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Abstract

Compact astrophysical objects (neutron stars and black holes) are the result of the evolu-
tion and death of massive stars. Their extreme properties can not be directly reproduced
in a laboratory, but can be probed experimentally by observing the interaction between
such objects in binary systems. Binaries of neutron stars, as well as the likely progen-
itors of binaries containing black holes, can be observed electromagnetically. General
relativity predicts that all compact binaries also radiate energy via gravitational waves;
the energy loss leads to the eventual coalescence of the two objects. A promising way
to gain more information about compact objects is the direct observation of their grav-
itational radiation, which so far has not succeeded and represents a major challenge of
modern experimental physics. However, advanced interferometric gravitational-wave de-
tectors such as LIGO, Virgo and KAGRA will take data with unprecedented sensitivity
starting from this year. Due to the weakness of the gravitational interaction and the
rarity of compact binary coalescence events, analysis pipelines for detecting such events
in interferometer data must ensure that the search sensitivity is as high as permitted by
the fundamental noise of the detectors.

This thesis identifies possible limits to the sensitivity of such pipelines and proposes
ways to overcome those limits. The main chapters (2 and 3) focus on detecting coalescing
binaries of neutron stars and spinning black holes. We show the importance of black-
hole spins, which have been neglected in past searches, on the sensitivity of the search
pipeline. We demonstrate that including the effects of the spin component parallel
to the orbital angular momentum is technically feasible and leads to a more sensitive
aligned-spin pipeline. The exact gain depends on the distribution of spin magnitudes
in nature. We show in chapter 3 that the aligned-spin pipeline can also detect a large
fraction of coalescing neutron-star—black-hole binaries whose spins are not aligned with
the orbital angular momentum, i.e. whose orbital planes precess. Chapter 4 compares
the sensitivity and computational cost of two alternative ways to combine data from
multiple gravitational-wave detectors in search pipelines for binary coalescence. We
show that the two methods have comparable sensitivity, although the difference will
become meaningful when several interferometric detectors will operate at the same time.
Chapter 5 investigates how the detection statistic used to search for binary coalescences
is affected by instrumental, non-astrophysical transient signals, which are commonly
observed in interferometer data. We demonstrate that such transients can affect the
pipeline for several minutes and we propose ways to counteract this effect.

Keywords: compact binaries, gravitational waves, data analysis
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Kurzfassung

Kompakte astrophysikalische Körper (Neutronensterne und schwarze Löcher) sind die
Endzustände der Evolution massereicher Sterne. Ihre extremen Eigenschaften können
nicht direkt in Laboren reproduziert werden, aber durch Beobachtung der Wechsel-
wirkung zwischen solchen Objekten in Binärsystemen experimentell überprüft werden.
Paare von Neutronensternen, genauso wie die vermutlichen Vorstadien von Binärsyste-
men, die schwarze Löcher enthalten, können elektromagnetisch beobachtet werden. Die
allgemeine Relativitätstheorie sagt voraus, dass alle kompakten Binärsysteme Energie in
Form von Gravitationswellen abstrahlen; der Energie-Verlust führt dann schlussendlich
zur Verschmelzung dieser Objekte. Eine vielversprechende Methode um Informationen
über diese kompakten Objekte zu bekommen, ist die Gravitationsstrahlung direkt zu
detektieren, welche bisher allerdings noch nicht erfolgreich war und daher eine große
Herausforderung der aktuellen Experimentalphysik darstellt. Indes werden dieses Jahr
fortschrittliche interferometrische Gravitationswellendetektoren wie LIGO, Virgo und
KAGRA starten Daten mit unerreichter Empfindlichkeit aufzunehmen. Aufgrund der
schwachen gravitativen Wechselwirkung und der Seltenheit von Verschmelzungen kom-
pakter Binärsysteme müssen Analysemethoden, die solche Ereignisse in Interferometer-
Daten detektieren sollen, gewährleisten können, dass die Suchempfindlichkeit so hoch ist
wie durch das fundamentale Rauschen in den Detektoren zugelassen.

In dieser Arbeit werden mögliche Limits der Empfindlichkeit solcher Methoden iden-
tifiziert und Wege vorgeschlagen, um diese zu übertreffen. Die Hauptkapitel (2 und 3)
konzentrieren sich auf die Detektion verschmelzender Paare von Neutronensternen und
rotierenden schwarzen Löchern. Wir zeigen die Wichtigkeit den Spins schwarzer Löcher,
welcher in vergangenen Suchen vernachlässigt wurde, für die Empfindlichkeit der Such-
methoden. Dann zeigen wir, dass die Berücksichtigung der Effekte von der Spinkompo-
nente parallel zum Orbitaldrehimpuls technisch durchführbar ist und zu einer empfind-
licheren Suchmethode führt. Der tatsächliche Nutzen hängt von der Verteilung der
Drehimpulse schwarzer Löcher in der Natur ab. In Kapitel 3 zeigen wir, dass wir durch
die Berücksichtigung des Parallel-Spins auch einen Großteil der Verschmelzungen von
Binärsystemen aus Neutronensternen und schwarzen Löchern detektieren können deren
Spins nicht parallel zum Orbitaldrehimpuls sind, d.h. deren Orbitalebene präzediert.
Kapitel 4 vergleicht die Empfindlichkeit und den Rechenaufwand zweier verschiedener
Wege, die Daten mehrerer Gravitationswellendetektoren in Suchmethoden für Verschmelzun-
gen zu kombinieren. Wir zeigen, dass die beiden Methoden eine vergleichbare Empfind-
lichkeit haben, obgleich der Unterschied bedeutsam werden wird, wenn mehrere inter-
ferometrische Detektoren zur gleichen Zeit in Betrieb sein werden. Kapitel 5 untersucht,
wie die Suche nach Verschmelzungen durch kurzlebige nicht-astrophysikalische Signale
aus den Instrumenten, welche häufig in Interferometer-Daten beobachtet werden, bee-
influsst wird. Wir zeigen, dass diese Signale die Suchmethoden für mehrere Minuten
beeinflussen können und schlagen Wege vor, um diesem Effekt entgegenzuwirken.

Schlagworte: kompakte Binärsysteme, Gravitationswellen, Datenanalyse
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Chapter 1

Introduction

This chapter gives an introduction to the topic of compact binaries and the observation
of their coalescence via gravitational waves (GWs), providing the necessary context for
the research presented in the next chapters. Section 1.1 is a quick summary of the
evolution and final state of isolated stars and introduces compact objects. Section 1.2
reviews the current models and existing observations of compact binaries. Section 1.3
reviews the motivation and the experimental and data-analysis techniques behind the
observation of compact-binary coalescence (CBC) through the associated GW emission.

1.1 Stellar evolution

Before introducing compact binaries, we quickly review the most important phases of
stellar evolution and the basic properties of the resulting compact objects. For details,
refer to classical textbooks such as [1].

1.1.1 Formation and main sequence

The formation of a star begins with the gravitational contraction of hydrogen in molec-
ular clouds. Initially, the gas appears to form long and thin filament-like structures.
Depending on their linear mass density, filaments may then undergo gravitational insta-
bility and fragment into protostellar cores. Further gravitational contraction increases
the density and temperature of the gas in a core, eventually starting nuclear fusion re-
actions. These are typically exothermic and release high-energy photons. The resulting
radiation pressure stops further gravitational contraction and the system enters a steady
state known as a main sequence star.

Stars spend the majority of their life in the main sequence, fusing hydrogen into
helium (through the proton-proton reaction or CNO cycle, depending on the mass of
the star) as well as producing a smaller proportion of heavier elements. Heavier stars
have typically higher reaction rates and thus shorter life. As helium accumulates at
the core of the star, new fusion reactions may start converting it into heavier elements,
preventing the gravitational collapse of the helium core. Thus, the interior of the star
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may develop an onion-like structure with heavier elements accumulating towards its
center. When the luminosity and surface temperature of stars are plotted one against
the other (Hertzsprung-Russell diagram) stars form well-separated clusters, the most
prominent one representing main-sequence stars.

Fusion reactions become less efficient as elements further down in the periodic ta-
ble are formed, and they stop altogether as soon as they become endothermic or fuel
is exhausted. Radiation pressure is then no longer able to contrast gravitational col-
lapse. At this point the evolution of the star can take different paths, depending mainly
on the initial mass and chemical composition and presumably on the intrinsic angular
momentum.

1.1.2 Death as a white dwarf

If the initial mass of the star is sufficiently small, fusion leaves an inert C-O or O-
Ne core. Such an object can no longer produce nuclear fusion, but its contraction is
balanced by the degeneracy pressure induced by its electrons behaving as a Fermi gas.
This equilibrium is realized at roughly the size of the Earth and a mass between fractions
of the solar mass (M⊙ ≈ 1.99 × 1030 kg) and ≈ 1.4M⊙ (Chandrasekhar limit) i.e. at
an extremely large density. Although exothermic reactions no longer occur, its initial
temperature still causes the object to radiate high-energy photons as a white dwarf (WD),
which cools down on a time scale longer than the expected duration of the universe.

1.1.3 Collapse to a neutron star

Initial masses below ≈ 20M⊙ result in either an oxygen-neon- magnesium or iron core
whose gravitational collapse can no longer be halted by electron degeneracy. The object
then undergoes electron capture, converting most proton-electron pairs into neutrons and
collapsing violently on a time scale of seconds. The outer infalling material is thought
to bounce on the newly formed neutron core, producing a supernova explosion which
includes a burst of neutrinos from the neutronization process. The resulting collapsed
core is essentially a degenerate, compact sphere of neutrons with density comparable to
atomic nuclei, known as a neutron star (NS). Conservation of the angular momentum of
the collapsing core, or asymmetries in the supernova explosion [2], are thought to lead
to an extremely fast rotation of the NS.

The observation of periodic radio pulses with excellent stability and periods between
seconds and milliseconds (pulsars) suggests a rapidly rotating and extremely compact
source emitting beamed radiation; spinning NSs with magnetic dipoles misaligned with
the rotation axis are the best explanation [3]. Thousands of NSs have been discovered
so far in this way [4]. Pulsars have also been observed in optical and γ bands [5, 6]. The
emission mechanisms, however, are not yet firmly understood.

A review of NS masses can be found in [3]. Theoretical calculations of NS masses are
difficult due to the unknown equation of state (EOS) of neutron matter. However, main-
taining hydrostatic equilibrium in General Relativity (GR) requires an upper bound on
the mass. Imposing the condition that the speed of sound does not exceed the speed of
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light c (maximum stiffness) requires a maximum mass of ≈ 3M⊙ [7]. Measuring the mass
of an isolated NS is also difficult. Fortunately however, when a NS is orbiting a compan-
ion star, observing the companion’s spectral lines allows one to constrain the Keplerian
parameters and thus a combination of the masses (mass function). The constraint is
improved if the NS is a pulsar and the Doppler shift of its pulses can be observed. When
the NS is observed as a pulsar in a relativistic binary, and post-Keplerian parameters
can be measured, the constraint is very tight and can lead to exquisite precision in the
mass measurement. Precisely measured NS masses currently range from 1.2M⊙ to 2M⊙

with a narrow cluster at 1.35M⊙ for NSs in binaries [8, 9].
By definition, the rotation frequency of pulsars can be measured very precisely by

timing the pulses; frequencies in the range 10−1 − 103 Hz are typical. The intrinsic
angular momentum (spin) S of a NS can be characterized by the dimensionless vector

χ :=
c

G

S

m2
(1.1)

with G and c the gravitational constant and speed of light in vacuum and m the NS
mass. The dimensionless spin magnitude is limited by the break-up velocity of the NS
to χ . 0.7 [10]. Observed NSs are however far from this limit, with the fastest-spinning
one at only χ ≈ 0.4 [11]; possible explanations for the lack of higher spins are r-mode
instabilities and braking by GWs emission [12].

Reproducing the extreme conditions of NS matter in the laboratory is currently un-
feasible. Thus its properties remain largely unknown; in particular, there are many
possible models for its EOS. The EOS manifests itself macroscopically as a relation be-
tween the NS mass and radius and it also influences the NS deformability. EOS models
can thus be tested via mass-vs-radius or deformability measurements. Unfortunately,
obtaining useful measurements of the radius or deformation via electromagnetic observa-
tions has proved to be challenging, severely limiting our ability to constrain the available
models.

1.1.4 Collapse to a black hole

Progenitors with mass above ≈ 20M⊙ undergo a collapse so violent that no known
physical interaction can counter gravity and stop the contraction. GR predicts that this
results in a black hole (BH), a consequence of the Schwarzschild and Kerr solutions to
Einstein’s equations [13]. In a static BH of mass m, matter and radiation are entirely
confined within the Schwarzschild radius

rs := 2
G

c2
m. (1.2)

The inside of a BH is effectively prevented from making any causal communication
with the rest of the universe. Uniqueness theorems imply that a stationary BH is an
extremely simple object, described only by its mass m, charge Q (expected to vanish
for astrophysical BHs) and dimensionless spin χ as in eq. (1.1). The assumption that
the singularity of the Kerr solution is always covered by an horizon (cosmic censorship)
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requires that BHs have χ ≤ 1; BHs can spin up to almost this limit by accreting matter
[14]. Note that NSs (as well as non-compact objects) need not obey a fundamental spin
limit.

Because of their very nature, observing BHs with electromagnetic radiation is dif-
ficult. There are currently no unambiguous observations of BHs. However, the gravi-
tational interaction of a BH with the surrounding matter and radiation can be a very
strong (albeit indirect) indication of its existence. Matter falling into a BH can form an
accretion disk, where potential energy is converted very efficiently into heat causing the
inner part of the disk to radiate X-rays. Observations of several X-ray binaries—notably
Cygnus X-1 [15]—support this model and currently provide the best evidence for BHs
produced by the collapse of massive stars. On the other hand, long-term tracking of stars
in Sagittarius A∗ demonstrates the existence of a massive, dark and relatively small ob-
ject at the galactic center, supporting the hypothesis that galaxies host supermassive
BHs which did not directly result from the collapse of single stars. BHs could in prin-
ciple also be observed as gravitational lenses, although no such observation is available
yet [16].

Contrary to NSs, there are no fundamental limits to BHs masses; for instance, Sagit-
tarius A∗ hosts a 4 × 106M⊙ BH [17, 18]. X-ray binaries whose Keplerian parameters
can be constrained enable a measurement of their BH mass in a similar way as for NSs,
although the typical precision is far from what is possible for NSs [3, 19]. Therefore, the
distribution of BH birth masses is very uncertain. There is the possibility of a mass gap
between NSs and BHs which could reflect different core-collapse scenarios [20]. It is not
clear, however, whether this is a consequence of selection effects. This thesis will focus
on BHs with masses between a fewM⊙ and O(10M⊙), i.e. those found in X-ray binaries,
and will refer to them as stellar-mass BHs. An updated list of mass measurements for
such objects is maintained at [8].

With important caveats, some of the available BH observations also enable spin mea-
surements [3]. The X-ray spectrum of the accretion disk in a stellar-mass X-ray binary
depends on the BH spin and can yield a spin measurement via the continuum fitting
method [21]. However, this measurement can be influenced by the relative orientation of
the spin and the disk [22]. The spin also induces a broadening of the iron Kα emission
line which is in some cases present in the spectrum of X-ray binaries, enabling a different
spin measurement via spectroscopy [23]. A third method involves the interpretation of
observed quasi-periodic oscillations in the X-ray flux in terms of the characteristic fre-
quencies of the system [24, 25]. These methods now consistently indicate that a large
fraction of BHs may be spinning close to the Kerr limit. Simulations modeling the for-
mation of BHs in binaries also support this hypothesis [26]. Note however that some
high-spin measurement have also been criticized [27] and alternative explanations of the
data based on unexpected deviations from Kerr BHs have been proposed [28].

Mass and spin parameters for some of the observed stellar-mass BH candidates are
plotted in figure 1.1.
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Figure 1.1: Measured parameters for some of the observed stellar-mass BH candidates.
Data from [8, 29–35].

1.2 Compact binaries

We have seen that, independently of the details, the generally accepted final outcome
of a medium to high-mass star is always a compact object of relatively small radius
(possibly tens of kilometers) and mass comparable toM⊙ or significantly larger. Bringing
macroscopic amounts of matter to similar extreme regimes in a controlled laboratory
experiment, let alone producing a BH, is currently impossible. Astrophysical compact
objects are thus a unique and formidable opportunity to perform experiments with
matter in such regimes. A promising way of extracting information from compact objects
is observing their close interaction and nature already provides us with the necessary
setup, as we shall see in this section.

Star formation often produces multiple-star systems [36]. Many studies estimate that
a large fraction of stars are in binary systems, although these estimates are generally
affected by selection biases. The evolutionary model described in the previous section
generally also applies to each component of a binary, at least qualitatively, but its details
can be greatly influenced by the presence of the companion star. The main parameter
controlling the fate of the components and of the binary itself is the separation a between
the components. In widely-separated binaries, whose a is much larger than the radii
of the component stars, the two components essentially evolve independently and the
only phenomenon which can dramatically affect the binary is the eventual collapse or
explosion of the components. Close binaries, instead, enable qualitatively different and
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interesting physical processes which greatly influence the fate of the components and
the binary, in particular mass exchange, orbital decay by gravitational radiation and
collision between the components. When both components of a close binary are compact
objects we have a compact binary. Observing the distribution and behavior of such
systems provides important data about compact objects and the processes leading to
their formation.

The most important physical phenomena involving binaries, and the currently avail-
able observations and open issues, are summarized in the next subsections. For a full
review of compact binary evolution, see [37].

1.2.1 Mass exchange

The shape of the stellar surfaces in a binary is largely determined by the effective po-
tential in which they sit. This is usually approximated by the Roche potential, which
includes the gravitational interaction of the components (assumed to be point masses
corotating with the orbit) and the centrifugal force due to the orbital angular momen-
tum (assuming a circular orbit) but neglects radiation pressure. The Roche potential
has an equipotential surface containing both components, whose shape is composed of
two critical lobes joined at the equilibrium saddle point along the separation between
the components. If one of the components becomes larger than the corresponding lobe,
matter is no longer bound to its surface and can be transferred to the other object or
ejected from the system in different ways.

On the one hand, matter can simply be ejected from the system as a fast wind which
interacts very little with the companion. The angular momentum loss associated with
this fast-wind or Jeans mode can be calculated easily by assuming the components are
point masses. The result is always a widening of the binary.

On the other hand, all stripped matter can fall from the donor star directly onto
the companion. This conservative accretion mode preserves the total mass and orbital
angular momentum. In principle, modeling the stream of matter requires numerical 3D
hydrodynamics and possibly taking into account nuclear reactions. However, the same
simplified point-mass model used for the Jeans mode shows that the binary can either
shrink or widen, depending on the relative mass of the donor and accretor.

Matter stripped from the donor and falling towards the companion can fail to accrete
completely, for instance if the Eddington luminosity is exceeded, and be ejected from
the system (isotropic reemission). An observation compatible with this mode is the
X-ray binary SS 433. The simple point-mass model can again be used to estimate the
variation in orbital separation. The result depends strongly on the mass ratio and can
be a dramatic shrinkage of the binary.

In fact, isotropic reemission can shrink the binary so much that the point-mass
model is no longer valid and instabilities in mass transfer form. This can result in a
common envelope engulfing the whole binary, with the accretor spiraling toward the
core of the donor. In general, common envelope can result from any mechanism which
dramatically reduces the orbital separation and brings one component into the other.
The time scale of the common-envelope stage is expected to be years and the occurrence
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of common-envelope events is thought to be rare, so its direct observation is unlikely.
However, several close compact binaries (a ≈ R⊙) are known from observations—notable
examples are the “Hulse-Taylor pulsar” B1913+16 [38] and the “double pulsar” J0737-
3039 [39]—and we know that the formation of a compact object involves a progenitor
with r & 100R⊙. Therefore, common envelopes appear to be a necessary and ubiquitous
stage in the formation of close compact binaries. Unfortunately, studying their detailed
formation, evolution and outcome requires a full 3D hydrodynamic treatment, possibly
including nuclear reactions, which is computationally challenging. Simplified analytical
models have been proposed based on balance of energy or angular momentum, but
their parameters are poorly constrained and they are not consistent with all observed
close binaries. As a result, common envelopes are still poorly understood and they are
regarded as the most important open problem in the study of close binaries.

1.2.2 Supernova explosion

As a result of their independent evolution, or after accreting mass from the companion,
components in a binary may explode as supernovae and turn into NSs or BHs. The
time scale of the explosion is typically much shorter than the orbital period, so it is
easy to model the phenomenon analytically. The result is an expression for the orbital
parameters after the explosion in terms of the original ones, the mass ejected from the
binary ∆m and the change in velocity w (kick) that the exploding object may receive
as a result of asymmetries in the explosion.

The details of the explosion can greatly affect the fate of the binary. Some combi-
nations of ∆m and w tend to increase the orbital radius and even disrupt the binary
(e.g. ∆m ≥ (m1 +m2)/2 and w ≈ 0). In other cases the binary can become tighter and
its life can be significantly shortened, similarly to what happens with common envelopes.
If the kick has a significant component orthogonal to the orbital plane, the orientation
of the final orbit is affected and, if the objects have significant spins, this can then be
important for precession effects, as we shall see later. Finally, large kicks can affect
the spatial distribution of binaries by moving the systems away from the star-forming
regions.

Unfortunately, birth kicks of NSs and BHs remain another unresolved problem in
stellar evolution; at the moment there are observations and simulations supporting both
large and small kicks and the symmetry of kicks during supernova explosions remains
poorly understood.

1.2.3 Early inspiral

Systems surviving mass-exchange and supernova explosions as stellar-mass compact bi-
naries are well approximated as detached point masses in Keplerian orbits, with separa-
tion comparable to the solar radius R⊙. This evolutionary stage of compact binaries is
thus fully driven by gravitation. In the Newtonian description of gravity, such systems
would be in principle indefinitely stable. However, this picture is significantly modified
by GR, which predicts that binary systems radiate energy and angular momentum as
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GW, decaying with a spiral motion called inspiral. It is therefore important to incor-
porate this effect into the evolution of compact binaries; conversely, observing detached
compact binaries enables probing GR effects.

GWs are a major prediction of GR. Their detailed derivation and properties can
be found in classical text books (e.g. [40]) and are briefly summarized here. Start from
Einstein’s equations,

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.3)

where Rµν and R are the Ricci tensor and scalar describing the spacetime curvature,
gµν is the metric tensor describing the distance between infinitesimally-close events and
Tµν is the tensor describing the local energy density and momentum density and flux.
Assume a spacetime described by the following metric,

gµν = ηµν + hµν (1.4)

where ηµν is the flat Minkowski metric and hµν is a small perturbation, i.e. it has the
property |hµν | ≪ 1 at least in a particular reference frame and in a sufficiently restricted
region of spacetime. Insert this perturbed metric into eq. (1.3), and neglect terms of
second and higher orders in hµν . The result is a linearized equation for hµν . Under a
particular gauge choice (Lorenz or harmonic gauge) this equation reads

✷h̄µν = −16πG

c4
Tµν (1.5)

where ✷ := ∂µ∂
µ = −c−2∂20 + ∇2 is the d’Alembertian operator in flat space and

h̄µν := hµν − 1
2ηµνη

ρσhρσ.
Far from the source Tµν vanishes and the components of the perturbation admit

wave-like solutions called linearized GWs. The propagation speed turns out to be c
like for electromagnetic waves. In principle, hµν has 10 independent components, but
they can always be reduced to two by fixing the remaining gauge freedom. In this
so-called transverse and traceless gauge, the temporal components and the trace of
the perturbation vanish. If we further restrict our attention to plane-wave solutions,
which are excellent approximations to the GWs generated by astrophysical systems and
observed on Earth, and let the wave vector define the z axis, the perturbation can be
written as

hTT
µν (t, z) =









0 0 0 0
0 h+(t− z/c) h×(t− z/c) 0
0 h×(t− z/c) −h+(t− z/c) 0
0 0 0 0









µν

= E+
µνh+(t− z/c) + E×

µνh×(t− z/c) (1.6)

The remaining h+ and h× components represent physical degrees of freedom of the
gravitational radiation, corresponding to the amplitudes of two independent polariza-
tion states, similarly to electromagnetic radiation. These states are described by the two
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tensors E+
µν and E×

µν and are commonly called plus and cross because of the geometry
of their effect on test masses. In analogy with electromagnetic waves, each state can be
transformed into the other by a rotation around the wave vector; however, the required
angle is π/4 in the GW case and π/2 in the electromagnetic case. In our particular coor-
dinate system, the only nonzero components of the perturbation are in the xy plane; in
fact, the perturbation is always transverse to the wave vector, which is again a similarity
with electromagnetism.

In linearized theory, GW emission from a source of finite size can be described,
under the assumption that the gravitational field of the source is weak, using the Green’s
function and retarded potential. GWs produce a back-reaction on the source, subtracting
energy and angular momentum from it and transporting them to infinity. The solution
for an arbitrary source is complicated, but if the internal velocities of the source are non-
relativistic, then the spatial components hTT

ij of hTT
µν can be expressed in terms of the

lowest multipole moments of the energy and linear-momentum density of the source. In
particular, the radiation is dominated by the mass quadrupole moment,

hTT
ij (t,x) ≈ 2G

c4
1

r
Q̈TT

ij (tret) (1.7)

where r is the distance from the source, tret := t−r/c is the retarded time and QTT
ij is the

transverse-traceless projection of the mass quadrupole tensor, which for a non-relativistic
source of mass density ρ(t,x) is

QTT
ij (t) ≈

[∫

source
d3x ρ(t,x)

(

xixj − 1

3
r2δij

)]TT

. (1.8)

Note that there is no radiation associated with a time-varying mass monopole or dipole,
meaning that an object undergoing a spherically-symmetric collapse or explosion does
not radiate. On the other hand, a large, fast-rotating and non-axisymmetric mass dis-
tribution has a large time-varying quadrupole moment and is an efficient radiator. Per-
fect examples of such a system in nature are rapidly-rotating NSs deformed in a non-
axisymmetric fashion and compact binaries after the common-envelope phase, which
brings us back to the evolution of compact binaries.

The fundamental features of the gravitational radiation emitted by a compact binary
can be derived by modeling the binary as two point masses m1, m2 in a non-relativistic
circular Keplerian orbit [41]. In this regime the GW emission has a negligible effect on
the trajectories of the masses on an orbital time scale. By calculating the quadrupole
moment of the system and using it in eq. (1.7), the resulting GW polarization amplitudes
for a distant observer are

h+(t) = A
1 + cos2 ι

2
cos(2πfgwtret + 2φ)

h×(t) = A cos ι sin(2πfgwtret + 2φ)

A :=
4

r

(

G

c2
M
)5/3

(π

c
fgw

)2/3
(1.9)
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where fgw is twice the orbital frequency, M := (m1m2)
3/5(m1 + m2)

−1/5 is the chirp
mass of the binary, ι is the angle between the orbital angular momentum and the line
of sight from the source to the observer (inclination) and φ is a reference orbital phase.
Due to GW radiation, the orbit slowly loses energy; by equating the total radiated power
to the time derivative of the total energy of the Keplerian orbit, the evolution of the
GW frequency is found to be

fgw(t) =
1

π

(

5

256

1

tc − t

)3/8(G

c3
M
)−5/8

(1.10)

where tc is the coalescence time i.e. the instant at which, under these approximations,
frequency becomes formally infinite and the masses touch each other. Plugging the
frequency evolution back into the polarization amplitudes gives

h+(t) = A′ 1 + cos2 ι

2
cosΦ(t)

h×(t) = A′ cos ι sinΦ(t)

A′(t) :=
1

r

(

G

c2
M
)5/4( 5

c(tc − t)

)1/4

Φ(t) := −2

(

5
G

c3
M
)−5/8

(tc − t)5/8 + φc (1.11)

where φc is the phase at coalescence. Under these approximations, the evolution of the
binary under GW emission is therefore an adiabatic or Newtonian inspiral : the objects
perform a sequence of Keplerian orbits with slowly-decreasing orbital period and radius,
while the emitted GW amplitude and frequency slowly increase. The GW signal is thus
called a chirp. The polarization of the radiation depends on the inclination of the source:
in the face on or face off cases (ι = {0, π}) the polarization is circular, in the edge-on
case (ι = π/2) it is linear and for intermediate inclinations it is elliptic. Although we
assumed a circular orbit, the description is easily extended to an eccentric orbit; the
resulting signal contains potentially all harmonics of the orbital frequency and it can be
shown that the GW back-reaction tends to reduce the eccentricity over time [42]. In any
case, the orbital radius eventually shrinks to less than the size of the components, the
orbital velocity becomes relativistic and the two objects merge. The Newtonian inspiral
model is no longer an accurate description at that point.

