Multi-Provider Network Service Embedding

Von der Fakultat fiir Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Dipl.-Ing. David Dietrich
geboren am 22. August 1977 in Lauchhammer

2016

Referent : Prof. Dr. Panagiotis Papadimitriou

Korreferent : Prof. Dr. Symeon Papavassiliou
Tag der Promotion : 10. Mérz 2016

Dipl.-Ing. David Dietrich: Multi-Provider Network Service Embedding,
Dissertation, © 2016

ABSTRACT

Existing technologies that fulfill the requirements of the steadily emerging net-
work services experience difficulties in transcending organizations or enter-
prise boundaries which in turn hinders the deployment of network services in
wide areas. Network virtualization technologies can overcome this barrier by
enabling the concurrent deployment and operation of service-tailored virtual
networks (VNs) on top of shared physical infrastructures. In this respect, ser-
vice providers benefit from high performance and reliability without the need
to acquire and deploy physical network equipment. The substrate providers es-
sentially benefit from improved resource efficiency which in turn translates into
lower operational and technology investment costs. Similar to VNs, the emerg-
ing concept of network function virtualization aims at mitigating limitations of
hardware middleboxes in terms of customization, resource efficiency, and man-
ageability. The migration of network functions (NFs) into virtualized infrastruc-
ture brings significant benefits to enterprise networks while creating new cloud
service models such as NF-as-a-service enabling individual and wide-spanning
service chains, i. e., network services.

The thesis at hand focuses on the embedding of VNs and service chains
across multiple substrate providers. Wide-area deployment of VNs requires the
ability to embed and operate VNs across multiple substrate providers due to
their limited geographic footprint. Multi-provider VN embedding raises the
need for a layer of indirection, interposed between the service provider and
the substrate providers. Essentially, this layer represents a third party that dis-
covers, selects, and allocates resources from multiple substrate providers that
are assigned VN segments which are eventually stitched together creating a
wide-area VN that can be configured and operated by the service provider. In
this respect, the unwillingness of the substrate providers to disclose details of
their network topology and resource information exacerbates the selection of
substrate providers and therewith the assignment of the virtual resources to the
physical resources.

In a similar manner, service chains are embedded into virtualized software
middleboxes located in data centers operated by different NF providers. The
limited information disclosure policy of the NF providers again aggravates the
embedding of service chains. Furthermore, middlebox policies prescribed by
network operators, implications of NFs on network traffic, and location depen-

dencies for certain NFs complicate network service embedding. In addition

iii

iv

to that, multi-provider embedding architectures foster competition among the
substrate providers that in turn need to attract customers and to maximize their
revenue.

We study the challenging problem of multi-provider VN embedding with
limited information disclosure and investigate the visibility of substrate net-
work resources. Based on this study, we designed an abstraction model contain-
ing non-confidential substrate information and an embedding framework. This
framework embeds VNs as traffic matrices in two stages. First, a centralized
coordinator partitions the VN request across the substrate providers by using
the abstract substrate model as mentioned beforehand. Subsequently, all the in-
volved substrate providers map their respective VN segment to their substrate
network by exploiting the fully available substrate information. Evaluation re-
sults show that multi-provider VN embedding under limited information dis-
closure is feasible at the price of moderate extra cost.

Moreover, we tackle the service chain deployment and devise (i) a new ser-
vice model that simplifies the specification of network service requests and (ii) a
topology abstraction for service chain partitioning. In this respect, we present a
two-stage framework for the embedding of service chains where a network ser-
vice composition layer is interposed between the clients and the NF providers.
By using this framework, we evaluate the impact of different business objectives
for network service embedding.

We further show that the embedding of a VN request yields a different prof-
itability from the perspective of the substrate provider depending on the sub-
strate network and the VN request demands. We present an algorithm that
takes into account a policy dimension at which substrate providers enforce
profitability in VN embedding. A comprehensive implementation work, pre-
dominantly relying on linear programming methods, is used for the evaluation
of VN and service chain embedding.

Keywords: Network Function Virtualization, Service Chaining, Resource Al-

location, Topology Abstractions, Combinatorial Optimization

ZUSAMMENFASSUNG

Die stdndig wachsenden Anforderungen von Netzwerkdiensten gebieten den
Einsatz neuartiger Technologien in einem Umfeld in dem mehrere administra-
tive Systeme involviert sind, also Unternehmensgrenzen {iiberschritten werden.
Dies birgt jedoch Schwierigkeiten die eine breite Zurverfiigungstellung von
Netzwerkdiensten in der Fliache behindern. Netzwerk-Virtualisierung ist ein
moglicher Ansatz zur Umgehung dieser Schwierigkeiten, indem der gleichzeiti-
ge Betrieb von virtuellen Netzen auf derselben physischen Infrastruktur ermog-
licht wird. Dabei kann den Netzwerkdienst-Anbietern ein bestimmtes Maf$ an
Performanz und Zuverldssigkeit zugesichert werden ohne dass sie selbst techni-
sches Equipment anschaffen und betreiben miissen. Gleichzeitig profitieren die
Infrastruktur-Betreiber von effizienterer Ressourcennutzung, was sich in nied-
rigeren Betriebs- und Anschaffungskosten fiir die Infrastruktur niederschlagt.
Dartiiber hinaus konnen die Nachteile von Middleboxen, in Bezug auf Anpass-
barkeit, Ressourcennutzung und Administrierbarkeit, durch Virtualisierung eli-
miniert werden. Dies ermdglicht beispielsweise die geografisch unabhangige
Nutzung von virtuellen Netzfuntionen. Entsprechend des Anwendungsfalls
konnen Serviceketten erstellt werden, in denen festgelegt ist, welche Netzfunk-
tionen in welcher Reihenfolge auf einen bestimmten Datenfluss angewandt wer-
den.

Die vorliegende Dissertation beschéftigt sich mit der Substrat-Netzwerke
iibergreifenden Einbettung von Netzwerkdiensten mit dem Ziel, ihre geogra-
fische Reichweite beliebig zu erweitern. Das Einbetten von virtuellen Netzen
erfordert eine zusétzliche Instanz zwischen dem Netzwerkdienst-Anbieter und
den Substrat-Netzwerk-Betreibern. Diese dient im Wesentlichen der Identifi-
kation von potentiell nutzbaren Ressourcen verschiedener Substrat-Netzwerk-
Anbieter sowie deren Zuordnung zu den angefragten Ressourcen. Die Be-
treiber der Substrat-Netzwerke iibernehmen dann die finale Zuteilung ih-
rer physischen Ressourcen zu dem ihm zugeordneten Segment. Zusam-
men formen diese Segmente dann das virtuelle Netz welches dann vom
Netzwerkdienst-Anbieter individuell konfiguriert und betrieben wird. Die Aus-
wahl der Substrat-Netzwerke und somit die Zuordnung der virtuellen zu den
physischen Ressourcen wird allerdings erschwert durch den Umstand, dass
Substrat-Netzwerk-Anbieter nicht bereit sind, Details iiber ihre Netzwerktopo-
logie und Ressourcen preiszugeben.

Serviceketten werden in virtualisierte Software-basierte Middlexboxen in Re-

chenzentren eingebettet, die durch verschiedene Netzfunktions-Anbieter be-

vi

trieben werden. Diese versuchen ebenso jegliche Substrat-Information fiir Au-
Benstehende zu verschleiern. Aufierdem mdtissen bei der Virtualisierung von
Middlexboxen weitere Bedingungen, wie existierende Middlebox-Regeln, Ein-
flisse der Netzfunktionen auf die Datenrate sowie ortliche Abhdngigkeiten,
berticksichtigt werden. Allgemein ist anzunehmen und deshalb zu beriicksich-
tigen, dass in Umgebungen mit konkurierenden Substrat- und Netzfunktions-
Anbietern jeweils das Ziel verfolgt wird, moglichst viele Kunden zu gewinnen
und den Umsatz zu maximieren.

Wir analysieren die Sichtbarkeit der physischen Ressourcen und untersuchen
Moglichkeiten des Einbettens von virtuellen Netzen iiber mehrere Substrat-
Netzwerke. Zu diesem Zweck entwerfen wir erstens ein Substrat-Modell wel-
ches nur nicht-vertrauliche Informationen zuldsst und zweitens ein Framework
zum Einbetten von virtuellen Netzen. Dieses verarbeitet in zwei Schritten An-
fragen tiber virtuelle Netze mit Verkehrsmatrizen. Zuerst partitioniert ein zen-
traler Koordinator das virtuelle Netz auf Basis des oben genannten Substrat-
Modells in Segmente, die je einem Substrat-Netzwerk-Anbieter zugeordnet
sind. Im Anschluss stellen die betreffenden Substrat-Netzwerk-Anbieter phy-
sische Ressourcen fiir diese Segmente zur Verfiigung. Wir zeigen, dass das Ein-
betten von Netzwerkdiensten iiber mehrere Substrat-Netzwerk-Anbieter trotz
begrenzter Ressourcen-Sichtbarkeit moglich ist, wenn auch zu moderaten Zu-
satzkosten.

Dariiber hinaus gehen wir auf das Einbetten von Serviceketten ein. Dazu
entwickeln wir ein neues Netzwerkdienst-Modell, welches die Spezifizierung
von Netzwerkdienst-Anfragen vereinfacht. Auflerdem entwerfen wir ein ab-
straktes Topologie-Modell, welches wir in unserem zweistufigen Framework
zur Partitionierung von Serviceketten und der Zuordnung von Netzfunktions-
Anbietern nutzen. Mithilfe dieses Frameworks untersuchen wir unter anderem
die Anwendung verschiedener Unternehmensziele.

Weiterhin zeigen wir, dass die Profitabilitdt eines einzubettenden virtuellen
Netzes variieren kann. Wir stellen einen Algorithmus vor, der es dem Substrat-
Netzwerk-Betreiber ermoglicht, ein bestimmtes Mafs an Profitabilitdt sicherzu-
stellen. Umfangreiche Implementierungsarbeiten, welche im Kern auf linearer
Programmierung basieren, dienen als Basis fiir die Evaluierung des Einbettens
von Netzwerkdiensten tiber mehrere Substrat-Netzwerke.

Schlagworter: Netzfunktionen-Virtualisierung, Serviceketten, Ressourcen-
Allokation, Abstrakte Topologien, Kombinatorische Optimierung

CONTENTS

I

1

DISSERTATION
INTRODUCTION
1.1 Challenges L o
1.2 Thesis Contribution0 ..
1.3 ThesisOutline L L oo
BACKGROUND
2.1 Basic Internet Structure.o L0000
2.1.1 ISP Substrate Networks
212 DataCenters.
2.2 Enabling Technologies and Concepts
2.2.1 Host Virtualization
2.2.2 Link Virtualization
2.2.3 Network Function Virtualization
2.2.4 Software-Defined Networking
2.3 Specification of Virtual Networks and Service Chains
2.4 Multi-Provider Embedding Architectures
2.5 EmbeddingSteps oo oo
2.5.1 Request Partitioning Methods
2.5.2 Resource Mapping Methods
2.6 Linear Programming
MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING
3.1 Information Disclosure of the Infrastructure Providers
3.2 VN Request Specification
3.3 VN Embedding Framework
3.4 NetworkModel
3.5 VN Partitioning
351 MIQP/ILPModel
3.5.2 LPRelaxation
353 LPRounding
3.6 VN Segment Mapping
361 MILPModel
3.6.2 LP Relaxation and Rounding
3.7 Evaluation o

3.71 Parameters. o 0oL

O O o O U1 W

10
11
12
12
13
14
14
15
17
18
19
19
21
23
23
26
27
30
32
32
34
35
36
37
39
40
40

vii

viii

CONTENTS

3.72 Metricso oo 42
373 Results 43
3.8 Related Work L 47
POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING 51
4.1 Profitability of VN Embedding 51
411 CRRMetric 52
4.1.2 CRRtrend evolution 54
4.2 NetworkModel 58
4.3 Policy-Compliant VN Embedding Algorithm 60
4.3.1 Anexemplary VN Embedding 61
4.3.2 Pseudocode Description 64
4.4 Evaluation 69
4.4.1 Parameters and Metrics L 69
442 Results o o 70
4.4.3 Parameter Adjustments 74
45 Related Work o L 76
MULTI-PROVIDER SERVICE CHAIN EMBEDDING 79
5.1 ServiceModel L 79
5.2 Topology Abstractions and Substrate Network Model 81
5.3 Service Chain Embedding Framework 83
5.4 Service Chain Partitioning 86
54.1 ILPModel L 86
5.4.2 LP Relaxation and Rounding 88
5.5 NFsubgraphMapping 89
551 MILPModel 90
5.5.2 LP Relaxation and Rounding 92
56 Evaluation o Lo 95
5.6.1 Parameters and Metrics 95
562 Results L 96
57 Related Work 99
IMPLEMENTATION 101
6.1 Functionality o 101
6.1.1 Request Generator 101
6.1.2 Substrate Network Generator 102
6.1.3 Request Partitioning 102
6.1.4 Resource Mapping 102
6.1.5 Logging and Statistics 103
6.2 Universal Control Plane for Multi-Provider Embedding 103

6.3 Visualization and Real-time Evaluation 105

7 CONCLUSIONS
7.1 Key Findings
7.2 Future Work

II APPENDIX
BIBLIOGRAPHY
PUBLICATIONS

CURRICULUM VITAE

CONTENTS

109
110

111

113

115

125

127

iX

LIST OF FIGURES

Figure 1 Basic Internet structure. 0L 10
Figure 2 Simple fat-tree DC topology. 11
Figure 3 K-ary fat-tree DC topology. 12
Figure 4 Topology- and traffic matrix-based VN specification. . . 16
Figure 5 Service chain specification. 16
Figure 6 VN embedding architectures. 17
Figure 7 VN embedding across multiple InPs. 24
Figure 8 Substrate network visibility. 0 0L 25
Figure 9 Disclosed resource and network topology information. . 26
Figure 10 Traffic matrix abstraction. 27
Figure 11 Resource matching by VN provider. 29
Figure 12 VN partitioning. 0 0L 30
Figure 13 Evaluation of LP rounding steps. 36
Figure 14 Evaluation of VN segment mapping with MILP/LP. . . . 40
Figure 15 Example of a real substrate topology.. 41
Figure 16 Extra cost evaluation for VNE under LID. 45
Figure 17 Extra cost origins for VNE under LID. 46
Figure 18 Acceptance rates of VN embedding. 47
Figure 19 Architectures for policy-compliant VN embedding. . .. 52
Figure 20 A VN subset relayed to a neighboring InP. 53
Figure 21 Definition of VN embedding cost and revenue. 54
Figure 22 CRR evolution example. 56
Figure 23 CRR evolutiontrend. 57
Figure 24 Root node candidates. 62
Figure 25 Algorithm steps for a root node candidate. 63
Figure 26 Decisions for CRR threshold violation. 69
Figure 27 Impact of CRR threshold. 71
Figure 28 Evaluation of policy-compliant VN embedding. 73
Figure 29 Diverse 0 adjustments. 75
Figure 30 Diverse ¢ adjustments. 76
Figure 31 Service chainmodel. 81
Figure 32 Topology abstraction for service chain partitioning. . . . 82
Figure 33 NSE control plane overview. 83
Figure 34 Sub-steps of service chain partitioning. 85
Figure 35 Evaluation of service chain partitioning with ILP/LP. . . 9o

Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42

LIST OF FIGURES

Evaluation of NF graph mapping with MILP/LP. 95
Service cost for diverse request partitioning objectives. . 97
Resource efficiency evaluation of NSE. 98
Acceptanceratesof NSE. 99
Sequence diagram of multi-provider VNE/NSE. 104
Visualisation of VNE/NSE. 106

Distributed setup of VNE/NSE framework. 107

Xi

LIST OF TABLES

Table 1 Topology- and traffic matrix-based VN representation. . 28
Table 2 Notations used in the Sections 3.4-3.6. 31
Table 3 VNE evaluation parameters. 42
Table 4 Notations used in the Sections 4.1—4.3. 59
Table 5 VNE statistics for the example in Figures 25a —25d. . . . 64
Table 6 VNE statistics for the example in Section 4.3.1. 64
Table 7 Effects of network functions on traffic rate. 8o
Table 8 Notations used in Sections 5.4 and 5.5. 86

Table 9 NSE evaluation parameters. 96

xii

LIST OF ALGORITHMS

Algorithm 1
Algorithm 2

Algorithm 3
Algorithm 4
Algorithm 5

Algorithm 6
Algorithm 7

VN partitioning with LP 35
VN mapping withLP 39
Policy-compliant VNE 66
Candidate substrate node preselection 67
Candidate substrate node selection 68
Service chain partitioning with LP 89
NF graph mapping withLP 94

xiii

ACRONYMS

API Application Programming Interface
AS Autonomous System

BGP Border Gateway Protocol
CAPEX Capital Expenditure

CDF Cumulative Distribution Function
CPU Central Processing Unit

CRR Cost to Revenue Ratio

DC Data Center

FID Full Information Disclosure
GLPK GNU Linear Programming Kit
GRE Generic Routing Encapsulation
GUI Graphical User Interface

IDS Intrusion Detection System

ILP Integer Linear Programming
ILS Iterated Local Search

InP Infrastructure Provider

1/0 Input/Output

P Internet Protocol

IPS Intrusion Prevention System
IPTV Internet Protocol Television

ISP Internet Service Provider

IXP Internet Exchange Point

LAN Local Area Network

LID Limited Information Disclosure
LP Linear Programming

Mbps Megabits per second

MCF Multi-Commodity Flow

xiv

MED

MILP

MIP

MIQP

MPLS

NF

NFaaS

NFP

NFV

NSCL

NSE

OPEX

0s

OSPF

PoP

QoS

RE

SDN

SP

ToR

VGW

VN

VNE

VPN

WAN

XML

ACRONYMS

Multi-Exit Discriminator
Mixed-Integer Linear Programming
Mixed-Integer Programming
Mixed-Integer Quadratic Programming
Multiprotocol Label Switching
Network Function

Network Function as a Service
Network Function Provider
Network Function Virtualization
Network Service Composition Layer
Network Service Embedding
Operational Expenditure

Operating System

Open Shortest Path First

Point of Presence

Quality of Service

Redundancy Eliminator
Software-Defined Networking
Service Provider

Top of Rack

Virtual Gateway

Virtual Network

Virtual Network Embedding
Virtual Private Network

Wide Area Network

Extensible Markup Language

XV

Part1

DISSERTATION

INTRODUCTION

The Internet has evolved into a mass medium where an enormous number
of network applications became an integral part of the people’s lives. Video
conferencing, IPTV, and online gaming are examples of network applications
that have been established over the last years while a steady emergence of new
network applications can be expected in the future. This, in fact, leads to a
continuous development of requirements for data delivery over the Internet in
terms of performance, reliability, and security. The Internet architecture and the
core protocols cannot cope with these challenging requirements of today and
beyond. Current Internet users typically experience best-effort data delivery
at which traffic paths span multiple substrate networks (autonomous systems,
ASs) without any service level guarantee. Existing technologies for quality of
service (QoS), robust routing, and security experience difficulties in transcend-
ing organization or enterprise boundaries. This in turn hinders the wide-area
deployment of network services, specifically at the presence of service level
requirements in terms of throughput, delay, packet loss, or security.

Today, service level agreements are not or only partially supported by ma-
jor Internet core protocols such as (i) the dominating exterior gateway proto-
col BGP [1] for inter-AS routing, (ii) intra-AS routing protocols (e.g., OSPF [2]),
and (iii) the Internet protocol (IP) itself. We have been waiting decades for
changes in the Internet core to overcome such limitations while the operators
lack the incentives to deploy new disruptive technologies in their production
networks. The risk potential finally obstructs innovative changes to the Internet
core. Instead, innovation has predominantly taken place at the Internet edges
and within the applications themselves. Fundamental changes, for example,
debated by Shenker [3], Clark et al. [4], or Feldmann [5], have been postponed
to the future. The Internet still works, and the incentives for the ISPs to become
active seem still to be not strong enough [6].

However, network virtualization is seen as a potential means to overcome the
Internet ossification towards a diversified Internet as it enables the concurrent
deployment and operation of service-tailored virtual networks (VNs) on top of
shared physical infrastructures. The respective requirements (e. g., high packet
forwarding rates, performance isolation among virtual components, packet clas-
sification offload) are covered by recent advances on the server, router, and

network interface virtualization (e. g., [7—11]). As such, network virtualization

INTRODUCTION

significantly lowers the barrier to introducing changes to the Internet core and,
therefore, fosters innovation [12, 13]. Network virtualization further allows a
paradigm shift towards more specific business roles. The owner of the physi-
cal substrate acts as an infrastructure provider (InP) that operates and leases his
physical resources (CPU, bandwidth, etc.) while a service provider (SP) represents
another new business role running services on top of leased infrastructures. In
this respect, both the operators of the VNs (the SPs) and the owners of the infras-
tructure (the InPs) benefit from network virtualization. SPs can deploy network
services within customized VNs that provide high performance and reliability,
without the need to acquire and deploy physical network equipment. For InPs,
network virtualization improves resource efficiency, reduces the capital expen-
diture (CAPEX) as well as the operational expenditure (OPEX).

The network virtualization approach takes into account the links of a sub-
strate topology and servers that host multi-purpose virtual machines. Beyond
that, middleboxes moved in the focus of network virtualization. Middleboxes
embed a broad range of flow processing functions, i. e., network functions (NFs),
into the network infrastructure, satisfying the increasing needs of network op-
erators and end-users. Prominent examples for currently deployed middle-
boxes are IP and application firewalls, WAN optimizers, proxies, application
gateways, virtual private networks (VPNs), load balancers, intrusion detection
and prevention systems (IDS/IPS) [14, 15]. Despite their widespread adoption,
middleboxes exhibit significant limitations in terms of customization, resource
efficiency, and manageability. More precisely, middleboxes are typically built
of specialized hardware and offer single-purpose functionality, leading to ap-
pliance sprawl and increased CAPEX and OPEX for enterprise networks [14, 16].
Network function virtualization (NFV) is an emerging concept that aims at mitigat-
ing some of these problems by enabling the consolidation of NFs on platforms
built of commodity components [17, 18]. Similar to the aforementioned cost
savings by VN deployment, NFV can reduce the expenses for NF deployment ei-
ther by deploying consolidated software middleboxes in enterprise networks or
by outsourcing NFs to virtualized network infrastructures. The latter, in partic-
ular, is very appealing to enterprises, since NF as a service (NFaaS) obviates the
need to acquire, deploy, and operate additional network appliances on clients’
premises, leading to significant savings in CAPEX and OPEX. Furthermore, the
recent trend of micro-data center deployment by large ISPs leads to a more con-
siderable number of NFV points of presence (PoPs) [19]. The clients in turn can
benefit from service chains in which flows individually traverse NFs fulfilling
the network service requirements without geographic dependencies incurred
by hardware middleboxes.

1.1 CHALLENGES

Wide-area network service deployment typically requires coverage of wide
geographic areas that exceed the limited footprint of a single resource provider.
To overcome this limitation, we embed VNs and service chains across multi-
ple InPs and NF providers each fulfilling certain geographic and resource re-
quirements. The multi-provider VN embedding (VNE) and the multi-provider
service chain embedding (network service embedding, NSE) raises the need for a
layer of indirection, interposed between the SPs (or clients) and the InPs (or NF
providers) [12, 20]. Essentially, this layer represents a third party that discovers,
selects, and allocates from multiple InPs and NF providers resources in terms
of bandwidth and computing capacity. The network service can then finally be

deployed by using these resources.

1.1 CHALLENGES

Multi-provider VN and service chain embedding is mainly associated with the

following challenges.

* VNE across multiple substrate networks entails significant challenges, pri-
marily due to InPs” policies that restrict resource information disclosure
and hinder interoperability with other parties. For example, considering
the InPs” policies, the disclosure of router-level topologies is prohibitive.
This problem can be rectified by partitioning VN requests into VN seg-
ments, which are subsequently mapped onto the substrate networks by
the InPs. Nevertheless, partitioning with the knowledge that is based
merely on limited resource information can still cause suboptimality in
VNE. Similar to VNs, the embedding of service chains is affected by the
limited knowledge of the substrate topologies.

¢ Compared to VNs, the embedding of service chains is further exacerbated
by additional requirements, such as the effect of traffic rate modification
throughout the chain caused by certain NFs that amplify or reduce traffic.
In addition to that, NFs can be associated with location dependencies.
For example, proxies and caches should be placed in proximity to the
enterprise network while packet filters should be deployed close to traffic
sources for increased bandwidth conservation in the event of denial-of-

service attacks.

* Multi-provider VNE/NSE fosters competition among the providers for re-
sources (i. e., virtual machines, link bandwidth, and NFs). Thus, resource
providers need policies for their market participation. Distributed and

auction-based embedding architectures particularly raise the requirement

6

INTRODUCTION

for policy-compliant VNE/NSE at which providers only attract the prof-
itable VNs or service chains. In this respect, a metric for profitability
needs to be defined and later on applied, in a form of threshold, to the

potential VN and service chain embeddings.

VNE/NSE seeks for each request a feasible assignment of physical resources
according to the demand. In particular, a request contains nodes and links
that are associated with demands in terms of virtual machine CPU cycles,
bandwidth demands, and additional constraints such as geographic de-
pendency. Such an assignment should be near to the optimal solution
with respect to a given objective such as cost minimization. The complex-
ity of the combinatorial optimization problems formulated in this work
can be compared to related problems such as the multiway-separator
problem where finding an optimal solution is known to be NP-hard [21].
Moreover, the multi-commodity flow problem, at which multiple flow de-
mands between different sources and sinks are concurrently assigned to
a substrate network, is known to be NP-complete [22]. Such problems are

generally known to be computationally intractable.

1.2 THESIS CONTRIBUTION

In this work, we tackle the above-mentioned challenges as follows.

* We conduct a feasibility study of multi-provider VNE with limited infor-

mation disclosure (LID) at which we first discuss the visibility of a third
party on substrate network resources. We define a realistic level of in-
formation disclosure based on the composition of resource and network
topology information that is not treated as confidential by InPs. Based on
that, we formulate an abstraction model that can be used by a centralized
coordinator (i.e., VN provider) to assess the resource availability of an
InP. Our study additionally discusses limitations of VNE with topology-
based VN requests. Instead of topologies, we formulate VN requests as
traffic matrices which yield higher acceptance rates. We further present
a framework that decomposes multi-provider VNE into a set of opera-
tions allowing VN providers and InPs to process incoming VN requests
based on their visibility on the substrate resources. In particular, the VN
provider matches requested resources to offered resources and partitions
VN requests across multiple InPs. Subsequently, the InPs map the VN seg-
ments to their substrate topologies exploiting their complete knowledge
of their substrate network. We apply linear programming methods to the
VN request partitioning and the VN segment mapping problem. In this

1.2 THESIS CONTRIBUTION

respect, we introduce integer linear programming formulations and their
transformations to linear programming equivalents using relaxation and

rounding techniques.

We further contribute with our holistic approach to multi-provider NSE
taking into account the additional requirements of service chains. In
particular, we propose an NSE orchestrator, which generates efficient em-
beddings via network graph rendering, request partitioning among data
centers (DCs), and NF subgraph mappings onto the DC networks. In this
respect, we introduce a new service model, tailored to NSE, that simplifies
(i) the specification of network service requests and (ii) the estimation of
computing and bandwidth demands for each request. We further define a
topology abstraction that facilitates request partitioning while obscuring
any information that is deemed confidential by NF providers. Our NSE
orchestrator provides the rendering of such topology abstractions from
detailed topology graphs accessed only by NF providers. We decouple
network service composition from NF providers by interposing a network
service composition layer between the clients and the NF providers. Simi-
lar to our VNE framework, we rely on (integer) linear programming meth-
ods for NSE.

We introduce a policy dimension to the VNE problem, allowing only prof-
itable VNEs according to the InP’s policy. Such policy can express the
balance between the generated revenue and resource efficiency as well as
specific constraints that the InP wants to apply. In particular, we use the
embedding cost to revenue ratio (CRR) in order to express the profit that a
provider generates from the embedding of a VN request. In this respect,
an InP can set an upper bound to CRR, adjusting the trade-off between rev-
enue generation rate and resource efficiency. This CRR threshold can be
adjusted dynamically based on the substrate network resource utilization
and the VN request arrival rate. Relying on CRR bounds for expressing
VNE policies, we present a VNE algorithm that embeds the most profitable
subset of a VN request according to the InP’s policy. Our simulation re-
sults show that our algorithm can increase the generated revenue by a
large margin depending on the policy adjustment. Our algorithm allows
an InP to trade short-term revenue gains for higher revenue in the long
term and cope better with evolving demands. The proposed algorithm
can comprise an essential component of any multi-provider VNE architec-
ture that facilitates the relaying of VN requests across the InPs or auction

mechanisms.

8

INTRODUCTION

¢ Our comprehensive implementation work constitutes a substantial frame-

work for the realization and evaluation of different VNE/NSE approaches.
The core of the C/C++ based implementation is formed by a set of li-
braries basically providing functionality in terms of topology and request
generation, request processing, logging, and statistics. Theses libraries
have been used for the proposed VNE/NSE frameworks and also for a
visualized and distributed evaluation of VNE/NSE. In this respect, our im-
plementation forms a basis from which future work in the field of network

service embedding can benefit.

1.3 THESIS OUTLINE

The remainder of this thesis is structured as follows.

Chapter 2 provides the background for this work including an overview
of the current Internet structure, enabling technologies and concepts for
the wide-area deployment of network services and embedding methods.

Chapter 3 describes our framework for multi-provider VNE in which we
conduct a feasibility study of VNE with restricted view on resource infor-

mation.

Chapter 4 introduces a new policy dimension to the VNE problem and
shows that InPs benefit from restricting the embedding of unprofitable VN
requests.

Chapter 5 presents our NSE orchestrator, a holistic approach to multi-
provider NSE dealing with the additional requirements of service chains.

Chapter 6 shows details related to the implementation work including an

automated evaluation tool with GUI for multi-provider VNE/NSE.

Chapter 7 highlights our conclusions.

