the semantics of their queries, IQP enables
users to incrementally refine keywords into the desired structured queries. Using IQP,
users can retrieve the intended search results of ambiguous keyword queries efficiently,
within only a few iterations, even if these results are not very typical.

Initial approaches to incremental query construction presented in [ZZDNO08, DZZN09,
ZZM+09] did not take probability of query interpretations into account, such that the
resulting query construction process may be not optimal. In contrast to these ap-
proaches, IQP takes probability of query interpretations into account to enable an
efficient query construction process.

In summary, the IQP contributions described in this chapter include:

e A probabilistic model that enables IQP to assess probability of structured in-
terpretations and query construction options for a given keyword query.

e A probabilistic framework for incremental query construction that empowers
ordinary users to interactively guide the search process towards the intended
results starting from simple keywords.

26 Chapter 3 Incremental Query Construction

e The algorithms for generating (near-) optimal query construction plans that
enable users to create desired query interpretations efficiently, within only a
few iterations.

Our user study and experiments with real-world datasets have demonstrated
that the proposed approach outperforms SQAK [TLO08|, a state-of-the art system
to schema-based keyword search, if the user intended query interpretation cannot be
found within the top ranked results. Our experiments have shown that the proposed
probability estimates enable us to reduce the interaction cost of query construction
significantly compared with a base line approach that did not take probability of
query interpretations into account. Our simulations confirmed the scalability of the
proposed algorithms for the medium-sized databases containing up to 100 tables and
the quality of the proposed algorithms.

3.3 Specific Background

IQP supports efficient incremental construction of structured queries, which is related
to databases and information retrieval. In Chapter 2 we provided an overview of the
related work in the areas of database usability in general and database keyword search
in particular. In this section we discuss some additional related work on faceted search
and incremental query construction.

3.3.1 Faceted Search

User-driven query disambiguation has been successfully applied in Information Re-
trieval in the context of faceted search [MRS08]. Faceted search engines, such as the
product search engine of Google and the Clusty search engine [clu], organize search re-
sults into meaningful groups, called facets, by applying some clustering or categoriza-
tion algorithms. Users can easily shrink the scope of the search by focusing on a small
number of facets. Several navigational techniques [Hea06, K05, BRWD08, WSRO7]
were proposed to support users in finding information in a hierarchy of faceted cat-
egories. The interface of IQP is similar to a faceted interface, whereas each facet
corresponds to a query construction option.

3.3.2 Incremental Query Construction

In [DZZN09] and [ZZDNO08] we presented SUITS, a faceted interface that enables
users to interactively disambiguate keyword queries. However, SUITS lacks a the-
oretical foundation for verifying its effectiveness. In [ZZM*09], we extended SUITS
with a formal framework for incremental query construction and applied this frame-
work to Semantic Web data. However, as the framework of [ZZM*09] does not take

3.4 Overview of IQP 27

the probability of query interpretations into account, the resulting query construc-
tion process may be not optimal. Compared with [DZZN09, ZZM*09, ZZDNO0S| the
contributions of IQP include: (1) a probabilistic framework to define the process of
incremental query construction; (2) a probabilistic model to estimate the probabilities
of structural query interpretations; (3) an algorithm for generating an optimal query
construction plan based on Information Gain.

3.4 Overview of IQP

IQP query construction interface is designed to enhance the ranking centric ap-
proaches to database keyword search, such as [KKR*06, TL08, TCRS07, ZWX*07],
by giving users control over the query disambiguation process. Fig. 3.12 illustrates
the user interface of IQP.

The user interface of IQP consists of (1) a search field to input keyword queries,
(2) a query construction window which presents query construction options, (3) a
query window listing structured queries and (4) a result window for presenting search
results. When a user issues a keyword query, IQP provides the user with a ranked list
of structured queries (as interpretations of the keyword query) and the corresponding
results, which are presented in the query and result windows respectively. If the user
identifies the desired structured query, she can double click the query to retrieve its
results. If the user cannot immediately find the desired structured queries or results,
she can resort to the query construction window, which enables the user to refine the
structured queries being suggested.

For instance, to find the movies starring Tom Hanks and Tom Cruise in 2001, the
user Alice issues a keyword query “Hanks Cruise 2001” to IQP. Without knowing the
exact informational need of Alice, IQP translates the keyword query into a number
of structured queries, which give different interpretations to Alice’s keywords. For
example, one possible structured query searches for the movies of 2001 starring Hanks
and entitled “Cruise”, whereas another query searches for the movies starring Cruise
and directed by Hanks. These possible interpretations and corresponding results are
ranked and presented in the query and result windows respectively (Fig. 3.1 (3) and
(4)). Simultaneously, IQP generates a set of query construction options, and presents
these options in the query construction window (Fig. 3.1 (2)).

If the query interpretation desired by Alice is shown in the query window, she
can double click this interpretation and obtain the results. In case Alice cannot
immediately identify the desired information in the query or result windows, she
can use the query construction interface to refine the presented list of queries. For
instance, Alice can select a query construction option specifying that “Hanks” is

2 Fig. 3.1 includes the following images: http://de.fotolia.com/id/25660633 (C)Anatoly
Maslennikov - Fotolia.com; http://de.fotolia.com/id/10056489 (C)iocannis kounadeas - Fotolia.com;
http://de.fotolia.com/id /9974098 (©XYZproject - Fotolia.com

28 Chapter 3 Incremental Query Construction

B 1Q"P Database Search

H77 Hanks Cruise 2001 @ SEARCH |

| Query Construction |
| ‘Structured liill'el'ié's-{d-dl'.il':l'é'c'.lii:-k th'e:éc-u'té'l: i
Select the first correct option from the top: Y
A movie A movie with two different actors Il
' movie.title: CRUISE actor.name: CRUISE
movie.year: 2001 |
- A description of a movie actor.name: HANKS

- plot.plottext: CRUISE

~ Arole in a movie
 acts.as_character: HANKS

\An actor and a director of a movie
actor.name: CRUISE -
movie.year: 2001 —
director.name: HANKS

A name of an actor
actor.name: HANKS

—. Aname of a director
~ director.name: HANKS Two different movies with the same director
movie.title: HANKS
movie.title: CRUISE

) Others
movie.year: 2001
-
Search Results:
acts (1653161); acts (573966):
as_character, [Himself - Mominee: Best Actor in a Leading Role & . as_character, [Himself - Prasenter; Best Director]
. - .

b ie (392531) "l

moae - N tor (144593):

fitle: 73rd Annual Academy Awards, The 2001) (TV) ey /

year, 2001 name: CRUISE, Torn

"'J actor (276344):
m narme. HANKS, Tom

Figure 3.1 IQP User Interface. Its components include: (1) an input field
for keyword queries, (2) a query construction panel, (3) top-k structured
queries, and (4) query results. (©)2012 IEEE.

an actor’s name. Whenever Alice selects an option, the query and result windows
zoom into the structured queries and results satisfying the selected options. At the
same time, the set of the query construction options is updated to enable Alice to
further clarify her informational need. Interaction between Alice and the system
continues until Alice obtains the desired structured query or results. In fact, the
query construction options shown in Fig. 3.1 are structured queries too, while they
interpret only a part of keywords of the Alice’s keyword query.

As the number of possible structural interpretations of a keyword query grows
sharply with the number of keywords and the size of the database schema, rank-
ing alone is not always sufficient to help users identify desired structured queries or
results. While some natural language processing techniques, such as phrasing and to-
kenization, can be used to restrict the interpretation space, they have limited usage.
For instance, although the keywords “Tom” and “Hanks” can be typically interpreted
as the name of a single actor, a user may use these keywords to refer to a movie with

3.5 Query Construction Framework 29

two different actors named “Tom Cruise” and “Colin Hanks”. In contrast, a set of
properly selected query construction options enables a user to exponentially reduce
the interpretation space and thus obtain the intended structured query quickly. For
example, if “Hanks” can be a part of a movie title or an actor’s name in a movie
database, Alice can select the “Hanks is an actor’s name” option, and thereby im-
plicitly eliminate all structured queries that interpret “Hanks” differently.

IQP can present structured queries either in a natural language (using e.g. tech-
niques such as [KSI10]) or as graphs similar to the visual query builder interfaces.
To generate meaningful options IQP requires appropriate naming of the schema ele-
ments in a relational database. In the following, we present the detailed techniques
for enabling the above interface.

3.5 Query Construction Framework

This section presents a conceptual framework for incremental query construction.
First, we show how IQP translates a keyword query to a set of structured queries
of relational database. Then, we introduce the concept of query construction plan,
which can guide a user through an interactive process to obtain the intended query.

3.5.1 From Keywords to Structured Queries
We first define the concepts of keyword queries and structured queries.

Definition 3.5.1. Keyword Query: a keyword query K = ki, ..., k,, 1s a bag of
words, where duplicates are allowed.

Some examples of keyword queries are K;="titanic 1997”7, Ky="“actor tom hanks”,
K3="“movie hanks 2001”7, and K, =“number of movies with tom hanks”.

Definition 3.5.2. Structured Query: a structured query @ in IQP is an expres-
sion of relational algebra which is composed of tables and the following operators and
predicates:

Operator: The operators for forming structured queries include selection (o) and
natural join (x).

Predicate: A predicate is in the form ki,...,k,, c A, indicating that the bag of
keywords ki, ..., k,, is contained in the value of the attribute A.

Some examples of structured queries are as follows:

L4 Utitanic&titleﬁlQQ?Eyear(Movie):
A movie with title “Titanic” which is produced in 1997.

30 Chapter 3 Incremental Query Construction

b U{tom,hanks}cname(ACtOr):
An actor whose name is Tom Hanks.

Ld UhankSEHame(ACtOT) X ACtS X 0_2001€year(MOUi€):
Movies starring Hanks in 2001.

To construct a structured query from a keyword query, IQP first interprets each
keyword to an element of a structured query, which is called keyword interpretation.

Definition 3.5.3. Keyword Interpretation: a keyword interpretation is denoted
by A; : k;, which maps a keyword k; to an element A; of a structured query. A; can
refer to a table, an operator, an attribute, or a value in a predicate. A; is also called
an interpretation of k;.

In IQP, a keyword is interpreted to an element of a structured query, if it matches
the name or the value of that element. For example, to translate a keyword query
Ky=*actor tom hanks”, we can make the following keyword interpretations: Actor :
actor, tom € name : tom, and hanks € name : hanks, where “actor” is interpreted as
a table, and “tom” and “hanks” are interpreted to values in predicates.

A set of keyword interpretations can be connected to form a structured query.
For example, based on the keyword interpretations mentioned above, we can build a
structured qUETY O (iom hanks}cname(Actor). We call a mapping from a keyword query
to a structured query a query interpretation.

Definition 3.5.4. Query Interpretation: given a keyword query K, we say that
a structured query Q) is a query interpretation of K, if and only if there is a set of
keyword interpretations A; : k;, where Ai € Q and k; € K, such that (1) each keyword
in K is interpreted as at most one element of Q; (2) given a sub-structure Q' of Q, if
after removing Q)" the remaining structure of Q) is also a structured query, then there
15 at least one keyword in K that is interpreted as an element of ().

If A; : k; contains the keyword interpretations for all the keywords in K, we call Q)
a complete interpretation of K. Otherwise, we call () a partial interpretation of K.

The first condition in Def. 3.5.4 guarantees that each keyword has a unique inter-
pretation w.r.t. the structured query. This reflects the intuition that users typically
assign one specific meaning to a keyword. The second condition ensures that a query
interpretation does not contain any redundant parts, i.e., no part can be excluded from
a query such that remaining query still contains the same number of keywords. This
corresponds to the minimality condition introduced in [HP02, TLO8|. For instance,
O {tom,hanks)ctitle (M ovie) and 0 (iom, hanksicname (Actor) are both valid interpretations of
Ki="tom hanks”, and 0{iom hanks}cname (Actor) x Acts x oo001eyear (Movie) is a valid
interpretation of Ky="“movie tom hanks 2001”. However, o (om hanks}cname(Actor) m
Acts m (Movie) is not a valid interpretation of K3=“actor tom hanks”, as xActs
(Movie) does not contain any interpretation of a keyword in K3 and thus violates
Def. 3.5.4(2).

3.5 Query Construction Framework 31

In our query construction framework, each complete interpretation of a keyword
query can be a possible structured query desired by the user. Each partial inter-
pretation can be used as a query construction option. As the number of possible
complete interpretations of a single keyword query is usually large, the objective of
query construction is to quickly identify the interpretation desired by the user.

Definition 3.5.5. Interpretation Space: Given a keyword query K, the interpre-
tation space of K is the entire set of complete interpretations of K.

Our current implementation of IQP considered only a subset of operators and
predicates in relational algebra. Involvement of other operators, such as projection,
has been considered in the related work [LCO7]. It is an interesting direction for our
future research. Currently, a structured query created by IQP returns the values of

all referred attributes which corresponds to “SELECT *” in SQL.

3.5.2 Query Interpretation Generation

As creation of the entire interpretation space of a keyword query is expensive, IQP uses
a set of pre-computed query templates to accelerate this process. A query template
is a pattern typically used to issue structured queries.

Definition 3.5.6. Query Template: a query template T is a structured query
whose predicates do not contain any keywords, but variables.

For instance, 17 = 0vename(Actor) n Acts x goeyear(Movie) is a frequently used
query template, as users often look for a movie starring a certain actor in a cer-
tain year. Other examples of query templates include ovcpame(Director) x Directs
T2eyear (Movie) looking for movies directed by specific person and o7epame(Actor) x
Actsy x Movie w Actsy ¥ 0ocpame (Actor) searching for a movie with two actors.

A structured query (query interpretation) is a composition of a query template
and a set of keyword interpretations. IQP uses the following process to create an
interpretation of a keyword query K:

e Find an interpretation for each keyword in K;
e Pick an available query template T

e Combine 7" and the keyword interpretations into a query interpretation.

For example, given a query K3="“movie hanks 2001”, we first find a set of keyword
interpretations Movie : movie, Ohanksename * hanks, oagoreyear * 2001 and a query
template 11 = 0repame (Actor) m Acts x 0ocyeqr (Movie), and then combine them into a
structured query ohanksename (Actor) x Acts m oao1eyeqr (Movie). This process can be
repeated to generate the entire interpretation space of a keyword query.

32 Chapter 3 Incremental Query Construction

As the expressiveness of IQP is bounded by the pre-computed query templates,
it is essential to generate query templates that cover as many informational needs of
the users as possible. IQP generates query templates using three approaches.

e Firstly, query templates can be automatically generated by exploring possi-
ble join paths of the database schema within a predefined length. The meth-
ods for automatic template generation can be found in some existing work,
e.g. [CGRM06, HGP03, HP02]. Using this method, IQP can achieve similar
expressiveness as the ranking approaches that generate interpretations auto-
matically.

e Secondly, if a database is used frequently, its query log should contain a large
number of structured queries. The common patterns in the query log can be
used as query templates.

e Lastly, query templates can also be manually defined or adjusted by a database
administrator, based on the intended application of the database.

When creating structured queries, sometimes we may not find an appropriate
complete interpretation for a keyword query. In case one of the keywords is misspelled
or does not exist in the target database, it is excluded from the query construction
process. The user can either construct a partial interpretation without this keyword or
reconsider the keywords. If the query desired by the user is beyond the expressiveness
of IQP, the user has to resort to other means, e.g. creating a SQL query manually.

3.5.3 Sub-Query Relationship

During query construction, IQP utilizes the sub-query relationships between the par-
tial and complete query interpretations to quickly reduce the interpretation space of
a keyword query.

Definition 3.5.7. Sub-Query: Given two structured queries () and ()', we say that
Q' is a sub-query of Q (or Q' subsumes Q), iff Q" is a sub-structure of Q.

For instance, Q = 0 om hanks}cname (Actor) x Acts x oagp1eyear (Movie) is an interpre-
tation of K=“movie tom hanks 2001”. @)’ = U{hanks}emme(Actor) is a sub-query of @),
because ()’ is a substructure of (). The sub-query relationship is transitive. Namely,
if () is a sub-query of) and)"’ is a sub-query of ()’, then Q)" is also a sub-query of
Q.

In a query construction process, the user is presented with a number of query
construction options, i.e., partial interpretations of the keyword query (Fig. 3.1 (2)).
When the user accepts an option, she actually confirms that the option is a sub-query
of the intended structured query. When the user rejects an option, she indicates that

3.5 Query Construction Framework 33

the option is not a sub-query of the intended structured query. In either case, she
reduces the interpretation space of her keyword query.

Using sub-query relationships, we can connect all the complete and partial inter-
pretations of a keyword query to form a Query Hierarchy. Fig. 3.2 shows a part of
the query hierarchy for the keyword query K=“Tom Hanks 2001”.

G {tom,hanks}cname(Actor) MACtS M G 9 cyeqr (MoVie)

> J
s % S
S) S

G {tom,hanks}cnamd 17| |Gpanks cnamdActor)XACts) Gy ¢ year(Movie)

(™) @ Q (4]

& < S % 5
N () S &) 2]
S 2 S (2 S
S G > K 3

S tom enamelACtor) G hanksename (A°tr) ‘ G 2001 eyearMoVie)

Figure 3.2 A Query Hierarchy Example. The figure presents a part of the
query hierarchy for the keyword query “Tom Hanks 2001”. The arrows rep-
resent subsumption relationships between the (partial) query interpretations.

©2012 IEEE.

The shape of a query hierarchy is like an upside-down trapezoid. The bottom of
a query hierarchy is usually very small, as it contains only the smallest partial query
interpretations. The top of a query hierarchy is much larger, as it is contains all com-
plete interpretations. IQP utilizes the query hierarchy for an incremental generation
of complete and partial query interpretations. It first uses smaller query templates
to generate partial interpretations at the bottom of the hierarchy, and then gradually
expand them to generate more complete interpretations. With a complex database
schema or a long keyword query, IQP may have to deal with an interpretation space
that is prohibitively large. As shown in Section 3.7, a query hierarchy enables IQP
to generate appropriate query construction options without materializing the entire
interpretation space, so as to ensure the scalability of the system.

3.5.4 Query Construction Plan

As shown in Fig. 3.1, in each query construction step of IQP, a user is presented with
a list of query construction options, i.e. partial interpretations. She is supposed to
select the option that correctly interprets her keywords. To simplify our presentation,

34 Chapter 3 Incremental Query Construction

we assume that a user decides on only one option at a time. If the option is a sub-
query of the intended query interpretation, the user accepts it. If the option is not
a proper partial interpretation, the user rejects it. After the user accepts or rejects
an option, the interpretation space of the keyword query can be reduced accordingly.
The user keeps evaluating the options one after another, until only one possible query
interpretation is left. Such a query construction process can be modeled as a binary
decision tree, which is called query construction plan.

Definition 3.5.8. Query Construction Plan: A Query Construction Plan (QCP)
1s a binary tree. Fach node of the tree represents a set of structured queries, i.e. com-
plete query interpretations. The left and right edges of a node represent the acceptance
and the rejection of a query construction option, i.e. a partial interpretation, respec-
tively. The tree satisfies: (1) the root represents the entire interpretation space of a
keyword query; (2) each leaf node represents a single complete query interpretation;
(8) given an edge (Y, X) (Y is X ’s parent), (1) if (Y, X) is an acceptance of a query
construction option O, then X is the subset of Y that subsumes O; (ii) if (Y, X) is
a rejection of query construction option O, then X is the subset of Y that does not
subsume O.

A fragment of a query construction plan for the keyword query K'=*“hanks 2001” is
shown in Fig. 3.3. A query construction process is a traversal of the query construction
plan. The user starts from the root of the plan. At each node, the user decides
on the query construction option represented by the outgoing edges of that node.
After accepting or rejecting this option, the user moves to the node pointed by the
corresponding out-edge. The process continues until the user reaches a leaf of the
tree, which is the structured query desired by the user.

In the user interface shown in Fig. 3.1, the user needs to decide on multiple query
construction options in each round. That interface is based on an N-ary tree, which
is illustrated in Fig. 3.4. Each edge in the N-ary tree represents a query construction
option. In each step, the user is sup-posed to select the first option that satisfies her
intent. It can be proven that the N-ary tree in Fig. 3.4 can be uniquely transformed
from the binary tree in Fig. 3.3, and vice versa. To make the transformation, we
traverse the binary tree in post-order. For each node NB in the binary tree, we
remove the right edge (RE) and the right child (RC) of NB, and add RC’s edges and
children to NB. To facilitate our presentation, we always refer a query construction
plan as a binary tree in the rest of this chapter.

For a single keyword query, there typically exist an arbitrary number of QCPs,
whose efficiency differs significantly. Therefore, the key issue of query construction
in IQP is to find an optimal QCP that enables the user to obtain the intended query
interpretation as fast as possible. Each interaction between a user and a QCP always
follows the same pattern, that is, the user receives a query construction option from
QCP, evaluates it and chooses to accept or reject it. (In most of the cases, a user does
not need to explicitly reject an option. Instead, the user proceeds with evaluating

3.5 Query Construction Framework 35

Yes C;hankSEnr:]me(ACt':"‘) No

G Zﬂﬂleyear(MOVie) No

\ Yes

Chanksetitle (Movie) "Ng

Yes

o (Actor) M Acts

hanksename
M G001 cyearMoVie)

Yes GZOOleyear(MOVie) No

o 2001 eyearAhankSEtitIe(Mowe)

Figure 3.3 Query Construction Plan as a Binary Tree. (€)2012 IEEE.

the next one). Therefore, we can measure the efficiency of a QCP by an average
number of interactions between a user and the QCP until the user reaches a complete
structured query at a leaf node. We call this measure interaction cost.

Definition 3.5.9. Interaction Cost of a Query Construction Plan: We mea-
sure the interaction cost of a query construction plan by the expected number of query
construction options (partial interpretations) a user has to evaluate to reach a struc-
tured query (complete query interpretation), i.e. a leaf of the binary tree. Given a
structured query @), the number of sub-queries a user needs to evaluate to construct

Q is the depth of Q@ in the query construction plan. Therefore, the interaction cost of
the plan can be calculated by:

Cost(QCP)= > depth(leaf) x P(leaf), (3.1)
leafeQCP
where depth(leaf) is the depth of the leaf in QCP, and P(leaf) is the probability

that the leaf is the user intended query interpretation.

Then, the problem of incremental query construction is reduced to the problem
of finding the query construction plan with the minimum interaction cost.

36 Chapter 3 Incremental Query Construction

Actor) X Acts

cFhankSEname(G |
X G 2001 <year (MoOVie) 2001 eyearshankstitle

(Movie)

Figure 3.4 Query Construction Plan as an N-ary Tree. (€)2012 IEEE.

Definition 3.5.10. Minimum Query Construction Plan: A query construction
plan QCP is a minimum query construction plan for the keyword query K, iff there
1s no query construction plan of K whose interaction cost is less than that of QCP.

3.5.5 Query Construction vs. Ranking

In the ranking centric approaches [KKR*06, TL0O8, TCRS07, ZWX*07], the structural
interpretations of a keyword query are ranked based on their probability of matching
the user’s intent. The user can then navigate through the ranked list to identify
the desired interpretations. Such a ranked list of query interpretations is actually a
special case of QCP in Def. 3.5.8. In this special QCP, a user is always presented
with options corresponding to complete query interpretations. If the user accepts
the option, she gets the desired complete query interpretation directly. If the user
rejects the option, she traverses to the next node representing the next complete query
interpretation. However, such a QCP is not necessary the optimal one. Through this
QCP, the user can reach the top ranked interpretations quickly, but has to undertake
a lot of interactions to find the less probable interpretations.

In general, a QCP for ranking is not balanced. It works for the case where the
semantics of the keyword query is obvious, such that the majority of the probability

3.6 Estimating Query Probability 37

is assigned to a small number of query interpretations. It performs poorly in case
a keyword query is ambiguous, such that the probability is more evenly distributed
over a larger number of interpretations. In contrast, IQP always aims to create the
optimal QCP with the minimum interaction cost. When the semantics of a keyword
query is obvious, it generates a QCP similar to that of ranking. When the keyword
query is ambiguous, it generates a more balanced QCP.

In Sections 3.6 and 3.7, we show how QP generates query construction plans.
We address two issues: (i) how to estimate the probability of a query interpretation,
and (ii) how to generate minimum query construction plans based on the probability
estimation.

3.6 Estimating Query Probability

To support efficient query construction, it is important to have an accurate assessment
of the probability of whether a structured query (or a query construction option) cor-
rectly interprets a user’s keyword query. In this section, we introduce a probabilistic
model, which enables IQP to compute these probabilities. We also discuss possible
statistics for supporting probability assessment.

3.6.1 A Probabilistic Query Interpretation Model

Given a keyword query, IQP is uncertain about the exact informational need repre-
sented by this query. We quantify this uncertainty using probability.

Definition 3.6.1. Probability of Query Interpretation: Given a keyword query
K, let the structured query @ be a complete interpretation of K, i.e., QQ : K. Then,
P(Q|K) represents the conditional probability that, given K, @Q is the user intended
complete interpretation of K. Analogously, given a query construction option (a
partial interpretation) O of K, P(O|K) represents the conditional probability that,
giwen K, O subsumes the user intended complete interpretation of K.

P(Q|K) corresponds to P(leaf) in Equation 3.1. It is a crucial parameter used
by IQP in creating query construction plans. If a keyword query K has been used
repeatedly in a database, we can directly estimate P(Q|K) using the previous in-
terpretations of K in a database’s query log. However, in a large database, it is
unlikely to find sufficient number of records for a particular keyword query. To com-
pute P(Q|K), we need to resort to other statistics. In the following, we decompose
P(Q|K) to a set of atomic probabilities which are much easier to obtain.

A query interpretation @) is composed of a set of keyword interpretations {A; : k;}
and the query template T' of). Thus, the probability P(Q|K) can be transformed
to:

38 Chapter 3 Incremental Query Construction

P(QIK) = P({4; : ki}, T|K). (3.2)

To decompose this probability, we make a number of assumptions in our proba-
bilistic model.

Assumption 3.6.1. Keyword Independence: First, we assume that the interpre-
tation of each keyword in a keyword query is independent from the other keywords.

The assumption of keyword independence is used to simplify the probability cal-
culation, similarly to many other models in the literature (e.g. Vector Space Model
in Information Retrieval and Naive Bayes in Machine Learning [MRS08]). Although
the resulted probability estimation may not be very precise, our experiments in Sec-
tion 3.8 show that this model provides an adequate prediction of the query relevance
and significantly reduces the interaction cost. Based on Assumption 3.6.1 as well as
Bayes’ rule, we can transform Equation 3.2 to:

P(QIK) = DUAckI)PDxPUK{Ahi}.T)

P(K
(My,exc P(Ai:ki|T())><)P(T)><P(K|{Ai:ki},T) (3.3)
P(K) ’

As the set of keywords K can be known from the set of keyword interpretations
{A; : k;}, we have P(K|{A; : k;},T) = 1. Therefore, we can transform Equation 3.3
to:

(I e P(Asik| T))xP(T')
P(QIK) = ABT)PT) (3.4)
In this formula, P(T") is the prior probability that the template T is used to form
a query interpretation. P(A; : k;|T') represents the probability that, given that T is
used to form a query interpretation, A; is used to form the query interpretation too.
P(K) is the prior probability that a user issues the keyword query K.

Assumption 3.6.2. Keyword Interpretation Independence: Second, we as-
sume that the probability of a keyword interpretation is independent from the part of
the query interpretation the keyword is not interpreted to. In other words, P(A; :
k|T) = P(A; : ki|T 0 A;), where P(A; : ki|T n A;) represents the probability that,
given that T n' A; is a part of a query interpretation, A; is also a part of the query
interpretation.

For instance, let T = 0vepame(Actor) n Acts m oseyear(Movie) be a query tem-
plate searching for an actor who played in a movie from a given year. Let A; :
k1 = Ohanksename(Actor) : hanks be a keyword interpretation that interprets key-
word “hanks” as a name of an actor. The probability of this keyword interpre-
tation given the template T is computed as: P(A; : ki|T) = P(A; : k1|T n Ay)
= P(Onanksename (Actor) : hanks|orepame (Actor)), which represents the probability

3.6 Estimating Query Probability 39

that, given that the attribute Actor.name is a part of the query interpretation,
O hanksename (Actor) is also a part of the query interpretation. We assume that the prob-
ability of ohanksename (Actor) : hanks only depends on the fragment of osc,qme(Actor)
of the template.

Furthermore, as we consider different interpretations of the same keyword query
K, we can skip computing P(K), which is a constant for all query interpretations.
Finally, we have:

P(QIK) o< (T] P(Ai: ki|T n A))) x P(T). (3.5)

kiGK

The probability of a partial interpretation O, i.e. P(O|K), can be computed
similarly as Formula 3.5. Suppose that O only contains the keyword interpretations
of K’ c K. Then,

P(O|K) o< (T] P(A;: ki|T 0 A;)) x P(T). (3.6)

kieK'

3.6.2 Probability Estimation

According to Formulas 3.5 and 3.6, the calculation of the probability of a query
interpretation requires the estimation of P(7), the prior probability of the query
template T', as well as P(A; : k|T n A;), the probability that, given that T'n A; is a
part of a query interpretation, A; is also a part of the query interpretation.

Estimating Probability of a Template: If the database possesses a query
log that is statistically representative, P(7T") can be estimated directly using the log.
Based on the maximum likelihood model, P(T") can be calculated as the frequency
of T in the query log. Namely,

#occurences(T) + «

N)
where #occurences(T') is the number of queries using 7" as a template, N is the total
number of queries, and « is a smoothing parameter, which is typically set to 1. When

the query log is absent or is not sufficient, we assume that all query templates are
equally probable.

P(T) = (3.7)

Estimating Probability of a Keyword Interpretation: In this work, we focus
on two types of keyword interpretations defined in Def. 3.5.3. The first type interprets
a keyword as part of a query template, such as a table name, an attribute name or
an operator name. The second type maps a keyword to a “contains” predicate,

interpreting the keyword as a value of an attribute. This interpretation has the form
UkieATi(Table) H k‘,

40 Chapter 3 Incremental Query Construction

For the first type of interpretation, we can estimate the probability P(A; : k;|TnA;)
using the query log too. If A; is a table name, P(A; : k;|T'n A;) is the frequency of
using k; to represent table A; among the existing query interpretations containing
table A;. If A; is an operator name, P(A; : k;|T n A;) is the frequency of using k; to
represent operator A; among the existing query interpretations containing operator
A;. Without a query log, our system can use some empirical values set by domain
experts.

In case a keyword is interpreted as an attribute value, we can hardly estimate
the probability of the keyword interpretation using a query log. This is because the
number of occurrences of each particular attribute value in a query log is usually
insignificant. Therefore, we estimate probability of this interpretation using statistics
obtained from the database instances. We model the formation of a query interpreta-
tion as a random process. For an attribute AT;, this process randomly picks one of its
instances a; and randomly picks a keyword k; from that instance to form the expres-
sion oy,ear, (Table). Then, the probability of P(okcar, (Table) : kilorear,(Table)) is
the probability that oy,ecar, (Table) is formed through this random process. Based on
maximum likelihood mode, this probability can be estimated using Attribute Term
Frequency (ATF), which is defined as:

ATF (ki, AT;) = P(og,ear, (Table) : kilorear,(Table)) = TF(k;, AT;) + cv. (3.8)

In Equation 3.8, T'F(k;, AT;) is the normalized frequency of keyword k; in the
attribute AT; and « is a smoothing parameter, which is typically set to 1. The concept
of TF closely corresponds to the Term Frequency used in Information Retrieval if we
treat each attribute instance as a document [MRS08]. ATF is similar to the AF factor
introduced in [MdSdM*07], which describes how typical the term is in the values of
the respective attribute. While some other probabilistic models and statistics can
also be used to estimate P(Q|K), we show through experiments that our approach
is highly effective.

3.7 Query Construction Algorithms

As mentioned in Section 3.5, given a keyword query, there typically exist multiple
possible query construction plans (QCPs). While every plan can allow a user to obtain
the intended structured query, these plans can differ in efficiency significantly. A less
efficient plan also means reduced usability of IQP. To find an intended interpretation,
a user needs to traverse a branch of the QCP (as a binary tree). This requires the QCP
to be balanced. As mentioned earlier, a special case of an unbalanced QCP is a simple
ranked list of all possible query interpretations [KKR*06, TL08, TCRS07, ZWX*07].
In case the intended interpretation does not appear within the top-ranked items, the
user has to examine all queries prior to the intended one, which is tedious and error-

3.7 Query Construction Algorithms 41

prone. Instead, a more balanced QCP tree can efficiently prune the search space and
enable the user to obtain a desired query in fewer steps. In this section, we propose
an algorithm to create a plan that imposes as little effort on the user as possible, i.e.,
a minimum query construction plan.