GWs have never been directly observed on Earth. However, through long-term elec-
tromagnetic timing of pulsars in binary systems, several inspiraling NS binaries have
been discovered and found to decay at a rate consistent with GW radiation. Notable
examples are the already-mentioned close binaries B1913+16 and J0737-3039. Thanks
to oscillations in their X-ray flux, inspiraling WD binaries have also been discovered,
such as J0651+2844 [43]. The known inspiraling binaries currently represent the only
firm observational evidence of the existence of GWs.
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1.2.4 Late inspiral, spins and precession

The last few minutes of a compact binary decaying by GW radiation involve objects
with masses of at least M⊙ orbiting at relativistic speeds and in a strong gravitational
field, with separation comparable to their radius. Although the inspiral picture remains
valid, the approximations made in deriving the Newtonian inspiral are no longer good
and the amplitude and phase of the radiation require corrections. Such corrections can
be computed via the post-Newtonian (pN) framework. For a full review of pN theory
applied to compact binary inspiral, see [44]; the main concepts are summarized here.

The total energy E(v) and outgoing GW power P (v) of the binary system are written
as power series of the parameter ǫ ∝ v2/c2 where v is the orbital velocity and the
Newtonian inspiral corresponds to the leading (0th-order) term of the expansion. As
done for the Newtonian inspiral, conservation of energy is assumed and the balance
equation

d

dt
E(v) = −P (v) (1.12)

can then be used to derive the relationship between velocity and time and thus between
GW phase and time. The final result is an expression of the GW phase as a power series
and can be directly used to compute the GW signal as a function of time or frequency.
pN corrections also introduce higher-order terms in the amplitude of the GW signal,
beyond the leading quadrupole term. These give rise to multiple chirps in the time-
frequency plane, at the orbital frequency as well as its higher harmonics. Depending
on the region of interest in the parameter space, computing the phase to high pN order
but neglecting corrections to the amplitude can be sufficient for detecting CBC signals.
This approximation is called a restricted pN waveform [45] and will be used in chapters
2 and 3.

One source of corrections to the phase is the back-reaction of the outgoing radiation
on the motion of the source and the non-linear scattering of the radiation off itself and
off the background spacetime curvature produced by the binary. Phase correction terms
associated with these effects have been computed at the 1, 1.5, 2, 2.5, 3 and 3.5 pN orders
[44, 46, 47]. These terms contain a different combination of the component masses than
the chirp mass, namely the symmetric mass ratio

0 < η :=
m1m2

M2
≤ 1

4
(1.13)

whereM := m1+m2 is the total mass of the binary. This additional dependency breaks
the mass degeneracy present when only the Newtonian order is considered. Thus, if the
signal is measured with sufficient precision, the individual masses can in principle be
inferred.

More corrections to the phase appear when one or both components of the binary
have non-vanishing spins. In fact, terms arise from the interaction between each spin and
the orbital angular momentum (“spin-orbit” terms, χi ·L), from the mutual interaction
of the two spins (“spin-spin” terms of type χ1 · χ2), from the coupling of each spin to
itself (“spin-squared” terms of type χ2

i ) etc. Spin contributions to the GW phase due
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to these effects have been computed to the 2.5 pN order [44, 45, 48–51] and recently to
3.5 pN order [52]; the dominant effect is the spin-orbit interaction, entering already at
1.5 pN order. Spin also induces a Newtonian quadrupole moment; the coupling between
this and the mass monopole then produces an effective 2 pN “quadrupole-monopole”
correction to the phase [53]. The importance of spin corrections for a CBC search will
be investigated in chapter 2.

Finally, the phase receives additional corrections when the orbital radius becomes
comparable with the finite size of the components and tidal interaction becomes impor-
tant [54–56]. The deformability of a NS is likely determined by its EOS, so observing
the final cycles of the signal can in principle constrain properties of NS matter.

pN effects can not only introduce corrections to the orbital phase and GW amplitude,
but also cause the orientation of the orbital angular momentum L and the component
spin vectors S1, S2 to vary in time, i.e. to precess [57]. In fact, if one or both components
of the binary have significant spins (S1 > 0 and/or S2 > 0) and the spins form a
nonzero angle with L, then a symmetry of the system is broken. Spin-orbit coupling
then induces a time-varying orientation of the vectors S1, S2 and L with respect to an
inertial frame, while the direction of the total angular momentum J := L + S1 + S2

remains constant except for small radiation-reaction effects. This is an entirely post-
Newtonian phenomenon, analogous to the Lense-Thirring or gravitomagnetic effect.

Typically the motion of L associated with precession is a simple rotation around
J with a time scale much longer than the orbital period; this regime is called simple
precession and has two observable consequences on the emitted GW waveform. On
the one hand, a secular correction to the orbital phase arises. On the other hand, the
periodically-wobbling orbit means that the inclination and polarization angles associated
with the emitted GW waveform are not constants but periodic functions of time. The
resulting waveform acquires a characteristic amplitude and phase modulation. As we
shall see in chapter 3, simple precession can have consequences in GW searches.

Precession can result in a short epoch characterized by a qualitatively different mo-
tion of L if the spins are large and initially approximately anti-aligned with L. In fact,
L slowly shrinks due to GW emission while S1 and S2 are constant. At some point,
therefore, J will transition from being dominated by L to being dominated by S1 +S2.
However, since J must be approximately conserved, it can not suddenly change orien-
tation; L instead needs not be conserved and thus is free to rapidly reorient itself. This
phenomenon is called transitional precession and leads to an episode of complicated
three- dimensional tumbling of the binary. Once the vectors have been reoriented and
the transition ends, simple precession is typically restored.

In practice the pN energy-balance equation (1.12) can be solved in different ways,
producing different models (approximants) for inspiral waveforms (see e.g. [58]). The
SpinTaylorT2 and SpinTaylorT4 approximants use eq. (1.12) to express respectively
dt/dv or dv/dt as a power series in v. This is then combined with the relationship
between orbital phase, velocity and time

dφ

dt
=
v3

M
(1.14)
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and integrated numerically to produce the GW phase as a function of time. SpinTay-
lorT models also integrate the precession equations for the angular momenta and can
thus simulate precessing pN waveforms. The TaylorF2 approximant uses instead the
stationary-phase approximation (SPA) to explicitly express restricted, non-precessing
pN waveforms in the frequency domain as

h̃+,×(f) = A+,×(f) cos [Ψ+,×(f)] (1.15)

where Ψ·(f) are power series in f and log f . SpinTaylorF2 uses the same approach
but also includes single-spin precession [59]. These—and several other—waveform ap-
proximants are implemented in the LALSimulation software library maintained by the
LIGO-Virgo collaboration [60]. Chapters 2 and 3 will use the SpinTaylorT2 model for
simulating signals and TaylorF2 for analyzing the data.

1.2.5 Coalescence

At some point the inspiral must terminate: the two objects fall towards each other with
a plunge and then merge. This process involves full GR in its strong-field regime and
is difficult to describe analytically from first principles. However, it is possible to study
it by solving the full Einstein equations numerically. The so-called 3+1 formalism is at
the basis of modern numerical relativity (NR) codes [61–65].

In the binary black hole (BBH) case, it is found that the BHs simply merge into
a single object with significant GW emission. The remaining object is thought to be
an excited (deformed) BH which rapidly sheds its deformation by GW radiation and
settles into a stationary Kerr BH. The resulting ringdown waveform can be described
analytically via perturbation theory and consists of an exponentially-damped oscillation
whose frequency depends on the parameters of the final BH.

When NSs are involved, however, the physics of the merger is greatly complicated
by the presence of matter: tidal forces before the plunge may in fact disrupt one or both
NSs, dispersing neutron-rich matter incoherently around the binary and completely in-
validating the point-mass picture. Nevertheless, NR remains a powerful tool for studying
NS mergers and predicting the resulting GW waveforms. Thanks to simulations, tidal
disruption is thought to produce important electromagnetic emission from the system at
different wavelengths, possibly an accretion disk around the remaining compact object
and possibly a jet orthogonal to the disk due to relativistic beaming. For this reason,
binary neutron star (BNS) and neutron-star–black-hole (NSBH) mergers are a strong
candidate for explaining short gamma-ray bursts (GRBs), but despite a large number
of such events have been observed, a firm proof of this connection is not yet available
[66]. Decompressing neutron-rich matter released during NS disruption may undergo
rapid neutron-capture processes (r-processes) resulting in abundant production of heavy
elements [67]; thus, NS mergers could account for the observed abundance of neutron-
rich heavy elements in the universe [68]. R-processes should also produce an infrared
emission a few days after the merger (kilonova) which has indeed been observed [69].
BNS and NSBH mergers are also thought to produce an excited object; depending on
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the progenitor masses and spins and on the NS EOS, this can be either directly a BH
or an unstable NS above the maximum-NS-mass limit, which eventually also collapses
to a BH [70–72].

Although NR simulations are invaluable for studying the merger and ringdown, they
are computationally expensive, severely limiting the number of orbits that can be prac-
tically simulated before the merger. This makes it difficult to cross-check pN and NR
results. Nevertheless, approximants which are able to fully simulate the inspiral, merger
and ringdown parts of BBH waveforms have been developed. One approach, known
as the effective one-body (EOB) model, combines pN theory, the self-force formalism
and BH perturbation theory; the resulting waveform is calibrated to accurately match
NR simulations [73, 74]. Another approach is to build a phenomenological model that
smoothly connects the analytical pN inspiral to the analytical ringdown signal, produc-
ing the IMRPhenom models [75, 76]. Both methods have been recently extended to also
include precession [77, 78]. Although EOB and IMRPhenom models are not built as so-
lutions to Einstein’s equations, they enable computationally-efficient calculations of full
inspiral-merger-ringdown (IMR) BBH waveforms which closely reproduce NR results.
As is the case for pN approximants, implementations are available in the LALSimula-
tion library [60]. Unfortunately, similar approximants taking into account matter effects
are not available yet and therefore IMR models are not necessarily accurate for BNS and
NSBH mergers.

1.2.6 Standard evolutionary scenario

The phenomena summarized in the previous subsections are part of a “standard” evo-
lutionary scenario that emerged over the last few decades and is confirmed by many
astronomical observations [37]. Its fundamental stages are visualized in figure 1.2 and
summarized here.

Initially, two main-sequence massive stars are orbiting each other and well within
their Roche lobes. Any eccentricity is rapidly dissipated by tidal interaction. The
duration of this phase is determined by the evolution of the heavier star, which can take
up to ≈ 107 years to exhaust its hydrogen fuel. Thus a large number of binaries in this
stage are expected in our galaxy.

As the heavier star runs out of hydrogen, a large helium core is left and the star
expands rapidly, overflowing its Roche lobe. Mass starts spilling from the overflowing
star onto the lighter one, which is still in the main sequence. This can lead to a stable
mass transfer or to a common envelope, but in any case is expected to be a short process
(≈ 104 years) so only O(10) such systems should be present in the galaxy. During this
stage, the secondary star acquires a large angular momentum from the accretion.

Once the hydrogen envelope of the donor is lost, mass transfer stops. The binary
now contains a dense helium object, observable as a Wolf-Rayet star, and a massive,
rapidly-spinning companion. This phase can last for O(105) years so hundreds of these
systems should be present in our galaxy.

If its initial mass is larger than ≈ 8M⊙, the helium-rich object eventually undergoes
an electron-capture or core-collapse supernova and forms a compact object. Depending
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Figure 1.2: Standard evolutionary scenario for compact binaries.

on the kick associated with the supernova event, this can lead to the disruption of the
binary.

Binaries surviving the kick from the first explosion contain a compact object and a
rapidly-spinning, massive star, possibly in a very eccentric orbit. The non-compact star
can be observed as a Be star, i.e. a hot B star with emission lines due to the presence of
a ionized disk. Accretion of the Be stellar wind onto the compact object is thought to
produce powerful X-ray emission and transfer a large amount of angular momentum to
the compact object. This stage explains most Be/X-ray binaries observed in the galaxy.
The duration of this stage is determined by the orbital parameters and it is in any case
limited by the intrinsic evolution of the Be star.

The Be star eventually overflows its Roche lobe; for high mass-ratio systems, a
common-envelope stage at this point is likely. This stage ends rapidly and forms either
(i) a binary containing a compact object and a Wolf-Rayet star, surrounded by an
expanding envelope or (ii) hypothetically, an exotic Thorne- Zytkow object. In the first
case, the common envelope is expected to significantly shrink the orbit and align the
spins of the objects.

Binaries containing compact objects and He stars eventually experience the second
supernova explosion. The result can be two separated high-velocity compact objects or
the formation of a compact binary; plenty of pulsar observations support both cases.

Compact binaries left from the previous stages evolve essentially by GW radiation
and eventually coalesce, producing isolated compact objects. If one of the coalescing
components is a NS, the merger can produce a short GRB. As mentioned above, pulsar
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timing enabled the discovery of many compact binaries, including rapidly-inspiraling
ones; however, there are no definitive observations of relativistic binaries involving BHs.
Also, all observed inspiraling binaries will only merge in 106 years or more.

Note that the standard evolutionary scenario summarized here is only valid for close
binaries and for a particular mass range. Different scenarios could also lead to the forma-
tion of compact binaries, for instance the capture of a compact object by a second one.
Moreover, important parameters of the model remain poorly constrained, for instance
the threshold mass for the formation of a BH from a main-sequence star, the BH birth
mass and supernova kicks.

1.2.7 Coalescence rate

An important observable prediction of binary evolution models is the coalescence rate
density, i.e. the number of coalescence events per unit of time and volume. This number
can be computed for a particular model via population synthesis codes, which evolve large
numbers of simulated binaries assuming particular distributions of initial parameters [79].
Current uncertainties in modeling common envelopes and supernova kicks imply a large
uncertainty in theoretical estimates.

Existing observations of pulsars in binaries place important constraints on the galac-
tic BNS coalescence rate. This can be estimated as R ≈ N/(Tp + Tgw) where N is
the estimated number of binaries, Tp is the estimated characteristic age of their pulsars
and Tgw is the time required for the systems to decay and coalesce due to GWs. The
largest contribution to this estimate is given by the double pulsar J0737-3039, due to its
short orbital period. Another way to estimate the BNS merger rate uses the observed
formation rate of isolated galactic pulsars and the fraction of NS binaries where one of
the components is a young pulsar. The two methods give consistent results of O(10−5)
mergers per year in our galaxy.

As there are no direct observations of compact binaries with BHs, estimating their
rate is more challenging. An upper limit is determined by the formation rate of their
direct progenitors, high-mass X-ray binarys (HMXBs), which could be ≈ 10−3 to ≈ 10−5

yr−1. Unfortunately, the fraction of HMXBs actually forming coalescing NSBH or BBH
binaries is very uncertain. Cygnus X-1 has been used to set a lower limit on the Galactic
NSBH rate of ≈ 10−9 yr−1 [80]. An upper limit of ≈ 6 × 10−5 yr−1 on the NSBH rate
can also be set by considering the abundance of heavy elements produced by r-processes
when NSs are tidally disrupted [81].

Once an estimate of the galactic rate is available, this can be extrapolated to the
local universe through a scale factor based on relative luminosity or star formation rate.
This scale factor is currently estimated at ≈ 0.01 Mpc−3. For an estimation of the rate
density at cosmological scales, see [82].

Because of small statistics and selection effects, all these estimates are affected by
uncertainties of at least a few factors. Better or independent measurement of the rate
could therefore significantly improve our knowledge of binary evolution. In any case,
current estimates consistently indicate that CBC events are extremely rare phenomena.
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1.3 Studying compact binaries via gravitational radiation

1.3.1 Motivation

Due to the relative simplicity of compact objects, especially BHs, compact binaries
merging on a time scale shorter than the Hubble time constitute excellent astrophysical
laboratories for probing matter in extreme conditions and GR in the strong-field regime.
As we have seen, electromagnetic observations of binaries already enabled important
discoveries and significant understanding of compact objects.

In principle, however, the universe can also be observed through gravitational ra-
diation. Due to the weakness of the gravitational interaction, this is far harder than
using electromagnetism and in fact GWs have never been directly detected on Earth.
Nevertheless, there are several reasons why detecting GWs from astrophysical sources,
and in particular coalescing compact binaries, continues to be an active and important
research topic in modern physics.

Several important predictions of GR have been confirmed experimentally. However,
the properties of gravitational radiation still need to be tested (or at least confirmed) via
a direct detection of GWs by an experiment on Earth. Producing detectable GWs in a
controlled way, and thus implementing an analogy of Hertz’s experiment for gravitation,
is unfortunately not feasible. GW detection attempts, therefore, must resort to the most
violent astrophysical events as the signal source.

Compact binaries are naturally-occurring and efficient GW radiators; in fact, mo-
ments before coalescence, they are the loudest expected GW sources in their frequency
band. In principle a “true” CBC waveform can be complicated by effects such as eccen-
tricity, precession of the orbital plane, magnetic fields, tidal deformation or disruption;
indeed, the exact solution to Einstein’s equation for the two-body problem is unknown
even for two point particles. Nevertheless, compared to other GW sources like super-
nova explosions, CBC waveforms are simple quasi-monochromatic signals and their most
important features are directly related to the physical parameters of the source. As we
shall see shortly, this can be used to implement powerful data analysis techniques.

Confident direct observation of several CBC events would significantly improve our
estimate of the binary coalescence rate. Moreover, even when simple pN approximations
are used, CBC waveforms encode several important physical parameters of the source,
notably the component masses and spins. Therefore, by observing several such signals
and inferring the source parameters, the underlying population of compact binaries could
be probed and our models of binary evolution could be refined [83]. Some of the open is-
sues introduced in the previous sections—like the uncertain BHs mass distribution or the
maximum mass of NSs—could be directly answered by GW detections. A simultaneous
CBC and short-GRB detection would confirm the hypothesis that short GRBs are asso-
ciated with BNS or NSBH mergers. In the case of BNS or NSBH, matter effects on the
waveform would likely constrain the EOS of nuclear matter [84, 85]. Thanks to the cos-
mological redshift induced on their GW emission, coalescing binaries could in principle
also enable a precise measurement of the Hubble constant [86, 87]. CBC detections may
also highlight unexpected deviations from GR, if these affect the coefficients of the pN
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expansion [88, 89]. Finally, many BBHs binaries may not be visible electromagnetically
and their GW signal could be the only way to detect and study them.

Because GWs interact very weakly with matter, the entire universe is essentially
transparent to them; the only limit to the detection and study of astrophysical sources
is their distance. Once the detectability of GWs is proven, gravitational astronomy
is thus expected to become an important complement to traditional electromagnetic
observations.

Estimates of the CBC rate density can be used for predicting the rate of detections
by existing and future GW detectors [90, 91]. Despite the large uncertainty, detections
are expected to be relatively rare in the near future. Before gravitational astronomy
can begin, therefore, extremely sensitive GW detectors must be built and the efficiency
of the data analysis algorithms must be maximized; this thesis focuses on the latter
problem.

1.3.2 Experimental setup

In order to describe the observable effect of gravitational radiation on matter and light we
first need a suitable frame of reference representing our detector. This is usually chosen
as the Fermi normal coordinates, where the world-line of the observer is a geodesic
xµ(t), spatial axes are defined by gyroscopes at the origin and time is defined by a clock
also located at the origin. The curvature associated with GWs induces tidal effects on
the separation between nearby particles in our detector. In fact, the separation vector
δµ between nearby particles with four-velocity field vµ satisfies the geodesic deviation
equation

D2δµ

dτ2
= Rµ

νρσv
νvρδσ (1.16)

which, assuming the particles moves slowly and writing Rµ
νρσ in terms of the GW tensor

hµν , is approximately
d2δµ

dt2
=

1

2
δν

d2

dt2
hµν . (1.17)

The force field described by this equation can be visualized intuitively by considering
a ring of particles at rest in our reference frame. Let the ring define the xy plane and
consider a plane wave propagating along z, i.e. orthogonal to the ring. Since GWs are
transverse, no effect is visible along the z axis. However, the wave induces an apparent
distortion of the ring in the xy plane. The fractional displacement of the particles as
a function of time and position in the xy plane is determined by the time-dependent
polarization amplitudes h+(t), h×(t). For this reason, the wave amplitude physically
represents a dimensionless strain. A linearly-polarized wave stretches the ring into an
ellipse oriented in a particular direction; the opposite polarization induces the same
deformation but rotated by 45 degrees along z. Circularly-polarized radiation leads to
an ellipsoidal deformation rotating in time.

Due to the weak coupling between GWs and matter and the extreme distance, the
signal arriving on Earth from a CBC event is still very weak, with typical strain ampli-
tude of order ≈ 10−21 or less. One way to achieve a sufficiently precise measurement
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Figure 1.3: Simplified topology of an interferometric GW detector.

is optical interferometry with km-scale arm length [92, 93]. In fact, the GW strain can
be measured by emitting two coherent and orthogonal light beams from the center of
the above ring (directed along unit vectors ξ and ζ), reflecting them on two particles
and having them interfere back at the origin. The differential deformation of the two
optical paths produced by the wave, i.e. the strain, induces a phase shift between the
two beams and thus an observable modulation of the intensity of the interference figure.
Using eq. (1.17)—or an integration of the perturbed metric over null paths along the
arms—the phase shift can be written as

∆ϕ ∝ L(ξiξj − ζiζj)hij (1.18)

where L is the arm length, assumed much smaller than the GW wavelength1 [94]. This
idea can be implemented with a Michelson interferometer, whose basic components are
shown in figure 1.3. The two coherent beams are produced by reflecting monochromatic
infrared laser light on a beam splitter. The beams are sent to two mirrors, reflected and
recombined at the beam splitter. The phase shift ∆ϕ modulates the intensity of the
light at the output port, which is read off by a photodiode. The photodiode signal is
conditioned, digitized and stored for later analysis together with an accurate GPS time
stamp.

Although this setup is in principle simple, when implemented on Earth it requires a
few tricks to maximize its sensitivity—such as the use of mode cleaners, power recycling
and Fabry-Perot cavities in the arms—which we will not describe in details here. An
important point however is that ground-based interferometers are large and extremely
complex instruments, very sensitive to a variety of complicated environmental and in-
strumental disturbances, such as local seismic motion, dust and gas in the optical paths,

1For signals from stellar-mass compact binaries this is a good approximation.
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electromagnetic interference, laser instability and even the modulation of the local grav-
itational potential by nearby moving masses. One of the major challenges in operating
such instruments is therefore protecting the optical paths from these disturbances as
much as possible. In particular, the mirrors and beam splitter are mechanically isolated
from the ground and the arms are contained in vacuum chambers.

Nevertheless, fundamental noise sources always ultimately limit the sensitivity of
the instrument. Ground-based interferometers are typically limited by seismic noise at
frequencies below O(10) Hz. On the other hand, above O(103) Hz the GW wavelength
becomes comparable to or shorter than the effective length of the interferometer arms
and the response of the instrument drops, such that the limiting noise is due to the
discreteness of the photons in the light beams (shot noise). Thus, ground-based inter-
ferometers are typically sensitive to GWs at frequencies between ≈ 10 and ≈ 1000 Hz.
This includes the last minutes of BNS inspiral signals and the last seconds or tens of sec-
onds of BBH signals with total mass up to ≈ 100M⊙. An important part of GW research
focuses on improving technology in order to reduce the limits as much as possible.

Ground-based laser interferometers with km-long arms are the main technology cur-
rently used to search for stellar-mass CBCs (among other GW sources). Three inter-
ferometers are currently being upgraded from their first-generation design to an “ad-
vanced”, more sensitive configuration: the two American LIGO interferometers at Han-
ford and Livingston [95] and the Italian Virgo [96]. KAGRA is a brand new interferom-
eter undergoing construction in Japan [97] and one more LIGO site is currently planned
in India [98]. The only active instrument at the moment is the smaller and less sensitive
GEO 600 interferometer in Germany [99], where some of the technology going into the
larger instruments has been developed.

Although this thesis focuses on data from ground-based interferometers, it is worth
noting that GWs can be sought in other ways too. A very promising technique is laser
interferometry in space with O(106) m arm length, which led to the design of the eLISA
mission [93, 100]. If successful, this method would enable probing a complementary
frequency band where other kinds of astrophysical and cosmological GW sources could
be detected, as well as some of the observed NS and WD binaries. Another promising
technique is pulsar timing arrays, which uses radio telescopes to precisely monitor the
arrival-time of pulses from several stable radio pulsars, thus implementing interferometry
with astrophysical arm lengths [101]. Historically, the first attempt at detecting GWs
used resonant-bar detectors [102]. Although cheap and simple, however, this technology
is no longer considered sensitive enough to yield detections.

1.3.3 Data model

The data produced by an interferometric GW detector and subject to analysis consist of a
time series s(t) calibrated in units of dimensionless strain. The data receive contributions
from the actual GW strain h(t) we want to measure, as well as the noise of the detector
n(t), and can thus be modeled as s(t) = n(t)+h(t). The weakness of GW signals implies
that n(t) typically dominates s(t).
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Figure 1.4: Noise spectral densities associated with past and future configurations of the
LIGO interferometers. Data from [105–107].

n(t) is usually described as a Gaussian stochastic process associated with a single-
sided power spectral density (PSD) S(f), defined by

〈

ñ(f)ñ∗(f ′)
〉

=
1

2
S(f)δ(f − f ′) (1.19)

where 〈·〉 represents the expectation value over the ensemble of noise realizations. Be-
cause of the variability of the environment around the detector, this Gaussian component
can only be considered stationary for a short time scale, and S(f) typically slowly fluctu-
ates over time by factors of a few. In practice it is therefore continuously estimated from
the data using a modified Welch method [103, 104]. Figure 1.4 illustrates the typical
PSD achieved by the LIGO detectors during the last scientific run [105], the target PSD
of advanced LIGO in its final configuration (the so-called “zero-detuning, high-power”
configuration) [106] and an intermediate PSD expected in the first run of advanced LIGO
[107]. Chapters 2 and 3 shall focus on the latter curve.