BACKGROUND

In today’s Internet “best-effort” data delivery is common practice, especially
across the ISPs” domain borders [23]. This Internet represents the underlying
substrate over which network services are deployed. As a consequence, net-
work services are hindered with regard to service quality and new feature
development. Nevertheless, a great bunch of technologies and concepts ex-
ists to overcome these limitations. Specifically, virtualization technologies and
management concepts allow the embedding of (i) virtual networks (VNs) and
(ii) service chains into multiple substrate networks and DCs under consider-
ation of service guarantees. Multi-provider environments raise the need for
architectures that facilitate coordination among the requester (i.e., SP) and the
different substrate providers. In this context, coordination particularly refers to
the identification of potential resource providers and the assignment of physi-
cal resources to all the requested resources followed by the service instantiation.
However, these steps imply the partitioning of the requests across multiple
substrate providers and the resource mapping for each VN segment and NF
subgraph. Both, request partitioning and resource mapping represent combina-
torial optimization problems on which we focus in this thesis.

This chapter is structured as follows. Section 2.1 provides an overview of the
Internet structure, i.e., the substrate over which we deploy network services.
Section 2.2 discusses the enabling technologies and concepts for wide-area de-
ployment of network services. Section 2.3 specifies the two different request
types: VNs and service chains. Section 2.4 gives an overview of multi-provider
architectures for the embedding of VNs and service chains, followed by Sec-
tion 2.5 that describes the needed embedding steps using a centralized em-
bedding architecture. Section 2.6 introduces linear programming optimization

methods for VN and service chain embedding.

2.1 BASIC INTERNET STRUCTURE

The Internet represents the interconnected substrate networks into which we
embed network services. In the following, we distinguish between (i) the ISP

networks which are basically used for connectivity and transit; and (ii) data

10

BACKGROUND

centers (DCs) which are mainly used for cloud services and virtual machine
hosting.*

Enterprise

/ Site / LAN
X

Access
....... . Network
Peering A

Public
Peering

Data Facility

Center

Rootm’;_»‘"”"'""_ T, oc2.
H

—_——
and Gateway

Rack with
Compute
Nodes

Figure 1: The Internet is composed of numerous autonomous systems, including ac-
cess and backbone networks. Data centers attached to the Internet provide
compute capacity.

2.1.1 ISP Substrate Networks

Figure 1 exemplifies the basic Internet structure. The Internet consists of nu-
merous autonomous systems (ASs), i. e., individually administered ISP substrate
networks. The subscribers of each ISP are via access networks connected to the
ISP’s core network. Institutions such as enterprises or universities operate LANs
or even own ASs. The different ASs are interconnected in order to achieve reach-
ability of all users in any AS. Interconnections between ASs are realized over
peerings that are associated with certain agreements (e.g., with respect to IP
transit). Nevertheless, the actual AS path to be traversed between the endpoints
is determined in a decentralized manner by the dominating exterior gateway
protocol BGP [1, 25]. In this context, the lack of coordination hinders wider
deployment of domain-spanning service guarantees although technically avail-
able [26, 27]. It can be argued that each provider should be able to reserve a

specific resource, e.g., bandwidth, for a requester and between a pair of end-

1 Armbrust et al. provide an overview of cloud computing [24].

2.1 BASIC INTERNET STRUCTURE

points or points of presence (PoPs), as long as he is willing to pay for this extra
service. At present, the majority of network services, especially the ones span-

ning wider areas, is merely based on "best-effort" data delivery.

2.1.2 Data Centers

Cloud providers lease compute capacity in form of virtual machines hosted on
top of the physical machines, i.e., servers, of a DC. A network topology within
the DCs interconnects a large number of servers among each other. The DCs’
gateway further provides connectivity to other DCs over an inter-DC network.
In the following, we discuss two common DC topologies based on (i) the simple
fat-tree and (ii) the k-ary fat-tree. Figure 2 exemplifies a simple fat-tree-based
DC topology. In this topology, ToR and aggregation switches steer all traffic over
a single powerful core switch whose attached links need to be overprovisioned
accordingly. This in turn could cause service degradation due to overutilized
links. Furthermore, the single core switch is a single point of failure.

Core Switch

Aggregation
Switch

Top-of-Rack
I ToRlI | ToRZI I T0R3| I ToR 4 I‘/Switch

Compute
Node

Figure 2: In a simple fat-tree data center topology, all traffic traverses a single powerful
core switch.

In contrast to that, the k-ary fat-tree-based DC topology as exemplified by
Figure 3 consists of multiple core switches and an aggregation layer with mul-
tiple pods.> Such topologies eliminate the drawbacks of the before-mentioned
simple fat-tree topology at the cost of a higher number of switches and links
for the same number of servers. 3

2 This example uses k=4.
3 Al-Fares et al. provide a study of common practice for DC networks [28].

11

12 BACKGROUND

Core
Switch

[ees] [rene]

[erna] [rorid] [ronss] [roese

Compute
ode

\ AN\ ZA\ A\ \
m=ngn=su=s{n=n{u=u=su=ru=n}s
(= (=] = (=) (=] (=] = =

Figure 3: The k-ary fat-tree is an alternative data center topology comprising multiple
pods and core switches.

2.2 ENABLING TECHNOLOGIES AND CONCEPTS

The network virtualization paradigm entails an abstraction layer at which phys-
ical resources are viewed as logical instances. This concept enables the concur-
rent deployment and operation of service-tailored VNs on top of shared physi-
cal infrastructures — even across multiple substrate networks [29, 30]. As such,
network virtualization is seen as a viable path towards wide-area network ser-
vice deployment. VNs are particularly enabled by host and link virtualization
technologies as described in the Sections 2.2.1 and 2.2.2. In addition to that, the
emerging concept of network function virtualization (NFV) aims at the replacement
of inflexible hardware middleboxes by virtual instances that are run flexibly on
commodity servers. In this respect, NFV extends the network virtualization con-
cept and enables flexible deployment of service chains. Section 2.2.3 provides
an overview of recent works related to NFV. Moreover, Section 2.2.4 introduces
the software-defined networking (SDN) concept that enables centralized control
over network resources with respect to traffic forwarding.

2.2.1 Host Virtualization

Host virtualization refers to the virtualization of computer hardware such as
servers. Efficient resource sharing and isolation, as well as the concurrent use
of different operating systems, are the main goals of host virtualization. In this

regard, we distinguish between three major virtualization techniques:

e Full virtualization (e.g., KVM [31], VMware [32]) requires a hypervisor
between the guest operating systems (0Ss) and the actual hardware, i.e.,
host 0S. Thus, the guest OSs view only virtualized components exclusively
assigned to them. Any privileged command can be executed from within

2.2 ENABLING TECHNOLOGIES AND CONCEPTS

the guests since each guest runs its own kernel, and further no restrictions
apply to the selection of the guest OS. Full virtualization provides full
flexibility and a high level of isolation at the drawback of performance

overhead.

¢ Paravirtualization (e.g., Xen [7] 4) uses, similar to full virtualization, a
hypervisor to isolate different guests from the hardware. The difference
lies in the modified kernel of the guest OS that uses hypercalls to pass
through privileged commands to the host OS. Paravirtualization achieves
an adequate level of isolation and performance at the price of the limited
availability of kernel updates for the guest OSs.

¢ Container-based virtualization (also referred to as OS-based virtualization,
e.g., OpenVZ [8], Docker [34]) refers to the creation of multiple contain-
ers (i.e., guest environments) in the user space of the host OS. In this
case, guests use the same kernel of the host OS simultaneously. Hence,
container-based virtualization does not provide flexibility with respect to
the guest OSs and achieves merely a low level of isolation, specifically
between the user-spaces of the different guests. However, this approach

achieves high performance due to small overhead.

2.2.2 Link Virtualization

Link virtualization commonly refers to the creation of tunnels (i. e., virtual links)
that interconnect endpoints even across the substrate network borders. Tunnels
are typically created by using one of the various existing encapsulation proto-
cols, such as IP-in-IP [35] which embeds the original IP packets with header
into new IP packets whose outer IP header is used for the forwarding over a
IP carrier network. Solutions for encapsulation of protocols other than IP exist,
e.g., EtherIP [36] or generic routing encapsulation (GRE, [37]). In addition to
the above-discussed tunneling approaches, multiprotocol label switching (MPLS)
[38, 39] is a method that distinguishes between traffic flow classes. IP packets
of the same class are assigned a label. This label in turn is considered in the
forwarding tables of the MPLS-capable routers (i. e., label-switched routers) to
identify the traffic class. In this respect, substrate providers are given the means
to assign a certain path to a particular traffic flow class. Furthermore, signal-
ing protocols have been proposed that allow virtual link setup across multiple
substrate networks with QoS guarantees [40].

4 Fayyad-Kazan et al. provide a performance comparison of Xen with full virtualization versus
Xen with paravirtualization [33].

13

14

BACKGROUND

2.2.3 Network Function Virtualization

A rich variety of proprietary hardware appliances (i.e., middleboxes) is de-
ployed across the Internet today.> Those purpose-specific middleboxes fulfill
certain tasks (i. e., network functions, NFs) such as network address translation
or load balancing. Hardware middleboxes introduce limitations with respect
to customization, resource efficiency, and manageability. Network function vir-
tualization (NFV) is an emerging concept that aims at mitigating some of these
problems by enabling the consolidation of NFs on platforms built of commod-
ity components [17, 18, 41]. This can reduce the expenses for NF deployment
either by deploying consolidated software middleboxes in enterprise networks
or by outsourcing NFs to virtualized network infrastructures [41-46]. In addi-
tion to that, NFaaS allows elastic resource provisioning and thereby the scaling
of the network services in response to evolving demands. Furthermore, the re-
cent trend of micro-data center deployment by large ISPs (e. g., AT&T, Deutsche
Telekom, Telefonica) leads to a larger number of NFV PoPs and a wide geo-
graphic coverage [19]. Thus, the deployment of NFs even with hard geographic
constraints is feasible and also the clients potentially benefit from better NFaaS
offerings. Finally, NFV facilitates service chaining, i.e., the composition of mul-
tiple NFs and endpoints (Section 2.3).

2.2.4 Software-Defined Networking

The SDN concept represents an approach towards programmable network equip-
ment [47]. In principle, SDN introduces the ability to make traffic forwarding de-
cisions over abstracted interfaces (control plane) and apart from any forwarding
device (data plane). In more detail, centralized controllers instruct the network
devices to forward packets based on rules at the granularity of flows. These
controllers build an abstraction layer that provides higher-level functionality to
the network applications. The data plane can be realized by any SDN-capable
forwarding device. The SDN concept has, for example, been materialized in the
widespread OpenFlow protocol [48, 49]. OpenFlow is supported by more than
one dozen of OpenFlow controllers such as NOX [50], Beacon [51], or Open-
DayLight [52]. OpenFlow switches, serving as data plane, are available from
many vendors but also commodity servers could be used. In the latter case, a
software-based OpenFlow switch such as Open vSwitch needs to be used [53].

SDN is also used in the context of NFV. The works on NFV as discussed in
Section 2.2.3 rely on the SDN paradigm. They use, for example, SDN controllers
to steer traffic through a sequence of NFs.

5 Sherry et al. provide a survey of enterprise middlebox deployments [16].

2.3 SPECIFICATION OF VIRTUAL NETWORKS AND SERVICE CHAINS

Furthermore, virtualized SDN combines the benefits of virtualization and SDN
[54]. This concept introduces SDN hypervisors that abstract the physical SDN
components so that each tenant views himself as the exclusive user of an SDN
controller. The shared resources are then managed and isolated by the hyper-
visor. FlowVisor [55], AutoSlice [56], and HyperFlex [57] are examples for SDN

hypervisor approaches.

2.3 SPECIFICATION OF VIRTUAL NETWORKS AND SERVICE CHAINS

The previous sections explain the enabling technologies for wide-area deploy-
ment of network services and the substrate that is used to host those services.
In the following, we discuss (i) virtual network and (ii) service chain specifica-

tions.

Virtual Networks

The SPs benefit from service-tailored VNs that fulfill requirements in terms of
processing capability, link quality, and geographic location. From a technical
point of view, a VN consists of (i) geographically diverse virtual machines (i.e.,
virtual nodes) that take over certain processing tasks (e.g., packet inspection,
filtering, transcoding, caching) and (ii) virtual links that are setup between the
virtual nodes. A common metric for processing capability is the number of
compute cycles over time (GHz). Other attributes such as hard disk storage
or main memory size could also be considered. Agreements related to data
transfers are often associated with a data volume that can be consumed during
a certain time interval or with a peak traffic rate. Links can be further asso-
ciated with other performance metrics such as latency to support additional
service guarantees to the end-users. In practice, no consensus has been found
so far on how to define and account for network performance, from both the
requesters’ side and the providers’ side [58]. For this reason, we specify a basic
VN request model associated with virtual node demand (GHz) and bandwidth
demand (Mbps). Furthermore, VNs can be represented in different forms, either
as topology or as traffic matrix, as exemplified in Figure 4. In the chapters 3
and 4, we discuss the embedding of such VNs into substrate networks.

15

16

BACKGROUND

alblcld] o deman
de demand ENENENEN il
<« hodedeman (compute units)
0

(compute units)

(a|l - [10]40
m 10| - 30120 link demand
0\ link demand E 201301 - 50 (bandwidth units)
(bandwidth units) n 0 20500 -
(a) topology-based VN (b) traffic matrix-based VN

Figure 4: The bandwidth demands of the virtual links of a VN can be represented in
different ways. Non existing virtual links can be expressed as zero bandwidth
demand.

Service Chains

Service chaining is a common abstraction for the expression of network service
requirements [46, 59]. A service chain represents the exact sequence of NFs
traversed by one or multiple flows. Figure 5 illustrates an example of service
chaining. In this illustration, two different groups of enterprise network users at
one site (e. g., front-desk and sales) access a web server cluster and a database
server residing in another site. Traffic from both groups traverses a cache, a
firewall, and a redundancy elimination (RE) appliance, whereas the traffic of
“Group A” is sent through a load balancer and a web application firewall. In
contrast to VNs, such service chain requests do not specify processing demands
and link bandwidth demands among the chain nodes. Instead, those demands
are estimated, during the embedding phase, based on NF resource profiles and
the traffic rate at the sources. The embedding of service chains is subject of
Chapter 5.

%] byl LOAd e Web == Redundancy

Firewall > Cache Balancer Application r Eliminator

Groupd —| Firewall
B

Enterprise Site Enterprise Site

Figure 5: Service chains are composed of virtualized network functions to be traversed
for a specific purpose and client. In the example, two groups of enterprise
network users require different network functions applied to their traffic from
the one to the other site.

2.4 MULTI-PROVIDER EMBEDDING ARCHITECTURES

2.4 MULTI-PROVIDER EMBEDDING ARCHITECTURES

The embedding of such VNs and service chains into multiple substrate net-
works requires coordination among the different actors (i.e., SPs, InPs). In
this context, coordination comprises several embedding mechanisms (e. g., re-
source discovery, resource assignment, service instantiation) that are facilitated
by multi-provider VN embedding architectures that we discuss in the following.
All these architectures consider the Sp, that formulates the VN requests and
the infrastructure providers (InPs), i. e., the operators of the substrate resources.
We further distinguish between centralized and distributed approaches as illus-

trated in Figure 6.

¢ Centralized architectures rely on a coordinator that partitions the original

VN request into segments that are subsequently relayed to the InPs.

¢ Distributed architectures let an InP first embed any subset of the arrived
VN request and then relay any remaining VN request to a neighboring InP.

Service Provider

o)
‘al=lb| VN request
‘ ‘al=lb| VNrequest
ye
df=c/

|
a

remaining VN
request

(a) VNE with centralized coordinator (b) Distributed VNE

Figure 6: We distinguish between VNE architectures that either facilitate a layer of indi-
rection between SP and InPs (coordinator), or that allow relaying of requests
among the InPs.

Schaffrath et al. propose an architecture as shown in Figure 6a where a VN
provider acts as a layer of indirection between SP and InPs [12]. The VN provider
maintains a repository containing resource information from InPs, such as vir-
tual machine attributes or transit costs. Based on this information, he then
partitions the requested VNs according to the SP’s objective, e.g., minimizing
the VNE cost. A similar architecture called Cabernet is also proposed by Zhu et
al. [20]. Such centralized architectures can also be used with dynamic pricing

17

18

BACKGROUND

at which InPs bid for profitable VN subsets. For example, V-Mart [60] uses a two-
stage Vickrey auction model where an auctioneer undertakes the partitioning
of the VN requests.®

In contrast to the centralized approaches, PolyViNE [62] relies on a distributed
VNE architecture, as illustrated in Figure 6b. In this case, no layer of indirection
exists. Instead, the SP sends his VN request directly to one or multiple InPs. Each
InP selects a subset which can be efficiently mapped to his substrate network,
and the remaining part of the VN will be again forwarded to one or multiple
InPs until completion of the VN mapping. All InPs propagate back the VNE cost
and the SP will eventually trigger the final VNE over those InPs with the least
aggregated VNE cost.

The architectures presented in this section have been particularly proposed
for the embedding of VNs. Nevertheless, the embedding of service chains is,
similar to VNE, exacerbated by limited information disclosure in the multi-
provider context. Hence, multi-provider VNE architectures can also be con-
sidered for multi-provider NSE after an adaptation of the request and network
models. In this case, the NF provider replaces the InP business role. We em-
brace the centralized approach for the VN and service chain embedding in the
Chapters 3 and 5.

2.5 EMBEDDING STEPS

The embedding of VNs and service chains consists of a sequence of embed-
ding steps. According to the VNE frameworks proposed by Houidi et al. [63]
and Papadimitriou et al. [64], multi-provider VNE with centralized coordinator

comprises the following embedding steps:

* resource advertisement,
* resource matching,
* VN request partitioning,
® resource mapping,

e VN instantiation.

More specifically, VNE takes place as follows. Participating InPs advertise
the resources, that can potentially be used for hosting new VNs, to the VN
provider that in turn stores this information in a local repository. The resource
advertisement phase is a continuous process. Thus, updates announced by the

6 Fundamentals of auction theory are, for example, provided by Klemperer [61].

2.5 EMBEDDING STEPS

InPs are immediately stored in the VN provider’s repository. Regardless of the
resource advertisement phase, SPs direct VN requests to the VN provider at any
time. He in turn matches the requested resources of the VN against his local
repository that contains the resources advertised by the InPs. The outcome of
the matching is the identification of potential InPs for the embedding of the
requested VN. Next, the VN provider splits the VN request into segments that
can each be embedded by a single InP. The demanded resources of the VN
segments are then assigned to the physical resources by the corresponding InPs.
Finally, the VN is instantiated after all resources are assigned.

This thesis focuses on (i) the request partitioning and (ii) the resource map-
ping phase. According to that, the following sections provide an overview of

existing methods used in related works.

2.5.1 Request Partitioning Methods

Request partitioning is challenging due to the limited knowledge of the sub-
strate resources. Existing works either ignore this issue or they consider only
very abstract views. In this respect, Houidi et al. [63] carry out VN request
partitioning based on an AS-level substrate network view. In particular, virtual
nodes are assigned to ASs while the link mapping takes place subsequently
within the ASs. In this case, all the intra-domain link costs that impact VNE ef-
ficiency are not taken into account during the partitioning phase. The authors
provide a heuristic algorithm based on the max-flow min-cut algorithm and
an integer linear programming solution. Leivadeas et al. [65] rely on a cloud
broker and propose for the request partitioning a heuristic algorithm which is
based on iterated local search (ILS). ILS yields substantially lower runtime com-
pared to integer linear programming, but may still require a large number of
iterations and considerable communication overhead between the broker and
the InPs before an approximate solution has been found. This work does not
discuss the visibility of the broker on the substrate resources. Additional re-
lated works on VN and service chain partitioning are discussed in detail in the

Sections 3.8 and 5.7.

2.5.2 Resource Mapping Methods

Resource mapping in single substrate networks has already been studied com-
prehensively [66]. The vast majority of these works focus on resource efficiency
with the goal of achieving maximum revenue and request acceptance. In this
respect, algorithms commonly optimize cost while some strive to achieve load

balancing [67, 68]. There exist various approaches based on

19

20 BACKGROUND

e integer linear programming and mathematical modeling:
- integer linear programming is used widely (e. g., by [63, 69—72]).

- Quadratic programming is also used in one of the earlier works by

Lu and Turner [73].

— Cheng et al. [74] rank nodes based on its resource and topological

attributes using the Markov random walk model.

* heuristic algorithms:

— Fajjari et al. [75] deal with the hardness of the mapping problem and
employ the ant colony metaheuristic while Zhang et al. [68] use the

simulated annealing metaheuristic.

— Mijumbi et al. [76] propose a multiagent learning algorithm for dy-

namic resource allocation.

— Chen et al. [77] use a border matching strategy that reduces the frag-

mentation effect on the substrate network.

* existing solutions to well-known problems in graph theory:

- Lischka and Karl [78] devised an algorithm based on subgraph iso-

morphism detection.

- Some works consider the link mapping a separate phase and solve

the corresponding multi-commodity flow problem (e.g., [79]).

Such resource mapping algorithms commonly aim at achieving optimality
and low run time, which can be seen as dominating algorithm efficiency met-
rics. Scalability issues with integer linear programming-based solutions are ad-
dressed by a transformation to real linear programming equivalents and round-
ing algorithms. Chowdhury et al. [70] take such an approach for coordinated
node and link mapping and apply deterministic and randomized rounding
techniques. Another goal of VNE works is to introduce new features to existing
solutions. For example, Fuerst et al. [8o] propose a pre-clustering algorithm
for optimization of link resources. Furthermore, an initial embedding can be
continuously optimized by reprovisioning of the virtual resources, for example,
to cover evolving substrate networks [81] or to react to link failures [82]. Yet
other works question the suitability of request attributes or the assumptions
made in previous work. The former can be seen in the case where requests
could also have a flexible instead of a fixed starting time. This is considered
by Rost et al. [83] who propose a continuous-time mathematical programming
approach where resource allocations are rescheduled for improving overall sys-
tem performance. The rich variety of VNE works further incur variations in

the assumptions. For example, Yu et al. [79] take into account path splitting

2.6 LINEAR PROGRAMMING

and migrations while VN reconfiguration is considered in [84]. Furthermore,
assumptions are rethought in order to make VNE appear more realistic. In this
respect, Botero et al. [85] propose a model taking additionally into account the
processing effort of the forwarding nodes (hidden hops) in terms of CPU expen-
diture. Apart from this general overview of related work on resource mapping,
we discuss them in the context of VN segment and VN subset mapping in the

Sections 3.8 and 4.5; and in the context of NF subgraph mapping in Section 5.7.

2.6 LINEAR PROGRAMMING

The previous section discusses the required embedding steps, particularly the
request partitioning and the resource mapping step. These steps can be viewed
as combinatorial optimization problems which can be tackled by linear pro-
gramming methods. This section provides a general introduction to these meth-
ods.

An optimization problem can formally be expressed as follows.

Minimize (Maximize) fo(x) (1)

subject to: fi(x) < by i=1...m (2)

x represents the set of optimization variables — the solution of the optimiza-
tion problem. The objective statement (Equation 1) contains fo(x), the objective
function, which is to be either minimized or maximized. The solution space is
restricted by m constraint functions (Equation 2) that need to be less or equal
than the constants in b representing bounds for those functions. If x € R and
fo(x),fi(x) are linear functions then these linear problems can be solved by lin-
ear programming (LP) algorithms based on the simplex, the interior point, or
the ellipsoid method. Highly optimized solvers rely, depending on the problem,
on such algorithms and solve LP models efficiently within polynomial time.

However, optimization problems in computer networking are often combi-
natorial problems at which, for example, nodes in a substrate topology are to
be selected jointly with links forming a traffic path. In this case, the decision
variables are of type binary, i.e., x € {0, 1}, and cannot be solved directly with
the above-mentioned LP algorithms. Instead, those variables are treated as inte-
gers, i.e., x € Z, thus integer linear programming (ILP) algorithms, for example,
based on the branch and cut method, need to be applied here 7. Mixed integer
linear programming (MILP)® is a less restrictive ILP subclass considering models

7 ILP covers binary variables as they represent an integer subset. In this case, the terms “binary
linear programming” or “o-1 linear programming” can be used to put emphasize on the hardness
of the optimization problem.

8 The term MIP is often used as a synonym for MILP and MIQP.

21

22

BACKGROUND

with both integer and real variables. Analogously, MIQP is an MILP variant with
additional quadratic terms in the objective function caused by combination, i.e.,
multiplication, of two linear variables.

MILP, ILP, and MIQP are known to be computational intensive — Such models
do not scale well and, in many cases, exact solutions cannot be obtained in
polynomial time. A common way to prevent from exorbitant solver run time is
to instruct the solver to terminate after a near-optimal solution was found. The
level of suboptimality, quantified in the MIP gap, is expressed in the objective
function’s value difference between the best solution found and the optimal
solution. This approach reduces solver run time dramatically, even at marginal
suboptimality, i.e., in the magnitude of 0.1% MIP gap. However, this does
not solve the scalability problem. Hence, approximation algorithms are often
employed that use ILP models which have been transformed to LP models by
relaxation of the integer and binary variables.

Existing constraints in a relaxed LP model may be without effect after re-
laxation which in turn yields suboptimal or infeasible results. Suboptimality
is an expected effect caused by complexity reduction of the original ILP/MILP
formulation together with the required rounding of the relaxed LP variables.
Infeasible solutions due to rounding can finally be prevented by re-running the
LP solver with fixing selected variables according to the rounding results. This
iterative reduction of the solution space will finally exclude all non-binary so-
lutions which wrongly appear feasible in the LP. LP relaxation and rounding
typically achieves near optimal results but much faster processing time. Such
approaches are taken in the Sections 3.5.2, 3.6.2, 5.4.2, and 5.5.2.

Optimization problems can alternatively be solved with the aid of expert
knowledge. Heuristics are such an example at which an algorithm is based on
a practical methodology as applied by human experts, e. g., network operators.
On the one hand, heuristics are often optimized for a very specific environ-
ment, and extreme cases of suboptimality cannot be precluded. On the other
hand, heuristic-based algorithms can typically be implemented with limited
time complexity and can in most cases be further optimized for run time.

Furthermore, greedy algorithms represent the lower bound of heuristic algo-
rithms in terms of intelligence. They are extremely simple, therefore even faster,
and for some problems sufficient or useful as a baseline.

Fundamentals in combinatorial optimization are provided, for example, by

Papadimitriou and Steiglitz [86].

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

This chapter aims at addressing the issue of limited information disclosure (LID) of
the InPs” substrate topologies and resources [87, 88]. Specifically, we investigate
the level of resource and network topology information that can be divulged
by InPs, taking into account the confidentiality of this information (Section 3.1).
Furthermore, we question the suitability of network topologies for VN request
specifications (Section 3.2). We further present a framework for multi-provider
VN embedding (VNE) in which a centralized coordinator relies on abstracted
information which is not considered confidential by the InPs. In particular, this
centralized coordinator represents a VN provider that partitions a requested VN
into multiple segments that are subsequently mapped to the infrastructure by
the corresponding InP (Sections 3.3—3.6). We evaluate VNE with limited infor-
mation disclosure against a “best-case” scenario with full information disclosure
(FID) (Section 3.7).

3.1 INFORMATION DISCLOSURE OF THE INFRASTRUCTURE PROVIDERS

We depart from the example in Figure 7, where the embedding of a VN con-
sisting of virtual nodes and links associated with certain requirements (e.g.,
CPU and bandwidth) is requested at a VN provider. VN requests are formulated
based on the requirements of a particular service and are typically defined
at a high level of abstraction. VNE consists in mapping the VN request onto
multiple InPs, such that virtual node and link requirements are satisfied. Fur-
thermore, the assigned InPs should offer the geographic footprint required by
the sP. We rely on the centralized control plane architecture of Schaffrath et al.,
which interposes a connectivity layer (i. e., VN provider) between SPs and InPs,
responsible for the partitioning of VN requests into segments assigned to InPs
[12].

The VN provider’s visibility on the substrate networks is critical for the effi-
ciency of VN partitioning. In this respect, a well-defined and realistic level of
information disclosure comprises a prerequisite for any VN partitioning prob-
lem formulation. To this end, we consider the information disclosure policies
of InPs and cloud data center network operators with respect to (i) (virtual)

resource availability and (ii) substrate network topology.

1 VNE architectures are discussed in Section 2.4

23

24

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

[Service Provider]

v
VN request
[d-{c|

\ 2

[vNProvider |

Figure 7: The VN provider represents a layer of indirections between the requester (SP)
and the InPs. It partitions the incoming VN requests across the potential InPs.

Virtual Resources. Amazon EC2, a prominent example of a cloud datacenter,
classifies its resources (i.e., virtual machines) into certain types, each one hav-
ing a common set of attributes (e. g., operating system, main memory, storage,
1/0 performance) [89]. Each resource type is advertised along with the associ-
ated cost. Amazon EC2 does not disclose the number of available instances for
each offered resource type, concealing the resource utilization.

Network Topology. For InPs, revealing detailed topology information, such
as router-level topologies is deemed prohibitive. Instead, some InPs publish
topologies with PoPs. However, most of these topologies are oversimplified
lacking not only router-level connectivity but also PoP structure [go—93]. In
contrast to InP topologies, there is publicly available information on InP peerings
[94]. Specifically, certain Internet exchange points (e.g., DE-CIX [95], AMS-
IX [96])* advertise information about peerings and traffic statistics. Additional
information on peering locations and participants is collected and published by
peering databases (e. g., PeeringDB [98]).

Based on these observations, detailed topology information cannot be as-
sumed to be accessible by VN providers. However, VN providers can enrich
their limited substrate network view with certain aspects of the substrate net-
work topologies which are not treated as confidential, such as InP peerings, in-
cluding the locations of peering nodes. We further consider InPs are advertising
the costs of the links between the disclosed peering nodes (i.e., cost per band-
width unit). The peering link costs will comprise the transit fees to the provider
(in the case of paid peering) or the cost for the operation and maintenance of

2 Ager et al. studied the anatomy of a large European IXP [97].

3.1 INFORMATION DISCLOSURE OF THE INFRASTRUCTURE PROVIDERS

bandwidth cost

InP 2
(b) VN provider’s view on the substrate network

topologies

Figure 8: The VN provider has only a limited view on the substrate network topologies.
Router-level topologies are usually obscured by the InPs.

the peering link (in the case of settlement-free peering) plus the profit for the
InP. Since all these costs will be accumulated in the advertised peering link
costs, any potential confidentiality of peering agreements will not constitute a
limiting factor for VN request partitioning.

Along these lines, Figure 8b illustrates the view of the VN provider on the
substrate network topologies of Figure 8a, with U, V,W, ..., Z representing the
peering nodes. Furthermore, Figure 9 combines this topology view with the set
of offered virtual node types, represented by {a, b, c, ..., g}, and their associated
costs. This essentially constitutes the information used by the VN provider for
VN request partitioning.

