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Abstract 

During Expedition 324, the Integrated Ocean Drilling Program recovered tholeiitic 
basalts at the Shatsky Rise oceanic plateau. The collected natural glasses contain 5 to 8.7 
wt% MgO. Compared to mid-ocean ridge basalts (MORB), they are high in FeO (Fe8: 
10.3) and low in SiO2 and Na2O (Na8: 1.9) contents, indicating melt generation at high 
amounts of partial melting and in great depth. Furthermore, the CaO/Al2O3 ratios in the 
evolved glasses from Shatsky Rise are higher respectively to MORB implying low 
pressure cotectic fractionation. However, the basaltic glasses from Shatsky Rise show 
differentiation trends similar to those of other oceanic plateaus, as e.g. Ontong Java and 
Kerguelen. 

Pressures and temperatures of magma storage were estimated for 40 naturally 
quenched glasses (5-6.5 wt% MgO) from a profile of 150 m length drilled at the Tamu 
Massif, one of three massifs of the Shatsky Rise. Based on the glass major element 
compositions (electron microprobe) and glass H2O contents (infrared spectroscopy), 
conditions of multiple saturation (liquid+olivine+plagioclase+clinopyroxene) were 
simulated using the COMAGMAT program. The calculated pressures and temperatures 
range from 240 MPa to 1 atm and from 1150 to 1100°C, and indicate polybaric 
crystallization in a shallow magma reservoir (<6 km). Along the drilled profile, we 
identified two complete cycles of magma injection in the reservoir with subsequent 
fractionation and eruption followed by a time of magmatic inactivity. The most MgO-rich 
samples of the Shatsky Rise were recovered at Ori Massif. In contrast to the evolved 
Tamu Massif glasses, they demonstrate fractionation at deeper levels because the 
simulated pressures of multiple saturation are ~650 MPa. This indicates that the magmas 
beneath Shatsky Rise evolved in a multilevel magma plumbing system.  

Three synthetic compositions, representing different stages of the magma 
differentiation beneath the Shatsky Rise (8.6 wt% MgO, 8.0 wt% MgO, 6.4 wt% MgO), 
were used to conduct a complementary experimental study. The results were in agreement 
with the calculated magma storage conditions and showed that low pressures led to the 
high CaO/Al2O3 ratios in the Tamu Massif basalts. The natural differentiation trend is 
best reproduced by experiments at ~100 MPa considering the range of H2O contents 
which was observed in the natural basaltic glasses (0.2-0.6 wt% H2O). In addition, the 
experimental results also support the assumption that magma storage and fractionation 
occurred in different levels in the crust, because the natural liquid lines of descent cannot 
be reproduced via isobaric crystallization. 

The systematic study of the influence of pressure and H2O on basaltic phase 
relations demonstrated the significance of small amounts of H2O during basaltic 
differentiation. The evaluation of recent geothermobarometers and thermodynamic 
models showed that magmatic temperatures and pressures are systematically 
overestimated due to negligence of the melt H2O contents. 

 

Keywords: COMAGMAT, IODP Expedition 324, magma differentiation, MORB, phase 
equilibria, Shatsky Rise, thermobarometry  
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Zusammenfassung 

Die tholeiitischen Basalte des ozeanischen Plateaus Shatsky Rise wurden während 
der Expedition 324 des Integrated Ocean Drilling Programs erbohrt. Die natürlichen 
Gläser enthalten 5 bis 8.7 wt% MgO. Sie sind im Vergleich zu Mittelozeanischen Rücken 
Basalten (MORB) erhöht im Gehalt von FeO (Fe8: 10.3) und niedriger im SiO2- und 
Na2O-Gehalt (Na8: 1.9), was darauf schließen lässt, dass die Schmelzen bei höherem 
Aufschmelzgrad und in größerer Tiefe entstanden sind. Desweiteren sind die CaO/Al2O3 
Verhältnisse in den entwickelten Gläsern des Shatsky Rise vergleichsweise hoch im 
Bezug auf MORBs, was wiederum ein Indiz für Fraktionierung bei kotektischen 
Bedingungen niedrigen Drucks ist. Generell zeigen die basaltischen Gläser des Shatsky 
Rise ähnliche Differenzierungstrends wie andere ozeanische Plateaus, z.B. Ontong Java 
und Kerguelen. 

Für 40 natürliche Gläser (5-6.5 wt% MgO) wurden Druck- und 
Temperaturbedingungen für ein potentielles Magmareservoir berechnet. Die Proben 
stammen aus einem 150 m langen Profil, das am Tamu Massif, einem von drei Massiven 
des Shatsky Rise, erbohrt wurde. Mit Hilfe des COMAGMAT Modells, wurden für die 
gemessenen Zusammensetzungen der Gläser (Elektronenstrahl Mikrosonde) und deren 
H2O-Gehalte (Infrarot Spektroskopie) Bedingungen simuliert, bei denen die Schmelzen 
im Gleichgewicht mit Olivin, Plagioklas und Klinopyroxen wären. Die daraus 
berechneten Druck- und Temperaturbedingungen von 240 MPa bis 1 atm und 1150-
1100°C weisen auf polybare Kristallisation in einem flachen (<6 km) Magmareservoir 
hin. Die Proben mit dem höchsten MgO-Gehalt stammen vom Ori Massif, sie sprechen 
im Gegensatz zu den entwickelten Basalten des Tamu Massif für Fraktionierung bei ~650 
MPa. Dies lässt auf ein System aus mehreren Magmakammern in unterschiedlicher Tiefe 
schließen.  

Eine komplementäre experimentelle Studie dreier synthetischer Basalte, die 
unterschiedlich stark differenzierte Magmen des Shatsky Rise repräsentieren (8.6 wt% 
MgO, 8.0 wt% MgO, 6.4 wt% MgO), ist in guter Übereinstimmung mit der Simulation. 
Unter Einbeziehung der H2O-Gehalte der natürlichen Gläser, zeigen die Ergebnisse, dass 
die hohen CaO/Al2O3 Verhältnisse in den Tamu Massif Basalten durch Differenzierung 
bei niedrigem Druck (<100 MPa) entstanden sein können. Desweiteren unterstützen die 
experimentellen Ergebnisse die Annahme, dass die Magmen des Shatsky Rise in 
unterschiedlichen Tiefen fraktioniert sind, weil nicht alle natürlichen 
Glaszusammensetzungen bei gleichem Druck reproduziert werden konnten.  

Diese systematische Studie über den Einfluss von Druck und H2O auf die 
Phasenbeziehungen in basaltischen Systemen hat die Bedeutung von niedrigen H2O-
Gehalten während der basaltischen Differentiation aufgezeigt. Die Vernachlässigung des 
Einflusses von H2O bei den meisten Geothermobarometern führt zur systematischen 
Überschätzung der magmatischen Druck- und Temperaturbedingungen. 

 

Schlagwörter: COMAGMAT, IODP Expedition 324, Magma Differenzierung, MORB, 
Phasengleichgewichte, Shatsky Rise, Thermobarometrie 
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Objectives and Background 

This dissertation investigates the basaltic magma evolution by magma 

differentiation within the oceanic crust with special focus on basalts from the Shatsky 

Rise oceanic plateau. Although this plateau formed at a mid-ocean ridge (MOR) 

(Nakanishi et al., 1999), it has an expected crustal thickness of 30 km (Korenaga and 

Sager, 2012), which is four times the usual thickness of typical oceanic crust. This 

requires large volumes of basaltic magmas, which differentiate during their ascent 

through the crust. The presented data help to characterize the magma evolution beneath 

Shatsky Rise and contribute to the general understanding of the influence of pressure and 

the presence of small amounts of water on basaltic systems. 

 Basalts belong to the most abundant rocks on earth and build up the upper part of 

the oceanic crust. They are generated at different settings within the oceans or (less 

abundant) on the continents. The main basalt forming process occurs at MORs, where 

newly formed magmatic material is subsequently accreted to the older spreading 

lithosphere. Also, basalts appear in large igneous provinces (LIPs), which are enormous 

products of intraplate volcanism on continental or oceanic crust. Ocean islands and 

oceanic plateaus, like Shatsky Rise, belong to these LIPs and provide high volumes of 

basaltic rocks. Basalt formation is also known for settings of subduction zones, where the 

melts are generated by hydrous partial melting of upper mantle material. Basalts provide a 

link to mantle processes because their parental magmas originate in the mantle. 

Therefore, it is necessary to understand how the ascending melts are modified on their 

way to the surface. 
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1. THE OCEANIC CRUST VOLCANISM 

Oceanic crust is generated at MORs, where the lithosphere spreads apart (Hess, 

1962). At the ridge axis, new crust is produced while fresh basaltic magmas erupt. The 

magma is originated in the asthenosphere, where it is formed by partial melting of the 

mantle material (1.5-2 GPa, <60 km; Bottinga et al., 1978; Bowen, 1956; Green & 

Ringwood, 1967; Kushiro et al., 1972; Presnall et al., 1979; Ringwood, 1975; Takahashi 

& Kushiro, 1983). The melting is initiated by upwelling of the mantle in the course of 

large scale mantle convection, which causes decompression melting. The generated melts 

ascend adiabatically and segregate from the host rock until they reach the oceanic crust. 

Here the melts accumulate in magma chambers (Fig. 0.1), where they partially crystallize 

and differentiate. 

The thickness of the oceanic crust increases with distance to the spreading center, 

up to a typical thickness of 8-10 km. The model of a layered oceanic crust is based on the 

investigation of ophiolites, which are oceanic rocks being exposed on the continents 

driven by tectonic processes (Coleman, 1977). It is applicable for most fast spreading 

ridges, e.g. the East Pacific Rise (EPR). The observations in ophiolites in combination 

with seismic studies of recent MORs led to the model of the oceanic crust (Clague & 

Straley, 1977) shown in Fig. 0.1.  

A sedimentary cover (Layer 1) overlies the uppermost igneous Layer 2, which 

consists of so called pillow lavas and sheeted dykes. The pyroclastic basaltic pillow lavas 

(Layer 2a) are erupted lava flows quenched by the sea water. The sheeted dykes are more 

slowly cooled diorites or microgabbros being chemically similar to basalts, but fine 

grained equigranular to aphanitic in texture. The Layer 3 is composed of gabbroic rocks. 

These are mostly coarse grained, equigranular and contain clinopyroxene (Cpx), 
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plagioclase (Plag), and olivine (Ol). They are assumed to be fractionated cumulates 

collected at the bottom of the magma chamber. By spreading of the lithosphere, these 

gabbros are transported away from the ridge axis. Below the gabbros, the Moho separates 

the oceanic crust from the upper mantle.  

 

Figure 0.1: Schematic image of the layered model of the oceanic crust at a fast spreading MOR 
like East Pacific Rise (modified after Sinton & Detrick, 1992). The Layers 2 and 3 are indicated. Beneath 
the ridge axis, the continuous layering is interrupted: The melt lens is located in 1-2 km depth with a 
gradual transition to the underlying crystal mush zone (Sinton & Detrick, 1992). The degree of 
solidification increases with distance from the melt lens through the transition zone to the gabbroic rocks of 
Layer 3. 

Besides at MORs, intraplate volcanism is also known for oceanic crust, where it 

forms ocean islands (e.g. like Hawaii, Marquesas Islands) and oceanic plateaus (e.g. 

Ontong Java, Kerguelen, Broken Ridge). The volcanic rocks forming these edifices are 

basaltic and similar to MORBs in their petrography, but they are chemically different. 

They originate in a (chemically) different and deeper hosted mantle source. As widely 

discussed in literature (e.g. Morgan, 1972; Wilson, 1963), ocean islands are associated 

with mantle plumes, where mantle material wells up accompanied by decompression 

partial melting (Coffin & Eldholm, 1994). The mantle plumes are expected to be static in 

their position, whereas the oceanic crust continuously moves driven by the spreading at 

MORs. When oceanic crust is progressively running over such a mantle plume, ocean 

island chains can be produced (e.g. Hawaii and Emperor, or Louisville seamount chain). 
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The interaction of these mantle plumes with active spreading centers is expected to result 

in topographic highs, e.g. Azores, Galapagos. These are morphologically different to 

MORs and the chemistry of the basalts formed at these topographic highs shows certain 

differences compared to normal MORBs.  

2. MAGMA CHAMBERS - DIFFERENTIATION  

Sinton & Detrick, 1992 used geophysical and petrographic data to characterize the 

model of the magma chambers beneath the EPR. They described magma chambers as 

large continuous mainly molten bodies. These are relatively narrow (<3 km) and thin (100 

m-1 km) and overly a crystal mush zone (Fig. 0.1). During cooling of the magma, crystal 

fractionation causes a progressive change in melt composition. Thus, the basaltic rocks 

exposed on the ocean floor and in ophiolite complexes, show a wide compositional 

variability, although they follow clearly the main trend of tholeiitic differentiation. The 

melt composition variability of MORBs is explained by fractionation and subsequent 

replenishment within the magma chambers.  

Based on geophysical observations, the position of the sub axial magma chamber 

is expected to be in shallow depth and located at the transition zone between the sheeted 

dykes and gabbros, which is consistent with the global low pressure fractionation trend 

displayed by MORB compositions. However, recent studies of crystallization conditions 

of MORBs showed that fractional crystallization occurs in various depth beneath MORs 

(Michael & Cornell, 1998; Herzberg, 2004; Villiger et al., 2007; Natland & Dick, 2009). 

According to Villiger et al. (2007) fractionation occurs immediately after the segregation 

from the partially molten mantle during the ascent to the surface. This is in agreement 

with models for oceanic crust formation presented by Korenaga & Kelemen (1998 and 

2000). They described two models for the formation of the gabbros: (1) two sills, one 
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close to the Moho and one in shallow depth between the gabbros and the sheeted dykes, 

or (2) multiple small magma lenses which the ascending melts pass en route to the 

surface.  

According to Purdy et al. (1992) the depth of the sub axial magma chamber is 

strongly correlated to the spreading rate. Higher magmatic flux induced by the higher 

spreading rates leads to more shallow magma chambers (Purdy et al., 1992).  

Phase equilibria, experimental melting and crystallization studies in the last 

century showed that the mineral stabilities are, besides the melt composition, strongly 

dependent on the prevailing thermodynamic conditions, such as pressure, temperature, 

volatile content, and oxygen fugacity (e.g. Bender et al., 1978; Berndt et al., 2005; Feig et 

al., 2006; Feig et al., 2010; Grove et al., 1992; Walker et al., 1979). The investigation of 

conditions at which basaltic melts may have been formed is crucial for the understanding 

of the formation of the oceanic crust and especially for the location of one or several 

magma reservoirs. This is important in the case of Shatsky Rise, because although 

seismic studies investigate the upper crustal structure of the Shatsky Rise plateau (Sager 

et al., 2013; Expedition 324 Scientists, 2010), no recent model describes its whole crustal 

architecture. 

3. OBJECTIVES 

This dissertation investigates the petrography of natural basalts and how the 

basaltic lavas were formed within the thick oceanic crust of the Shatsky Rise. The natural 

minerals and glasses of the Shatsky Rise basalts were analyzed and differentiation 

mechanisms under different conditions were investigated experimentally. The work is 

composed of three main parts:  
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Part I focuses on the characteristics of the natural samples recovered during the 

Integrated Ocean Drilling Program Expedition 324 and thermodynamic 

modeling to estimate the conditions, at which the basaltic magmas were 

stored and differentiated. The systematic core samples represent 

continuously stacked lava flows, thus, the drilled profile is correlated to 

time. Therefore, the data obtained from the natural samples give 

knowledge of time related melt evolution, and led to a model of the magma 

plumbing system beneath the Shatsky Rise. 

Part II addresses crystallization experiments using the Shatsky Rise basaltic 

compositions. These provide detailed information on the influence of 

pressure, temperature and H2O content on the mineral stabilities and liquid 

evolution. The investigated range of H2O contents is very narrow, but 

representative for the range typical for MORBs. The experiments 

demonstrate the significant effect of small amounts of H2O on the phase 

relations. The scientific outcomes contribute to the general understanding 

of MORB differentiation and can be also applied on Shatsky Rise in order 

to support the results of Part I.  

Part III additionally describes the accuracy of recent thermodynamic models and 

geothermobarometers present in literature for basaltic compositions. The 

test using the experimental products described in Part II demonstrates that 

the presence of small amounts of H2O leads to systematic overestimation 

of pressures and temperatures with the most models. 
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Part I: Geothermobarometry of 

Basaltic Glasses from the Tamu 

Massif, Shatsky Rise Oceanic 

Plateau 

 

A modified version of this part is published in Geochemistry, Geophysics, 

Geosystems, 14, 3908–3928 (2013): Geothermobarometry of basaltic glasses from the 

Tamu Massif, Shatsky Rise oceanic plateau. Husen, A., Almeev, R. R., Holtz, F., Koepke, 

J., Sano, T. & Mengel, K. 

 

1. ABSTRACT 

We present the results of a petrological study of core samples from Tamu Massif 

(Site U1347), recovered during the Shatsky Rise Integrated Ocean Drilling Program 

(IODP) Expedition 324. The basaltic glasses from Site U1347 are evolved tholeiitic 

basalts containing 5.2 to 6.8 wt% MgO. They are principally located within the 

compositional field of mid-ocean ridge basalts (MORBs), but they have systematically 

higher FeO, lower Al2O3, SiO2, and Na2O concentrations, and the CaO/Al2O3 ratios are 

amongst the highest known for MORBs. In this sense, glasses from Site U1347 more 

closely resemble basaltic magmas from the Ontong Java Plateau (OJP), although they still 
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have lower SiO2 concentrations. In contrast to MORB and similar to OJP, our 

fractionation corrected values of Na2O and CaO/Al2O3 indicate more than 20 % of partial 

melting of the mantle during the generation of the parental magmas of Tamu Massif. The 

water contents in the glasses, determined by mid-infrared Fourier Transform Infrared 

(FTIR) spectroscopy, are MORB-like, and vary between 0.18 and 0.6 wt% H2O. The 

calculated pressure-temperature (P-T) conditions at which the natural glasses represent 

cotectic olivine (Ol)-plagioclase (Plag)-clinopyroxene (Cpx) compositions range from 0.1 

to 240 MPa and 1100 to 1150°C reflecting magma storage at shallow depth. The variation 

of the glass compositions and the modeled P-T conditions in correlation with the relative 

ages, indicate that there were at least two different magmatic cycles characterized by 

variations in eruptive styles (massive flows or pillow lavas), chemical compositions, 

volatile contents, and pre-eruptive P-T conditions. Each magmatic cycle represents the 

progressive differentiation in the course of polybaric crystallization after the injection of a 

more primitive magma batch. Magma crystallization and eruption episodes are followed 

by magmatic inactivity reflected in the core sequence by a sedimentary layer. Our data for 

Tamu Massif demonstrate that, similar to Ontong Java ocean plateau, crystallization 

beneath Shatsky Rise occurs at different crustal levels.   

2. INTRODUCTION 

2.1. The Shatsky Rise Large Igneous Province and IODP Expedition 324 

Large igneous provinces (LIPs) are massive crustal emplacements of predominantly 

mafic extrusive and intrusive rocks. They appear as continental flood basalts, volcanic 

passive margins, oceanic plateaus, submarine ridges, seamount groups, and ocean basin 

flood basalts (Coffin and Eldholm, 1994). Different models are used to explain the 

extremely high magma production of LIPs: (1) the arrival of a potentially deep-sourced 
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mantle plume (Duncan and Richards, 1991), and (2) anomalous dynamics at mid-ocean 

ridges (MORs), e.g. at leaky transform faults, or at ridge reorganizations (Foulger, 2007). 

For many LIPs, in particular for ocean island chains, the hot spot model (1) is widely 

accepted. This model requires a deeper-sourced mantle plume compared to MORs (Zhang 

and Tanimoto, 1992). The mechanism underlying high LIP magma production is less 

established for large oceanic plateaus like e.g. the famous Ontong Java Plateau (OJP), 

which is the most studied oceanic plateau (e.g. pro plume head: Mahoney and Spencer 

(1991), Richards et al. (1991), Roberge et al. (2004), Clouard and Bonneville (2001),  

contra plume head: Fitton and Godard (2004)).  

Besides Ontong Java and Kerguelen, Shatsky Rise is another large oceanic 

plateau. Unlike others, it was formed during a time of geomagnetic field reversals 

between Late Jurassic and Early Cretaceous, and its tectonic history recorded in magnetic 

lineations is relatively well reconstructed (Nakanishi et al., 1999). The plateau consists of 

three distinct massifs (from south to north Tamu, Ori, and Shirshov massifs, Fig. I.1). 

After Sager et al. (1999), they emerged as a result of interaction between a mantle plume 

and a propagating triple junction. The elongated shape of Shatsky Rise was best explained 

by the ridge tectonics, whereas the rise morphology was best explained by the plume head 

model, because the oldest and most voluminous Tamu Massif could be associated with 

the arrival of the plume head. The waning of magmatic activity with time in the younger 

massifs (Ori and then Shirshov) is explained by the decrease in magma production caused 

by the plume tail (Sager et al., 1999).  
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Figure I.1: Topography of Shatsky Rise. The map after Expedition 324 Scientists (2010) shows 

that Shatsky Rise consists of three Massifs. Marked are the magnetic lineations and fracture zones (red 

lines) (Nakanishi et al., 1999), the IODP Expedition 324 drill sites (colored symbols), and ODP Site 1213 

(blue dot). The depth below sea level is given by bluish to yellow colors (see legend). 

 

Earlier petrological studies on Shatsky Rise magmatism are scarce in the 

literature. Tatsumi et al. (1998) presented the first analyses of dredged (highly altered) 

basalts; few of them demonstrated a high Nb/Y ratio. Mahoney et al. (2005) presented the 

first broader geochemical data from the Shatsky Rise igneous basement (Hole 1213B, 

Ocean Drilling Program (ODP) Leg 198) and classified those rocks as normal mid-ocean 

ridge basalt (N-MORB) tholeiites with compositional characteristics typical for East 

Pacific Rise (EPR). They interpreted whole rock high CaO/Al2O3 ratios and relatively 

high Fe and low Na values in the recovered samples (7.64-8.31 wt% MgO) to be 

indicative of high fractions of partial melting. Isotope data obtained for limited samples 

also revealed MORB-like signatures, contradicting the hypothesis that a mantle plume 

was involved (Mahoney et al., 2005). 
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In 2009, IODP Expedition 324 provided a new set of samples which now can be 

used to investigate the processes which led to the formation of this oceanic plateau. Five 

sites at three different massifs of Shatsky Rise were cored (U1346-U1350), and about 723 

meters of igneous rocks were sampled (Sager et al., 2010). All three massifs were drilled 

and the core samples cover different stages of the tectonic history of the Shatsky Rise. 

Although the precise rock dating (e.g. Ar-Ar) is still in progress, the stratigraphic position 

of the core samples provide information on the relative emplacement time of the 

individual lava flows, which enables the reconstruction of dynamic processes proceeded 

in the magma reservoir(s).  

Detailed post-cruise geochemical investigations of bulk rocks and fresh glasses 

form all five sites were recently presented by Sano et al. (2012). Three geochemical 

magma groups have been identified based on the glass compositions: normal-, low-Ti, 

and high-Nb-type basalts. The chemical compositions of the most voluminous normal-

type basalts are similar to those of N-MORB with slight depletion in heavy rare earth 

elements (HREEs). The low-Ti type has slightly lower TiO2, FeO, and MnO contents at a 

given MgO. The high-Nb basalts are characterized by distinctively high contents of Nb, 

K, and REEs, indicating that they are likely affected by an enriched source mantle. Based 

on geochemical modeling  Sano et al. (2012) reported ~15% melting of a depleted mantle 

source in the presence of residual garnet, and emphasized that the melting zone was 

deeper than that of melting zones producing N-MORBs.  

Sano et al. (2012) also argued that the final depth of the melting beneath Shatsky 

Rise was deeper than beneath MORs and the melting process stopped at the base of the 

pre-existing thick oceanic lithosphere. Independent geophysical studies identified a 

considerable thickening of the oceanic basement beneath the Shatsky plateau and 
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resolved a maximum thickness of the crust of 22 km (Den et al., 1969) to 30 km 

(Korenaga and Sager, 2012). This thick crust and the evolved character of the most 

basalts of the sites U1347 and U1350 imply that the parental magmas underwent 

extensive crystal fractionation en route to the surface which can be responsible for 

significant magmatic underplating in the course of Shatsky Rise plateau formation. 

Previous studies emphasized that beneath oceanic plateaus the chemical differentiation of 

basaltic magmas from their parental compositions might have occurred in shallow level 

magma chambers resulting in the formation of large volumes of fractionated cumulates 

(e.g. OJP basalts: Farnetani et al., 1996; Michael, 2000;  Roberge et al., 2004).  

Assuming that this mechanism of vertical stacking of successive shallow magma 

reservoirs (Michael, 2000) may play an important role in the formation of the Shatsky 

Rise, we conducted a study to (1) examine the role of fractional crystallization in the 

magma genesis, to (2) estimate the amount and depths of partial crystallization, and to (3) 

provide P-T estimates for distinctive magma types previously identified on the basis of 

their geochemical compositions. We present results of complementary petrographic and 

mineralogical investigations of the rocks from the Site U1347. Major element and volatile 

glass compositions determined in this study are used to simulate conditions of partial 

crystallization, to estimate the degree of partial melting of the mantle source, and to 

speculate on genetic relations between lavas from the different massifs of the Shatsky 

Rise. 
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Figure I.2: Stratigraphic overview of Hole 1347A, combined with the measured H2O (FTIR) and MgO (EPMA), compositions in the studied 
glasses. The modeled P-T conditions of Ol+Plag+Cpx multiple saturation along the core are shown. The Groups (I–V) which were discriminated 
along the profile are marked; they correlate well with the lithological units, with distinctive H2O and major element concentrations as well as with 
simulated magma storage conditions. Filled and open symbols represent data from this study and Sano et al. (2012), respectively. 
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2.2. Site U1347 General Information 

Site U1347 is located on the eastern flank of the Tamu Massif, which is the oldest 

massif where Shatsky Rise volcanism has begun. Although only the uppermost crust of 

the massif was penetrated by the drilling, the collected rocks provide important 

information on the early processes which triggered the intense volcanism forming 

Shatsky Rise. IODP Expedition 324 (Sager et al., 2010) cored into a ~ 160 m section of 

volcanic lavas, dominated by thick (8-23m) massive basalt flows at the top and the base 

of the hole, with a middle part comprised of alternating numerous pillow basalt inflation 

units and thin (<1-2m) massive flows. This core provides samples which are less affected 

by alteration (fresh glass rinds were frequently observed). Based on the on-board 

macroscopic core description, the volcanic lava succession at Site U1347 was subdivided 

into nine stratigraphic units (Fig. I.2, Tab. I.1). However, post-cruise geochemical studies 

of the whole rocks and glasses of all Sites drilled on Shatsky Rise (Sano et al., 2012) 

demonstrated that the magmas beneath Tamu Massif are quite homogeneous. Only a few 

glass samples (at ~200-220 mbsf, stratigraphic Unit IX, Expedition 324 Scientists, 2010) 

have slightly higher Nb/Ti and Zr/Ti ratios due to the lower TiO2 contents (low-Ti type). 

In contrast, the major volume of the Site U1347 lava pile (>92%) is composed of normal-

type basalt as described by Sano et al. (2012). In total, 41 samples representing the chilled 

margins of pillow inflation units or massive flows were investigated in this study. 
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Table I.1: Stratigraphic and lithological lava units after Expedition 324 

Scientists  (2010), depth below sea floor (mbsf), flow morphology, petrography, glass 

H2O concentrations (FTIR), and modeled P-T conditions of the 41 glass samples 

collected along the Hole U1347A, Tamu Massif, Shatsky Rise 

sample 

strati-

graphic 

unit  

litho-

logical 

unit depth 

unit des-

cription
 a

 

phenocryst 

phases
 b

 H2O P T 

 (core  interval) (mbsf) (wt%) (MPa) (°C) 

Group I 
         

11R1   22.5/25 IV 4 157.62 mf Pl*, Cpx*, Ol 0.35 60 1116 

13R7   4/6.5 V 5 174.29 mf Pl*, Cpx* 0.33 100 1125 

13R7   98/100 V 5 175.24 mf Pl*, Cpx* 0.35 60 1117 

14R1   26/29 V 5 176.86 mf Pl*, Cpx* 0.59 - - 

15R1   46/47.5 V 5 186.65 mf Pl*, Cpx*, Ol 0.34 60 1117 

15R1  119.5/121.5 VIIa 7 187.38 mf Pl*, Cpx*, Ol 0.33 90 1118 

Group II 
        

17R2   27.5/30 IX 11 206.09 mf Pl*, Cpx* 0.51 20 1101 

Group III 
        

18R3   91.5/94 Xa 12 217.48 mf Pl*, Cpx* 0.23 90 1135 

18R3   127/130 Xa 13 217.86 mf Pl*, Cpx* 0.14 160 1149 

18R4   46.5/48.5 Xa 14 218.51 mf Pl*, Cpx* 0.22 200 1147 

18R5   60/63 Xa 17 220.05 pl Pl, Cpx 0.21 160 1145 

18R5   88/92.5 Xa 17 220.33 pl Pl*, Cpx* 0.21 140 1141 

18R5   137.5/140 Xa 18 220.87 pl Pl, Cpx 0.24 140 1142 

18R6   47/51.5 Xa 19 221.37 pl Pl*, Cpx*, Ol 0.19 130 1142 

19R1   92/96 Xa 21 224.52 pl Pl*, Cpx* 0.21 200 1148 

19R2   22/25.5 Xa 23 225.11 pl Pl*, Cpx*, Ol 0.23 130 1138 

19R2   79.5/82.5 Xa 25 225.66 pl Pl*, Cpx*, Ol 0.21 140 1145 

19R3   57/62 Xa 28 226.86 pl Pl, Cpx 0.22 140 1140 

19R3   97/100 Xa 29 227.26 pl Pl, Cpx, Ol 0.20 160 1142 

20R1   109/111 Xa 30 234.29 pl Pl*, Cpx*, Ol - - - 

20R2   9.5/11.5 Xa 32 234.72 pl Pl*, Cpx*, Ol 0.22 160 1146 

Group IV 
        

21R4   101/103.5 Xc 39 247 pl Pl*, Cpx*, Ol 0.53 10 1100 

21R5   25/28 Xc 40 247.51 mf Pl*, Cpx* 0.54 0 1089 

22R1   65/67 Xd 41 253.05 pl Pl*, Cpx* 0.52 0 1099 

Group V 
        

22R5   40/44 XI 44 258.5 pl Pl, Cpx 0.37 50 1120 

22R5   73/75.5 XII 46 258.82 pl Pl*, Cpx*, Ol 0.32 140 1128 

23R2   139/141 XII 48 263.62 pl Pl, Cpx, Ol 0.32 80 1123 

23R3   76/78 XII 50 264.37 pl Pl*, Cpx* 0.36 80 1121 

23R4   43/45 XII 52 265.48 pl Pl, Cpx - - - 

23R4   85/89 XII 52 265.9 pl Pl*, Cpx*, Ol 0.31 130 1127 

24R3   107/108.5 XIV 55 275.16 pl Pl, Cpx, Ol 0.31 150 1129 

24R5   64/66 XIV 58 277.61 pl Pl, Cpx 0.30 160 1132 

24R5   96/98 XIV 58 277.93 pl Pl, Cpx 0.50 35 1117 

24R7   21/22 XIV 61 279.57 pl Pl*, Cpx* 0.30 120 1132 

24R8   54/56 XIV 63 280.94 pl Pl, Cpx 0.30 140 1135 

24R9   70/72 XIV 65 282.6 pl Pl, Cpx, Ol 0.35 200 1134 

25R3   10/13 XIV 67 283.98 pl Pl, Cpx, Ol 0.30 170 1135 

25R4   32/35.5 XIV 69 285.7 pl Pl*, Cpx*, Ol 0.30 140 1135 

25R5   27/32 XIV 71 287.01 pl Pl, Cpx, Ol 0.30 205 1137 

26R1   135/136.5 XIV 80 292.05 pl Pl*, Cpx* 0.19 150 1136 

26R2   2/4 XV 81 292.22 mf Pl*, Cpx* 0.30 160 1133 
a pillow lava (pl), massive flow (mf).  
b olivine (Ol), plagioclase (Pl), and clinopyroxene (Cpx).  
* mineral compositions are available in Husen et al. (2013) (Fig. I.3 and Fig. AI., PetDB).  
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Table I.2: Glass major Eeement compositionsa (EPMA) of the 41 glass samples collected along the Hole U1347A, Tamu Massif, Shatsky Rise 

 

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S Cl Total 

  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (ppm (ppm  

 (core  interval) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev))         x 

Group I               

11R1   22.5/25 50.54 (0.24) 2.46 (0.03) 13.14 (0.1) 14.63 (0.13) 0.24 (0.06) 5.57 (0.04) 10.55 (0.09) 2.35 (0.09) 0.26 (0.01) 0.18 (0.04) 524 (31) 77 (54) 100.11 

13R7   4/6.5 50.55 (0.27) 2.23 (0.17) 13.3 (0.27) 14.23 (0.77) 0.26 (0.06) 5.86 (0.28) 10.82 (0.41) 2.31 (0.1) 0.24 (0.02) 0.15 (0.05) 434 (90) 143 (61) 100.12 

13R7   98/100 50.47 (0.24) 2.41 (0.05) 13.01 (0.17) 14.55 (0.4) 0.3 (0.03) 5.8 (0.09) 10.54 (0.08) 2.35 (0.11) 0.26 (0.01) 0.25 (0.04) 558 (36) 80 (11) 99.25 

14R1   26/29 50.48 (0.37) 2.6 (0.25) 12.69 (0.46) 15.65 (0.83) 0.29 (0.04) 5.21 (0.49) 10.16 (0.42) 2.41 (0.09) 0.28 (0.03) 0.17 (0.05) 583 (62) 117 (40) 99.42 

15R1   46/47.5 50.75 (0.19) 2.37 (0.03) 13.1 (0.17) 14.59 (0.24) 0.24 (0.03) 5.69 (0.07) 10.48 (0.18) 2.34 (0.05) 0.26 (0.01) 0.12 (0.08) 508 (22) 86 (37) 99.47 

15R1   119.5/121.5 50.44 (0.23) 2.48 (0.04) 13.12 (0.11) 14.82 (0.31) 0.26 (0.04) 5.58 (0.07) 10.46 (0.1) 2.35 (0.08) 0.26 (0.01) 0.15 (0.08) 590 (18) 119 (53) 100.30 

Group II               

17R2   27.5/30 51.71 (0.25) 2.12 (0.04) 13.31 (0.12) 14.35 (0.18) 0.26 (0.03) 5.08 (0.04) 9.94 (0.11) 2.66 (0.08) 0.31 (0.01) 0.19 (0.03) 326 (26) 296 (49) 99.66 

Group III               

18R3   91.5/94 50.62 (0.34) 2.07 (0.02) 13.49 (0.11) 13.48 (0.12) 0.22 (0.03) 6.1 (0.12) 11.4 (0.14) 2.25 (0.05) 0.21 (0.01) 0.11 (0.05) 361 (14) 117 (52) 99.83 

18R3   127/130 50.41 (0.17) 2.11 (0.04) 13.54 (0.12) 12.93 (0.27) 0.28 (0.04) 6.39 (0.06) 11.55 (0.14) 2.35 (0.06) 0.2 (0.01) 0.2 (0.03) 323 (22) 86 (41) 99.28 

18R4   46.5/48.5 50.01 (0.31) 2.04 (0.03) 13.59 (0.12) 13.36 (0.11) 0.19 (0.04) 6.59 (0.05) 11.42 (0.05) 2.37 (0.06) 0.23 (0.01) 0.16 (0.02) 364 (14) 115 (12) 100.00 

18R5   60/63 50.11 (0.41) 2.05 (0) 13.47 (0.09) 13.33 (0.23) 0.09 (0.12) 6.49 (0.04) 11.65 (0.1) 2.36 (0.03) 0.23 (0.01) 0.18 (0.03) 380 (33) 117 (8) 99.40 

18R5   88/92.5 50.66 (0.24) 2.05 (0.02) 13.62 (0.15) 13.21 (0.3) 0.22 (0.04) 6.23 (0.08) 11.39 (0.11) 2.23 (0.07) 0.21 (0.01) 0.13 (0.06) 346 (17) 99 (58) 99.58 

18R5   137.5/140 50.48 (0.22) 2.31 (0.19) 13.39 (0.28) 14.05 (0.89) 0.25 (0.03) 5.88 (0.32) 10.93 (0.48) 2.28 (0.11) 0.24 (0.03) 0.13 (0.07) 480 (121) 123 (60) 100.06 

18R6   47/51.5 50.59 (0.19) 2.07 (0.02) 13.58 (0.14) 13.26 (0.2) 0.21 (0.05) 6.23 (0.06) 11.46 (0.16) 2.22 (0.08) 0.21 (0.01) 0.13 (0.06) 361 (16) 102 (17) 100.04 

19R1   92/96 50.08 (0.3) 2.01 (0.03) 13.35 (0.16) 13.33 (0.29) 0.04 (0.1) 6.53 (0.08) 11.75 (0.15) 2.46 (0.05) 0.22 (0.01) 0.19 (0.01) 350 (9) 119 (4) 99.30 

19R2   22/25.5 50.61 (0.24) 2.05 (0.04) 13.59 (0.08) 13.42 (0.15) 0.24 (0.05) 6.17 (0.1) 11.34 (0.1) 2.19 (0.08) 0.21 (0.01) 0.12 (0.05) 368 (11) 121 (41) 100.56 

19R2   79.5/82.5 50.48 (0.32) 2.13 (0.07) 13.36 (0.26) 13.38 (0.21) 0.22 (0.09) 6.72 (0.17) 11.48 (0.16) 2.01 (0.14) 0.21 (0.03) - - - 99.87 

19R3   57/62 50.54 (0.24) 2.1 (0.04) 13.58 (0.08) 13.4 (0.21) 0.18 (0.01) 6.2 (0.06) 11.33 (0.09) 2.26 (0.1) 0.2 (0) 0.15 (0.03) 364 (24) 110 (32) 100.21 

19R3   97/100 50.61 (0.29) 2.05 (0.02) 13.63 (0.14) 13.41 (0.11) 0.21 (0.05) 6.18 (0.14) 11.29 (0.15) 2.24 (0.05) 0.21 (0) 0.12 (0.02)  365 (25) 101 (48) 100.14 

20R1   109/111 50.48 (0.26) 2.1 (0.04) 13.44 (0.12) 13.43 (0.18) 0.26 (0.06) 6.2 (0.09) 11.45 (0.12) 2.25 (0.07) 0.22 (0.01) 0.12 (0.07) 367 (19) 137 (63) 99.68 

20R2   9.5/11.5 50.42 (0.2) 2.1 (0.03) 13.45 (0.11) 13.59 (0.1) 0.22 (0.06) 6.23 (0.14) 11.29 (0.13) 2.32 (0.07) 0.21 (0.01) 0.12 (0.05) 378 (11) 124 (32) 100.06 

Group IV               

21R4   101/103.5 50.18 (0.27) 2.5 (0.05) 13.2 (0.16) 14.9 (0.2) 0.35 (0.08) 5.33 (0.08) 10.34 (0.11) 2.62 (0.07) 0.28 (0.01) 0.2 (0.04) 501 (25) 492 (28) 99.08 

21R5   25/28 50.77 (0.12) 2.43 (0.05) 13.12 (0.08) 15.19 (0.09) 0.25 (0.02) 5.01 (0.06) 10.18 (0.13) 2.51 (0.05) 0.28 (0.01) 0.16 (0.05) 476 (21) 499 (78) 99.93 

22R1   65/67 50.93 (0.21) 2.43 (0.05) 13.1 (0.07) 15.06 (0.07) 0.28 (0.02) 5.09 (0.04) 10.04 (0.1) 2.58 (0.09) 0.27 (0.01) 0.13 (0.07) 465 (15) 545 (84) 99.91 
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Continued Table I.2 

 

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S Cl Total 

  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (wt%  (ppm (ppm  

 (core  interval) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev)) ( stdev))         x 

Group V               

22R5   40/44 50.68 (0.06) 2.15 (0.03) 13.21 (0.06) 14.11 (0.24) 0.26 (0.03) 5.81 (0.14) 10.93 (0.18) 2.41 (0.07) 0.25 (0.01) 0.13 (0.07) 366 (19) 224 (35) 99.24 

22R5   73/75.5 50.57 (0.09) 2.23 (0.03) 13.37 (0.12) 14.09 (0.13) 0.23 (0.03) 5.92 (0.04) 10.76 (0.07) 2.35 (0.1) 0.25 (0.01) 0.16 (0.06) 411 (20) 215 (37) 100.48 

23R2   139/141 50.59 (0.26) 2.21 (0.03) 13.22 (0.11) 14.25 (0.25) 0.24 (0.03) 5.75 (0.08) 10.86 (0.07) 2.4 (0.06) 0.24 (0.01) 0.17 (0.05) 381 (29) 213 (27) 100.39 

23R3   76/78 50.9 (0.25) 2.13 (0.02) 13.37 (0.14) 14.11 (0.1) 0.24 (0.05) 5.73 (0.1) 10.71 (0.1) 2.38 (0.11) 0.24 (0.01) 0.15 (0.05) 358 (23) 218 (57) 99.99 

23R4   43/45 50.5 (0.17) 2.24 (0.03) 13.34 (0.1) 14.17 (0.09) 0.28 (0.04) 5.84 (0.13) 10.67 (0.09) 2.46 (0.05) 0.25 (0.01) 0.18 (0.03) 397 (16) 200 (53) 100.00 

23R4   85/89 50.56 (0.17) 2.25 (0.03) 13.36 (0.08) 14.19 (0.11) 0.29 (0.04) 5.84 (0.15) 10.68 (0.11) 2.35 (0.05) 0.25 (0.01) 0.18 (0.03)  420 (17) 209 (56) 100.45 

24R3   107/108.5 50.33 (0.19) 2.24 (0.03) 13.39 (0.11) 14.24 (0.07) 0.23 (0.07) 5.83 (0.05) 10.81 (0.18) 2.43 (0.06) 0.24 (0.01) 0.2 (0.05) 395 (12) 272 (37) 100.38 

24R5   64/66 50.51 (0.35) 2.17 (0.03) 13.42 (0.14) 14.01 (0.25) 0.29 (0.03) 5.97 (0.09) 10.82 (0.08) 2.32 (0.02) 0.24   (0) 0.19 (0.04) 407 (23) 262 (69) 101.22 

24R5   96/98 50.72 (0.15) 2.08 (0.04) 13.47 (0.13) 13.71 (0.38) 0.21 (0.04) 5.99 (0.2) 11.12 (0.29) 2.3 (0.09) 0.22 (0.01) 0.13 (0.04) 377 (14) 189 (42) 100.03 

24R7   21/22 50.79 (0.3) 2.07 (0.04) 13.42 (0.17) 13.09 (0.39) 0.27 (0.04) 6.27 (0.15) 11.12 (0.07) 2.5 (0.09) 0.22 (0.01) 0.18 (0.03) 352 (15) 215 (19) 99.28 

24R8   54/56 50.49 (0.49) 2.13 (0.05) 13.46 (0.14) 13.54 (0.15) 0.22 (0.03) 6.13 (0.05) 11.22 (0.05) 2.34 (0.05) 0.22 (0.02) 0.18 (0.04) 378 (31) 229 (18) 98.37 

24R9   70/72 50.35 (0.28) 2.12 (0.02) 13.56 (0.15) 13.96 (0.07) 0.25 (0.04) 6.15 (0.11) 10.84 (0.09) 2.32 (0.06) 0.24 (0.01) 0.15 (0.04) 414 (34) 200 (72) 100.83 

25R3   10/13 50.34 (0.27) 2.17 (0.02) 13.57 (0.11) 13.84 (0.12) 0.25 (0.05) 6.1 (0.24) 10.98 (0.03) 2.3 (0.1) 0.23 (0.01) 0.16 (0.03) 385 (12) 204 (46) 100.70 

25R4   32/35.5 50.58 (0.15) 2.02 (0.03) 13.49 (0.2) 13.26 (0.33) 0.34 (0.08) 6.12 (0.05) 11.24 (0.07) 2.49 (0.07) 0.24 (0.01) 0.16 (0.05) 391 (19) 203 (16) 98.92 

25R5   27/32 50.5 (0.1) 2.12 (0.06) 13.6 (0.05) 13.8 (0.28) 0.24 (0.03) 6.13 (0.06) 10.84 (0.07) 2.35 (0.08) 0.23 (0.01) 0.14 (0.04) 400 (12) 171 (55) 100.70 

26R1   135/136.5 50.22 (0.22) 2.25 (0.04) 13.06 (0.16) 14.35 (0.37) 0.19 (0.06) 6.04 (0.07) 10.85 (0.08) 2.51 (0.08) 0.24 (0.01) 0.24 (0.03)  172 (14) 166 (18) 100.25 

26R2   2/4 50.68 (0.25) 2.09 (0.02) 13.56 (0.04) 13.83 (0.1) 0.23 (0.06) 6.02 (0.14) 10.86 (0.13) 2.32 (0.06) 0.23 (0.01) 0.13 (0.06) 343 (6) 200 (42) 99.44 
a All given glass compositions are an average of five measurements and normalized to 100 wt% total, the standard deviations (1σ) are given in brackets. The given 
total refers to the original sum of the measured element oxide concentrations. 
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3. METHODS 

3.1. Electron Microprobe 

The major elements of the mineral phases and basaltic glasses were measured 

using an electron probe microanalysis (EPMA) at the Institute of Mineralogy in Hannover 

and at the Institute of Disposal Research in Clausthal. In both laboratories, a Cameca 

SX100 instrument was used at 15 kV acceleration potential. Mineral analyses were 

obtained with a 15nA beam current, using a focused beam and a peak counting time of 

10s to determine the peaks and 5s background for each element (Si, Ti, Al, Fe, Mn, Mg, 

Ca, Na, K). Glasses were measured with a 10nA beam current using a defocused beam 

size of 10 µm with a peak counting time of 10s for all major elements. Cl and S were 

measured using a 40nA beam current with a peak counting time of 60s.  For all elements, 

5 spots on each glass sample were analyzed and the average values are reported in 

Tab. I.2.  