The instrumental and environmental disturbances which affect interferometers also
contribute to n(t), typically via long-lasting, quasi-monochromatic signals (lines) and
short transients lasting up to several seconds (glitches). Epochs of particularly unreli-
able or doubtful data are tagged with category vetoes, for instance based on observed
correlation of the disturbances with auxiliary monitoring channels; epochs of a particular
category can then be optionally excluded from the analysis [108–110]. Unfortunately,
this does not guarantee completely clean data and many disturbances remain which are
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not as easily modeled as the underlying quasi-stationary Gaussian component, repre-
senting a major challenge to the analysis of the data. We shall explore this problem for
CBC searches in chapter 5.

h(t) is the full astrophysical GW signal; in this thesis however we shall focus on CBC
signals only. As the past sections outlined, the full CBC parameter space (spanned by the
parameter vector θ) is highly-dimensional and poorly restricted by existing observations.
The parameters are in principle:

• Coalescence time tc and phase φc;

• Component masses m1, m2;

• Dimensionless spin vectors at a reference time χ1, χ2;

• Distance r;

• Sky position (right ascension α and declination δ, or unit vector r̂);

• Orientation of the total angular momentum (inclination ι and orientation on the
plane of the sky ψ);

• Magnitude and orientation of the eccentricity vector.

• In the case of NS binaries, any parameter of the EOS model and possibly of
magnetic field models.

Nevertheless, some of these quantities are usually neglected because they are likely small
(e.g. eccentricity) or have a weak effect on the signal (e.g. magnetic fields). Others are
partially or completely degenerate. The most important parameters to search over are
the amplitude of the signal, the coalescence time and phase and the masses. Chapters
2 and 3 will show cases where this is no longer true and spins also need to be included.
Those parameters which only affect the overall amplitude, phase and time shift of the
signal are called extrinsic; those affecting the shape of the waveform, typically the masses
and spins, are called intrinsic2.

By combining eq. (1.6) and (1.18), one finds that the GW produces an observable
strain at the detector given by a linear combination of the polarization amplitudes, i.e.

h(t;θ) = F+(α, δ, ψ; t) h+(t;θ) + F×(α, δ, ψ; t) h×(t;θ). (1.20)

The beam pattern coefficients F+,×(·) are determined by the directional sensitivity of the
interferometer, which is corotating with the Earth and thus time-dependent; in most
cases however CBC signals spend only up to ≈ 10 minutes within the sensitive band of
ground-based interferometers, such that the source as seen from Earth can be considered

2This distinction depends on the approximations made by the particular waveform model. For in-
stance, sky location and orientation are extrinsic for restricted non-precessing pN waveforms, but they
do affect the shape of the waveform when precession and higher-order modes are included.
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fixed in the sky and F+,×(·) are almost time-independent. Assuming the restricted, non-
precessing pN approximation, the signal at the detector can thus be modeled simply as
[104]

h(t;θ) = A(t;θ) cosΦ(t;θ). (1.21)

A(t;θ) is the slowly-increasing Newtonian amplitude given by

A(t;θ) := −
(

GM
c2reff

)(

5G

c3
M
tc − t

)1/4

(1.22)

with the effective distance defined as

reff := r

[

F 2
+(α, δ, ψ)

(

1 + cos2 ι

2

)2

+ F 2
×(α, δ, ψ) cos

2 ι

]−1/2

. (1.23)

The effective distance combines the physical distance, orientation and sky location into
a single degenerate parameter. It is in practice always larger than the physical distance,
equality being achieved only when the source is face-on (or face-off) and directly overhead
(or below) the detector. Φ(t;θ) is the pN-corrected GW phase. As we shall see shortly,
it is useful to express this signal in the frequency domain; for a restricted pN signal this
can be done analytically with the TaylorF2 approximant

h̃(f ;θ) ∝ r−1
eff M5/6f−7/6e−iΨ(f ;θ). (1.24)

For an expression of Ψ(f ;θ) at 3.5 pN order (2.5 in spins) see for instance [111].

1.3.4 Matched filtering and template banks

The problem of searching for CBC signals in the data can be cast as an hypothesis test,
where the null hypothesis “h(t) = 0” (absence of a signal) is compared to the signal
hypothesis “h(t) contains an inspiral signal described by a parameter vector θ”. This
comparison is formalized by computing the maximized likelihood ratio

Λ := max
θ∈S

Λ(θ) = max
θ∈S

P (s|h(θ))
P (s|h = 0)

. (1.25)

Here P (s|h = 0) is the probability of observing the data segment in the absence of a
signal, P (s|h(θ)) is the probability of the data when a CBC signal with parameters
θ is present and S is the extent of CBC parameter space we are searching over. The
assumption of stationary Gaussian noise allows one to write explicitly the probabilities
associated with the two hypotheses and computing the (log) likelihood maximized over
the amplitude of the signal,

ρ(θ) := log Λ(θ) =
4

σ
ℜ
[

∫ ∞

0

s̃(f)h̃∗(f ;θ)

S(f)
df

]

. (1.26)
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h̃(f ;θ) is called a template waveform, ρ(θ) is the signal-to-noise ratio (SNR) associated
with that template and

σ :=

√

4

∫ ∞

0

|h̃(f ;θ)|2
S(f)

df (1.27)

is a normalization constant for the template quantifying how much it responds to the
noise. The SNR represents the cross-correlation between the whitened data and the
whitened, normalized template. The integrals can also be interpreted as the application
of a filter to the data, where the filter is optimal (matched) in the sense that it maximizes
ρ(θ) for a CBC signal described by exactly the same parameters θ. In practice the lower
limit of the integrals is set to fL & 10 Hz due to the relatively poor low-frequency sensi-
tivity and reliability of ground-based interferometers and the upper limit fH is always at
most the Nyquist frequency of the sampled data. In the case of pN templates, an even
smaller fH is chosen in order to “manually” truncate the pN inspiral before the merger.
In past searches this was the frequency of the innermost stable circular orbit (ISCO) for
a Schwarzschild BH of mass M := m1 +m2, which is fISCO := c3(6

√
6πGM)−1.

In order to evaluate Λ, we need to compute ρ(θ) over the parameter space S. Maxi-
mization over the amplitude parameters is already achieved by using the matched filter.
In addition, templates which differ only by a π/2 shift in coalescence phase are almost
orthogonal, so the maximization over coalescence phase can also be done analytically by
summing the squared SNRs of two templates with a π/2 phase difference. Furthermore,
because a time translation of the template simply adds a term linear in frequency to the
phase of h̃(f ;λ), computing the SNR over coalescence time can be done efficiently (albeit
not analytically) by writing the integral in eq. (1.26) as an inverse Fourier transform and
then using the fast Fourier transform (FFT) algorithm to compute it numerically. The
SNR maximized over amplitude and coalescence phase is then

ρ(tc,λ) :=
|z|
σ
, z := 4

∫ ∞

0

s̃(f)h̃∗(f ;λ)

S(f)
e−2πiftcdf (1.28)

where λ is now the vector restricted to the intrinsic parameters (i.e. excluding the am-
plitude parameters and phase and time of coalescence) and the template now implicitly
uses a coalescence time of 0. The complex matched-filter output z contains the SNR in
its magnitude and the coalescence phase in its argument. The probability density for
ρ(tc,λ)

2 under the null hypothesis is a χ2 distribution with 2 degrees of freedom (DOF),
one for each choice of coalescence phase; in the presence of a signal, the distribution be-
comes non-central. An analytical or efficient maximization procedure over the remaining
parameters λ has never been found, so the usual approach is to numerically evaluate
ρ(tc,λ) over a discrete and finite set of points {λi} covering the parameter space S,
which is called a template bank. The algorithm invented for this calculation is called
FindChirp [104]. In past searches, the computational cost of calculating ρ(tc,λ) for each
template and data segment has been typically dominated by the FFTs.

When discussing template banks in the rest of this chapter and throughout this thesis,
we shall encounter a few important quantities which we define here. The matched-filter
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integral (eq. (1.26)) defines a noise-weighted inner product between two signals a and b,
usually called overlap,

(a, b) := 4 ℜ
[

∫ ∞

0

ã(f)b̃∗(f)

S(f)
df

]

(1.29)

and consequently the noise-weighted norm ||a|| :=
√

(a, a). With this definition, we can
rewrite eq. (1.28) as

ρ(tc,λ) =

√

(s, h0(tc,λ))2 + (s, hπ/2(tc,λ))2

||h0(λ)||
, (1.30)

where h0 and hπ/2 are the same template with a π/2 difference in coalescence phase; the
SNR is thus the magnitude of the projection of the data on the normalized template.
The optimal SNR of a CBC signal a is ρopt := ||a|| and represents the expectation value
of the SNR for a template exactly identical to the signal. Due to a variety of effects
(discreteness of the template bank, approximations in the waveform model, calibration
uncertainty etc) the optimal SNR is an idealization and the SNR observed in practice is
always smaller. In order to characterize this loss, we introduce the match between two
CBC waveforms a and b as the overlap between their normalized versions, maximized
over their relative time and phase of coalescence:

0 ≤ m(a, b) := max
tc,φc

(a, b)

||a|| ||b|| ≤ 1. (1.31)

The match quantifies the similarity between a signal and a template (or between two
templates) irrespective of their relative amplitudes, phases and time translations. As
such, it measures the fraction of optimal SNR that can be recovered by an imperfect
template. Importantly, it also defines a distance between points λ and µ in the intrinsic
CBC parameter space

d(λ,µ) :=
√

1−m(h(λ), h(µ)). (1.32)

For well-behaved parameter spaces (the intrinsic CBC space is such a case) the match
falls off quadratically for nearby waveforms. This enables the introduction of a metric
tensor gij on the parameter space, such that the match can be approximated as the
quadratic form [112]

m(h(λ), h(λ+ δ)) ≈ 1− gij(λ)δ
iδj (1.33)

with the metric given by

gij(λ) := −1

2

∂2 [m(h(λ), h(µ))]

∂µi∂µj

∣

∣

∣

∣

µ=λ

. (1.34)

The metric depends on the derivatives of the template waveform with respect to its
parameters and the noise PSD and provides an important description of the space in a
condensed way; it has been computed analytically for various pN approximations, see
e.g. [111, 113]. Given a CBC signal a and a template bank {λi}, the maximum match
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that can be obtained between a and any waveform h(λi) in the bank is called the fitting
factor between the signal and the bank,

ϕ := max
i
m(a, h(λi)) (1.35)

The fitting factor represents the fraction of optimal SNR that the bank as a whole is able
to observe and thus is a useful metric for comparing different template banks against
one or more signals [114]. It will be used extensively in the following chapters.

A template bank is said to be effectual if its fitting factor with any signal in the
search space of interest is equal to (or larger than) a given minimum value, typically
0.97. The criterion for constructing a template bank can thus be formalized as choosing
the smallest possible effectual bank. This problem has been investigated extensively for
parameter spaces of different dimensionality and various solutions have been proposed
[112, 115–119]. This thesis considers two of them. Stochastic template placement works
by randomly choosing a new template and adding it to the bank only if its fitting factor
with the already-chosen templates is smaller than the requirement. This procedure has
the advantage of simplicity and can be used to construct banks of arbitrarily complicated
signals as long as their match can be computed reasonably efficiently, for instance using
the metric approximation. The drawback is that it generates a sub-optimal bank which
does not generally achieve the condition of minimum number of templates. Geometric
template placement, on the other hand, identifies a coordinate system (typically in a
higher-dimensional space) where the distance between points is coordinate-independent
(i.e. the metric is explicitly flat) and places templates on a regular grid in those coordi-
nates. This typically achieves a smaller number of templates, but it requires particular
conditions on the parameter space. The number of templates required to cover a region
S of parameter space can be estimated via the metric as

N ≈ 1

∆V

∫

S

√

det [gij(λ)]d
nλ (1.36)

where n is the dimensionality of the parameter space and ∆V is the proper (metric)
volume covered by a single template. ∆V depends on the required minimum match and
on how templates are distributed over S [112, 116].

1.3.5 Signal-based vetoes

Eq. (1.26) and the resulting formalism stem from the assumption that the noise is Gaus-
sian. We have seen however that the data contain not only Gaussian noise and (possi-
bly) GWs, but frequently also glitches of environmental or instrumental origin, which
are completely unrelated to astrophysics. Unfortunately, even if these signals are qual-
itatively different from CBC waveforms, their loudness can have a large impact on the
SNR—as shall be investigated in detail in chapter 5—which would dramatically reduce
the search sensitivity. This has been evident since the very first search and required the
ad-hoc introduction of signal-based vetoes. These are functions of the data devised to

34



augment the SNR with an actual check of the consistency of the data with the template
model, i.e. they represent goodness-of-fit tests.

A widely used veto in past searches (and in this thesis) is the reduced χ2 veto [120].
The idea behind it is to split the frequency domain into p disjoint bands (indexed by
ℓ = 1 . . . p) and calculate the partial complex matched-filter output zℓ in each band. The
statistic is then defined as

χ2
r :=

p

2p− 2

p
∑

ℓ=1

∣

∣

∣

∣

zℓ −
z

p

∣

∣

∣

∣

2

. (1.37)

Under both the noise and signal hypotheses, this quantity is described by a (normalized)
χ2 distribution, in particular its expectation value is 1. If however the data contain
a disturbance, or a CBC signal with a large mismatch with the template, then the
distribution becomes non-central. Thus χ2

r can be used to detect an inconsistency with
both the noise and signal models. Intuitively, the meaning of eq. (1.37) is to check that
the distribution of signal power in the time-frequency plane exactly matches that of the
template; equivalently, it verifies that the partial SNRs all peak consistently at the same
time as the actual SNR.

The χ2 statistic has been used to augment the standard likelihood in an ad-hoc way
by defining the so-called reweighted SNR [121]

ρ̂ :=

{

ρ
[

1
2

(

1 +
(

χ2
r

)3
)]−1/6

if χ2
r > 1

ρ otherwise
(1.38)

This has proved to be a very effective method of protecting the search sensitivity from
glitches [122] and we shall use it in chapters 2 and 3 as well. Note that other signal-based
vetoes similar to the χ2 test can be defined and used to weight the SNR as in eq. (1.38),
but they are not used in this thesis [123].

Signal-based vetoes will generally respond to the unavoidable differences between
true CBC signals and template waveforms. The non-centrality parameter of the χ2 veto,
for instance, depends on the match between the template and the signal [104]. If the
models used to construct template waveforms are poor, such that large mismatches are
present between true signals and the templates, signal-based vetoes could actually reduce
the detectability of signals, i.e. they may be unsafe. It is therefore important to establish
the safety of signal-based vetoes against uncertainties in CBC waveform modeling, which
usually means allowing for a sufficiently large fitting factor between the template bank
and the target signal population. We shall see cases where the χ2 veto is not safe in
chapters 2 and 3.

1.3.6 Multiple detectors: coincidence

Computing eq. (1.28) produces a discrete time series of SNRs for each template. Samples
larger than a predetermined threshold ρ̄ are recorded as candidate events or triggers. Be-
cause ρ(tc,λ) is a smooth function of tc, several adjacent samples may produce correlated
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triggers, especially if a loud signal or transient is present in the data. This correlation
is reduced by only retaining the maximum trigger in a time window longer than the
fluctuation time of ρ(tc,λ) [104]. After matched filtering and maximizing over tc, the
initial strain data are therefore reduced to a list of potentially interesting single-detector
triggers, each tagged with the parameters of the template, estimates of coalescence time
and phase and effective distance as well as the SNR and χ2

r .
Despite the discriminatory power of signal-based vetoes, an important part of CBC

searches is ensuring that an event is observed in two or more independent instruments,
possibly widely separated (coincidence). This dramatically reduces the false-alarm back-
ground and in particular its contribution from noise artifacts such as glitches. Coinci-
dence is implemented by comparing candidate events across instruments and flagging
events whose parameters (in particular coalescence time and masses) are consistent.
The time-of-flight between detectors for a GW propagating at speed c must also be
taken into account; for the Hanford and Livingston LIGO interferometers this is up to
≈ 10 ms. A widely-used coincidence algorithm, called ethinca, uses the metric of the
parameter space to associate error ellipsoids to each event; coincidence is then achieved
when the ellipsoids of two or more events overlap [124]. A simpler alternative—being
considered for future searches—is called exact match and consists of using identical tem-
plate banks for every detector, coincidence being defined by simply looking for events
from identical templates in the detectors and with a compatible coalescence time. This
has the advantage of being straightforwardly applicable to any parameter space, regard-
less of dimensionality and availability of a metric tensor. We shall use the latter method
in this thesis. Coincident triggers are ranked by a quantity that somehow combines the
single-detector likelihoods, typically the combined reweighted SNR defined as

ρ̂c :=

√

√

√

√

D
∑

d=1

ρ̂2d (1.39)

where d = 1 . . . D labels each detector [121].
Coincidence is simple and computationally cheap, but it has a number of drawbacks.

In a network of detectors, triggers produced by CBC signals in different detectors exhibit
a well-determined correlation between their SNRs, coalescence phases and coalescence
times, while noise triggers do not necessarily obey the same constraint. With coinci-
dence, however, single-detector SNRs are maximized independently over amplitude and
coalescence phase at each detector and the difference in coalescence times is then simply
accounted for by using a suitable coincidence window. For this reason, coincidence is
called an incoherent combination of the single-detector statistics. The price of simplicity
is therefore discarding information which could potentially improve the discrimination
between noise and astrophysical signals. Another drawback of coincidence is that detec-
tion involves D independent thresholds and requires dealing with combinations of two,
three or more detectors and it is not obvious how to optimally tune these parameters.
Finally, as D increases, more DOF contribute to ρ̂c and thus its probability density un-
der the null hypothesis becomes wider, increasing the false-alarm probability for a given
detection threshold.
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1.3.7 Multiple detectors: coherent combination

When the gravitational radiation is modeled as a plane wave traveling at the speed
of light, a precise relationship exists between the amplitude, arrival time and phase of
signals observed by different detectors. This relationship is established by the relative
positions and orientations of the detectors and contains information about the wave
vector, i.e. the sky position of the source. The same approach that leads one to the single-
detector SNR statistic can be used to construct a multi-detector statistic that effectively
includes the plane-wave model into the matched filter [125–128]. This is called coherent
SNR as opposed to the incoherent multi-detector SNR defined by eq. (1.39). Using a
singular value decomposition, the coherent SNR can also be derived by considering the
network as two independent detectors associated with the two polarizations of the GW
signal [129].

The definition of noise-weighted inner product (eq. (1.29)) can be generalized to a
network of detectors as

(a, b)d := 4 ℜ
[

∫ ∞

0

ã(f)b̃∗(f)

Sd(f)
df

]

(1.40)

where Sd is the noise PSD for detector d. The coherent SNR is then defined as

ρ2coh := xiB
ijxj (1.41)

with the following auxiliary definitions:

x1 :=

D
∑

d=1

F d
+ Dd[(sd, h0)d] (1.42)

x2 :=
D
∑

d=1

F d
× Dd[(sd, h0)d] (1.43)

x3 :=
D
∑

d=1

F d
+ Dd[(sd, hπ/2)d] (1.44)

x4 :=

D
∑

d=1

F d
× Dd[(sd, hπ/2)d] (1.45)

Bij :=









B++ B+× 0 0
B+× B×× 0 0
0 0 B++ B+×

0 0 B+× B××









−1

(1.46)

Bij :=
D
∑

d=1

F d
i F

d
j (h0, h0)d. (1.47)

In the above definitions, sd is the data segment from detector d, h0 and hπ/2 are the

quadratures of the inspiral template, F d
· are the beam pattern functions for detector
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d and Dd[·] is the operator that shifts the coalescence time of a signal by an amount
equal to the light-travel time between detector d and the geocenter, i.e. ∆td := rd · r̂/c
where, in Earth-centered coordinates, rd is the position of the detector and r̂ is the unit
vector to the source. The definition of Bij given here makes the approximation that the
“0” and “π/2” phases of the CBC signal are orthogonal, which is satisfied by signals
completing many cycles within the sensitive bands of the detectors.

The coherent approach also enables the definition of additional signal-based vetoes,
such as the null SNR, which check the consistency of signals with the plane-wave model.
These, however, are not used in this thesis and their details can be found in the references
above.

Note that all the above quantities, including ρcoh and the signal-based vetoes, depend
on the sky location of the source. If this is not known, ρcoh must be computed over a
template bank of sky locations in addition to the bank of intrinsic parameters. In compar-
ison, the coincident method maximizes over the sky location in a computationally-trivial
way. Chapter 4 shall perform a cost-benefit comparison of the two methods, taking into
account the different sensitivities and computational costs.

1.3.8 Statistical significance of candidates

The final step in processing the candidate events is establishing their statistical signif-
icance, i.e. the probability that each event is generated under the assumption that the
data contain no CBC signals. If we had a perfect model of our false-alarm background,
this could simply be computed from the parameters of each trigger. The instability
of the behavior of the detectors and the difficulty in modeling it accurately, however,
require that this is somehow measured from the data.

The approach used in past searches is based on time slides, i.e. on shifting the data of
one detector relative to the others multiple times and recalculating the list of coincident
events [121]. This effectively removes GWs from the set of candidate events and enables
sampling the false-alarm background many times; the variance in the estimation is nev-
ertheless ultimately limited by the amount of data actually available [130]. Once the
background sample is obtained, the significance of each “zero-lag” candidate—or equiv-
alently the false-alarm rate (FAR) associated with it—can be estimated as the rank of
that candidate with respect to the background triggers. A detection is then claimed if a
given significance is achieved by some events. The method of time slides shall be used
in chapters 2 and 3.

Although a detection has never been claimed, an important task in the case of a
significant signal is estimating the parameters of the source. This inference problem is
usually formalized in the Bayesian statistical framework and implemented, for instance,
in the LALInference software [131]. Follow-up and parameter estimation of detected
signals are outside the scope of this thesis.
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1.3.9 Results of past searches

Data from first-generation interferometers have been used extensively to search for CBC
signals. No plausible events were ever detected and the result was setting tighter and
tighter upper limits on the CBC rate—typically as a function of the mass parameters—as
the detector sensitivity improved.

[132] presents a search for BNS systems on data from the first LIGO scientific run.
A similar search was also done using data from LIGO and TAMA300 [133]. One more
BNS search was performed using LIGO’s second scientific run [134]. LIGO’s second
run data were also used to search for coalescing primordial BBHs [135]. Data from the
third LIGO run were used to search for precessing systems by introducing a “detection
template family” designed specifically to capture the modulation of the signal [136].
[137, 138] searched for CBCs with total mass between 2M⊙ and 35M⊙ using data from
LIGO’s fifth science run. In [139], BBH coalescences were searched in LIGO’s fifth
science run using IMR templates for the first time, producing a rate upper limit of 2
Mpc−3 yr−1. [140] was the first search combining LIGO and Virgo data to search for
systems with total mass between 2M⊙ and 35M⊙. In [122], total masses between 2M⊙

and 25M⊙ were searched in LIGO’s sixth science run and Virgo’s science runs 2 and
3; the resulting upper limits for BNS, NSBH and BBH are 1.3 × 10−4, 3.1 × 10−5 and
6.4 × 10−6 Mpc−3 yr−1. [141] presents a search for high-mass BBH coalescence in the
latest LIGO-Virgo data, reporting an upper limit of 3.3 × 10−7 Mpc−3 yr−1. All these
searches used coincidence for combining multi-detector data. The upper limits on the
CBC rate produced by these searches have been compared to predictions and found to
be up to a factor of only a few away from optimistic predictions [83]. CBC events were
also searched in association with GRBs detected electromagnetically, using the coherent
SNR instead [142].

As visible in figure 1.4, advanced ground-based interferometers are expected to im-
prove their strain sensitivity by roughly one order of magnitude, which translates to a
potential factor of 103 increase in detection rate. In order to realize this potential, the
data need to be analyzed with methods as close to optimal as possible. In the next
chapters we shall investigate potential causes of sub-optimality in future CBC searches,
propose ways to address them and estimate the resulting improvement.
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Chapter 2

Search pipeline for NSBH

coalescence including aligned-spin

effects

2.1 Overview

We have seen in the introduction that most previous CBC searches have been carried
out with the assumption that component spins are negligible. We have also seen that,
according to recent research, BHs may have spin magnitudes close to the Kerr limit. Cur-
rently available pN waveform models and templates do have the possibility of including
spin effects, at least to some pN order, without having to resort to phenomenological
or ad-hoc waveforms. This raises the following questions: (i) does including spins in
the parameter space of future searches actually increase their sensitivity? (ii) is the
additional computational cost sustainable?

Spin effects have been considered in several previous studies. It was initially found
that non-spinning 1.5 pN or 2 pN templates were effectual at detecting systems with
spins aligned with the orbital angular momentum (i.e. non-precessing) but could not
recover precessing signals [114, 143]. One of the previous CBC searches investigated
spin effects on upper limits, although it did not use templates with spin [141]. One
search used a “detection template family” designed to capture the modulation induced by
strongly-precessing systems [136]. However, these templates included waveforms outside
of the manifold of physical signals. Given that a signal consistency check such as the
χ2 veto was not available for those waveforms, the resulting false-alarm background was
quite large. Another study attempted to capture the effect of precession, but again
without signal-based vetoes [144]. The additional parameter freedom turned out to be
extremely sensitive to noise artifacts, reducing the overall sensitivity instead of increasing
it. No search attempted to capture the effect of spins aligned with the orbital angular
momentum. More recently, the effect of spin on search sensitivity has been studied
again via fitting-factor calculations, assuming stationary Gaussian noise, for BNS [111],
NSBH [145] and generic low-mass binaries [146]. The latter studies demonstrated the
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importance of including spin effects in a search. Nevertheless, a full search pipeline
including pN spin effects, coincidence between detectors and robust signal-based vetoes
like the χ2 test has never been implemented and shown to be more sensitive than a
non-spinning search.

In this chapter we address this problem for the particular case of NSBH binaries.
As discussed in chapter 1, these systems are an important potential end product of
some of the observed X-ray binaries, a candidate explanation for short GRBs and for
the synthesis of a large fraction of heavy elements via r-processes. Tidal effects on the
NS induced by the BH are also potentially useful for studying dense nuclear matter.
NSBH mergers are expected to yield less GW detections than BNS or BBH, due to
their relatively low estimated rate density [90, 91]. Because of the possibility of almost-
extremal BH spins, we must thus ensure that future searches are able to detect these
relatively rare signals without introducing unnecessary selection effects. Focusing first
on the simpler case of non-precessing spins, we present here the first implementation
and test of a prototype search for NSBH coalescences which includes the pN effect of the
spin components parallel to the orbital angular momentum. We use this implementation
to compare a “traditional” template bank which ignores spin effects altogether to a
bank which includes aligned-spin effects only. We show that including aligned spins
increases significantly the computational cost of the search. However, thanks to modern
computing technologies and a new implementation of the matched-filtering code, the
extra cost is sustainable. We also show that the expansion of the parameter space does
increase the false-alarm rate of the pipeline, but (i) the χ2 signal-based veto is able
to mitigate the effect of instrumental artifacts even when spin is included and (ii) the
additional sensitivity to strongly-spinning systems is able to offset the increased false-
alarm background, to an extent which depends on the distribution of BH spins in the
universe. In the worst case of non-spinning BHs, the reduction of sensitivity due to the
larger background is minimal. Therefore, the aim of this chapter is to demonstrate that
aligned-spin effects can and should be included in future NSBH searches.