We handle VN partitioning as a cost minimization problem, i.e., the VN
provider will seek to minimize the VN embedding cost, which accumulates
all virtual node and link costs. Since the VN provider lacks detailed knowl-
edge of the substrate topologies, he will not be in position to account for all
intra-provider link costs. However, the disclosure of link costs between peering
nodes within each InP allows the VN provider to have a rough estimation of
the total virtual link cost (Figure 8b). We quantify the impact of such limited
information disclosure on VNE efficiency in Section 3.7.

25

26 MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

virtual node
type cost

Figure 9: VN request partitioning uses abstract resource and network topology infor-
mation. InPs will advertise costs for available virtual node types and for
transit between peering PoPs.

3.2 VN REQUEST SPECIFICATION

Nearly all existing VNE algorithms (e. g., [63, 67, 70, 78, 79, 84])3 process topology-
based VN requests, which are commonly specified as undirected weighted graphs.
To provide more flexibility in VNE, we consider VN requests in which the band-
width demands are expressed with a traffic matrix.

Such a VN request specification entails significant benefits to all actors. First,
a traffic matrix simplifies the specification of bandwidth demands between a
set of virtual nodes. Using traffic matrices, an SP can benefit from a higher level
of abstraction, which obviates the need for any VN topology specifications. On
the other hand, traffic matrix-based VN requests can also be beneficial to InPs
since they yield high flexibility for VN segment mapping.

For example, Figure 10 illustrates a traffic matrix that specifies the band-
width demands between three virtual nodes. This traffic matrix essentially
abstracts all four topology-based requests shown in this figure, while it further
represents the bandwidth demands of additional VN topologies that include
intermediate nodes. As such, a traffic matrix gives directly the bandwidth de-
mands, irrespective of the virtual node mapping. In contrast, a VN graph may
require transformations for the estimation of bandwidth demands, so that the
feasibility of a certain mapping can be evaluated. Otherwise, the VN graph may
unnecessarily restrict the VNE problem space excluding efficient solutions [10].

Another aspect of VN topologies is redundancy at which operators consider
backup paths in their requested topologies. Traffic rerouting across the physi-
cal network domains is hard to predict over time and the case that primary and
backup path partially share the same physical medium cannot be precluded,
e.g., due to cascaded embedding into non-physical resources. Instead, we ar-
gue that infrastructure providers are finally in charge to fulfill the respective

3 Section 2.5.2 discusses such algorithms accordingly.

3.3 VN EMBEDDING FRAMEWORK

bls|- |8 le—— bandwidth
units

13
b a
14
c]

Figure 10: A VN as traffic matrix abstracts multiple topology-based VNs.

service level agreements. In this context, we investigate the impact of topology-
based VNE by repeating the mapping of the same requested VN topology but
with a stepwise reduction of the maximum number of virtual links sharing a
single physical link as shown in Table 1. Each step enforces more and more
the exact mapping as VN topology while no restriction means the VN can be
handled as traffic matrix. Our tests include 250 VN topologies with each 5 to 15
virtual nodes to be mapped onto a substrate network with 125 nodes.# Table 1
shows further acceptance rate and generated revenue relative to the embedding
with traffic matrices and further the penalty cost incurred by additional links.
These results show that a threshold of 10 and less overlapping virtual links sig-
nificantly impact the efficiency of VN embedding. At the first view, penalty in
terms of VN embedding cost for topologies seems low. Together with the obser-
vation that revenue decreases faster than the acceptance rate, we conclude that
larger VNs are affected exceedingly.

Based on these observations, our multi-provider VNE embedding framework
is tailored to traffic matrix-based requests. We use traffic matrices for the ex-
pression of bandwidth demands in the initial VN request formulated by the Sp

as well as in the VN segments generated upon VN partitioning.

3.3 VN EMBEDDING FRAMEWORK

Hereby, we present our multi-provider VNE framework. Similar to [63], we
decompose VNE into a set of operations that allow the VN provider and InPs
to process VN requests, depending on their level of access and visibility on the
substrate networks. In the following, we discuss these VNE steps.

4 Evaluation environment and parameters similar to Section 3.7.

27

28

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

Table 1: The restriction of the shared use of substrate links emulates for the resource
mapping similarity with a topology-based representation of the same VN. The
results indicate that an increasing similarity with the VN graph comes along
with a higher impact on mapping efficiency.

Request Type | Max. # virtual links VN request Generated Penalty

per substrate link acceptance rate (%) revenue (%) cost (%)

VN traffic () 100.0 100.00 0.00
matrix

20 100.0 100.00 0.89

10 68.8 52.02 3.54

VN 8 54.8 36.77 4.56

topology 6 41.2 24.40 5.48

5 34.0 18.51 5-53

4 27.6 14.28 7.98

Resource Information Disclosure. The disclosure of network topology and re-
source availability information can facilitate resource discovery and VN request
partitioning. As discussed in Section 3.1, we consider each InP advertising (i) his
geographic footprint, i. e., the list of peering nodes, (ii) the offered virtual node
types along with the associated cost, and (iii) the bandwidth cost of the links be-
tween the peering nodes. Virtual node types comprise the resource attributes,
for example, its availability. All disclosed information is collected and regis-
tered by the VN provider into a local repository, which is updated after the
arrival of an InP advertisement and subsequently used for resource matching
and VN partitioning.

Resource Matching. The VN provider relies on the information disclosed by
InPs to match requested to offered resources. To this end, the VN provider iden-
tifies a set of candidate resources that fulfill the requirements of each requested
virtual node (e.g., with respect to location, main memory, network configura-
tion). Figure 11 depicts how four different virtual node types (i.e., a, b, c, d)
of a VN request are matched against the resources advertised by the InPs. In
this particular example, the requested and advertised resources have specifica-
tions of the same level (i.e., the same set of attributes) which simplifies their
matching. It is possible that the attributes of the requested resources comprise
a subset of the attributes of the advertised resources. In this case, the identi-
fication of matches across the set of disclosed resources can be computed by
employing virtual resource clustering techniques (e. g., [99, 100]).

VN Request Partitioning. VN requests are partitioned across multiple InPs when
there is not a single InP that satisfies all the resource requirements in the request.

For example, VN partitioning is required for any requested VN exceeding the

3.3 VN EMBEDDING FRAMEWORK

VN request
alblc|d
al-|5(6]|8
b|5|-]8]9
clels 7 e bandwidth
g units
81917
§ 6 5 § ¢—T— compute
E El El units
g . R bandwidth

cost

*,, virtual node

VN Provider /'..type cost

Figure 11: The VN provider matches requested node types to the potential InPs. For
example, node a is only available at InP 1 and InP 3 at a different cost. InP
2 does not offer this particular node a.

geographic footprint of each InP. Any requested virtual node may be available
from more than one InP and possibly at different costs, as shown in Figure 11.
Virtual node assignment affects the virtual link costs, resulting in trade-offs be-
tween the virtual node and link costs. We thereby consider VN partitioning as
a cost minimization problem, taking into account all disclosed resource costs
as well as the inter-dependencies between virtual node and link costs. In Sec-
tion 3.5, we present an ILP/LP-based solution to the VN request partitioning
problem. The partitioning results in a set of VN segments, where each virtual
node is mapped onto one of the disclosed peering nodes. Similar to the initial
VN request, each VN segment consists of virtual node specifications, and a traf-
fic matrix that represents the bandwidth demands between all pairs of virtual
and peering nodes (Figure 12).

VN Segment Mapping. Upon VN request partitioning, InPs map their assigned
VN segments onto their substrate networks while satisfying certain virtual node
and bandwidth requirements. The segment mapping complies with the virtual
node to peering node bindings designated in the VN segment specification. This

step corresponds to VNE with a single InP, a problem that has been investigated

29

30

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

VN request

alblc

5
6|8

8197
5 g «—— compute

:
;
T N R
/

bandwidth
units

A

(&}
N|c| x|

N\
/ VN Provider \
VN segment 1 VN segment 2
a|d|V b|c|W
al-|8|11 b|-|8]|14
d|8|- |16 cl|8]-1|13
V |11|16] - W |14 13| -

8 8 6 5

Figure 12: The VN provider partitions the requested VNs across the potential InPs.
The virtual nodes a,d are mapped onto the peering node V (InP 1), and
the virtual nodes b, c are mapped onto the peering node W (InP 2). Band-

width demands for each VN segment are expressed with additional traffic
matrices.

in [63, 67, 70, 78, 79, 84]. However, these methods are tailored to topology-
based VN requests, instead of traffic matrix-based VN requests used by our VNE
framework. As such, in Section 3.6 we present an MILP/LP-based solution to

the mapping problem with traffic matrix-based VN requests.

3.4 NETWORK MODEL

In this section, we introduce the substrate and virtual network models used in
the VN request partitioning and VN segment mapping problem formulations
(Sections 3.5 and 3.6).

Substrate Network Model. The substrate network is represented as a weighted
directed graph Gs = (Vs, Es), where Vs is the set of substrate nodes and Eg is
the set of substrate links between the nodes within the set Vs. Each substrate
node u € Vs is associated with a set of attributes, such as the location and the
residual capacity denoted by r,,. Each substrate link (u,v) € Es between two
substrate nodes u and v is associated with the residual capacity denoted by 1.

3.4 NETWORK MODEL

The set of peering nodes disclosed by all participating InPs is further denoted
by P.

VN Request Model. A VN request consists of the set of virtual nodes Vy and
the bandwidth demands dY between any pair of virtual nodes i,j € Vy. Each
virtual node i is associated with a set of attributes (e. g., location) and a capacity
demand denoted by d'. For a VN request partitioned into k segments, V¥
denotes the set of nodes that comprise the VN segment specification, including
the virtual nodes plus the assigned peering nodes (e.g., VN request segment
1 and 2 in Figure 12). For any pair of nodes, i,j € V¥, dY represents the
respective bandwidth demands for the k'™ VN segment.

Table 2: Notations used in the Sections 3.4-3.6.

Symbol| Description
c%, cost of virtual node i when assigned to peering node p
c]ijp , accumulated link costs between virtual nodes 1,j when assigned to the peering
nodes p,p’, respectively
dt computing demand for virtual node i
dy bandwidth demand from virtual node i to virtual node j
U, variable expressing the amount of bandwidth from virtual node i to j assigned to
substrate link (u,v)
Es set of substrate links
Vs set of substrate nodes
Vv set of virtual nodes
V\]} subset of virtual nodes belonging to VN segment k
P set of peering nodes
Tu residual capacity of substrate node u
Tuv residual capacity of substrate link (u, v)
w%, constant set to one if the mapping of virtual node i to peering node p is feasible;
otherwise set to oo
wh constant set to one if the mapping of virtual node i to substrate node u is feasible;
otherwise set to oo
xt set of x}) variables belonging to a particular virtual node i
x]i3 variable € [0, 1] expressing whether the virtual node 1 is assigned to peering node p
x4 variable € [0, 1] expressing whether the virtual node 1 is mapped to substrate node u
ng' variable € [0, 1] expressing whether the virtual nodes i and j are assigned to the
peering nodes p and p’, respectively
o computing demand weight in VN embedding cost
B bandwidth demand weight in VN embedding cost

31

32

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

3.5 VN PARTITIONING

In this section, we present formulations for the VN request partitioning prob-
lem. We first describe the objective of VN partitioning and provide an MIQP/ILP
model (Section 3.5.1), which we subsequently transform into an LP model (Sec-
tions 3.5.2 and 3.5.3) in order to reduce time complexity. The notations used in
this Section are listed in Table 2.

3.5.1 MIQP/ILP Model

For VN request partitioning, we seek the assignment of the requested virtual
nodes to the disclosed peering nodes, i.e., Vi, — P, such that the cost for the
SP is minimized. To this end, we define a formulation that takes as inputs the
VN request, the node and link costs advertised by InPs, and the virtual node to
peering node assignment feasibility obtained from the resource matching phase.
In this respect, let c}, denote the cost associated with the assignment of virtual
node i to peering node p. This cost is basically obtained by multiplying the
request demand (i.e., compute units) with the unitary virtual node cost from
the InP. We further introduce a weight w]i:, € {1, oo} to specify the feasibility of
assigning virtual node i to p. Hence, wy, « oo if the mapping is not feasible
(i.e., none of the advertised node types satisfies the requested virtual node

specification). We use a binary variable x]i9 to indicate the assignment of the

virtual node i to peering node p. Similarly, cgp, denotes the link cost for the

assignment of the pair of virtual nodes i, j to the pair of peering nodes u,v. The
variable c;jp, comprises the multiplication of the bandwidth demand and the
unitary link costs along the path. Such link costs are specified separately per
traffic direction. This is especially relevant for peering links. In the presence
of multiple paths, the path with the lowest cost is selected. We particularly
inhibit path splitting, since the VN provider does not have any information
about the residual capacity of substrate network paths. A VN is partitioned
correctly if all virtual nodes are assigned to a peering node, logically expressed

by V xP =1 Vie V. Altogether, the VN partitioning problem can be initially
peP
expressed as an MIQP formulation:

3.5 VN PARTITIONING

Minimize Z Z w;c;x; + Z Z W;WL/CEP,X;X;/ (3)
i€V peP ijeV p,p/EP
(i#])
Subject to
D xh=1 VieV (4)
peP
x;,x;, e{0,1} VYi,jeV,vp,p'eP (5)

The objective function (3) represents the sum of the costs for the assignment
of virtual to peering nodes plus the accumulated link costs between feasibly
assigned nodes. Constraint (4) ensures that each virtual node 1i is assigned to
exactly one of the peering nodes and finally, condition (5) expresses the binary

domain constraints for the variables x}j and x;,.
Next, we eliminate in the objective function the quadratic term X%,XL, by sub-
stitution to a new binary variable y), = x;, Ax),. This variable indicates

whether a pair of virtual nodes 1,j is assigned to a pair of peering nodes p,p’.
The binding between x}, and y;jp, is realized by an additional constraint. For
any used combination of virtual node i to peering node p a constant number
of counterparts, depending on the VN size must exist:

5ot o o o |
pép ; GZVV Ypp' T Yprp = 2(IVv|—=1) - x;,. Multiplication by x}, yields zero if there
is no virtual node mapping. In this case, no link mapping will take place as

well. Finally, we obtain the following ILP formulation:

.. 1iui i) U .1
Minimize Z prcpxp+ Z Z WEWyCon Y 6)
ieVy peP LieVy p,p’eP
(i#))
subject to:
i .
pr:1 Vie Vy (7)
peP

DD g tupp =20WI=1)x, i#jVie W, YpeP (8)
‘p’EPjGVV

xb,yn €40,1} Vij € Vy,¥p,p’ € P)

The objective function (6) is the linear equivalent to Equation (3). Constraint
(7), which ensures that each virtual node i is assigned to exactly one of the
peering nodes, is identical with (4). Constraint (8) preserves the integrity of the

33

34

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

VN request, i. e., for each assigned virtual node i € Vy there is connectivity with
all (|Vy|—1) virtual nodes in the request. This does not necessarily imply a full
mesh; instead, if required by the VN specification, bandwidth demands between
pairs of virtual nodes may be set to zero. Finally, condition (9) expresses the

i

binary domain constraints for the variables x;

i
and Yppr-
3.5.2 LP Relaxation

We reduce the time complexity of the VN request partitioning ILP by relaxing
the binary domain constraints and subsequent rounding of the variables x%) and
ygp/ to binaries {0, 1}. To this end, we first relax the domain constraint (9), as

follows:
Xb Yo 20 Vij e Vy,Vp,p €P (10)

By relaxing the variable y;jp,, the constraint (8) no longer ensures the assign-
ment of all virtual links, especially when peering link costs are different for
each direction. We, therefore, add the constraint (14) to ensure the assignment
of each virtual link to exactly one pair of peering nodes. In this respect, we
summarize the following complete LP formulation at which Equations 11 — 13

are identical to their ILP equivalents.

I iiui i i) i
Minimize Z prcpxp—i- Z Z WpW5 Con Y (11)
ieVy peP LjeVy p,p’eP
(i#))
subject to:
D xh=1 View (12)
peP

YY ylHul =2wl-1) X, £ YE VW, YpeP (13)

p’'eEPjEVY

Y oyl =1 Vijew (14)
pp'EP
x;,y;jp, >0 Vi,jeVy,Vp,p €P (15)

i
P
values can be seen as probabilities for the different assignments. Solving the

The LP solver returns values for x}, and y;).p/ within the interval [o, 1]. These

VN request partitioning problem requires fixing, respectively rounding, the val-

3.5 VN PARTITIONING

ues of x}, and y;jp,. In the following section, we present an algorithm for the
rounding of these values.

3.5.3 LP Rounding

A naive rounding approach consists in rounding x}, for all i € Vi to a binary
in one step. This approach, however, misses a substantial optimization poten-
tial as dependencies of actual virtual node assignments are ignored. Instead,
in the following we describe a more efficient rounding technique for iteratively
fixing the node assignments x}g and repeating the assignment optimization (Al-
gorithm 1).

Algorithm 1 VN partitioning with LP

i .4

Require: P, Vy, w},, CprCppr

1: repeat
2: {x},,ygp/} < Solve_LP(..)
VY {ie VW [maxpep(x)) # 1
forallic V{, do
Xt <—{x%,-~- ’XIiP\}
Sort_Descending(X")
end for

® N o9 B oW

. XH(1)
lfx < argmaxiev\//m

9 Pex ¢ argmaxpep(xy)
100 Add_LP_Constraint("xy}, =1")
11 until V{, =0

. iU
12: return {xp,ypp/}

First, for each virtual node i with more than one feasible assignment, we
insert the solutions {x%, .. .,xh,'} in the vector X! in descending order. Next,
we determine the significance of each solution using the metric X*(1)/X*(2) for
i€ Vy, i.e, the ratio of the largest to the second largest value. This measure

leads to a solution X*(1) that dominates the remaining solutions X*(2),..., X*(|P|).

In every iteration, we fix the most significant node assignment x, until all nodes
have been assigned. This algorithm requires at most [Vy/| iterations for its com-
pletion. The LP formulation in Section 3.5.2 fixes the values of all y;jp, variables
after the termination of Algorithm 1.

We now compare the efficiency of the proposed rounding technique against
the naive approach. Figure 13 illustrates the VN partitioning cost (i.e., the cost
expressed in the objective function (11)) of naive rounding relative to the pro-

posed solution for a VN size of 10 nodes. After each iteration, the VN partition-

35

36 MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

1401, B
;. naive

135} *rounding q
: intermediate results after each iteration

1301 / > 1
1]

1250 1 7
1

120 ¢ 7
! proposed

N rounding |

o a4
© o o =
a S & o
F-—--

\\E@%V’_’

| €

B8d4s.. L

VN partitioning cost of naive rounding
relative to proposed rounding (%)
o

0 1 2 3 4 5 6 7 8 9
number of iterations

©
o

Figure 13: Naive rounding yields a higher VN partitioning cost compared to the pro-
posed rounding with further iterations.

ing cost for the naive rounding variant is derived from the current LP solution
and compared to the final solution of the proposed rounding algorithm. The
leftmost group represents only naive rounding, while from the left to the right,
Figure 13 depicts the relative partitioning cost after each iteration. The right-
most group represents the final solution, as nine fixed nodes implicitly yield the
result for the last node. Naive rounding achieves mean VN partitioning costs
higher than the proposed rounding. Rounding with Algorithm 1 iteratively
converges to a VN partitioning solution that yields low cost.

We further perform a comparison between the ILP and LP in terms of VN
partitioning cost. The LP incurs an extra cost of 0.2% to 7.3% for the interquartile
range between the 25" and 75" percentiles while the median extra cost is 3.0%.
Therefore, the LP incurs a minimal extra cost, while achieving run time which
is four magnitudes lower compared to the ILP for VN size of 10. In absolutes

values, the LP solver run time usually does not exceed goms.

36 VN SEGMENT MAPPING

In this section, we turn to the VN segment mapping problem that arises upon
VN request partitioning. We provide a problem formulation that captures the
mapping of the assigned VN segments to InP substrate networks subject to re-
quirements on virtual nodes and link bandwidths. First, we provide an MILP for-
mulation (Section 3.6.1) that is followed by a relaxed LP variant (Section 3.6.2).
Finally, we make the case for the relaxed variant considering its efficiency and

showing negligible difference of the empirical results of MILP and LP. We use

36 VN SEGMENT MAPPING

the same notation from the previous Section 3.5 for substrate networks and VN

requests. Table 2 contains a complete list of the notations used in this section.

3.6.1 MILP Model

The VN segment mapping problem comprises of (i) the mapping of virtual
nodes to phyisical nodes and (ii) the mapping of virtual links, i.e., traffic flows,
to a set of physical links forming each a path between pairs of virtual nodes.
The former can be described similar to the virtual node mapping as in the
VN partitioning formulation (Section 3.5.1) while the latter is commonly formu-
lated as multi-commodity flow problem (MCF, [22, 101]). In this context, each
traffic flow requirement corresponds to a commodity {i, j, dY}, where 1,j € V\k/
represent the source and destination nodes, respectively, while dV is the flow
demand from source to destination. The flow variable fﬁv denotes the total
amount of flow units on the substrate link (u,v) for the bandwidth demand
between the virtual nodes i and j, with u,v € Vs.

To indicate whether the virtual node i is mapped to the substrate node u we
use the binary variable xh, i.e., a value of one denotes the assignment. Since
not all substrate nodes may fulfill the requirements of a virtual node, we use
the weight w!, € {1, 00} to denote the feasibility of mapping the virtual node i
to the substrate node v, i.e., we set w!, = co to denote that the mapping is not
feasible. Furthermore, we define « and 3 to adjust the balance between CPU
and bandwidth for each VN segment.

The objective of our VN segment mapping formulation (16) is the assignment
of all virtual nodes within V\‘j and the computation of flows ﬂi}'v with i,j € V\‘j
and u,v € Vs, such that the VN embedding cost (i.e., the normalized sum of
CPU and bandwidth resources allocated to the VN segment) is minimized. The
MILP problem formulation is as follows:

37

38 MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

Minimize o Z Z whdixt, +p Z Z wiwl fi (16)

ueVs IEVk (wv)eEg LJEV{‘/
(W) (i)
subject to:
xt =1 Vie Vg (17)
u Vv 7
u€eVsg

> o=)), =dV0d,) i#) VeV u£vVue Vs

vEVs vEVs
(18)
Z dix!, <ry YueVs (19)
ievk
Z f <ruy Yu,ve Vs (20)
ijevg
x, €{0,1} Vue Vs, Vie VE (21)
f9 >0 Vu,ve Vs, Vije Ve (22)

Next we discuss the constraints (17)—(22). First, constraint (17) ensures that
each node i € V¥ is mapped to exactly one of the substrate nodes. Con-
straint (18) implies flow conservation, i.e., the summation of flows entering
or leaving a substrate node, which is not a source or a sink, must be zero.
Given bandwidth demand specifications for all pairs of virtual nodes in both
traffic directions, the summation of flows must be zero in any substrate node
that does not host a virtual node. Constraint (19) implies a capacity cap for
each substrate node u that we denote as the residual capacity limit. Similarly,
constraint (20) implies a capacity limit on substrate links. Condition (21) ex-
presses the binary domain constraints for the variable x!,, i.e., the mapping of
virtual node 1 to substrate node wu. Finally, constraint (22) ensures causality of
the flows 3,

36 VN SEGMENT MAPPING

3.6.2 LP Relaxation and Rounding

We relax the MILP formulation (17)—(22) to an LP formulation by extending the

solution space of x}, in (21) as:
0<x, <1 YueVs,VieVy (23)

Those LP solutions may contain non-binary values for xh, i.e., virtual nodes
mapped to multiple substrate nodes, what we consider to be not supported by
the InPs. Preliminary tests with non-expiring VN requests indicated that four to
five percent of the requests yield such non-binary solutions. In the following,
we seek an appropriate rounding technique of the node mappings x!,. To this
end, we propose the rounding technique in Algorithm 2, where we round to
the largest fraction value. An application of the rounding Algorithm 1 for VN
partitioning to this problem is possible but generally requires a longer run time.
The original VN mapping formulation already contains non-integer variable,
and thus, relaxation is only required for the x},. In other words, relaxation has
less impact on accuracy compared to the VN partitioning case and the proposed
algorithm is already sufficiently accurate.

Algorithm 2 VN mapping with LP

Require: Vs, VE, o, B, wh, dl, dY, my, Ty
1. repeat
2 {xi,fil} + Solve_LP(..)
3 X< {xi [x} ¢{0,1}}
4 {lex, Upx) < argmax{iev\ljluevs}x
5 Add_LP_Constraint("xif¥ =1")
6: until X =0

7: return {x!, yEv,}

Next, we corroborate these claims by the evaluation of the relaxed LP vari-
ant. In order to avoid any impact of the preceding VN partitioning phase, we
run tests only with VN request mapping onto a single substrate network of 125
nodes. Around 96% of the initial LP solutions have already all x!, set to {0, 1}
which means that no rounding is required at all. The CDF of Figure 14a shows
further that the fraction of LP solutions with non-binary x!, decreases drastically
with each iteration. Figure 14b shows the VN acceptance rate for non-expiring
requests of the original MILP and the relaxed LP variant. We observe no signif-
icant difference in the results. In addition, the VN embedding cost is equal for
MILP and LP in at least 9o% of the considered 5000 requests. The significant gain
from the relaxed LP variant is apparent when comparing the solver runtimes.

39

40 MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

=
o
o

o
©
©
© ©
S o

~
o

o

©

@
o
S

o
©
<

CDF of VN requests
ey
o

w
o

VN acceptance rate (%)
o
o

o
©
)
n
<]

=
o

It L L L 1l

o

0.95! I I I I I I I I I £
1 2 3 4 5 6 7 8 9 10 0 1000 2000 3000 4000 5000

iterations to eliminate all non—binary variables # VN request

(a) rounding iterations for VN mapping with (b) acceptance rate for VN mapping with
LP MILP/LP

Figure 14: Only 4% of the VNs experience non-binary solutions that require another
LP iteration. VN mapping with MILP and LP achieves a comparable VN
acceptance rate.

Initially, i.e., for an unutilized substrate network, we measured a maximum
LP solver runtime of 5 ms compared to an increase of at least two orders of
magnitude in solver runtime for MILP in the same scenario.

We argue that the relaxed LPs for VN request partitioning and VN segment
mapping (Sections 3.5 and 3.6) are more suitable for VNE, especially with very
large VNs or substrate networks, where the explosion of ILP solver runtime
essentially prohibits the use of ILPs. As such, we employ the LPs for our VNE

evaluations in Section 3.7.

3.7 EVALUATION

We use our VNE control plane implementation as presented in Section 6.2 for
the simulation of multi-provider VNE.5 In this section, we first explain evalua-
tion parameters and introduce metrics (Sections 3.7.1-3.7.2) before we discuss
our simulation results, focusing on the suboptimality in VNE due to limited

information disclosure (Section 3.7.3).

3.7.1 Parameters

In the following, we discuss the parameters used for our VNE simulations.
Substrate Network. The substrate networks considered in the following are
synthesized using the IGen network topology generator [102]. We ran, in addi-

tion, tests with topologies based on real InP networks (Figure 15 shows such an

5 Our tests are conducted on a server with two Intel Xeon quad-core CPUs at 2.53 GHz and 12 GB
of main memory.

3.7 EVALUATION

Figure 15: Example of a real InP substrate topology.

example) delivering results that are similar to the results from IGen topologies.
The following setting is used throughout the evaluation section if not stated oth-
erwise. The number of participating InPs is between 5 and 10. We exemplary fix
the number of substrate nodes for each InP to 25 and generate links using the
Waxman method [103]. The mean number of intra-provider and peering links
per InP is set to 70 and 4, respectively. Each node is associated with a location
identifier while the capacity value for each node and link is randomly selected
from a uniform distribution. The residual capacities for substrate nodes and
links are updated after a new VN request has been embedded or an existing VN
has been released. Resource advertisements from an InP to the VN provider are
dynamically updated when resources are assigned or released.

VN Request. A VN request consists of (i) virtual node specifications and (ii) the
corresponding bandwidth demands between each pair of virtual nodes given
by a traffic matrix. The number of virtual nodes for each VN request is randomly
sampled from a given uniform distribution. The node capacity and bandwidth
demands also follow a uniform distribution. Further, we include a location
attribute to virtual nodes using latitude and longitude values. This lends VN re-
quests an additional dimension, i. e., a desirable geographic footprint. Location
constraints essentially obviate the assignment of VNs strictly onto a single InP,
without significantly restricting the search space, since different InPs may have
overlapping geographic presence and consequently any virtual node may still
be mapped onto any of the InPs.

In our evaluation, we process a fixed number of VN requests with limited life-
time which is randomly given by a uniform distribution. We model the arrival
of VN requests through a Poisson process, which is an established assumption
in the literature (e.g., [63, 70, 78, 79, 84]). The evaluation parameters for the
substrate network and VN requests are summarized in Table 3.

We point out that the VN provider constitutes an emerging business model
that has not yet materialized on the Internet. Given the lack of real-data sources
for VN request workloads, our evaluation parameters are adjusted after broad

inspection of resource pricing by cloud providers (e.g., Amazon EC2) and the

41

42 MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

Table 3: VNE evaluation parameters.

Substrate network:

InPs 5 to 10

Nodes per InP 25

Intra-provider links per InP | 7o (mean)

Peering links per InP 4 (mean)

Link distribution Waxman method

Node degree 5.6 (mean)

Node capacity uniform distrib. [200, 300]
Link capacity uniform distrib. [4000, 6000]

Virtual network requests:

Virtual nodes uniform distrib. [10, 20]
Node capacity uniform distrib. [1, 8]
Bandwidth demand uniform distrib. [1, 10]
Mean arrival rate 1 request per 100 time units
VN lifetime uniform distrib. [500, 5000]
Max. geo distance unif. distr. [250, 500]

input parameters used in other VNE evaluation environments [63, 70, 78, 79,
84].

3.7.2 Metrics

Our main goal is to investigate the suboptimality of LID on multi-provider VNE
efficiency and its origins, and further provide useful insights into VNE using
the detailed logging of our system, as described in Section 6.1.5. Due to the
lack of previous work on multi-provider VNE with a well-defined level of re-
source and topology information disclosure, we compare VNE under LID against
a “best-case” scenario (FID) where the complete network topology and resource
availability information is attainable by the VN providers. The complete knowl-
edge of the substrate networks allows their composition into a single substrate
where VN requests can be directly embedded using any VN mapping algorithm.
As such, to embed VNs under FID, we use our VN mapping formulation (Sec-
tion 3.6) with the required modifications to support node feasibility mapping.
In order to provide a fair comparison between VNE under LID and FID, we do
not permit path splitting for VN mapping, (i.e., since there is no path splitting
in VN partitioning, VNE under LID cannot benefit fully from it).

