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Kurzfassung

In der vorliegenden Arbeit wird ein Materialmodell für partikel gefüllte Elastomere ent-
wickelt und dessen FE-Implementierung wird aufgezeigt. Die Mikromechanik spielt
eine entscheidende Rolle für die Materialeigenschaften von Partikel gefüllten Elas-
tomeren. Der innere Aufbau und die Synthese von Elastomeren wird ausführlich
erklärt. Das grundlegende Konzept der Steifigkeit von Elastomeren, die Entropie
Elastizität, wird hergeleitet.

Ausgehend von der Entropie Elastizität werden die mikromechanischen Gleichungen
von etablierten Modellen erweitert. Die Mikromechanik gliedert sich in drei Teile, das
elastische-, das schädigungs- (auch als Mullins Effekt bekannt) und das zeitabhängige
viskose Verhalten. Beim Mullins Effekt wird besonderer Fokus auf die dehnungsin-
duzierte Anisotropie gelegt.

Die konstitutiven Gleichungen aus der Mikromechanik können zunächst nur für den
eindimensionalen Fall hergeleitet werden, was einer FE-Implementierung im Wege
steht. Hierzu werden die mikromechanischen Gleichungen in eine Form gebracht,
die eine effiziente Auswertung mit dem Computer ermöglicht. Mit Hilfe des Mikro-
Sphären Konzeptes werden die Gleichungen in einem dreidimensionalen kontinu-
umsmechanischen Sinne verallgemeinert. Ausgehend von dieser Verallgemeinerung
werden die konstitutiven Gleichungen in ein bekanntes FE-Framework eingebettet.

Für das Materialmodell wird anhand von Parameterstudien gezeigt, welchen Einfluss
die einzelnen mikromechanischen Parameter haben. In einem weiteren Schritt wird
das Materialmodell mit Testdaten aus der Literatur verglichen. Hierzu zählen unter
anderem mehrachsige Zugversuche und der Relaxationstest. Es ist anzumerken, dass
das Materialmodell in der Lage ist, permanentes Setzen abzubilden ohne Plastizität
zu verwenden.

Stichworte: Finite-Elemente-Methode, Partikel gefüllte Elastomere, Mikromechanik,
Entropie Elastizität, Anisotropie, zeitabhängiges Materialverhalten, Mullins Effekt,
Mikro Sphären Modell
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Abstract

In the present thesis, a material law for particle filled elastomer is derived and its finite
element implementation is shown. The micromechanics has an important influence
on the material behaviour of particle filled elastomer, whereby the inner structure
and synthesis are described. The main concept for the stiffness - namely the entropy
elasticity - is derived.

Starting from entropy elasticity, the micro-mechanical equations from established
models are extended. The micromechanics is divided into three parts: the elastic,
the damage (also known as Mullins effect) and the time dependent viscous material
behaviour. For the Mullins effect, the main focus is placed upon the strain introduced
anisotropy.

In a first step, the micro-mechanical constitutive equations can only be derived for
the one-dimensional case, which impedes a finite element implementation. The equa-
tions are transferred in a form that enables an efficient computational implementa-
tion. With the use of the micro-sphere concept, the equations are generalised in a
three-dimensional continuum. This generalisation is implemented in an existing finite
element framework.

The influence of the micro-mechanical parameters are shown within parameter studies
for the presented material model. In a further step, the material model is compared
with test data from literature, such as multi axial tension tests and the relaxation
test. It is mentionable that the material model can predict a permanent set without
using the concept of plasticity.

Keywords Finite Element Method, Particle Filled Elastomer, Micromechanics, En-
tropy Elasticity, Anisotropy, Time Depended Material Behaviour, Mullins effect, Mi-
cro Sphere Model
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1. Introduction

The history of elastomer dates back to the 17th century, when the main part of
nowadays used elastomer, natural rubber was discovered. Francois Fresneau, on his
travel to South America discovered the milk of the hevea tree, which is called natural
rubber. In 1751, a paper of him was presented, in which he described many properties
of rubber, see Chauvin [1999]. He tried to find some applications for this kind of
material, but since it has almost no elastic stiffness, he could only show in a theoretical
way, how to make it liquid with turpentine.

The first useful rubber was invented by Charles Goodyear in 1839, as mentioned in
Goodyear [1844]. He developed the vulcanisation of natural rubber with sulphur.
This newly developed material now had an elastic stiffness, but an incredible strain
at failure up to 700%. Accordingly, the material became increasingly interesting for
many industrial applications. Owing to economic growth, the demand for rubber
products could not be supplied by natural rubber. In order to obtain an alternative
and enhanced material properties, synthetic rubber was developed. In Germany, the
first synthetic rubber was produced by Rohm and Hass using the method patented
by Plauson [1937].

After 1950, the rubber industry became increasingly important, whereby the range
of applications dramatically increased. The next important step of elastomer devel-
opment was reinforcement to improve the stiffness. The basic idea was to fill rubber
with small spheric particles to increase the local stretch during macroscopic stretch-
ing. Commonly used filler particles are carbon black and silica particles with modified
surfaces. Inspired by Einstein [1911], who introduced the hydrodynamic reinforce-
ment factor for viscous liquids, similar formulas for filled elastomer were developed
by Mullins and Tobin [1965].

It was soon discovered that filled elastomers show more phenomenological effects
than simply an increased modulus. In Mullins [1969], the famous Mullins effect was
published, which describes the successive damage in virgin loading. From this point, it
was clear that understanding of elastomer required a deeper look inside the material
to understand the underlying micro-mechanical processes. The first theories that
describe the micro-mechanical basics were published in Bueche [1960], while a more
precise model derived from the statistics of chain-filler networks was published by
Govindjee and Simo [1991]. Since computer-aided design was used in development
process, suitable material models for elastomer were developed. This thesis is intended
to close the gap between phenomenological material models and the micro-mechanical
processes.

1.1. State of the Art

The phenomenological material models for elastomer have been available since long,
capturing large strain and rotations. Most of these models use the principal invariants
of the stretch tensor. The free energy function is split additively into deviatoric and
volumetric parts. A general model was proposed by Rivlin [1948]. It contains an
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infinite sum of terms having first and second invariants. If only the first term is
considered, the so-called Neo-Hookean material by Treloar [1943] is obtained, which
is the most simple material model. By keeping the second term of the Rivlin model,
the first material equation derived by Mooney [1940] is obtained. This model is also
known as the Mooney-Rivlin model. The Odgen-Material uses the principal stretches.
Another model of this type is Yeoh [1993], which considers the first three powers of
the first invariant. All these models are only able to describe the elastic material
behaviour. Besides, as they are easy to implement, one can find them in almost all
non-linear finite element codes. All these material models can be fitted to test data by
tuning the material parameters, although these parameters have no physical meaning.

In order to describe damage, continuum approaches were developed. Almost all of
these models use the concept of internal variables. These variables can be interpreted
as a memory of the material. A simple model was introduced by Ogden and Roxburgh
[1999], which uses only a single internal variable to describe the permanent set. In
Ihlemann [2003], a set of eight variables was used depending on the load history.
Another model was introduced by Dorfmann and Ogden [2004], which focuses on the
dissipation function. A more general concept was introduced by Besdo and Ihlemann
[2003], which also describes the effect of ongoing permanent set in cyclic loading. A
step into a micro-mechanical motivation was undertaken by Cantournet et al. [2009],
who use the internal sliding of elastomer chains as a material parameter. All of these
models used parameters, which cannot be calculated by micromechanics, rather they
have to be fitted to the material response in some way. Another major problem is
that these approaches use an isotropic damage function, which cannot describe strain
introduced anisotropy.

Elastomers show a strong rate dependent behaviour. The first studies were conducted
by Fletcher [1953]. Payne [1962] conducted an extensive study of elastomer under
cyclic loading with small strain amplitudes. He divided the Young’s modulus in two
parts, namely the storage modulus and the loss modulus, where the storage modulus
describes the reversible part and the loss modulus the dissipation. A computational
model was present by Simo [1987], which uses a set of Maxwell elements to describe
the frequency dependent damping. This model counts among the class of fading
memory models, which are commonly solved with the convolution integral.

In literature, a number of thermo-mechanical coupled models can be found in
Holzapfel and Simo [1996], Boukamel et al. [2001], [Dal and Kaliske, 2009], Droz-
dov and Christiansen [2009]. All these models use the dissipation as a heat source
and linear or non-linear dependence for the shear modulus on the temperature. These
models are important for the development of tires and bearings, because they are used
in cyclic loading. An approach for the stationary rolling was published by Suwanna-
chit and Nackenhorst [2013]. A more micro-mechanical motivated model is described
in Miehe and Göktepe [2005], which assumes the existence of three distinct time scales
for relaxation. A two-scale approach dealing with viscosity was published by Tang
et al. [2012].

Molecular dynamic methods are widely established in elastomer science and they al-
low predicting the time evolution for a system of interacting molecules. Usually, the
simulation comprises of three parts: first, a set of initial conditions for the molecules;
second, an interacting potential, e.g. Lennard-Jones, Mores, Born-Mayer, whereby
the choice is obtained by the accuracy and the computational speed demands; and
third, the time evolution of a system by solving a set of classical Newtonian equations
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of motion for each particle in the system. The first molecular dynamics simulation was
carried out by Alder and Wainwright [1957] using only 100 atoms to simulate a phase
transition. The limiting factor is always the calculation power. For molecular dynam-
ics simulation, the first standard finite elements like rod, beam or shell elements were
used. An application for nanocomposits can be found in Zeng et al. [2008], whereby
especially the interactions between the nanofillers and the polymermatrix are inves-
tigated. In Nasdala et al. [2005], a molecular dynamic FEM simulation is suggested,
which can describe the hysteresis effects of linked polymer chains. For this purpose, a
four-node finite element with only translational degree of freedom was developed. The
advantage of this type of elements is the possibility to describe different non-linear
force field potentials in an exact way. These models have a length scale much smaller
than required for technical application. Some models use homogenization methods to
find the material parameters for phenomenological models described before.

The micromechanics of elastomer is a wide research field with the micromechanics
of the length scale of elastomer chains and filler particles. In Bueche [1961], the
mechanism inside the material for the Mullins effect was described. Govindjee and
Simo [1991] found a statistical distribution for the chain-filler interaction. Based upon
this theory, Dargazany and Itskov [2009] developed a micro-mechnanical motivated
constitutive relation, however, a FE implementation is missing.

1.2. Goal of this Thesis

In this thesis, a fully micro-mechanical motivated material law for particle filled elas-
tomer will be developed and implemented into a FE framework.

All the material parameters have a physical expression or can be derived by the
statistical distribution of elastomer chains and filler particles. This work is a step
in the development of virtual material, which means a new material created on the
computer and the response can be tested in a virtual material test. Moreover, a better
understanding will be gained concerning what is going on inside the material.

Starting with the physical and chemical backgrounds, the micro-mechanical structure
of filled elastomer will be investigated. The structure and mechanical behaviour is
modelled within a micromechanics framework on the microstructure. Due to suitable
upscaling techniques, a continuum mechanics description will be obtained, which can
be implemented in an existing finite element framework. The main focus is placed
upon the anisotropic Mullins effect and the viscous behaviour of filled elastomer. In
Figure 1.1, the advances in virtual material modelling are shown.
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Figure 1.1.: Comparison between the state of the art workflow and the future workflow
in material design process
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2. Physical and Chemical Properties of Elastomer

In this chapter, the chemical and the physical properties are discussed. The elements
of interest are the polymer chains, filler particles and the bonding points. For mod-
elling, these elements are treated using the methods of statistical physics. The chem-
ical structure of the chain segments and bondings is very important for the physical
and mechanical behaviour.

2.1. Structure of Elastomer

To understand the structure of elastomer, a chain element is considered as the smallest
element. This length scale is approximately 10 Å = 10−9 m.

2.1.1. Elastomer Chain

A single elastomer chain comprises of n chain elements, where each chain element
is a macromolecule. The structure or chemical formula of the macromolecule is not
yet of interest. The chain elements are bounded by chemical reactions and the most
important is that this the bonding is not straight, which implies there is always a
valence bond angle between two chain elements. If the first element is fixed in space,
the second element will be connected with the valence bond angle, although there
is one degree of freedom left, namely the rotation. This is called the freely rotating
chain, because the rotation is random. If a sufficient number of chain elements are
connected, the elastomer chain appears as a random walk, which is very similar to
coiled spaghetti.

For a proper description of the elastomer chain, the following definitions are provided:
length of a segment l and the chain end to end vector R. With the direction vector
d of the chain end to end vector, R is calculated by the following formula

R = rd (2.1)

with the absolute value of end to end distance r, see Figure 2.1. To measure the end
to end distance in a dimensionless way, the relative end to end distance

r =
r

l
(2.2)

is introduced, which means the measured length in chain elements.

R

l

d
r

Figure 2.1.: Description of an elastomer chain
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A B C

Figure 2.2.: Stretching of an elastomer chain: A) fully random chain, B) slightly
stretched chain and C) fully stretched chain, the chain is not straight
due to valence angle at the bondings

2.1.2. Entropy of an Elastomer Chain

For the description of elasticity of the elastomers, the entropy changes during stretch-
ing becomes important. For an unconstrained and unstretched chain, the rotation
angle of each connected elastomer chain element is random, which form the state
of maximum entropy. In this state, the chain has the maximum number of possible
conformations, whereby it can be seen as the state of the lowest order. During stretch-
ing, the number of possible conformations decreases. In case of a fully stretched chain,
there is only one possible conformation left, whereby the entropy reaches its minimum,
see Figure 2.2.

A quantitative description of the entropy for small deformation using the Gaussian
theory for rubber elasticity has been shown by Treloar [1943], which is illustrated in
the following section. Imagine an elastomer with one end fixed in the origin and the
other end is free to move on x1 coordinate. The probability to find the free end in
the infinitesimal range of dx1 can be calculated in the following way:

p(x1)dx1 =
b

π
1
2

exp(−b2x21)dx1, (2.3)

with the model parameter b. If one end is entirely free in space, the probability is
calculated as

p(x1, x2, x3)dx1dx2dx1 =
b3

π
3
2

exp(−b2r21)dx1dx2dx3, (2.4)

with the quadratic end to end distance r2 = x21 + x22 + x23. In spherical coordinates,
equation (2.4) reads as

p(r)dv =
b3

π
3
2

4πr2 exp(−b2r21)dr. (2.5)

Now the Boltzmann equation can be applied, the entropy ηi of an elastomer is calcu-
lated as follows

ηi = a+ kB ln p(r), (2.6)

with the constant entropy a and the Boltzmann constant kB = 1.3806488×10−23 J/K.
By using (2.5), the entropy is calculated to

ηi = a+ kB ln

(
b3

π
3
2

)

︸ ︷︷ ︸
const

−kb2r2, (2.7)
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where the constant part can be neglected. The model parameter b is calculated by
mean-square value of the radius

b2 =
3

2r2
. (2.8)

Now, the entropy for an incompressible network is investigated. A homogeneous
deformation can be expressed with the principal stretches, which leads to the change
of entropy

∆ηi = −Kb2[(λ1 − 1)X2
1 + (λ2 − 1)X2

2 + (λ3 − 1)X3
3 ]. (2.9)

In the reference configuration (unstretched state), the vector r has no preference
direction, which means the isotropic state. Now, the sum over all elastomer chains
per unit volume N is calculated

N∑

i

X2
1 =

N∑

i

X2
2 =

N∑

i

X2
3 =

1

3
Nr2. (2.10)

It result in the the change of entropy

∆η = −1

2
NkB(λ21 + λ22 + λ23 − 3). (2.11)

For an isothermal process, the Helmholtz free energy function has the following simple
form

ψ = −T∆η, (2.12)

with the thermodynamic temperature T . After combining to two last equations finally
ends up with

ψ =
1

2
NkBT (λ21 + λ22 + λ23︸ ︷︷ ︸

I1

−3). (2.13)

This is exactly the Neo-Hookean material model with the shear modulus of µ = NkBT
and the first invariant of stretch tensor I1. This simple example shows the concept of
entropy elasticity. More general models are obtained with the non-Gaussian statistical
theory. One example is the later used theory based upon the Langevin distribution
function. It turns out that this theory is equal to the Gaussian statistical theory for
small deformation.

2.1.3. Elastomer Network

Elastomer comprises coiled elastomer chains. For unvulcanised elastomers, they sim-
ply have physical bondings due to the attractive forces. The single chains are in their
thermodynamic preferred state. During stretching, the chains will slip to each other.
If the deformation is kept constant, they will return in their thermodynamic preferred
state and the stress relaxes. This kind of material shows viscous behaviour like honey
but not the elastic behaviour.