The research presented in this chapter has been published in [147]. This chapter goes
into a deeper level of detail than the published article, in particular providing greater
detail on the use of online databases, on the false-alarm background of the pipeline
and on the pipeline’s ability to recover simulated signals. The project is the result of
a collaboration with several people. Most of the matched-filter engine and the fitting-
factor calculation program has been implemented by Alex Nitz and Josh Willis. The code
for constructing the template banks has been written by Ian Harry and already used
in previous publications. Some of the fitting-factor calculations have been performed
by Alex Nielsen. The MongoDB and Cassandra databases have been installed and
maintained by Oliver Bock, who was also an important help in using them efficiently.
Carsten Aulbert and Henning Fehrmann maintained the Atlas cluster, in particular the
graphics processing units (GPUs) on which the matched-filtering jobs were executed.
Karsten Wiesner implemented some of the early attempts at GPU acceleration of the
matched-filter program. Duncan Brown, Tom Dent, Badri Krishnan, Andrew Lundgren,
Alex Nielsen and Frank Ohme gave important advice and comments on the project

42



and the paper. The author (i) executed some of the fitting-factor calculations, (ii)
contributed to developing and testing the matched-filter engine, (iii) implemented the
infrastructure of the pipeline, the coincidence and clustering algorithms, the code for
recovering the simulated signals and for estimating the sensitivity of the pipeline, (iv)
set up the PostgreSQL database, (v) ran the search pipeline and followed up the most
interesting background events, (vi) wrote a significant part of the paper and (vii) handled
the publication process and communication with the anonymous referee.

The chapter is organized as follows. Section 2.2 describes the sources we are interested
in and the CBC waveform model we use to simulate the signals. Section 2.3 describes the
simulated data we use for testing the search pipeline. Section 2.4 presents a new software
package for CBC searches which we contributed to developing and which our search is
based on. In section 2.5 we describe a “traditional” template bank neglecting spin
and one including aligned-spin effects and we compare their ability to recover the target
sources. Section 2.6 describes our implementation of the full pipeline and the choice of its
parameters. Section 2.7 investigates the features of the false-alarm background produced
by the pipeline. In section 2.8 we compare the ability of the two banks to recover signals
in the simulated data. Section 2.9 shows the sensitivity of the pipeline with the two banks
and is the main result of this chapter. Finally, section 2.10 summarizes the conclusion.

2.2 Simulation of the source population

The parameters of NSBH binaries most relevant for GW detection comprise the masses
and spins of the BH and NS. In this chapter we neglect any misalignment between the
spins and L, i.e. we assume that our NSBH binaries do not precess and focus instead on
the spin components along L. Therefore, we only need to consider the two masses mBH

and mNS and the projections of the two dimensionless spins along L, χ
‖
BH and χ

‖
NS.

As we have seen in chapter 1, the mass distribution of stellar- mass BHs is not well
known. Based on the results of [19], for our simulated signals we assume here a Gaussian
distribution for mBH with mean 7.8M⊙. However, since that value is appropriate for
low-mass X-ray binaries, somewhat arbitrarily we adopt here a larger standard deviation
of 3M⊙ and we truncate the resulting distribution to 3 ≤ mBH/M⊙ ≤ 12.

The population of spin parameters of stellar-mass BHs is also not well constrained.
The available measurements now span the whole magnitude range allowed by the Kerr
metric, as shown in figure 1.1. Population synthesis models for NSBH binaries suggest
that a large fraction of BHs may actually be almost maximally spinning [26]. Assuming

alignment between the BH spin and L, we choose a uniform distribution for χ
‖
BH between

±0.99. Note that this assumes equal probability of spins aligned and anti-aligned with
L, but existing simulations suggest that anti-aligned systems are less likely [148–150].
In this chapter we shall thus consider a few different subsets of the uniform spin range
and present results for each of them.

NS masses have been measured precisely thanks mainly to pulsar observations. The
observed pulsar distribution is peaked at mNS ≈ 1.4M⊙, with minimum mass ≈ 1M⊙

and maximum ≈ 2M⊙ [3]. In GR, an object can be in hydrostatic equilibrium only if
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its mass is below a maximum value and for NSs this limit depends on the EOS and on
the spin. NSs heavier than ≈ 3M⊙, however, are extremely unlikely [7]. Based on [9] we
assume here a Gaussian distribution for mNS with mean 1.35M⊙ and standard deviation
0.13M⊙ and we impose the hard limits 1 ≤ mNS/M⊙ ≤ 2.

By definition, pulsar timing also enables an exquisitely precise measurement of NS
angular velocities. Unfortunately, because the EOS of self- gravitating neutron matter
is not known, we have no handle on the moment of inertia of NSs and thus the angular
momentum is not precisely known. In principle there is no fundamental limit to the spin
as in the case of BHs. Nevertheless, beyond a maximum spin the NS will no longer be
able to sustain the rotation and will break apart. This limit is thought to be χNS ≈ 0.7
for realistic EOS. The maximum observed NS spin is however only χNS ≈ 0.4 and
when NSs in binaries are considered, the maximum observed spin—found in the double
pulsar J0737-3039—is only χNS ≈ 0.05. A spin of 0.4 likely requires recycling the NS via
accretion, which is unlikely to occur if the companion is a BH. We thus adopt a uniform

distribution of χ
‖
NS between ±0.05.

The sky position and the orientation of the orbit are chosen to be uniform on the
sphere. A physical choice for the distance distribution is one that leads to a uniform
distribution of the binaries in a certain volume. However, this makes a large fraction
of the signals too weak to be detectable, which can complicate the estimation of the
sensitivity of the search. Moreover, binaries with a higher chirp mass are intrinsically
louder and thus tend to dominate the sensitivity estimation. To compensate against
these issues, we choose the distances in order to achieve a uniform distribution in the
chirp distance, defined as

R := r

(MBNS

M

)5/6

(2.1)

where MBNS ≈ 1.22M⊙ is the chirp mass of a canonical 1.4M⊙ + 1.4M⊙ BNS system.
As described later, a uniform distribution in volume is restored a posteriori by applying
appropriate weights to the signals when computing the sensitivity. In order to choose
the limits of the chirp-distance distribution, we need to consider that below a certain
minimum distance the sources are too rare and above a maximum distance they are
frequent but too quiet to be detected. Based on this consideration we set the chirp
distance uniform in the range [1, 160] Mpc. We demonstrate the safety of this choice
later on.

The final moments of the binary can see either a rapid plunge of the whole NS
into the BH, followed by a ringdown of the latter, or the disruption of the NS by tidal
forces, spreading the NS matter around the remnant. The transition between these
two scenarios depends mainly on the BH parameters and on the NS EOS [151]. Tidal
disruption would likely attenuate the GW emission before merger and the resulting
signal would have a different termination than the merger- ringdown expected for a
BBH without matter effects. NSBH inspiral waveforms including such effects have been
studied, but are not readily available at the time of this study [152, 153]. In this chapter
we neglect the final part of the waveform, assuming that the majority of the SNR is
given by the pN inspiral component. This should be a safe approximation across most of
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the parameter space spanned by our simulated signals, but it may no longer be accurate
for heavier systems (M & 15M⊙) whose merger phase may occur at frequencies within
the most sensitive band of the detectors, i.e. ≈ 300 Hz or below (figure 1.4). We also
neglect the effect of tidal deformation on the pN phasing, as this is unlikely to have a
large effect on search pipelines [154].

We simulate our sources using the SpinTaylorT2 approximant from the LALSimula-
tion library [60]. As described in the introduction, other pN approximants are available,
for instance SpinTaylorT1 and SpinTaylorT4; however, SpinTaylorT2 is essentially the
time-domain version of TaylorF2—which we use for our templates—and should there-
fore set aside issues related to approximant comparison, which are not in the scope of
this study. We employ orbital pN phase corrections up to order 3.5 and aligned spin-
orbit and spin-spin terms up to order 2.5. Amplitude corrections up to order 1.5 are
also included. The starting frequency of the SpinTaylorT2 time-domain integration is
in all cases set to 20 Hz, which is a safe choice because we expect interferometers to
be much less sensitive here than at higher frequencies, at least in their early advanced
configuration (figure 1.4), and because 20 Hz is well below the integration band of our
matched filters, as described later. At the time of this work, the SpinTaylorT2 imple-
mentation in LALSimulation stops the time-domain integration of the waveform at the
minimum-energy circular orbit (MECO) i.e. as soon as a minimum in the center-of-mass
energy is discovered (dE/dv = 0). The MECO frequency depends on the mass and spin

parameters and at fixed masses it increases with χ
‖
BH, in some cases reaching several

kHz for χ
‖
BH ≈ 1 or ceasing to exist altogether [155]. For such reasons, the integration

is terminated before the MECO if an unphysical regime is reached, e.g. v/c > 1 or the
frequency starts decreasing.

2.3 Simulated data set

In principle, our simulated signals could be added to stationary Gaussian noise with a
specified noise PSD and this synthetic data set could be used to test the ability of our
search pipeline to recover the signals. We have seen however that real interferometer data
contain many kinds of noise artifacts, such as glitches and quasi-stationary lines, and the
PSD itself is indeed time-dependent. Due to the sub-optimality of the matched- filter
approach in the presence of non-stationary and non-Gaussian noise, when the parameter
space of a search pipeline is enlarged to include spin, these artifacts may lead to a
disproportionate increase in false alarms from the newly-included region of parameter
space. It is not obvious that the existing signal-based vetoes should continue to work in
the new region. In order to have a fair evaluation of the inclusion of spin in our search,
we thus need a data set which realistically reproduces the conditions expected in data
from advanced detectors, i.e. a realistic noise PSD as well as a broad variety of glitches
and noise artifacts.

The LIGO collaboration constructed such a data set in order to facilitate compar-
isons like the one presented here (see e.g. [156]). We use this data set to test our pipeline.
The set is generated starting from six months of real data from the sixth (last) scientific
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run of the initial Hanford and Livingston LIGO detectors, in particular between GPS
times 966388158 (Sat Aug 21 01:09:03 GMT 2010) and 971528001 (Tue Oct 19 12:53:06
GMT 2010). The noise PSD of these data is then measured and modified (recolored)
to the “early advanced-LIGO” curve shown in figure 1.4. This produces six months of
data with a PSD representative of the first runs of advanced LIGO, while preserving all
kinds of noise artifacts already observed in initial LIGO. Because of this procedure, the
result is called recolored data. In our test we use the recolored data segments flagged as
H1:CBC-MDC1_SCIENCE_EARLY_RECOLORED:2 and L1:CBC-MDC1_SCIENCE_EARLY_RECOLORED:2
corresponding to epochs when the detectors were in “science” mode during their sixth
scientific run.

There is obviously no guarantee that advanced detectors will be affected by the same
population of artifacts as the initial ones, especially given the additional complexity
introduced by the advanced design. Nevertheless, recoloring existing data is a simple
method to extrapolate existing knowledge and the alternative would require complicated
modeling of noise artifacts. Another caveat is that the calibration of initial-LIGO data
is considered unreliable below ≈ 40 Hz and, as we shall see shortly, we use here a lower
starting frequency for our matched filters. However, the recolored data only provide a
proxy for the noise and we simply add our simulated signals to them, so the reliability of
the calibration does not affect our study. Indeed, the poor stationarity of the recolored
data at low frequency is likely an exaggeration with respect to advanced LIGO, which is
designed to be reliable at those frequencies. Our result should therefore be conservative
in terms of data quality at low frequency.

2.4 The PyCBC toolkit

CBC search pipelines for initial interferometers were implemented as a Python infras-
tructure known as iHope, which was part of LAL [60]. The most compute-intensive op-
erations, i.e. the population of the template banks and the generation of single-detector
triggers via the FindChirp algorithm, were instead implemented in C, respectively with
the lalapps tmpltbank and lalapps inspiral programs. The most expensive opera-
tions in this context were the FFTs used for computing the SNR and χ2 statistics across
coalescence time, because they were performed for each template and data segment.
These used the highly-optimized FFTW library to achieve maximum performance [157].

Searches in advanced-interferometer data are likely to have even higher computa-
tional requirements than the past. On the one hand, the larger bandwidth of advanced
interferometers leads to longer template waveforms and significantly larger template
banks, which directly increases the number of FFTs that need to be performed in order
to produce single-detector triggers. On the other hand—as is the case here—the de-
velopment of more sophisticated waveform approximants extends the parameter space
which can be explored and again leads to significantly larger template banks.

The last decade has seen an increase in computing power driven significantly by
parallel computing architectures other than the traditional improvement in the perfor-
mance of single central processing unit (CPU) cores. The introduction of multi-core and

46



many-core architectures, and in particular general-purpose computing on GPUs, has
enabled massive acceleration of trivially-parallel algorithms [158]. In the last few years,
LSC computing clusters have been equipped with various models of Nvidia GPUs. In
order to meet the computational challenge of advanced detectors, it is important that
the implementations of CBC search pipelines can leverage modern high-performance
computing technologies, in particular multi-core CPUs and GPUs.

Since the dominant operation in past searches was the FFT in lalapps inspiral, a
reasonable attempt to accelerate this operation is by switching from the FFTW library
to the Compute Unified Device Architecture (CUDA) FFT implementation, thus simply
utilizing the GPU as an FFT accelerator. We quantify the improved performance by
running the modified lalapps inspiral on 2048 s of Gaussian noise. We use differ-
ent SNR thresholds in order to evaluate the variable cost of the χ2 calculation, which
in lalapps inspiral depends on the rate of single-detector triggers. This simple test
shows that the GPU speeds up lalapps inspiral to an extent which depends on how
often the χ2 test must be computed: when the SNR threshold is high, and the χ2 is
calculated rarely, we obtain a modest speed-up factor of ≈ 3.5. On the other hand,
when the χ2 veto is calculated virtually all the time, the speed-up is as large as a factor
of ≈ 20. By profiling lalapps inspiral we also observe, however, that the GPU is
idle for a significant fraction of the time. This is because data need to be copied from
the host to the GPU memory, Fourier-transformed, and then copied back to the host;
unfortunately, data transfers between the host and the GPU are generally inefficient
and should be avoided as much as possible. Data transfers can be minimized by mov-
ing the whole FindChirp algorithm to the GPU, such that the only transfers involve
the preconditioned strain data and the final list of single-detector triggers. This should
maximize the benefit of using the GPU and achieve a higher speed-up. Unfortunately,
it also requires reimplementing and testing a non-trivial amount of code in the CUDA
language. Moreover, other GPU and many-core architectures can potentially provide
similar accelerations, for instance those based on OpenCL. A purely CPU-based imple-
mentation is also required in any case for systems with no GPUs. This would require
maintaining several different implementations of the same algorithm.

In addition to this issue, the C implementations of lalapps tmpltbank and lalapps inspiral

are not modular and flexible enough to easily accommodate changes that may be required
with advanced detectors, for instance the introduction of templates with significantly
higher-dimensional parameter spaces. This prompts a reimplementation of these tools
with the Python language, which is a convenient, free, high-level language with a large
community and wide adoption in the scientific computing world. The resulting toolkit,
called PyCBC, is an evolution of the LAL-based software used in past CBC searches.
PyCBC is developed primarily by the Syracuse LIGO group with contributions from us
and is what we use here for implementing our NSBH pipeline.

PyCBC is able to benefit from GPU acceleration without having to maintain multiple
implementations of the same algorithm. First of all, it uses the PyCUDA and PyOpenCL
modules to wrap the architecture-specific details in a uniform Python interface. Should
new compute architectures appear in the future, those could thus be added easily. On
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the other hand, by introducing the concept of a computing scheme, PyCBC associates
different implementations of a particular Python function to the different computing
platforms; once the desired scheme is selected, the appropriate implementation of each
function of the algorithm is called automatically and transparently. This means that
the same Python script can be executed by different computing back-ends, for instance
the CPU and a CUDA GPU (figure 2.1). Importantly, data transfers between the CPU
and GPU are only performed when needed, i.e. when a data block residing on the CPU
(GPU) is used by a function running on the GPU (CPU). This enables an efficient GPU
implementation of FindChirp in simple Python. The same mechanism can be used to
support different implementations of a particular feature—an important example being
the FFT—allowing one to select the most efficient implementation depending on the
particular CPU architecture.

Although PyCBC re-implements some of the functionalities of the old LAL-based
software, it still relies on LAL where appropriate, e.g. for generating inspiral waveforms
and for input and output to LAL file formats. This interfacing is achieved in a simple
way via the SWIG framework. Finally, the Python language benefits from a large library
of useful packages. These include scientific computing packages such as Numpy, Scipy
and Matplotlib; file-format interfaces such as HDF5; and database interfaces such as
SQLite. These technologies can then be used directly and easily in CBC pipelines.

2.5 Template bank construction and test

In order to carry out the comparison between neglecting and including aligned- spin
effects, we construct two similar template banks which differ only in the extent of the
covered NSBH parameter space: a non-spinning bank (NSB) and an aligned-spin bank
(ASB). In both cases we use the restricted frequency-domain TaylorF2 approximant
for our templates, similarly to what was done in past low-mass CBC searches. As we
discussed already for our simulated signals, the use of inspiral-only waveforms is justified
by the fact that, in the mass range we explore, the merger and ringdown happen at
relatively high frequencies, where the early advanced detectors are not expected to have
the maximum sensitivity. We include pN corrections to the orbital phase up to order
3.5. For the ASB, we include spin-orbit and spin-spin terms up to order 2.51. Since
the low-frequency sensitivity of advanced LIGO is higher than initial LIGO, we use a
starting frequency of 30 Hz for our templates, as opposed to 40 Hz in past searches;
the early advanced LIGO configuration is not expected to have significant sensitivity
and trustworthy calibration below 30 Hz. For template placement we assume a fixed
termination of the templates at 1000 Hz, close to the largest ISCO frequency in our
parameter space. This is necessary in order to have a constant metric across the whole
parameter space and facilitate template placement2. Note however that in generating

1This was the highest implemented order at the time of the study; 3.5 pN spin terms are now
implemented and can be used.

2PyCBC’s template bank generator code later included the ability to vary the termination frequency,
but we do not explore this choice here.
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File inspiral.py: platform-independent matched-filter program

scheme = CPUScheme()

template_bank = load_template_bank()

with scheme:

data_segments = prepare_data()

for params in template_bank:

template = generate_template_waveform(params)

for segment in data_segments:

product = template * segment

snr = abs(inverse_fft(product))

triggers = find_triggers(snr)

store(triggers)

File waveform.py: common interface to waveform generator

@schemed

def generate_template_waveform(params):

# empty function definition

File waveform cpu.py: CPU-specific waveform generator

def generate_template_waveform(params):

compute waveform with Python/Numpy primitives

File waveform cuda.py: CUDA-specific waveform generator

def generate_template_waveform(params):

compute waveform with CUDA primitives

Figure 2.1: Simplified PyCBC pseudocode illustrating how the same implementation of
the matched-filter algorithm can be executed on different platforms by using the concept
of computing schemes. A different computing platform, e.g. a CUDA GPU, could be
used by simply instantiating the appropriate scheme class in place of the CPUScheme;
the functions within the with block pick the appropriate implementation based on the
selected scheme. The selection is performed by the schemed Python decorator, which
imports the actual function implementation from the appropriate file (in the case of
generate template waveform(), either waveform cpu.py or waveform cuda.py) based
on the global state of the scheme manager.
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Figure 2.2: Mass boundaries used in our NSBH template banks.

the actual template waveforms for the matched-filter calculation we shall use instead the
ISCO termination condition, consistent with previous CBC searches. Both banks are
populated with PyCBC’s stochastic placement algorithm, described in [117].

The NSB uses a BH mass mBH ranging from 3M⊙ to 15M⊙ and a NS mass mNS

ranging from 1M⊙ to the equal-mass boundary mBH = mNS (figure 2.2). This mimics a
“low-mass” search space similar to what used in past searches. Because of the degeneracy
between spin and symmetric mass ratio [159], extending the mass range allows the NSB
to recover spinning signals by introducing a bias in the recovered symmetric mass ratio.
Both spins in the NSB are set to zero. With these settings, the NSB contains ≈ 2.8×104

templates; only ≈ 6% of those are in the “extended” region mNS > 3M⊙.
The ASB also uses a mBH range from 3M⊙ to 15M⊙, but mNS is restricted instead

to the expected NS masses, [1, 3]M⊙ (figure 2.2). The parallel component of the dimen-

sionless BH spin χ
‖
BH ranges from −1 to +1 and the parallel component of the NS spin

χ
‖
NS ranges from −0.4 to +0.4. These settings result in ≈ 1.5× 105 templates, a factor

of ≈ 5 more than the NSB and a significant increase with respect to past searches. The
distribution of templates in the ASB is shown in figure 2.3. The last plot shows the
density in coordinates which make the metric approximately flat, i.e. the chirp times
[160]

τ0 :=
5

256πηf0
(πGc−3Mf0)

−5/3

τ3 :=
1

128πηf0
(πGc−3Mf0)

−2/3

[

16π − 1

6
χ
‖
BH(19δ

2 + 113δ + 94)

]

(2.2)
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Figure 2.3: Density of templates in the aligned-spin bank. In the last plot, the black
contour shows the extent of the zero-spin region of NSBH space. The dashed contour is
the extra mass freedom (mNS > 3M⊙) included in the non-spinning bank. It can be seen
that the region of highest density of the aligned-spin bank corresponds to small masses
and extremal values of the BH spin.

with δ := (mBH −mNS)/M and f0 := 20 Hz a fiducial frequency. It can be seen that
the majority of the templates are concentrated at the boundaries of maximum spin
magnitude.

Before using the banks in the full search pipeline, it is useful to characterize their
average ability to recover NSBH signals in stationary Gaussian noise. This can be done
by numerically computing the fitting factor (eq. (1.35)) of each bank with simulated
signals from our NSBH population (bank simulation). We use PyCBC’s bank simulation
utility for this task.

We first consider the case of a “typical” NSBH signal with masses fixed at the center
of our distributions (mBH = 7.8M⊙ and mNS = 1.35M⊙), no spin on the NS and variable

χ
‖
BH ∈ [−1, 1]. Figure 2.4 shows the fitting factor between such a signal and our NSB

constructed assuming different noise models: the initial-LIGO, early-advanced-LIGO
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and design-advanced-LIGO PSDs from figure 1.4 and an old advanced-LIGO model
from Cutler and Flanagan [45]. It can be seen that, irrespective of the noise model,
there is a region of small BH spin for which the NSB is able to satisfy the minimal-
match requirement used for its construction. In other words, the NSB is effectual for
BHs with small spin. This is because the effect of the small spin is compensated by the
degeneracy between spin and symmetric mass ratio. As soon as the spin hits a critical
value, however, the bias in η drives the parameters of the best-matching template outside
of the mass range covered by the bank and the fitting factor quickly drops. The critical
value ≈ 0.4 for positive spin corresponds to hitting the physical equal-mass boundary of
the bank at η = 1/4. For negative spins the critical value is ≈ −0.4 and corresponds to
hitting the artificial mNS > 1M⊙ boundary. In principle, the performance of the NSB at
high anti-aligned spins could be improved by searching for lighter NSs. By also looking

at the mass parameters of the best matching template as a function of χ
‖
BH, we can

confirm that the drop in fitting factor is due to hitting the η = 1/4 boundary at positive
spin and the mNS = 1M⊙ boundary at negative spin (figure 2.5). When the NSB is
replaced by the ASB, the fitting factor is always larger than 0.94 and no clear bias in
the recovered parameters can be seen (figure 2.6). We can also see that the observed

NS spin is essentially random, which suggests that χ
‖
NS effectively plays no role in our

NSBH waveforms and can be safely ignored.

As an overall test of the performance of the two banks, we perform fitting-factor
calculations by varying the signal parameters uniformly over our NSBH parameter space
and assuming the early-advanced-LIGO noise model. The resulting worst-case fitting
factor over the parameter space is shown in figure 2.7. In the case of the NSB, we again
see that the bank performs well for sufficiently small BH spin and a large loss suddenly
appears for higher spin magnitudes. The critical spin values depend on η; for instance,

for equal-mass systems there is no freedom to compensate any amount of positive χ
‖
BH

and the fitting factor starts to drop already at χ
‖
BH & 0. We also see that the worst

performance happens at large mass-ratio and extreme anti-aligned BH spin; this is the
region of NSBH space where signals are shortest. The ASB is also performing poorly in
this region, with fitting factors well below the minimum-match condition of 97%. The
residual loss here is likely due to the fact that neither our templates nor the simulated
SpinTaylorT2 signals include a physical termination of the signal. In fact, in this region
the merger and ringdown happen in a very sensitive band of the early advanced LIGO
noise PSD; the difference between the frequencies associated with ISCO and MECO is
also the largest here. Nevertheless, this first calculation shows that including spin in the
bank has a large potential for increasing the sensitivity.

2.6 Pipeline configuration and execution

The next step is assessing the behavior of the ASB with realistic noise and instrumental
artifacts and evaluating the sensitivity of a full search pipeline based on it. At the time of
this study, however, the existing pipeline does not allow one to perform coincidence with
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Figure 2.4: Fitting factor of a typical signal from our NSBH population and our non-
spinning bank, as a function of the BH spin component along the orbital angular mo-
mentum. Different plots assume different detector noise models (see text). In all cases,
the non-spinning bank is unable to recover a significant fraction of the SNR when the
magnitude of the BH spin is larger than ≈ 0.4.
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Figure 2.6: Recovered mass and spin parameters for a typical signal from our NSBH
population observed with our aligned-spin bank, as a function of the BH spin component
along the orbital angular momentum. The dashed lines show the true parameters of the
simulated signal. Although the fitting factor at large spin magnitude is slightly smaller
than the required minimum value of 97%, there are neither clear biases in parameter
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seen that the observed NS spin is essentially uniformly distributed over the range covered
by the bank.
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Figure 2.8: Flowchart of the search pipeline.

spinning templates in an easy way and it is not readily compatible with pycbc_inspiral,
the implementation of the FindChirp algorithm provided by PyCBC. It is also not suited
for experimentation with the additional degrees of freedom. We thus implement a simple
prototype pipeline which can be configured to run on both the NSB and ASB with
otherwise identical settings and on the same data and simulated signals. This enables a
direct comparison of templates neglecting and excluding spin effects. Similarly to what
was done in past CBC searches, we implement the pipeline in the Python language and
we use HTCondor to split the analysis into many parallel jobs, which are executed on
the Atlas computing cluster [161]. A flowchart of the pipeline is shown in figure 2.8.

2.6.1 Matched filtering and trigger generation

The first step of the analysis is breaking the strain data from the Hanford and Liv-
ingston interferometers into 2048 s segments, which are then analyzed independently by
pycbc_inspiral to produce single-detector triggers. One such run is performed with
the pristine data in order to produce the false-alarm background. A second run, with
identical settings, is performed by first adding the simulated signals from the NSBH
population to the data.

We configure the FindChirp algorithm in the following way. The noise PSD is esti-
mated for each data segment by using the median-Welch method applied to segments
with a duration of 64 s. The impulse response of the corresponding whitening filter
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is then truncated to a maximum duration of 16 s. The SNR threshold for generating
triggers is set to 5.9, which is higher than the typical 5.5 used in past searches. This
choice is made in order to keep the number of resulting triggers reasonably small even
when the large ASB is used and should have a small effect on the sensitivity. Triggers
from each template are maximized over time by using a window of 1 s. The χ2 statistic
is then calculated for each trigger using 16 bands. We also apply a threshold of 5.9 on
the reweighted SNR of the triggers (eq. (1.38)), which strongly reduces the number of
triggers, especially in the presence of loud glitches.

Thanks to the flexibility of pycbc_inspiral, we are able to execute the jobs on the
Nvidia C2050 GPUs currently available in the Atlas cluster; at the time of the study, this
is able to accelerate the FindChirp algorithm by a factor which depends on the number
of triggers generated for each data segment, with a maximum speedup of O(10) times
with respect to running the same job on a single core of the node’s CPU when the data
have good stationarity and Gaussian behavior.

