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Abstract
It has long been known that young pulsars can emit strongly in gamma rays. However, it is only
recently, using observations by the Large Area Telescope (LAT) on-board the Fermi Gamma-ray
Space Telescope which launched in 2008, that it has been possible to study a large number of
pulsars, including millisecond pulsars, through their gamma-ray pulsations. Many of the pulsars
discovered by the LAT have not been detected in subsequent radio searches. Blind searches, which
directly search for pulsations at unknown frequencies in gamma-ray data, are necessary to find such
“radio-quiet” pulsars, and to provide a more complete view of the local neutron star population.

This thesis is a collection of works describing the development of and results from the latest
blind gamma-ray pulsar searches.

Firstly, techniques were developed to enhance the sensitivity of existing search methods. These
include a revised parameter-space metric approximation which enables more efficient search grids
to be constructed; interpolation schemes to mitigate potential signal losses; and improved automatic
follow-up and refinement stages. By simulating and searching for thousands of weak pulsar signals,
these improved methods were shown to result in searches that were almost 50% more sensitive than
those performed with previous methods, without requiring additional computational power.

A blind-search survey was performed on the distributed volunteer computing system Ein-
stein@Home using these new techniques to search for pulsations in unidentified LAT sources. This
resulted in the discovery of nineteen new isolated gamma-ray pulsars; almost one-third of all pulsars
that have been discovered through their gamma-ray pulsations. Using the improved understanding
of the survey’s sensitivity to pulsations, upper limits were estimated for the fraction of pulsed
gamma-ray flux from sources which remain unidentified. The survey was estimated to be sensitive
to pulsations from unidentified LAT sources with a point-source significance above 10σ. The later
detection of a faint pulsar, PSR J1817−1742, with a similar point-source significance lends credence
to this estimated threshold.

One of the first detections made by this survey, of the young, glitching PSR J1906+0722,
explained the nature of a highly significant unidentified gamma-ray source, and revealed additional
gamma-ray emission, likely from a nearby unrelated supernova remnant. Another pulsar detected by
this survey, PSR J1208−6238, is the youngest pulsar to be found through its gamma-ray pulsations,
with an estimated age of just 2,700 years. Its youth, and high magnetic field strength allowed its
braking index to be measured; a first for a radio-quiet gamma-ray pulsar.

This survey also discovered two isolated gamma-ray millisecond pulsars, both of which have
remained undetected in radio observations despite extensive searches. These pulsars could possibly
be the first two members of a long-awaited pulsar class: radio-quiet millisecond pulsars.

Keywords: pulsars, gamma rays, astronomy

iii



iv



Kurzfassung
Es ist seit langem bekannt, dass junge Pulsare starke Gamma-Strahler sein können. Aber erst
dank der Messdaten vom Large Area Telescope (LAT) an Bord des Fermi Gamma-ray Space
Telescope, welches im Jahr 2008 gestartet wurde, ist es möglich geworden eine große Anzahl solcher
Pulsare, einschließlich Millisekunden-Pulsare, anhand ihrer Gammastrahlung zu studieren. Viele
der vom LAT entdeckten Pulsare konnten in darauf folgenden Suchen im Radiospektrum nicht
gefunden werden. ”Blindsuchen“, bei denen nach Pulsationen mit unbekannter Frequenz direkt in
den Gammastrahlungsdaten gesucht wird, sind notwendig zum Auffinden solcher ”Radio-stillen“
Pulsare, um damit ein vollständigeres Bild der lokalen Neutronenstern-Population zu ergeben.

Diese Dissertation ist eine Sammlung von Arbeiten, die die Entwicklung und die Ergebnisse der
neuesten Blindsuchen nach Gamma-Pulsaren beschreiben.

Zuerst wurden Verfahren entwickelt, um die Sensitivität bestehender Suchmethoden zu ver-
bessern: eine überarbeitete Approximation der Metrik über den Parameterraum zur Konstruktion
effizienterer Suchgitter; Interpolationsmethoden zur Verringerung möglicher Signalverluste; ver-
besserte automatische Verfeinerungs- und Nachfolgeuntersuchungen. Durch die Simulation und
Suche von tausenden schwachen Pulsarsignalen konnte gezeigt werden, dass diese Verbesserungen,
verglichen mit den bisherigen Methoden, die Empfindlichkeit um etwa 50% erhöhen, ohne dabei
mehr Rechenleistung zu benötigen.

Eine Blindsuche mit diesen neuen Verfahren wurde auf dem verteilten Rechenprojekt Ein-
stein@Home durchgeführt, bei der nach Pulsationen in bisher unidentifizierten LAT-Quellen gesucht
wurde. Dies führte zur Entdeckung von 19 neuen isolierten Gamma-Pulsaren und entspricht fast
einem Drittel aller bisher durch Gammastrahlen entdeckten Pulsare. Für weiterhin unidentifizierte
Quellen war es dank der verbesserten Charakterisierung der Empfindlichkeit dieser Suche möglich,
Obergrenzen für die pulsierenden Anteile der Gammastrahlung zu setzen. Es wurde abgeschätzt, dass
diese Suche sensitiv für Pulsationen von unidentifizierten LAT-Quellen ist, die eine Punktquellen-
Signifikanz über 10σ besitzen. Die spätere Entdeckung des schwachen Pulsars, PSR J1817−1742,
mit einer ähnlichen Punktquellen-Signifikanz verleiht dieser geschätzten Grenze Glaubwürdigkeit.

Eine der ersten Entdeckungen dieser Suche, der junge und glitchende Pulsar PSR J1906+0722,
war eine sehr signifikante aber unidentifizierte Gammaquelle und deutet auf zusätzliche Gamma-
strahlung von einem vermutlichen nahe gelegenen Überrest einer Supernova hin. Ein weiterer in
dieser Suche entdeckter Pulsar, PSR J1208-6238, ist der jüngste durch Gammastrahlung entdeckte
Pulsar mit einem geschätzten Alter von nur 2 700 Jahren. Durch sein geringes Alter und sein starkes
Magnetfeld war es möglich, zum ersten Mal den Brems-Index für einen Radio-stillen Gamma-Pulsar
zu bestimmen.

Diese Suche fand weiterhin zwei isolierte Millisekunden-Pulsare. Beide konnten trotz inten-
siver Suchen im Radio-Spektrum nicht nachgewiesen werden, was sie zu den ersten möglichen
Mitgliedern einer lang erwarteten Pulsar-Klasse macht: Radio-stille Millisekunden-Pulsare.

Schlagworte: Pulsare, Gammastrahlung, Astronomie
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Chapter 1

Introduction

This thesis concerns the detection and analysis of pulsed signals in the gamma-ray emission from
pulsars, the ultra-dense rapidly-spinning compact remnants that result from the deaths of massive
stars. The vast majority of the large population of known pulsars have been discovered through their
radio emission, however a number of gamma-ray pulsars remain undetected in radio searches. The
ability to detect and study pulsars via their gamma-ray pulsations alone is therefore necessary to
fully explore the local pulsar population.

This chapter will briefly introduce pulsars (Section 1.1); observations of gamma-ray pulsars in
particular (Section 1.2); the history of “blind” searches for gamma-ray pulsars (Section 1.3); and the
methods used to time gamma-ray pulsars (Section 1.4).

The next five chapters following this introduction consist of individual papers, either written or
co-written by the author of this thesis, which have either been published or are soon to be submitted
to scientific journals. These chapters are adaptations of those papers, with minor changes to correct
typographical errors found since their publication, for formatting reasons, or to provide references
between them. Chapters 4 and 5 are earlier versions of papers from the time this thesis was initially
submitted; the published versions contain some minor updates. Chapter 6 describes preliminary
analysis from the time this thesis was initially submitted; a full article including updated analyses and
additional observations taken since then will be submitted for publication soon. The introductions
of some papers have been shortened to avoid overlap with this introductory chapter and with each
other. The last part of the introductory chapter (Section 1.5) describes these papers in more detail,
and outlines the author’s specific contributions to each.

Chapter 2 investigates the methods used to perform “blind” searches for gamma-ray pulsations,
and describes the developments made to these methods during the doctoral studies presented
here. These methods were implemented and used to perform a large-scale survey for pulsations
in gamma-ray photons detected by the Fermi Large Area Telescope from unidentified gamma-ray
sources. The survey ran on the distributed volunteer computing system, Einstein@Home. The four
succeeding chapters (Chapters 3, 4, 5 and 6) describe the results of this survey, and investigations of
the new pulsars discovered during it. Finally, in Chapter 7, the most recent discoveries from the
Einstein@Home survey are presented for the first time.
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2 CHAPTER 1. INTRODUCTION

1.1 Pulsars

Neutron stars, first proposed by Baade & Zwicky [1] to be the ultra-dense compact remnants of the
collapsed cores of massive stars, are born rapidly spinning, with periods of just a few milliseconds
[2, 3], and with extremely high magnetic fields [4–8]. In their essential textbook, Lorimer & Kramer
[9, pp. 63, 80] give the following simplified picture of how these properties result in neutron stars
being visible as “Pulsating Sources of Radio” or “pulsars”. A neutron star’s intense magnetic field
and rapid rotation result in immense Lorentz forces which can strip charged particles from their
surface and produce a dense plasma which fills the “magnetosphere” [10]. The plasma is confined
by the dipolar magnetic field and forced to co-rotate with the neutron star out to the “light-cylinder”
radius (RLC = c/2πf , at which the plasma would have to travel faster than the speed of light to
corotate with a neutron star spinning at a frequency f ). Particles accelerated along curved field lines
emit gamma rays, which in turn produce electron–positron pairs as they interact with the intense
magnetic field near the magnetic poles. These pairs then emit further gamma rays, which themselves
produce more electron–positron pairs, causing a “pair cascade” [11]. This results in bunches of
charged particles that emit coherent radio emission in sharp, conical beams around each magnetic
pole. These beams corotate with the neutron star and, if they sweep over the line-of-sight to the
neutron star, we can observe them as regular pulses of radio emission at the neutron star’s rotation
frequency.

Since the first serendipitous discovery of pulsed radio emission in 1967 by Bell & Hewish
[12], and the rapid identification of its neutron star origin [13], more than 2,500 pulsars [14] have
been detected, revealing a wealth of variety in the properties of neutron stars. Distinct pulsar
populations have emerged: “young” pulsars [15], which spin down rapidly and exhibit complex
instabilities in their rotation rates [16]; “magnetars” [17], whose X-ray emission is powered not by
their rotation, but by their intense but decaying magnetic fields; and older, rapidly spinning “recycled”
or “millisecond” pulsars [MSPs; 18], the eventual result of the “spinning-up” of accretion-powered
binary X-ray pulsars as they gain angular momentum from their companion stars [19]. Each of these
groups are extensively studied, but many of their properties are not yet fully understood [20].

Measurements of pulsars’ rotations (or “timing”) spanning several years, have revealed many
important scientific results [21]. Timing measurements of pulsars in binary systems, the first
detected by Hulse & Taylor in 1975 [22], provide the best constraints on neutron star masses [e.g.
23, 24], and allow for precise tests of relativistic effects [e.g. 25–27]. The largest known pulsar
masses place constraints on the equation of state of matter above nuclear densities [28], which
is an important unsolved problem for nuclear physics [e.g. 29] and determines the properties of
supernovae explosions [30] and the gravitational emission from black hole–neutron star/neutron
star–neutron star coalescences [e.g. 31].

Measurements of “glitches” [e.g. 32–34], sudden changes in a young pulsar’s rotation rate,
indicate a layered neutron star structure, in which a superfluid core rotates semi-independently
from a solid crust, but with occasional angular momentum transfers between the two [e.g. 35]; or
alternatively “starquakes”, sudden reconfigurations of the neutron star’s crust as it loses oblateness
due to its spin-down [e.g. 36, 37].
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In contrast, the stability of the rotation of some MSPs can rival that of atomic clocks [38], a
property that makes them valuable astrophysical tools. One of the major current goals of pulsar
astronomy is to use a “timing array” of MSPs to detect the tiny ripples in space-time of passing
gravitational waves [e.g. 39–43]. The recent detection of a MSP in a triple system [44] allows for
extremely precise tests of the strong equivalence principle [45]. Another example of the scientific
potential of MSP timing was the first detection of extra-solar planets, which were found in 1992 by
Wolszczan & Frail [46] by measuring periodic variations in the arrival times of an MSP’s pulsations.

The ability to detect and study new pulsars is therefore of importance for understanding the
evolutionary paths of the Galactic stellar population; studying the nature of matter under the most
extreme conditions; and for testing fundamental physical laws.

1.2 Gamma-ray Pulsars

Charged particles accelerated in “gaps” in pulsars’ magnetospheres can reach GeV energies [9,
pp. 79–80], emitting intense co-rotating beams of gamma-ray radiation. Much like the observed
radio pulses for which pulsars are named, these beams are observable as pulses of gamma-ray flux.
The ability to detect and study pulsars through their gamma-ray emission offers a complementary
window with which to observe the Galactic neutron star population. Much of the following two
sections, which briefly outline the history of observations of gamma-ray pulsars and recent progress
in the field, follows the fascinating account given by Caraveo [47].

1.2.1 Pulsars Detected with Previous Gamma-ray Telescopes

The first tentative detections of pulsed gamma-rays were made in the 1970s by balloon-borne
gas-Cerenkov gamma-ray telescopes [e.g. 48], and were confirmed shortly after by the SAS-2 and
COS-B satellites [49, 50]. These space-based telescopes featured spark chambers surrounded by
“anti-coincidence” guards to discern between gamma-rays and charged cosmic rays [51]. They were
sensitive to gamma rays from ∼ 20 MeV to a few GeV, and could localize point sources to within a
few degrees [52]. Their detections of gamma-ray pulsations from the Crab and Vela pulsars [53, 54]
showed that pulsars’ spin-down-power-to-gamma-ray efficiencies dwarf those in radio or X-ray
wavelengths [55]. These observations also revealed a striking difference between these two pulsars:
while the Crab’s radio, optical and gamma-ray pulses appeared almost identical, the Vela pulsar’s
doubly peaked optical and gamma-ray pulsations were not phase-aligned with each other, nor with
its single radio peak [54, 56].

The EGRET [57] (the next generation of spark-chamber based gamma-ray telescope, with
an effective collecting area of 1500 cm2, many times larger than that of SAS-2 or COS-B) and
COMPTEL [58] (sensitive to lower-energy photons between 1 and 30 MeV) instruments on board
the CGRO satellite [59] detected significant gamma-ray pulsations from a further five pulsars [60]
(with inconclusive detections of three more [61–63]). The differences in (rotational) phase and
shape between gamma-ray and radio pulses revealed by CGRO favored the “slot gap” [64–66]
and “outer gap” [67, 68] models for gamma-ray emission, in which particle acceleration occurs in
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narrow vacuum regions far from the neutron star’s surface, over models in which gamma rays were
produced near the polar cap [69].

1.2.2 Pulsar Observations with Current Gamma-ray Telescopes

As their gas ages, the performance of spark chambers deteriorates over time, limiting the life-span
of a gamma-ray telescope, and requiring gas refills which add to the weight and cost of the mission.
Solid-state silicon detectors do not suffer these problems, and offer key advantages including:
reduced “dead time” after photon detection allowing for better measurements of short duration
transients, for example gamma-ray bursts which often last for less than a second; improved track
resolution allowing for better direction reconstruction; and improved efficiency at high energies
[70].

The present generation of space-based gamma-ray telescopes based around solid-state silicon
trackers began with the launch of the AGILE satellite in 2007 [71]. By folding AGILE data using
radio ephemerides, weak gamma-ray pulsations were detected from a handful of radio pulsars
[72, 73].

The Fermi Large Area Telescope

The launch of the Fermi Gamma-ray Space Telescope in 2008 brought with it a new era for pulsar
astronomy, in which large numbers of pulsars have become detectable through their gamma-ray
emission.

Fermi’s primary on-board instrument is the Large Area Telescope [LAT; 74, 75]. The LAT is
composed of a precision converter–tracker (interleaved tungsten converter layers and silicon-strip
detectors), a caesium-iodide calorimeter and a segmented anti-coincidence detector. The LAT’s
effective collecting area, field-of-view and energy range are all greatly improved over EGRET’s,
making it the most sensitive gamma-ray telescope ever to have flown [47]. Fermi normally operates
in a “surveying” mode, pointing alternately up and down on consecutive orbits to cover the entire
sky every 190 minutes or so. In combination with the LAT’s impressive angular resolution (enabling
the localization of gamma-ray sources to within a few arcminutes), this has provided a detailed and
continuous view of the entire sky, and revealed thousands of new sources of gamma-ray emission
(as shown in Figure 1.1). Furthermore, as the mission continues, the understanding of the instrument
improves [76]; the recent “Pass 8” data reprocessing [77] has greatly increased the LAT’s energy
range, effective collecting area and resolving power.

Crucially, for the field of pulsar astronomy at least, the LAT’s sensitivity and resolving power
is optimized for GeV energies, where many pulsars’ spectra peak, and where different models for
pulsars’ gamma-ray emission predict significant differences [78]. Additionally, the photon arrival
times measured by the LAT are accurate to less than 1µs [75], a resolution that is essential for
timing pulses from MSPs.

The LAT’s unprecedented sensitivity has enabled the detection of pulsed gamma-ray emission
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Figure 1.1: 7-year Fermi-LAT all-sky image, showing young (blue squares), millisecond (red diamonds) and
blind-search gamma-ray pulsars (cyan squares or diamonds for young and millisecond pulsars accordingly).
The new pulsars discovered during the survey described in this thesis are shown by green circles. The
grayscale shows the logarithmically-scaled gamma-ray intensity above 1 GeV. This image is aligned along
the Galactic plane, and centered on the Galactic Center. The bright Galactic diffuse emission from is
clearly visible along the plane, where the majority of young pulsars are located, in contrast with the more
isotropically distributed MSPs. LAT data courtesy of the Fermi-LAT Collaboration, pulsar locations compiled
by E. Ferrara.

from more than 200 pulsars1 [79, 80]. In doing so, it has provided a more representative population
of gamma-ray pulsars, no longer limited to the very nearest or most energetic (and hence most
luminous) pulsars, as EGRET was [60, 81]. The improved photon statistics given by the LAT’s
larger collecting area provide extremely high signal-to-noise ratio pulse profiles for the brightest
pulsars (as visible in Figure 1.2) [e.g. 82–84] and a large number of varied pulse profiles with which
to perform large-scale tests of magnetosphere models [e.g. 85, 86].

The LAT has made many contributions to our understanding of pulsar’s high energy emissions
(see [87] for a recent review). Among many other discoveries, it has: ruled out a low-altitude polar
cap emission region for gamma-ray beams [79]; revealed that most young and energetic pulsars
emit strongly in gamma rays [79]; probed the gamma-ray “death line”, the minimum spin-down
power that a pulsar must have to emit gamma-ray pulsations [88, 89]; and shown that magnetars are
not strong gamma-ray emitters [90].

Perhaps most surprisingly, the LAT has detected gamma-ray pulsations from a large (and
growing) number of MSPs [e.g. 91–93]. In fact, MSPs now make up almost half of the population

1An up-to-date list of detected gamma-ray pulsars is available at http://tinyurl.com/fermipulsars

http://tinyurl.com/fermipulsars
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Figure 1.2: Gamma-ray and radio pulse profiles from the three brightest gamma-ray pulsars, Crab
(PSR J0534+2200), Vela (PSR J0835−4510) and the first radio-quiet pulsar, Geminga (PSR J0633+1746).
The phase offset between the Vela pulsar’s gamma-ray and radio pulse is clearly evident, in contrast to the
almost aligned peaks of the Crab pulsar. The radio profile has arbitrary intensity units. Gamma-ray (LAT)
and radio (Nançay and Parkes) data from Abdo et al. [80].

of gamma-ray pulsars. Many of the MSPs’ gamma-ray pulse profiles are very similar to those of
young pulsars, despite the prediction that these might be “pair-starved” by their low magnetic field
strengths [87, 94].