The chains are commonly vulcanised with sulphur, which leads to chemical bondings,
which are much stiffer than the physical ones. The chains are no longer free, rather
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they build a network with chains and bonding points. If the chains and bonding points
are randomly distributed, the network is called amorphous. This network prevents
the elastomer chains from sliding to each other. If the force on a specimen is released,
the elastomer turns into its former state, where the elastomer now shows the elastic
behaviour. The vulcanisation follows the statistical laws, which leads to microscopic
inhomogeneities and anisotropy, although at the macroscopic length scale, it yields a
homogeneous and isotropic material behaviour.

The amorphous network is not the only network form that can appear in elastomers,
rather there can be sections of chains having a preferred direction. This leads in
physical bondings between the elastomer chains. This kind of network is called semi
crystalline. If all chains have the same preferred direction, the network is called
crystalline, see Figure 2.3.

The phenomenon during stretching is the strain-introduced crystallisation. For high
strains, about 500% of the elastomer chains are close to their fully stretched state.
This leads to clusters of chains that have the same direction and are physically
bounded with each other. This phenomenon is called strain-introduced crystallisa-
tion, see also Treloar [1975]. The recent results on this phenomenon can be found in
Toki et al. [2009].

A B C

Figure 2.3.: Types of elastomer network: A) amorphous, B) semi crystalline (crys-
talline sections are marked with grey ellipsoids) and C) crystalline

2.1.4. Filler Reinforcement

To increase the shear modulus of the elastomers, filler particles are added. As these
particles are much stiffer than the elastomer chain matrix, therefore they are treated
as rigid. This leads to a deformation of only the elastomer matrix during loading. The
filler particles decrease the deformable volume of the elastomer matrix. If the global
deformation is the same as in unfilled elastomers, the local deformation has to be in-
creased. One known formula is from Einstein, for the hydro-mechanical reinforcement
factor X, he calculated

X = 1 + 2.5Φ (2.14)

with the filler volume fraction Φ. In literature, more formulas like this can be found,
which take into account quadratic terms due to the particle-particle interactions, Guth
and Simha [1936]. One more important part is the bonding of the particle and the
filler. In this section, some brief definitions are given. In the following chapters, this
phenomenon is described in more detail.

The number of bonded elastomer chain segments per unit volume is denoted by NB
and the total area of active absorption sides from the filler particle per unit volume
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by A. The ratio of both dimensions is an important material parameter

κ =
A

NB
. (2.15)

If κ increases, the chance of a chain segment finding a filler particle for bonding
increases. This results in a decrease of average value of chain elements connecting
two filler particles, see Figure 2.4.

A

Figure 2.4.: Unit volume for filled elastomer

2.1.5. Temperature Dependent Behaviour

1 2 3 4

temperature

s
h
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a
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Tg
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G

Figure 2.5.: Qualitative curve of temperature dependence of elastomer: region 1) en-
ergy elasticity, region 2) glass transition, region 3) entropy elasticity and
region 4) chemical decomposition

Elastomer shows different behaviour during the change of temperature, whereby a
good description of this temperature dependent behaviour for elastomer and other
polymeres can be found in Röthemeyer and Sommer [2013]. The mechanical behaviour
can be separated into four different temperature regions, see Figure 2.5.

For low temperatures, elastomer shows an energy elastic behaviour. This temperature
is below the glass transition temperature Tg, where the chain elements are in a frozen
state, hence they cannot move relative to each other.

The second temperature region is named as the glass transition region. This region
shows the strongest temperature dependence. In this region, the shear modulus is
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decreasing over decades while the temperature is increasing. The inflexion point is
named as the glass transition temperature. The elastomer chains transform from the
state of sticking together to a state of a moving amorphous network. More details
about the ongoing effects can be found in Gibbs and DiMarzio [1958].

The third temperature region is the entropy elastic region. Here, the mechanism
described in section 2.1.2 holds. For elastomers, this region is the region of impor-
tance. Here, the shear modulus is increasing slightly linear with the increase in the
temperature. The chemical decomposition starts when the temperature increases to
temperature region four. Further, chemical decomposition appears in the form of
melting or chemical reactions with oxygen.

In Table 2.1, the differences between energy and entropy elasticity are shown. It
emerges that the mechanical behaviour is somehow shifted for an elastomer during
passing the glass transition temperature. For example, the temperature is increasing
while stretching an elastomer below the glass transition temperature and above the
temperature is decreasing.

Table 2.1.: Characteristics of energy and entropy elasticity

Entropy elastic Energy elastic

Example of material Polymer Metal, Polymer in glassary state
Stretching Entropy decreases Inner energy increases
Change of volume Almost iso-volumetric volume change in general
Stretching Temperature increases Temperature decreases
Heating Stretch decreases Stretch increases

Micromechanics see section 2.1.2 Energy increases due to attractive
forces caused by distance change
between the atoms

2.2. Chemistry of Elastomer

In this section, the chemical synthesis of polymers is described, see also Hiemenz and
Lodge [2007] and Baerns et al. [2013]. The main three chemical processes are the
chain polymerization, addition polymerization and the condensation polymerization.
The main scheme for all these process are the same, namely the monomers react with
each other and build an elastomer chain.

2.2.1. Chain Polymerization

Chain polymerization is one of three major principles of polymers synthesis. It is
characterized by an ongoing addition of mostly unsaturated monomers on the growing
chain and no split off chemical by-products. Also, no change of molecular groups takes
place inside the reactant. It can be classified by the active center in radical, anionic
and cationic coordination valence. Another classification is made by the number of
different monomers: for homopolymerization, only one type monomer reacts with
each other; for copolymerization, two or more types of monomers react with each
other.
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The radical chain polymerization can be divided into three steps:

1. Starting reaction: a new active center is formed (free radical)

2. Growth reaction: the macromolecular chain is growing in a chain reaction, on-
going attachment of monomers

3. Termination reaction: the growth of a chain is terminated irreversibly.

During the starting reaction, a monomer reacts with a free radical and the double
bonding of the monomer between the two carbon elements is split. The free radical
is now bonded with the carbon elements. This leads to a free electron on the second
carbon atom, see Figure 2.6.

R + H2C C

H

X

R C

X

H

Figure 2.6.: Polymerization starting reaction

During the growth reaction, the second monomer is attached to the chain, see Figure
2.7. In this case, the carbon element splits the double bonding, which leads to another
free electron. Now, the typical form of the elastomer chain emerges. The valence
angle is a fix value but the rotation angle is random. The number of chain elements
is repeatedly increased by the same phenomena.

R C

X

H

+ H2C C

H

X

R

X

C

X

H

R

X

C

X

H





n

Figure 2.7.: Polymerization growth reaction

The growth of the chain elements can be stopped by the junction of two radicals.
The free electrons of two elastomer chains create a junction resulting in one elastomer
chain that is no longer growing, see Figure 2.8. Another possible termination reaction
is the disproportionation. Here, one hydrogen element from the second carbon atom
from the right chain will change its position to the left chain. Now, the carbon atom
of the left chain no longer has a free electron, whereas the right chain has two carbon
elements with a free electron, followed by sharing of electrons via double bonding.
The result is two chains that can no longer grow, see Figure 2.9.

To understand the progress of chain polymerization, two important definitions are
made:



12 2.2. Chemistry of Elastomer

R
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Figure 2.8.: Polymerization termination reaction: junction of two radicals
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Figure 2.9.: Polymerization termination reaction: disproportionation
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• Chemical yield: the percentage of reactants which reacted. For polymer case,
the percentage of monomers that are attached to the chains.

• Degree of polymerization: the number of monomers in a polymer chain. However
only the average of this value can be measured. The standard deviation is also
significant for describing the polymerization.

The process of the radical polymerization is divided into different stages, correspond-
ing to the chemical yield:

For yield less than 0.01%: initiation with a non-stationary progression take place.
This state is characterized by a massive nucleation of initial radicals, many primary
radicals and few oligarchy radicals. Further, the reaction speed increases rapidly,
while the average degree of polymerization remains low.

For yield of 0.01% to 5%: stationary reaction take place. The concentration of
monomers is almost constant, given that the yield is low. Besides, the reaction speed
is constant.

For yield of 5% to 20%: end of stationary reaction state take place. The reaction
speed is decreasing as well as the monomer concentration is decreasing. Finally, the
first macromolecules reach their final length and further the first termination reactions
take place.

For yield 20% to 60%: gel effect arises, which is also known as Tommsdorff-Norris
effect, see also Alger [1996] and O’Neil et al. [1996]. Though, the reaction speed should
decrease in this state, however, an acceleration is observed. The polymer chains reach
a high degree of polymerization, therefore the diffusion slows down, which results
in less termination reactions. In contrast to the polymer chains, the monomers are
small enough for diffusion, hence the polymerization is kept alive. The degree of
polymerization increases very heavily and the standard deviation increases too.

For yield of 60% to maximum: glass effect arises. Please note, this name should not
be mixed with the glass transition described previously. Here, the diffusion of the
polymer molecules and the radicals is very slow. Moreover, the remaining polymers
have problems to move, which result in continuous decrease of the reaction speed.
A chemical yield of 100% is generally not reached, depending on the polymerization
procedure. The polymerization in liquids helps in decreasing viscosity and hence it is
possible to achieve the higher yield.

For the radical chain, the polymerization radicals build the active center on the grow-
ing end of the chain. The starting reaction is initialised by an acid, such as sulphuric
acid H2SO4, fluoroboric acid HBF4 or aluminium chloride AlCl3. The acid reacts
with the water, which leads to free positive charged hydrogen ions. The starting re-
action combines the hydrogen elements to H2. This leads to change of bonding type
from double to single followed by a positive charged carbon element on the right hand
side, see Figure 2.10.

The growth reaction is similar to the radical chain polymerization, where the chain
elements are continuously added. The termination reaction cannot take place, given
that the growing end of the chain elements are both positively charged. However, an
elimination reaction can take place, where one proton changes to the new monomer
unit. The chain growth ends now and a positive hydrogen ion is ready for a new
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H⊕[BF3OH]	+CH2

C

X

H [BF3OH]	+CH3 ⊕
C

X

H

Figure 2.10.: Starting reaction of cationic chain polymerization

nHO (CH2)4 OH + nO C N (CH2)6 N C O

(O− (CH2)4 −O− CO−NH− (CH2)6 −NH− CO)n

Figure 2.11.: Synthesis of polyurethane

starting reaction. A simple way to stop the polymerization process controlled is to
add a lye.

The anisotropic polymerization uses an anion for growing the chain. It is mostly not
possible to formulate a growth and termination reaction. This type of polymerization
is called living polymerization. For this type of polymerization, the degree of polymer-
ization is close to a linear function of the chemical yield and it is possible to achieve
the polymers with almost the same chain length.

2.2.2. Addition Polymer

The addition polymer is a polymer formed by addition reactions. A polymer is formed
by the rearrangement of bonds, where no atoms and molecules are lost, however an
addition polymer is step-wise formed with molecules of low degree of polymerization.
First dimer and trimer are formed, which then are bonded to a polymer of higher
degree of polymerization, and so on. As an example, the formation of polyurethane
is shown in Figure 2.11.

2.2.3. Condensation Polymer

In condensation polymerization, small molecules are lost when monomers join to-
gether. An example of such molecules can be water, carbon dioxide or hydrogen
chloride. The forming process is slower than for addition polymers and the degree of
polymerization is generally lower. In Figure 2.12, a typical polymer condensation reac-
tion is shown. In this case, one chain produces two water molecules and the functional
groups on the end of the chain remain active, hence the short groups can combine to-
gether resulting in longer chains. The presence of the shorter polar functional groups
on the chains often enhances the chain-chain attractions, such as hydrogen bonding.
This leads to crystallisation and higher tensile strength.

2.2.4. Vulcanisation of Polymer

The vulcanisation of polymers is a chemical process for converting polymers into
more durable rubber by using high-energy radiation peroxides or sulphur. The first
vulcanisation process was invented by Goodyear [1844], in which sulphur was used,
see Figure 2.13. The chains are bonded by sulphur brides resulting in an elastic
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Figure 2.12.: Synthesis of one type of condensation polymer

response, as the chains can no longer move relative to each other. Moreover, the
other vulcanisation processes establish chemical bondings between the chains. For
sulphur vulcanisation, oxygen embrittlement is a known problem, which means the
sulphur bridges are replaced with the oxygen, hence the material response become
more stiffer and more brittle, see Blum et al. [1951].

CH3 CH3

CH3

S

S

S S

S

S

CH3

Figure 2.13.: Vulcanisation of elastomer: two chain elements are linked by sulphur
bridges (grey areas)
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3. Non-linear Continuum Mechanics Background

The continuum mechanics describes the movement of material bodies in space and
time. In this chapter, the most important continuum quantities are summarised, in
particular, the measurement of stress and strain. These measurements are written
in a general way, which results in non-linear relations. In continuum mechanics, the
inner assembly of the material is neglected; for example, the atoms. The material
is treated as a continuous medium characterized by the certain field quantities like
density, strain and velocity. This is referred as the macroscopic view of the material.
This chapter provides a brief introduction to understand the viscoelastic damage
model for elastomer, which is described in detail in the next chapters. A more detailed
description can be found in Holzapfel [2000], Truesdell and Noll [1965], Malvern [1969]
and [Marsden and Hughes, 1983].

3.1. Kinematics

E2, e2
E1, e1

E3, e3

ϕ

B0 Bt

X x

U(x, t) = u(X, t)

Figure 3.1.: Kinematic relations of a continuum body

The kinematics of a continuous body describes the motion of each given particle for
each time without considering the cause of the movement. The reference or initial
configuration of the body is denoted by B0 and the actual or deformed configuration
by Bt, see Figure 3.1. In the following, capital letters denote values in reference
configuration and lower case letters in deformed configuration. The unit vectors
E1,E2,E3 and e1, e2, e3 span a three-dimensional Eulerian space R3, and the time
t belongs to R+.
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The mapping ϕ is introduced to describe the deformation and movement in each
material point between the reference and the deformed configuration

ϕ(X, t) : X 7→ x ∀X ∈ B0. (3.1)

The inverse operator ϕ−1 maps each point from the deformed to the current configu-
ration

ϕ−1(x, t) : x 7→X ∀x ∈ Bt. (3.2)

The motion of the points from reference to current configuration is called displacement
field

U(X, t) = x(X, t)−X (3.3)

in material description (Lagrangian form), where U is a function of reference position
X and time, the displacement field can also be written in spatial description (Eulerian
form)

u(x, t) = x−X(x, t), (3.4)

where u is a function of deformed position x and time. The two equations are related
by the mapping defined by equation (3.1)

U(X, t) = U((ϕ−1(x, t), t)) = u(x, t) (3.5)

hence, U and u have the same values but different arguments.

To describe the deformations (strains and rigid body motions) of a continuum body,
a mapping of an infinitesimal line element in reference configuration dX to its corre-
sponding deformed configuration dx is necessary. Therefore, the deformation gradient
F is defined as follows

dx = F · dX (3.6)

with

F (X, t) =
∂φ(X, t)

∂X
= Gradx(X, t) (3.7)

or

F−1(x, t) =
∂φ−1(x, t)

∂x
= gradX(x, t) (3.8)

In general, the deformation gradient is a non-symmetric tensor with nine independent
components. As the deformation gradient contains the rigid body motions in particu-
lar rotations, which makes it dependent on the reference system and hence, it is not
an objective measure for deformation.

The deformation gradient is a two-point tensor that is related to both configurations
and provides a linear transformation. Since the transformation has an inverse trans-
formation, its determinant is not equal to zero. The determinant also provides the
volume change of an infinitesimal volume element. Therefore, from a physical per-
spective, the determinant or volume ratio has to be greater than zero

detF = J > 0. (3.9)
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The transformation of an infinitesimal surface element dA can be calculated by

da = JF−TdA, (3.10)

which is known as Nanson’s formula.

To obtain an objective measure for the deformation, strain tensors are introduced.
First, the formulas (3.3) and (3.7) are combined to calculate the displacement gradient

H = GradU = Gradx(X, t)−GradX = F − I (3.11)

with the unit tensor

I =




1 0 0
0 1 0
0 0 1


 . (3.12)

Now, a strain measure can be obtained by describing the squared change of length of
an infinitesimal line element as follows

||dx · dx|| − ||dX · dX|| = dx · dx− dX · dX (3.13)

= dX · FT · F · dX − dX · dX (3.14)

= dX ·
(
FT · F − 1

)
· dX (3.15)

= dX · 2E · dX (3.16)

with the Green-Lagrange strain tensor

E =
1

2
(FT · F − 1). (3.17)

By using equation (3.11), the Green-Lagrange strain tensor can be reformulated to

E =
1

2

(
H +HT +H ·HT

)
. (3.18)

This tensor is symmetric and contains no longer rotations. This can be easily seen by
decomposing the deformation gradient in stretch and in rotation part

F = R ·U = v ·R. (3.19)

With the rotation tensor R, the right (or material) stretch tensor U and the left (or
spatial) stretch tensor v. The part of equation (3.18) with the deformation gradient
and its inverse leads to FT ·F = UT ·RT ·R ·U = UT · I ·U . The rotation vanishes
and only the stretch part is represented. By neglecting the higher order terms in
equation (3.18), the engineering strain tensor

ε =
1

2

(
H +HT

)
(3.20)

is defined. Another deformation tensor is the right Cauchy-Green tensor

C = F T · F . (3.21)



20 3.2. Stress Measures

Its representation in the deformed configuration is the left Cauchy-Green deformation
tensor

b = F · F T . (3.22)

For this thesis, the definition of the stretch vector is very important since it will be
used for the micro-mechanical modelling. First, a direction d is defined, now the
stretch can be calculated by the use of the deformation gradient

λd = F (X, t) · d. (3.23)

The stretch vector is not only dependent on the space and time, but also on the chosen
direction d, which is pointed out by the subscript d. The stretch ratio is defined by

λd = |λd|, (3.24)

which is a measure for the extension of a unit vector. For extension λd > 1 holds, for
compression 0 < λd < 1 and for the unstretched state λd = 1.