3.7 EVALUATION

To compare VNE efficiency under LID and FID, we first define the embedding
cost of one VN request as:

D |eatp D> 3 [+ D ey ()
kekK iEVYE [u(:;fvl?g L(J;\)/}lj i,(iii\){}/ p,p'EP*
where the superscript (-)* at the sets P* and E§ denotes the set of assigned
peering points and substrate links, respectively. The set K comprises all VN
segments of a given VN request. The embedding cost for multiple VN requests
is the sum of the individual VN request costs, each given by (24). The first term
in (24) represents the normalized sum of CPU and bandwidth resources for all
segments of a VN request. The second term in (24) accumulates the bandwidth
resources along the assigned peering links between the VN segments.
Following this definition, we further define the following metrics used in our
comparative study:

* Extra Cost. Extra cost represents the additional embedding cost incurred
under LID relatively to the associated cost under FID. We explore the
origins of this extra cost through regression models that empirically show
the correlation with specific model variables.

* Acceptance Rate. The VN acceptance rate is the fraction of incoming VN
requests that is successfully embedded. A difference between the accep-
tance rates for LID and FID can be regarded as capacity gain that is based
on the amount of available information. This capacity gain can lead to
revenue gain, under certain conditions discussed at the end of this sec-

tion.

* Hop Count. We consider the empirical cumulative distribution function
(CDF) of the hop count of embedded virtual links with LID and FID. The
hop count of virtual links can be related to the experienced quality of
service along that link. In general, longer paths are associated with higher
delays, as well as, a higher packet loss probability.

3.7.3 Results

Initially, we measure the extra cost with LID across 300 runs. To this end, we
consider a large-scale VNE scenario with 250 VN requests across a diverse num-
ber of InPs and VN request sizes.

Figures 16a and 16b depict as bar graphs the extra cost for VNE with LID ver-
sus the VN size and the number of participating InPs. Accordingly, line graphs

43

44

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

show for LID the number of assigned InPs. Extra cost increases proportional to
the VN size while no clear trend can be observed with increasing number of
participating InPs. A higher number of them might increase the competition
among InPs but also the overall geographic coverage. In the latter case, more
VN requests with broader geographic demand are attracted and thus more InPs
need to be assigned as the geographic coverage of each single InP remains un-
changed. Our tests indicate that this effect is stronger than the effect of potential
savings by overlapping regions of competing InP. Figure 16c depicts the extra
cost versus the number of assigned InPs and the VN size. These results show that
VN size alone does not affect cost significantly if the number of assigned InPs is
constant. The increasing extra cost caused by increasing VN size as suggested
by Figure 16a is a result of increasing number of assigned InPs. This can again
be explained by the broader geographic demand growing with each additional
virtual node. Overall, LID incurs 5%-20% extra cost compared to FID. Con-
sidering that most resource and substrate topology information is concealed
from the VN provider, such cost increase is deemed reasonable. This result also
corroborates the efficiency of our multi-provider VNE solution. While there is
an increase in the extra cost with more assigned InPs, we do not observe any
particular trend in the cost with diverse VN sizes.

Next, we delve into the origins of the extra cost with LID. We first examine
whether LID leads to a larger number of assigned InPs. This may be a possible
justification for the additional cost since more InPs incur higher peering link
costs. However, Figure 16d provides no statistical evidence of a significant
difference of the medians between the two information disclosure levels.

Since the VN embedding cost accumulates all nodes and link costs, we further
examine the correlation between the extra cost with (i) the extra node cost, and
(ii) the extra link cost. Figure 17a illustrates a scatter plot of extra cost vs.
extra link cost, showing a strong correlation between both quantities. This is
validated by the coefficients provided by the regression model, i.e., slope 3 =
0.64 with RZ = 0.912 and p-value < 0.001. With respect to nodes, our results
(not shown here) do not reveal any perceptible increase in the node cost with
LID. This occurs because the costs of virtual nodes with certain specifications
are advertised to the VN provider and are, therefore, taken into account during
VN partitioning. In fact, we observe a few cases where the embedding cost
minimization with FID results in the selection of more expensive virtual nodes
(compared to the nodes assigned with LID) when the associated link cost is
lower.

To further investigate the origin of the extra link cost, we present a scatter plot
of the extra hop count versus the extra link cost in Figure 17b. We perform a
linear regression analysis of this data to obtain the following coefficients: slope

B R PR
e
H
]
§
]

extra cost (%)

o N DN O

10 11 12 13 14 15 16 17 18 19 20
virtual nodes per request

assigned InPs

extra cost (%)

L
onN & o

o N D o @

3.7 EVALUATION

assigned InPs

5 6 7 8 9 10
participating InPs

(a) extra cost and number of assigned InPs
for VN embedding under LID vs. VN size

(b) extra cost for VN embedding under LID
vs. number of participating InPs

f

|
|

extra cost (%)

assigned InPs
9] (o))
F--

12
3 o M

assigned InPs

(c) extra cost for VN embedding under LID
vs. number of assigned InPs and vs. VN
size

virtual nodes per request 5InPsLID 5InPsFID 7InPsLID 7InPsFID 10 InPsLID 10 InPs FID

(d) assigned InPs vs. participating InPs

Figure 16: Extra cost and number of assigned InPs for VN embedding under LID in-
crease steadily with the VN size. An increasing number of participating
InPs results in a higher number of assigned InPs while no correlation be-
tween participating InPs and extra cost under LID can be observed. Extra
cost for VN embedding under LID primarily stems from the assignment of
additional InPs while the VN size does not affect extra cost at an equal num-
ber of assigned InPs. VN embeddings under LID and FID assign the VNs to
a comparable number of InPs.

p =112 RZ = 0.73, and p-value < 0.001. Thereby, we find that the extra link
cost is correlated with longer paths (i. e., additional hops). This finding is also
confirmed by Figure 17¢c, which depicts the CDF of the hop count of virtual links
both with LID and FID. It is clearly shown that embedding with LID increases the
number of hops onto which virtual links are mapped. According to Figure 17c,
the maximum increase in the number of hops is three for 95% of the virtual
links. Furthermore, Figure 17d shows that virtual links with FID tend to span
fewer InPs. For instance, 77% of the virtual links are embedded onto less than
three InPs with FID, as opposed to 67% for LID.

Finally, we compare the acceptance rate of VN requests with LID and FID
across 50 runs, each one containing 2000 VN requests. Figure 18a depicts the

45

46 MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

extra cost (%)
extra hops (%)

" & i i i i i i i i i i i i i i i i i i i

0~ 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
extra link cost (%) extra link cost (%)
(a) overall extra cost vs. extra link cost (b) extra hops vs. extra link cost
1.00
0.90
0.80
2070
£
S 0.60
2
£ 050
O 0.40
[a]
O 0.30
0.20
0.10 [—e—LiD]:
——FID
-0 5 10 15 20 0.00 1 5 3 4 5
hops # InPs
(c) CDF of hop count of virtual links (d) CDF of number of assigned InPs per vir-
tual link

Figure 17: A strong correlation exists between overall extra cost and extra link cost for
VN embedding under LID. Extra link cost is in turn correlated with longer
paths, i. e, additional hops. In addition, embedding with LID increases the
number of hops used per virtual link while its embedding under FID tend
to span fewer InPs.

acceptance rate with non-expiring VN requests. Embedding under LID leads
to VN request rejection prior to the full information counterpart. The higher
acceptance rate for FID implies better resource utilization and essentially higher
revenue for InPs. Figure 18b provides a comparison of the acceptance rates for
expiring VN requests for different VN request arrival rates under LID, showing
that the acceptance rates for all arrival rates reach a steady state. This indicates
that a significant fraction of the VN requests can be embedded for long peri-
ods. As depicted in Figure 18b, the steady-state acceptance rate decreases with
increasing VN request arrival rates.

Our evaluation results indicate the feasibility of multi-provider VNE with LID.
Although most of resource and topology information is concealed from the VN
provider, the embedding cost in most cases is moderately higher, while the VN

request acceptance rate converges to a steady-state which ensures predictable

3.8 RELATED WORK 47

=
o
o

— arrival rate 10/100)|
- = - arrival rate 12/100|
-~ arrival rate 14/100

® ©
o o

@
o

-
<]

~

<]

o
o

o

o

IN
o

acceptance rate (%)
(42
o
iy
o

acceptance rate (%)
a
o

w

o
w
o

N
o

201

[N
o

o

500 1000 1500 2000 0 500 1000 1500 2000

0
VN request # VN request
(a) non-expiring VN requests. (b) expiring VN requests for different arrival

rates under LID.

Figure 18: In the case of non-expiring VN requests, embedding under FID can embed
more VNs than LID. Expiring VN requests allow reassignment of resources
then a nearly constant acceptance rate can be achieved.

embedding. The mapping of virtual links onto longer substrate paths mainly
accounts for the extra embedding cost.

The higher acceptance rate under FID can increase the revenue for an InP,
assuming that the InP’s resource pricing is competitive (i.e., such that the InP
receives segments of submitted VN requests). This could incentivize InPs to
disclose more resource information to VN providers. Although our resource
information model captures most of the non-confidential information for InPs,
topology abstractions disclosed to VN providers could potentially indicate cer-
tain InP preferences, e.g., a preferred path for reaching a peering node. For ex-
ample, the edges of a topology graph can be annotated with weights assigned
by each InP, according to his policy (e.g., network load balancing). This is in
line with the multi exit discriminator (MED) attribute of the border gateway pro-
tocol (BGP). Furthermore, an InP may wish to incorporate computing resource
utilizations into the weights of the adjacent links. This could be achieved via
a link weight offset which is dynamically adjusted according to the utiliza-
tion level. Such an increased level of information disclosure can enable a VN
provider to tailor VN partitioning to the InPs (rather than the SP), improving
resource efficiency and VN request acceptance rate.

3.8 RELATED WORK

There is a large body of work on embedding VN requests onto a single substrate
network [67, 70, 78, 79, 84].° These VNE techniques aim at optimizing the
mapping of VN topologies and require full knowledge of the available substrate

6 Section 2.5.2 provides an overview of existing VNE algorithms.

48

MULTI-PROVIDER VIRTUAL NETWORK EMBEDDING

resources and network topologies. In a multi-provider setting, they can be used
for VN segment mapping, after their coupling with a VN request partitioning
mechanism. One limitation of these VNE methods is that they are tailored to
topology-based VN requests which may introduce unnecessary restrictions in
VNE, possibly excluding efficient solutions. Instead, our VN segment mapping
formulation (Section 3.6) supports traffic matrix-based requests which yield
higher efficiency in VNE.

VNE across multiple substrate networks has been mainly studied in [60, 63, 65,
87, 104]. Houidi et al. [63] decompose multi-provider VNE into VN request par-
titioning (carried out by a VN provider) and VN segment mapping (performed
by each assigned InP). The main goal of this work is the comparison of exact
and heuristic methods in terms of VNE efficiency. Without any inspection of re-
source information disclosure, VN partitioning is carried out based on a highly
abstract view of the substrate network (i. e., AS-level topology), which does not
include publicly available information, such as the location of peering nodes.
Since there is no binding between virtual nodes and peering nodes (instead,
the virtual nodes are only assigned to InPs), the link costs estimated during VN
request partitioning may be significantly different from the link costs after the
final VNE. Hence, cost-efficient VN embeddings are subject to optimizations dur-
ing VN segment mapping rather than VN request partitioning. In this respect,
the abstract view on the underlay combined with the restrictions of topology-
based VN requests can lead to inefficient VN embeddings and increased expen-
diture for SPs. Our evaluation results indicate that a low degree of information
disclosure can increase the embedding cost and reduce the VN acceptance rate
and revenue for InPs. Leivadeas et al. [65] focus on networked cloud computing
environments with multiple InPs, at which requests are partitioned based on it-
erated local search (ILS) by a cloud broker. The partitioning phase is followed
by the final mapping phase, at which InPs use an MILP model based on the VN
mapping formulation in [70]. ILS yields substantially lower runtime compared
to an ILP, but may still require a large number of iterations and considerable
communication overhead between the broker and the InPs, before an approx-
imate solution has been found. The paper does not discuss the visibility of
the broker on the substrate network resources, which we consider critical for
the efficiency of VNE across multiple substrate providers. In contrast to these
approaches, our work is focused on the impact of LID on VNE efficiency. VN
request partitioning is carried out based on a well-defined substrate network
view that has been synthesized from network elements that are disclosed by
InPs and cloud providers. According to our knowledge, our work comprises
the first study on VNE that sheds light on the origins of VNE suboptimality, due
to LID.

3.8 RELATED WORK

Recent studies have also employed auction-based techniques for multi-provider
VNE. V-Mart [60] uses a two-stage Vickrey auction model that allows InPs to bid
for virtual resources that have been placed on the market by the SP. Since the
auctioned items are heterogeneous, the generalized multi-unit Vickrey auction
can result in certain inefficiencies. First, because of the complementarities or
substitutabilities that typically exist among different units, each InP is required
to submit a bid for each possible collection of resources he may provide. Con-
sequently, the generation and process of all bids can be a highly demanding
task, which can entail the disclosure of information that an InP prefers to keep
as confidential. Second, the auction can result in high expenditure for the SP,
which may further increase if some of the bidders form a coalition and coor-
dinate their bids. Finally, other practical considerations, such as the various
constraints that the InPs may introduce, can adversely affect the outcome of the
auction [105]. Furthermore, Esposito et al. [104] propose a consensus-based auc-
tion mechanism for VNE in a distributed manner. More precisely, the substrate
nodes exchange their bids for virtual resources requested by the SP, seeking
consensus for the winner. The proposed technique may offer better scalability,
especially for large substrate networks; however, InP policies will hinder the
collaboration of substrate nodes belonging to different InPs. As such, in a multi-
provider setting, the proposed VNE mechanism may constitute an alternative
approach only the for VN segment mapping phase (i.e., via iterations between
each InP and the VN provider). Another limitation of the proposed VNE is the
decoupling of link from node mapping which may result in VNE inefficiency.

Our multi-provider VNE methods are directly applicable to the network vir-
tualization architectures (as discussed in Section 2.4) that rely on a layer of indi-
rection between SPs and InPs [12, 20]. The distributed architecture presented in
[62], where VN requests are relayed across InPs until the completion of VNE, also
benefits from our VNE framework. In particular, our VN partitioning method
(Section 3.5) can be used to determine the InP that should be contacted first,

improving the convergence of this distributed VNE approach.

49

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

In the previous chapter, we rely on a centralized coordinator (i. e., VN provider)
that partitions requested VNs into multiple segments in a single step based on
the resource information stored in his local repository. In this case, no means
is given to the InPs to appraise the economic potential of the requested VNs
and to attract the more beneficial ones. We fill this gap and propose a policy-
compliant VNE algorithm particularly for decentralized VN embedding (VNE) in
general and for centralized VNE in combination with auctions [106]. To this end,
we focus on VNE profitability from the perspective of the InPs. In particular, we
introduce a metric to assess the profitability of VNE (Section 4.1) and provide an
algorithm that rejects too costly embeddings by applying a profitability thresh-
old based on the InP’s policy (Sections 4.2 and 4.3). We further show that such
a profitability threshold provides the means to the InPs for striking a balance
between short-term and long-term revenue gains (Section 4.4).

4.1 PROFITABILITY OF VN EMBEDDING

VNE consists in mapping VN topologies onto a shared substrate network. Ex-
isting VNE algorithms optimize VN assignment based on objectives, such as
maximizing VN acceptance rate, minimizing VN embedding cost, maximizing
revenue for the InP or achieving load balancing across the substrate network [67,
70, 78,79, 84]". A common feature among these VNE algorithms is that they em-
bed complete VNs, exactly as requested, as long as there are sufficient substrate
network resources. Complete VN request embedding is more appropriate for
small VNs that can be mapped onto a single substrate provider with a relatively
low embedding cost. Larger VN requests that possibly exceed the geographic
footprint of a substrate provider have to be partitioned across multiple InPs.
Basically, two multi-provider VNE architectures (Figure 19) exist as intro-
duced in Section 2.4. Both support the approach to allow the InPs to embed the
subset of a VN request that generates more profit. More precisely, in auction-
based VNE environments the InP will seek to place a higher bid for the most
profitable subset of a VN request [60], while in a distributed VNE framework
the InP will seek to identify and embed the profitable VN subset and subse-
quently relay the rest of the VN request to a neighboring InP, as exemplified

1 See also Section 2.5.2 for an overview of related work on VNE.

51

52 POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

Servi rovider

E‘[ﬂ VN request

VN request
EIEI

profitable -
VN subset?

remaining VN
request

profitable [nP1

VN subset?

Figure 19: InPs can benefit from policy-compliant VN embedding in both, centralized
and distributed architectures, by the identification of the most profitable VN
subset.

by PolyVINE [62]. Both VNE frameworks raise the requirement for embedding
only the profitable subset of a VN request, which is not fulfilled by any of the
existing VNE algorithms, according to our knowledge. We note that the profit
gained by embedding a particular VN request subset may vary among differ-
ent InPs, and consequently, a VN subset relayed to a neighboring InP could be
efficiently embedded into this InP’s substrate network. Figure 20 depicts an ex-
ample where InP 1 has embedded a VN subset including virtual nodes a, d, and
f and relayed the remaining VN request with b,c,e, and g to his neighboring
InP that in turn needs to profitably embed this VN and relay any remaining
part to a neighbor of him. Next, we discuss a metric for VNE profitability (Sec-
tion 4.1.1) and introduce a threshold to enforce the InP’s policy on profitability
(Section 4.1.2).

4.1.1 CRR Metric

InPs might define profitability in different ways depending on their business
models. One InP could consider any large VN as profitable and allows over-
subscription while another InP aims at attracting premium customers that are
willing to pay more for a guaranteed access to resources. We reduce these def-
initions to a simple form at which profitability is associated with the amount
of used resources per requested CPU and bandwidth demand. Figure 21 shows
an example of the embedding of a VN consisting of three virtual nodes and two
virtual links. Here the virtual nodes a and c are three hops distant to each
other and thus the embedding of virtual link (a, c¢) is more costly than it would

be if virtual node ¢ was mapped to a neighboring node of the host of a in the

4.1 PROFITABILITY OF VN EMBEDDING

VN request: node demand, VN request:
. m i.e., CPU units ;ota(lj sth ..
andwidt

SN 08 KR CiEcy RERE units from L L] e [
a|-|10]20 10| link demand, i.e., {a,d,fj —>[PL] - [45/50]65|55
b {10]| - | 5 [20[10(|15[10| bandwidth units 45| - | 5|10(10
c|20|5 |- [10[5]20|5
e
f

50[5(-[5(5

b
(o
d I8l 20]10] - |25 B8 25| e [65][10]5 |- [15
25]10] 5 [25] - [15]15 g [55]10] 5 [15] -
B ~ Policy-

compliant VNE

Figure 20: InP 1 receives a VN request from which he identifies the VN subset consist-
ing of the nodes {a, d, f} as the profitable subset. He then relays a new VN
request consisting of the nodes {b,c, ¢, g} to InP 2. He, in turn, embeds the
remaining part of the VN into his substrate network.

substrate topology. Cost alone is not a sufficient metric to express profitability
since unexploited resources might cost as well. Instead, we consider the poten-
tial revenue — the income gain by embedding a VN. From the InP’s perspective
VN embeddings with lower cost but higher revenue are more profitable.

We refer to the network models and notations introduced in Section 4.2 and

define the revenue of a VN request initially as:

R=) dit+a) d¥+ % Yy (i +ah (25)
ieVy 1(16;}/ ieVy jeP!
i#j

Revenue essentially accumulates all the node and link capacity units of the VN
request. The term in curly brackets represents the revenue generated from peer-
ing links and is split among the involved InPs. Similar to [79], the parameter o is
used as a weight in the sum of the computing and the bandwidth revenues. For
the purpose of revenue-based node reordering, as required by our algorithm,

we further define the revenue gain of the virtual node i € Vy, as follows:

R(i) = d* + % Y @i+ dh (26)
jEVy UP/
(i#3)

53

54 POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

VN request 10 «—__ node demand
(compute units)
50 H 30 .
<+ linkdemand
m u (bandwidth units)
5 15

node cost = ! link cost =
node demand link demand - hop count

Figure 21: Node cost equals the node demand while link cost requires the link demand
be multiplied by the number of used hops.

The VN embedding cost is defined as follows:

C=) d+a Y dY¥-dist(u,y) (27)
ieVy 1,jeVyuP/
(i#5)

Ui, Uy € My (Vv) U p’

The VN embedding cost accumulates all node and link costs.
An InP will seek to increase his revenue while maintaining a low embedding
cost. As such, we use the

Cost to Revenue Ratio (CRR) = C/R (28)

to express VNE efficiency and eventually, how much profit an InP gains by em-
bedding a VN request. Based on the preceding definitions, CRR = 1 yields the

highest profit while an increasing CRR means decreasing profit.>

4.1.2 CRR trend evolution

We step back to the illustration of Figure 21 where the bandwidth allocation
between the virtual nodes a and c is the worst component in terms of CRR
while all other resource assignments are already optimal. It is obvious that the
embedding of the full VN request is less resource efficient than the embedding
of the VN subset only consisting of the nodes a and b plus the virtual link
among.

2 It is premised that virtual nodes are not co-located, and thus, at least, one hop is required for
each virtual link.

4.1 PROFITABILITY OF VN EMBEDDING

Next, we investigate CRR trend evolution for an exemplary embedding ac-
cording to Figure 20 where a four-node VN with a full traffic matrix is re-
quested for the embedding at InP 2. The respective mapping is shown in the
Figures 22a — 22d while the CRR is computed in the table in Figure 22e.

The embedding of the single virtual node e (Figure 22a) requires a virtual
link to InP 1 in order to reach all the already embedded virtual nodes where
the respective bandwidth demand is aggregated from the original virtual links
a—e, d—e, e —f. Such virtual links are commonly regarded as less profitable
since peering is commonly associated with high cost. Moreover, if two InPs
are involved in the mapping of a virtual link, then revenue need to be shared
between them.

The second virtual node g lets the embedding of the VN subset (now com-
prising e and g, Figure 22b) becomes more efficient in terms of CRR since the
virtual link e — g which generates full revenue requires merely a single hop for
embedding.

Increasing more and more the VN subset size (Figures 22c and 22d) increases
the cumulative revenue continuously but at the same time VN embedding cost
increases faster with the more distant node mappings requiring longer paths
for the virtual links. In our example, the embedding of the three node VN subset
was less resource efficient than the embedding of any smaller subset. The same
is true for the next larger VN subset - the four node VN originally requested at
InP 2.

55

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

VN request:
node

-- 30 demand

P2[b|c|e|sg

P2| - |145|50|65(55]| link

45| - | 5 |10{10| demand

50(5|-(5]|5

65(10| 5| - |15

55|10(5 |15{ -

m|m|o |T

VN request:
20] 10 node
|| - [20]10[40[30] Tode
P2[b|c|e|g
P2| - |45[50|65|55] link
b (45| - | 5 [10]|10| demand
c|s0[5|-|5]s
e |65/10| 5| - |15
g |55|10(5 |15] -
VN request:
10[40[30] node
|_[- [38]10[40[30] Tode
P2 clel|g
65|55| link
demand
VN request:
20 30| node
|| - [20f840[30] Tode
P2(b elg
65|55| link
demand
(d) VN subset: e,g,b,c
Figure VN subset R C CRR
22a e 105 170 1.62
22b eg 220 340 1.55
22¢C e,gb 325 600 1.85
22d egb,c 415 980 2.36

(e) VNE statistics for the example in Figs. 22a — 22d

Figure 22: High CRR values indicate the mapping of long paths in the substrate topol-

ogy to the virtual links. This in turn can be observed particularly for larger
VNs.

4.1 PROFITABILITY OF VN EMBEDDING

3.5

—— VN size: 10 nodes
24/ | —— VN size: 15 nodes
—°— VN size: 20 nodes

cumulative

o

g 2 revenue [*
) increases © 2 * ¥

1.8 lower resource y *** e :

ﬁ efficiency * ;**:: * %
16 . 0 15 g*;*}:‘”‘"
Adin L ;ﬁ b
14 \R e N o higher ‘{‘“
v(oi\‘ab
L - 1 i i i i i i
0 5) 10 15 20 0 50 100 150 200 250 300
#virtual nodes mapped generated revenue
(a) CRR evolution trend (b) correlation between CRR and generated
revenue

Figure 23: A general trend in CRR evolution can be observed. Larger VNs can be
embedded less efficiently, and any CRR threshold impacts the generable
revenue. CRR is further correlated with the generable revenue of a VN.

We ran additional tests and observed a general trend in CRR evolution. Fig-
ure 23a illustrates the evolution of CRR during the iterative embedding of VN
requests originally with 10, 15, and 20 nodes. Irrespective of the VN size, CRR
increases as a larger subset of the VN is being mapped. We observe a more
severe increase in the CRR for larger VNs (i. e., 20 nodes). As such, embedding
of complete VN requests of large size incurs a penalty in terms of resource effi-
ciency. This penalty stems from the increasing hop count of virtual links, which
counterbalances the extra revenue generated by embedding additional virtual
nodes and links. Figure 23b also corroborates this observation, uncovering a
correlation between the CRR and the VN revenue.

Based on these observations, we rely on CRR to identify the most profitable
subset of a VN request. As such, we seek the embedding of the largest subset
of a VN request that does not violate a predefined CRR threshold. In principle,
this threshold should be adjusted by the InP according to its policy. The CRR
threshold represents a trade-off between revenue and resource efficiency. More
precisely, a low CRR threshold is expected to yield higher resource efficiency but
will generate revenue at a lower rate, since only small subsets of VN requests
will be embedded. Conversely, a high CRR threshold will generate revenue
faster but may impair resource efficiency. To this end, in the following section,
we present a new algorithm that enables the embedding of subsets of VN re-
quests according to an adjustable CRR threshold. The impact of CRR threshold
adjustment on resource efficiency and generated revenue is further discussed

in Section 4.4.2.

57

58

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

4.2 NETWORK MODEL

In the following, we introduce the substrate and virtual network models used
in the VNE algorithm description (Section 4.3).

Substrate Network Model. The substrate network is represented as a weighted
directed graph Gs = ((Vs UP), Es), where Vs is the set of the substrate nodes
and Egs is the set of substrate links between these nodes. The set P comprises
all the nodes of the substrate network where peering has been established
with other network providers. Each substrate node u € Vs is associated with
the residual capacity 1, € Rn. Each substrate link (u,v) € Es between two
substrate nodes u and v is associated with the residual capacity denoted by
Tuv € Re.

VN Request Model. A VN request consists of a combined set of the virtual
nodes Vy and the used peering nodes P’ C P and a set of bandwidth demands
dY € D between any pair of virtual nodes 1,j € Vi and between any virtual
node i € Vy and peering node j € P/. We use a traffic matrix to express all
bandwidth demands. Compared to topology-based VN requests that are typi-
cally used by the majority of VNE algorithms, traffic-matrix based VN requests
allow more flexibility in VNE and a higher level of abstraction which can sim-
plify the specification of network service requirements [10, 87]. We include
the peering nodes P’ in order to accumulate the bandwidth demands between
virtual nodes assigned to different InPs, as shown in Figure 20. Furthermore,
each virtual node i € Vy is associated with the requested capacity denoted by
di € Dy.

We express the mapping My of the virtual nodes to the substrate nodes as
MV : VV — Vs.

4.2 NETWORK MODEL 59

Table 4: Notations used in the Sections 4.1—4.3.

Symbol Description
C set of candidate substrate nodes for root node assignment
cost set of virtual link embedding costs for all candidate substrate nodes
CRR set of CRR values computed after the assignment of each virtual node
CRRmax CRR threshold
CRRso1 set of CRR values for the best solution for each VN subset
dfrom, dto inbound / outbound bandwidth demand at a substrate node
at computing demand for virtual node i
dy bandwidth demand from virtual node 1 to virtual node j
dist hop-count of shortest paths between each pair of substrate nodes
distp min minimum distance (number of hops) to all peering nodes
distp max maximum allowable distance (number of hops) to all peering nodes
Dr bandwidth demands for each pair of virtual nodes
Dn set of CPU demands for each virtual node
Eg set of substrate links
My temporary VN mappings
Mv sol final VN mapping
Necand set of candidate substrate nodes
Vg set of substrate nodes
Vv set of virtual nodes
P set of peering nodes
P’ set of peering nodes specified in a VN request

Tfrom,Tto
RL
RL,rollback
RN
RN, rollback
S
Ucand
Uroot

o
0
C

available inbound / outbound bandwidth at a substrate node
residual link capacity (bandwidth units)

link capacity stored for rolling back incomplete mappings
residual node capacity / CPU units

node capacity stored for rolling back incomplete mappings

set of candidate substrate nodes

candidate for virtual node mapping

candidate for root node mapping

balancing factor

distance tolerance to all peering nodes in relation to distp min

maximum number of hops from the root node

60

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

4.3 POLICY-COMPLIANT VN EMBEDDING ALGORITHM

In this section, we describe the proposed policy-compliant VNE algorithm. The
main objective of this algorithm is to identify and embed the subset of a VN
request that generates the highest revenue without violating a predefined CRR
threshold. To this end, the algorithm seeks feasible solutions by iteratively em-
bedding virtual nodes and their adjacent links. In order to maximize the gen-
erated revenue, the algorithm uses the virtual node revenue, as defined in Eq.
(26), to sort the nodes of the VN request in terms of revenue in decreasing order.
As such, the embedding starts with the virtual node that generates the highest
revenue (called root node). Since virtual links spanning multiple hops increase
the CRR, the assignment of each virtual node aims at minimizing the hop count
of the adjacent virtual links. Therefore, for the assignment of the root node,
among the substrate nodes with sufficient capacity, the algorithm selects the
one with the minimum total distance from the peering nodes (e.g., {P1, P2, P3}
for InP 2 in Figure 20). Similarly, the remaining virtual nodes are assigned iter-
atively. Each iteration comprises an evaluation of candidates for virtual node
mapping by computing the shortest paths for each virtual link connecting the
candidate node with every assigned virtual and peering node. The candidate
with the minimum additional embedding cost is selected, and its respective
node and link mappings are taken into account when the remaining virtual
nodes are mapped onto the substrate network. We reduce the solution space by
defining a substrate network region that contains all nodes with a maximum
distance from the substrate node on which the root node was mapped.