The internal calibration standards were albite for Na, wollastonite for Si and Ca, 

Al2O3 for Al, Mn2O3 for Mn, TiO2 for Ti, MgO for Mg, Fe2O3 for Fe, and orthoclase for 

K. During each session, sample measurements were verified by measuring external 

international standard materials: Basaltic Glass Juan de Fuca Ridge (USNM 111240/52 

VG-2), Olivine (Fo90) San Carlos (Gila Co., AZ, USNM 111312/444), and Plagioclase 

(Labradorite) Lake County (OR, USNM 115900) (Jarosewich et al., 1980). The analyses 

determined by microprobe were corrected using these external standard compositions. 

After the correction, the standard compositions were reproduced within the standard 

deviation of the EPMA analysis as shown in Fig. AI.1 and AI.2 in the Appendix. In order 

to address the potential problem of the sodium loss, the evolution of signal intensity with 

counting time was tested for one basaltic glass standard. Fig. AI.3 shows that no Na2O 
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loss can be detected using a defocused beam (10µm) at 10 nA beam current, even for long 

counting times of 60 s. Thus, a correction for alkali loss is not necessary under the 

analytical conditions adopted in this study (10s counting time, 10 nA). 

3.2. Infrared Spectroscopy 

Glass H2O concentrations were determined using a Fourier Transformation 

Infrared (FTIR) Bruker IFS88 spectrometer coupled with an IR Scope II microscope 

(Institute of Mineralogy, Leibniz University of Hannover). For IR measurements, glass 

fragments approximately 1mm² in size were mounted in ceramic rings and then doubly 

polished (thickness varied from 145-150 to 40-50 µm). The section thickness was 

measured for each individual sample using a digital micrometer (Mitutoyo, precision: 

≤2µm). Before measuring, it was checked that no scratches, crystals, or pores were 

present in the measured glass volume. For all samples, spectra were collected in the mid-

infrared (MIR) range using a spot size of 100 x 100 µm (every spectrum was the average 

of 50 scans).  The operating conditions for MIR were: globar light source, KBr beam 

splitter, MCT (HgCdTe) detector, 4 cm-1 spectral resolution, spectral range from 13000 to 

0 cm-1. The H2O concentration was measured at the peak that is attributed to the OH 

stretch vibration (3550 cm-1) using a molar absorption coefficient of 67 L•cm-1 • mol-1 

(Stolper, 1982). The density was assumed to be a typical value for basaltic glasses, 2815 

g/l. The H2O concentration was calculated based on the Lambert-Beer law using the peak 

height, which was determined by reference to a straight tangential base line. Three 

measurements per sample were performed to account for possible variations in thickness 

due to polishing. The average values of such measurements were used to calculate the 

H2O content of the glasses, with an uncertainty usually less than 0.02 wt%. 
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We also measured the absorption of CO3
2- which can be detected in the same 

spectra at two peak positions, 1515 cm-1 and 1435 cm-1 (Fine and Stolper, 1986). 

However, only a few samples show weak CO3
2-- peak doublets. In all other samples, CO2, 

if present, was below the detection limit of the FTIR analysis (~20 ppm CO2). 

3.3. Geothermobarometry 

Partial crystallization pressure and temperature were estimated for each individual 

composition by simulating the conditions of Ol+Plag+Cpx saturation in the basaltic 

melts (hereinafter referred to as multiple saturation after Sack et al., 1987). The 

COMAGMAT program (Ariskin and Barmina, 2004) was applied following the approach 

described in Almeev et al. (2008). In contrast to widely applied geobarometers (Yang et 

al., 1996; Herzberg, 2004; Villiger et al., 2007) or geothermometers (Ford et al., 1983; 

Beattie et al., 1991), the advantage of this method is that it provides both pressure and 

temperature estimations. In addition, the effect of small amounts of H2O on crystallization 

temperatures (Michael & Chase, 1987; Danyushevsky, 2001) was accounted from recent 

experimental calibrations (Almeev et al., 2007, 2012; Médard et al., 2008).  

We used two different approaches for the thermobarometry. First, fractional 

crystallization trends modeled with the COMAGMAT program (Ariskin and Barmina, 

2004) were determined for one representative composition (U1350A 24R3 76-79cm) 

among the most MgO-rich samples with 8.5 wt% MgO (Tab. I.2), assumed to be parental 

for the whole volcanic Shatsky Rise series. All calculations were performed along the 

FMQ (fayalite-magnetite-quartz) oxygen buffer. In an attempt to produce the best match 

between calculated Liquid Lines of Descent (LLDs) and the chemical trends defined by 

the natural glass compositions pressure and initial H2O content were systematically 

varied. We applied both isobaric and polybaric modes of fractional crystallization 
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calculations. The polybaric mode allows one to simulate the crystallization process during 

magma ascend.  

In addition, P-T conditions of multiple saturation for every given basaltic glass 

composition were simulated by varying the pressure at given H2O content in an attempt to 

observe simultaneous crystallization of the Ol+Plag+Cpx phase assemblage within the 

first few percentages of crystallization (the mode of equilibrium crystallization was used; 

see more details in Almeev et al.(2008)). In this approach, the H2O content measured in 

the glasses was assumed to be representative for the amount of H2O present during the 

differentiation of the corresponding liquid. The assumption of the magmatic H2O origin 

was justified by the relatively constant H2O/K2O and relatively low Cl/K ratios (see 

below). The precision of this method is within the precision of the geothermobarometers 

used in the COMAGMAT model. Our calculations demonstrate that the stability curves 

of Ol, Plag, and Cpx intersect at a "point" of multiple saturation (when considered in P-T 

coordinates) within ± 5°C (within 1-2 % of crystallization) for 90% of the modeled 

Shatsky Rise compositions, allowing pressure to be determined within ± 50 MPa. For the 

other samples, pressure was modeled with precision better than ± 100 MPa, assuming 

minor temperature corrections to reach multiple saturation. These corrections did not, 

however, exceed 10°C and were always lower than the uncertainty of the mineral-melt 

geothermobarometers implemented in COMAGMAT (±10°C at 0.1 MPa and ±15-20°C at 

elevated pressure, Ariskin and Barmina (2004)). 

The approach used in this study was also applied to experimental Ol+Plag+Cpx-

saturated glasses produced on different Shatsky Rise starting compositions at P = 100, 

200, 400, and 700 MPa under nearly anhydrous and slightly hydrous conditions (<0.2 and 

0.4-1.1 wt% H2O respectively, FTIR determinations), which represent the range of H2O 
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contents found in the natural glasses from Tamu Massif. It has been found that the best 

reproduction of multiple saturated conditions with an uncertainty of 15°C and 50 MPa is 

observed when Cpx crystallization temperature is 10°C suppressed (temperature 

correction -10°C for augite geothermometer described in Ariskin and Barmina, 2004). 

Thus, with this correction, the COMAGMAT crystallization model was slightly 

"adjusted" (Langmuir et al., 1992) to be used with the Shatsky Rise compositions. 

4. RESULTS  

4.1. Mineral Compositions of Hole U1347A 

Tab. I.1 gives a summary of the phases which were recognized and analyzed along 

the section of Hole U1347A. In general, the rock textures and mineral assemblages of 

Hole U1347A do not change significantly along the profile. Depending on the position of 

the sample within the lava flow, the groundmass texture varies from cryptocrystalline, 

through microcrystalline, to very-fine-grained (and rarely to medium-grained) from 

chilled margins to flow interiors respectively. Ol is altered and completely replaced by 

clay minerals or calcite pseudomorphs (evidence for presence of Ol was observed in 37 of 

77 thin sections). These pseudomorphs can be easily distinguished by the euhedral 

habitus of former phenocrysts (Tab. I.1). All basalts contain phenocrysts of Plag and Cpx 

within a matrix of intergranular texture. In a few thin sections Ol or Cpx (but not both) 

were not observed. Based on mineral associations and textural characteristics, three 

different groups can be recognized: (1) coarse-grained Plag phenocrysts/glomerocrysts 

(up to 0.5 mm in size, discontinuously normal or multiply-zoned) with numerous 

inclusions, (2) fine-grained Plag and Cpx subphenocrysts which show evidence for 

undercooling, which caused extremely fast growth possibly not in equilibrium with the  



Dissertation of Anika Husen 

 
Part I: Geothermobarometry of Basaltic Glasses from the Tamu Massif, Shatsky 

Rise Oceanic Plateau 

 36 

surrounding melt (embayments, inclusions, skeletal growth) often building clots of 

radiate intergrowth  (skeletal, columnar, discontinuously normal, and/or sector zoned); 

and (3) prismatic Plag and equigranular Cpx in crypto- to microcrystalline groundmass, 

containing dendritic and skeletal magnetite (Mag). 

Plag and Cpx (augite) exhibit mineral compositions typical for N-MORB. The 

compositions gradually evolve from phenocrysts to subphenocrysts and to groundmass 

microlithes, as indicated by decreasing An (molar proportions of Ca/(Ca+Na+K)) 

contents in Plag and decreasing Mg# (molar ratio of (Mg/(Mg+Fe))) in Cpx (Fig. I.3). 

Plag phenocrysts range in composition from 90 to 65 mol% An, whereas Plag 

subphenocrysts and Plag groundmass crystals are more albitic: 75- 65 mol% An and 55-

35 mol% An respectively (Fig. I.3). Cpx phenocryst and microphenocryst compositions 

are similar (Fig. I.3); they display varying compositions in the field of Mg-rich augites 

(60>En>40, in mol %; molar proportions of Mg/(Ca+Fe+Mg)). The groundmass Cpx 

crystals are generally more evolved (45>En>20). 

Plag and Cpx are the most abundant groundmass phases. Skeletal and dendritic 

Mag also exists in some samples. Site U1347 basalts are vesicular, and all vesicles are 

 

Figure I.3: Compositions of Plag (a) and Cpx (b) phenocrysts, subphenocrysts, and 
microphenocrysts from the basaltic lavas cored at Site U1347, Shatsky Rise oceanic plateau. The data 
points are individual measurements obtained for each crystal, plotted in the anorthite-albite-orthoclase (An-
Ab-Or) and the enstatite-ferrosilite-wollastonite (En-Fs-Wo) triangular diagrams. The data are available in 
Husen et al. (2013) and via the PetDB database (http://www.earthchem.org/petdb). 
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filled by secondary calcite. Some thin sections have veins of secondary calcite, zeolites, 

and chlorite.  

4.2. Major Element Compositions of Tamu Massif Glasses 

The major element compositions of 41 basaltic glasses from Site U1347 are given 

in Tab. I.2 and shown in Fig. I.4. Our microprobe data confirm that the Tamu Massif 

magmas are evolved MORB-like tholeiitic basalts (6.6-5.0 wt% MgO). With an MgO 

decrease and a weak SiO2 increase, those lavas show strong FeO enrichment and CaO and 

Al2O3 depletion. All minor elements (TiO2, K2O, and P2O5) exhibit a positive correlation 

with differentiation indices (e.g. MgO). Water concentrations from 0.18 to 0.6 wt% H2O 

are within typical enriched MORB values (Jambon and Zimmermann, 1990; 

Danyushevsky et al., 2000), and are systematically higher in the most evolved 

compositions. The variations in glass compositions are complementary to the changes 

observed in subphenocryst mineral compositions. Thus, the highest An content in Plag 

(>75mol% An) and the most primitive Cpx (Mg#>80) were found in the basaltic melts 

with the highest MgO concentrations (6.2-6.7 wt% MgO). All these chemical 

characteristics indicate the importance of the crystal fractionation which occurred along 

Ol+Plag+Cpx mineral cotectics.  

4.3. Variations of Glass Composition along the Core 

As mentioned above, Sano et al. (2012) demonstrated a large geochemical diversity in the 

basalts from sites U1349 and U1350, and emphasized the relatively homogeneous 

composition of rocks and glasses from Site U1347. Although our data also show the lack 

of large compositional variations in glasses from the Upper Massive Basalt Flow and 

Upper to Lower pillow Lava Sections units (Expedition 324 Scientists, 2010), minor 

compositional differences in the volcanic succession recovered at Tamu Massif can be 
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clearly detected (see Fig. I.2). We divided the chemical compositions of the fresh glasses 

into five groups based on their characteristic major (this study) and trace (Sano et al., 

2012) element compositions which correlate with the lithologic units. To distinguish them 

from the stratigraphic Groups 1 to 3 from Expedition 324 Scientists (2010), Roman 

numbering has been given to the chemical groups proposed in this study: Group I to 

Group V.  

Considered collectively, lavas from the Middle (stratigraphic Unit XII, Sager et 

al., 2010) and Lower (Unit XIV) Pillow Lava Sections (Fig I.2) exhibit a common 

compositional field with a weak increase of the degree of differentiation from the bottom 

to the top, as can be clearly observed for K2O and TiO2 (and all highly incompatible 

elements from Sano et al. (2012)), MgO, CaO, and Al2O3, and to a lesser extent for Na2O 

and H2O (Tab. I.2, Fig. I.2). These lavas are combined into one chemical group, Group 

V.  The slightly lower MgO, Al2O3, and H2O and slightly higher FeO concentrations 

found in two glass samples, 324-U1347A-26R1-135-137cm and 324-U1347A-26R2-2-

4cm, recovered at the margin between the base of the Lower Pillow Lava Section (Unit 

XIV) and the top of the Lower Massive Basalt Flow 5 (Unit XV, Stratigraphic Group 3), 

place them slightly off the trend defined by the Group V glasses. It should be noted that 

within the stratigraphic column these two samples are separated from the overlaying 

pillow basalts (Unit XIV) by a thin sedimentary horizon. Therefore, due to this small 

chemical variability we suggest that they may rather represent the quenched pillow rims 

of the Lower Massive Basalt Flow 5, which exhibits slightly but systematically lower 

Zr/Ti values (Sano et al., 2012). However, these are the only two samples of fresh glasses 

from the Lower Massive Basalt Flow 5; therefore we left them within Group V, keeping 

in mind that they may actually belong in a different group.  
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The next group, Group VI, consists of aphyric to sparsely Plag phyric basalt 

glasses from the lower Upper Pillow Lava Section (Units Xc and Xd, Fig. I.2 and Tab. 

I.1). In comparison to the Group V basalts, these rocks exhibit a higher H2O/K2O ratio 

(see Discussion below) and are notably more evolved and H2O-rich (5.0-5.3 wt% MgO, 

0.51-0.54 wt% H2O). MgO and CaO contents in these samples are amongst the lowest 

found at Site U1347. In contrast to the differentiated basalts from Group IV, the glasses 

sampled at the top of this lava stack (the same Upper Pillow Lava Section, Unit Xa) again 

demonstrate more primitive compositions, which are somewhat similar to those from 

Group V (at the base of the pillow lava section). However, they are less hydrous (~0.2 

wt% H2O) and less differentiated with slightly different trace element ratios (H2O/K2O, 

H2O/Ce, see Discussion below). In addition, according to the onboard observations (Sager 

et al., 2010), Units Xa and Xc are separated by a ~5 m thick sedimentary interval (Fig. 

I.2). The sedimentary layers in the stratigraphic column represent intervals without 

magmatic activity and interrupt the continuous record of eruptions, providing time for 

erosion processes. Based on the geochemical data, we grouped these pillow basalts from 

the Upper Pillow Lava Section, Unit Xa into an individual chemical group: Group III.  

Chemical Group II consists of basalts from the Upper Massive Flow 4 

(stratigraphic Unit IX) which are very close in composition to the evolved Group IV 

basalts. However, Group II basalts are slightly richer in alkalis and other trace elements 

(Sano et al., 2012), and contain less CaO and FeO.  

The final compositional Group I consists of samples from Upper Massive Flow 1 

and Upper Massive Flow 2 (Stratigraphic Units IV and V respectively, Sager et al., 2010). 

Their compositions are intermediate between the "primitive" groups III and V and the 

"evolved" groups II and IV. 
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caption →  
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Considered collectively, the microprobe measurements of basaltic glasses from the 

Tamu Massif revealed five compositional groups along the profile, which may represent 

magmas which attained different evolutionary stages within the magma chamber before 

eruption (see below). The different compositional groups are also distinguished by 

slightly different Cpx compositional ranges (see Fig. AI.4). The different groups denote 

different lithological units within the stratigraphic column, which were clearly identified 

by boundaries between pillow inflation units and massive flows or by the presence of a 

sedimentary layer. Below, we present results of the glass geothermobarometry and 

discuss the partial crystallization conditions of these different magma batches.  

4.4. Water and Cl Content of Glasses 

In this study, it is essential to clarify the origin of the water (magmatic or diffusion 

after quench) which was determined quantitatively by FTIR spectroscopy. The glasses in 

the chilled margins are well preserved and not or only slightly affected by alteration. The 

whole section U1347 provides mostly very fresh glasses, only few samples demonstrate 

zones of glass transformation to palagonite. The glasses without any evidence of 

palagonitization also do not show any evidence for the transport of mobile elements, such 

as depletion in Si, Al and alkalis (Staudigel and Hart, 1983).  

 

Figure I.4: Major element compositions of glasses from Sites U1347 (red circles, this study), 

U1350 (orange triangles; filled symbols refer to this study, open symbols are from Sano et al., 2012), and 

U1346 (green diamond, this study). The basalts from Ontong Java Plateau (OJP, open crosses (Michael, 

2000; Roberge et al., 2004; Sano and Yamashita, 2004), dark gray crosses show compositions, which were 

used for thermobarometry, Tab. I.2) and the EPR MORB glass variations (gray diamonds) are shown for 

comparison. MORB data are from the PetDB petrological database (http://www.earthchem.org/petdb). See 

text for details. 
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Figure I.5: The Cl/K ratios as a function of K/Ti are shown compared with ‘‘mantle values’’ 

(Michael and Cornell, 1998). The extent of potential assimilation of hydrothermally altered material or 

reaction with fluids (e.g., brine) is indicated by Cl/K ratios higher than that of in the mantle (mantle limit 

on the plot), since this ratio is unaffected by partial melting and fractional crystallization. 

 

It has been shown that Cl/K is unaffected by partial melting and fractional 

crystallization and can indicate a signature of assimilation of hydrothermally altered 

material or of reaction with fluids (e.g. brine) if the values of Cl/K ratio are above 0.07 

(Michael and Cornell, 1998). In the case of Shatsky Rise magmas (Fig. I.5), the basalt 

from Shirshov Massif and the basalts of the Group I from Tamu Massif have Cl/K ratios 

typical of mantle derived melts. Samples from Group III and V have higher Cl/K values 

but considering the large error of Cl determination by microprobe, they are still 

compatible with primary mantle signatures.  The Cl/K ratios in glasses from Group IV are 

higher (~ 0.2) and may indicate reactions with seawater. The basalts from Ori Massif 

exhibit the highest Cl/K ratios (~0.7), suggesting that possible hydrothermal alteration 

was most intense in those glasses. However it is not clear if this process results from 

assimilation of hydrothermally altered material at high temperature or from a reaction 

with seawater after quench.  
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The infrared spectra did not show any evidence for significant incorporation of 

molecular H2O in the glasses. To prove that their H2O contents are primary and to 

exclude H2O loss due to degassing or H2O gain caused by low temperature alteration, we 

compared the H2O concentrations in the glasses with the concentrations of other 

incompatible elements like K2O and Ce. The positive correlation between these elements 

is an indication that most water is of primary origin (see further discussion below). 

5. DISCUSSION 

5.1. Chemical Variations in Basaltic Glasses from Shatsky Rise and Ontong Java 

Plateau 

In this chapter we compare our data with lavas from OJP because it is also formed 

in the Pacific ocean (OJP: 122-90 Ma, Mahoney et al. (1994), Shatsky Rise: 146-127 Ma, 

Nakanishi et al. (1999)) and it has characteristics similar to Shatsky Rise, such as (1) deep 

levels of partial melting and high melt fractions (Sano et al., 2012; this study), (2) 

different types of magmas with depleted and slightly enriched source characteristics 

(Fitton and Godard, 2004; Mahoney et al., 1994; Sano et al., 2012), and (3) relatively low 

H2O concentrations (Roberge et al., 2004; this study). Based on the investigation of 

progressive hot-spot tracks Clouard and Bonneville (2001) conclude that only four high 

volume pacific oceanic plateaus can be directly associated with the arrival of a plume 

head. Amongst them there are the Louisville hotspot which is attributed to the OJP and 

the Marquesas hotspot which could trigger the Hess Rise and Shatsky Rise volcanism 

(Clouard and Bonneville, 2001). However, in the case of Shatsky Rise, there is additional 

information on its tectonic history because its edifices were not modified by later tectonic 

processes, which is the case on OJP.  



Dissertation of Anika Husen 

 
Part I: Geothermobarometry of Basaltic Glasses from the Tamu Massif, Shatsky 

Rise Oceanic Plateau 

 44 

In Fig. I.4, the naturally quenched glass compositions from the Tamu Massif (red 

dots) are plotted together with glasses from the Ori (orange filled and open triangles) and 

Shirshov (green diamond) massifs (Sites U1350 and U1346 respectively). The data shown 

by filled symbols are from this study and open symbols reflect data from Sano et al. 

(2012). For comparison we also reported MORBs from East Pacific Rise (light grey dots, 

obtained from the PetDB database), and basaltic glasses from the OJP (open crosses from 

Roberge et al. (2004) and Michael (2000); black crosses - samples used for 

thermobarometry in this study, Tab. I.3). 

When compared to basalts from the Ori Massif, the compositions of the Tamu 

Massif (U1347A) glasses are similar to those of differentiated basaltic glasses sampled in 

the upper part of Hole U1350A (both normal- and high-Nb-type basalts with 5.5 to 6.7 

wt% MgO, compare red dots and orange triangles in Fig. I.4). This similarity, however, is 

not perfect: Ori Massif glasses are not as rich in CaO and FeO as those from the Tamu 

Massif and they also have higher SiO2 and Na2O contents. The evolved Ori Massif 

glasses (with 5.5-7 wt% MgO) also do not display a trend of Al2O3 depletion with MgO 

decrease which would be expected for magmatic liquids evolving along a tholeiitic trend 

of differentiation. Most likely, in the case of the Ori Massif magmas, another mechanism 

(or mechanisms) in addition to crystal fractionation may have played a role (e.g. 

polybaric fractionation and internal magma mixing of magma batches produced in the 

course of magma ascend). The glass compositions of the pillow lavas from the base of 

U1350A (orange triangles in Fig. I.4) are the most primitive ones found on the Shatsky 

Rise (8.1-8.5 wt% MgO, Sager et al., 2010; Sano et al., 2012) and have no compositional 

counterparts in Site U1347. Only one glass analysis available from the whole core of the 

Shirshov massif has a composition which is close to the less evolved lavas from the Ori 

massif (8 wt% MgO, Tab. I.3, Fig. I.4). However, it is slightly more differentiated, and in  
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Continued Table I.3: Glass major element compositions a  (EPMA) of selected glasses samples from Ori and Shirshov massifs and from the Ontong Java Plateau 
 

Sample H2O P T SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S Cl Total 

 (wt%) (MPa) (°C) (wt% (wt% (wt% (wt% (wt% (wt% (wt% (wt% (wt% (wt% (ppm (ppm  
    (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev)) (stdev))  
Ori Massif (324-U1350A)                
22R3 80-82 0.29 650 1205 48.77 1.5 15.46 10.82 0.16 8.37 12.11 2.28 0.15 0.05 994  791  98.64 
(IIc, 62)    (0.24) (0.04) (0.14) (0.27) (0.08) (0.15) (0.16) (0.04) (0.01) (0.05) (46) (24)  
24R1 135,5-137  0.33 635 1203 48.88 1.4 15.66 10.53 0.16 8.33 12.11 2.28 0.15 0.06 980  796  98.58 
(IIc, 86)    (0.34) (0.01) (0.22) (0.25) (0.03) (0.09) (0.25) (0.09) (0.01) (0.05) (58) (19)  
24R3 76-79 * 0.31 665 1207 48.66 1.3 15.73 10.77 0.14 8.45 12.17 2.19 0.15 0.16 792  892  100.95 
(III, 91)    (0.23) (0.04) (0.17)  (0.3) (0.06) (0.16)  (0.1) (0.15) (0.01) (0.08) (15) (21)  
 

Schirshov Massif (324-U1346A)               
8R1 56-60 0.56 400 1174 49.04 1.5 15.29 10.62 0.18 8.02 12.65 2.15 0.21 0.14 99 795  100.58 
    (0.07) (0.03) (0.14) (0.35) (0.03) (0.13) (0.05) (0.06) (0.01) (0.07) (18)  (8)  
Ontong Java Plateau                 
192-1184-A-39R-7,95 0.19 480 1212 49.98 0.78 15.42 9.74 0.17 9.33 12.73 1.73 0.07 0.05 922 778 99.51 
192-1185-B-5R-7,19 0.19 490 1213 49.72 0.73 15.51 9.85 0.16 9.33 12.83 1.71 0.07 0.08 818 936 99.73 
192-1185-B-9R-1, 55 0.21 440 1208 49.59 0.77 15.60 9.95 0.16 8.88 13.17 1.73 0.08 0.07 957 929 99.19 
192-1185-A 0.17 175 1178 51.07 1.03 14.23 10.61 0.19 8.06 12.60 2.10 0.10 0.00 705 1699 98.59 
192-1186-A-32R-3,68 0.23 110 1164 50.71 1.11 14.18 11.50 0.20 7.44 12.56 2.10 0.11 0.09 1041 740 99.06 
192-1183-A-57R-2,97 0.24 110 1161 51.05 1.20 14.28 11.37 0.21 7.28 12.28 2.12 0.10 0.09 1013 638 99.00 
192-1185-A-9R-3,88 0.14 90 1152 51.55 1.32 13.51 12.54 0.23 6.82 11.35 2.52 0.14 0.00 692 3171 98.21 
a All given glass compositions are an average of five measurements and normalized to 100 wt% total, the standard deviations (1σ) are given in brackets.  
The given total refers to the original sum of the measured element oxide concentrations. 
The stratigraphic and lithological units after Expedition Scientists 324 (2010) are given in brackets for samples from Ori Massif. 
The glass compositions of Ontong Java Plateau basalts are presented in Roberge et al. (2004) and Michael (2000). 
*The composition that was used as the starting composition for the modeling. 
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addition, it has higher K2O and lower Na2O concentrations, possibly indicating the source 

variability between the lavas from the two different massifs. 

5.2. Melting Conditions: Assessment from Glass Na2O and Ca/Al Corrected for 

Fractionation 

In comparison to EPR N-MORBs, basaltic glasses from Site U1347 exhibit the 

highest FeO, CaO, and CaO/Al2O3, and the lowest SiO2 and Na2O values at any given 

MgO. The Tamu Massif lavas (together with the Ori and Shirshov Massif magmas) are, 

therefore, noticeably different from typical EPR MORBs. In this sense, they closely 

resemble (with the exception of SiO2 and TiO2) compositions of magmatic liquids from 

the OJP. It is important to note, that Na2O and FeO contents in the Tamu Massif lavas are 

situated on the extension of the evolutionary trend defined by OJP basalts, probably 

indicating the existence of similar melting conditions for these two oceanic plateaus in the 

western Pacific.  

It has been shown (Klein and Langmuir, 1987; Langmuir et al., 1992) that there is 

a correlation between the melt Fe8 and Na8 parameters with depth and degree of partial 

melting respectively (Fe8 and Na8 are values of these oxides calculated for a MgO content 

of 8 wt% to remove the effect of fractional crystallization). The average Fe8 and Na8 

calculated for the OJP, and Tamu, Ori, and Shirshov massifs are: 2.1 and 10.5; 1.9 and 

10.3; 2.4 and 11; and 2.2 and 10.7 respectively. In this study we used the parameterization 

proposed by Niu and Batiza (1991) taking Na8 and Ca8/Al8 into account to estimate 

extents of partial melting. As illustrated in Fig. I.6 the low Na8 and high Ca8/Al8, as well 

as high Fe8 (and low Si8) parameters obtained for Tamu Massif magmas suggest a high 

melt fraction in the source and the formation of melts at very high pressure. For 

comparison, EPR N-MORB indicate lower melt fractions (Fig.I.6; only glasses with 7.5-
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8.5 wt% MgO are selected to minimize the error of fractionation correction). This 

observation is in agreement with the data of Sano et al. (2012) who demonstrated high 

(Ce/Yb)N and (Sm/Yb)N in normal-type basalts (from all major massifs of Shatsky Rise) 

and proposed that the melting beneath Shatsky Rise may have started in the garnet 

stability field, deeper than expected for N-MORB basalts, and stopped at the base of the 

lithosphere. However, the low Na8 and high Ca8/Al8 obtained in this study is close to that 

found in OJP and suggest higher degrees of partial melting (20-23%) than those proposed 

in the previous publication (~15% , Sano et al., 2012).  

5.3. Evidence for Low-Pressure Fractionation Processes: Comparison with 

Experiments 

The Harker diagrams (Fig. I.4) show that the tholeiitic rocks collected during 

Expedition 324 (U147A, U1350A) follow an evolutionary trend controlled by a MORB 

fractionation path along the Ol+Plag+Cpx cotectics. Comparing natural geochemical 

trends with experimental LLDs enables a rough estimation of the conditions prevailing 

 

Figure I.6: Fractionation corrected average values of Ca8/Al8 versus Na8 for the Tamu, Ori, and 

Shirshov Massifs of Shatsky Rise and OJP, in comparison to EPR MORBs with 7.5–8.5 wt% MgO. 

Ca8/Al8 versus Na8 were calculated following the approach of Niu and Batiza (1991). See text for details. 
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during fractional crystallization. For comparison, the results of crystallization 

experiments obtained at 1 atm by Walker et al. (1979) are shown in Fig. I.4 (black arrow 

in Fig. I.4). The starting composition investigated by Walker et al. (1979) was a natural 

glass from the Mid-Atlantic Ridge (MAR, Oceanographer Fracture Zone), which has a 

composition similar to the most primitive composition of Shatsky Rise (e.g. from Site 

U1350). However, it is not exactly the same, because FeO is lower and Na2O is highe). 

For most major elements, the observed experimental LLDs follow an evolutionary trend 

parallel to that defined by the natural Shatsky Rise basaltic glasses. Since the experiments 

of Walker et al. (1979) were performed at 1 atm along the FMQ oxygen buffer, the low 

pressures during differentiation of the Shatsky Rise magmas seem to be confirmed. 

Similar LLDs were observed for OJP initial composition at 1 atm and 190 MPa (also dry 

and FMQ redox conditions, blue arrows in Fig. I.4, Sano and Yamashita, 2004). However 

the pressure-sensitive CaO/Al2O3 ratios observed in the Shatsky Rise magmas exhibit 

values even higher than those produced at 1 atm. This would imply that the fractionation 

processes occurred at  pressures lower than 1 atm, which is unrealistic and which 

emphasizes that the compositional differences in the parental melts need to be considered 

and that simple qualitative comparisons with experiments performed on materials of 

similar but slightly different compositions may not be conclusive. 

5.4. Evidence for Low-Pressure Fractionation Processes: LLDs for the Most 

Primitive Shatsky Rise Glass Composition  

The evolution of CaO/Al2O3 as a function of MgO in the natural U1347 glasses is 

shown in Fig. I.7a and compared to LLDs calculated assuming ideal fractional 

crystallization of a less-differentiated Shatsky Rise glass composition (Sample 324-

U1350-24R3-76-79 cm, Site U1350). By varying pressure and initial H2O content, several 

isobaric LLDs have been simulated. The best fit between natural and modeled LLDs was 
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obtained at 100 and 200 MPa with 0.3 wt% H2O in the parental composition (Fig. I.7a). If 

the initial H2O contents are higher, pressure must be lower to produce a better match 

between the natural and calculated LLDs (see for example LLD at 200 MPa with 0.6 wt% 

H2O which is off the natural trend, Fig. I.7a). It should be noted that the evolved natural 

compositions scatter around the modeled LLDs and form some clusters well correlating 

with the groups I-V defined above. This can be attributed to independent evolutionary 

histories with different initial crystallization conditions for each chemical group (Fig. 

I.7a, see discussion below).  

It is emphasized that the initial H2O content of 0.3 wt% used for the calculations is 

realistic, considering that these concentrations have been determined in the quenched 

MgO-rich glasses of the Ori Massif (Tab. I.3). Thus, they represent maximum H2O 

concentrations present in the basaltic primary melts. The magmatic origin of the dissolved 

H2O determined in the quenched glasses is confirmed by the general positive correlation 

between K2O and H2O concentrations in the glasses and the relatively constant H2O/K2O 

ratio within the groups (see below). 

5.5. Magma Storage Conditions Prior to Eruption: Evidence for Successive 

Magma Cycles 

Using the inverse modeling approach (Almeev et al., 2008) the P-T conditions at 

which basaltic melts are in equilibrium with Ol+Plag+Cpx were determined for the whole 

dataset of glass compositions from Site U1347 (39 samples). H2O contents determined in 

the glasses by FTIR were assumed to be magmatic, thus affecting the mineral 

crystallization temperature. The obtained temperatures and pressures range between 1100 

and 1150°C and 0.1 and 240 MPa respectively, and are shown in Fig. I.8. On the basis of 

the stratigraphic position and major element compositions, distinct P-T paths of magma  
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Figure I.7: (a) CaO/Al2O3 as a function of MgO content in the glasses from Sites U1347 and 

U1350. For comparison natural EPR MORB compositions (gray diamonds) are shown. The different 

symbols correspond to samples of the different Groups (I–V, see also Figure I.2 and text for details). Lines 

with arrows show the LLDs modeled under isobaric conditions with different initial H2O contents 

(fractional crystallization along FMQ calculated using COMAGMAT model (Ariskin and Barmina, 

2004)). (b) Symbols are similar to Figure I.7a, but the lines with arrows show the LLDs for polybaric 

crystallization simulating three different rates of ‘‘magma ascend’’: 10 MPa (open diamonds), 15 MPa 

(circles), and 20 MPa (open triangles) decrease of pressure per 1% crystallization. Numbers along the 

LLDs indicate the pressure decrease and the increase of degree of crystallization. 
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evolution can be observed for each group. In general, within each group, the estimated P-

T conditions decrease with the MgO content of glasses (when a representative number of 

analyses is available) (Fig I.8):  

Group I: 110-60 MPa, 1125-1115°C, ~0.3-0.6 wt% H2O 

Group II: ~25 MPa, ~1100°C, ~0.5 wt% H2O 

Group III: 210-90 MPa, 1150-1135°C, ~0.1-0.2 wt% H2O 

Group IV: 60 MPa - 1 atm, 1120-1100°C, ~0.5 wt% H2O 

Group V: 210-40 MPa, 1135-1115°C, ~0.2-0.5 wt% H2O 

Although the calculated temperatures and pressures vary within a relatively small 

range compared to the error of the method (±15°C, ±50 MPa), clear systematic changes of 

the thermodynamic conditions are observed within groups I to V (Fig. I.8). These 

differences in geochemistry and magma storage conditions between the groups along the 

profile most likely indicate individual crystallization histories for the magma batches 

which formed each unit. Keeping in mind that only a few glass samples were found in 

groups II and IV, and therefore P-T estimates need to be considered with caution, we can 

conclude that at least three different cycles can be clearly identified.  

Each of those cycles is composed of an initial stage with eruption of less evolved 

MgO-rich high-T magmas stored at deeper levels, and a subsequent shift to more 

differentiated low-T conditions with magmas undergoing crystallization at shallower 

depths on their way towards the surface (Fig. I.2). For example, the Site U1347 stack of 

pillow basalts (Upper to Lower Pillow Lava Section, Units X, XII, and XIV) recorded 

two eruptive pulses (groups III and V) with evidence of prolonged polybaric 

crystallization. These pulses are interrupted by an interval representing a relatively long 
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period without magmatic activity (intercalated sedimentary layer with an estimated 

thickness of ~ 6m). In addition, the second younger pulse is characterized by the eruption 

of ~ 15-20°C hotter and slightly drier basaltic melts, indicating the arrival of a new, less-

differentiated magma batch. 

The Group IV and Group II samples formed under lower P-T conditions and 

exhibit major element compositions which indicate that the magmas could represent 

evolved final products of the underlying magmatic pulses (Group V and Group III 

magma, respectively). In any case, these final Group IV and Group II eruption events 

might have been equilibrated at very shallow depths prior to eruption. 

 

Figure I.8: Modeled P-T conditions of Ol+Plag+Cpx saturation for individual glass samples. The 

different symbols correspond to the different groups from Tamu Massif (I–V, see also Figure I.2) and the 

most MgO-rich glasses of Ori Massif (orange triangles), and Shirshov Massif (light green diamond), as well 

as glass compositions from OJP (filled crosses, after Roberge et al., 2004). Open green triangles (Group II) 

represent glasses determined in Sano et al. (2012). See text for details. On the right hand side, the 

topographic map (Expedition 324 Scientists, 2010; Fig. I.1) is shown in a sketch of the potential magma 

plumbing system beneath the Shatsky Rise. 
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The Group I magmas represent the third cycle of magmatic activity, when most of 

the Upper Massive Basalt Flow 1 and Upper Massive Basalt Flow 2 (Expedition 324 

Scientists., 2010) were continuously erupting with nearly constant major and trace 

element compositions and minor changes in P-T conditions.   