3.7.1 Brute-Force Algorithm

Before presenting our algorithm for creating the minimum query construction plan,
we first introduce several properties of query construction plans.

Definition 3.7.1. Cost of Sub-plan: a sub-plan is a sub-tree of a query construc-
tion plan. After a user has finished evaluating a set of query construction options,
she reaches an internal node of the query construction plan. The sub-tree rooted at
this node is called a sub-plan. Similar to the cost of QCP, the cost of a sub-plan
measures the expected number of query construction options the user has to further
evaluate until she finally reaches a complete query interpretation. Suppose the user
has evaluated a set of options, in which she has rejected the set of options D and
accepted the set of options A. The user reaches a sub-plan st. Then the cost of st is:

Cost(st) = Y. depth(leaf) x P(leaf|-D n A), (3.9)

leafest

where depth(leaf) is the depth of the leaf in the query construction plan QCP (rep-
resented as a binary tree), and P(leaf) is the probability that the leaf is the intended
query interpretation.

Lemma 3.7.1. Suppose QCP is a query construction plan, and QC Py, QCP, are
the two sub-plans rooted at the children of QCP’s root. The option on the outgoing
edges of QCP’s root is R. Then the cost of QCP is:

Cost(QCP) = P(R) x Cost(QCP;) + P(~R) x Cost(QCP,) + 1. (3.10)

Applying Lemma 3.7.1, Algorithm 3.1 is able to identify the minimal query con-
struction plan for a keyword query. The algorithm works recursively. For each node
A, it enumerates all possible query construction options that can act as A’s out-edges.
For each option R, it computes the two minimal sub-plans of accepting R and reject-
ing R, and applies Lemma 3.7.1 to compute the cost of the corresponding sub-plan
of A. Finally, the algorithm returns the sub-plan of A with the smallest cost.

While Algorithm 3.1 can always find the optimal query construction plan, it is
expensive. With a big database schema and a long keyword query, it is infeasible to
generate all possible structured queries and query construction options in the online
query processing. Creation of an optimal query construction plan using the brute-
force algorithm is even more impractical. It can be proven that the complexity of
Algorithm 3.1 is O(N'9(M)) ‘where N is the number of the query construction options

42 Chapter 3 Incremental Query Construction

Algorithm 3.1: A Brute-Force Algorithm for MQCP
input :
CQ := all complete queries;
PQ := all options;
AP := empty; //accepted options
DP := empty; //rejected options
output:
QCP; //an optimal query construction plan

begin
QC P:= empty;
if |CQ|=1 then
QCP.root := CQ;
QC P.root.left_edge := c;
QC P.root.right_edge :=!c;
QCP.root.left_child := c;
QC P.root.right_child := " unknown”;
| return QCP;
partial_query best_r := null,
best_cost := +o0;
tree best_t1 := null;
tree best_t2 := null;
for R e PQ) do
Accepted_CQ = CQ.subset(R);
// the subset of C'Q) consuming R
Denied CQ = CQ.subset(!R);
// the subset of C'Q) not consuming R
tree QC' P, := mini_tree(Accepted CQ, PQ - R, AP + R, DP);
tree QC' Py := mini_tree(Denied CQ, PQ - R,AP,DP + R);
cost := P(R|APN!DP) x cost(QCPy) + P(\R|APNIDP) x cost(QC Py) + 1;
if cost < best_cost then
best_cost := cost;
best_r:= R;
best t1 := QCP;
best 12 := QCPy;

QCP.root := CQ;
QCP.root.left_edge := best_r;
QC P.root.right_edge :=best_r;
QC P.root.left_child := best _t1;
QC P.root.right_child := best t2;
return QCP;

3.7 Query Construction Algorithms 43

and M is the number of the complete query interpretations. As both M and N grow
sharply with the size of the database schema and the length of the keyword query,
this algorithm can be prohibitively costly even for a moderate database or keyword
query size.

3.7.2 Greedy Algorithm

With a big database schema and a long keyword query, it is already infeasible to
generate all possible structured queries and query construction options. Creation of
an optimal query construction plan is even more impractical. Therefore, IQP uses
a greedy algorithm to construct a near-optimal query construction plan in a top-
down fashion. Instead of generating the entire plan, the algorithm generates query
construction options one by one. Whenever an option is generated, it is presented
to the user. After the user evaluates the option, (she either accepts it or rejects it,)
it proceeds to generate the next option. The process is similar to that of the ID3
algorithm [Qui86] in creating decision trees.

As mentioned in Section 3.5.2, IQP generates query interpretations by expanding
the query hierarchy in a bottom-up fashion. Instead of fully expanding the query
hierarchy, the greedy algorithm stops when the size of the top level of the query hi-
erarchy reaches a certain threshold. Then it searches for the best query construction
option within the generated query hierarchy and presents the option to the user. If
the user accepts the option, the algorithm keeps the part of the top level subsumed
by this option and discards the rest. If the user rejects an option, the algorithm dis-
cards the part of the top level subsumed by this option. In either case, the algorithm
can reduce the size of the top level of the current query hierarchy. The algorithm
continues presenting query construction options to the user, until the size of the top
level falls below a certain threshold. When the threshold is reached, the algorithm
expands the top level of the query hierarchy again to get a new level of query inter-
pretations. This process continues until the algorithm reaches the level of complete
query interpretations and the user identifies the final intended structured query. We
present the pseudo-code of the greedy algorithm in Algorithm 3.2.

As the query hierarchy is selectively expanded, we avoid generation of all possible
query interpretations. In fact, the number of query interpretations generated by the
algorithm is only proportional to the number of options the user needs to evaluate,
i.e., the cost of the query construction plan.

Without fully expanding the query hierarchy, it is not possible to find the theoret-
ically optimal query construction option. However, the partially expanded hierarchy
is good enough to provide some near-optimal options. Our greedy algorithm tries to
find a query construction option that can reveal as much information as possible about
the intended structured query. We use Information Gain to measure the amount of
information that can be revealed by a query construction option. We describe the
computation of information gain in Section 3.7.3.

44 Chapter 3 Incremental Query Construction

Algorithm 3.2: A Greedy Algorithm for MQCP

input :
HQ := Initial Query Hierarchy;
TQ := Top Level of HQ);
T := Threshold;
output:
Query ¢ := Final Structured Query;
begin

while true do

if |TQ|<T then

if HQ can be expanded then
| expand HQ;

else if |[TQ| =1 then

L // let TQ=c

return c;

partial_query best_r = null;

best_gain := +o0;

for Re HQ do

if IG(TQ|R) < best_gain then
best_gain = IG(TQ|R);

L best_r = R;

present R to the user;

if R is accepted then

Sub(R) := all queries subsumed by R;
| TQ:=TQ n Sub(R);

else if R is rejected then

Sub(R) := all queries subsumed by R;
| TQ:=TQ - Sub(R);

3.8 FEvaluation 45

In the greedy algorithm, the query construction option that maximizes this infor-
mation gain is selected and presented to the user. Our experiments (in Section 3.8.6
show that this greedy approach is efficient and is able to generate the near-optimal
query construction plans.

3.7.3 Computation of Information Gain

Let H(I) be an entropy of the entire interpretation space of the keyword query K.
Let H(I|O) be the conditional entropy of the interpretation space I, given that we
know whether a query construction option O subsumes the user intended structured
query. Then the information gain of the user’s evaluation on O is:

[G(1|0) = H(I) - H(I|0). (3.11)

The entropies H(I) and H(I|O) can be readily computed using the probabilities,
such as P(Q|K), obtained from our probabilistic model. As the greedy algorithm does
not expand the query hierarchy completely, it does not have complete knowledge of the
entire query interpretation space. As an alternative, we use the partial interpretations
at the top level of the current query hierarchy to compute the information gain, as
they are the best knowledge we have about the query interpretation space. Therefore,

_ P@IK) . PQIK)
H(I)) Q;OP ZQETOP P(Q|K) lg ZQeTop P(Q|K)’

where Top represents all the query interpretations in the top level of the current query
hierarchy.

(3.12)

P(QIK) P(QIK)
H(I|0) = x [3.13
(|) QET;peO ZQGTOp—)O P(Q|K) gZQeTop—»O P(Q|K)’ ()

where T'op — O represents the query interpretations at the top of the query hierarchy
that are subsumed by the option O.

3.8 Evaluation

To evaluate our query construction approach, we performed extensive experiments.
First, we assessed the efficiency of IQP in helping users to construct structured queries
on two real-world databases. Then, we compared the usability of incremental query
construction with that of the ranking approach. Finally, we carried out simulations
to study the scalability of IQP with respect to the size of the database and the length
of keyword queries.

46 Chapter 3 Incremental Query Construction

3.8.1 Datasets and Keyword Queries

In our experiments, we used two real-world datasets: a crawl of the Internet Movie
Database (IMDB) and a crawl of a lyrics database from the web. The IMDB dataset
contains seven tables, such as movies, actors and directors, with more than 10,000,000
records. The Lyrics dataset [LYMCO06] contains five tables, such as artists, albums
and songs, with around 400,000 records.

As these datasets do not have any associated query logs, we extracted the keyword
queries from the query log of a major Web search engine [PCT06]. We pruned the
queries based on their target URLs (www.imdb.com or any domain containing key-
word “lyrics” in the URL), and obtained a few thousands of keyword queries targeted
on the IMDB and lyrics domains. To assess the capability of IQP in creating complex
structured queries, we further restricted the query set to the queries containing at
least two attributes, such as movie-actor and artist-lyrics. This finally gave us 108
queries for IMDB and 76 queries for Lyrics. Each of these queries contains two-six
terms, with an average length of four terms. For each of these queries we manually
assessed its meaning and constructed the corresponding structured queries. We used
IQP to generate templates for the both datasets using the automatic approach pre-
sented in Section 3.5.2. We set the maximal length of the join path to four, and
obtained 74 templates for IMDB and 16 templates for Lyrics.

Finally, we manually identified a set of ambiguous keyword queries targeted at the
IMDB dataset for which none of the ranking algorithms we tested produced acceptable
results. We present these queries in Section 3.8.4.

We installed the datasets on a MySQL 5.0.22 database server, running on dual
Xeon server with 4 GB RAM. The inverted index was constructed using Lucene
[IMHGO09]. Our IQP system was implemented using JDK 1.5 and installed on a laptop
with a 2.0 GHZ C2D and 2 GB RAM.

3.8.2 Effectiveness of the Probability Estimates

To assess how fast IQP can enable a user to construct a structured query, we measured
the interaction cost of query construction, that is, the number of query construction
options a user needs to evaluate to obtain the intended structured query. Our ex-
periments were performed in an automatic way. We applied the greedy algorithm
introduced in Section 3.7 to each of the keyword queries. The algorithm generates
query construction options one by one. Based on the ground truth interpretations
established a-priori, we let our system automatically accept the correct options and
reject the incorrect options. The process of query construction stops when less than
five complete query interpretations are left in the query window, in which the user is
able to quickly identify the intended query. At the end of each construction process,
we record the number of query construction options that have been evaluated.

To estimate the effectiveness of the proposed query probabilistic model, we used

3.8 FEvaluation 47

three variations of probability estimates. The first variation, also called base line,
assumes that all structured queries and query construction options are equally likely.
The second variation, referred as (ATF, Tequal), applied the probabilistic model
introduced in Section 3.6 (represented by Formulas 3.5 and 3.6). It uses the Attribute
Term Frequency (ATF) to estimate P(A; : k;|T' n A;), but assumes equal probabilities
of query templates. The third version, represented by (ATF, TLog), not only used
ATF to estimate P(A; : k|T n A;), but also used the query log to estimate the
probabilities of the query templates.

The experiment results for IMDB and Lyrics are shown in Fig. 3.5a and Fig. 3.5a
respectively. In both figures, each data point on the X-axis represents a keyword
query. FEach Y-value presents an interaction cost, which is the number of query
construction options a user needs to evaluate until she identifies the intended struc-
tured query. In this context “evaluate” means to decide whether an option correctly
interprets the user’s intent.

As shown in Fig. 3.5a, for the IMDB dataset, using the base line probability
estimate, a user needs to evaluate one to 20 query construction options to construct
a structured query. In more than 50% of the cases, the interaction cost is below ten.
In more than 80% of the cases, the interaction cost is below 15. Occasionally, the
interaction cost can reach 20. By estimating the probabilities of structured queries,
the interaction cost can be significantly reduced. As shown by the lines of (ATF,
Tequal) and (ATF, TLog), in more than 70% of the cases, a user needs to evaluate at
most five options to create a structured query. In most of the cases, the interaction
cost falls below ten. A similar trend can be seen in the results of the Lyrics data
(Fig. 3.5b). Using the baseline probability estimation, the interaction cost ranges
between zero and 15. By applying our probabilistic model, especially by using the
probability estimation of (ATF, TLog), the interaction cost is reduced by around
50%.

Both Fig. 3.5a and Fig. 3.5b show that Attribute Term Frequency (ATF) is a
highly effective statistics for estimating probabilities of query interpretations. It
helped IQP reduce users’ interaction costs significantly. The probability estimation
of query templates based on usage is also useful. However, its effectiveness differed
in the two data sets. In the Lyrics dataset, we observed a more significant improve-
ment when considering the usage statistics of a template. This is because some query
templates of Lyrics are used much more often than the others. For example, the
most commonly used query template in Lyrics, which has the frequency of 0.85, is
composed of five tables: Song x AlbumSong x Album x Artist Album x Artist. In
contrast, the usage of the IMDB query templates is more uniformly distributed. As
a result, probabilities of query templates contribute less to the optimization of query
construction process.

Chapter 3 Incremental Query Construction

20
Base line
° ——ATF, Tequal
815 +
s ———ATF, TLog
o
2 Base line I
2 10
(=X
..g l——-’_—l ATF, Tequal
é S —t 77
3 77 ATF, TLog
0 T T T T T T T T T T T T T T T T T T T
1 11 21 31 41 51 61 71 81 91
keyword queries
(a) IMDB
20
Base line
=)
E —— ATF, Tequal
S 15 +
< —— ATF, TLog /
(-1
wv
s
B 10 Base line
o
S
E 5 ATF, Tequal /-/
/ /
E Vo / /
c / Vi 4
y 4 7 ATF, TLog
0 T T T T T T T L L L] Ll T T 1
1 11 21 31 41 51 61
keyword queries

(b) Lyrics

Figure 3.5 Evaluation of the Probability Estimates: Number of Query Con-
struction Options in IMDB and Lyrics Datasets. (©)2012 IEEE.

3.8 FEvaluation 49

3.8.3 Query Construction vs. Query Ranking

Our second set of experiments aimed to compare the interaction cost of query con-
struction against that of query ranking. We used two query ranking functions: the
ranking function of IQP and SQAK [TLO08], one of the most recent query ranking func-
tions in the related work. Query ranking approaches use different statistics from that
of result ranking approaches like [HGP03], [LYMCO06], as the ranking is conducted
without materializing query results.

We measure the interaction cost of query ranking as the rank of the intended
query interpretation in the ordered query list. This reflects the fact that the user
has to evaluate each interpretation in the ranked list until she finds the intended
interpretation. In case of IQP query construction we measure interaction cost as the
number of options the user has to evaluate until she arrives at the intended query. In
this context “evaluate” means to decide whether an option suggested by the system
correctly interprets the user’s intent. For the IQP ranking and incremental query
construction, we considered all templates to be equally probable (ATF, Tequal), to
reflect the situation in which a query log is not available.

In SQAK, a query interpretation is regarded as a graph, whose score is the sum
of the scores of its nodes and edges. Edges and nodes which do no contain key-
word are assigned with unit scores. The score of a node containing a keyword is
computed as TF-IDF of the keyword, which is then normalized using Lucene scoring
function [MHGO09]. The original SQAK function does not consider the case where
multiple keywords are contained in a single node. We used the score of the Boolean
AND query of Lucene to assess the score of the nodes containing more than one
keyword.

Fig. 3.6 shows the boxplots [J. 83] of the interaction cost of ranking by SQAK and
IQP as well as the interaction cost of IQP query construction. The Y-Axis of Fig. 3.6
(log scale) represents interaction cost, that is, the number of structured queries or
query construction options to be evaluated by the user before the desired query can
be identified. The box boundaries correspond to the upper and lower quartile of the
data points, such that 50% of the data points lay inside of the boxes. “Rank (SQAK)”
and “Rank (IQP)” represent the rank of the intended query using the corresponding
ranking function. “Construction (IQP)” represents the number of options which needs
to be evaluated to obtain the intended query using incremental query construction.

As Fig. 3.6 shows, our ranking function performs very well for the majority of
the queries in the both datasets. The median value of Rank (IQP) is two for both
datasets. In these cases construction is not necessary as the user can find the desired
interpretation immediately within the top results. However, ranking function has a
high variance, such that interpretations of ambiguous queries can receive ranks above
400. If the intended query interpretation does not receive a good rank, the user has
to scan through the entire query list, which can contain 3,500 queries for our test set,
until she identifies the intended structured query. The process is tedious and error-

50

Chapter 3 Incremental Query Construction

Interaction Cost of Ranking and Query Construction in
the IMDB Dataset

8

Interaction Cost (log scale)
=
o

1 I T 1
Rank (SQAK) Rank (IQ"P) Construction (IQ"P)
(a) IMDB
1006y -~~~ S Sl
Interactipn Cost of Ranking and Query Construction
o ____]____nthelyrcsDataset =~ _

~10Q 4\
o
©
s | ——— 1
o)
O
‘g S [N [
8 10
C
O - e [— = = = = = -
8
o
‘E’ 1 T T 1
o Rank (SQAK) Rank (IQ"P) Construction (IQ"P)

(b) Lyrics

Figure 3.6 Interaction Cost of IQP and SQAK Ranking: Number of Query
Construction Options in IMDB and Lyrics Datasets. (©)2012 IEEE.

3.8 FEvaluation 51

prone, as the user does not even know whether the intended query interpretation
exists for the target database or if she occasionally missed the interpretation already.

In contrast, the interaction cost of incremental query construction has a much
lower variance than the cost of ranking. As Fig. 3.6 shows, the cost of construction is
around 3-4 options on average and 15 options in the worst case, which makes it highly
helpful when user intended structured queries cannot be found within the top ranked
results. Using the construction interface, a user can reach any structured query in
the interpretation space in a reasonable number of steps. In addition, when using
IQP, the user does not have to rely on the incremental query construction only. As
IQP simultaneously presents a refined ranked list of queries in the query window, a
user can short-cut the construction plan if the correct query is already presented in
the top items (Fig 3.1 (3)). To estimate the scope in which construction outperforms
ranking in real life, we performed a user study described in Section 3.8.4.

The experiments have shown that incremental construction is especially helpful
when users’ keyword queries are ambiguous. For example, in the IMDB query set,
the intended interpretations of keyword queries containing more than one person
name (e.g., an actor, a director or a character in a movie like “Melissa Gilbert Bruce
Boxleitner”) usually do not receive good ranks. Fig. 3.6 shows that IQP’s query
ranking outperforms SQAK’s query ranking on our test set. The median interaction
cost of IQP is two on both datasets, whereas the median cost of SQAK is six on
IMDB and 13.5 on Lyrics.

It appears that the attribute term frequency (ATF) used by IQP is more effective
for query ranking than the TF-IDF score used by SQAK. Intuitively, ATF prefers
more typical interpretations, and TF-IDF prefers more distinctive interpretations.
For our query set, typical interpretations are used more often. For example, “Garcia”
is usually interpreted as an actor name, e.g. Andy Garcia. By using TF-IDF | it will be
interpreted as movie title, as “Garcia” occurs less frequently in the movie title than
in the actor name. Furthermore, for the Lyrics dataset, Steiner tree minimization
used by SQAK does not provide good results for many queries. This is because the
majority of Lyrics queries, such as “mariah carey emotions”, requires a relatively
long join Artist m Artist Album x Album x AlbumSong x Song, whereas Steiner tree
minimization prefers shorter joins such as Artist x Artist Album x Album. Therefore,
we used IQP ranking for our user study. In our future work we plan to perform a
more detailed comparison between different ranking approaches.

3.8.4 Usability of Query Construction

To assess usability of IQP in real life, we conducted a user study. The user study
aimed to compare usability of two user interfaces and to assess in which cases the
IQP interface can enable more efficient data access than the query ranking interface.
One interface is the IQP interface shown in Fig. 3.1. The other is a query ranking
interface without using the query construction panel. For query ranking, we used

52 Chapter 3 Incremental Query Construction

Table 3.1 Example Tasks for the User Study. C;: rank of the intended query
interpretation in the ordered list of possible query interpretations while using
IQP ranking; C5: an approximate number of options to be evaluated by the
user in the query construction process; |I|: size of the interpretation space.

©2012 IEEE.

Task ‘ Cl ‘ Cg ‘ |I | ‘
Find a role of Brad Pitt in the movie directed by

Steven Soderbergh in 2004.

Find an actor who played in both movies:

“Frida” and “Three Sisters”.

Find a movie starring both Tom Hanks

and Diego Luna.

Find the role of an actor in the movie “Be Cool”. The same
actor played a character Sam Baily in another movie.

18 6 3365

48 6 268

73 7 1550

104 10 1470

Find a movie where Blake Blue is a director

and Conners Chad is an actor. 213 7 1648

the IQP ranking function with the probability estimate (ATF, TEqual). For user
convenience, the query ranking interface presented structured queries in several pages,
each containing 20 queries.

Our users were 15 graduate students from the Computer Sciences Department.
We selected 14 tasks for the users to perform. Each task required the user to retrieve
certain information from the IMDB dataset. For each of the tasks, we proposed a
keyword query. Based on the rank of the correct query interpretation, which ranged
from 0 to 220, we grouped the tasks into seven complexity categories: 0, 1, 2, 3, 4, 6,
and 11. Each category contained 2 tasks. Category k£ means that the correct query
interpretation appears in the k*h page of the ranking interface. (0 means the correct
interpretation is within the top-10.) Table 3.1 provides an overview over several
example tasks.

We announced the user study as a time-based competition, such that our par-
ticipants would solve the tasks as quickly as possible. The tasks were given to the
participants in a random order. For the two tasks in each complexity category, each
participant had to solve one using the IQP query construction interface and the other
using the query ranking interface. Before the study, we provided the participants
with a tutorial and some example tasks to practice, such that they could become
familiar with the interfaces. To measure the time spent on each task, we recorded
the interval between the time when a user clicked on the Search button and the time
when the user executed (double clicked) the correct query interpretation. In case the
participant did not manage to complete the task we set the time for this task to 10
minutes. Fig. 3.7 presents the median time used for different categories of tasks with
both interfaces.

3.8 FEvaluation 53

300

Construction vs. Ranking Time
250 1 = Construction
200 - = Ranking
150
100 N -
5 ,
o0] 1 | - —
o Mm (R
% 0 - . : : ‘ ‘
@
£ 0 1 2. 3 4 6 1
= Complexity Category of the Task

Figure 3.7 Usability of Query Construction: Median Time for the Construc-
tion Interface vs. Ranking. (©)2012 IEEE.

Each data point on the X-axis of Fig. 3.7 represents complexity of the task. The
Y-Axis of Fig. 3.7 represents the median time in seconds required for the user to
complete a task. “Ranking” represents the results of the query ranking interface;
“Construction” represents the results of the IQP construction interface. For exam-
ple, for a task with complexity 11, the median time spent by a participant using
construction was 63 seconds. In contrast, ranking interface in the same complexity
category required 270 seconds, which is 4.3 times more.

As we can see from Fig. 3.7, the ranking interface outperforms the construction
interface in the first three categories, where the ranks of the intended query inter-
pretations are below 40. For the queries in Categories 3 and 4, where the ranks of
the intended query interpretations range between 40 to 80, the IQP interface started
to outperform the query ranking interface. For the queries in Category 6 and above,
where the ranks of the intended query interpretations are above 120, the advantage
of the IQP interface becomes very obvious.

We also asked the users to rate the percentage of queries for which they found the
IQP interface to be more useful than the simple ranking interface on a 5-point Likert
scale. Their answers were 70% of queries on average. Several participants pointed
out, that they perceived time savings while using IQP as they proceed with tasks.
We attribute this to increased familiarity with the interface.

54 Chapter 3 Incremental Query Construction

3.8.5 Scalability

Given a keyword query, a keyword can occur in any textual attribute of a database,
such that the number of possible query interpretations is polynomial in the size of the
database schema and exponential in the number of keywords. To test the scalability of
the query construction plan generation algorithm, we conducted a set of simulations.

In our simulations we generated a database schema as a completely connected
graph of a given size, where each node represents a relational table. Based on the
schema graph, we generated a set of query templates, where each template is a ran-
domly picked connected sub-graph of the schema. Given a randomly generated key-
word query, we assumed that each keyword occurs in a table with a certain probability
(60% in our experiments). By combining the occurrences of the generated keywords
and query templates, we obtained a number of possible structured queries. We as-
signed random probabilities to each table and keyword occurrence, and used the
probabilistic model in Section 3.6 to estimate probabilities of structured queries and
query construction options.

We believe that this simple simulation is representative, because (1) it simulates
the basic structure of a general database schema; (2) it simulates trend that the
number of structural interpretations of a keyword query grows polynomially with the
size of the database schema and exponentially with the number of keywords.

Size of the Database Schema: To study the efficiency and scalability of the
proposed greedy algorithm in generating query construction plans, we conducted two
sets of experiments. In the first set of experiments, we fixed the number of terms
in a keyword query to three, and varied the number of tables in the database from
5 to 80. Note that varying the number of columns gives a similar effect as varying
the number of tables; therefore we report only one set of results in this chapter. In
each experiment, we tuned the threshold of the greedy algorithm from 10 to 30, and
simulated the construction of a randomly picked structured query. For each database
size, we repeated the experiment 20 times, and recorded (1) the average number
of possible structured queries that can be used to interpret a keyword query; (2)
the average time for generation of a query construction option and (3) the average
number of options a user needs to evaluate to obtain the intended query. The results
of these experiments are shown in Table 3.2. It can be seen that for a constant
number of keywords, the number of possible query interpretations grows very sharply
(even polynomially) with the size of database. However, the number of options a user
needed to evaluate to construct a query grows only in a similar scale as the database
size.

The computation time for generating each query construction option increases
with the size of the database as well, but at a low speed. This conforms to the
complexity analysis performed in Section 3.7. We also observed that, with a higher
threshold, the greedy algorithm can produce more efficient query construction plans.
This is because a higher threshold allows the greedy algorithm to use a larger fraction

3.8 FEvaluation 55

Table 3.2 Greedy Algorithm vs. Database Size. (©)2012 IEEE.

of # of Threshold
tables queries 10 20 30

#steps \ time/step | #steps \ time/step | #steps \ time/step

5 28 4 1ms 3 3 ms 3 3 ms

10 328 10 1 ms 8 20 ms 7 32 ms

20 1,953 13 2 ms 16 8 ms 13 30 ms

40 16,895 33 11 ms 26 12 ms 36 19 ms

80 | 104,962 65 43 ms 74 40 ms 70 43 ms

Table 3.3 Greedy Algorithm vs. the Number of Keywords. (02012 IEEE.

of # of Threshold
keywords | structured 10 20 30

queries | #steps \ time/step | #steps \ time/step | #steps \ time/step

2 48 5 1 ms 3 7 ms 4 6 ms

4 1,468 14 1 ms 12 19 ms 11 114 ms

6 30,463 19 3 ms 15 31 ms 14 252 ms

8 787,777 29 10 ms 25 33 ms 21 220 ms

10 | 47,859,840 40 25 ms 34 65 ms 36 239 ms

of the query hierarchy to estimate the goodness of query construction options. This
improvement becomes less visible when the threshold increases to a certain value,
such as 20 in our experiment. This indicates that the greedy algorithm only needs to
evaluate a small fraction of the query hierarchy to achieve its optimal performance.

Size of the Keyword Query: In the second set of experiments, we fixed the
database size to ten tables and varied the size of a keyword query from two to ten
keywords. We repeated the experiments described above. The results are shown in
Table 3.3. As expected, the number of query interpretations grows exponentially
with the number of keywords. In contrast, the average number of query construction
options a user needs to evaluate grows only linearly with the number of keywords.
The computation time for generating a single query construction option also increases
slowly. Similar to the results of the previous experiments, higher thresholds of the
greedy algorithm can result in better query construction plans, and the improvement
becomes insignificant when the threshold increases to 20.

3.8.6 Quality of the Greedy Algorithm

We performed experiments to compare the result quality of the brute-force algorithm
and that of the greedy algorithm. As the brute-force algorithm is highly expensive,
it is infeasible to test it using our simulation program. As an alternative, we created
small sets of complete query interpretations and query construction options, and

56 Chapter 3 Incremental Query Construction

Table 3.4 Result Quality of the two Algorithms. (©)2012 IEEE.

of structured | # of construction Brute force Greedy
queries options | cost of the plan | cost of the plan

8 4 2.902265 2.915598

12 6 3.527421 3.547109

16 8 3.834929 3.891822

20 10 4.18971 4.210756

24 12 4.453365 4.469938

conducted the two algorithms directly on them. We varied the number of query
interpretations from 8 to 24, and the number of query construction options from 4
to 12. In the simulation, each construction option subsumed a half of the query
interpretations, and each query interpretation was assigned a random probability.
When running the greedy algorithm, we set the threshold to 30, which is the total
number of query interpretations. We repeated our experiments 20 times and recoded
the average costs of the resulted query construction plans. As shown in Table 3.4,
the quality of the query construction plans generated by the greedy algorithm is only
slightly worse than those of the brute-force algorithm.

In summary, our simulation results show that the greedy algorithm for generating
query construction plans is scalable with respect to the size of the database and the
length of a keyword query. The plans it generates are near-optimal.

3.9 Discussion

Keyword search plays an increasingly important role in enhancing database usability.
However, keyword queries are ambiguous and can retrieve imprecise or incomplete
results. The most likely structural query interpretations as obtained by completely
automatic keyword query disambiguation procedures (e.g. [KKR*06, TL08, TCRS07,
ZWX*07]), can only satisfy the most simple and straightforward keyword queries,
whereas user intended interpretations of ambiguous queries may not be found within
the top ranked results. This observation motivated us to develop new approaches to
enable users going beyond the most likely interpretations. To this end we extended
previous work with an interactive probabilistic keyword query refinement approach.

In this chapter we analyzed the problem of probabilistic incremental query refine-
ment and presented IQP - a novel system, which enables construction of structured
queries from keywords. Given an ambiguous keyword query, IQP asks a minimal num-
ber of questions and enables the user to efficiently construct the desired structural
query interpretation in an interactive way. We presented a conceptual framework for
the incremental query construction as well as a probabilistic model, which enables
consistent assessment of the probability of a query interpretation and query construc-

3.9 Discussion 57

tion options. We presented two algorithms for generating optimal query construction
plans, which enable users to obtain the intended structured query with a minimal
number of interactions.

Our experimental results on two real-world datasets and a user study provided
evidence for the usefulness of incremental query refinement of IQP when user intended
structured queries cannot be found within the top ranked results. As a first step, we
analyzed effectiveness of the proposed probability estimates for a set of real-world
keyword queries. Our experiments have shown that the proposed estimates enabled
us to reduce the interaction cost of query construction by around 50%. We have
also shown that query ranking model of IQP outperforms that of the other recent
approach to query ranking in related work called SQAK [TLO08].

To assess usability of IQP in real life, we conducted a user study. The user study
aimed to compare usability of two user interfaces, IQP and a simple query ranking
interface, and to assess in which cases the IQP interface can enable more efficient
data access than a query ranking interface. In our user study, for the queries where
the ranks of the intended query interpretations ranged between 40 to 80, the IQP
interface started to outperform the query ranking interface. For the queries where
the ranks of the intended query interpretations were above 120, the advantage of the
IQP interface became very obvious. Finally, our simulations confirmed the scalability
of the proposed algorithms with respect to schema and keyword query size for the
databases containing up to 100 tables. Our experiments have also shown that the
quality of the query construction plans which can be generated by a brute-force
algorithm was only slightly better than those of the efficient greedy algorithm we
proposed.

Diversification of Search Results over Structured
Data

4.1 Introduction

As we have seen in the previous chapter, interactive approaches can enable users
to efficiently refine keyword query in the intended structural interpretation. In the
present chapter we will investigate the problem of enabling user to obtain an overview
of the available results, rather than constructing a particular interpretation, i.e. we
will focus on solving Problem 2 from Chapter 1.

Diversification aims at minimizing the risk of user’s dissatisfaction by balancing
relevance and novelty of search results. Whereas diversification of search results on
unstructured documents is a well-studied problem, diversification of search results
over structured databases attracted much less attention. Keyword queries over struc-
tured data are notoriously ambiguous offering an interesting target for diversification.
No single interpretation of a keyword query can satisfy all users, and multiple interpre-
tations may yield overlapping results. The key challenge here is to give users a quick
glance of the major plausible interpretations of a keyword query in the underlying
database, to enable user to effectively select the intended interpretation.