2.6.2 Coincidence

The next step of the analysis is performing coincidence between the Hanford and Liv-
ingston detectors. We implement an exact-match coincidence algorithm: a coincident
trigger is generated whenever both interferometers produce a trigger from the same tem-
plate and with coalescence times within 15 ms. This value is based on the maximum
light travel time between the Hanford and Livingston sites (≈ 10 ms) and a margin based
on the typical uncertainty in coalescence time (a few milliseconds). Each coincidence is
ranked via the combined reweighted SNR statistic defined in eq. (1.39) and already used
in previous searches. Triggers from the run with no simulated NSBH signals are used
to generate the false-alarm background via time slides. We perform 800 time shifts, all
multiples of 5 s.

Although exact-match coincidence is simple and straightforwardly applicable to ar-
bitrary parameter spaces, it requires storing and analyzing a very large number of single-
detector triggers, especially when the ASB is used. In addition, triggers are produced
and written independently by hundreds of jobs operating simultaneously on different
regions of the search space. The access pattern of coincidence jobs, however, is quite
different: each parallel coincidence jobs must quickly read all triggers for a particular
template. The natural storage technology for triggers is thus an online database, which
handles parallel read and write operations efficiently and intuitively. We test three dif-
ferent database technologies: PostgreSQL, MongoDB and Cassandra.

PostgreSQL is a well-established and widely-used relational database based on the
structured query language (SQL) [162]. Our trigger storage problem maps very naturally
to a relational model. We are able to efficiently implement coincidence and clustering
by using a table for single-detector triggers, where each row is tagged with template
and detector IDs (figure 2.9). This allows parallel coincidence jobs to rapidly query all
triggers for a particular template and perform coincidence on them, independently from
other templates. A second table is used for storing coincident triggers. A potential lim-
itation of PostgreSQL is scalability to a much larger number of single-detector triggers,
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-- template bank

CREATE TABLE templates (

id SERIAL PRIMARY KEY,

mass1 REAL,

mass2 REAL,

mchirp REAL,

tau0 REAL,

tau3 REAL,

eta REAL,

s1 REAL,

s2 REAL

);

-- single-detector triggers

CREATE TABLE triggers (

id SERIAL PRIMARY KEY,

ifo TEXT,

template INTEGER,

coal_time DOUBLE PRECISION,

coal_phase REAL,

eff_distance DOUBLE PRECISION,

snr REAL,

rx2 REAL,

newsnr REAL,

FOREIGN KEY(template)

REFERENCES templates(id)

);

-- coincident triggers

CREATE TABLE coinc_triggers (

id SERIAL PRIMARY KEY,

template INTEGER,

lag REAL,

coal_time_h DOUBLE PRECISION,

snr_h REAL,

rx2_h REAL,

newsnr_h REAL,

coal_phase_h REAL,

eff_distance_h DOUBLE PRECISION,

coal_time_l DOUBLE PRECISION,

snr_l REAL,

rx2_l REAL,

newsnr_l REAL,

coal_phase_l REAL,

eff_distance_l DOUBLE PRECISION,

FOREIGN KEY(template)

REFERENCES templates(id)

);

-- coincident triggers

-- surviving clustering

CREATE TABLE coinc_clusters (

trigger INTEGER,

FOREIGN KEY(trigger)

REFERENCES coinc_triggers(id)

);

Figure 2.9: SQL tables used for storing single and coincident triggers in our PostgreSQL
implementation of the pipeline. In coinc triggers, columns ending in “h” and “l”
store quantities related to the Hanford and Livingston detectors respectively.

for instance for the significantly larger template banks expected with final advanced
detectors. However, we do not experience such a limitation in our study.

MongoDB [163] is a so-called “NoSQL” database and is able to store collections of
documents, where each document is an independent set of key-value associations. Thus,
unlike relational databases which enforce a uniform row definition and normalization of
the data, MongoDB provides a more flexible “schema-less” storage. Also, MongoDB
is a distributed system which can scale to very large data sets simply by adding more
physical nodes to its underlying cluster. Although it is possible to use such a schema for
our problem, we find that MongoDB is not as convenient as a relational database and
requires a significantly larger storage space than PostgreSQL. In addition, the structure
of documents must typically be designed with a particular query in mind in order to
be efficient, which in our case limits the flexibility of the system when triggers need
to be accessed and explored in different ways. It is possible however that more recent
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mc Chirp mass
eta Symmetric mass ratio
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s2 NS spin along L

i Detector
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eta Symmetric mass ratio
s1 BH spin along L

s2 NS spin along L

H t Hanford coalescence time
snr Hanford SNR
rx2 Hanford reduced χ2
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delay Time shift between detectors

c Survives clustering

Figure 2.10: Collections and document structure used for representing single and coin-
cident triggers in our MongoDB implementation of the pipeline.

versions of MongoDB could address these limitations. The definitions of the collections
and documents in our MongoDB implementation of the pipeline are given in figure 2.10.

Cassandra [164] is also a NoSQL distributed database but it uses a tabular data
model and an SQL-like interface, although the set of possible queries is limited in such
a way to prevent inefficient queries. This model enables an efficient implementation of
coincidence, with performance similar to PostgreSQL. Similarly to MongoDB however,
the data model has to be designed with a particular set of queries in mind in order to
be efficient (figure 2.11). Again this complicates accessing the triggers with arbitrary
queries. Therefore, the traditional relational model may be the most suited for our
search pipeline. Testing these systems with a few orders of magnitude more triggers
could enable a clearer decision on which one is more suitable.

2.6.3 Clustering

A fluctuation in the data, especially if significantly louder than the surrounding noise
background, generally does not produce a single trigger but rather a cluster of triggers
associated with different templates. Loud glitches, in particular, tend to excite the whole
template bank and the resulting cluster can last fractions of a second or in some cases
more. This means that triggers are correlated on a time scale of . 1 s. Since the FAR
estimation procedure assumes that triggers are statistically independent, the correlation
must be removed first. This is typically done by clustering or maximizing the triggers
over the template bank.

We apply the following clustering algorithm to our coincident triggers: keep a trigger
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CREATE TABLE templates (

id bigint,

mass1 float,

mass2 float,

mchirp float,

eta float,

spin1 float,

spin2 float,

tau0 float,

tau3 float,

duration float,

PRIMARY KEY ((id))

);

CREATE TABLE single_triggers (

ifo int,

template_id bigint,

coal_time bigint,

coal_time_ns bigint,

coal_phase float,

effective_distance double,

snr float,

rx2 float,

newsnr float,

PRIMARY KEY ((template_id, ifo),

coal_time, coal_time_ns)

);

CREATE TABLE coinc_triggers (

id uuid PRIMARY KEY,

template_id bigint,

lag float,

coal_time_h bigint,

coal_time_ns_h bigint,

snr_h float,

rx2_h float,

newsnr_h float,

coal_phase_h float,

effective_distance_h double,

coal_time_l bigint,

coal_time_ns_l bigint,

snr_l float,

rx2_l float,

newsnr_l float,

coal_phase_l float,

effective_distance_l double,

comb_snr float,

comb_newsnr float

);

Figure 2.11: Tables used for storing single and coincident triggers in the Cassandra im-
plementation of the pipeline. In coinc triggers, columns ending in “h” and “l” store
quantities related to the Hanford and Livingston detectors respectively. Clustered coin-
cident triggers are stored in a separate table with the same columns as coinc triggers.
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if no other triggers with higher combined reweighted SNR exist within ±0.5 s of that
trigger. The clustering time window is chosen to be smaller than the typical time between
false-alarm coincident triggers (in order to avoid clustering triggers produced by different
fluctuations) but larger than the light travel time between the detectors. Note that past
searches used a slightly different clustering algorithm based on a fixed and much longer
window (several seconds). Because of the moving window, the algorithm used here is
able to handle clusters lasting much more than the window itself.

In order to study the distribution of single-detector background, we also apply the
same algorithm to single-detector triggers, but using a window of ±15 ms only. This is
in order to safely accommodate the much larger single-detector FAR, although a window
of ±0.5 s would likely produce similar results.

2.7 False-alarm background

We now look at the background of false alarms generated by our search pipeline with
the two banks. When we switch from the NSB to the ASB, the proper volume of the
searched parameter space increases by a factor which is approximately given by the
relative increase in number of templates, i.e. ≈ 5. In stationary Gaussian noise, we thus
expect a similar increase in the rate of false alarms of our search pipeline. However, this is
no longer guaranteed when noise artifacts are present; templates with certain spin values
may respond unexpectedly to glitches and sudden changes in the noise characteristics.
Thus it is important to investigate the background distribution associated with the two
banks and verify that the inclusion of spin does not lead to a catastrophic increase in
FAR.

Figures 2.12 and 2.13 show the single-detector false-alarm distribution for the Han-
ford and Livingston detectors. It is immediately evident that the SNR has a large tail
in both detectors, which gets noticeably larger with the ASB. For both detectors, the
SNR tail in the ASB is produced mostly by the high-mass, high anti-aligned spin region
of the parameter space. Interestingly, these waveforms terminate at the ISCO, which is
spin-independent. It is therefore remarkable that high-mass but positively aligned tem-
plates give a smaller contribution to the background. This suggests that the pN phasing
may behave pathologically for high-mass, anti-aligned templates. Nevertheless, the χ2

veto is quite effective at suppressing glitches and the distribution of reweighted SNR
is much better behaved and approximately described by an exponential, i.e. exp(−kρ̂).
There seems to be no preferred region of parameter space producing high-ρ̂ triggers in
the ASB and the location of the loudest ρ̂ appears to simply follow the template den-
sity. The relative FAR increase α at fixed ρ̂ when going from the NSB to the ASB is
roughly compatible with the value expected from the metric volume. Because of the
almost exponential distribution of ρ̂, the increase in reweighted SNR required to keep
the FAR constant is only ∆ρ̂ ≈ log(α)/k. Still, even for ρ̂ the tail is slightly larger than
exponential, possibly because of the lack of category vetoes and thus the presence of
a few data segments with exceptionally poor stationarity. The two background events
with the highest reweighted SNR in the two instruments are given in table 2.1. Both
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Figure 2.12: Distribution of single-detector false alarms in the Hanford interferometer.
All heat maps refer to the aligned-spin bank. The reweighted SNR rate falls off almost
exponentially, similarly to what expected in Gaussian noise (gray curve). The loudest
triggers are not systematically associated with a particular part of the parameter space.
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Figure 2.13: Distribution of single-detector false alarms in the Livingston interferometer.
All heat maps refer to the aligned-spin bank. The reweighted SNR rate falls off almost
exponentially, similarly to what expected in Gaussian noise (gray curve). The loudest
triggers are not systematically associated with a particular part of the parameter space.
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Interferometer GPS end time ρ ρ̂ mBH mNS χ
‖
BH

Hanford 971 321 818.762 11.5 10.3 8.7 1.2 0.97
Livingston 967 609 107.681 36.8 11.1 10.1 2.2 −0.77

Table 2.1: Parameters of the single background triggers with the largest reweighted SNR
in the aligned-spin bank.

triggers occur in the vicinity of very loud glitches (occurring 8 s before the trigger for
Hanford and 5 s after the trigger for Livingston) and could possibly be related to them,
although establishing this relation would require additional investigation.

In figure 2.14 we see the distribution of coincident false alarms from all the time-
shifted samples. The effect of coincidence is dramatic and leads to a well-behaved dis-
tribution for both banks. The increase of the FAR at fixed threshold in combined
reweighted SNR is given almost exactly by the relative increase in number of templates.
The increase in threshold required to keep the FAR constant when going to the ASB is
only ≈ 0.3 in the most interesting part of the curve (FAR . 0.1/yr). The distribution of
coincident false alarms over the parameter space associated with the ASB follows what
we see for the single-detector cases: their density matches the template density, the loud-
est combined SNR is located at the high-mass, high-aligned-spin corner and the loudest
combined reweighted SNR is scattered according to the template density. The loudest
single-detector triggers by reweighted SNR (table 2.1) have a combined reweighted SNR
of ≈ 15.1, but they do not survive coincidence and thus do not contribute to the tail of
the coincident background. Had we chosen a larger number of time slides, we could have
seen a slightly larger tail in the top plot of figure 2.14, but it is unlikely that it would
have deviated significantly from the exponential part of the curve.

We can conclude that the inclusion of aligned-spin in the templates leads to an
increase in false alarms which is well predicted by the increase in proper volume of the
explored parameter space (cfr. eq. (1.36)). This is because the χ2 test is effective at
separating glitches from aligned- spinning waveforms, despite the presence of very poor

data segments. Templates with high total mass and χ
‖
BH < −0.5 respond more strongly

than others to glitches and produce most of the loudest SNRs, but they are not entirely
responsible for the tail of the reweighted SNR, at least in the region of the parameter
space considered here and with the chosen number of χ2 bins.

2.8 Recovering simulated signals

The runs containing simulated signals are used to estimate the ability of the pipeline
to recover signals from different parts of the parameter space. We define a simulated
signal as found if the search pipeline produces a coincident trigger with coalescence time
within ±0.5 s of the simulated value and chirp mass within ±0.6M⊙ of the simulated
value. If no trigger is present within this recovery window, the signal is missed. The
window is based on the results of the bank simulations described earlier. Each found

65



8.0 8.5 9.0 9.5 10.0 10.5

Combined reweighted SNR threshold

10−2

10−1

100

101

102

103
F
a
ls
e-
a
la
rm

ra
te

[1
/
y
r]

Non-spinning bank

Aligned-spin bank

−1.0

−0.5

0.0

0.5

1.0

P
a
ra
ll
el

B
H

sp
in

15

30

45

60

75

90

105

120

10

20

30

40

50

60

70

80

−1.0

−0.5

0.0

0.5

1.0

P
a
ra
ll
el

B
H

sp
in

101

102

103

101

102

103

4 6 8 10 12 14 16 18

Total mass [M⊙]

−1.0

−0.5

0.0

0.5

1.0

P
a
ra
ll
el

B
H

sp
in

8.50

8.75

9.00

9.25

9.50

9.75

10.00

10.25

10.50

0.05 0.10 0.15 0.20 0.25
Symmetric mass ratio

8.50
8.75
9.00
9.25
9.50
9.75
10.00
10.25
10.50

Figure 2.14: Top plot: coincident false-alarm rates for the two banks. The gray dotted
curve is the non-spinning rate scaled by the relative number of templates in the ASB
and NSB. Second row: density of false alarms over the ASB parameter space. Third and
fourth rows: location of loud triggers (by combined SNR and reweighted SNR, in color)
over the ASB parameter space. The coincident background of the ASB is distributed
consistently with the metric density and falls off as expected from Gaussian noise.
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signal is assigned a FAR by using the population of background coincident triggers (top
plot of figure 2.14) to look up the FAR corresponding to the combined reweighted SNR
of the trigger associated with the found signal.

A useful measure of the loudness or potential visibility of a signal is the optimal SNR
ρopt defined in section 1.3.4. As a first check, we compare the optimal and observed
single-detector SNRs signal-by-signal (figure 2.15). We can see that in the case of the

NSB the observed SNR starts to drop for |χ‖
BH| & 0.4, consistently with the earlier

fitting-factor calculation. The ASB, instead, shows no clear dependence of the observed

SNR on χ
‖
BH and it is able to recover a large fraction of the signal power even at high

spin.

The reweighted SNR shows a different behavior due to the χ2 veto and the discrete-
ness of the templates. The optimal reweighted SNR is equal to ρopt, because the χ2

for a perfectly matched signal with a vanishing noise realization is zero. However, even
if a tiny mismatch exists, for a sufficiently large ρ the χ2 becomes proportional to ρ2

[104]. By combining this fact with eq. (1.38) we see that even a small mismatch leads
to a significant reduction of ρ̂ if ρ is sufficiently large; in fact, ρ̂ appears to asymptote to
≈ 100 for ρ → ∞. The large mismatch between highly-spinning signals and the NSB is
thus exacerbated by the χ2 veto and the resulting loss in ρ̂ is even larger than the loss
in ρ.

Signals found and missed by the NSB and ASB are shown in figure 2.16 as a function
of the parallel BH spin and the decisive chirp effective distance, i.e. the largest chirp
effective distance between the two detectors. It is evident that the NSB is unable to
recover a large fraction of signals with spin, such that the critical range at which signals

start to be missed drops significantly. This effect starts at |χ‖
BH| ≈ 0.4, consistent

with the fitting-factor calculation. For almost extremal positive spin, almost all signals
are either missed or detected with a small significance. No drop in critical range is

visible when the ASB is used. The range actually increases with χ
‖
BH due to the larger

luminosity of highly-spinning and positively-aligned binaries.

As a check of the safety of our choice of distance distribution, we show in the left
plots of figure 2.17 the detection efficiency (fraction of found signals) as a function of the
chirp distance. We can see that our choice of distributing the chirp distances between
1 and 160 Mpc is safe, as the efficiency drops to almost zero at the end of the range.
Figure 2.17 (right plots) shows the efficiency scaled by the chirp distance squared. This
quantity represents the density of detections over the chirp distance assuming a source
population uniformly distributed in volume.

2.9 Search sensitivity at fixed false-alarm rate

The final comparison of the sensitivity of the NSB and ASB requires the quantification
of the number of detections made by each setup. For a population of coalescing binaries
described by the number density n(θ), θ being the full CBC parameter vector, the
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Figure 2.15: Ability of our banks to recover simulated signals in realistic noise. Top and
middle: observed vs optimal combined SNR and reweighted SNR for the non-spinning
bank. Bottom: same as middle, when using the aligned-spin bank. For spin magnitudes
above 0.4, the non-spinning bank has a visible loss of SNR (consistent with the previous
fitting-factor calculation) and an even larger loss of reweighted SNR. The aligned-spin
bank, instead, performs well irrespective of the spin.
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Figure 2.16: Simulated signals found (left) and missed (right) by the pipeline using the
non-spinning bank (top) and aligned-spin bank (bottom). Found signals are colored
with the observed combined reweighted SNR. Black found signals are louder than the
loudest background trigger. With the non-spinning bank, the distance at which signals
are confidently detected drops noticeably at large spin: there are only a few black points

above χ
‖
BH & 0.7. With the aligned-spin bank, the distance is roughly constant.
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Figure 2.17: Fraction of signals found as a function of the chirp distance (left) and density
of detections over chirp distance (right). Top: non-spinning bank; bottom: aligned-spin
bank. The lighter bands are the 68% binomial confidence intervals calculated from the
number of found and missed signals in each distance bin. The simulated population
correctly covers the whole range of the efficiency curve and most detections happen well
below the maximum chirp distance of 160 Mpc used in the simulation.
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number of signals detected with a FAR of ξ or less is

nd(ξ) :=

∫

S
pd(θ, ξ) n(θ) dθ (2.3)

where pd(θ, ξ) is the probability of detecting a signal with the given parameters at the
given (or smaller) FAR. Our population of discrete simulated signals is effectively a
Monte Carlo integration of eq. (2.3). Given that we need a large number of both found
and missed signals in only two months of data, the number density we need to use is
unrealistically large and the signals are distributed uniformly in chirp distance rather
than volume. For this reason we use instead the following (somewhat unphysical) figure
of merit,

V (ξ) :=

∑

i p
d
i (ξ)R2

i
∑

iR2
i

(2.4)

where pdi (ξ) is 1 if the i-th signal is recovered with a FAR smaller than ξ and 0 otherwise,
and Ri is the chirp distance of the i-th signal (eq. (2.1)). The R2 weighting corrects our
unphysical distance distribution such that V (ξ) is proportional to nd(ξ) and can thus be
used to compare the NSB and the ASB3. Although V (ξ) represents simply the (weighted)
fraction of detected signals, we sometimes refer to it improperly as the sensitive volume
of the search pipeline, because one can define a (physical) sensitive volume from nd(ξ)
in various ways. When V (ξ) is plotted as a function of its argument, the curve is
qualitatively equivalent to the receiver operating characteristic (ROC) curve typically
used to characterize the performance of a signal detector [165]. Therefore, according to
the Neyman-Pearson criterion, we need to look for the bank which produces the largest
V (ξ) at a fixed (sufficiently low) value of ξ.

This comparison is shown in figure 2.18 for different cuts on |χ‖
BH|. We compute

68% uncertainty intervals on V (ξ) by constructing 100 realizations of this quantity using
random selections of half of the background and half of the simulated signals, and taking
the standard deviation of the result. We see that the relative improvement of the ASB

depends strongly on the distribution of χ
‖
BH. Assuming BHs can have any value of χ

‖
BH

allowed by the Kerr limit, the ASB increases the sensitivity by 40− 60% depending on

the FAR. If we make the restriction χ
‖
BH > 0, the improvement is slightly larger. If

however we assume χ
‖
BH > 0.7, the improvement can be a factor of O(10). This can

be understood by considering the dramatic loss in reweighted SNR of the non-spinning
search, which is due in part to the loss of SNR and in part to the poor χ2 value of highly-
spinning signals in the NSB. If the data were so well-behaved that the search could be
carried out using just the combined SNR as the ranking statistic, therefore, it is possible
that the improvement would be less dramatic. The same could happen with a different
tuning of the χ2 test, for instance with a different number of bins. Nevertheless, the
bank simulations (figure 2.4 top-left and 2.7 left) suggest that in this extreme cases the
improvement would still be a factor of 0.6−3 ≈ 4.6, ignoring the increase in false-alarm
background. It is also worth noting that the improvement could be smaller if precession

3Another way to estimate the sensitivity is measuring the area under the curves in figure 2.17 (right).
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Figure 2.18: Sensitivity of the pipeline with the non-spinning and aligned-spin banks
at fixed FAR. The four plots assume NSBH systems with different limits on uniformly
distributed BH spins. We can see that the aligned-spin bank leads to a more sensitive
pipeline in almost all cases, with a large gain if most systems have nearly extremal-spin
BHs. For weakly-spinning systems, the reduction in sensitivity is modest. This figure is
the main result of the chapter.
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is included in the simulated signals. In fact, this will be studied in the next chapter. For
the case of weakly-spinning BHs, the ASB gives a slightly less-sensitive search, as can
be expected from the larger background. Finally, although our statistics are insufficient
for a ROC plot, we can do a back-of-the-envelope estimate of the relative sensitivity in

the case χ
‖
BH = 0. Using the background curve in figure 2.14 and a detection FAR of

1 yr−1, corresponding to a threshold in combined reweighted SNR of ρ̄ ≈ 9.5 for the
non-spinning search, we can write

V (ξ) ≈
(

ρ̄

ρ̄+ 0.3

)3

> 90%. (2.5)

In the unlikely worst case of exactly non-spinning BHs, therefore, the aligned-spin search
would greatly increase the computational cost but only lose at most 10% of the detec-
tions.

2.10 Conclusion

In this study we demonstrate that the currently-available technology, waveform tem-
plates, signal-based vetoes and software implementation are sufficient to include aligned-
spin effects in pipelines searching for NSBH coalescence in data from advanced GW
detectors. We find that neglecting spin can lead to a large reduction in the number
of detections if BHs have spins aligned with the orbital angular momentum and with
magnitudes close to the Kerr limit. The sensitivity to such signals is restored by simply
including the appropriate spin terms in the pN phasing of TaylorF2 templates and con-
structing a template bank which appropriately covers the new dimension of the search
parameter space. If the universe is populated with a variety of spin magnitudes, ne-
glecting spin would introduce an unnecessary selection bias. Even if BHs turn out not
to spin significantly—a scenario in contrast with some of the existing observations and
population-synthesis models—including spins leads to a small reduction in the sensitivity
of the search.

The price to pay for taking spin into account is however a significant ≈ 5× increase
in computational cost of the search, which can nevertheless be met by modern imple-
mentations of the inspiral matched filter, such as PyCBC. Note that if we decided to
neglect spin and raise instead the minimum match of the NSB from 97% to whatever is
required to get a 5× increase in number of templates, the sensitivity achieved to highly-
spinning signals would still be much lower than what can be obtained by including spin.
We argue instead that spin should be included and, should computing power be a limit,
the minimum match of the ASB should be lowered appropriately in order to meet the
available computing resources. More recent optimizations of PyCBC, however, are push-
ing the cost down and such a reduction in minimum match should not be necessary. A
straightforward reduction in the computational cost of the pipeline can be achieved us-
ing the more efficient geometric placement method for constructing the ASB, which is
possible with PyCBC.
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Most templates in the ASB are located at χ
‖
BH < 0, i.e. anti- aligned spins. We find

that some of those templates are the most sensitive to instrumental glitches in the de-
tector noise, although the ρ̂ statistic is effective at separating glitches from astrophysical
signals even in that region of the search space. Moreover, as will be discussed more in
the next chapter, population synthesis models suggest that compact binaries with anti-
aligned spins are the least likely. For these reasons, it could be argued that this part
of the parameter space is the least worthwhile to include in the search. Excising anti-
aligned templates would save a factor ≈ 2 in computational cost and make the search
even more robust against instrumental artifacts in the data.

This study should be extended by considering the sensitivity of the search pipeline
to generic precessing NSBH systems; this is the subject of the next chapter. Merger
and ringdown effects, or tidal disruption of the NS, could be important in some parts of
the parameter space. They should be included in the simulated signals and their effect
should be investigated as well. Including merger and ringdown in the templates could
enable the extension of the search space to higher BH masses. Further investigation,
currently ongoing, is needed to tune the various parameters of the aligned- spin pipeline
in order to maximize its sensitivity. It is also now possible to include higher-order spin
terms into the phasing of our templates and signals, although it is unlikely that this
would significantly increase the search sensitivity.
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Chapter 3

Effect of neglecting precession in

NSBH search pipelines

3.1 Overview

The previous chapter presented a search pipeline for NSBH binary coalescence which
takes into account the effect of the BH spin component along the orbital angular mo-
mentum L. It was shown that this can lead to a significant improvement if the spin
magnitude is close to the Kerr limit.

BH spins and orbital angular momenta in astrophysical NSBH binaries, however, are
most likely not exactly aligned. The standard evolutionary scenario for binaries (section
1.2.6) suggests that the common-envelope phase tends to align the angular momenta,
but the kick associated with the second supernova explosion can then tilt the orbital
plane, assuming the binary survives the event [166]. Nevertheless, kicks seem unlikely to
be able to produce very large tilt angles. Simulations show that most coalescing NSBH
binaries probably have tilts below 60 degrees with a significant fraction below 45 degrees
[148–150]. Systems with anti-aligned spins are expected to be relatively rare. The
physical interpretation of such results is that a large tilt requires a large kick component
perpendicular to the initial orbital plane. This in turn implies a large kick magnitude,
which makes the binary less likely to survive the kick. The actual distribution of tilt
angles in nature is however currently unknown. Observations of X-ray binaries have
so far been unable to provide clear measurements of the tilt. In fact, even measuring
the spin magnitude often requires the assumption that the axis of the accretion disk is
aligned with the BH spin [22].

The most important consequence of a tilted spin on the evolution of a NSBH binary is
the precession of the orbital angular momentum, already introduced in chapter 1, which
is analogous to the Lense-Thirring gravitomagnetic effect on a vector moving in a Kerr
metric. Most systems radiating in the sensitive band of ground-based interferometers
exhibit simple precession: the orientation of the total angular momentum J remains
constant to a good approximation while L traces out a cone around it [57]. For NSBH
binaries with massive and highly-spinning BHs, where J ≈ SBH, the opening angle of
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the precession cone can be quite large. A distant inertial observer then sees a steady
rotation of the orbital plane. The orientation of the orbital plane affects both the
polarization amplitudes of the emitted radiation (via the inclination angle in eq. (1.9))
and the projection of the GW tensor on the detector (via the polarization angle and the
beam pattern coefficients in eq. (1.20)). The result is that the precessing L imprints a
characteristic amplitude and phase modulation on the gravitational waveform measured
by the detector. The time scale of one precession cycle is typically longer than the orbital
period and this allows one to compute the modulation by averaging over several orbits
[57]. Whereas the signal from a non-precessing circular orbit is dominated by a single
chirp in the time-frequency plane, the modulation results in five chirps closely spaced
in time and frequency, one corresponding to the carrier (at twice the orbital frequency)
and four representing two symmetric modulation sidebands. The modulation is currently
implemented by several waveform approximants in the LALSimulation library, notably
SpinTaylorT2 and recently SPA and IMR approximants [59, 77, 78].