Our data are in good agreement with a recent study of (Sano et al., 2011), who 

presented a petrographic study of basalts from EPR (ODP Hole 1256D). They found 

cyclic variations in Mg# in bulk magma compositions along the drilled core. Oscillatory 

zoned Plag indicate several injections of magma pulses, followed by differentiation and 

possibly magma mixing. It was shown that fast-spreading ridges with high melt supply 

and well established melt lenses are usually characterized by a larger diversity in erupted 

magma compositions due to the longer retention time (Sinton and Detrick, 1992). This 

fast spreading systems are also characterized by effective magma mixing of ascending 

magma strains which cause buffering of differentiation.  

In the case of Shatsky Rise, most erupted magmas are evolved with 5 to 6.7 wt% 

MgO (from both Tamu and Ori Massif), indicating that their parental melts already 

experienced intense fractionation until they reached the shallow levels where the main 

differentiation has proceeded. The eruption of primitive basalts (> 8.5 wt% MgO) beneath 

Tamu was not observed. However, primitive compositions were recorded in the lowest 

part of the core from Ori massif. Assuming that the Tamu Massif primitive melts are 

similar to those from Ori, one can see that there is a clear compositional gap between the 

evolved and less differentiated compositions in the interval of 6.7-8 wt% MgO (Fig. I.3). 

This indicates that the basaltic magmas from Tamu and Ori Massifs seem to reflect a 

steady state of the shallow level magma chamber, which is episodically refilled by 

magmas originated in a deeper magma reservoir. The accompanying mixing wipes out 
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primitive characteristics of the magmas. This steady state, however, can be interrupted by 

the eruption of more mafic magmas which is observed for example in the lowest (and 

hence oldest) part of the core at Ori Massif (Site U1350). Thus, the steady state 

conditions of the magma chamber(s) are recorded only for the late magmatic stages of the 

massif growth (Tamu and Ori). 

5.6. Polybaric Trend of Magma Evolution: the Genetic Link Between Tamu and 

Ori Massif Magmas 

Using the inverse modeling approach described above we simulated the conditions 

of partial crystallization for four less differentiated Shatsky Rise compositions and 

determined pressures (depth) of a deep magma reservoir discussed above. As shown in 

Tab. I.3 and Fig. I.8, the most MgO-rich melts from Ori (with 0.3 wt% H2O) and 

Shirshov (with 0.56 wt% H2O) massifs are saturated with Ol+Plag+Cpx at ~650 MPa and 

1205°C and at ~400 MPa and 1174°C respectively. Taking into account, that the most 

MgO-rich magmas from Ori Massif have the highest Cl/K ratios, which is indicative of 

assimilation, those magmas are possibly less hydrous, leading to even higher calculated 

pressures of partial crystallization (~800 MPa). This implies that, if primitive Shatsky 

Rise melts are saturated with Cpx and accumulated at depth under 600-800 MPa (~18-25 

km), their subsequent evolution must have proceeded via polybaric crystallization during 

magma ascend. Isobaric crystallization of these melts at high pressures results in a strong 

depletion of CaO/Al2O3 in the residual melts which drives the compositions far away 

from the field of natural Shatsky Rise evolved compositions (note 650 MPa isobar in Fig. 

I.7a). In contrast, the modeled polybaric fractionation trends calculated for the Ori Massif 

primitive compositions drive the residual melts towards the differentiated Shatsky Rise 

glass compositions. These fractionation trends are shown in Fig. I.7b and were modeled 

applying an initial pressure of 650 MPa and 0.3 wt% H2O in the melt and three different 
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rates of pressure decrease per 1% of crystallization (dP/dΦ= 10, 15 and 20 MPa/1%, 

where P is pressure and Φ is crystallization degree, see also Almeev et al., 2013). 

The two-level magma plumbing system proposed for the Shatsky Rise as a 

complex system of interconnected magma chamber(s) located at 18-25 km and <6 km 

(Fig. I.8), is similar to that assumed beneath OJP. Using the crystallization models of 

MELTS (Ghiorso and Sack (1995) and Weaver and Langmuir (1990)) respectively, 

Farnetani et al. (1996) and Michael (2000) demonstrated that crystallization beneath OJP 

took place in two stages, with crystallization of parental picritic magmas at Moho levels 

(800 MPa, Kroenke type Fitton and Godard, 2004, Roberge et al., 2004) followed by final 

crystallization in the uppermost crust (1atm-200 MPa, Kwaimbaita and Singgalo type, 

Fitton and Godard, 2004, Roberge et al., 2004, Kinman and Neal, 2006). But, in contrast 

to Shatsky Rise, the OJP magmas were probably slightly (~ 30°C) hotter (see our original 

calculations of P-T conditions for representative OJP glasses in Fig. I.8). It should be 

noted, however, that in both cases, about ~60-65% crystallization from the most primitive 

(~8-9 wt% MgO) melts is required to attain Shatsky Rise or OJP fractionated 

compositions with ~5-6 wt% MgO. Such large volumes of precipitated gabbro are 

responsible for the formation of the thick crust beneath Shatsky Rise and Ontong Java 

oceanic plateaus. 
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Figure I.9: The concentrations of 

incompatible trace elements in glasses show an 

increase with decreasing MgO content. The different 

colors of the symbols refer to the different Groups I–V 

(for meaning of the symbols, see Fig. I.2). Open 

symbols represent glasses determined in Sano et al. 

(2012). 

5.7. Contribution from Trace Element Distribution along the Hole 1347A  

We used incompatible trace elements to confirm the genetic relations between the 

different cycles and groups identified in the Tamu Massif basalts. As displayed in Fig. I.9, 

the incompatible elements (K2O, H2O, P2O5) are enriched during differentiation and show 

a negative correlation with MgO content. This leads to the assumption that all magmas 

recovered in U1347A are genetically related. However, a detailed analysis of the trace 

element ratios (Zr/Ti and H2O/Ce) reveals slight differences between the different groups 

along the profile (Fig. I.10). Within each cycle the ratio of two incompatible elements 

such as Zr/Ti is nearly constant, suggesting that the evolution is controlled by crystal 

fractionation. The same observation is valid for H2O/Ce (similar incompatibility; 

Michael, 1988; Hess, 1992). The different Zr/Ti observed for the different groups 

indicates that the primitive melts for each magma batch were generated under slightly  



Dissertation of Anika Husen 

 
Part I: Geothermobarometry of Basaltic Glasses from the Tamu Massif, Shatsky 

Rise Oceanic Plateau 

 57 

 different melting conditions (melt fraction, P-T melting conditions) and that the primary 

melt H2O content may have been different (different  H2O/Ce ratios; Fig. I.10). It is 

emphasized that the H2O/Ce range determined in this study is in the same range as that 

observed in the Pacific region (between 155 and 213 ±40 for each region; Michael, 1995). 

Thus, if the differences seen in magmas from the different magmatic episodes along the 

Hole U1347A do not result from small-scale primitive magma variability (as a result of 

Figure I.10: Evolution of the Zr/Ti, H2O/Ce, and H2O/K2O ratios along the U1347 profile. The Ti, 

Ce, and Zr concentrations in glasses analyzed by Sano et al. (2012) were used to calculate the ratios. The 

H2O and K2O concentrations are from glasses in this study. It is emphasized that the ratios were determined 

using samples collected at a very similar depth, but which were not identical (it is assumed that both 

samples represent the same lava flow). Symbols as in Fig I.2. 
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slightly different sources), these magmas should have originated in the same source 

reservoir, where the P-T conditions as well as parental melt H2O content must have been 

different.   

6. CONCLUSIONS 

Our new dataset from Site 1347 complements previous data from Sano et al. 

(2012) and shows that the basaltic samples from Tamu Massif are located within the 

compositional range of global N-MORB. They are also located on the trend defined by 

basaltic magmas from other LIP, e.g. Ontong Java Plateau. Basaltic magmas from Site 

U1347, considered together with less-differentiated basalts from Site U1350, range within 

the EPR MORB field and follow a common tholeiitic trend of magma differentiation. 

Fractionation-corrected low Na2O and high FeO contents in the Tamu Massif magma 

compositions can be attributed to higher melt fractions in the source (~20-23%) produced 

at depth within the garnet stability field. We have identified several compositional groups 

along the core of Site U1347, which may be related to small scale source variability 

and/or to differences in melting conditions. The Tamu Massif magmas were stored in 

magma chambers at pressures below 200 MPa and differentiated enroute to the surface. 

We identified at least two complete magmatic cycles comprised of (1) the arrival of less 

evolved magmas originating in magma reservoir(s) in the lower crust (18-24 km), (2) 

their subsequent polybaric crystallization in the course of the magma ascend, 

accumulation and further evolution within shallow magma chambers (<6 km) followed by 

eruption and (3) a time of inactivity. Occasionally, the primitive magmas could also reach 

the surface from depth without significant modification (at least for Ori and Shirshov 

Massifs these magmas have been recorded in cores). Within each magmatic pulse, in 

shallow magma chambers we also observed changes in magma storage conditions from ~ 
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200 MPa to 1 atm and from ~ 1150 to ~ 1100°C, which is recorded in the chemistry of 

basaltic glasses. These very low pressures of partial crystallization (1 atm - 50 MPa) 

obtained for ~20% of the samples from Tamu massif together with their very low CO2 

contents indicate very shallow depths of Shatsky Rise magma eruption, which is in a 

good agreement with on-board studies of sedimentary layers which contain evidences of 

shallow submarine or even subaerial conditions. Although the absolute depth and 

temperatures of partial crystallization determined for the lavas of Shatsky Rise and 

Ontong Java plateaus are slightly different, both plateaus exhibit the presence of deep and 

shallow magma reservoirs with extensive crystallization, suggesting similarity in the 

construction mechanism of the ocean plateau lithosphere. 
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Part II: The Role of H2O and 

Pressure on Multiple Saturation 

and Liquid Lines of Descent in 

Basalts from the Shatsky Rise  

 

A modified version of this part is submitted to the Journal of Petrology: The Role 

of H2O and Pressure on Multiple Saturation and Liquid Lines of Descent in Basalts from 

the Shatsky Rise. Husen, A., Almeev, R. R., Holtz, F. 

 

1. ABSTRACT 

Crystallization relations of three synthetic starting compositions (AH6: 8.6 wt% 

MgO, AH3: 8.0 wt% MgO, AH5: 6.4 wt% MgO) representing evolved and primitive 

tholeiitic basalts from the Shatsky Rise oceanic plateau, were experimentally determined 

in internally heated pressure vessels (IHPV) at 1075-1225°C and 100, 200, 400, and 700 

MPa. We used graphite-platinum double capsules and Fe pre-saturated AuPd capsules in 

order to avoid Fe-loss. Graphite-platinum double capsules led to (1) redox conditions in 

IHPV buffered along the C-CO (carbon–carbon oxide) oxygen buffer and (2) nearly 

anhydrous conditions (<0.15 wt% H2O). In Fe pre-saturated AuPd capsules, we attained 

fO2 around the FMQ buffer and slightly higher H2O contents (0.4-1.1 wt%).  



Dissertation of Anika Husen 

 
Part II: The Role of H2O and Pressure on Multiple Saturation and Liquid Lines of 

Descent in Basalts from the Shatsky Rise 

 66 

At almost anhydrous conditions, the most MgO-rich basalt AH6 shows the 

crystallization sequence olivine, olivine+plagioclase, and olivine+plagioclase+ 

clinopyroxene (Ol+Plag+Cpx) at all investigated pressures. This was also observed in the 

intermediate composition AH3 at 100, 200 and 400 MPa. In contrast, at 700 MPa, this 

sequence was completely reversed in the basalt AH3 and the conditions of multiple 

saturation were assumed to be reached at 400 MPa at nearly dry conditions. In the 

evolved basalt AH5, Cpx crystallized first at all experimental conditions, followed by 

Plag. The subsequent Ol crystallization was observed only at pressures of 100, 200 and 

400 MPa. The presence of small amounts of H2O did not change the crystallization 

sequences but additionally magnetite (Mag) was observed in the latest stage of 

crystallization (Fcryst>0.6). The Cpx proportion is strongly increasing with increasing 

pressure and with the addition of H2O, when phase assemblages of similar crystallization 

degree are compared.  

Our experiments demonstrate that the presence of small amounts of H2O (~ 0.4 – 

1.1 wt% H2O) affect significantly the crystallization of Ol, Plag and Cpx and with this the 

liquid lines of descent (LLDs). The significance of small amounts of melt H2O is 

emphasized, because we show that the effect of the addition of 0.4 wt% H2O on the LLDs 

is almost similar to what would be caused by a pressure increase of ~300 MPa. 

Furthermore, we demonstrate that H2O contents in mid-ocean ridge basalt (MORB) melts 

cannot be neglected, because recent experimental studies under anhydrous conditions led 

to SiO2 depletion during differentiation (e.g. Bender et al., 1978; Whitaker et al., 2007; 

Grove et al., 1992) and therefore could not reproduce the typical tholeiitic differentiation 

trend. The comparison of the experimental residual liquid compositions saturated with 

Ol+Plag+Cpx to natural Shatsky Rise basaltic glass compositions, implies that natural 

magmas were equilibrated at low pressures (<200 MPa). However, the LLDs produced 
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from different starting compositions but at similar pressures demonstrate that higher 

pressures are needed to reproduce the natural magmatic trends. This implies that the 

natural trends are most likely formed as a result of polybaric, rather than isobaric 

fractionation, and that the crystallization might have proceeded under slightly hydrous 

conditions.  

2. INTRODUCTION 

Many experimental studies on MORB-like compositions were conducted in the 

last decades. Those provide a large dataset which helps understanding the differentiation 

mechanisms within the oceanic crust beneath mid-ocean ridges (MOR). Additionally they 

are used as a database for thermodynamic models, which provide a sufficient method for 

the estimation of differentiation temperatures and pressures (P-T). However, the available 

dataset is limited by two main factors: (1) pressure and (2) H2O activity.  

(1) Pressure: Considering that most fractionation at MOR occurs within the 

oceanic crust (1-6 km, 50-200 MPa, e.g. Purdy et al., 1992), this pressure range is barely 

represented by the experimental database. Most experiments were conducted at 

atmospheric pressure or at higher pressures using piston cylinders (>1 GPa). Mainly the 1 

atm experiments were used for implications on MOR systems, assuming that the small 

pressure difference would have a minor effect on the results (Walker et al., 1979). In 

contrast to this, most geobarometers are calibrated in a much higher pressure range, 

which is not relevant for upper crustal levels. They are mainly based on piston cylinder 

experiments, like e.g. Herzberg (2004), Villiger et al. (2007), and Yang et al. (1996). The 

extrapolation of those barometers lead to valuable data, but with low accuracy (±100-200 

MPa), because, as shown e.g. by Bender et al. (1978), pressure has a strong influence on 
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Cpx stability, causing earlier crystallization (at higher temperatures) of Cpx at higher 

pressures.  

(2) H2O: Most experiments were conducted without cosidering the role of H2O 

contents. Typically, H2O concentrations in MORBs are low (<0.1-0.8), as presented e.g. 

by Michael (1995), Danyushevsky (2001), and Sobolev & Chaussidon (1996). However, 

already trace amounts of H2O have a significant effect on the phase stabilities of mineral 

phases (e.g. Michael & Chase, 1987; Danyushevsky et al., 1996; Almeev et al., 2007; 

Almeev et al., 2012). This is not taken into account in 1 atm experiments, because 

volatiles are almost not soluble in melts at such conditions. In contrast, small amounts of 

H2O are always generated during high pressure experiments using noble metal capsules 

(also in nominally dry experiments; Holtz et al., 2001; Truckenbrodt & Johannes, 1999). 

These are usually not determined and thus neglected (Sano & Yamashita, 2004).  

With our new data, we complement the database for intermediate pressure 

conditions. We provide data showing the influence of pressure and H2O on phase 

equilibria in a range, which is relevant to crustal processes. With our higher pressure 

experiments (400 and 700 MPa), we simulate conditions for regions where the oceanic 

crust is thickened, like at oceanic plateaus. We applied an experimental approach on 

representative compositions of the Shatsky Rise oceanic plateau to contribute new data to 

the characterization of the magma storage conditions beneath the plateau. Our 

experiments simulate isobaric differentiation in the Shatsky Rise basaltic compositions at 

different pressures while controlling the H2O concentrations in a very low range (<1 

wt%). The results were used (1) for the characterization of the effect of pressure and H2O 

on phase stabilities and LLDs, and (2) for comparison with natural MORBs, including a 
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more detailed discussion of the Shatsky Rise basaltic glasses, to gain information about 

their magma storage conditions. 

3. SHATSKY RISE 

The Shatsky Rise has a volume of 4.3 x 106 km3 (Sager et al., 1999) and consists 

of three different Massifs (Tamu, Ori and Shirshov Massifs). The emplacement of those 

large volumes of basaltic magmas result in massive volcanic complexes and locally 

thickened crust. Korenaga & Sager (2012) describe a crustal model with more than 30 km 

thickness of the oceanic crust at Shatsky Rise. After Sager et al. (2013) the Tamu Massif 

is formed rapidly in a short period, leading to the assumption that the whole Massif was 

formed by one single volcano, which is assumed to be the largest on earth.  

The basaltic glass compositions recovered during Integrated Ocean Drilling 

Program (IODP) Expedition 324 on the Shatsky Rise oceanic plateau were described e.g. 

by Sano et al. (2012) and Husen et al. (2013) and their chemical compositions are 

illustrated in Fig. II.1. They are tholeiitic basalts ranging in the field of East Pacific Rise 

(EPR) MORBs, although they have distinctively high FeO concentrations and are low in 

Na2O and SiO2. Additionally, the more evolved Shatsky Rise lavas (MgO<6.5 wt%) have 

the highest CaO/Al2O3 ratios known for MORBs. Compared to other oceanic plateaus e.g. 

the Ontong Java Plateau (OJP) and Kerguelen, the Shatsky Rise basalts follow similar 

crystallization trends (e.g. Expedition 324 Scientists, 2010; Sano et al., 2012; Husen et al., 

2013). In general, previous studies (Sano et al., 2012; Husen et al., 2013) showed that the 

magmas erupted on Shatsky Rise have differentiated in shallow depth at Ol+Plag+Cpx 

cotectics.  
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Caption →  
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The water concentrations in the basaltic glasses, determined by (Husen et al., 

2013), are low and range between 0.2 and 0.6 wt% H2O (H2O increases with progressive 

differentiation), which resembles typically low values compared to global MORBs 

(Danyushevsky et al., 2000; Sobolev & Chaussidon, 1996).  

However, the Shatsky Rise oceanic crust is strongly thickened causing a long 

distance between the upper lithospheric mantle and the sea floor and thus, intense 

fractionation during ascent. Thermodynamic modeling using the COMAGMAT program 

(Almeev & Ariskin, 1996; Ariskin, 1999; Ariskin & Barmina, 2004), applying the 

approach of Almeev et al. (2008) indicated a multi level magma plumbing system, where 

fractionation occurred in different crustal levels (Husen et al., 2013), beneath Shatsky 

Rise. 

4. METHODS 

4.1. Starting Materials 

The three starting materials used in our experiments are synthetic analogues of 

natural Shatsky Rise basaltic glasses recovered during IODP Expedition 324 (Expedition 

324 Scientists, 2010). The most MgO-rich starting glass AH6 (8.6 wt% MgO), represents 

 

Figure II.1:  Displayed are the basaltic glass compositions from the Shatsky Rise and the whole range of 

natural EPR MORBs (grey points, PetDB, http://www.earthchem.org/petdb). Shatsky compositions from 

Tamu (Site U1347A – dark grey dots, Husen et al., 2013) and Ori Massif (Site U1350A – open triangles, 

Sano et al., 2012) are distinguished by symbols. For comparison also the synthetic starting compositions 

(AH3, AH5, AH6, black stars) used in this experimental study are displayed. 
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an average composition of 15 Ol-hosted melt inclusions from moderately altered Ol-

phyric basalts, cored at the Ori massif (sample 324U1349-12R4/37-39; Almeev et al., 

2011). The original partly-crystallized inclusions were re-homogenized to a homogeneous 

glass by re-heating and quenching. Further, they were corrected to be in equilibrium with 

the host Ol using the Petrolog software (Danyushevsky and Plechov, 2011). The 

intermediate starting material AH3 (8.0 wt% MgO) is an analogue of the most MgO-rich 

natural glass recovered at the Ori Massif (sample 324U1350A-24R-3-44/47; Sano et al., 

2012). The AH5 starting composition (6.4 wt% MgO) represents the most MgO-rich 

natural glass compositions cored at the Tamu Massif (sample 324U1347A-19R-1-78/85; 

Sano et al., 2012). At this massif, only evolved basaltic lavas were found (Sano et al., 

2012; Husen et al., 2013). 

Each starting glass was prepared from a mixture of pure element oxides (SiO2, 

TiO2, Al2O3, Fe2O3, MnO, P2O5, Cr2O3) and carbonates (CaCO3, Na2CO3, K2CO3). The 

Cr2O3 was added only to the most MgO-rich starting material AH6, considering that in 

the evolved glasses its concentration is negligible. The powders were melted for 3 h in a 

Pt crucible at 1600°C and 1 atm in air. These melts were quenched to a glass by placing 

the crucible into a H2O bath. Glasses were ground coarsely (<1mm) and re-melted for 

another 3 h to ensure the homogeneity of the starting materials. The compositions and 

homogeneity of the basaltic glasses were verified by electron microprobe (40-80 points). 

Finally, the glasses were crushed in a mortar and sieved to grain sizes of 75-125µm. The 

starting compositions are given in Tab. II.1 and are displayed in Fig. II.1 and the 

following figures as black stars. 
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4.2. Experimental Setups 

To address the influence of small amounts of H2O on phase relations, two sets of 

experiments with different capsule setups were utilized. In the first set, which is defined 

throughout the paper as "dry", the experimental charges were run in graphite-lined Pt 

double capsules. The top of the graphite capsule was closed with graphite powder to 

minimize the free volume. As an initial source of a COH-fluid, Ag2C2O4 was added to the 

graphite capsule along with glass powder. The outer Pt-capsule was shut by point welding 

at both ends. The use of the inner graphite capsule protects the experimental material for 

Fe-loss to the noble metal capsule (Thompson & Kushiro, 1972) and also leads to almost 

anhydrous conditions during the experiment due to very low fH2O in the fluid in the 

presence of graphite (Holloway et al., 1992). Thus, the fO2 in these experimental charges 

was buffered by the COH-fluid and estimated to be around FMQ-1 to FMQ-2 (e.g. Ulmer 

& Luth, 1991; Jakobsson & Oskarsson, 1994; French & Eugster, 1965). Determinations 

of Fe-speciation in our superliquidus runs using the colorimetric method described by 

Schuessler et al. (2008) showed that >90% of the total Fe was present as Fe2+ (Tab. II.2). 

This indicates redox conditions in the dry experimental set to be below or around FMQ-1. 

 Table II.1: compositions of the starting glasses 
 

 AH6 AH3 AH5 
SiO2 47.70 49.25 50.22 
TiO2 0.89 1.45 1.99 
Al2O3 16.76 15.64 13.74 
FeO

T
 9.51 10.47 12.36 

MnO 0.19 0.17 0.41 
MgO 8.62 7.99 6.41 
CaO 13.80 12.16 11.81 
Na2O 2.28 2.49 2.62 
K2O 0.10 0.18 0.21 
Cr2O3 0.09 - - 
P2O5 0.05 0.20 0.22 
Total 100.0 100.0 100.0 
MGN# 0.62 0.58 0.48 
CaO/Al2O3 0.82 0.78 0.86 

Glass measurements in wt%, normalized to  
100 wt% total (given total refers original value) 
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In some (failed) experiments we observed pure iron droplets (Fe0) precipitated from the 

basaltic melts indicating extremely reducing conditions. These charges were not properly 

shut by welding, which resulted in maintaining of an atmosphere of carbon and argon 

(pressure medium, see below) with negligible amounts of H2 and O2 in those experiments. 

The typical range of melt H2O contents in dry experiments range from 0.04 to 0.14 wt%. 

For the second set of experiments, which we defined throughout this paper as 

"hydrous", we used conventional Au80Pd20 capsules. To avoid the problem of Fe-loss 

from the experimental charge into the capsule material (Hall et al., 2004), the Au80Pd20 

tubes were first pre-saturated with Fe, following the procedure from van der Laan & 

Koster van Groos (1991). The inner surface of the Au80Pd20 tubes was coated with Fe 

using an electroplating bath. The Fe-coated Au80Pd20 capsules were further annealed for 

12-24 h under reducing Ar-H2 atmosphere at 950°C and 1 atm. The amount of Fe in the 

capsule alloy was determined by the mass gain; it varied between 0.2 and 0.3 wt% 

metallic Fe. The Fe pre-saturated Au80Pd20 capsules were loaded with the starting 

material and Ag2C2O4 as a source of a CO2-rich fluid and shut by point welding.  

Before the experiment, all capsules were pre-pressurized at ~50 MPa to check for 

possible leaks. H2O was not added into the capsules, however it was generated in the 

experimental charges due to (1) the reaction of Fe reduction (starting glasses were 

produced in air logfO2 = -0.68) and (2) the re-equilibration of small amounts of intrinsic 

H2 with the CO2-fluid. It should be noted that the behavior of H2O in our experiments is 

not controlled by fractional crystallization. Similar to the dry set of experiments, the melt 

H2O is buffered by the fluid phase (COH in dry and H2O-CO2 in hydrous experiments) 

under experimental conditions. Therefore, due to the positive dependence of H2O and 

CO2 solubilities on pressure, in experiments performed at higher pressures we always 
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observed higher melt H2O contents. The typical range of melt H2O contents observed in 

our hydrous experiments range from 0.4-1.1 wt%. The redox conditions in the hydrous 

experiments were close or slightly above FMQ (based on evaluation of intrinsic redox 

conditions in internally heated pressure vessel; Schuessler et al., 2008). Our colorimetric 

measurements (Schuessler et al., 2008) of Fe2+/Fetotal ratios in the experimental products, 

which were run above or close to their liquidus (<15 %Fcrystal), show Fe2+ contents of 74-

83%. This corresponds to an fO2 between FMQ-1 and FMQ+1.5. 

4.3. Experimental Facility and Conditions 

The experiments were performed at pressures of 100, 200, 400, and 700 MPa and 

at temperatures between 1050°C and 1225°C with 25°C steps (1125-1225°C for dry 

experiments, 1050-1150°C for hydrous experiments). They were conducted in an 

internally heated pressure vessel (IHPV) pressurized with Ar (IHPV without Shaw 

membrane). A detailed description of the apparatus is given in Berndt et al. (2002). The 

pressure was measured using a strain gauge manometer with an uncertainty of about 2 

MPa. The pressure varied by ≤3 MPa during the experiments. The temperature was 

measured with four unsheathed S-type (Pt-Pt90Rh10) thermocouples over a length of about 

30 mm. In the most experimental runs the temperature varied by ±5°C. The temperature 

was continuously recorded using the software iTools. In each experiment, the three 

starting materials were run simultaneously. The capsules were first brought to the desired 

pressure (e.g. 100 or 700 MPa) and then heated isobarically from room temperature to the 

experimental run temperature with a ramp of 50°C/min. Thus, samples were taken 

directly to the final experimental conditions without high-temperature annealing, and the 

overheating did not exceed 10°C. The run duration varied from 46 to 108 hours (Tab. 

II.2). After the experiment, all charges were rapidly quenched with a quench rate of about 

150°C/s, which was sufficient to avoid quench effects.  
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4.4. Electron Probe Microanalysis  

The major element compositions of the starting and experimental glasses and the 

mineral phases were obtained using a Cameca SX100 electron probe micro analyzer 

(EPMA) (University of Hannover) operated at an accelerating voltage of 15 kV. For 

mineral analyses, a focused beam with a 15nA current was used. The peak counting time 

was 10s for all elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Ni, Cr). Glasses were 

measured with 10nA, using defocused beam (5 or 10 µm). The peak counting time for 

glasses was 10 seconds for Si, Ti, Al, Fe, Mn, Mg, Ca and Cr, and 8 seconds for the 

alkalis. Matrix effects were corrected after the method of Pouchou & Pichoir (1991).  

The following standards were used for the calibration: Fe2O3, MgO, TiO2, Al2O3, 

Cr2O3, albite (Na), orthoclase (K), wollastonite (Si and Ca), apatite (P), and hausmannite 

(Mn). During each microprobe session, analytical precision and accuracy was verified by 

measuring the Smithsonian Institution’s standard (Jarosewich et al., 1980): natural Juan 

de Fuca Ridge basaltic glass VG-2 (USNM 111240/52), San Carlos Olivine (USNM 

111312/444), Lake County Plagioclase (USNM 115900) and internal Cpx standard. The 

accuracy of the EPMA measurements under the conditions described above is discussed 

in Husen et al. (2013) in more detail.  

All glass analyses were normalized to 100 wt% to exclude the melt H2O content. 

The compositions of the experimental minerals and glasses were used in a mass balance 

calculation to determine the phase proportions (Stormer and Nicholls, 1978). Calculated 

modes are given in Tab. II.2 (wt %), together with the residual sum of squares to the fit 

(∑R2). Most fits were satisfying with ∑R2 < 0.3 (Tab. II.2). 
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Table II.2: Experimental conditions and phase assemblages for dry and hydrous experiments using three 
different starting materials.  
 

Run P, Mpa       T, °C  duration H2O error CO2 error Fe2+ Phases assemblage ∑R² 

 x                   (±5MPa)     (±10) (h) (wt%) H2O (ppm) CO2 FeTOTAL        (phase proportions)      x 

 

DRY 

 
starting material: AH 6         

ShR603 102 1150 65      Ol (10), Plag (33), Cpx (15), Gl (42) 0.01 
ShR616 103 1175 46 0.05 0.001 140 43  Ol (7), Plag (20), Cpx (4), Gl (68) 0.17 
ShR609 102 1200 46 0.05 0.001 259 7  Ol (1), Plag (4), Gl (94) 0.08 
ShR602 202 1150 108      Ol (11), Plag (40), Cpx (25), Gl (24) * 
ShR615 203 1175 73 0.08 0.002 486 42  Ol (5), Plag (18), Cpx (6), Gl (71) 0.05 
ShR617 203 1225 65 0.09 0.003 873 25 0.88 Gl (100)  
ShR601 401 1150 66 0.05 0.006 196 9  Ol (18), Plag (50), Cpx (32) * 
ShR619 402 1175 91 0.06 0.001 1123 97  Ol (7), Plag (29), Cpx (21), Gl (43) 0.03 
ShR605 402 1200 89 0.10 0.002 2102 243 0.97 Ol (4), Plag (15), Cpx (9), Gl (72) 0.03 
ShR620 402 1225 63 0.04 0.052 2736 71  Gl (100)  
ShR604 698 1150 60      Ol (16), Plag (44), Cpx (40) 0.33 
ShR606 700 1175 60      Ol (15), Plag (43), Cpx (41) 1.88 
ShR611 700 1225 60      Ol (1), Plag (13), Cpx (18), Gl (67) 0.12 
 

starting material: AH 3         

ShR322 101 1125 48      Ol (10), Plag (33), Cpx (17), Gl (40) 0.26 
ShR318 106 1150 65     0.98 Ol (8), Plag (27), Cpx (11), Gl (53) 0.12 
ShR316 105 1175 66 0.09 0.004 199 16  Ol (3), Plag (3),  (0), Gl (94) 0.09 
ShR315 102 1200 46     0.91 Gl (100)  
ShR324 203 1125 108 0.04 0.001 240 31  Ol (10), Plag (37), Cpx (19), Gl (33) 0.13 
ShR323 202 1150 73 0.06 0.005 272 29  Ol (8), Plag (25), Cpx (14), Gl (53) 0.20 
ShR305 202 1175 68      Ol (6), Plag (15), Cpx (4), Gl (75) 0.05 
ShR313 202 1200 65     0.98 Gl (100)  
ShR326 402 1125 66      Ol (17), Plag (49), Cpx (33) * 
ShR307 401 1150 91      Ol (8), Plag (39), Cpx (22), Gl (31) 0.54 
ShR304 402 1175 89 0.07 0.003 758 481  Ol (4), Plag (17), Cpx (12), Gl (67) 0.11 
ShR311 402 1200 63      Ol (1), Gl (99) - 
ShR310 698 1150 60      Ol (10), Plag (48), Cpx (40)  
ShR312 700 1175 60      Ol (6), Plag (32), Cpx (33) 0.26 
ShR314 700 1200 60 0.12 0.006 3615 272  Plag (14), Cpx (22), Gl (64) 0.23 
ShR317 700 1225 60 0.11 0.008 5152 177  Cpx (5), Gl (94) 0.16 
 

starting material: AH 5         

ShR520 101 1125 48 0.05 0.009 136 44  Cpx (2), Plag (17), Cpx (16), Gl (66) 0.09 
ShR506 102 1150 65 0.05 0.003 209 15  Cpx (1), Gl (99) * 
ShR518 103 1175 46 0.08 0.005 184 30 0.88 Gl (100)  
ShR512 102 1200 46     0.98 Gl (100)  
ShR519 203 1125 108 0.09 0.005 517 66  Ol (2), Plag (19), Cpx (18), Gl (61) 0.01 
ShR505 202 1150 73 0.08 0.004 775 61  Plag (3), Cpx (6), Gl (91) 0.10 
ShR502 202 1175 68 0.07 0.002 781 28 0.88 Gl (100)  
ShR510 202 1200 65 0.08 0.005 712 38  Gl (100)  
ShR522 402 1125 66      Ol (tr), Plag (30), Cpx (33), Gl (36) 0.09 
ShR504 401 1150 91 0.08 0.010 1347 94   Plag (17), Cpx (21), Gl (62) 0.30 
ShR501 402 1175 89 0.10 0.003 745 18  Cpx (5), Gl (95) 0.03 
ShR508 402 1200 63 0.12 0.008 1927 124 0.93 Gl (100)  
ShR507 698 1150 60      Plag (26), Cpx (38), Gl (36) 0.10 
ShR509 700 1175 60 0.07 0.008 2320 81  Plag (22), Cpx (25), Gl (53) 0.14 
ShR511 700 1200 60 0.14 0.011 4264 197  Cpx (9), Gl (91) 0.06 
ShR514 700 1225 60 0.09 0.007 3873 404 0.94 Gl (100) 

 

Ol - olivine, Plag - plagioclase, Cpx - clinopyroxene, Gl - glass, Mag - magnetite 
phase proportions were calculated via mass balance (Stormer & Nicholls, 1978) 
 Fe2+/Fetotal was determined by the colorimetric method published by Schuessler et al. (2008) 
* phase proportions were determined by image analysis (not by mass balance) 
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4.5. Fourier Transformation Infrared Spectroscopy (FTIR) 

Glass H2O and CO2 concentrations were determined using FTIR spectroscopy 

(Bruker IFS88 FTIR, University of Hannover; operation conditions: MCT narrow range 

detector, globar light source and KBr beamsplitter). For these measurements glass 

fragments from the experimental products with a size of approximately 1mm² were used. 

Table II.2: continued 
 
Run          P, Mpa   T, °C   duration H2O   error CO2 error Fe2+      Phases assemblage ∑R² 

 x            (±5MPa) (±10) (h)        (wt%)  H2O (ppm) CO2 FeTOTAL  (phase proportions)         x 

 

HYDROUS 
 

starting material: AH 6         

ShR660 102 1100  64       Ol (9), Plag (34), Cpx (25), Mag (tr), Gl (31) 0.01 
ShR662 105 1125  65  0.37 0.01    Ol (8), Plag (30), Cpx (20), Gl (42) 0.07 
ShR661 105 1135  89  0.54 0.02    Ol (6), Plag (21), Cpx (13), Gl (59) 0.15 
ShR663 108 1155  64       Ol (6), Plag (23), Cpx (13), Gl (58) 0.004 
ShR658 202 1075  64       Ol (11), Plag (49), Cpx (37), Mag (4) * 
ShR654a) 201 1103  70       Ol (9), Plag (49), Cpx (37) * 
ShR651a) 205 1125  65       Ol (6), Plag (25), Cpx (22), Gl (45) 0.18 
ShR665 402 1098  67       Ol (8), Plag (48), Cpx (40) 0.14 
ShR659 401 1100  70       Ol (9), Plag (48), Cpx (40), Mag (4) 0.50 
ShR657 401 1125  62       Ol (7), Plag (36), Cpx (34), Mag (2), Gl (21) 0.01 
ShR666 397 1150  63       Ol (5), Plag (35), Cpx (34), Mag (4), Gl (23) 0.02 
 

starting material: AH 3         

ShR360 102 1100  64  0.43 0.02 110 19  Ol (7), Plag (26), Cpx (17), Gl (51) 0.27 
ShR362 105 1125  65  0.48 0.02 273 46  Ol (6), Plag (20), Cpx (12), Gl (62) 0.11 
ShR361 105 1135  89      0.82 Ol (4), Plag (3), Cpx (1), Gl (92) 0.28 
ShR363 108 1155  64  0.51 0.02 749 39  Ol (2), Plag (3), Cpx (2), Gl (93) * 
ShR358 202 1075  64  0.48 0.02 359 89  Ol (8), Plag (32), Cpx (24), Gl (35) 0.09 
ShR354a) 201 1100  70  0.26 0.04    Ol (6), Plag (31), Cpx (25), Gl (37) 0.02 
ShR350a) 205 1125  65  0.75 0.04 104 23 0.79 Ol (5), Plag (13), Cpx (12), Gl (70) 0.30 
ShR351a) 204 1150  65  0.90 0.03 269 24 0.82 Gl (100)  
ShR359 401 1100  70  0.00 0.00    Ol (5), Plag (31), Cpx (30), Mag(1), Gl (33) 0.02 
ShR357 401 1125  62  0.00 0.00    Ol (4), Plag (26), Cpx (28), Gl (41) 0.04 
ShR366 397 1150  63  0.37 0.02 1583 60  Ol (4), Plag (25), Cpx (26), Gl (45) 0.57 
 
starting material: AH 5         

ShR560 102 1100  64  0.63 0.03 230 152  Plag (9), Cpx (15), Gl (76) 0.26 
ShR562 105 1125  65  0.73 0.02 436 33 0.81 Cpx (7), Gl (93) 0.12 
ShR561 105 1135  89  0.82 0.03 526 27 0.83 Cpx (1), Gl (99) * 
ShR563 108 1155  64  0.57 0.02 577 43 0.74 Gl (100)  
ShR558 202 1075  64  0.79 0.03 526 324  Ol (1), Plag (14), Cpx (24), Gl (63) 0.06 
ShR554a) 201 1100  70  0.63 0.03 47 18  Ol (1), Plag (15), Cpx (23), Gl (62) 0.00 
ShR550a) 205 1125  65  0.94 0.04 98 23 0.80 Cpx (11), Gl (88) 0.15 
ShR551a) 204 1150  65  1.12 0.03 82 25 0.82 Gl (100)  
ShR565 402 1098  67  0.56 0.01 342 9  Plag (25), Cpx (33), Gl (40) 0.10 
ShR559 401 1100  70  0.69 0.03 1512 77  Plag (19), Cpx (30), Gl (50) 0.31 
ShR557 401 1125  62  0.77 0.03 2441 143  Plag (10), Cpx (20), Gl (70) * 
ShR566 397 1150  63       Plag (9), Cpx (18), Gl (73) 0.17 

Ol - olivine, Plag - plagioclase, Cpx - clinopyroxene, Gl - glass, Mag - magnetite 
phase proportions were calculated via mass balance (Stormer & Nicholls, 1978) 
Fe2+/Fetotal was determined by the colorimetric method published by Schuessler et al. (2008) 
a)  experiments were performed without initial source of CO2-fluid (Ag2C2O4) 
* phase proportions were determined by image analysis (not by mass balance) 
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The glass fragments were mounted in epoxy mixed with Al2O3 granules and polished 

from both sides to a thickness of approximately 100 µm. The thickness was measured 

with a digital micrometer (Mitutoyo, precision: ≤2 µm). The spectrometer was coupled 

with an IR-Scope II optical microscope. Before the measurements, the quality of the glass 

volume was controlled for the presence of scratches, crystals, or other impurities (pores, 

bubbles etc.). The spectra obtained from glass volumes containing crystals were used only 

in the case if the targeted absorption peak could be clearly identified without evidences of 

interference with the absorption peak of molecular H2O at 1630cm-1 .The H2O 

concentration was determined at the peak which is attributed to the OH stretch vibration 

(3550 cm-1) (Stolper, 1982) using a molar absorption coefficient of 68 L•cm-1•mol-1 

(Shishkina et al., 2010). On each sample, three spectra were taken with a spot size of 100 

x 100 µm (every spectrum was the average of 50 scans). The density was assumed to be a 

typical value for dry basaltic glasses, 2815 g/l. The H2O concentration was calculated 

from the peak height, which was determined by referring a straight tangential base line. 