For example, a user who issued a keyword query “London” may be interested
either in the capital of the United Kingdom or a book written by Jack London, an
American author. In contrast to document search, where data instances need to
be retrieved and analyzed, rich database structures offer a more direct and intuitive
way of diversification. For instance, if keyword “London” occurs in two database
attributes, such as “location” and “name”, each of these occurrences can be viewed
as a keyword interpretation with different semantics offering complementary results.
In addition, as in a database the query disambiguation can be performed before the
actual execution, the computational overhead for retrieving and filtering redundant
search results can be avoided. In the final step the database system executes only the
top-ranked query interpretations to retrieve relevant and diverse results.

29

60 Chapter 4 Diversification of Search Results over Structured Data

Applying diversification techniques for unstructured documents to keyword queries
over structured databases, calls for two main adaptations: First, keyword queries need
to be interpreted in terms of the underlying database, such that the most likely in-
terpretations are ranked on top. Second, diversification should take advantage of the
structure of the database to deliver more diverse and orthogonal representations of
query results. In this chapter we present a novel approach to search result diversi-
fication in structured databases. We first present a probabilistic query disambigua-
tion model to create semantic interpretations of a keyword query over a structured
database. Then, we propose a diversification scheme for generating the top-k most
relevant and diverse query interpretations.

Also evaluation measures need to be adapted. Conventional metrics for search
result diversification such as a-nDCG and S-recall do not take into account graded
relevance of subtopics in a search result, and thus are not directly applicable to
structured data, where such assessment is important. We propose an adaptation of
a-nDCG and S-recall to measure quality of diversification in database keyword search.
These new metrics may be of independent interest. We performed a user study to
assess the quality of the disambiguation model and the diversification scheme. Our
evaluation results on two real world datasets demonstrates that search results ob-
tained using the proposed algorithms are able to better characterize possible answers
available in the database than the results obtained by the initial relevance ranking.

The algorithms presented in this chapter thus focus on addressing Problem 2
presented in Chapter 1, namely enabling users to obtain database search results with
increasing level of novelty.

The rest of this chapter is organized as follows: In Section 4.2 we provide a
summary of contributions contained in this chapter. Then, in Section 4.3 we discuss
specific background. Following that, in Section 4.4 we present the diversification
scheme. Then, in Section 4.5 we introduce an adaptation of a-nDCG and S-recall
measures. Section 4.6 contains the results of our empirical investigation. Finally, in
Section 4.7 we discuss the results.

4.2 Summary of Div(Q Contributions

The challenges associated with the problem of search result diversification in database
keyword search are twofold: First, diversification shall give users a quick glance of the
major plausible interpretations of a keyword query in an underlying database. Sec-
ond, as materialization of search results in databases is especially computationally
expensive, diversification shall avoid materialization of potentially redundant search
results. In contrast to the state-of-the-art diversification approaches for unstructured
documents [AGHI09, CG98, CK06, CKC*08, GS09, WZ09] and database search re-
sults [CLO7, VSS*08] that diversify materialized search results, DivQ proposed in this
chapter performs diversification of query interpretations before any search results are

4.2 Summary of DivQ) Contributions 61

materialized. There are two advantages of our approach: Firstly, as query interpreta-
tions have clear semantics, they offer quality information for diversification. Secondly,
our approach avoids the overhead of generation and filtering of redundant results and
is therefore more efficient.

As results of keyword search over structured data differ from conventional docu-
ments, state-of-the-art evaluation metrics typically applied to document diversifica-
tion such as a-NDCG [CKC*08] and S-recall [CKO06] require adaptation. This is due
to two main reasons: First, conventional metrics for search result diversification do
not take into account graded relevance of subtopics, which is important in the context
of structured data. Second, as different query interpretations may yield overlapping
results, this overlap need to be taken into account by the evaluation measure. To this
extent, we propose an adaptation of the state-of-the-art evaluation metrics taking
into account subtopic relevance and result overlap.

Furthermore, we propose a similarity measure for query interpretations based on
Jaccard coefficient to enable efficient diversification of search results over structured
data. In addition, we further enhance the probabilistic query disambiguation model
first presented in Chapter 3 to take into account dependencies between keywords in
database attributes and further increase ranking effectiveness.

In summary, the DivQ contributions described in this chapter include:

e An efficient diversification approach for database keyword search performed
at the query interpretation level without prior materialization of potentially
redundant search results.

e An adaptation of the state-of-the-art evaluation measures for search result diver-
sification such as a-NDCG [CKC*08] and S-recall [CK06] to take into account
graded relevance of subtopics and result overlap.

e A similarity measure for query interpretations based on Jaccard coefficient to
enable efficient diversification of search results over structured data.

e An enhancement of the probabilistic model proposed in Chapter 3 to take into
account keyword co-occurrences and further increase ranking effectiveness.

Experiments on real-world data and a user study have demonstrated that DivQ
achieves significant reduction of result redundancy, while preserving retrieval quality
in the majority of the cases. This way search results obtained using the proposed
algorithms also better characterize possible answers available in the database than
the results obtained by the initial relevance ranking.

62 Chapter 4 Diversification of Search Results over Structured Data

4.3 Specific Background

Recently, a lot of work on diversification of document search results and adapta-
tion of the evaluation schemes in this context was performed [AGHI09, CG98, CKO06,
CKC*08, GS09, WZ09]. Several techniques (e.g. [CGI8]) perform diversification of
search results as a post-processing or re-ranking step of document retrieval. These
techniques first retrieve the relevant search results and then filter or re-order the result
list to achieve diversification. This approach cannot be directly applied to structured
databases, where retrieval of all relevant data, which are potentially redundant, is
especially computationally expensive. In contrast, DivQ performs diversification in
the query disambiguation process before search results are retrieved. There are two
advantages of our approach. Firstly, as the query interpretations generated within
the disambiguation have a clear semantics, they offer quality information for diver-
sification. Secondly, our approach avoids the overhead of generation and filtering of
redundant results.

Another way to achieve diversification is clustering and classification of search
results. Both techniques group search results based on similarity, so that users
can navigate to the right groups to retrieve the desired results. Clustering and
classification have been applied to document retrieval [AGHI09, MRSO08], image re-
trieval [vVLGOVZ09], recommender systems [ZMKLO05], and database query results [CLO7,
LJ09]. On the one hand, similar to result re-ranking, clustering is usually performed as
a post-processing step, and it may incur big performance overhead. Moreover, it lacks
semantic interpretations, making results less understandable by end users [Hea06]. On
the other hand, classification is usually pre-computed, and is not query aware. The
query interpretations of Div() can be regarded as a special kind of clusters or classes.
In contrast to typical clusters and classes, query interpretations have well-defined
semantics and are generated based on users’ keyword queries. They are both query
aware and easily understandable for end users. Most importantly, in contrast to exist-
ing work we considered the similarity between query interpretations as an important
factor in diversification of search results. This enables us to further improve user
satisfaction.

Chen et al. [CKO06] employ pseudo-relevance feedback to achieve diversification
of search results. In difference to Div(QQ they consider the intent of the query only
tacitly. Wang et al. [WZ09] focus on the theoretical development of the portfolio
theory of document ranking. They propose to select top-n documents and their order
by balancing the overall relevance of the list against its risk (variance). We believe
that portfolio technique can be adopted to compute diverse query interpretations in
DivQ.

In contrast to document search, only few works focused on diversification of search
results over structured data. In [CLO7] the authors propose SQL result navigation
through a set of categories, created taking into account user preferences. In [VSS*08],
the authors introduce a pre-indexing approach to speed up the diversification of query

4.4 The Diversification Scheme 63

Table 4.1 Top-k Structured Interpretations for a Keyword Query “CON-
SIDERATION CHRISTOPHER GUEST”

Keyword query: CONSIDERATION CHRISTOPHER GUEST
Relevance \ Top-3 Ranking \ Relevance \ Top-3 Diversification
A director CHRISTOPHER A director CHRISTOPHER
0.9 GUEST of a movie 0.9 GUEST of a movie
CONSIDERATION CONSIDERATION
0.5 A director 04 An actor
’ CHRISTOPHER GUEST ’ CHRISTOPHER GUEST
An actor CHRISTOPHER A plot of a movie
0.8 GUEST in a movie 0.2 containing CHRISTOPHER
CONSIDERATION GUEST

results on relational databases. As diversification in both approaches is performed
on the result level, these approaches are complementary to DivQ which conducts
diversification on the interpretations of keyword queries.

Recent approaches to database keyword search [DZNona, KKR*06, TL08, TCRS07,
ZWX*07] translate a keyword query into a ranked list of structured queries, also
known as query interpretations, such that the user can select the one that represents
her informational need. This disambiguation step is also a crucial step of DivQ.
In this chapter, we build upon the probabilistic model presented in Chapter 3 for
the keyword query disambiguation. However, the existing query disambiguation ap-
proaches consider only the likelihood of different query interpretations rather than
their diversity. As a result, users with uncommon informational needs may not re-
ceive adequate results [CK06]. For example, if the majority of users who issued the
keyword query “London” were interested in the guide of a city, the results referring
to books written by Jack London may receive a low rank and even remain invisible
to users. Div(Q alleviates this problem by providing not only relevant but also diverse
query interpretations.

4.4 The Diversification Scheme

DivQ translates a keyword query to a set of structured queries, also known as query
interpretations. These interpretations can then be presented to the user, allowing
selection of the intended interpretation. Given a keyword query, a database can offer a
broad range of query interpretations with various semantics. In contrast to web search
which focuses on few relevant results, to minimize the risk of user’s dissatisfaction in
this environment diversification needs to provide a better overview of the available
results, even though they are less relevant.

Table 4.1 gives an example of the query interpretations for the keyword query “CON-
SIDERATION CHRISTOPHER GUEST”, once ranked only by relevance, and once

64 Chapter 4 Diversification of Search Results over Structured Data

re-ranked by diversification. Both rankings enable the user to quickly understand the
several possible interpretations of the query, so as to choose the intended one. How-
ever, ranking by estimated relevance bears the danger of redundant results. For ex-
ample, the results of the partial interpretation “A director CHRISTOPHER GUEST”
which is ranked second in the top-3 ranking clearly overlap with the results of the
complete query interpretation ranked first. In contrast, the diversified ranking shows
a set of possible complementary interpretations with increased novelty of results.

4.4.1 Bringing Keywords into Structure

As discussed in Chapter 3.1, in the context of a relational database, a structured query
is an expression of relational algebra. To translate a keyword query K to a structured
query @, Div(QQ applies a disambiguation procedure similar to the one described earlier
in Section 3.5. It first obtains a set of keyword interpretations A; : k;, which map
each keyword k; of K to an element A; of an algebraic expression. Div(Q) then joins
the keyword interpretations using a predefined query template T [CGRMO06, HGP03],
which is a structural pattern that is frequently used to query the database. We call
the structured query resulting from the translation process described above a query
interpretation.

For instance, “CONSIDERATION CHRISTOPHER GUEST” is first translated
into a set of keyword interpretations, which are “director:CHRISTOPHER”, “direc-
tor:GUEST”, and “movie: CONSIDERATION”. Then, these keyword interpretations
are connected to a template “A director X of a movie Y” to form a query interpreta-
tion “A director CHRISTOPHER GUEST of a movie CONSIDERATION”. A query
interpretation is complete if it contains interpretations for all keywords from the initial
user query. Otherwise we talk about partial query interpretation. Given a keyword
query K, the interpretation space of K is the entire set of possible interpretations of
K. In this chapter, we focus on interpretations that retrieve non-empty results from
the database.

4.4.2 Estimating Query Relevance

As presented earlier in Chapter 3.1, we estimate relevance of a query interpretation ()
to the informational need of the user as the conditional probability P(Q|K) that, given
keyword query K, @ is the user intended interpretation of K. A query interpretation
@ is composed of a query template 7" and a set of keyword interpretations I = {A, :
(ki kin)|Aj € T, [kj, kjn] € K, [kits kim] 0 [kj1,kjn] = {} for @ # j }. Thus, the
probability P(Q|K’) can be expressed as:

P(Q|K) = P(I, T|K). (4.1)

The query disambiguation model in this chapter improves upon the initial model

4.4 The Diversification Scheme 65

presented in Chapter 3.1 by taking into account keyword dependencies in database
attributes. To simplify the computation, we assume that (i) each keyword has one
particular interpretation intended by the user; and (ii) the probability of a keyword
interpretation is independent from the part of the query interpretation the keyword
is not interpreted to. Based on these assumptions and Bayes’ rule, we can transform
Equation 4.1 to:

P(QIK) o< ([T P(A; : [kjr, kinllAg) < [T Pux P(T)), (4.2)

AeT ke Knk¢Q

where P(T') is the prior probability that the template 7" is used to form a query
interpretation. P(A; : [kj1,kjn]|A;) represents the probability that, given that A; is
a part of a query interpretation, keyword interpretations A; : [k;1, k;,] are also a part
of the query interpretation. In case a keyword k, € K is not mapped to any keyword
interpretation in (), we introduce a smoothing factor P,, which is the probability that
the user’s interpretation of keyword k, does not match any available attribute in the
database.

P(A; : [kj1,kjn]|A;)) can be estimated using attribute specific term frequency,
i.e. the average number of occurrences of the keyword combination [k1, k;,,] in the at-
tribute A;. Note that, when [k, k;,,] co-occur in an attribute A;, the joint probability
P(A;:[kj1,kjn]|A;) will usually be larger than the product of the marginal probabil-
ities P(A;: [kj1]|A;) ... P(A;: [kjn]|A;). Thus, query interpretations that bind more
than one keyword to the same attribute, for example, a first name and a last name
of a person to attribute “name”, will get higher ranked than query interpretations
that bind keywords to different attributes. P, is a constant, whose value is smaller
than the minimum probability of any existing keyword interpretation, such that the
function assigns higher probabilities to complete query interpretations than to partial
interpretations. P(T") can be estimated as a frequency of the template’s occurrence in
the database query log. When the query log is not available, we assume all templates
to be equally probable. As indicated in Section 4.4.1, query interpretations with an
empty result are assigned zero probability. In this case the independence assumption
(ii) used in Equation 4.2 is obviously violated, because the query interpretation maps
keywords k; and ks to attributes A; and As, such that the marginal probabilities
P(A; :[k1]|A1) and P(A; : [k2]|A2) are larger than zero, but, given the instances of
the database, the joint probability P(A; : [k1], Az : [ko]|A1, A2) is zero.

4.4.3 Estimating Query Similarity

As our objective is to obtain diverse query results, we want the resulting query in-
terpretations to be not only relevant but also as dissimilar to each other as possible.
Let @1 and Q)5 be two query interpretations of a keyword query K. Let I; and Iy be
the sets of keyword interpretations contained by ()7 and ()5 respectively. To assess
similarity between the two query interpretations, we compute the Jaccard coefficient

66 Chapter 4 Diversification of Search Results over Structured Data

between I; and I.

Definition 4.4.1. Query Sitmilarity: We define similarity between two query in-
terpretations @);, and Q); as the Jaccard coefficient between the sets of keyword inter-
pretations they contain, that is,

_ |Il ﬁ[g|
|[1 UIQ|'

Sim(Q1, Q2) (4.3)

The resulting similarity value should always fall in [0, 1], where 1 stands for the
highest possible similarity.

4.4.4 Combining Relevance and Similarity

To generate the top-k query interpretations that are both relevant and diverse, we
employ a greedy procedure. We always select the most relevant interpretation as the
first interpretation presented to the user. Then, each of the following interpretations is
selected based on both its relevance and novelty. Namely, given a query interpretation
@ and a set of query interpretations QI that are already presented to the user, we
estimate the score of () as its relevance score discounted by the average similarity
between () and all the interpretations in QI:

Score@Q =Ax P(Q|K) = (1-X)x) %
qeQI

Relevance and similarity factors are normalized to equal means before A-weighting
is applied. The interpretation with the highest score is selected as the next interpre-
tation to be presented to the user. In Equation 4.4, X\ is a parameter to trade-off
query interpretation relevance against novelty. For example, with A = 1 the score of
the query interpretation takes only relevance into account; A = 0.5 corresponds to a
balance between relevance and novelty, whereas A < 0.5 emphasizes novelty of the
interpretation.

(4.4)

4.4.5 The Diversification Algorithm

To create a set R of the most relevant and diverse query interpretations in an efficient
way we first materialize the top-k most probable query interpretations of a keyword
query and sort the interpretations according to the relevance scores. Then we go
through the query interpretations and output the most relevant and diverse interpre-
tations one by one. The pseudo-code of the algorithm is presented in Algorithm 4.1.
Let L be the list of top-k query interpretations sorted by probability of their rele-
vance to the user’s informational need. The process starts with the most relevant

4.4 The Diversification Scheme 67

query interpretation at the top of L. To compute the *" relevant and diverse ele-
ment, i.e. R[i], we scan the remaining candidate elements in L, compare their scores
in Formula 4.4, and add the element with the highest score to R. As the diversity
value of each item is always larger than 0, it is not necessary to scan the entire L to
obtain each R[i]. The scan stops when we are sure that the rest of L cannot possibly
outperform the current optimal item, which is evaluated by best_score > AP(L[j]).
The algorithm terminates after r elements are selected.

Algorithm 4.1: Proc Select Diverse Query Interpretations
input
list L[l] of top-k query interpretations ranked by relevance.
output:
list R[r] of the relevant and diverse query interpretations.

begin
R[0] = L[0];
1=1;
// select the best candidate for R[]
while i <r do
//less than r elements are selected
Jj =14
best_score = 0;
while L[j] # null do
//more candidates for R[i] in L
if best_score > A\ x P(L[j]) then
| break;
//check score upper bound
if score(L[j]) > best_score then
best_score = score(L[j]);
L c=7J;
LIt
R[i] = L[c]; //add the best candidate to R
Swap L[i...c—1] and L[c];
1+ +;

The worst case complexity of the Algorithm 4.1 is O(I xr), where [is the number

of query interpretations in L and r is the number of query interpretations in the result

list R. The maximal total number of similarity computations is 122—‘l

68 Chapter 4 Diversification of Search Results over Structured Data

4.5 Evaluation Metrics

a-NDCG [CKC*08] and S-recall [CKO06] are established evaluation metrics for docu-
ment retrieval in presence of diversity and subtopics. As results of keyword search
over structured data differ from conventional documents, these metrics require some
adaptation.

A search result of DivQ is a ranked list of query interpretations. Therefore, a
“document” in traditional IR corresponds to the union of tuples returned for one
particular query interpretation in Div(QQ). Each tuple can be represented by its primary
key in the database. Thus, a primary key corresponds to the notion of information
nugget in a-NDCG and to subtopic in S-recall. However, the correspondence is loose:
whereas a-NDCG and S-recall assume equal relevance of information nuggets and
subtopics contained in a document, relevance of primary keys in a query result may
vary a lot. Thus it is important to take into account their relevance for estimating
gain and recall explicitly. In the following, we adapt a-NDCG and S-recall to this
end.

4.5.1 Adapting Gain for alpha-NDCG-W

nDCG (normalized Discounted Cumulative Gain) has established itself as the stan-
dard evaluation measure when graded relevance values are available [CKC*08, JK02].
The first step in the nDCG computation is creation of a gain vector G. The gain
G[k] at rank k£ can be computed as the relevance of the result at this rank to the
user’s keyword query. The gain may be discounted with increasing rank, to penalize
documents lower in the ranking, reflecting the additional user effort required to reach
them. The discounted gain is accumulated over k to obtain the DCG (Discounted Cu-
mulative Gain) value and normalized using the ideal gain at rank % to finally obtain
the nDCG value.

To balance relevance of search results with their diversity, the authors of [CKC*08]
proposed a-nDCG, where the computation of the gain G[k] is extended with a pa-
rameter «, representing a tradeoff between relevance and novelty of a search result.
To assess novelty of a document in the search result, a-nDCG views a document
as the set of information nuggets. If a document at rank ¢ contains an information
nugget n, a-NDCG counts how many documents containing n were seen before and
discounts the gain of this document accordingly. « has a value in the interval [0,
1]; a=0 means that a-NDCG is equivalent to the standard nDCG measure. With
increasing «, novelty is rewarded with more credit. When « is close to 1, repeated
results are regarded as completely redundant such that they do not offer any gain.
In [WZ09], the authors fix a as 0.5 for a balance between relevance and novelty.

In the context of database keyword search, where an information nugget corre-
sponds to a primary key, the relevance of nuggets with respect to the user query can
vary a lot. To reflect the graded relevance assessment on the nuggets in the evalua-

4.5 FEvaluation Metrics 69

tion metrics, a-NDCG-W measures the gain G[k] of a search result at rank & as the
relevance of the query interpretation at rank k, i.e., Q. We penalize the gain of an
interpretation retrieving overlapping results using the following formula:

G[k] = relevance(Qy) x (1 - a)", (4.5)

where 7 is the factor, which expresses overlap in the results of the query interpre-
tation () with results of the query interpretations at ranks 1...k— 1.

To compute r, for each primary key pk; in the result of @), we count how many
query interpretations with pk; were seen before (i.e. at ranks 1...k-1), and aggregate
the counts:

r= > IpkieQl (4.6)

pk‘iEQk je[l,k—l]

Note that we consider primary keys in the result of one interpretation to be dis-
tinct (each primary key counts only once). As in document retrieval the presence
of a particular information nugget in a document is uncertain, the gain computation
in [CKC*08] focuses on the number of nuggets contained in a document and does not
take into account graded relevance of information nuggets. In contrast, in the con-
text of database keyword search an information nugget in a-nDCG-W corresponds
to a primary key in the result of a query interpretation, such that the presence of an
information nugget in the result is certain. At the same time, relevance of retrieved
primary keys with respect to the user query can vary a lot. This graded relevance is
captured by Equation 4.5. Agrawal et al. [AGHI09] suggest an alternative approach
called NDCG-IA (for Intent Aware NDCG) to take into account graded relevance of
information nuggets to queries. However, a drawback of NDCG-IA is that it may not
lie between [0, 1]. Moreover, NDCG-IA does not take into account result overlap. In
contrast, the value of relevance-aware a-nDCG takes into account result overlap and
is always in the interval [0, 1], where 1 corresponds to ranking according to the user
assessment of query interpretation relevance averaged over users.

4.5.2 Weighted S-Recall

Instance recall at rank k (S-recall) is an established recall measure which is ap-
plied when search results are related to several subtopics. S-recall is the number
of unique subtopics covered by the first £ results, divided by the total number of
subtopics [CK06, WZ09).

In database keyword search, a single primary key in the search result corresponds
to a subtopic in S-recall. However, other than in document retrieval, where all
subtopics can be considered equally important, relevance of retrieved primary keys
(tuples) can vary a lot with respect to the user query. To take the graded relevance
of subtopics into account, we developed a WS-recall measure (weighted S-recall).

70 Chapter 4 Diversification of Search Results over Structured Data

WS-Recall is computed as the aggregated relevance of the subtopics covered by the
top-k results (in our case query interpretations) divided by the maximum possible
aggregated relevance when all relevant subtopics are covered:

> relevance(pk)

WS recall@k = 228 4.7
recd > relevance(pk) ’ (4.7)
pkeU

where U is the set of relevant subtopics (primary keys). In case only binary
relevance assessments are available, WS-recall corresponds to S-recall. We average
WS-recall at k and a-NDCG at k over a number of topics to get their means over the
query set.

4.6 Experiments

To assess the quality of the disambiguation and diversification schemes we performed
a user study and a set of experiments.

4.6.1 Dataset and Queries

In our experiments, we used two real-world datasets: a crawl of the Internet Movie
Database (IMDB) [IMD] and a crawl of a lyrics database from the Web [LYMCO06].
The IMDB dataset contains seven tables, such as movies, actors and directors, with
more than 10,000,000 records. The Lyrics dataset contains five tables, such as artists,
albums and songs, with around 400,000 records. As these datasets do not have any
associated query log, we extracted the keyword queries from the query logs of MSN
and AOL [PCT06] Web search engines. We pruned the queries based on their target
URLSs, and obtained thousands of queries for the IMDB and lyrics domains.

To obtain the most popular keyword queries, we first sorted the queries based
on frequency of their usage in the log. For each domain, we selected 200 most fre-
quent queries for which multiple interpretations with non-empty results exist in the
database. These queries were mostly either single keyword or single concept queries,
often referring to actor/artist names or movie/song titles. We refer to this part of
the query set as single-concept queries (sc). To obtain an additional set of more
complex queries, we manually selected about 100 queries for each dataset from the
query log, where we explicitly looked for queries containing more than one concept,
e.g. amovie/song title and an actor/artist name. We refer to this set as multi-concept
queries (mc).

As diversification of results is potentially useful for ambiguous queries [CSA*09],
we estimated ambiguity of the resulting keyword queries using an entropy-based mea-
sure. To this end, for each keyword query, we ranked interpretations of this query

4.6 Experiments 71

available in the database using Equation 4.2 and computed the entropy in the top-
10 ranks of the resulting list. Intuitively, given a keyword query, high entropy over
the top ranked interpretations indicates potential ambiguity. Finally, we selected 25
single-concept and 25 multi-concept queries with the highest entropy for each dataset.

4.6.2 User Study

To assess relevance of possible query interpretations we performed a user study. We se-
lected a mix of single-concept and multi-concept queries as described in Section 4.6.1,
for which we generated all possible interpretations sorted by their probability. As
the set of possible interpretations grows exponentially with the number of concepts
involved, we took at most the top-25 interpretations. This should not rule out mean-
ingful interpretations, as probabilities fall very quickly with their rank: Figure 4.1
gives the maximum and the average ratio of the probability of a query at rank ¢ and

the aggregated probabilities of queries at rank j <i: PR; = %.

1<%

Each data point on the X-axis of Figures 4.1a and 4.1b presents the rank. The
Y -axis presents the corresponding average and maximum PR; value. As can be seen,
queries at rank 10 already are only 0.01 as likely as queries at rank < 10, and queries
at rank 25 are at most 2.95 x £79 as likely as queries at rank < 25.

For each query we pruned all query interpretations (); whose probability con-
stituted less than 0.1% of the aggregated probability of all possible interpretations.
Additionally, for each query we included at most five more interpretations with proba-
bility below this threshold and randomized the order in which the interpretations were
presented for user assessment, in order to avoid a bias towards top ranked queries.

In total, each user had to evaluate 630 interpretations for IMDB and 517 inter-
pretations for the Lyrics dataset. For each interpretation of a given keyword query,
the participants were asked to indicate on a two-point Likert scale, if they think that
this interpretation could reflect an informational need implied by the keyword query.
Multiple interpretations of one query were possible and explicitly encouraged. In
total, we had 16 participants, from whom 10 completed all evaluation tasks in both
datasets and the rest completed 30% of tasks in IMDB and 9% of tasks in lyrics
dataset on average. We computed agreement between the participants using kappa
statistics [MRS08]. We observed average kappa values of 0.33 in IMDB and 0.28
in Lyrics. We consider this low agreement as an additional indication of ambigu-
ity of the selected queries. Finally, we computed the relevance scores of each query
interpretation by averaging scores over the participants.

4.6.3 alpha-nDCG-W

Given a keyword query, Div(Q first creates a ranked list of query interpretations and
then applies the diversification algorithm to this list to obtain the most relevant and

72 Chapter 4 Diversification of Search Results over Structured Data
1 __@.
¢ Max PR

0.8 OAvg PR
0.6 []
0.4 A4
0.2 D‘.

0 A Frrvivivlelolelelelololeleloloiolol

0 5 10 15 20 25
(a) IMDB
1 110
& Max PR
0.8 1 Avg PR
0.6
0.4 *
0.2
Po
0
0 5 10 15 20 25
(b) Lyrics

Figure 4.1 Selecting Meaningful Query Interpretations: Maximum (Max
PR) and Average (Avg PR) Probability Ratio.

4.6 Experiments 73

novel results. To assess quality of query ranking and diversification, we measured
a-NDCG-W by varying o parameter from 0, to 0.5 and to 0.99. In the case of a=0,
novelty of results is completely ignored, and a-NDCG-W corresponds to the standard
NDCG. With a=0.5, novelty is given a certain credit. With «=0.99, novelty becomes
crucial, and results without novelty are regarded as completely redundant. As the
optimal ranking for normalization of DCG we ranked query interpretations by their
user score. To achieve better overview of the available results in this experiment we
set A =0.1 (Equation 4.4); this enables the system to emphasize novelty of results in
both datasets. We discuss the influence of A value in Section 4.6.5. The results of the
a-NDCG-W evaluation are presented in Figure 4.2.

Each diagram of Figure 4.2 corresponds to a different a value. Each data point
of the X-axis of a diagram represents the k for top-k query interpretations. The
Y -axis represents the corresponding a-NDCG-W value. We use the symbol “Rank”
to denote the ranking algorithm without diversification, and “Div” to denote the
ranking algorithm with diversification. The a-NDCG-W values in the diagrams are
averaged on single-concept queries (sc) and multi-concept queries (mc) respectively.
As we can see, in our experiments on the IMDB dataset (Figures 4.2a, 4.2¢, and 4.2¢),
the average a-NDCG-W for top-1 result of both ranking and diversification on single
concept queries was always 0.58, given any value of a. For top-5 results, the gain of
single-concept queries increased to 0.9 in both datasets. For multi-concept queries,
with a=0 the gain of ranking reaches 0.8 and 0.9 at top-6 in IMDB and Lyrics
respectively. The relatively high a-NDCG-W values for a=0 confirm the quality of
the ranking function.

As Figure 4.2 shows, for a=0 ranking dominates diversification in all the cases.
This is expected, as for a-values below 0.5, relevance is rewarded over novelty. In this
case, diversification does not show its benefit. In the Lyrics dataset, the first benefits
of diversification for single-concept queries become visible already with a=0.5 at k=4,
where a-NDCG-W improves by about 4%. This advantage increases with growing
a, and achieves 8% at a=0.99. For single-concept queries on IMDB, we did not
observe any difference between ranking and diversification (the lines Rank sc and Div
sc almost overlap in all diagrams of the Figures Figures 4.2a, 4.2¢, and 4.2e). This
is because the top query interpretations returned by ranking already deliver distinct
results. In this case diversification preserves the high gain values achieved by ranking.
For multi-concept queries, the gain of diversification grows with increasing . When
a=0.99 and k;3, diversification on mc queries outperforms ranking by about 7% in
both datasets. The results of the paired ttest confirm statistical significance of this
result for the confidence level of 95%. In summary, diversification performed on top
of query ranking achieves significant reduction of result redundancy, while preserving
retrieval quality in the majority of the cases.

Chapter 4 Diversification of Search Results over Structured Data

=== a-NDCG-W, a=0.0 Rank mc
== -NDCG-W, a=0.0 Div mc
—— a-NDCG-W, a=0.0 Rank sc
=== a-NDCG-W, a=0.0 Div sc

1 2 3 4 5 6 7 8 9 10

(a) IMDB, a=0

=== a-NDCG-W, a=0.0 Rank mc

== 0-NDCG-W, a=0.0 Div mc

=—4—0-NDCG-W, a=0.0 Rank sc

=—==—0a-NDCG-W, a=0.0 Div sc

3 4 5 6 7 8 9 10

(b) Lyrics, a=0

— - -
= ——

=== 0-NDCG-W, a=0.5 Rank mc
== 0-NDCG-W, a=0.5 Div mc
=4 0o-NDCG-W, a=0.5 Rank sc
=== a-NDCG-W, 0a=0.5 Div sc

=== -NDCG-W, a=0.5 Rank mc

== 0-NDCG-W, 0=0.5 Div mc

=—¢— a-NDCG-W, a=0.5 Rank sc

1 2 3 4 5 6 7 8 9 10

(c) IMDB, a=0.5

=== 0-NDCG-W, 0=0.5 Div sc
T T T T T

3 4 5 6 7 8 9 10

(d) Lyrics, a=0.5

| e

1 i S e Y s Y s S s N gy |
SN R S R S—

-]
| —

=== a-NDCG-W, 0=0.99 Rank mc
== 0-NDCG-W, a=0.99 Div mc
== o-NDCG-W, a=0.99 Rank sc

=== -NDCG-W, a=0.99 Rank mc

==é= -NDCG-W, a=0.99 Div mc

=—¢— a-NDCG-W, a=0.99 Rank sc

=== 0-NDCG-W, a=0.99 Div sc
1 2 3 4 5 6 7 8 9 10

(e) IMDB, o =0.99

=== 0-NDCG-W, a=0.99 Div sc

3 4 5 6 7 8 9 10

(f) Lyrics, a=0.99

Figure 4.2 o-NDCG-W for Single-Concept (sc) and Multi-Concept (mc)
Queries for Diversification (Div) and Ranking (Rank) for a =0, a = 0.5, and

a=10.99.