The LAT has also become an invaluable tool in the hunt for new MSPs. Most gamma-ray pulsars
show very low variability, and have exponentially cut off spectra, characteristics that set them
apart from other unidentified gamma-ray sources [95]. Radio searches pointed towards promising
pulsar-like LAT sources [e.g. 96–103] have discovered 54 new MSPs [104], many of which are
“black widow” or “redback” pulsars in tight interacting binary systems [e.g. 105]. These can provide
important tests for understanding whether isolated MSPs could form from the total evaporation
of their companion stars [106]. The number of evaporating systems has increased by more than a
factor of 6 since Fermi’s launch [107]. LAT observations of “missing link” pulsars J1023+0038 and
J1227−4853 caught them in the act of switching between being rotationally powered pulsars with
visible radio and gamma-ray pulsations and being in low-mass X-ray binary states, where accretion
from the companion star suppresses radio pulsations and produces strong X-ray and gamma-ray
emission [107, 108]. These transitional pulsars, only three of which are known, are important
systems for understanding the recycling process by which MSPs are formed [109].

As the Fermi mission continues and more data is collected, fainter pulsars become detectable to
the LAT [110], an excellent example of this being the recent detection of PSR J0540−6919 situated
in the Large Magellanic Cloud: the first extragalactic gamma-ray pulsar [111]. The LAT’s long
observations of pulsars have also revealed surprising new behavior, with the detection of gamma-ray
flares from the Crab nebula [e.g. 112], and correlated flux, spin-down and pulse profile variations in
the radio-quiet pulsar PSR J2021+4026 [113] challenging the picture of pulsars being non-variable
gamma-ray emitters.

The majority of gamma-ray pulsars were first discovered through their radio or X-ray emission,
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before gamma-ray pulsations were detected by folding the LAT data using their known rotational
ephemerides [e.g. 92, 114] many of which were obtained through a dedicated campaign by the
Pulsar Timing Consortium [115]. As a result, this population still suffers from selection biases
towards gamma-ray pulsars which also emit radio pulsations [47, 80, 116].

Additionally, there remain a large number of unidentified gamma-ray sources, many of which
appear to have pulsar-like spectra but are undetected in targeted radio searches. The typical gamma-
ray pulsar spectrum is very similar to the spectrum predicted from the annihilation of dark matter
[117]. The ability to confidently discriminate between these source classes could therefore be of
importance for our understanding of fundamental physics, and for explaining the observed GeV
excess towards the Galactic center [e.g. 118–120].

To attempt to address these issues, it is necessary to be able to discover pulsars through their
gamma-ray pulsations alone; we must perform “blind” searches for pulsations.

1.3 Blind Searches for Gamma-ray Pulsars

As the population of Fermi pulsars has confirmed, gamma-ray emission is produced in the outer
regions of the magnetosphere [79], with the result that gamma-ray pulses are often of very different
shape (typically much wider) and not aligned in (rotational) phase with radio pulses. The wider
gamma-ray beams are visible from a larger solid angle around the pulsar than radio beams [121];
many pulsars are only observable through their pulsed gamma-ray emission. A large sample of
“radio-quiet” gamma-ray pulsars can therefore even offer a more complete view of the local neutron
star population than is visible to radio telescopes [122].

The first radio-quiet gamma-ray pulsar to be detected, “Geminga”, was long known as the
brightest unidentified source of gamma-ray emission [123] until the eventual detection of its pulsed
X-ray emission by ROSAT [124]. Using its known rotational period, gamma-ray pulsations were
soon found in EGRET data [125], and later in archival COS-B and SAS-2 data, providing a rotational
ephemeris reaching back to 1973 [126].

Discovering radio-quiet (or simply previously unknown) pulsars in gamma-ray data without
prior knowledge of their signal parameters (i.e. rotational frequency, spin-down rate or sky position)
is an enormous computational challenge. Gamma-ray pulsars typically have very low photon fluxes
(less than one pulsed photon is observed per day from some LAT-discovered pulsars), and therefore
long integration times of months or years are required to detect pulsations with high significance.
In turn, these long integration times mean that each unknown parameter must be searched with
extremely fine resolution; a small offset in any of these can result in the signal quickly being lost.

The first blind searches for gamma-ray pulsars were performed in 2001 by Chandler et al.
[127] using EGRET data. While these searches were able to detect previously known gamma-ray
pulsars with high significance, no new pulsars were detected. Even at this stage, with searches
covering month-long segments of data, computational costs proved problematic. Chandler et al.
[127] employed a “stacking” technique, in which shorter segments of data were analyzed coherently
before being summed together incoherently [128]. This reduced the required number of trials



8 CHAPTER 1. INTRODUCTION

0.0 0.5 1.0 1.5 2.0
0

100

200

300

400

500

600

W
ei

gh
te

d
co

un
ts

PSR J0007+7303

0.0 0.5 1.0 1.5 2.0

Pulse phase (rotations)

0

50

100

150

200

250
PSR J1311−3430

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

120

140

160
PSR J1932+1916

Figure 1.3: Blind-search pulsar pulse profiles in 3 years of LAT data. From left to right: PSR J0007+7303,
the first pulsar to be found in a blind search of gamma-ray data (data from Abdo et al. [80]); PSR J1311−3430,
the first and only binary MSP to be discovered through its gamma-ray pulsations (data produced using a
script written by J. Wu, timing solution from Pletsch et al. [135]); and PSR J1932+1916, the first gamma-ray
pulsar to be found by the volunteer computing project Einstein@Home (data and timing solution from Pletsch
et al. [136]). The dashed blue lines indicate the estimated background level, as calculated in Abdo et al. [80].
The weak pulse profile of PSR J1932−1916 highlights the impressive sensitivity of the first Einstein@Home
survey.

somewhat, allowing for a larger parameter space to be searched at the same cost (in this case, a
large range of spin-down values and second frequency derivatives were searched with the goal of
detecting gamma-ray pulsations from magnetars).

In anticipation of the launch of Fermi (then known as the Gamma-ray Large Area Space
Telescope, or GLAST) Atwood et al. [129] developed a new method to efficiently search for gamma-
ray pulsars in data sets spanning many years. In this method, instead of taking the Fourier transform
of a series of delta functions centered on the photon arrival times, the test statistic is the Fourier
transform of the auto-correlation function (i.e. the set of differences between the photon arrival
times) up to a maximum lag. This method, which can reduce the number of searches required by
orders-of-magnitude, was applied to the archival EGRET data [130], but again could only detect the
three brightest gamma-ray pulsars (Vela, Geminga and Crab).

The power of this “time-differencing” technique was quickly demonstrated after the launch of
Fermi in 2008. In just one month of data, taken during the LAT’s commissioning phase, Abdo et al.
[131] were able to discover a previously unknown young gamma-ray pulsar, PSR J0007+7303,
in the supernova remnant CTA 1. Shortly afterwards, using four months of data, a further fifteen
pulsars were discovered with these methods [132], with another eight and two pulsars being found
in the first year and two years of LAT data respectively [133, 134].

However, even with this efficient method, the detection of weak pulsar signals was inhibited
by the LAT’s angular resolution. Pulsed signals gain a periodic (annual) Doppler shift, caused
by Fermi’s motion around the Solar System [e.g. 137]. This must be removed by “barycentering”
photon arrival times, i.e. shifting the photon arrival times to when they would arrive at the Solar



1.3. BLIND SEARCHES FOR GAMMA-RAY PULSARS 9

System Barycenter, which is an approximately inertial frame of reference. These corrections depend
on the true sky position of the pulsar; a small positional offset can result in annual phase modulations
proportional to the pulsar’s spin frequency, and the signal can be lost completely.

While the angular resolution of the LAT is greatly improved over previous instruments, point
source localizations still do not provide sky positions which are accurate enough to detect pulsations:
in the most recent Fermi-LAT Third Source Catalog [3FGL; 138], the average 95% uncertainty
radius for a point source was around 6 arcmin, whereas the angular resolution required to detect a
10 Hz pulsar is around 1.4 arcmin, and as low as a few arcseconds for MSPs. The first blind searches
only searched at the center of unidentified LAT sources (or used the more accurate positions of X-ray
counterpart candidates [132]). They could therefore only detect bright pulsars, whose signals could
still be detected despite the loss of power due to an offset sky position; pulsars with bright X-ray
emission; or slowly spinning pulsars. In particular, this issue prevented the blind-search detection of
millisecond pulsars.

The problem of searching for periodic astrophysical signals in very long time series is a familiar
one for the gravitational wave community. Searches for continuous gravitational waves (CWs) from
spinning neutron stars with slight non-axisymmetric distortions face many of the same challenges as
gamma-ray pulsar searching: low signal strengths requiring long observation times to be detectable;
enormous parameter spaces in which to search; and limited computing power [128, 139–142].
So-called “semicoherent” methods, in which segments of data are analyzed coherently, and the
signal power from each summed incoherently, have been used extensively to perform efficient
and sensitive CW searches [e.g. 143–147]. Notably, CW searches have utilized the concept of a
“parameter space metric” [e.g. 148, 149], which describes the distance from the parameters of a
signal to another point in the parameter space in terms of the loss in measured signal power. This
provides an analytical method to determine an optimum search-grid spacing which ensures that the
parameter space is adequately covered without wasting time searching at too many locations.

Rather than summing the coherent power from non-overlapping segments, as the stacking
method employed by Chandler et al. [127] does, the time-differencing technique of Atwood et al.
[129] is equivalent to a “sliding coherence window” approach, which gains extra sensitivity from
overlapping segments, as described in Pletsch [150]. These sliding-window techniques developed to
search for CWs were adapted for the purposes of searching for gamma-ray pulsars by Pletsch et al.
[151]. Importantly, this survey extended the search over frequency and spin-down to a 4-dimensional
search including the sky position, using the metric formulation to ensure optimal coverage. The
introduction of a photon weighting scheme [152] avoided the need to apply strict energy or angular
cuts when producing photon datasets and significantly improved the sensitivity to weak pulsations.
This survey, running on the ATLAS cluster computer [153], discovered ten more young gamma-
ray pulsars [151, 154], and a further extension to search over binary parameters resulted in the
spectacular blind-search discovery of PSR J1311−3430 [135], the only binary MSP to be found
through its gamma-ray pulsations so far.

Even with these new methods, as the time span covered by the Fermi-LAT data grew, the
computational cost of running a search increased, and surveys like this became prohibitively
expensive to run, even on a dedicated computing cluster. To meet these costs, Pletsch et al. [136]
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turned to the distributed volunteer computing system, Einstein@Home [155]. In this scheme, the full
parameter space which must be searched is split into several thousand smaller chunks, called “work
units”, each of which can be searched within a few hours on a typical private desktop computer.
Using the Berkeley Open Infrastructure for Network Computing [BOINC; 156, 157] as its base,
Einstein@Home sends out work units to volunteered computers which then perform the necessary
calculations when they are not otherwise being used. This “citizen science” scheme has proven to be
highly popular, and powerful. Volunteers have donated computing cycles from more than 1.5 million
computers to the project since it began, and with more than 60, 000 currently active computers,
Einstein@Home has a sustained computing power of > 2 PFLOP/s, making it comparable to the
world’s 50 fastest supercomputers [158]. Originally designed to search for gravitational waves
[144–146], Einstein@Home has also been used to perform pulsar searches, leading to the discovery
of more than 50 new radio pulsars [159–161] including the recent detection of a rare highly eccentric
binary MSP [162].

The first Einstein@Home gamma-ray pulsar survey discovered four new radio-quiet pulsars
[136], two of which suffered large glitches during the observation interval, making their discovery
all the more impressive. Of these results Caraveo [47] commented that

“the additional computer power provided by Einstein@Home combined with an im-
proved search technique is a good omen for more findings, hopefully also of the
long-sought radio-quiet MSP.”

At this stage, 41 pulsars had been detected in blind searches of LAT data, only four of which were
subsequently detected in radio searches. However, a large number of bright, pulsar-like LAT sources
remain unidentified [138], and the long-predicted class of radio-quiet gamma-ray MSPs [163, 164]
remained undiscovered.

The main aims of this author’s doctoral studies were to further develop blind search methods, and
to apply these methods to carry out more sensitive surveys for gamma-ray pulsars on Einstein@Home
using the latest Fermi-LAT data. This has led to the discovery of nineteen new pulsars, just under one
third of all pulsars to be found through their gamma-ray pulsations. The discovery of the first of these
new pulsars, PSR J1906+0722, explained the nature of the previously most significant unassociated
gamma-ray source [Chapter 3]. The new pulsars discovered by this survey (shown in their place
on the frequency–spin-down diagram in Figure 1.4) span, and even extend, the previously known
population of radio-quiet gamma-ray pulsars, including the two most slowly rotating gamma-ray
pulsars [Chapter 4], and the youngest known radio-quiet gamma-ray pulsar [Chapter 5]. Perhaps
most excitingly, these discoveries include two new isolated MSPs, neither of which were detected in
extensive radio searches [Chapter 6].
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Figure 1.4: Frequency (f ) vs. spin-down (ḟ ) diagram, showing the new pulsars discovered during the
author’s doctoral studies. This is an updated version of Figure 4.1, which reports a subset of the newly
discovered pulsars. Non-gamma-ray pulsars from the ATNF Pulsar Catalogue [14] are shown as black
crosses, gamma-ray pulsars detected by Fermi-LAT as blue circles, and new pulsars discovered by the latest
Einstein@Home survey as orange squares. Lines of constant characteristic age (dot-dashed), surface magnetic
field strength (dotted) and spin-down power (dashed) are also shown. These properties are calculated by
assuming canonical values for pulsars’ moments of intertia (I = 1045 g cm2), radii (10 km), and a simple
rotating magnetic dipole model, as described in [e.g. 9, 80].

1.4 Timing Gamma-ray Pulsars

The low photon flux from gamma-ray pulsars not only makes them harder to detect than radio
pulsars, but also complicates the procedures used to “time” their rotations.

The traditional method of timing a pulsar, described by Lorimer & Kramer [9, p. 200] and
briefly summarized here, is designed for use with typical radio observations. These are normally
short (∼ 1 hr) observations separated by longer intervals (the most well-studied pulsars are observed
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daily [e.g. 3]). Individual pulses cannot be detected from most radio pulsars, however “folding”
these short observations (wrapping the de-dispersed data around at the pulsar’s rotation period, and
summing), allows for a significant integrated pulse profile to be built up. The time at which this
averaged pulse arrives is known as a “time of arrival”, or TOA.

By carrying out multiple observations, each yielding a single TOA, an ephemeris (or “timing
solution”) describing the rotation of the pulsar over the entire observing interval can be produced by
finding the set of rotational parameters which best fits the observed set of TOAs.

While the TOA fitting procedure has been successfully applied to Fermi-LAT data, for example
by Kerr et al. [165], the requirement for this procedure to work well (that is, the signal strength is
high enough that the data can be split into short segments, each with a high signal-to-noise ratio)
does not always apply to gamma-ray pulsars. Indeed, for dimmer pulsars the full span of the Fermi
mission is required to accumulate enough photons to detect statistically significant pulsations [110].
The low flux is particularly problematic for measuring effects which occur over timescales shorter
than the required integration time, for example binary motion or glitches [166].

During these studies, the methods of Ray et al. [167] were built upon to develop an entirely
unbinned (in both phase and time) likelihood maximization procedure to time weak gamma-ray
pulsars. This procedure can be used to make precise estimates of pulsars’ rotational and positional
properties, and for robust estimates of the statistical uncertainties on each parameter and correlations
between them. This method was used to time the redback PSR J2339−0533 [166], and extrapolate its
orbital parameters back from its radio discovery to the beginning of the Fermi mission. This revealed
modulation in its orbital period, possibly due to variations in its companion star’s gravitational
quadrupole moment.

This method, described in most detail in Section 4.4.1, was used to study the new pulsars
discovered by the Einstein@Home survey. Notably, this resulted in measurements of large glitches
experienced by two newly discovered pulsars [Chapters 3 & 4]; a new gamma-ray pulsar’s braking
index [Chapter 5]; and the proper motion of two new MSPs [Chapter 6].
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1.5 Chapter Descriptions and Authorship Clarifications

1.5.1 Description of Chapter 2

Chapter 2 contains a detailed investigation of the blind search methodology, with the goal of
maximizing the sensitivity of a blind search to weak pulsations under the constraint of a fixed
computational cost. This chapter builds on the earlier work of Pletsch et al. [151] in adapting
semicoherent methods, previously used to search for continuous gravitational waves, to search
for gamma-ray pulsars. A comparison using simulations of weak pulsar signals showed that the
improved methods result in searches which are almost 50% more sensitive than those using the
methods developed in Atwood et al. [129], for the same computational cost. This chapter was
originally published as Pletsch & Clark [168].

This chapter was a close collaborative effort between the author and supervisor, H. J. Pletsch,
who provided the ideas for the study. The majority of the text in this chapter was written by
H. J. Pletsch, particularly in Sections 2.1 to 2.4, although both authors contributed to the text,
calculations and derivations in all sections.

The author was primarily responsible for:

• the derivation of the coherent (Sections 2.3.3, 2.8.2 and 2.8.3) and semicoherent metrics
(Sections 2.4.2 and 2.8.7), resulting in more accurate approximations than those given in
Pletsch et al. [151];

• the modification of frequency- and lag-domain interpolation methods (Sections 2.5.2 and
2.5.4) for use with the DFT formulation of the semicoherent detection statistic;

• the simulations used to demonstrate the improved sensitivity of the new techniques (Sec-
tion 2.6);

• the calculation of optimal mismatches for coherent (Section 2.8.5) and semicoherent (Sec-
tion 2.8.8) searches;

• the derivation of the statistical properties of the semicoherent detection statistic (Section
2.8.6);

• and the procedure for constructing an efficient grid of sky locations to search (Section 2.8.9).

The software used by Pletsch et al. [136] was updated with the improvements developed in
Chapter 2, including an additional semicoherent refinement stage between the initial semicoherent
search and the coherent follow-up step. These improvements were mostly implemented by the
author although the implementation of the “complex-to-real” FFT algorithm was carried out by
H.-B. Eggenstein. This software was then used to perform a new blind search survey running on
Einstein@Home to search for pulsations from unidentified sources from the 3FGL [138]. The author
was responsible for designing and carrying out the survey within the framework of Einstein@Home,
maintained by C. Beer, O. Bock, H.-B. Eggenstein, B. Machenschalk and staff at the University of
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Wisconsin–Milwaukee. The source selection and ranking, and preparation of LAT datasets were
performed by J. Wu under the guidance of L. Guillemot. An associated paper describing these is in
preparation by J. Wu.

A follow-up pipeline was developed by A. Cuéllar and the author. This ran daily on the ATLAS
cluster to automatically identify and refine the parameters of significant pulsar candidates. Many
additional candidates were followed-up “manually” by the author, which notably resulted in the
discovery of the glitching pulsar PSR J1844−0346 (see Chapter 4).

The remaining chapters describe the new pulsars discovered by this survey.

1.5.2 Description of Chapter 3

Shortly after its commencement, the Einstein@Home survey detected pulsations from a young
pulsar, PSR J1906+0722, in a highly significant but previously unidentified LAT source. Several
factors complicated its discovery, including a large positional offset from its associated LAT source,
and the fact that the pulsar suffered a large glitch in the early portion of the data. Chapter 3, originally
published as Clark et al. [169], describes the discovery and subsequent analysis of this pulsar.

In order to time this new pulsar, an unbinned likelihood timing analysis method was developed by
the author, H. J. Pletsch and L. Nieder, with help from H. Fehrmann in parallelizing the computations
to run on new Intel XeonPhi hardware. Template pulse profiles were fit to the observed photon
phases using software written by M. Kerr. The timing procedure is first described in Section 3.3.2
and again in later chapters, with most detail provided in Section 4.4.1. Additionally, this procedure
was used in Pletsch & Clark [166] to time a binary millisecond pulsar, revealing quasi-periodic
modulations in its binary period, suggestive of quadrupole moment variations in its companion star.