Because the CO2 is dissolved mainly as CO3
2- in basaltic glasses, we measured the 

absorption of CO3
2- which can be detected after Fine & Stolper (1986) at two peak 

positions at 1515 cm-1 and 1435 cm-1. We used a typical absorption coefficient of 607 

L•cm-1•mol-1 (Shishkina et al., 2010) for the calculation of the concentration of CO2 in the 

glasses based on the peak height at each position. The average of both calculated 

concentration values was used for further discussion of the dry experiments. In the case of 

our hydrous experiments, our calculation is based on the absorption at 1435 cm-1, because 

at higher H2O concentrations, the 1515 cm-1 peak led to systematically overestimated 

CO3
2- concentrations, due to the overlapping absorption band of molecular H2O at 1630 

cm-1 (e.g., Behrens et al., 2009; Botcharnikov et al., 2006; Shishkina et al., 2010).  
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5. RESULTS 

Experimental run conditions, phase assemblages, and their calculated proportions,  

and the glass H2O and CO2 contents are reported in Tab. II.2. Average glass compositions 

with standard deviations and the number of points averaged are reported Tab. II.3 and II.4 

for dry and hydrous experiments respectively.  Phase compositions and mineral–liquid 

exchange coefficients (KDs) are summarized in Tab. II.5 and II.6 (details can be found in 

the Appendix in Tabs. AII.1-AII.7). 

5.1. Experimental Products 

The applied temperature range allowed us to bracket the liquidus at dry conditions 

at nearly all pressures for all three starting compositions. In hydrous experiments, the 

liquidus was bracketed only at 100 and 200 MPa in AH5, and in AH3 at 200 MPa. All 

experiments contain a different proportion of liquid associated with idiomorphic crystals 

with varying sizes between 2 and 20 µm (Fig. II.2). The mineral phases found in the 

experimental products of all three starting compositions are Ol, Plag and Cpx, which 

reproduce well the natural phase assemblage of the natural basalts. In the primitive AH6 

and in the intermediate AH3 compositions, oxide phases were also observed (Mag). In 

both, dry and hydrous sets of experiments, bubbles were observed in all runs (black areas 

in Fig. II.2), indicating the presence of the fluid phase; thus all experiments are 

considered to represent fluid-saturated conditions with extremely low (dry) and low 

(hydrous) aH2O in the system. The high crystal fractions at lower temperatures impede 

the measurements of dissolved volatiles, thus it was only possible to determine H2O and 

CO2 concentrations in 60% of the samples (Tab. II.2). Also, it should be noted that those 

data which were obtained for samples with relatively high crystallinities (>30%) represent 

only minimum values, as the presence of crystals may change the absorption coefficient 

for IR waves and also decreases the targeted volume. Although the investigated range of 
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melt H2O concentrations (<1.2 wt% H2O) is generally low, the experimental setups used 

in our study allowed us to investigate the effect of H2O on phase equilibria in a scale of 

nearly one order of magnitude difference of the melt H2O: ~0.04-0.14 wt% H2O in dry 

and ~0.4-1.11 wt% H2O in hydrous experiments. 

5.2. Attainment of Equilibrium 

The experiments presented in this work are crystallization experiments with run 

durations between 46 and 108 h. According to the kinetic test of Freise et al. (2009) we 

expect, that equilibrium conditions were reached in our experiments. Freise et al. (2009) 

demonstrated near equilibrium conditions in an alkali basalt at 1100°C and 400 MPa 

under “nominally dry” conditions after less than three hours. However, the following 

observations indicate that our experiments were close to equilibrium conditions: 

(1) The crystallization experiments were conducted using glassy starting powder. 

All precipitated crystals are euhedral and evenly distributed within the experimental 

charges (Fig. II.2), and are homogenous in composition (see e.g. standard deviations in 

Tab. II.5 and II.6, and Tabs. AII.1-AII.7). All experiments were successfully mass 

balanced and the residual sum of squares (∑R²) are low (0.01 - 0.3, Tab. II.2) for the most 

of our experiments, indicating small differences between the calculated silicate 

compositions and the starting material. No quench, resorbed, zoned or sector-zoned 

crystals were observed amongst the experimental products. 

 (2) Crystal-liquid exchange coefficients (KD; Tabs. II.5 and II.6, and discussion 

below) are in general agreement with other high-pressure high-temperature phase 

equilibrium studies (Grove et al., 1992; Sano & Yamashita, 2004; Whitaker et al., 2007). 

The average Fe-Mg exchange distribution coefficients (KDFe-Mg=(XFe
xtl • XMg

liq)/ (XMg
xtl • 

XFe
liq) for Ol-liquid and Cpx-liquid equilibria are 0.28±0.02 and 0.22±0.03 for dry and 
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0.27±0.01 and 0.30±0.03 for hydrous experiments, respectively. Similarly, the average 

Plag-liquid Ca-Na exchange distribution coefficients (KDCa-Na=(XCa
xtl • XNa

liq)/( XNa
xtl • 

XCa
liq) are 1.0±0.2 and 1.17±0.3 for dry and hydrous experiments respectively. 

 (3) As reported above, to avoid the problem of Fe-loss to the capsule material 

(e.g. Berndt et al., 2005; Sisson & Grove, 1993), all capsules for our hydrous experiments 

 

Figure II.2: BSE images of selected 

samples illustrate the texture of the 

experimental run products: a) ShR324, b) 

ShR350, c) ShR619, d) ShR304, d) ShR501. 

Comparison of a and b (left column) shows the 

effect of H2O on the crystallinity at similar P-T

conditions. The right column displays 

experiments at similar P-T-H2O conditions 

using different starting materials. 
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were Fe pre-saturated. To prove that the Fe pre-saturation was successful and the pre-

saturated amount was correct, we conducted several super-liquidus experiments with 

various amounts of Fe pre-saturation. The glass compositions were checked for Fe-loss or 

gain afterwards. These test experiments showed that there was no significant change in 

the melt FeO content in the range of the applied pre-saturated Fe contents (0.2-0.3 wt% 

Fe in alloy). Measurements of the capsule materials after these experiments demonstrated 

that the incorporated Fe gradually decreased from the interface with the glass towards the 

outer rim of the capsule wall, which is an artifact of the Fe-coating via electroplating. 

However, as mentioned above, our mass balance calculations, revealed appropriate ∑R² 

values, showing little evidences of the melt Fe-loss (or gain back from the capsule) and 

proving that no significant interaction with the capsule material has occurred during the 

experimental treatment.  

Regarding the H2O contents, we also assume the attainment of equilibrium in our 

experiments. After Berndt et al. (2002) the osmotic equilibrium between the interior of a 

Au or Pd capsule (similar dimensions like in our experiments) and the surrounding 

pressure medium is reached after 1.5 h at 200 MPa. Furthermore, Berndt et al. (2002) 

state that, according to Chekhmir et al. (1985), the H2 diffusion through the noble metal 

rather than through the basaltic liquid is the limiting factor for fast equilibration. Thus, we 

expect that the final fH2O is reached after 1.5 h, which is clearly shorter than our 

experimental run durations. In the case of Berndt et al. (2002) non-equilibrium conditions 

were observed in chemical zoning in Ol due to short run durations (5h). Considering our 

(compared to Berndt et al., 2002) long run durations (<46h) and the absence of chemical 

zoning (short diffusion distances), we assume that our experimental phase assemblage is 

in equilibrium with the determined H2O concentrations. 
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5.3. Crystallization Sequence and Phase Relations 

The experimental crystallization sequences and the determined stability fields of 

the minerals for all three starting compositions and the two experimental setups are 

shown in P-T diagrams in Fig. II.3. From the top to the bottom of Fig. II.3, one can see 

the change of mineral stabilities with the change of initial melt composition. The effect of 

H2O on phase relations can be evaluated for each starting composition by comparison of 

the left (dry experimental setup) and the right (hydrous experimental setup) P-T diagrams 

in Fig. II.3. It should be noted, that the "hydrous" P-T diagrams also represent more 

oxidizing conditions (FMQ-1 to FMQ+1), than the "dry" P-T diagrams (FMQ-2 to FMQ-

1) (see experimental setups above). Below, we discuss phase relations for each starting 

composition, both for dry and hydrous experimental setups. 

5.3.1 AH6, 8.6% MgO 

Under dry conditions the liquidus of the AH6 basalt is observed between 1200 and 

1225°C at 100 MPa and at above 1225°C at 700 MPa (Fig. II.3a). Ol and Plag are 

liquidus phases at 100, 200 and 400 MPa, whereas at 700 MPa and 1225°C all three 

phases (Ol+Plag+Cpx) crystallize simultaneously. At 100 and 200 MPa experiments, the 

appearance of Cpx and the transition from Ol+Plag to Ol+Plag+Cpx cotectics was 

bracketed between 1200 and 1175°C. In contrast, at 700 MPa, the order of crystallization 

 

Figure II.3: The phase diagrams show the stability of different mineral phases dependent on 

pressure and temperature in the three different starting materials (initial MgO content increases from top to 

bottom: AH6 - AH3 - AH5) and for experiments conducted at dry conditions (left column) and hydrous 

conditions (right column). The filled corners in each square mark the presence of the mineral in the 

experimental product for given conditions. Stability fields are marked by solid lines (partly dashed if 

estimated) (Ol in/Plag in/Cpx in/Mag in). In the diagrams for hydrous conditions, also results of dry 

experiments are displayed for comparison (light grey dashed lines). Additionally, small grey numbers at 

the right of each symbol indicate the crystallization degree and those at the left (only for hydrous 

experiments) the H2O content measured in the experimental liquid. 
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cannot be directly observed from the phase diagram (Fig. II.3a). However, we believe that 

Cpx should be the liquidus phase at 700 MPa, because it is prevailing in the solid phase 

after about 30% of crystallization at 1225°C (run ShR11, Tab. II.2) (proportions of 

Ol+Plag+Cpx cotectic crystallization are ~7-10 %Ol : 40-50 %Cpx : 60-50 % Plag, see 

discussion below). Similar to previous works (e.g. Bender et al., 1978), our experiments 

demonstrate, that pressure has a similar positive effect on Plag and Ol liquidus (about 4-

5°C per 100 MPa), whereas the liquidus of Cpx is steeper (dT/dP~9°C/100 MPa).  

Under hydrous conditions (Fig. II.3b), the liquidus of AH6 was not bracketed at 

any investigated pressure. All experiments show the saturation with Ol+Plag+Cpx below 

1170°C and with Ol+Plag+Cpx+Mag below 1125°C at 100 MPa and below 1150°C at 

400 MPa (after ~60% and ~80 % crystallization, respectively). 

5.3.2 AH3, 8.0% MgO 

Under dry conditions, the liquidus of the intermediate starting composition AH3 

with 8% MgO is ~25-30°C lower (Fig. II.3c), compared to the previous more MgO-rich 

basalt AH6 (8.6% MgO). At 100 and 200 MPa, the liquidus in AH3 is bracketed between 

1200 and 1175°C. At 400 MPa it is located between 1225 and 1200°C. Although the 

liquidus was not bracketed by our experiments at 700 MPa, it can be located slightly 

above 1225°C at this pressure, considering the change of phase relations with pressure 

(Fig. II.3c) and the low crystal proportion (6%) in the run SHR-317 at 1225°C and 700 

MPa. At 100, 200 and 400 MPa Ol or Ol+Plag are the liquidus phases, whereas at higher 

pressures (500-700 MPa), Cpx crystallizes first, and the crystallization sequence is: Cpx, 

Cpx+Plag and Cpx+Plag+Ol. At 700 MPa, the crystallization of Ol is strongly 

subordinate - it is observed only after more than 40% crystallization of Cpx and Plag.  

Similar to AH6, the stability line of Cpx is steeper than that of Ol and Plag.  



Dissertation of Anika Husen 

 
Part II: The Role of H2O and Pressure on Multiple Saturation and Liquid Lines of 

Descent in Basalts from the Shatsky Rise 

 87 

The hydrous liquidus in AH3 is bracketed only at 200 MPa and it is located 

between 1150 and 1125°C (Fig. II.3d). An increased H2O content leads to a liquidus 

depression of ~ 25°C at 100 MPa to ~50°C at 200 MPa. All three main silicate phases are 

crystallizing in a narrow range in AH3 under hydrous conditions. Thus, the order of 

crystallization cannot be resolved. The slightly higher H2O content facilitated the 

appearance of Mag in runs with crystallization degrees above 55%.  

5.3.3 AH5, 6.4% MgO  

Under dry conditions, the liquidus of the most evolved AH5 basalt is defined by 

Cpx crystallization at all investigated pressures (from ~1155°C at 100 MPa to ~1200°C at 

700 MPa, Fig. II.3e). Plag is the second, and Ol is the third crystallizing mineral. The 

stability of Ol is strongly subordinate - it appears after ~30% and 40% of Cpx+Plag 

crystallization at 100 MPa and 400 MPa respectively. It was not observed at 700 MPa 

after ~65% of crystallization. The liquidus of AH5 under dry conditions is well bracketed 

at all pressures, which allows us to estimate dT/dP of Cpx crystallization to be ~9°C per 

100 MPa.  

The addition of H2O does not change the crystallization sequence in the AH5 

composition, but similar to the other basalts, it results in a liquidus depression up to 10-

20°C at 100-200 MPa (Fig. II.3f). In general, the liquidus depression in the system where 

Cpx is the liquidus phase seems to be slightly lower, compared to the more primitive 

system where Ol or Ol+Plag are liquidus phases. Similar to dry conditions, under hydrous 

conditions, Ol is not observed at the higher pressure. In the presence of small amounts of 

H2O, Ol crystallization was absent even at lower pressures compared to dry runs (at 400 

MPa up to 50% crystallization). 
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5.4. Phase Proportions 

The calculated modes of melt and solid phases are given in Tab. II.2 and plotted 

for each pressure and for dry (left) and hydrous (right) conditions in Fig. II.4 for the AH3 

basalt (and in the Appendix: Fig. AII.1 and A II.2 for AH6 and AH5). 

As shown above, the crystallization near the liquidus of the MgO-rich basalts AH6 

and AH3 under dry conditions at 100 and 200 MPa is controlled by Ol+Plag followed by 

Ol+Plag+Cpx precipitation. At higher pressures (400 and 700 MPa), near the liquidus, the 

crystallization of AH6 and AH3 is already dominated by Ol+Plag+Cpx, and Plag+Cpx at 

700 MPa. In Fig. II.4 it is clearly seen that with pressure increase, the stability and the 

proportion of crystallizing Cpx in the solid phase is gradually increasing. For example, in 

the AH3 basalt, the mineral proportions (Ol:Plag:Cpx) at 1150°C change from 18:58:24 

at 100 MPa to 10:49:41 at 700 MPa (Fig. II.4a and d). Similar to dry conditions, higher 

Cpx proportion is observed with pressure increase in hydrous experiments.  

The crystallization of Ol in the most evolved basalt AH5 is strongly suppressed. It 

is less than 5% in the solid phase in runs at 100, 200 and 400 MPa under dry conditions 

(1125°C) and less than 3 % at 200 MPa in the presence of 0.6-0.8 wt% H2O. The 

proportion of Cpx along Plag-Cpx cotectics in AH5 also tends to slightly increase with 

pressure, e.g. from 45:55 (Plag:Cpx) at 400 MPa to 41:59 at 700 MPa (Fig. AII.2 c and d) 

and 1150°C. 

Our experiments also demonstrate that at any given pressure at similar 

crystallinity, the abundance of Cpx in Ol+Plag+Cpx (AH6 and AH3, Fig. II.4) or Plag-

Cpx (AH5) mineral assemblages is systematically higher in hydrous glasses in 

comparison to their dry counterparts (compare left and right plots in Fig. II.4). For 

example, considering 200 MPa dry and hydrous experiments at similar degree of 
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crystallization (30 %) (e.g. dry: interpolation between runs ShR305 and ShR323, and 

hydrous: ShR350, Fig. II.4 c and f), the Cpx has a relatively higher mode in hydrous 

experiments. In dry experiments, Cpx makes up ~20 % of the solid phase (23:57:20), 

whereas at hydrous conditions, the Cpx proportion is ~40 % in the solid phase (17:43:40). 

 

Figure II.4: Phase proportions in experiments with AH3 calculated via mass balance (accuracy: 

total residuals <1 and ∑r2<0.3) are shown dependent on temperature at different H2O conditions (right and 

left columns) and different pressures (increasing from top to bottom). H2O contents for hydrous 

experiments are given by grey labels when measured. In (b) and (f) phase proportions at similar 

crystallization degrees are marked for comparison of dry and hydrous conditions: small grey numbers at the 

y-axis indicate phase proportions referring to the whole phase assemblage, whereas grey numbers at the 

right hand side indicate the phase proportions referring to the solid phase only. 

Lq – liquid, Ol – olivine, Pl – plagioclase, Cpx – clinopyroxene, Mag – magnetite 
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← caption 
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Table II.3: Compositions of experimental glasses from dry experiments 
Run          P (MPa)   T (°C)  Total  n SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5         CaO/Al2O3 Mg# 

starting material: AH 6               

ShR603 102 1150 101.55 3 47.43 (.12) 1.67 (.01) 14.21 (.18) 14.29 (.29) 0.28 (.02) 5.6 (.06) 13.25 (.51) 3.01 (.13) 0.26 (.01) b.d. 0.93 42.35 
ShR616 103 1175 100.81 6 48.23 (.22) 1.16 (.03) 15.29 (.29) 11.44 (.15) 0.2 (.03) 7.15 (.06) 13.91 (.19) 2.44 (.1) 0.18 (.01) b.d. 0.91 53.96 
ShR609 102 1200 101.30 11 47.95 (.6) 0.93 (.04) 16.42 (.2) 9.99 (.16) 0.21 (.01) 8.43 (.12) 13.73 (.18) 2.22 (.08) 0.11 (.01) b.d. 0.84 61.29 
ShR602 202 1150 101.63 4 45.73 (.44) 1.87 (.05) 13.21 (.36) 16.66 (.91) 0.33 (.09) 6.17 (.17) 12.33 (.32) 3.34 (0.2) 0.35 (.01) b.d. 0.93 41.01 
ShR615 203 1175 100.52 5 48.33 (.18) 1.22 (.03) 15.21 (.19) 11.4 (.25) 0.18 (.06) 7.49 (.11) 13.54 (.09) 2.5 (.07) 0.14 (.02) b.d. 0.89 55.20 
ShR617 203 1225 101.65 5 47.79 (.33) 0.84 (.02) 16.93 (.08) 9.37 (.22) b.d. 8.66 (.07) 13.74 (.1) 2.38 (.05) 0.11 (.01) b.d. 0.81 63.44 
ShR619 402 1175 100.74 9 46.18 (.24) 1.63 (.04) 15.42 (.31) 14.34 (.21) 0.25 (.05) 6.32 (.15) 12.25 (.13) 3.38 (.09) 0.22 (.02) b.d. 0.79 45.25 
ShR605 402 1200 100.10 6 47.63 (.35) 1.07 (.02) 15.99 (.44) 11.5 (.15) 0.23 (.02) 7.74 (.11) 13.31 (.17) 2.4 (.09) 0.14 (.02) b.d. 0.83 55.81 
ShR620 402 1225 101.45 20 47.88 (.23) 0.83 (.03) 16.88 (.14) 9.46 (.18) 0.2 (.03) 8.46 (0.1) 13.85 (.25) 2.35 (.08) 0.11 (.01) b.d. 0.82 62.66 
ShR611 700 1225 101.01 7 47.32 (.21) 1.15 (.04) 16.81 (.21) 12.01 (.27) 0.22 (.05) 7.68 (.04) 12.13 (.05) 2.53 (.12) 0.15 (.01) b.d. 0.72 54.52 
starting material: AH 3               

ShR322 101 1125 101.51 7 47.60 (.37) 2.79 (.12) 13.60 (.69) 15.23 (.44) 0.37 (.06) 4.94 (.29) 11.11 (.14) 3.53 (.16) 0.38 (.04) 0.44 (.03) 0.82 37.85 
ShR318 106 1150 101.10 8 48.82 (.18) 2.18 (.04) 13.84 (.26) 14.15 (.23) 0.30 (.07) 5.61 (.15) 11.74 (.23) 3.01 (.09) 0.35 (.02) b.d. 0.85 42.67 
ShR315 102 1200 101.75 8 49.35 (.2) 1.38 (.05) 15.70 (.15) 10.43 (.2) 0.24 (.04) 7.78 (.09) 12.36 (.21) 2.59 (.1) 0.17 (.02) b.d. 0.79 58.33 
ShR324 203 1125 100.95 5 47.37 (.2) 3.12 (.08) 13.11 (.25) 16.37 (.77) 0.29 (.08) 5.10 (.5) 10.66 (.37) 3.55 (.15) 0.42 (.02) b.d. 0.81 36.88 
ShR323 202 1150 101.13 6 48.48 (.34) 2.26 (.13) 14.38 (.99) 14.08 (.82) 0.33 (.07) 5.54 (.31) 11.51 (.23) 3.14 (.17) 0.30 (.03) b.d. 0.80 42.46 
ShR305 202 1175 101.86 6 49.39 (.18) 1.74 (.03) 14.71 (.22) 11.99 (.19) 0.25 (.06) 6.60 (.08) 12.28 (.28) 2.82 (.11) 0.21 (.01) b.d. 0.83 50.81 
ShR313 202 1200 101.54 6 49.48 (.33) 1.38 (.02) 15.61 (.08) 10.47 (.19) 0.21 (.01) 7.84 (.1) 12.27 (.12) 2.56 (.09) 0.17 (.02) b.d. 0.79 58.43 
ShR307 401 1150 99.69 2 46.16 (.38) 3.50 (.1) 11.61 (.5) 18.56 (.71) 0.30 (.09) 6.04 (0.3) 10.62 (.02) 2.77 (.32) 0.44 (.05) b.d. 0.92 37.90 
ShR304 402 1175 101.17 8 48.48 (.25) 1.99 (.05) 14.89 (.27) 12.97 (.34) 0.28 (.03) 6.52 (.13) 11.48 (.09) 2.85 (.07) 0.26 (.02) 0.28 (.07) 0.77 48.53 
ShR311 402 1200 100.49 8 49.03 (.17) 1.41 (.04) 15.55 (.15) 10.41 (.11) 0.23 (.02) 7.78 (.12) 12.59 (.09) 2.64 (.12) 0.17 (.02) 0.18 (.02) 0.81 58.37 
ShR312 700 1175 100.66 7 45.61 (.52) 3.20 (.07) 14.45 (.68) 17.62 (.55) 0.32 (.09) 5.00 (.25) 9.69 (.39) 3.29 (.33) 0.41 (.04) b.d. 0.67 34.73 
ShR314 700 1200 100.21 5 47.64 (.15) 1.92 (.05) 15.75 (.2) 13.60 (.27) 0.29 (.08) 6.75 (.17) 10.50 (.13) 3.07 (.11) 0.27 (.01) 0.21 (.03) 0.67 48.23 
ShR317 700 1225 99.93 9 49.49 (.23) 1.44 (.03) 16.22 (.26) 10.58 (.27) 0.19 (.03) 7.24 (.11) 11.82 (.14) 2.76 (.1) 0.19 (.02) 0.08 (.04) 0.73 56.20 
starting material: AH 5               

ShR520 101 1125 101.17 6 49.38 (.38) 2.58 (.07) 12.96 (.42) 15.53 (.27) 0.47 (.07) 5.00 (.31) 10.51 (.29) 3.26 (.12) 0.31 (.01) b.d. 0.81 37.67 
ShR506 102 1150 99.80 6 50.55 (.3) 1.90 (.06) 13.70 (.18) 12.26 (.17) 0.45 (.08) 6.37 (.07) 11.82 (.07) 2.72 (.04) 0.23 (.01) b.d. 0.86 49.37 
ShR518 103 1175 100.85 10 50.36 (.21) 1.91 (.05) 13.81 (.12) 12.46 (.19) 0.39 (.05) 6.38 (.08) 11.84 (.16) 2.63 (.14) 0.22 (.02) b.d. 0.86 48.99 
ShR512 102 1200 100.86 8 50.40 (.53) 1.93 (.01) 13.74 (.19) 12.64 (.26) 0.37 (.04) 6.48 (.17) 11.59 (.13) 2.64 (.11) 0.22 (.02) b.d. 0.84 49.02 
ShR519 203 1125 101.28 13 49.06 (.24) 2.86 (.05) 12.65 (.12) 16.22 (.28) 0.49 (.08) 4.79 (.06) 10.05 (.13) 3.02 (.11) 0.34 (.02) 0.52 (.17) 0.79 35.65 
ShR505 202 1150 99.33 5 50.12 (.26) 1.98 (.04) 14.02 (.11) 13.00 (.21) 0.40 (.06) 6.07 (.1) 11.26 (.05) 2.90 (.05) 0.25 (.01) b.d. 0.80 46.69 
ShR502 202 1175 101.72 20 50.19 (.26) 1.90 (.04) 13.65 (.13) 12.56 (.19) 0.38 (.06) 6.48 (.11) 11.72 (.14) 2.62 (.08) 0.20 (.01) 0.30 (.08) 0.86 49.18 
ShR510 202 1200 100.84 9 50.51 (.35) 1.91 (.04) 13.71 (.09) 12.63 (.14) 0.36 (.04) 6.45 (.13) 11.57 (.14) 2.64 (.08) 0.22 (.01) b.d. 0.84 48.94 
ShR522 402 1125 100.42 5 46.26 (.17) 4.10 (.06) 11.93 (0.4) 20.07 (.62) 0.59 (.06) 4.04 (.23) 9.16 (.21) 2.93 (.07) 0.41 (.03) 0.51 (.06) 0.77 27.40 
ShR504 401 1150 100.94 5 48.69 (.29) 2.58 (.06) 13.51 (.37) 16.22 (.47) 0.47 (.07) 5.34 (.23) 9.90 (.26) 2.99 (.15) 0.31 (.02) b.d. 0.73 38.21 
ShR501 402 1175 101.29 10 50.09 (.21) 1.98 (.04) 14.34 (.14) 12.61 (.2) 0.40 (.07) 6.00 (.09) 11.4 (.15) 2.69 (.1) 0.22 (.01) 0.29 (.09) 0.80 47.14 
ShR508 402 1200 99.73 5 50.04 (.36) 1.94 (.05) 13.70 (.12) 12.45 (.37) 0.39 (.03) 6.57 (.03) 11.81 (.12) 2.64 (.13) 0.22 (.02) 0.23 (.02) 0.86 49.75 
ShR507 698 1150 100.35 3 46.20 (.76) 3.80 (.69) 14.30 (.97) 18.84 (.11) 0.47 (0.1) 3.26 (.82) 9.04 (.54) 3.05 (.34) 0.42 (.09) 0.63 (.11) 0.63 24.51 
ShR509 700 1175 100.49 11 47.92 (.23) 3.00 (.07) 13.14 (.24) 17.26 (.43) 0.45 (.05) 4.87 (.28) 9.66 (.35) 2.95 (.14) 0.33 (.02) 0.42 (.03) 0.73 34.59 
ShR511 700 1200 99.70 6 49.88 (.46) 2.11 (.02) 14.67 (.25) 12.83 (.12) 0.41 (.08) 5.64 (.06) 10.99 (.06) 2.99 (.12) 0.24 (.02) 0.24 (.05) 0.75 45.19 
ShR514 700 1225 100.86 14 50.63 (.35) 1.92 (.05) 13.70 (.16) 12.67 (.28) 0.39 (.05) 6.19 (.15) 11.61 (.17) 2.66 (.09) 0.23 (.01) b.d. 0.85 47.84 

Glass measurements in wt%, normalized to 100wt%. The the standard deviations (1σ) are given in brackets. The given total shows the not normalized value. 
b.d. – below detection limit, n – number of analysis 
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Table II.4: Compositions of experimental glasses from hydrous experiments 
 

Run P (MPa)  T (°C) Total n SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5     CaO/ Al2O3 Mg# 

starting material: AH 6               

ShR660 102 1100 101.51 4 47.10 (.94) 1.83 (.26) 15.53 (.06) 15.22 (1.3) 0.21 (.02) 5.00 (.31) 11.31 (.67) 3.51 (.29) 0.29 (.05) b.d. 0.73 41.64 
ShR662 105 1125 100.16 6 47.81 (.29) 1.60 (.03) 15.06 (.33) 13.85 (0.2) 0.25 (.05) 6.04 (.22) 11.74 (.11) 3.40 (.11) 0.25 (.01) b.d. 0.78 48.66 
ShR661 105 1135 99.72 5 48.39 (.29) 1.33 (.04) 15.33 (.32) 12.23 (.58) 0.23 (.08) 6.94 (.09) 12.14 (.32) 3.22 (.1) 0.18 (.01) b.d. 0.79 55.21 
ShR663 108 1155 101.16 5 48.22 (.27) 1.35 (.03) 14.90 (.24) 12.76 (.28) 0.23 (.07) 6.78 (.18) 12.50 (.2) 2.99 (.08) 0.18 (.02) 0.10 (.07) 0.84 53.60 
ShR650 205 1125 99.81 13 48.88 (.38) 1.47 (.08) 16.01 (.78) 13.02 (.38) 0.24 (.05) 6.24 (.44) 10.91 (.65) 3.03 (.15) 0.21 (.02) b.d. 0.68 51.01 
ShR657 401 1125 99.93 9 47.39 (.46) 1.94 (.05) 16.32 (.46) 15.11 (.59) 0.30 (.05) 5.32 (.38) 9.77 (.71) 3.51 (.2) 0.34 (.04) b.d. 0.60 43.34 
ShR666 397 1150 99.27 5 47.54 (.26) 2.15 (.05) 15.41 (.29) 14.81 (0.3) 0.29 (.02) 5.99 (.19) 10.05 (.52) 3.16 (.09) 0.39 (.03) 0.19 (.06) 0.65 46.79 
starting material: AH 3               

ShR360 102 1100 100.43 6 48.63 (.24) 2.25 (.05) 14.43 (.14) 14.31 (.25) 0.24 (.02) 5.63 (.21) 10.84 (.18) 3.36 (.17) 0.31 (.02) b.d. 0.75 46.08 
ShR362 105 1125 100.42 7 49.30 (.24) 2.00 (.02) 14.82 (.22) 12.89 (.37) 0.24 (.02) 5.89 (.07) 11.37 (.07) 3.20 (.15) 0.27 (.01) b.d. 0.77 49.84 
ShR361 105 1135 100.23 13 49.80 (.29) 1.57 (.02) 15.79 (.14) 10.33 (.21) 0.22 (.05) 6.68 (.12) 12.38 (.19) 3.03 (.15) 0.21 (.01) b.d. 0.78 58.42 
ShR363 108 1155 99.80 12 49.61 (.34) 1.56 (.03) 15.17 (.19) 10.62 (.25) 0.18 (.05) 7.24 (.14) 12.61 (.18) 2.67 (.07) 0.20 (.01) 0.14 (.06) 0.83 59.73 
ShR358 202 1075 99.55 7 48.40 (.23) 2.90 (.03) 14.65 (.18) 15.37 (.28) 0.30 (.07) 4.73 (.08) 9.84 (.1) 3.39 (.1) 0.42 (.02) b.d. 0.67 40.11 
ShR354 201 1100 100.33 8 48.56 (.24) 2.64 (.04) 14.70 (.19) 15.29 (.29) 0.26 (.06) 5.04 (.14) 9.53 (.31) 3.20 (.1) 0.37 (.02) 0.42 (.01) 0.65 41.72 
ShR350 205 1125 100.12 9 49.57 (.18) 1.93 (.03) 15.66 (.17) 12.46 (.3) 0.24 (.05) 5.88 (.12) 10.86 (.3) 3.12 (.08) 0.28 (.02) b.d. 0.69 50.62 
ShR351 204 1150 100.00 20 49.66 (.26) 1.43 (.04) 15.65 (.11) 9.95 (.24) 0.23 (.04) 7.78 (.14) 12.55 (.13) 2.54 (.12) 0.19 (.02) b.d. 0.80 62.96 
ShR359 401 1100 100.43 6 47.97 (.68) 2.84 (.07) 15.29 (.31) 15.42 (.22) 0.29 (.02) 4.93 (.17) 9.19 (.23) 3.24 (.11) 0.45 (.04) 0.39 (.01) 0.60 40.98 
ShR357 401 1125 99.83 7 48.21 (.31) 2.39 (.08) 15.31 (.44) 15.27 (.35) 0.27 (.07) 5.43 (.32) 9.41 (.39) 3.33 (.18) 0.38 (.03) b.d. 0.61 43.61 
ShR366 397 1150 98.73 7 47.70 (.31) 2.35 (.04) 14.95 (.23) 15.34 (.22) 0.21 (.06) 5.87 (.2) 9.89 (.18) 3.13 (.11) 0.32 (.01) 0.20 (.08) 0.66 45.43 
starting material: AH 5               

ShR560 102 1100 101.08 11 49.74 (.24) 2.24 (.03) 14.26 (.16) 14.18 (.32) 0.37 (.06) 5.58 (.13) 10.31 (.13) 3.06 (.11) 0.25 (.02) b.d. 0.72 46.09 
ShR562 105 1125 100.28 13 50.14 (.39) 1.97 (.04) 14.44 (.23) 12.72 (.33) 0.41 (.08) 5.90 (.12) 11.13 (.14) 3.07 (.12) 0.23 (.02) b.d. 0.77 50.21 
ShR561 105 1135 100.10 12 50.61 (.28) 1.95 (.03) 13.91 (.17) 11.84 (.23) 0.38 (.08) 6.44 (.06) 11.84 (.16) 2.80 (.09) 0.22 (.01) b.d. 0.85 54.19 
ShR563 108 1155 99.59 15 50.24 (.19) 1.95 (.03) 13.66 (.14) 12.42 (.31) 0.37 (.07) 6.63 (.11) 11.68 (.19) 2.62 (.12) 0.21 (.02) 0.19 (.1) 0.86 53.70 
ShR558 202 1075 99.32 7 49.88 (.27) 2.68 (.05) 14.22 (.15) 15.46 (.28) 0.47 (.07) 4.52 (.09) 9.22 (.2) 3.22 (.17) 0.33 (.01) b.d. 0.65 38.83 
ShR554 201 1100 100.58 9 49.06 (.18) 2.56 (.03) 13.67 (.14) 15.79 (.3) 0.46 (.07) 5.09 (.15) 9.59 (.2) 3.08 (.07) 0.28 (.02) 0.42 (.02) 0.70 41.19 
ShR550 205 1125 100.06 10 50.66 (.24) 2.04 (.02) 15.05 (.17) 12.58 (.19) 0.38 (.07) 5.32 (.11) 10.75 (0.1) 2.97 (.08) 0.25 (.02) b.d. 0.71 47.89 
ShR551 204 1150 99.78 40 51.28 (.26) 2.00 (.04) 13.89 (.16) 11.16 (.23) 0.40 (.05) 6.55 (.13) 11.85 (.15) 2.64 (.09) 0.23 (.02) b.d. 0.85 56.08 
ShR559 401 1100 99.48 4 49.25 (.35) 2.98 (.06) 14.36 (.34) 16.37 (.2) 0.46 (.04) 4.67 (.31) 8.46 (.54) 3.06 (.11) 0.37 (.02) b.d. 0.59 38.28 
ShR566 397 1150 99.20 8 49.44 (.29) 2.31 (.04) 14.31 (.17) 14.46 (.28) 0.43 (.08) 5.41 (.06) 10.08 (.18) 3.04 (.11) 0.25 (.01) 0.25 (.08) 0.70 44.83 

Glass measurements in wt%, normalized to 100wt%. The the standard deviations (1σ) are given in brackets. The given total shows the not normalized value. 
b.d. – below detection limit, n – number of analysis 
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5.5. Liquid Composition  

Residual glass compositions for each starting material for dry and hydrous sets of 

experiments are shown on the left and right plots respectively in Figs. II.5-II.8 for CaO, 

Al2O3, CaO/Al2O3, and SiO2 and in the supplementary material in the Appendix II for 

FeO, Na2O, CaO, and Al2O3 (Fig. AII.3 - AII.6). Similar to previous studies conducted on 

basalts under anhydrous conditions (Grove and Bryan, 1983; Tormey et al., 1987; Kinzler 

and Grove, 1992; Yang et al., 1996; Grove et al., 1992, Whitaker et al., 2007), the 

evolution of the liquid phase in our experiments proceeds along Ol+Plag, Cpx+Plag and 

Ol+Plag+Cpx mineral cotectics and thus, follows a typical tholeiitic differentiation trend 

of FeO enrichment.  

 

Figure II.5: The experimentally produced LLDs (dark grey solid lines) for CaO (wt%) for the 

intermediate one of the three starting materials (black stars), AH3, are shown in comparison to the range of 

natural EPR MORBs (grey points, PetDB). A) shows dry LLDs, b) shows hydrous LLDs. Different 

pressures are indicated by different symbols (see legend). In the diagram displaying hydrous conditions, 

also dry LLDs are shown for comparison (light grey dashed lines). 
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Under dry conditions (< 0.15 wt% H2O), FeO, K2O, TiO2, and Na2O abundances 

in the residual glasses continuously increase during crystallization. Behaviors of CaO 

and Al2O3 are controlled by the presence of Cpx or Plag amongst the crystallizing 

minerals, respectively. CaO (Fig. II.5a) slightly increases during Ol+Plag crystallization 

(e.g. at 100 MPa in AH3, Fig. II.5a) and strongly decreases in all Cpx-bearing runs. As 

discussed above, the proportion of Cpx in the solid phase is gradually increasing with 

pressure (Fig. II.4). This leads to a stronger decrease in the melt CaO contents and also in 

a sharper drop of the melt CaO/Al2O3 ratio (Fig. II.6) in the high pressure runs. Al2O3 

(Fig. II.7a) is progressively decreasing in Ol+Plag or Ol+Plag+Cpx saturated 

experiments, and increasing in Plag+Cpx saturated and Plag-free runs (e.g. in runs at 

700 MPa: AH3, Fig. II.7a). Low pressures drive the liquids to more Al2O3-depleted 

compositions; these are usually experiments where Plag is the dominant phase.  

The most interesting observation in our experiments is the strong SiO2 depletion 

with progression of crystallization, which results in a deviation of the evolutionary path 

away from the field of natural tholeiitic MORB glasses (Fig. II.8, see also discussion 

below). The degree of SiO2 depletion correlates positively with pressure, especially in 

the two most primitive starting materials AH3 and AH6 (Fig. II.8a and b) - stronger 

depletion is observed in runs conducted at higher pressures. SiO2 enrichment is 

recognized in Plag-free runs with only Ol or Cpx crystallization, and in the early stage of 

crystallization, where Ol dominates the solid phase (e.g. AH6 at low pressures or AH5 at 

700 MPa).  
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Figure II.6: The experimentally produced LLDs (dark grey solid lines) for CaO/Al2O3 (wt%) for 

three different starting materials (black stars) are shown in comparison to the range of natural EPR 

MORBs (grey points, PetDB). Different columns show different H2O contents (left: dry, right: hydrous) 

and starting compositions vary from top to bottom (AH6 - AH3 - AH5). Different pressures are indicated 

by different symbols (see legend). In diagrams displaying hydrous conditions also dry LLDs are shown for 

comparison (light grey dashed lines). 
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Elevated melt H2O concentrations in our hydrous experiments (0.4-1.1 wt% H2O) 

principally did not change the trends observed for FeO, K2O, TiO2, and Na2O in the 

residual liquids. However, compared to dry conditions, Al2O3 is less efficiently extracted 

from the hydrous melts due to the relatively late crystallization of Plag compared to the 

other minerals, especially Cpx (Fig. II.7). This results in slightly higher Al2O3 contents in 

the hydrous melts compared to dry melts produced at similar pressures. In contrast, CaO 

in hydrous residual melts is more depleted than in dry liquids (Fig. II.5); this extent of 

CaO depletion (hydrous LLD versus dry LLD) is most pronounced in the most MgO-rich 

basalt AH6 and is decreasing in transition to the evolved AH3 composition (e.g. compare 

isobar under dry and hydrous conditions in Fig. AII.5 a-d for AH6 and AH3). Similar to 

our dry experiments, the CaO/Al2O3 ratio in hydrous residual melts decreases in Cpx-

 

Figure II.7: The experimentally produced LLDs (dark grey solid lines) for Al2O3 (wt%) for the 

intermediate one ot the three starting materials (black stars), AH3, are shown in comparison to the range of 

natural EPR MORBs (grey points, PetDB). A) shows dry LLDs, b) shows hydrous LLDs. Different 

pressures are indicated by different symbols (see legend). In the diagram displaying hydrous conditions also 

dry LLDs are shown for comparison (light grey dashed lines).  
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bearing runs and the extent of this depletion is pressure dependent (Fig. II.6). In addition, 

our new experiments demonstrate how the CaO/Al2O3 ratio decreases in the presence of 

small amounts of H2O. This effect is even more pronounced compared to the CaO/Al2O3 

drop induced by pressure (compare left and right column in Fig. II.6; see also discussion 

below). In contrast to dry conditions, SiO2 in hydrous residual melts decreases only 

slightly (AH3 and AH5) or even behaves constantly (AH6) with progression of 

crystallization (Fig. II.8).  

Progressive crystallization and decrease of the melt fraction (Fmelt) reasonably 

correlates with the decrease of the melt Mg# (Fig. II.9). In all three basalts with different 

initial Mg#, there is a linear dependence of the Fmelt and melt Mg#, clearly illustrating that 

melt Mg# can be utilized as an index of differentiation. The residual liquids produced 

under dry and hydrous conditions at different pressures follow the same trends (Fig. II.9) 

defined by the Mg# of the given basaltic composition. It should be emphasized, that for 

each basalt, the hydrous liquids are slightly, but systematically more MgO-rich (higher 

Mg#) than the dry melts. This is a direct result of more oxidized conditions prevailing in 

the hydrous set of experiments (Tab II.2) which results in lower proportions of the Fe2+ in 

the melt, and thus higher values of the Mg#.  
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Figure II.8: The experimentally produced LLDs (dark grey solid lines) for SiO2 (wt%) for three 

different starting materials (black stars) compared to the range of natural EPR MORBs (grey points, 

PetDB). Dry and hydrous H2O contents are showen in left and right column respectively; the starting 

compositions vary from top to bottom (AH6 - AH3 - AH5). In diagrams displaying hydrous conditions also 

dry LLDs are shown for comparison (light grey dashed lines). 
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Figure II.9: The melt evolution (represented by the melt Mg#) with increasing crystallization 

degree (decreasing melt fraction) is shown for dry (a) and hydrous conditions (b). Note that due to higher 

fO2 in hydrous experiments, the Fe2+ in melts is relatively lower causing a relatively higher Mg#. 