Existing studies attempted to include the effect of precession in a CBC search
pipeline, but this did not result in any significant gain in sensitivity [114, 136, 144, 167–
169]. This was mainly due to (i) the ability of precessing templates to pick up instru-
mental glitches and (ii) the lack of signal-based vetoes which could efficiently distinguish
such spurious triggers from astrophysical signals. At the moment, it is not known how
to include precession in a pipeline that can be practically run and achieve a satisfactory
sensitivity. Given the scarce information available on spin tilts, it is therefore important
to assess the effect of precession on the sensitivity of NSBH pipelines that neglect it, in
particular on the non-spinning and aligned-spin pipelines presented in chapter 2. A first
step towards this goal has been recently achieved by means of fitting-factor calculations
and assuming the design sensitivity of the advanced LIGO detectors [145, 146].

In this chapter we extend the investigation carried out in chapter 2, and in previous
studies, by presenting the effectualness of a non-spinning bank (NSB) and an aligned-spin
bank (ASB) and the sensitivity of realistic non-spinning and aligned-spin search pipelines
in the presence of precessing NSBH binaries. As done in chapter 2, we assume here the
early- advanced-LIGO sensitivity curve. We first use bank simulations to compare the
fitting factors of precessing NSBH signals in the NSB and the ASB and we study the
variation of the fitting factor with the spin parameters (section 3.2). Then, we apply
the same search pipelines described in chapter 2 to a population of such precessing
signals and we show their sensitivity for various subsets of the spin parameter space,
corresponding to different astrophysical expectations (sections 3.3 and 3.4). Finally,
we use both the fitting factors and the results of the pipelines to estimate the loss
of detections when aligned-spin effects are included in the pipeline, but precession is
neglected (section 3.5). In section 3.6 we draw the conclusion from this study.

Results of this project are published in [170]. This chapter is a complete rewrite of
the publication, but its contents do not differ significantly from the publication, except
for an additional plot. Alex Nielsen and Andrew Lundgren gave important ideas, advice
and comments on the project and the paper. Alex Nielsen in particular ran some of
the fitting- factor calculations and wrote some sections of the article. Andrew Lundgren
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wrote some of the code for handling precessing signals. Badri Krishnan, Tom Dent and
Steve Privitera gave useful comments on the project and the paper. The author ran some
of the fitting-factor calculations, ran the search pipeline, developed the estimations in
section 3.5, wrote a major part of the paper and handled the publication process and
communication with the anonymous referee.

3.2 Impact of precession on visibility of signals

In this section we perform bank simulations to study the effectualness of the NSB and
ASB already used in chapter 2 and described in section 2.5, relaxing the assumption that
our simulated NSBH signals have BH spins aligned with the orbital angular momentum.
Enabling precession complicates the problem by introducing new degrees of freedom:
the fitting factor of a signal can now depend on the tilt angle of the BH spin as well as
the orientation of the total angular momentum J with respect to the detector.

In order to simplify the problem and separate out the effect of the new parameters
from the mass degrees of freedom, we begin with a population of NSBH binaries with
masses fixed at mBH = 7.8M⊙, mNS = 1.35M⊙. The dimensionless BH spin magnitude
χBH is distributed uniformly between 0 and 1 and the tilt angle ϑBH is determined by
a uniform distribution of cosϑBH between ±11. The orientation of J is uniform on the
unit sphere. The population is simulated using the SpinTaylorT2 approximant with the
same settings are done in chapter 2.

Fitting factors for this first population against our banks are shown in figure 3.1 as a
function of the main parameters of the dimensionless BH spin, namely its projection on

the orbital angular momentum χ
‖
BH and the magnitude of its projection on the orbital

plane

χ⊥
BH := ||χBH − (χBH · L̂)L̂||. (3.1)

By observing the fitting factors in the two banks, we can approximately separate the
spin parameter spaces into three different regions.

The first region is defined by low values of the BH spin magnitude, roughly χBH . 0.4.
Not surprisingly, both banks work well here. The aligned-spin-orbit pN terms in the
signal waveforms are small enough that the dephasing with respect to non-spinning
templates can be compensated by a small bias in the symmetric mass ratio, allowing the
NSB to be effectual, as we saw in section 2.5. Moreover, even if the spin is tilted, its
magnitude is too small for precession to significantly modulate the signal.

The second region is defined by a small projection of the spin on the orbital plane but

a large negative or positive spin component along L, i.e. χ⊥
BH . 0.5 and either χ

‖
BH & 0.4

or χ
‖
BH . −0.5. We can observe here a severe loss of the effectualness of the NSB, while

the ASB performs significantly better. This happens because the pN spin-orbit terms

1The resulting distribution of the spin vector is not uniform in the unit ball: sources are more likely
to have a spin vector close to the center of the ball. This is appropriate if we assume that the magnitude
and the orientation of the spin are determined independently by different physical processes (for instance,
accretion on the BH and kick associated with the second supernova).
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Figure 3.1: Fitting factors of our NSB, ASB and their ratio for 2 × 104 precessing
NSBH binaries with mBH = 7.8M⊙, mNS = 1.35M⊙. The origin corresponds to sources
with non-spinning BHs and the vertical axes correspond to the aligned-spin case. The
NSB has a severe loss of effectualness when the spin projection on L is large; this issue
disappears with the ASB. However, neither bank is effectual for many systems having
large orthogonal spin components.
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in the waveform phase are large, causing a large dephasing with respect to non-spinning
templates. Similarly to the effect found in chapter 2, this causes a bias in η so large that
non-spinning templates with η > 1/4 would be required to recover positively aligned
signals, and non-spinning templates with mNS < 1M⊙ would be required for negatively-
aligned signals. However, the modulation induced by precession is still small in this
region, so the ASB is effectual.

The third region represents the highly-precessing case and is roughly identified by
χ⊥
BH & 0.5. Two main features can be observed here: (i) the banks produce very similar

fitting factors and (ii) there is a much larger variance in the fitting factor with respect
to the other two regions, with some sources recovered well and others recovered poorly.

The similar behavior of the banks in the third region can be explained by the fact
that pN spin-orbit terms in the signal phase are small here, so the NSB is able to
compensate their effect with a small bias in η; at the same time, the modulation induced
by precession is the largest possible and neither bank is able to recover the power going
into the modulation sidebands. This demonstrates how the effects of the aligned and
orthogonal components of the spin are almost decoupled, as predicted for example in
[171].

The spread in the fitting factor visible in the high-precession region is explained
instead by the different possible orientations of J relative to the detector, as demon-
strated in figure 3.2. In fact, the orientation determines the fraction of signal power that
goes into the modulation sidebands and that is lost when non-precessing templates are
used. In particular, precessing binaries with J pointed at or away from the detector
(“parallel-J” systems) tend to look more like non-precessing systems than orthogonal-J
ones, so their waveforms have a smaller modulation and the fitting factor is larger [172].
We can see from figure 3.2 that large fitting factors are also possible for orthogonal-J
binaries with four particular orientations of J . However, such systems produce relatively
quiet signals at the detector, i.e. the maximum range at which they can be detected is
lower than parallel-J ones. As shown in the bottom plot, in fact, orthogonal-J systems
are generally quieter than parallel-J ones at the same distance, because one polariza-
tion contains less signal power than the other. Thus, although detecting orthogonal-J
precessing systems with non-precessing templates is challenging, they are also the least
likely to be detected even with an ideal precessing bank.

Having understood the main features of precessing signals for the fixed-mass case, we
now extend the simulation to the whole range of masses considered in the construction
of the ASB, i.e. mBH ∈ [3, 15]M⊙ and mNS ∈ [1, 3]M⊙ with uniform distributions. The
result is shown in figure 3.3 and it is qualitatively consistent with the fixed-mass case,
although the separation between the three regions is fuzzier. A visible difference is the
much worse fitting factor between the NSB and some of the anti-aligned systems (lower
region of first and last panels); these are heavy systems, with mBH & 11M⊙. The poor
performance of the NSB for those signals is not due to precession but again to the bias
in η produced by attempting to recover spinning signals with non-spinning templates.
Being anti-aligned, these systems introduce a negative bias, i.e. they would be well
recovered by non-spinning templates associated with a lighter NS and a heavier BH.
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Figure 3.2: Top plot: fitting factor of strongly-precessing NSBH binaries with the
aligned-spin bank as a function of the orientation of the total angular momentum J

with respect to the detector (poles: J parallel to the line of sight; equator: J orthogonal
to the line of sight). Almost identical fitting factors are obtained with the non-spinning
bank. Bottom plot: optimal SNR of the same binaries at a fixed distance. Sources

have mBH = 7.8M⊙, mNS = 1.35M⊙, χ
⊥
BH > 0.5 and |χ‖

BH| < 0.2. We can see that the
loudest systems (located close to the poles) tend to have fitting factors close to 100%,
while systems with poor fitting factors are relatively quiet.
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Figure 3.3: Fitting factors of our NSB, ASB and their ratio for 2×104 precessing NSBH
binaries with mBH ∈ [3, 15]M⊙, mNS ∈ [1, 3]M⊙. The origin corresponds to sources with
non-spinning BHs and the vertical axes correspond to the aligned-spin case. The result
is very similar to the fixed-mass case shown in figure 3.1.

For systems with small enough masses (such as the earlier fixed-mass case) the biased
masses are still within the mass range of the NSB and the bank is effectual. Signals with
negatively-spinning BHs heavier than ≈ 11M⊙, however, “fall off” the mBH = 15M⊙

boundary of the bank; templates with larger mBH would be required for the bank to be
effectual.

3.3 Recovering precessing signals in realistic data

The sensitivity of a CBC search pipeline is determined primarily by the background of
false alarms associated with the detector noise and by the effectualness of the template
bank for the targeted signal population. We have seen in chapter 2 that the background
increases in a predictable way when going from the NSB to the ASB and we have just
investigated the effectualness of the banks for precessing binaries. Based on these re-
sults we expect the ASB to still perform at least as well as the NSB and to significantly
outperform it for almost-aligned, high BH spins. However, the correct behavior of co-
incidence and signal-based vetoes remains to be verified when precession is important.
Ultimately we also want to plot the sensitivity of the pipeline at fixed FAR (as done in
figure 2.18) for different distributions of spin magnitude and tilt.

As the next step we thus add signals from a population of precessing NSBH binaries
to the realistic simulated data described and used in chapter 2. We use again a fixed-mass
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Figure 3.4: Combined SNR and reweighted SNR observed by the search pipelines for
each simulated signal vs the optimal combined SNR of the signal.

population (mBH = 7.8M⊙,mNS = 1.35M⊙) and one where the masses are distributed as
in chapter 2, namely: mBH is a Gaussian with mean 7.8M⊙ and standard deviation 3M⊙,
truncated between 3M⊙ and 12M⊙; mNS is a Gaussian with mean 1.35M⊙, standard
deviation 0.13M⊙ and truncated between 1M⊙ and 2M⊙. The BH spin is distributed as
in section 3.2. All the other parameters, the waveform approximant and the configuration
and background of the search pipelines are identical to what was described in chapter 2.

A signal-by-signal comparison between optimal combined SNR and observed com-
bined SNR is shown in figure 3.4 for the fixed-mass population; results for the varying-
mass signals are similar and are not shown. For many signals, both banks show a large
loss of observed SNR and an even larger suppression of observed reweighted SNR. This
is likely due to the χ2 veto penalizing precessing signals. The advantage of the ASB is
not clear from figure 3.4 because of the relatively scarce systems with large and aligned
spins. The variation of the loss with the spin parameters is more clear in figure 3.5.
Both the SNR and reweighted SNR show a consistent behavior with the fitting factor
calculation: the ASB is much more effectual for large spin magnitude and tilt angle close
to either 0 or 180 degrees, while both banks have similar performance for small mag-
nitude or tilt angle around 90 degrees. We can thus be confident that the exact-match
coincidence method and the χ2 veto preserve the features of the banks observed with
the bank simulations.

3.4 Search sensitivity at fixed false-alarm rate

We now present the sensitivity of the search pipelines with the NSB and the ASB at
fixed FAR and for different cuts on the BH spin parameters. The figure of merit is the

82



0 0.5 1
−1.0

−0.5

0.0

0.5

1.0

B
H

sp
in

p
ro
je
ct
io
n
a
lo
n
g
~ L

Nonspinning bank,
comb. SNR

0 0.5 1

Nonspinning bank,
comb. reweighted SNR

0 0.5 1

Aligned-spin bank,
comb. SNR

0 0.5 1

Aligned-spin bank,
comb. reweighted SNR

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

Magnitude of BH spin component normal to ~L
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same used in chapter 2, i.e. eq. (2.4); plotting this as a function of the FAR produces
ROC curves. We compute 68% uncertainty intervals on this quantity by constructing
100 different curves using random selections of half of the background and half of the
simulated signals, and taking the standard deviation of the result.

ROC curves associated with the fixed-mass population are shown in figure 3.6. The
first plot shows all systems, regardless of their spin parameters: the ASB gives a slightly
larger sensitivity, although the difference is compatible with the error interval. The
second plot is the case of weak spin magnitudes and unrestricted tilts, for which the
NSB is close to optimal. As we saw already in chapter 2, the ASB has a slightly lower
sensitivity here due to the larger background. Plots 3, 4 and 5 assume respectively large
spin magnitudes, large magnitudes and small tilt angles, and small tilt angles only. In
these cases the advantage of the ASB is much clearer, giving a sensitivity between 50%
and one order of magnitude larger. According to existing population synthesis studies
and spin measurements, the most realistic scenario is between plots 4 and 5. From plot
6 we can see that, for the high-precession case, the banks perform again in a similar
way. The ASB gives the worst sensitivity in this region. ROCs for the varying-mass
population are shown in figure 3.7. The qualitative results are unchanged and we can
thus extend our conclusions to a realistic mass distribution.

3.5 Comparison with an idealized precessing search

Although precessing waveform approximants are already available, further development
is required to include precession in a search pipeline. The most important missing
component is a full precessing bank (PB). Although this development is outside the
scope of this thesis, as a final exercise we use the previous results to estimate the loss
of detections produced by using the best search pipeline currently available, i.e. the one
based on the ASB, and neglecting precession effects. This should help prioritizing the
development of a fully precessing pipeline.

One way to estimate the detection rate of the ASB relative to an ideal PB is to use
the fitting factors and optimal SNRs from our bank simulations. Consider one of our
simulated systems. The spatial volume within which an identical system at arbitrary
distance produces an SNR of at least ρref in the ASB scales as

V i
ASB ∝

(

ϕiρi
ρref

)3

(3.2)

where i labels the system, ϕi is the fitting factor with the ASB and ρi is the optimal
SNR at unit distance. The volume corresponding to the ideal PB can be estimated in
the same way by simply assuming an average fitting factor ϕPB = 0.985 irrespective of
the parameters of the signal. By summing over all the simulated signals and taking the
ratio, we obtain the relative sensitivity

V :=
VASB

VPB
=

∑

i(ϕiρi)
3

ϕ3
PB

∑

i ρ
3
i

. (3.3)
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Figure 3.6: ROCs associated with the non-spinning and aligned-spin pipelines for NSBH
binaries with mBH = 7.8M⊙, mNS = 1.35M⊙ and different constraints on the BH spin
parameters (green areas in the insets). The aligned-spin pipeline is more sensitive in
most cases, with large gains for astrophysically plausible spin distributions.
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Figure 3.7: ROCs associated with the non-spinning and aligned-spin pipelines for NSBH
binaries with varying masses (see text) and different constraints on the BH spin parame-
ters (green areas in the insets). Even with a realistic mass distribution, the aligned-spin
pipeline is more sensitive for most spin distributions, with large gains for astrophysically
plausible ones.
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Note that we are ignoring the increased background of the precessing pipeline—which
could be considerable—so V is a lower limit. Coincidence and signal-based vetoes are also
obviously ignored. With this caveat in mind, using the fixed-mass (“FM”) or varying-
mass (“VM”) bank simulations we obtain

Vall
FM ≈ 81% (3.4)

VHP
FM ≈ 61% (3.5)

Vall
VM ≈ 86% (3.6)

VHP
VM ≈ 71% (3.7)

where the superscripts “all” and “HP” indicate respectively the case of no restriction on
the spin parameters and the high-precession case χBH > 0.7, 45 < ϑBH < 135. It appears
from this estimation that the ASB is able to detect a large number of systems, even when
precession is important. This can be explained by considering that the brightest systems
are parallel-J ones and the ASB is quite effectual at recovering them, as shown in figure
3.2.

The results of running the search pipeline allow us to estimate the loss of the ASB
vs PB in a different way, if we make one more approximation (other than neglecting
the larger background of the PB). This is that the number of detections with the PB,
averaged over the possible orientations of J , does not depend on χ⊥

BH. In other words,

we assume that an ensemble of precessing binaries with Ĵ uniformly distributed on the
sphere is not brighter than a similar ensemble of non-precessing binaries. This is justified
because precession merely distributes the radiated power more evenly across the sky—
making orthogonal-J systems more detectable and parallel-J ones less detectable—but
it does not make the signals longer nor does it increase their radiated power2 [172].
Under these assumptions, the fraction of generic binaries detected by the precessing
pipeline should be equal to the fraction of weakly-precessing binaries detected by the
aligned-spin pipeline. Since the fraction of detected sources is our definition of ROC,
we can then use the ROC of the ASB associated with weakly-precessing sources (say,
χ⊥
BH < 0.4) as a proxy for the ROC of the precessing pipeline with no restrictions on the

spin parameters. We can thus estimate the relative sensitivity of the ASB as

Wall,HP
FM,VM(ξ) :=

W all,FM
FM,VM(ξ)

WLP
FM,VM(ξ)

(3.8)

where WS
M (ξ) is the ROC associated with the aligned-spin pipeline assuming the partic-

ular cut S of the spin parameters (“all”: no restriction; “LP”: low precession, χ⊥
BH < 0.4;

“HP”: high precession, χBH > 0.7 and 45 < ϑBH < 135) and mass distributionM (“FM”:

2Since precession produces modulation sidebands around the fundamental chirp, in principle it could
boost the detectability of the signal by spreading its power over a frequency band where the detector is
more sensitive. However, because the modulation is slow with respect to the instantaneous period of the
chirp, the sidebands are too close to the main chirp for this effect to be important.
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fixed; “VM”: varying) and ξ is the FAR at which the ROC is evaluated. The result is

78% < Wall
FM < 83% (3.9)

41% < WHP
FM < 50% (3.10)

80% < Wall
VM < 87% (3.11)

50% < WHP
VM < 68% (3.12)

where the ranges include the different possible FARs. These estimates do include the
effect of coincidence and χ2 veto. In fact the high-precession estimates are smaller than
eq. (3.5) and (3.7), suggesting that the veto is penalizing strongly-modulated signals.

3.6 Conclusion

In this chapter we extend the results of chapter 2 by relaxing the assumption that BH
spins are aligned with the orbital angular momenta in our simulated sources. We present
the effectualness of our non-spinning and aligned-spin banks as a function of the spin
parameters and we show how the sensitivity of the pipelines used in the previous chapter
depends on different assumptions about spins, using realistic synthetic data.

We find again that the NSB is not effectual when the projection of the dimensionless
spin on the orbital angular momentum is larger than≈ 0.4 or smaller than≈ −0.5, i.e. for
strongly-spinning and weakly precessing binaries. When precession is strong, including
aligned-spin effects does not improve the effectualness of the bank. The resulting SNR
loss depends on the orientation of the total angular momentum and can be as large as
≈ 40% for cases where J is roughly orthogonal to the line of sight. Nevertheless, both
banks are effectual or close to effectual for precessing systems with J pointing either at
or away from the detector, which are also the most likely to be detected based on their
intrinsic luminosity.

Assuming a universe composed of NSBH binaries with weak and tilted BHs spins, the
aligned-spin pipeline is slightly less sensitive than the non-spinning one because of the
larger false-alarm background. With no restriction on spin parameters, both pipelines
have very similar sensitivity. However, when spins are large and almost aligned, which
is a likely scenario based on existing simulations and measurements, the aligned-spin
search can be roughly one order of magnitude more sensitive. The improvement is also
significant assuming either large spin magnitude only or small tilt only. In the unlikely
case of a vast majority of strongly-precessing binaries, both pipelines perform similarly
again and the aligned-spin one has its worst sensitivity.

Using these results, we estimate that developing a generic precessing NSBH search
pipeline could further increase the sensitivity by a few tens of percent or, under less
realistic assumptions, possibly double it. This assumes that the FAR does not increase
significantly when precessing templates are used, such that the detection threshold can
be kept unchanged. The development of a precessing template bank is needed to check
this assumption and also to estimate the increase in computational cost.
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Figure 2.4 as well as existing studies [145, 146] suggest that our conclusions are likely
to remain valid for the final sensitivity curve of advanced LIGO interferometers. Pre-
cessing IMR waveforms are now available or in final development [77, 78]; these could
be a more appropriate model for the high-mass, anti-aligned systems in our population,
but we do not expect the inclusion of IMR to change our results significantly. Given
the large uncertainty about BH masses, the availability of computationally efficient IMR
templates could enable the extension of our search to much higher masses, which may
reduce the importance of including spin. This must be investigated. We also neglect
tidal interaction and disruption of the NSs, which could significantly change the sig-
nals depending on the BH parameters [151]. Based on [154] however we expect tidal
interaction to have a small effect on the detectability of signals. Moreover, our choice of
terminating templates at ISCO should make the pipeline robust against tidal disruption.
Nevertheless, this is also an effect that must be checked with further studies.

We thus conclude with the recommendation of using an aligned-spin pipeline for fu-
ture NSBH searches, until a fully precessing pipeline is technically feasible, its robustness
against instrumental noise artifacts and its larger sensitivity are both demonstrated and
its computational requirements can be satisfied.

89



90



Chapter 4

Sensitivity of coincident and

coherent CBC searches at fixed

computational cost

4.1 Overview

Every past matched-filter search for CBC events with unknown coalescence time and
sky position used coincidence as the method for combining data from different detectors
(eq. (1.39)). We have seen in chapter 1 that data can also be combined coherently
by defining a coherent matched filter (eq. (1.41)) which has a number of advantages.
This method has been used for searches triggered by electromagnetic GRB observations,
but not for all-sky, all-time searches [128, 142]. Comparisons between the coherent and
coincident methods have been done in the past. In [173], for instance, the comparison
was done for two interferometers at the same site and with the same orientation. The
result suggests that the coherent method has a significantly larger sensitivity. In [174]
the study was extended to two geographically separated detectors and to a more realistic
definition of coincidence, showing that in this case the coherent methods perform only
slightly better. Although the quantitative improvement depends on the details of the
analysis and detector network, the coherent statistic seems to always be more sensitive
at a fixed FAR.

With the larger bandwidth of advanced interferometers, and the availability of more
developed waveform models such as the ones used in chapters 2 and 3, the number
of templates and thus the computational cost of CBC searches is expected to grow
significantly. A complete comparison between coincident and coherent searches, thus,
should take into account the computational cost of both methods. As we saw earlier,
the cost of coincident pipelines is essentially dominated by the FFT algorithm. The cost
of a fully coherent search can be more complicated and has been estimated for initial
detector networks, but not for advanced detectors [175, 176]. A study of the relative
sensitivities of the two methods at fixed FAR and computational cost has never been
published. It is also possible that a hierarchical (semicoherent) method combining the
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two strategies could produce an interesting increase in sensitivity at a cost comparable
to the coincident method. Such a hierarchical method has been partially investigated,
but the associated cost has not been studied in detail [177]. The coherent matched filter
engine used for triggered GRB searches is already using a hierarchical method [128].

In this chapter, using a semi-analytical approach, we estimate the false-alarm back-
ground, the sensitivity and the computational cost associated with coincident and coher-
ent CBC search pipelines for different networks of advanced interferometers. We then
fix the FAR and the cost and estimate the relative sensitivity of the two methods. We
repeat the estimation for a hierarchical method, where a coincident detection with a
low threshold is followed by a coherent follow-up of the surviving candidates. We make
the simplifying assumption that the detectors produce stationary Gaussian noise and
neglect the effect and cost of computing signal-based vetoes and null combinations of
the data; in other words, we compare the methods under ideal data quality. We also
neglect the cost of estimating the false-alarm background for establishing the significance
of candidates.

The research presented in this chapter has not been published yet. The original idea
for the project, important guidance and comments came from Drew Keppel. Drew also
developed the code for placing templates over the sky, based on his own previous research,
and provided some of the estimations of the computing cost. The author constructed the
template banks, developed the various models, implemented the code for simulating the
false alarms of the coincident and coherent methods, ran the simulations on the Atlas
cluster and implemented the code for combining the models and producing the results.
The author is grateful to Bruce Allen, Tom Dent, Shaon Ghosh and Reinhard Prix for
useful comments and discussion.

The chapter is organized in the following way. Section 4.2 describes our models
of the detectors and the template banks. Section 4.3 presents our models of the false
alarms. In section 4.4 we estimate the computational cost of the two methods. Section
4.5 combines the previous calculations into the final comparison. Section 4.6 describes
the hierarchical semicoherent method and shows the associated reduction in cost with
respect to the fully coherent method. Conclusions are drawn in section 4.7. In our
notation, d = 1 . . . D indexes the detectors in the network, T is the duration of the
analyzed data segment and N is the number of data samples. The subscripts “coi” and
“coh” label quantities associated with the coincident and coherent methods respectively.
We refer to a χ2 distribution with n DOF as χ2(n).

4.2 Detector networks and template banks

We consider here the following interferometers: LIGO Hanford (H), LIGO Livingston
(L), Virgo (V), KAGRA (K) and LIGO India (I). The location and orientation of LIGO
India are not established at the time of this study and we choose arbitrary values used al-
ready in [178]. For KAGRA’s parameters, see [179]. Although the first detector network
to begin taking new data in 2015 is the HL combination, based on [174] we expect it to
yield very similar sensitivity with both coincident and coherent methods. For simplic-
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Figure 4.1: Noise models assumed for individual detectors (left) and network sensitivities
obtained by harmonic-averaging the single detector curves (right).

ity we thus only consider networks of three or more detectors, specifically the following
combinations: HLV, HLI, HLVI and HLVIK. The evolution of the sensitivity curves of
different detectors towards their design configuration could produce a significant varia-
tion of the size of the template banks and thus noticeably affect the computational cost
of the pipelines. Therefore, for the HLV network we consider four sensitivity scenarios
tracing the plausible evolution towards the final design curves: HLV 2016 (“mid” sen-
sitivity curves from [180] for HL, “early” sensitivity curve from [180] for V), HLV 2017
(“late” sensitivity for HL, “mid” for V), HLV 2019 (design sensitivity for HL, “late”
sensitivity for V) and final HLV configuration (design sensitivities for every detector).
For design sensitivities of LIGO, Virgo and KAGRA we use the models implemented
in LALSimulation [60] and we assume identical curves for H, L and I. The amplitude
spectral densities associated with the different noise models are shown in figure 4.1.