The majority of the text in this chapter was written by the author, under the guidance of
H. J. Pletsch. The timing analyses (Sections 3.3.1 and 3.3.2) were performed by the author. The
LAT data preparation (Section 3.2.1) and off-pulse spectral analysis (Section 3.3.3) was performed
by J. Wu and L. Guillemot, who also contributed the text in these sections (although Figure 3.4 was
produced by the author using their results). The radio follow-up searches were performed by J. Wu,
P. Torne and D. J. Champion. The calculation of the upper limit on the X-ray flux from this pulsar
was performed by F. Krauss and M. Marelli. This chapter was reviewed within the Fermi-LAT
collaboration by P. M. Saz Parkinson and H. Laffon, and additional comments were incorporated
from L. Baldini, P. A. Caraveo, S. Digel, X. Hou, M. Razzano, D. J. Thompson and M. Wood.

1.5.3 Description of Chapter 4

Chapter 4 describes in detail the majority of the results of the Einstein@Home survey, including
thirteen of the newly discovered pulsars, and estimates of the upper limits on the fraction of
pulsed gamma-ray emission from the remaining sources in which no pulsations were detected.
Following the initial submission of this thesis, this chapter was published as Clark et al. [170]. An
accompanying paper is being prepared by J. Wu to describe the target source selection and ranking
procedures, data preparation, and the spectral analyses and radio follow-up searches for these new
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pulsars.
The text in this chapter was written by the author, with suggested modifications and corrections

provided by H. J. Pletsch. Again, the LAT datasets were prepared by J. Wu and L. Guillemot. All of
the remaining analyses in this chapter were performed by the author. This chapter was reviewed
within the Fermi-LAT collaboration by D. A. Smith who, in addition to other comments, suggested
important additions to the text regarding the details of the data preparation and their effect on the
sensitivity estimates made in this chapter. Additional comments were provided by B. Allen, S. Digel,
L. Guillemot, L. Nieder, J. Perkins and D. J. Thompson.

1.5.4 Description of Chapter 5

Chapter 5 describes the discovery and timing analysis of PSR J1208−6238, the youngest known
radio-quiet gamma-ray pulsar, and one of a group of only ten pulsars with measurable braking
indices. Following the initial submission of this thesis, this chapter was published as Clark et al.
[171].

This chapter was written by the author under the guidance of H. J. Pletsch, and the timing
analyses (Section 5.3) and calculations in the discussion (Section 5.4) were performed by the
author. LAT datasets were prepared by J. Wu and L. Guillemot, with J. Wu additionally performing
the off-pulse analysis (Section 5.2.3). The gamma-ray pulse profile modeling was performed by
T. J. Johnson, who also suggested some additions to the text describing this analysis. Radio follow-
up searches with the Parkes radio telescope were performed by F. Camilo and M. Kerr, the latter of
whom provided the text for this (Section 5.2.4) in addition to valuable comments on the manuscript.
This chapter was also reviewed within the Fermi-LAT collaboration by M. Razzano. Further
comments were incorporated from B. Allen, F. Camilo, E. Cavazzuti, L. Guillemot, T. J. Johnson,
M. Kramer, F. de Palma, J. Perkins and D. A. Smith.

1.5.5 Description of Chapter 6

While searching in two high-Galactic-latitude unassociated 3FGL sources, the Einstein@Home
survey discovered pulsations from two new isolated gamma-ray MSPs. These remain undetected
in radio observations despite several searches, making these potentially the first radio-quiet MSPs,
a long-predicted but never before seen class of pulsar. Their discovery and subsequent analysis is
described in Chapter 6.

This is a preliminary version of a report that we intend to adapt for submission to Science.
Following the initial submission and defense of this thesis, we obtained additional dedicated radio
observations of these pulsars. These will be described in the future published article. The abstract
and introduction were primarily written by H. J. Pletsch, with additions by the author. LAT datasets
were prepared by J. Wu. who additionally performed the spectral and off-pulse analyses (Section 6.6).
The timing analysis (Section 6.3) was performed by the author, who wrote the text in this section.
The distance estimates from the proper motion measurements were calculated by H. J. Pletsch; the
author expanded that analysis to include estimates of the corrected spin-down powers of each pulsar.
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The gamma-ray pulse profile modeling was performed by T. J. Johnson, who contributed to the
text for this (Section 6.4), and provided the data for Figure 6.3 and Table 6.2. Radio searches were
performed with the Parkes radio telescope by F. Camilo, who provided text on these (Section 6.4),
and M. Kerr. These observations took place during a search campaign for radio MSPs targeting
unidentified pulsar-like LAT sources [102]. Analyses of the X-ray counterparts detected by XMM-
Newton were performed and written about by D. Salvetti (Section 6.7). The final section discussing
the implications of these discoveries was written by the author, with additions from H. J. Pletsch.

1.5.6 Description of Chapter 7

Chapter 7 describes the two latest discoveries made by the Einstein@Home survey and gives some
short speculation about future blind search surveys. One of the new pulsars, PSR J1817−1742, has
the lowest point-source significance of any blind search pulsar, validating the sensitivity estimate
made in Section 4.5.

The text and analysis in this chapter was written and performed by the author. The data used in
this chapter were produced by scripts written by J. Wu and L. Guillemot, which additionally output
the spectral parameters of the new pulsars, given in Table 7.1.



Chapter 2

Optimized Blind Gamma-ray Pulsar
Searches at Fixed Computing Budget

Originally published as Pletsch & Clark, 2014, The Astrophysical Journal, 795, 75.
c© 2014. The American Astronomical Society. All rights reserved.

Abstract

The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from
the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this
“needle in a haystack” problem, we here present methods for optimizing blind searches to achieve
the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we
consider their statistical properties and study their search sensitivity under computational constraints.
The results validate a multistage strategy, where the first stage scans the entire parameter space using
an efficient semicoherent method and promising candidates are then refined through a fully coherent
analysis. We also find that for the first stage of a blind search incoherent harmonic summing of
powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing
sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search
stage. Via realistic simulations we demonstrate that overall these optimizations can significantly
lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.

17
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2.1 Introduction

We here give a more detailed description of the strategies and methods exploited in the blind searches
performed by Pletsch et al. [136, 151, 154], and how they relate to the seminal “time differencing
technique” by Atwood et al. [129, hereafter A06]. We consider related questions one might be faced
with when setting up a blind search: Could a fully coherent blind search using a subset of data
perhaps be more sensitive than a semicoherent search using all of the data? Is harmonic summing
worthwhile under computational constraints? What is the optimal search-grid point density to
balance sensitivity versus computing effort? In addressing such questions, we present the technical
framework to optimize the sensitivity of blind pulsar searches in gamma-ray data at fixed computing
cost. Moreover, we present further important methodological advances to improve the overall
blind-search efficiency.

The paper is organized as follows. In Section 2.2, we describe the statistical detection of
pulsations in general. In Section 2.3, we discuss the statistical properties of coherent blind searches
and study their computational cost scalings using the parameter-space metric. We also investigate the
efficiency of harmonic summing for different pulse profiles. In Section 2.4, we describe the statistical
properties of a semicoherent blind-search method and compare the respective computing demand
using the semicoherent metric. Section 2.5 presents a collection of technical improvements for the
implementation of the semicoherent search stage, including efficient interpolation methods and
automated candidate follow-up procedures. We demonstrate the superiority from combining these
advances through realistic simulations in Section 2.6. Finally, conclusions follow in Section 2.7.

2.2 Statistical Detection of Pulsations

In blind pulsar searches the pulse profile (the periodic light curve) and the exact parameters
describing the rotational evolution of the neutron star are unknown in advance. As Bickel et al. [172]
have pointed out, unless the pulse profile shape is precisely known, there is no universally optimal
statistical test, because any most powerful test for one template profile will not be most powerful
against another. Any test can only be most sensitive to a finite-dimensional class of targets. Thus,
for computational feasibility of a blind search an efficient (potentially suboptimal) template pulse
profile to test against should attain only modest reduction in detection sensitivity compared to an
optimal template. The construction of such a test can be guided by the profiles of known gamma-ray
pulsars, which we will consider below.

For isolated pulsars the search parameters describing the rotational phase of the neutron star
is at least four-dimensional, consisting of frequency f , spindown rate ḟ , and sky position with
right ascension α and declination δ. To the LAT-registered arrival times tLAT sky-position (α, δ)
dependent corrections (“barycentric corrections”) are applied in order to obtain the photon arrival
times t at the solar system barycenter (SSB). Then the rotational phase Φ(t) is described by

Φ(t) = φ0 + 2π f(t− t0) + 2π ḟ
(t− t0)2

2
, (2.1)
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where f and ḟ are defined at reference time t0, when the phase equals the constant φ0.
Apart from the arrival time, for each of N detected gamma-ray photons, indexed by j, the

LAT also records the photon’s reconstructed energy and direction. From these a weight, wj , can
be computed measuring the probability that it has originated from the target source [152, 172].
Using these probability weights efficiently avoids testing different hard selection cuts on energy
and direction (implying binary weights), providing near optimal pulsation detection sensitivity
[151, 152].

The observed gamma-ray pulse profile F (Φ), the flux as a function of Φ, can be written as

F (Φ) ∝ 1− p
2π

+ p Fs(Φ) , (2.2)

where p is the pulsed fraction that is estimated by the number of pulsed gamma-ray photons divided
by the total number of photons. Fs(Φ) represents the pulse profile (undisturbed by background) and
is a probability density function on [0, 2π], which can be expressed as a Fourier series

Fs(Φ) =
1

2π


1 +

∑

n6=0

αn e
i nΦ


 , (2.3)

with the complex Fourier coefficients αn, defined at harmonic order n as

αn =

∫ 2π

0
Fs(Φ) e−i nΦ dΦ . (2.4)

Hence the total flux F (Φ) can be rewritten as

F (Φ) ∝ 1 + p
∑

n6=0

αn e
i nΦ . (2.5)

If Fs(Φ) is an exact sinusoidal pulse profile, then from Equation (2.4) it follows that |α1| = 1/2
and all other coefficients vanish, |αn>1| = 0. As another example, if the pulse profile Fs(Φ) is a
Dirac delta function, i.e. the narrowest possible profile, then all coefficients are equal, |αn| = 1,
implying equal Fourier power at all harmonic orders.

In general, the null hypothesis is given by p = 0, meaning that all phases are uniformly
distributed (i.e. no pulsations). From the likelihood for photon arrival times Bickel et al. [172]
derived a score test statistic QM for p > 0,

QM =
1

K2

M∑

n=1

|αn|2 |An|2 , (2.6)

where we defined the normalization constant K [different from 172] as

K2 =
1

2M

M∑

n=1

|αn|2 , (2.7)
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and An is given by

An =
1

κ

N∑

j=1

wj e
−i n φ(tj) , (2.8)

with the time-dependent part of the phase φ(t) = Φ(t)− φ0 and the normalization constant κ
defined as

κ2 =
1

2

N∑

j=1

w2
j . (2.9)

Thus, we denote by Pn the coherent Fourier power at the nth harmonic,

Pn = |An|2 =
1

κ2

∣∣∣∣∣∣

N∑

j=1

wj e
−i n φ(tj)

∣∣∣∣∣∣

2

. (2.10)

Appealing to the Central Limit Theorem (since N � 1 in all practical cases) the normalization
choice of Equation (2.9) has the convenient property that the coefficients <(An) and =(An) become
independent Gaussian random variables with zero mean and unit variance under the null hypothesis.
Therefore, to good approximation each Pn is χ2-distributed with 2 degrees of freedom, as will be
discussed below. Thus, QM is the weighted sum of coherent Fourier powers,

QM =
M∑

n=1

|αn|2
K2

Pn . (2.11)

Therefore, as noted by Bickel et al. [172], the test statistic QM is invariant under phase shifts (i.e.
independent of reference phase φ0) and only depends on the amplitudes of the Fourier coefficients αn,
but not on their phases. Moreover, Beran [173] showed earlier that if the pulse profile is known a
priori, a test statistic following from QM for binary weights is locally most powerful for testing
uniformity of a circular distribution, assuming unknown and weak (small p) signal strength.

2.3 Coherent Test Statistics

In what follows, we examine the sensitivity of coherent blind searches at fixed computational cost,
taking into account the statistical properties and sensitivity scalings in terms of relevant quantities.
For simplicity, during the remainder of this section we here assume hard photon selection cuts, i.e.,
binary weights only, wj ∈ {0, 1}, such that Pn reduces to

Pn =
2

N

∣∣∣∣∣∣

N∑

j=1

e−i n φ(tj)

∣∣∣∣∣∣

2

. (2.12)

However, the main conclusions obtained will also have applicability when arbitrary (i.e., non-binary)
weights are used.
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2.3.1 Statistical Properties

Under the null hypothesis p = 0 and assuming N � 1, the coherent power Pn as of Equation (2.12)
follows a central χ2-distribution with 2 degrees of freedom (see Appendix 2.8.1), whose the first
two moments are,

E0 [Pn] = 2 , V ar0 [Pn] = 4 . (2.13)

Suppose the photon data contains a pulsed signal, p > 0, whose pulse profile can be expressed
in terms of complex Fourier coefficients, γn as in Equation (2.4). In this case, we show in Ap-
pendix 2.8.1 that for moderately strong pulsed signals the distribution of Pn can be well ap-
proximated by a noncentral χ2-distribution [174, 175] with 2 degrees of freedom. Thus, in the
perfect-match case (the pulsar parameters f , ḟ , and sky position are precisely known), the first two
moments are approximately given by1

Ep [Pn] ≈ 2 + 2p2N |γn|2 , (2.14a)

V arp [Pn] ≈ 4 + 8p2N |γn|2 , (2.14b)

where pN photons are assumed to be “pulsed” and accordingly (1− p)N photons are “non-pulsed”
(i.e., background). Thus, the second summand in Equation (2.14a) represents the noncentrality
parameter.2 We can also identify the amplitude signal-to-noise ratio (S/N) at the nth harmonic, θPn ,
as

θ2
Pn =

Ep [Pn]− E0 [Pn]√
V ar0 [Pn]

≈ p2N |γn|2 . (2.15)

Therefore, by comparison to Equation (2.14a) the noncentrality parameter is just 2θ2
Pn .

A similar calculation for QM , based on the above relations shows that if p = 0,

E0 [QM ] = 4M , V ar0 [QM ] =
4

K4

M∑

n=1

|αn|4 , (2.16)

and for p > 0, one obtains

Ep [QM ] ≈ 4M +
2 p2 N

K2

M∑

n=1

|αn|2|γn|2 . (2.17)

Thus, the amplitude S/N θQM for the test statistic QM can be expressed as

θ2
QM
≈ p2 N

∑M
n=1 |αn|2|γn|2√∑M
n=1 |αn|4

. (2.18)

1In fact, these values scale with N − 1 rather than N , since clearly we need more than one photon to detect pulsations.
In practice N must be large to detect pulsations, so the approximations are justified. With thanks to L. Nieder for noticing
this.

2A random variable X following a non-central χ2-distribution with 2 degrees of freedom and noncentrality parameter λ,
has expectation value 2 + λ.
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A similar expression has been derived by Bickel et al. [172] who used this parameter as an approx-
imate measure of the sensitivity of the test statistic QM , since the larger the S/N θQM the higher
the probability of detection. However, it is only an approximate sensitivity measure, because any
meaningful sensitivity comparison must be done at fixed probability of false alarm as will be de-
scribed below. Equation (2.18) also shows that the S/N is maximized if |αn|2 ∝ |γn|2, i.e., when the
template pulse profile αn perfectly matches the γn, representing the signal pulse profile. However,
as Bickel et al. [172] correctly note, practical blind searches can only test for a finite-dimensional
class of template pulse profiles.

A particularly simple template profile for a given value of M is

|αn| =
{

1, n ≤M
0, n > M

. (2.19)

With this choice, QM measures the coherent Fourier power summed over the first M harmonics,
which we therefore refer to as incoherent harmonic summing. The resulting statistic is also known
as Z2

M [55],

Z2
M =

M∑

n=1

Pn . (2.20)

Maximizing Z2
M over different values of M as H = max16M620

(
Z2
M − 4M + 4

)
also recovers

the widely used H-test by de Jager et al. [176].
The template of Equation (2.19) has the additional benefit that the statistical distribution of

Z2
M is known analytically. Therefore, we use this to obtain realistic sensitivity scalings for such

coherent test statistics. Since Pn is χ2
2-distributed3, it follows that Z2

M is distributed as χ2
2M . Thus,

one obtains
E0

[
Z2
M

]
= 2M , V ar0

[
Z2
M

]
= 4M , (2.21)

and
Ep
[
Z2
M

]
≈ 2M + 2θ2

M

√
M . (2.22)

Correspondingly, the S/N θM is written as

θ2
M =

1√
M

M∑

n=1

θ2
Pn =

p2 N√
M

M∑

n=1

|γn|2 . (2.23)

In the Neyman–Pearson sense, we define search sensitivity from the lowest threshold pulsed
fraction required to achieve a certain detection probability P ∗DET for a given number of photons N
and at given false alarm probability P ∗FA. For Z2

M the false alarm probability is computed as

PFA(Z2
M,th) =

∫ ∞

Z2
M,th

χ2
2M (Z2

M ; 0) dZ2
M , (2.24)

3We use the notation χ2
k to indicate a χ2-distribution with k degrees of freedom.
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where χ2
k(X;λ) denotes the probability density function for the χ2

k-distributed variable X with
noncentrality parameter λ. The probability of detection for a noncentrality parameter of 2θ2

M

√
M is

PDET(Z2
M,th, 2θ

2
M

√
M) =

∫ ∞

Z2
M,th

χ2
2M (Z2

M ; 2θ2
M

√
M) dZ2

M . (2.25)

The minimum detectable pulsed-fraction threshold for summing coherent power from M har-
monics, pcoh,M , is obtained by first inverting Equation (2.24) to get the threshold test-statistic
value Z2

M,th(P ∗FA), which in a second step is substituted in Equation (2.25) to numerically find the
required threshold S/N:

θ∗M = θM (P ∗FA, P
∗
DET) . (2.26)

Finally, Equation (2.23) can be used to convert the threshold S/N θ∗M into pcoh,M , which defines the
coherent search sensitivity as

p−1
coh,M =

√
N

M1/4 θ∗M

[
M∑

n=1

|γn|2
]1/2

. (2.27)

Assuming the overall photon count rate, µ = N/Tcoh,1, is constant throughout the entire coherent
integration time, Tcoh,1 then the search sensitivity increases with the well-known square-root scaling
of Tcoh,1,

p−1
coh,M =

√
µTcoh,1

M1/4 θ∗M

[
M∑

n=1

|γn|2
]1/2

. (2.28)

Thus, we have obtained an expression for the search sensitivity, separating the two effects of photon
count rate (or integration time) and pulse profile shape. Regarding the latter effect, Equation (2.28)
reveals that the sensitivity only improves with including higher harmonics (i.e. increasing M ) if the
pulse profile shape is such that

(∑M
n=1 |γn|2

)1/2 increases more quickly than the “statistical penalty”
factor M1/4 θ∗M . While this is true for the narrowest possible pulse profile (a Dirac delta function),
we show below that the same does not hold in general for typical gamma-ray pulsar profiles.

2.3.2 Effects of Pulse Profile on Sensitivity

From Equation (2.28) in the previous section, we have seen how the sensitivity for pulsation detection
depends on the shape of the pulse profile, represented by the Fourier coefficients γn. Therefore, it is
instructive to examine the change in sensitivity as a function of the number of harmonics M for
some exemplary profiles. Thus, we consider the following ratio,

p−1
coh,M

p−1
coh,1

=
θ∗1

M1/4 θ∗M

1

|γ1|

[
M∑

n=1

|γn|2
]1/2

, (2.29)



24 CHAPTER 2. OPTIMIZED BLIND SEARCHES

which compares in the statistical sense the search sensitivity of including M harmonics, compared
to using the fundamental only (in absence of any computational constraints).