Experimental melts produced by the different starting materials are marked by grey fields as indicated by 

labels. 

 

Figure II.10: The evolution of Ca# of the melt [Ca#= Ca/(Ca+Na)] is shown dependent on the 

Mg# (representative of crystallization degree). Different H2O conditions are represented by different colors 

(dry: dark grey, hydrous: white) and are additionally highlighted by grey fields. Although, higher Mg# in 

hydrous experiments are related to higher fO2 in hydrous experiments, and thus relatively lower Fe2+ in 

melts, hydrous experiments revealed to systematically lower Ca# compared to dry experiments. 
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Figure II.11: Evolution of Al# of the melt [Al#=Al/(Si+Al)] is shown dependent on Mg# 

(representative of crystallization degree). Isobaric experiments are connected by solid lines. Left and right 

column show diagrams for dry and hydrous conditions respectively. From top to bottom LLDs from 

different starting compositions (stars) are displayed (AH6 - AH3 - AH5). In diagrams for hydrous 

experiments also results of dry experiments are shown for comparison (light dashed lines, darker grey star). 

The mineral assemblage is given by labels for  AH3 (b) and AH5 (c and f). 
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The effect of small amounts of H2O and pressure on liquid composition can also be 

resolved when other compositional characteristics are used. For example, hydrous glasses 

(0.4-1.1 wt% H2O) tend to have slightly but systematically lower Ca# [Ca#=Ca/(Ca+Na)] 

than dry melts (<0.1 wt% H2O) at similar degrees of crystallization (Fig. II.10) (when 

Mg# is used as indices of differentiation). In addition to CaO/Al2O3 ratio, the melt Al# 

[Al#=Al/(Si+Al)] strongly varies with pressure. In general, in both, dry and hydrous 

experiments, melt Al#s are higher in experiments conducted at higher pressures (Fig. 

II.11). When compared to the starting compositions, the Al# decreases in melts saturated 

with Ol+Plag and increases in liquids which are in equilibrium with Cpx (e.g. melt Al# is 

increasing during single Cpx crystallization in dry experiments in AH6 and AH3 at 700 

MPa as well as in AH5 at all investigated pressures (#ShR317 and #ShR501, Fig. II.11b 

and c, Tab. II.2)). When compared to dry conditions, the experimental liquids produced in 

the presence of small amounts of H2O tend to have systematically higher values of the 

melt Al# due to the relatively higher Cpx proportion in the presence of higher melt H2O  

(see e.g. dry and hydrous isobaric trends for AH3 starting composition in Fig. II.11b and 

d).  

5.6. Mineral Composition 

The effects of experimental temperatures, pressures and different H2O contents on 

the mineral compositions are shown in Figs. II.12-II.15 and in the Appendix II (Figs. 

AII.7-AII.9). In general, temperature decrease leads to the crystallization of Fe-rich Ol 

and Cpx, and albite-rich Plag. Pressure increases the stabilities of the minerals with the 

following consequences: at similar temperatures, the experimental charges produced at 

higher pressures are more crystallized, residual glass compositions are more evolved, and 

the Fe-Mg silicates are less MgO-rich, as well as Plag is more albitic. In contrast to dry 
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conditions, H2O depresses the liquidus of the investigated basalts, resulting in the 

crystallization of minerals with more primitive compositions (more MgO-rich Ol and Cpx 

and more anorthitic Plag) at lower temperatures (Figs. AII.7-AII.9).  

 

 

Figure II.12: Correlation of Ol compositions represented by their Mg# (averages of 3-16 

analyses) is shown. Grey and white dots represent experiments at dry and hydrous conditions respectively.  

 

5.6.1 Olivine 

The compositions of the experimentally produced Ol range between 55 and 88 

mol% Fo. In general, Fo-rich Ol are found in the more MgO-rich starting materials (Tabs. 

II.5 and II.6, and Fig. AII.7). For example, under similar P-T conditions (all are at 100 

MPa and 1150°C) Ol from the AH6 basalt has Fo74 under dry and Fo82 under hydrous 

conditions, whereas the Ol from AH3 are Fo72 and Fo83. Ol in the most evolved AH5 is 

the latest phase appearing after >30% of onset Plag+Cpx crystallization in both dry and 

hydrous experiments. It has maximum Fo65 under dry and Fo70 under hydrous conditions. 

In experiments where Ol is the liquidus phase (AH6, AH3 100-400 MPa, Fig. AII.7a and 

b) it is clearly seen that with pressure increase, the Fo content in Ol systematically 
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decreases for given temperature. However, it should be emphasized, that runs produced at 

similar temperatures, but at different pressures, have significantly different stages of 

fractionation (e.g. in AH6 at 1200°C, crystallinities and glass Mg# numbers are 0.06 and 

60 at 100 MPa, and 0.48 and 46 at 700 MPa). When compositions of experimental Ol are 

compared to their corresponding melt Mg# (which strongly correlates with crystallization 

degree and is independent on pressure and melt H2O), no effect of pressure or H2O on the 

Fo content (Mg#) in Ol can be recognized (Fig. II.12). 

Table II.5: Summary of compositions of experimental minerals in dry experiments 

 
Run P (MPa) T (°C) Dur (h) Ol Fo Mg # KDFe-Mg Plag An KDCa-Na Cpx MGN# KDFe-Mg  

     (mol%) (Ol) (Ol)   (mol%) (Plag)  (Cpx) (Cpx) 
starting material: AH6  

ShR603 102 1150 60  73.85 74.91 0.25  74.04 1.19  81.25 0.17 
ShR616 103 1175 46  80.04 80.99 0.28  74.39 0.92  83.40 0.23 
ShR609 102 1200 46  84.22 85.03 0.28  81.18 1.26    
ShR602 202 1150 73  71.92 72.98 0.26  73.30 1.38  79.20 0.18 
ShR615 203 1175 71  79.95 80.85 0.29  78.22 1.20  85.03 0.22 
ShR601 401 1150 91  66.33 67.40   71.70   74.57  
ShR619 402 1175 64  73.40 74.38 0.28  72.18 1.31  79.19 0.22 
ShR605 402 1200 63  80.24 81.10 0.29  76.51 1.06  82.91 0.26 
ShR604 698 1150 60  58.74 60.26   63.01   68.27  
ShR606 700 1175 60  63.50 64.46   67.89   68.42  
ShR611 700 1225 60  79.73 80.41 0.29  73.42 1.05  82.77 0.25 
starting material: AH3  

ShR322 101 1125 48  67.27 68.35 0.28  64.28 1.05  76.64 0.19 
ShR318 106 1150 65  72.45 73.43 0.27  64.98 0.87  79.79 0.19 
ShR321 103 1175 46  80.60 81.45 0.28  73.39 1.05  0.00  
ShR324 203 1125 108  65.79 66.83 0.29  62.65 1.03  75.95 0.19 
ShR323 202 1150 73  71.31 72.27 0.28  67.49 1.04  79.66 0.19 
ShR305 202 1175 68  77.83 78.74 0.28  69.85 0.98  82.44 0.22 
ShR326 402 1125 66  59.73 60.66   59.49   68.03  
ShR307 401 1150 91  67.51 68.43 0.28  63.03 0.82  74.61 0.21 
ShR304 400 1175 89  75.41 76.27 0.29  67.86 0.97  80.43 0.23 
ShR311 402 1200 63  81.57 82.29 0.30       
ShR310 698 1150 60  58.35 59.19   57.39   62.71  
ShR312 700 1175 60  64.46 65.60 0.28  60.99 0.98  70.15 0.23 
ShR314 700 1200 60      65.79 1.03  78.01 0.26 
ShR317 700 1225 60         83.70 0.25 
starting material: AH5  

ShR520 101 1125 48  65.36 66.58 0.30  61.45 0.91  74.86 0.20 
ShR506 102 1150 60         79.32 0.25 
ShR519 203 1125 108  63.90 64.96 0.30  61.20 0.87  73.61 0.20 
ShR505 202 1150 73      65.61 0.90  78.05 0.25 
ShR522 402 1125 66  55.19 56.32 0.29  53.27 0.68  63.87 0.21 
ShR504 401 1150 91      60.57 0.85  72.87 0.23 
ShR501 400 1175 89         78.37 0.25 
ShR507 698 1150 60      52.55 0.70  62.75 0.19 
ShR509 700 1175 60      56.02 0.72  68.47 0.24 
ShR511 700 1200 60         76.66 0.25 

Ol – olivine, Plag – plagioclase, Cpx – clinopyroxene, Dur – duration 
Fo – Forsterite content, An – Anorthite content 
KDFe-Mg=(XFe

xtl • XMg
liq)/ (XMg

xtl • XFe
liq) 

KDCa-Mg=(XCa
xtl • XNa

liq)/( XNa
xtl • XCa

liq) 
Detailed data on mineral compositions is given in Tabs. AII.1-AII.7, all presented values represent averages of 
2-10 measurements 
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For most of the experiments, the KDs for Fe-Mg exchange are in the range of 0.26-

0.31 (calculated using known Fe2+ in the melt, Tab. II.5 and II.6). Only runs with high 

degrees of crystallization have KDs below 0.26, probably indicating analytical problems 

(small melt pools) or problems with the achievement of equilibrium conditions in these 

runs with very low proportion of the liquid phase. Our experimental data do not 

demonstrate any systematic effects of H2O or pressure on Ol-melt exchange equilibria. 

5.6.2 Plagioclase  

It has been previously demonstrated in many experimental studies, that Plag 

shows systematic compositional changes with temperature, pressure, and melt H2O. For 

Table II.6: Summary of compositions of experimental minerals in hydrous experiments 

 
Run P (MPa) T (°C) Dur (h) Ol Fo Mg # KDFe-Mg Plag An KDCa-Na Cpx MGN# KDFe-Mg  

     (mol%) (Ol) (Ol)   (mol%) (Plag)  (Cpx) (Cpx) 

starting material: AH6  

ShR660 102 1100 64  75.20 76.21 0.22  71.74 1.44  73.57 0.26 
ShR662 105 1125 65  77.22 78.09 0.27  72.97 1.43  75.36 0.31 
ShR661 105 1135 89  81.53 82.34 0.26  79.65 1.88  79.32 0.32 
ShR663 108 1155 64  82.26 83.18 0.23  81.18 1.88  78.49 0.32 
ShR658 202 1075 64  71.01 72.01   65.55   71.63  
ShR654 201 1100 70  73.63 74.65   68.53   73.91  
ShR650 205 1125 65  78.25 79.06 0.28  75.89 1.58  74.85 0.35 
ShR659 401 1100 70  71.02 71.92   65.29   70.68  
ShR665 402 1100 67  71.62 72.97   63.70   71.58  
ShR657 401 1125 62  74.53 75.39 0.25  66.83 1.33  71.97 0.30 
ShR666 397 1150 63  76.14 76.91 0.26  67.89 1.23  72.76 0.33 
starting material: AH3  

ShR360 102 1100 64  74.98 75.84 0.27  67.08 1.16  74.58 0.29 
ShR362 105 1125 65  77.62 78.46 0.27  65.00 0.96  76.73 0.30 
ShR361 105 1135 89  82.49 83.27 0.28  73.88 1.27  81.48 0.32 
ShR363 108 1155 64  83.19 84.01 0.28  73.31 1.06  79.14 0.39 
ShR358 202 1075 64  68.72 69.55 0.29  59.76 0.94  71.34 0.27 
ShR354 201 1100 70  72.83 73.61 0.26  62.46 1.03  74.17 0.25 
ShR350 205 1125 65  78.17 78.94 0.27  67.72 1.10  76.79 0.31 
ShR359 401 1100 70  69.41 70.37 0.29  59.66 0.96  70.52 0.29 
ShR357 401 1125 62  73.46 74.21 0.27  63.65 1.14  71.21 0.31 
ShR366 397 1150 63  74.67 75.42 0.27  65.36 1.10  71.78 0.33 
starting material: AH5  

ShR560 102 1100 64      66.00 1.05  73.25 0.31 
ShR562 105 1125 65         76.88 0.30 
ShR561 105 1135 89         79.74 0.30 
ShR558 202 1075 64  66.47 67.41 0.31  59.80 0.95  71.02 0.26 
ShR554 201 1100 70  69.51 70.45 0.29  63.38 1.02  71.11 0.28 
ShR550 205 1125 65         75.07 0.31 
ShR559 401 1100 70      55.32 0.82  66.73 0.31 
ShR566 397 1150 63      61.69 0.89  73.04 0.30 

Ol – olivine, Plag – plagioclase, Cpx – clinopyroxene, Dur – duration 
Fo – Forsterite content, An – Anorthite content 
KDFe-Mg=(XFe

xtl • XMg
liq)/ (XMg

xtl • XFe
liq) 

KDCa-Mg=(XCa
xtl • XNa

liq)/( XNa
xtl • XCa

liq) 
Detailed data on mineral compositions is given in Tabs. AII.1-AII.7, all presented values represent averages of 
2-16 measurements 
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example, under dry conditions, within the temperature interval of about 50°C, the Plag 

composition is becoming ~10 mol% lower in An content in all studied basalts. Higher 

pressures seem to favor the crystallization of more albitic Plag (see e.g. runs #ShR603 

(74 mol%An in Plag) and #ShR604 (63 mol%An in Plag) at 1150°C and 200 and 700 

MPa, Tab. II.5 and II.6, and Fig. AII.8a). However, similar to the effect of pressure on Ol 

composition discussed above, the runs conducted at similar temperatures but various 

pressures strongly differ in the degrees of crystallization (in the case of #ShR603 and 

#ShR604, melt proportions are 42wt% in #ShR603, whereas #ShR604 is completely 

crystallized). When Plag composition is plotted versus melt Mg# (Fig. II.13a), it can be 

noticed that the pressure has no significant effect on the An content in the experimental 

Plag (Plag at 700 MPa is only ~ 2-3 mol% An poorer than Plag at 100 MPa). In 

comparison to dry conditions, the Plag produced at similar degree of crystallization (Mg# 

or Fliq) but under hydrous conditions has similar composition. Note, however, the 

temperatures between dry and hydrous counterparts are different. Both, pressure and melt 

H2O content, affect the stability of the Plag by increasing (pressure) or decreasing (H2O) 

the temperature of the Plag-melt equilibria. Additionally, the solid assemblage plays a 

major role as shown in Fig. II.13a (melt Mg# vs. An), where Plag compositions can be 

easily distinguished between Ol+Plag (high-An Plag) and Ol+Plag+Cpx (low-An Plag) 

cotectic assemblages.  

In contrast to pressure and melt H2O, the effect of the melt composition on Plag 

seems to be more evident. As displayed in Tab. II.5 and II.6, Plag crystallizing from 

AH6, AH3 and AH5 starting compositions have 63-81, 57-75 and 52-66 mol% An 

respectively. The most primitive AH6 basalt crystallizes An-rich Plag at higher 

temperature, whereas the evolved basalt AH5 is crystallizing Plag with more albitic 

composition at lower temperatures.  



Dissertation of Anika Husen 

 
Part II: The Role of H2O and Pressure on Multiple Saturation and Liquid Lines of 

Descent in Basalts from the Shatsky Rise 

 106 

 

Figure II.13: Correlation of Plag composition represented by the An content (mol%) (averages of 

2-10 analyses) with melt Mg# (a) and melt Ca# (b) is shown. Different symbols represent different 

experimental pressures, grey and white symbols indicate dry and hydrous conditions respectively. In a, 

experiments using AH6 are represented by open symbols. Grey fields mark experiments with similar 

characteristics (a: liquidus mineral assemblage, b: H2O conditions). 

 

Panjasawatwong et al. (1995) have demonstrated that Plag compositions depend 

on melt Ca# and Al#. Fig. II.13b also shows a strong positive correlation between the An 

in Plag and the melt Ca# in our experiments. As the Ca# of the melt is correlated to the 

melt Mg# (Fig. II.10), AH6 has the highest melt Ca# and thus the highest An contents in 

Plag, whereas the melt Ca# and the corresponding An in Plag are the lowest in AH5. 

Under hydrous conditions, melts with similar Ca# crystallize more anorthitic Plag (see 

field of "hydrous Plag" in Fig. II.13b slightly displaced to more An-enriched 

compositions).   

An in Plag is also positively correlated with the melt Al# (Fig. II.14). However, as 

discussed above, the melt Al# is influenced by pressure, and H2O content due to different 

proportions of Mg-Fe silicates and Plag in the solid phase (see phase proportions and 



Dissertation of Anika Husen 

 
Part II: The Role of H2O and Pressure on Multiple Saturation and Liquid Lines of 

Descent in Basalts from the Shatsky Rise 

 107 

liquid composition and Figs. II.4 and II.11 respectively). In low pressure runs, where Plag 

is the liquidus phase (besides Ol), highest An contents in Plag were observed for certain 

Al# of the melt. In contrast, at higher pressure, the melt Al# is controlled by 

Ol+Plag+Cpx cotectic crystallization leading to lower melt Al# for given degree of 

crystallization (melt Mg#) (increasing Cpx proportion in solid phase). This results in 

systematically lower anorthitic Plag at similar melt Al#, meaning certain An content 

crystallizes in a melt with higher Al# at higher pressure. Thus, the highest pressures (700 

MPa) led to highest melt Al# in equilibrium with given An in Plag. Similarly to pressure, 

the presence of small amounts of H2O decreases the An contents in Plag at given melt 

Al#, because the Cpx stability is enhanced relative to Plag in hydrous runs, which in turn 

results in relatively higher Al# of the melt in equilibrium with the Plag.  

 

Figure II.14: Correlation of Plag composition represented by the An content (mol%) (averages of 

2-10 analyses) with melt Al# is shown. Different symbols represent different experimental pressures. (A) 

and (b) display dry and hydrous conditions respectively. Grey fields mark experiments conducted at similar 

pressures. In (b), the fields representing dry experiments are shown for comparison. 
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The role of H2O on Plag-melt equilibria can also be recognized from slightly 

higher KDCa-Na observed in hydrous experiments (Tab. II.5 and II.6). It has been 

previously demonstrated by many experimental studies that the KDCa-Na is gradually 

increasing with increasing melt H2O (Sisson and Grove, 1993; Hamada, 2008; Honma, 

2012; Takagi, 2005; Almeev, 2012). Although the distribution coefficients in some of our 

experiments tend to be slightly higher in the hydrous runs (e.g. in AH6), in general, they 

are in the range of 0.8 - 1.5 as previously reported for anhydrous (or with low aH2O, 

Almeev, 2012) conditions. Superimposed is also the influence of different melt 

compositions: the KDs are generally higher in experiments with the basalt AH6, which 

has the highest Mg#, Ca#, and Al#. In contrast, the most evolved AH5 basalt with the 

lowest melt Ca# and Al# also show the lowest KDs (Tab. II.5 and II.6).  

5.6.3 Clinopyroxene 

In general, the experimentally produced Cpx demonstrate compositional 

systematics similar to the behavior of Ol (see above). With progression of crystallization 

(temperature decrease) the Mg# of Cpx drops down (e.g. from 83 to 68 in AH6 under dry 

conditions and 700 MPa, Fig. AII.9a). For all starting compositions, at constant 

temperatures, low-pressure Cpx are more MgO-rich than high-pressure Cpx, because they 

are crystallizing from the more evolved and thus less MgO-rich liquid (e.g. in Cpx 

crystallized in AH3 at 1150°C and dry conditions have Mg#=80 at 100 and 200 MPa, 

Mg#=75 at 400 MPa and Mg#=63 at 700 MPa, Fig. AII.9b). The comparison of Cpx 

crystallized in the three different starting compositions shows that Cpx from the primitive 

AH6 and AH3 basalts crystallize at higher temperatures and are more MgO-rich than 

those from the evolved AH5 starting composition. First Cpx in AH6 exhibit Mg# between 

79 and 85, and in AH3 Mg# between 80 and 84, whereas the first Cpx in AH5 show Mg#  
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of ~78 (Tab. II.5 and II.6).  

At lower pressures in the AH6 and AH3 basalts, Cpx crystallization is subordinate 

with respect to earlier Ol+Plag crystallization (see phase diagrams in Fig. II.3). In 

contrast to systematics between Mg# and temperature observed in Ol, the Mg# of Cpx at 

similar temperature are not significantly different in hydrous and dry experiments. In the 

AH5 starting composition, Cpx is the liquidus phase at all investigated pressures. In this 

case, the Mg# of the Cpx from hydrous charges is slightly higher than that of Cpx from 

dry runs at similar temperature. For example, Cpx crystallizing in AH5 at 400 MPa and 

1125°C (as the only liquidus phase) has a Mg# of 64 under dry conditions and a Mg# of 

~69 under hydrous conditions. In contrast, in the AH6 basalt at 400 MPa and 1150°C, 

Ol+Plag+Cpx is observed after initial Ol+Plag crystallization, and the Cpx have Mg#s of 

75 and 73 under dry and hydrous conditions respectively (Tabs. II.5 and II.6, Fig. AII.9f). 

 

Figure II.15: Correlation of Cpx composition represented by their Mg# (averages of 2-11 

analyses) with melt Mg# (a) and melt Ca# (b) is shown. Different symbols represent different experimental 

pressures, grey and white symbols indicate dry and hydrous conditions respectively. In (a), grey fields mark 

experiments conducted at similar conditions (pressure and H2O content). 
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The comparison of Cpx compositions (Mg#) with the melt Mg# shows the effects 

of pressure and H2O on Fe-Mg exchange equlibria between high-Ca pyroxene and liquid. 

Under dry conditions, high pressure liquids tend to crystallize Cpx which are slightly 

lower in Mg# compared to Cpx produced from melts with similar Mg# but at lower 

pressures. For example in a dry melt with Mg# of ~43 (Fig. II.15a), the Mg# in Cpx 

changes with pressure from ~77 at 700 MPa (ShR511, 1200°C) through ~79 at 400 MPa 

(ShR619, 1175°C), to ~81 at 200 MPa (ShR603, 1150°C). Remarkably, the correlation 

between Mg#s of the coexisting Cpx and liquids is linear in high pressure (700 MPa) runs 

   

 

Figure II.16: Exchange distribution coefficients of Fe and Mg for melt and Cpx (KD=(XFe
xtl • 

XMg
liq)/ (XMg

xtl • XFe
liq)) are shown for given melt Mg#. A), b), and c) display KDs obtained in different 

starting compositions AH6, AH3, and AH5 respectively. Different symbols represent different experimental 

pressures, grey and white symbols indicate dry and hydrous conditions, respectively. Dashed lines enclose 

values obtained for experiments conducted at similar H2O conditions. The range of KDs in all experiments 

is shown for comparison (light grey diamonds). 
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where Cpx is usually the liquidus phase. Under hydrous conditions, the effect of different 

pressures cannot be resolved (Fig. II.15a). However, in the presence of small amounts of 

H2O, the Сpx-melt pairs are systematically shifted towards higher Mg# in the melt and 

lower Mg# in the Cpx. The high Mg# in experimental liquids produced under hydrous 

conditions are also caused by the more oxidized conditions (see Tab. II.2). However, 

lower Mg# in Cpx can be only linked to the effect of H2O which possibly affected the Fe-

Mg exchange equilibria between Cpx and melt. In a more oxidized (proportion of Fe2+ is 

lower) and thus more Mg-rich liquid, one should expect the crystallization of slightly 

more MgO-rich Cpx, which is not the case in our experiments. Fig. II.16 clearly 

demonstrates that Fe-Mg exchange distribution coefficients between Cpx and liquid 

(KDFe-Mg) are systematically higher in our hydrous experiments for all observed starting 

compositions (Tab. II.5 and II.6, and Fig. II.16).  

Finally, although it correlates positively with the melt Ca# (Fig. II.15b), the Mg# 

of Cpx does not exhibit any systematics regarding the effects of pressure or H2O on the 

relation to the melt Ca#, which was reported above in the case of Plag.  

5.6.4 Magnetite 

Mag was observed in experiments conducted with the AH6 and AH3 basaltic 

compositions in the presence of small amounts of H2O (Fig. II.3). In contrast to our dry 

experiments conducted in the presence of graphite (CCO oxygen buffer, FMQ-1 to FMQ-

2 (e.g. Ulmer & Luth, 1991; Jakobsson & Oskarsson, 1994; French & Eugster, 1965)), the 

redox conditions in our hydrous experiments were most likely maintained along the 

FMQ+0.5 oxygen buffer. The presence of higher melt H2O concentrations (which 

suppress crystallization of silicate phases) and higher fO2 favored stabilization of Mag 

after >60% of crystallization of Ol+Plag+Cpx. The experimental Mag display a narrow 
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compositional range: XUSP (calculated after Stormer et al., 1983) varies between 0.2 and 

0.4. The Mag in AH6 shows slightly higher XUSP with decreasing temperature. For 

example, Mag in run ShR666 (1150°C and 400 MPa) has XUSP=0.2, whereas Mag in run 

ShR658 (1075°C and 200 MPa) contains XUSP=0.3 (Tab. AII.7).  

6. DISCUSSION 

Despite the generally low total range of melt H2O concentrations investigated in 

our study (<1.2 wt% H2O), the use of two experimental setups allowed us to investigate 

the effect of H2O on phase equilibria in a scale of nearly one order of magnitude 

difference of melt H2O concentrations: ~0.04-0.14 wt% H2O in dry and ~0.4-1.11 wt% 

H2O in hydrous experiments. Below, we discuss the effects of these small amounts of 

H2O (referred as hydrous conditions) on different aspects of basaltic magma 

crystallization, followed by general implications of our experimental data to magma 

crystallization processes beneath the Shatsky Rise ocean plateau.  

6.1. Effect of H2O on Cotectic Crystallization  

Similar to many other studies, under dry conditions (H2O<0.14 wt%), the most 

MgO-rich basalt AH6 in our work has the highest liquidus. With pressure, the dry 

liquidus temperatures of all 3 investigated basalts are increasing. In addition, due to an 

earlier precipitation of the Cpx at higher pressures, the order of crystallization changes 

(e.g. AH3, Fig. II.3c) from Ol+Plag -> Ol+Plag+Cpx (at 100-400 MPa) to Cpx-> 

Cpx+Plag -> Ol+Plag+Cpx (at 700 MPa). A similar change in the crystallization 

sequence was observed with the change of the starting composition: in the most evolved 

basalt AH5 the sequence Cpx-> Cpx+Plag -> Ol+Plag+Cpx was observed at all 

investigated pressures.  



Dissertation of Anika Husen 

 
Part II: The Role of H2O and Pressure on Multiple Saturation and Liquid Lines of 

Descent in Basalts from the Shatsky Rise 

 113 

The addition of ~ 0.4 – 1.1 wt% H2O results in a depression of the liquidus by 

~20°C (e.g. AH3 at 100 MPa, ~0.5 wt% H2O) to ~40°C (e.g. AH3 at 200 MPa, ~0.9 wt% 

H2O). However, for experiments performed at 100 MPa, the liquidus depression is less 

pronounced than at high pressures (e.g. compare 100 MPa and 200 MPa dry and hydrous 

runs for all starting materials). Thus, the shape of the H2O-bearing liquidus on the P-T 

diagram is characterized by a minimum (Fig. II.3), which is located at 100 MPa in the 

most evolved basalt AH5 and at slightly higher pressures (~200 MPa) in the less 

differentiated basalts. Note, that our hydrous phase diagrams reflect phase relations for a 

range of H2O contents (0.3-1.1 wt% H2O, small numbers in Fig. II.3). It can be seen in 

Fig II.3d, that the H2O contents in the 200 MPa crystal-free experiment at 1150°C 

(ShR351, 0.9 wt% H2O) and the first crystal-bearing experiment at 1125°C (ShR 350, 

0.75 wt% H2O) are slightly higher compared to their 100 MPa counterparts (ShR363: 

0.51 wt% H2O, ShR362: 0.48 wt% H2O). As higher melt H2O concentrations depress 

more strongly the liquidus, these differences might already be responsible for the 

minimum in the liquidus temperature.  

It has been emphasized by previous studies that the the depression of Ol, Plag and 

Cpx stability is the major effect of H2O on MORB phase equilibria and that this has 

different intensity for the different mineral phases (Michael and Cornell, 1998; 

Danyushevsky, 2001; Almeev et al., 2007, 2012; Médard and Grove, 2008). For example, 

Danyushevsky (2001) and Almeev et al. (2012) demonstrated that Plag is the phase, 

which is the most affected by H2O (in comparison to Ol). The change of the precipitating 

mineral assemblages induced by the presence of H2O in the melt should result in 

systematic changes of LLDs for CaO, Al2O3, SiO2 and the CaO/Al2O3. For example in the 

studied basalts, differences between dry and hydrous LLD are observed for FeO, Al2O3, 

SiO2 and the CaO/Al2O3 (see above). However, the phase diagrams constructed for 
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hydrous conditions (right plots in Fig. II.3) do not demonstrate significant changes in the 

order of crystallization sequence for all basalts and all pressures. Thus, the differences 

observed in our hydrous and dry LLDs for some major oxides cannot be directly 

explained by the changes of crystallization orders. Our data show that the major factor 

controlling the evolution of the liquid are the crystallization proportions of the minerals in 

the solid phase.  

6.2. Effect of H2O on Cotectic Crystallization Proportions 

Our data show that the mineral proportions are slightly different in the presence of 

small amounts of H2O, when compared to the anhydrous system. For a dry basalt, Grove 

et al. (1992) reported the following proportions of Ol+Plag and Ol+Plag+Cpx cotectic 

crystallization (in weight %): 30:70 (Ol:Plag) at 0.1 MPa, 8:55:37 (Ol:Plag:Cpx) at 0.1 

MPa, 11:59:30 (Ol:Plag:Cpx) at 200 MPa, and 16: 57:27 (Ol:Plag:Cpx) at 800 MPa. 

Thus, in a dry system, with increasing pressure, the cotectic proportion of Cpx is 

decreasing, whereas the proportion of Ol is increasing and the proportion of Plag stays 

Table II.7: Cotectic crystallization proportions for AH3 and AH6 

 
Run P (MPa) T (°C)  Ol Plag Cpx ∆T (°C) 

starting material: AH3       
DRY       
ShR322 101 1125 11 43 46 25 

ShR323 202 1150 9 47 43 25 
ShR307 401 1150 10 61 29 25 
ShR310 698 1150 13 61 27 25 
HYDROUS       
ShR360 102 1100 11 54 35 55 
ShR358 202 1075 9 55 36 50 
ShR359 401 1100 8 50 43 50 
       
starting material: AH6       
DRY       
ShR603 102 1150 12 47 42 25 
ShR602 202 1150 12 48 41 25 
ShR619 402 1175 13 47 40 25 
ShR608 700 1200 20 53 27 25 
HYDROUS       
ShR662 105 1125 11 42 47 25 
ShR654 201 1100 6 58 36 25 
ShR665 402 1100 6 61 33 25 
Ol – olivine, Plag – plagioclase, Cpx – clinopyroxene 
Crystallization proportions are calculated referring to the nearest experiment at higher  
temperature respectively. They resemble the increase of each phase proportion normalized  
to the decrease in melt fraction. 
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relatively constant. Similar relationships are also observed in our experiments with the 

AH6 and AH3 basalts conducted under dry conditions (Tab. II.7 and Fig. II.17). Although 

the absolute values are slightly different from those of Grove et al. (1992), the 

crystallization proportion of Cpx is also decreasing and the proportion of Ol tend to 

increase with pressure. In our dry experiments, the Plag proportion is increasing in AH3 

and decreasing in AH6, reflecting the fact that in the course of the magmatic evolution 

and thus the change of the solid solution compositions, the cotectic proportions may also 

change. It has to be noted that the cotectic proportions at ShR310 (1150°C, 700 MPa) 

were obtained from experiments with very high crystallinities, where an accurate 

determination of the phase compositions (in particular for glasses) and thus the phase 

proportions is problematic. In contrast to dry conditions, in our hydrous experiments, the 

proportions of Cpx and Ol are opposite: an increase of Cpx and a decrease of Ol with 

increasing pressure (Tab. II.7 and Fig II.17). In addition, the proportion of Plag also 

decreases in hydrous runs (note that in the case of hydrous runs values from ShR654 and 

ShR665 (1100°C, 200 MPa and 400 MPa) were obtained at very high crystallinities). 
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Figure II.17: Cotectic crystallization proportions at given pressures are given for (a) AH6 and (b) 

AH3. Solid and shaded bars show dry and hydrous conditions respectively. Crystallization proportions are 

calculated by normalization of the change in mineral proportion to 1% of crystallization, e.g. ∆FPlag/∆Fliq. 
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6.3. Effect of Pressure and H2O Contents on Multiple Saturation – Implications to 

MORBs 

It has been shown by many previous experimental studies, that basaltic magmas 

beneath MORs mainly evolve along low pressure Ol+Plag and Ol+Plag+Cpx cotectics 

(Grove et al., 1992). Danyushevsky (2001) and Michael (1995), also emphasized the 

importance of small amounts of H2O on the LLDs in basaltic systems (particularly on 

FeO and Al2O3 contents). However, in barometric calculations, the effect of small 

amounts of H2O is generally ignored (Herzberg, 2004; Villiger et al., 2007; Yang et al., 

1996). Only the models of Danyushevsky et al. (1996) and Danyushevsky (2001) are 

taking the effect of melt H2O content into account. However, the effect of H2O on Cpx 

stability and thus the interplay between the effects of pressure and of H2O on the LLDs 

was not yet addressed in theoretical and experimental literature. Although the approach of 

Almeev et al. (2008) accounts for the effects of H2O on Ol, Plag and Cpx temperatures, 

the accuracy of this method was not confirmed experimentally. 

In Fig II.18, we compare experimental LLDs obtained in our dry (100-700, 

<0.14wt% H2O) and hydrous (100 and 400 MPa, ~0.5 wt% H2O) experiments. The 

diagram illustrates that with progression of melt evolution (decrease of MgO), the 

CaO/Al2O3 ratio increases in the course of Ol+Plag crystallization and decreases iduring 

Ol+Plag+Cpx crystallization. In this diagram the effect of pressure and the effect of H2O 

on multiple saturated liquids can be distinguished. Our new data clearly demonstrate the 

significant effect of small amounts of H2O on the LLDs, when our dry and hydrous LLDs 

produced at similar pressures are compared. Thus, the addition of only 0.4 wt% of H2O 

leads to the same decrease of the CaO/Al2O3 ratio which would be caused by a pressure 

increase from 100 MPa to ~300 MPa at dry conditions (e.g. corresponding to ~6 km 

difference in depth in the crust). Thus, the effect of small amounts of H2O needs to be 
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considered in geobarometric calculations of the nominally “dry” MORB magmas. 

According to our experimental data, the presence of only 0.4 wt% H2O may affect 

pressure estimates up to 300 MPa (Fig. II.18). Furthermore, the whole range of natural 

EPR MORB glasses (shown in Fig. II.18 for comparison by light grey symbols) could be 

explained only by the variation of H2O below 0.4 wt% at isobaric conditions.  

 

Figure II.18: Experimental LLDs for the intermediate starting material AH3 (8 wt% MgO, black 

star) obtained for different pressures and H2O conditions. Increasing CaO/Al2O3 resembles Ol+Plag 

crystallization, whereas decreasing CaO/Al2O3 implies (Ol+)Pl+Cpx crystallization. Different symbols 

represent experimental liquid compositions obtained at different experimental pressures, grey and white 

symbols indicate dry and hydrous conditions respectively. Isobaric LLDs are drawn by grey arrows, darker 

and lighter colors indicate dry and hydrous conditions respectively. EPR MORBs (PetDB) are shown for 

comparison (light grey dots). 

 

6.4. Effect of H2O and Pressure on Liquid Evolution within Mineral Component 

Space 

As discussed above, the crystallization sequences, phase proportions, and LLDs 

are strongly affected by the initial starting compositions, pressure, and the melt H2O 

content. Using glass compositions recalculated following the scheme of Grove (1993) 

into mineral end member components, we can further discuss the role of pressure and 
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H2O on Ol+Plag+Cpx cotectic crystallization within the Ol-Cpx-quartz (Qz) 

pseudoternary plot (projection of the basalt tetrahedron from the Plag apex, Fig. II.19). It 

has been previously demonstrated that the position of dry Ol+Plag+Cpx cotectics is 

pressure-sensitive and that with a pressure increase it is shifting towards the Ol-Qz 

sideline with an expansion of the Cpx primary volume (e.g. Walker et al., 1979; Yang et 

al., 1996). The effect of pressure on Ol+Plag+Cpx cotectic crystallization in the dry 

basaltic system has been calibrated in many studies, (e.g. Yang et al., 1996; Herzberg, 

2004). However, as already mentioned above, the effect of small amounts of H2O on 

Ol+Plag+Cpx cotectics was not addressed by experimental studies and assumed to be 

negligible (e.g. Herzberg, 2004).  

In Fig. II.19, the recalculated experimental glass compositions obtained in our 

study are projected for each starting material (rows) for dry (left column) and hydrous 

(right column) conditions. Note that all projections shown in Fig. II.19 are only a part of 

the whole pseudoternary diagram (0.6-0.4-0.8, Ol-Qz-Cpx) as shown on the small plot 

right to the legend. Natural MORB glasses are shown for comparison as small grey dots. 

The starting composition AH6 has a nepheline normative character (negative value of the 

Qz component) and its projection is outside of the pseudoternary plot (to the left side of 

the Ol-Cpx sideline).  

In general and similar to the previous studies, the pressure increase in our 

experiments drives the multiple saturated liquids away from the Cpx apex (e.g. compare 

100, 400 and 700 MPa LLDs for AH6) (Fig. II.19a).  

Dry conditions  

Crystallization along Ol+Plag cotectics (e.g. at 100, 200, 400 in AH6 and AH3) 

drives the melt compositions away from the Ol apex and towards the Cpx apex (e.g. at 
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100 and 200 MPa). When Cpx starts to crystallize, the residual liquids start to evolve 

along the Ol+Plag+Cpx cotectics. However, in our runs all multiple saturated liquids are 

following a trend away from the Qz apex towards SiO2-poor compositions (see also 

discussion below about SiO2 depletion). Experiments at 700 MPa using AH6 and AH3, 

and runs at all pressures using AH5 have Cpx as the first crystallizing phase (see phase 

diagrams), which results in LLDs trending away from the Cpx apex towards Ol. When 

Ol+Plag+Cpx cotectics are reached, the LLDs also start to follow the Qz depletion trend 

(ShR314 at 700 MPa and 1200°C with AH3). In some cases, experimental liquids are 

close to be multiple saturated and are appearing on the plot exactly in the projection of the 

starting composition (e.g. ShR605 at 400 MPa and 1200°C in AH6).  

Hydrous conditions 

In our hydrous experiments (right plots in Fig. II.19), similar systematics can be 

observed when different isobaric Ol+Plag+Cpx cotectics are considered. However, all 3 

mineral cotectic compositions are shifted towards the Ol apex parallel to the Cpx-Ol 

sideline towards compositions which are lower in the Cpx component. This is in a good 

agreement with the relatively high proportion of Cpx in the solid phase under hydrous 

conditions (see phase proportions). Interestingly, the appearance of Mag in AH3 at 200 

and 400 MPa (ShR354 and ShR359) leads also to a drop in Cpx component and a slight 

shift towards the Qz apex (Fig. II.19). In contrast, in AH6, no significant influence of 

Mag on the LLDs can be observed (Fig. II.19).  

Figure II.19: Experimental starting compositions (black stars) and liquid compositions 

recalculated into mineral end member components after Grove (1993) displayed in the projection of the 

basalt tetrahedron from the Plag apex on the Ol-Cpx-Qz plain (0.6-0.4-0.8, Ol-Qz-Cpx). Left and right 

column show diagrams for dry and hydrous conditions respectively. From top to bottom LLDs from 

different starting compositions (stars) are displayed (AH6 - AH3 - AH5). Isobaric experiments are 

connected by solid lines (LLDs). Different symbols represent experimental liquid compositions obtained at 

different experimental pressures; grey and white symbols indicate dry and hydrous conditions respectively. 
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In Fig. II.20, the multiple saturated liquids (Ol+Plag+Cpx cotectics) produced 

from all three starting compositions are shown for each investigated pressure (100, 200, 

400 and 700 MPa) for both, dry and hydrous conditions. Previous experimental data 

conducted at 200 and 800 MPa (Grove et al., 1992), 190 MPa (Sano & Yamashita, 2004), 

and 280, 430, and 680 MPa (Whitaker et al., 2007) are shown for comparison.  

According to our experiments, our dry and hydrous 100 MPa cotectics intersect at 

the Ol-Cpx sideline (Fig. II.20). For all other pressures, hydrous cotectics are always 

shifted towards the Ol apex. Our 200 MPa cotectic line is in agreement with the 

experiments presented by Sano & Yamashita (2004) and Grove et al. (1992): their 190 

MPa and 200 MPa multiple saturated liquids are located on the prolongation of our 

cotectic line towards the more Qz enriched compositions. Similarly, the experimental 

Ol+Plag+Cpx saturated liquids of Whitaker et al. (2007) conducted at 430 and 690 MPa 

are projected along our 400 and 700 MPa dry cotectics, whereas those of 280 MPa are 

projected between our 200 and 400 MPa cotectic lines.  