4.6 Experiments 75

4.6.4 WS-Recall

We evaluate recall quality of the system using the WS-recall measure presented in
Section 4.5.2. WS-recall computation requires user assessments of subtopic relevance.
As graded relevance assessments of top query interpretations were available to us as
a result of the user study, we compute relevance of a subtopic (primary key) as
the relevance of the interpretation which returns this primary key. As one and the
same primary key can be returned by multiple distinct query interpretations, we
take the maximal score. As user judgments were available only for a subset of the
interpretation space, the absolute recall values obtained by this approach might be
too optimistic. However, they enable a fair comparison of the algorithms. We present
the results of the WS-recall evaluation in Figure 4.3.

Each data point of the X-axis of Figures 4.3a and 4.3b corresponds to k for top-k
interpretations. The Y-axis represents the corresponding WS-recall value of rank-
ing (Rank) and diversification (Div) averaged over a set of queries. For example,
in the Lyrics dataset (Figure 4.3b) the WS-recall of ranking increased from 0.2 in
top-1 to 0.8 in top-6. As Figures 4.3a, 4.3b show, on average, ranking and diversifi-
cation perform similar with respect to recall. We observed a slight improvement by
diversification for £ = 2...11 in the IMDB dataset, whereas in Lyrics WS-recall at
corresponding k values slightly decreased. Inspection of the actual query interpreta-
tions reveals that this is mainly due to the fact that ranking by relevance in Lyrics
prefers complete query interpretations with large result sizes (i.e. large total number
of returned tuples), whereas diversification pushes partial query interpretations with
smaller result sizes. All other things equal, a larger result size increases WS-recall
more. Normalizing result sizes for WS-recall is subject to future work. In total we
did not observe any significant effect of diversification on WS-recall values.

4.6.5 Balancing Relevance and Novelty

In Equation 4.4, X is a parameter to balance query interpretation relevance against
novelty. We evaluated influence of A on a-NDCG-W at top-5 by a«=0.99. The results
on the lyrics dataset are presented on Figure 4.4.

The X-axis of Figure 4.4 presents the values of A. The Y'-axis represents the cor-
responding value of a-NDCG-W at top-5 by a=0.99. Each bar on Figure 4.4 presents
a-NDCG-W for ranking and diversification of single-concept (sc) and multi-concept
(mc) queries averaged over a set of queries. For example, the average a-NDCG-W
of diversification for single concept queries increased from 0.82 by A=1 to 0.91 by
A=0.01. As can be seen, high a-NDCG-W values achieved by diversification of both,
single-concept and multi-concept queries decrease with increasing A, until they meet
a-NDCG-W of the original ranking in A=1. The smaller the value of A, the more vis-
ible is the impact of diversification and the more a-NDCG-W values of diversification
outperform the original ranking. In contrast, with increasing A, relevance of query

76 Chapter 4 Diversification of Search Results over Structured Data

1 (alalalalalalalelse

0.8

0.6

0.4

0.2 -| —&—avg WS-recall Rank

=== avg WS-recall Div

O I I I I I I I I I I I I I T T T T T T T T T T T 1

1 3 5 7 9 11 13 15 17 19 21 23 25

(a) IMDB

—4¢— avg WS-recall Rank
=== avg WS-recall Div

11 13 15 17 19 21 23 25

O I I I I I I I I I I I I I

1 3 5 7 9

(b) Lyrics

Figure 4.3 WS-recall for Ranking (avg WS-recall Rank) and Diversification
(avg WS-recall Div).

4.7 Discussion i

Div @ Rank sc
0.95 e W Div sc
0.9 B Rank mc
0.85 -
0.8
0.75
0.7

A=0.01 A=0.1 A=0.5 A=1

Figure 4.4 Relevance vs. Novelty: Selection of the Value for A-Parameter.
a-NDCG-W, k=5, a=0.99, Lyrics Dataset.

interpretations dominates over novelty and the amount of re-ranking achieved by di-
versification becomes smaller. For example, for A= [0.01, 0.5] the Spearman’s rank
correlation coefficient between the ranks of the query interpretations in the initial
ranking and their ranks after diversification ranges between [0.74, 0.82] for single-
concept queries and [0.4, 0.67] for multi-concept queries in Lyrics. In the IMDB
dataset multi-concept queries perform similar with rank correlation of [0.36, 0.69].
As different interpretations of single-concept IMDB queries already deliver distinct
results, we did not observe any significant re-ranking by varying A on this query set.

4.7 Discussion

In this chapter we presented DivQ - an approach to search result diversification over
structured data to address Problem 2 presented in Chapter 1. In contrast to the
state-of-the-art diversification approaches such as [AGHI09, CG98, CK06, CKC*08,
GS09, WZ09, CLO7, VSS*08] operating on search results directly, DivQQ performs
diversification at the query interpretation level before any search results are materi-
alized. This enables DivQ to perform diversification of search results over structured
data efficiently, as such materialization is computationally expensive. To the best
of our knowledge, DivQ is the first approach that performs diversification of query
interpretations over structured data.

To enable efficient search result diversification over structured data, in this chap-

ter we first introduced a probabilistic query disambiguation model that enabled us to
create relevant query interpretations. The query disambiguation model in this chap-

78 Chapter 4 Diversification of Search Results over Structured Data

ter improves upon the initial model presented in Chapter 3 by taking into account
keyword dependencies in database attributes. We evaluated the quality of the model
in a user study. In the next step, we proposed a query similarity measure based on the
Jaccard coefficient. This similarity measure operates on the syntactic level of query
expressions and can thus be evaluated efficiently. Then, in order to obtain relevant
and diverse query interpretations we presented a greedy algorithm. Following that,
as results of keyword search over structured data differ from conventional documents
considered in the existing work, we adapted state-of-the-art evaluation metrics for di-
versification in document retrieval to take into account graded relevance of subtopics
and overlapping results. To this end we proposed a-NDCG-W and WS-Recall - an
adaptation of a-NDCG [CKC*08] and S-recall [CK06] measures to assess quality of
diversification in database keyword search.

Our evaluation results have demonstrated the quality of the proposed model and
have shown that using our algorithms the novelty of keyword search results over
structured data was substantially improved. Diversification performed on top of query
ranking achieved significant reduction of result redundancy, while preserving retrieval
quality in the majority of the cases. This way search results obtained using the pro-
posed algorithms also better characterized possible answers available in the database
than the results obtained by the initial relevance ranking.

Scaling Interactive Query Construction on a Very
Large Database

5.1 Introduction

In this chapter we address Problem 3 from Chapter 1, namely enabling efficient
incremental query construction over large scale databases. The amount of structured
data available on the Web is constantly growing. With the prevalence of Web 2.0, a
number of open databases have emerged on the Web, attempting to provide a platform
for users to collaboratively create and maintain structured information. A typical
example is Freebase!, which currently contains more than 22 million entities and
about 350 million facts from more than 100 domains, organized in 7,500 tables. Other
examples include DBpedia [BLK*09], WikiTaxonomy [PS08], Probase [WLWZ12],
and others, whose sizes have already reached the magnitude of several gigabytes.
Databases of this kind are intended to accommodate heterogeneous information and
knowledge. It is natural that each of these datasets contains a very large schema
and a large volume of data. To a normal Web user, information seeking over such a
heterogeneous database is a challenge.

The technology of interactive query construction introduced in Chapter 3 enables
novice users to interactively create structured queries and retrieve desired informa-
tion from a database. The interface of interactive query construction combines the
usability of keyword queries with the expressiveness of structured queries. It enables
a user to start with a keyword query and refine keywords into a structured query by
interacting with the system. Through interaction, the user can provide additional
information to disambiguate the semantics of the keyword query, and finally deter-
mine the structured expression reflecting user’s informational need. Compared to
keyword queries, structural interpretations created in such user interaction process
offer enhanced expressiveness to retrieve the results with complex semantics, includ-

Lwww.freebase.com

79

80 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

ing collective results, e.g. “All films starring Tom Hanks”, or results involving more
than one entity, e.g. “The role of Tom Hanks in the film The Terminal”. In this
way, interactive query construction opens the world of structured queries to unskilled
users, who are not familiar with structured query languages. It is also a useful tool for
expert users who want to explore the data organized in an unfamiliar and a complex
database schema.

Interactive query construction can be especially useful for information seeking on
a large scale database, such as Freebase. On the one hand, to form structured queries,
users needs to understand the database schema thoroughly, which is a time consuming
process. On the other hand, keyword queries are normally highly ambiguous for such
databases. For instance, in Freebase, the phrase “Tom Hanks” can be matched with
the entities from the domains of person, film, book, tv, and music. As a result, there
can be a large number of plausible answers to the keyword query “Tom Hanks”, such
as the actor Tom Hanks, an American seismologist Thomas C. Hanks, and a book
entitled “Tom Hanks”. To find the desired information through a keyword search
interface, a user may have to scan through a long list of search results. In contrast, a
query construction interface suggests a few interaction options such as “Tom Hanks
1s an actor”, and “Terminal is a location” for the users to clarify their intents. By
clicking the correct options, users help the system to form structured queries, which
are able to retrieve the desired content more accurately.

As suggested in Chapter 3, approaches of interactive query construction work
well for medium-sized databases of a particular domain, such as IMDB [IMD] and
Lyrics [LYMCO06], which contain around 20 tables. Our experiments in Chapter 3
have demonstrated that our initial approach to interactive query construction scales
well on the databases containing up to 100 tables. However, initial approaches fail
to scale on heterogeneous multi-domain databases composed of several thousands of
tables, such as Freebase. First, when the database schema is very big, the interaction
options generated by the existing schemes are usually not informative enough. As a
result, a user may have to go through a laborious interaction procedure to construct
the desired query. For example, the phrase “Tom Hanks” appears in more than thirty
Freebase attributes, such that it can be interpreted into more than thirty meanings.
Using the existing interaction schemes, the user may have to respond to each of the
interpretations to finally clarify her intent. For a more complex keyword query, the
procedure of interaction can become unacceptably long. Second, the interpretation
space of a keyword query in a very big database is usually too big to materialize. State-
of-the-art approaches to schema-based keyword search (e.g. [SA02, HP02, HGPO03,
LYMCO06]) as well as our initial approach to incremental query construction that rely
on the entirely materialized interpretation space, become infeasible in these settings.

The Free@Q system presented in this chapter builds upon the work presented in
Chapers 3 and 4, and aims to scale interactive query construction over a very large
database, addressing Problem 3 from Chapter 1. First, we propose to connect a
hierarchical ontology with the database schema. Using the general concepts in the

5.2 Summary of FreeQ) Contributions 81

ontology, we can form more informative interaction options that enable more efficient
query construction. The hierarchical ontology can be constructed manually, such
as the domain set in Freebase. It can also be a generic external ontology, such as
YAGO [SKWO07]. We conducted both theoretical and experimental studies to eval-
uate how a hierarchical ontology can enable efficient interactive query construction.
Second, we design a scheme that explores interpretation spaces of keyword queries
incrementally. This scheme can efficiently generate top-k structured queries and op-
timal interaction options. We conducted extensive experiments on Freebase. The
results demonstrate the efficiency of our approach.

The rest of this chapter is organized as follows: Section 5.2 provides a summary
of contributions contained in this chapter. Following that Section 5.3 discusses the
specific background for the query construction over large scale databases. Then,
Section 5.4 provides an overview of the basic concepts of query construction which
were first introduced in Chapter 3 and discusses the advantages and limitations of the
query construction approach introduced in Chapter 3. Then, Section 5.5 presents the
query construction options of FreeQ that overcome some limitations in the previous
work. Following that, Section 5.6 describes scalable algorithms for the query and
option generation over a large scale dataset. Section 5.8 presents the evaluation
results over Freebase. Finally, Section 5.8 discusses the results.

5.2 Summary of FreeQQ Contributions

State-of-the-art approaches to schema-based database keyword search described in
Section 2.2.3 such as [SA02, HP02, HGP03, LYMCO06, AME07, KKR*06, TZC*06,
LLWZ07, TCRS07, ZWX*07, CBC*09, QY C09] as well as the approach to incremental
query construction proposed in Chapter 3 work well for databases with medium-sized
schemas such as Internet Movie Database [IMD] and Lyrics dataset [LYMCO06]. In
contrast, to the best of our knowledge, neither state-of-the-art approaches to schema-
based keyword search in databases nor incremental query construction we proposed
in Chapter 3 can handle databases with very large schemas efficiently.

Scaling incremental query construction on a large scale dataset calls for two main
adaptations: First, state-of-the-art approaches to schema-based database keyword
search (e.g. [SA02, HP02, HGP03, LYMCO06]) as well as approaches to incremental
query construction presented in Chapter 3 rely on a completely materialized query
interpretation space. In face of a large scale database, such enumeration of all query
interpretations is not feasible. Therefore, in this chapter we develop scalable algo-
rithms that retrieve the most relevant top-k query interpretations efficiently. Second,
the approach to incremental query construction presented in Chapter 3 used only
partial query interpretations as items for user interactions. As the number of such
partial interpretations grows sharply with an increasing schema size, these interpre-
tations alone cannot guarantee an efficient query construction process over large scale

82 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

datasets. To this extent, in this chapter we propose novel user interaction options
based on ontologies.

In summary, in this chapter we take an important step to interpret keyword queries
and perform iterative query construction over large scale datasets efficiently. To this
extent, we further develop and generalize the approach to interactive query construc-
tion presented in Chapter 3 and make the following contributions:

e First, we proposed a new type of interaction options based on ontologies to
enable scalable interactive query construction, and provide a theoretical justifi-
cation about the effectiveness of these options.

e Then, we developed a scheme to enable incremental exploration of very large
query interpretation spaces to generate top-k structured queries and interaction
options efficiently, without the complete knowledge of the interpretation space.

e Following that, we performed an experimental study on Freebase to verify the
effectiveness and efficiency of the proposed approach.

e To the best of our knowledge, this is the first attempt to enable efficient keyword-
based query construction on such large scale database as Freebase, considering

that most existing work on database keyword search uses only test sets of small
schemas, such as DBLP, IMDB, etc.

Our experiments on Freebase, a large scale dataset containing more than 7,500
tables, have shown that the proposed FreeQ system is effective and efficient in interac-
tive query construction over large scale data. Our results confirmed the effectiveness
of the ontological layer created using the native taxonomy of Freebase. Furthermore,
we have demonstrated that external ontologies, such as the YAGO ontology [SKW07],
can be used to further increase the efficiency of incremental query construction.

5.3 Specific Background

In Chapter 3 we proposed a probabilistic incremental query construction model for
an interactive user interface. In Chapter 4, we further developed the probabilistic
model presented in Chapter 3 and developed methods to provide an overview of
search results available within a database. While these methods are well-suited for
medium-sized schemas, they do not provide a sufficient solution to large scale datasets
with flat schemas, such as the schema of Freebase. This is because these methods
relied only on the database internal statistics and partial query interpretations to
generate query construction options. In large scale databases, such partial query
interpretations are not informative enough to enable efficient reduction of the search
space in the user interaction process. FreeQ presented in this chapter alleviates this
problem by using ontologies, such as the domain hierarchy of Freebase and the YAGO

5.4 Preliminaries of Interactive Query Construction 83

ontology [SKWO07], in the option generation process. Furthermore, previous work on
keyword query disambiguation and incremental query construction was performed
with an assumption, that it is feasible to completely materialize the entire space of
query interpretations. To this end, we relied on a set of query templates generated
a-priori. In contrast, Free() presented in this chapter will relax this assumption and
present the algorithms to incrementally materialize very large query interpretation
spaces and generate the top-k structured queries and query construction options on
the fly over a large scale database.

5.4 Preliminaries of Interactive Query Construc-
tion

A user interface for interactive query construction is presented in Fig. 5.12. The
interface is composed of four parts: (1) an input field for keyword queries, (2) a
query construction panel for presenting the interaction options, (3) a query window
for presenting structured queries, and (4) a result window for query results. Suppose
a user, whose name is Alice, issues a keyword query to the system. The system first
tries to guess Alice’s intent and generates the top-k most likely structured queries in
the query window (3). If one of the top-k structured queries matches Alice’s intent,
she can click on the query to obtain the results (4). If no query in the top-k list (3)
interprets Alice’s intent correctly, she can interact with the query construction panel
(2) to construct the desired structured query. Whenever Alice clicks on an interaction
option, the structured queries in the query window (3) are refined, such that only those
queries complying with Alice’s selection are preserved. Simultaneously, a new set of
query construction options is presented in the query construction panel (2). The
interaction continues until Alice obtains the desired structured query and results.

In this section, we introduce the basic model for enabling such interface for inter-
active query construction. We also elaborate on the challenges posed by large scale
databases.

5.4.1 The Model

We model the schema of a database as a graph.

Definition 5.4.1. A schema graph is a directed graph G = (V,E), where each
vertex v € V represents a relational table and each edge e € E represents a foreign key
relationship. In the graph, each node v is associated with a set of attributes, denoted
by A(v), where the ith attribute is represented by v.a; € A(v). O

2 Fig. 5.1 includes the following images: http://de.fotolia.com/id/10056489 (C)ioannis kounadeas
- Fotolia.com; http://de.fotolia.com/id /9974098 (©)XYZproject - Fotolia.com

84 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

B FreeQ Database Search [](=]]]
Welcome | FreeQ | Tutorial

M Tom Hanks Terminal w | Search&Find l

Query Construction |
i Structured Queries (double click to ite): This list might be i Please select more
Select the first correct option from the top: -
& Freebase category: Film 3 1
~ Arts & Entertainment : [hanks, tom] Film.Produced By : tom hanks
Film.Name : terminal

Freebase category:
Society : [hanks, tom]

-, Freebase category: Film

~ Arts & Entertainment : [tom] Film.Directed By : tom hanks
Film.Name : terminal

. Freebase category:

~ Sports : [tom]
TV Episode
AT CLE SO CE LR TV Episode.Previous Episode : tom hanks
Arts & Entertainment : [hanks] TV Episode.Name : terminal
) Others
| [TV Episode
Back Forward TV Episode.Previous Episode : terminal =
Search Results:
Mame : The TERMINAL
" Film Production Design By @ Alex
' . Runtime ; imi0kBmzg
'a Film actor {frm/0bxdg);

Film performance (mi0kermy): Soundirack: The TERMINAL

Mame : TOM HANKS Rating : PG-13 (US&)

Filim - frf k7 dvr, /mi0kS8q1 /mi0kTI0j fmikSyeq imiQjtkrn), . 3 Character : Vikior Navorski

Actor : TOM HANKS Featured Film Locations | Mew Yo

Film : The TERMINAL - Costurme Design By : Mary Zophre

- ‘Written By - Jeff Nathanson,Sacha
Directed By : Steven Spig

Language : Frenc! % Fu
Starring : fm/03jp
Edited By : Michad

Figure 5.1 FreeQ) User Interface. Its components include: (1) an input field
for keyword queries, (2) a query construction panel, (3) top-k structured
queries, and (4) query results.

We use the number of vertices to represent the size of a schema graph. Using the
schema graph, we can create structured queries.

Definition 5.4.2. Given a schema graph G = (V,E), a structured query is an
edge preserving map G' = (V' E"), such that there is a function L : V' - V which
satisfies: for each vertex v' € V' in the structured query, there is a vertex L(v') € V in
the schema graph such that v’ and L(v'") represent the same relational table, and for
each edge {vy,vh} € E' in the structured query, there is an edge {L(v]), L(v})} € E in
the schema graph.

In addition, each vertex v’ in the structured query can be associated with a number
of predicates. Fach predicate is in the form v'.a; op c;, where v'.a; is an attribute of
v', op 1s a comparison operator, and c; is a constant. O

For instance, given a film database, a query looking for all the actors who have
collaborated with Tom Hanks can be expressed as:

5.4 Preliminaries of Interactive Query Construction 85

(1= {structure:actor; xactsx filmy w acts x actors,

predicates:actor;.name = “T'om Hanks”}.
It is worth mentioning that each table in the database occurs only once in the schema
graph. In contrast, each table can occur multiple times in a structured query.

In the process of interactive query construction, users express their informational
needs as keyword queries.

Definition 5.4.3. A keyword query is a bag of terms K = {ky,ka,....k,}, where
duplicates are allowed. O

In Definition 5.4.3, a term is a normalized class of tokens that is included in the
system’s dictionary. For token normalization, state-of-the-art Information Retrieval
techniques such as case folding and word segmentation can be applied [MRSO08].

The main function of FreeQ is to translate a user’s keyword query into the in-
tended structured query. We call such translation a query interpretation. We
say that a query interpretation is complete if this query interpretation contains all
keywords from the initial user query. Otherwise we talk about partial query inter-
pretation. We call the set of all complete query interpretations of a keyword query
K an interpretation space of K.

For instance, keyword query “Tom Hanks Film” can be interpreted to:

Qo={structure:actor wacts x film,

predicates:actor.name = “T'om Hanks”}.
In this interpretation, keywords “Tom Hanks” are mapped to the constant of a pred-
icate, and “Film” is mapped to a table name. The following query is a partial
interpretation of “Tom Hanks Film”, where only “Tom Hanks” is interpreted:

O, ={structure: actor,
predicates: actor.name = “Tom Hanks”}.

In the process of query construction we interpret user’s keywords and generate
query construction options (QCOs) to assess the meaning of the keywords intended
by the user. We can do that in two ways: First, we can interpret keywords very
specifically as a part of a structured query (as performed in Chapter 3). We refer
to these QCOs as query-based QCOs. For instance, O; can be used as a QCO,
which indicates that “Tom Hanks” should be interpreted as an actor’s name. Sec-
ond, we can also assess the general meaning of the keywords and interpret them as
a generic concept representing a class of structured queries. For example, we can
interpret “Tom Hanks” as a more generic class person, which is a superclass of actor:

Oy ={structure: person,
predicates: person.name = “Tom Hanks"}.

86 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

To enable efficient user interaction over large database schema, in this chapter we
introduce ontology-based QCOs. In a generic object-relational database, a table can
be regarded as an entity type, and an attribute of the table can be regarded as a
property. Using a hierarchical ontology, a set of entity types can be abstracted into
a superclass, and a set of properties can be abstracted into a super-property. For
instance, entity types painter and musician can be abstracted into artist, and their
properties painting and music can be abstracted into work. Using these superclasses
and super-properties, we can create general QCOs that subsume larger proportions
of a query interpretation space than the query-based QCOs.

Definition 5.4.4. Given a schema graph G = (V, E), we use sv + v to denote that
sv is a superclass of v eV and se + e to denote that se is a super-property of e € E.
Superclass and super-properties are partial order relationships. O

With the concepts of superclass and super-property, we define ontology-based
query interpretations and ontology-based QCOs.

Definition 5.4.5. Let K = {ky, ko,....,k,} be a keyword query. Let Q = (V,E) be a
query interpretation of K. Let QQ° be isomorphic to (), where the isomorphism function
is f(.) (that applies to the predicates too). QQ° is an ontology-based interpretation

of K, iff f(.) satisfies: (1) for allv eV, f(v)+v; (2) foralle € E, f(e) +e; (3)
for all attributes v.a; € A(v) in the predicates, f(v.a;) v+ v.a;. We say that Q° is a
super-interpretation of (). O

When we use ontology-based interpretations as QCOs, we call them ontology-
based QCOs. In summary, QCOs generated by our system can be either query-based
or ontology-based QCOs.

Definition 5.4.6. A Query Construction Option (QCO) is a mapping from a
subset K' ¢ K of keyword query K to either:

e a structured query @Q (a query-based QCO), or

e an ontology-based interpretation of K' (an ontology-based QCO). O

In the interaction process the user is supposed to select the options that subsume
her intended query interpretation.

Definition 5.4.7. Given a QCO O and a QCO O', we say that O subsumes O’, if
either:

e O is a subgraph of O, or
e O is a super-interpretation of O'.

Subsumption relationship is transitive, i.e. if O subsumes O’ and O’ subsumes
0", then O subsumes O”. O

5.4 Preliminaries of Interactive Query Construction 87

Certainly, as O; is a subgraph of the interpretation (Q2, O; subsumes)5. O, is an
ontological interpretation of “Tom Hanks”, and it is a super-interpretation of O;.
As subsumption relationship is transitive, both Oy and O; subsume ()5, which is a
complete interpretation of the query “Tom Hanks Film”.

With the above concepts, the conceptual process of interactive query construction
can be modeled as follows:

0. Given a database whose schema is G = (V| E), a user issues a keyword query
K= {kh kg, ceey kn}

1. Initialization: Let { be an interpretation space of K based on G.

2. Top-k Generation: The system retrieves the top-k interpretations from (,
and presents them to the user. If the user finds the intended interpretation in
the top-k, the query construction process terminates. Otherwise, the process
continues with Step 3.

3. QCO Generation: The system generates a QCO O and lets the user decide
whether O subsumes the intended interpretation of K.

4. Post Interaction: If the user indicates that O is true, then the system removes
all the interpretations that cannot be subsumed by O from (. Otherwise, the
system removes all the interpretations subsumed by O from (. Go back to
Step 2.

Each iteration of the process requires one round of interaction with the user. As
the interaction goes on, the interpretation space (keep shrinking. Because (is finite,
the process guarantees to terminate at a certain point. Nevertheless, we would like the
process to be short, so that users can obtain desired information as early as possible.
The efficiency of query construction can be measured naturally by the number of
iterations of the process. We call this measure interaction cost.

Definition 5.4.8. Given a process of interactive query construction, its interaction
cost is the number of iterations it has been executed, which is equivalent to the number
of QCOs evaluated by the user. O

As shown in Figure 5.1, it is possible and probably more efficient to present mul-
tiple QCOs to a user simultaneously, so that the user can select the first correct QCO
from the list. According to Chapter 3, such multi-option interface can be induced
from a single-option interface, where the user decides on one option at a time. For
simplicity of our analysis, we stick to the single-option interface for the rest of the
chapter.

88 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

5.4.2 Limitations of the Existing Approaches

When a database, and especially its schema graph, becomes big, it is difficult for the
existing approaches to incremental query construction to realize an efficient query
construction process. This is due to the following two issues:

Problem 5.1. Inefficient query-based (QCOs:

To minimize the interaction cost, the query construction process needs to shrink
the query interpretation space quickly. In other words, the evaluation of each QCO
should be able to remove a significant proportion of the interpretation space. There-
fore, we desire the proportion of query interpretations subsumed by each QCO to fall
in a certain range. This proportion should not be too small, as in this case the denial
of a QCO could not reduce the interpretation space effectively. It should not be too
big either, as in this case the acceptance of a QCO could not reduce the interpretation
space effectively.

When the schema graph is big, a keyword can have a large number of occur-
rences spread across the database, resulting in a vast number of partial interpretations
(query-based QCOs). The proportion of the interpretation space subsumed by each
query-based QCO will be very small. As a result, query construction processes using
only query-based QCOs, such as the one described in Chapter 3, cannot be efficient
in face of a very large schema. Apart from query-based QCOs, we need more general
QCOs to enable efficient query construction.

Problem 5.2. Very large query interpretation spaces:

When the schema graph becomes big, it is no longer feasible to materialize the
interpretation space of a complex keyword query entirely. On the one hand, with an
increasing size of a schema graph, the number of its subgraphs grows very sharply. On
the other hand, the occurrences of keywords are more numerous in a larger database.
As a result, the number of the possible interpretations of a keyword query can be
very big for a large scale database.

The approach to interactive query construction presented in Chapter 3, and
approaches to schema-based database keyword search [SA02], [HP02], [LYMCO6],
[LLWZ07] rely on an entirely materialized query interpretation space. To facilitate
generation of query interpretations, in Chapter 3 we utilized pre-generated query
templates. This approach can hardly work with a big schema, as it is infeasible to
pre-generate all of the possible query templates. Therefore, we need a new mechanism
which can enable efficient identification of good QCOs and top-k query interpreta-
tions, without the prior knowledge of the entire interpretation space.

5.5 Efficiency of QCOs 89

5.5 Efficiency of QCOs

As pointed out by Problem 5.1 in Section 5.4.2, to minimize the interaction cost, the
QCOs presented to the user need to shrink the query interpretation space quickly.
In a large scale database, each single keyword can have numerous occurrences. As
a result, the query-based QCOs utilized by the approach described in Chapter 3 be-
come inefficient in reducing interpretation spaces. In this chapter, we introduce novel
ontology-based QCOs. An ontology-based QCO can subsume a wider proportion of
an interpretation space, such that it is usually more efficient than a query-based QCO.
Intuitively, if the user provides feedback on an ontology-based QCO, we get an im-
plicit user’s feedback on multiple query-based QCOs subsumed by this QCO within
a single user interaction. Thus a query construction process using ontology-based
QCOs requires less steps. In this section, we consider the efficiency of ontology-based
QCOs from the perspective of information theory.

5.5.1 Generation of Ontology-Based QCOs

Ontology-based QCOs can be created based on a hierarchical ontology or taxonomy.
In order to create ontology-based QCOs, we need an ontology on top of the database
schema, which defines superclasses and super-properties. This ontology can be a
manually defined one, such as the domain hierarchy of Freebase. Alternatively, we
can utilize external ontologies, such as e.g. WordNet [Fel98], and YAGO [SKWO07],
by mapping the elements of the database schema to the concepts in these ontologies.
In this case state-of-the-art schema matching techniques (see [RB01]) can be used.
We present our mapping of YAGO and Freebase later in Chapter 6.

With ontology-based QCOs, we can enable more efficient query construction, espe-
cially when confronted with a big database schema. To illustrate a query construction
process using ontology-based QCOs, we consider the query “Emperor Album”, which
intends to retrieve the albums of the artist Emperor from Freebase. To create the
ontology-based QCOs, we make use of the domain hierarchy of Freebase. This hierar-
chy groups together Freebase tables such as artist, album, and monarch in the domains
e.g. music and royalty, and further organizes these domains into the categories such
as Arts €9 Entertainment and Society.

For this particular query, if we use only query-based QCOs (as performed in
Chapter 3), our system requires a user to interact with 74 QCOs to identify the
intended interpretation. Using ontology-based QCOs, the user only needs to interact
with the 10 QCOs listed in Table 5.1. The keyword “album” is not very ambiguous, as
it occurs mostly in the domain of music. To disambiguate this keyword, Free(QQ does
not utilize any ontology-based QCOs. In contrast, the keyword “emperor” is very
ambiguous. “Emperor” occurs in 221 attributes of Freebase, which are spread across
multiple categories and domains. To disambiguate “emperor”, it is much faster if we
use ontology-based QCOs. With ontology-based QCOs, we manage to first restrict

90 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

QCOs (bold ones are ontology-based QCOs) User’s
feedback

Table artist (domain music): “album”

Table release (domain music): “album”

Table recording contribution (domain music): “album”
Table album (domain music): “album”

Domain royalty (Category Society): “emperor
Category Arts €& Entertainment: “emperor”
Domain fictional universe (Arts & Ent.): “emperor”
Domain opera (Arts & Ent.): “emperor”

Domain media common (Arts & Ent.): “emperor”
Query: album w artist “emperor” c artist.name

2

N X X X X N X X X

Table 5.1 A Query Construction Example for the Query “Emperor Album”
using Ontology-based QCOs

the meaning of “emperor” to the category of Arts € Entertainment. Within this
category, the exact meaning of “emperor” can be identified easily.

In what follows, we analyze how ontology-based QCOs achieve such efficiency.

5.5.2 A Measure of QCO Efficiency

As depicted in Section 5.4.2, in each round of interactive query construction, FreeQ
needs to select one QCO to present to the user. For a keyword query, there is usually
a large number of available QCOs. In principle, FreeQ should always select the most
efficient QCO that can minimize the final interaction cost. The efficiency of a QCO
can be quantified using the information theory.

Let ¢ denote the interpretation space of a keyword query K. Then, the uncertainty
of K’s interpretation can be measured by the entropy H({), which can be computed
as:

H(C) =~ Y, P(I) xloga (), (5.1)
IeC
where P(I) denotes the probability that the interpretation I is the interpretation
intended by the user.

The process of query construction is the process of reducing the uncertainty of
K’s interpretation. After one round of interaction with the user, FreeQ obtains the
knowledge of one QCO, say O. Then, the uncertainty is reduced to H({|O), i.e., the
conditional entropy of ¢ given O. The difference between H(() and H(¢|O) is known
as the expected information gain provided by O, denoted by:

1G(0) = H(¢) - H((O). (5.2)

5.5 Efficiency of QCOs 91

To minimize the interaction cost, we need maximize the information gain of each QCO
presented to the user. Obviously, the knowledge about (contains the knowledge of
any O. In other words, the information gain provided by O is exactly the entropy of
O. Therefore, we have:

1G(0) = H(¢) - H(¢|0) = H(O). (5.3)
In turn, the entropy of O can be calculated as:
H(O) =-P(0)logsP(O) — P(=0)logs P(-0), (5.4)

where P(O) is the probability that O is accepted by the user. Let ((O) denote the
complete set of query interpretations subsumed by O. Then, P(O) can be computed

' P(O)= Y P(). (5.5)
Ie¢(0)

To summarize, the efficiency of a QCO can be measured by its entropy. Therefore,
Free(Q is supposed to select the QCO with the highest entropy in each round of user
interaction.