3.2. Stress Measures

The forces are actions on a part or the entire surface of the body. The internal load
of a body can be measured by the stresses. The body is cut at point x by a plane
surface. To derive the Cauchy stress vector, the force acting on infinitesimal surface
element da is related to the force acting on it

t =
df
da
. (3.25)

This measure is not objective, rather it generally depends on the orientation of the
cutting plane. The Cauchy-Theorem states that there exists a unique second order
tensor σ so that

t(x, t,d) = σ(x, t) · d. (3.26)

The Cauchy stress tensor σ is an objective measure that does not depend on the
orientation of the surface element, furthermore, it is symmetric. By relating the force
to an infinitesimal surface element of the initial configuration dA, one can find the
Piola-Kirchhoff stress vector

T =
df
dA

. (3.27)

Again, applying the Cauchy-Theorem,

T (X, t,d) = P (X, t) · d, (3.28)

the first Piola-Kirchhoff stress tensor is obtained. This tensor is a non-symmetric
two-field tensor like the deformation gradient, which has some drawbacks, especially
in computation. Therefore, the second Piola-Kirchhoff stress tensor is introduced

S = F−1 · P = JF−1 · σ · F−T. (3.29)

This tensor is entirely related to the initial configuration. The tensor is obtained by
performing the pull-back operator F−1(•)F−T to the Kirchhoff stress tensor which
is defined as

τ = J · σ. (3.30)
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3.3. Balance Laws

The balance laws are the fundamental laws that are valid for all the materials. One
set of the principles comprises of the four conservation laws: conservation of mass,
conservation of linear and angular momentum and the balance of energy. Another
principle is the second law of thermodynamics, which is not a conservation principal.
It describes in which direction the process goes, e.g. the heat flow takes place from
higher to lower temperatures. Therefore, the entropy principle is expressed as an
inequality.

3.3.1. Conservation of Mass

The mass of a body is an extensive value. For a material body Bt, the mass

m =

∫

B0
ρ0dV =

∫

Bt
ρdv (3.31)

is calculated by the integral over the extensive value mass density over the entire body.
The mass density is denoted as ρ0 for the initial and as ρ for deformed configuration.
In this work, the body is treated as a closed system; therefore, the amount of mass is
constant and only energy can cross the boundaries of the system. With the volume
ratio the relation

ρ0 = Jρ (3.32)

between the densities can be found. Due to the fact that the mass is constant, the
change of mass vanishes

d
dt
m =

d
dt

∫

B0
ρ0dV =

∫

B0

d
dt

(ρJ)dV

=

∫

B0
J(ρ̇+ ρ div ẋ)dV =

∫

Bt
(ρ̇+ ρ div ẋ)dv = 0. (3.33)

This equation is called the integral form of mass conversation. The continuity equation

ρ̇+ ρ div ẋ = 0 (3.34)

is valid at every point of the body. Equation (3.34) is called the local form of mass
conservation in spatial description.

3.3.2. Conservation of Linear Momentum

The linear momentum vector is defined as follows

L =

∫

B0
ρ0ẊdV =

∫

Bt
ρẋdV. (3.35)

Using Newton’s second law of motion, whereby the sum of externally applied forces is
equal to the change of linear momentum, the law is formulated for a continuum body

dL
dt

=

∫

Bt
ρb̃dV +

∫

∂Bt
tda (3.36)
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with the body force per unit mass b̃ and the surface traction vector t. For the
fulfilment of equation (3.35), it is necessary and sufficient that the Cauchy theorem
holds. By using the divergence theorem, the external force term can be reformulated
as follows

∫

∂Bt
tda =

∫

∂Bt
σ · dda =

∫

∂B
divσ · ddv. (3.37)

Using equation (3.36) and (3.37), the local form of linear momentum balance is found

divσ + b̃ = ρẍ. (3.38)

In statics, the acceleration term vanishes

divσ + b̃ = 0. (3.39)

This equation is referred as Cauchy’s equation of equilibrium.

3.3.3. Conservation of Angular Momentum

The angular momentum emerges as a cross product of linear momentum and position
vector x

J =

∫

∂B
x× ρẋdV. (3.40)

The reference point can be chosen arbitrary. For simplification, the coordinate origin is
considered. Analogous to linear momentum, the time derivative of angular momentum
must be equal to externally applied torques

dJ
dt

=

∫

Bt
x× ρb̃dV +

∫

∂Bt
x× tda. (3.41)

In static, it can be shown that balance of angular momentum holds if and only if the
Cauchy stress tensor is symmetric σ = σT.

3.3.4. Conservation of Energy

The balance of energy is well known as the first law of thermodynamics, which states
that the change of inner energy U and kinetic energy K equals the power of external
forces W plus the rate of thermal work Q

U̇ + K̇ =W +Q. (3.42)

With the deformed configuration, the single parts are calculated as follows:

U =

∫

Bt
ρudv (3.43)

K =

∫

Bt

1

2
ρẋ · ẋdv (3.44)

W =

∫

Bt
ρb̃ · ẋdv +

∫

∂Bt
t · ẋda (3.45)

Q =

∫

Bt
ρrdv −

∫

∂Bt
q · dda (3.46)
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with the specific inner energy u, the specific inner heat source r and the heat flux
over the boundaries q. All the equations together lead to the integral form of energy
balance

d
dt

∫

Bt
ρ

(
u+

1

2
ρẋ · ẋ

)
dv =

∫

Bt
ρ
(
b̃ · ẋdv + r

)
da+

∫

∂Bt
(t · ẋ− q · d) da. (3.47)

To avoid the boundary integral, the Cauchy-Theorem followed by partial integration
is applied

∫

Bt
ρ

(
u̇+

1

2
ρẋ · ẍ

)
dv =

∫

Bt

[
ρ
(
b̃ · ẋdv + r

)
+ div (ẋ · σ − q)

]
da (3.48)

solving the divergence term and using the fact that the linear momentum should
vanish at every point, the conservation of energy is reduced to

ρu̇ = gradẋ · ·σ + ρ · r − div q. (3.49)

3.3.5. Entropy Inequality Principle

While the first law of thermodynamics describes the energy transfer of a thermody-
namic process, the second law describes the direction of energy transfer. In section
2.1.2 entropy was introduced as a measure of microscopic disorder. For the continuum
mechanics, the entropy is measured per unit volume η in the reference configuration.
The entropy of a body is denoted as

S =

∫

B
ηdV =

∫

Bt
Jηdv. (3.50)

The second law of thermodynamics states that the change of entropy is always greater
or equal than the heat generation plus the heat inward flux over the boundaries divided
by the thermodynamic temperature

dS
dt
≥
∫

B

1

T
ρrdv +

∫

∂Bt

1

T
q · dda. (3.51)

In analogy to energy balance, the boundary integral is converted to a volume integral

∫

∂Bt

1

T
q · dda =

∫

B
div

(
1

T
q

)
dv =

∫

B

1

T
div q − 1

T 2
qgradTdv. (3.52)

The local form follows to

Tρη̇ ≥ ρr − div q +
1

T
qgradT. (3.53)

With the Helmholtz Free Energy

ϕ = u− Ts (3.54)

and the energy balance equation, the Clausius-Duhem equation

−ρ(ϕ̇+ sṪ ) + gradẋ · ·σ − 1

T
gradT ≥ 0 (3.55)

can be found. For isothermal processes, the Clausius-Duhem equation is equal to
dissipated energy

D = gradẋ · ·σ − ρϕ̇ ≥ 0. (3.56)
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3.4. Constitutive Theory

In the previous sections, the kinematic relations and the balance principles were dis-
cussed, which are valid for any material. However, there is a lack of equations, for
the description of velocities and movements of the material. These equations, known
as constitutive equations or material model, should provide a relation between the
stress and the strain for a mechanical system. For thermomechanical systems, there
is also a relation between the temperature and the heat flux, although only isothermal
processes are considered in this thesis.

The material model can be somewhat arbitrary, although it has to fulfil the thermo-
dynamic laws. For the constitutive description, the displacement vector u is normally
chosen as the independent variable. The thermodynamic state of material can be
described by the following equations

ψ = ψ(F ) (3.57)
η = η(F ) (3.58)
σ = σ(F ). (3.59)

The free energy, the entropy and the Cauchy stress are the dependent variables. To
find some restrictions for the material law, the material derivative of free energy
function

ψ̇ =
∂ψ

∂F
· ·Ḟ (3.60)

is considered. Substituting equation (3.60) into the Clausius-Duhem equation for
isothermal process (3.56) yields

gradẋ · ·σ − ρ ∂ψ
∂F
· ·Ḟ ≥ 0. (3.61)

Using equations (3.6) and (3.6), the equation above can be reformulated to
(
σ − ρ ∂ψ

∂F

)
Ḟ ≥ 0. (3.62)

The time derivative of the deformation gradient is arbitrary, therefore, the equation
can only be fulfilled if the expression in the brackets vanishes. This leads to the
following equation

σ = ρ
∂ψ

∂F
· ·Ḟ . (3.63)

3.4.1. Concept of Internal Variables

The materials used in engineering often show inelastic behaviour. The inelastic effects
can include damage, plasticity or creep. The concept described in the previous sec-
tion proves non-adequate for describing such effects, as they consider simple elastic
effects, which is not dependent on the loading history. To overcome this problem
the concept of internal variables has been developed by Coleman and Gurtin [1967],
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Lubliner [1969], Haupt [1985]. The Helmholtz Free Energy function depends on the
deformation gradient and a set of inner variables

ψ = ψ(F, ξ1, . . . , ξm). (3.64)

The internal variables can generally be tensor valued, although for this thesis only
scalar variables are used. Analogous to the pure elastic constitutive theory, the mate-
rial time derivative

ψ̇ =
∂ψ

∂F
· ·Ḟ +

m∑

α=1

∂ψ

∂ξα
· ·ξ̇α (3.65)

is considered. The internal dissipation can be calculated to

D =

(
P − ρ ∂ψ

∂F

)
Ḟ −

m∑

α=1

∂ψ

∂ξα
· ·ξ̇α ≥ 0. (3.66)

Applying the Coleman-Noll procedure, the internal variables have to be dissipative

−
m∑

α=1

∂ψ

∂ξα
· ·ξ̇α ≥ 0. (3.67)

The internal variables require the additional equations to describe the evolution of the
internal variables. These equations are restricted to satisfy the equation (3.67) and
they generally depend on the deformation gradient and the internal variables itself
ξα,

ξ̇α = Eα(F , ξ1, . . . , ξm). (3.68)

The evolution function is mostly dependent on stress or strain, whereby they are
called stress or strain-like internal variables. For an equilibrium state, it is required
that the evolution function is equal to zero.
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4. Review of Material Models for Elastomers

This chapter summarises the existing material models for filled and unfilled elastomer.
This kind of material models have to deal with large strain and incompressibility.
The first part will provide a brief overview of the hyperelastic material model and
the analytical homogenization techniques as a first approach to describe the effect of
filler reinforcement. Subsequently, simple damage models are presented to describe
the Mullins effect. At the end, a brief introduction of visco-elastic material models is
given.

4.1. Elastic Material Models

For elastic behaviour of elastomers, a broad class of material models exist. In this
overview, only isothermal models are considered (for temperature depended mod-
els see Holzapfel and Simo [1996], Reese and Govindjee [1997], Lion [1997] Reese
[2003] and Suwannachit and Nackenhorst [2013]). This category of material models
is called hyperelastic, since their stress strain relationship is derived from a strain
energy density function, see Ogden [1984]. The hyperelastic models are derived from
the equation (3.57). The first phenomenological models were developed, such as the
Yeoh- or Mooney-Rivlin model. Later developed models were motivated by the mi-
cromechanics of the material, for example, the extended tube model by Heinrich and
Kaliske [1997]. Moreover, models directly derived from chain statistics can be found
in literature, e.g. Miehe et al. [2004].

For elastomers, it is known that the behaviour in shear and compression is entirely
different. The compressive modulus is about 50 times higher than the shear modulus,
which leads to a Poisson ratio of approximately ν = 0.49. Elastomer is almost incom-
pressible, whereby a special case of incompressibility is characterized by a ν = 0.5. For
a proper constitutive formulation, the free energy function is split into a volumetric
and a deviatoric part

ψ = ψ(J) + ψ(F ) (4.1)

without any loss of generality. The deviatoric part of the deformation gradient F is
calculated by a multiplicative volumetric deviatoric split

F = J
1
3F . (4.2)

In the following, the deviatoric part is denoted with an overline. A simple example
for the volumetric part of the free energy function is

ψ(J) =
κ

2

(
J2 − 1

2
− ln J

)
, (4.3)

with the bulk modulus κ.

For the deviatoric part, the principal invariants are defined first. The use of invariants
ensures an objective material model, because a rotation of the coordinate system has
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no effect on the invariants. Using equation (4.2), the deviatoric part of left and right
Cauchy-Green stretch tensor are obtained

b = J−
1
3F ·

(
J−

1
3F
)T

= J−
2
3F · FT (4.4)

C = J−
1
3FT ·

(
J−

1
3F
)

= J−
2
3FT · F . (4.5)

Now, the three principal invariants can be calculated with the principal stretches λ1,
λ2 and λ3 to

Ib = IC = λ21 + λ22 + λ23 (4.6)

IIb = IIC = λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3 (4.7)

IIIb = IIIC = λ21λ
2
2λ

2
3 (4.8)

The simplest hyper-elastic material is the Neo-Hooke material model

ψNH =
µ

2

(
Ib − 3

)
, (4.9)

it is micro-mechanically motivated by the Gaussian Chain theory, see section 2.1.2.
This model is similar to Neo-Hooke Law, which was originally proposed by Rivlin
1948. Since it has only one term, it can only describe a part of the elastomer stress
strain curve in a sufficient way.

To obtain the stress tensor, the derivative of the free energy function with respect to
the left Cauchy-Green tensor

τ = 2
∂ψ(b)

∂b
b (4.10)

has to be calculated. The Neo-Hooke model leads to the Kirchhoff stress tensor

τNH =
µ

2
dev(b), (4.11)

with the definition of the deviator dev(•) = • − 1
3
tr(•)I. The deviator should not be

mixed with the isocoric part. For the deviator, the relation tr(dev•) = 0 holds, which
ensures a stress free initial condition for the following strain relations.

A more general model is the Yeoh model

ψY = C1

(
Ib − 3

)
+ C2

(
Ib − 3

)2
+ C3

(
Ib − 3

)3 (4.12)

with the material parameters C1, C2 and C3. It considers higher order terms, which
improves the capability to model more general material behaviour, e.g. the upturn
known for elastomer when the chains reach their final extensibility. Again, using
formula (4.10), the stress is calculated as

τY =
[
2C1 + 4C2

(
Ib − 3

)
+ 6C3

(
Ib − 3

)2] dev(b). (4.13)

The Mooney-Rivlin model

ψMR = C1

(
Ib − 3

)
+ C2

(
IIb − 3

)
(4.14)
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also considers the second invariant. The corresponding stress tensor leads to

τMR = 2dev
(

(C1 + C2Ib)b+ C2b
2
)
. (4.15)

All three models can be seen as special case of general polynomial hyperelastic model

ψP =
n∑

i,j=0

Cij
(
Ib − 3

)i (
IIb − 3

)j (4.16)

by Rivlin and Saunders [1951a]. With the material parameter Cij and C00 = 0 to
ensure energy free state in initial configuration

ψP(b = I) = 0. (4.17)

Another type of hyperelastic material models are the models in terms of principal
stretches, whereby the Ogden material is a well known material model, see Ogden
[1973].