The algorithm keeps track of the evolution of CRR, after each virtual node has
been assigned, and checks the feasibility of the current solution. In the case that
the complete VN request can be embedded without violating the CRR threshold,
the algorithm returns this solution and terminates its execution. Otherwise, the
algorithm computes and stores the largest subset of the VN request that can be
embedded without exceeding the threshold for all possible assignments of the
root node. To speed up the algorithm execution, we do not consider solutions
whose root node mapping is very distant from the peering nodes, since this
incurs a significant penalty in terms of CRR. Finally, among all feasible solutions,
the algorithm returns the VN subset that generates the highest revenue.

In the following, we present an exemplary VN embedding (Section 4.3.1) and
provide further details on the algorithm (Section 4.3.2).

4.3 POLICY-COMPLIANT VN EMBEDDING ALGORITHM

4.3.1 An exemplary VN Embedding

Hereby, we illustrate an exemplary VNE with our algorithm. Figure 20 shows
two InPs and a VN request being submitted to InP 2. Assume that three virtual
nodes (i.e., a, d, f) previously belonging to this VN request have been already
assigned to InP 1. The VN request consists of virtual node demands (i.e., ex-
pressed in terms of compute units) and virtual link demands (i. e., expressed in
terms of bandwidth units) formulated as a symmetric traffic matrix3. Besides
the bandwidth demands between each pair of virtual nodes, the traffic ma-
trix also includes the bandwidth demand between each virtual node and the
peering node P;y. This essentially expresses the sum of bandwidth demands
between the virtual nodes assigned to InP 1 (i.e., a, d, f) and the nodes of this
request (i.e., b, ¢, e, g). Note that InP 2 does not have any information about the
substrate topology and the virtual node mappings on InP 1. In this example, we
assume that any subset of the VN request that cannot be embedded (because its
mapping is either infeasible or unprofitable) will be relayed to a neighboring
InP reachable through peering nodes P, or P3. Figures 24 — 25d illustrate the
steps of our algorithm for the embedding of this request onto InP 2 that has
adjusted his CRR threshold to 3.65.

Virtual node e is the root node of this VN request as it generates the highest
revenue. The algorithm first identifies potential hosts {B, G, J} for this virtual
node which are not too distant from the peering nodes and which fulfill the
capacity requirements (Figure 24). The basic idea of this approach is to test
different regions in a substrate network. In the following, we go through the
example with the variant e — G.

The mapping of virtual node e to substrate node G is depicted in Figure 25a.
The virtual link e — Py is mapped to the shortest path between the substrate
node G and the peering node P;. Although the current CRR value 4.10 violates
the threshold, the algorithm proceeds with the mapping of the virtual node
with the 2md largest revenue, i.e., virtual node g, since CRR is still expected to
improve further according to the general CRR trend evolution (Section 4.1.2).

To this end, the algorithm defines a region containing all substrate nodes with
a maximum distance from the root node (set to two in our example). This des-
ignates the following candidate set S := {A,B,C,D, E,F, H, M}, from which all
the previously assigned substrate nodes (to the same VN request) are removed.
In addition, the nodes with insufficient node capacity are eliminated from this
list, thus, the 2™4 virtual node g can only be mapped to A or B. The algorithm

A symmetric traffic matrix is shown for simplicity. Our algorithm can process and embed VN
requests expressed with asymmetric traffic matrices.

61

62

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

[2,2,4,x,x]

=)20

20

VN request:

()
A
[T~ [so[30]z0[x0] roce

deman

d

Plle|g|b]|c
P1| - [65]55[45|40]| link [3,2,2,x,x]
e |65[- |15[10] 5 | demand KG\@
g |55|15]| - [10[5
b [45]|10|10| - | 5
c [40]5|5]5 20

\

node capacity

distance to

[3,51xx] €= peering nodes

Figure 24: At the beginning, potential root node candidates B, G,] are identified based
on their distance to the peering nodes.

eventually selects the substrate node A, since it incurs lower embedding cost
than node B (Figure 25b).

Afterwards, the algorithm examines the assignment of the virtual node b, as
depicted in Figure 25¢c. The candidate node set is S = {B, C, H} from which H
was finally selected for the mapping of the 3"¢ virtual node b.

The 4" and last virtual node ¢ can finally be mapped to a node out of S =
{B,C, D, F}. Fyields the mapping with the lowest CRR of 3.69. The CRR trend is
now positive thus even higher values can be expected for the larger VN subsets
according to general CRR trend evolution as discussed in Section 4.1.2. For this
reason, the algorithm stops if CRR threshold is violated. This is the case for
the 4" virtual node as its best achievable CRR of 3.69 is greater than the CRR
threshold of 3.65 (Figure 25d).

4.3 POLICY-COMPLIANT VN EMBEDDING ALGORITHM

VN request:

[_[- [a0]30]20]10] node
demand
Plle|g|b|c
P1| - [65(55|45|40] link
65[- [15[10] 5 | demand
55(15| - |10| 5
5

45[10|10] -
40{5|5|5] -

o|o|n (o

node capacity

link capacity

VN request:

.- node
demand

Plle|g|b|c

P1| - [65[55|45|40] link

e [65] - [15[10] 5 | demand

g |55]15] - [10

b

©

45(10|10]| -
40{5|5]|5

node capacity

link capacity

0| node
demand

link
demand

node capacity

link capacity

VN request:
[[- 40]30]20]10] node
deman

Plie|[g|b]|c
P1| - [65[55|45|40] link
65| - [15[10 5 | demand

- 110| 5
45|10|10| - | 5
4015 |5|5] -

d

o |o|n|o
wn
[l
-
[

node capacity

link capacity

(d) The CRR threshold is violated by stepping from a VN subset of three nodes
to a full VN with full nodes, since the mapping of the fourth virtual node,
introduces too long paths.

Figure 25: Algorithm steps for the root node candidate G.

63

64

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

Table 5: VNE statistics for the example in Figures 25a — 25d with root node — G.

Figure | VN subset mapping R C CRR
25a e—G 105 430 4.10
25b e—G, g—A 220 850 3.86
25C e—G, g—A, b—H 325 1090 3.35
25d e—G, g—A,b—H,c—»F 415 1510 3.69

Table 6: VNE statistics for the example in Section 4.3.1 with diverse root node assign-
ments.

Root node mapped to G
Distance to peering nodes 7 8 9
VN subset R CRR
e 105 410 9.05 4.10
eg 220 3.86 6.09 3.86
egb 325 335 486 3.63
egb.c 415 369 472 3.73

The algorithm then repeats the steps shown in the Figures 25a — 25d with the
other candidate nodes for the root node assignment: B and J. The CRR values
for each VN subset are shown in Table 6. The maximum number of virtual
nodes that can be embedded without violating the CRR threshold is 3. The
variant with the root node assigned to substrate node G achieves the best CRR.
Thus, the algorithm returns the mapping result {e — G,g = A,b — H} with
{e, g, b} as the most profitable VN subset.

4.3.2 Pseudocode Description

The algorithms 35 illustrate the pseudocode of the policy-compliant VNE algo-
rithm. Algorithm 3 performs the VNE computation while Algorithms 4 and 5
include auxiliary functions to identify candidate nodes with sufficient residual
capacity and low link embedding cost.

Hereby, we explain Algorithm 3 in detail. In the lines 1-8, an initialization
phase takes place. All virtual nodes are sorted in terms of revenue and subse-
quently, the set of candidate substrate nodes for the root node is being identified
using the function “Candidate Substrate Node Preselection” in Algorithm 4.
Any candidate node exceeding a maximum distance from all the peering nodes

(computed based on the minimum distance and a relative threshold 6, which is

4.3 POLICY-COMPLIANT VN EMBEDDING ALGORITHM

adjusted to 0.1 by default) is removed from the candidate set and is no longer
considered for the placement of the root node.

In the lines 10-15, the algorithm checks whether the root node can be as-
signed to a substrate node within the candidate set based on the availability of
substrate network paths (between this node and the peering nodes) satisfying
the bandwidth demands. If this is feasible, the algorithm proceeds with the
assignment of the following nodes of the VN requests as long as the CRR thresh-
old is not violated (i.e., lines 16—37); otherwise, the assignment of the root node
to the next candidate node is being checked (i.e., lines 9g—12). The first step
for the assignment of each additional virtual node is to identify the substrate
node with the minimum embedding cost of all adjacent links, including the
links attached to the peering nodes, (i.e., line 17) using the function “Candi-
date Substrate Node Selection” in Algorithm 5. The assignment is restricted
to the substrate nodes whose distance (i.e., the number of hops) from the root
node does not exceed a predefined threshold denoted by (. This essentially
eliminates all inefficient solutions, i.e., substrate nodes that would significantly
increase the CRR. We discuss the adjustment of the threshold ¢ in Section 4.4.2.
Furthermore, we take into account the link embedding cost by computing the
corresponding capacity-constrained shortest path. Eventually, the most cost-
efficient candidate node is being selected.

Upon the assignment of each virtual node j, the algorithm updates the CRR
value and checks for any CRR threshold violations. Instead of making decisions
based only on the current CRR value (i.e., CRR(j)), we further take into account
the CRR value of the previous virtual node (i.e., CRR(j-1)) in order to capture any
trends in the CRR evolution. Figure 26 illustrates the decision-making process
with an example of a CRR curve, similar to Figure 23a. In particular, although
j = 1 exceeds the CRR threshold, there is a decreasing trend in CRR, and there-
fore, the algorithm permits the assignment of this virtual node. A case of CRR
threshold violation is represented by j = 6, where the current CRR value exceeds
the threshold with an increasing trend. The conditions for the CRR threshold
violation are shown in line 19.

If the last node of the VN request is reached and the corresponding mapping
of this node is successful, then the current mapping will replace any previous
solutions with higher CRR value (i.e., lines 22—28). The “else” branch (i.e., lines
29-36) is reached after the VN embedding becomes either unprofitable or in-
feasible with virtual node j. In this case, the VN subset of iteration j — 1 can
be considered as a solution. The current mapping is considered as a better
solution only if it is associated with a larger VN subset or if it yields a lower
CRR compared to the previous solution. The final VNE solution is returned in

MV?sol-

65

66 POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

Algorithm 3 Policy-compliant VNE

Input Vs, P, Es,RN,RL,V\/,P Dn, Dy, dist

1:

e ®N v A W N

_oR
= O

[=
N

13:
14

15:
16:
17:
18:
19:

20:

21

22!
23:
24:
25:
26:
27
28:
29:
30:

31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41
42:

]max — 1/ MV sol < Q)
CRR ={co, .-, €jyv|_1lci = 00}, CRR;o1 = CRR
RN roltback ¢ RN, RLroltback ¢ RL
Sort the nodes i € Vy/ by descending revenue IR(i)
C + Candidate Substrate Node Preselection (0)
distp min < minuec(zpep distp u)
distp max ¢ distp min - (1+0)
C+ C\{ue(Zpgp distp . > distp max}
while C # () and jimax < [Vv|—1 do
M\/ — @
Uroot < arg minycc(ZP distp)
pe
if Shortest paths with sufficient capacity exist between u,,0¢ and all u €
P’ then
My 0 ¢ Uroot
Update residual capacity for node uq0t and for all links used between
Uroot and all u € P/
Compute CRR(0)
forj:=1.|Vy|—1do
Ucand < Candidate Substrate Node Selection (j)
Compute CRR(j)
if Ucang # 0 and
(CRR(j) < CRRymax 0f CRR(j —1) > CRRnax) then
MV,)’ < Ucand
Update residual capacity for all links between u¢qn 4 and all nodes
u e {M\/, PI}
if j = [Vy|—1 then
if CRR(j) < CRRso1(j) then
jmax — j
MV,sol «— My
CRRso1 + CRR
end if
end if
else
if CRR(j — 1) < CRRy, qx and
(j—1 > jmax or CRR(j —1) < CRRs01(j — 1)) then
jmax —) -]
Mv_so1 ¢ My
CRRgo1 < CRR
end if
break: exit the for loop
end if
end for
end if
C«C \ Uroot
RN < RNjrottbacks RL ¢ RLrollback
end while
return My ;o1

4.3 POLICY-COMPLIANT VN EMBEDDING ALGORITHM

Algorithm 4 Candidate substrate node preselection

Input: i global: Vs, RN, R]_, V\/, DN, DL, M\/

Find for the mapping of virtual node i all nodes out of Vs with sufficient
node capacity. Exclude all nodes definitively having not sufficient link ca-
pacity and nodes that have already been used for mapping.

1: Ncand < @

N

10:
11:

128

13:

14:
15:
16:
17:
18:
19:

20:

dfrom < O/ dto +0

for all j € Vy do
if My ; =0 then
dfrom — dfrom + dij
dio ¢« dio +
end if
end for
forall u’ € V5 do
if u ¢ My then
if d* < v/ then

Tfrom = Z Tuv
{uvieksu=u’

Tto = Z Tuv
{u,vieks,v=u’

if dfrom < Tfrom and dto < Tto then
Ncand < NeanaUu
end if
end if
end if
end for

return Ncgng

67

68 POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

Algorithm 5 Candidate substrate node selection

Input: j global: Vs, Ri, Vy, P/, D, My, Uroot

1:

2:

3:

10:
11:
128

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27

e PN >k

Find for the mapping of virtual node j the substrate node out of Vs, which
requires minimum additional link embedding cost.

Ucand + 0
S +— Candidate Substrate Node Preselection (j)

forallu e S do
if disty, ., u < C then
costy <0
forallie{Vy,P'}do
if i € P/ then
vei
else
V<]\/l\/,;L
end if
if v #) then

if Shortest path with sufficient capacity exists between u and v
then

costy ¢ costy +disty - dy
costy ¢ costy +distyq, - dit

else
costy < o0
break: exit the for loop
end if
end if
end for

end if
end for

if min,cs(costy) # oo then

Ucand ¢ arg minges(costy)
end if

return u.qngq

4.4 EVALUATION

25— : : : : : - .
2.4r f 1
2.3 CRR(j-1) > CRR threshold: CRR exceeds the / 1
2ot proceed threshold: stop/ i

CRR

8:: 2.1) /threshold / |

© 2
1.9r J

v\profitable
1.8+ VN subset 9
1.71 1
16 CRR(j) < CRR threshold: proceed

1 2 3 4 5 6 7 8
iteration

Figure 26: The algorithm increases stepwise the number of considered virtual nodes
and compares the CRR with the CRR threshold as long as CRR increases.
The algorithm terminates with the last feasible mapping result if CRR thresh-
old is violated and CRR increased since the last iteration. A decreasing CRR
results in a further iteration even if CRR threshold is violated.

4.4 EVALUATION

We use our C/C++ based VN embedding framework (as presented in Chap-
ter 6) for VNE simulation. We evaluate the efficiency of the proposed VNE
algorithm against a variant of our algorithm that embeds only full VN requests
(Section 4.4.2). We further shed light into VNE policy configuration by inves-
tigating the impact of diverse CRR threshold adjustments on revenue and VN
request acceptance rate (Section 4.4.3).

4.4.1 Parameters and Metrics

Next, we explain the parameters of our substrate network and VN request mod-
els used for VNE simulation.

Substrate Network. IGen [102] was used to generate synthetic substrate net-
work topologies for our simulations. We particularly ran our tests on a sub-
strate network with 200 nodes and 400 links which are distributed based on
the two-trees method [107]. We also designated eight substrate nodes for peer-
ing with other substrate providers. Initially, all substrate network resources are
unutilized. The residual capacity of substrate nodes and links is updated after
the embedding of a VN request.

Our tests are conducted on a server with two Intel Xeon quad-core CPUs at 2.53 GHz and 12 GB
of main memory.

69

70

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

VN Request. A VN request consists of the CPU requirements for each virtual
node and the bandwidth demands between all pairs of virtual nodes, repre-
sented as a traffic matrix. The traffic matrix further contains the bandwidth
requirements between each virtual node and each peering node (i.e., three peer-
ing nodes are randomly assigned among the eight available nodes designated
for peering). As such, we take into account the embedding cost of virtual
links spanning multiple substrate providers. The number of virtual nodes per
VN request is randomly sampled from a uniform distribution, between 10 and
30. In each simulation run, we generate and process a sequence of 1000 non-
expiring VN requests, which gradually utilize most of the substrate network
resources and allow to assess VNE efficiency under various network utilization

levels. Each of the following evaluation results is based on 50 simulation runs.
We use two main metrics for the evaluation of VNE efficiency:

* Acceptance rate is the number of successfully embedded requests over
the total number of requests. Requests from which only a subset is em-
bedded are considered as accepted as well.

¢ Revenue accumulates the CPU and bandwidth units leased to SPs.

4.4.2 Results

Initially, we discuss the efficiency of our VNE algorithm. Figure 27a illustrates
the CRR versus the generated revenue with three CRR threshold adjustments
(i.e., 1.8, 2.0, and 2.2). This scatter plot validates the operation of our algorithm,
as in each case the CRR does not exceed the predefined threshold. We observe a
correlation between the CRR and the generated revenue, i. e., embedding larger
VNs incurs a penalty in terms of resource efficiency. More precisely, setting the
CRR to 1.8 allows the embedding of a VN subset with revenue up to 180. Adjust-
ing the CRR to 2.0 or 2.2 permits the embedding of VNs with larger revenue (i.e.,
up to 220). Furthermore, Figure 27b depicts the proportion of the embedded
VN size over the VN request size with these CRR threshold adjustments. The re-
sults are classified into five different groups of VN request sizes. In many cases,
small VN requests (i. e., 10-13 nodes) are fully embedded, especially for a CRR
threshold of 1.8. For larger VN requests, only a subset is usually being embed-
ded, and the relative subset size decreases as the VN request size becomes larger.
As shown in the figure, lower CRR threshold adjustments result in embedding
smaller VN subsets.

Next, we evaluate the efficiency of embedding subsets of VN requests. Fig-
ure 28a depicts the cumulative revenue generated by embedding full requests

4.4 EVALUATION

» —— CRR 1.8——CRR 2.0—— CRR 2.2‘
w4 * x o X ox X . RR 2
. ops e, CRR22 100} * :
2 O O 8h % CRR2.0 90
PRI ST LY |
0 o8 xgrgr % 80
s
18 e e TR B o CRRi8 E70p
080 TR X S 60t
R ,Odoe,g;&xxo S
SRR X £ %0
1.4 B ety % 40 F
* @ofx f o® o 2
> Ol o 8 30 r
| X% 8% e % X L
12 @;’3’% o CRR1.8 20
§55 % ° CRR20 10
17 < CRR2.2 o ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 10-13 14-17 18-21 2225 26-29
generated revenue requested VN size

(a) correlation between CRR and generated (b) relative VN subset size vs. VN request
revenue sizes

Figure 27: CRR thresholds hinder the embedding of the VNs with high potential rev-
enue. Small VN requests are often embedded at full size while large VNs
tend to be accepted at smaller VN subsets sizes. This trend is strengthened
by decreasing CRR threshold.

and the most profitable subset of a VN request according to the CRR threshold
adjustment. Our VNE algorithm generates much higher revenue compared to
full VN embedding, since it embeds the VN request subsets that exhibits higher
efficiency. In contrast, full VN embedding results in low revenue due to in-
efficient resource utilization, as shown in Figure 28c. According to this plot,
for a given level of resource utilization, subset VN embedding generates more
revenue, although it may require processing a larger number of requests com-
pared to full VN embedding. Full VN embedding initially generates revenue
at the maximum rate as it accepts all incoming requests as long as sufficient
capacity is available but after the first 150 VN requests VN subset embedding
with high CRR threshold values (i. e., 2.0 and 2.2) generates more revenue. Com-
paring the CRR threshold values, low threshold adjustments restrict revenue
generation when the substrate network is underutilized, but achieve slightly
more revenue for medium and high utilization levels and eventually generate
more revenue for the provider in the long run. Essentially, a high CRR thresh-
old value results in a greedier behavior, generating revenue faster which may
be suited to providers that do not anticipate a large number of VN requests. On
the other hand, a low CRR threshold value is deemed more beneficial for smaller
substrate networks, in which the computing resources can be saturated with a
smaller number of VN requests. Among the various CRR threshold adjustments,
for 1000 requests, 1.8 achieves the highest revenue, since it exhibits less toler-
ance to resource inefficiencies. Our simulation logs indicate that the resource
utilization penalty for full VN embedding stems from the increased virtual link
hop count.

71

72

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

Furthermore, Figure 28d shows the VN request acceptance rate with full and
subset VN embedding. The acceptance rate of full VN requests drops quickly;,
due to the inefficient resource utilization. Depending on the CRR threshold
adjustment, our algorithm rejects the VN requests that are not profitable, even
if the substrate network is not saturated. However, in the long run, embedding

VN subsets leads to a higher acceptance rate.

2.5

=
= wn N

cumulative generated revenue

o
2]

4.4 EVALUATION

x 10
12000y
g 10000
2
[
]
= 8000
el
Q
e .- g
L7 2 6000 s
- % ________________
7 CRR 16 °
=
——CRR 1.8 ‘—3 4000 CRR16
——CRR 2.0 £ ——CRR 1.8
3
——CRR 2.2 S 2000 ——CRR 2.0
[——CRR22
i i FH" N i o ‘ - - -FullvN |
0 500 1000 1500 2000 0 200 400 600 800 1000
VN request # VN request

(a) cumulative generated revenue with 200 (b) cumulative generated revenue with 100

substrate nodes. substrate nodes.
1 4
25210
1001+

\ ——CRR18
° ‘ ——CRR2.0
2 2 ——CRR 22
c 80 .
Q - -
2 . Full VN
® S
z &
g 15 £ 6
8 o 3
[. ’ =4
o L -]
k= Z. - 8
z Z- ——CRR18 ® .~
5 o5 7~ ——CRR2.0 208 TTeellllll

z ——CRR22 o=
- - - Full VN
0 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 200 400 600 800 1000
total resource utilization (%) # VN request

(c) generated revenue vs. resource utilization

(d) VN request acceptance rate

Figure 28: Depending on the substrate network size and the number of arriving VN re-

quests, a different CRR threshold yields the maximum revenue. In an exem-
plary substrate network of 200 nodes, a CRR threshold of 1.8 yields the most
profitable VN embeddings if around 700 to 1800 VN requests are directed to
the InP. These numbers vary for different substrate networks. For example,
if 1000 VN requests arrive in a smaller substrate network of 100 nodes then
the CRR threshold should be decreased from 1.8 to 1.6 to generate more rev-
enue. It is further shown that lower CRR thresholds yield higher resource
efficiency which in turn translates into more revenue gain from an equal
amount of physical resources. In addition, full VN embedding greedily em-
beds all incoming requests while subset VN embedding rejects unprofitable
VN requests at the beginning. VN embedding with CRR threshold benefits
in the long run from those saved resources as it finally accepts more VN
requests.

73

74

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

4.4.3 Parameter Adjustments

Finally, we discuss the impact of substrate network size and the adjustment
of the algorithm parameters 0 and (. The already described Figure 28a goes
beyond the originally considered 1000 requests in order to show the effect of
even smaller CRR thresholds — here 1.6 achieves even higher revenue with 2000
requests. Depending on the number of arriving requests, the CRR threshold
needs to be adjusted accordingly. Out of the shown CRR thresholds, 1.8 yields
the highest revenue in the range between around 700 and 1800 VN requests, as
highlighted by the two vertical lines. This range is shifted to around 300 to 600
VN requests when a smaller 100-node substrate network is used (Figure 28b).
The threshold 6 restricts the distance from root node candidates to the po-
tential peering nodes. Figure 29a shows for the first 300 requests the number
of potential substrate nodes considered for any root node. Among the two ex-
tremes to consider either only the candidates with the shortest distance to the
peering nodes (0 = 0) or to accept all candidates (6 = o0), a 0 of 10% yields
a reasonable candidate set with a size between one and around one quart of
the available substrate nodes. A higher 0 can directly be translated into longer
paths for the domain-crossing virtual links. For 50% of these virtual links, 9
to 12 hops are typically required for the embedding in the substrate topology
while a strict 0 threshold results in 8 to 10 hops for each virtual links (Fig-
ure 29b). Reducing hop count for multi-domain virtual links should not be the
only aim of 0 adjustment as it increases the risk of rejections due to resource
shortages incurred by the restricted search space. Instead, a moderate 6 of
10-30% results in higher cumulative revenue, in the long run, as illustrated in
Figure 29c. As shown in the plot, adjusting 6 to a value greater than 10% does
not lead to notable revenue gains, while it increases the solver runtime. As

such, we use 10% as the default value for 0.

4.4 EVALUATION 75

200 g
~— ——— g 16/ ‘ ; ; ; ; ; —
M 0=10% o
+ @=inf = |
150 . g
= g
g g 1
g 100 §
g g]
2 <
Q
S § |
* 50 c
[
g |
+ + + + o+ 4+ + @
P #08 o D taro o+ SR S o + o
el L S sl et e B a4l]
100 150 200 250 300 g R Y RSEY Ty
VN request S 0% 5% 10% 15%,20% 25% 30% inf
(a) checked root nodes (b) hop count per multi-provider virtual link
x10*
221 T
218 M
[
2
g 2r
g
3
~§ 1.9-
[
c
518
177

0% 5% 10% 15% 20% 25% 30% inf
G}

(c) generated revenue

Figure 29: 8 adjustments increase or decrease the number checked root nodes and the
number of hops per multi-provider virtual link. These adjustments finally
impact the generable revenue where 0 = 20% achieves the maximum rev-
enue.

76

POLICY-COMPLIANT VIRTUAL NETWORK EMBEDDING

200r 215
2 [~ ¢4 © 5 =6 ° =t H
=3
o &%09% L !
I 2.1
E 1o T 2,0 o O R
§ S o % io%&‘@@@ % 0%0%:8000%0 g
[=4
2 S 205t
5 ®
o
g 1001 g
©
8 s 2f
[= c
3 S
S 50
2 1.95
c
o
o
0 S5 B a8 siotane ot Skt ot G s S5 19 L
250 300 350 400 450 3 4 5 6 7 8 9 inf
VN request 4
(a) locally considered candidate nodes (b) generated revenue

Figure 30: ¢ adjustments increase or decrease the number of locally considered candi-
date nodes which in turn impacts the generable revenue. These adjustments
finally aim at maximizing revenue — here achieved with ¢ = 5.

The other threshold (restricts the distance between the hosts of the root
node and the other virtual nodes each after a root node has been assigned to
a substrate node. In contrast to © where only those virtual links that cross
the domain border are taken into account, ¢ impacts only the embedding of
the other group of virtual links that are completely embedded in the current
domain. (drastically reduces the number of considered candidates (Figure 30a)
while cumulative revenue, in the long run, is generally higher than without
such a threshold ({ = oo, Figure 30b). Among the different ¢ adjustments,
C =5 generates the highest revenue in the used substrate topology.

Although we used static CRR threshold values in our simulations, providers
are envisaged to apply policies that require the dynamic adjustment of the CRR
threshold depending on the network utilization and resource demand. Simi-
larly, the algorithm parameters 0 and (need to be readjusted for the different
substrate topologies. The insights gained from our simulation results can be
useful for the specification of such VNE policies.

4.5 RELATED WORK

A large body of work on embedding VN requests onto a substrate network
exist (e.g., [67, 70, 78, 79, 84]). > These VNE techniques aim at optimizing
the mapping of VN topologies and always embed full VN requests when this is
feasible. As opposed to these techniques that ignore the policies of substrate
providers, we take a different approach by tailoring VNE to the provider’s policy.

5 Section 2.5.2 provides an overview of existing VNE algorithms.

4.5 RELATED WORK

In particular, our VNE algorithm restricts the solution space according to the
policy.

Our approach can be used in the multi-provider VNE architectures introduced
in Section 2.4. In this regard, substrate providers can benefit from our policy-
compliant VNE algorithm. In PolyViNE [62], a substrate provider can use our
VNE algorithm to identify and embed the most profitable subset of a VN re-
quest. Similarly, in auction-based VNE environments such as V-Mart [60], our
algorithm can assist a provider in adjusting his bid for the embedding of VN
requests.

77

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

In Chapter 3, we present our centralized multi-provider VN embedding frame-
work and investigate the impact of limited information disclosure of the InPs on
VN embedding efficiency [108]. As a next step, we take into account network
service chains comprised of network functions (NFs) which we embed into mul-
tiple data centers (DCs) again due to location dependencies of the NF providers
(NFPs). In this context, we introduce a service model that facilitates the specifica-
tion of service chain requirements by the clients, e. g., enterprises (Section 5.1).
Since NFP policies will hinder interoperability with third parties and especially
competitors, we consider a centralized coordinator (i. e., network service composi-
tion layer, NSCL), between the requester and the NFPs, that relies on an abstract
network view (Section 5.2). In this respect, we provide a framework for multi-
provider network service embedding (NSE) in which a centralized coordinator
partitions the requested service chain into NF subsets each to be finally embed-
ded into the substrate by the assigned NFPs (Section 5.3). According to that, we
present MILP and LP based approaches for solving the request partitioning prob-
lem (Section 5.4) and the resource mapping problem (Section 5.5). Finally, we
evaluate NSE efficiency with different objectives and make a comparison with a
greedy variant (Section 5.6).

5.1 SERVICE MODEL

We aim at defining a service model that simplifies the specification of service
requirements by clients and the estimation of NF computing and bandwidth
demands. The difficulty in computing resource requirements stems from the
effects of NFs on traffic. More precisely, appliances, such as redundancy elim-
inators and caches, conserve bandwidth, while other NFs (e.g., packet multi-
plication, encryption) amplify traffic. The level of bandwidth conservation or
traffic amplification depends on various factors, such as the size and hit ratio for
caches, the amount of duplicate content for redundancy elimination appliances,
and the volume of traffic filtered by firewalls and intrusion detection systems
(IDS). In this respect, Table 7 summarizes the effect of widely-used NFs on traf-
fic and further shows the range of bandwidth saving or traffic amplification for
each NF, collected from various studies [109-111]. Based on these observations,
we introduce (p%, which denotes the ratio of outbound traffic at port p of NF i

79

8o

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

Table 7: Some network functions amplify or reduce traffic. The table shows network
functions with confirmed range of outbound/inbound traffic ratio.

Network function Bandwidth Outbound/inbound traffic ratio (¢)
preservation

Flow monitoring Yes -

Load balancer Yes -

NAT Yes -

RE No 40—70% [109], 59-74% [110]

VPN (IPsec) No 105-228% (for 64—1500-byte packets) [111]

over the aggregate inbound traffic at all ports. We particularly consider the
traffic ratio per output port, since traffic may be split between multiple output
ports depending on the outcome of packet inspection.