5.5.3 Effects of Ontology-based QCOs

As discussed in Section 5.5.2, to achieve fast query construction, in each round of
interaction, FreeQ is supposed to present the user with an efficient QCO, i.e., a QCO
whose entropy is sufficiently high. The question is whether such QCOs would be
available. To answer this question, we first propose the following measure to quantify
the efficiency of an entire query construction process.

Definition 5.5.1. During an interactive query construction process, if we can ensure
with a high probability that the entropy of each QCO presented to the user is larger
than € (0<e<1), we say that the query construction process is e-efficient.

According to Definition 5.5.1, to minimize the interaction cost, we should max-
imize the lower bound (€) of the efficiency of the QCOs presented to the user. We
can show that query-based QCOs alone, i.e. the QCOs used in Chapter 3, cannot
guarantee a lower bound. In contrast, if we have an ontology with a sufficient num-
ber of concepts of diverse generality, by using ontology-based QCOs, we can achieve
e-efficient query construction with a good lower bound.

To simplify our analysis, we assume: (1) the number of possible interpretations
of a keyword grows linearly with the size of the schema graph; (2) the number of the
possible interpretations of an entire keyword query increases polynomially; (3) all the
complete query interpretations are equally probable.

Let the size of the schema be z. According to (1), the number of partial interpre-
tations (i.e. query-based QCOs) for a keyword can be expressed as ax z, where a is a

92

Chapter 5 Scaling Interactive Query Construction on a Very Large Database

partial interpretation
QCO with constant entropy

partial interpretation
QCO with constant entropy

0.8

entropy of QCO
=
1 1
interaction cost

0.6 | _

0.4 B

0.2 [4

size of schema

(a) Entropy of QCO

size of schema

(b) Interaction Cost

Figure 5.2 Efficiency of QCO and Interaction Cost vs. Schema Size.

constant. Then the entropy of a query-based QCO for each keyword will be H (=),
which can be plotted as the solid curve in Figure 5.2a. We can see that when the
database schema grows, the efficiency of each query-based QCO will decrease. This
efficiency can drop to a very small value when the database schema is big.

According to (2), the size of an interpretation space can be modeled as [x x7,
where § and « are constants. Based on (3), the most efficient query-based QCO
will be an interpretation for a single keyword, whose entropy can be modeled as:
H (aix) Therefore, the average interaction cost can be calculated as the entropy
of the whole interpretation space divided by the maximum entropy of an QCO, i.e.
logs(x 27)/H(5L>), which can be plotted as the solid curve in Figure 5.2b. As we
can see, if we use only query-based QCOs, the interaction cost can increase quickly

with the size of the database schema.

In contrast, if we can achieve a 0.7-efficient query construction process, that is,
the entropy of each QCO be no less than 0.7 (as illustrated by the dashed line in Fig-
ure 5.2a), the growth of the interaction cost can be significantly reduced (as illustrated
by the dashed line in Figure 5.2b). This is achievable, if we utilize ontology-based
QCOs.

The concepts in an ontology normally have a variety of generality. There are
very specific concepts that can subsume small sets of entity types, such as artist
and book. There are also very general concepts that can subsume larger proportions
of entity types, such as person and artifact. As a result, no matter how big the query
interpretation space is, it is always possible to find suitable concepts to form QCOs
that can subsume a certain proportion of the interpretation space that would yield
big entropies. As a simple analysis, we assume that the probability of a random
ontology-based QCO is a random value between 0 and 1. Then, within the set of NV
ontology-based QCOs, the probability that we can find a QCO whose entropy is large

5.6 Generation of Structured Queries 93

than e is:

H_l(e))N, (5.6)

0.5
where H=1() is the inverse function of the binary entropy. In this function, no matter
how big € is, we can always find a big enough N, such that the resulting probability
is close to 1. (As N is an exponent in the formula, it normally does not need to
be very big.) In other words, as long as there is a rich ontology with a sufficient
number of concepts of diverse generality, we can achieve e-efficiency for interactive
query construction.

Paor(o)yse =1 - (

5.6 Generation of Structured Queries

To perform query construction, Free(Q is required to quickly generate the most efficient
QCOs and the most probable complete query interpretations. As mentioned in Prob-
lem 5.2, Section 5.4.2, the existing approaches to interactive query construction and
schema-based database keyword search in general require a complete materialization
of the query interpretation space [SA02], [HP02], [LYMCO06], [LLWZ07], [DZNonb].
For a large scale dataset, the interpretation space of a keyword query is usually very
big, such that it is no longer feasible to materialize this space entirely. To this end, we
develop new algorithms that can generate top-k most probable query interpretations
and QCOs without the knowledge of the entire interpretation space.

5.6.1 Query Hierarchy for the QCOs Generation

To enable efficient generation of QCOs and query interpretations, we organize the
QCOs of a keyword query in a query hierarchy based on their subsumption relation-
ships. Using the query hierarchy, we can materialize the interpretation space of a
keyword query step-by-step by following the subsumption relationships of the QCOs.
During the progress of the materialization, a lot of QCOs and interpretations can be
eliminated based on the information provided by user interactions. Such progressive
materialization is much less costly than the generation of an entire interpretation
space.

Figure 5.3 illustrates a query hierarchy, in which the arrows represent reversed
subsumption relationships. The more general the QCOs, the lower their positions
in the query hierarchy. The most general QCOs are the single-node QCOs, i.e. the
QCOs involving only one entity type such as Oy, O1, and Os. These QCOs are located
at the bottom of the hierarchy. The top level of the query hierarchy consists of the
complete query interpretations (e.g. (3, and @4), which constitute the interpretation
space of a keyword query. The entire query hierarchy looks like an upside-down
trapezoid, as there are much more complete query interpretations than single-node

QCOs.

94 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

Q;: actor pq acts b4 film Q,: writer 4 writes b4 book
“Tom Hanks’— actor.name ~ “Tom Hanks”c writer.name A
“Terminal”c film.title “Terminal”’c book.title

O,: actor O;: writer
“Tom Hanks”— actor.name “Tom Hanks’c writer.name

Q,: person
“Tom Hanks” — person.name

Figure 5.3 An Example of a Query Hierarchy using Query-based and
Ontology-based QCOs for the Query “Tom Hanks Terminal” (the arrows
represent reversed subsumption relationships, e.g. Oy subsumes Oy).

As mentioned previously, it is infeasible to instantiate the complete query hier-
archy at the query time. Given a big schema, the top levels of the query hierarchy
can even be too big to be accommodated in the main memory. Therefore, FreeQ
chooses to instantiate the query hierarchy incrementally throughout the process of
query construction. The query construction process of FreeQ conforms to the generic
process defined in Section 5.4.1, except that it does not materialize the entire query
interpretation space. This process works as follows:

e 1. Initialization: Upon receiving a keyword query, Free() identifies database
attributes and schema elements containing keyword occurrences using an in-
verted index. Based on the keyword occurrences and an ontology, it generates
the most general QCOs. As a result, the bottom of the query hierarchy is in-
stantiated. As the bottom of the query hierarchy is small, its instantiation does
not incur much cost.

e 2. Top-k Generation: To generate the top-k£ complete query interpretations,
FreeQ performs a depth first traversal (DFS) of the query hierarchy from
the bottom up. All the QCOs and interpretations encountered during the DFS
are instantiated. DF'S enables FreeQ) to reach the top of the query hierarchy by
instantiating the minimal number of QCOs. The first k£ complete interpretations
encountered by the DFS are presented to the user as the top-k interpretations.

5.6 Generation of Structured Queries 95

e 3. QCO Generation: FreeQ) evaluates the QCOs in the instantiated part of
the query hierarchy and selects the QCO with the highest entropy. This QCO
is presented to the user.

e 4. Post Interaction: After the user provides feedback on the QCO, FreeQ
truncates the query hierarchy according to the user’s selection. If the user
has denied the QCO, all the QCOs or query interpretations subsumed by the
denied QCO are removed from the query hierarchy. If the user has accepted
a QCO, only the QCOs and interpretations subsumed by the accepted QCO
are preserved. After the truncation, the query hierarchy becomes smaller. If
the size of the instantiated part of the hierarchy falls below a threshold, FreeQ
perform a breadth first traversal (BFS) of the query hierarchy (from the
bottom up), during which more QCOs are instantiated. The BF'S stops as the
size of the instantiated part reaches a predefined upper bound.

As we can see, as the process of the interactive query construction goes on, the
instantiated part of the query hierarchy remains stable in size. On the one hand, this
part is truncated as the user reveals more information in the interaction process. On
the other hand, the instantiated part is continuously expanded by the BFS and DFS
to ensure that its size is sufficient to generate efficient QCOs and high quality top-k
interpretations.

5.6.2 Efficient Hierarchy Traversal

Breadth first traversal (BFS) and depth first traversal (DFS) are the two basic ap-
proaches FreeQ) employs to explore a query hierarchy. To make interactive query
construction smooth to the user, it is important to ensure the efficiency of BFS and
DFS. Both BFS and DF'S traverse the query hierarchy by following the subsumption
relationships. Each traversal step expands a QCO to one of the QCOs it subsumes,
e.g. expanding Oy to Oq, or O; to Q)3 in Figure 5.3. Therefore, it is crucial to make
the QCO expansion efficient.

In principle, a QCO can be expanded in two different ways. The first type of
QCO expansion is to replace an entity type or a property of the QCO with its
subclass or sub-property. Such expansion does not add any additional keywords to
the QCO. For example, the expansion of O, to O; in Figure 5.3 belongs to the first
type. This type of expansion requires only the knowledge of the ontology structure.
Once we have indexed the ontology, such that its subclasses or sub-properties can be
retrieved quickly, this type of expansion will be very efficient. The second type of
QCO expansion is to find the paths in the schema graph to connect a QCO and
an additional keyword occurrence. For instance, to expand O; to ()3 in Figure 5.3,
we need to identify the path “actor m acts x film” to connect O; and the keyword
occurrence film.title : terminal.

96 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

To identify the paths for connecting a QCO with a keyword occurrence efficiently,
a common approach is bi-directional search. Basically, this search starts from both
the QCO and the keyword occurrence, and conducts breadth first search on the
schema graph for connecting paths. As such bi-directional search will be repeated
frequently during the query construction process, a recurring traversal of the schema
graph can be very inefficient. To this extent, FreeQ pre-indexes all the paths in the
schema graph starting with any keyword occurrence. The index is constructed at the
beginning of the query construction, as the user issues a keyword query. To ensure
scalability of the indexing, we restrict the maximal size of the structured queries that
can be constructed by FreeQ. The maximal path length can be induced from this
restriction. As bi-directional search is used, the length of the paths being indexed
does not need to exceed a half of the maximum path length.

To maximize the quality of the top-k query interpretations and QCOs generated
by FreeQ, we always start the expansion with the QCOs that are most likely to be
intended by the user. This applies to both DFS and BFS. As a result, the top-k
interpretations generated by DFS will be more likely to meet the user’s requirements,
and the QCOs instantiated by BF'S will be more likely to have high entropy. To ensure
a short response time of FreeQ, we also enforce a time limit on both BFS and DFS.
That is, we stop BFS and DF'S once the time limit has been reached, even though the
top-k interpretations may have not been completely generated, or the number of the
instantiated QCOs has not yet reached a predefined upper bound. We demonstrate
through the experiments that the resulting hierarchy traversal procedure is effective
and efficient.

The algorithms of the BFS and DFS are presented in Algorithm 5.1 and Algo-
rithm 5.2 respectively.

5.6 Generation of Structured Queries 97

Algorithm 5.1: A BFS Algorithm for the Hierarchy Expansion

input

. topLevelQ: the upper frontier of the hierarchy
timeLimat: time limit for option generation
queue: the priority queue

acceptedOptions: QCOs accepted by the user
deniedOptions: QCOs denied by the user

output: resultQQC'O: a new set of QCOs

begin

//add the QCOs to the priority queue
queue.add(topLevelQ);

//go through the queries in the queue
priorityQueueLoop: while

lqueue.isEmpty() AND checkTime(timeLimit) do

//take the next QCO from the queue
QCO = queue.poll();
pathList: while QCO.hasMorePaths() do
// check the time limit
if /checkTime(timeLimit) then
//preserve the QCO for the next round
L queue.add(QCO);
return resultQQCO;
path = QCO.get Next Path();
// mark the path as explored path.markEzplored();
if lisValid(path, acceptedOptions, deniedOptions) then
| continue pathList;
// create a new query construction option
QCOye, = QCO.addPath(path);
resultQCO.add(QCOpew);

// check if the next level of the hierarchy is complete
if queue.isEmpty() then

| levelGenerationComplete = true;
L return

98 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

Algorithm 5.2: A DFS Algorithm for top-k Query Generation
input : topLevel@: the upper frontier of the hierarchy
timeLimat: time limit for option generation
acceptedOptions: QCOs accepted by the user
deniedOptions: QCOs denied by the user
k: number of queries to be generated
output: resultTopK: a new set of top-k queries

begin
//rank the QCOs according to their probability
rank(topLevelQ);
//add QCOs to the DFS stack
stack.addAll(topLevelQ);
list: while !stack.isEmpty() AND resultTopK.size() < k do
if lcheckTime(timeLimit) then
| return resultTopl;
// take the next option
query = stack.pop();
path = query.get Next Path();
// mark the path as explored
path.mark Explored();
if query.hasMorePaths() then
| stack.push(query);
if lisValid(path, acceptedOptions, deniedOptions) then
| continue list;
// create a new query
qUETrYnew = query.addPath(path);
if checkComplete(queryne,) then
// query already contains all user keywords

| resultTopK.add(querypey);
else

// push query to the stack for expansion
| stack.push(querypey);

return resultTopK;

5.7 Experimental Evaluation 99

5.6.3 Probability Estimation

The QCOs in the query hierarchy are all the candidates to be presented to the user.
According to Section 5.5.2, the most efficient QCO is the QCO with the maximum
entropy. To identify this QCO, we need to estimate the probabilities of the QCOs.
These probabilities cannot be computed by Equation 5.5, as we do not have the entire
interpretation space materialized. Instead, we choose the frontier of the instantiated
part of the query hierarchy (i.e., the most specific query-based QCOs that have been
materialized so far), and treat all the QCOs in the frontier as samples. For each sample
s, we compare this sample against each candidate QCO, say o. The comparison can
end up with one of the following conclusions: (1) o subsumes s; (2) s conflicts with
o (e.g. one keyword is being interpreted into two different meanings); (3) none of
the above. If the conclusion is (3), s does not provide any helpful information. With
(1) or (2), we can know that either ((s) c ((0), or {(s) n((0) = @, respectively. By
applying the maximum likelihood principle, we can estimate the probability P(o)
using P(s), that is,

ZC(S)C((O) P(S) .
Yeeco) P(8) + Eesync(o)=o P(8)

P(o) = (5.7)

With P(0), we can obtain the entropy of o based on Equation 5.5. Therefore, the
problem of finding the QCO with the maximum entropy is reduced to the estimation
of the probabilities of (partial) query interpretations P(s). FreeQ applies the proba-
bilistic model introduced previously in Chapter 3, and further developed in Chapter 4
to estimate these probabilities.

5.7 Experimental Evaluation

We have implemented FreeQ), an interactive query construction system based on the
mechanisms proposed in this chapter. To evaluate the performance of FreeQ, we
conducted extensive experiments. Our experiments include two parts. First, we
evaluated the impact of ontology-based (QCOs on the efficiency of query construction
processes. Then, we evaluated the time efficiency of the proposed algorithms in
handling large scale databases.

5.7.1 Experiment Setup

Our experiments were performed on a Freebase dataset downloaded in June 2011
[Gooll]. This dataset contains approximately 7,500 tables with more than 20 million
entities in about 100 domains. We imported the dataset into a MySQL database and
indexed the data and the schema using Apache Solr?. FreeQ was implemented as a

3https:/ /lucene.apache.org/solr

100 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

client-server Java application. For our experiments, we used two cores and 10GB of
memory on a server, which was equipped with 8x Quad-Core AMD Opteron 2.7GHz
processors and 256GB of memory.

Our query set was based on the user-defined views of Freebase. Freebase allows
users to create views using a dedicated query language called MQL. Each of the
views is given a descriptive title in a natural language. Some examples of the view
titles are: “Lionel Richie discography”, “Directing Award: U.S. Dramatic - Winning
Films”, and “TV Celebrities on Twitter”. For evaluation, we can regard the title of
each view as a keyword query and the MQL definition of the view as the structural
interpretation. Then we can study how FreeQ can assist users to construct the struc-
tural interpretation from the keyword query. The ground truth is a plausible mapping
between the keyword query and the structural interpretation and can be automati-
cally established through a projection program. For our experiments, we randomly
selected a set of 615 keyword queries (views). The number of keywords in each query
ranges from 1 to 8 keywords. The structural interpretations of the keyword queries
are of different complexity. We measure the complexity of an interpretation by the
number of keyword nodes it contains. (A keyword node is a table containing at least
one keyword occurrence.) The complexity of the queries in our query log ranges from
1 to 3. Table 5.2 presents the average complexity of queries with different number
of keywords. As we can observe, the relatively complex queries mostly contain 3-5
keywords.

\ #Keywords \ Avg. #nodes \ Examples of keyword queries \

1 1.00 location, book, event, disease, election

2 1.43 emperor album, hockey team, alpine skier

3 1.92 artist lived vancouver, founding figure kagyu
4 2.40 olympic athletes table tennis

5 2.11 canada hockey 2010 winter olympics

6 1.48 2011 san francisco international film festival
7 1.29 fictional character created by edgar allan poe
8 1.13 school type university of puerto rico at ponce

Table 5.2 Complexity of Keyword Queries

5.7.2 Effectiveness of Ontology-based QCOs

Our first set of experiments was intended to evaluate the effectiveness of the ontology-
based QCOs. For each query in our query set, its correct interpretation is already
known. Thus, the correctness of each QCO generated by FreeQ can be determined
without any user intervention. In our experiments, we let the computer simulate a
user and interact with FreeQQ automatically.

To evaluate the effectiveness of the ontology-based QCOs, we ran the experiments

5.7 Experimental Evaluation 101

in a number of scenarios, in which different ontologies were used. The ontologies are
of different size and complexity, as summarized in Table 5.3. NoOntology represents
the baseline approach presented in Chapter 3, where no ontology is used. Freebase
represents the ontology based on the domains and categories given in the Freebase
website. YAGO represents an external ontology known as YAGO. We associated each
table of Freebase with a suitable YAGO category by applying instance-based schema
matching techniques [RBO1]. We describe the mapping in Chapter 6 in more detail.

’Notation \Description \ Size ‘

NoOntology | no ontology is used, representing the baseline Zero
approach in Chapter 3

Freebase the ontology of Freebase, consisting of do- | medium
mains and categories
YAGO an external ontology YAGO big

Table 5.3 Ontologies of Different Size

In the experiments, we measured the interaction cost of query construction for the
queries with different complexity in different scenarios. According to Definition 5.4.8,
interaction cost is the number of the QCOs a user needs to evaluate to construct a
structured query. The results for the 615 test queries are presented in Figure 5.4a.

Figure 5.4a presents the mean and the standard deviation of the interaction cost,
with respect to query complexity (the number of keyword nodes) and number of query
terms. As we can see, compared to the baseline NoOntology approach, the interaction
cost can be significantly reduced by using the ontology-based QCOs. With a larger on-
tology, such as YAGO, the interaction cost tends to be smaller. For example, a 2-node
query “ami suzuki album” requires 38 QCOs with NoOntology, 19 QCOs with Free-
base, and 10 QCOs with YAGO. The benefits of the ontology-based QCOs become
stronger with an increasing number of keyword nodes in the structural interpretation
too. As we can observe, the majority of the 1-node queries, such as “university” and
“football game”, can still be efficiently answered in the baseline NoOntology scenario,
where an average cost amounts to 3. With the more complex 2-node, and 3-node
queries, such as “don shirley album?”, “film performance tom everett”, and “location
leonardo da vinci lived”, the interaction cost of NoOntology goes up quickly to about
30 and can occasionally exceed 70. By applying the ontology-based QCOs, this cost
can be limited to a much smaller range. For example, the average cost for 2-node
queries in the YAGO scenario is around 10. In addition, we can observe that the
interaction cost tends to increase with the number of keywords, while this trend may
not hold in all the cases. This is because a longer keyword query does not necessarily
imply the more complex structural interpretation (see Table 5.2).

To evaluate the effectiveness of interactive query construction in general, we also
compared the interaction cost of query construction against that of query ranking. To

102 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

100 100
No Ontology mmm
8 8 Freebase mmm
O 80 O 8of YAGO 1
o o
F* *
260t 260t
o o
o o
S 40t S 40t
3] 3]
o o
o 20¢ o 20t
= =
0 0
1 Node 2 Nodes 3 Nodes 1 2 3 4 5 6 7 8
#Keyword nodes #Keywords

(a) Interaction Cost of Query Construction

al
o
o
al
o
o

SQAK Rank
FreeQ Rank =3
FreeQ Construction, No Ontology]

N w B
o o o
o o o
IN
o
o

Interaction cost: #QCOs or rank
=
o

Interaction cost: #QCOs or rank

- J_V

1 Node 2 Nodes 3 Nodes 1 2 3 4 5 6 7 8
#Keyword nodes #Keywords

(b) Interaction Cost of Ranking vs. Query Construction

Figure 5.4 Interaction Cost of Query Construction over Freebase.

this end, we generated the top-500 interpretations using the DFS algorithm of FreeQ).
We ranked these interpretations using two ranking functions proposed recently: the
ranking function of FreeQ described in Chapter 3, and SQAK [TLO08]. The inter-
action cost of ranking corresponds to the number of interpretations a user needs to
evaluate before the intended interpretation is identified, which is exactly the rank of
the intended interpretation. If the intended interpretation was not contained within
the top-500, we set its rank to 500. Figure 5.4b presents the results.

As we can observe, the interaction cost of both ranking and construction for the
simplest queries (with 1-2 keywords or 1 keyword node) is acceptable. For the keyword
queries that are relatively complex, ranking become ineffective. This is because the
query interpretation space on Freebase is too big, such that there can always be a
large number of non-intended interpretations that receive good ranks.

5.7 Experimental Evaluation 103

2000 2000

No Ontology mmm
Freebase ==
YAGO

i

(61

o

o

=

(41

o

o
T
—

a
o
o

500 r

Mean initial response time, ms
5]
o
o

Mean initial response time, ms
5]
o
o

o
o
!

1 Node 2 Nodes 3 Nodes 1 2 3 4 5 6 7 8
#Keyword nodes #Keywords

(a) Mean Initial Response Time, ms

600 600

No Ontology s
Freebase =2

0 0

1S 1S

o) o)
£500¢ YyaGo — £ 500
2 2

S 400 S 400
& 2

2 300 2300t
5 5

§ 200 § 200 |
[J] [J]

£ 100+t £100 ¢
g g

(4] (4]

= 1 Node 2 Nodes 3 Nodes = 0 1 2 3 4 5 6 7 8

#Keyword nodes #Keywords

(b) Mean Interaction Response Time, ms

Figure 5.5 Response Time of Query Construction over Freebase.

5.7.3 Performance of the System

Existing schema-based approaches to keyword search and interactive query construc-
tion in databases typically rely on the completely materialized interpretation space of
a keyword query [SA02, HP02, DZNonb|. We have tried to run a number of existing
algorithms, including [HP02], and our initial algorithm presented in Chapter 3 on
Freebase. However, as the schema of Freebase is much bigger than the schemas these
algorithms were designed for, they could not finish in a reasonable time. In contrast,
the BFS and DFS approach allows FreeQ to explore the query interpretation space
smartly. Thus it can achieve reasonable response time on a large scale dataset.

To assess the time efficiency of FreeQ, we measured its response time in two phases:
(1) The initial response time when a user submits a query, and (2) the interaction
response time when a user interacts with the query construction panel.

104 Chapter 5 Scaling Interactive Query Construction on a Very Large Database

When a user issues a keyword query, FreeQ will perform a series of pre-processing,
including the identification of the keyword occurrences in an inverted index and the
creation of a bi-directional index for performing BFS and DFS expansions. The mean
and the standard deviation of the initial response time for our query set are shown in
Figure 5.5a. As we can see, the mean initialization time stays around 1 second, and
its maximum does not exceed 2 seconds. With an increasing number of keywords,
the initial response time increases slowly. This is because the time required for the
identification of keyword occurrences in an inverted index increases with the number
of query terms. This index access time ranges from 70 to 700ms for our query set. We
can also see that the initialization time does not increase with the increasing query
complexity. As presented in Table 5.2, a more complex query does not necessarily
contain more query terms. The time required for the creation of a bi-directional
index for DFS and BFS ranges from 360 to 460ms for our query set. This time
mainly depends on the size and the complexity of the schema graph rather than the
complexity of queries. We can also observe that the use of different ontologies has
limited impact on the initial response time.

We also measured the interaction response time, i.e. the time required by FreeQ
to present a new set of QCOs and top-k structured queries after each user interaction.
This time comprises the time consumed by the BF'S and DFS algorithms and the QCO
selection. Figure 5.5b presents the results. As we can observe, the interaction response
time of FreeQ varies from 1 to 130ms, meaning that in most cases the user would
feel that the system is reacting instantaneously [Nie93]. The interaction response
time increases with an increasing query complexity. This is expected. As more
keywords imply a larger query hierarchy and more QCOs to evaluate, the BFS and
DFS algorithms and the process of QCO selection will all be more time consuming.
Nevertheless, this increase does not appear steep in the results. Moreover, a larger
ontology seems to incur higher interaction time too. This is because a larger ontology
enables FreeQ to generate more QCOs to evaluate.

In summary, the interaction response time of our system is always below one
second. Its initialization time stays within one second most of the time, except for
some long queries, whose initialization time can take up to 2 seconds. While further
optimization can be conducted, such performance can already ensure that the user’s
flow of thought stays uninterrupted [Nie93].

5.8 Discussion

While approaches to incremental query construction and search result diversification
presented in the previous chapters of this thesis work well for databases with small
and medium-sized schemas such as IMDB and Lyrics, these approaches require further
adaptation to handle large scale datasets efficiently. In this chapter, we considered
Problem 3 presented in Chapter 1 of scaling interactive query construction on a very

5.8 Discussion 105

large multi-domain dataset containing thousands of tables. To achieve this goal, in
this chapter we further developed the approach of incremental query construction
presented in Chapter 3 taking into account scalability aspects.

Firstly, we analyzed the efficiency of the query construction options in face of
a large scale dataset. We found that although the query-based QCOs proposed in
Chapter 3 enable an efficient query construction over medium-sized datasets such
as IMDB and Lyrics, they alone are not sufficient for a large scale dataset, such
as Freebase. Therefore, in this chapter we extended the query hierarchy proposed
in Chapter 3 with a novel ontological layer. The QCOs in the ontological layer
summarize the database schema and group together keyword occurrences in different
database tables. Using ontology, we can create highly informative QCOs and reduce
the user interaction cost in a query construction process over large scale datasets
significantly.

Secondly, in the query construction approach in Chapter 3, we assumed that
it is feasible to materialize the entire query interpretation space efficiently. This
assumption is typically applied in the state-of-the-art approaches to schema-based
database keyword search (e.g. [SA02, HP02, HGP03, LYMCO06]) that normally operate
on small and medium-sized schemas. Therefore, in our approach in Chapter 3, we
employed a set of pre-generated query templates to generate query interpretations.
While this assumption holds for medium-sized datasets such as IMDB and Lyrics, it
is not applicable to the datasets with large schemas. In this chapter we extended our
approach to query construction with a set of algorithms that incrementally explore
interpretation spaces of keyword queries over large scale data. Using these algorithms
we can generate the top-k query interpretations and QCOs in the query hierarchy for
a large scale database efficiently.

To the best of our knowledge, FreeQ is the first system that enables efficient
schema-based keyword search and incremental query construction over large scale
datasets. Our experiments have shown that the proposed FreeQ) system, which builds
upon the work in the previous chapters of this thesis, is effective and efficient for
interactive query construction over large scale datasets. Our evaluation results have
confirmed the effectiveness of the ontological layer, which we added to the query hi-
erarchy first proposed in Chapter 3, for the complex queries over large scale data.
In order to create this ontological layer we made use of different ontologies. Firstly,
we created an ontological layer using the native taxonomy of Freebase. Secondly, in
our experiments we have demonstrated that external ontologies, such as the YAGO
ontology, can be used to further increase the effectiveness of incremental query con-
struction. This is especially important in order to enable portability of the FreeQ
system to the databases without predefined ontologies.

Combining a Large Scale Database with an
Ontology

6.1 Introduction and Motivation

In Chapter 5, we considered the problem of efficient incremental query construction
over a large scale dataset such as Freebase. At the time of writing, Freebase [BEP*08]
contains about 22 million entities and more than 350 million facts in more than 100
domains. The users of Freebase can collaboratively create, structure and maintain
database content over an open platform. In addition, automatic imports from the
external data sources such as Wikipedia [Wik]|, MusicBrainz [Mus], and others enable
further growth of the data size. Internally, Freebase data is organized as a relational
database with more than 7,500 tables, mostly containing textual data.

Given the scale of Freebase, it becomes crucial to provide effective and effi-
cient structures that give users a quick and informative overview of the data avail-
able and provide a backbone for the wide variety of applications such incremental
query construction over large scale data discussed in Chapter 5, as well as Linked
Data [BHBL09], database schema summarization [Y JO6], question answering [ATS*11],
and many others. Using these applications users who are not familiar with an internal
database schema can efficiently narrow down the search space and retrieve the desired
data quickly and accurately.

Ontologies are typically used for organizing large scale information and knowledge
in a wide variety of domains. In Chapter 5, we proposed creation of an ontological
layer at the top of a large scale database schema in order to organize the data in rich
semantic categories and enable scalable and efficient incremental query construction.
The YAGO ontology [SKWO07] is a lexical resource that contains facts, their relations,
and categories automatically extracted from Wikipedia. YAGO unifies the extracted
Wikipedia categories with the concepts of the WordNet thesaurus [Fel98] and arranges
these concepts into a taxonomic hierarchy. Among other ontologies, YAGO is a

107

108 Chapter 6 Combining a Large Scale Database with an Ontology

natural choice for organizing Freebase data, as both YAGO and Freebase share a
large number of instances originating from Wikipedia.

Figure 6.1 exemplifies the concepts of the Freebase and YAGO hierarchies. For ex-
ample, in YAGO an instance Stephen King is associated with the leaf concepts “Amer-
tcan Novelist”, “Writers from Maine”, and “People from Country Dublin” which are
the sub-concepts of “Writer”, “Communicator”, “Person”, and “Entity”. In Free-
base, the same instance Stephen King is found in the table “Author” located in

the “Books” domain that is further categorized in the “Arts & Entertainment” top-
level domain of Freebase.

Abstraction

Written
communication

Arts &
Entertainment

Top-Level
Category

People from
County Dublin

7
i

i Literary Matter
,’ composition
/

]
3
1
]
4| Movelist Poet / ‘ Fiction ‘ Text ‘
i Author Book
L3 | H £ £
\| | [American|| Irish ’f ‘ Novel ‘ Modernist texts. ‘ R 7 x*
i | novelist | [novelist oet pN
Y ! p / T T T e \ i N
VoL \\\ { ,:" 1922 1| Novels by Ag‘;";‘:” Novels by || 1922 || tephen James
type \'l Voot \ [novels Stephen King ames Joyce| novels |1 King chce
v Vo i ™ s
N x
Vi [~ 1S

¥ \\ s
Stephen James
King Joyce

YAGO Freebase

Domain

Table

e

Instance

(T

Figure 6.1 Examples of YAGO and Freebase Concepts.

In this chapter, we focus on the Problem 4 of enrichment of a large scale database
with the semantic categories at the example of Freebase and YAGO. Our contribu-
tions are as follows: First, we analyze the initial structure of the large scale YAGO
hierarchy which contains more than 360,000 categories. Second, we provide a match-
ing algorithm, which identifies the most suitable YAGO category for every entity
table of Freebase. Third, we compare the structure of the sub-hierarchy of YAGO
that is relevant for the Freebase mapping, which we call YAGO+F, with the original
YAGO hierarchy and show which part of the YAGO ontology is relevant to describe a
large scale real-world dataset like Freebase. Finally, we evaluate and discuss matching
quality and make the matching results available to the community!.