A model considering the finite limiting chain extensibility was presented by Gent
[1996], which uses the natural logarithm for the free energy function

ψG = −µJm
2

ln

(
1− Ib − 3

Jm

)
(4.18)

with the extensibility limit Jm, as a material parameter. Depending on this parameter,
the first invariant is limited to Ib ≤ Jm + 3. For limiting case of Jm reaching infinity,
the model coincidents to the Neo-Hooke material model, which can be shown by the
use of a Taylor series expression, see Gent [1996]. The corresponding stress emerges
as

τG =
µJm

Jm − Ib + 3
dev

(
b
)
. (4.19)

In Figure 4.1, the stress strain curves for the most important hyperelastic material
models are shown. All material models have a singular behaviour for compression
to stretch, being equal to zero. The Neo-Hooke and Mooney-Rivlin material models
show a linear behaviour for high strain, whereas the Yeoh material model shows an
upturn for high strain. The Gent material model also shows an upturn, but introduces
a singularity for strains that reach the limit of Ib = Jm + 3.

All such models have to be fitted to material tests, since most of their material param-
eters have no physical meaning. In Marlow [2003], a first invariant material model is
proposed, which require no parameter fitting to experimental data. The free energy
function can be directly derived by the integration of the stress strain curve in a
uniaxial tension test, which means the derivative is the measured stress strain curve.
The measurement points are exactly represented in the material model, although this
model also has no parameters with physical meaning.

An example for a micromechanical motivated model is the tube model. Heinrich and
Kaliske [1997] and Kaliske and Heinrich [1999] used a molecular statistical modelling
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Figure 4.1.: Comparison of hyperelastic material models for uniaxial tension.

approach, which turn out

ψT = ψchem + ψtopo (4.20)

=
Gc

2

(
(1− δ2)(Ib − 3)

1− δ2(Ib − 3)
+ ln

[
1− δ2(Ib − 3))

]
)

+
2Ge

β2

3∑

i=1

(
λ
β
i − 1

)
,

(4.21)

with the deviatoric part of the principal stretches λ1,2,3. The deviatoric free energy
function is decomposed into two parts. The first part corresponds to the chemical
bounds of the chains, while the second part represents the additional stiffness due to
the topological restraints. Gc and Ge denote the elastic shear modulus for chemical
and topological part, respectively. The parameter δ accounts for the maximum ex-
tensibility of the chains. The fitting parameter β can be set to one for long chains.
This model could be used for the micro-mechanical description for the elastic part.
However, two reasons are against this: first, it uses some non-physical parameters;
and second, it will be complicated to extend this model for anisotropic damage and
viscous effects. For this reason, a model suggested by Miehe et al. [2004] will be used
later on, see section 5.3.

4.1.1. Analytical Homogenization Methods for Filled Elastomers

Filled elastomer is a two-phase material, one phase is the elastomer chains and the
other phase involves the filler particles. The properties of the elastomer chains are
known from testing and statistical mechanics. The filler particles are much stiffer and
often treated as rigid for homogenization.

The exact microstructure is normally not known and if it is known from electron mi-
croscopy, it is not applicable to model the microstructure for engineering application.
Therefore, analytical homogenization techniques provide a powerful framework, see
Hill [1963], Hashin [1962], Kröner [1977]. For elastomers, these techniques will be used
to describe the elastic response. To describe the Mullins effect, it is not applicable,
because this effect is resulted from the interface of chains and filler particle.
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For homogenization, a representative volume element (RVE) is necessary. It is defined
as a volume with sufficient number of inclusions. It has to be statistically uniform
from a macroscopic perspective. For the application of the RVE as a sufficient average,
the material body of interest has to be much larger than the RVE.

For the RVE, the volume average < • > is defined as follows

< • >=
1

V

∫
•dV, (4.22)

while • represents an arbitrary quantity, e.g. the stress or strain. A fundamental
condition in micromechanics is the Hill-Condition, see [Hill, 1963], stating that the
macroscopic power or rate of strain energy < P > ·· < Ḟ > equals the mean value of
microscopic power < P · ·Ḟ >

< P > ·· < Ḟ >=< P · ·Ḟ > . (4.23)

For the quantification of the reinforcement, the filler volume fraction

Φ =
Vfiller

Vges
∈ (0, 1) (4.24)

with the volume of RVE Vges and the corresponding filler volume Vfiller is intro-
duced. Without any knowledge of the shape of filler reinforcement, Young’s modulus
is bounded by Reuss [1929] (lower bound) and Voigt [1889] (upper bound), see Figure
4.2. These bounds can be seen as springs in parallel and springs in series. A more
restrictive bound was introduced by Hashin [1962]. All the other analytical homoge-
nization rules lie in between these bounds, at least in their range of applicability, e. g.
Guth and Simha [1936] and the famous formula by Einstein [1906]. The self-consistent
rule from Budiansky takes into account the higher order terms, for this reason, the
reinforcement factor is higher for higher filler concentrations. The bounds hold the
consistency condition, which means for Φ = 0, the normalised Young’ s modulus is
one and for Φ = 1, it equals the ratio of Young’s modulus. Some homogenization rules
violate the second condition, although remain applicable for filler volume fraction less
than 0.3, which are related to technical application.

A recent homogenization rule comes from Rault et al. [2006]. This study is dedicated
to elastomer materials. This mixing rule is chosen for two reasons: first, this rule
is derived from the micromechanics of elastomers; and second, it is validated with a
broad range of test data. The rule is defined by the following equation

X =
1

1− Φy
(4.25)

with y = 1/3 for spherical inclusions. For the derivation of this rule, the filler particles
are assumed to be rigid. If a specimen is stretched from the length L0 to L, the average
stretch is λ and the elongation equals δL = LO−L. The stretch between the particles
must be higher than the overall average stretch to compensate the stiff filler particle.

The distance between the filler particles is assumed to be L∗0. With this definition,
the elongation between two filler particles is calculated as

δL∗ = (1− λ∗)L∗0 (4.26)
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and on average for the specimen

δL = (1− λ)L0 (4.27)

Equation (4.26) and (4.27) are linked by the filler volume fraction and the geometry
of filler particles as follows

L0 = (1− Ωy)L∗0. (4.28)

Combining all three equations leads to

λ∗ =
λ− Ωy

1− Ωy
. (4.29)

Finally, the derivative of equation (4.29) with respect to the stretch λ leads to (4.25).

4.2. Damage Models

Strain
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E

Figure 4.3.: Typical stress strain curve for isotropic Mullins effect without rate depen-
dent effects

A damage model is used for the description of the so called Mullins effect. Therefore,
an internal variable is introduced, see section 3.4.1. In Figure 4.3, a typical stress
strain curve of the Mullins effect is shown. First, a virgin sample is loaded (line A)
to a certain strain. In case of an isotropic Mullins effect, unloading at a certain point
of the stretch follows the line B, which ends at the origin. Accordingly, this means
that no residual stress occurs while releasing the stress to zero, further reloading will
follow the same line as unloading until the stretch reaches the virgin loading curve.
Between the curves A and B, a strong hysteresis can appear. This area between the
curves is the energy dissipation. Further loading will be reached again at the virgin
loading curve C, which is not influenced by the loading history. Unloading from a
higher stretch (line D) leads to a lower stiffness than unloading from a lower stretch
(line B).
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From the typical Mullins effect curves, it can be seen that the damage depends only
on the maximum of strain in loading history. Only the virgin loading is dissipative,
while unloading and reloading are reversible.

The continuum damage theory is applied to describe this kind of effect. This theory
prescinds from the damage in the micro-level and postulates a homogenized damage
parameter D. This leads to a free energy function of the form

ψ = ψ(F , D) = (1−D)ψ0(F ), (4.30)

the damage parameter can be seen as a reduction parameter and is treated as an
internal variable. To obtain the stress, the derivative of (4.30) with respect to time,
i.e.

ψ̇ = (1−D)
∂ψ0

∂F
· ·Ḟ − ψ0Ḋ, (4.31)

is performed by use of chain rule. With equation (3.66), the internal dissipation is
calculated as

D =

(
P − (1−D)

∂ψ0

∂F

)
· ·Ḟ + ψ0Ḋ ≥ 0. (4.32)

As the deformation gradient is arbitrary, hence the first part of the above equation
has to vanish to fulfil this criterion. This leads to the following equation

D = fḊ ≥ 0, (4.33)

with the thermodynamic force f = Ψ0(F ). Equation (4.33) shows that damage is a
dissipative process. By using equation (4.30), it can be seen that the thermodynamic
force f is related to the internal variable D as follows

f = ψ0(F ) = − ∂ψ
∂D

. (4.34)

As result of equation (4.34), the process of damage can be controlled by the effective
strain energy function ψ0 rather than the internal variable.

The above equations construct a framework for describing the damage in a general way.
For the phenomenological constitutive description of damage, the evolution equation
is missing. One example of the damage evolution according to Holzapfel [2000] is

D = D(α) = D∞

[
1− exp

(
− α

αref

)]
. (4.35)

with the maximum damage D∞ ∈ [0, 1], which is usually less than one to avoid
an ill-conditioned equation system in the finite element calculation and the damage
saturation parameter αref.

The damage variable α has to be determined from the history of the effective free
energy function until the current time. For the Mullins effect, the damage is assumed
to be discontinuous, which means that damage only occurs during virgin loading. This
can be expressed by using the maximum of effective free energy function in time t

αD(t) = max
[0,t]

ψ0. (4.36)
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For modelling the continuous damage (damage occurs in loading and in unloading)
the maximum can be replaced by the integral over time

αC(t) =

∫ t

0
ψ0dt (4.37)

For the determination of the damage variable, stress tensors (stress introduced dam-
age) or strain tensors (strain introduced damage) also can be used.

Another class of damage models predicts the damage initiation criteria. The material
is reversible until a certain stress level is reached, in analogy to plasticity, see Lemaitre
and Desmorat [2005].

The concept of pseudo elasticity can also be used as a simple approach. For loading,
a hyperelastic material model is used. At each point of unloading, the weakened
material model is initiated, see Ogden and Roxburgh [1999].

Recently, there are models available to describe the anisotropic Mullins effect in a
phenomenological way, by using a set of internal variables, see Itskov et al. [2010].

4.3. Visco-Elastic Models

The first models in the field of viscosity are simple one-dimensional rheological models.
These models comprise of springs and dampers. Two well-known models are the
Kelvin model, which is a parallel connection of springs and dampers, and the Maxwell
model, which is a connection in series.

In material testing, the relaxation test and the creep test are carried out. For the
relaxation test, the specimen is stretched immediately to a certain value and then
the stretch is held constant. It emerges that the stress jumps to a higher level and
will decrease over time. In a creep test, the stress is increased to a certain level and
is held constant. The stretch is increasing at constant stress until it saturates. For
elastomers, the characteristic time for creep is much higher than for the relaxation
test.

The Kelvin element is able to model the creep test, whereby the stress in the damper
decrease by time and the stretch increases until the stress in spring equals the external
stress. The relation test cannot be modelled by the Kelvin element because the
damper precludes an immediate stretch jump. For the Maxwell element, it is vice
versa, the relaxation test can be modelled, but the creep test will turn out an infinity
stretch, because the damper increases the stretch in a constant rate at a constant
stress.

Both Kelvin and the Maxwell models are inadequate to model the visco-elastic be-
haviour. To overcome this problem, a three-parameter model is introduced. It is a
parallel connection of Maxwell element with a spring. The three parameters are the
Young’s modulus in equilibrium state E∞, the Young’s modulus for non-equilibrium
state E and the damper constant η. This model shows the correct behaviour in both
tests. In relaxation test, the initial stiffens is E∞ +E, it will relaxate the stiffness of
E. In creep test the strain is limited by parallel spring E∞.

For elastomers, it is known that it has different time constant and stiffness for different
loading speeds. Therefore, the three-parameter model is generalised by adding i spring
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damper modules in parallel, see Figure 4.4. The stress is calculated by the summation
of all the elements

σ11 = E∞ε+
∑

i

Ei(ε− αvi), (4.38)

with a set of internal variables αi, which store the relaxation state of each spring
damper element. This model is especially useful for small strains. The material
parameter can be fitted by using optimisation tools to a standard harmonic excitation
test without knowing what is going on inside the material.

A three-dimension model can be found in Simo [1987] and Simo and Hughes [2000].
The model is presented in the case of a small strain, with the assumption that only
the deviatoric part has an influence on the viscous response. Also, the stress can be
expressed in an elegant way with the use of convolution integral

σ(t) =

∫ t

∞
g(t− s) d

ds

[
dev

(
∂ψ

ε

)]
dt. (4.39)

This formula is also known as fading memory integral, because the inputs will loose
their effect with time. The shortening g(t) describes the normalised relaxation func-
tion

g(t) = γ∞ +
∑

i

γi exp

(
t

τi

)
(4.40)

and the normalised elastic modulus as material parameters

γi =
Ei

E0
(4.41)

γ∞ =
E∞
E0

. (4.42)

For consistency
∑

i

γi + γ∞ = 1 (4.43)

has to be satisfied.

In analogy to the generalised relaxation element, a finite-strain three-dimensional
visco-elastic model was proposed by Simo [1987]. The viscous effects are modelled
with a set of internal variables for each spring damper element. An uncoupled free
energy density function is proposed. The first part considers the equilibrium part,
the second part comprises the non-equilibrium energy of the viscous effects. The
decoupling of deviatoric and volumetric response is motivated by the hyperelastic
material models, as shown in section 4.1. For the viscous part, it is only dependent
on the deviatoric components. This is mainly motivated by two reasons: first, the
volumetric deformation is small in comparison with the deviatoric one; and second,
no sliding of chains takes place, during compression. This material is energy elastic
due to the change of atomic distance. For the finite-strain model, the free energy
density function is formulated as follows

Ψ(C,αv) = Ψ(J) + Ψ(C)−
∑

i

1

2
C · ·αiv + θ

(∑

i

αiv

)
(4.44)
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Figure 4.4.: Generalised relaxation model with i spring damper modules in parallel

with the set of internal variables αiv .

A thermoviscoelastic approach can be found in Suwannachit and Nackenhorst [2013].
It uses internal heating due to viscous effects and temperature dependent material
behaviour. This model is used in stationary rolling contact in an Arbitrary Lagrangian
Eulerian framework. The temperature and the inelastic history is propagated through
a fixed mesh with a Time Discontinuous Galerkin method.

A two scale model for non-linear viscoelasticity was published by Tang et al. [2012]. It
introduce an additional degree of freedom for the free chain network theory presented
in Treloar [1975]. A statistical approach for visco-plastic material behaviour can be
found in Martinez et al. [2011].
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5. Micromechanically Motivated Material Model

A micromechanically motivated material model for elastomer is presented in this
chapter. The chapter starts with the description of the micro plane model applied in
this thesis. Subsequently, the specific constitutive equations for elastic, anisotropic
Mullins-type damage and viscous parts will be developed.

5.1. Network Decomposition Concept

The model is based upon the network decomposition concept, which is widely used to
describe the microstructure of particle-filled elastomer, see e.g. Klueppel [2003] and
Tang et al. [2012].

The network decomposition concept is operating on the length scale of elastomer
chains and filler particles, whereby the structure of an elastomer chain has been
described in section 2.1. There are three different phases in filled elastomers, which are
decomposed according to Figure 5.1. The first phase is the chain-chain network, which
is responsible for the elastic stiffness. This phase is stretched during the deforming
of the specimen, while there is no change in network topology. The second phase is
the chain-filler network, which is responsible for the Mullins effect. The third phase
is associated with the free chains, which are responsible for the viscous behaviour.
It is assumed that there is no interaction between the chain-chain and chain-filler
network. For the free chains, an unilateral interaction with the chain-chain network
is assumed. The chain-chain network acts as an obstacle for the free chains. With

Figure 5.1.: Illustration of the network decomposition concept, grey curves: connected
chains, grey dots: connection points, blue curves: free chains, red dots:
chain-filler bonding, grey areas: filler particle

this assumption, the free energy of an elastomer ψ can be written as the sum of free
energy of the phases, whereby the total free energy can be expressed as

ψ = ψcc + ψcf + ψfc, (5.1)

with the free energy of the chain-chain network ψcc, chain-filler network ψcf and free
chain network ψfc. In the following section, the free energy function is described, in
particular, for the different types of network by using the statistical approaches for
the chain and filler distribution and alignment.
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5.2. Micro Plane Model

The idea to describe the material plasticity in several micro planes dates back to
Taylor [1938]. In fact, the micro plane model is not limited to plasticity, rather it is
applicable for material modelling in general.

In computational mechanics, the micro plane model was first successfully applied for
the concrete materials by Bazant and Oh [1985]. For concrete, it is known that the
failure stress in compression is much higher than in stretch. This phenomenon is
explained by microstructure. In compression, small cracks will close and transmit
forces, while in tension, the cracks will open and propagate. This leads to a decrease
of the effective area, where tension stress will be transmitted. It appears obvious that
the cracks will open and proceed depending on the stress state, which leads to a strain
introduced anisotropy. Doubtless, the anisotropic damage cannot be described by a
free function (4.30).