In the ideal case, where all harmonics have equal power |γn|2 = 1, the pulse profile is a Dirac
delta function as described above. In this case,

(∑M
n=1 |γn|2

)1/2
= M1/2, and the sensitivity is a

monotonically increasing function of M at fixed detection probability, P ∗DET, and fixed false alarm
probability, P ∗FA. To illustrate this, consider the following example, assuming that P ∗FA = 1% and
P ∗DET = 90%. Then, to good approximation, the corresponding S/N threshold θ∗M can be described
by

θ∗M ≈
(

3.715 +
4.987√
M

)1/2

. (2.30)

Hence, with increasing M , the threshold S/N θ∗M decreases and becomes constant in the limit
of large M , in which case the statistical penalty factor (M1/4 θ∗M ) becomes ∝ M1/4. Since this
scaling is slower than the pulse profile factor

(∑M
n=1 |γn|2

)1/2
= M1/2 in this case, the sensitivity

is monotonically increasing with M . This is also shown in Figure 2.1, using the exact values for θ∗M
that we calculated numerically.

To obtain a more realistic signal pulse-profile model, we considered those of the known gamma-
ray pulsars. We carried out a harmonic analysis of the pulse profile shapes of the 117 known
gamma-ray pulsars listed in the second Fermi LAT pulsar catalog [80] and computed their Fourier
coefficients, γn. These are shown in Figure 2.2 (top panel) and illustrate that for most of the known
gamma-ray pulsars the largest fraction of Fourier power is typically in a single harmonic that is
either the first (mostly single-peaked profiles) or the second (mostly two-peaked profiles). Therefore,
before computing an average profile (by averaging the |γn|), it makes sense to divide the pulsars into
these two groups (based on whether or not |γ1| > |γ2|). These results, separately for each group,
are displayed in the two bottom panels of Figure 2.2.

We use the resulting two sets of coefficients γn to calculate the sensitivity scaling with M from
Equation (2.28) as also shown in Figure 2.1. Notice that for the typical pulse profiles, in contrast
to the Dirac delta pulse-profile, when summing more than a certain number of harmonics, the
sensitivity starts to decrease (at fixed P ∗DET and P ∗FA). This is because the Fourier powers |γn|2 at
the higher harmonics become vanishingly small and thus effectively only contribute “noise” when
summed (i.e. the statistical penalty factor cannot be overcome anymore).

These results also illustrate the success of the H-test for targeted pulsation searches in gamma-
ray data with known pulsar ephemerides, because this test maximizes the Fourier power sums over
the first 20 harmonics. Maximizing only over fewer harmonics could likely already be sufficient (or
even be more sensitive due to the reduced trials factor) in most cases, as suggested by Figure 2.1.
Besides, further improvements over the H-test could also be achieved by employing one or more
template profiles αn that are more representative of the typical gamma-ray profile (than the delta
function) to compute the QM test statistic. Using the average profile from the known pulsars from
above for this seems the simplest first step. While also conducting a principal component analysis
appears worthwhile, we defer a detailed study of this to future work.

So far, we have not considered the computational costs involved, which is only justifiable
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Figure 2.1: Sensitivity as a function of the number of harmonics M included in absence of computational
constraints and for three different pulse-profile models. In each panel, we fixed the detection probability
P ∗
DET = 90% and the four curves correspond to different values of false alarm probability P ∗

FA as shown by
the legend. The upper panel is for a Dirac delta function pulse profile (implying equal Fourier power at all
harmonics). The middle panel is for a typical pulse profile, obtained from the known gamma-ray pulsars by
averaging those profiles that are mostly single-peaked (i.e. the γn values shown in the bottom left panel in
Figure 2.2). The bottom panel is also for a realistic pulse profile, obtained from the known gamma-ray pulsars
by averaging those profiles that are mostly two-peaked (i.e. the γn values shown in the bottom right panel in
Figure 2.2). Since for these profiles the Fourier power |γ2|2 is highest at the second harmonic (n = 2), in
this plot the vertical axis shows the sensitivity compared to a blind search which would report the highest
detection significance at the second harmonic (i.e. “misidentify” the fundamental).
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Figure 2.2: Harmonic analysis of pulse profiles of the 117 gamma-ray pulsars in the second Fermi LAT
pulsar catalog [80]. Top panel: Fourier power |γn|2 (color-coded) at the nth harmonic (vertical axis) for each
of the 117 pulsars (horizontal axis). Bottom left panel: Fourier power |γn|2 at the nth harmonic averaged
over the 76 out of the 117 pulsars, whose power at the fundamental is highest (mostly single-peaked profiles).
Bottom right panel: Fourier power |γn|2 at the nth harmonic averaged over 41 out of the 117 pulsars, whose
power at the second harmonic is highest (mostly two-peaked profiles).
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for computationally inexpensive targeted searches. In contrast, blind searches are limited by
computational power. Therefore, in the following section, we will revisit the efficiency of harmonic
summing under the constraint of a fixed computational cost.

2.3.3 Grid-point Counting for Coherent Search

In blind searches, the pulsar’s rotational and positional parameters are unknown a priori. Therefore,
one has to construct a grid in the multidimensional search parameter space that is explicitly searched,
i.e., the test statistic is to be computed at each grid point. Therefore the question arises: What is
the most efficient scheme for constructing the search grid? If grid points are placed too far apart
potential pulsar signals might be missed. On the other hand, it is highly inefficient to place grid
points too closely together, because of redundancy resulting from strongly correlated nearby grid
points. The problem of constructing efficient search grids has been intensively studied in the context
of gravitational-wave searches [see e.g. 128, 148, 177–179] and we employ some of these concepts
here.

The key element is a distance metric on the search space [180, 181]. The metric provides
an analytic geometric tool measuring the expected fractional loss in squared S/N for any given
pulsar-signal location at a nearby grid point.

Let the vector usig collect the actual pulsar signal parameters. In a blind search for isolated
pulsars, this vector is at least four-dimensional, usig = (fsig, ḟsig, αsig, δsig). For simplicity, we
begin by considering the metric at the fundamental harmonic (n = 1). As will be shown below,
it is subsequently straightforward to generalize the results to higher harmonic orders. Following
Equation (2.15), let θP1(usig) denote the S/N for the perfect-match case, i.e., at the signal parameter-
space location. In a blind search the signal parameters generally will not coincide with a grid point u,
but will typically have some offset,

∆u = u− usig . (2.31)

These offsets lead to a (time-dependent) residual phase φ(t;u)− φ(t;usig) and therefore a fractional
loss in squared S/N results, which is commonly referred to as mismatch,

m(∆u) = 1−
θ2
P1

(u)

θ2
P1

(usig)
= 1−

θ2
P1

(usig + ∆u)

θ2
P1

(usig)
. (2.32)

The metric is obtained from a Taylor expansion of the mismatch to second order in the offsets ∆u
at the signal location usig,

m(∆u) ≈
∑

k,`

Gk` ∆uk ∆u` +O(∆u3) , (2.33)

This equation defines a positive definite metric tensor G with components Gk`, where k and ` label
the tensor indices. In Appendix 2.8.2, we derive explicit expressions for the coherent metric for a
simplified phase model that is appropriate for the purpose of grid construction. We also find that the
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resulting metric tensor G is diagonal, which greatly simplifies the grid construction. The results of
this derivation will therefore be used in what follows.

As noted by Prix & Shaltev [147], the probability distribution of signal mismatches in a
given search grid constructed with a certain maximal mismatch m depends on the structure and
dimensionality of the search parameter space. The corresponding average mismatch in each
dimension, ξ m, will generally be smaller by a characteristic geometric factor ξ ∈ (0, 1), depending
on the actual search-grid construction. For example, for hyper-cubical lattices, ξ is known to be
ξ = 1/3. In order to construct a hyper-cubical grid in which the maximum mismatch due to an
offset in each parameter is m, then the grid point spacing in each parameter should be,

∆uk = 2

√
m

Gkk
. (2.34)

Denote by U the four-dimensional parameter space, spanned by u, which is to be searched. Thus,
when searching for pulsars with spin frequencies in the range [0, fmax], with spin-down rates in
the range [ḟmax, 0], and whose sky location is confined by the LAT to a region of area Asky, the
coordinate volume U can be written as

U = fmax

∣∣∣ḟmax

∣∣∣Asky . (2.35)

In principle, the metric coefficients (and hence also the grid point spacings) can vary throughout
the parameter space. Indeed, for the metrics considered in this work, the grid point spacing in the
sky dimensions depends on the spin frequency of the pulsar. In order to avoid having to construct a
separate sky grid for each search frequency value, we adopt the conservative approach of using the
highest frequency searched fmax for the sky grid construction. The metric (and hence also the grid
point spacing) becomes uniform throughout U . The total number of search-grid points Ncoh,1 for a
coherent blind search over U is therefore simply the product of the number of grid points in each
dimension.

Ncoh,1 = U
∏

k

1

∆uk
=

1

16
U m−2

√
detG , (2.36)

as G is found to be diagonal. In Appendix 2.8.2 we derive that

√
detG =

π4

√
135

T 3
coh,1 f

2 r2
E Ψ(Tcoh,1) , (2.37)

where we defined,4

Ψ2(Tcoh,1) =
[
1 + sinc (ΩE Tcoh,1/π)− 2 sinc2 (ΩE Tcoh,1/2π)

]

× [1− sinc (ΩE Tcoh,1/π)] , (2.38)

and where we have denoted the Earth’s orbital angular frequency as ΩE = 2π/1yr, and the light
travel-time from the Earth to the SSB as rE = 1AU/c ∼ 500s.

4We use the definition sinc(x) = sin(πx)/(πx) throughout this manuscript.
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Figure 2.3: Scaling of the determinant of the coherent metric G as function of the coherent integration time
Tcoh,1 (black solid curve). The red dot-dashed curve shows the model of the coherent metric determinant
from the approximation of Equation (2.39) used to estimate the computing cost scaling.

To analytically study the scaling ofNcoh,1 as a function of Tcoh,1, the function Ψ(Tcoh,1) can be
well approximated by

Ψ(Tcoh,1) ≈





Ω3
E T

3
coh,1

12
√

15
, Tcoh,1 < 0.572yr

1, Tcoh,1 ≥ 0.572yr
. (2.39)

The validity of this approximation is illustrated in Figure 2.3. Hence, the total number of grid points
required in a coherent search is

Ncoh,1 =
π4

48
√

15

(
Ω3
E

12
√

15

)(a−3)/3

r2
Em

−2 f2
max T

a
coh,1 U , (2.40)

where

a ≈
{

6, Tcoh,1 < 0.572yr

3, Tcoh,1 ≥ 0.572yr
. (2.41)

Equation (2.40) tells us that for coherent integration times much shorter than half a year the sky
metric components also still scale with Tcoh,1, such that Ncoh,1 increases approximately as T 6

coh,1.
After half a year of coherent integration the sky metric components quickly approach the resolution
saturation as the maximum baseline (1 AU) is reached, and thereafter become approximately
independent of Tcoh,1. Therefore Ncoh,1 scales only as T 3

coh,1 in this regime.
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2.3.4 Coherent Search Sensitivity at Fixed Computing Cost

For computational efficiency, we use the fast Fourier transform (FFT) algorithm [182] to scan
the f -dimension. There are two steps involved in calculating an FFT, each with an associated
computational cost. Firstly, it is necessary to construct a discrete time series by interpolating (e.g. by
binning) the photon arrival times into equidistant samples. The cost of this step is proportional to the
number of photon arrival times which must be interpolated. Secondly, the discrete time series must be
transformed into a discretely sampled frequency spectrum, using the FFT algorithm. For a maximum
frequency of fmax, and a coherent integration time of Tcoh,1 there are fmaxTcoh,1 frequency samples,
and the computational cost of calculating the FFT is proportional to fmaxTcoh,1 log2(fmaxTcoh,1).
We assume that the cost of calculating the FFT is much larger than the cost of creating the discrete
time series. Compared to the cost of computing P1 explicitly for N photon times at fmaxTcoh,1

frequencies, which is proportional to NfmaxTcoh,1, it is clear that the FFT method offers more
efficiency provided N � log2(fmaxTcoh,1).

The spacing of frequency samples output by the FFT is 1/Tcoh,1. According to the metric
[see Equation (2.121a)] this implies a worst-case mismatch due to frequency offsets of m =
Gff/(4T

2
coh,1) = π2/12 = 0.82, which obviously also leads to a high average mismatch. However,

as we will discuss in Section 2.5.2, it is possible to reduce this mismatch at almost no extra
computational cost by interpolating the frequency spectrum. In the following derivations, we
therefore separate the total mismatch mtot into two components: a constant mismatch due to the
frequency spacing, mf determined by the interpolation method used, which has a negligible effect
on the overall computing cost; and the mismatch due to offsets in the remaining parameters, m,
which can be freely varied to construct an optimal grid.

For every grid point in {ḟ , α, δ} an FFT must be computed, and hence the overall computation
time for the search is simply the cost of calculating one FFT multiplied by the number of FFTs that
must be computed. The total cost, Ccoh,1 (measured in units of time), is

Ccoh,1 = KFFTfmaxTcoh,1 log2(fmaxTcoh,1)
Ncoh,1

Nf
, (2.42)

where KFFT is an implementation and computing hardware dependent constant, and where Nf is
the number of frequency samples that would be calculated using a grid with an arbitrary maximum
mismatch per dimension of m,

Nf =
fmax

2

√
Gff
m

=
π

2
√

3m
fmaxTcoh,1 . (2.43)

The total computational cost is therefore

Ccoh,1 = Kcoh,a m
−3/2 T acoh,1 log2(Tcoh,1fmax) , (2.44)

where the constant Kcoh,a depends on a,

Kcoh,a = KFFT
π3 r2

E f
2
max U

24
√

5

(
Ω3
E

12
√

15

)(a−3)/3

. (2.45)
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For a search grid constructed with maximum mismatch mtot = mf + 3m, the search sensitivity
will scale with the average mismatch 〈mtot〉 = 〈mf 〉 + 3ξm as

√
1− 〈mtot〉 [147]. Thus, from

Equation (2.28) it follows that the search sensitivity without harmonic summing scales as

p−1
coh,1 =

√
(1− 〈mtot〉) µ Tcoh,1

θ∗1
|γ1| . (2.46)

For a computing cost Ccoh,1, Equation (2.44) can be used to obtain (numerically) the maximum
Tcoh,1. Substituting this value of Tcoh,1 in Equation (2.46) finally yields the search sensitivity at the
given computational cost.

2.3.5 Efficiency of Harmonic Summing at Fixed Computing Cost

Based on the results of the previous sections, we now investigate the efficiency of incoherent
harmonic summing under computational cost constraints. More precisely, we address the question
of whether it is more efficient in blind searches to sum M harmonics, or to instead use a longer
coherent integration time without harmonic summing at the same computing cost.

Thus, we consider the test statistic Z2
M , which incoherently sums Fourier powers Pn from M

higher harmonics. In Appendix 2.8.3 we derive the parameter space metric for the Z2
M statistic,

denoted by G̃, and find that
√

det G̃ = r4
√

detG, where r represents a refinement factor due to
harmonic summing, and G is the metric tensor for P1 of Equation (2.37). Therefore, to ensure equal
sensitivity throughout the original parameter space5 the required number of grid points increases by
the factor of r4 compared to using P1 only. The value of r ≥ 1 depends on the pulse profile γn. For
a sinusoidal pulse profile (|γ1| = 1/2 and |γn>1| = 0), obviously r = 1 (i.e. no refinement), and for
a Dirac delta function (|γn| = 1), one finds r ∼M , as derived in Equation (2.128). In principle, one
could construct a grid with r4Ncoh,1 points, and calculate and sum M values of Pn at each point,
leading to the cost of a harmonic summing search being simply Mr4 times greater than that of a
coherent search at the fundamental frequency with the same coherent integration time.

In practice, to utilize the efficiency of the FFT, it would be necessary to construct a sub-optimal
grid in which the range in f and ḟ is extended by a factor of M , and the coherent powers summed
appropriately over harmonics. The sky-grid in this case may still be constructed using the refinement
factor r, leading to the computing cost being M2r2 times Ccoh,1 at the same coherent integration
time. While this method may quickly become infeasible due to the amount of memory required, we
use this only as a theoretically efficient method to compare to an equally costly search using only
the fundamental harmonic power.

We here assume that the small extra cost of actually summing the Pn is negligible.6 The
computational expense for incoherent harmonic summing, Ccoh,M , using the Z2

M statistic for a

5This constraint is imposed to eliminate any detection bias in favor of pulsars with low frequencies and frequency
derivatives, allowing for estimates of the true astrophysical pulsar populations.

6Note that this makes the computing cost estimate generous in favor of the harmonic summing approach in this
comparison.
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coherent integration time Tcoh,M becomes

Ccoh,M = Kcoh,a m
−3/2 T acoh,M M2 r2 log2(Tcoh,MfmaxM) . (2.47)

From Equation (2.27) above, we found that the search sensitivity of incoherent harmonic summing
is given by

p−1
coh,M =

√
(1− 〈mtot〉) µ Tcoh,M

M1/4 θ∗M

[
M∑

n=1

|γn|2
]1/2

. (2.48)

Hence, to compare the search sensitivities p−1
coh,1 and p−1

coh,M at fixed computing cost, in principle
the following steps are required. First, for a given computing cost Ccoh,1, Equations (2.44) and
(2.46) provide the corresponding coherence time Tcoh,1 and sensitivity p−1

coh,1, respectively. Second,
by equating Ccoh,1 = Ccoh,M , Equation (2.47) then can be solved (numerically) for Tcoh,M , which
finally is used to obtain the sensitivity p−1

coh,M from Equation (2.48). It should be noted that in
comparing p−1

coh,1 and p−1
coh,M the same values of P ∗FA and P ∗DET must be assumed. We here also

assume the same mismatch m in either case, because as shown in Appendix 2.8.5, the optimal
mismatch at fixed computing cost is independent of coherent integration time, number of harmonics
summed, and computing power available. Notably, a similar result has been found previously by
Prix & Shaltev [147] in the context of gravitational-wave pulsar searches.

In the following, we describe an analytical approximation to the numerical approach above
which we show to be sufficiently accurate for typical search setups. This approximation is based on
ignoring the slowly varying log2 factors in Equations (2.44) and (2.47), such that

Ccoh,M ∼ Kcoh,a m
−3/2 T acoh,M M2 r2 . (2.49)

Then from Ccoh,1 = Ccoh,M , it immediately follows that Tcoh,M must be shorter by the fac-
tor (M2 r2)(1/a),

Tcoh,M = Tcoh,1

(
M2 r2

)−1/a
. (2.50)

We show in Appendix 2.8.4 that the Tcoh,M obtained from this approximation slightly overestimates
the sensitivity p−1

coh,M , while being accurate to within less than about 1% for typical search setups.
Using Equation (2.50) to substitute Tcoh,M in Equation (2.48) one obtains for the ratio of search
sensitivities,

p−1
coh,1

p−1
coh,M

=
M1/4+1/a r1/a θ∗M

θ∗1
|γ1|

[
M∑

n=1

|γn|2
]−1/2

, (2.51)

which remarkably is independent of Tcoh,1 and Tcoh,M . This sensitivity ratio p−1
coh,1/p

−1
coh,M of

Equation (2.51) is shown in Figure 2.4 and is found to be greater than unity for typical gamma-ray
pulsars. Only for unrealistically narrow pulse profiles (i.e. a Dirac delta function), the sensitivity
ratio can remain close to or slightly below unity. It also should be pointed out that we obtained
these results despite the generous assumptions in favor of the harmonic summing approach. First,
we ignored the extra costs of summing the M power values. Second, we neglected the possible
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Figure 2.4: Ratio of search sensitivities p−1
coh,1 (without harmonic summing) and p−1

coh,M (summing power
from M harmonics) at fixed computational cost. The Z2

M test statistic used here, assumes a delta function
pulse profile, so optimizing the search grid for this profile leads to the curves shown by the filled squares
and circles. The red crosses and pluses are for the same statistic and grid, but where the signal pulse profile
is a more typical one (derived from averaging those of the known gamma-ray pulsars of Figure 2.1). The
open squares and circles are for the same statistic, but using the same typical signal pulse profile and a grid
that is also optimized for that same pulse profile. For each case, the results of two different scalings of the
computing cost with T a

coh,M are shown, corresponding to a = 6 and a = 3 (see text for details). While all
points shown are for P ∗

DET = 90% and P ∗
FA = 1%, they remain qualitatively similar for lower P ∗

FA values,
too.

extra trials when one would maximize the test statistics over different M . Third, the analytical
approximation of Equation (2.50) overestimates the true Tcoh,M (and hence the sensitivity p−1

coh,M )
as we show by numerical evaluation in Figure 2.11.