In related work, YAGO and Freebase were brought together in the context of
Linked Data [BHBL09]. Linked Data is a method of publishing on the Semantic Web
that connects pieces of structured data, information, and knowledge to build the Web
of Data. This way of publishing enables data from different sources to be connected
and queried. Linked Data already includes Freebase and YAGO, loosely connecting

!The YAGO+F mapping is available at: http://iqp.13s.uni-hannover.de

http://iqp.l3s.uni-hannover.de

6.1 Introduction and Motivation 109

their shared instances through the DBpedia references. The systematic integration of
YAGO and Freebase at the schema level described in this chapter takes an important
step further towards tighter integration of the Linked Data, empowering discovery of
new relations across the datasets contained in different knowledge bases and enlarging
the scope of the possible applications that use the Web of Data.

Approaches to interactive query construction described in Chapters 3 and 5 enable
naive users to pose expressive queries to databases starting from simple keywords and
incrementally refining the keywords into the intended structured expressions. The
efficiency of these approaches highly depends on their ability to pose informative
questions to the users to quickly reduce the search space. In a large scale database
such as Freebase, the keywords are highly ambiguous such that the questions based
on the database schema are not informative enough. As pointed out in Chapter 5,
a combination of the Freebase schema with the YAGO ontology can provide a way
to create questions with high information gain to optimize the query construction
process over a large scale dataset.

A further interesting application of the YAGO+F mapping is database schema
summarization. In the context of database schema summarization [YJ06], YAGO
ontology can provide a backbone for grouping Freebase tables in semantic classes
to create effective schema summaries. The schema of Freebase is big and complex.
Expert users who is not familiar with this schema need to perform a lot of work
to understand the schema and find the relevant parts to be able to pose structured
queries. A schema summary of Freebase that uses the YAGO ontology can provide
an overview of the entire schema and enable users to quickly identify and understand
the relevant schema parts.

Another kind of applications that can potentially profit from the YAGO—+F inte-
gration are the question answering systems such as YAGO-QA [ATS*11]. YAGO-QA
is a system that enables answering natural language questions using ontological knowl-
edge of YAGO. Thereby the mapping of the user’s keywords contained in the questions
(SPARQL query expressions) is performed based on how good these keywords map
to the YAGO instances. As the instances in YAGO mostly originate from Wikipedia,
the scope of the possible questions in YAGO-QA is also limited to the Wikipedia
instances. Combination of YAGO and Freebase can enrich YAGO concepts with the
Freebase instances that come from many different sources, thus extending the scope
of the YAGO-QA system significantly.

The rest of this chapter is organized as follows: We summarize the contributions
of this chapter in Section 6.2. Then, in Section 6.3 we provide a brief overview of the
specific background from the area of schema matching. Following that, in Section 6.4
we perform a detailed analysis of the concept and instance distribution in the YAGO
ontology. Then, in Section 6.5, we present matching techniques used to align YAGO
and Freebase. Section 6.6 analyzes the concept and instance distribution in the
resulting YAGO+F structure and provides an evaluation of the matching quality.
Finally, in Section 6.7 we discuss the results.

110 Chapter 6 Combining a Large Scale Database with an Ontology

6.2 Summary of YAGO+F Contributions

In this chapter we consider the problem of enrichment of the Freebase dataset with
the semantic categories of the YAGO ontology addressing Problem 4 presented in
Chapter 1. Freebase and YAGO datasets build a part of recently emerged Linked
Data [BHBLO09] that loosely connects shared instances of the both datasets through
the DBpedia references. To the best of our knowledge, in this thesis we perform the
first attempt to interconnect these datasets systematically at the schema level.

First of all, in this chapter we perform a detailed analysis of the concept and
instance distribution in the YAGO ontology. Then, we perform matching using state-
of-the-art instance-based matching techniques [DMDHO02, BN05]. Following that,
we evaluate matching quality and describe and characterize the resulting YAGO+F
hierarchy.

In summary, the YAGO+F contributions described in this chapter include:

e We perform a detailed analysis of the concept and instance distribution in the
large scale YAGO ontology.

e We perform instance-based matching of two multi-domain large scale datasets
such as YAGO and Freebase and evaluate matching quality.

e We describe and characterize the resulting YAGO+F hierarchy and make it
available to the community.

e Our experiments in Chapter 5 have shown that using the YAGO+F dataset
resulting from the matching, we increase efficiency of incremental query con-
struction over large scale Freebase data.

e YAGO-+F also provides a further important step towards interconnection of the
Linked Data subcollections [BHBL09], and will hopefully enable many future
applications that can profit from a wide variety of Freebase data clearly arranged
into the semantic categories of YAGO.

The results of our experiments confirmed the good quality of the matching in
cases where the YAGO and Freebase category structures are compatible, but also
have shown some incompatibilities between the category schemas of YAGO and Free-
base. In future work we can investigate how to improve matching by introducing
new categories that incorporate both YAGO and Freebase schema information into
a richer ontology, and potentially improve both the YAGO hierarchy as well as the
Freebase schema information.

6.3 Specific Background 111

6.3 Specific Background

To perform the mapping between the Freebase dataset and the YAGO ontology we
made use of the state-of-the-art techniques for schema matching.

Schema matching plays an important role in the context of relational databases
(see e.g. survey of Rahm et.al. [RBO1]), as well as in the context of XML (e.g. [DR02])
and ontologies on the Semantic Web [DMDHO02]. The aim of the schema match-
ing in relational databases is to identify the most similar matching element(s) in
a flat relational schema. In addition, malleable schemas enable more flexibility in
schema matching by relaxing definitions of attributes or relationships [ZGBN07]. In
contrast, the systems for XML and ontology matching are required to identify the
most-specific-parent or the most-general-child within the relevant branch of the hi-
erarchy [DMDHO02]. PARIS [SAS11] quantifies the probability of whether the classes
of two ontologies are in a subclass relation. Schema matching techniques in all the
domains mentioned above make use of similar features, such as similarities on the
element names, instance overlap [DMDHO02, BN05] and schema structures [DJMS02].

Instance-based matching techniques assess similarity of the concepts based on the
instances these concepts contain [DMDHO02], [BNO5]. The instances like a film, a lo-
cation, or a person often coincide across ontologies. Given a set of the corresponding
instances, the similarity of the concepts can be measured as the instance overlap using
e.g. the Jaccard coefficient.

Element-based matching techiques analyze the similarity of the names of the con-
cepts. This analysis can include language-based techniques such as stop-word re-
moval, and stemming of the concept names [DR02], as well as the computation of the
string similarity between the concept names. To compute the string similarities, var-
ious measures such as Levenstein distance, n-gram-based similarity, cosine similarity,
and others can be applied [CRF03, Kon05]. Element-based matching can also take
into account synonyms that can be obtained from external linguistic resources (e.g.
WordNet) [Pat06].

Structure-based matching techniques analyze relationships within the ontologies
to find the correspondences between the ontology elements. Graph-based techniques
(such as [EV04]) view ontologies as graphs and analyze the similarity in the neighbor-
hood of the nodes to find the matches. Taxonomy-based techniques such as [LDKGO04,
ES04] rely on the is-a hierarchy to determine the matches. The similarity of the
concepts is then established based on the similarity of the super-concepts, and sub-
concepts.

Dependent on the scenario, the instance-based, element-based, and structure-
based matching techniques described above can be used either in isolation, or they
can be combined to achieve a higher matching precision. For instance, COMA [DR02]
- a system for XML schema matching uses a combination of name similarities of the
schema elements, path similarities within the XML tree, as well as the string simi-
larity of the data contained in the leaf nodes. The GLUE system for the Semantic

112 Chapter 6 Combining a Large Scale Database with an Ontology

Web [DMDHO02] performs ontology matching by computing the joint probability dis-
tribution between the concepts, using the instances shared across these concepts.

6.4 Concepts and Instances in YAGO

To enable an effective matching between YAGO and Freebase, we perform several
steps. In this section, we first analyze the distribution of the categories and the
instances within the initial YAGO hierarchy. Then, we consider an overlap of the
YAGO and Freebase instances and examine the distribution of the instances shared
between YAGO and Freebase within the initial YAGO hierarchy.

6.4.1 Concept Structure of YAGO

The common elements of YAGO ontology are the concepts, e.g. “Entity” and “Per-
son”. The concepts represent semantic categories and are hierarchically organized
using the “subClassOf” relation. A concept can be associated with a set of instances,
e.g. the concept “Person” is associated with “Stephen King” and “James Joyce”.

The relation “type” links together a concept with its associated instances.

To facilitate our analysis, we assign each category within the YAGO hierarchy
a depth value. The categories at the top level of the hierarchy (depth=0) do not
possess any parent categories. Then, the depth of the category C is determined as
the length of the path from C' to the top level category that is associated with C'
using the “subClassOf” relation.

A YAGO instance can be associated with multiple YAGO categories connected
using the “subClassOf” relation. In order to differentiate the most specific cate-
gories that have instances directly assigned to them from the categories that are
only indirectly connected to the instances, we introduce the notion of Leaf Category.
A Leaf Category L is a category that is associated with an instance I and has the
highest depth value across all the categories associated with I and connected to L
with the “subClassOf” relation. For example, an instance “Alerander the Great” is
associated with the Wikipedia leaf categories “4th-century BC Greek people”, “Mace-
donian monarchs”, “Ancient Macedonian generals”, “Monarchs of Persia”, which are
connected to the more general WordNet categories “Person”, “Head of state”, and
“General”.

As of March 2011 [fI11], YAGO possesses 361,211 semantic categories that are
organized in a hierarchical structure with 20 levels. The backbone of YAGO is build
from the Wikipedia and WordNet categories. YAGO includes 292,070 Wikipedia cat-
egories located at the depth of 1-19 of the hierarchy. These categories can be very
specific and include e.g. “Burials at Kensico Cemetery”, “1729 essays”, “Multidirec-
tional shooters”, “Burials at Montmartre Cemetery”, “Paris”, “Founders of utopian
communities”, “59 crimes”, and “Ist-century executions”. Further, YAGO includes

6.4 Concepts and Instances in YAGO 113

68,446 more general WordNet categories such as “Parent”, “Life”, “City university”,
“Clip art”, “Logic diagram”, “Routine”, and “Call”. The WordNet categories are
spread over the depth 0-19 of the YAGO hierarchy. In addition, 642 Geo categories
such as “Water mill”, “Copper mine”, “Phosphate works”, “Factory”, and “Research
institute”, are located at the depth of 1-13. Finally, YAGO offers a set of 53 its own
categories located at the depth of 0-5, e.g. “Length”, “Number”, “Weight”, “ISBN”,
and “Monetary value”.

From the total number of 361,211 categories in the YAGO hierarchy, about 80%
(288,569 categories) are the leaf categories that have instances directly assigned to
them. For example, an instance “San Francisco” is directly assigned to the fol-
lowing Wikipedia categories: “Populated places established in 1776”7, “County seats
in California”, “Populated coastal places in California”, and “California counties”.
7,394 categories do not have instances as direct children. Among them are: “Acci-
dent”, “Action”, “Young person”, “Legal actor”, “Organism”, “Motor”, “College”,
and “Comedian”. Finally, 65,248 categories do not possess any instances, neither di-
rect nor indirect. These YAGO categories include: “Length”, “Number”, “Weight”,
“ISBN”, and “Monetary value”. Table 6.1 presents the distribution of the categories
at each level of the YAGO hierarchy. As Table 6.1 illustrates, 60% of all YAGO cat-
egories are assigned to the depth 6-8 of the YAGO hierarchy. 90% of the categories
are located within the depth of 4-10.

The categories that do not possess any parent categories are located at the top
level of the YAGO hierarchy (depth=0). The most important YAGO category at the
top level is the WordNet “Entity” category. This category is a parent of the majority
of the categories in YAGO. However, the YAGO hierarchy does not form a clean
tree structure. This is mostly because some of the WordNet categories in YAGO
are not related to the “Entity” category and do not possess any parent categories.
These categories include: “Administrative district”, “Brahman”, “Control character”,
“Epacris”, “Evangelicalism”, “Ezxorcist”, “Faun”, “Fen”, “Fundamentalist”, and oth-
ers. Finally, the YAGO category “Relation” is an additional YAGO category that
does not possess any parents. This explains an unusually big number of categories
and instances at the depth one, as many of the categories at this depth are the child
categories of the WordNet categories located at the top level of the hierarchy. For
example, the top level WordNet category “Administrative district” has 141 subor-
dinated categories, among them are the Wikipedia categories: “Settlements in New
Brunswick”, “Neolithic settlements in Crete”, and “Settlements established in 1312”.
This also leads to a big number of associated instances already at the second level of
the YAGO hierarchy.

Chapter 6 Combining a Large Scale Database with an Ontology

114

vee | ¢ 160° 8¢ ze1'1 69G°88¢ || €79 | ¢S 0,068 9%¥'89 I 11219 || 180T,
0 0 ! 0 I 0 0 I ! 100000 | 61
0 0 e 0 e 0 0 e € €1000°0 | L ST
0 0 Gz 0 Gz 0 0 8¢ €91 £6000°0 | 161 LT
0 0) 0 zl 0 0 98 GLE 821000 | T9¥ 91
0 0 201 0 z01 0 0 48! 657 8GT00°0 | T.G a1
0 0 029 0 029 0 0 289 192 66£00°0 | SFF'T il
I 0 606°T 0 016'T T 0 €20 0LC'T g1600°0 | ¥62°¢ e1
0 0 8ST°C i T61°C I 0 €GT'C 67E°C VL2100 | €09'% 4]
T 0 01¢¥ 6 02S'¥ e 0 GGy €G6'¢C 68200 | 02S'8 T
i 0 19%°6 e 8676 6 0 673°6 LST'9 197700 | STT9T || OT
G 0 GER'6T zl ZI6'6T || ST |0 088°0% 900°] T0080°0 | T06'ST || 6
€ |0 €8C°1S 7G1 09%'1S || TV | 0 208°1S TLT'TT GFPLT0 | GT0'€9 || 8
09 |0 LG8'7L JARS Vee'sL || €11 | 0 88¢'9. 76671 61€S2°0 | GSV'16 || L
28 |0 zee’Ls 868 geL’Ls |1 6ST |0 0G6°LS 6186 9088T°0 | 826°L9 | 9
88 |0 €ee'1e GoT1 98G° TG || LVT | 1T 19512 976'G 169,070 | G€9°LC || &
89 |0 VET 0 09 29z 0¥ || 61T | & 06&° 0¥ COT'T 668110 | 6.6CF || ¥
e I 1.2°¢ 61 €63°¢ 4 LT 98%'¢ 617 Ze010°0 | 92L°¢ ¢
0 0 T 0 T 8% |9 01 g 220000 | 62 ré
0 01 ¢11 0 €el ¢ e 08T 91 19000°0 | 122 I
0 I 0 I e 0 i 0 e 200000 | S¢ 0
090) | ODVA | BIPadI{IA | 1I9NPIOM | [810], 00 | ODHVA | BIpodiip | 1I9NPIOM | % ‘TeI0T, | 1810],
ODVA Ul sar1089je)) year| ODVA Ul sor1089je) yrdo(q

OHVA Ul so110399e)) Jeor] pue sor108o3e) Jo UOTNLIISI(] T'9 [qeL,

6.4 Concepts and Instances in YAGO 115

6.4.2 Instance Distribution in YAGO

In total, 2,632,948 unique instances of YAGO are assigned to the 295,963 categories
using the “type” relation. Majority of the YAGO instances (2,632,756) originate from
Wikipedia. As YAGO allows an instance to be assigned to the multiple categories in
the hierarchy, the total number of instances located at the leaves of the YAGO hier-
archy is 2.76 times higher than the number of unique instances (7,255,584 instances
in total). For example, an instance “Stephen King” is assigned to the multiple cat-
egories such as “American school teachers”, “People from Portland, Maine”, “Film
director”, and “American horror writers”.

As presented in Table 6.2, the most populated level of the YAGO hierarchy with
respect to the instance distribution is located at the depth 7 and contains 29% of the
instances. The levels 6-8 together contain 64% of the instances. The majority of the
instances (90%) are located within the depth 4-9 of the YAGO hierarchy.

In order to better understand how good the YAGO ontology structure fits to
the Freebase dataset, we analyze how the instances shared by the both datasets are
distributed across the different levels of the YAGO hierarchy. Table 6.2 presents the
distribution of the shared instances of YAGO and Freebase in the YAGO hierarchy.
In total, 99% of YAGO instances are shared with Freebase. In Table 6.2, “YAGO Leaf
Cat.“ is the number of the leaf categories of YAGO that contain shared instances.
The majority of the shared instances (94%) are located within the depth 3-10 of the
YAGO hierarchy. In total these instances are assigned to the 260,488 leaf categories
of YAGO.

In Table 6.2 “Freebase Cat.” is the number of Freebase categories that are as-
sociated with the shared instances found at a certain depth of the YAGO hierarchy.
At this point we do not yet perform the matching, such that each Freebase table
can be associated with multiple levels of the YAGO hierarchy. For this reason, the
total number of the Freebase categories presented in Table 6.2 (8,745) is much higher
than the number of Freebase tables containing the shared instances (1,391). This is
because the instances of one Freebase table are, on average, distributed across 6.3
YAGO categories.

Chapter 6 Combining a Large Scale Database with an Ontology

116

CPL'8 887°09¢ GT6'9FT | T1S°0¢ | G29°686°0 | €19°S8 T 78G°GST L || 180T,
T I 0 0 4! 0 100000 | 2T 61
8¢ € 0 0 aqT 0 200000 | GGT ST
¢ e 0 0 9¢¢ 0 L0000°0 | 9€6 L1
28 L9 0 0 298 0 210000 | 298 91
z8 G6 0 0 IST'T 0 0%000°0 | TCF'T G1
94T Ly¥ 0 0 0L7'S 0 LTIT00°0 | 0L¥'S Al
161 60T I 0 T61°L% 0 GLE00°0 | €6T°LT e1
9¢¢ 2GR'T 0 0 98¢°0% 26 86900°0 | 8.9°0 4!
LLY 116°¢ 8 0 AT 8¢ 9L110°0 | 86Z°G8 T
69L cee' (4% 0 ¢L1°00¢ g 19.20°0 | 00£°00% 01
198 888°LT LE 0 V1€°20¢ ¢1L'T c0Z¥0°0 | £90°60¢ 6
€e0'r i ZST'90T | 0 GIG'076 GR6‘F G6FFT0 | 289°TSO'T || 8
60T'T 90,89 19711 |0 909'8Z1°'C | 618°CT CL96T°0 | 98R°CSTC || L
6,6 696°'1¢G LG9 0 033'6S'T | I81°9% GZGTT'0 | 8SLTIS'T || 9
L6 arv0°0g e1e'0T | 0 e 08¢ 6VC 1T Zveso0 | 70120V G
€es celLe G1¢'zT | 0 CIE'PEC' T | 0ST'F 9¥ZL1°0 | 08C'1ST'T || ¥
67 z8L'e 6 LE 765°R6 6£0°92 8TLT0°0 | 6L9'72T g
iz 1 0 0 G 0 100000 | § e
St 901 0 Crz0¢ | G68 0 6¢700°0 | OFI‘TE I
0 0 0 68 0 e 10000°0 | ¢€ 0
"Je)) 9seqRal] | 1R JeT ODVA || 99D ODVA | eIpadi{IA\ | 1ONPIOMN | %‘TRI0L | ®I0L
soouelsU] paleys OHVA Ul saduelsuy [V yda(q

OHVA UL Sodue)su] Jo UOMNLISI(] Z'9 S[qe,

6.4 Concepts and Instances in YAGO 117

6.4.3 Instance-Based Overlap between YAGO and Freebase

We view a database table of Freebase as a concept. Each Freebase concept is rep-
resented by the set of instances contained in this table. The aim of the matching
function is to map each Freebase concept to the most similar concept of YAGO. To
assess similarity of the concepts, matching techniques often make use of the instances
these concepts share [DMDHO02, BN05]. In order to create an effective matching
function for YAGO and Freebase concepts, we first analyze the instance overlap.

Freebase data dump used in our experiments [Gooll] contains 1,578 entity ta-
bles. On the one hand, we observed that 88% (1,391) of the Freebase entity tables
contain Wikipedia instances that are also found in the YAGO ontology. For exam-
ple, “Stephen I of Hungary” from Freebase and “King Stephen” from YAGO denote
one and the same person, as they share one and the same Wikipedia identifier. On the
other hand, as majority of the YAGO instances come from Wikipedia, these instances
are also contained in the Freebase dataset. The instances coming from Wikipedia are
uniquely distinguished by their Wikipedia identifiers in the both datasets and can be
directly used for the concept matching.

Each Freebase concept is associated with a set of instances that can be partly
shared with YAGO. Freebase dataset contains 22,542,665 unique instances, from
which about 16% (3,661,329 instances) originate from Wikipedia. As an instance
can be associated with multiple Freebase categories, for instance “Stephen King”
with “Author”, “Award winner”, “Fictional character creator”, and “Pet owner”, the
overall number of the Freebase instances is 2.47 times higher than the number of the
unique instances (55,684,113 instances in total). In total, 2,632,756 unique instances
that originate from Wikipedia are shared between the YAGO and Freebase datasets,
which is about 12% of the Freebase instances. The pie chart presented in Figure 6.2
illustrates the number of the Freebase concepts associated with a given percentage of
the shared instances. For example, we can see that for 72% (1150 out of 1578) Free-
base concepts, more than 20% of the associated instances are within the shared set.
The Freebase tables with the highest instance overlap (80-100%) include: “Astron-
omy asteroid”, “Baseball coach”, “Chess player”, “Film critic”, “Geography moun-
tain”, “US president”, “Olympic games”, “Religion Monastery”, “Royalty kingdom”,
“Sports boxer”, and “Theater actor”. For these concepts, given a compatible YAGO
concept structure, an instance-based matching should already provide good results.

Another part of the Freebase concepts (about 16%) is associated with less than
20% shared instances. These are, for instance, “Astronomy comet”, “Business loca-
tion”, “Business industry”, “Business job title”, “Film editor”, “Food drinking es-
tablishment”, and “Public library”. In these cases, an additional evidence can be
necessary to perform an effective matching. Finally, 12% of the Freebase concepts are
not associated with any shared instances. These are, for example, “Luminous flux
unit”, “Astronomy galaxy classification code”, “Book technical report”, and “Law US
patent type”. In order to include these tables in the mapping, an extension of the

118 Chapter 6 Combining a Large Scale Database with an Ontology

255

S 334 0%
01-20%
241 21-40%
Coiii B 41-60%

<<<<<<<<<<
>>>>>>>>>

<<<<<<<<<

{:{:{:{:{:{:{:{ D
sreleeleleele £161-80%
-
]
o orr
187 581-100%
247

Figure 6.2 Distribution of Shared Instances in Freebase: Number of Free-
base Concepts with a Given Percentage of Shared Instances.

YAGO concept structure might be required.

6.5 Matching YAGO and Freebase

As Freebase and YAGO share a significant number of instances coming from Wikipedia
as discussed in Section 6.4.3, instance-based matching techniques appear to be the
most suitable to align these ontologies. Instance-based matching techniques assess
similarity of the concepts based on the instances these concepts share [DMDHO02],
[BNO5]. The instances like a film, a car, or a person often coincide across ontolo-
gies. Given a set of the corresponding instances, the similarity of the concepts can
be measured as the instance overlap using e.g. Jaccard coefficient.

Instance-based matching will enable us to match about 90% of the Freebase entity
tables. In the future, we plan to investigate adding further matching techniques such
as element-based matching, and structure similarity [ES07] to further increase the
number of the Freebase tables that can be mapped to the YAGO ontology and to
incrementally improve the quality of the matching.

Matching Design

Freebase dataset is a collection of entity tables, that describe the objects of the real
world, like “Person”, “Book”, “Location”, “Airline”, and “Award”, as well as the

6.5 Matching YAGO and Freebase 119

facts associated with these entities. For the matching between the YAGO categories
and Freebase entity tables we treat an entity table of Freebase as a concept, and the
data entries in this table as instances associated with this concept. For example, the
table “Author” is a concept that is associated with the instances such as “Stephen
King” and “James Joyce”.

In the matching process, we automatically assign each Freebase entity table to the
most similar YAGO category. For example, we assign the Freebase table “Author”
to the YAGO category “Writer”. An example of the matching between YAGO and
Freebase concepts is illustrated in Figure 6.3. The output of the matching process is a

Entity -EnT.i
[Abstraction Avgtracton
— nulru;“’"“m\ /"/_ Book Ry -
N % — .) | |
{ King, Steppen \ T) 5 Literary
\ Joyee Jarflas } /'—b' Writer Composition
~L = — e e, o
L, sihony Tons E= || (B
e Joyce e ——4

Figure 6.3 Matching YAGO and Freebase Concepts.

mapping of each Freebase table to the most likely semantic category of YAGO. Each
Freebase concept (table) is mapped only to the most likely YAGO concept, whereas
a YAGO concept can be associated with several Freebase concepts. For example, the
YAGO concept “Writer” may unify the Freebase concepts “Author” and “Comic
book author”.

Similarity Score Computation

The intuition behind this approach is that the concepts F' and Y are same if F
contains the same instances as Y. The more instances are shared by F' and Y,
the more similar the concepts are. For example, “Writer” and “Author” share the
instances “Stephen King” and “James Joyce” and are considered to describe the same
concept, whereas the concepts “Writer” and “Literary composition” do not have any
instances in common and thus are not similar.

For the calculation of the similarity between the two sets of instances we use
the similarity measure known as the Jaccard coefficient, which is based on the joint
probability. We define the instance-based similarity of two concepts «o; (Y, F') as:

P(FY)
P(F,Y)+P(F,Y)+P(FY)’

a(F,Y) = (6.1)

where P(F,Y") is the part of the shared instances that belongs to F' and Y,

120 Chapter 6 Combining a Large Scale Database with an Ontology

P(F,Y) is the fraction that belongs to Y but not to F, and P(F,Y) - is the fraction
that belongs to F' but not to Y.

a;(F,Y") has the lowest value 0 when the instance sets of F' and Y are disjoint,
e.g. “Literary Composition” and “Author”, and the highest value 1 when F' and Y
contain the same set of instances and thus represent one and the same concept,
e.g. “Writer” and “Author”.

The overall matching function is then computed as:

Yinap(F) = argmazyey, o;(F,y). (6.2)

This function assigns each Freebase table F' to the most likely YAGO concept
Yonap that has the highest similarity score from all YAGO concepts Y according to
the scoring function in Equation 6.1.

6.6 Describing and Characterizing the YAGO+F
Hierarchy

Using the techniques described in the previous sections, we matched Freebase dataset
from June 2011 [Gooll] with the YAGO2 ontology [fI11]. The Freebase dataset
includes approximately 1,578 entity tables containing more than 20 million entities
in about 100 domains. As described above, 88% (1,391) of the Freebase entity tables
contain Wikipedia instances that are also found in the YAGO ontology. The hierarchy
of YAGO2 possesses 361,211 categories, from which more than 80% have associated
instances. In total, YAGO contains 2,632,948 unique instances, most of which are
shared with Freebase. The results of our matching are available for download in the
tsv and .n3 formats from http://iqp.13s.uni-hannover.de. In this section, we analyze
the structure of the YAGO+F hierarchy that results from the matching and evaluate
the matching quality.

6.6.1 The Concepts and the Instances in the YAGO-+F Hi-
erarchy

In this section we discuss the results of the matching between YAGO and Freebase.
Specifically, we are interested in the part of the initial YAGO ontology, which is
relevant to the real-world large scale dataset such as Freebase. To this end, we
analyze the YAGO-+F hierarchy which is obtained using the matching described in
Section 6 and connects Freebase and YAGO concepts.

We used the matching technique described in Section 6.5 to assign each Freebase
table to the corresponding YAGO category. We call the YAGO categories directly
matched to the Freebase tables YAGO+F leaf categories. Then, we extracted the

http://iqp.l3s.uni-hannover.de

6.6 Describing and Characterizing the YAGO+F Hierarchy 121

sub-structure of YAGO required to describe the leaf categories matched to the Free-
base dataset. To this end, we extracted all paths from the top level of the YAGO
hierarchy to all the YAGO+F leaf categories. We call the resulting sub-structure of
YAGO YAGO+F. The structure of YAGO+F is presented in Table 6.3.

In Table 6.3, “Total YAGO+F Categories” is the total number of categories that
are relevant for the matching and “Leaf YAGO+F Categories” is the number of
the leaf categories directly matched to the Freebase tables. The number of the leaf
categories in presented in Table 6.3 is 1.12 times smaller than the total number of the
Freebase categories. This is because a YAGO category can group several Freebase
categories together.

We observed that the grouping of the Freebase tables to one YAGO category
mostly happens if the Freebase category structure has a higher granularity than the
YAGO category structure. In this case, the Freebase categories mapped to one YAGO
category can be either sibling categories or sub-categories of each other. For example,
the sibling categories “Film actor” and “T'V actor” of Freebase are both mapped to
the WordNet “Actor” category of YAGO. Also, “Location statistical region” and “Lo-
cation citytown” are mapped to the WordNet “Geographical area”. In the latter case,
99,9% instances of the Freebase category “Music song writer” are also contained
in the Freebase category “Music lyricist”, such that “Music song writer” is a sub-
category of “Music lyricist”. The both categories are mapped to the WordNet “Song
writer” category of YAGO. Also, “Tennis player” and “Tennis tournament cham-
pion” are both mapped to the WordNet “Tennis player”, as YAGO does not possess
the more specific “Tennis tournament champion” category. In these cases, the more
specific Freebase categories can represent a possible extension to the YAGO category
structure.

Then, Table 6.3 presents the number of Freebase tables assigned to each level of
the YAGO+F hierarchy. The majority of the tables is assigned to the levels 4-8,
which corresponds to the distribution of the shared instances in the YAGO hierarchy.
Finally, Table 6.3 presents the number of the shared instances and the total number
of instances associated with the Freebase categories located at the specific level of
YAGO+F. The majority of the Freebase instances (50%) is assigned to the levels
3-8. As an instance can be associated with multiple categories of Freebase, the total
number of the instances presented in Table 6.3 includes duplicates.

Comparing the YAGO+F structure in Table 6.3 with the original YAGO hierarchy
presented in Table 6.1, we can see that the resulting sub-structure of YAGO only
contains 0.4% of the leaf categories compared to the original YAGO ontology that
contained 288,569 leaf categories. This is expected, as each of the 1,391 Freebase
categories was assigned to only one specific YAGO leaf category. The total number of
categories in the YAGO+F hierarchy is 2,141, which is only 0.6% of the total number
of the all YAGO categories (361,211). As we can see, only a small proportion of
YAGO categories (less than 1%) is enough to describe a large scale database such as
Freebase.

122 Chapter 6 Combining a Large Scale Database with an Ontology

The total number of instances in the YAGO+F mapping is smaller than the
total number of Freebase instances. This is because 187 tables containing 3,172,694
instances (5,7% of the overall number of the Freebase instances) are not assigned to
any YAGO category as they do not share any instances with YAGO.

We can see that 80% of the Freebase tables and 50% of the instances are assigned
to the levels 3-8 of the original YAGO hierarchy. This distribution roughly corre-
sponds to the distribution of the categories in the original YAGO hierarchy, where
the most populated levels were located at the depth 4-9 (see Table 6.2). We also ob-
serve a high instance concentration at the depth 0 of the YAGO+F hierarchy. This is
because a general and the most populated Freebase table “Common topic”, that con-
tains information about entities and their relations from the wide variety of Freebase
domains is assigned to the top-level “Entity” category of YAGO.

The levels at the depth higher than 14 did not get any Freebase tables assigned.
These is because the granularity of the YAGO categories at these levels is too high
compared with the Freebase structure.