 

Figure II.20: Ol+Plag+Cpx saturated experimental liquid compositions recalculated into mineral 

end member components after Grove (1993) displayed in the projection of the basalt tetrahedron from the 

Plag apex on the Ol-Cpx-Qz plain (0.6-0.4-0.8, Ol-Qz-Cpx). Dry (grey symbols) and hydrous (white 

symbols) runs are compared for each pressure (a-d). Additionally literature data from Sano & Yamashita 

(2004), Whitaker et al. (2007) and Grove et al. (1992) and 1 atm cotectics (Walker et al., 1979) are shown. 

Estimated cotectic lines are drawn by dashed lines. A summary of all cotetcic lines (100-700 MPa and dry 

and hydrous conditions) in the whole Ol-Cpx-Qz plain is displayed in (e). In a) also natural glasses from 

Tamu (grey dots) and Ori (open triangles) massifs are shown. 

Note that the melt analysis for highly crystalline samples (>80%) like e.g. ShR312 (Ol+Plag+Cpx, 700 

MPa) have a relatively high uncertainty in melt composition analysis. 
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Considered collectively, the cotectic line of Ol+Plag+Cpx is shifted towards 

higher normative Ol contents with increasing pressure. The presence of 0.4-1.1 wt% H2O 

also results in a shift of the Ol+Plag+Cpx cotectics with an expansion of the primary 

volume of Cpx. Thus, the increase in pressure and the addition of H2O have similar 

effects on the location of the cotectic lines (Fig. II.20). As a consequence, the hydrous 

200 MPa cotectic line (0.3-0.8 wt% H2O) is located between the dry 400 and 700 MPa 

cotectics, which clearly illustrates the importance of the consideration of the small 

amounts of H2O in barometric simulations. This is in agreement with our previous 

discussion of the LLDs on the CaO/Al2O3 vs. MgO plot (Fig. II.18).  

It has been shown that when compared to the 1 atm cotectics (Walker et al., 1979), 

the natural MORB glasses (e.g. EPR glasses, Fig. II.20) are projected slightly to more Ol-

enriched compositions, or in other words, they are shifted in the direction of slightly 

higher pressure cotectics. Our new data suggest that in addition to pressure, the presence 

of small amounts of H2O can also be responsible. Moreover, since MORBs have typically 

very low H2O (<0.6 wt%) contents, it was generally assumed that pressure is the main 

factor controlling the direction of the LLDs in the course of crystallization. Our 

experimental liquids projected on the pseudoternary diagram show, that the presence of 

~0.6 wt% H2O has an effect on the position of the Ol+Plag+Cpx cotectics which is 

comparable with a pressure increase of ~ 300 MPa at dry conditions. This, again, leads to 

the conclusion that the presence of H2O is crucial to be considered in pressure 

estimations. Additionally, all pressures estimated without taking the H2O into account, 

reflect only maximum values and might be significantly lower, because similar cotectic 

compositions and melt CaO/Al2O3 can be produced at much lower pressures when small 

amounts of H2O are present (Fig. II.18 and II.20).  
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The Shatsky Rise glasses (Husen et al., 2013; Sano et al., 2012) have 0.2-0.6 wt% 

H2O (Tamu Massif, Husen et al., 2013) and are projected on continuation of the dry 200 

MPa or hydrous 100 MPa cotectics. This is in a good agreement with previous pressure 

estimates (Husen et al., 2013).   

6.5. SiO2 Depletion in Experimental Basalts  

Generally, the Harker type diagrams show that our experiments reproduce well the 

natural array of MORB compositions for all major oxides, except that one for SiO2 (Fig. 

II.8). In contrast to the natural EPR MORBs and the Shatsky Rise basalts, our 

experimental LLDs show a SiO2 depletion trend for experimental equilibrium 

crystallization. This also leads to the trend away from the Qz-rich compositions when the 

glass compositions are re-calculated into mineral components and projected from the 

Plag apex onto the Ol-Cpx-Qz pseudoternary plane (Fig. II.19). The SiO2 depletion in the 

most MgO-rich starting material AH6 can be explained by its nepheline normative (e.g. 

CIPW norm calculated after Cross et al., 1902) character (visible in Fig. II.19a: AH6 with 

a negative value of the Qz content is projected outside of the pseudoternary plot). 

However, the two more evolved starting compositions AH3 and AH5 are both Ol 

normative, but show also SiO2 depletion during the crystallization. Only experiments with 

more than 20% Ol in the solid phase lead to increasing SiO2 concentrations in the 

remaining glass (these experiments are not multiple saturated). In contrast, the natural 

MORB glasses are generally following the trend of SiO2 enrichment (see also ternary 

plots).  

The comparison of our starting materials with the natural basalts (Fig. II.1) shows 

that the SiO2 contents in our starting materials are significantly lower than in the EPR 

MORBs (and in most of the other experimental studies), reflecting the SiO2-poor 
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character of the Shatsky Rise magmas. Compared to the EPR MORB array, the most 

MgO-rich starting material AH6 is 1 wt% lower (leading to nepheline normative 

character) and the intermediate composition AH3 is 0.5 wt% lower in SiO2. The most 

evolved starting material AH5 resembles the lowest SiO2 contents known for EPR 

MORBs. Although our initial synthetic compositions are good representatives of the 

Shatsky Rise magmas (of different evolutionary stages), our experimental residual liquids 

remain in conflict with the SiO2 enrichment observed in natural Shatsky Rise lavas.  

The SiO2 depletion in the MORB system has already been observed in a number 

of experimental studies (Bender et al., 1978; Whitaker et al., 2007; Grove et al., 1992; 

Villiger et al., 2004 (in equilibrium crystallization runs)). They found SiO2 depletion in 

all experiments conducted at elevated pressures (200 MPa - 1 GPa) in graphite-lined 

double capsules, and only at 1 atm, SiO2 enrichment was observed for the same 

composition (Whitaker et al., 2007). Considering that SiO2 enrichment in other studies 

was only achieved in the presence of small amounts of H2O (without being always 

determined) in experiments in noble metal containers, as e.g. in Sano & Yamashita 

(2004), Berndt et al. (2005), and Feig et al. (2006), our experiments again prove that the 

H2O content in natural MORBs is a crucial factor for the tholeiitic evolution and that the 

assumption of dry MORBs is not applicable in thermodynamic models. Since no SiO2 

depletion trends in natural MORB systems are known, we conclude that all MORBs 

evolve in the presence of a small amount of H2O which is sufficient for Plag liquidus 

depression. 

It should be noted, that our hydrous experiments demonstrate less SiO2 depletion 

because the presence of H2O increases the An content in the Plag at given P-T conditions. 

In addition, the H2O lowers the relative proportion of the crystallizing Plag which is a 
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phase with high SiO2 content. However, using our experimental starting materials, SiO2 

enrichment could not be reproduced, although our hydrous runs evolved in the presence 

of 0.4-1.14 wt% H2O. Below, we compare our experimental data to those presented by 

Sano & Yamashita (2004), who conducted an experimental study on an OJP basalt. The 

OJP basalts have many similarities to the Shatsky Rise lavas (Husen et al., 2013): e.g. low 

Na2O, TiO2, and high FeO contents in the basaltic glasses. However, the basalts from 

these two plateaus differ in SiO2: OJP basalts have higher SiO2 contents varying within 

the field of EPR MORBs. The study of Sano & Yamashita (2004) is a good example for 

the experimental reproduction of the SiO2 enrichment trend found in natural MORBs (see 

Part I Fig. I.4). 

The SiO2 contents of the solid phase in the experiments of Sano & Yamashita 

(2004), never exceeds the initial SiO2 content of the starting material. In contrast, our 

experimental runs show solid phase compositions with SiO2 contents, which are usually 

higher than in the starting materials. Compared to experiments from Sano & Yamashita 

(2004), we produced Plag which are higher in SiO2 contents. As displayed in Fig. II.21a 

(and II.13a), our experimental Plag produced in the AH3 and AH5 basalts are 

systematically more albitic for the given melt Mg#, when compared to those presented in 

Sano & Yamashita (2004). The An contents in the experimental Plag of Sano & 

Yamashita (2004) are all in the range of 75-82 mol% An (48-51 wt% SiO2), whereas our 

experimental Plag in AH3 and AH5 are below 75 mol% An (49-56 wt% SiO2).  
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As the Plag composition is mainly a function of the liquid composition and the 

temperature, we assume that the comparison of the liquid compositions at given Mg# can 

be used to visualize the differences between the systems with high and low anorthitic 

Plag and thus SiO2 enrichment or depletion during differentiation. In the chapter above 

(Mineral Compositions and Fig. II.13), we showed that the composition of experimental 

Plag is strongly correlated to the melt Mg# and Ca# with a little influence of the H2O 

content (in the investigated range of melt H2O).  

 

Figure II.21: (a) Compositions of experimentally produced Plag at given melt Mg#. Grey 

triangles display 190 MPa experiments from Sano & Yamashita (2004) using a basaltic starting 

composition from Ontong Java Plateau. (b) Basaltic glass compositions from this study (black stars and 

white dots), the experimental study of Sano & Yamashita (2004) (grey star and grey triangles), Shatsky 

Rise natural basalts (black dots), and EPR MORBs (PetDB, grey points) are shown. Natural Shatsky glass 

compositions are presented in Husen et al. (2013), we indicate fields of Tamu and Ori Massifs. 

Note, that (1) only experiments using AH3 and AH5 are shown, because AH6 is nepheline 

normative and not further discussed regarding SiO2 depletion trend; (2) we display only hydrous 

experiments (100-400 MPa, white dots) in order to compare experiments conducted at similar H2O 

conditions, because Sano & Yamashita (2004) also applied AuPd capsules); and (3) Mg# of hydrous liquid 

compositions were calculated referring Fe2+/Fetotal=0.82. 
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In Fig. II.21b, we demonstrate that the starting material and the residual liquid 

compositions of Sano & Yamashita (2004) have higher melt Ca# at given melt Mg#. 

Compared to the OJP basalt from Sano & Yamashita (2004), our experimental glasses 

have lower melt Ca# which is directly related to crystallization of the more albitic Plag 

(see Fig. II.21a). Also in the natural Shatsky Rise glasses, higher Ca# compared to our 

experimental glasses were found (Fig. II.21b), this explains the observed difference 

between natural (presented in Husen et al., 2013) and experimental An contents in Plag. 

We assume that these differences result in the opposite trends regarding the SiO2 in 

residual liquids.  

When further compared to MORBs, it can be seen that the experimental OJP and 

the natural Shatsky Rise glasses, as well as our experimental melts are higher in the Ca# 

for given Mg# (Fig. II.21b). Additionally, EPR MORBs evolve from parental liquids 

which are generally higher in SiO2 contents (Fig. II.8). Therefore, the crystallization of 

even more albitic Plag from any EPR melt is resulting in constant or slight enrichment of 

SiO2 (the precipitating solid phase is still lower in SiO2 than the parental composition). In 

contrast, if SiO2 in the initial melt composition is already low (the case of Shatsky Rise), 

the crystallization of high anorthitic Plag (which depends on Ca# of coexisting melt) is 

required to produce lower SiO2 in the solid phase.  

To prove our assumption that the high An contents are the main reason for the 

SiO2 depletion, we used the COMAGMAT program (Ariskin & Barmina, 2004) to 

calculate LLDs for equilibrium crystallization using our intermediate starting material 

AH3. The simulated LLDs show that the equilibrium crystallization (200 MPa, 0.1 and 

0.6 wt% H2O, solid grey lines) reproduce well our experimental glass compositions 

regarding the SiO2 content (Fig. II.22). Thus, we assume that it is reasonable to apply the 
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COMAGMAT model to test the effect of starting compositions with different Ca# on the 

LLDs. We modified the Ca# by varying the initial Na2O contents, because those are 

significantly higher in our starting compositions compared to the natural Shatsky Rise 

basalts (Fig. II.1). First, we calculated the Na2O content, which would lead to Ca# in the 

starting material AH3 similar to that of the natural samples with similar MgO content 

(Na2OCa#78=1.9). Then we used the “new” composition of AH3 to simulate equilibrium 

crystallization, in order to find out, if lower Na2O in the starting composition would 

support the SiO2 enrichment. In the case of AH3, lower initial Na2O drives the LLDs to 

SiO2 enrichment (thick black line in Fig. II.22), which supports our assumption, that the 

Ca# and An content of the Plag are the most important factors controlling the SiO2 

depletion or enrichment in the residual liquids. With our experiments we show the strong 

effect of the relative abundances of CaO and Na2O (expressed as Ca#) on the LLDs.  

In addition, the lack of Fe-Ti-Oxides in the crystallization sequence contributes 

also to the high SiO2 in the solid phase. In the study of Walker et al. (1979), a 

compositionally similar starting material from the Mid-Atlantic Ridge (MAR) was used. 

The Ca# is in the same range and the Al# is slightly higher, although both SiO2 and Al2O3 

are higher in their starting material. In their study, early crystallization of SiO2-free 

phases (spinel) and also the relatively high SiO2 content in the starting material compared 

to the experimentally produced Plag (and also Cpx) led to SiO2 enrichment during 

progressive crystallization. In our study, Mag was produced only at hydrous conditions 

(late stage of crystallization), due to slightly higher fO2. As Mag was also observed in the 

crystallized groundmass in the natural Shatsky Rise basalts (Husen et al., 2013), the Mag 

stability implies that our hydrous conditions more closely represent the natural system 

beneath Shatsky Rise, which is in agreement with the H2O contents observed in the 

natural glasses.  
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6.6. Composition of Coexisting Minerals 

In the previous chapter (Mineral Compositions), we demonstrated that pressure 

and small amounts of H2O (up to 1.14 wt%) have minor or even no influence on the Ol 

and Plag compositions when mineral compositions (Mg# of Ol and Cpx, An content in 

Plag) are compared from runs of similar melt Mg#.  

The deviations in Plag composition at given melt Mg# show a dependence on the 

order of crystallization, because (1) the Cpx extracts CaO from the melt (leads to lower 

melt Ca#) which results in lower anorthitic Plag and (2) the Mg# of the melt decreases 

relatively less efficiently, if only one Fe-Mg-silicate is crystallizing. In contrast, the Mg# 

 

Figure II.22: Calculated LLDs for equilibrium crystallization at 200 MPa (solid lines) obtained 

using the COMAGMAT model (Ariskin & Barmina, 2004) in comparison to experimental 200 MPa 

liquids from dry (grey triangles) and hydrous (white triangles) conditions and natural EPR MORBs 

(PetDB, grey points). The difference between the thick black line (modified AH3 as starting composition) 

and grey lines (AH3 as starting composition) displays the effect of varying Ca# (Na2O=1.9 wt%). 

Regarding simulation of dry and hydrous conditions, averages of experimental H2O contents were used: 

0.1 wt% H2O for dry and 0.6 wt% H2O for hydrous conditions. Due to overestimation of Plag stability by 

the COMAGMAT program, calculated LLDs display increasing MgO contents in the earliest stage of 

crystallization. However, this does not affect the general trend of SiO2 contents in simulated liquids 

. 
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of Cpx is lowered with increasing pressure and also in the presence of small amounts of 

H2O. This is due to the relative stabilization of Cpx compared to Ol and Plag induced by 

the increase of pressure and melt H2O (see phase proportions), which also affects the 

mineral compositions relative to each other. In Fig. II.23, we compare Ol and Cpx 

compositions (expressed by Mg#) in our experimental products. Remarkably, the 

different starting compositions and varying pressures have no effect on the mineral 

cotectic compositions. In contrast, the addition of small amounts of H2O results in 

significantly lower Mg# in Cpx for the given Ol composition, e.g. at a Mg# of ~75 in Ol, 

the Cpx Mg# is around 80 under dry conditions, whereas under hydrous conditions the 

Mg# of Cpx is around 72 (Fig. II.23).  

The comparison of Plag and Cpx compositions reveals to different systematics, 

see Fig. II.24. The starting composition plays a major role, whereas our experiments show 

no effect of pressure and the influence of H2O is subordinate. The experimental Plag 

produced under hydrous conditions, show slightly higher An contents in Plag for given 

 

Figure II.23: Correlation of Ol and Cpx compositions represented by their Mg# (averages of 2-16 

analyses). Different symbols represent experimental runs at different experimental pressures, grey and 

white symbols indicate dry and hydrous conditions respectively. 
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Mg# of Cpx. However, the Plag produced in the basalt AH6, exhibit the highest An 

contents in Plag for given Cpx; e.g. at a Mg# in Cpx of ~80 (dry conditions), a Plag in 

AH6 has ~73 mol% An in contrast to a Plag in AH3 having 68 mol% An. (Fig. II.24). 

Considering only the two more evolved compositions AH3 and AH5, the pairs of Plag 

and Cpx are on the same trend. As shown in Fig II.13a, higher An contents were observed 

in Plag at given Mg# in AH6, where Cpx is not the liquidus phase (see Fig. II.3). Cpx 

composition shows no variation with the different starting materials, which results in the 

great deviation of An in Plag – Cpx Mg# pairs of AH6 compared to the pairs in the other 

two basalts. Potential effects of pressure and H2O on the relation of coexisting Plag and 

Cpx cannot be resolved in our experiments.  

To sum up, systematics in cotectic mineral compositions revealed from our 

experiments can be useful to distinguish between different H2O contents in magmas from 

the relations between natural Cpx – Ol pairs, whereas Plag – Cpx pairs can provide 

information on the crystallization sequence.  
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6.7. Implications to Natural Shatsky Rise Basalts 

The results of our experimental study confirm our previous constrains (Husen et 

al., 2013) of low pressure conditions during the magma differentiation beneath Shatsky 

Rise. The LLDs based on the intermediate starting material AH3 give evidence that the 

magma reservoir beneath Shatsky Rise was stored at pressures between 100 and 400 

MPa; the 700 MPa LLD do not reproduce the natural trend of basaltic glass compositions. 

Considering, that our slightly hydrous experiments better represent the natural 

 

 

Figure II.24: Correlation of Plag and Cpx compositions represented by their An content and Mg# 

respectively (averages of 2-11 analyses) for each starting composition (a-c). Different symbols represent 

experimental runs at different experimental pressures, grey and white symbols indicate dry and hydrous 

conditions respectively. Additionally, the range of all experimental runs (light grey diamonds) and natural 

Shatsky Rise Plag-Cpx pairs (grey field, form Husen et al., 2013) are displayed. 
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differentiation processes in evolved MORBs (see previous chapter, SiO2 depletion), the 

glasses produced in 100 MPa experiments best reproduce the natural trend of the Shatsky 

Rise lavas. 200-700 MPa LLDs lead to CaO/Al2O3 ratios systematically lower than that in 

the natural glasses. However, slightly lower amounts of H2O would require higher 

pressures to reproduce the natural Shatsky Rise glasses.  

In general, the natural trend shows a slight difference in the basaltic glasses from 

Tamu Massif (U1347A, Husen et al., 2013) and Ori Massif (U1350A, Sano et al., 2012). 

The basaltic glasses recovered on Ori Massif show a slightly steeper slope in the field of 

lower MgO concentrations (7-5.5 wt%) compared to those basaltic glasses from Tamu 

Massif. This leads to the assumption that the magmas beneath Ori Massif were stored at 

slightly higher pressures or were evolved in the presence of slightly higher melt H2O. 

Husen et al. (2013) presented H2O measurements (FTIR) of three more primitive natural 

glasses from Ori Massif (324 U1350 22R3 80–82, 324 U1350 24R1 135.5–137, 324 

U1350 24R3 76–79), which show ~0.3 wt% H2O. This H2O content exceeds the 

minimum H2O content (0.18 wt% H2O) found in Tamu Massif basaltic glasses (Husen et 

al., 2013). Considering the incompatible character of H2O, and that melt H2O should 

always increase during differentiation, we assume that the parental Tamu Massif melts 

might have contained less H2O compared to those from Ori Massif. Based on this, slight 

variations in the H2O contents rather than variations in pressure might be responsible for 

the diversity of the evolved Shatsky Rise glass compositions. 
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Figure II.25: Range of natural Shatsky Rise basaltic glasses (grey fields for Tamu Massif (324-

U1347, Husen et al., 2013) and Ori Massif (324-U1350, Sano et al., 2012)) and experimental LLDs 

(dashed grey arrows) for the (a) most MgO-rich starting composition AH6 (8.6 wt% MgO) (b) 

intermediate starting composition AH3 (8 wt% MgO). Different symbols represent experimental liquid 

compositions obtained at different experimental pressures, grey and white symbols indicate dry and 

hydrous conditions respectively. Darker and lighter colors indicate dry and hydrous conditions 

respectively.  

 

The melt trapped in an Ol with primitive composition may be assumed being 

parental for the suite of evolved basalts from the similar setting, if processes like e.g. 

magma mixing or assimilation can be excluded. The most primitive starting material 
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AH6, which represents the composition of a melt inclusion in a high MgO Ol (Fo87, Fo90 

would represent an Ol in equilibrium with a mantle melt), is assumed to be a parental 

melt of all Shatsky Rise magmas. For this composition the natural range of the Shatsky 

Rise basaltic glasses cannot be reproduced isobarically (Fig. II.6). Here, high pressures 

(400-700 MPa) are necessary to reproduce the high MgO (8-8.5 wt% MgO) Ori Massif 

glasses. In contrast to this, the group of more evolved glasses (5.5-7 wt% MgO) can be 

reproduced at lower pressures (100-400 MPa). As displayed in Fig. II.25, these 

observations lead to the conclusion that the more primitive Shatsky Rise (Ori Massif) 

lavas have been stored at greater depth. The differentiation of these magmas in deep 

crustal levels, was leading to the more primitive compositions found on Ori Massif 

reflected by the intermediate starting material AH3. This is in agreement with the data 

presented by Husen et al. (2013), who also described a multi level magma plumbing 

system beneath the Shatsky Rise. However, it should be noted that the starting material is 

based on an average of 15 compositions of re-homogenized melt inclusions, which were 

backtrack corrected (correction for post-entrapment crystallization). Thus, the 

composition obtained by this procedure, has an uncertainty and might not exactly 

represent the natural parental melt composition. Remarkably, the composition AH6 has a 

nepheline normative character and exhibits a very high CaO content, as well as 

CaO/Al2O3 higher than known for MORBs. Assuming an actual composition closer to the 

typical range of natural MORBs, the CaO/Al2O3 of AH6 should be lower. This results in 

the fact, that the pressures for magma storage indicated by our experiments might 

represent only maximum values, because the range of intermediate Shatsky Rise 

compositions could be reached by differentiation at lower pressures when the starting 

point was at lower CaO/Al2O3. However, the comparison to the typical range of EPR 

MORBs shows that a CaO/Al2O3 lower than that from the Ori Massif basaltic glasses 
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(AH3) is unlikely (would be lower than typical for MORB), which leads to the 

conclusion, that still higher pressures than 400 MPa at dry and 200 MPa at hydrous 

conditions would be necessary to reach constant or decreasing CaO/Al2O3 during 

differentiation to reproduce the Ori Massif glass compositions.  

Our experimental data imply that in the deep magma reservoir beneath the Shatsky 

Rise (~650 MPa according to Husen et al., 2013), mainly Cpx and fewer Plag and Ol 

were fractionated similar to e.g. the run ShR611 (1:13:18 (Ol:Plag:Cpx)). Considering 

that ShR611 was conducted at dry conditions, the fraction of Cpx might be even higher 

under slightly hydrous conditions. In contrast, in the shallow magma reservoir, the 

fractionation of Ol+Plag is dominant while Cpx fractionation is subordinate.  

7. CONCLUSIONS 

We presented an experimental study on tholeiitic basaltic glasses, which produced 

detailed information on the effect of pressure in a low pressure range between 100 and 

700 MPa and the influence of small amounts of H2O on the phase stabilities and LLDs for 

three different starting materials. The experimental pressure had a major influence on the 

Cpx stability whereas the melt H2O depresses most efficiently the Plag liquidus, which is 

also shown by other studies (Bender et al., 1978; Michael & Chase, 1987; Danyushevsky, 

2001; Almeev et al., 2012). With our experiments we demonstrated that pressure and H2O 

have generally similar effects on the LLDs, due to Cpx stabilization and Plag 

destabilization. Considering that MORBs are generated under low pressure, and that they 

incorporate small amounts of H2O, it is important to evaluate the role of pressure and H2O 

in natural systems in relation to each other. The comparison showed that that the effect on 

the LLDs caused by a pressure increase from 100 to ~300 MPa can be reproduced by the 

addition of only small amounts of H2O (0.4 wt%) at constant pressure. Taking into 
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account geophysical studies, which showed that magma chambers beneath MORs are 

expected between 1-3 km depth (Purdy et al., 1992), our data are in good agreement with 

this assumption. We showed that the H2O content in basalts is a crucial factor for the 

evolution of MORBs and that it has to be taken into account in thermodynamic and 

experimental simulations of MORBs differentiation.  

We observed a strong SiO2 depletion during the crystallization in our experimental 

glasses. This is known by other studies (Grove et al., 1992; Whitaker et al., 2007) 

conducted in graphite containers. We assume that low Ca# and low SiO2 contents in our 

starting glasses led to unusually high SiO2 contents in the crystallized solid phase mainly 

caused by Plag. This in combination with extremely low H2O contents in our dry 

experiments led to even stronger SiO2 depletion due to high silicic/albitic Plag. The fact 

that SiO2 depletion in experimental studies using other MORBs was observed when C-Pt 

containers (leading to almost dry conditions) were used, implies that MORB magmas 

generally incorporate more H2O than gained in those experiments. 

Regarding the Shatsky Rise magma evolution, our data support the study of Husen 

et al. (2013), because on the one hand, low pressure (100 MPa) LLDs reproduced best the 

natural differentiation trend of the Shatsky Rise glasses, whereas on the other hand, using 

the melt inclusion analogue starting composition, low pressures reproduce only the most 

evolved natural glass compositions and higher pressures (400-700 MPa) are necessary to 

produce the less evolved Shatsky Rise basalts. This is in agreement with the multi level 

magma plumbing system described by Husen et al. (2013). 
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Part III: Evaluation of 

Thermodynamic (Petrological) 

Models and 

Geothermobarometers 

 

1. INTRODUCTION 

As discussed in the previous chapter, the compositional variety of basaltic rocks is 

mainly influenced by the variability in their crystallization conditions. Pressure, 

temperature, and water content as well as oxygen fugacity and bulk composition majorly 

influence phase stabilities and thus, the melt compositions which are produced during 

differentiation. Our and previous experimental studies showed the effect of pressure on 

the Liquid Lines of Descent (LLDs) (e.g. Part II; Bender et al, 1987; Grove et al, 1992; 

Villiger et al., 2004; Whitaker et al., 2007). Danyushevsky (2001), Berndt et al. (2005), 

Almeev et al. (2007), and Almeev et al. (2012), demonstrated the strong influence of H2O 

on phase stabilities. In Part II, the relatively large effect of H2O compared to pressure is 

discussed. Our experimental products demonstrated that especially the H2O contents, 

even if they are below 1 wt%, are crucial to understand differentiation processes beneath 

mid-ocean ridges (MORs).  

Many geothermobarometers and thermodynamic models are available to calculate 

and simulate potential magma storage conditions. Unfortunately, as discussed in the 
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introduction of Part II, most models are calibrated on a narrow range of conditions (few 

high pressure experiments), especially regarding small amounts of H2O, because the 

experimental data for the conditions, which are relevant for magmatic processes within 

the oceanic crust, are mainly underrepresented in the literature. 

Following the approach presented in Putirka (2008) (and Putirka et al., 1996, 

Putirka, 2005, Putirka et al., 2007), we used our experimental products to evaluate recent 

models and equations for the calculation of magmatic pressures and temperatures. We 

will point out which advantages and disadvantages they have and where potential 

refinements are necessary. Special attention will be given on the problem of small 

amounts of H2O, because we already showed in Part II that low H2O contents are strongly 

controlling the mid-ocean ridge basalt (MORB) differentiation. To illustrate the 

increasing error of the pressure-temperature (P-T) calculations, which arises in the 

presence of small amounts of H2O, we compare calculations for our almost anhydrous 

(“dry”, <0.14 wt% H2O, C-Pt double capsules) and H2O-bearing (“hydrous”, <0.14 wt% 

H2O, Fe pre-saturated AuPd capsules) runs presented in Part II. We plot the calculated 

pressures and temperatures for each experiment against the corresponding experimental 

run conditions, assuming that the experimental phases are in equilibrium at those 

conditions (Part II, chapter 5.5). For all thermometers and barometers, we used only those 

of our experimental samples, where the melt H2O could be determined. The 

corresponding measured H2O content was applied in the calculations, in those cases 

where H2O is taken into account. Only in the case of the simulations using the 

COMAGMAT program (Ariskin & Barmina, 2004), pressures and temperatures for all 

our multiple saturated (olivine+plagioclase+clinopyroxene (Ol+Plag+Cpx)) liquids were 

calculated, applying an average H2O content of 0.1 wt% H2O for dry and 0.6 wt% H2O 

for hydrous conditions.  
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All our experimental run products were analyzed using a Cameca SX100 electron 

microprobe in the Institute of Mineralogy in Hannover. The water contents were 

determined via Fourier transformation infrared (FTIR) spectroscopy. The analytical 

methods are described in more detail in Part II, chapter 4. The data of this methodical test 

is reported in Tabs. AIII.1-AIII.3 (Appendix III). 

2. THERMODYNAMIC MODELING USING COMAGMAT 

The COMAGMAT program (Almeev & Ariskin, 1996, Ariskin, 1999, Ariskin & 

Barmina, 2004) is a thermodynamic model based on a large set of experimental data. 

Recently, it was refined with new coefficients for the water induced liquidus depression 

for Plag and Ol in basaltic melts (Almeev et al., 2012; Almeev et al., 2007). 

COMAGMAT can be used to calculate mineral pseudoliquidus temperatures for given 

compositions and pressures or, more importantly, to simulate equilibrium or fractional 

crystallization at constant or variable pressures. The most important advantage is that the 

melt H2O content is also taken into account in this model.  

In Fig. III.1a, we present Ol pseudoliquidus temperature calculations for our 

experimental liquids saturated with Ol. The calculated values closely reproduce our 

measured temperatures, although the calculations for dry experiments are systematically 

underestimated of about 20°C. In the case of hydrous conditions, the experimental 

temperatures could be reproduced within an error of ±25°C, but the regression of the 

correlation of measured and calculated temperatures has a slope of 0.57, leading to an 

overestimation of lower temperatures and an underestimation of higher temperatures (Fig. 

III.1a).  
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Almeev et al. (2008) and Husen et al. (2013) used the COMAGMAT program as a 

geothermobarometer and calculated conditions of multiple saturation (Ol+Plag+Cpx) for 

natural basaltic melt compositions (Part I). Besides the consideration of H2O, this 

approach has another important advantage, because only the liquid composition and the 

measured H2O contents are used. The method is independent on mineral compositions, 

 

Figure III.1: Calculated temperatures and pressures for our experimental dry (black symbols) and 

hydrous (white symbols) liquid compositions compared with their measured counterparts. Temperatures 

were obtained using the COMAGMAT program (Ariskin & Barmina, 2004) with recently refined 

coefficients for the effect of H2O on mineral stabilities (Almeev et al., 2012, Almeev et al., 2007). (a) Ol 

pseudoliquidus temperatures for given pressure and H2O content. (b) calculation of temperatures and (c) 

pressures of multiple saturation (Ol+Plag+Cpx) at given H2O conditions (average H2O contents of 0.1 and 

0.6 wt% H2O for dry and hydrous conditions respectively were applied) following the approach of Almeev 

et al. (2008). For pressure calculation, the corresponding starting materials are indicated by different 

symbols, because the accuracy of the model is dependent on the starting material. 
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and thus it is not necessary to measure mineral compositions in equilibrium with the melt, 

which is sometimes problematic in natural samples (e.g. due to zoning of the minerals, 

alteration). However, the general assumption that the treated liquid is multiple saturated 

with all three mineral phases (Ol+Plag+Cpx) has to be true. It has to be noted that the 

determination and evaluation of the measured H2O contents has to be done with caution, 

due to possible incorporation of H2O during alteration, or degassing of the melts before 

quenching. This is discussed in detail in Part I, chapter 4.4. According to Husen et al. 

(2013), we slightly “adjusted” the Cpx crystallization temperature (-5°C, for the augite 

thermometer of Ariskin & Barmina, 2004) to avoid overestimation of Cpx stability.  

The application to our experimental products led generally to a good agreement 

between the calculated and measured values (slope of regression: 1.01) in the case of dry 

experiments, although the precision is only ±20°C. Compared to Ol-temperatures, these 

calculations led to more accurate values for dry experiments, whereas the temperatures 

were stronger overestimated for hydrous experiments (Fig. III.1b). Additionally, the 

pressures for each liquid composition were calculated and are displayed in Fig. III.1c. The 

calculation of multiple saturation conditions for our experimental glasses reproduce the 

measured experimental pressures with a precision of ±100 MPa for the two more evolved 

starting materials (AH5, AH3). Remarkably, the calculations using experimental runs in 

the most MgO-rich starting composition (AH6) have a bigger deviation from to the 

measured values (up to 200 MPa). However, compared to other geobarometers, the 

COMAGMAT program leads to a more accurate simulation of crystallization conditions 

(see below). 
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3. GEOTHERMOBAROMETRY 

3.1. Liquid Based Thermometers  

As already reviewed by Putirka (2008), there are some simple geothermometers 

using only the melt composition for the calculation of crystallization temperatures (Fig. 

III.2). Helz & Thornber (1987) published two simple thermometers based on MgO and 

CaO contents respectively. The equations are based on experimental liquids produced via 

differentiation at 1 atm and fO2=NNO (nickel-nickel oxide). Putirka (2008) also presented 

two modified equations after the MgO-thermometer of Helz & Thornber (1987) 

(Equation 13 and 14 in Putirka (2008)). Equation 14 contains a term for the influence of 

H2O, which is not the case in the other equations. 

The results of the application of the Helz & Thornber (1987) equations are shown 

in Fig. III.2a and b. Similarly to the Ol thermometry using COMAGMAT, the MgO-

thermometer reproduced our hydrous experimental temperatures with higher precision 

(±30°C) compared to temperatures of dry experiments (systematically underestimated 

about 10-30°C). However, for hydrous experiments the slope of the regression is 0.52, 

thus, at lower temperatures the systematic error increases: e.g at 1125°C, the calculations 

reproduce our experimental temperatures with an accuracy of ±10°C, whereas at 1075°C, 

the calculated temperature is ~30°C too high (Fig. III.2a). The application of the CaO-

thermometer showed generally similar results like the MgO-thermometer, although they 

have a larger scatter (±40°C) for both, dry and hydrous conditions. Remarkably, CaO-

temperatures calculated for dry experiments lie more close to the 1:1 line.  

Equation 13 presented in Putirka (2008) reproduced our experimental 

temperatures very good regarding dry experiments. The systematic error leading to 

underestimated temperatures is eliminated compared to Helz & Thornber (1987) and the 
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slope of the correlation is 0.96 following closely the 1:1 line (Fig. III.2c). As it does not 

account for melt H2O contents, this equation leads also to a systematic offset to higher 

calculated temperatures for the hydrous experiments (~30°C too high). In the case of our 

experiments, this misfit could not be solved using the Equation 14 (Putirka, 2008) 

although it takes the melt H2O content into accout (Fig. III.2d). 

 

Figure III.2: Calculated temperatures for our experimental dry (black symbols) and hydrous 

(white symbols) liquid compositions compared with their measured counterparts. Temperatures were 

obtained using liquid-based geothermometers form (a) Heltz & Thornber (1987): referring only to the 

MgO content in the melt, (b) Heltz & Thornber (1987): referring only to the CaO content in the melt, (c) 

Putirka (2008, Equation 13): refinement of MgO-thermometer from Heltz & Thornber (1987), (d) Putirka 

(2008, Equation 14): refinement of MgO-thermometer from Heltz & Thornber (1987) which also includes 

a term referring to the melt H2O content. 
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3.2. Olivine-Melt Based Thermometers  

In literature, different geothermometers based on Ol-melt equilibria are presented. 

In Fig. III.3, we compare temperatures obtained with different thermometers for our 

experimental liquids which were saturated in Ol. The model of Beattie (1993) is a melt 

composition based geothermometer for the calculation of Ol equilibration temperatures. 

According to Putirka (2008), it leads to valuable temperature estimations for anhydrous 

systems, but systematically overestimates the temperatures for hydrous compositions. As 

shown in Fig. III.3a, our observations using this thermometer are in agreement with those 

from Putirka (2008). Additionally, we show that, similar to the models discussed in the 

previous chapter, the calculations for lower temperature experiments are stronger 

overestimated than for intermediate and high temperatures, resulting in a tilt of the 

regression relative to the 1:1 line (slope: 0.53). The calculation of the temperatures for our 

dry experiments have a high precision (±20°C) and show a good correlation with a slope 

of the regression close to the 1:1 line (slope: 0.79, R2=0.89). We observed similar 

systematics using other models (Fig. III.3b to d): Ford et al. (1983), Herzberg & O‘Hara 

(2002), Putirka (2008) (Equation 22), Danyushevsky (2001). Remarkably, the model 

presented by Ford et al. (1983), which is based on the partitioning of Mg and Fe between 

melt and Ol, led to almost perfect reproduction of our dry experimental temperatures 

(slope:1.06, R²=0.95). The model presented by Danyushevsky (2001) is similar to the 

equation of the Ford et al. (1983) model with an additional correction factor for the melt 

H2O content (Fig. III.3e). In contrast to the Ford et al. (1983) model, all calculations using 

the Danyushevsky (2001) model underestimate the experimental temperatures (~25°C). 

However, the slope of regression is almost 1 (dry: 1.02 and hydrous: 0.79) and the data 

show small scatter (dry: R²=0.95 and hydrous: R²=0.86). 
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Figure III.3: Calculated 

temperatures for our experimental dry 

(black symbols) and hydrous (white 

symbols) liquid compositions compared 

with their measured counterparts. 

Temperatures were obtained for Ol 

saturated runs using geothermometers 

based on Ol-liquid equilibria. (a) Beattie 

(1993), (b) Ford (1983), (c) Herzberg & 

O’Hara (2002) thermometers are 

calculating Ol-crystallization temperature 

for a given melt composition dependent 

on pressure. (d) Putirka (2008, Equation 

22) is a refined version of the model of 

Beattie (1993) having an additional term 

which accounts for melt H2O. (e) The 

equation of Danyushevsky (2001) is based 

on the Ford (1983) model with an 

additional correction for melt H2O 

contents. 
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3.3. Plagioclase-Melt Based Thermometers  

Regarding Plag-melt thermometry we compare two models in Fig. III.4. On the 

one hand, the Plag-melt thermometer of Putirka (2008) (Equation 24a, Equation 1 in 

Putirka (2005)), which is important, because it is a part of a geothermobarometer and 

takes the melt H2O content into account. On the other hand, the model of Danyushevsky 

(2001), which also accounts for H2O. We applied these calculations to all our samples 

where Plag and melt compositions as well as melt H2O contents were measured. 

Although both models include H2O in their calculation, again, temperatures of dry 

experiments were recalculated with significantly higher accuracy. They are ~20°C 

overestimated by the Putirka model (Fig. III.4a) and slightly underestimated by 

Danyushevsky (2001) (Fig. III.4b). However, regarding dry experiments they have a 

small scatter (±20°C, and R² close to 1) and the regression has a slope close to 1 in both 

cases (see Fig. III.4). The calculation of hydrous experimental temperatures showed that, 

Putirka (2008) leads to an overestimation of temperatures, which is more pronounced at 

 

Figure III.4: Calculated temperatures for our experimental dry (black symbols) and hydrous 

(white symbols) liquid compositions compared with their measured counterparts. Temperatures were 

obtained for Plag saturated runs using geothermometers based on Plag-liquid equilibria, which both 

account for melt H2O contents. (a) Putirka (2008, Equation 24a) requires liquid and Plag compositions in 

equilibrium with each other, whereas (b) the model of Danyushevsky (2001) is based on the liquid 

composition only.  
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lower temperatures, e.g. at 1075°C, the offset of the calculated temperatures is ~70°C 

(Fig. III.4a). In contrast, the model of Danyushevsky (2001) leads to more reasonable 

results. The regression follows more closely the 1:1 line with a slope of 0.65, although the 

calculated temperatures have a higher scattering (±30°C) (Fig. III.4b). 

3.4. Clinopyroxene and Clinopyroxene-Melt Based Thermometers 

As displayed in Fig. III.5, we tested the thermometers from Putirka (2008) and 

Danyushevsky (2001) by their application to our experimental runs which were saturated 

in Cpx. Only those samples with known melt composition and melt H2O contents were 

used. Putirka (2008) presented one thermobarometer based on the Cpx and melt 

compositions (Equation 33) and one only based on the Cpx composition (Equation 32d). 

Especially thermobarometers based on only Cpx compositions (Equation 32d) are highly 

requested, because they can be applied to magmatic cumulates or other settings where no 

sufficient melt composition is available. As the Equation 32d is one part of a 

geothermobarometer presented by Putirka (2008), the calculations were tested first using 

measured experimental pressures as input parameters (Fig. III.5c), and afterwards using 

the calculated pressures (Equation 32b in Putirka, 2008) (Fig. III.5d). 