The idea of the micro plane modelling introduces a stress strain relation at multiple
micro planes, where a one-dimensional constitutive equation depending on the stretch
in the micro plane normal direction of d has to be formulated at each micro plane.

In order to obtain a three-dimensional material model, the integral over the unit
sphere S

τ =

∫
• 1

4π
d× ddS (5.2)

has to be evaluated. By •, the material equation in direction d is expressed. This
integral can only be evaluated analytically for the simple material equations. In
general, it has to evaluated numerically. In the next section, a numerical efficient
integration scheme is presented.

5.2.1. Numerical Integration at the Surface of a Unit Sphere

The finite element implementation of the micro plane concept requires an efficient and
accurate numerical integration over the surface of a unit sphere. A simple approach is
to perform the integration over a rectangular domain in the direction of the spherical
angular coordinates. However, this approach is inefficient, since the integration points
are crowded on the poles of the sphere, see Bazant and Oh [1986]. In order to find a
Gauss like integration rule, the integration points have to be distributed as equally as
possible. The use of platonic solids has been suggested by Albrecht and Collatz [1958],
although this approach is limited to maximum of 20 integration points over the unit
sphere, because no regular polyhedron exists with more than 20 surfaces, as proven
by Euclid around 300 BC. With the 20-point integration formula, only polynomials
upto 5th order can be integrated exactly.

A more efficient approach has been published by Bazant and Oh [1986], using the
material symmetry, so the integration has to be performed on a half sphere. With
some optimality criteria, they found the so-called 21 × 2 integration schema, which
is accurate up to the order of 9, see appendix A.1. In Figure 5.2, the location of the
optimal integration points can be seen. Geometrically, this schema can be seen as
the interpolation of an octahedron. The additional integration points are located on
lines, that bisect the border of the 1/8 unit sphere. The 1/8 part of the unit sphere
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corresponds to one face of an octahedron, which is known to be optimal. The inner
points are located by minimization of agglomeration of integration points. Putting all
eight faces of the octahedron together and removing the redundant points, the unit
sphere is approximated by 42 optimal integration points. By using the symmetry of
the points, the 21× 2 integration schema evolves.

The numerical integration of equation (5.2) can now be carried out by using the simple
formula

τ =
∑

i

•widi × di. (5.3)

The integration weights wi and the corresponding directions di can be found in ap-
pendix A.1.
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Figure 5.2.: Distribution of the integration points for 21×2 integration schema on 1/8
of a unit sphere
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5.3. Elastic Part of Material Model

The elastic part of the material model is based upon the suggestions from Miehe et al.
[2004], describing the micromechanics of the chain-chain network.

5.3.1. Material Tangent

In this section, the material tangent for large strain conditions under almost incom-
pressible behaviour is derived, see Miehe [1994] and Miehe [1996]. A hyperelastic
material model from the type of equation (4.1) is used. In particular, the free energy
function

ψcc(J, g,F ) = Ucc(J) + ψcc(g,F ) (5.4)

has a volumetric part Ucc(J) and a deviatoric part ψcc(g,F ). The deviatoric part
depends on a metric tensor g, for a Cartesian coordinate system, the metric tensor is
the unit tensor I defined in equation (3.12).

The first step is to derive the Kirchhoff stress tensor and the material tangent from
equation (5.4). Starting with the volumetric part, the deviatoric Kirchhoff stress

τ = 2
∂Ucc(J)

∂b
· b (5.5)

is defined as the directional derivative of free energy function with respect to the left
Cauchy-Green tensor b. In some references, the Cauchy-Green tensor is called the
Finger deformation tensor. Using chain rule equation for (5.5) and ∂J

∂b
= 1

2
Jb−1

emerges as

τ = 2
∂Ucc(J)

∂J

∂J

∂b
· b (5.6)

= JU
′
cc(J)g−1. (5.7)

Finally, with the abbreviation p = JU
′
cc(J), the volumetric part of the Kirchhoff stress

follows to

τ = pg−1. (5.8)

The material tangent is calculated by the second directional derivative of volumetric
free energy function

C = 4b · ∂
2Ucc(J)

∂b2
· b. (5.9)

The first derivative is known from the derivation of the stress tensor, therefore, the
second derivative leads to

∂2Ucc(J)

∂b2
=
∂ 1

2
Jb−1U

′
cc(J)

∂b
. (5.10)

Again, this equation is derived by using chain rule and ∂b−1

∂b
= −b−1 · I · b−1,

∂2Ucc(J)

∂b2
=

1

4

[
Jb−1U

′
cc(J)b−1 − Jb−1 · I · b−1U

′
cc(J) + J2b−1U

′′
cc(J)b−1

]
. (5.11)
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With the abbreviation k = J2U
′′
cc(J), hence equation (5.11) simplifies to

∂2Ucc(J)

∂b2
=

1

4
b−1

[
(p+ k)g−1 ⊗ g−1 − 2Ip

]
b−1. (5.12)

Finally, insertion of equation (5.12) into (5.9) leads to the volumetric part of the
material tangent

C = (p+ k)g−1 ⊗ g−1 − 2Ip. (5.13)

The next step is to derive the deviatoric parts of Kirchhoff stress tensor and material
tangent. The derivative of deviatoric part of the left Cauchy-Green tensor with respect
to the left Cauchy-Green itself is calculated by

∂b

∂b
= J−2/3(I− 1

3
b−1 ⊗ b). (5.14)

The deviatoric stress is defined as

τ = 2b
∂ψcc(g,F )

∂b
. (5.15)

Using equations (5.14) and (5.15), the stress is calculated with the definition of the
projection tensor P = I− 1

3
g−1 ⊗ g−1 to

τ = 2b

(
J−2/3I− 1

3
b−1 ⊗ b

)
· ·∂ψcc(g,F )

∂b
(5.16)

= 2P · ·
(
b
∂ψcc(g,F )

∂b

)
. (5.17)

The second derivative of the deviatoric part of the free energy with respect to the
left Cauchy-Green tensor is calculated in analogy to the volumetric part. Using the
results from the stress tensor, this leads to

∂2ψcc
∂b2

=
∂
[(
J−2/3I− 1

3
b−1 ⊗ b

)
· · ∂ψcc(g,F )

∂b

]

∂b
. (5.18)

With the use of chain rule, the second derivative of the free energy can be derived

∂2ψcc
∂b2

= b−1

[
P · ·

(
b
∂2ψcc

∂b
2
b

)
· ·P +

1

3
tr

(
∂ψcc

∂b

)(
I +

1

3
g−1 ⊗ g−1

)

− 1

3
[b

(
∂ψcc

∂b

)
⊗ g−1 + g−1 ⊗

(
∂ψcc

∂b

)
b]

]
b−1. (5.19)

With the definitions C = 4b
∂2ψcc
∂b2

b and τ = 2b
∂ψcc
∂b

, the deviatoric part of the
material tangent is obtained

Ccc = P · ·C · ·P+
2

3
τ · ·g−1

(
I +

1

3
g−1 ⊗ g−1

)
− 2

3

(
τ ⊗ g−1 + g−1 ⊗ τ

)
. (5.20)



44 5.3. Elastic Part of Material Model

Combining equation (5.13) and (5.20) leads to the general material tangent

Ccc = (p+ k)g−1 ⊗ g−1 − 2Ip

+ P · ·
(
C +

2

3
τ · ·g−1

(
I +

1

3
g−1 ⊗ g−1

)
− 2

3

(
τ ⊗ g−1 + g−1 ⊗ τ

))
· ·P
(5.21)

with the application of the projection property P = P · ·P. This projection property
states that multiple projection leads to the same result as applying the projection
once, see also Itskov [2007].

5.3.2. Non-Gaussian Statistic for Chain Entropy

In section 2.1.2 the derivation of the entropy of a single elastomer chain has been
shown. A Gaussian statistic was used, which is limited to small deformation. Now,
as elastomer undergoes large deformation, a non Gaussian statistic is used in this
section. It describes the behaviour correctly for large deformation theory.

A model based upon the Largevin function was introduced by Kuhn and Grün [1942]
and James and Guth [1943]. They found a probability density in analogy to equation
(2.5) of the form

pf (λ) = po exp

[
−N

(
λrL−1(λr) + ln

( L−1(λr)

sinhL−1(λr)

))]
, (5.22)

with the normalised constant p0 and the definition of relative stretch

λr =
r

L
=

λ√
n

∈ [0, 1), (5.23)

where L = nl denotes the contour length and L−1 is the inverse of the well known
Langevin function

L(x) = cothx− 1

x
. (5.24)

Applying the procedure as described in section 2.1.2, the free energy of a single elas-
tomer chain is

ψC(λ) = nkBT exp

[
−N

(
λrL−1(λr) + ln

( L−1(λr)

sinhL−1(λr)

))]
+ ψ0, (5.25)

with the constant ψ0. Applying the first derivative with respect to the stretch λ to
the free energy function gives the force acting on a free chain. According to Treloar
[1954], the chain force is calculated as

FC = kBT
√
nL−1(λr). (5.26)

The force is a non-linear function of the stretch and has asymptotic behaviour at the
limited end to end distance of a chain. The extensibility limit is reached at λr → 1
or λ→ √n.

Since there is no analytical function inverse of the Langevin function, an approxima-
tion is necessary. One idea is to construct an invertible Taylor series approximation
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for the Langevin function, although this leads to either long polynomial functions or
even poor approximation. A simple and precise approximation of the inverse Langevin
function is the Padê approximation, i. e.

L−1(λr) ≈ λr
(3− λ2r)
(1− λ2r)

. (5.27)

In Figure 5.3, the normalised stress for Gaussian and Langevinian statistics is com-
pared. The first term of the Taylor series of the Langevin function proves to represent
the Gaussian statistics. Consequently, for small strain, both functions match well.
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Figure 5.3.: Normalised stress for Gaussian (solid line) and Langevinian (dashed lines)
statistics for different chain length n

5.3.3. Stress and Material Tangent for Affine Network Model

First, the deviatoric part of stretch in direction d and its absolute value are defined

λd = F · d, (5.28)

λd = |λd|. (5.29)

To visualise the concept of stretches in different directions, some typical stretch states
are shown in Figure 5.4, assuming a preserved volume. The uniaxial stretch is well
known from common material testing machines. If the specimen is stretched to twice
its length in one direction, the stretch in both perpendicular directions is 1/

√
2. In

equibiaxial tests, the specimen is stretched in two directions with the same stretch, con-
sequently, its contraction in perpendicular direction is 1/4. This test is quite similar
to uniaxial stretch, because it yields familiar Mohr’s circles. In pure shear or stripbi-
axial extension (definition according to Holzapfel [2000]), the specimen is stretched
in one direction and compressed in the second direction to 1/2. Consequently, the
stretch equals one, in the third direction. For the corresponding experimental set-up,
the reader is referred to Rivlin and Saunders [1951b].

The stress is defined as the derivative of the free energy function with respect to the
metric

τ = 2b
∂ψcc(g,F )

∂g
. (5.30)
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Figure 5.4.: Visualisation of typical stretch states on one half of a unit sphere, the
numbers describe the stretch in the corresponding direction. The com-
pression stretches (λd < 1) are marked in dark blue, while elongation
stretches (λd > 1) are red. A) uniaxial stretch, B) equibiaxial stretch and
C) pure shear or stripbiaxial extension
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Inserting equations (5.23) and (5.27) into (5.26) leads to

Fc =
∂ψc(λ)

∂λ
= kBTλ

3n− λ2
n− λ2 , (5.31)

which represents a computable form of the free energy function of a single chain in
dependence of the stretch λ. Applying chain rule and the derivative of stretch with
respect to the metric ∂λ

∂g
= λ−1λd ⊗ λd, the stress is obtained as

τ =
1

2

∂ψcc(g,F )

∂λ

∂λ

∂g
= NcckBT

〈
3n− λ2
n− λ2 λd ⊗ λd

〉
. (5.32)

Ncc is the number of chains in the chain-chain network per unit volume. The brackets
〈•〉 symbolise averaging over the unit sphere.

The next step is to derive the material tangent. This is achieved by chain rule, where
∂λd⊗λd

∂g
= 0. With the definition

C = 4
∂2ψcc(g,F )

∂g2
(5.33)

the material tangent follows to

C = NcckBT

〈(
λ4 − 3n2

(n− λ2)2
− 3n− λ2

n− λ2
)
λ
−2
d λd ⊗ λd ⊗ λd ⊗ λd

〉
. (5.34)

Finally, the averaging has to be performed by using numerical integration with the
weights wi, i. e.

τ = NcckBT
∑

i

3n− λ2
n− λ2 λd ⊗ λdwi (5.35)

C = NcckBT
∑

i

(
λ4 − 3n2

(n− λ2)2
− 3n− λ2

n− λ2
)
λ
−2
d λd ⊗ λd ⊗ λd ⊗ λdwi. (5.36)

Equations (5.35) and (5.36) are computable representation for the deviatoric stress
and the material tangent.

5.4. Anisotropic-Mullins Type Damage Model

The damage in filled elastomers has attracted the research interest since long time.
From the experimental results, it is known that the strain softening strongly depends
on the filler concentration. The softening in unfilled elastomer appears to be negligible,
while for elastomers with high filler concentration, the softening becomes increasingly
intense, Mullins [1969]. In Harwood et al. [1965], possible reasons for the damage are
discussed, e.g. debonding of chains from filler particles, the recreation of cross-links
and chain breakage.

Based upon the theory of chain debonding, Govindjee and Simo [1991] introduced a
micromechanically motivated model, whereby they derived an equation for the chain
distribution between the filler particles. With this distribution function, the damage
state of the material can be calculated by debonding of the chains due to network
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stretch. This model shows good results, although it is unable to describe the strain
introduced anisotropy and permanent set. In Göktepe and Miehe [2005], a model
was presented, that takes anisotropic damage into account, although the damage
function is of phenomenological type and not directly derived from micromechanics.
Dargazany and Itskov [2009] presented a micro-mechanical based model including
anisotropy. Due to the mathematical structure of this model, an efficient finite element
implementation is not straightforward. Motivated by this, a fully micro-mechanical
based damage model suitable for an efficient FE implementation will be derived below.

5.4.1. Statistical Distribution of Chains between Filler Particles

The anisotropic damage model is based upon the transient network theory, which
means the network is evolving during deformation. This evolution takes place in the
chain-filler network, see Figure 5.5. During stretching, some chains reach their fully
stretched length and debond from the filler particles. This leads to a decrease of
material stiffness.

Figure 5.5.: Development of filler particle network during stretching, A) unstreched
state, B) stretched state first chain debonding and C) second chain
debonding

To provide a physical description of the transient network model, a statistical descrip-
tion for the connection of two filler particles is necessary. According to Govindjee and
Simo [1991], the probability for the bondage of the n-th chain element to a filler can
be described as

P (n, z(r)) =
1

4
κ

√
24

πn
exp

(
z2

n
− 1

2
κ

√
24

π

(√
πz

[
erf
(

z√
n

)
− erf(z)

]

+
√
n exp

(−z2
n

)
− exp

(
−z2

))
)
, (5.37)

with the abbreviation

z =

√
3

2
r. (5.38)

The material parameter κ (see equation (2.15)) is the quotient of available and
used absorption area. In Figure 5.6, the probability density function is plotted. The
probability is zero until the fully stretched chain is long enough to bridge the distance r
between two aggregate surfaces. In Figure 5.7, the absorption points or chain bonding
points are illustrated, whereby each absorption point can only be used once. If the
nearest absorption is already allocated by another chain, the number of chain elements
has to increase to find a free absorption point. Depending on κ, a maximum is reached
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Figure 5.6.: Probability distribution for the connection of n-th chain element to a
filler particle according to Govindjee and Simo [1991]. With r = 10, and
κ = {1, 2, 3, 4}, the curve become flatter with decreasing κ.

for different numbers of chain elements. For a high number of κ, the maximum
is reached at a low chain length since there are many free absorption points. If κ
decreases, the probability of finding a free absorption point close to the beginning of
the chain decreases. Accordingly, the maximum of probability density will be reached
at higher number of chain elements and further the curves will become flatter.

Figure 5.7.: Illustration of free (white) and allocated (black) absorption points for
chain-filler bonding.