Our network service model consists of an NF graph in which each NF i is
associated with a traffic ratio (p]iD per port p (Figure 31). Essentially, @; is used
for the estimation of the bandwidth demand over each link, given the aggregate
inbound traffic rate at each NF. The adjustment of (pli) for a given NF can be
derived based on traffic statistics from middleboxes with the same functionality,
deployed on the client’s premises. In case such information is not available,
(p%, can be adjusted based on statistics available from middlebox studies [109—
111] or other network operators. Since achieving a very accurate estimation
of (p]i9 may be difficult, cp]i9 can be set to the lowest bandwidth saving or the
highest level of traffic amplification (assuming a known range of bandwidth
saving or traffic amplification, as shown in Table 7). This approach ensures
that bandwidth allocation will be sufficient while any spare bandwidth can be
distributed proportionally to the clients. After (p%, has been adjusted for each
NF in the service chain, the client simply needs to specify the rate of the traffic
generated at each endpoint.

The computational requirements for each NF can be derived using the in-
bound traffic rate and the resource profile of each NF (i.e., CPU cycles per
packet). Resource profiles are available for a wide range of NFs [112, 113] while
existing profiling techniques [114] can be applied to any flow processing work-
loads whose computational requirements are not known. This obviates the
need to specify any computing demands for the NFs in the service chain.

Next, we formulate a service chain request model which considers the ser-
vice descriptions above. We use a directed graph Gr = (VF, Ef) to express a
network service request. The set of vertices V¢ includes all NFs and endpoints
that comprise the service request. Each NF i is associated with an outbound-
/inbound traffic ratio per port p, denoted by (p]i,. Each endpoint is associated

5.2 TOPOLOGY ABSTRACTIONS AND SUBSTRATE NETWORK MODEL

traffic rate 1 - 2 -
VPN ¢’ _ 1.5 Load Balancer $% —‘"0.5
100 Mbps 4 bk
150 Mbps 75 Mbps
1 2 1 2
traffic source \ traffic sink
3
port number T b4 =.0-5'\ outbound/inbound
v g traffic ratio
75 Mbps

Figure 31: The service chain can be represented as a graph with (p%) denoting the out-
bound to inbound traffic ratio at the port p of the NF i. The traffic rate on
each link in this NF graph can then be determined in dependence on the
source traffic rate.

with a traffic generation rate, which, combined with (p%, gives the bandwidth
demand dY for each edge (i,j) € Ef. The computing demand d* of each NF
is estimated based on the inbound traffic rate and the NF resource profile (i.e.,
CPU cycles per packet). NF location dependencies are expressed by the distance
tolerance, denoted by Al. This request model is used for request partitioning
and mapping in the Sections 5.4 and 5.5.

5.2 TOPOLOGY ABSTRACTIONS AND SUBSTRATE NETWORK MODEL

Topology abstractions are crucial for the generation of efficient embeddings
considering the information disclosure policies of NFPs. We seek to identify
topology abstractions that conceal any information deemed as confidential by
NFPs. To this end, we rely on information disclosed by ISPs (i. e., InPs) and cloud
providers. ISPs often publish simplified PoP-level topologies [90], while cloud
providers advertise resource types across different availability zones [89].

We depart from a PoP-level topology view that includes the Internet access
points, NFV PoPs (i.e., DCs), and peerings with neighboring networks. Fig-
ure 32a depicts such a topology spanning four NFPs and two ISPs. Since the
endpoints (i.e., ey, e2) are fixed, we need a network view that simplifies the
estimation of the link costs between the endpoints and the DCs. Based on
Figure 32a, we derive an abstract network view that obscures the Internet ac-
cess points and represents (i) the connectivity between DCs and peering nodes
within each NFP, and (ii) the peerings among NFPs (Figure 32b). This topology
abstraction combined with NF computing and link costs provides the necessary
means for the estimation of the overall NSE cost.

The edges of this network graph can be annotated with weights assigned
by each NFP, according to the NFP’s policies (e.g., load balancing), similarly

81

82

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

(b) Topology abstraction

Figure 32: An abstract network view obscures the Internet access points and simplifies
the estimation of the link costs between the endpoints of a service chain.
These link costs are considered for the service chain partitioning.

to the multi exit discriminator (MED) attribute of the border gateway protocol
(BGP). An NFP may wish to incorporate DC utilizations into the weights of the
adjacent links, avoiding the explicit advertising of DC utilization information.
We particularly consider a link weight offset which is dynamically adjusted
according to the DC utilization level. Link weights are used by our request
partitioning formulation variant which is tailored to NFPs (Section 5.4).

In the following, we formally describe a substrate network model which
facilitates the abstractions as discussed beforehand. We rely on an undirected
graph Gs = (Vs, Es) for the description of topology abstractions and substrate
network topologies. We use o, and .., to express the monetary cost of NFs
and links, respectively. Each graph edge (u,v) € Es is associated with a weight,
denoted by wy,,, which is assigned by the NFP. Furthermore, substrate nodes
and links are associated with their residual capacity, represented by r,, and
Tuv, respectively. To enforce NF location constraints, we further introduce lﬁ
which represents the distance between the preferred location (e. g., close to an
endpoint) and the DC u assigned to NF i. This substrate network model is used

for request partitioning and mapping in the Sections 5.4 and 5.5.

5.3 SERVICE CHAIN EMBEDDING FRAMEWORK

O~ service chain
request

NF subgraph 2

Figure 33: Our NSE control plane is distributed across the NSCL, the NF providers,
and the DCs deployed by each NFP. Service chain requests are partitioned
by the NSCL across multiple NFPs (i. e., DCs) that in turn assign resources
to the NF subgraphs of the service chain.

5.3 SERVICE CHAIN EMBEDDING FRAMEWORK

In this section, we provide an overview of our NSE framework and discuss
the sequence of steps for the embedding of network service requests. Our NSE
framework processes and embeds requests specified based on the service model
presented in Section 5.1. The topology abstraction in Section 5.2 represents
the view of the NSCL on the substrate network topologies. To embed network
service requests, we use our NSE control plane, which is distributed across the
NSCL, the NFPs, and the DCs deployed by each NFP, as shown in Figure 33.
Along these lines, our NSE framework decomposes NSE into the following steps:

Graph Rendering. Graph rendering consists in the transformation of detailed
topology graphs into topology abstractions that facilitate request partitioning
while obscuring any confidential information for NFPs. Each NFP generates the
topology abstraction for his own network and subsequently annotates the edges
of the graph with the link costs (i. e., expressed as cost per bandwidth unit) and
optionally with weights representing link and DC preferences. The NSCL collects
the graphs from all participating NFPs and stitches them together constructing
an abstract network view that spans all NFPs (i. e., Figure 32b). New topology
abstractions are generated upon significant substrate topology changes or the
participation of new NFPs. Link weights are updated on the existing network
graphs in response to changes in resource utilization levels or NFP policies.

Service Chain Request Partitioning. Network service requests are partitioned

among NFPs when there is no single NFP that satisfies the location dependen-

83

84

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

cies of all NFs in the request. More precisely, the NSCL identifies a list of DC
candidates for each requested NF by matching NF location constraints against
each NFP’s footprint. Subsequently, the NSCL uses two variants of an ILP/LP
model for request partitioning, tailored to (i) the client (i.e., expenditure min-
imization) or (ii) the NFPs (i.e., network load balancing), exploiting link and
DC preferences disclosed by NFPs. The request partitioning formulations are
discussed in detail in Sections 5.4.1 and 5.4.2.

The request segments are derived from the ILP/LP solver output, i.e., the
NF-to-DC assignment (Figure 34a). First, the NSCL computes the total inbound
and outbound bandwidth demand for each request segment (Figure 34b). Next,
the NSCL generates an NF subgraph, in which all inter-segment traffic traverses
a virtual gateway (VGW), as shown in Figure 34c. This subgraph allows the
binding of the VGW with the DC network gateway, augmenting the mapping of
each request segment onto the assigned DC.

NF Subgraph Mapping. Each NF subgraph is mapped onto the assigned DC
network by the corresponding NFP. This process does not require any topology
abstractions, since each NFP has a complete view of the DC network topolo-
gies and the utilization of servers and links. We particularly consider 2-level
hierarchical DC network topologies (similar to Figure 2, Section 2.1.2) that pro-
vide sufficient capacity for data transfers between the few hundreds of servers
deployed within each micro-DC. Nevertheless, our NF subgraph mapping meth-
ods are also applicable to 3-layer fat-tree topologies, used for larger DCs.

We also employ an MILP/LP solver for the assignment of NF subgraphs to DC
networks — here with the combined objective of NF consolidation level maxi-
mization and inter-rack traffic minimization. Further details on these NF sub-

graph mapping methods are given in Sections 5.5.1 and 5.5.2.

5.3 SERVICE CHAIN EMBEDDING FRAMEWORK

NFl —— NFZ — NF3 —— NF4 ’ % > eZ
100 100 80 60 60 | 80

—> NFs

20 20

(a) Assignment of NFs to DCs

bandwidth units

100 80 80 80
y |
bandwidth
VGW units VGW
_ /
100 80 60 50
20 20
NF, —> NF, —> NF, NF, NF,
100 80
NF subgraph 1 NF subgraph 2

(c) Generation of subgraphs with virtual gateways (VGW)

Figure 34: Request partitioning comprises sub-steps that finally provide reformulated
NF subgraphs that are subsequently sent as new requests to each corre-
sponding NFP (i.e., DC).

85

86 MULTI-PROVIDER SERVICE CHAIN EMBEDDING

Table 8: Notations used in Sections 5.4 and 5.5.

Symbol| Description

X monetary server cost at DC u in $/GHz

Buv monetary cost of link (u,v) in $/Mbps

at computing capacity demand of NF i in GHz

dy bandwidth demand of edge (i,j) in Mbps

Er set of NF graph edges

Es set of substrate links

ffjv flow demand of edge (i,j) assigned to the intra-DC link (u,v) in Mbps
(p;; outbound/inbound traffic ratio per port p for NF i

ey NF to be fixed to a certain node

49 distance between the preferred location and the DC u assigned to NF i in km
Al distance tolerance of NF i in km

Tw residual capacity of server uin GHz
Tuv residual capacity of link (u,v) in Mbps
Uy node to be fixed to a certain NF

Vr set of NFs

Vg set of substrate nodes or DCs
Wuv weight of link (u,v)

X set of x},

xi assignment of NF i to DC or server u

yil, mapping of NF graph edge (i,j) onto PoP-level graph edge (u,v)

Zu assignment of any NF to server u

5.4 SERVICE CHAIN PARTITIONING

In this section, we present an ILP formulation for request partitioning (Sec-
tion 5.4.1) which is complemented by a relaxed LP variant for the faster compu-
tation of near-optimal solutions (Section 5.4.2). We use the request and network
models introduced in the Sections 5.1 and 5.2. The notations used in this Sec-

tion are listed in Table 8.

5.4.1 ILP Model

Request partitioning will be subject to objectives, such as service cost minimiza-
tion or network load balancing. In this respect, we provide two ILP formulation
variants tailored to the client and the NFPs. The ILP variants differ only in the
objective function. The objective function Min-C minimizes the overall mon-

5.4 SERVICE CHAIN PARTITIONING

etary cost for the client, by accumulating all the monetary NF and link costs.
On the other hand, the objective function Min-W minimizes the link weights,
disclosed by NFPs. Since link weights express the utilization of links and DCs,
link weight minimization essentially leads to network load balancing.

In the ILP formulations, we use the binary variable x!, to express the assign-
ment of NF i to the DC u. Similarly, the binary variable yu), indicates whether
the NF graph edge (i,j) € Er has been mapped onto the PoP-level graph edge
(u,v) € Es. The request partitioning ILP is defined as follows:

Min-C:
Minimize Z o Z dix! + Z Buv Z dyiyll, (29)
ueVs ieVr (uV;EEs (Lj)€EF
OR
Min-W:
Minimize Z Wy Z iyl (30)
(w,v) €Eg (i,j)ekg
(u#v)
subject to:
Y xh=1 view (31)
ueVsg

> il —wh) =xi -

VEVg
(u#v)

i ;é],\V/(l,]) S EF,\V/LL S VS (32)
Lxi <AV Vie Vi Yue Vs (33)
x, €{0,1} Vie Vg Vue Vs (34)
yd €{0,1} V(i,j) € Ef,V(u,v) € Es (35)

Hereby, we briefly discuss the ILP constraints. Constraint (31) ensures that
each NF 1 is mapped exactly to one DC. Condition (32) preserves the binding
between the NF and the link assignments. More precisely, this condition ensures
that for a given pair of assigned nodes 1,j (i. e., NFs or endpoints), there is a path
in the network graph where the edge (i,j) has been mapped. Condition (33)
enforces NF location constraints. Finally, the conditions (34) and (35) express

the binary domain constraints for the variables x! and yizv. In addition, we fix

87

88

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

the assignment of each endpoint k in the request to its respective location u by
setting xk <« 1.

We rely on the branch-and-cut method for solving the ILPs. The request parti-
tioning ILP solver yields a mean runtime of 210 ms (with the evaluation param-
eters shown in Table 9). Time complexity and solver runtime can be reduced by
employing relaxation and rounding techniques at the cost of suboptimality. We

apply such relaxation and rounding techniques in the following Section 5.4.2.

5.4.2 LP Relaxation and Rounding

We transform the request partitioning ILP model to an LP model by relaxing the

integer domain constraints. We replace the Equations (34) and (35) by:

XL, >0 Vie Vg Vue Vs (36)
U,>0 V(i,j) € Ef,¥(uw,v) € Es (37)

Finally, the request partitioning LP formulation consists of the objective func-
tions (Equations (29) and (30)) and the constraints from the original ILP (Equa-
tions (31) — (33)) plus the above-mentioned non-integer domain constraints
(Equations (36) and (37)).

Relaxation of integer variables might require further changes to the LP. In
particular, Constraint (33) will not hold if x!, is too small since the actual geo
distance to a candidate could appear too close due to multiplication with any
x!, < 1. We decided not to extend the LP model and rather to exclude those in-
feasible solutions afterwards during the rounding phase (Algorithm 6, Lines 6 -
10). Constraint (32) holds even with non-binary x!, and yEV. The relaxed
domain constraint (36) together with the Constraint (31) forces 0 < x! < 1
where the non-binary solutions are not yet associated with a final decision for
or against any node candidate. Instead, these values express uncertainty due
to the relaxed LP model.

In the following we present a rounding algorithm for the LP based generation
of near-optimal solutions for the request partitioning problem. Algorithm 6
iteratively fixes (or excludes) a node mapping which is probably part of a near-
optimal solution (i. e., max x},) if the respective geo constraint is not violated (or
violated) as long as the LP solution after each iteration is feasible and contains
non-binaries.

We now compare the efficiency of the original ILP variant and the LP variant

that uses a rounding algorithm. To this end, we partition 25K service chains

=

5.5 NF SUBGRAPH MAPPING

Algorithm 6 Service chain partitioning with LP

1 repeat

2 {x},yiv} < Solve_LP(..)

3 X {xi Ixh €{0, 1)

4. if X # () then

5: {itx, Wix} ¢ argmaxgicve ueve1 X

6: if LI < Af then

7 Add_LP_Constraint(”xi{;X =1
8: else _

9: Add_LP_Constraint("x;{* = 0")
10: end if

11: end if
12: until (X = ()) V NoFeasibleSolutionLP

13: return {x,yily

across 50 DCs, using both the ILP and LP variant. Further evaluation parameters
used for this test are the same with our NSE evaluation in Section 5.6.1 (see

Table 9). We run tests with both, the Min-C and the Min-W objective function.

Figure 35a shows the normalized resource unit costs (i.e., for CPU, bandwidth)
after the partitioning with Min-C.

There is no significant increase in CPU cost for the LP variant while bandwidth
cost shows suboptimality in particular for the links which are generally more
expensive. In total, LP yields 4.4% higher bandwidth cost compared to the ILP
variant. The suboptimality for LP relaxation for the other objective (Min-W)
is shown in Figure 35b. The weight update function, as used for Min-W is
deactivated for a fair comparison. We determine a mean sum of weights per
service chain of 358.5 and 360.5 for the ILP and LP variant. Eventually, the LP
yields only marginal suboptimality compared to the ILP while the LP exhibits a
substantially lower runtime (165 ms) compared to the ILP (944 ms)*, which we
deem that outweighs its suboptimality.

5.5 NF SUBGRAPH MAPPING

In this section, we formulate an MILP model for the mapping of NF subgraphs
onto DC networks (Section 5.5.1). We further transform this model into an

LP model by relaxing the integer variables and present the respective rounding

algorithm (Section 5.5.2). The notations used in this Section are listed in Table 8.

Tests are carried out on a server with 2.53 GHz Intel Xeon CPU where each test is assigned to a
single CPU core.

89

90 MULTI-PROVIDER SERVICE CHAIN EMBEDDING

] 550 + -

0.107 = - 0.03 1 .

0.09 ! o 500 é
NSRS ‘ ‘
STo07f ‘ g : 450 ! !
85 | | S 0.02 I = ‘ |
2 & 0.06 I I = < 400
8> + + £ =
25005 3 £
8y 2 ; @ 350
22004 g ! L

8 | ! !
E” oos g oo $ g 300 | :
c had !

0.02] H ¥ 250 ‘ ‘

0.01 1 ﬁ{ Bl

0.00 0.00 200

ILP LP ILP LP ILP LP

(a) Min-C: normalized resource cost (b) Min-W: weight sum

Figure 35: In the case of cost-minimized service chain partitioning, LP results in slightly
higher bandwidth costs while compute costs do not significantly differ from
the ILP results. Similarly, LP yields only marginal suboptimality in terms of
weight sum compared to the ILP variant under weight-minimized partition-
ing.

5.5.1 MILP Model

The MILP for NF subgraph mapping aims at maximizing NF co-location, i.e.,
minimizing the number of used servers while minimizing the traffic within the
DC. In this respect, the binary variable z,, indicates whether any NF has been
assigned to server u, i.e., z, = 1 if server u is used and z,, = 0 otherwise.
z,, depends on another variable xh which denotes the assignment of NF i to
server u. x!, is not relevant for the objective function as its sum is always con-
stant. Instead, it will be implicitly bound to z,, in Equation (41). Based on the
multi-commodity flow problem formulation, we use the term “commodity”, de-
fined as ComY = {i,j, dY}, to express bandwidth demands dY between a pair
of NFs 1,j. In this context, the flow variable fHV denotes the amount of flow
(i.e., bandwidth units) over the DC link (u,v) for the NF graph edge (i,j) € Er.
The objective function (38) consists of two terms, i.e., the number of assigned
servers and the accumulated flow divided by the total bandwidth demand. Es-
sentially, the second term yields one if all NF graph edges (i,j) € Ef are mapped
onto single-hop links. The normalization of the second term provides a balance
against the first term in the objective function. The NF subgraph mapping MILP
model is formulated as follows:

5.5 NF SUBGRAPH MAPPING

Minimize

Z Zu + Z] v (Z Z fily (38)

ueVs uv)EEg (Lj)EEF

(Lj)EEE (ustv)
subject to:

Y xh=1 Vie Vs (39)
UuEVsg

> b= 2 fl=aIed)

VEVs vEVs

i#j,Vi,je Vi, u#v,Vue Vs (40)

Z dixiL <ry-zy Yue Vg (41)
ieVE

Y il < V(wv) € Es (42)
1,jEVF
x, €{0,1} Vie Vg Vue Vs (43)
zy €{0,1} Yue Vg (44)
i, >0 V(i,j) € Ep,¥(u,v) € Es (45)

We further discuss the constraints (39)—(45) in the MILP. Condition (39) en-
sures that each NF i € Vf is mapped exactly to one server. Constraint (40)
enforces flow conservation, i. e., the sum of all inbound and outbound traffic in
switches and servers that do not host NFs should be zero.

The constraints (41) and (42) ensure that the allocated computing and band-
width resources do not exceed the residual capacities of servers and links, re-
spectively. Equation (41) is further used for the binding between the two binary
variables z,, and x!,. The allocated capacity equals the demand d'x! = d! if
NF i is not mapped to server u or zero otherwise. Similarly, the residual capac-
ity is multiplied by z,, a variable which tends to zero as it is part of the objective
function. If the left-hand side of Equation (41) is greater than zero, then the bi-
nary z,, on the right-hand side of the same equation is forced to 1. Conversely,

91

92

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

allocated capacity cannot exceed the residual capacity of any combination of
NF i and server u.

Finally, the conditions (43) and (44) express the binary domain constraints
for the variables x!, and z,,, while constraint (45) ensures that the flows 3,
are always positive. We further assume that the first element in V¢ represents
the virtual gateway which we bind to the physical gateway GW by setting

X\G/FV(\,U<—1.

5.5.2 LP Relaxation and Rounding

We transform the NF graph mapping MILP model to an LP model by relaxing
the integer domain constraints. We replace Equations (43) and (44) by:

X, >0 Vie Vg Vue Vs (46)
zy =20 Yue Vg (47)

In the following, we discuss the impact of non-binary x!, and z,, on the model.
Constraints (39) and (40) contain x!, where a non-boolean value represents the
infeasible splitting of an NF to server mapping. However, Equation (39) im-
plicitly enforces x}, < 1, and the binding between x}, and i, (Equation (40))
impacts the values in x}, in the way that higher values rather indicate preferred
(w.r.t. objective function) mapping combinations. Thus, suboptimal mapping
results can be obtained from rounded x!,. The node capacity constraint (41)
could be violated if x}, < 1 or if z, > 1. On the contrary, with z,, <1 nodes
with sufficient capacity could be ignored which yields merely suboptimal but
feasible combinations. Hence, we prefer rounding of x!, over z,, and modify

the domain constraint of z,, (Equation (47)) to
0<zy <1 Yu € Vg (48)
while the additional constraint
Zy = xiu Vi€ Vg, Vu € Vg (49)

yields again binary values for z,, after the rounding of all corresponding x,.
The latter is needed in order to accumulate the correct number of servers in the
objective function.

Altogether, the final LP model is expressed as follows:

5.5 NF SUBGRAPH MAPPING

Minimize

Z Zu + Z] v (Z Z fily (50)

ueVs uv)EEg (Lj)EEF

(i/j)EEF (u;év)
subject to:

Y xh=1 Vie Vs (51)
UuEVsg

> b= 2 i =dInd)

VEVs vEVs

i#j,Vi,je Vi, u#v,Vue Vs (52)

Z dixt, <ry-zy Yue Vs (53)
ieVE

Z 9 <rww V(w,v) € Es (54)
i,jEVE
zy = xl, Vi€ Vg Vue Vs (55)
X, >0 Vie Vg Vue Vs (56)
0<z, <1 YueVs (57)
f9, >0 V(i,j) € Ep,V(w,v) € Es (58)

We designed a rounding algorithm (Algorithm 7) which is based on previous
work. It basically fixes each the most probable assignment of an NF to a server
(x}) and repeats solver runs as long as there are feasible LP solutions and non-
binary results for x},. If an NF to node mapping becomes infeasible due to the
already assigned demand, then the corresponding mapping will be precluded
by setting this x!, < 0.

We hereby investigate the suboptimality of the LP compared to the MILP vari-
ant, in terms of DC mapping efficiency. To this end, we assign 25K NF graphs
onto a DC, using both mapping variants. Each NF graph contains 3 to 20 NFs.
Other evaluation parameters used for this test are the same with our NSE eval-

uation in Section 5.6.1 (see Table 9). For comparison between the two variants

93

94 MULTI-PROVIDER SERVICE CHAIN EMBEDDING

Algorithm 7 NF graph mapping with LP

1: repeat -
2 {zu,xd, fiv, Y5} < Solve_LP(.)

3 Ye{uilyig(o1)
4 X {xy [xy €{0,1}}
5. if Y # () then
6: {Sex,Tex) < argmax{ses,reR}Y
7 Add_LP_Constraint("y:* =1")
8: else if X # () then
9 {irx, Uy} < argmaxpiev; we v} X
10: if > thx dt + di < ry then
ie(Velxi, =1}
11: Add_LP_Constraint("xis, = 1")
12: else
13: Add_LP_Constraint("xH?X =0")
14: end if
15: end if

16: until (X =0 AY =)V NoFeasibleSolutionLP
17: return {zu,xh, f}ﬂ'v,yi}

we stress the system at a level at which the original ILP variant, with always
the optimal mapping result starts dropping incoming requests due to resource
shortages. Therefore, we set the request arrival rate to 10 per hour which in
turn yields a mean acceptance rate of 99.87% and 99.86% for the MILP and LP
variant. We further aim at comparing the resource efficiency of both NF graph
mapping variants. In this respect, Figure 36a illustrates the number of used
servers and racks for the LP variant relative to the MILP variant. The LP results in
a marginally higher number of servers and a negligible higher number of racks.
This appears plausible since the NF graph mapping objective function aims at
minimizing link cost implicitely by co-locating NFs preferably in a server, if
possible, or in a rack otherwise. We further investigate whether the LP variant
generates additional traffic within the DC, compared to the MILP. According to
Figure 36b, the LP results in marginally higher volume of inter-rack traffic and
a more perceptible increase (i. e., 8 to 11%) in the traffic within the racks. How-
ever, rack traffic is less expensive than inter-rack traffic and as mentioned above,
this does not impact the request acceptance rate and, therefore, the generable
revenue. Eventually, the LP yields only marginal suboptimality compared to
the MILP while the LP exhibits a substantially lower runtime (62 ms) compared
to the MILP (650 ms)?, which we deem that outweighs its suboptimality.

2 Tests are carried out on a server with 2.53 GHz Intel Xeon CPU where each test is assigned to a
single CPU core.

5.6 EVALUATION

101.5, o "
— servers S 114f| — rack traffic
. -~ ~racks o - - - inter—rack traffic
¢ = 112F
So 2
S L 2
= if 101.0 @ 1100
=] -%
0= £ L
So o 108
g 2 3 1061
2 10051 S
g2 % 104
T = < t
g 5
3 g 102r
100.0 g PSRRI g AU ST PO
@ 100~ "¢ o

0K 5K 10K 15K 20K 25K 0K 5K 10K 15K 20K 25K

service chain request # service chain request
(a) server and rack allocation (b) DC traffic generation

Figure 36: NF graph mapping with MILP/LP: LP results in (i) marginally higher num-
ber of servers and a negligible higher number of racks and (ii) in marginally
higher volume of inter-rack traffic and a more perceptible increase in the
traffic within the racks.

5.6 EVALUATION

In this section, we assess the efficiency of NSE across multiple NFPs with our NSE
control plane implementation as presented in Section 6.2. We mainly focus on
service chain partitioning and particularly on the impact of different partition-
ing objectives. To this end, we rely on the two request partitioning LP variants,
introduced in Section 5.4. Upon partitioning, the mapping of NF subgraphs to
DCs is done by applying the LP based mapping method as introduced in Sec-
tion 5.5. We explain evaluation parameters and metrics (Section 5.6.1) before
we discuss our simulation results (Section 5.6.2).

5.6.1 Parameters and Metrics

Below, we provide further details on the substrate network and service chain

specifications, as used in our evaluations.

Substrate Network. We generated a PoP-level substrate topology with 12 NFPs
covering a region with the size of the US state California. The substrate spans
50 homogeneous DCs, each one containing 200 servers in 10 racks. For each DC,
we have generated a 2-level hierarchical network topology, similar to Figure 2
as presented in Section 2.1.2.

Service chains. Network service requests are generated based on service chain
templates. These templates are composed of NFs that correspond to real mid-
dlebox applications (e.g., firewall, load balancing, RE). Each NF is associated
with the outbound/inbound traffic rate (¢), adjusted according to the statistics

summarized in Table 7. The NF computational requirements and bandwidth

95

96 MULTI-PROVIDER SERVICE CHAIN EMBEDDING

Table 9: NSE evaluation parameters.

Substrate network (PoP-level topology):

NFPs / DCs 12 / 50

Intra-domain link cost unif. distrib. [0.002, 0.006] $/Mbps
Peering link cost unif. distrib. [0.006, 0.018] $/Mbps
Server cost unif. distrib. [0.05, 0.10] $/GHz

Substrate network (data center topology):

Core switches 5

Racks per DC 10

Servers per rack 20

Server capacity 16 - 2 GHz

ToR-to-server link capacity 4 Gbps

Inter-rack link capacity 16 Gbps

Service chains:

Number of NFs uniform distrib. [10, 20]

Traffic generation rate uniform distrib. [10, 100] Mbps

demands are derived from our network service model (Section 5.1), given the
¢ adjustments and the traffic rate at the endpoints. The traffic rate is randomly
sampled from a uniform distribution. The endpoints are randomly selected
out of 50 possible locations with a minimum distance of 250km to each other.
Table 9 provides a list of the evaluation parameters.

We use the following metrics for the evaluation of NSE efficiency:

* Service cost represents the client’s expenditure for the network service.

DC load balancing level is defined as the maximum over the average

server CPU load across the DCs.

Acceptance rate is the number of successfully embedded requests over
the total number of requests.

¢ Revenue accumulates the CPU and bandwidth units leased to clients.

5.6.2 Results

We perform a comparative study of the two request partitioning variants (Sec-
tion 5.4), i. e., embedding cost minimization (Min-C) and link weight minimiza-
tion (Min-W). In addition, we use a greedy algorithm as baseline. This algo-
rithm binds each NF with one of the endpoints, depending on the NF location

5.6 EVALUATION

8 125
|
= - I
S 120 0.09} | 1
e ! .
Q % 0.08 E| E| = 0.04 * +o
2 S — . ‘ g i
Sus S(I; 007 | | -
= 20 | & N |
i £3 006 | ! + | Soos
7} I o
g 110 g3 005 L7 2 \
2 39 0.04 2 0.02 ! Lo
(7 o
@ £ o
22 00 : ==
2 105 : e ‘
i 0.02 0.01f 1 | .
=}
E 100 ‘ ‘ ‘ Greedy], 0.01 é T+
© “ok 50K 100K 150K 200K 250K 0.00 0
service chain request 7 Min-C Min-W Greedy Min-C Min-W Greedy
(a) Service cost evaluation of NSE. (b) normalized service cost with cost-

minimized, weight-minimized, and
greedy request partitioning

Figure 37: Both Min-W and the greedy algorithm yield a higher service cost, compared
to the cost-minimized request partitioning. The lower service cost of Min-C
stems from the significantly lower bandwidth cost.

constraint or the order in the service chain (for NFs without location dependen-
cies), and assigns each NF to the DC which is most proximate to the correspond-
ing endpoint.