Hence the basic moral is clear: For blind searches for isolated gamma-ray pulsars, whose
sensitivity is limited by computing power rather than the amount of available data, a more sensitive
search strategy is to employ a longer coherence time instead of using incoherent harmonic summing
at the same computational cost.

2.4 Semicoherent Test Statistics

The key property of the semicoherent test statistics is that only pairs of photon arrival times (tj , tk)
whose separation τjk = tj − tk, also called lag, is at most T (which is much shorter than Tobs) are
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combined coherently, otherwise incoherently. Hence, we refer to T as the coherence window size
and denote by R the ratio of total observational data time span Tobs of the semicoherent search
and T ,

R = Tobs/T . (2.52)

Compared to fully coherent methods, this semicoherent approach drastically reduces the computing
cost since fewer search grid points are required (due to the lower parameter-space resolution as
will be described in Section 2.4.2) at the expense of reduced search sensitivity. In Section 2.4.3 we
argue that this tradeoff is a profitable one, because at fixed given computing cost the overall search
sensitivity of the semicoherent searches outperform fully coherent searches restricted to data spans
shorter than Tobs by the computational constraints.

To derive a semicoherent test statistic, notice the (unnormalized) coherent Fourier power from
Equation (2.10) for the fundamental frequency (first harmonic) can also be written in the following
form,

P1 ∝

∣∣∣∣∣∣

N∑

j=1

wj e
−iφ(tj)

∣∣∣∣∣∣

2

=
N∑

j,k=1

wj wk e
−i[φ(tj)−φ(tk)] . (2.53)

Thus, the semicoherent statistic S1 is formed by multiplying the terms in the above double sum with
a real lag window ŴT (τjk), such that

S1 =
N∑

j,k=1

wj wk e
−i[φ(tj)−φ(tk)] ŴT (τjk) , (2.54)

where the lag window has an effective size T ,
∫ ∞

−∞
ŴT (τ) dτ = T , (2.55)

and thus must fall off rapidly outside the interval [−T/2, T/2]. Blackman & Tukey [183] were
the first to consider power spectral estimators of the form of S1, which can be seen as the Fourier
transform of the lag-windowed covariance sequence [184]. The semicoherent statistic S1 is just a
more general version of the classic Blackman-Tukey method [183] in spectral analysis, e.g. if the
phase model was simply φ(tj) = 2πftj only. Hence, S1 can also be seen as a local spectral average
of P1 values over neighboring frequencies weighted according to the frequency response of ŴT

[184].
As outlined in [151], for special forms of the lag window, S1 can also be obtained by summing

time-windowed coherent power from overlapping subsets of data. This implies a lag window that
must be always positive semidefinite, because it is formed by the convolution of the time window
with itself in this case [184], whereas the more general form as of Equation (2.54) in principle can
have arbitrary lag windows.

In general, the choice of lag-window function ŴT (τ) has an impact on the sensitivity of the
statistic S1. In tests with simulated LAT data, for the purpose of pulsation detection we found that
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the best sensitivity is provided by the simple rectangular lag window,

Ŵ rect
T (τ) =

{
1, |τ | ≤ T/2
0, otherwise .

(2.56)

which also allows for an efficient implementation as will be described in more detail in Section 2.5.
The usage of the rectangular lag window could also be motivated from the following viewpoint.
Considering the significant sparseness of the LAT data, typically all pairs of photon times fall at
different lags (for any practical sampling time, see Section 2.5.1). Therefore, one could argue that
optimally (for minimum variance) all lags (i.e., all photon pairs) should be weighted equally when
forming S1, which is exactly what Ŵ rect

T (τ) implements. Thus, in the remainder of this manuscript
we will keep using the rectangular lag window Ŵ rect

T (τ) to calculate S1.

2.4.1 Statistical Properties

To examine the statistical properties of the semicoherent statistic, S1, it is useful to rewrite Equa-
tion (2.54) as

S1 =
N∑

j=1

w2
j + 2

N∑

j=1

N∑

k=j+1

wjwk cos[φ(tj)− φ(tk)] Ŵ
rect
T (τjk) . (2.57)

Under the null hypothesis, p = 0 and assuming N � 1, we show in Appendix 2.8.6 that S1 follows
a normal distribution, whose first two moments of the noise distribution of S1 are:

E0[S1] =
N∑

j=1

w2
j , (2.58)

V ar0[S1] = 2
N∑

j=1

N∑

k=j+1

w2
j w

2
k

[
Ŵ rect
T (τjk)

]2
, (2.59)

Now consider that the photon data contains a pulsed signal (i.e. p > 0) with a pulse profile defined
by Fourier coefficients γn. Then the expectation value of S1 is obtained as

Ep[S1] ≈ E0[S1]

+ 2Ep




N∑

j=1

N∑

k=j+1

wjwk cos(φ(tj)− φ(tk)) Ŵ
rect
T (τjk)


 . (2.60)
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Thus, for S1 we can identify the amplitude S/N θS1 as

θ2
S1

=
Ep[S1]− E0[S1]√

V ar0[S1]

=

√
2Ep

[∑N
j=1

∑N
k=j+1wjwk cos(φ(tj)− φ(tk))Ŵ

rect
T (τjk)

]

√
∑N

j=1

∑N
k=j+1 w2

j w
2
k

[
Ŵ rect
T (τjk)

]2
. (2.61)

To extract the scalings of the semicoherent S/N θS1 in terms of the relevant search parameters,
we assume hard photon-selection cuts, i.e., binary photon weights, for the remainder of this section.
Then Equation (2.57) reduces to

S1 = N + 2

N∑

j=1

N∑

k=j+1

cos[φ(tj)− φ(tk)] Ŵ
rect
T (τjk) . (2.62)

In this case, as derived in Appendix 2.8.6, the first two moments of the noise distribution are

E0[S1] = N , V ar0[S1] ≈ N2R−1 . (2.63)

We show in Appendix 2.8.6, that for moderately strong signals the first two moments of the
distribution of S1 are approximately given by

Ep[S1] ≈ N + p2N2 |γ1|2R−1 , (2.64a)

V arp[S1] ≈ N2R−1
(

1 + 2p2N |γ1|2R−1
)
, (2.64b)

and the squared S/N of Equation (2.61) becomes

θ2
S1
≈ p2N R−1/2 |γ1|2 . (2.65)

As shown in Appendix 2.8.6, the probability density function of S1 can be approximated
by a normal distribution with the above expectation values and variances. The sensitivity of a
semicoherent search is the lowest threshold pulsed fraction p for a given number of photons N and
at given false alarm probability P ∗FA to achieve a certain detection probability P ∗DET. For a threshold
S1,th the false alarm probability is computed as

PFA(S1,th) ≈
∫ ∞

S1,th

N {S1;E0[S1], V ar0[S1]} dS1

≈ 1

2
erfc

(
S1,th − E0[S1]√

2V ar0[S1]

)
. (2.66)
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Where, in this context, N
{
X;µ, σ2

}
denotes a normal distribution with mean µ and variance σ2,

and should not be confused with the number of grid-points, Ncoh,1. We compute the probability of
detection using V arp[S1] ≈ V ar0[S1](1 + 2p2N |γ1|2R−1) as

PDET(S1,th, θ
2
S1

) ≈
∫ ∞

S1,th

N {S1;Ep[S1], V arp[S1]} dS1

≈ 1

2
erfc





(
S1,th − E0[S1]√

2V ar0[S1]
− θ2

S1

)
1√

2 + 4p2N |γ1|2R−1



 . (2.67)

The minimum detectable pulsed fraction is obtained by first inverting Equation (2.66) to get
S1,th(P ∗FA), which in a second step is substituted in Equation (2.67) to obtain the threshold S/N θ∗S1

as

θ∗S1
= θS1(P ∗FA, P

∗
DET)

≈
[√

2erfc−1(2P ∗FA)−
√

2 + 4p2N |γ1|2R−1 erfc−1(2P ∗DET)

]1/2

. (2.68)

Finally, using Equation (2.68) one can convert Equation (2.65) into the threshold pulsed frac-
tion p−1

scoh,1, determining the semicoherent sensitivity as

p−1
scoh,1 =

√
N R−1/4

θ∗S1

|γ1| =
√
µ T R1/4

θ∗S1

|γ1| , (2.69)

where we used N = µTR. This reveals the square-root scaling with the coherence window size T
and the expected fourth-root scaling with R of the semicoherent sensitivity. Furthermore using
R = Tobs/T , we can rewrite the previous equation as

p−1
scoh,1 =

√
µ (T Tobs)

1/4

θ∗S1

|γ1| . (2.70)

As a comparison, recall that the coherent sensitivity as of Equation (2.46), p−1
coh,1 ∝

√
Tcoh,1,

increases with the square root of the coherent integration time Tcoh,1. Here, Equation (2.70) shows
that the semicoherent sensitivity, p−1

scoh,1 ∝
√

(T Tobs)1/2, increases with the square root of the
geometric mean of the coherence window size T and the total observation time Tobs.

It should be noted that while the semicoherent method allows for the use of short lag-windows,
in order to detect pulsations there is the additional requirement that there is at least one pair of
pulsed photons which arrive within T of each another. This sets a fundamental lower limit on T .
But for typical pulsed fractions and photon arrival rates considered in this work, this lower limit is
on the order of only a few hours.
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2.4.2 Grid-point Counting for Semicoherent Search

To optimally construct the search grid for the semicoherent statistic S1, it is necessary to re-evaluate
the appropriate metric on parameter space. Analog to Equation (2.32), we define the mismatch for
S1 as the fractional loss in semicoherent S/N squared,

m̄ = 1−
θ2
S1

(u)

θ2
S1

(usig)
= 1−

θ2
S1

(usig + ∆u)

θ2
S1

(usig)
. (2.71)

Expanding the mismatch m̄ to second order in the offsets ∆u as in Equation (2.33) yields the
semicoherent metric tensor Ḡ,

m̄ =
∑

k,`

Ḡk`∆u
k∆u` +O(∆u3) . (2.72)

We derive the components Ḡk` from the phase model in Appendix 2.8.7 analog to the methods
described in [148]. Following the same steps as in Section 2.3.3, we find that Ḡ is also diagonal and
the total number of grid points for a semicoherent step can thus be written as

Nscoh =
1

16
U m̄−2

√
det Ḡ (2.73)

where m̄ here represents the maximum mismatch per dimension used for grid construction. As
derived in Appendix 2.8.7, the determinant of the semicoherent metric is

√
det Ḡ =

π4

12
√

3
T 3 f2 r2

E R

[
1− sinc2

(
ΩE T

2π

)]
. (2.74)

As in Section 2.3.3, for practical purposes we construct the grid for the highest frequency searched fmax

in a given frequency band. Thus, we can rewrite Equation (2.73) as

Nscoh = m̄−2 π4

192
√

3
T 3 f2

max r
2
E R

[
1− sinc2

(
ΩE T

2π

)]
U , (2.75)

where the proper search volume U has been defined previously in Equation (2.35).
To extract the scaling of Nscoh with T , we use the following approximation 7,

[
1− sinc2

(
ΩE T

2π

)]
≈
{

Ω2
E T

2

12 , T < 0.551yr

1, T ≥ 0.551yr .
(2.76)

which is illustrated in Figure 2.5. Hence, using R = Tobs/T one finds that the total number of grid

7Note that when deriving the semicoherent metric, we assume that T � 1 yr, which obviously does not hold in the
second case here. In fact, if the coherence window is longer than one year twice as many search locations are required.
Nevertheless, with current computational restraints, only short lag-windows far shorter than one year are feasible. Again,
thanks to L. Nieder for this important note.
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Figure 2.5: Scaling of the determinant of the semicoherent metric Ḡ as function of the coherent window
size T (black solid curve). The red dot-dashed curve shows the model for the semicoherent metric determinant
from the approximation of Equation (2.76) used to estimate the computing cost scaling.

points in the semicoherent search scales as

Nscoh ∝ m̄−2

(
Ω2
E

12

) (s−3)
2

T s−1 Tobs f
2
max , (2.77)

where the exponent s is given by

s ≈
{

5, T < 0.551yr

3, T ≥ 0.551yr
. (2.78)

2.4.3 Semicoherent Search Sensitivity at Fixed Computing Cost

In analogy to Section 2.3.4, we here adopt a similar model for the computational cost of a semico-
herent search, which is proportional to the number of search-grid points Nscoh needed. We again
assume that the FFT algorithm is used to compute S1 over fmaxT frequency bins, and again split
the total mismatch m̄tot into the mismatch due to a frequency offset m̄f , and the mismatch due
to offsets in the other parameters m̄. Hence, using Equations (2.77) and (2.52) the semicoherent
computing cost model Cscoh,1 is obtained as

Cscoh,1 = Kscoh,s m̄
−3/2 T s−1 Tobs log2(T fmax) , (2.79)
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where Kscoh,s denotes a constant of proportionality that depends on s,

Kscoh,s = KFFT

√
2π3 r2

E f
2
max U

96

(
Ω2
E

12

)(s−3)/2

, (2.80)

as well as on the implementation and computing-hardware dependent constant KFFT as in Equa-
tion (2.45). Analog to Equation (2.44), we here also assume that the FFT algorithm is used, hence
the log2 factor in Equation (2.79). In Section 2.4.1 we found the sensitivity of the semicoherent
search as of Equation (2.70) can be approximately described by

p−1
scoh,1 =

√
(1− 〈m̄tot〉) µ

|γ1|
θ∗S1

T 1/4 T
1/4
obs , (2.81)

where 〈m̄tot〉 = 〈m̄f 〉+ 3ξm̄ denotes again the total average mismatch of the search grid.
With the sensitivity and computing-cost model at hand, we can now illustrate the increased

efficiency that a semicoherent search offers over a fully coherent search. We compare the sensitivity
p−1

scoh,1 of a semicoherent search with coherence window size T over a data set which in total spans
the observational time interval Tobs to the sensitivity p−1

coh,1 of a fully coherent search with coherent
integration time Tcoh,1, at the same computational cost: Cscoh,1 = Ccoh,1. For a given computing
cost Cscoh,1, and observational data set spanning Tobs, Equation (2.79) determines T . This value
of T can then be used to obtain the sensitivity p−1

scoh,1 via Equation (2.81). Similarly, as described
in Section 2.3.5, the given value of Ccoh,1 determines Tcoh,1 and thus provides the corresponding
p−1

coh,1.
The so-obtained ratio of sensitivities p−1

scoh,1/p
−1
coh,1 is studied numerically in Figure 2.6 for

realistic computational power available, such as Einstein@Home. In both cases the optimal mismatch
parameters are assumed, which are independent of computing cost (see Appendices 2.8.5 and 2.8.8).
As can be seen in the figure, this sensitivity ratio is always greater than unity and increases as T
decreases, which is representative of the fact that the sensitivity of a semicoherent search decreases
more slowly than that of a coherent search as the available computing power decreases. Whilst this
ratio decreases as T (and, therefore, the computing cost) increases, the absolute search sensitivity
always increases with T , and so it is still beneficial to use the largest achievable lag-window size T
at the available computational power.

Using a simplified approximation for the semicoherent computing cost model of Equation (2.79)
allows us to obtain some analytical insight into the ratio p−1

scoh,1/p
−1
coh,1 at fixed computing cost,

similar to what has been done in Section 2.3.5. Ignoring the slowly varying log2 term gives the
approximate semicoherent computing cost model as

Cscoh,1 ∼ Kscoh,s m̄
−3/2 T s−1 Tobs . (2.82)

With this simplified model, Cscoh,1 = Ccoh,1 can be rewritten using the approximation of Equa-
tion (2.49) as

Kscoh,s Tobs T
s−1

m̄3/2
=
Kcoh,a T

a
coh,1

m3/2
. (2.83)
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Furthermore, using Equations (2.45) and (2.80) to replace Kcoh,a and Kscoh,s, we can rewrite
Equation (2.83) as

T =

(
4 ΩE m̄

3/2 T 6
coh,1

5
√

6 m3/2 Tobs

)1/4

. (2.84)

where we assume a = 6 and s = 5, since coherent integration times Tcoh,1 less than half a year will
be practically feasible in the near future. This relation can then be used to substitute T in the ratio
p−1

scoh,1/p
−1
coh,1 using Equations (2.81) and (2.46), yielding

p−1
scoh,1

p−1
coh,1

≈ 2
θ∗1
θ∗S1

(
Tobs

1yr

)1/16 ( Tobs

Tcoh,1

)1/8

, (2.85)

where we again assumed the optimal mismatch choices for m and m̄ (see Appendices 2.8.5 and
2.8.8) that are independent of computational cost. For a = 6 and s = 5 these are mopt = 0.172 and
m̄opt = 0.146. Hence, as Fermi-LAT data spans several years (implying Tobs & 1yr) and typically
θ∗1 & θ∗S1

, the sensitivity ratio of Equation (2.85) exceeds unity in all practically relevant cases.
This clearly indicates that at fixed computational cost, a semicoherent blind search is always more
sensitive than a fully coherent search over the same parameter space.

2.5 Efficient Implementation of a Multistage Search Scheme

In Section 2.3, we argued that under computational cost constraints, blind fully coherent searches
without harmonic summing are more efficient, i.e. can typically achieve higher search sensitivity. In
Section 2.4, we showed that at fixed computing cost semicoherent searches are more efficient than
fully coherent searches to scan wide parameter space.

These considerations motivate a multistage search strategy, in which the first and by far most
computationally expensive stage uses the most efficient method (i.e. a semicoherent search) to
explore the entire parameter space. In subsequent stages, the most promising candidates are
automatically “followed up” in further, more sensitive steps, ultimately using fully coherent search
methods. Since the parameter space relevant for these candidates has been previously narrowed
down by the first-stage search, the computing cost constraints are relaxed (i.e. the computing cost
of the follow-ups is negligible compared to the overall cost of the first stage of the blind search).
Hence then the usage of fully coherent methods offering the highest sensitivity is made possible.

In this multistage search scheme, before statistically significant candidates from the first-stage
semicoherent search are followed-up with fully coherent methods, it is advisable to refine the location
of each semicoherent candidate by searching, again semicoherently, using a refined grid with a
smaller mismatch. We then “zoom in” on each significant candidate by performing a fully coherent
search of the local parameter space around the refined location of the semicoherent candidate, using
the full observational data time span, Tobs. The search-grid construction of each stage is guided by
the metric, as described in Appendices 2.8.2, 2.8.7 and 2.8.9.
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Figure 2.6: Comparison of a semicoherent and fully coherent search sensitivity at equal computing cost
and given observational data time spans of Tobs = 2 yr (dotted-dashed curves), Tobs = 5 yr (solid curves),
Tobs = 10 yr (dashed curves). The top panel shows the coherence window size T of the corresponding
semicoherent search as a function of the sensitivity ratio. The bottom panel shows, for a coherent search,
the integration time Tcoh,1, i.e. the subset of Tobs that could be fully coherently analyzed with the same
computing cost as the semicoherent search with the corresponding T shown in the upper panel. The sensitivity
is for P ∗

FA = 10−3 and P ∗
DET = 0.9 in each case and a typical pulsed signal with p = 0.1 and |γ1|2 = 0.35

(cf. Figure 2.2). Since the sensitivity ratio is in all practically relevant cases much greater than unity, the
semicoherent search approach is more efficient.
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When searching for weak signals in the presence of noise, this can cause the refined semicoherent
candidate to occur at a small but unknown offset from the true signal parameters. This offset depends
on the candidate S/N; candidates with higher S/N have a smaller uncertainty region. In order not
to miss weak signals, the coherent follow-up has to cover a conservative region in each dimension
around the semicoherent candidate location. Since the parameter space which must be searched
coherently has been greatly reduced, this step represents a very small fraction of the overall cost of
the search. If the ratio of the coherence window size T used in the first stage and Tobs is very large,
it is more efficient to insert another intermediate zooming stage that does another semicoherent
search with a coherence window size between T and Tobs. This would further reduce the parameter
space to be searched in the fully coherent step, ensuring that the follow-up remains a negligible
fraction compared to overall search. Finally, candidates from this coherent follow-up step are then
ranked for further investigation (e.g. by taking into account higher harmonics, or a more complex
phase model) according to their false alarm probability.