5.4.2. Microscopic Free Energy Function for Mullins Effect

The anisotropic damage model illustrated here is based upon the same framework as
introduced for the elastic material law, as the material micromechanis is integrated
over the unit sphere. For treatment of the damage, it is enhanced with internal
variables and a non-affine micro stretch assumption. Hence, the correction factors
suggested by Treloar [1975] are used to find the end to end distance of an elastomer
chain:

ã =
1

cos(θ/2)
√
α
, (5.39)

b̃ = cos2(θ/2)
√
α, (5.40)
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with the valence angle θ = 109.5 and the common assumption α = 1, see Flory [1989].
The end to end distance of a fully stretched chain can be calculated with use of Treloar
correction factors and microstretch χ to

rf =
χr0

ãb̃
. (5.41)

This is about one-half of the contour length of the corresponding elastomer chain.
The microstrech is calculated by the macrostretch λ multiplied by the reinforcement
factor X

χ = Xλ (5.42)

The next step is to provide a criterion for the initiation of the chain debondage. It is
known that the chain strength is much higher than the chain-filler bonds, see Bueche
[1960]. Once the chain is detached, the chain remains irreversibly detached. The
debonding force is denoted as Fu. This force is attained when the chain is close to its
fully stretched length. The criteria, when the chain starts to debond can be written
as

nl =
νχr0

ãb̃
, (5.43)

with the sliding ratio ν > 1. The debonding corresponds to the minimal available
chain length nl between two filler particles. In van der Linden et al. [1994] and Huber
and Vilgis [1998], the influence of the chain factors were investigated, ascertaining
that the chain length has no influence, whereas the surface topology has a strong
influence. Therefore, the sliding parameter is treated as a material parameter for
all chains that are connecting to filler particles. The additional free energy of the
chain-filler network can be described by

ψ̃cf =

∫ nu

nl

ψc(λ, n)CP (n)dn, (5.44)

with the correction factor C, which is discussed later. The minimal chain length is
related to the actual stretch by the sliding factor and can be treated as an internal
variable. The minimal chain length is dependent on the material history, in particular
the maximum stretch in a certain direction. The maximal chain length nu is similar to
a cut off radius in molecular dynamics. This assumption is applicable when a greater
cut off radius has no significant influence. The most influence term of equation (5.44)
have chain lengths close to the minimal chain length because the force is close to
infinity. For large chains, the probability function P (n) tends to zero. Another
reason for neglecting large chain is because finite volume between two filler particles
makes it geometrically impossible to place long chains. In Figure 5.8, it can be seen
that a detachment of a chain do not inevitably leads to a complete loss of entropic
stiffness. A multiple attached chain can activate another bonding. Overall, this leads
to a constant number of chain elements. The P (n) has to be corrected in case of
activation of new bonds. By considering the assumption that the number of active
chain elements remains constant, the correction factor is expressed as follows

C =

∫ nu
nl(1)

P (n)ndn
∫ nu
nl(χ)

P (n)ndn
. (5.45)
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Figure 5.8.: Development of filler particle network during stretching, A) unstretched
state and B) stretched state chain debonding with activation of another
bonding

5.4.3. Material Tangent with Approximate Probability Function

The probability density function (5.37) is far too complicated for analytical integra-
tion over the number of chain elements, since it contains the error function. The
computational cost for a numerical integration is too high, because the calculation
has to be made a for each Gauss point in each iteration of a finite element calculation.
Another complication is that the probability density function has to be multiplied
with the force acting on the elastomer chains in dependence of its relative length. Be-
cause of these reason, a simple function has to be found to approximate the relevant
part of the probability density function in an appropriate way. The use of the Gauss
function leads to the problem after multiplication of the chain force. The solution of
the integral requires multiple integration by parts. The first integral of exponential
function can be found to the error function, although for the second time, there is no
longer an analytical expression.

A Taylor series expansion of the function avoids such kind of problems, since it can
be derived and integrated without problems. The remaining question is the order
of the Taylor expression. To answer this question, different degrees of polynomial
function are tested, whereby it emerges that the best correlation can be found for
fourth order polynomial expression. The second order has an acceptable accuracy,
while the third order has almost the same result as the second order. The fourth
order approximation require too much computational cost after integration. Hence,
the second order polynomial is chosen, see Figure 5.9. Later, it will be shown that
the model with this approximation can very well represent the test results.

Table 5.1.: Coefficients and R-square for different polynomial approximation orders

order R-square p1 p2 p3 p4 p5

2 0.95198 -1.05E-2 1.34E-3 -0.02598 - -
3 0.95287 -1.68E-5 -7.45E-3 0.00118 -0.02335 -
4 0.99810 5.88E-6 -1.43E-3 0.0001112 -0.002907 0.02445

In Table 5.1, the results of the curve fitting are shown. R-square is a measure of the
quality for the used approximation. It is defined as follows

R-square = 1−
∑
i(f(x)i − gi)2∑
i(f(x)i − f(x))2

, (5.46)
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Figure 5.9.: Chain length in chain elements n as a function of the probability density.
Fitting of probability density function with polynomial function and the
corresponding residual: A) second order, B) third order and C) fourth
order

with the function values f(x)i, the approximated function values gi and the mean
function value over the approximation interval f(x). Normally, R-square of 0.95
is required, beside the maximum R-square of 1 can be achieved in case of perfect
fitting. Therefore, the second order model is reasonably good compromise between
computational cost and accuracy.

In general, the polynomial approximation of order o has the following form

P (n) =

o+1∑

i=1

pin
o−i+1. (5.47)

For the special case of order of two, the probability density function is approximated
by

P (n) = p1n
2 + p2n+ p3 (5.48)

with the coefficients p1, p2, p3. The coefficients are not physical material parameters,
but are dependent on κ, which has a physical representation in elastomer microme-
chanics. Therefore, they are interpreted as intermediate or pseudo parameters, which
are calculated before the FE-calculation.

The approximated probability density function is multiplied with the chain force and
the correction factor. Since the correction factor only depends on the minimal avail-
able chain length, it can be placed before the integral, whereas the remaining part of
the function has to be integrated over the chain length n. The force in one direction
caused from the chain-filler interaction is calculated as

τD = kBTC
∫ nu

nl

FCP (n)dn (5.49)

τD1 =

∫ nu

nl

r

ãb̃n

3−
(

r
ãb̃n

)2

1−
(

r
ãb̃n

)2 (p1n
2 + p2n+ p3)dn (5.50)

τD = kBTCτD1. (5.51)
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The integral part τD1 of equation (5.50) has to be evaluated to calculate the macro
stress. After integrating over the chain length and the using the bounds, τD1 can be
written as

τD1 =
r[

u1︷ ︸︸ ︷
ln(r + nuãb̃)− ln(r + nlãb̃)](

u2︷ ︸︸ ︷
p3ãb̃

2 − p2ãb̃r + p1r
2)

ãb̃3

+
r[

u3︷ ︸︸ ︷
ln(nuãb̃− r)− ln(nlãb̃− r)](

u4︷ ︸︸ ︷
p3ãb̃

2 + p2ãb̃r + p1r
2)

ãb̃3

+

u5︷ ︸︸ ︷
3[nu − nl]p2r

ãb̃
+

3[n2
u − n2

l ]p1r

2ãb̃
+
p3r[ln(nu)− ln(nl)]

ãb̃
. (5.52)

The resulting micro force is split into parts to perform the derivative with respect to λ
and the minimal available chain length nl. Using the chain rule, the derivative is first
calculated with respect to r. Here the correction factor for reactivation of bondings
is not taken into account, since it does not directly depend on λ. The derivatives are
solved as follows

∂u1

∂r
=

1

r + nuãb̃
− 1

r + nlãb̃
(5.53)

∂u2

∂r
= −p2ãb̃− 2p1r (5.54)

∂u3

∂r
= − 1

nuãb̃− r
+

1

nlãb̃− r
(5.55)

∂u4

∂r
= p2ãb̃− 2p1r (5.56)

∂u5

∂r
=

3[nu − nl]p2
ãb̃

+
3[n2

u − n2
l ]p1

2ãb̃
+
p3[log(nu)− log(nl)]

ãb̃
(5.57)

with the abbreviations

u6 = u1u2 + r
∂u1

∂r
u2 + ru1

∂u2

∂r
(5.58)

u7 = u3u4 + r
∂u3

∂r
u4 + ru3

∂u4

∂r
(5.59)

the following derivative is obtained

∂τD

∂r
= u6 + u7 +

∂u5

∂r
(5.60)

and furthermore

∂nl

∂λ
=

1

1− Cy
nur0

ab
(5.61)

∂r

∂λ
=

r0

1− Cy . (5.62)

Equation (5.60) describes the change of micro force with respect to the distance
between two filler particles. The change of the lower integration bound with respect
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to the stretch is described by (5.61). In equation (5.62), the distance between two
filler particles is related to the stretch, depending on the filler volume fraction C.

A major part of the material tangent are the derivatives described above. Therefore,
it has to be distinguished between the two given cases. In the first case, nl remains
constant, which means that the damage is not evolving. In the second case, the
maximal stretch is reached. Further the debonding of elastomer chain takes place
and the damage is evolving. To distinguish these two cases, the damage switch sD is
introduced as follows

sD =

{
1, if ṅl > 0

0, if ṅl = 0
. (5.63)

For a positive change rate of minimal chain length between two filler particles ṅl > 0,
whereby the damage is evolving in the computed direction, the derivative with respect
to nl has to be evaluated. For ṅl = 0, there is no need to calculate the derivative.
Finally, the consistent tangent for one integration point in the unit sphere leads to

cD =
dτD
dλ

=
∂τD(λ, nl(λ))

∂λ
+ sD

∂τD(λ, nl(λ))

∂nl(λ)

∂nl(λ)

∂λ
(5.64)

cD =
∂τD(r(λ), nl(λ))

∂r

∂r(λ)

∂λ
+ sD

∂τD(r(λ), nl(λ))

∂nl(λ)

∂nl(λ)

∂λ
, (5.65)

with the derivative of tension with respect to the minimal available chain length

∂τD1

∂nl
= − r(p3ãb̃

2 − p2ãb̃r + p1r2)

ãb̃2(r + nlãb̃)
− r(p3ãb̃

2 + p2ãb̃r + p1r2)

ãb̃2(nlãb̃− r)
−3p2r

ãb̃
−3nlp1r

ãb̃
− p3r

ãb̃nl

(5.66)

and derivative of the correction factor for the reactivation of debonded chains with
respect to nl

∂C
∂nl

= −
∫max
nl(1)

P (n)ndn(−p1n3
l − p2n2

l − p3nl)(∫max
nl(λ)

P (n)ndn
)2 (5.67)

∂τD

∂nl
= C ∂τD1

∂nl
+

∂C
∂nl

τD1. (5.68)

In analogy to the elastic part of the material tangent, the macro stress tensor inte-
grating over the unit sphere yields

τD = NcfkBT
∑

i

τDλ
−1
λd ⊗ λdwi (5.69)

with the number of chain elements per unit volume Ncf that are connecting two filler
particles. Hence the material tensor is calculated as

CD = NcfkBT
∑

i

(cD − τDλ−1
)λ
−2
λd ⊗ λd ⊗ λd ⊗ λdwi. (5.70)

Due to the use of product rule, the material tensor comprises of the micro tangent
cD and the micro stress tensor τD, which is in analogy to the elastic material tensor.
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5.5. Viscous Part of Material Model

In this section, the viscous part of elastomer is derived from its microstructure. Based
on a micro-mechanical tube model, a computable form of the material tangent will
be presented.

5.5.1. Micro-mechanical Motivation of Elastomer Viscosity

A review of elastomer viscosity can be found in Doi and Edwards [1986]. The main
idea of describing the viscous effects is to focus on the behaviour of free moving
chains. In this case, free means that the chains are neither connected to other chains
nor to the filler particles. However, their confirmation is not really free because it is
constrained due to the other chains, whereby the chain is aligned in a kind of virtual
tube, see Figure 5.10. If it is assumed that the other chains are frozen, the chains
marked as dots form up obstacles for the chains within the tube. As the deformation
of the elastomer specimen changes, the entropy of free moving chains is also affected.
If the specimen is stretched in a particular direction, elastomer chains related to this
direction are also stretched.

virtual tube

elastomer

chain

Figure 5.10.: The elastomer chain is aligned in a virtual tube which is bounded by the
chains surrounding the free elastomer chain (black dots). The part of
the chain, inside the tube, is marked by two dashed lines

Here, the concept of the statistics for chain entropy can be used. Hence, the entropy
of the stretched free chains decreases, as in elastomer elasticity. This means that
the stretched chains are no longer in a thermodynamic preferred state. In the case of
elasticity, force on a chain is in static equilibrium with the connected chains and fillers.
For the free chains, there are no reaction forces at the chains ends, which implies that
the chain is able to return to its thermodynamic preferred state. This results in a
diffusion process for the free chain. For the description of this diffusion process, the
probability of chain remaining in the original tube is required. It is assumed that
the chain has the length L. For the parametrisation of this length, the variable s is
introduced. The probability that a part of the chain remains in the tube segment at
time t is denoted as PT (s, t). Its average over the chain length L is calculated as

〈PT 〉 =

∫ L

0
PT (s, t) ds. (5.71)

According to Doi and Edwards [1986], the relaxation time for free elastomer chains
can be described, starting with the probability that describes the movement of the



56 5.5. Viscous Part of Material Model

chains. Using the Rouse model, see Rouse [1953], the probability PM (ζ, t, s), that the
chain moves the distance ζ, while the ends do not reach the end of the tube at time
t = 0 is described by the following equation of motion

mcP̈M + fṖM −
3kBT

ã
PM = F (s, t), (5.72)

with the mass of the chain mc, the normalised bread friction factor f and the thermal
noise function F (s, t). This equation can be solved by neglecting the inertia term.
After some mathematical steps, a one-dimensional diffusion equation is obtained as

∂PM

∂t
= Dc

∂2PM

∂ζ2
, (5.73)

following the condition

PM (ζ, t, s) = 1 for s ≥ 0 ≤ 1. (5.74)

The solution of (5.73) with respect to the initial condition can be calculated by the
infinite sum as

PM (ζ, t, s) =

∞∑

p=1

2

L
sin
(pπs
L

)
sin

(
pπ(s− ζ)

L

)
exp

(−p2t
τd

)
(5.75)

with the time constant

τd =
L2

Dcπ
. (5.76)

To find a probability function that only depends on time, the function will be inte-
grated over the remaining part of chain inside the tube. The remaining tube element
can be located between s− L and s, the integration over ζ yields

PT (s, t) =

∫ s

s−L
PM (ζ, t, s) =

∑

p;odd

4

pπ
sin
(pπs
L

)
exp

(−p2t
τd

)
. (5.77)

As can be seen in equation (5.77), the summation has to be only carried out for the
odd numbers of p = 1, 3, 5, . . . . Now, the dynamics of the chains can be described
by the correlation between initial time t = 0 and actual time t. Therefore, a time
correlation function 〈P (0) · P (t)〉 is defined with the following definitions

P (0) = A0C + CD +DB0 (5.78)
P (t) = AtC + CD +DBt. (5.79)

For the definition of the particular distance between the points in initial and current
configuration, see Figure 5.11. There is no correlation between the vectors AtC and
DBt with P (0), therefore the time correlation function has the following form

〈P (0) · P (t)〉 = 〈CD2〉 = ã〈PT 〉 (5.80)

which is the contour length of the remaining chain. Using equation (5.71) leads to

〈P (0) · P (t)〉 = LãPT (t) = nb̃2PT (t) (5.81)
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A

A

B

C
D

B

0

0

t t

Figure 5.11.: Correlation of original tube with the tube at time t

with

PT (t) =
1

L

∫ L

0
PT (s, t)ds =

∑

p;odd

8

p2π2
exp

(
−p2t
τd

)

. (5.82)

Finally, the time correlation function is calculated as

〈P (t) · P (0)〉 = nb̃2
∑

p;odd

8

p2π2
exp

(
−p2t
τd

)

(5.83)

with the longest relaxation time defined as

τd =
fn3b̃4

πkBT
, (5.84)

where f defines the normalised bead friction power. The bead friction power describes
the energy dissipation due to frictional contact between free chains and chain-chain
network. The relaxation time strongly depends on the chain length. Since the elas-
tomer contains different length of the free chains, an integration over the different
chain lengths was suggested by Martinez et al. [2011] and Tang et al. [2012]. From
micro-mechanical perspective, this approach is the most accurate, however there are
two major problems: first, there is no micro-mechanical distribution function for the
free chains described in literature, rather a generic function has to be assumed, and
second, the numerical cost is much too high for practical finite element usage. The
simplest approach is to use one fixed chain length in analogy to the elastic part of the
model, although this approach is unable to deal with different damping behaviour at
different excitations speeds.

Existing material models with a phenomenological approach use at least three different
time constants, see e. g. Miehe and Göktepe [2005]. The idea for a micro-mechanical
motivated model is to find three characteristic chain lengths for the free chain network,
see Figure 5.12. The smallest chain length nfc1 relates to small branches on the end
of elastomer chains, see also McLeish and Larson [1998]. The chains, bonded to filler
particles at only one side belong to the class of middle chain length nfc2. while the
chains that are not bonded, build the class of long chain length nfc3.