Figure 37a illustrates the evolution of the cumulative service cost with 250K
non-expiring requests. Both Min-W and the greedy algorithm yield a higher
service cost, compared to Min-C, which is formulated for service cost minimiza-
tion. In particular, Min-W exhibits an increase in the service cost (relatively to
Min-C) with the number of requests, eventually converging to 20% additional
service cost, which is steadily incurred by the greedy algorithm.

The boxplots in Figure 37b illustrate the decomposition of service cost into
the CPU and bandwidth cost, normalized per resource unit. The lower service
cost of Min-C stems from the significantly lower bandwidth cost (Figure 37b),
considering that in absolute terms the fraction of bandwidth cost is one mag-
nitude higher than the fraction of CPU cost. Essentially, Min-C achieves cost
savings with the selection of DCs which are reachable over less costly paths.
The greedy algorithm yields an average CPU cost of 0.075$%/GHz, which corre-
sponds to the average CPU cost across all NFPs, since DC selection is bound to
randomly assigned endpoints.

So far, Min-C appears very appealing for clients, since it minimizes their
expenditure. However, Min-C may entail suboptimality for NFPs which we
investigate in the following. In this respect, Figure 38a depicts the evolution of
load balancing level across the DCs. Since the greedy selection of DCs close to
the endpoints does not lead to load balancing, we focus on the load balancing
levels of the two LP variants. According to Figure 38a, Min-W converges to

near-optimal load balancing after 100K requests, exploiting the DC utilization

97

98

MULTI-PROVIDER SERVICE CHAIN EMBEDDING

2

x10°

~ x 10
32 5 ° : °
. [Min-C CPU 1
3 555 Min-W CPU 55
< 28 % 5 Greedy CPU IR
§ X £ 4.5{ = = = Min-C BW _________:4A5§
o 2.6 2 4| =~ = Min-w BW Pt it =<
5 3 Greedy BW . S < |
224 &35 =, = 1352
T 22 T ol . 1, B
] g 3 3 §
g 2 =25 {25¢
2138 2 of 1 8
Q] hay
018 ® 157 1155
1.4 _02> 1F 11
1.2 £ 0.5 105
1 i i | I] E o 1 i I I 0
0K 50K 100K 150K 200K 250K 3 0K 50K 100K 150K 200K 250K

service chain request # service chain request

(a) load balancing level with cost- and (b) cumulative revenue with cost-minimized,
weight-minimized request partitioning weight-minimized, and greedy request
partitioning

Figure 38: Min-W converges to near-optimal load balancing after 100K requests while
Min-C yields a perceptible suboptimality. The LP variants generate substan-
tially higher revenue from CPU and bandwidth, compared to the greedy
algorithm.

levels disclosed via the link weights. In comparison, Min-C yields a perceptible
suboptimality. For instance, after 250K requests the highest server load is 5.3%
and 18.2% above the average DC utilization, for Min-W and Min-C, respectively.

Figure 39a shows the request acceptance rates for the three request parti-
tioning methods. Optimizing DC selection based on the disclosed weights (i. e.,
Min-W) inhibits the assignment of NF subgraphs to highly utilized DCs, which
usually leads to request rejections. As such, Min-W yields a higher request ac-
ceptance rate. Specifically, after 100K requests (which corresponds to a server
utilization level of 80% across DCs), Min-W can embed 23% more requests than
Min-C. On the other hand, the greedy algorithm suffers from a large number
of rejections, due to the restrictions in DC selection.

Figures 39a and 38b show a strong correlation between the acceptance rate
and generated revenue. The LP variants generate substantially higher revenue
from CPU and bandwidth, compared to the greedy algorithm. For Min-W, the
highest acceptance rate is translated to a higher revenue, i.e., up to 14% more
than Min-C. This essentially designates Min-W as the preferred request parti-
tioning method for NFPs.

Finally, we measure the acceptance rate of Min-W with 250K expiring re-
quests and diverse arrival rates. Figure 39b shows that acceptance rates con-
verge to a steady state, irrespective of the arrival rate. This further indicates the
efficiency of Min-W LP and our DC mapping algorithm for NSE across multiple
NFPs.

5.7 RELATED WORK 99

1001
90
80
70
60
50
40
30

acceptance rate (%)
acceptance rate (%)
©
o

20 84 —— AR 15/min
10 : g2H —AR 20/min
AR 25/min
o i i i i i 80 : i i i i
0K 50K 100K 150K 200K 250K 0K 50K 100K 150K 200K 250K
service chain request # service chain request
(a) cost-minimized, weight-minimized, and (b) diverse arrival rates of weight-minimized
greedy non-expiring request partitioning expiring request partitioning

Figure 39: Min-W yields the highest request acceptance rate compared to the other
variants. The greedy algorithm suffers from a large number of rejections,
due to the restrictions in DC selection. In the case of expiring requests, the
acceptance rate converges towards a steady state irrespective of the arrival
rate.

5.7 RELATED WORK

Existing work on NSE has mainly focused on NF graph mapping onto DC net-
works. STRATOS [46] and CloudNaaS [115] propose heuristic mapping algo-
rithms that seek to minimize inter-rack traffic within DC networks. A similar
approach is also taken by Oktopus [116], SecondNet [117] and CloudMirror
[118] for the assignment of virtual clusters to DCs. Huang et al. propose a
distributed algorithm for network service placement assuming the ability to
deploy NFs in the data path [119]. MIDAS [120] employs a heuristic algorithm
for order-preserving NF assignment to middleboxes deployed along the data
path. Several studies have tackled the problem of embedding VN topologies
onto a shared substrate network.3 However, these embedding techniques are
designed for arbitrary virtual and substrate network topologies, and are not
optimized for NF graph mapping onto DC network topologies. Compared to all
these approaches, our NSE framework provides a holistic solution for the NSE
problem across multiple NFPs, including request partitioning, generation of NF
subgraphs with DC gateway bindings, and NF subgraph mapping.

Furthermore, with respect to the service chain partitioning, similar works
related to VN embedding exist that apply a similar embedding problem decom-
position, i.e., VN request partitioning among providers, followed by request
segment mapping onto each provider’s network (e. g., [63, 65, 87], see also Sec-
tion 2.5.1). These works do however not cope with the requirements of service
chain embedding.

3 See section 2.5.2 for an overview of existing VN embedding algorithms.

IMPLEMENTATION

All results in this thesis have been obtained from our own simulation envi-
ronment. A set of C/C++ based libraries, compiled from nearly 18,000 lines
of source code, represents the core of our implementation work (Section 6.1).
We used these libraries in our universal control plane implementation for our
proposed VNE/NSE frameworks (Section 6.2). In addition to that, we visualize
the substrate network views of the different actors of VNE/NSE and provide a

graphical real-time evaluation module (Section 6.3).

6.1 FUNCTIONALITY

We have implemented a set of libraries which provide the basic functions of the
VNE and NSE frameworks presented in the Chapters 3 and 5. An API provides

various functions which can be classified into

* generators for requests and topologies (Sections 6.1.1 and 6.1.2),
* request processing (Sections 6.1.3 and 6.1.4),
* logging and statistics (Section 6.1.5).

The implementation which is based on C++ classes facilitates internal data
structures that are used for the modeling of logic elements such as network
topologies including network devices and servers. This data can be accessed by

a file 1/0 class using XML data schemes.

6.1.1 Request Generator

Two different types of requests — VNs and service chains can be generated. Re-
quests are generally associated with an abstract time stamp defining their start-
ing time following a Poisson distribution. The duration of each request can
either be infinite, i.e., non-expiring, or follow a uniform distribution between
a minimum and a maximum number of abstract time units. For each virtual
node of a VN the CPU demand is randomly set and a traffic matrix consisting
of virtual links (bandwidth demands) among the virtual nodes is computed
accordingly. Preferred geographic coordinates can be generated optionally if

the coverable region is given by an existing substrate topology file. VN requests

101

102

IMPLEMENTATION

contain a traffic matrix with fixed bandwidth demands between all the virtual
nodes while service chain requests merely contain the source traffic rate. We
randomly set the source traffic rate for the request and generate a set of sub-
chains each consisting of different NFs. CPU and bandwidth demands are then
computed dependent on the inbound traffic rate at each NF, the NF type and

therewith the traffic amplification rate (Section 5.1).

6.1.2 Substrate Network Generator

Our implementation supports the import from .rig files which can be generated
by substrate topology generators such as IGen [102]. Non-supported but re-
quired attributes, such as CPU capacity or monetary link cost can be added to
a customized XML format upon .rig file import. DC topologies are further cov-
ered by our own topology generator supporting, for example, 3-layer fat-tree
topologies of individual size (number of core switches, racks, servers, and so
forth).

6.1.3 Request Partitioning

Multi-provider VNE/NSE requires the partitioning of the original VN/service
chain into segments to be embedded by different InPs/NFPs. This is a com-
binatorial optimization problem which we formally describe in Sections 3.5
and 5.4. We rely by default on IBM ILOG CPLEX [121] to solve the ILP/LP mod-
els but offer a wrapper class for both the CPLEX and the GNU Linear Program-
ming Kit (GLPK) [122] optimizers. The latter should be used if the commercial
product CPLEX [121] is not available. The rounding algorithms for obtaining
near-optimal results from LPs as well as a greedy algorithm for service chain
partitioning are implemented as well. For a few intermediate steps, we rely
on the Boost Graph Library [123] which we use for graph computations, for
example, to find the shortest path in a substrate topology.

6.1.4 Resource Mapping

The resource mapping problems discussed in this work are solved using either
MILP/LP-based models or by a heuristic algorithm:

* VN (segment) mapping (MILP/LP, Section 3.6),
¢ subset VN mapping (heuristic algorithm, Section 4.3),

* NF subgraph mapping in a DC (MILP/LP, Section 5.5).

6.2 UNIVERSAL CONTROL PLANE FOR MULTI-PROVIDER EMBEDDING

For solving the resource mapping combinatorial optimization problem we
rely again on CPLEX and apply rounding algorithms as we do for the request
partitioning problem (previous Section 6.1.3).

6.1.5 Logging and Statistics

Apart from the logging of partitioning and mapping results, we keep track of
changes in the substrate networks (e.g., with respect to resource utilization,
weight and cost updates, or request expirations). This information is partially
aggregated for further processing, i.e., the average utilization of all servers in
a DC or the cumulative generated revenue. This step simplifies the generation
of statistics and enables access to intermediate statistic results of a running

simulation. Most data is available in the .csv format.

6.2 UNIVERSAL CONTROL PLANE FOR MULTI-PROVIDER EMBEDDING

We have implemented a universal control plane for multi-provider embedding
that supports VNs and service chains. This control plane is distributed across
multiple management nodes, allowing the physical separation of all actors. In
our implementation, each resource provider (e. g., InP or NF provider) exposes a
control interface to the centralized coordinator (VN provider in the case of VNs),
allowing (i) resource advertisements from each resource provider to the coordi-
nator, and (ii) VN segment or NF subgraph submission from the coordinator to
each assigned resource provider. Similarly, the coordinator exposes a control
interface to the client or SP, such that they can submit requests and receive the
embedding result. All these functions are executed through remote procedure
calls. We use an XML-based schema to represent resource requirements, net-
work topologies, and resource availability. This schema is used by all actors
to specify and exchange virtual and physical resource information for resource
advertisements and the submission of requests.

The basic workflow for multi-provider VNE/NSE, as implemented in our sys-
tem, is depicted in the sequence diagram of Figure 40. All resource providers
are required to advertise all offered resource types to the coordinator, that main-
tains this information in a local resource repository. Initially, the requester
generates and submits a request to the coordinator, that in turn partitions the
request into segments as described in the Sections 3.5 and 5.4. Subsequently,
the coordinator generates requests for the segments, which are relayed to the
assigned resource provider. Each resource provider evaluates the feasibility of
the segment mapping onto his network and returns the result to the coordina-

tor (using the methods discussed in the Sections 3.6 and 5.5). After successful

103

104

IMPLEMENTATION

mapping of all segments, the coordinator declares the request as accepted and
returns the result to the requester. Otherwise, the request is rejected, and the
requester is informed of this outcome. For those resource providers that are
only used for transit, we compute, between the respective peering nodes, the
shortest path that satisfies the bandwidth demand. To this end, we adapt the

problem formulation of Section 3.6 and eliminate the node capacity constraint.

" Coordinat Resource Resource Resource
requester oordinator Provider Provider Provider
1 2 3
I : : : :
: loop 64 1: resource advertisment D : :
: T 2: resource advertisment ! D :
|
I "I": 3: resource advertisment ! ! D
| [1—" I I
D 4: request ! | | |
1 1 1
. — | | I
: H]‘__\ 5: request partitioning : : :
|
| : : :
: par, 6: request (segment 1) ! i i
: 7: resource | |
: 2 8: mapping result mapping | !
————————————————————————————— 1 |
: l l l
: 9: request (segment 2) ! !
1
: : : 10: resource
! o ______M:mappingresult ________ Lo 4____mapping_
| |
: ! ! !
: 12: [success?] accept request : : :
1
: 13: accept mapping (segment 1) ‘: i i
:)) 14: accept mapping (segment 2) 'l:" : !
I 15: embedding result J : : 'l:_l
| | |
! ! !

Figure 40: Multi-provider VNE/NSE requires the continuous advertisement of re-
sources by the resource providers. The coordinator partitions any incom-
ing request across the resource providers that subsequently try to map the
segments of the original request to their physical resources.

We use a non-distributed version of our universal control plane implementa-
tion for evaluation of multi-provider VNE (Section 3.7) and NSE (Section 5.6).

63 VISUALIZATION AND REAL-TIME EVALUATION

63 VISUALIZATION AND REAL-TIME EVALUATION

We implemented a fully-automated framework for VNE/NSE across multiple
substrate networks which is equipped with Qt-based GUIs and a real-time eval-
uation module [124]. This framework comprises a realistic evaluation environ-
ment for VN and service chain partitioning and resource mapping algorithms.
It facilitates investigation of various VNE/NSE aspects, such as the impact of
information disclosure on embedding efficiency and the suitability of different
request models. Specifically, we simulate the different actors (requester, co-
ordinator, and resource providers) in separate instances of our control plane
implementation (Section 6.2). Each instance provides a GUI for optional man-
ual control. According to the embedding workflow as depicted in Figure 40),
the requester instance generates and forwards requests automatically in a given
time interval. The requests can be parameterized in real-time, for example, in
terms of VN size or service chain length, traffic rate, the level of geographic
restrictions. Upon arrival of the request at the coordinator, the partitioning and
subsequent reformulation of VN segments or NF subgraphs take place. Then the
coordinator sends each of these reformulated requests to the assigned resource
provider. All involved resource providers automatically map the requested VN
or NF subgraph to their physical resources and report the result to the coordina-
tor. In addition, partitioning and mapping results are received by the evaluation
module which generates statistics such as acceptance rate, total hop count, and
generated revenue. The evaluation module also simulates direct embedding of
requests without any restriction on physical resource visibility. Thus, a visual
comparison between the realistic embedding under limited information disclo-
sure and the best-case scenario with full information disclosure is provided. In
this context, Figure 41 shows a screenshot of an evaluation setup for VNE with
SP, VN provider, and 3 InPs.

105

IMPLEMENTATION

106

squ Sunreddnred € ayy ye Surddew adinosaz
((114) 9INSOISIP UOTFRWLIOJUL [[1J UO paseq Surppaquua a0uaidjal “(JNA) Suruonnred jsenbar /(J5) uonersuad jsenbar 105 smopurm smoys

JOUSUDaIDS Y], "uoneziensia paseq-10) ym paddmba st gGN /INA 1opraoid-nnur jo uoneness awn-[eal ay} 10y Iomawely pajewone sy, :1¥ a3y

‘ SLOAN FESZEP0U 917 puBWSR .w.ul—lui.llv + <1B6L ‘gE.==pnIE G, ==Pnubuo| g, =PUSwWSD . =Pl Z0|.=SOUEISIP XEW SPON> ‘ <LOOM &1.=29P0U 292, ~PUBWED £.= | Sp0u e
</.0.=8pMgE .0.=3pmfuo] .0 =puBWaR JAN JE.=P! -0 =BOUBISIP XEW SpON> . 1 LSO6LFEEL GL1-.=apnybuo| Z| =puswap _|.=p! ~BIZ.=SOUR|SIP XEw BRON> “..0.=9pmue| .0.=spnubuoy 0,=puewsp JaM o |.=P! .0.=BOUBISIP XEW SpoN>=
. 1p.==pnige] 2L~ =apnybun| _p| =pUEWSp 2.=p! /G| =BOUBISIP XEW SpON> < ‘gE.=apnige| 121-.=spnubua| g, =puewap [.=p! 3|, =S0UEISIp XEW BRON> ~</E06LI

BE.=S0MAE 6.1 '§8-.=2pnbuO) _Z_=puBwap £, =P FOZ. =BOUEISID XEW SpaN
<0, 7UEIS 1-Z,7P1 GEE 1L SUDHEIND YoM SNIETIA>

<S|5EnbaLIOMBN[ENHIA>
<s|SenbaLMOMISNENIA 3dA 1 J00R

4 “LOOM o 1.=29P0U 292, ~PUBLISD £.= | SP0U Hurl> ‘ <. LP.=SPnigE| [-.==pnbuo) §| =pusEp Z.5P1 /G| =S0UBISIE XEW PO
<1.0.=2pmyE 0, =sprpbue) ,0,=puEwsp OOM d-L.=P! .0, =SIUBSIP XEW SpoN> <. LE.=SPNigE|

G L-.=spnpliuo) g1 ~puswep | =1 8|2, ~RousjSIp XEul Spon>
'BE.=2pmaE] 121-=8pnubuct .§.=pU=wSp 0, =P 79| ~BOUBISIE XEW SPON
<.0.=HEIS Z.=P1 72| =UOREIND HOMSNIETUIA>

“/.206L| BE.=S0NE 6.1 'G8-.=8prubun| _z,=puswap E.=p! F0Z. =S0UBISIP XEW BRON> <
COSUEES 1-2.=P1 G221 =UONEINE SIOMENENUIA>

EREREIE AN

,wm. .g.ﬁ.s. £ |
,S.S...E.g. z |
,um.w—.s...ﬂn. 13 |

92 86 2 06 - o

N Telzlr ol - ds Ag pajsanbay

oy 'qu3l Jey sdul ol uwgns - Buuonmied NA - Buiydiew ‘say oy | dNA O3 HWANS 1s2nbal NA 21es3usD

63 VISUALIZATION AND REAL-TIME EVALUATION

Our implementation also supports the distributed setup of VNE/NSE evalu-
ation with multiple InPs [125]. Such a setup for VNE is depicted in Figure 42
where we use separate PCs/laptops (i. e., five in total) for the SP, the VN provider,
and for each one of the InP management nodes. Communication between the
different actors is XML-based and displayed immediately. Further, for each re-
quest the optimal solution in terms of cost is computed immediately and visu-

alized in the evaluation module that further generates and displays statistics.

Service Provider (SP)

N
VN request
specification

fm e e e] VN
! request
"__-i-—---__\ Statistics / i)
P | Reference >~ Evaluation Virtual Network Provider (VNP)
4] : N
/ v embedding
{ o Lovmsoors [[— sationg
\ mapping [k ~ partitioning
9 s
7’
\\ d’

VN request
Non-confidential segments
substrate infor-

mation

Manager Manager

VN egment
mapping

VN segment
mapping

Manager

Complete substrate information

VN segment
mapping

Infrastructure InP 2
Providers (InPs) n

Figure 42: A distributed setup of VNE/NSE framework can be realized by the exclusive
assignment of a single PC to all of the actors (i.e., SP, VN provider, InPs).

107

CONCLUSIONS

We tackled the challenges of multi-provider VN and service chain embedding
(VNE/NSE) with respect to (i) limited information disclosure of the infrastruc-
ture providers, (ii) consideration of middlebox policies and the variety of net-
work functions (NFs) in service chains, and (iii) profitability of VNEs from the
perspective of the InPs.

We studied the feasibility of multi-provider VNE with limited view on the
substrate networks. In order to conduct this study, we developed a VNE frame-
work that uses an abstraction model only including non-confidential substrate
information. We accommodated into this framework (i) the VN request parti-
tioning fulfilled by the VN provider with limited view on the substrate networks
and (ii) the subsequent VN segment mapping fulfilled by all the involved InPs
with detailed substrate network information. Our study also questioned the
suitability of VN topologies for VNE by simulations. The more we enforced the
mapping of a VN to the substrate topology to strive for similarity to the re-
quested VN graph, the lower was the acceptance rate, especially for larger VNs.
For this reason, we motivated the use of traffic matrix instead of topology-based
VN formulations.

In addition, we devised a framework for the embedding of service chains
based on our experience with the multi-provider VNE framework. We partic-
ularly paid attention to (i) the traffic rate amplification (or reduction) caused
by the different NFs, geographic interdependencies between NFs, and (ii) to the
confidentiality of information with regard to DCs and inter-DC networks. In
this respect, we devised a service model that simplifies the specification of the
network service requests and a topology abstraction to be used by a centralized
coordinator (NSCL) for service chain partitioning. We subsequently used for the
mapping of NF subgraphs to DC servers, i. e., within the NF provider’s domain,
fully visible substrate information.

We further provided linear programming formulations for the combinatorial
optimization problems that arose from the request partitioning and resource
mapping phases each of the VNE and the NSE. We also elaborated on the prof-
itability of VN requests from the perspective of an InP and introduced a policy
dimension to VNE. For this reason, we developed a heuristic algorithm that
enforces a certain level of profitability in terms of resource efficiency. Accord-

ing to that, we defined the cost to revenue ratio (CRR) threshold and evaluated

109

110

CONCLUSIONS

possible adjustments in order the strike a balance between short- and long-term

revenue gains for the InP.

7.1 KEY FINDINGS

Our simulation results showed that multiprovider VNE under limited informa-
tion disclosure is feasible at the price of moderate extra cost of 5-20% in com-
parison to a “best-case” scenario where all substrate network information is
available to VN providers. We uncovered that the VNE suboptimality under lim-
ited information disclosure stems from the increased hop count of embedded
virtual links. This seemed reasonable as we observed an increasing extra cost
for those VNs with a higher number of assigned InPs. In contrast to that, the
number of participating InPs and the VN size did not significantly impact the
extra cost. We also found a remarkable increase of VNE efficiency in terms of
acceptance rate and revenue if VNs were formulated as traffic matrices, instead
of topologies.

Further simulation results indicated that service chain deployment across
multiple NF providers (and DCs) is feasible. Our insights into request partition-
ing uncovered a trade-off between service cost minimization and resource effi-
ciency. In particular, service cost minimization can potentially lead to 10-20%
cheaper NFaa$ offerings, attracting more clients, but at the same time generates
suboptimal embeddings that restrict the revenue of NF providers. Conversely,
partitioning optimizations driven by NF provider policies yield higher resource
efficiency, increasing the NF providers’ revenue by up to 14%, but also entail
more expensive and, thus, less competitive NFaaS offerings.

Moreover, we evaluated policy-compliant embedding of VN subsets at which
profitability is enforced by a CRR threshold. Simulation results corroborated
our assumption that policy-compliant VNE uses resources more efficiently and
generates much higher revenue. More precisely, 1.5x higher revenue compared
to full VN request embedding can be generated with policy-compliant VNE. We
also investigated the effect of different CRR threshold adjustments. Lower CRR
thresholds increased the resource efficiency at the beginning, thus, in the long
run, more revenue was generated. Conversely, higher CRR thresholds generated
more revenue in the short run at the price of lower resource efficiency. Overall,
we showed that CRR threshold is a viable means towards policy-compliant VNE
with the goal to dynamically achieve balancing between resource efficiency and

revenue.

7.2 FUTURE WORK 111

7.2 FUTURE WORK

In the following, we sketch future research directions.

¢ Service chain dynamics. Network service chains will be subject to dy-
namic variations after their initial resource allocation. These variations
can be basically due to changes in services demands, traffic loads, and
physical resources. Examples for that are changes to policies (e. g., for fire-
walls, load balancing), additional endpoints or changes to the geographic
region to be covered by the network service. Altogether, this raises the
need for dynamic scaling of NFs. This means that NF instances need to be
added or removed, and NFs need to be reprovisioned in terms of server re-
sources such as CPU, memory, and storage. In addition, NF scaling results
in changing traffic rates throughout the service chain that require repro-
visioning of bandwidth accordingly. Altogether, service chain dynamics
represents one of the major challenges of future research in network ser-

vice embedding.

* InP privacy. We take advantage of the fact that InPs advertise, at least to
a limited extent, information about their network topology and resources.
For the future, we expect that they could unveil more information to at-
tract more requests. Regardless of the information disclosure level, there
exists the serious risk that third parties circumvent the InPs” privacy policy.
Specifically, they could draw conclusions from the outcome of previous
requests. In addition, they could direct to an InP specific test requests with
the purpose to explore the InP’s secret network topology and resource in-
formation, or even pricing policies. A study on the potential exploitation
of request results will be highly desired by the InPs.

* Network function verification. The correct function of a service chain
needs to be ensured permanently. Minor changes can have serious impli-
cations on the function of a service chain. For example, loops in the traffic
path could cause NFs be traversed not in the correct order, which in turn
could accidentally disarm firewall rules. Furthermore, outsourcing NFs to
external cloud providers raises the issues of performance assurance. For
example, latency might be increased due to longer paths. In addition, the
client should be able to verify the correct accounting for the used physi-
cal resources such as the consumed CPU cycles. We believe that functional

verification of service chains is another major field of future research.

PartII

APPENDIX

BIBLIOGRAPHY

[1]

[10]

[11]

Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). REC
4271 (Draft Standard). Updated by RFCs 6286, 6608, 6793, 7606, 7607.
Internet Engineering Task Force, Jan. 2006. URL: http://www.ietf.org/
rfc/rfc4271.txt (cit. on pp. 3, 10).

J. Moy. OSPF Version 2. REC 2328 (INTERNET STANDARD). Updated
by RFCs 5709, 6549, 6845, 6860, 7474. Internet Engineering Task Force,
Apr. 1998. URL: http://www.ietf.org/rfc/rfc2328.txt (cit. on p. 3).

Scott Shenker. “Fundamental design issues for the future Internet.” In:
IEEE Journal on Selected Areas in Communications 13.7 (1995), pp. 1176—
1188 (cit. on p. 3).

David D Clark, John Wroclawski, Karen R Sollins, and Robert Braden.
“Tussle in cyberspace: defining tomorrow’s internet.” In: IEEE/ACM
Transactions on Networking (ToN) 13.3 (2005), pp. 462—475 (cit. on p. 3).

Anja Feldmann. “Internet clean-slate design: what and why?” In: ACM
SIGCOMM Computer Communication Review 37.3 (2007), pp- 59—64 (cit. on
p- 3)-

Mark Handley. “Why the Internet only just works.” In: BT Technology
Journal 24.3 (2006), pp. 119—129 (cit. on p. 3).

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and the art
of virtualization.” In: ACM SIGOPS Operating Systems Review 37.5 (2003),

pp- 164-177 (cit. on pp. 3, 13).
SWSoft, OpenVZ, Server Virtualization Open Source Project, 2005. URL:
https://openvz.org/ (cit. on pp. 3, 13).

Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe
Huici, and Laurent Mathy. “Towards high performance virtual routers
on commodity hardware.” In: Proceedings of the 2008 ACM CoNEXT Con-
ference. ACM. 2008, p. 20 (cit. on p. 3).

Cong Wang, Shashank Shanbhag, and Tilman Wolf. “Virtual network
mapping with traffic matrices.” In: 2012 IEEE International Conference on
Communications (ICC). IEEE. 2012, pp. 2717-2722 (cit. on pp. 3, 26, 58).

Sapan Bhatia, Murtaza Motiwala, Wolfgang Muhlbauer, Yogesh
Mundada, Vytautas Valancius, Andy Bavier, Nick Feamster, Larry Pe-
terson, and Jennifer Rexford. “Trellis: A platform for building flexible,
fast virtual networks on commodity hardware.” In: Proceedings of the
2008 ACM CoNEXT Conference. ACM. 2008, p. 72 (cit. on p. 3).

115

http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc2328.txt
https://openvz.org/

116

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

Gregor Schaffrath, Christoph Werle, Panagiotis Papadimitriou, Anja
Feldmann, Roland Bless, Adam Greenhalgh, Andreas Wundsam, Mario
Kind, Olaf Maennel, and Laurent Mathy. “Network virtualization archi-
tecture: proposal and initial prototype.” In: Proceedings of the 1st ACM
workshop on Virtualized infrastructure systems and architectures. ACM. 2009,

pp- 63—72 (cit. on pp. 4, 5, 17, 23, 49).
GENI: Global Environment for Network Innovations. URL: http://www.geni.
net/ (cit. on p. 4).

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. “Making middleboxes someone
else’s problem: network processing as a cloud service.” In: ACM SIG-
COMM Computer Communication Review 42.4 (2012), pp. 13—24 (cit. on

p- 4)-
B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC 3234

(Informational). Internet Engineering Task Force, Feb. 2002. URL: http:
//www.ietf.org/rfc/rfc3234.txt (cit. on p. 4).

Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. “A survey of
enterprise middlebox deployments.” In: (2012) (cit. on pp. 4, 14).

ETSI, European Standards Organization, Network Functions Virtualization.
URL: http://www.etsi.org/technologies-clusters/technologies/nfv
(cit. on pp. 4, 14).

T-NOVA Project. URL: http://www.t-nova.eu/ (cit. on pp. 4, 14).

Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja
Feldmann, Bruce Maggs, Jannis Rake, Steve Uhlig, and Rick Weber.
“Pushing cdn-isp collaboration to the limit.” In: ACM SIGCOMM Com-
puter Communication Review 43.3 (2013), pp- 34—44 (cit. on pp. 4, 14).

Yaping Zhu, Rui Zhang-Shen, Sampath Rangarajan, and Jennifer Rex-
ford. “Cabernet: connectivity architecture for better network services.”
In: Proceedings of the 2008 ACM CoNEXT Conference. ACM. 2008, p. 64

(cit. on pp. 5, 17, 49).
David G Andersen. “Theoretical approaches to node assignment.” In:

Carnegie Mellon University, Computer Science Department, Paper 86 (2002),
p- 86. URL: http://repository.cmu.edu/compsci/86 (cit. on p. 6).