123

6.6 Describing and Characterizing the YAGO+F Hierarchy

T 617 T1S'CS T 09Z°66£ 9 T 16€°T 1 veC'1 T IPT°C || T®I0L
90-1°C | €6 90-1'Z | 0T 71000 | C 80000 | T 60000 | T il
CO-I'c | LOOT GO-AI'T | €6 71000 | C 91000 | @ 71000 | € e1
CO-H'C | 60€°T 1000°0 | 6¥S 0S00°0 | L LS00°0 | L L¥00°0 | OT 4!
20000 | G80°2T 8000°0 | 900°G 8GT0°0 | ¢ 0L10°0 | 1¢ 0¥10°0 | 0 T
G100°0 | 186°9L z€00°0 | L6S°02 06S0°0 | 28 €860°0 | ¢ 0£70°0 | 26 01
6£00°0 | GGG'€0T 69000 | G¥S'T¥ 16,00 | OTT 98200 | L6 0790°0 | LET 6
LS00 | 658°620°C 9110°0 | 0TCFL SYP1°0 | 10T GLVT0 | TST 9921°0 | 1.2 8
16520 | 8€0°909°CT 6.80°0 | 9V°'0.LE GTLT0 | 6L€ 0692°0 | €€ 16120 | 69¥ L
L9S0°0 | 8T6'VL6'T 160T°0 | S9£°869 €e81°0 | GGC 088T°0 | 2€¢ 7e61°0 | V1V 9
16L0°0 | 029'GCT'¥ 6£L0°0 | 9862.LF €Le10 | 161 8LET°0 | 0LT 8TLT°0 | 0L€ G
€2C0°0 | TOL']TLT 0ZLT°0 | €L7°00T°T | 9L0°0 | 90T 97.0°0 | 26 860T°0 | GEC %
70G0°0 | PLL'TV9'C 6¢.1°0 | 000°CTT'T | 91200 | 08 98100 | ¢ L6€0°0 | S8 g
6100°0 | 60%°00T TTT0°0 | 8€L°0L 71000 | © 80000 | T 68000 | 6T e
2920°0 | 08Z'RLE'T 72,00 | 680°C9T L0000 | T 80000 | T 61000 | ¥ I
00770 | LLL'LLS'TT GL0€°0 | 06S°296°T | L0000 | T 800070 | T 60000 | T 0
04 ‘OSRIOL] | OSBRI 9%, ‘poIeys | poreys O 1) | 1D | 9% TR | JeoT | % ‘110, | [®I0L
A+0ODHVA seoue)su]y 9seqaal] A+0DVA serodae) yydo(q

Suryoye 9} IR J+(OHVA Ul S9OURISU] PUe SOLI089Ge) 91} JO UOTINLIISI(] €°9 Qe

124 Chapter 6 Combining a Large Scale Database with an Ontology

6.6.2 Matching Quality

In order to assess the matching quality, we compute the Rand Index (RI) [MRSO08]
and the Jaccard Index (JI), that are the standard measures to evaluate the quality
of clustering algorithms. Both RI and JI are the measures of similarity between two
data clusterings. In the context of our matching, we compute RI and JI for each
YAGO-+F leaf category to assess the similarity between the original classification
of the instances in Freebase with the YAGO+F classification that we obtain in the
matching process.

To this end, we view the mapping of Freebase and YAGO categories as a series
of decisions, one for each of the N(N - 1)/2 pairs of shared instances in the both
datasets. We want to assign two instances to one and the same YAGO+F category
if and only if these instances belong to the same Freebase table. A true positive
decision T'P(y, f) assigns two instances from one Freebase table f to one YAGO+F
category y. Asin the praxis multiple Freebase tables can be mapped to one YAGO+F
category, to compute the Rand Index RI(y) of the YAGO+F leaf category y, we take
into account all Freebase tables f € F,, mapped to y. The number of true positive
decisions is TP(y, F,) where y is the YAGO+F leaf category and F), is a set of
the Freebase tables mapped to y in the matching process. Further, a true negative
decision TN (y, F,) does not assign two instances from the different Freebase tables
to one YAGO+F leaf category y.

In the matching, two types of errors can occur. A false positive decision F P(y)
assigns two instances from the different Freebase tables to one YAGO+F category y.
This happens whenever more than one table is assigned to a YAGO+F category in
the matching process. A false negative decision F'N(F,) assigns two instances from
a Freebase table f € F), to the different YAGO+F categories. The Rand Index for a
YAGO+F leaf category y measures the percentage of decisions that are correct for
this category (i.e. accuracy), that is:

TP(y,Fy) +TN(y,Fy)
TP(y,F,)+FP(y)+ FN(F,)+TN(y,F,)

RI(y) = (6.3)

In case a Freebase category contains only one instance, the value of RI may be
not well-defined, as the number of instance pairs in such table is zero. To this end,
we apply Laplace smoothing and add one to the number of shared instances in each
Freebase table.

The RI values range from [0, 1], where RI =1 is the best possible value. This
value can be achieved in a perfect situation, where one Freebase table is exclusively
matched to one YAGO+F category. In the Equation 6.3, the T'N-factor takes the
size of the Freebase category into account, such that the influence of the categories
that do not contain many instances is reduced. In order to get a better overview of
the matching results for the categories independent of their size, we also compute
the RI value without the T'N-factor. This corresponds to the Jaccard Index JI that

6.6 Describing and Characterizing the YAGO+F Hierarchy 125

measures the level of agreement over the pairs from the Freebase tables assigned to a
YAGO++F category:

TP(y7 Fy)
TP(y, F,)+ FP(y)+ FN(F,)

In our experiments, we compare the RI and JI values of leaf categories obtained
using the YAGO+F mapping described in this chapter with the values obtained using
PARIS [SAS11] - a recent approach to align ontologies. PARIS computes the proba-
bility of subclass relationships among the classes of different ontologies. To facilitate
our comparison, while using PARIS, we align each Freebase table with its most prob-
able superclass in the YAGO ontology, computed using Equation 15 in [SAS11]. In
contrast to Equation 6.4, the score computed by PARIS does not take into account
false positive decisions F'P(y) that assign instances from different Freebase tables
to one YAGO+F category y: PARIS(y) = TP(;:}I,Z(;/;?’A)[(FM. Figure 6.4 presents the
RI values for each leaf category obtained using YAGO-+F and PARIS alignments.
The X-axis of Figure 6.4 presents the percentage of leaf categories in the resulting
mapping sorted by the RI and JI value correspondingly. The Y-axis presents the
corresponding RI and JI values.

JI(y) = (6.4)

1 1
(Jaccard Index (JI), YAGO+F ——
; : Jaccard Index (JI), PARIS -
0.8 : ~ 08!
3 . B |
% 06 3 o6l
o =
S :
T 04 g o4
% o
@ @ '
0.2 - 0.2
Rand Index (RI), YAGO+F ——
0 ‘Rand Index (RI), PARIS - 0 ‘ : ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Leaf Categories, % Leaf Categories, %

Figure 6.4 Matching Quality: Rand Index and Jaccard Index of the Leaf
Categories using YAGO+F and PARIS.

As we can observe, the YAGO+F mapping performs better than the PARIS-based
mapping with respect to both, RI and JI values. This is because with PARIS, the
probability of an alignment is higher for more general classes, such that more Freebase
tables are jointly assigned to one YAGO category. In total, using the PARIS-based
alignment, 1,391 Freebase tables are assigned to only 67 YAGO categories, whereas
YAGO-+F assigns these tables to 1,234 YAGO categories. This way, the mapping
obtained by YAGO+F is more specific than the PARIS-based mapping.

With respect to the YAGO+F mappping, on the one hand, the RI values are
very high for all the YAGO+F categories, which reflects the fact that the matching of

126 Chapter 6 Combining a Large Scale Database with an Ontology

the Freebase tables highly populated with shared instances is very accurate. On the
other hand, the values of JI vary. 22% of the YAGO+F categories possess a value
JI €[0.9-1], for the further 16% of the categories the JI is within [0.5-0.9). Finally,
the rest of the YAGO+F categories possesses the JI values below 0.5.

The group of the YAGO+F categories with the highest JI values includes the
cases where all the shared instances of a Freebase category are contained in one
YAGO category. For example, “Location tw provincial city” is matched to the
Wikipedia category “Provincial cities of Taiwan”, “Medicine artery” to the Word-
Net category “Artery”, “Food bottled water” to the Wikipedia category “Bottled
water brands”, “Luminance unit” to the Wikipedia category “Units of luminance”,
and “Food culinary technique” to the Wikipedia category “Cooking techniques”.

The YAGO+F categories with the JI values of (0.5-0.99] possess many shared in-
stances, almost all of which are found in one YAGO category. In this case the YAGO
category will most likely provide an adequate mapping for the Freebase table. For ex-
ample, “Location jp prefecture” is matched to the Wikipedia category “Prefectures of
Japan”, “Medicine hospital” to the WordNet category “Medical building”, “Film” to
WordNet “Movie”, “Book poem” to WordNet “Poem”, “Business company type” to
the Wikipedia category “Types of companies”, and “Education academic” to Word-
Net “Scientist”. This group includes 280 YAGO-+F categories.

The lower JI values of the remaining YAGO+F categories are due to the in-
compatibilities in the category structures of Freebase in YAGO. First, the shared in-
stances of a Freebase table can fall into a wide spectrum of the YAGO categories, i.e.
there does not exist any clearly defined equivalent YAGO category. These Freebase
categories include “Visual art subject”, “Media common quotation subject”, “Book
periodical subject”, “Film subject”, and “Amusement parks ride theme”. Second, in
comparison to Freebase, YAGO may lack a specific intermediate category, such that a
Freebase table can either be assigned to the most specific parent, which is in fact too
general, or to one of the children categories, which are too specific. For example, the
Wikipedia categories “Awviation accidents and incidents officially attributed to pilot
error”, and “Airliner accidents and incidents caused by fuel erhaustion” are direct
sub-classes of the WordNet category “Accident”. Then, the Freebase table “Awviation
accident type” can either be mapped to one of the more specific categories (with a
high F'N value), or to a too general category (with a high F'P value).

In summary, given a compatible category structure, our mapping provides good
results for a significant number of the YAGO—+F categories. Nevertheless, some Free-
base categories cannot be clearly mapped to YAGO due to incompatibilities in the
YAGO and Freebase structure. In future work we will investigate how to improve
matching by introducing new categories that incorporate both YAGO and Freebase
schema information into a richer ontology.

6.7 Discussion 127

6.7 Discussion

In this chapter we considered the problem of enrichment of the large scale Freebase
dataset with the semantic categories of the YAGO ontology, to address Problem 4
presented in Chapter 1 and to connect these datasets at the schema level supporting
efficient incremental query construction over the large scale Freebase dataset. Free-
base and YAGO datasets build a part of recently emerged Linked Data [BHBLO09]
that loosely connects shared instances of the both datasets through the DBpedia ref-
erences. To the best of our knowledge, the enrichment performed in this thesis is the
first attempt to interconnect these datasets systematically at the schema level.

At the beginning of this chapter, we provided a brief overview of the specific back-
ground from the area of schema matching. Following that, we performed a detailed
analysis of the concept and instance distribution in the YAGO ontology. In order
to better understand how good the YAGO ontology structure fits to the Freebase
dataset, we also analyzed how the instances shared by the both datasets are dis-
tributed across the different levels of the YAGO hierarchy. Then, we presented the
matching techniques to align YAGO and Freebase. We analyzed the concept and
instance distribution in the resulting YAGO+F structure and provided an evaluation
of the matching quality.

The results of our experiments confirmed the good quality of the matching in cases
where the YAGO and Freebase category structures are compatible, but also have
shown incompatibilities between the category schemas of YAGO and Freebase. In
future work we can investigate how to improve matching by introducing new categories
that incorporate both YAGO and Freebase schema information into a richer ontology
which will provide even richer semantic information suitable for Freebase data, avoid
the difficulties caused by incompatible YAGO and Freebase hierarchy structures and
incompatible class instance assignment, and potentially improve both the YAGO
hierarchy as well as Freebase schema information.

The results of YAGO and Freebase alignment described in this chapter improve ef-
ficiency of incremental query construction over large scale data as discussed in Chap-
ter 5. They also provide a further important step towards interconnection of the
Linked Data subcollections. Furthermore, we made the resulting mapping available
to the community, such that this mapping can possibly also be used in many different
areas that can profit from a wide variety of Freebase data clearly arranged into the
semantic categories of YAGO. This areas can include database schema summariza-
tion [YJ06, YPS09] and ontology-based question answering [ATS*11], just to give
some examples.

Conclusions and Future Work

The amount of structured data available to end users on the Web, in organizations
and enterprises grows rapidly. At the same time, access to this data for end users
become increasingly difficult due to heterogeneity of schemas and complexity of struc-
tured query languages. On the one hand, keyword search in databases possesses a
high usability and enables end users to query a database without knowing the schema
or learning the syntax of a query language. On the other hand, keyword search lacks
expressiveness, such that users can not precisely specify their informational needs
with keywords only. As a result, they can obtain imprecise or incomplete results.
Query disambiguation techniques enable bridging the gap between usability of key-
word search and expressiveness of the database queries by translating keyword queries
into their structural interpretations that describe informational needs of the user more
precisely. However, majority of the existing database search applications only looks
for the most likely interpretations, living interaction and diversification aspects aside.
While these techniques are sufficient for the most simple and straightforward key-
word queries, intended interpretations of ambiguous queries may not be found within
the top ranked results. Moreover, many useful parameters for effective query disam-
biguation are not sufficiently explored. This observations motivated us to develop
new approaches to enable end users going beyond the most likely interpretations.

7.1 Summary of Contributions

In this thesis we considered several important usability aspects of database keyword
search such as incremental query construction, search result diversification, efficient
incremental query construction for large scale databases, and enrichment of a large
scale database with the semantic categories of an ontology at the example of Freebase
and YAGO that have not been sufficiently addressed by the existing approaches.

In Chapter 3 we analyzed the problem of probabilistic incremental query construc-
tion and presented IQP - a novel system, which enables construction of structured

129

130 Chapter 7 Conclusions and Future Work

queries from keywords. Given an ambiguous keyword query, IQP asks a minimal
number of questions and enables a user to efficiently construct the desired structural
query interpretation in an interactive way. We presented a conceptual framework for
the incremental query construction as well as a probabilistic model, which enables
consistent assessment of the probability of a query interpretation. We presented two
algorithms for generating optimal query construction plans, which enable users to
obtain intended structured queries with a minimal number of interactions.

Our experimental results on two real-world datasets and a user study have shown
that IQP was highly helpful when user intended structured queries cannot be found
within the top ranked results. We analyzed the effectiveness of the proposed proba-
bility estimates for a set of real-world keyword queries. Our experiments have shown
that the proposed probability estimates enabled us to significantly reduce the interac-
tion cost of query construction. We also have shown that query ranking model of IQP
outperformed that of the other recent approach to query ranking in related work. In
our user study we have observed that a simple ranking interface was sufficient only
for the most simple queries. For the queries where the ranks of the intended query
interpretations ranged between 40 to 80, the IQP interface started to outperform the
query ranking interface. For the queries where the ranks of the intended query inter-
pretations were above 120, the advantage of the IQP interface became very obvious.
Finally, our simulations confirmed the scalability of the proposed algorithms with
respect to schema and keyword query size for the datasets with up to 100 tables. Our
experiments also have shown that the quality of the query construction plans which
can be generated by a base line brute force algorithm was only slightly better than
those of the efficient greedy algorithm we proposed.

Following that, in Chapter 4 we addressed Problem 2 presented in Chapter 1,
namely how to provide database search results with an increasing level of novelty.
To this end we presented an approach to search result diversification over structured
data. We further enhanced the probabilistic query disambiguation model first pre-
sented in Chapter 3 to create relevant query interpretations over structured data
taking into account dependencies between keywords in database attributes. Then, we
evaluated the quality of the model in a user study. Furthermore, we proposed a query
similarity measure and a greedy algorithm to efficiently obtain relevant and diverse
query interpretations. As results of keyword search over structured data differ from
conventional documents, evaluation metrics existing for document retrieval in pres-
ence of diversity and subtopics required some adaptation for the database keyword
search. To this end we proposed an adaptation of the established evaluation metrics
such as a-NDCG [CKC*08] and S-recall [CK06] to measure quality of diversification
in database keyword search.

Our evaluation results have demonstrated the quality of the proposed model and
have shown that using our algorithms the novelty of keyword search results over
structured data was substantially improved. Diversification performed on top of query
ranking achieved significant reduction of result redundancy, while preserving retrieval

7.1 Summary of Contributions 131

quality in the majority of the cases. This way search results obtained using the pro-
posed algorithms also better characterized possible answers available in the database
than the results obtained by the initial relevance ranking.

Then, in Chapter 5 we studied the problem of scaling interactive construction
presented in Chapter 3 on a very large dataset to address Problem 3 presented in
Chapter 1. To the best of our knowledge, FreeQ is the first system that enables
efficient schema-based keyword search and incremental query construction over large
scale datasets, considering that most existing work on database keyword search uses
only test sets of small schemas, such as DBLP, IMDB [IMD], etc. At the beginning
of this chapter, we reviewed the query construction model that had been introduced
in Chapter 3 and discussed its advantages and limitations. Then we analyzed the
efficiency of query construction options and extended the query hierarchy of IQP
first presented in Chapter 3 with an ontological layer to reduce the user interaction
cost in face of a large database schema. We introduced novel ontology-based query
construction options that could summarize the database schema and improved the
efficiency of interactive query construction in face of a large scale dataset significantly.
Furthermore, we developed algorithms that enable efficient exploration of query in-
terpretation spaces over large scale data. Finally, we experimentally evaluated the
efficiency of the proposed solution.

Our experiments have shown that the proposed FreeQ system was effective and
efficient in interactive query construction over large scale data. Our results con-
firmed the effectiveness of the ontological layer created using the native taxonomy of
Freebase. Furthermore, we have demonstrated that external ontologies, such as the
YAGO ontology, could be used to further increase the efficiency of incremental query
construction.

Finally, in Chapter 6 we considered the problem of enrichment of the Freebase
dataset with the semantic categories of the YAGO ontology to support efficient in-
cremental query construction over large scale Freebase data addressing Problem 4
presented in Chapter 1. To the best of our knowledge, the enrichment of Freebase
dataset with YAGO categories performed in this thesis is the first attempt to inter-
connect these datasets systematically at the schema level. At the beginning of this
chapter, we provided a brief overview of the specific background from the area of
schema matching. Following that, we performed a detailed analysis of the concept
and instance distribution in the YAGO ontology. Then, we presented matching tech-
niques used to align YAGO and Freebase. We analyzed the concept and instance
distribution in the resulting YAGO+F structure and provided an evaluation of the
matching quality.

The results of our experiments have confirmed the good quality of the match-
ing in cases where YAGO and Freebase category structures were compatible. The
resulting merged data set called YAGO-+F not only supportes an efficient query con-
struction over large scale data as we have demonstrated in the experiments presented
in Chapter 5, but also provides a further important step towards interconnection of

132 Chapter 7 Conclusions and Future Work

the sub-collections of Linked Data [BHBL09], and will hopefully enable many future
applications that can profit from a wide variety of Freebase data clearly arranged into
the semantic categories of YAGO.

7.2 Open Research Directions

In this thesis we presented novel approaches to incremental query construction and
search result diversification over structured data. Furthermore, we applied the pro-
posed incremental query construction to a large scale database and developed new
ontology-based solution to increase scalability of the system in the large scale appli-
cation scenario. Moreover, to enable our solution for large scale data, we provided
a detailed analysis of the mapping of two large-scale datasets such as Freebase and
YAGO ontology. Nevertheless, there is still a room for improvements and further
research directions.

Some of interesting future research questions refer for example to a detailed inves-
tigations regarding enabling interactive keyword-based operations other than search.
This can include keyword-based “insert” and “update” functionalities for databases.
In this scenario, the user could use an interactive approach similar to that of IQP
and FreeQ described in Chapters 3 and 5 to either add missing information to the
database, or update existing information about the entities in the database as well
as database schemas starting from simple keywords.

With respect to diversification of search results over structured data presented
in Chapter 4, our current approach that takes into account only structural informa-
tion can be incrementally enhanced by incorporating evidences at the result level,
such as e.g. term frequencies, in addition to the syntax-based diversification at the
interpretation level performed currently.

Regarding the methods of scaling interactive query construction on a very large
dataset discussed in Chapter 5, we believe that further improvement can be achieved
through a detailed investigation of usability of the specific ontology used in the on-
tological layer. Given a large scale database, this study could help us to select the
most suitable ontology to effectively summarize the database schema and to generate
highly intuitive and informative query construction options.

Finally, the quality of enrichment of large scale data with semantic categories
discussed in Chapter 6 can be incrementally enhanced in cases where ontology and
database category schemas indicate incompatibilities. In these cases we could in-
troduce new categories that incorporate schema information of the database and an
ontology and into a richer ontology. This new ontology could provide even richer
semantic information suitable for the specific database, and potentially improve both
the ontology as well as the database schema information.

Elena Demidova, born on 29

Studies

Curriculum Vitae

June 1974, in St. Petersburg, Russia.

06/2006 - 01/2013

Ph.D. studies. Gottiried Wilhelm Leibniz Universitat
Hannover, Germany

10/2003 - 03/2006

M.Sc. in Information Engineering.
University of Osnabriick, Germany and University of
Twente, the Netherlands

03/2000 - 06,/2003

Computer Science Engineer (Dipl.-Inf. (FH)).
University of Applied Sciences, Osnabriick, Germany

09/1991 - 06/1996

Teacher for General Technical Disciplines.
A.l. Herzen State Pedagogical University, St. Peters-
burg, Russia

Professional Experience

06/2006 - 01/2013

WS 08/09 - WS 12/13

Junior researcher. L3S Research Center and Distributed
Systems Institute, Gottfried Wilhelm Leibniz Univer-
sitdt Hannover, Germany

Research projects: ARCOMEM, LivingKnowledge,
OKKAM, TENCOMPETENCE, iSearch.

Lecture “Web Technologies I / Foundations of Informa-
tion Retrieval”, teaching assistant.

12/2003 - 12/2005

Student/research assistant in the CASHMERE-int
project. University of Osnabriick, Germany

09/2002 - 08/2003

Internship in software development.
MPDV Mikrolab GmbH, Mosbach, Germany

12/2000 - 08/2002

Student assistant. University of Applied Sciences, Os-
nabriick, Germany

133

134 Chapter A Curriculum Vitae

[ABC*02]

[AGHI09)]

[AMEO7]

[And95]

[ATS*11]

[AYCR*05]

Bibliography

B. Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri,
Charuta Nakhe, Parag Parag, and S. Sudarshan. Banks: browsing and
keyword searching in relational databases. In Proceedings of the 28th

international conference on Very Large Data Bases, VLDB 02, pages
1083-1086. VLDB Endowment, 2002.

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel
leong. Diversifying search results. In WSDM °09: Proceedings of the
Second ACM International Conference on Web Search and Data Min-
ing, pages 5—14, New York, NY, USA, 2009. ACM.

Muhammed Al-Muhammed and David W. Embley. Ontology-based
constraint recognition for free-form service requests. In Proceedings of
the 23rd International Conference on Data Engineering, ICDE 2007,
April 15-20, 2007, The Marmara Hotel, Istanbul, Turkey, pages 366—
375, 2007.

L. Androutsopoulos. Natural language interfaces to databases - an in-
troduction. Journal of Natural Language Engineering, 1:29-81, 1995.

Peter Adolphs, Martin Theobald, Ulrich Schafer, Hans Uszkoreit, and
Gerhard Weikum. Yago-qa: Answering questions by structured knowl-
edge queries. In Proceedings of the 5th IEEE International Conference
on Semantic Computing (ICSC 2011), Palo Alto, CA, USA, September
18-21, 2011, pages 158161, 2011.

Sihem Amer-Yahia, Pat Case, Thomas Rolleke, Jayavel Shanmugasun-
daram, and Gerhard Weikum. Report on the db/ir panel at sigmod
2005. SIGMOD Rec., 34(4):71-74, December 2005.

135

136

BIBLIOGRAPHY

[AYS05]

[BCCO5]

[BCSWO7]

[BEP*08]

[BHBLOY]

[BHN*02]

[BHPO4]

[BLCLOY]

[BLK*09]

Sihem Amer-Yahia and Jayavel Shanmugasundaram. Xml full-text
search: challenges and opportunities. In Proceedings of the 31st interna-
tional conference on Very large data bases, VLDB ’05, pages 1368-1368.
VLDB Endowment, 2005.

Daniele Braga, Alessandro Campi, and Stefano Ceri. Xgbe (xquery by
example): A visual interface to the standard xml query language. ACM
Trans. Database Syst., 30(2):398-443, 2005.

Holger Bast, Alexandru Chitea, Fabian Suchanek, and Ingmar Weber.
Ester: efficient search on text, entities, and relations. In SIGIR °07:
Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 671-678,

New York, NY, USA, 2007. ACM.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structur-
ing human knowledge. In Proc. of the SIGMOD 2008, pages 12471250,
New York, NY, USA, 2008. ACM.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The
Story So Far. International Journal on Semantic Web and Information
Systems (IJSWIS), 2009.

Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword searching and brows-
ing in databases using banks. In ICDFE ’02: Proceedings of the 18th
International Conference on Data Engineering, page 431, Washington,
DC, USA, 2002. IEEE Computer Society.

Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Ob-
jectrank: authority-based keyword search in databases. In Proceedings

of the Thirtieth international conference on Very large data bases - Vol-
ume 30, VLDB ’04, pages 564-575. VLDB Endowment, 2004.

Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. Effective xml
keyword search with relevance oriented ranking. In Proceedings of the
2009 IEEE International Conference on Data Engineering, ICDE ’09,
pages 517-528, Washington, DC, USA, 2009. IEEE Computer Society.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Soren Auer, Chris-
tian Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a
crystallization point for the web of data. Web Semant., 7(3):154-165,
September 2009.

BIBLIOGRAPHY 137

[Blu99)]

[BMS+06]

[BNO5|

[BP9g)

[BRWD*08]

[CBC*09]

[CD09)

[CGO8]

[CGRMOG]

Adam Blum. Microsoft english query 7.5: Automatic extraction of
semantics from relational databases and olap cubes. In VLDB ’99:
Proceedings of the 25th International Conference on Very Large Data
Bases, pages 247248, San Francisco, CA, USA, 1999. Morgan Kauf-
mann Publishers Inc.

Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald,
and Gerhard Weikum. Io-top-k: index-access optimized top-k query
processing. In Proceedings of the 32nd international conference on Very
large data bases, VLDB 06, pages 475-486. VLDB Endowment, 2006.

Alexander Bilke and Felix Naumann. Schema matching using dupli-
cates. In Proceedings of the 21st International Conference on Data En-
gineering, ICDE 05, pages 69-80, Washington, DC, USA, 2005. IEEE
Computer Society.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertex-
tual web search engine. In Proceedings of the seventh international con-
ference on World Wide Web 7, WWWT7, pages 107-117, Amsterdam,
The Netherlands, The Netherlands, 1998. Elsevier Science Publishers
B. V.

Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and
Mukesh Mohania. Minimum-effort driven dynamic faceted search in
structured databases. In CIKM ’08: Proceeding of the 17th ACM con-
ference on Information and knowledge management, pages 13-22, New
York, NY, USA, 2008. ACM.

Eric Chu, Akanksha Baid, Xiaoyong Chai, AnHai Doan, and Jeffrey
Naughton. Combining keyword search and forms for ad hoc querying
of databases. In SIGMOD ’09: Proceedings of the 35th SIGMOD inter-

national conference on Management of data, pages 349-360, New York,
NY, USA, 2009. ACM.

Surajit Chaudhuri and Gautam Das. Keyword querying and ranking in
databases. Proc. VLDB Endow., 2(2):1658-1659, August 2009.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based
reranking for reordering documents and producing summaries. In SI-
GIR ’98: Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pages

335-336, New York, NY, USA, 1998. ACM.

Venkatesan T. Chakaravarthy, Himanshu Gupta, Prasan Roy, and
Mukesh Mohania. Efficiently linking text documents with relevant

138

BIBLIOGRAPHY

[CHO02]

[CKO06]

[CK09]

[CKC*08]

[CLOT]

[clu]
[CMKS03]

[CRF03]

structured information. In VLDB ’06: Proceedings of the 32nd in-
ternational conference on Very large data bases, pages 667-678. VLDB
Endowment, 2006.

Kevin Chen-Chuan Chang and Seung-won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In Proceedings of the
2002 ACM SIGMOD international conference on Management of data,
SIGMOD ’02, pages 346-357, New York, NY, USA, 2002. ACM.

Harr Chen and David R. Karger. Less is more: probabilistic models
for retrieving fewer relevant documents. In SIGIR °06: Proceedings of
the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 429-436, New York, NY,
USA, 2006. ACM.

Surajit Chaudhuri and Raghav Kaushik. Extending autocompletion
to tolerate errors. In SIGMOD °09: Proceedings of the 35th SIGMOD
international conference on Management of data, pages 707-718, New
York, NY, USA, 2009. ACM.

Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vech-
tomova, Azin Ashkan, Stefan Biittcher, and Ian MacKinnon. Novelty
and diversity in information retrieval evaluation. In SIGIR °08: Pro-
ceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 659-666, New

York, NY, USA, 2008. ACM.

Zhiyuan Chen and Tao Li. Addressing diverse user preferences in sql-
query-result navigation. In SIGMOD ’07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pages 641—
652, New York, NY, USA, 2007. ACM.

Clusty. http://clusty.com/.

Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv.
Xsearch: a semantic search engine for xml. In Proceedings of the 29th
international conference on Very large data bases - Volume 29, VLDB
‘03, pages 45-56. VLDB Endowment, 2003.

William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A
comparison of string distance metrics for name-matching tasks. In Craig
Knoblock and Subbarao Kambhampati, editors, Proceedings of IJCAI-
03 Workshop on Information Integration, pages 7378, Acapulco, Mex-
ico, August 2003.

http://clusty.com/

BIBLIOGRAPHY 139

[CRW05)

[CSA+09]

[CSRLO1]

[CWLLO09]

[DFZN10]

[DGKTO6]

[Dij59]

[DJMS02]

[DKO*07]

Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. Inte-
grating db and ir technologies: What is the sound of one hand clapping?
In CIDR, pages 1-12, 2005.

Paul Clough, Mark Sanderson, Murad Abouammoh, Sergio Navarro,
and Monica Paramita. Multiple approaches to analysing query diver-
sity. In SIGIR °09: Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages

734-735, New York, NY, USA, 2009. ACM.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

Yi Chen, Wei Wang, Ziyang Liu, and Xuemin Lin. Keyword search
on structured and semi-structured data. In Proceedings of the 35th
SIGMOD international conference on Management of data, SIGMOD
‘09, pages 1005-1010, New York, NY, USA, 2009. ACM.

Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl.
Divq: Diversification for keyword search over structured databases. In
Proceedings of the 33rd Annual ACM SIGIR Conference, 19-23 July
2010, Geneva, Switzerland., 2010.

Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris
Tsirogiannis. Answering top-k queries using views. In Proceedings of
the 32nd international conference on Very large data bases, VLDB ’06,
pages 451-462. VLDB Endowment, 2006.

E. W. Dijkstra. A note on two problems in connexion with graphs.
NUMERISCHE MATHEMATIK, 1(1):269-271, 1959.

Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav
Shkapenyuk. Mining database structure; or, how to build a data qual-
ity browser. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, SIGMOD 02, pages 240-251, New
York, NY, USA, 2002. ACM.

Elena Demidova, Philipp Karger, Daniel Olmedilla, Stefaan Ternier,
Erik Duval, Michele Dicerto, Carlos Mendez, and Krassen Stefanov.
Services for knowledge resource sharing & management in an open
source infrastructure for lifelong competence development. In Proceed-
ings of the 7th IEEE International Conference on Advanced Learning
Technologies, ICALT 2007, July 18-20 2007, Niigata, Japan, 2007.

140

BIBLIOGRAPHY

[DKS08)]

[DMD*12]

[DMDH02

[DN06]

[DN09]

[DOF09]

[DR02]

[DTO*07]

Bhavana Bharat Dalvi, Meghana Kshirsagar, and S. Sudarshan. Key-
word search on external memory data graphs. Proc. VLDB Endow.,
1(1):1189-1204, August 2008.

Stefan Dietze, Diana Maynard, Elena Demidova, Thomas Risse, Wim
Peters, Katerina Doka, and Yannis Stavrakas. Preservation of social
web content based on entity extraction and consolidation. In 2nd In-
ternational Workshop on Semantic Digital Archives (SDA) in conjunc-
tion with the 16th International Conference on Theory and Practice of
Digital Libraries (TPDL), Pafos, Cyprus, September 2012, 2012.

AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.
Learning to map between ontologies on the semantic web. In Proceedings
of the 11th international conference on World Wide Web, WWW ’02,
pages 662-673, 2002.

Elena Demidova and Wolfgang Nejdl. Integrating rdf querying capa-
bilities into a distributed search infrastructure. In Proceedings of the
Proceedings of the ”Web Search Technology - from Search to Semantic
Search” Workshop, in conjunction with the 1st Asian Semantic Web
Conference (ASWC 2006), September 3-7, 20006, Beijing, China., 2006.

Elena Demidova and Wolfgang Nejdl. Usability and expressiveness in
database keyword search: Bridging the gap. In Proceedings of the VLDB
2009 PhD Workshop. Co-located with the 35th International Conference
on Very Large Data Bases (VLDB 2009). Lyon, France, August 24,
2009, 2009.

Elena Demidova, Irina Oelze, and Peter Fankhauser. Do we mean the
same? disambiguation of extracted keyword queries for database search.
In Proceedings of the First International Workshop on Keyword Search
on Structured Data, KEYS 2009, Providence, Rhode Island, USA, June
28, 2009, 20009.

Hong-Hai Do and Erhard Rahm. COMA: a system for flexible combi-
nation of schema matching approaches. In Proc. of the 28th Int’l. Conf.
on Very Large Data Bases, pages 610-621, 2002.