An important aspect affecting both the computational cost and the sensitivity of a
pipeline is the template bank, because the number of templates that need to be searched
over is directly related to the maximum mismatch µ used for constructing the bank. For
simplicity and speed, in this study we neglect the spin of the components of the binary
and only search over the component masses. As done in the previous chapters, we
assume here an exact-match method for the coincident search, so a single bank covering
the component masses is associated with each network. A coherent search, on the other
hand, needs to search over both the masses and the sky location, i.e. 4 parameters instead
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Network Noise curves Template count km ks
Mass Sky

HLV 2016 58288 1641 1749 49.2
HLV 2017 67062 1405 2012 42.2
HLV 2019 84650 2595 2540 77.9
HLV final 78063 2723 2342 81.7
HLI final 86001 4274 2580 128
HLVI final 81040 6552 2431 197
HLVIK final 73008 8006 2190 240

Table 4.1: Empirical estimates of the template-bank parameters km and ks for different
detector networks.

of 2. It has been found that the mass and sky parameters are weakly correlated, so the
full coherent template bank can be split into the Cartesian product of a mass bank and
a sky bank [181]. For each detector network we can thus employ a common mass bank
for the two methods and an additional sky bank for the coherent method.

The number of templates required to cover a certain region of an n-dimensional
parameter space with a maximum mismatch µ scales as µ−n/2 [116]. We thus model the
number of mass templates as

M := km/µ (4.1)

where km is a proportionality constant which depends on the detector network. We
fix this constant empirically by constructing template banks for a reference 3% maxi-
mum mismatch and counting the templates. The construction is performed using the
lalapps_tmpltbank program of LALSuite. For simplicity we use pN inspiral templates
with non-spinning phase terms up to 2 pN order only. For each detector network, single-
detector noise PSDs are combined into a multi-detector curve by taking their harmonic
mean, as suggested in [181], and the result is used to build the bank. The resulting
network sensitivities are shown in figure 4.1. The frequency limits for the metric calcu-
lation are fixed at 20 Hz and 2048 Hz. We explore individual component masses between
1M⊙ and 25M⊙ and with a total mass below 25M⊙. The resulting bank sizes and km
estimates are shown in table 4.1. km appears to be fairly independent from the detector
network, with the exception of HLV 2016 which has a visibly narrower network PSD.

The size of the sky bank given a maximum mismatch µ is modeled in a similar way,

S := ks/µ. (4.2)

ks is estimated, as before, by constructing sky banks for µ = 0.03. Such banks are built
using the stochastic placement method and the analytical metric associated with the
coherent SNR [181, 182]. The same frequency limits as for the mass banks are used.
The result is shown in table 4.1. Networks containing several widely separated detectors
clearly require many more sky templates than smaller networks, as can be expected from

94



their increased angular resolution [183, 184]. Two example sky banks are shown in figure
4.2.

4.3 False-alarm rate

As explained in section 2.9, the comparison of the sensitivity of two detection methods
is typically done at a fixed FAR ξ. Requiring a sufficiently low ξ in order to claim a
detection implies a sufficiently high threshold that must be crossed by the detection
statistic and thus reduces the number of astrophysical signals that can be detected.
One step in estimating the sensitivity of a search method is therefore establishing the
relation between the FAR of the method and the threshold on its detection statistic. In
this section we model the relation between ξ and the thresholds on the coincident SNR
(ρ̄coi) and on the coherent SNR (ρ̄coh). This model will allow us to obtain ρ̄coi and ρ̄coh
given ξ. The most important approximation we make here is that the detector noise is
stationary and Gaussian, which allows us to work with simple χ2 distributions. A second
approximation is that the false alarms of both the coincident and coherent methods are
Poisson-distributed with rate ξ(ρ̄) (where ρ̄ can be either ρ̄coi or ρ̄coh). This allows us
to write the false-alarm probability (FAP) in a data segment of duration T as

ptotfa (ρ̄) = 1− e−Tξ(ρ̄) (4.3)

and the “tot” superscript indicates that we are considering false alarms from the whole
template bank and data segment. In order to obtain the relation between ξ and ρ̄coi
(ρ̄coh) we then need to model the relation between ptotfa and ρ̄coi (ρ̄coh) which we do in
the next subsections.

4.3.1 Coincident search

In a coincident search, the single-detector SNRs ρd for a given template are first maxi-
mized over a time window W of length W samples, producing the statistic

̺2d := max
k∈W

{ρ2d[k]} (4.4)

where k is the sample index of the SNR time series. We choose here a window of 50
ms—slightly larger than the maximum light travel time through the Earth—although in
a realistic search W can be several seconds long. The network statistic of the coincident
method is then the incoherent SNR

ρ2coi :=
D
∑

d=1

̺2d. (4.5)

Because the ρ2d are all distributed as χ2(2) under stationary Gaussian noise, if we simply
summed them in quadrature—without the maximization—ρ2coi would be distributed as
χ2(2D) and we could directly relate the FAR to the threshold ρ̄coi. However, (i) coinci-
dence is conditional on two or more detectors crossing the single-detector threshold first

95



Figure 4.2: Sky template banks obtained for the HLV network (top) and the HLVIK
network (bottom). α and δ are the right ascension and declination at a fixed sidereal
time. Each ellipse is the 1.5% mismatch contour for the associated template. The color
shows the metric density in log10 scale.
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and (ii) ̺2d does not quite follow a χ2(2) distribution. We deal with the first issue by
assuming that the single thresholds are small enough that they can be neglected and we
simply have a discrete time series of ρcoi at each coalescence time sample. In order to
solve the second issue, we compute first the distribution of ̺2d (momentarily dropping
the d subscript for simplicity) and then use that to compute the distribution of ρ2coi.

̺ is smaller than a threshold ¯̺ if and only if all samples of ρ in the maximization
window W are also smaller than ¯̺. Therefore we can write

P (̺ < ¯̺) = P (̺2 < ¯̺2) = P (ρ2[k] < ¯̺2 ∀k ∈ W). (4.6)

We now make the approximation that all samples of ρ in the maximization window are
statistically independent, which allows us to write

P (̺ < ¯̺) =
∏

k∈W

P (ρ2[k] < ¯̺2) (4.7)

and then we use the cumulative distribution function of a χ2(2) variable to arrive at

P (̺ < ¯̺) =
(

1− e− ¯̺2/2
)W

. (4.8)

The probability density of ̺2 is then

f(̺2) =
d

d¯̺2
P (̺2 < ¯̺2)

∣

∣

∣

∣

¯̺=̺

=
W

2

(

1− e−̺2/2
)W−1

e−̺2/2. (4.9)

The mean and the variance of this distribution are

E[̺2] = 2
W
∑

w=1

1

w
, Var[̺2] =

2

3

[

π2 − 6ψ′(1 +W )
]

(4.10)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. In practice, single-detector SNRs
have an autocorrelation with a typical width of the order of milliseconds for advanced-
detector noise curves (figure 4.3) and thus the samples in W are certainly not indepen-
dent. Therefore, W must be replaced by an effective window size Weff < W taking into
account a finite decorrelation time. As the autocorrelation level needed to make two
samples statistically independent is not obvious, in practice Weff is a free parameter of
our model and is fixed via Monte Carlo simulations later on.

We are now ready to extend our result to a network of D detectors and compute the
FAP associated with the coincident SNR,

pfa(ρ̄coi) = P (ρ2coi > ρ̄2coi) =

∫

H

(

−ρ̄2coi +
D
∑

d=1

̺2d

)

D
∏

d=1

f(̺2d)d̺
2
d (4.11)

where the integral is over the positive D-dimensional real set and H(·) is the Heaviside
step function defining the integration limits. Using eq. (4.9), and assuming that Weff is
the same for each detector,

D
∏

d=1

f(̺2d) =

(

Weff

2

)D

exp

(

−
D
∑

d=1

̺2d/2

)

×
D
∏

d=1

(

1− e−̺2d/2
)Weff−1

. (4.12)
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Figure 4.3: Duration of the autocorrelation of single-detector squared-SNR time series
in stationary Gaussian noise as a function of the total mass of the template. Dashed
and solid curves show respectively the 20% and 50% autocorrelation.

We now notice that the last product is always between 0 and 1 and in particular very
close to 1 for ̺2d ≫ 1. By dropping it we thus obtain an upper bound for pfa(ρ̄coi), which
however should be a reasonable first approximation in the limit ρ̄coi ≫ 1:

pfa(ρ̄coi) <

(

Weff

2

)D ∫

H

(

−ρ̄2coi +
D
∑

d=1

̺2d

)

exp

(

−
D
∑

d=1

̺2d/2

)

d̺2d

= WD
eff

∫ ∞

ρ̄2
coi

dx1e
−x1

∫ ∞

ρ̄2
coi

−x1

dx2e
−x2 · · ·

= WD
eff Φ(ρ̄2coi, 2D) (4.13)

with Φ(·, 2D) being the survival function, i.e. one minus the cumulative distribution
function, of the χ2(2D) distribution. We thus see that, to a first approximation, the
maximization of single SNRs simply introduces a trials factor WD

eff into an otherwise
unmodified χ2 distribution. For Weff = 1, corresponding to no maximization, we cor-
rectly recover a χ2(2D) distribution. For D = 1 we recover eq. (4.8)—or rather, its
complement—in the approximation ρ̄coi ≫ 1.

The previous results refer to the FAP for a single sample of the detection statistic
and a single template. Since we are searching over coalescence time and component
masses, the overall FAP ptotfa is enhanced by a trials factor proportional to the proper

98



volume of the search parameter space, i.e. to the quantity
∫

√

det[gij ] dtcdm1dm2 ∝ Tkm (4.14)

where gij is the metric tensor associated with the parameter space spanning the masses
and the coalescence time. Therefore we write the overall FAP, in the usual limit ρ̄coi ≫ 1,
as

ptotfa (ρ̄coi) ≈ γcoi TkmW
D
eff Φ(ρ̄2coi, 2D) (4.15)

where γcoi is a proportionality factor accounting for the fact that samples of ρcoi at
different coalescence times and templates are not completely statistically independent.
We can finally set eq. (4.15) equal to (4.3) and expand the exponential to first order,
obtaining the relation between FAR and threshold

Φ(ρ̄2coi, 2D) ≈ ξ

γcoikmWD
eff

(4.16)

valid in the regime Tξ ≪ 1. The free parameters Weff and γcoi are empirically estimated
by performing Monte Carlo simulations. We simulate the distribution of the coincident
SNR from stationary Gaussian noise for different detector networks and perform a global
fit of eq. (4.16) to the measured trigger rates. This results in Weff ≈ 11.2 samples
and γcoi ≈ 3.47 × 104. By naively considering all samples and templates statistically
independent, we would obtain instead γcoi ≈ 105. At a typical sample rate of 4096
Hz, the estimated value of Weff corresponds to a decorrelation time of ≈ 3 ms, i.e. an
autocorrelation of a few tens of percent according to figure 4.3.

4.3.2 Coherent search

Under the approximation of stationary Gaussian noise, the FAP associated with a single
template and a single sample of the coherent SNR is simply given by a χ2(4) distribution,
independently from the number of detectors [127, 128, 185]:

pfa(ρ̄coh) = Φ(ρ̄2coh, 4). (4.17)

The trials factor for going from pfa(ρ̄coh) to p
tot
fa (ρ̄coh) corresponds now to a 5-dimensional

search volume (coalescence time, component masses, right ascension and declination)
such that

ptotfa (ρ̄coh) ≈ γcoh Tkmks Φ(ρ̄
2
coh, 4) (4.18)

where γcoh takes into account the fact that nearby coalescence times, mass templates
and sky templates are not statistically independent. Again, by setting eq. (4.18) equal to
eq. (4.3) we obtain the relationship between FAR and threshold for the coherent method

Φ(ρ̄2coh, 4) ≈
ξ

γcohkmks
(4.19)

valid for Tξ ≪ 1. This is similar to eq. (4.16) with ks now playing the role of Weff . The
only free parameter left is thus γcoh, which again we estimate by simulating the false
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Figure 4.4: Relationship between the FAR and the threshold on coincident SNR (solid
lines) or coherent SNR (dashed lines) according to our model.

alarms associated with the coherent SNR in Gaussian noise and fitting eq. (4.19) to their
empirical rate. The result is γcoh ≈ 2.05× 105.

The relation between the coincident and coherent thresholds and the FAR is shown
in figure 4.4 for the various detector networks. At a given FAR, the coherent method
has a consistently lower threshold which is fairly independent from the detector network,
while ρ̄coi increases significantly with the number of detectors. This can be explained by
the different DOF of the two detection statistics. The small increase of ρ̄coh for larger
networks can be attributed to the variation of ks with D, i.e. to the metric volume
associated with the sky parameters.

4.4 Computational cost

We now estimate the computational cost associated with the coincident and coherent
methods. We define the cost as the number of floating-point operations (FLOPs) re-
quired to calculate the detection statistic (either coincident or coherent SNR) for the
whole data segment and template bank and generate the candidate triggers from the
statistic.

As a first step, both statistics require the calculation of the single-detector complex
matched-filter output. A common practice in frequency-domain inspiral searches is fil-
tering twice as many samples as the desired output size and then ignoring the first and
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Operation Cost Factor

Template generation αtmpN αtmp = 10
Frequency-domain correlation α×N α× = 6
Inverse FFT 2αFFTN log2 2N αFFT = 4
SNR calculation αabsN αabs = 3
Trigger generation αtrgN αtrg = 1

Table 4.2: Approximations made in our computational cost estimate.

last quarters of the output time series. This avoids issues arising from the length of the
impulse response of the filters and the FFT wrap-around [104]. Therefore, analyzing
N samples requires processing N complex frequency bins. In particular, the following
steps are required. (i) Computation of the pN template waveform at each frequency bin.
This amounts to O(10) FLOPs per sample for a 3.5 pN template using the TaylorF2
waveform model. (ii) Correlation of data and template in the frequency domain. This
is just a complex multiplication, so 6 FLOPs per sample per detector are required. (iii)
Inverse Fourier transform. This can be done efficiently using a complex-to-complex FFT
of size 2N , adding O(2N log2 2N) FLOPs per data segment for each detector.

After the basic operations listed above, the coincident method proceeds by calculating
the squared magnitude of single-detector SNRs (3 FLOPs per sample per detector),
maximizing the SNR over the window W (which only involves comparisons and thus we
neglect) and summing the SNRs across detectors (D − 1 FLOPs per sample). Finally,
generating the list of triggers from the resulting time series adds a small contribution to
the total cost, which we assume to be just one operation per sample. The total FLOP
count per data segment for the coincident method is then

Ccoi =McoiN [αtmp +D (α× + 2αFFT log2 2N + αabs + 1)− 1 + αtrg] . (4.20)

The values we take for the α· constants are summarized in table 4.2. From eq. (4.20)
we see that Ccoi ≈ 2McoiNDαFFT log2 2N ≈ 100 McoiND, i.e. the FFT dominates the
total cost, as we already mentioned in chapters 1 and 2.

The first operation of the coherent method, after the common matched-filtering steps
discussed above, is time-shifting the matched-filter outputs to account for the different
signal arrival times. This can be done via an interpolating filter with Nts taps, requiring
2Nts FLOPs per sample, per sky location and per detector (Nts = 0 corresponding to
nearest-neighbor interpolation). The next step is calculating xi (eq. (1.42)), requiring
8D − 4 FLOPs per sample and sky location. The coherent SNR, eq. (1.41), can then
be formed efficiently with 15 more FLOPs per sample and sky location. In fact, we can
write ρ2coh = yiy

i where yi := xjLji and Lij is the Cholesky decomposition of the matrix
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Bij defined in eq. (1.46). The only non-null elements of Lji are

L11 = L33 =

√

B××

B++B×× − B2
+×

(4.21)

L21 = L43 = −
√

B2
+×/B××

B++B×× − B2
+×

(4.22)

L22 = L44 =

√

B++ − B2
+×/B××

B++B×× − B2
+×

(4.23)

where B++, B+× and B×× are defined in eq. (1.47). Finally, the trigger generation must
now be performed for each sky location, so αtrg gets a factor S. In total,

Ccoh =McohN [αtmp +D (α× + 2αFFT log2 2N) + S (2DNts + 8D + 11 + αtrg)] .
(4.24)

Note that if µcoh . 0.03 then S & 103 (table 4.1) and thus, depending on how the sky
bank is constructed, the cost of the FFT can be easily overwhelmed by the calculation
of the coherent SNR for all sky locations.

We can now set eq. (4.20) and (4.24) equal to the same cost C and express the
number of templates in terms of the maximum mismatches µcoi, µcoh via eq. (4.1) and
(4.2). This establishes the following relation between µcoi and µcoh:

µcoi = µcoh

αtmp

D + α× + 2αFFT log2 2N + αabs + αtrg

αtmp

D + α× + 2αFFT log2 2N + ks
µcoh

(

2Nts +
αtrg+11

D + 8
) . (4.25)

When µcoh is very small, eq. (4.25) simplifies to µcoi ∝ µ2coh, which gives an idea of the
significant difference between the computational cost of the two methods when the sky
is covered with many templates. Figure 4.5 shows a comparison between µcoi and µcoh
as a function of the fixed computational cost required to analyze one second of data. As
can be seen, the two quantities scale with a different power and µcoi is always smaller
by orders of magnitude.

4.5 Sensitivity

Given a detection statistic ρ (either coincident or coherent SNR) and a threshold ρ̄, a
particular binary is visible on average if

E[ρ2] ≥ ρ̄2 (4.26)

where the expectation value is taken over the ensemble of noise realizations. In stationary
Gaussian noise, ρ2 has a non-central χ2(n) distribution with non-centrality (λρx/r)

2,
such that

E[ρ2] =

(

λρx
r

)2

+ n (4.27)
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Figure 4.5: Maximum mismatch of the coincident method (solid lines) and coherent
method (dashed lines) for a given computational cost.

where ρx is the optimal SNR for the binary at unit distance, r is the distance and
0 ≤ λ ≤ 1 represents the SNR loss introduced by the particular detection method for
the binary we are considering. By combining eq. (4.26) and (4.27) we can define the
visible range

rv :=
λρx

(ρ̄2 − n)1/2
. (4.28)

rv is a function of the component masses, the sky location r̂ and the orientation of
the orbit Ĵ , as well as the geometry of the network and the sensitivity curves of the
detectors. We can first of all remove the dependence on r̂ by integrating over the sky
up to a distance rv(r̂), which defines a sensitive volume,

V :=

∫

S2

(

∫ rv(r̂)

0
r2dr

)

dr̂ =
1

3

∫

S2

r3v(r̂)dr̂. (4.29)

We can further average the volume over masses and orientation, obtaining

〈V 〉 =
1

3(ρ̄2 − n)3/2

〈∫

S2

λ3ρ3xdr̂

〉

. (4.30)

Although in principle both λ and ρx depend on the parameters of the binary, in practice
the template banks are so fine that λ3 varies much more rapidly with the parameters
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than ρ3x. We can thus replace λ3 with its average over the parameters and take it out of
the integral,

〈V 〉 ≈
〈

λ3
〉

3(ρ̄2 − n)3/2

〈∫

S2

ρ3xdr̂

〉

. (4.31)

We now note that despite the important differences in how they are calculated, both
ρ2coi and ρ

2
coh measure the total signal power projected on the network. In other words,

the optimal coincident and coherent SNRs are both equal to ρx/r. By taking the ratio
of the average sensitive volumes of the coherent and coincident methods, we thus get rid
of the integrals and obtain a simple expression for the gain in average sensitive volume,

V :=
〈Vcoh〉
〈Vcoi〉

=

(

ρ̄2coi − ncoi
ρ̄2coh − ncoh

)3/2 〈λ3coh
〉

〈

λ3coi
〉 =

(

ρ̄2coi − 2D

ρ̄2coh − 4

)3/2 〈λ3coh
〉

〈

λ3coi
〉 = Vfa(ξ)Vloss(C)

(4.32)
where in the last step we have defined the factor containing the thresholds as Vfa(ξ)
and the factor containing the losses as Vloss(C). Assuming a population of coalescing
binaries with uniform distribution in volume, V gives directly the improvement in number
of detections. In the limit of infinite computational cost, we can afford large template
banks and very precise interpolation, so the SNR losses vanish and we obtain

lim
C→∞

V = Vfa(ξ) =

(

ρ̄2coi − 2D

ρ̄2coh − 4

)3/2

. (4.33)

This limit depends purely on our false-alarm model.
The SNR loss of the coincident method λcoi is determined entirely by the mismatch

between the signal and the closest mass template. We approximate the mass bank
as a 2-dimensional hexagonal lattice, which is the optimal covering scheme [116]. By
considering that the mismatch plays the role of the squared metric distance (eq. (1.32)),
and computing the distribution of the distance from the center of a regular hexagon over
the whole hexagon, one can show that

〈

λ3coi
〉

= 1− 5

4
µcoi +

7

10
µ2coi −

83

560
µ3coi. (4.34)

The coherent search, however, also loses SNR due to the finite mismatch with the sky
bank. Since we take the mass and sky banks to be independent, and both use the
same maximum mismatch, we make the approximation that the mismatch with the sky
bank introduces an additional factor identical to (4.34). A small loss also occurs when
the single-detector matched-filter-output time series are interpolated to synchronize the
arrival times at the different detectors, giving an average factor λts. Thus

〈

λ3coh
〉

=

(

1− 5

4
µcoh +

7

10
µ2coh −

83

560
µ3coh

)2

λ3ts. (4.35)

In section 4.4 we saw that the condition of fixed computational cost requires µcoi < µcoh.
Since 0 < λts < 1, this implies that 0 <

〈

λ3coh
〉

<
〈

λ3coi
〉

< 1, i.e. Vloss(C) < 1: at fixed
computational cost, the coherent method has always a larger SNR loss.
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We can now combine eq. (4.16), (4.19), (4.25), (4.34) and (4.35) with (4.32) to
numerically evaluate V as a function of the computational cost for different detector
configurations. Several parameters need to be chosen for this evaluation; our choice is
ξ = 10−4 yr−1, N = 222, T = 1024 s (4096 samples/s), Nts = 0 and λts =

√
0.99.

The resulting V curves are shown in the top plot of figure 4.6 as a function of the
computational cost for analyzing one second of data. The advantage of the coherent
method increases monotonically with the computational cost as its SNR loss is reduced
and eventually approaches Vfa at very large cost. The limit Vfa as a function of the FAR
is shown in the bottom plot of figure 4.6. Increasing the number of detectors seems to
enhance the advantage of the coherent method if the available computational power is
high enough to enable a realistically small µcoh, since the false alarms of the coincident
method are increased by the additional DOF introduced by each new detector, while
the coherent SNR has only 4 DOF irrespective of D. If the computational power is too
restricted, however, the 4-dimensional parameter space can not be explored with enough
resolution and the SNR loss of the coherent method is too large for the method to be
efficient. It also appears that the most important parameter explaining the variation of
Vfa with the detector network is just the number of detectors rather than the details of
the particular network (such as the constants km and ks). We also see that Vfa slowly
decreases with decreasing FAR, suggesting that strong signals are detected equally well
by both methods, as one would expect. Note however that, as stated before, our false-
alarm model for the coincident search gives only an upper limit at small thresholds.
Hence, Vfa may be overestimated towards large ξ. Interestingly, imposing a fixed FAR
always favors the coherent method (i.e., Vfa > 1) while fixing the computational cost
always penalizes it (Vloss < 1).

4.6 Hierarchical method

In section 4.4 it was shown that, when µcoh is very small, forming the combination of
the matched-filter outputs at each sky location easily becomes the dominant cost of a
fully coherent search. From figure 4.6 we also saw that the coherent search starts to be
more sensitive when µcoh is a few tens of percent or less, depending on the number of
detectors. In this regime, the calculation of ρcoh over the sky is expensive. However,
if the single-detector SNRs are small enough, it may not be necessary to calculate ρcoh
on the whole sky in order to rule out a possible signal. Also note that the operations
required for computing ρcoi are almost a subset of those required for ρcoh. Thus, we
investigate next whether it is possible to reduce the cost of the coherent search by
combining the coincident and coherent methods in a hierarchical, or semicoherent, way.
By this we mean (i) computing first each sample of the coincident SNR for a given
template, (ii) comparing it to a threshold ρ̄h and (iii) calculating the coherent SNR at
each sky location for the coalescence times of the surviving samples only, by reusing the
matched-filter outputs already calculated for step (i).

Let αh be the average fraction of samples that pass the first test under the null
hypothesis and thus require the calculation of the full coherent SNR. This is just the FAP
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Figure 4.6: Sensitivity of the coherent search relative to the coincident search as a
function of the computational cost for a FAR of 10−4 years (top) and as a function of
the FAR at infinite cost (bottom). The triangles mark the points where the template
banks have the conventional 3% maximum mismatch in the coincident search (▽) or
in the coherent one (△). For all networks the coherent method is more sensitive past
a critical value of the computational cost. The asymptotic gain is larger for larger
networks.
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of the coincident method for a single template and sample, which we already determined
in eq. (4.13),

αh ≈WD
eff Φ(ρ̄2h, 2D). (4.36)

This is a good approximation in the limit ρ̄h ≫ 1 and an upper limit otherwise. The
average cost of the hierarchical method is then no larger than

Ch = McohN [αtmp +D (α× + 2αFFT log2 2N + αabs + 1)

+ αhS (2DNts + 8D + 11 + αtrg)]

=: McohN(CMF + αhCsky) (4.37)

where CMF is the cost of the matched filtering and Csky ∝ S the cost of constructing
the coherent SNR for the whole sky. Since we are looking at the regime in which
CMF ≪ Csky, the relative cost of the hierarchical vs fully coherent search (shown in
figure 4.7 for µcoh = 0.03) is approximately

Ch

Ccoh
≈ CMF

Csky
+ αh. (4.38)

For µcoh = 0.03, an interesting cost reduction is achievable with αh ≈ 10−3, correspond-
ing to ρ̄h between 6 and 8 depending on the number of detectors. This happens to be in
the regime where eq. (4.36) is not a good approximation but rather an upper limit, so
in practice the cost will be even less than predicted (although always at least as large as
the CMF/Csky asymptote). A higher ρ̄h brings no further reduction because the cost is
eventually saturated by the matched filter operation. In fact, as we want the coincident
stage to have a negligible effect on the sensitivity at some given FAR, we also have the
condition ρ̄h < ρ̄coh. Thus a sensible choice is to set ρ̄h just at the turnover of the curves
in figure 4.7, for instance by solving the equation Φ(ρ̄2h, 2D) = CMF/2CskyW

D
eff for ρ̄h.

Taking for simplicity ρ̄h such that αh = 10−3, we now repeat the comparison done in
the previous section and compute the sensitivity improvement of the hierarchical method
over the coincident one at fixed computational cost. The results for different networks are
displayed in figure 4.8 as a function of the cost. We can see that the result is the same as
for the fully coherent method, but the curves are shifted to a computational cost roughly
two orders of magnitude smaller. For 3-detector networks, the two methods have a very
similar sensitivity already at a cost corresponding to the canonical choice µcoi ≈ 0.03,
and for networks of 4 or 5 detectors there is already a noticeable improvement.