Since this multistage scheme is designed such that the largest computational burden is associated
with the first stage, it is important to optimize this method of calculating the semicoherent test
statistic S1 as much as possible. In the following, we describe various complementary methods
which improve the efficiency and sensitivity of a computationally limited semicoherent search.

2.5.1 Efficient Computation of Semicoherent Test Statistic

For each sky-position grid point of the search region the barycentric corrections are applied directly
to the LAT-registered arrival times tLAT, to obtain the corresponding photon arrival times t at the
SSB. The semicoherent detection statistic S1 as of Equation (2.54) is then computed over the f -
and ḟ -ranges. However, directly computing S1 from Equation (2.54) is computationally inefficient.
Therefore, we here discuss more efficient ways of how to do this.

Making the dependence of S1 on the search parameters f and ḟ explicit for clarity, we rewrite
Equation (2.57) as

S1(f, ḟ) =

N∑

j,k=1

wj wk e
−i[φ(tj ;f,ḟ)−φ(tk;f,ḟ)] Ŵ rect

T (τjk) , (2.86)

where the phase differences in terms of f and ḟ are given by

φ(tj ; f, ḟ)− φ(tk; f, ḟ) = 2πfτjk + πḟ
[
(tj − t0)2 − (tk − t0)2

]

= 2πfτjk + πḟ
[
t2j − t2k − 2t0τjk

]
. (2.87)

Thus, S1 of Equation (2.86) takes the following form,

S1(f, ḟ) =
N∑

j,k=1

wjwk e
−πiḟ[t2j−t2k−2t0τjk] Ŵ rect

T (τjk) e
−2πifτjk , (2.88)
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which allows us to utilize the efficiency of the FFT to scan along the f -direction. In the following
we describe how to achieve this. First, we construct an equidistant lag series whose separation is the
sampling interval δτ = 1/(2fmax), where fmax is equal to the Nyquist frequency fNy. Then for each
pair of times (tj , tk) having a lag τjk smaller than the lag window (i.e. for which Ŵ rect

T (τjk) = 1),
we determine the corresponding bin index b of the equidistant lag series via interpolation. While
we study the efficiency of different lag-domain-interpolation schemes below, let us assume here
nearest-neighbor interpolation for simplicity. Thus, we just round to the nearest lag-bin index b,

b = round [τjk/δτ ] . (2.89)

The FFT performance is generally best for input sizes that are a power of 2 (radix-2 FFTs). Therefore,
we choose T and fmax, such that the total number of lag bins BT = T/δτ = 2Tfmax is a power of
2. We denote the lag-interpolated version of S1 from Equation (2.88) by Ŝ, which can be written
using the lag-bin index b as

Ŝ(f, ḟ) =

BT /2∑

b=−BT /2
Yb(ḟ) e−2πi f δτ b , (2.90)

where terms depending on ḟ and the photon weights have been absorbed into the complex num-
bers Yb(ḟ). More precisely, each Yb(ḟ) is the sum of pairwise weight and ḟ phase factors, falling
into the same lag bin b,

Yb(ḟ) =

N∑

j=1

yj(b; ḟ) , (2.91)

where

yj(b, ḟ) =
N∑

k=j+1

{
wj wk e

−πiḟ[t2j−t2k−2t0τjk] , round [τjk/δτ ] = b ,

0, else .
(2.92)

Note that the so-constructed lag series Yb has Hermitian symmetry, i.e. Yb = Y ∗−b, and therefore Ŝ
remains entirely real-valued. The above expression for Ŝ in Equation (2.90) can be seen as a Fourier
transform of the complex lag series Yb, and so Ŝ can be computed efficiently at many discrete
frequencies by exploiting the FFT algorithm, i.e. by calculating

Ŝg(ḟ) =

BT /2∑

b=−BT /2
Yb(ḟ) e−2πi g b /BT . (2.93)

where the frequency at the gth bin is f = g/T . There exist efficient FFT algorithms [182] which
can be used to evaluate this complex-to-real (c2r) transform of Equation (2.93), and which only
require the positive lag portion of Yb to be calculated as an input.

The above formulation of the semicoherent detection statistic, Ŝg, is very similar to the D`

statistic, described in A06 as the DFT of the discrete autocorrelation function of the (binned) photon
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arrival times. However, there are some key differences. While further differences are discussed
in the following subsections as we encounter them, we here note a first difference between the
methods related to the correction of the frequency derivative ḟ . When calculating D`, the frequency
derivative is corrected by constructing a new time series in which the photon arrival times are
stretched out according to tj = t̃j + 1

2
ḟ
f t̃

2
j . In order to search the {f, ḟ} parameter space, the ratio

ḟ/f is increased by small increments. According to this scheme, the search points in the {f, ḟ}
plane lie along straight lines with increasing gradient, intersecting at the origin. As a result, the
search grid point density is highly non-uniform in the {f, ḟ} plane, decreasing from low to high
search frequencies. The result is that the search parameter space is highly oversampled in the ḟ
dimension at low frequencies. This sub-optimal grid-point density implies that far more grid points
are needed to cover the parameter space. Decreasing the lag-window size to account for this extra
computational cost causes a reduction in sensitivity which more than accounts for the decrease in the
average mismatch8. Calculating Ŝg in the manner described above, where the effect of the frequency
derivative is accounted for by the complex lag-series, Yb(ḟ), allows us to uniformly sample the
{f, ḟ} plane with the optimal average mismatch.

2.5.2 Frequency Domain Interpolation

When performing a semicoherent search using Ŝg, computed via the FFT as in Equation (2.93),
for a pulsar signal frequency that does not lie exactly at a Fourier frequency (i.e. not at an integer
multiple of 1/T ) a loss in signal power (mismatch) will result. To evaluate the response of Ŝg to
signals at a non-Fourier frequency, we consider the case when the lag-series contains a pure sinusoid
[as in 185], with amplitude Ŝ0, at a frequency h/T . Including an appropriate normalization factor
of 1/BT for the Fourier transform, so that

Yb(0) =
Ŝ0

BT
e2πihb/BT . (2.94)

This represents the (unlikely) case of a strong signal, in the absence of noise, where the frequency
derivative and sky location have been perfectly matched. Using Equation (2.93) the response at the
gth frequency bin is therefore:

Ŝg =

BT /2∑

b=−BT /2
Yb(0) e−2πi g b /BT

=
Ŝ0

BT

BT /2∑

b=−BT /2
e−2πi b (g−h) /BT . (2.95)

8This is because despite the reduced mismatch in the ḟ dimension, the contributions of the other three dimensions still
remain and dominate the total mismatch that is relevant for the search sensitivity.
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The above summation over b can be explicitly calculated and is also called the Dirichlet kernel,
which is given by

DN (x) =

N∑

b=−N
e−i b x =

sin ((N + 1/2)x)

sin(x/2)
. (2.96)

Using this identity gives rise to rewrite Equation (2.95),

Ŝg =
Ŝ0

BT
DBT /2 (2π(g − h)/BT )

=
Ŝ0

BT

sin (π (g − h) (1− 1/BT ))

sin (π (g − h)/BT )

≈ Ŝ0

BT

sin (π (g − h))

sin (π (g − h)/BT )

≈ Ŝ0 sinc(g − h) , (2.97)

where in the approximation made in the third step we assumed that 1/2� 1/BT , and in the fourth
step we used in addition the following approximation sin(π(g − h)/BT ) ≈ π(g − h)/BT , since
typically for nearby frequency bins BT � (g − h). Therefore, the match is well described by a sinc
function for signals at non-Fourier frequencies and is smallest (i.e. greatest mismatch) if the signal
lies exactly halfway between two Fourier frequencies. This is shown in Figure 2.7, which displays
the approximated response of Equation (2.97).

This loss can be reduced by interpolating the Fourier response halfway between two Fourier
frequency bins. One method of interpolating the Fourier transform output, known as zero-padding,
is to extend the original lag series (or time series) to twice its original length by adding zeros onto
the end. However, this requires calculating a Fourier transform which is twice as long, and therefore
more than twice as costly. To avoid increasing the computational cost, we use a more efficient
interpolation technique in the frequency domain, also known as “interbinning” [185, 186]. Note
that [185] gives a formulation for calculating interbin amplitudes for real- or complex-to-complex
Fourier transforms. However, in our case, where Ŝg is entirely real-valued, it is sufficient to calculate
interbins by summing the amplitude of neighboring frequency bins,

Ŝg+1/2 =
1√
2

(
Ŝg + Ŝg+1

)
. (2.98)

It is also important to emphasize that our chosen normalization differs from that used by [185, 186],
where the interbins are normalized to ensure that all of the signal power is recovered in an interbin
if the signal lies exactly halfway between two Fourier bins. Instead, we here use a normalization
factor of 1/

√
2 ensuring that interbins have the same noise variance as the standard Fourier bins [as

was first done by 141]. Whilst the method used in Equation (2.98) results in a mismatch even for
signals at the center of an interbin, ensuring that the noise variance is consistent between bins and
interbins facilitates semicoherent candidate ranking for follow-up procedures.
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Figure 2.7: Illustration of frequency domain interpolation. The dashed blue curve shows the relative response
(match) of Ŝg at neighboring Fourier bins as a function of the signal frequency offset. The solid black curve
represents the overall DFT response. The overlaid dotted-dashed red curve is the overall DFT response match
obtained via the frequency domain interpolation as described in the text.
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The overall response for signals at non-Fourier frequencies before and after interbinning is
shown in Figure 2.7. Using the interbinning method, the average mismatch due to a frequency
offset is reduced from ∼ 0.13 to ∼ 0.075, whilst the maximum mismatch is reduced from ∼ 0.36 to
∼ 0.14. Thanks to their simplicity, interbins can be calculated very quickly, and so this performance
gain comes at negligible extra computing cost (when compared to the dominant FFT computing
cost).

2.5.3 Complex Heterodyning

Searching a wide range of frequencies (i.e., large fmax) using the test statistic Ŝ would require
computing a single FFT of large size, BT . The length of an FFT which can be computed is limited
by the amount of memory accessible. In particular, extending the frequency search band to the
millisecond pulsar regime (i.e. near 1kHz frequencies) would require a large increase in the sampling
rate, and would potentially require decreasing the lag-window size (and hence the sensitivity of the
search) to make the FFT short enough to fit into memory.

To address this problem, we divide the total frequency range into smaller bands of size ∆f (that
can be efficiently searched in parallel) using complex heterodyning, without sacrificing sensitivity.
Using this method, the center frequency, fH, of a given subband is shifted to DC, which in the
lag domain corresponds to multiplying each lag bin by e−2πi fH δτ b. The heterodyned lag series is
therefore defined as

Y ′b (ḟ , fH) = Yb(ḟ) e−2πi fHδτ b , (2.99)

and the frequency at the gth bin becomes

f = g/T + fH . (2.100)

One can therefore compute Ŝg(ḟ) over the subband [fH −∆f/2; fH + ∆f/2] via

Ŝg(ḟ) =

BT /2∑

b=−BT /2
Y ′b (ḟ , fH) e−2πi g b/BT , (2.101)

in the same way as described in Equation (2.93), but using a sampling interval of only δτ = 1/(∆f).
Hence, we can search subbands in the millisecond-pulsar regime, while the FFT size remains at
BT = T∆f .

2.5.4 Lag Domain Interpolation

As outlined above, before the FFT can be performed the lags τjk have to be binned into an
equidistant lag series. Because the lags τjk will in general not coincide with the lag-bin centers, the
nearest-neighbor interpolation of Equation (2.89) introduces an additional, frequency-dependent
loss (mismatch) of signal power across the frequency band analyzed [e.g., 185, 186].
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The process of binning in lag can be thought of as convolving the lag series with a binning
function. By the convolution theorem, the resulting response across the frequency band is the
Fourier transform of this convolving function. For Ŝg as derived above, the binning function (for
nearest-neighbor interpolation) is a simple rectangular function of width δτ , leading to the sinc
response in the frequency domain. As a consequence, this results in an average loss (mismatch) in
signal power of ∼ 13% across the entire search band, illustrated in Figure 2.8.

Improved lag domain interpolation can reduce these losses. A given frequency response can be
achieved by weighting the lag series bins around each τjk with an appropriate interpolation function.
Ideal (i.e. lossless) interpolation would lead to a frequency response that is a rectangular function:
unity within the search band to remove all bias in the spectrum, and zero outwith to prevent any
noise from being aliased into the band. Therefore, this ideal case of a rectangular frequency response
requires a lag interpolation function that is the sinc function. However, this interpolation function
has infinite extent in the lag domain and is therefore impossible to realize in practice.

A practical solution is to truncate the sinc function in the lag domain around each τjk, such that
the computational cost of this interpolation remains a negligible fraction of the overall computation
time. In fact, one can show that using lag domain interpolation with the sinc function truncated to
only the d nearest lag bins for each τjk is the best dth order approximation in the least squares sense
to the ideal (rectangular) response function [e.g., 187]. As a result, the average loss (mismatch)
across the frequency search band is drastically reduced. In the example shown in Figure 2.8, with
a truncated sinc kernel using the d = 15 nearest lag bins are on either side reduces this average
mismatch to only ∼ 1%, as compared to the nearest-neighbor interpolation. Generally, it is often
practical to use even more neighboring bins without significantly affecting the computational cost,
but reducing the average mismatch even further.

However, as can also be seen in Figure 2.8, an inconvenient property of the truncated sinc kernel
is the Gibbs oscillation throughout the frequency band. These oscillations mean that the false alarm
probabilities of candidates can vary significantly across the frequency band, making it difficult to
rank candidate pulsars for follow-up. This problem can be mitigated by multiplying the sinc kernel
by another windowing function [188, p. 176]. This windowing function is required to be simple
(and therefore efficient) to compute, and must still have a reasonably sharp fall-off in frequency near
the edges of the bands. We find that the Welch window [an inverted parabola, 189]) provides a
useful compromise between these requirements. The interpolated lag series, Ỹb, is constructed by
spreading the original lag-series Y ′b amongst the first d bins on either side of the nearest bin to a
single photon pair with lag τjk,

Ỹb+l(ḟ , fH) = Y ′b (ḟ , fH) sinc

(
b+ l − τjk

δτ

)[
1−

(
b+ l − τjk

δτ

)2 1

d2

]
, (2.102)

for l = 0,±1, ...,±d. The frequency response of the Welch-windowed sinc kernel is displayed
Figure 2.8. Whilst the average mismatch with the Welch-windowed sinc kernel is comparable to
the truncated sinc kernel, the reduced Gibbs oscillation means that the false alarm probabilities
of candidates are much more consistent across the frequency band, allowing candidate pulsars to
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Figure 2.8: Upper panel: comparison of different lag domain interpolation functions, with the interpolating
bin weights calculated over the range of the nearest 15 lag bins on either side of the center. For clarity the
inset shows a zoom of the central region. Lower panel: overall frequency response of each interpolation
function from the upper panel, that Ŝ is multiplied with in the frequency domain. The ideal response would be
unity within the search band, i.e. for −fNy < (f − fH) < fNy, and zero otherwise. For this specific choice
of using the nearest 15 bins for the interpolation, the average mismatch (loss in signal power) across the
search band from is ∼ 23% for the rectangular binning function in time, ∼ 13% for the rectangular binning
function in lag domain, but only ∼ 1% for the sinc kernel and also for the Welch-windowed sinc kernel that
shows reduced Gibbs oscillations.
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be more easily ranked, albeit with almost no increase in the cost of interpolating the lag-series.
Fortunately, the interpolation functions can be efficiently computed using trigonometric look-up
tables and recurrence relations. When this efficiency is combined with the typical sparseness of the
lag-series, the interpolation step remains a negligible fraction of the overall computation time.

Within this framework of lag domain interpolation, another key difference to the A06 method is
worth pointing out. In A06, the SSB photon arrival times tj are binned directly prior to calculating
the lags τjk and the DFT (the D` in their notation). This implies a rectangular window function in
time, which then is convolved with itself leading to a triangular window shape in the lag domain.
Hence, the resulting frequency response is effectively the sinc function squared (also shown in
Figure 2.8). This causes significant loss in signal power, especially at the edges of the frequency
band, and amounts to a loss of ∼ 23% averaged across the entire frequency band. For comparison,
by using the lag domain interpolation technique with the Welch-windowed sinc kernel as presented
above, this average loss can be reduced by more than an order of magnitude, from ∼ 23% to ∼ 1%,
at about the same computational expense.

2.6 Performance Demonstration

In order to validate the expected sensitivity gain from the improved methods presented in this paper,
we perform extensive Monte-Carlo simulations. The false alarm probabilities are obtained using
simulated data sets with different realizations of 8000 photon arrival times (with unit weights),
spanning a realistic observation time of Tobs = 5 yr. To find the detection probabilities (for a given
false alarm probability) simulated pulsar signals are added, which have the same pulse profile of
Gaussian shape whose Fourier coefficient at the fundamental frequency is |γ1| = 0.82, and varying
pulsed fractions p.

While for computational reasons, the actual parameter space searched in each simulation was
chosen smaller than in a real search, the main conclusions from these results are unaffected by this.
In each simulation, the search covered a frequency bandwidth of 1 Hz and a frequency derivative
range of 10−13 Hz s−1. Each simulation searched the nearest nine sky positions around the signal
location, at a uniformly random location on the sky. In the semicoherent search stage we used a
coherence window size of T = 220 s ≈ 12 d.

For further comparison, we also apply the A06 method to the simulated data sets. However, here
we obtain a generous sensitivity estimation. This is because the non-uniform sampling of the {f, ḟ}
parameter space (discussed in more detail in Section 2.5.1) was not accounted for. While this is
justifiable for a search for isolated millisecond pulsars, at lower frequencies and larger frequency
derivatives (i.e. where most young pulsars are found) this non-optimal sampling requires reducing
the lag-window size (and therefore reducing the sensitivity) to achieve the same computational cost.

The results from all simulations are summarized in Figure 2.9, which shows the detection
probability as a function of pulsed fraction for each of the search methods discussed in this paper.
From best-fit curves (of typical sigmoid shape) shown in Figure 2.9, we compare the pulsed fraction
required to give a detection probability of 95% at a false alarm probability of 0.1%. We find that this
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pulsed fraction is around 48% lower for the full multistage method presented here than for the A06
method with approximately the same computational cost. This sensitivity increase is due to several
improvements described in previous sections, in particular: use of the parameter space metric to
allow optimally spaced grid-points; lag- and frequency-domain interpolation to reduce mismatch;
and an automated coherent follow-up step to increase sensitivity to weak gamma-ray pulsar signals.

2.7 Conclusions

We have presented optimized strategies to improve the efficiency of blind searches for isolated
gamma-ray pulsars, whose search sensitivity is computationally limited. Under these conditions, our
results confirm that fully coherent searches are generally less efficient than semicoherent searches,
as well as that harmonic summing is typically less efficient than searching only for the strongest
individual harmonic. We also derived the parameters for most efficient search grids. As motivated by
these results, we presented and studied the implementation of a multistage search strategy. We have
also presented efficient computation and interpolation techniques for the semicoherent test statistic,
offering further important sensitivity gains. Finally, we have conducted realistic simulations which
demonstrate the improved performance from our combined advances, providing in a substantial
increase in sensitivity (i.e. lowering the minimum detectable pulsed fraction by almost 50%) over
previous methods at the same computational cost.