The next step is to find the additional stress caused by the free chains. For a single
chain, the free energy in dependence of its stretch state is known from Gaussian or
Langevinian chain theory. In this case, the Gaussian statistic is suitable for two
reasons: first, the viscous behaviour is important in load cases, where normally the
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ultimate extensibility of chains is not reached (e.g. cyclic loading) and second, the
chains that are close to the finite extensibility are almost straight, so they cannot
transmit forces to the chain-chain network.

5.6. Numerical Implementation

For the numerical implementation, the framework proposed by Miehe and Göktepe
[2005] is used. Each increment in the solution procedure is interpreted as a time
step. Time steps are assumed to be quasi static, which means the inertia terms are
neglected. The free energy function is constructed with strain-like internal variables
for one direction as follows

ψf = ψf (λd, εa) and εa(0) = 0 (5.85)

with the set of internal variables εa. This set of internal variables contains the internal
variables for the three chain lengths. The free energy function is assumed as follows

ψf =
1

2

∑

a

µa(lnλd − εa)2. (5.86)

The dissipation on the microscale can be expressed as

Dmicro =
∑

a

βaε̇a ≥= 0 (5.87)

with the micro force

βa =
∂ψf

∂εa
= µa(ln(λd)− εa). (5.88)

For the internal variables, evolution equations are necessary. Due to the change of
the internal variable, the free energy change equals the dissipated energy

∂ψf

∂εa
+
∂φa

∂ε̇a
= 0 (5.89)

with the dissipation function

φa =
1

τa
ε̇a

2. (5.90)

To ensure the thermodynamic consistency, equation (5.90) has to be convex, the
function will be convex for τa > 0. This means that the relaxation times have to be
positive, which is physically consistent.

The insertion of equations (5.86) and (5.90) in (5.89) gives the evolution equation for
the micro forces

β̇a +
1

τa
βa = µa

d
dt

(lnλd) with βa(0) = 0. (5.91)
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The shear stiffnesses and relaxation times can be calculated from equation (5.83) as

µa(n, p) = N(n)kBT
∑

p;odd

8nb̃2

p2π2
(5.92)

τa(n, p) =
n3b̃4

p2πkBT
(5.93)

with the number of chain elements per unit volume N(n) for the specific chain length.
For the overstress the derivative of the free energy function with respect to the mi-
crostretch

β(n) =
dψf
dλd

∑

a

µa(ln(λd)− εa)
1

λd
=

1

λd

∑

a

βa, (5.94)

is calculated. The derivative of overstress with respect to microstretch leads to the
micro tangent

c(n) =
dβn
dλd

=
1

λ
2
d

∑

a

βa +
1

λd

∑

a

µa. (5.95)

In analogy to elasticity, macroscopic overstress

τv = kBT
∑

i

[∑

n

N(n)βnλ
−
d 1λd ⊗ λd

]
wi (5.96)

and material tangent

Cv = kBT
∑

i

[∑

n

N(n)
(
c(n)− βnλ−d 1

)
λ
−1
d λd ⊗ λd ⊗ λd ⊗ λd

]
wi (5.97)

can be calculated.

Figure 5.12.: Visualisation of three different chain length for elastomer diffusion: A)
short chains, branches of chains, middle length chains, B) middle length
chains, chains attached on filler particle and C) long, uncrosslinked
chains
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5.6.1. Update Step for Internal Variables

The microforces have to be integrated over the time. For each load step, a time step
∆t = tm+1−tm is associated. Replacing the stretch time derivative in equation (5.91)
leads to

βa

∆t
+

1

τa
βa =

µa

∆t

(
ln
λ
m+1
d

λ
m
d

)
with βa(0) = 0. (5.98)

Now, the implicit Euler update step is calculated as

βn+1
a = ∆t

[
− 1

τa
βn+1
a +

µa

∆t

(
ln
λ
m+1
d

λ
m
d

)]
with βa(0) = 0 (5.99)

by using the values at the time n+1. Finally, equation (5.99) can be solved explicitly

βn+1
a =

τaµa

τa + ∆t

(
ln
λ
m+1
d

λ
m
d

)
with βa(0) = 0. (5.100)
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6. Finite Element Method

In this chapter, the finite element method (FEM) is described. The FEM is a general
framework to solve the partial differential equations numerically. In this work, a
finite element description for filler-reinforced elastomer is developed. Therefore, the
basics of non-linear FEM are outlined. Furthermore, the numerical implementation of
the micro-sphere model in FEM framework is shown. For further details concerning
the mathematical background and the implementation of the FEM for non-linear
problems, the reader can refer to Bathe [2006], Zienkiewicz et al. [2005], Bonet and
Wood [2008] and Wriggers [2008].

6.1. Weak Form of Equilibrium

In chapter 3, equations for kinematics, conservation of linear and angular momentum
were highlighted. On combining these equations with the constitutive equation, pre-
sented in chapter 5, leads to a system of coupled partial differential equations. This
initial boundary value problem contains two kinds of non-linearities: first, the con-
stitutive law is non-linear; and second, the geometry is non-linear since it undergoes
large deformations. The static mechanical boundary value problem can be written
in an elegant way by expressing the equilibrium over the body B t and the boundary
∂B t at the current time t. Neglecting the body forces, the equilibrium leads to

divσ = 0 in Bt (6.1)

t = t on ∂tBt (6.2)
u = u on ∂uBt. (6.3)

The boundary conditions are separated into a displacement boundary ∂uBt or Dirich-
let boundary with the enforced displacement u and the traction or von Neumann
boundary with the traction vector t. For the boundary condition, the following con-
ditions hold

∂uBt
⋃
∂tBt = ∂Bt and ∂uBt

⋂
∂tBt = ∅. (6.4)

The first condition states that the boundary sets are disjunct, while the second con-
dition implies that if no displacement is predescribed, a traction vector is applied
including the special case of no traction force.

For a finite element solution of the boundary value problem, a variational is used.
Hence, equation (6.1) is multiplied with a weighting function η. This is also known as
virtual displacement or test function. It is arbitrary and vanishes on the displacement
boundary η = 0 on ∂uBt. Finally, the integration over the domain leads to the
variational form

∫

Bt
divσ · η dv = 0. (6.5)
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Using the divergence theorem leads to

G =

∫

B
P · ·gradη dV −

∫

∂tB
T · η dA = 0. (6.6)

Since the test function is zero on the displacement boundary, the corresponding in-
tegral vanishes. Given that the Cauchy stress tensor is symmetric, the gradient of
the test function can be replaced by its symmetric part 5Sη = 1

2

(
gradη + gradTη

)
,

which leads to

G =

∫

Bt
σ · · 5S η dv −

∫

∂tBt
t · η da = 0. (6.7)

The weak formulation requires that the balance of linear momentum is satisfied not
at all points, but in the integral average over the whole domain. For the weak form,
no potential is assumed, therefore, the weak form can be used in general types of
problems, such as damage, friction, plasticity and so on. Due to the partial integration,
the derivative of the Cauchy stress tensor vanishes. This offers the advantage that no
second derivative of the displacement is necessary for the finite element formulation.

6.2. Linearisation

The problems in continuum mechanics essentially prompt three different types of non-
linearities, namely geometrical, physical or material non-linearities and nonlinarities
due to boundary conditions, such as contact. Elastomers are known for large defor-
mations, non-linear stress strain behaviour and hysteresis, therefore geometrical and
material non-linearities have to be taken into account.

For the solution of the non-linear equations, different solution schemes are available.
The Newton method is most commonly used, because it guarantees quadratic conver-
gence as long as the initial solution lies in the convergence radius. As a first step,
equation (6.7) is linearised with the use of Taylor series expansion at the approximate
solution u. Usually the load is applied incrementally, which implies for new load step,
the converged solution of the last load step can be used. For the first load step, the
reference configuration is used. The linearisation follows as

DG(u,∆u) = G(u) + ∆G(u,∆u) +O(ε2) = 0, (6.8)

with the increment given by

∆G(u,∆u) =
d
dε
G(u+ εu)|ε=0 =

∂G
∂u

∆u. (6.9)

For this expression, a generalisation of directional derivative to functional spaces is
used, which is called the Gateaux derivative. Here ε denotes the direction and ∆u
the displacement increment.

Starting with equation (6.7), the Gateaux derivative in direction of ∆u is calculated
as

∂G(ϕ,η)

∂u
∆u =

∫

B
DP · ·gradη dV. (6.10)
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The force is assumed to be independent of the deformation. By using P = F ·S, the
linearisation of the first Piola-Kirchhoff stress tensor leads to

∂G(ϕ,η)

∂u
∆u =

∫

B
(Grad∆u · ·S + F · · [DS ·∆u]) · ·Gradη dV. (6.11)

With the linearisation of the second Piola-Kirchhoff stress tensor

DS ·∆u = Ci · ·[∆E], (6.12)

where Ci is the elasticity tensor belonging to the initial configuration and ∆E is the
linearisation of the Green-Lagrange strain tensor

∆E =
1

2

(
F T · ·Grad∆u+ GradT∆u · ·F

)
(6.13)

the linearisation follows to

∂G(ϕ,η)

∂u
∆u =

∫

B

(
Grad∆uS + FCi [∆E]

)
·Gradη dV. (6.14)

Now, using the symmetry of Ci, equation (6.14) can be transformed as

∂G(ϕ,η)

∂u
∆u =

∫

B

(
Grad∆uS ·Gradη + δECi [∆E]

)
dV. (6.15)

Above derived equations have two terms: the first term corresponds to the geometrical
stiffness and the second term corresponds to material stiffness. In the material stiffness
δE = 1

2

(
F TGradη + GradTηF

)
symbolises the first variation of the Green-Lagrange

strain tensor. All variables have to be updated for each iteration of the calculation.

The linearisation in current configuration can be derived by a push forward of equation
(6.15)

∂G(ϕ,η)

∂u
∆u =

∫

Bt

(
grad∆uσ · gradη +5sηCi [5s∆u]

)
dv, (6.16)

for details see Wriggers [2008]. The symbol 5s is the symmetric gradient in cur-
rent conformation. The formula derived in equation (6.16) called is the updated
Lagrangian formulation in literature, as all deformation states have to be updated in
each iteration. The linearised relations are used for the finite element discretisation
in the next section.

6.3. Discretisation

The variational description, stated in equation (6.7), requires that the problem is
fulfilled for every test functions satisfying the displacement boundary conditions, al-
though the basic problem lies in the fact that the number of possible test functions
is infinity. In order to reduce the number of test functions, the body in initial confor-
mation is divided into nel discrete elements. The geometry

B ≈ Bh =

nel⋃

el=1

Ωel (6.17)
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B

Bh

Figure 6.1.: Discretion of the domain B with 2-dimensional triangular elements leads
to the approximated Bh

is approximated by non-overlapping subdomains or elements Ωel, which are only con-
nected by the nodes. In this case, the elements form a conforming mesh. In general,
the domains B and Bh are not the same, as can be seen in Figure 6.1.

Following the standard FEM procedure and use of linear shape functions, the discrete
form of boundary value problem (6.1) can be stated as

KT =

∫

Bt

(
grad∆uσ · gradη +5sηCi [5s∆u]

)
dv

≈
nel⋃

el=1

ngp∑

i=1

(
NT
x · σ ·Nx + BT · ·C · ·B

)
detJiwgi, (6.18)

using the Jacoby matrix J . Also, two additional matrices have to be calculated. The
first matrix is the derivative of test function Nx, with respect to global coordinates
and with use of inverse Jacobian and second matrix is the B-matrix. The B-matrix
builds the symmetric gradient of test functions and makes it compatible with material
tensor. In this case, using linear brick elements and Voigt notation, the dimension
of B is 24× 6. The right hand side of equation (6.18) is called the global tangential
stiffness matrix KT.

As a last step, the internal forces are approximated as follows

Fint =

∫

Bt
5sηṠdv ≈

nel⋃

el=1

ngp∑

i=1

BT · S detJiwgi. (6.19)
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6.4. Implementation of Dyadic Product of Stretch Vectors

To calculate the stiffens matrix, an implementation for dyadic product of the stretch
vectors di is necessary. For stress vectors, two times and for material tensors, four
times dyadic product is used. The implementation is done in Voigt notation to save
the computational time. The two times dyadic product emerges as 3 × 3 matrix as
follows

L = λd ⊗ λd. (6.20)

This matrix is converted to Voigt notation as follows

Lv =




L(1, 1)
L(2, 2)
L(3, 3)
L(2, 3)
L(1, 3)
L(1, 2)



. (6.21)

The four times dyadic product

Lv = Lv ⊗Lv (6.22)

is calculated with the dyadic product of the two times dyadic product in Voigt notation
Lv . This emerges as a 6 × 6 matrix, which is the Voigt representation of a fourth
order tensor.

6.5. Solution Algorithm

In this section, the overall solution algorithm is presented, see algorithm 1. The
iterative Newton-Raphson scheme is used, in addition, the boundary conditions are
applied step-wise to ensure the convergence and to reduce the error in viscous part
of solution. Inside the loop over all the Gauss points, the loop over all directions of
the unit integration schema is nested. In this loop, the elastic, damage and viscous
overstress are calculated using the stretch λd. The internal variables will be updated,
if they evolve. Multiplication with the dyadic product of stretch vector will emerge
as the material tangent and stress vectors.
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Algorithm 1 Numerical solution
1: calculate pseudo material parameter p1, p2, p3
2: initialise minimal chain length nl at each Gauss Point
3: initialise set of internal variable for overstress β(n) at each Gauss Point
4: u0 = 0
5: for load steps or pseudo time step ∆t do
6: while norm of displacement increment > ε do
7: for loop over all elements nel do
8: for loop over all Gauss points ngp do
9: for loop over all direction di over the unit sphere do
10: calculate stretch vector λd = F · d
11: calculate stretch λd = |λd|
12: calculate elastic part
13: if damage is evolving then

calculate derivative of τD with respect to nl
14: end if
15: calculate viscous overstress
16: build part material tangent and stress vector in di using Lv and Lv
17: end for
18: end for
19: sum element stiffness and residual
20: end for
21: build KT,Fint,Fext
22: solve linearised equation system KT∆uk+1 = Fext − Fext
23: Newton-Raphson Iteration uk = uk + ∆uk+1

24: end while
25: if damage evolved then
26: update of internal variable nl
27: end if
28: update of internal variables for viscous overstress β(n)
29: end for
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7. Numerical Studies

In this chapter, the modelling capabilities of the introduced material model are shown.
In parameter studies, the damage and viscous effects of the material model are high-
lighted.

7.1. Anisotropic Mullins-Type Damage Model

Figure 7.1.: Specimen in a tensile testing machine and corresponding uniaxial load
case with boundary conditions for finite element calculation, dashed line
shows the deformed element

7.1.1. Parameter Study

For the parameter study, the load case of uniaxial loading is used, which corresponds
to tests that can be carried out on a simple tensile testing machine. To apply this
load case in a finite element simulation, a single eight-node brick element is necessary,
see Figure 7.1. The bottom of the element is fixed in the stretch direction. To avoid
rigid body translation on the button plane, one node is fixed in all three degrees
of freedom. Moreover, to avoid rotation, another node on the button plane has to
be constrained with an additional constraint. This constraint has to be chosen in
a way that the rotation is blocked, although the contraction perpendicular to the
load direction remains unaffected. On the top of the element, displacement boundary
conditions are applied. During stretching, the specimen contracts and a homogeneous
strain field is obtained.

Using the described finite element test case, the parameter study is carried out. Sub-
sequently, the results will be compared to uniaxial test data from literature. The
anisotropic Mullins-type damage model depends on eight physical material parame-
ters, including two parameters for the elastic response. The material parameters are
summarised in Table 7.1.
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Table 7.1.: Material parameters for the anisotropic Mullins-type damage model

parameter description

χ filler volume fraction
n chain length of chain-chain network in chain elements
r minimal distance between two aggregate surfaces
κ quotient of available and used absorption area
T thermodynamic temperature
ν sliding factor
Ncc number of chains per unit volume in chain-chain network
Ncf number of chains per unit volume in chain-filler network
p1, p2, p3 intermediate parameter, correlated to r and κ

The thermodynamic temperature has the same linear influence on the elastic and
damage part of the model, since it only acts as a scaling factor. Therefore, the
thermodynamic temperature is kept constant at a room temperature of T = 293.15 K.

In the virtual test, the specimen is first stretched to λ = 1.375 before the stretch is
released to λ = 1.0. In the next cycle, the stretch is increased to λ = 1.75 and again
released to λ = 1.0. Since there are no viscous effects considered, the unloading in
first cycle falls together with the reloading in the second circle in the range of λ = 1.0
to λ = 1.375. In contrast to an isotropic damage model, a residual stretch is observed
for each curve without considering plasticity. The stretching in only one direction
leads to an anisotropic decrease of the material properties, which is described by
internal variables placed on the unit sphere. The material parameters perpendicular
to loading direction will remain constant during loading. Therefore, the stress-free
state will change to a deformed conformation, because the material is damaged in one
direction.