4.7 Conclusion

Through simplified analytical models and simulations, we investigate the sensitivity and
computational cost of CBC searches with advanced interferometers based on a coinci-
dent network statistic and on a coherent one. We assume stationary Gaussian noise and
we neglect the cost of computing the signal-based vetoes and null streams, as well as
the estimation of the false- alarm background. Consistent with past studies, we find
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Figure 4.7: Upper limit on the average cost of the hierarchical method, relative to the
fully coherent one, as a function of the pre-threshold on the coincident SNR and for a
coherent maximum mismatch of 3%. The shaded lines show the fraction αh of samples
requiring the calculation of the coherent SNR. For moderately large values of the pre-
threshold, the cost of the hierarchical search is dominated by the matched filtering, which
is much smaller than the cost of the fully coherent search.
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Figure 4.8: Sensitivity of the hierarchical search relative to the coincident one as a
function of the computational cost, for a FAR of 10−4 years and αh = 10−3. The
triangles mark the points where the coincident template bank (▽) or the coherent one
(△) are built using the conventional 3% maximum mismatch. The hierarchical search
outperforms the coincident one at a much smaller computational cost than the fully-
coherent one.
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that a fully coherent search is more sensitive, provided that the computational resources
are enough to enable sufficiently fine mass and sky template banks. Because the DOF
of the coincident statistic increase with the number of detectors, while the DOF of the
coherent statistic are network-independent, the coherent method produces a larger gain
in sensitivity for larger detector networks. For networks of three detectors, the resulting
gain in detection rate is below 10%: the coincident method is not very far from the
optimal performance of the coherent one. On the other hand, networks of five or more
detectors have a more interesting gain of at least a few tens of percent. A hierarchical
(or semicoherent) method, where the computation of the coherent SNR is conditional on
crossing a coincident threshold first, should be able to achieve the maximum sensitivity
gain of the fully coherent method at a computational cost comparable to that of conven-
tional coincident searches. This could be important for networks of four or five advanced
interferometers. In the presence of more realistic, non-stationary noise the advantage of
the coherent search could be even larger, provided that the additional consistency tests
that the method enables (such as the null SNR statistic) are employed1. However this
would likely complicate our simple semianalytical treatment of the problem.

Neglecting the cost of vetoes and background estimation is a good approximation for
the coincident search, but may not be so for the coherent one. Background estimation via
time slides, in particular, may require filtering the data multiple times with different time
shifts between detectors. This would multiply the coherent cost by a factor determined
by the SNR of the loudest zero-lag triggers, which could be one order of magnitude or
more. The development of alternative methods of background estimation may however
lift this requirement.

In this investigation we consider for simplicity non-spinning inspiral templates with
phase terms up to 2 pN order. As shown in chapters 2 and 3, however, non-spinning
terms up to order 3.5 and aligned-spin terms up to at least 2.5 order can and should be
included in future searches. Similarly to mass parameters, we expect aligned- spin effects
to be somewhat orthogonal to the sky parameters. Moreover, the effective dimensionality
of a bank of aligned-spin pN waveforms is not much larger than the non-spinning case.
Based on these considerations, we do not expect a dramatic deviation from our result
when higher-order and spinning pN templates are used (except, obviously, for a larger
overall computational cost). However, results could be significantly different if precessing
waveforms are used, since those introduce an additional dependence on sky location.

Our accounting of the computational cost only considers arithmetic operations and
ignores the cost of memory access. In some cases, however, the cost of the FFT algorithm
could have a significant contribution from memory input/output operations. Computing
the coherent SNR from the matched filter outputs, on the other hand, should have
a high enough number of arithmetic operations to make the cost of memory access
negligible. If our assumption of the FFT cost is underestimated because of this effect,
the matched filter would give a bigger contribution to the total cost of the fully coherent
and hierarchical methods. Thus, the gain of the (semi)coherent methods at a given cost

1In the absence of vetoes and with non-stationary noise, in fact, the coherent method may actually
be less efficient than coincidence [186].
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would be slightly larger.
An open question is whether the additional sensitivity of the coherent method can

also be obtained with the coincident method without the need for an explicit search
over the sky and the simultaneous filtering of the data from different detectors. A route
towards improving the sensitivity of the coincident method could be to fold the observed
difference in SNR, coalescence times and phases at different detectors into the ranking
of coincident triggers. This investigation is ongoing and we leave the presentation of the
results to future work.
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Chapter 5

Modeling the effect of glitches on

CBC searches

5.1 Overview

Chapter 1 highlighted the issue of noise transients (glitches) affecting the results of
searches for CBC signals. Despite the improved sensitivity of advanced interferometers,
such signals are also expected in data from future observing runs. Because of the increase
in sensitivity of advanced interferometers at low frequencies (10−40 Hz) CBC templates
will become significantly longer than they were in the past. For instance, an NSBH signal
(mBH = 10M⊙, mNS = 1.4M⊙, no spins) starting at 10 Hz would be visible for more
than 200 s in advanced LIGO; the same signal would have been visible for about 6 s only
in initial LIGO. The introduction of much longer templates raises a new concern: short
glitches could produce spurious CBC triggers with a significant delay with respect to
the central time of the glitch and certainly much longer than the glitch itself. Therefore,
the association between a trigger and a glitch is no longer guaranteed by their vicinity
in time, but must take into account a potentially large delay. Moreover, the delay is in
principle a function of the template parameters and the glitch waveform.

This chapter addresses this issue in a semi-analytical way by studying the effect
of short, isolated, non-CBC transients on the matched filter operation at the core of
CBC searches. We use a simple sine-Gaussian model to describe glitch waveforms,
parametrized by a central frequency and a quality factor. CBC templates are simplified
as Newtonian (0 pN) inspiral-only waveforms. Using three different approximations,
appropriate in different regions of the glitch parameter space, we are then able to estimate
the average SNR time series produced by the CBC matched filter as a function of the
parameters of the glitch and the template. By maximizing the time series we obtain
the time and SNR of triggers produced by the glitch. We compare these to numerical
simulations to check the accuracy of each approximation.

The research presented in this chapter is published in [187] and the contents of the
chapter are mostly unchanged. The idea for the project, major guidance and comments
are from Andrew Lundgren. Swetha Bhagwat and Sanjeev Dhurandhar developed Ap-
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proximation I and some simulations. The author developed Approximations II and III,
wrote and ran the code for the numerical simulations, wrote the article and handled
the publication and communication with the anonymous referees. Useful comments and
help came from Bruce Allen, Tom Dent, Drew Keppel, Badri Krishnan, Alex Nielsen
and Chris Pankow.

The chapter is organized as follows. Section 5.2 introduces our models of glitch and
template waveforms, formalizes the problem and presents the approximations to the
matched-filter integral. In section 5.3 the approximations are tested against numerical
evaluations of the matched-filter integral. The response of a full template bank to a
glitch is also described there. Conclusions are drawn in section 5.4.

5.2 Glitch model and matched-filter approximation

The problem we address is calculating the average response of the CBC matched filter
(eq. (1.28)) to a transient signal which reasonably represents glitches. Once the SNR
time series is available, we want to obtain the value of its maximum ρmax and the
corresponding time tmax

c , because these are the most important parameters of the trigger
produced by the glitch for a given template. Although we must assume a particular noise
PSD in order to evaluate the matched-filter integral, we ignore the actual noise realization
and only include the glitch waveform in our data model; thus, our result represents an
average over the ensemble of Gaussian noise realizations. Moreover, we only consider the
case of an isolated glitch; the far less likely case of a glitch overlapping with an actual
CBC signal is not studied here.

A realistic model of every class of glitch waveforms observed in initial LIGO data is
a complicated endeavor and requires either an understanding of the physical origin of
glitches or a large number of observations of each glitch class. Such requirements are not
always met. A detailed model, moreover, is likely unnecessary if we are only interested
in the maximum of the inspiral SNR. Therefore, we do not go into such detail here. A
common feature of many glitches, however, is their approximate localizability in either
time, frequency, or both [188]. A suitable general model, which is also very simple,
is therefore represented by monochromatic signals whose amplitude is modulated with
a Gaussian envelope, i.e. sine-Gaussian waveforms. This is also the signal basis used
by burst detection pipelines (such as Omega [189]) routinely used for investigating the
quality of data from GW detectors. Our glitch model is therefore

s(t) = A exp

(

−(t− t0)
2

τ2

)

cos(2πf0t+ φ0) (5.1)

where A is the overall amplitude of the glitch, t0 and f0 are the central time and fre-
quency, τ := Q/2πf0 is the time duration, Q is the dimensionless quality factor and φ0
is the phase at t = 0. t0 can be arbitrarily set to zero, such that tmax

c represents the
time delay between the glitch and the CBC trigger. We can also set A = 1 since ρmax

scales linearly with the amplitude of the glitch. The frequency- domain expression of
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the glitch is then

s̃(f) =

√
π

2
τ exp

(

−π2τ2(|f | − f0)
2 + iφ0

)

[

1 + exp

(

−Q2 |f |
f0

− 2iφ0

)]

(5.2)

for frequencies f > 0 and the complex conjugate of that for f < 0. The magnitude
of the second exponential is always at most 1. If the glitch completes at least a few
oscillations (Q > 1) or its center frequency is not much larger than the low-frequency
cutoff of the matched filter (f0 ≈ fL) then the magnitude of the exponential is actually
much smaller than 1. We make this approximation and neglect the factor in square
brackets altogether. The SNR is then no longer affected by the phase of the glitch and
we can set φ0 = 0, so we are left with only two parameters for our glitches: f0 and Q.

Assuming a pN frequency-domain inspiral template as in eq. (1.24), the matched-
filter integral for a data segment containing only our glitch reads

z(tc) = 2
√
πτh0

∫ fH

fL

U(f) exp
[

−π2τ2(f − f0)
2 + iΨ(f ; tc)

]

df (5.3)

where U(f) := f−7/6S−1(f), S(f) is the noise PSD, h0 contains all frequency-independent
factors of the template amplitude and we have neglected the parameter vector of the
template for simplicity. Although chapter 2 demonstrated the importance of including
spin and high-order pN terms in the phase Ψ, we are mainly concerned here with the
largest contribution to the duration of the inspiral. It is therefore sufficient to only
consider a Newtonian (0 pN) template, which only depends on the chirp mass M and
greatly simplifies the problem:

Ψ(f ; tc) = 2πftc − φc −
π

4
+

3

128
(ζf)−5/3 (5.4)

with ζ := πGM/c3.

5.2.1 Approximation I

One way to evaluate eq. (5.3) is via the stationary-phase approximation (SPA). In fact,
for the Newtonian chirp we have dΨ/df = 0 at a frequency

fs :=

(

5

256π

)3/8

ζ−5/8t−3/8
c = f0

(

τ0
tc

)3/8

(5.5)

with τ0 being the Newtonian chirp time [160] evaluated using f0 as the fiducial frequency.
This allows us to approximate the phase as

Ψ(f ; tc) ≈ Ψ(fs) + β(f − fs)
2 (5.6)

β :=
5

96
f−11/3
s ζ−5/3. (5.7)
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We now notice that, in eq. (5.3), the function U(f) varies more slowly with (f − fs)
than the rest of the integrand. We thus evaluate it at fs and bring it out of the integral,
which becomes the integral of the product of two Gaussians:

z(tc) ≈ 2
√
πτU(fs)

∫ fH

fL

exp

(

i
(f − fs)

2

2σ2f
− (f − f0)

2

2σ2sg

)

df (5.8)

where we have omitted the global phase factors and the template amplitude h0, since
they disappear once the SNR is calculated from z(tc). The standard deviations of the
two Gaussians are

σf :=

(

3f0
16πτ0

)1/2( fs
f0

)11/6

(5.9)

σsg :=
1√
2πτ

. (5.10)

The integral can be solved via Cauchy’s theorem and we can then use the resulting z(tc)
and eq. (1.28) to obtain the SNR as a function of tc,

ρ(tc) ≈
1

σ0
U(fs)

(

1 +
σ4sg
σ4f

)−1/4

exp

(

−(f0 − fs)
2

2σ2f

σ2sg/σ
2
f

1 + σ4sg/σ
4
f

)

(5.11)

with σ20 :=
∫ fH
fL

f−7/3S−1(f)df being the normalization of the template.

Despite our approximations, eq. (5.11) is still a pretty complicated function of the
coalescence time through fs and σf . In particular, the fact that the coalescence time
appears in the argument of S(fs) means that the shape of the function depends on the
noise PSD. For a smooth PSD with a single global minimum, ρ(tc) turns out to be
a fairly simple peak-shaped function. Nevertheless, ρmax and tmax

c must be found via
numerical maximization of ρ(tc).

5.2.2 Approximation II

The SPA can be applied in a different way to give another approximation, valid for small
Q. We still use eq. (5.6), but this time we make the assumption that the integral in
eq. (5.3) is dominated by a narrow band around fs. We can therefore consider most
of the terms in the integrand as constant (evaluated at fs) and take them out of the
integral, which reduces to

∫ fH

fL

exp
[

iβ(f − fs)
2
]

df ≈
√

π

β
. (5.12)

In this way we obtain the following SNR time series:

ρ(tc) ≈ πσ−1
0 τU(fs)β

−1/2 exp
[

−π2τ2(fs − f0)
2
]

(5.13)
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For the Newtonian inspiral in particular, using eq. (5.5) and (5.7),

ρ(tc) ≈
√
6π3/4

51/4
σ−1
0 τζ5/12S−1

[

f0(τ0/tc)
3/8
]

t−1/4
c exp

[

−Q
2

4

(

(τ0/tc)
3/8 − 1

)2
]

. (5.14)

Although this second approximation is somewhat simpler than eq. (5.11), it still depends
on the shape of the noise PSD. If we assume the PSD is a well-behaved function with
no narrow peaks and one global minimum, however, we can see that eq. (5.14) is the
product of two peaks in tc with different time scales: one given by the exponential (with
a time scale determined by Q) and one given by the other terms containing tc (with
a time scale determined by the bandwidth of the detector). In order to get a better
understanding of this shape, we can try to make these time scales very different by going
to the limit Q ≫ 1. In this limit the exponential becomes more peaked than the other
term, so the maximum SNR is approximately given by the condition fs = f0 and we
obtain

ρmax ≈ πτσ−1
0 U(f0)β

−1/2 (5.15)

tmax
c ≈ τ0. (5.16)

This suggests that, when Q is sufficiently large, the delay between the glitch and the
resulting trigger is just the time taken by the inspiral signal to go from the center
frequency of the glitch to coalescence. This result can be expected from intuition by
visualizing the time-frequency support of the inspiral signal and the sine-Gaussian signal.
Note however that, since this approximation is expected to be valid for small Q, this
limit is not necessarily meaningful and the result needs to be checked against numerical
simulations.

5.2.3 Approximation III

The Q ≫ 1 case is probably the least useful in practice, because glitches typically do
not last more than a few cycles. However, this limit enables one more approximation for
ρ(tc) which is simpler than the others. In fact, a large Q implies that the glitch is very
narrow in the frequency domain. Thus, the integrand in eq. (5.3) is no longer dominated
by the neighborhood of fs, but by the narrow peak of the sine-Gaussian centered on
f0. As before, the function U(f) varies slowly with frequency and can be regarded as
constant. We can also extend the integration limits to the full real axis because they are
effectively already limited by the bandwidth of the glitch. Finally, we still approximate
the phase of the template to second order, but this time around f0, which means that
we also need the linear term:

Ψ(f ; tc) ≈ Ψ(f0) + α(f − f0) + β(f − f0)
2. (5.17)

For the Newtonian chirp the coefficients are

α = 2πtc −
5

128
f
−8/3
0 ζ−5/3 = 2π(tc − τ0) (5.18)

β =
5

96
f
−11/3
0 ζ−5/3. (5.19)
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By switching to the new integration variable x :=
√

π2τ2 − iβ(f − f0) and dropping
global phase factors,

z(tc) ≈ 2
√
πh0τ(π

2τ2 − iβ)−1/2U(f0)

∫ +∞

−∞
exp

(

−x2 + iαx
√

π2τ2 − iβ

)

dx (5.20)

which is just a Gaussian integral and readily gives

z(tc) ≈ 2πh0τ(π
2τ2 − iβ)−1/2U(f0) exp

(

− α2

4(π2τ2 − iβ)

)

(5.21)

and the SNR time series is

ρ(tc) ≈ σ−1
0 U(f0)

(

1 +
β2

π4τ4

)−1/4

exp

(

− α2

4π2τ2(1 + β2

π4τ4
)

)

. (5.22)

Assuming a Newtonian chirp, α is the only function of tc. The SNR time series is then
a simple Gaussian pulse, with maximum given by

ρmax ≈ σ−1
0 U(f0)

(

1 +
β2

π4τ4

)−1/4

(5.23)

tmax
c ≈ τ0. (5.24)

We thus see that Approximation II taken in the limit Q ≫ 1 did indeed give us the
correct result for tmax

c , but not quite the same ρmax. We expect Approximation III to
be correct in this case.

5.3 Numerical simulations

At this point we have different estimations for ρmax and tmax
c and we can visualize and

compare them as a function of the main parameters involved: f0, Q and the mass of
the Newtonian template. In order to check the accuracy of the approximations, we now
simulate the response of the matched filter to a noiseless sine-Gaussian and find the
maximum of the SNR numerically. Because we are concerned with detectors sensitive
at low frequencies and long inspiral templates, we take advanced LIGO’s final design
sensitivity as the model for S(f). For simplicity, and to avoid numerical issues, we
set the amplitude of the glitch to A = 1 and multiply S(f) by 1048: thus, the SNRs
we obtain refer to sine- Gaussians with amplitude A = 10−24. We explore the glitch
parameter ranges given by 10 Hz ≤ f0 ≤ min(1 kHz,fISCO) and 1 ≤ Q ≤ 1000. We test
equal-mass templates with total mass M = {2.8M⊙, 5M⊙, 10M⊙}.

Approximation I produces the results shown in figure 5.1. It correctly reproduces
both ρmax and tmax

c given by the simulations, as long as f0, Q and mass are sufficiently
small. We find empirically that the accuracy decreases roughly as f20QM and the 5%
accuracy for ρmax is at f20QM/M⊙ ≈ 5 × 107 s−2. This is a promising result because
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Figure 5.1: Comparison between numerical simulations (color) and Approximation I
(black contours). Left: trigger SNR; right: trigger delay; dashed lines: ISCO frequency.
Approximation I is accurate almost everywhere, except at large f0, Q and mass.
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we expect most glitches to last up to O(10) cycles; moreover, at high frequency or mass
the time delay is small and thus the problem we are investigating is less of a concern.
We also see in figure 5.1 that neglecting the exponential term in eq. (5.2) does not seem
to have major effects at Q ≈ 1, but it might be responsible for the wrong prediction of
tmax
c at Q ≈ 1, f0 ≈ fISCO and large mass.

Results for Approximation II are shown in figure 5.2. This approximation has ex-
cellent performance for tmax

c across all the explored parameter space, remarkably even
for large Q. However, as expected, it does not predict ρmax correctly for Q ≫ 1. As Q
increases, in fact, the sine-Gaussian peak in the frequency domain becomes smaller and
smaller until the integral is no longer dominated by the region around fs. Nevertheless,
this is a useful approximation which works well in the most interesting regime, although
it is not significantly simpler than Approximation I.

Approximation III’s results are shown in figure 5.3. Consistently with its assump-
tion, Approximation III works well in the high- mass, high-Q region where the other
approximations begin to break down. It is also the one that gives the simplest result.
However, at Q . 10 this approximation fails to reproduce the important dependence of
tmax
c on Q. Although Approximation III is not very useful for describing short glitches,
it can be used to understand the effect of very long-lived and quasi-monochromatic dis-
turbances; in particular it clearly shows how the triggers no longer depend on Q and the
main factor determining ρmax is just the noise PSD.

Although we only consider Newtonian templates, search pipelines need to use higher-
order pN terms to achieve a sufficient effectualness. Thus, we check next the accuracy
of Approximation I against numerical simulations with a 3.5 pN template. We consider
a single case with equal mass and M = 5M⊙. The result is shown in figure 5.4. We find
that the accuracy is worse but still within a few percent both for ρmax and tmax

c . More-
over, the variation of the accuracy with the parameters is retained. A full exploration
taking into account chirp mass, mass ratio and possibly aligned spin components could
highlight other cases where our approximations break down, but we do not go into such
detail here.

So far we considered the case of a single template. In general, a sufficiently strong
glitch excites every template in the bank covering the search space, so a cluster of
spurious triggers is produced. Our approximations allow us to model the shape of
this cluster and in particular describe the correlation between the SNR and time of
the triggers. As an example, figure 5.5 shows such a cluster when a simplified bank
with uniform distribution of templates in M is assumed. It can be seen that low-mass
templates produce the triggers with the largest delay and smallest SNR. Triggers from
the lightest templates can be delayed by several minutes with respect to the glitch; such
a delay is much longer than the duration of the glitch itself. Vetoing every trigger within
such a long cluster leads to a large loss of live time. On the other hand, only vetoing
triggers in the close vicinity of the glitch is not sufficient. The approximations introduced
here can be used to regulate the vetoing procedure template-by-template, based on the
estimates of the time delay and possibly SNR.
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Figure 5.2: Comparison between numerical simulations (color) and Approximation II
(black contours). Left: trigger SNR; right: trigger delay; dashed lines: ISCO frequency.
This approximation predicts the delay correctly almost everywhere, but fails for the SNR
at large Q, as expected.
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Figure 5.3: Comparison between numerical simulations (color) and Approximation III
(black contours). Left: trigger SNR; right: trigger delay; dashed lines: ISCO frequency.
The approximation agrees with the numerical result at Q≫ 1, as expected.
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Figure 5.4: Comparison between numerical simulations with a 3.5 pN template (color)
and Approximation I (black contours). Left: trigger SNR; right: trigger delay; dashed
lines: ISCO frequency. Despite neglecting post-Newtonian corrections, the approxima-
tion still gives a reasonable prediction of the SNR and delay in its region of validity.

0 50 100 150 200 250 300
tmax
c [s]

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

lo
g
1
0
(ρ

m
a
x
)

Simulation

Approximation I

2

4

6

8

10

12

14

16

18

20

M
/M

⊙

Figure 5.5: Triggers generated by a sine-Gaussian glitch (t0 = 0, f0 = 20 Hz, Q = 20)
exciting a simplified template bank of 50 3.5 pN equal-mass waveforms withM uniformly
spaced between 2M⊙ and 20M⊙. The glitch produces a cluster of triggers lasting as long
as the longest template, with high-mass triggers coming first and with the largest SNRs.
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5.4 Conclusion

This chapter investigates the response of low-mass inspiral templates to short instrumen-
tal glitches commonly found in interferometer data. It is an initial step in understanding
spurious inspiral triggers produced by short instrumental transients. By employing a
simplified sine-Gaussian glitch model, parametrized by a central frequency and a quality
factor, we are able to find three approximations to the matched-filter integral, which
allow us to estimate the average SNR and the time of inspiral triggers produced by
glitches. In other words, these approximations map the parameters describing the glitch
and the template to the SNR and time of the resulting trigger. We test the approxi-
mations via numerical simulations of noiseless sine- Gaussian glitches and identify their
region of validity. We find that the approximations are appropriate in different regions
of the parameter space describing the glitches and the templates. If each approxima-
tion is used in its region of validity, the full space of physically interesting glitches and
templates is covered effectively.

This study demonstrates how glitches in advanced interferometers can trigger long
inspiral templates several minutes after the occurrence of the glitch. This represents a
potential issue for future inspiral searches, because simply vetoing inspiral triggers in
the vicinity of a short glitch will not be sufficient. On the other hand, vetoing every
trigger within the duration of the template could lead to a significant reduction of the live
time of the search. This requires a new way of dealing with short glitches. Assuming
the parameters of the glitch can be estimated first (for instance via an event trigger
generator such as Omega [189] or by analyzing auxiliary channels with known coupling
to the strain signal [190]) the approximations introduced here can be used to calculate
the expected time of the spurious trigger on a template-by-template basis. If indeed a
trigger is found near the expected time, it can be either vetoed or down-ranked. An
alternative approach to deal with delayed triggers is excising the short portion of the
data affected by the glitch (gating) as part of the conditioning step prior to the matched
filter. However, this must be done in a way that does not also introduce spurious triggers.
We reserve the exploration of both approaches to a future study.

We neglect here the signal-based vetoes described in section 1.3.5. We have seen in
chapter 2 that these are very effective at protecting against glitches. This is particularly
true for long inspiral templates which are very different from sine-Gaussian waveforms.
The problem described here may thus be strongly suppressed by the usage of ranking
statistics such as eq. (1.38). Nevertheless, it is possible that the two loudest single-
detector background events described in chapter 2 are the result of nearby loud glitches,
despite the use of the χ2 veto. A detailed investigation of the response of signal-based
vetoes to sine-Gaussian waveforms is therefore a necessary follow-up of this study. In
particular, it could indicate optimal choices for the parameters associated with the signal-
based vetoes, such as the number of bins (and their boundaries) for the χ2 test.
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[6] P. A. Caraveo, Ann.Rev.Astron.Astrophys. 52, 211 (2014), arXiv:1312.2913 [astro-
ph.HE] .

[7] N. Chamel, P. Haensel, J. Zdunik, and A. Fantina, Int.J.Mod.Phys. E22, 1330018
(2013), arXiv:1307.3995 [astro-ph.HE] .

[8] “stellarcollapse.org,” http://www.stellarcollapse.org.

[9] B. Kiziltan, A. Kottas, M. De Yoreo, and S. E. Thorsett, Astrophys.J. 778, 66
(2013), arXiv:1309.6635 [astro-ph.SR] .

[10] K.-W. Lo and L.-M. Lin, Astrophys.J. 728, 12 (2011), arXiv:1011.3563 [astro-
ph.HE] .

[11] J. W. Hessels, S. M. Ransom, I. H. Stairs, P. C. C. Freire, V. M. Kaspi, et al.,
Science 311, 1901 (2006), arXiv:astro-ph/0601337 [astro-ph] .

[12] D. Chakrabarty, E. H. Morgan, M. P. Muno, D. K. Galloway, R. Wijnands, et al.,
Nature 424, 42 (2003), arXiv:astro-ph/0307029 [astro-ph] .

[13] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W H Freeman and
Company, 1973).

125

http://dx.doi.org/10.1038/30168
http://arxiv.org/abs/astro-ph/9803201
http://arxiv.org/abs/astro-ph/9803201
http://dx.doi.org/10.1016/j.physrep.2014.09.003
http://arxiv.org/abs/1408.4145
http://arxiv.org/abs/1408.4145
http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/
http://arxiv.org/abs/astro-ph/0208579
http://dx.doi.org/10.1146/annurev-astro-081913-035948
http://arxiv.org/abs/1312.2913
http://arxiv.org/abs/1312.2913
http://dx.doi.org/ 10.1142/S021830131330018X
http://dx.doi.org/ 10.1142/S021830131330018X
http://arxiv.org/abs/1307.3995
http://www.stellarcollapse.org
http://dx.doi.org/10.1088/0004-637X/778/1/66
http://dx.doi.org/10.1088/0004-637X/778/1/66
http://arxiv.org/abs/1309.6635
http://dx.doi.org/10.1088/0004-637X/728/1/12
http://arxiv.org/abs/1011.3563
http://arxiv.org/abs/1011.3563
http://dx.doi.org/10.1126/science.1123430
http://arxiv.org/abs/astro-ph/0601337
http://dx.doi.org/10.1038/nature01732
http://arxiv.org/abs/astro-ph/0307029


[14] K. S. Thorne, The Astrophysical Journal 191, 507 (1974).

[15] J. A. Orosz, J. E. McClintock, J. P. Aufdenberg, R. A. Remillard, M. J. Reid,
R. Narayan, and L. Gou, The Astrophysical Journal 742, 84 (2011).

[16] V. Bozza, General Relativity and Gravitation 42, 2269 (2010).

[17] A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, et al., The Astrophysical Journal
689, 1044 (2008).

[18] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and
T. Ott, The Astrophysical Journal 692, 1075 (2009).
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Università degli Studi di Padova
Thesis work at Laboratori Nazionali di Legnaro, INFN

2002-10 — 2005-07
Bachelor of science (laurea triennale) in physics
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