The application of both Putirka equations led to temperatures in good agreement 

with the measured values, regarding dry experimental conditions (±25°C). The 

application of calculated pressures (using the geobarometer Equation 32b from Putirka, 

2008) as pressure input in Equation 32d implies a much higher uncertainty, but 

noticeably, the calculated temperatures are still relatively close to the measured ones 

being slightly offset to higher values (~10°C). For hydrous conditions, similar systematics 

were observed like in the previously discussed models. Although all equations include a 

term which accounts for H2O, the regressions are tilted and offset to higher temperatures. 
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In contrast to the calculations using the Putirka (2008) models, again, the model of 

Danyushevsky (2001) leads to a systematic underestimation of the experimental 

temperatures for both, dry and hydrous conditions with similar extend. Besides this 

systematic shift, the data shows a close correlation almost parallel to the 1:1 line (slope of 

the regression: 0.7-0.66, R²=0,77-0,82) (Fig. III.5b).  

 

Figure III.5: Calculated temperatures for our experimental dry (black symbols) and hydrous 

(white symbols) liquid compositions compared with their measured counterparts. Temperatures were 

obtained for Cpx saturated runs using geothermometers based on Cpx-liquid equilibria, which all account 

for melt H2O contents. (a) The equation of Putirka (2008, Equation 33) requires Cpx and liquid 

compositions in equilibrium with each other. (b) The model of Danyushevsky calculates Cpx 

pseudoliquidus for the given liquid composition. (c) In contrast Putirka (2008, Equation 32d) is based on 

Cpx compositions only; when combined with Equation 32b (Putirka, 2008), it can be used as a 

geothemobarometer as well.  

 



Dissertation of Anika Husen 

 
Part III: Evaluation of Thermodynamic (Petrological) Models and 

Geothermobarometers 

 

 158 

3.5. Geobarometry 

We used our experimental products to test recent geobarometers, which are shown 

in Fig. III.6. We present data obtained using models of Putirka (2008), which are based 

on Plag-melt (Equation 25a, Fig. III.6a) and Cpx-melt (Equation 31, Fig. III.6b) 

equilibria, and Cpx compositions only (Equation 32b, Fig. III.6c and d). Additionally we 

show calculations using the models of Herzberg (2004) (Fig. III.6e) and Yang et al. 

(1996) (Fig. III.6f), which are based on liquid compositions only, given that those liquids 

are multiple saturated with Ol+Plag+Cpx.  

The application of the Plag-melt barometer (Fig. III.6.a) from Putirka (2008) led 

to a large spread of the data, with an uncertainty of the calculations up to 700 MPa in dry 

and 400 MPa in hydrous experiments. Thus, the error exceeds 100%, showing, that the 

barometer cannot be applied to our experimental products.  

The Cpx barometers presented by Putirka (2008) (Equations 31, 32b) led to the 

best fit between the calculated and measured pressures, although they are slightly 

overestimated for both, hydrous and dry conditions (Fig. III.6b and c). In both cases, the 

calculated and measured values correlate almost parallel to the 1:1 line. The Cpx-melt 

barometer overestimated the pressures for dry conditions about ~100 MPa (slope: 1.03, 

R²=0.95) and for hydrous conditions ~200 MPa (slope: 0.94, R²=0.59) (Fig. III.6b). The 

barometry only based on Cpx compositions led to a slightly better match between 

calculated and measured values compared to Cpx-melt barometry. Pressures of dry 

experiments were overestimated about ~20 MPa (slope: 1.07, R²=0.97) and those of 

hydrous experiments about ~150 MPa (slope: 0.8, R²=0.71) (Fig. III.6c). When Equation 

32b is used as a geothermobarometer in combination with Equation 32d 

(geothermometer), the deviation of the calculated and measured pressures increases. 
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However, the pressure estimations using this model still lead to systematic data being 

offset to higher pressures about 100 MPa and 300 MPa for dry and hydrous experiments 

respectively.  

The geobarometers of Herzberg (2004) and Yang et al. (1996) (Fig. III.6e and f), 

which do not take the H2O contents into account, have a higher uncertainty. Only in the 

case of dry conditions using the Herzberg (2004) barometer our 400 and 700 MPa 

experimental pressures were closely reproduced and the correlation follows the 1:1 line 

±100 MPa (Fig. III.6d). In contrast to dry experimental conditions, the calculated 

pressures for hydrous experiments are more close to the actual values in the lower 

pressure region, whereas the overestimation increases towards higher pressures. This 

results in 100% (400 MPa) deviation for 400 MPa runs. The application of the barometer 

of Yang et al. (1996) (Fig. III.6f) led also to slightly better results in the case of dry 

experiments, but still the experimental pressures were systematically overestimated with a 

large spread in the calculated values (±250 MPa). Similar variety of calculated pressures 

was observed for the calculation of hydrous conditions (±250 MPa), but with higher 

offset to overestimated pressures (~200 MPa).  

Figure III.6: Calculated pressures for our experimental dry (black symbols) and hydrous (white 

symbols) liquid compositions compared  with their measured counterparts. Pressures were obtained using 

different geobarometers: (a) The Plag-liquid geothermobarometer of Putirka (2008, Equation 25a) requires 

Plag and liquid compositions in equilibrium and also includes melt H2O contents in pressure calculations, 

(b) the Cpx-liquid geothermobarometer of Putirka (2008, Equation 31) requires Cpx and liquid 

compositions in equilibrium and also includes melt H2O contents in pressure calculations, (c) the Cpx 

geobarometer from Putirka (2008, Equation 32b) is based on Cpx compositions only and accounts for H2O 

contents, (d) in combination with Equation 32d, it can be used as a geothermobarometer; (e) the model of 

Herzberg (2004) is based on liquid composition only (assuming that the liquid is multiple saturated with 

Ol+Plag+Cpx) but does not take H2O contents into account, (f) the geobarometer of Yang et al. (1996) is 

based on liquid compositions, without accounting for melt H2O contents 



Dissertation of Anika Husen 

 
Part III: Evaluation of Thermodynamic (Petrological) Models and 

Geothermobarometers 

 

 160 

 

.  

← caption 

 



Dissertation of Anika Husen 

 
Part III: Evaluation of Thermodynamic (Petrological) Models and 

Geothermobarometers 

 

 161 

4. DISCUSSION  

4.1. General Systematics 

Considered collectively, most geothermometers and geobarometers work 

relatively well with a maximum uncertainty of 25°C and 150 MPa, when applying them 

on our anhydrous experimental products. Regarding H2O bearing samples, most 

thermometers overestimate the crystallization temperatures especially in the lower 

temperature region. Regarding the correlation of calculated and measured temperatures, 

we observed a systematic deviation from the 1:1-line because the regression line is 

always tilted having a lower slope than one. Only models presented by Danyushevsky 

(2001) led to slightly lower calculated temperatures compared to their measured 

counterparts and did not show the tilted regression, but a correlation almost parallel to the 

1:1 line. Note, that our measured pressures and temperatures have an uncertainty of ±5 

MPa and ±10°C. However, since all calculations show systematic behavior, we assume 

that our observations are related to the inaccuracy of the models rather than to the 

precision of our P-T measurements. 

4.1.1 Dry conditions 

Generally, for our dry experiments, the best calculations were obtained using melt, 

Ol-melt and Cpx(-melt) thermometers. In contrast, the tested Plag-melt thermometers led 

to systematic overestimation and underestimation of the experimental temperatures using 

the models of Putirka (2008, Equation 24a) and Danyushevsky (2001) respectively. The 

most prcise melt composition based thermometer was the Equation 13 (±40°C) presented 

by Putirka (2008). Regarding Ol-melt thermometry, the Ford (1983) model led to the best 

fit between calculated and measured temperatures. Also, both models presented by 

Beattie (1993) and Herzberg & O’Hara (2002), led to relatively good fit between 
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measured and calculated values. Cpx thermobarometry after Putirka (2008) (Equations 33 

and 32d) led to the best correlation of calculated and measured temperatures. 

Remarkably, in the case when calculated pressures (Equation 32b) were used as pressure 

input in Equation 32d, only a slight deviation from the measured temperatures was 

observed.  

This thermobarometer (Equation 32b) is also one of the most accurate in 

recalculation of experimental pressures, leading to a correlation close to the 1:1 line and 

only a slight (compared to other thermobarometers) systematic overestimation (~50 

MPa). However, the best fit of calculated pressures could be obtained by the model of 

Herzberg (2004).  

4.1.2 Hydrous conditions 

Regarding hydrous experiments, only the calculation of multiple saturation 

(Ol+Plag+Cpx) conditions using the COMAGMAT program (after the approach 

described by Almeev et al. (2008)) led to reasonable results for both, pressure and 

temperature. However, our data show how the application of this model is limited to the 

typical range of MORB compositions, because the calculations were less accurate for our 

most MgO-rich basalt AH6. This starting material has a composition outside of the 

typical range of MORBs (very high CaO and low SiO2, see Fig II.1), which results in 

systematic overestimation of the Plag stability. Thus, the calculated LLDs show an 

interval of initial single Plag crystallization, which was not observed in our experiments 

and is not representative for real crystallization processes. Due to this overestimation of 

Plag stability, the Plag pseudoliquidus is too high in the simulation. In order to reach 

multiple saturation of the given liquid composition, also the pseudoliquidus temperatures 

of the other two minerals have to increase. Thus, to reach similar pseuduliquidus 
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temperatures for Plag and Cpx, higher pressures have to be applied. This, in turn, causes 

the overestimation of experimental pressures in this basaltic composition. A similar effect 

of overestimation of Plag stabilitiy was observed for AH3 glasses, but with smaller 

influence on the P-T estimates. Thus, in AH3 experimental glasses, pressures were mostly 

overestimated, whereas the pressures for AH5 glasses were always slightly 

underestimated.  

4.2. Impact of Temperature on Geobarometry 

Although the relative error of the temperature calculations is generally low (25°C 

corresponds to only 2% of the absolute temperature), it has a large effect when those 

calculated temperatures are applied to further pressure calculations. As discussed in Part 

II, chapter 5.1, the pressure induced increase of the liquidus is 4-5°C/100 MPa for Ol and 

Plag and ~9°C/100 MPa for Cpx. Thus, an overestimation of the temperature about 20°C 

could correspond to an overestimation in pressure of about 200 to 400 MPa (related to 

Cpx or Ol and Plag respectively). This effect is visible in the geothermobarometer of 

Putirka (2008) using Equation 32b and Equation 32d, because here the temperature 

overestimation is clearly reflected in the misfit between calculated and measured 

pressures. When the measured experimental temperatures are applied in Equation 32b 

(geobarometer), the calculated pressures for dry and hydrous experiments are only 50 and 

100 MPa overestimated respectively (Fig. III.5c). In contrast, when the systematically 

high calculated temperatures from Equation 32d (for dry experiments ~+15°C) are used, 

the deviation between calculated and measured pressures also increases (Fig. III.5d). This 

leads to an overestimation of ~100 MPa for dry experiments and ~250 MPa for hydrous 

experiments and is induced only by the ~15°C overestimated temperatures.  
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Figure III.7: Calculated temperatures for our experimental hydrous (open circles) runs and 

experiments conducted by Feig et al. (2006) (white symbols) compared to their measured counterparts. The 

two experimental studies are conducted in similar pressure range (100-400 MPa in this study, 200 and 500 

MPa in Feig et al., 2006) but with different H2O conditions (0.4-1.1 wt% H2O in this study, 1-5wt% in Feig 

et al., 2006). Temperatures were obtained using geothermometers based on Plag-liquid and Cpx-liquid 

equilibria (Putirka, 2008), which both account for melt H2O contents.  

 

4.3. Impact of H2O on Thermobarometry 

As already discussed above (Part II), it should be noted, that the measured melt 

H2O concentrations represent only minimum values for highly crystalline samples 

(Fcryst>30%). This might account for the higher uncertainty of calculated temperatures in 

the low temperature region. However, the big deviation of the calculated temperatures 

from their measured counterparts, which was consistently observed for our experimental 

runs, might be caused by neglecting the effect of H2O on the liquidus and the composition 

of the crystallizing minerals. As shown in Part II, the effect of small amounts of H2O on 

the liquidus of mineral phases is large. Almeev et al. (2012), Almeev et al. (2007), and 

Danyushevsky (2001) demonstrated that between 0 and 1 wt% H2O the liquidus is most 

efficiently depressed. Therefore, the same systematic test of recent Cpx-melt and Plag- 

melt thermobarometers was made using experimental basalts presented by Feig et al. 
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(2006). The H2O contents in their experimental runs range between 1-5 wt%. The direct 

comparison with those experiments showed, that for their higher H2O concentrations 

slightly better results were obtained (even over a larger temperature range). As shown in 

Fig. III.7, the calculations using the models of Putirka (2008) are less overestimating the 

experimental temperatures for the experiments presented by Feig et al. (2006): e.g. the 

highest temperatures (providing the most precise melt and H2O measurements) at 1150°C 

were reproduced in the case of Feig et al. (2006), whereas our experimental temperatures 

were overestimated around 20°C. Additionally, the slope of the regression is slightly 

higher for the Feig et al. (2006) experiments, resulting in a correlation being more close 

to the 1:1 line. This observation supports the assumption that the influence of small 

amounts of H2O (>1 wt%) in the equations of Putirka (2008) is considered too small. 

In contrast, the systematic underestimation of experimental temperatures using the 

model of Danyushevsky (2001) implies that the effect of H2O is considered too strong in 

those models. The equation for Ol crystallization temperatures is based on the equation of 

Ford (1983), which reproduces well the temperatures of our dry experiments. In 

Danyshevsky (2001), the Ford (1983) temperatures are corrected with a H2O dependent 

term. This is too strong in the range of small amounts of H2O, which results in the 

systematic underestimation of our experimental temperatures. Similar effect was observed 

for the Plag pseudoliquidus temperatures. These systematics support the recently 

published models for the effect of H2O on Ol and Plag by Almeev et al. (2007, 2012), 

which are applied in the COMAGMAT program. They consider a slightly smaller 

liquidus depression for Ol and Plag in the region of small amounts of H2O.  
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5. CONCLUSION 

Small amounts of H2O were often disregarded in previous studies of experimental 

and natural samples. Our experimental study (Part II) showed that H2O has (especially 

compared to pressure) a large effect on the phase equilibria and thus the liquid evolution. 

Regarding this test of recent thermometers, we proved how already, and in particular, low 

H2O contents lead to systematic deviation between predicted and measured temperatures 

and pressures. In contrast, the calculation of multiple saturation conditions (Almeev et al., 

2008) was proven as a reliable tool for P-T estimates, although this is only true for 

basaltic compositions, where reliable simulation of differentiation can be obtained. 

Referring to the calculations presented in Part I, chapter 5.5, we can conclude, that the 

application of the simulation using COMAGMAT led to reliable calculations of P-T 

conditions. Only the temperatures of the natural basaltic melts might be slightly 

overestimated, especially regarding the most evolved Tamu Massif magmas, which have 

the highest H2O contents (Group 2 and 4 in Part I, chapter 5.5). 
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Appendix 

1. ABBREVIATIONS 

∑R2
 Residual sum of squares 

AH3 Intermediate starting material 

AH5 Most evolved starting material 

AH6 Most MgO-rich starting material 

Al# Al/(Al+Si) 

An Anorthite content of plagioclase (mol%) 

Ca# Ca/(Ca+Na) 

Ca8/Al8 CaO/Al2O3 fractionation back calculated to MgO=8 wt% 

CCO Carbon-Carbon oxide (oxygen buffer) 

COMAGMAT Simulation software 

Cpx Clinopxroxene 

DFG Deutsche Forschungsgemeinschaft (German Research Foundation) 

Dur Duration 

En Enstatite content of clinopyroxene (mol%) 

EPMA Electron beam micro analyzer 

EPR East Pacific Rise 

Fcryst Crystal fraction 

Fe8 FeO content fractionation back calculated to MgO=8 wt% 

fH2 Hydrogen fugacity 

fH2O Water fugacity 

Fig. Figure 

Fmelt Melt fraction 

FMQ Fayalite-Magnetite-Quartz (oxygen buffer) 

Fo Forsterite content of olivine (mol%) 

fO2 Oxygen fugacity 

FPlag Plagioclase fraction 

Fs Ferrosilite content of clinopyroxene (mol%) 

FTIR Fourier transformation infrared 

Gl Glass 

HREE Heavy rare earth elements 

IHPV Internally heated pressure vessel 

IODP Integrated Ocean Drilling Program 

IR Infrared 

KD Crystal-liquid exchange coefficients 
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KDCa-Na Crystal-liquid exchange coefficient for Ca and Na 

KDFe-Mg Crystal-liquid exchange coefficient for Fe and Mg 

LIP Large Igneous Provinces 

LLD Liquid lines of descent 

Lq Liquid 

Mag Magnetite 

MAR Mid Atlantic Ridge 

MELTS Simulation software 

Mg# Mg/(Mg+Fe) 

MIR Mid-infrared 

MOR Mid-ocean ridge 

MORB Mid-ocean ridge basalt 

Na8 Na2O content fractionation back calculated to MgO=8 wt% 

NMORB Normal-Mid-ocean ridge basalt 

NNO Nickel-Nickel oxide (oxygen buffer) 

ODP Ocean drilling Program 

OJP Ontong Java Plateau 

Ol Olivine 

Plag Plagioclase 

Qz Quartz 

REE Rare earth elements 

Tab. Table 

U1347 IODP drilling site on Tamu Massif (Shatsky Rise) 

U1350 IODP drilling site on Ori Massif (Shatsky Rise) 

Wo Wollastonite content of clinopyroxene (mol%) 

Φ Crystallization degree 
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2. APPENDIX PART I  

2.1.  Standard Reproducibility in Microprobe Analysis 

The data presented here contains electron microprobe analysis of international 

standards (Jarosewich et al., 1980) and samples from a drilled core of the Shatsky Rise 

oceanic plateau, which was recovered during Expedition 234 at Site U1347. The data was 

obtained using the Cameca SX100 instruments at the Technical University of Clausthal 

and the Leibniz University of Hannover in the years from 2011 to 2013. The 

measurements are not listed here, the tables can be found in Husen et al. (2013). Mineral 

compositions are available from the PetDB database. 

 

 

Figure AI.1: Analytical reproducibility during EPMA measurements shown for the basaltic glass 

standard VG-2 (USNM 111240/52) from the Juan de Fuca Ridge (Jarosewich et al., 1980). Literature 

values are compared to measured data. The black square shows the standard deviation of the EPMA 

measurements. Shown are measurements made during 34 EPMA sessions; in each session the glass 

standard was measured 3 to 10 times (10 nA, 10 µm defocused beam). The black solid circles represent 

data obtained at the Institute of Mineralogy at the Leibniz University of Hannover and the grey triangles 

show data produced at the Institute of Disposal Research at the University of Technology of Clausthal. 
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Figure AI.2: Standard reproducibility of three different standard glasses (Kilauea basalt glass: 

VG-A99 USNM 11134981; Indian ocean basalt glass: USNM 113716; Juan de Fuca basalt glass: USNM 

111240/52) measured during one EPMA session. Each glass was measured 8 to 10 times (10 nA, 10 µm 

defocused beam). 
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Figure AI.3: Na2O content measured with different counting times. The basaltic glass has 2.62 

wt% Na2O (values of Jarosewich et al., 1980, normalized to 100 wt%). Beam current: 10 nA, acceleration 

power: 15 kV.  
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2.2. Mineral Analysis of Natural Shatsky Rise Basalts 

 

 

Figure AI.4: Cpx compositional variations in different chemical groups (I to V). Each triangular 

diagram displays the Cpx of one group (colored symbols) compared to the whole range of natural Shatsky 

Rise Cpx measured at Site 1347 (gray points). 

 

2.3. References: 

Jarosewich, E., Nelen, J.A., Norberg, J.A. (1980), Reference Samples for Electron 
Microprobe Analysis, Geostandards Newsletter, 4(1), 43-47. 

Husen, A., Almeev, R. R., Holtz, F., Koepke, J., Sano, T. & Mengel, K. (2013). 
Geothermobarometry of basaltic glasses from the Tamu Massif, Shatsky Rise oceanic 
plateau. Geochemistry, Geophysics, Geosystems 14, 3908–3928. 
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3. APPENDIX PART II 

 The data in this chapter belongs to the experimental study of three 

synthetic basalts representing different evolutionary stages of the Shatsky Rise oceanic 

plateau basalts. Detailed discussion can be found in the main text of Part II. Experimental 

mineral compositions measured using the electron microprobe SX100 at the University of 

Hannover are presented. Additional figures support the observations and discussion above 

(Part II).  
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Table AII.1: Compositions of experimental olivines in dry experiments 
 
Run         P (MPa)   T (°C)  n SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Total Fo KDFe-Mg Mg# 

starting material: AH 6            
ShR603 102 1150 8 37.92 (.12) 0.06 (.02) b.d. 22.66 (.32) 0.35 (.05) 37.97 (.21) 0.74 (.06) 100.21 73.85 0.25 74.9 
ShR616 103 1175 4 39.22 (.31) b.d. b.d. 17.61 (.26) 0.29 (.03) 42.09 (.2) 0.63 (.03) 99.84 80.04 0.28 81 
ShR609 102 1200 7 38.88 (.3) b.d. b.d. 14.46 (.23) 0.20 (.04) 46.08 (.49) 0.58 (.07) 100.45 84.22 0.28 85 
ShR602 202 1150 5 37.53 (.15) 0.06 (.01) 0.20 (.03) 24.34 (.33) 0.41 (.04) 36.89 (.16) 0.72 (.08) 100.14 71.92 0.26 73 
ShR615 203 1175 4 39.36 (.37) b.d. b.d. 17.69 (.14) 0.22 (.06) 41.89 (.27) 0.63 (.04) 99.79 79.95 0.29 80.8 
ShR601 401 1150 5 36.72 (.2) 0.07 (.01) 0.33 (.32) 28.59 (.28) 0.43 (.03) 33.16 (.4) 0.77 (.12) 100.07 66.33 - 67.4 
ShR619 402 1175 10 37.68 (.17) 0.05 (0) 0.21 (.05) 23.15 (.21) 0.40 (.05) 37.72 (.15) 0.63 (.04) 99.84 73.40 0.28 74.4 
ShR605 402 1200 1 39.30 (.14) b.d. b.d. 17.67 (.08) 0.29 (.05) 42.53 (.13) 0.56 (.02) 100.34 80.24 0.29 81.1 
ShR604 698 1150 4 36.39 (.57) 0.11 (.03) 1.34 (.55) 32.14 (.57) 0.46 (.02) 27.34 (.72) 1.26 (.46) 99.35 58.74 - 60.3 
ShR606 700 1175 3 36.44 (.22) 0.08 (.01) b.d. 30.35 (.66) 0.45 (.09) 30.89 (.18) 0.65 (.05) 99.16 63.50 - 64.5 
ShR611 700 1225 4 38.86 (.29) b.d. b.d. 18.54 (.21) 0.25 (.05) 42.69 (.34) 0.44 (.05) 100.77 79.73 0.29 80.4 
starting material: AH 3            
ShR322 101 1125 6 36.99 (.27) 0.08 (0) b.d. 27.69 (.2) 0.51 (.06) 33.56 (.19) 0.70 (.01) 99.53 67.27 0.28 68.35 
ShR318 106 1150 10 37.97 (.22) 0.07 (.02) b.d. 23.87 (.19) 0.41 (.05) 37.02 (.27) 0.63 (.03) 100.26 72.45 0.27 73.43 
ShR316 105 1175 10 39.40 (.17) b.d. b.d. 16.63 (.2) 0.25 (.04) 44.49 (.24) 0.50 (.03) 101.50 81.89 0.27 82.66 
ShR315 102 1200    b.d.         
ShR324 203 1125 5 36.64 (.06) 0.08 (.01) b.d. 28.90 (.29) 0.51 (.02) 32.67 (.16) 0.67 (.06) 99.48 65.79 0.29 66.83 
ShR323 202 1150 8 37.43 (.24) 0.07 (.02) b.d. 24.86 (.18) 0.41 (.04) 36.34 (.23) 0.62 (.03) 99.73 71.31 0.28 72.27 
ShR305 202 1175 5 39.02 (.25) 0.05 (0) b.d. 19.78 (.2) 0.31 (.05) 41.11 (.23) 0.60 (.05) 100.87 77.83 0.28 78.74 
ShR326 402 1125 4 36.10 (.32) 0.11 (.01) b.d. 33.34 (.12) 0.55 (.06) 28.84 (.27) 0.59 (.03) 99.53 59.73 - 60.66 
ShR307 401 1150 6 36.77 (.17) 0.06 (.01) b.d. 27.96 (.42) 0.45 (.05) 34.00 (.14) 0.58 (.05) 99.83 67.51 0.28 68.43 
ShR304 402 1175 5 38.43 (.08) 0.06 (933) b.d. 21.75 (.83) 0.36 (.34) 39.21 (.38) 0.53 (.41) 100.33 75.41 0.29 76.27 
ShR311 402 1200 4 39.40 (.09) b.d. b.d. 16.62 (.46) 0.23 (.08) 43.34 (.29) 0.46 (.01) 100.11 81.57 0.30 82.29 
ShR310 698 1150 6 35.91 (.42) 0.09 (.03) b.d. 34.15 (.42) 0.48 (.05) 27.78 (.22) 0.56 (.04) 99.47 58.35 - 59.19 
ShR312 700 1175 5 37.01 (.37) 0.15 (.17) 1.09 (.03) 29.14 (.02) 0.43 (.03) 31.17 (.86) 0.82 (.44) 100.12 64.46 0.28 65.60 
starting material: AH 5            
ShR520 101 1125 7 36.51 (.2) 0.08 (.02) b.d. 28.98 (.48) 0.80 (.06) 32.38 (.34) 0.63 (.13) 99.84 65.36 0.30 66.58 
ShR519 203 1125 10 36.61 (.2) 0.07 (.01) b.d. 30.20 (.27) 0.78 (.06) 31.41 (.28) 0.50 (.04) 99.57 63.90 0.30 64.96 
ShR522 402 1125 8 35.32 (.26) 0.14 (.02) b.d. 36.20 (.3) 0.93 (.04) 26.19 (.21) 0.59 (.07) 99.38 55.19 0.29 56.32 

Olivine measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Forsterite (Fo) is given in mol% 
Mg# - molar ratio of (Mg/(Mg+Fe)) 
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Table AII.2: Compositions of experimental olivines in hydrous experiments 
 
Run P (MPa)  T (°C) n SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Total Fo KDFe-Mg Mg# 

starting material: AH 3             
ShR360 102 1100 7 38.29 (.16) 0.06 (.01) bd 21.94 (.33) 0.41 (.05) 38.64 (.23) 0.49 (.03) 100.05 74.98 0.27 75.84 
ShR362 105 1125 7 38.59 (.32) 0.06 (.01) bd 19.89 (.25) 0.38 (.04) 40.63 (.17) 0.47 (.03) 100.02 77.62 0.27 78.46 
ShR361 105 1135 7 39.72 (.35) 0.05 (.01) bd 15.86 (.2) 0.34 (.06) 44.29 (.12) 0.43 (.02) 100.69 82.49 0.28 83.27 
ShR363 108 1155 5 39.59 (.14) bd bd 15.10 (.11) 0.27 (.04) 44.52 (.17) 0.51 (.04) 100.05 83.19 0.28 84.01 
ShR358 202 1075 7 37.31 (.22) 0.06 (.01) bd 26.80 (.2) 0.50 (.06) 34.34 (.46) 0.43 (.05) 99.44 68.72 0.29 69.55 
ShR354 201 1100 6 38.08 (.17) 0.05 (.01) bd 24.03 (.21) 0.44 (.04) 37.60 (.27) 0.41 (.02) 100.82 72.83 0.26 73.61 
ShR350 205 1125 12 38.73 (.17) 0.05 (.01) bd 19.64 (.23) 0.37 (.04) 41.30 (.26) 0.42 (.03) 100.52 78.17 0.27 78.94 
ShR359 401 1100 11 37.54 (.49) 0.07 (.02) 0.53 (.35) 26.23 (.63) 0.45 (.06) 34.96 (.62) 0.61 (.62) 100.38 69.41 0.29 70.37 
ShR357 401 1125 8 38.07 (.34) 0.06 (.01) bd 23.43 (.31) 0.40 (.04) 37.83 (.19) 0.41 (.1) 100.43 73.46 0.27 74.21 
ShR366 397 1150 5 37.94 (.2) 0.04 (.01) 0.09 (.03) 22.45 (.18) 0.42 (.03) 38.65 (.12) 0.39 (.06) 100.03 74.67 0.27 75.42 
starting material: AH 5             
ShR558 202 1075 4 37.08 (.21) 0.05 (0) bd 28.35 (.19) 0.75 (.08) 32.89 (.25) 0.37 (.03) 99.48 66.47 0.31 67.41 
ShR554 201 1100 5 37.21 (.35) 0.05 (0) bd 26.42 (.52) 0.77 (.05) 35.35 (.29) 0.33 (.03) 100.13 69.51 0.29 70.45 
starting material: AH 6             
ShR660 102 1100 6 38.26 (.38) 0.07 (.04) bd 21.62 (.17) 0.40 (.06) 38.86 (.9) 0.63 (.08) 100.54 75.20 0.22 76.21 
ShR662 105 1125 5 38.52 (.13) bd bd 20.23 (.21) 0.31 (.02) 40.46 (.19) 0.57 (.07) 100.09 77.22 0.27 78.09 
ShR661 105 1135 7 39.35 (.23) bd bd 16.53 (.23) 0.26 (.05) 43.24 (.43) 0.52 (.03) 99.96 81.53 0.26 82.34 
ShR663 108 1155 6 39.22 (.29) bd bd 15.86 (.2) 0.30 (.06) 44.00 (.41) 0.58 (.05) 100.21 82.26 0.23 83.18 
ShR658 202 1075 7 37.68 (.25) 0.07 (.03) 0.39 (.13) 24.83 (.31) 0.50 (.04) 35.85 (.29) 0.58 (.06) 99.91 71.01 0.00 72.01 
ShR654 201 1103 6 38.06 (.19) 0.06 (.01) 0.43 (.33) 23.09 (.35) 0.50 (.03) 38.14 (.3) 0.59 (.12) 100.87 73.63 0.00 74.65 
ShR650 205 1125 16 38.54 (.21) 0.05 (.01) 0.19 (.01) 19.44 (.4) 0.33 (.06) 41.17 (.25) 0.48 (.06) 100.21 78.25 0.28 79.06 
ShR659 401 1100 5 37.60 (.26) 0.08 (.02) 0.20 (.05) 25.10 (.16) 0.49 (.09) 36.06 (.13) 0.50 (.04) 100.02 71.02 0.00 71.92 
ShR657 401 1125 9 38.00 (.2) 0.06 (.01) 0.24 (.06) 22.38 (.37) 0.41 (.05) 38.47 (.57) 0.50 (.07) 100.05 74.53 0.25 75.39 
ShR666 397 1150 5 37.92 (.45) 0.04 (.03) 0.15 (.1) 21.20 (.36) 0.39 (.07) 39.63 (.23) 0.42 (.04) 99.78 76.14 0.26 76.91 

Olivine measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Forsterite (Fo) is given in mol% 
Mg# - molar ratio of (Mg/(Mg+Fe)) 
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Table AII.3: Compositions of experimental plagioclases in dry experiments 
 
Run P (MPa)  T (°C) n SiO2 TiO2 Al2O3 FeOt MgO CaO Na2O K2O Total An KDCa-Na 

starting material: AH 6             

ShR603 102 1150 4 50.22 (.83) 0.15 (.06) 31.38 (.76) 0.96 (.24) 0.51 (.23) 15.08 (.41) 2.88 (.2) 0.06 (.01) 101.25 74.04 1.19 
ShR616 103 1175 2 51.17 (.03) 0.11 (.06) 29.78 (.97) 0.79 (.28) 0.85 (.77) 15.65 (.3) 2.98 (.24) b.d. 101.00 74.39 0.92 
ShR609 102 1200 4 48.48 (.58) 0.06 (.01) 33.24 (.49) 0.57 (.08) 0.34 (.06) 16.47 (.47) 2.11 (.31) b.d. 101.27 81.18 1.26 
ShR602 202 1150 3 50.38 (.38) 0.15 (.07) 30.08 (.76) 1.10 (.34) 0.67 (.24) 14.79 (.21) 2.91 (.13) 0.10 (.01) 100.18 73.3 1.38 
ShR615 203 1175 4 49.00 (.4) 0.07 (.02) 32.78 (.42) 0.65 (.07) 0.33 (.11) 15.99 (.35) 2.46 (.2) b.d. 101.29 78.22 1.20 
ShR601 401 1150 6 50.05 (.15) 0.11 (.03) 30.80 (.23) 0.82 (.16) 0.29 (.14) 14.46 (.24) 3.10 (.05) 0.08 (.01) 99.70 71.7 - 
ShR619 402 1175 9 50.03 (.33) 0.08 (.03) 31.56 (.38) 0.69 (.09) 0.21 (.06) 14.57 (.23) 3.07 (.15) 0.05 (.01) 100.27 72.18 1.31 
ShR605 402 1200 3 49.60 (.28) 0.06 (.02) 31.92 (.64) 0.74 (.19) 0.41 (.17) 15.55 (.32) 2.64 (.07) b.d. 100.92 76.51 1.06 
ShR604 698 1150 4 52.69 (.59) 0.11 (.01) 30.08 (.42) 0.62 (.11) 0.14 (.06) 12.76 (.25) 3.95 (.13) 0.29 (.02) 100.64 63.01 - 
ShR606 700 1175 4 51.87 (.49) 0.08 (.02) 31.26 (.41) 0.73 (.07) 0.14 (.05) 13.82 (.46) 3.54 (.3) 0.12 (.02) 101.57 67.89 - 
ShR611 700 1225 8 50.27 (.6) 0.06 (.01) 32.01 (.35) 0.59 (.04) 0.20 (.08) 14.93 (.36) 2.95 (.15) b.d. 101.07 73.42 1.05 
starting material: AH 3             

ShR322 101 1125 6 52.20 (.36) 0.13 (.02) 30.15 (.19) 0.70 (.05) 0.18 (.04) 13.07 (.23) 3.95 (.17) 0.10 (.01) 100.48 64.28 1.05 
ShR318 106 1150 6 52.30 (.51) 0.14 (.02) 29.91 (.31) 0.71 (.06) 0.27 (.05) 13.62 (.15) 4.00 (.23) 0.09 (.01) 101.03 64.98 0.87 
ShR316 105 1175 7 50.21 (.31) 0.07 (.02) 31.98 (.27) 0.58 (.1) 0.26 (.07) 15.35 (.26) 2.80 (.18) 0.05 (.01) 101.32 74.91 1.13 
ShR324 203 1125 7 53.05 (.44) 0.13 (.03) 29.56 (.36) 0.75 (.13) 0.23 (.08) 12.64 (.24) 4.09 (.11) 0.11 (.01) 101.00 62.65 1.03 
ShR323 202 1150 8 51.32 (.7) 0.11 (.04) 30.56 (.54) 0.74 (.12) 0.20 (.12) 13.50 (.44) 3.53 (.22) 0.09 (.01) 100.06 67.49 1.04 
ShR305 202 1175 4 51.40 (.24) 0.10 (.03) 30.11 (.57) 0.77 (.13) 0.37 (.16) 14.34 (.19) 3.38 (.15) b.d. 100.54 69.85 0.98 
ShR326 402 1125 4 54.01 (.42) 0.18 (.05) 29.37 (.54) 0.86 (.09) 0.32 (.05) 11.78 (.41) 4.30 (.13) 0.20 (.02) 100.27 59.49 - 
ShR307 401 1150 5 52.25 (0.4) 0.11 (.01) 29.85 (.18) 0.59 (.06) 0.18 (.05) 12.58 (.33) 4.00 (.17) 0.12 (.01) 99.68 63.03 0.82 
ShR304 402 1175 5 51.60 (.9) 0.08 (.91) 31.40 (.53) 0.59 (.37) 0.16 (.87) 13.79 (.76) 3.54 (.7) 0.10 (.09) 101.27 67.86 0.97 
ShR310 698 1150 5 54.58 (.5) 0.16 (.06) 28.77 (.3) 0.69 (.21) 0.26 (.19) 11.54 (.23) 4.57 (.11) 0.25 (.02) 100.82 57.39 - 
ShR312 700 1175 5 53.49 (.36) 0.12 (.04) 29.83 (.25) 0.72 (.09) 0.14 (.04) 12.24 (.15) 4.22 (.1) 0.16 (.02) 100.91 60.99 0.98 
ShR314 700 1200 2 52.43 (.07) 0.08 (.01) 31.04 (.01) 0.71 (.11) 0.19 (.09) 13.32 (.18) 3.77 (.17) 0.09 (.01) 101.62 65.79 1.03 
starting material: AH 5             

ShR520 101 1125 5 53.01 (.2) 0.12 (.04) 29.28 (.31) 0.80 (.12) 0.21 (.06) 12.29 (.2) 4.20 (.07) 0.09 (.01) 100.01 61.45 0.91 
ShR519 203 1125 10 53.29 (.37) 0.09 (.02) 29.44 (.33) 0.60 (.07) 0.17 (.04) 12.17 (.4) 4.19 (.2) 0.10 (.01) 101.00 61.2 0.87 
ShR505 202 1150 6 52.61 (.7) 0.11 (.01) 29.96 (.53) 0.69 (.08) 0.21 (.02) 13.19 (.42) 3.76 (.16) 0.10 (.01) 100.63 65.61 0.90 
ShR522 402 1125 4 55.72 (.81) 0.17 (.03) 28.30 (.4) 0.87 (.07) 0.23 (.09) 10.53 (.34) 4.97 (.12) 0.20 (.02) 100.27 53.27 0.68 
ShR504 401 1150 8 53.52 (.27) 0.11 (.02) 29.29 (.23) 0.71 (.09) 0.17 (.05) 12.21 (.12) 4.32 (.08) 0.11 (.01) 100.44 60.57 0.85 
ShR507 698 1150 4 55.92 (.38) 0.14 (.02) 27.92 (.37) 0.82 (.11) 0.11 (.03) 10.48 (.25) 5.02 (.1) 0.32 (.01) 100.73 52.55 0.70 
ShR509 700 1175 2 54.60 (.34) 0.10 (.02) 29.01 (.27) 0.74 (.07) 0.13 (.02) 11.38 (.21) 4.84 (.12) 0.15 (.01) 100.95 56.02 0.72 

Plagioclase measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Anorthite (An) is given in mol% 
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Table AII.4: Compositions of experimental plagioclases in hydrous experiments 
 
Run P (MPa)  T (°C) n SiO2 TiO2 Al2O3 FeOt MgO CaO Na2O K2O Total An KDCa-Na 

starting material: AH 6             
ShR660 102 1100 4 50.63 (.46) 0.08 (.01) 31.41 (.16) 1.20 (.07) 0.21 (.06) 14.52 (.18) 3.12 (.22) 0.06 (.01) 101.22 71.74 1.44 
ShR662 105 1125 3 50.29 (.59) 0.07 (.01) 31.63 (.57) 1.21 (.06) 0.24 (.09) 14.98 (.75) 3.03 (.43) b.d. 101.49 72.97 1.43 
ShR661 105 1135 7 48.30 (.8) 0.10 (.04) 32.18 (.77) 1.16 (.11) 0.46 (.21) 16.31 (.66) 2.30 (.33) b.d. 100.81 79.65 1.88 
ShR663 108 1155 6 47.46 (.57) 0.07 (.01) 32.40 (.54) 1.19 (.08) 0.29 (.09) 16.53 (.49) 2.10 (.21) 0.03 (.01) 100.09 81.18 1.88 
ShR658 202 1075 4 51.47 (.38) 0.10 (.03) 30.62 (.2) 1.15 (.06) 0.20 (.11) 13.70 (.13) 3.92 (.15) 0.09 (.01) 101.25 65.55 - 
ShR654 201 1103 6 51.65 (.49) 0.13 (.03) 30.55 (.39) 1.46 (.18) 0.24 (.07) 13.71 (.26) 3.41 (.07) 0.11 (.02) 101.26 68.53 - 
ShR650 205 1125 3 49.30 (.79) 0.09 (.02) 31.98 (.27) 1.25 (.04) b.d. 15.47 (.52) 2.72 (.31) b.d. 101.00 75.89 1.58 
ShR659 401 1100 2 52.28 (.08) 0.12 (.02) 29.74 (.27) 1.22 (.09) 0.53 (.19) 13.20 (.12) 3.79 (.1) 0.13 (.01) 101.03 65.29 - 
ShR657 401 1125 8 51.72 (.64) 0.07 (.02) 30.84 (.32) 1.09 (.11) 0.18 (.06) 13.78 (.34) 3.73 (.32) 0.07 (.01) 101.49 66.83 1.33 
ShR666 397 1150 6 50.96 (.18) 0.08 (.02) 30.60 (.56) 1.11 (.04) 0.24 (.28) 13.64 (.14) 3.50 (.08) 0.09 (.01) 100.30 67.89 1.23 
starting material: AH 3             
ShR360 102 1100 5 51.66 (.62) 0.14 (.03) 30.49 (.41) 1.29 (.09) 0.28 (.08) 13.75 (.5) 3.68 (.3) 0.07 (.01) 101.37 67.08 1.16 
ShR362 105 1125 2 52.92 (.13) 0.13 (.05) 29.51 (.3) 1.29 (.17) 0.38 (.09) 13.11 (.4) 3.86 (.21) 0.07 (.01) 101.27 65.00 0.96 
ShR361 105 1135 4 50.48 (.6) 0.12 (.05) 31.32 (.52) 1.11 (.09) 0.47 (.12) 15.00 (.53) 2.89 (.31) 0.05 (.01) 101.44 73.88 1.27 
ShR363 108 1155 7 49.70 (.1) 0.09 (.03) 30.98 (.9) 1.04 (.06) 0.30 (.06) 15.06 (.9) 2.99 (.42) 0.06 (.01) 100.22 73.31 1.06 
ShR358 202 1075 9 52.80 (.45) 0.18 (0.1) 29.49 (.42) 1.25 (.32) 0.28 (.16) 12.38 (.25) 4.54 (.25) 0.11 (.02) 101.02 59.76 0.94 
ShR354 201 1100 5 53.15 (.75) 0.12 (.02) 29.96 (.41) 1.31 (.15) 0.17 (.02) 12.45 (.54) 4.07 (.25) 0.10 (.01) 101.34 62.46 1.03 
ShR350 205 1125 4 51.40 (.31) 0.11 (.03) 29.94 (.42) 1.11 (.09) 0.26 (0.1) 14.08 (0.4) 3.67 (.22) 0.06 (.01) 100.63 67.72 1.10 
ShR359 401 1100 4 53.69 (.22) 0.11 (.01) 29.60 (.33) 0.97 (.01) 0.15 (.04) 11.97 (.14) 4.40 (.03) 0.11 (.01) 100.98 59.66 0.96 
ShR357 401 1125 6 53.02 (.51) 0.10 (.01) 30.05 (.45) 1.07 (.06) 0.18 (.05) 12.78 (.47) 3.98 (.27) 0.09 (.01) 101.26 63.65 1.14 
ShR366 397 1150 5 51.75 (.26) 0.10 (.02) 30.35 (.39) 1.17 (.08) 0.11 (.03) 13.10 (.29) 3.78 (.19) 0.09 (.01) 100.46 65.36 1.10 
starting material: AH 5             
ShR560 102 1100 3 52.36 (.72) 0.10 (.03) 30.29 (.06) 1.18 (.05) 0.23 (.04) 13.33 (.39) 3.75 (.09) 0.07 (.01) 101.32 66.00 1.05 
ShR558 202 1075 3 53.09 (.38) 0.10 (.01) 29.90 (.18) 1.19 (.06) 0.10 (.01) 12.51 (.27) 4.60 (.13) 0.07 (.01) 101.55 59.80 0.95 
ShR554 201 1100 4 53.00 (.45) 0.11 (.03) 29.82 (.45) 1.33 (.16) 0.18 (.07) 12.64 (.37) 3.99 (.18) 0.07 (.01) 101.14 63.38 1.02 
ShR559 401 1100 6 54.64 (.74) 0.11 (.01) 28.76 (.44) 1.09 (.09) 0.13 (.02) 11.00 (.38) 4.84 (.3) 0.10 (.01) 100.67 55.32 0.82 
ShR566 397 1150 3 52.90 (.41) 0.10 (.01) 29.54 (.33) 1.28 (.16) 0.15 (.03) 12.21 (.12) 4.14 (.19) 0.08 (.01) 100.42 61.69 0.89 