The parameter study starts with the number of chains per unit volume in the chain
chain network Ncc, see Figure 7.2. An increase of Ncc leads to an increase of stiffness,
although the hysteresis remains the same. While increasing the number of chains per
unit volume Ncf in chain-filler network, both stiffness and hysteresis appear increased.
This is reasonable since more chains in chains-filler network lead to a higher stiffness,
while also more chains detach, which leads to more pronounced hysteresis.

The number of chain elements per chain in the chain-chain network only has minor
influence in these studies, since the stretch is quite moderate such that the non-linear
terms of the Langevin function are not significant. A lower number of chain elements
leads to increased stiffness at high stretches.

The sliding factor ν holds significant influence, whereby a smaller sliding factor leads
to increased stiffness and hysteresis, because the chains are stretched close to their
extensibility limit. The unloading curve is slightly decreased since more chains are
detached.

An increased quotient of the available and used absorption area leads to a gain of
stiffness and hysteresis. For high κ values, the distribution of chain length between
two filler particle is more dense, see Figure 5.6. Reducing the minimal distance
between two aggregate surfaces leads to a significant increase of stiffness at small
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stretch, however, for higher stretch, the slope of curve becomes smaller since the peak
in the distribution function is passed.

The parameter study is completed with the filler volume fraction. By increasing
the filler volume fraction χ, the stiffness is slightly increased during virgin loading
and remains almost the same for unloading. From the experimental results, a much
stronger dependence of hysteresis on the filler volume fraction is expected. However,
the increase of filler volume leads to an increase of active chains in chain-filler network,
because more chains can be bonded with the filler particle. Consequently, more chains
will detach during stretching resulting in a significant increase of hysteresis.

7.1.2. Comparison with Experimental Data

To validate the anisotropic Mullins-type damage model, special test data is necessary.
In Dargazany and Itskov [2009], test data for cyclic loading in two orthogonal direc-
tions are provided. The material test to obtain such kind of data requires a special
cross shaped specimen, see Figure 7.3, which can be clamped on the grey areas either
in x or y direction. To minimize the effect of the unused direction on the measurement
area, the clamping strips are multiple slitted. If the specimen is stretched in one di-
rection, the slits will open in the perpendicular direction and an almost homogeneous
strain field develops. For more information regarding multi axial loading in material
testing, the reader is refereed to Pawelski [2001].

The specimen is first stretched in x direction to λ = 1.15 and subsequently stress
is released. For the next loading cycle, the stretch is increased to λ = 1.3 and the
stretch is released again. The stretch is increased in steps of 0.15 to λ = 1.75. In a
second step, the same specimen is clamped in y direction and the same test is carried
out again.

For the identification procedure, some parameters are fixed. The tested material has
a filler volume fraction of 0.2, therefore it is fixed to this value. Moreover, the number
of chain length in the chain-chain network is fixed to 100, since there is almost no
influence, as discussed before. All other parameters are allowed to variate in bounds,
which are used in the previous parameter study, see section 7.1.1. A least square
fitting is performed to fit the model to the test data of the virgin specimen. The
results of fitting are plotted in Figure 7.4. For the virgin specimen, a very good
agreement of the model prediction with the experimental data is found.

In Table 7.2, the fitted material parameters are summarised. Using the same set
of material parameters, the pre-stressed material is simulated. Moreover, a good
agreement with the test data can be found for the pre-stressed specimen. A slight
over-prediction of primary loading in the range of λ = 1.4 to λ = 1.75 can be seen.
The stress level in the pre-stressed curve is significantly lower than the virgin curve,
due to two reasons: first, the material is damaged by virgin loading also in directions
that have contributions in y direction; and second, the residual strain in x leads to
a stretch less than one in y direction, although in measurement, it is treated as one.
This results in a decreased maximum stretch and ultimately a lower stress.

A small peak on the pre-stressed curve at the maximum stretch shows that the curve
will reach its virgin shape for higher strains. From this point, the influence of loading
in x direction is almost vanished, because the chains that are active were not detached
in primary loading.
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Figure 7.2.: Results of parameter study damage, in each plot one parameter is variated,
the remaining parameter are set to χ = 0.2, Ncc = 4 × 1025 1/m3, Ncf =
4× 1025 1/m3, n = 50, ν = 1.01, κ = 4 and r = 8.
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Figure 7.4.: Fitting of anisotropic damage model, solid lines model prediction, squares
experimental data (from Dargazany and Itskov [2009])
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Table 7.2.: Material parameter for the fitted model

r κ ν Ncc Ncf
8.216 4.098 1.0025 6.01× 1025 1/m3 7.30× 1025 1/m3

κ p1 p2 p3
0.2 −1.183× 10−2 1.262× 10−3 −0.02598

7.1.3. Loading in Three Directions

In this numerical study, the specimen is stretched in three perpendicular directions.
In the first loading cycle, the stretch is oriented in x direction, see Figure 7.5, which
leads to residual stresses in x directions. The specimen is now stretched in a second
cycle in y direction and in third cycle in z direction. The stretch magnitude is kept
the same with λ = 1.75. In the fourth cycle, the stretch is again in the x direction.
The residual stress vanished because the specimen is now equally damaged in all three
directions.
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Figure 7.5.: Stress σ11, first and fourth loading cycle

7.1.4. Shear Test

In this section, a shear test is simulated. A 50 mm× 50 mm× 20 mm rubber block is
modelled by using 400 elements with an element edge length of 5 mm. The block is
fixed at the bottom and displaced at the top 20 mm in x-direction, see Figure 7.6.

For the visualisation of damage the average is taken, since the damage has 21 compo-
nents. The damage is measured in the minimum available chain length, whereby the
average is computed as

< nL >=
∑

i

nLiwi, (7.1)

with the minimal chain length in the i-th direction nLi. The stress is averaged by
von Mises rule. The stress field has its maximum in the acute angle corners. The
minimum can be found at the borders of the block between the corners. The damage
field has his maximum in the same region as the stress field. The minimum can be
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found in the obtuse angle corners. A concentration can be found in the line between
the obtuse angle corners, where the maximum shear occurs.

Figure 7.6.: FE-shear test: A) Boundary conditions, B) Von Mises stress field in MPa
and C) Average damage field in minimal available chain length

7.2. Viscous Response

In this section, the viscous response of the material is investigated. The material
response is time-dependent, whereby a timestep ∆t is associated with each loadstep.
The mass and inertia effects are neglected, therefore the calculation is called quasi
static.

7.2.1. Parameter Study

To investigate the influence of material parameters on the viscous response, a parame-
ter study is performed. The load case is uniaxial loading, in analogy to the parameter
study for anisotropic damage. The material parameters for the viscous material be-
haviour are summarised in Table 7.3. The parameter study is performed with the
loading speed of λ̇ = 1 s−1, until the maximum stretch of λ = 1.5 is reached. Three
complete cycles from λ = 1.0 to λ = 1.5 are simulated.
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As expected, the basic form of the curve is quite similar to the anisotropic damage
loading curves. During primary loading, the damage takes place, however for un-
loading and reloading, a difference from pure anisotropic damage can be seen. The
unloading and reloading curves are not coincident as for reloading higher stress occurs
than in unloading. A hysteresis loop is formed in cyclic loading, whereby the area
inside the loop correlates to the dissipation due to viscosity.

In Figure 7.7, the results of the parameter study are presented, showing that a higher
bead friction factor leads to stiffening of the material. For a bread friction factor f
(internal friction of chains) of 10−25 J/m3, it can be seen that due to the impact of
primary loading more than three loading cycles are necessary to obtain a stationary
hysteresis curve.

The number of chain elements per unit volume has also an influence on the viscous
response. For Nfc1, the impact on the curves is very low because the corresponding
relaxation time is small in comparison to the loading speed. For Nfc2, the effect of a
dynamic stiffening can be seen, whereby a higher value leads to an increased stiffness
and a larger hysteresis. The same effect can be seen even more pronounced for Nfc3.
An increase of the number of chain elements per elastomer chain shows qualitatively
the same result as increasing the number of elastomer chains per unit volume.

Table 7.3.: Material parameters for the viscous material behaviour

parameter description

p degree of approximation for the one dimensional diffusion equation
f normalised bead friction power per unit volume
Nfc1, Nfc2, Nfc3 number of free chains per unit volume for different chain length
nfc1, nfc2, nfc2 characteristic chain lengths
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Figure 7.7.: Results of parameter study for viscosity, in each plot one parameter is
variated, the remaining parameters are set to p = 3, f = 10−26, Nfc1 =
Nfc2 = Nfc3 = 1025 m−3, nfc1 = 20, nfc2 = 50 and nfc3 = 100. The
used elastic and damage parameter are written in table 7.2.
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7.2.2. Fitting to Time-Dependent Test Data

In this section, the visco-elastic parameters are fitted to experimental data. A broad
variety of test data for filled elastomer can be found in Dämgen [2006]. For the fitting,
a uniaxial relaxation test is calculated. In the material test, the specimen is used for
several loading speeds causing the problem that the Mullins effect has a significant
influence in the first relaxation test. Therefore, for a good repeatability, the specimen
is preconditioned, which means that the specimen is stretched in cyclic loading up to
the precondition stretch of λ = 1.6.

This preconditioning has to be considered for the identification of the material model.
A simple and correct way to apply the preconditioning in numerical simulation is to
calculate the internal variables before the FE calculation, since the internal variables
only depend on the maximal stretch, which is the precondition stretch in this case.
The main calculation is started by using the precalculated internal variables.

The relaxation test is started with the jump from λ = 1 to λ = 1.2 at t = 0s. After
a sufficiently long relation time, a step from λ = 1.2 to λ = 1.4 is performed. The
second jump is timed in such a way that the maximal stretch is reached at t = 300s.
Consequently, the jump with low loading speed starts earlier than with high loading
speed.

The result is depicted in Figure 7.8. The material parameters for simulation are
summarised in Table 7.4. A clear peak can be seen after the jump. For the loading
speed of λ̇ = 0.085 s−1 and λ̇ = 0.433 s−1, the peak has almost the same height,
because the step is faster than the diffusion of the elastomer chains. For low loading
speeds, the diffusion of chains takes place during the loading step. The corresponding
peak is much lower in the test and the simulation.

Table 7.4.: Fitted material parameter

parameter description

p 3
f 3.1× 10−25 J
Nfc1, Nfc2, Nfc3 3× 1024 m−3, 2× 1024 m−3, 2.3× 1024 m−3

nfc1, nfc2, nfc2 20, 50, 115

7.2.3. Anisotropic Time-Depended Behaviour

The formulation of the viscous material law is isotropic in the initial state. However,
due to the deformation, the internal variables generally evolve differently in each
direction. This leads to an anisotropic viscous behaviour.

To show this behaviour, a specimen is first stretched in x direction. The study uses
the viscous material parameter of Table 7.3 and a loading speed of λ̇ = 0.433 s−1.
Directly after this, the specimen is stretched in y direction with the same loading
speed. For the stretch in y direction, a higher stress during the loading can be
observed in simulation, see Figure 7.9.
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Figure 7.8.: Relaxation test, step form λ = 1 to λ = 1.2 and λ = 1.2 to λ = 1.4, loading
speed λ̇ = 0.00833 s−1 (red line), λ̇ = 0.085 s−1 (blue line), λ̇ = 0.433 s−1

(green line), test data (squares) form Dämgen [2006].

The specimen is now in an anisotropic state. During the increase of stretch in y
direction, the curve converge to the loading in x direction, which can be explained
by the relaxation of chains in x direction. After releasing the stretch, the specimen
shows almost the same anisotropy in y direction as showed before in x direction.
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Figure 7.9.: Strain introduced anisotropic behaviour for loading in two directions
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8. Conclusion

Elastomers play an important role in the automotive industry, especially in the tire
industry. The requirements on elastomers are enormous since the tire is the only
interface between the car and the road. Therefore, the need for improved elastomer
materials and a better understanding is crucically demanded. Filling of elastomer
leads to a broad band of material behaviour, such as the Mullins effect and frequency
dependent damping.

In this thesis, a fully micro-mechanical motivated material model for filled elastomer
is developed, including anisotropic damage (Mullins effect) and viscous effects. This
model is applicable to a general elastomer material, which means that it can be used
for filled and unfilled elastomer. An important fact is that all material parameters
have a direct physical meaning in the micromechanics behaviour, thus making it
possible to develop new materials by virtual testing and a better understanding of
filled elastomer material.

The existing material models have been reviewed in this thesis. From given literature
review, we know that many available material models describe the mechanical be-
haviour in a phenomenological way. Only a few material models are directly derived
from the micromechanics, although no implementation of material tangent in FEM
program has been reported. To overcome this problem, the existing micro-mechanical
models were extended and transferred to a suitable form for FE implementation.

The material has been implemented based upon the idea of a network decomposi-
tion concept, whereby filled elastomers comprise the monomer chains and the filler
particles. In this case, the material has been decomposed into chain-chain network,
chain-filler network and free chains. This decomposition corresponds to the elastic,
anisotropic damage (Mullins effect) and viscous response.

The elastic response has been modelled with the concept of entropy elasticity. If a
chain of an elastomer specimen is stretched, the entropy decreases and consequently
a force has to be applied to hold the entropy inequality. For the anisotropic Mullins
effect, the model has been extended by including the chain-filler interaction. The
loss of the stiffness can be described due to continuous debonding of chains from the
filler particles during the virgin loading. Therefore, a distribution function for the
chain length between the filler was used, as described in the existing literature and
is modified for the computational efficient implementation in this thesis. The viscous
effects have been modelled by the diffusion processes of free chains, described by a
one-dimensional diffusion equation. From this equation, a relaxation time spectrum
has been derived. The solution of this equation is turned into a computable form
for the three-dimensional material law. The material description is the sum of the
decomposed material chain-chain network for elastic response, chain-filler network for
Mullins effect and free chains for frequency dependent damping.

The effect of each micro-mechanical parameter has been investigated in the parameter
studies. In the next step, the material parameters have been fitted to material tests,
like multi axial loading and relaxation tests. In multi axial loading, the modelling
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capability has been shown in an expressive way. The permanent set could be mod-
elled in a natural way without using any plasticity model. Furthermore, the reduced
stiffness orthogonal to loading direction could be predicted correctly. Moreover, for
viscous effects, the strain introduced anisotropy has been highlighted.

8.1. Outlook

The possibility to derive a material from microstructure has been shown in this thesis.
A next step is to validate the statistical distribution of chains with the measured
data from the existing elastomer material. Another interesting point is to model the
quasi-static hysteresis, therefore it is important to gain a deeper look inside the filler
particle clusters. A first step could be a mechanical description of the acting forces
in the filler particles. Therefore a micro-mechanical model of the filler particle is
necessary. Moreover, the influence of the temperature would be interesting.

It is known that the temperature has a big influence on the mechanical behaviour.
For this reason the micro-mechanical relations have to be generalized to temperature
dependency. The special interest lies in the temperature region where the mechani-
cal behaviour changes rapidly. This could help to extend the temperature range of
material usage.
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A.
Numerical integration over a unit sphere

Table A.1.: Direction and weights for the 21 × 2 unit sphere integration schema, by
Bazant and Oh [1986]

i d1 d2 d3 wi/2

1 1.000000000000 0.000000000000 0.000000000000 0.0265214244093
2 0.000000000000 1.000000000000 0.000000000000 0.0265214244093
3 0.000000000000 0.000000000000 1.000000000000 0.0265214244093
4 0.707106781187 0.707106781187 0.000000000000 0.0199301476312
5 0.707106781187 -0.707106781187 0.000000000000 0.0199301476312
6 0.707106781187 0.000000000000 0.707106781187 0.0199301476312
7 0.707106781187 0.000000000000 -0.707106781187 0.0199301476312
8 0.000000000000 0.707106781187 0.707106781187 0.0199301476312
9 0.000000000000 0.707106781187 -0.707106781187 0.0199301476312
10 0.387907304067 0.387907304067 0.836095596749 0.0250712367487
11 0.387907304067 0.387907304067 -0.836095596749 0.0250712367487
12 0.387907304067 -0.387907304067 0.836095596749 0.0250712367487
13 0.387907304067 -0.387907304067 -0.836095596749 0.0250712367487
14 0.387907304067 0.836095596749 0.387907304067 0.0250712367487
15 0.387907304067 0.836095596749 -0.387907304067 0.0250712367487
16 0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
17 0.387907304067 -0.836095596749 -0.387907304067 0.0250712367487
18 0.836095596749 0.387907304067 0.387907304067 0.0250712367487
19 0.836095596749 0.387907304067 -0.387907304067 0.0250712367487
20 0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
21 0.836095596749 -0.387907304067 -0.387907304067 0.0250712367487
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