The methods presented here are being implemented with the Einstein@Home volunteer comput-
ing project to increase the chances of detecting new gamma-ray pulsars among the unidentified LAT
sources. While here we have focused on searches for isolated pulsars, the methods also apply to
searches for pulsars in binaries, where partial knowledge of the orbit is available from observations
at other wavelengths [135].

Furthermore, the framework derived in this work in order to obtain an improved understanding
of the pulsation search sensitivities underlying the different methods should also be useful for
population studies. Specifically, these estimates can facilitate identifying the selection biases in the
known gamma-ray pulsar sample, for example due to the difference in pulse profile shape. In future
work, we shall also explore using this framework to improve the efficiency of harmonic summing
employing one or more realistic pulse profile templates built from the existing population of known
gamma-ray pulsars.
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Figure 2.9: Comparison of search efficiency of different search methods at fixed computational cost. Shown
is the detection probability PDET at increasing pulsed fractions p for the simulated gamma-ray pulsar signals
at PFA = 10−3. The solid curves represents fits to each set of data points. Green stars: estimated sensitivity
using the A06 method for the same computing cost. Black circles: semicoherent search method, using only
nearest-neighbor lag-domain interpolation. Blue crosses: semicoherent search method, using interbinning
frequency-domain interpolation, and lag-domain interpolation with a Welch-windowed sinc kernel. Red
squares: multistage search method (Semicoherent search method using lag-domain and interbinning frequency-
domain interpolation, plus fully coherent follow-up). In all cases, the number of simulations was chosen large
enough so that the uncertainties of the data points become smaller than the size of the data markers.
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2.8 Appendix to Chapter 2

2.8.1 Derivation of statistical properties of coherent test statistic

From Equation (2.12) in Section 2.3.1 the coherent power Pn can be rewritten as Pn = c2
n + s2

n,
where

cn =

√
2

N

N∑

j=1

cos[nφ(tj)] (2.103)

sn =

√
2

N

N∑

j=1

sin[nφ(tj)] . (2.104)

Under the null hypothesis p = 0, the phases φ(tj) are uniformly distributed on [0, 2π] and it is
straightforward to show that

E0 [cos(nφ(tj))] = E0 [sin(nφ(tj))] = 0 , (2.105a)

V ar0 [cos(nφ(tj))] = V ar0 [sin(nφ(tj))] = 1/2 . (2.105b)

Since we have typically N � 1, by appealing to the Central Limit Theorem, the random variables
cn and sn are normally distributed with zero mean and unit variance,

E0[cn] = E0[sn] = 0 , (2.106a)

V ar0[cn] = V ar0[sn] = 1 . (2.106b)

Hence, Pn follows a central χ2-distribution with 2 degrees of freedom [e.g., 183]. Therefore the
first two moments are E0 [Pn] = 2 and V ar0 [Pn] = 4, as given in Equation (2.13).

Suppose a pulsed signal is present, p > 0, with a pulse profile having the complex Fourier
coefficients γn as defined by Equation (2.4). While in this case for the (1 − p)N “non-pulsed”
photons (i.e. background) Equations (2.105) still hold, however for the pN “pulsed” photons (i.e.
not background) one obtains

Ep [cos(nφ(tj))] = <(γn) , (2.107a)

Ep [sin(nφ(tj))] = −=(γn) , (2.107b)

V arp [cos(nφ(tj))] =
1

2
+
<(γ2n)

2
−<(γn)2 , (2.107c)

V arp [sin(nφ(tj))] =
1

2
− <(γ2n)

2
−=(γn)2 . (2.107d)

Therefore, the random variables cn and sn are normally distributed (sinceN � 1) with the following
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mean values and variances,

Ep[cn] = p
√

2N <(γn) , (2.108a)

Ep[sn] = −p
√

2N =(γn) , (2.108b)

V arp[cn] = 1 + p<(γ2n)− 2p<(γn)2 , (2.108c)

V arp[sn] = 1− p<(γ2n)− 2p=(γn)2 . (2.108d)

For weak signals (i.e. small pulsed fractions) and typical gamma-ray pulse profiles (see Figure 2.2),
we can approximate these variances as

V arp[cn] ≈ V arp[sn] ≈ 1 . (2.109)

With this approximation, the distribution of Pn follows a noncentral χ2-distribution [174, 175] with
2 degrees of freedom, whose the first two moments are

Ep [Pn] ≈ 2 + 2p2N |γn|2 , (2.110a)

V arp [Pn] ≈ 4 + 8p2N |γn|2 , (2.110b)

recovering Equations (2.14a) and (2.14b). The noncentrality parameter of that distribution is the
second summand in Equation (2.110a), 2p2N |γn|2.

2.8.2 Coherent Metric

For the purpose of efficient search-grid construction we exploit a simplified phase model which
captures the most dominant effects. It is to be emphasized that we do not use this phase model in
the actual search when computing the phases at the photon arrival times. Thus, we here assume that
the LAT data set spans at least one year, such that the Doppler modulation is dominated by the Earth
motion around the SSB.

For very short coherent integration times, the orbital motion of the Fermi satellite around the
Earth could also introduce further Doppler effects. Comparing this effect to the much larger effect
of the Earth’s orbital motion around the sun, which is responsible for the behavior of the metric
visible in, e.g., Figure 2.3, it is clear that this effect would saturate after a small number of orbits.
Hence for coherent integration times of more than a few hours, here it is safe to neglect the rapidly
oscillating components of the motion of the Fermi satellite around the Earth. Doing so yields the
following phase model,

φ(t,u) = 2π f(t− t0) + π ḟ(t− t0)2 + 2π f
~n · ~rE(t)

c

= 2π f(t− t0) + π ḟ(t− t0)2

+ 2π f rE [nx cos(ΩEt) + ny sin(ΩEt)] , (2.111)
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Figure 2.10: Comparison of mismatch in P1 (dashed curves) with coherent metric prediction (solid curves).
In each panel the horizontal axis shows the offset from the signal parameters in f (left), ḟ (middle), and sky
position (right). The sky-location offset is

√
∆n2x + ∆n2y , which measures the offset in coordinates (nx, ny)

in the ecliptic plane. The underlying pulsar signal has been simulated with spin parameters f = 32 Hz,
ḟ = −10−12 Hz s−1 for a total coherent observation time of Tcoh = 3.4 yr.
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where nx and ny are the components of ~n, the unit vector pointing from the SSB to the sky location
(α, δ), projected into the ecliptic plane (using the obliquity of the ecliptic, ε),

nx = cos(α) cos(δ) , (2.112)

ny = cos(ε) sin(α) cos(δ) + sin(ε) sin(δ) , (2.113)

and ΩE = 2π/1yr, and rE = 1AU/c ∼ 500s.
In the presence of a small offset ∆u from a signal’s location in parameter space usig, we can

write the mismatch, m[tj ], in the coherent power in a window of length T , centered on the jth photon
as

m[tj ] = 1−
(
θ2
P1

(usig + ∆u)
)[tj ]

θ2
P1

(usig)
(2.114)

= 1−
∣∣∣〈e−iφ(t,∆u)〉[tj ]

∣∣∣
2

, (2.115)

where we have replaced the discrete sum of Equation (2.10) for simplicity by a continuous integral
over the coherent integration time T , i.e.,

〈x〉[tj ] ≡ 1

T

∫ tj+T/2

tj−T/2
x(t) dt . (2.116)

Following the derivation in [148], the mismatch can be Taylor expanded up to second order in terms
of the parameter offsets, ∆uk to give

m[tj ] =
∑

k,`

G
[tj ]
k` ∆uk ∆u` + O(∆u3) . (2.117)

The coherent metric components are defined as

G
[tj ]
k` = 〈∂kφ ∂`φ〉[tj ] − 〈∂kφ〉[tj ] 〈∂`φ〉[tj ] , (2.118)

where ∂kφ is the partial derivative of the phase at the signal location with respect to the kth
component of the parameter offset:

∂kφ ≡
∂ φ(t;usig + ∆u)

∂(∆uk)

∣∣∣∣
∆u=0

. (2.119)

Using the simplified phase model of Equation (2.111), the metric components for a coherent window,
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centered on tj are given by

G
[tj ]
ff =

π2T 2

3
, (2.120a)

G
[tj ]

ḟ ḟ
=
π2T 4

180
+
π2(tj − t0)2T 2

3
, (2.120b)

G
[tj ]
nxnx = 2π2f2r2

E

[
1 + sinc (ΩET/π) cos (2ΩEtj)

− 2 sinc2 (ΩET/2π) cos2 (ΩEtj)
]
, (2.120c)

G
[tj ]
nyny = 2π2f2r2

E

[
1− sinc (ΩET/π) cos (2ΩEtj)

− 2 sinc2 (ΩET/2π) sin2 (ΩEtj)
]
. (2.120d)

For the specific case of the general expressions above, where tj = t0 = 0, the metric components
for the coherent detection statistic simplify to the following form,

Gff =
π2T 2

3
, (2.121a)

Gḟ ḟ =
π2T 4

180
, (2.121b)

Gnxnx = 2π2f2r2
E

[
1 + sinc (ΩE T/π)− 2 sinc2 (ΩE T/2π)

]
, (2.121c)

Gnyny = 2π2f2r2
E [1− sinc (ΩE T/π)] . (2.121d)

The mismatches predicted by these derived metric components are compared to the measured
mismatches in P1 for a simulated pulsar signal in Figure 2.10.

Therefore, the determinant of the coherent metric is found as

√
detG =

π4

√
135

T 3 f2 r2
E

×
[
1 + sinc (ΩE Tcoh,1/π)− 2 sinc2 (ΩE Tcoh,1/2π)

]

× [1− sinc (ΩE Tcoh,1/π)] . (2.122)

2.8.3 Coherent Metric with Incoherent Harmonic Summing

If a search is performed using the Z2
M statistic, i.e., incoherently summing the coherent power Pn in

the first M harmonics, the mismatch, m̃, becomes

m̃ = 1−
∑M

n=1 θ
2
Pn(usig + ∆u)

∑M
n=1 θ

2
Pn(usig)

= 1−
∑M

n=1 |γn|2
∣∣∣〈e−inφ(t,∆u)〉[tj ]

∣∣∣
2

∑M
n=1 |γn|2

. (2.123)
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Taylor expanding this mismatch to second order gives the metric components,

m̃ =
∑

k,`

G̃
[tj ]
k` ∆uk ∆u` + O(∆u3) , (2.124)

which can be expressed using Equation (2.118) as

G̃
[tj ]
k` = r2 G

[tj ]
k` , (2.125)

where we defined the harmonic refinement factor r from

r2 =

∑M
n=1 |γn|2 n2

∑M
n=1 |γn|2

. (2.126)

Thus, Equation (2.125) indicates that the parameter space must be sampled r times more finely in
each dimension when summing the power from M harmonics,

√
det G̃ = r4

√
detG . (2.127)

The value of this refinement factor r also depends on the signal pulse profile γn, which of course
is unknown in advance. However, we can consider the two limiting cases. First, for the narrowest
possible pulse profile, a Delta function, all coefficients are equal, |γn| = 1, such that

r2 =
1

M

M∑

n=1

n2 =
M2

3
+
M

2
+

1

6
. (2.128)

Therefore, for M > 1 the parameter space must be sampled more finely in each dimension by a
factor of approximately M2/3 (to leading order). On the other limiting case, for a sinusoidal pulse
profile, where |γn>1| = 0, r = 1 and thus G̃[tj ]

k` = G
[tj ]
k` , requiring no refinement. Therefore, the

range of the harmonic-summing refinement factor is approximately limited to r ∈ [1,M ].
Finally, we would like to point out a further generalization. Suppose a search is performed using

the QM statistic and a template pulse profile αn, which is not equal to the Dirac delta function (in
this case QM would reduce again to Z2

M ). Then by a straightforward repetition of arguments from
the beginning of this section one obtains the resulting metric tensor Ĝ[tj ]

k` for the QM test statistic as

Ĝ
[tj ]
k` = r̂2 G

[tj ]
k` , (2.129)

where the harmonic refinement factor r̂ in this case would be different from Equation (2.126),
namely

r̂2 =

∑M
n=1 |γn|4 n2

∑M
n=1 |γn|4

. (2.130)
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Figure 2.11: Comparison of the analytical approximation for the harmonic-summing computing cost model
(leading to T approx

coh,M ) to the results obtained from fully numerical evaluation (leading to T exact
coh,M ), as a function

of Tcoh,1 corresponding to the same computing cost Ccoh,1 = Ccoh,M . Since we are interested in the impact
on search sensitivity p−1

coh,M ∝
√
Tcoh,M , the vertical axis shows the square root of the ratio. As indicated by

the legend the different curves are for different values of scaling exponent a of Equation (2.41) and number
of harmonics summed M .

2.8.4 Approximate Harmonic-summing Computing Cost

In Section 2.3.5, we describe an analytical approximation for the computing cost model of incoherent
harmonic summing. This approximation is based on ignoring the slowly varying log2 factors in
Equations (2.44) and (2.47). If then one equates Ccoh,1 = Ccoh,M , it follows that Tcoh,M must be
shorter by the factor (M2 r2)(1/a), as given in Equation (2.50). Here, we study the accuracy of the
analytical approximation in terms of the search sensitivity p−1

coh,M ∝
√
Tcoh,M , by comparison to

the exact value for Tcoh,M obtained from numerical evaluation. For a given value of Tcoh,1, we
find numerically the exact value of Tcoh,M such that Ccoh,1 = Ccoh,M . We here assume a wide
search frequency range, fmax = 1000 Hz. The results are displayed in Figure 2.11, showing that
the approximation is accurate to within less than 1% for typical search setups. As can also be seen,
for the realistic case of a = 6 the approximation is generous in favor of the harmonic summing
approach, because T approx

coh,M & T exact
coh,M , the approximation overestimates the true search sensitivity.
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2.8.5 Optimal Mismatch in Coherent Search

In this section, we use the method of Lagrange multipliers as in Prix & Shaltev [147] to obtain the
optimal average mismatch for a fully coherent search. We use the scalings of the sensitivity p−1

coh,M

and computing cost Ccoh,M, ignoring the log2 FFT scaling factor, from Equations (2.28) and (2.49),
respectively. In order to find the optimal mismatch at a fixed computing cost C0, we search for
stationary points of the Lagrange function,

L(Tcoh,M ,m,M, λ) = p−1
coh,M − λ(Ccoh,M − C0)

= (1− 〈mtot〉)1/2 T
1/2
coh,M h∗(M)

+ λ
(
K ′coh,am

−3/2T acoh,MM
2r2(M)− C0

)
, (2.131)

where λ is a Lagrange multiplier, and we defined K ′coh,a = Kcoh,af
2
max, as well as the function

h∗(M) as,

h∗(M) =
1

M1/4 θ∗M

[
M∑

n=1

|γn|2
]1/2

, (2.132)

using ∗ to indicate the implicit dependence on P ∗FA and P ∗DET through θ∗M . Taking partial derivatives
with respect to Tcoh,M , m and M respectively yields:

∂L

∂Tcoh,M
=

1

2
(1− 〈mtot〉)1/2T

−1/2
coh h∗(M) +

aλCcoh,M

Tcoh,M
= 0 , (2.133)

∂L

∂m
=

1

2
(1− 〈mtot〉)−1/23ξ T

1/2
coh h

∗(M) +
3λCcoh,M

2m
= 0 , (2.134)

∂L

∂M
= (1− 〈mtot〉)1/2T

1/2
coh,M

∂h∗(M)

∂M

+ λCcoh,M

(
2

M
+

2

r(M)

∂r

∂M

)
= 0 . (2.135)

Equating these and rearranging for ξm, we find that the optimal average mismatch for a fully
coherent search is

3ξ mopt =
1− 〈mf 〉

2a
3 + 1

. (2.136)

As we argue in Section 2.3.4, practical fully coherent searches are computationally limited to
integration times Tcoh,M less than half a year, implying a = 6. If the frequency dimension is
interpolated using interbinning, 〈mf 〉 ≈ 0.14, giving mopt = 0.172 for a total average mismatch
of 〈mtot〉 = 0.312. It is noteworthy that this result is independent of the computational cost, the
coherent integration time, and the number of harmonics summed.

In principle, one can also rearrange for M to find the optimal number of harmonics, which
then requires solving a complicated differential equation. However, the derivatives of the functions
h∗(M) defined in Equation (2.132), and r(M) defined in Equation (2.126) are difficult to obtain
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for most pulse profiles. Therefore, we followed the approach presented in Section 2.3.5 to find the
optimal M at fixed computing cost, which does not require calculating these derivatives.

2.8.6 Derivation of Statistical Properties of Semicoherent Test Statistic

From Equation (2.54), the expectation value of S1 can be written as

E0 [S1] = E0




N∑

j,k

wjwke
−i(φ(tj)−φ(tk)) Ŵ rect

T (τjk)


 . (2.137)

In order to evaluate this expectation value, we must take into account terms in the double sum where
the photon indexes (j, k) are equal, giving

E0 [S1] =

N∑

j=1

w2
j ŴT (0) +

N∑

j 6=k
wjwk E0

[
e−i(φ(tj)−φ(tk))

]
ŴT (τjk) , (2.138)

where
∑N

j 6=k denotes a double sum over all photons, excluding terms where j = k. Under the null
hypothesis, p = 0, it holds

E0

[
e−iφ(tj)

]
= E0

[
eiφ(tk)

]
= 0 , (2.139)

and hence we find that the expectation value of S1 is simply

E0[S1] =
N∑

j=1

w2
j ŴT (0) . (2.140)

To find the variance of S1, we must evaluate

E0

[
S2

1

]
= E0




N∑

j,k,l,m

wjwkwlwme
−i(φ(tj)−φ(tk)+φ(tl)−φ(tm)) ŴT (τjk) ŴT (τlm)


 . (2.141)

Again, taking into account terms where photon indexes are equal, and using Equation (2.139), we
find that

E0

[
S2

1

]
=

N∑

j=1

w4
j ŴT (0)2 +

N∑

j 6=k
w2
j w

2
k ŴT (0)2 +

N∑

j 6=k
w2
j w

2
k ŴT (τjk)

2
, (2.142)

and hence the variance of S1 under the null hypothesis is

V ar0 [S1] = E0

[
S2

1

]
− E0 [S1]2

=

N∑

j 6=k
w2
j w

2
k ŴT (τjk)

2
. (2.143)
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Figure 2.12: Comparison of empirical and analytically predicted probability density function (PDF) of the
semicoherent test statistic S1. The blue curves (left) refer to the noise-only case, where S1 has been calculated
from many simulated data sets of N = 104 unit-weight photons with R = 60 to obtain the empirical PDF
(solid curve) which is compared to the analytical PDF (dashed). The green curves represent the PDF of S1

for simulated data sets containing signals with a pulsed fraction of p = 0.1 and a profile with |γ1|2 = 0.668,
where again the empirical PDF (solid curve) is compared to the analytical PDF (dashed).

From now on in this section, we will use the rectangular lag-window Ŵ rect
T (τjk) of Equation (2.56).

In addition, we assume binary photon weights for simplicity. In this case one obtains

E0[S1] = N , V ar0[S1] ≈ N2R−1 . (2.144)

To derive the moments of the distribution of S1 in the presence of a perfectly-matched signal,
we need to distinguish times tj of non-pulsed photons (i.e., background) from pulsed photons by
denoting the latter times as t′j . We then use the definitions of the Fourier coefficients of the pulse
profile to evaluate the expectation values

Ep

[
e−inφ(t′j)

]
= γn , Ep

[
einφ(t′j)

]
= γ∗n . (2.145)

Evaluating Equations (2.137) and (2.141), using the expectation values from Equations (2.139) and
(2.145), with a pulsed fraction, p ∼ O(10−1) and a typical pulse profile γn (cf. Figure 2.2), gives
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the first two moments of the distribution of S1 in the presence of a weak signal as

Ep [S1] ≈ N + p2N2 |γ1|2R−1 , (2.146)

V arp [S1] ≈ N2

R

(
1 + 2p2N |γ1|2R−1

)
, (2.147)

where we have assumed a large number of photons N � 1, and that R is large enough such that
edge effects (e.g., effectively shorter windows near the end of the observational data time span)
become negligible.