Elena Demidova, Stefaan Ternier, Daniel Olmedilla, Erik Duval,
Michele Dicerto, Krassen Stefanov, and Naiara Sacristan. Integration of
heterogeneous information sources into a knowledge resource manage-
ment system for lifelong learning. In Proceedings of the 2nd TenCompe-
tence Workshop, January 11-12, 2007, Manchester, United Kingdom.,
2007.

BIBLIOGRAPHY 141

[DXYW+*07] Bolin Ding, J. Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin

[DZN12a)]

[DZN12b)

[DZNona

[DZNonb|

[DZON10]

[DZZN09]

[ES04]

[ES07]

Lin. Finding top-k min-cost connected trees in databases. In Proceedings
of the 23rd International Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 836
—845, april 2007.

Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. Freeq: An inter-
active query interface for freebase. In Proceedings of the WWW 2012,
April 16-20, 2012, Lyon, France., 2012.

Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. Scaling interactive
query construction on a very large database. In submission, 2012.

Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. Iq”: Incremen-
tal query construction, a probabilistic approach. In Proceedings of the
26th IEEE International Conference on Data Engineering, ICDE 2010,
Long Beach, California, USA, March 1-6, 2010, 2010. (©)2010 IEEE.
Reprinted with permission.

Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. A probabilistic
scheme for keyword-based incremental query construction. IEEE Trans.
on Knowl. and Data Eng., 24(3):426-439, March 2012. (©)2012 IEEE.
Reprinted with permission.

Elena Demidova, Xuan Zhou, Irina Oelze, and Wolfgang Nejdl. Eval-
uating evidences for keyword query disambiguation in entity centric
database search. In Proceedings of the 21st International Conference
on Database and Ezpert Systems Applications (DEXA 2010), 30 Au-
gust - 8 September 2010, Bilbao, Spain., 2010.

Elena Demidova, Xuan Zhou, Gideon Zenz, and Wolfgang Nejdl. Suits:
Faceted user interface for constructing structured queries from key-
words. In Proceedings of the Database Systems for Advanced Appli-
cations, 14th International Conference, DASFAA 2009, Brisbane, Aus-
tralia, April 21-23, 2009, 2009.

Marc Ehrig and York Sure. Ontology mapping - an integrated ap-
proach. In Christoph Bussler, John Davis, Dieter Fensel, and Rudi
Studer, editors, Proceedings of the First Furopean Semantic Web Sym-
positum, volume 3053 of Lecture Notes in Computer Science, pages 76—
91, Heraklion, Greece, may 2004. Springer Verlag.

Jérome Fuzenat and Pavel Shvaiko. Ontology matching. Springer-
Verlag, Heidelberg (DE), 2007.

142

BIBLIOGRAPHY

[EV04]

[Fag99]

[Fag02]

[Fel98]

[fT11]

[FLW11]

(GKS08]

[GKST11]

[Gooll]

[GS09]

[GSBS03]

J. Fuzenat and P. Valtchev. Similarity-based ontology alignment in
OWL-lite. In R. Lépez de Mantaras and L. Saitta, editors, Proceedings
of the 16th European Conference on Artificial Intelligence (ECAI-04),
pages 333-337. IOS Press, 2004.

Ronald Fagin. Combining fuzzy information from multiple systems. J.
Comput. Syst. Sci., 58(1):83-99, February 1999.

Ronald Fagin. Combining fuzzy information: an overview. SIGMOD
Rec., 31(2):109-118, June 2002.

editor Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, 1998.

Max-Planck Institute for Informatics. Yago2 ontology.
http://www.mpi-inf. mpg.de/yago-naga/yago/downloads.html, 2011.

Jianhua Feng, Guoliang Li, and Jianyong Wang. Finding top-k answers
in keyword search over relational databases using tuple units. Knowl-
edge and Data Engineering, IEEE Transactions on, 23(12):1781 1794,
dec. 2011.

Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Key-
word proximity search in complex data graphs. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data,
SIGMOD ’08, pages 927-940, New York, NY, USA, 2008. ACM.

Shlomo Geva, Jaap Kamps, Ralf Schenkel, and Andrew Trotman, edi-
tors. Comparative FEvaluation of Focused Retrieval - 9th International
Workshop of the Inititative for the Evaluation of XML Retrieval, INEX
2010, Vugh, The Netherlands, December 13-15, 2010, Revised Selected
Papers, volume 6932 of Lecture Notes in Computer Science. Springer,
2011.

Google. Freebase data dumps. http://download.freebase.com/
datadumps/, 2011.

Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for
result diversification. In WWW °09: Proceedings of the 18th interna-
tional conference on World wide web, pages 381-390, New York, NY,
USA, 2009. ACM.

Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
Xrank: ranked keyword search over xml documents. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of
data, SIGMOD 03, pages 1627, New York, NY, USA, 2003. ACM.

http://download.freebase.com/datadumps/
http://download.freebase.com/datadumps/

BIBLIOGRAPHY 143

[GSVGM98] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian,

[Hea06]

[HGPO03]

[HHPOS]

[HKPS06]

[HLCO08a]

[HLCOSb)]

[HP02]

[HPBO3]

[HRZ98)

and Hector Garcia-Molina. Proximity search in databases. In Proceed-
ings of the 24rd International Conference on Very Large Data Bases,
VLDB ’98, pages 26-37, San Francisco, CA, USA, 1998. Morgan Kauf-

mann Publishers Inc.

Marti A. Hearst. Clustering versus faceted categories for information
exploration. Commun. ACM, 49(4):59-61, 2006.

Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient
ir-style keyword search over relational databases. In VLDB ’2003: Pro-
ceedings of the 29th international conference on Very large data bases,
pages 850-861. VLDB Endowment, 2003.

Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou.
Authority-based keyword search in databases. ACM Trans. Database
Syst., 33(1):1:1-1:40, March 2008.

V. Hristidis, N. Koudas, Y. Papakonstantinou, and Divesh Srivastava.
Keyword proximity search in xml trees. Knowledge and Data Engineer-
ing, IEEE Transactions on, 18(4):525 — 539, april 2006.

Yu Huang, Ziyang Liu, and Yi Chen. extract: a snippet generation
system for xml search. Proc. VLDB Endow., 1(2):1392-1395, August
2008.

Yu Huang, Ziyang Liu, and Yi Chen. Query biased snippet generation
in xml search. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 315-326, New
York, NY, USA, 2008. ACM.

Vagelis Hristidis and Yannis Papakonstantinou. Discover: keyword
search in relational databases. In VLDB ’02: Proceedings of the 28th in-
ternational conference on Very Large Data Bases, pages 670-681. VLDB
Endowment, 2002.

Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Key-
word proximity search on xml graphs. In Proceedings of the 19th Inter-
national Conference on Data Engineering, March 5-8, 2003, Bangalore,
India, pages 367-378, 2003.

C. S. Helvig, G. Robins, and A. Zelikovsky. Improved approximation
bounds for the group steiner problem. In Proceedings of the conference
on Design, automation and test in Europe, DATE 98, pages 406-413,
Washington, DC, USA, 1998. IEEE Computer Society.

144

BIBLIOGRAPHY

[HWYY07]

TAE04]

IMD)]
[J. 83]

[JCE*07]

[JJ08]

[JK02]

[KO5]

[KGM09)

[KKD11]

Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages
305-316, New York, NY, USA, 2007. ACM.

Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Support-
ing top-k join queries in relational databases. The VLDB Journal,
13(3):207-221, September 2004.

The internet movie database. www.imdb.com.

J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graph-
ical Methods for Data Analysis. Chapman and Hall, New York, 1983.

H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian,
Yunyao Li, Arnab Nandi, and Cong Yu. Making database systems us-
able. In SIGMOD °07: Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data, pages 13-24, New York,
NY, USA, 2007. ACM.

Magesh Jayapandian and H. V. Jagadish. Expressive query specification
through form customization. In EDBT ’08: Proceedings of the 11th
international conference on Extending database technology, pages 416

427, New York, NY, USA, 2008. ACM.

Kalervo Jarvelin and Jaana Kekéalainen. Cumulated gain-based evalu-
ation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.

Mika Kaki. Findex: search result categories help users when document
ranking fails. In CHI ’05: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 131-140, New York, NY,
USA, 2005. ACM.

Lingbo Kong, Rémi Gilleron, and Aurélien Lemay Mostrare. Retrieving
meaningful relaxed tightest fragments for xml keyword search. In Pro-
ceedings of the 12th International Conference on FExtending Database
Technology: Advances in Database Technology, EDBT ’09, pages 815—
826, New York, NY, USA, 2009. ACM.

Parthasarathy K., Sreenivasa P. Kumar, and Dominic Damien. Ranked
answer graph construction for keyword queries on rdf graphs without
distance neighbourhood restriction. In Proceedings of the 20th inter-
national conference companion on World wide web, WWW 11, pages

361-366, New York, NY, USA, 2011. ACM.

www.imdb.com

BIBLIOGRAPHY 145

[KKR*06]

[Kon05]

[KPC*05]

[KS06]

[KSI06]

[KSI10]

[KZGMO09)

[LCO7]

Eser Kandogan, Rajasekar Krishnamurthy, Sriram Raghavan, Shiv-
akumar Vaithyanathan, and Huaiyu Zhu. Avatar semantic search: a
database approach to information retrieval. In SIGMOD °06: Proceed-
ings of the 2006 ACM SIGMOD international conference on Manage-
ment of data, pages 790-792, New York, NY, USA, 2006. ACM.

Grzegorz Kondrak. N-gram similarity and distance. In Mariano P.
Consens and Gonzalo Navarro, editors, 12th International Conference
String Processing and Information Retrieval (SPIRE), volume 3772 of
Lecture Notes in Computer Science, Berlin, Germany, pages 115-126,
Buenos Aires, Argentina, 2005. Springer.

Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan,
Rushi Desai, and Hrishikesh Karambelkar. Bidirectional expansion for
keyword search on graph databases. In VLDB ’05: Proceedings of the

31st international conference on Very large data bases, pages 505-516.
VLDB Endowment, 2005.

Benny Kimelfeld and Yehoshua Sagiv. Finding and approximating top-k
answers in keyword proximity search. In Proceedings of the twenty-
fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’06, pages 173-182, New York, NY, USA, 2006.
ACM.

Georgia Koutrika, Alkis Simitsis, and Yannis E. loannidis. Précis: The
essence of a query answer. In Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,
GA, USA, pages 69-78, 2006.

Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioannidis. Explaining
structured queries in natural language. In roceedings of the 26th In-
ternational Conference on Data Engineering, ICDE 2010, March 1-6,
2010, Long Beach, California, USA, pages 333-344, 2010.

Georgia Koutrika, Zahra Mohammadi Zadeh, and Hector Garcia-
Molina. Data clouds: summarizing keyword search results over struc-
tured data. In EDBT 2009, 12th International Conference on FExtend-
ing Database Technology, Saint Petersburg, Russia, March 24-26, 2009,
Proceedings, pages 391-402, 2009.

Ziyang Liu and Yi Chen. Identifying meaningful return information for
xml keyword search. In SIGMOD °07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pages 329—
340, New York, NY, USA, 2007. ACM.

146

BIBLIOGRAPHY

[LCO8]

[LCVA02]

[LCY*07]

[LDKG04]

[Ley09)]

[LEWZ08]

[LJ09)]

[LLWZ07]

[LLYMO04]

[LOF+08]

Ziyang Liu and Yi Cher. Reasoning and identifying relevant matches
for xml keyword search. Proc. VLDB Endow., 1(1):921-932, August
2008.

Wen-Syan Li, K. Selcuk Candan, Quoc Vu, and Divyakant Agrawal.
Query relaxation by structure and semantics for retrieval of logical web
documents. [EEE Trans. on Knowl. and Data Eng., 14(4):768-791,
July 2002.

Yunyao Li, Ishan Chaudhuri, Huahai Yang, Satinder Singh, and H. V.
Jagadish. Danalix: a domain-adaptive natural language interface for
querying xml. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, SIGMOD 07, pages 1165-1168,
New York, NY, USA, 2007. ACM.

Bach Thanh Le, Rose Dieng-Kuntz, and Fabien Gandon. On ontol-
ogy matching problems - for building a corporate semantic web in a
multi-communities organization. In 6th International Conference on
Enterprise Information Systems (ICELS 2004), pages 236-243, 2004.

Michael Ley. Dblp: some lessons learned. Proc. VLDB FEndow.,
2(2):1493-1500, August 2009.

Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. An effec-
tive and versatile keyword search engine on heterogenous data sources.
Proc. VLDB Endow., 1(2):1452-1455, August 2008.

Bin Liu and H. V. Jagadish. Using trees to depict a forest. Proc. VLDB
Endow., 2(1):133-144, 2009.

Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k
keyword query in relational databases. In SIGMOD ’07: Proceedings of
the 2007 ACM SIGMOD international conference on Management of
data, pages 115-126, New York, NY, USA, 2007. ACM.

Shuang Liu, Fang Liu, Clement Yu, and Weiyi Meng. An effective
approach to document retrieval via utilizing wordnet and recognizing
phrases. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, SI-
GIR 04, pages 266272, New York, NY, USA, 2004. ACM.

Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu
Zhou. Ease: an effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD
‘08, pages 903-914, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 147

[LT11]

[LWC07]

[LWLOS]

[LWL*11]

[LYJ04]

[LYJO6]

[LYMCO6]

IMCYCO6]

[MDNOSa]

[MDN*+08b)]

Giinter Ladwig and Thanh Tran. Index structures and top-k join algo-
rithms for native keyword search databases. In Proceedings of the 20th
ACM international conference on Information and knowledge manage-

ment, CIKM ’11, pages 1505-1514, New York, NY, USA, 2011. ACM.

Ziyang Liu, Jeffrey Walker, and Yi Chen. Xseek: A semantic xml
search engine using keywords. In Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007, pages 1330-1333, 2007.

Yi Luo, Wei Wang, and Xuemin Lin. Spark: A keyword search engine
on relational databases. In Data Engineering, 2008. ICDE 2008. IEEE
24th International Conference on, pages 1552 1555, april 2008.

Yi Luo, Wei Wang, Xuemin Lin, Xiaofang Zhou, Jianmin Wang, and
Kequi Li. Spark2: Top-k keyword query in relational databases. IEEFE
Trans. on Knowl. and Data Eng., 23(12):1763-1780, December 2011.

Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free xquery. In
Proceedings of the Thirtieth international conference on Very large data
bases - Volume 30, VLDB 04, pages 72-83. VLDB Endowment, 2004.

Yunyao Li, Huahai Yang, and H. V. Jagadish. Constructing a generic
natural language interface for an xml database. In Advances in Database
Technology - EDBT 2006, 10th International Conference on Extending
Database Technology, Munich, Germany, March 26-31, 2006, Proceed-
1ngs, pages 737-754, 2006.

Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective
keyword search in relational databases. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Management
of data, pages 563-574, New York, NY, USA, 2006. ACM.

N. Mamoulis, Kit Hung Cheng, Man Lung Yiu, and D.W. Cheung. Ef-
ficient aggregation of ranked inputs. In Data Engineering, 2006. ICDE
"06. Proceedings of the 22nd International Conference on, page 72, april
2006.

Ivana Marenzi, Elena Demidova, and Wolfgang Nejdl. Learnweb 2.0:
Integrating social software for lifelong learning. In Proceedings of
the World Conference on FEducational Multimedia, Hypermedia and
Telecommunications, Vienna, Austria, 2008, 2008.

Ivana Marenzi, Elena Demidova, Wolfgang Nejdl, Daniel Olmedilla,
and Sergej Zerr. Social software for lifelong competence development:

148

BIBLIOGRAPHY

[MDNOOS]

[MdSdM*07]

INCS*01]

[Nie93]

Challenges and infrastructure. International Journal of Emerging Tech-
nologies in Learning (iJET), 3(S1):18-23, 2008.

Ivana Marenzi, Elena Demidova, Wolfgang Nejdl, and Daniel Olmedilla.
Social software for lifelong competence development: Scenario and chal-
lenges. In Empowering Learners for Lifelong Competence Development:
pedagogical, organisational and technological issues. Proceedings of the
4th TENCompetence Open Workshop Madrid, Spain, April 2008. ISBN
978-90-6813-8474., 2008.

Filipe Mesquita, Altigran S. da Silva, Edleno S. de Moura, Pavel Cal-
ado, and Alberto H. F. Laender. Labrador: Efficiently publishing rela-

tional databases on the web by using keyword-based query interfaces.
Inf. Process. Manage., 43(4):983-1004, 2007.

Michael McCandless, Erik Hatcher, and Otis Gospodneti¢. Lucene in
Action, Second Edition. Manning Publications Co., 2009.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze.
Introduction to Information Retrieval. Cambridge University Press,

New York, NY, USA, 2008.
Musicbrainz - the open music encyclopedia. http://musicbrainz.org.

U. Masermann and G. Vossen. Sisql: schema-independent database
querying (on and off the web). In Database Engineering and Applica-
tions Symposium, 2000 International, pages 55 —64, 2000.

Ute Masermann and Gottfried Vossen. Design and implementation of
a novel approach to keyword searching in relational databases. In Pro-
ceedings of the East-European Conference on Advances in Databases
and Information Systems Held Jointly with International Conference
on Database Systems for Advanced Applications: Current Issues in
Databases and Information Systems, ADBIS-DASFAA 00, pages 171—
184, London, UK, UK, 2000. Springer-Verlag.

Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and
Jeffrey Scott Vitter. Supporting incremental join queries on ranked
inputs. In Proceedings of the 27th International Conference on Very
Large Data Bases, VLDB '01, pages 281-290, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

Jakob Nielsen. Usability engineering. Morgan Kaufmann Publishers,
San Francisco, Calif., 1993.

http://musicbrainz.org

BIBLIOGRAPHY 149

INJO7]

[ODN12]

[Pat06]

[PCT06]

[PS08]

[PYO08]

[Qui86]

[QYCO9]

[RBO1]

[SA02]

[SAS11]

Arnab Nandi and H. V. Jagadish. Assisted querying using instant-
response interfaces. In SIGMOD °07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pages 1156—
1158, New York, NY, USA, 2007. ACM.

Irina Oelze, Elena Demidova, and Wolfgang Nejdl. Yago meets freebase:
Combining a large-scale database with an ontology. In submission, 2012.

Siddharth Patwardhan. Using wordnet-based context vectors to esti-
mate the semantic relatedness of concepts. In In: Proceedings of the
EACL, pages 1-8, 2006.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of
search. In InfoScale '06: Proceedings of the 1st international confer-
ence on Scalable information systems, page 1, New York, NY, USA,
2006. ACM.

Simone Paolo Ponzetto and Michael Strube. Wikitaxonomy: A large
scale knowledge resource. In Proceedings of the 2008 conference on
ECAT 2008: 18th European Conference on Artificial Intelligence, pages
751-752, Amsterdam, The Netherlands, The Netherlands, 2008. I0S
Press.

Ken Q. Pu and Xiaohui Yu. Keyword query cleaning. Proc. VLDB
Endow., 1(1):909-920, August 2008.

J. R Quinlan. Induction of decision trees. In Machine Learning, pages
81-106, 1986.

Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Keyword search in databases:
the power of rdbms. In Proceedings of the 35th SIGMOD international
conference on Management of data, SIGMOD ’09, pages 681694, New
York, NY, USA, 2009. ACM.

Erhard Rahm and Philip A. Bernstein. A survey of approaches to au-
tomatic schema matching. The VLDB Journal, 10:334-350, December
2001.

G. Das S. Agrawal, S. Chaudhuri. Dbxplorer: A system for keyword-
based search over relational databases. In Proceedings of the 18th Inter-
national Conference on Data Engineering, ICDE 02, pages 5—, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. Paris:
Probabilistic alignment of relations, instances, and schema. PVLDB,
5(3):157-168, 2011.

150

BIBLIOGRAPHY

[SCGO7]

[SGB*07]

[SKWO7]

[SLDGO7]

[TCRS07]

[TLOS)

[TWC11]

[TWRC09)]

Chong Sun, Chee-Yong Chan, and Amit K. Goenka. Multiway slca-
based keyword search in xml data. In Proceedings of the 16th interna-
tional conference on World Wide Web, WWW ’07, pages 1043-1052,
New York, NY, USA, 2007. ACM.

Feng Shao, Lin Guo, Chavdar Botev, Anand Bhaskar, Muthiah Chet-
tiar, Fan Yang, and Jayavel Shanmugasundaram. Efficient keyword
search over virtual xml views. In Proceedings of the 33rd international
conference on Very large data bases, VLDB "07, pages 1057-1068. VLDB
Endowment, 2007.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a
core of semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, WWW 07, pages 697-706, New York,
NY, USA, 2007. ACM.

Mayssam Sayyadian, Hieu LeKhac, AnHai Doan, and Luis Gravano.
Efficient keyword search across heterogeneous relational databases. In
Proceedings of the 23rd International Conference on Data Engineering,
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007,
pages 346-355, 2007.

Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer.
Ontology-based interpretation of keywords for semantic search. In
ISWC07/ASWC 07: Proceedings of the 6th international The seman-
tic web and 2nd Asian conference on Asian semantic web conference,
pages 523-536, Berlin, Heidelberg, 2007. Springer-Verlag.

Sandeep Tata and Guy M. Lohman. Sqak: doing more with keywords.
In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 889-902, New York, NY,
USA, 2008. ACM.

Arash Termehchy, Marianne Winslett, and Yodsawalai Chod-
pathumwan. How schema independent are schema free query interfaces?
In Proceedings of the 27th International Conference on Data Engineer-
ing, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 649—
660, 2011.

Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano.
Top-k exploration of query candidates for efficient keyword search on
graph-shaped (rdf) data. In Proceedings of the 2009 IEEE International
Conference on Data Engineering, ICDE ’09, pages 405-416, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

BIBLIOGRAPHY 151

[TY09]

[TZC*06]

[VLGOVZ09]

[VOPTOS]

[VSS*08]

[Wei07]

[Wik]
[WLWZ12]

[WPZ*06]

Yufei Tao and Jeffrey Xu Yu. Finding frequent co-occurring terms
in relational keyword search. In Proceedings of the 12th International
Conference on Fxtending Database Technology: Advances in Database
Technology, EDBT 09, pages 839-850, New York, NY, USA, 2009.
ACM.

Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and
Chris Burges. Optimisation methods for ranking functions with multiple
parameters. In CIKM ’06: Proceedings of the 15th ACM international
conference on Information and knowledge management, pages 585593,
New York, NY, USA, 2006. ACM.

Reinier H. van Leuken, Lluis Garcia, Ximena Olivares, and Roelof van
Zwol. Visual diversification of image search results. In WWW °09:
Proceedings of the 18th international conference on World wide web,
pages 341-350, New York, NY, USA, 2009. ACM.

Quang Hieu Vu, Beng Chin Ooi, Dimitris Papadias, and Anthony
K. H. Tung. A graph method for keyword-based selection of the top-
k databases. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 915-926, New
York, NY, USA, 2008. ACM.

Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant
Bhat, and Sihem Amer Yahia. Efficient computation of diverse query
results. In ICDE °08: Proceedings of the 2008 IEEE 2jth Interna-
tional Conference on Data Engineering, pages 228-236, Washington,
DC, USA, 2008. IEEE Computer Society.

Gerhard Weikum. Db&ir: both sides now. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, SIG-
MOD ’07, pages 25-30, New York, NY, USA, 2007. ACM.

Wikipedia. www.wikipedia.com.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Zhu. Probase: A
probabilistic taxonomy for text understanding. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD),
SIGMOD, 2012.

Shan Wang, Zhaohui Peng, Jun Zhang, Lu Qin, Sheng Wang, Jeffrey Xu
Yu, and Bolin Ding. Nuits: a novel user interface for efficient keyword
search over databases. In Proceedings of the 32nd international con-
ference on Very large data bases, VLDB ’06, pages 1143-1146. VLDB
Endowment, 2006.

152

BIBLIOGRAPHY

[WSR07]

(WZ09]

[XCHO6]

[XIGOY]

[XP05)

[XPOg]

[YJO6]

[YLST07]

[YPS09]

[YQC10a)]

Ping Wu, Yannis Sismanis, and Berthold Reinwald. Towards keyword-
driven analytical processing. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages
617-628, New York, NY, USA, 2007. ACM.

Jun Wang and Jianhan Zhu. Portfolio theory of information retrieval.
In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR con-
ference on Research and development in information retrieval, pages
115-122, New York, NY, USA, 2009. ACM.

Dong Xin, Chen Chen, and Jiawei Han. Towards robust indexing for
ranked queries. In Proceedings of the 32nd international conference on
Very large data bases, VLDB ’06, pages 235-246. VLDB Endowment,
2006.

Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan. Advances in web
and network technologies, and information management. chapter Effec-
tive Top-k Keyword Search in Relational Databases Considering Query
Semantics, pages 172-184. Springer-Verlag, Berlin, Heidelberg, 2009.

Yu Xu and Yannis Papakonstantinou. Efficient keyword search for
smallest lcas in xml databases. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Baltimore, Maryland,
USA, June 14-16, 2005, pages 537-538, 2005.

Yu Xu and Yannis Papakonstantinou. Efficient Ica based keyword search
in xml data. In Proceedings of the 11th international conference on
Extending database technology: Advances in database technology, EDBT
‘08, pages 535-546, New York, NY, USA, 2008. ACM.

Cong Yu and H. V. Jagadish. Schema summarization. In Proceedings
of the 32nd international conference on Very large data bases, VLDB
06, pages 319-330. VLDB Endowment, 2006.

Bei Yu, Guoliang Li, Karen Sollins, and Anthony K. H. Tung. Effective
keyword-based selection of relational databases. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data,
SIGMOD 07, pages 139-150, New York, NY, USA, 2007. ACM.

Xiaoyan Yang, Cecilia M. Procopiuc, and Divesh Srivastava. Summa-
rizing relational databases. Proc. VLDB Endow., 2:634-645, August
20009.

Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword Search in Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publish-
ers, 2010.

BIBLIOGRAPHY 153

[YQC10b]

[YSO09]

[ZDC10]

[ZDO*08]

[ZGBNO7]

[Z1075)

[ZMKLO5]

[ZSHD12)]

[ZWX+07]

Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in relational
databases: A survey. [EEE Data Eng. Bull., 33(1):67-78, 2010.

Xiaohui Yu and Huxia Shi. Query segmentation using conditional ran-
dom fields. In Proceedings of the First International Workshop on Key-
word Search on Structured Data, KEYS ’09, pages 21-26, New York,
NY, USA, 2009. ACM.

Sergej Zerr, Elena Demidova, and Sergey Chernov. Ddeskweb2.0: Com-
bining desktop and social search. In Proceedings of the Desktop Search
Workshop, in conjunction with SIGIR 2010, 23 July 2010, Geneva,
Switzerland., 2010.

Sergej Zerr, Elena Demidova, Daniel Olmedilla, Wolfgang Nejdl, Mar-
ianne Winslett, and Soumyadeb Mitra. Zerber: r-confidential indexing
for distributed documents. In Proceedings of the EDBT 2008, 11th
International Conference on Fxtending Database Technology, Nantes,
France, March 25-29, 2008, 2008.

Xuan Zhou, Julien Gaugaz, Wolf-Tilo Balke, and Wolfgang Nejdl.
Query relaxation using malleable schemas. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, SIG-
MOD 07, pages 545-556, New York, NY, USA, 2007. ACM.

Moshé M. Zloof. Query by example. In AFIPS "75: Proceedings of the
May 19-22, 1975, national computer conference and exposition, pages
431-438, New York, NY, USA, 1975. ACM.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg
Lausen. Improving recommendation lists through topic diversification.
In WWW °05: Proceedings of the 14th international conference on
World Wide Web, pages 22-32, New York, NY, USA, 2005. ACM.

Sergej Zerr, Stefan Siersdorfer, Johnathon Hare, and Elena Demidova.
Privacy-aware image classification and search. In Proceedings of the
35th Annual International ACM SIGIR Conference on Research € De-
velopment on Information Retrieval, August 2012, Portland, Oregon,
2012.

Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu. Spark:
adapting keyword query to semantic search. In ISWC’07/ASWC’07:
Proceedings of the 6th international The semantic web and 2nd Asian

conference on Asian semantic web conference, pages 694-707, Berlin,
Heidelberg, 2007. Springer-Verlag.

154

BIBLIOGRAPHY

[ZZDN0S]

[ZZM+09]

Xuan Zhou, Gideon Zenz, Elena Demidova, and Wolfgang Nejdl. Suits:
Constructing structured queries from keywords. In Technical Report at
the L3S Research Center, 2008.

Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, and Wolfgang
Nejdl. From keywords to semantic queries-incremental query construc-
tion on the semantic web. Web Semant., 7(3):166-176, September 2009.

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgments
	Foreword
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problems Addressed in this Thesis
	1.2 Proposed Solution
	1.3 Thesis Structure

	2 General Background
	2.1 Database Usability - An Overview
	2.2 Keyword Search in Databases - A General Characterization
	2.2.1 Data Indexing using an Inverted Index
	2.2.2 Data-based Approaches
	2.2.3 Schema-based Approaches
	2.2.4 Ranking of Queries and Search Results
	2.2.5 Top-k Query Processing
	2.2.6 Materializing and Presenting Search Results
	2.2.7 Query Expressiveness
	2.2.8 Evaluation Techniques

	3 Incremental Query Construction
	3.1 Introduction
	3.2 Summary of IQP Contributions
	3.3 Specific Background
	3.3.1 Faceted Search
	3.3.2 Incremental Query Construction

	3.4 Overview of IQP
	3.5 Query Construction Framework
	3.5.1 From Keywords to Structured Queries
	3.5.2 Query Interpretation Generation
	3.5.3 Sub-Query Relationship
	3.5.4 Query Construction Plan
	3.5.5 Query Construction vs. Ranking

	3.6 Estimating Query Probability
	3.6.1 A Probabilistic Query Interpretation Model
	3.6.2 Probability Estimation

	3.7 Query Construction Algorithms
	3.7.1 Brute-Force Algorithm
	3.7.2 Greedy Algorithm
	3.7.3 Computation of Information Gain

	3.8 Evaluation
	3.8.1 Datasets and Keyword Queries
	3.8.2 Effectiveness of the Probability Estimates
	3.8.3 Query Construction vs. Query Ranking
	3.8.4 Usability of Query Construction
	3.8.5 Scalability
	3.8.6 Quality of the Greedy Algorithm

	3.9 Discussion

	4 Diversification of Search Results over Structured Data
	4.1 Introduction
	4.2 Summary of DivQ Contributions
	4.3 Specific Background
	4.4 The Diversification Scheme
	4.4.1 Bringing Keywords into Structure
	4.4.2 Estimating Query Relevance
	4.4.3 Estimating Query Similarity
	4.4.4 Combining Relevance and Similarity
	4.4.5 The Diversification Algorithm

	4.5 Evaluation Metrics
	4.5.1 Adapting Gain for alpha-NDCG-W
	4.5.2 Weighted S-Recall

	4.6 Experiments
	4.6.1 Dataset and Queries
	4.6.2 User Study
	4.6.3 alpha-nDCG-W
	4.6.4 WS-Recall
	4.6.5 Balancing Relevance and Novelty

	4.7 Discussion

	5 Scaling Interactive Query Construction on a Very Large Database
	5.1 Introduction
	5.2 Summary of FreeQ Contributions
	5.3 Specific Background
	5.4 Preliminaries of Interactive Query Construction
	5.4.1 The Model
	5.4.2 Limitations of the Existing Approaches

	5.5 Efficiency of QCOs
	5.5.1 Generation of Ontology-Based QCOs
	5.5.2 A Measure of QCO Efficiency
	5.5.3 Effects of Ontology-based QCOs

	5.6 Generation of Structured Queries
	5.6.1 Query Hierarchy for the QCOs Generation
	5.6.2 Efficient Hierarchy Traversal
	5.6.3 Probability Estimation

	5.7 Experimental Evaluation
	5.7.1 Experiment Setup
	5.7.2 Effectiveness of Ontology-based QCOs
	5.7.3 Performance of the System

	5.8 Discussion

	6 Combining a Large Scale Database with an Ontology
	6.1 Introduction and Motivation
	6.2 Summary of YAGO+F Contributions
	6.3 Specific Background
	6.4 Concepts and Instances in YAGO
	6.4.1 Concept Structure of YAGO
	6.4.2 Instance Distribution in YAGO
	6.4.3 Instance-Based Overlap between YAGO and Freebase

	6.5 Matching YAGO and Freebase
	6.6 Describing and Characterizing the YAGO+F Hierarchy
	6.6.1 The Concepts and the Instances in the YAGO+F Hierarchy
	6.6.2 Matching Quality

	6.7 Discussion

	7 Conclusions and Future Work
	7.1 Summary of Contributions
	7.2 Open Research Directions

	A Curriculum Vitae
	Bibliography