Shimon Even, Alon Itai, and Adi Shamir. “On the complexity of time
table and multi-commodity flow problems.” In: 1975 16th Annual Sympo-
sium on Foundations of Computer Science. IEEE. 1975, pp. 184-193 (cit. on

pp- 6, 37).
Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. “Guidelines for

interdomain traffic engineering.” In: ACM SIGCOMM Computer Commu-
nication Review 33.5 (2003), pp. 1930 (cit. on p. 9).

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, et al. “A view of cloud computing.” In: Communi-
cations of the ACM 53.4 (2010), pp. 50-58 (cit. on p. 10).

http://www.geni.net/
http://www.geni.net/
http://www.ietf.org/rfc/rfc3234.txt
http://www.ietf.org/rfc/rfc3234.txt
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.t-nova.eu/
http://repository.cmu.edu/compsci/86

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]
[35]

[36]

[371

[38]

[39]

Bibliography

K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). RFC 1105
(Experimental). Obsoleted by RFC 1163. Internet Engineering Task Force,
June 1989. URL: http://www.ietf.org/rfc/rfcll05.txt (cit. on p. 10).

Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford. “Dy-
namics of hot-potato routing in IP networks.” In: ACM SIGMETRICS
Performance Evaluation Review 32.1 (2004), pp. 307-319 (cit. on p. 10).

Timothy G Griffin, F Bruce Shepherd, and Gordon Wilfong. “The stable
paths problem and interdomain routing.” In: IEEE/ACM Transactions on
Networking (ToN) 10.2 (2002), pp. 232—243 (cit. on p. 10).

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A scal-
able, commodity data center network architecture.” In: ACM SIGCOMM
Computer Communication Review 38.4 (2008), pp. 63—74 (cit. on p. 11).

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner.
“Overcoming the Internet impasse through virtualization.” In: Computer
4 (2005), pp- 34—41 (cit. on p. 12).

NM Mosharaf Kabir Chowdhury and Raouf Boutaba. “A survey of net-
work virtualization.” In: Computer Networks 54.5 (2010), pp. 862-876 (cit.
on p. 12).

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
“kvm: the Linux virtual machine monitor.” In: Proceedings of the Linux
Symposium. Vol. 1. 2007, pp. 225-230 (cit. on p. 12).

VMuware. URL: http://www.vmware.com/ (cit. on p. 12).

Hasan Fayyad-Kazan, Luc Perneel, and Martin Timmerman. “Full and
Para-Virtualization with Xen: A Performance Comparison.” In: Journal
of Emerging Trends in Computing and Information Sciences 4.9 (2013) (cit. on
p- 13).

Docker. URL: https://www.docker.com/ (cit. on p. 13).

C. Perkins. IP Encapsulation within IP. RFC 2003 (Proposed Standard).
Updated by RFCs 3168, 6864. Internet Engineering Task Force, Oct. 1996.
URL: http://www.ietf.org/rfc/rfc2003.txt (cit. on p. 13).

R. Housley and S. Hollenbeck. EtherIP: Tunneling Ethernet Frames in IP
Datagrams. RFC 3378 (Informational). Internet Engineering Task Force,
Sept. 2002. URL: http://www.ietf.org/rfc/rfc3378.txt (cit. on p. 13).

D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic Routing
Encapsulation (GRE). RFC 2784 (Proposed Standard). Updated by RFC
2890. Internet Engineering Task Force, Mar. 2000. URL: http://www.ietf.
org/rfc/rfc2784.txt (cit. on p. 13).

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching
Architecture. RFC 3031 (Proposed Standard). Updated by RFCs 6178,
6790. Internet Engineering Task Force, Jan. 2001. URL: http://www.ietf.
org/rfc/rfc3031.txt (cit. on p. 13).

A. Farrel, J.-P. Vasseur, and A. Ayyangar. A Framework for Inter-Domain
Multiprotocol Label Switching Traffic Engineering. RFC 4726 (Informa-
tional). Internet Engineering Task Force, Nov. 2006. URL: http://www.
ietf.org/rfc/rfc4726.txt (cit. on p. 13).

117

http://www.ietf.org/rfc/rfc1105.txt
http://www.vmware.com/
https://www.docker.com/
http://www.ietf.org/rfc/rfc2003.txt
http://www.ietf.org/rfc/rfc3378.txt
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc4726.txt
http://www.ietf.org/rfc/rfc4726.txt

118

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

Christoph Werle, Panagiotis Papadimitriou, Ines Houidi, Wajdi Louati,
Djamal Zeghlache, Roland Bless, and Laurent Mathy. “Building virtual
networks across multiple domains.” In: ACM SIGCOMM Computer Com-
munication Review. Vol. 41. 4. ACM. 2011, pp. 412—413 (cit. on p. 13).

Adam Greenhalgh, Felipe Huici, Mickael Hoerdt, Panagiotis Papadim-
itriou, Mark Handley, and Laurent Mathy. “Flow processing and the
rise of commodity network hardware.” In: ACM SIGCOMM Computer
Communication Review 39.2 (2009), pp. 20-26 (cit. on p. 14).

Vyas Sekar, Sylvia Ratnasamy, Michael K Reiter, Norbert Egi, and
Guangyu Shi. “The middlebox manifesto: enabling innovation in mid-
dlebox deployment.” In: Proceedings of the 10th ACM Workshop on Hot
Topics in Networks. ACM. 2011, p. 21 (cit. on p. 14).

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and
Guangyu Shi. “Design and implementation of a consolidated middlebox
architecture.” In: Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association. 2012, pp. 24—24
(cit. on p. 14).

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. “Making middleboxes someone
else’s problem: network processing as a cloud service.” In: ACM SIG-
COMM Computer Communication Review 42.4 (2012), pp. 13—24 (cit. on
p- 14).

Glen Gibb, Hongyi Zeng, and Nick McKeown. “Outsourcing network
functionality.” In: Proceedings of the first workshop on Hot topics in software
defined networks. ACM. 2012, pp. 73—78 (cit. on p. 14).

Aaron Gember, Robert Grandl, Ashok Anand, Theophilus Benson, and
Aditya Akella. “Stratos: Virtual middleboxes as first-class entities.” In:
UW-Madison TR1771 (2012) (cit. on pp. 14, 16, 99).

Nick McKeown. “Software-defined networking.” In: INFOCOM keynote
talk 17.2 (2009), pp. 30-32 (cit. on p. 14).

The OpenFlow Switch Consortium. URL: http://www.openflowswitch.org
(cit. on p. 14).

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
“OpenFlow: enabling innovation in campus networks.” In: ACM SIG-
COMM Computer Communication Review 38.2 (2008), pp. 69—74 (cit. on
p- 14).

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado,
Nick McKeown, and Scott Shenker. “NOX: towards an operating system
for networks.” In: ACM SIGCOMM Computer Communication Review 38.3
(2008), pp. 105-110 (cit. on p. 14).

David Erickson. “The beacon openflow controller.” In: Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined network-
ing. ACM. 2013, pp. 13-18 (cit. on p. 14).

OpenDayLight. URL: https://www.opendaylight.org/ (cit. on p. 14).

http://www.openflowswitch.org
https://www.opendaylight.org/

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography

Open vSwitch. URL: http://openvswitch.org/ (cit. on p. 14).

Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer.
“Survey on Network Virtualization Hypervisors for Software Defined
Networking.” In: IEEE Communications Surveys & Tutorials (2015) (cit. on
p- 15).

Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario Fla-
jslik, Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian, Masayoshi
Kobayashi, Jad Naous, et al. “Carving research slices out of your pro-
duction networks with OpenFlow.” In: ACM SIGCOMM Computer Com-
munication Review 40.1 (2010), pp. 129-130 (cit. on p. 15).

Zdravko Bozakov and Panagiotis Papadimitriou. “AutoSlice: Auto-
mated and Scalable Slicing for Software-defined Networks.” In: Proceed-
ings of the 2012 ACM Conference on CONEXT Student Workshop. ACM, 2012
(cit. on p. 15).

Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. “HyperFlex: An
SDN Virtualization Architecture with Flexible Hypervisor Function Allo-
cation.” In: IFIP/IEEE International Symposium on Integrated Network Man-
agement. 2015 (cit. on p. 15).

Jetffrey C Mogul and Lucian Popa. “What we talk about when we talk
about cloud network performance.” In: ACM SIGCOMM Computer Com-
munication Review 42.5 (2012), pp. 44—48 (cit. on p. 15).

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. “SIMPLE-fying middlebox policy enforcement using
SDN.” In: ACM SIGCOMM Computer Communication Review. Vol. 43. 4.
ACM. 2013, pp. 27-38 (cit. on p. 16).

Fida-E Zaheer, Jin Xiao, and Raouf Boutaba. “Multi-provider service ne-
gotiation and contracting in network virtualization.” In: Network Op-
erations and Management Symposium (NOMS), 2010 IEEE. IEEE. 2010,

pp- 471478 (cit. on pp. 18, 48, 49, 51, 77).

Paul Klemperer. “Auctions: theory and practice.” In: SSRN 491563 (2004)
(cit. on p. 18).

Mosharaf Chowdhury, Fady Samuel, and Raouf Boutaba. “PolyViNE:
policy-based virtual network embedding across multiple domains.” In:
Proceedings of the second ACM SIGCOMM workshop on Virtualized infras-
tructure systems and architectures. ACM. 2010, pp. 49-56 (cit. on pp. 18,
49, 52, 77).

Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal Zeghlache.
“Virtual network provisioning across multiple substrate networks.” In:
Computer Networks 55.4 (2011), pp. 1011-1023 (cit. on pp. 18-20, 26, 27,
30, 41, 42, 48, 99).

Panagiotis Papadimitriou, Ines Houidi, Wajdi Louati, Djamal Zeghlache,
Christoph Werle, Roland Bless, and Laurent Mathy. “Towards large-
scale network virtualization.” In: Wired/Wireless Internet Communication.
Springer, 2012, pp. 13—25 (cit. on p. 18).

119

http://openvswitch.org/

120

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Aris Leivadeas, Chrysa Papagianni, and Symeon Papavassiliou. “Effi-
cient resource mapping framework over networked clouds via iterated
local search-based request partitioning.” In: IEEE Transactions on Parallel
and Distributed Systems 24.6 (2013), pp. 1077-1086 (cit. on pp. 19, 48, 99).

Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann De
Meer, and Xavier Hesselbach. “Virtual network embedding: A survey.”
In: IEEE Communications Surveys & Tutorials 15.4 (2013), pp. 1888-1906
(cit. on p. 19).

Ines Houidi, Wajdi Louati, and Djamal Zeghlache. “A distributed virtual
network mapping algorithm.” In: IEEE International Conference on Com-
munications (ICC’08). IEEE. 2008, pp. 5634-5640 (cit. on pp. 19, 26, 30, 47,
51, 76)-

Sheng Zhang, Zhuzhong Qian, Song Guo, and Sanglu Lu. “FELL: A
flexible virtual network embedding algorithm with guaranteed load bal-
ancing.” In: 2011 IEEE International Conference on Communications (ICC).
IEEE. 2011 (cit. on pp. 19, 20).

Chrysa Papagianni, Aris Leivadeas, Symeon Papavassiliou, Vasilis
Maglaris, Cristina Cervello-Pastor, and Alvaro Monje. “On the optimal
allocation of virtual resources in cloud computing networks.” In: IEEE
Transactions on Computers 62.6 (2013), pp. 1060-1071 (cit. on p. 20).

NM Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. “Vir-
tual network embedding with coordinated node and link mapping.” In:
IEEE INFOCOM 2009. IEEE. 2009, pp. 783-791 (cit. on pp. 20, 26, 30, 41,
42, 47, 48, 51, 76).

Flavio Esposito and Ibrahim Matta. “A decomposition-based architec-
ture for distributed virtual network embedding.” In: Proceedings of the
2014 ACM SIGCOMM workshop on Distributed cloud computing. ACM.
2014, pp- 53-58 (cit. on p. 20).

Abdallah Jarray and Ahmed Karmouch. “Decomposition Approaches
for Virtual Network Embedding With One-Shot Node and Link Map-
ping.” In: IEEE Transactions on Networking 23.3 (2015), pp. 1012—1025 (cit.
on p. 20).

Jing Lu and Jonathan Turner. “Efficient mapping of virtual networks
onto a shared substrate.” In: Technical Report, WUCSE-2006-35, Washing-
ton University (2006) (cit. on p. 20).

Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang,
Yan Luo, and Jie Wang. “Virtual network embedding through topology-
aware node ranking.” In: ACM SIGCOMM Computer Communication Re-
view 41.2 (2011), pp. 38—47 (cit. on p. 20).

Ilhem Fajjari, Nadjib Aitsaadi, Guy Pujolle, and Hubert Zimmermann.
“VNE-AC: Virtual network embedding algorithm based on ant colony
metaheuristic.” In: 2011 IEEE International Conference on Communications
(ICC). IEEE. 2011 (cit. on p. 20).

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Bibliography

Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Filip
De Turck, and Steven Latré. “Design and evaluation of learning algo-
rithms for dynamic resource management in virtual networks.” In: 2014
IEEE Network Operations and Management Symposium (NOMS). IEEE. 2014
(cit. on p. 20).

Xuzhou Chen, Yan Luo, and Jie Wang. “Virtual network embedding with
border matching.” In: 2012 Fourth International Conference on Communica-
tion Systems and Networks (COMSNETS). IEEE. 2012 (cit. on p. 20).

Jens Lischka and Holger Karl. “A virtual network mapping algorithm
based on subgraph isomorphism detection.” In: Proceedings of the 1st
ACM workshop on Virtualized infrastructure systems and architectures. ACM.
2009, pp. 81-88 (cit. on pp. 20, 26, 30, 41, 42, 47, 51, 76).

Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. “Rethinking
virtual network embedding: substrate support for path splitting and
migration.” In: ACM SIGCOMM Computer Communication Review 38.2
(2008), pp. 17—29 (cit. on pp. 20, 26, 30, 41, 42, 47, 51, 53, 76).

Carlo Fuerst, Stefan Schmid, and Anja Feldmann. “Virtual network em-
bedding with collocation: Benefits and limitations of pre-clustering.” In:
Cloud Networking (CloudNet), 2013 IEEE 2nd International Conference on.
IEEE. 2013, pp. 91-98 (cit. on p. 20).

Zhiping Cai, Fang Liu, Nong Xiao, Qiang Liu, and Zhiying Wang. “Vir-
tual network embedding for evolving networks.” In: 2010 IEEE Global
Telecommunications Conference (GLOBECOM 2010). IEEE. 2010 (cit. on

p- 20).

Abdallah Jarray, Yihong Song, and Ahmed Karmouch. “Resilient virtual
network embedding.” In: 2013 IEEE International Conference on Communi-
cations (ICC). IEEE. 2013, pp. 3461—3465 (cit. on p. 20).

Matthias Rost, Stefan Schmid, and Anja Feldmann. “It’s About Time: On
Optimal Virtual Network Embeddings under Temporal Flexibilities.” In:
2014 IEEE 28th International Parallel and Distributed Processing Symposium.
IEEE. 2014, pp. 17-26 (cit. on p. 20).

Yong Zhu and Mostafa H Ammar. “Algorithms for Assigning Substrate
Network Resources to Virtual Network Components.” In: IEEE INFO-
COM. 2006 (cit. on pp. 21, 26, 30, 41, 42, 47, 51, 76).

Juan Felipe Botero, Xavier Hesselbach, Andreas Fischer, and Hermann
De Meer. “Optimal mapping of virtual networks with hidden hops.” In:
Telecommunication Systems 51.4 (2012), pp. 273—282 (cit. on p. 21).

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimiza-
tion: algorithms and complexity. Courier Corporation, 1998 (cit. on p. 22).

David Dietrich, Amr Rizk, and Panagiotis Papadimitriou. “Multi-
domain virtual network embedding with limited information disclo-
sure.” In: IFIP Networking Conference, 2013. IEEE. 2013 (cit. on pp. 23,

48, 58, 99).

121

122

Bibliography

[88]

[89]

[90]

[91]

[92]
[93]

[94]
[95]

[96]

[97]

[98]
[99]

[100]

[101]
[102]

[103]

David Dietrich, Amr Rizk, and Panagiotis Papadimitriou. “Multi-
Provider Virtual Network Embedding with Limited Information Dis-
closure.” In: IEEE Transactions on Network and Service Management 12.2
(2015), pp. 188—201 (cit. on p. 23).

Amazon EC2 Instance Types. URL: http://aws.amazon.com/ec2/instance-
types/ (cit. on pp. 24, 81).
Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson.

“Measuring ISP topologies with Rocketfuel.” In: IEEE/ACM Transactions
on Networking 12.1 (2004), pp. 2-16 (cit. on pp. 24, 81).

Benoit Donnet and Timur Friedman. “Internet topology discovery: a sur-
vey.” In: IEEE Communications Surveys & Tutorials 9.4 (2007), pp. 5669
(cit. on p. 24).

University of Oregon Route Views Project. URL: http://www. routeviews.
org/ (cit. on p. 24).

The Internet2 Community. URL: https://www.internet2.edu/products-
services/advanced-networking/ (cit. on p. 24).

Dr. Peering. URL: http://www.drpeering.net/ (cit. on p. 24).

DE-CIX - German Internet Exchange. URL: http://www.de- cix.net/ (cit.
on p. 24).

AMS-IX - Amsterdam Internet Exchange. URL: https://ams - ix.net/ (cit.
on p. 24).

Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve
Uhlig, and Walter Willinger. “Anatomy of a large European IXP.” In: Pro-
ceedings of the ACM SIGCOMM 2012 conference on Applications, technolo-
gies, architectures, and protocols for computer communication. ACM. 2012,
pp- 163-174 (cit. on p. 24).

Peering DB. URL: http://www.peeringdb.com/ (cit. on p. 24).

Houssem Medhioub, Ines Houidi, Wajdi Louati, and Djamal Zeghlache.
“Design, implementation and evaluation of virtual resource descrip-
tion and clustering framework.” In: Advanced Information Networking and
Applications (AINA), 2011 IEEE International Conference on. IEEE. 2011,
pp- 8389 (cit. on p. 28).

Ines Houidi, Wajdi Louati, Djamal Zeghlache, Panagiotis Papadimitriou,
and Laurent Mathy. “Adaptive virtual network provisioning.” In: Pro-
ceedings of the second ACM SIGCOMM workshop on Virtualized infrastruc-
ture systems and architectures. ACM. 2010, pp. 4148 (cit. on p. 28).

JA Tomlin. “Minimum-cost multicommodity network flows.” In: Opera-
tions Research 14.1 (1966), pp. 45—-51 (cit. on p. 37).

IGen Network Topology Generator. URL: http://informatique.umons.ac.
be/networks/igen (cit. on pp. 40, 69, 102).

Bernard M Waxman. “Routing of multipoint connections.” In: IEEE Jour-
nal on Selected Areas in Communications 6.9 (1988), pp. 1617-1622 (cit. on

p- 41).

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://www.routeviews.org/
http://www.routeviews.org/
https://www.internet2.edu/products-services/advanced-networking/
https://www.internet2.edu/products-services/advanced-networking/
http://www.drpeering.net/
http://www.de-cix.net/
https://ams-ix.net/
http://www.peeringdb.com/
http://informatique.umons.ac.be/networks/igen
http://informatique.umons.ac.be/networks/igen

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Bibliography

Floriana Esposito, Donato Di Paola, and Ibrahim Matta. “A general dis-
tributed approach to slice embedding with guarantees.” In: IFIP Net-
working Conference, 2013. IEEE. 2013 (cit. on pp. 48, 49).

Lawrence M Ausubel, Paul Milgrom, et al. “The lovely but lonely Vick-
rey auction.” In: Combinatorial auctions 17 (2006), pp. 22—26 (cit. on p. 49).

David Dietrich and Panagiotis Papadimitriou. “Policy-compliant virtual
network embedding.” In: Networking Conference, 2014 IFIP. IEEE. 2014
(cit. on p. 51).

Bruno Quoitin, Virginie Van den Schrieck, Pierre Frangois, and Olivier
Bonaventure. “IGen: Generation of router-level internet topologies
through network design heuristics.” In: 2009 21st International Teletraf-
fic Congress. ITC 21 2009. IEEE. 2009 (cit. on p. 69).

David Dietrich, Ahmed Abujoda, and Panagiotis Papadimitriou. “Net-
work service embedding across multiple providers with nestor.” In: IFIP
Networking Conference (IFIP Networking), 2015. IEEE. 2015 (cit. on p. 79).

Neil T Spring and David Wetherall. “A protocol-independent technique
for eliminating redundant network traffic.” In: ACM SIGCOMM Com-
puter Communication Review 30.4 (2000), pp- 87—95 (cit. on pp. 79, 80).

Bhavish Agarwal, Aditya Akella, Ashok Anand, Athula Balachandran,
Pushkar Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and
George Varghese. “EndRE: An End-System Redundancy Elimination
Service for Enterprises.” In: NSDI. 2010, pp. 419—432 (cit. on pp. 79, 80).

Christos Xenakis, Nikolaos Laoutaris, Lazaros Merakos, and loannis
Stavrakakis. “A generic characterization of the overheads imposed by
IPsec and associated cryptographic algorithms.” In: Computer Networks
50.17 (2006), pp. 3225-3241 (cit. on pp. 79, 80).

Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. “RouteBricks: exploiting parallelism to scale software
routers.” In: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM. 2009, pp. 15—28 (cit. on p. 80).

Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. “Toward Pre-
dictable Performance in Software Packet-Processing Platforms.” In: In
Proc. NSDI. 2012 (cit. on p. 80).

Qiang Wu and Tilman Wolf. “Runtime task allocation in multicore
packet processing systems.” In: IEEE Transactions on Parallel and Dis-
tributed Systems 23.10 (2012), pp. 1934-1943 (cit. on p. 80).

Theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu.
“CloudNaaS: a cloud networking platform for enterprise applications.”
In: Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM.
2011, p. 8 (cit. on p. 99).

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
“Towards predictable datacenter networks.” In: ACM SIGCOMM Com-
puter Communication Review. Vol. 41. 4. ACM. 2011, pp. 242—253 (cit. on

p- 99).

123

124

Bibliography

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

Chuanxiong Guo, Guohan Lu, Helen] Wang, Shuang Yang, Chao Kong,
Peng Sun, Wenfei Wu, and Yongguang Zhang. “Secondnet: a data cen-
ter network virtualization architecture with bandwidth guarantees.” In:
Proceedings of the 6th International Conference. ACM. 2010, p. 15 (cit. on

P- 99)-

Jeongkeun Lee, Myungjin Lee, Lucian Popa, Yoshio Turner, Sujata Baner-
jee, Puneet Sharma, and Bryan Stephenson. “CloudMirror: Application-
aware bandwidth reservations in the cloud.” In: USENIX HotCloud 20
(2013) (cit. on p. 99).

Xin Huang, Sivakumar Ganapathy, and Tilman Wolf. “A scalable dis-
tributed routing protocol for networks with data-path services.” In: IEEE
International Conference on Network Protocols, 2008. ICNP 2008. IEEE. 2008,
pp- 318-327 (cit. on p. 99).

Ahmed Abujoda and Panagiotis Papadimitriou. “MIDAS: Middlebox
Discovery and Selection for On-Path Flow Processing.” In: IEEE COM-
SNETS, Bangalore, India (2015) (cit. on p. 99).

IBM ILOG CPLEX Optimizer. URL: http://www . ibm. com/software/
commerce/optimization/cplex-optimizer (cit. on p. 102).

GNU Linear Programming Kit. URL: http://www.gnu.org/software/glpk/
(cit. on p. 102).

Boost C++ Libraries - The Boost Graph Library. URL: http://www.boost .
org/doc/libs/ (cit. on p. 102).

Qt project. URL: http://www.qt-project.org (cit. on p. 105).

David Dietrich, Amr Rizk, and Panagiotis Papadimitriou. “AutoEmbed:
automated multi-provider virtual network embedding.” In: ACM SIG-
COMM Computer Communication Review. Vol. 43. 4. ACM. 2013, pp. 465-
466 (cit. on p. 107).

http://www.ibm.com/software/commerce/optimization/cplex-optimizer
http://www.ibm.com/software/commerce/optimization/cplex-optimizer
http://www.gnu.org/software/glpk/
http://www.boost.org/doc/libs/
http://www.boost.org/doc/libs/
http://www.qt-project.org

PUBLICATIONS

D. Dietrich, A. Rizk, and P. Papadimitriou. “Multi-Domain Virtual Network
Embedding with Limited Information Disclosure.” In: Proc. IFIP Networking,
New York, USA, May 2013.

D. Dietrich, A. Rizk, and P. Papadimitriou. “AutoEmbed: Automated Multi-
Provider Virtual Network Embedding.” Demo, ACM SIGCOMM, Hong Kong,
China, August 2013.

D. Dietrich and P. Papadimitriou. “Policy-Compliant Virtual Network Embed-
ding.” In: Proc. IFIP Networking, Trondheim, Norway, June 2014.

D. Dietrich, A. Abujoda, and P. Papadimitriou. “Embedding Network Services
across Multiple Providers with Nestor.” In: Proc. IFIP Networking, Toulouse,
France, May 2015.

D. Dietrich, A. Rizk, and P. Papadimitriou. “Multi-Provider Virtual Network

Embedding with Limited Information Disclosure.” In: IEEE Transactions on
Network and Service Management, Vol.12, No.2, pp.188-201, June 2015.

125

CURRICULUM VITAE

Name
Day of birth

Education

January 2010 to
present

April 2003 to
March 2006

October 1998 to
March 2003

Work Experience

January 2010 to
present

June 2006 to
December 2009

April 2003 to
September 2006

August 2002 to
February 2003

September 2000 to
February 2001

David Dietrich
22 August 1977

Ph.D. student
Leibniz Universitat Hannover.

Thesis Title: Multi-Provider Network Service
Embedding

M.Sc., Dipl.-Ing. in Electrical Engineering
Universitdt Kassel

Thesis Title: Automated Measurement Data Processing
for Building Process Models

Dipl.-Ing.(FH) in Computer Science

Hochschule Bremen (University of Applied Sciences)
Thesis Title: Implementation of a CRM Database
System (at the IT-Management Department of Daimler
AG, Bremen)

Leibniz Universitit Hannover, Institute of
Communications Technology
Research Assistant

Carts GmbH, Kassel
Software Engineer

Universitit Kassel, Institute of Drive Technology
Technical Staff

Daimler AG, IT-Management Department, Bremen
Internship

EADS / Astrium GmbH, Space Infrastructure Division,
Bremen
Internship

127

128

CURRICULUM VITAE

Teaching Experience

Academic year of
2011 to 2016

Academic year of
2010 to 2014

Academic year of
2011 to 2016

Research Projects

2014 to 2016

2014

2013

2011 to 2012

2010 to 2011

2003 to 2004

Leibniz Universitit Hannover, Faculty of Electrical
Engineering and Computer Science

Exercises on “Network Management”

Exercises on “Future Internet Communication
Technologies”

Co-advising several student projects, B.Sc. and M.Sc.
theses

T-NOVA: Network Functions as-a-Service Over
Virtualised Infrastructures
EU Framework Programme 7 (FP7)

CONFINE: Community Networks Testbed for the
Future Internet
EU Framework Programme 7 (FP7)

ProCloud: Resource Procurement for Network Slicing
in Multi-Provider Clouds

L3S / Ministry of Science and Culture, Lower Saxony,
Germany

LAVINET: Enabling Large-Scale Network
Virtualization

L3S / Ministry of Science and Culture, Lower Saxony,
Germany

G-Lab VIRTURAMA: Virtual Routers: Architecture,
Management and Applications
Federal Ministry of Education and Research, Germany

Power Optimised Aircraft (POA)
EU Framework Programme 5 (FP5)

COLOPHON

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Typographic
Style”.

Final Version as of March 21, 2016 (classicthesis).

	Title page
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	Dissertation
	1 Introduction
	1.1 Challenges
	1.2 Thesis Contribution
	1.3 Thesis Outline

	2 Background
	2.1 Basic Internet Structure
	2.1.1 ISP Substrate Networks
	2.1.2 Data Centers

	2.2 Enabling Technologies and Concepts
	2.2.1 Host Virtualization
	2.2.2 Link Virtualization
	2.2.3 Network Function Virtualization
	2.2.4 Software-Defined Networking

	2.3 Specification of Virtual Networks and Service Chains
	2.4 Multi-Provider Embedding Architectures
	2.5 Embedding Steps
	2.5.1 Request Partitioning Methods
	2.5.2 Resource Mapping Methods

	2.6 Linear Programming

	3 Multi-Provider Virtual Network Embedding
	3.1 Information Disclosure of the Infrastructure Providers
	3.2 VN Request Specification
	3.3 VN Embedding Framework
	3.4 Network Model
	3.5 VN Partitioning
	3.5.1 MIQP/ILP Model
	3.5.2 LP Relaxation
	3.5.3 LP Rounding

	3.6 VN Segment Mapping
	3.6.1 MILP Model
	3.6.2 LP Relaxation and Rounding

	3.7 Evaluation
	3.7.1 Parameters
	3.7.2 Metrics
	3.7.3 Results

	3.8 Related Work

	4 Policy-compliant Virtual Network Embedding
	4.1 Profitability of VN Embedding
	4.1.1 CRR Metric
	4.1.2 CRR trend evolution

	4.2 Network Model
	4.3 Policy-Compliant VN Embedding Algorithm
	4.3.1 An exemplary VN Embedding
	4.3.2 Pseudocode Description

	4.4 Evaluation
	4.4.1 Parameters and Metrics
	4.4.2 Results
	4.4.3 Parameter Adjustments

	4.5 Related Work

	5 Multi-Provider Service Chain Embedding
	5.1 Service Model
	5.2 Topology Abstractions and Substrate Network Model
	5.3 Service Chain Embedding Framework
	5.4 Service Chain Partitioning
	5.4.1 ILP Model
	5.4.2 LP Relaxation and Rounding

	5.5 NF subgraph Mapping
	5.5.1 MILP Model
	5.5.2 LP Relaxation and Rounding

	5.6 Evaluation
	5.6.1 Parameters and Metrics
	5.6.2 Results

	5.7 Related Work

	6 Implementation
	6.1 Functionality
	6.1.1 Request Generator
	6.1.2 Substrate Network Generator
	6.1.3 Request Partitioning
	6.1.4 Resource Mapping
	6.1.5 Logging and Statistics

	6.2 Universal Control Plane for Multi-Provider Embedding
	6.3 Visualization and Real-time Evaluation

	7 Conclusions
	7.1 Key Findings
	7.2 Future Work

	Appendix
	Bibliography
	Publications
	Curriculum Vitae
	Colophon