Plagioclase measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Anorthite (An) is given in mol% 
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Table AII.5: Compositions of experimental clinopyroxenes in dry experiments 
 
Run P (MPa)  T (°C) n SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O Cr2O3 Total Mg# En Wo Fs KDFe-Mg 

starting material: AH 6               

ShR603 102 1150 6 52.09 (.56) 0.68 (.06) 3.04 (.32) 6.31 (.22) 0.18 (.03) 15.33 (.28) 21.84 (.19) 0.23 (.02) 0.40 (.06) 100.10 81.25 44.36 45.41 10.23 0.17 
ShR616 103 1175 6 51.93 (.48) 0.63 (.14) 3.56 (.48) 5.68 (.58) 0.11 (.05) 16.00 (.31) 21.96 (.31) 0.20 (.06) 0.54 (.09) 100.60 83.40 45.75 45.14 9.11 0.23 
ShR602 202 1150 9 51.17 (.81) 0.79 (.13) 3.90 (.79) 7.01 (.39) 0.17 (.03) 14.98 (.43) 21.55 (.25) 0.30 (.06) 0.34 (.04) 100.20 79.20 43.54 45.03 11.43 0.18 
ShR615 203 1175 6 51.27 (.63) 0.49 (.07) 4.05 (.88) 5.11 (.25) 0.16 (.01) 16.30 (.57) 21.81 (.36) 0.26 (.03) 0.71 (.17) 100.16 85.03 46.78 44.99 8.23 0.22 
ShR601 401 1150 5 49.80 (.4) 1.13 (.08) 5.51 (.48) 8.24 (.42) 0.22 (.01) 13.56 (.23) 20.95 (.56) 0.49 (.17) b.d. 100.27 74.57 40.79 45.30 13.91 - 
ShR619 402 1175 9 50.56 (.5) 0.75 (.08) 5.08 (.59) 6.96 (.41) 0.18 (.02) 14.86 (.26) 20.85 (.43) 0.37 (.04) 0.36 (.02) 99.98 79.19 44.03 44.40 11.57 0.22 
ShR605 402 1200 7 50.94 (.96) 0.47 (.03) 5.47 (.73) 5.89 (.76) 0.16 (.03) 16.03 (.34) 21.05 (.4) 0.28 (.1) 0.56 (.07) 100.85 82.91 46.51 43.90 9.59 0.26 
ShR604 698 1150 4 47.31 (.33) 1.77 (.13) 8.70 (.63) 9.58 (.14) 0.24 (.01) 11.57 (.18) 20.11 (.22) 0.70 (.01) b.d. 99.99 68.27 36.83 46.04 17.12 - 
ShR606 700 1175 5 47.55 (.13) 1.48 (.15) 8.87 (.26) 9.90 (.46) 0.21 (.07) 12.03 (.38) 19.56 (.25) 0.80 (.15) b.d. 100.44 68.42 38.03 44.42 17.55 - 
ShR611 700 1225 7 50.81 (.26) 0.48 (.02) 7.01 (.52) 5.99 (.17) 0.19 (.03) 16.16 (.15) 19.46 (.19) 0.41 (.03) b.d. 100.83 82.77 48.22 41.75 10.04 0.25 
starting material: AH 3               

ShR322 101 1125 6 52.05 (.04) 0.97 (0) 2.28 (.18) 8.31 (.02) 0.25 (.05) 15.29 (.23) 20.94 (.43) 0.28 (.05) - 100.38 76.64 43.69 42.99 13.32 0.19 
ShR318 106 1150 8 52.57 (.39) 0.77 (.12) 2.06 (.37) 7.35 (.33) 0.21 (.04) 16.28 (.34) 20.97 (.25) 0.22 (.02) - 100.44 79.79 45.90 42.48 11.62 0.19 
ShR324 203 1125 8 51.88 (.42) 1.13 (.05) 2.50 (.2) 8.41 (0.4) 0.21 (.02) 14.90 (.21) 20.86 (.42) 0.32 (.04) - 100.21 75.95 43.05 43.32 13.63 0.19 
ShR323 202 1150 5 52.51 (.53) 0.76 (.12) 2.42 (.5) 7.36 (.29) 0.20 (.02) 16.17 (.51) 20.54 (.29) 0.26 (.04) - 100.22 79.66 46.12 42.10 11.78 0.19 
ShR305 202 1175 1 52.67 (.59) 0.6 (.05) 3.16 (.66) 6.37 (.33) 0.17 (.03) 16.78 (.46) 20.75 (.64) 0.26 (.08) - 100.77 82.44 47.57 42.29 10.14 0.22 
ShR326 402 1125 2 50.03 (.44) 1.89 (.04) 4.73 (.98) 10.86 (.74) 0.29 (.01) 12.96 (.39) 19.64 (.01) 0.50 (.03) - 100.90 68.03 39.07 42.57 18.36 - 
ShR307 401 1150 5 51.00 (.68) 1 (.13) 3.75 (.73) 9.28 (.36) 0.20 (.05) 15.30 (.29) 19.22 (.48) 0.36 (.09) - 100.12 74.61 44.57 40.26 15.17 0.21 
ShR304 402 1175 5 52.72 (.13) 0.66 (935) 3.77 (412) 7.21 (.1) 0.24 (.22) 16.62 (.50) 19.92 (.11) 0.35 (.28) - 101.48 80.43 47.51 40.93 11.56 0.23 
ShR310 698 1150 6 50.44 (.56) 0.95 (.16) 3.65 (.51) 15.18 (.36) 0.62 (.09) 14.33 (.34) 14.17 (.25) 0.40 (.07) - 99.72 62.71 43.38 30.83 25.79 - 
ShR312 700 1175 5 49.80 (.56) 1.28 (.21) 6.18 (.75) 10.68 (.52) 0.32 (.05) 14.08 (.72) 17.44 (.56) 0.69 (.14) - 100.53 70.15 43.18 38.45 18.37 0.23 
ShR314 700 1200 3 51.31 (.46) 0.74 (.11) 5.53 (.78) 8.14 (.18) 0.20 (.03) 16.20 (.74) 18.22 (.46) 0.52 (.12) - 100.87 78.01 47.85 38.67 13.49 0.26 
ShR317 700 1225 7 52.07 (.34) 0.54 (.06) 5.23 (.54) 5.84 (.27) 0.18 (.02) 16.81 (.22) 19.92 (.37) 0.40 (.03) - 100.98 83.70 48.86 41.62 9.52 0.25 
starting material: AH 5               

ShR520 101 1125 5 52.34 (.54) 0.79 (0.1) 1.81 (.49) 9.64 (.53) 0.5 (.04) 16.11 (.27) 18.44 (.71) 0.21 (.03) - 99.84 74.86 46.33 38.11 15.56 0.20 
ShR506 102 1150 1 53.12 0.65 2.26 7.96 0.36 17.12 19.28 0.28 - 101.03 79.32 48.31 39.09 12.59 0.25 
ShR519 203 1125 7 52.20 (.38) 0.83 (.08) 2.05 (.3) 10.17 (.4) 0.49 (.05) 15.92 (.22) 18.38 (.58) 0.25 (.03) - 100.29 73.61 45.69 37.92 16.38 0.20 
ShR505 202 1150 8 52.14 (.77) 0.76 (.12) 2.72 (.56) 8.25 (.44) 0.41 (.07) 16.46 (.29) 19.12 (.74) 0.23 (.02) - 100.10 78.05 47.26 39.45 13.29 0.25 
ShR522 402 1125 4 51.17 (.23) 1.21 (.02) 2.70 (.11) 14.41 (.83) 0.64 (.12) 14.29 (.19) 15.50 (.69) 0.33 (.04) - 100.25 63.87 42.64 33.24 24.12 0.21 
ShR504 401 1150 6 51.49 (.75) 0.82 (.15) 3.12 (.79) 10.79 (.22) 0.53 (.08) 16.26 (.43) 16.68 (.22) 0.29 (.03) - 99.99 72.87 47.40 34.95 17.65 0.23 
ShR501 402 1175 8 52.07 (.9) 0.85 (539) 3.85 (.08) 8.22 (.83) 0.35 (.08) 16.71 (948) 18.82 (.03) 0.33 (.03) - 101.20 78.37 47.94 38.82 13.24 0.25 
ShR507 698 1150 11 50.25 (.34) 1.06 (.12) 3.89 (.35) 14.76 (.38) 0.57 (.08) 13.95 (.39) 14.93 (.5) 0.47 (.08) - 99.89 62.75 42.32 32.55 25.13 0.19 
ShR509 700 1175 4 50.82 (.31) 0.89 (0.1) 4.10 (.32) 12.20 (.15) 0.53 (.05) 14.86 (.09) 16.23 (.15) 0.48 (.05) - 100.11 68.47 44.52 34.97 20.51 0.24 
ShR511 700 1200 4 51.76 (.06) 0.67 (.12) 4.18 (.87) 8.41 (.1) 0.29 (.07) 15.49 (.61) 19.23 (.19) 0.49 (.12) - 100.51 76.66 45.53 40.61 13.86 0.25 

Clinopyroxene  measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Enstatite (En), Wollastonite (Wo), and Ferrosilite (Fs) are given in mol% 
Mg# - molar ratio of (Mg/(Mg+Fe)) 
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Table AII.6: Compositions of experimental clinopyroxenes in hydrous experiments 
 
Run P (MPa)  T (°C) n SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O Cr2O3 Total mg# En Wo Fs KDFe-Mg 

starting material: AH 6                

ShR660 102 1100 3 49.63 (.62) 0.95 (.04) 4.79 (.76) 8.92 (.12) 0.21 (.04) 13.93 (.4) 21.23 (0.2) 0.44 (.11) b.d. 100.10 73.57 40.74 44.62 14.64 0.26 
ShR662 105 1125 4 49.65 (.29) 0.85 (.07) 4.94 (.44) 8.26 (.12) 0.18 (.03) 14.18 (.21) 21.68 (.32) 0.40 (.06) 0.42 (.11) 100.55 75.36 41.22 45.30 13.48 0.31 
ShR661 105 1135 7 49.92 (.75) 0.69 (0.1) 4.78 (.35) 6.97 (.77) 0.18 (.04) 15.00 (.29) 21.63 (.5) 0.32 (.03) 0.50 (.12) 100.01 79.32 43.53 45.12 11.35 0.32 
ShR663 108 1155 6 49.38 (.49) 0.64 (.05) 5.02 (.49) 7.40 (.6) b.d. 15.14 (.4) 21.39 (.59) 0.30 (.03) 0.64 (.15) 100.08 78.49 43.68 44.35 11.97 0.32 
ShR658 202 1075 6 48.77 (.5) 1.09 (.08) 5.18 (.33) 9.55 (.53) 0.20 (.03) 13.53 (.21) 20.72 (.65) 0.47 (.02) b.d. 99.52 71.63 40.05 44.08 15.86 - 
ShR654 201 1103 6 49.42 (.77) 0.96 (.09) 4.94 (.84) 9.17 (.75) 0.27 (.03) 14.58 (.3) 20.57 (.72) 0.48 (.05) b.d. 100.39 73.91 42.24 42.84 14.91 - 
ShR650 205 1125 11 49.04 (.52) 0.87 (.09) 5.72 (.57) 8.55 (.46) 0.19 (.03) 14.27 (.39) 20.88 (.7) 0.41 (.06) 0.35 (.05) 100.27 74.85 41.88 44.05 14.07 0.35 
ShR659 401 1100 5 48.26 (.73) 1.08 (.07) 6.28 (.46) 9.92 (.38) 0.27 (.07) 13.42 (.23) 19.71 (.37) 0.61 (.03) b.d. 99.55 70.68 40.48 42.73 16.79 - 
ShR657 401 1125 7 49.00 (.55) 0.96 (.04) 5.90 (.33) 9.65 (.23) 0.23 (.04) 13.90 (.34) 19.85 (.47) 0.48 (.06) b.d. 99.97 71.97 41.40 42.48 16.12 0.30 
ShR666 397 1150 6 48.66 (.37) 0.93 (.05) 6.44 (.17) 9.44 (.25) 0.23 (.05) 14.15 (.66) 19.25 (.5) 0.59 (.1) 0.06 (.03) 99.76 72.76 42.51 41.58 15.91 0.33 
starting material: AH 3                

ShR360 102 1100 5 50.32 (.59) 0.96 (.03) 3.46 (.22) 9.18 (.35) 0.23 (.06) 15.10 (.6) 20.29 (.95) 0.41 (.05) - 99.96 74.58 43.36 41.86 14.78 0.29 
ShR362 105 1125 6 50.32 (.31) 0.90 (.05) 4.07 (.2) 8.27 (.3) 0.21 (.04) 15.31 (.24) 20.91 (.42) 0.37 (.03) - 100.37 76.73 43.76 42.97 13.27 0.30 
ShR361 105 1135 7 52.36 (.53) 0.62 (0.1) 2.99 (.6) 6.71 (.55) 0.20 (.03) 16.55 (.23) 21.13 (.58) 0.31 (.04) - 100.87 81.48 46.63 42.78 10.60 0.32 
ShR363 108 1155 6 50.27 (.41) 0.83 (.07) 4.31 (.45) 7.29 (.58) 0.20 (.03) 15.51 (.48) 20.95 (.49) 0.35 (.06) - 99.69 79.14 44.75 43.45 11.79 0.39 
ShR358 202 1075 7 50.03 (.08) 1.15 (.06) 3.85 (.09) 10.28 (.81) 0.27 (.09) 14.36 (.13) 19.41 (.03) b.d. - 99.77 71.34 42.14 40.93 16.93 0.27 
ShR354 201 1100 4 51.11 (.25) 0.90 (.02) 3.55 (.28) 9.58 (.07) 0.27 (.06) 15.44 (.24) 19.11 (.63) 0.41 (.03) - 100.39 74.17 44.69 39.75 15.56 0.25 
ShR350 205 1125 8 50.53 (.64) 0.86 (.07) 4.13 (.35) 8.40 (.24) 0.22 (.02) 15.59 (.36) 20.17 (.77) 0.37 (.03) - 100.28 76.79 44.79 41.66 13.54 0.31 
ShR359 401 1100 6 49.41 (.72) 1.06 (.12) 4.72 (.36) 10.95 (.26) 0.31 (.04) 14.70 (.37) 18.02 (.57) 0.56 (.07) - 99.72 70.52 43.50 38.32 18.18 0.29 
ShR357 401 1125 7 49.83 (.32) 1.04 (.09) 5.12 (.47) 10.81 (.6) 0.29 (.04) 15.00 (.47) 17.83 (.77) 0.52 (.04) - 100.45 71.21 44.27 37.83 17.90 0.31 
ShR366 397 1150 9 49.09 (.32) 1.01 (.05) 5.96 (.27) 10.06 (.32) 0.23 (.06) 14.36 (.39) 18.83 (.62) 0.52 (.05) - 100.11 71.78 42.81 40.36 16.83 0.33 
starting material: AH 5                

ShR560 102 1100 6 51.19 (.43) 0.73 (.09) 2.71 (.36) 10.43 (.61) 0.52 (.06) 16.03 (.75) 17.65 (.35) 0.42 (.1) - 99.69 73.25 46.36 36.71 16.93 0.31 
ShR562 105 1125 6 51.12 (.57) 0.78 (.11) 3.40 (.35) 8.51 (.37) 0.38 (.04) 15.87 (.43) 19.86 (.43) 0.35 (.04) - 100.27 76.88 45.46 40.88 13.67 0.30 
ShR561 105 1135 6 52.57 (.97) 0.67 (.24) 2.76 (.02) 7.42 (.89) 0.30 (.06) 16.39 (.54) 20.44 (.58) 0.27 (.03) - 100.83 79.74 46.50 41.69 11.81 0.30 
ShR558 202 1075 7 50.91 (.64) 0.82 (.15) 2.89 (.47) 11.21 (.55) 0.49 (.05) 15.41 (.52) 17.80 (.9) 0.37 (.03) - 99.90 71.02 44.67 37.10 18.23 0.26 
ShR554 201 1100 4 51.43 (.35) 0.76 (.08) 3.10 (.3) 11.46 (.36) 0.50 (.04) 15.83 (.49) 17.24 (.74) 0.36 (.04) - 100.69 71.11 45.68 35.76 18.56 0.28 
ShR550 205 1125 9 51.21 (.52) 0.75 (.11) 3.11 (.44) 9.46 (.55) 0.42 (.04) 15.98 (.41) 18.89 (.69) 0.34 (.04) - 100.16 75.07 45.83 38.95 15.22 0.31 
ShR559 401 1100 6 49.52 (.25) 1.04 (.09) 3.79 (.37) 12.81 (.27) 0.55 (.06) 14.42 (.18) 16.88 (.3) 0.51 (.04) - 99.52 66.73 42.74 35.96 21.30 0.31 
ShR566 397 1150 6 50.23 (.54) 0.78 (.09) 4.12 (.43) 9.99 (.47) 0.44 (.06) 15.18 (.31) 18.55 (.27) 0.48 (.05) - 99.81 73.04 44.49 39.09 16.42 0.30 

Clinopyroxene  measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Enstatite (En), Wollastonite (Wo), and Ferrosilite (Fs) are given in mol% 
Mg# - molar ratio of (Mg/(Mg+Fe)) 
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 Table AII.7: Compositions of experimental magnetites in hydrous experiments 

 

Run P (MPa)  T (°C) n SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Cr2O3 Total XUSP  

starting material: AH 6             

ShR660 102 1100 4 0.56 (.24) 5.96 (.07) 8.62 (.12) 44.42 28.53 0.15 (.37) 5.87 (.07) b.d. 3.63 () 98.29 0.21 
ShR658 202 1075 4 0.8 (.56) 9.04 (.11) 6.96 (.07) 42.3 32.88 0.33 (.04) 4.86 (.05) 0.65 (.26) 1.25 (.04) 99.09 0.30 
ShR654 201 1103 7 0.27 (.17) 7.41 (.28) 7.26 (0.1) 46.84 30.7 0.33 (.08) 5.14 (.04) 0.42 (.08) 1.2 (.32) 99.57 0.23 
ShR659 401 1100 3 0.89 (.33) 7.98 (.38) 9.62 (.08) 40.82 32.15 0.31 (.02) 4.96 (.04) 0.65 (.14) 1.06 (.08) 98.42 0.29 
ShR657 401 1125 7 0.75 (.58) 5.57 (.06) 12.94 (.26) 42.58 28.79 0.21 (.04) 6.35 (.11) 0.57 (.18) 2.06 (.08) 99.83 0.22 
ShR666 397 1150.3 6 0.42 (.18) 5.84 (.06) 10.67 (.19) 45 28.14 0.26 (.06) 6.08 (.17) 0.5 (.08) 1.29 (.04) 98.19 0.20 
starting material: AH 3             

ShR354 201 1100 6 0.28 (.08) 9.4 (.08) 6.29 (.08) 44.98 32.46 0.35 (.08) 5.02 (0.1) 0.37 (.03) b.d. 99.14 0.28 
ShR359 401 1100 11 0.19 (.08) 11.57 (.28) 7.49 (.18) 38.1 35.21 0.29 (.05) 4.81 (.08) 0.28 (.13) 1.59 (1.1) 99.54 0.39 

Magnetite  measurements in wt%, the standard deviations (1σ) are given in brackets 
b.d. – below detection limit, n – number of analysis 
Fe2O3, FeO, and  XUSP are calculated after Stormer (1983) 
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3.2. Figures 

 

Figure AII.1 Phase 

proportions in experiments using AH6 

calculated via mass balance (accuracy: 

total residuals<1 and ∑r2<0.3) are 

shown dependent on temperature at 

different H2O conditions (right and left 

columns) and different pressures 

(increasing from top to bottom). H2O 

contents for hydrous experiments are 

given by grey labels when measured. 
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Figure AII.2: Phase proportions in experiments using AH5 calculated via mass balance (accuracy: 

total residuals<1 and ∑r2<0.3) are shown dependent on temperature at different H2O conditions (right and 
left columns) and different pressures (increasing from top to bottom). H2O contents for hydrous 
experiments are given by grey labels when measured. 

 



Dissertation of Anika Husen 

 
Appendix 

 

 185 

 

Figure AII.3: The experimentally produced Liquid Lines of Descent (LLDs, dark grey solid lines) 

for FeO (wt%) for the three different starting materials (black stars) are shown in comparison to the range 

of natural EPR MORBs (grey points, PetDB). Different columns show different H2O contents (left: dry, 

right: hydrous) and starting compositions vary from top to bottom (AH6 - AH3 - AH5). Different pressures 

are indicated by symbols. In diagrams displaying hydrous conditions, also dry LLDs are shown for 

comparison (light grey dashed lines). 
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Figure AII.4: The experimentally produced LLDs (dark grey solid lines) for Na2O (wt%) for the 

three different starting materials (black stars) are shown in comparison to the range of natural EPR MORBs 

(grey points, PetDB). Different columns show different H2O contents (left: dry, right: hydrous) and starting 

compositions vary from top to bottom (AH6 - AH3 - AH5). Different pressures are indicated by symbols. In 

diagrams displaying hydrous conditions, also dry LLDs are shown for comparison (light grey dashed lines). 
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Figure AII.5: The experimentally produced LLDs (dark grey solid lines) for CaO (wt%) for the 

three different starting materials (black stars) are shown in comparison to the range of natural EPR MORBs 

(grey points, PetDB). Different columns show different H2O contents (left: dry, right: hydrous) and starting 

compositions vary from top to bottom (AH6 - AH3 - AH5). Different pressures are indicated by symbols. In 

diagrams displaying hydrous conditions, also dry LLDs are shown for comparison (light grey dashed lines).  
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Figure AII.6: The experimentally produced LLDs (dark grey solid lines) for Al2O3 (wt%) for the 

three different starting materials (black stars) are shown in comparison to the range of natural EPR MORBs 

(grey points, PetDB). Different columns show different H2O contents (left: dry, right: hydrous) and starting 

compositions vary from top to bottom (AH6 - AH3 - AH5). Different pressures are indicated by symbols. In 

diagrams displaying hydrous conditions, also dry LLDs are shown for comparison (light grey dashed lines). 



Dissertation of Anika Husen 

 
Appendix 

 

 189 

 

Figure AII.7: Ol composition represented by the Mg# (averages of 3-16 analyses) is shown 
dependent on temperature. Isobaric experiments are connected by solid lines. Left and right column show 
diagrams for dry and hydrous conditions respectively. From top to bottom different starting compositions 
are displayed (AH6 - AH3). In diagrams for hydrous experiments also results of dry experiments are shown 
for comparison (light dashed lines). The range of Ol compositions in all experiments is shown for 
comparison (light grey diamonds). 
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Figure AII.8: Plag composition represented by the An content (mol%) (averages of 2-10 analyses) 

is shown dependent on temperature. Isobaric experiments are connected by solid lines. Left and right 

column show diagrams for dry and hydrous conditions respectively. From top to bottom different starting 

compositions are displayed (AH6 - AH3 - AH5). In diagrams for hydrous experiments also results of dry 

experiments are shown for comparison (light dashed lines). The range of Plag compositions in all 

experiments is shown for comparison (light grey diamonds).  
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Figure AII.9: Cpx composition represented by the Mg# (averages of 2-11 analyses) is shown 

dependent on temperature. Isobaric experiments are connected by solid lines. Left and right column show 

diagrams for dry and hydrous conditions respectively. From top to bottom different starting compositions 

are displayed (AH6 - AH3 - AH5). In diagrams for hydrous experiments also results of dry experiments are 

shown for comparison (light dashed lines). The range of Cpx compositions in all experiments is shown for 

comparison (light grey diamonds).   



Dissertation of Anika Husen 

 
Appendix 

 

 192 

4. APPENDIX PART III 

 

The evaluation of recent geothermobarometers is described in Part III. This 

Appendix contains the calculated temperatures and pressures discussed and shown in the 

main text of Part III. The temperatures were obtained using the equations provided by 

Putirka (2008) (Putirka, 2008, Beattie et al., 1993and by the application of the 

COMAGMAT program (Ariskin & Barmina, 2004) and the PETROLOG program 

(Danyushevsky & Plechov, 2011). PETROLOG was used for calculations according to 

the model of Ford et al. (1983), Herzberg & O’Hara (2002) and Danyushevsky (2001).  
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 Table AIII.1: Calculated temperatures for dry runs 
 
Run P T Dur H2O Phase COMAGMAT H&T H&T P '08 P '08  B '93 Ford   H&O   P '08 D '01 P '08 D '01 P '08 D '01 P '08 P '08  

     Assemblage multiple sat '87 '87 Eq13 Eq14  '83 '02 Eq22 (Ol) Eq24a (Pl) Eq33 (Cpx) Eq32d Eq32d  

       (MgO)  (CaO)              (calc P) 

 (MPa) (°C) (h) (wt%)  (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) 
ShR616 103 1175 46 0.05 Ol, Plag, Cpx, Gl  1158 1199 1182 1185 1170 1166 1172 1173 1140 1196 1169 1162 1151 1160 1162 
ShR609 102 1200 46 0.05 Ol, Plag, Gl  1183 1196 1216 1214 1198 1200 1202 1195 1175 1206 1190     
ShR602 202 1150 108  Ol, Plag, Cpx, Gl 1161                
ShR615 203 1175 71 0.08 Ol, Plag, Cpx, Gl 1191 1164 1193 1191 1196 1186 1183 1189 1191 1153 1203 1168 1176 1161 1175 1178 
ShR619 402 1175 64 0.06 Ol, Plag, Cpx, Gl 1187 1141 1171 1161 1190 1187 1173 1188 1188 1145 1201 1185 1163 1153 1178 1190 
ShR605 402 1200 63 0.10 Ol, Plag, Cpx, Gl  1170 1189 1198 1203 1204 1199 1207 1207 1167 1218 1188 1190 1177 1196 1202 
ShR611 700 1225 60  Ol, Plag, Cpx, Gl 1225                
ShR322 101 1125 48  Ol, Plag, Cpx, Gl 1130                
ShR318 106 1150 65  Ol, Plag, Cpx, Gl 1142                
ShR324 203 1125 108 0.04 Ol, Plag, Cpx, Gl 1137 1116 1145 1128 1168 1152 1131 1149 1155 1106 1155 1120 1128 1113 1143 1143 
ShR323 202 1150 73 0.06 Ol, Plag, Cpx, Gl 1149 1125 1159 1140 1159 1151 1136 1149 1152 1109 1180 1146 1143 1123 1163 1167 
ShR305 202 1175 68 0.04 Ol, Plag, Cpx, Gl 1169 1147 1172 1168 1177 1169 1164 1171 1170 1140 1191 1167 1169 1151 1175 1187 
ShR307 401 1150 91   1127                
ShR304 400 1175 89 0.07 Ol, Plag, Cpx, Gl 1175 1145 1159 1166 1180 1184 1174 1187 1186 1145 1197 1175 1177 1157 1190 1203 
ShR311 402 1200 63 0.12 Ol, Gl  1170 1177 1199 1202 1205 1205 1209 1206 1170       
ShR314 700 1200 60 0.12 Plag, Cpx, Gl           1212 1200 1197 1178 1211 1227 
ShR317 700 1225 60 0.11 Cpx, Gl             1212 1151 1228 1236 
ShR520 101 1125 48 0.05 Ol, Plag, Cpx, Gl 1128 1115 1143 1126 1153 1139 1120 1135 1147 1094 1151 1108 1131 1105 1148 1156 
ShR506 102 1150 60 0.05 Cpx, Gl              1139   
ShR519 203 1125 108 0.09 Ol, Plag, Cpx, Gl 1119 1110 1135 1120 1147 1140 1116 1137 1147 1084 1151 1096 1134 1100 1151 1156 
ShR505 202 1150 73 0.08 Plag, Cpx, Gl           1177 1141 1158 1134 1165 1172 
ShR522 402 1125 66  Ol, Plag, Cpx, Gl 1108                
ShR504 401 1150 91 0.08 Plag, Cpx, Gl           1170 1137 1157 1133 1169 1174 
ShR501 400 1175 89 0.10 Cpx, Gl             1185 1149 1182 1191 
ShR509 700 1175 60 0.07 Plag, Cpx, Gl           1179 1140 1181 1154 1181 1186 
ShR511 700 1200 60 0.14 Cpx, Gl             1195 1167 1205 1210 
ShR660 102 1100 64  Ol, Plag, Cpx, Gl 1120                
ShR662 105 1125 65 0.37 Ol, Plag, Cpx, Gl 1135 1135 1163 1153 1175 1163 1150 1162 1143 1098 1169 1119 1136 1096 1130 1148 
ShR661 105 1135 89 0.54 Ol, Plag, Cpx, Gl 1156      1175 1182  1115  1115  1107   
ShR663 108 1155 64  Ol, Plag, Cpx, Gl 1146                
ShR657 401 1125 62  Ol, Plag, Cpx, Gl 1142                

The used glass compositions are presented in Tab. II.3 and II.4. Mineral compositions are listed in Tab. AII.1-AII.6 
COMAGMAT (Ariskin & Barmina, 2004) is applied using the coefficients for the effect of H2O published by Almeev et al. (2007 and 2012). 
H&T’87 – Helz & Thornber (1987) 
P’08 – Putirka (2008) 
B’93 – Beattie (1993) 
Ford’83 – Ford et al. (1983) 
H&O’02 – Herzberg & O‘Hara (2002) 
D’01 – Danyushevsky (2001) 
Ol – olivine, Plag – plagioclase, Cpx – clinopyroxene, Gl – glass, Dur – duration 
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Table AIII.2: Calculated temperatures for hydrous runs 
 

Run P T Dur H2O Phase COMAGMAT H&T H&T P '08 P '08  B '93 Ford   H&O   P '08 D '01 P '08 D '01 P '08 D '01 P '08 P '08  

     Assemblage multiple sat '87 '87 Eq13 Eq14  '83 '02 Eq22 (Ol) Eq24a (Pl) Eq33 (Cpx) Eq32d Eq32d  

       (MgO)  (CaO)              (calc P) 

 (MPa) (°C) (h) (wt%)  (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C) 
ShR360 102 1100 64 0.43 Ol, Plag, Cpx, Gl 1121 1127 1148 1142 1164 1153 1141 1152 1135 1085 1154 1098 1139 1084 1134 1150 
ShR362 105 1125 65 0.48 Ol, Plag, Cpx, Gl 1125 1132 1157 1149 1161 1153 1144 1152 1134 1087 1158 1103 1146 1091 1139 1155 
ShR361 105 1135 89  Ol, Plag, Cpx, Gl 1145                
ShR363 108 1155 64 0.51 Ol, Plag, Cpx, Gl 1150 1160 1177 1185 1183 1176 1175 1178 1160 1117 1175 1114 1176 1118 1147 1168 
ShR358 202 1075 64 0.48 Ol, Plag, Cpx, Gl 1105 1109 1131 1119 1142 1137 1120 1132 1121 1061 1147 1092 1127 1066 1135 1153 
ShR354 201 1100 70 0.26 Ol, Plag, Cpx, Gl 1113 1115 1126 1127 1150 1147 1130 1145 1125 1083 1158 1121 1129 1082 1150 1173 
ShR350 205 1125 65 0.75 Ol, Plag, Cpx, Gl 1134 1132 1148 1149 1154 1157 1150 1156 1132 1083 1162 1105 1144 1086 1154 1171 
ShR359 401 1100 70  Ol, Plag, Cpx, Gl 1117                
ShR357 401 1125 62  Ol, Plag, Cpx, Gl 1133                
ShR366 397 1150 63 0.37 Ol, Plag, Cpx, Gl  1132 1132 1149 1176 1182 1167 1183 1160 1114 1172 1135 1157 1113 1159 1180 
ShR560 102 1100 64 0.63 Plag, Cpx, Gl           1146 1080 1149 1076 1143 1176 
ShR562 105 1125 65 0.73 Cpx, Gl             1147 1084 1149 1171 
ShR561 105 1135 89 0.82 Cpx, Gl             1155 1097 1159 1178 
ShR558 202 1075 64 0.79 Ol, Plag, Cpx, Gl 1096 1105 1121 1113 1128 1132 1115 1125 1106 1045 1133 1058 1120 1054 1144 1164 
ShR554 201 1100 70 0.63 Ol, Plag, Cpx, Gl 1104 1116 1127 1128 1149 1150 1130 1149 1130 1067 1140 1069 1136 1071 1147 1173 
ShR550 205 1125 65 0.94 Cpx, Gl             1144 1074 1156 1173 
ShR559 401 1100 70 0.69 Plag, Cpx, Gl           1139 1085 1134 1076 1144 1158 

The used glass compositions are presented in Tab. II.3 and II.4. Mineral compositions are listed in Tab. AII.1-AII.6 
COMAGMAT (Ariskin & Barmina, 2004) is applied using the coefficients for the effect of H2O published by Almeev et al. (2007 and 2012). 
H&T’87 – Helz & Thornber (1987) 
P’08 – Putirka (2008) 
B’93 – Beattie (1993) 
Ford’83 – Ford et al. (1983) 
H&O’02 – Herzberg & O‘Hara (2002) 
D’01 – Danyushevsky (2001) 
Ol – olivine, Plag – plagioclase, Cpx – clinopyroxene, Gl – glass, Dur – duration 
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Table AIII.3: Calculated pressures for dry and hydrous runs 
        P '08  

     Phase P '08 P '08 Eq32b YKG Herz Villiger COM 

Run P T Dur H2O Assemblage Eq25a Eq32b (calc T) '96 '04 '07 mult. sat 

 (MPa) (°C) (h) (wt%)  (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

DRY 
ShR603 102 1150 65  Ol, Plag, Cpx, Gl    12 -251 -1279  
ShR616 103 1175 46 0.05 Ol, Plag, Cpx, Gl 393 160 120 205 -68 -832  
ShR609 102 1200 46 0.05 Ol, Plag, Gl 613       
ShR602 202 1150 108  Ol, Plag, Cpx, Gl    413 -351 -1001 340 
ShR615 203 1175 71 0.08 Ol, Plag, Cpx, Gl 330 230 240 304 8 -602 310 
ShR619 402 1175 64 0.06 Ol, Plag, Cpx, Gl 546 502 550 644 348 -684 590 
ShR605 402 1200 63 0.10 Ol, Plag, Cpx, Gl 595 473 481 602 289 -455  
ShR611 700 1225 60  Ol, Plag, Cpx, Gl    950 715 -120 810 
ShR322 101 1125 48  Ol, Plag, Cpx, Gl    124 89 -697 150 
ShR318 106 1150 65  Ol, Plag, Cpx, Gl    29 -17 -649 100 
ShR324 203 1125 108 0.04 Ol, Plag, Cpx, Gl 181 162 208 156 105 -556 275 
ShR323 202 1150 73 0.06 Ol, Plag, Cpx, Gl 249 194 241 158 182 -573 220 
ShR305 202 1175 68 0.04 Ol, Plag, Cpx, Gl 294 305 341 151 89 -429 240 
ShR307 401 1150 91  Ol, Plag, Cpx, Gl    368 -48 -430 150 
ShR304 400 1175 89 0.07 Ol, Plag, Cpx, Gl 403 469 558 431 331 -219 440 
ShR314 700 1200 60 0.12 Plag, Cpx, Gl 665 796 892     
ShR317 700 1225 60 0.11 Cpx, Gl  759 799     
ShR520 101 1125 48 0.05 Ol, Plag, Cpx, Gl 23 118 199 -7 26 -462 100 
ShR519 203 1125 108 0.09 Ol, Plag, Cpx, Gl -2 179 262 89 103 -399 80 
ShR505 202 1150 73 0.08 Plag, Cpx, Gl 143 222 285     
ShR522 402 1125 66  Ol, Plag, Cpx, Gl    361 362 -490 210 
ShR504 401 1150 91 0.08 Plag, Cpx, Gl 226 399 470     
ShR501 400 1175 89 0.10 Cpx, Gl  450 499     
ShR509 700 1175 60 0.07 Plag, Cpx, Gl 414 735 770     
ShR511 700 1200 60 0.14 Cpx, Gl  733 768     

HYDROUS 
ShR660 102 1100 64  Ol, Plag, Cpx, Gl    452 474 -759 230 
ShR662 105 1125 65 0.37 Ol, Plag, Cpx, Gl 216 266 326 398 243 -475 240 
ShR661 105 1135 89 0.54 Ol, Plag, Cpx, Gl    439 221 -235 320 
ShR663 108 1155 64  Ol, Plag, Cpx, Gl    348 77 -532 205 
ShR657 401 1125 62  Ol, Plag, Cpx, Gl    845 890 -6 600 
ShR666 397 1150 63  Ol, Plag, Cpx, Gl    778 688 104  
ShR360 102 1100 64 0.43 Ol, Plag, Cpx, Gl 76 178 301 272 287 -285 180 
ShR362 105 1125 65 0.48 Ol, Plag, Cpx, Gl 195 221 300 191 246 -280 120 
ShR361 105 1135 89  Ol, Plag, Cpx, Gl    191 253 -160 150 
ShR363 108 1155 64 0.51 Ol, Plag, Cpx, Gl 229 316 352 228 129 -151 150 
ShR358 202 1075 64 0.48 Ol, Plag, Cpx, Gl 134 248 430 324 536 -197 190 
ShR354 201 1100 70 0.26 Ol, Plag, Cpx, Gl 156 296 486 490 592 -18 290 
ShR350 205 1125 65 0.75 Ol, Plag, Cpx, Gl 229 287 412 359 495 -23 260 
ShR359 401 1100 70  Ol, Plag, Cpx, Gl    652 780 69 410 
ShR357 401 1125 62  Ol, Plag, Cpx, Gl    675 731 150 480 
ShR366 397 1150 63 0.37 Ol, Plag, Cpx, Gl 376 563 650     
ShR366 397 1150 63  Ol, Plag, Cpx, Gl    712 651 108  
ShR560 102 1100 64 0.63 Pl, Cpx, Gl -17 299 498     
ShR562 105 1125 65 0.73 Cpx, Gl  248 374     
ShR561 105 1135 89 0.82 Cpx, Gl  212 334     
ShR558 202 1075 64 0.79 Ol, Plag, Cpx, Gl -34 240 454 258 489 -22 100 
ShR554 201 1100 70 0.63 Ol, Plag, Cpx, Gl -26 333 523 362 387 -79 140 
ShR550 205 1125 65 0.94 Cpx, Gl  282 413     
ShR559 401 1100 70 0.69 Plag, Cpx, Gl 166 433 580     

The used glass compositions are presented in Tab. II.3 and II.4. Mineral compositions are listed in Tab. 
AII.1-AII.6 
P’08 – Putirka (2008) 
YKG’96 – Yang et al. (1996) 
Herz’04 – Herzberg (2004) 
Villiger’07 – Villiger et al. (2007) 
COM – COMAGMAT (Ariskin & Barmina, 2004), applied using the coefficients for the effect of H2O 
published by Almeev et al. (2007 and 2012). 
Ol – olivine, Plag – plagioclase, Cpx – clinopyroxene, Gl – glass, Dur – duration 
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