Again, appealing to the central limit theorem (i.e., assuming that there are many photon pairs
within the double sums of Equation (2.137)), we can approximate the distribution of S1 by a
normal distribution with the same mean and variance. By comparison with numerical simulations
Figure 2.12 validates this approximation for the purpose of the sensitivity estimation as presented in
Section 2.4.1.9

2.8.7 Semicoherent Metric

To derive the semicoherent metric, we investigate the mismatch in the semicoherent detection
statistic in the presence of a strong signal. Starting from Equation (2.54), using binary photon
weights and the rectangular lag window,

S1 =
N∑

j=1

N∑

k=1

e−i[φ(tj)−φ(tk)] Ŵ rect
T (τjk)

=

N∑

j=1

e−iφ(tj)
N∑

k=1

eiφ(tk) Ŵ rect
T (τjk) . (2.148)

Again, replacing the sum over k with a continuous integral allows us to write the mismatch as:

m̄ = 1−
∑N

j=1 e
−iφ(tj ,usig+∆u) 〈eiφ(t,usig+∆u)〉[tj ]

∑N
j=1 e

−iφ(tj ,usig) 〈eiφ(t,usig)〉[tj ]
. (2.149)

Assuming that each coherent window contains the same power (and hence has the same S/N at usig),
this can be simplified to:

m̄ = 1− 1

N

N∑

j=1

e−iφ(tj ,∆u) 〈eiφ(t,∆u)〉[tj ] . (2.150)

9We revisit the distribution of S1 in the presence of a signal, and generalised to non-binary photon weights, in
Section 4.7.2.
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Taylor expanding this mismatch around ∆u = 0 to second order in ∆u gives:

m̄ =
i

N

N∑

j=1

(
∂kφ|t=tj − 〈∂kφ〉

[tj ]
)

∆uk

+
1

2N

N∑

j=1

(
∂kφ|t=tj ∂`φ|t=tj + 〈∂kφ∂`φ〉[tj ]

)
∆uk∆u`

− 1

N

N∑

j=1

(
∂kφ|t=tj 〈∂`φ〉

[tj ]
)

∆uk∆u`

+
i

2N

N∑

j=1

(
∂k∂`φ|t=tj − 〈∂k∂`φ〉

[tj ]
)

∆uk∆u`

+ O(∆u3) , (2.151)

where there are implicit sums over repeated indices. Evaluating the partial derivatives at tj , under
the assumption that T � Tobs and T � 1 yr gives10 requirements :

∂kφ|t=tj ≈ 〈∂kφ〉
[tj ] (2.152)

∂k∂`φ|t=tj ≈ 〈∂k∂`φ〉
[tj ] (2.153)

Thus, the mismatch of Equation (2.151) becomes,

m̄ ≈ 1

2N

N∑

j=1

(
〈∂kφ∂`φ〉[tj ] − 〈∂kφ〉[tj ]〈∂`φ〉[tj ]

)
∆uk∆u`

=
1

2N

N∑

j=1

G
[tj ]
k` ∆uk∆u` . (2.154)

Hence, the semicoherent metric components can be found by taking half the average of the coherent
metric components of Equations (2.120) over all photons in the observation time. Using the
approximations given in [148], which are valid under the assumption that the data set spans many
years, we find

Ḡff =
π2T 2

6
, (2.155a)

Ḡḟ ḟ =
π2T 4

360
γ2 , (2.155b)

Ḡnxnx = Ḡnyny = π2f2r2
E

[
1− sinc2(ΩET/2π)

]
, (2.155c)

10Note that these assumptions only hold for isolated pulsar searches. If searching for a pulsar in a binary system, since
the coherence window is typically longer than the orbital period, these approximations do not hold. For the relevant
parameters, the semicoherent metric components are approximately twice as large in this case. Credit to L. Nieder for
noting this.
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where γ is the semicoherent refinement factor [148, 179] defined as

γ2 = 1 +
60

N

N∑

j=1

(tj − t0)2

T 2
. (2.156)

The mismatches predicted by these derived metric components are compared to the measured
mismatches in S1 for a simulated pulsar signal in Figure 2.13.

For the purpose of the analytic study of the computing cost scaling in this paper, we employ
the approximation γ ≈

√
5Tobs/T =

√
5R. Hence the determinant of the semicoherent metric is

obtained as, √
det Ḡ ≈ π4

4
√

27
T 3 f2 r2

E R

[
1− sinc2

(
ΩE T

2π

)]
. (2.157)

2.8.8 Optimal Mismatch in Semicoherent Search

Following the same steps as in Appendix 2.8.5, we can find the optimal average mismatch for a
semicoherent search with sensitivity p−1

scoh,1 at a fixed computing cost C0 by consideration of the
following Lagrange function:

L(T, m̄, λ) = p−1
scoh,1 + λ(Cscoh − C0)

= (1− 〈m̄tot〉)1/2T 1/4 + λ(K ′scohm̄
−3/2T (s−1) − C0) . (2.158)

Applying the method of Lagrange multipliers as above, we find that

3ξm̄opt =
1− ξm̄f

4(s−1)
3 + 1

. (2.159)

As argued in Section 2.4.3, an efficient strategy uses coherence window sizes T much less than half
a year. In this regime of interest, s = 5. Using interbinning to interpolate the frequency spectrum
gives 〈mf 〉 ≈ 0.075, giving the optimal maximum mismatch in the remaining three parameters as
m̄opt = 0.146.

2.8.9 Sky-grid Construction

From the metrics derived above, in Appendices 2.8.2 and 2.8.7, we know when searching over a
grid of sky locations that these grid points should be defined by a uniform grid in the ecliptic plane.

To construct the sky search grid for a source within an angular radius of θ from (α0, δ0), this
central point is rotated from equatorial to ecliptic coordinates according to the Earth’s axial tilt
(using the obliquity of the ecliptic, ε) and projected into the ecliptic plane, with Cartesian coordinates
(x0, y0),

x0 = cos(α0) cos(δ0) , (2.160)

y0 = cos(ε) sin(α0) cos(δ0) + sin(ε) sin(δ0) . (2.161)
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Figure 2.13: Comparison of mismatch in S1 (dashed curves) with semicoherent metric prediction (solid
curves). In each panel the horizontal axis shows the offset from the signal parameters in f (left), ḟ (middle),
and sky position (right). The sky-location offset is

√
∆n2x + ∆n2y , which measures the offset in coordinates

(nx, ny) in the ecliptic plane. The underlying pulsar signal has been simulated with parameters f = 32 Hz,
ḟ = −10−12 Hz s−1 for a total observational data time span of Tobs = 3.4 yr and a coherent window size of
T = 524288 s.
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A square of side length θ on the unit circle is calculated around this point, and sampled (using the
semicoherent or coherent metric components as appropriate) with spacings

∆nx = ∆ny = 2
√
m/Gnxnx . (2.162)

These grid points are then projected back onto the unit sphere, and rotated into equatorial coordinates
for barycentering.

Since a square region is sampled in the ecliptic plane, many of the resulting sky-points lie
outwith the radius defining the search region on the sky. These points are simply discarded, resulting
in the original circular search region on the sky in equatorial coordinates, sampled by a uniform grid
defined in the ecliptic plane.

A possible problem arises when the search region crosses the ecliptic equator, since when the
square is constructed in the ecliptic plane, some points lie outwith the unit circle, and therefore
cannot be projected onto a unit sphere. This can be overcome by reflecting points, (x, y), which
lie outside the unit circle back into the sphere around the ecliptic longitude, l, of the center of the
search region:

l = tan−1 (y0/x0) , (2.163a)

x′ = cos(l)− [x− cos(l)] , (2.163b)

y′ = sin(l)− [y − sin(l)] . (2.163c)

The new points (x′, y′) are then projected into the opposite hemisphere from the central point of the
search region, resulting in a grid which covers an area of the sky which wraps around the ecliptic
equator.
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Abstract

We report the discovery of PSR J1906+0722, a gamma-ray pulsar detected as part of a blind
survey of unidentified Fermi Large Area Telescope (LAT) sources being carried out on the volunteer
distributed computing system, Einstein@Home. This newly discovered pulsar previously appeared
as the most significant remaining unidentified gamma-ray source without a known association
in the second Fermi-LAT source catalog (2FGL) and was among the top ten most significant
unassociated sources in the recent third catalog (3FGL). PSR J1906+0722 is a young, energetic,
isolated pulsar, with a spin frequency of 8.9 Hz, a characteristic age of 49 kyr, and spin-down power
1.0× 1036 erg s−1. In 2009 August it suffered one of the largest glitches detected from a gamma-ray
pulsar (∆f/f ≈ 4.5 × 10−6). Remaining undetected in dedicated radio follow-up observations,
the pulsar is likely radio-quiet. An off-pulse analysis of the gamma-ray flux from the location of
PSR J1906+0722 revealed the presence of an additional nearby source, which may be emission
from the interaction between a neighboring supernova remnant and a molecular cloud. We discuss
possible effects which may have hindered the detection of PSR J1906+0722 in previous searches
and describe the methods by which these effects were mitigated in this survey. We also demonstrate
the use of advanced timing methods for estimating the positional, spin and glitch parameters of
difficult-to-time pulsars such as this.

69
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3.1 Introduction

In Chapter 2 we presented newly advanced methods designed to increase the sensitivity of blind
searches without increasing the computational cost. These improvements were incorporated into
a new blind survey of unidentified, pulsar-like Fermi-LAT sources which was conducted on the
distributed volunteer computing system, Einstein@Home.1 Previous surveys have been extremely
successful in detecting new gamma-ray pulsars [136, 151, 154], and the newly improved search
methods, in combination with the latest Fermi-LAT data, offer a significant increase in sensitivity. As
part of this survey, we carried out a blind search for pulsed emission from a point source in the third
Fermi-LAT source catalog [3FGL, 138], 3FGL J1906.6+0720. This source, previously known as
2FGL J1906.5+0720 [190], is highly significant and stands out as the most significant unassociated
2FGL source. Moreover, it was included in the “bright” pulsar-like source list described by Romani
[191]. An investigation of the spectral properties of 2FGL sources found that, after the source
associated with the Galactic Center, 2FGL J1906.5+0720 was the unidentified source most likely
to contain a pulsar [95]. As such, over recent years, this source has been searched for pulsations,
both in gamma rays [e.g., 151, 192] and in radio observations [e.g., 101]. However, despite these
attempts, pulsed emission from this source remained undetected until now.

Here, we present the discovery and follow-up study of PSR J1906+0722, a young isolated
gamma-ray pulsar detected by the Einstein@Home survey.

3.2 Discovery

3.2.1 Data Preparation

In the blind search we analyzed Fermi-LAT data recorded between 2008 August 4 and 2014 April 6.
The Fermi Science Tools2 were used to extract Pass 8 source class photons, which were analyzed us-
ing the P8 SOURCE V3 instrument response functions (IRFs).3 We used gtselect to select pho-
tons with reconstructed directions within an 8◦ region of interest (ROI) around 3FGL J1906.6+0720,
photon energies > 100 MeV and zenith angles < 100◦. We only included photons detected when
the LAT was working in normal science mode, and with rocking angle < 52◦.

To assign photon weights representing the probability of each photon having been emitted
by the target source [152], we performed a likelihood spectral analysis using the pointlike
package. We built a source model by including all 3FGL catalog sources located within 13◦ of
3FGL J1906.6+0720, while allowing the spectral parameters of point sources within 5◦ to vary. We
modeled the gamma-ray spectrum of this source with an exponentially cutoff power law, typical of
gamma-ray pulsar spectra [190]. We used the template 4years P8 V2 scaled.fits map
cube and isotropic source 4years P8V3 template to model the Galactic diffuse emission

1http://www.einsteinathome.org
2http://fermi.gsfc.nasa.gov/ssc/data/analysis/software
3The Science Tools, IRFs and diffuse models used here are internal pre-release versions of the Pass 8 data analysis.

Our results did not change substantially with the final release versions.

http://www.einsteinathome.org
http://fermi.gsfc.nasa.gov/ssc/data/analysis/software
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and the isotropic diffuse background respectively.4 The normalization parameters of both diffuse
components were left free. Finally, the photon weights were computed using gtsrcprob, based
on the best-fit source model resulting from the likelihood analysis.

3.2.2 Blind Search Method

For the blind search, we assumed a canonical isolated pulsar model, making it necessary to search
in four parameters: spin frequency, f , spin-down rate, ḟ , R.A., α and decl., δ.

The basis for most blind searches for gamma-ray pulsars is the well-known multistage scheme
based around an initial semicoherent search [e.g., 129, 151]. For this survey, we implemented the
form of the multistage search scheme described in Chapter 2, where the initial semicoherent stage
uses a lag-window of duration 221s ≈ 24 days.

Notably, this survey incorporates an intermediate semicoherent refinement step, with a longer
(more sensitive) lag-window of 222s≈ 48 days, reducing the parameter space around each first-stage
candidate to be searched in the final fully-coherent follow-up step. This improves the efficiency of
the follow-up stage, and allows the search to “walk” away (in all 4 search parameters) from the
original location of the candidate if necessary.

Figure 3.1 illustrates the importance of these new techniques. In the blind survey, we searched a
conservatively large circular region around the 3FGL sky location with a radius 50% larger than the
3FGL 95% confidence region. As evident from Figure 3.1, the pulsar lies far outside the original
source’s confidence region, and also outside our search region. We therefore owe its detection to the
large resolution of the semicoherent step, and the flexibility of the follow-up steps, which allow for
signals to be detected despite a large offset between the signal parameters and the search location.

The most significant pulsar candidates from the blind search were automatically refined using the
H-test statistic [176]. This revealed an interesting candidate; however the measured signal-to-noise
ratio (S/N) was slightly below the detection threshold for a blind search involving a very high
number of trials. Upon manual inspection, clear pulsations were observed in the photon data after
April 2010; however the phase of these pulsations was not constant, and exhibited “wraps” in which
the pulsation phase quickly jumped by one full rotation. These features indicated that the canonical
isolated pulsar model used for the blind survey was insufficient, and hence follow-up studies were
required to describe the pulsar’s rotation over the entire dataset.

3.3 Follow-up Analysis

Before carrying out follow-up analyses, we extended the dataset to include photons observed until
2014 October 1 and increased the ROI to 10◦. To speed up the timing procedure computations, we
discarded photons with a probability weight below 5%.

4http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Figure 3.1: Sky location of PSR J1906+0722 and positional offset from the catalog location. The dotted
ellipse shows the 3FGL 95% confidence region. The dashed ellipse shows the region in which the search grid
(crosses) was constructed for the initial semicoherent search stage. The filled area shows the region that can
be reached by the follow-up stage as it moves away from the initial candidate location. The 1σ region from
the timing solution, shown by the solid ellipse, is highlighted in the inset.
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3.3.1 Glitch Identification

Since pulsations were initially only detected during the final 4 years of data, the first step was to
identify any glitches within the observation time. To achieve this, we searched the local {f, ḟ}
space around the observed signal, in 150-day segments with approximately 90% overlap, using the
QM -test [172, and Chapter 2],

QM = 2M

∑M
n=1 |αn|2 Pn∑M
n=1 |αn|2

, (3.1)

where αn and Pn are the Fourier coefficients of the measured pulse profile and the coherent power
at the nth harmonic respectively. Using the QM test method to weight the contributions from each
harmonic, as opposed to the commonly used H-test, offers a significant sensitivity improvement
[173], making it particularly useful when analyzing weak pulsar signals. For this step, we included
the first 10 Fourier coefficients with appreciable power from a segment of the data in which the
signal was reasonably stable. Using the results of this scan, shown in Figure 3.2, an initial ephemeris
was produced for the timing procedure described in the following section.

3.3.2 Timing Analysis

To accurately estimate the pulsar’s rotational, glitch and sky location parameters we used a variation
of the timing method used by [167], based on unbinned likelihood maximization. For all N photons
in the dataset, with weights {wj}, we assigned a rotational phase φ ≡ φ(tj ,u), determined by the
photon’s arrival time, tj and the set of model parameters, denoted by the vector u. For a template
pulse profile, F (φ), the likelihood is

L(u) =
N∏

j=1

[wj F (φ(tj ,u)) + (1− wj)] . (3.2)

We first constructed a template pulse profile from the (background subtracted, see Figure 3.3)
photons within a sub-section of the data set in which the initial ephemeris was believed to be
accurate. When timing PSR J1906+0722 we used a template pulse profile consisting of 3 wrapped
Gaussian functions [80], which were fit by maximizing the likelihood within the segment.

With a template profile at hand, we then estimated the pulsar’s parameters (given in Table 3.1)
by varying them around their initial estimate to maximize the likelihood over the entire dataset. The
result is a likelihood maximization which is unbinned in both phase (via the template profile) and
time. This avoids the need to construct a set of data subsegments for pulse times of arrival (TOA)
determination. This is especially beneficial for faint pulsars, which require longer subsegments
(and hence fewer TOAs) to ensure the S/N is large enough in each for accurate TOA measurement.
Subsequently, using the most likely parameters, the template profile was updated and the process
was iterated to maximize the overall likelihood.
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Figure 3.2: Evolution of the PSR J1906+0722 signal including the glitch at MJD 55067. Left: Phase–time
diagram where each point represents one photon, with the intensity representing the photon weight. Center
and right: The Q10-test (shown by the color-bar) calculated over small ranges in {f, ḟ}, centered on the
pre-glitch parameters, in overlapping 150-day segments, and maximized over ḟ and f respectively. The
dashed line indicates the maximum likelihood timing solution.
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Table 3.1. Parameters for PSR J1906+0722

Parameter Value

Range of Photon Data (MJD) 54682–56931
Reference epoch (MJD) 55716

Timing Parameters

R.A., α (J2000.0) 19h 06m 31s.20(1)
Decl., δ (J2000.0) +07◦22′55.′′8(4)
Frequency, f (Hz) 8.9666688432(1)

1st frequency derivative, ḟ , (Hz s−1) −2.884709(2)× 10−12

2nd frequency derivative, f̈ , (Hz s−2) 3.18(1)× 10−23

Glitch epocha(MJD) 55067+2
−9

Permanent f glitch incrementa, ∆f (Hz) 4.033(1)× 10−5

Perm. ḟ glitch incrementa, ∆ḟ (Hz s−1) −2.56(3)× 10−14

Decaying f glitch incrementa, ∆fd (Hz) 3.64(9)× 10−7

Glitch decay time constanta, τd (days) 221(12)

Spectral Properties

Spectral index, Γ 1.9 ± 0.1
Cutoff energy, Ec (GeV) 5.5 ± 1.2

Photon fluxb, F100 (photons cm−2 s−1) (1.1 ± 0.3)× 10−7

Energy fluxb, G100 (erg cm−2 s−1) (7.3 ± 1.3)× 10−11

Derived Properties

Period, P (ms) 111.524136498(1)

1st period derivative, Ṗ (s s−1) 3.587895(2)× 10−14

Weighted H-test 731.2
Characteristic agec, τc (kyr) 49.2

Spin-down powerc, Ė (erg s−1) 1.02× 1036

Surface B-field strengthc, BS (G) 2.02× 1012

Light-cylinder B-fieldc, BLC (G) 1.34× 104

Heuristic distancec, dh (kpc) 1.91

Note. — Values for timing parameters are the mean values of the marginalized posterior distributions from
the timing analysis, with 1σ uncertainties in the final digits quoted in parentheses.

aGlitch model parameters are defined in Edwards et al. [137], with the correction noted by Yu et al. [34].

bFluxes above 100 MeV, F100 and G100, were calculated by extrapolation from the E > 200 MeV spectrum.

cDerived pulsar properties are defined in Abdo et al. [80]. The heuristic distance, dh =
(
Lhγ/4πG100

)1/2
, is

calculated from the heuristic luminosity, Lhγ , described therein.
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To explore the multi-dimensional parameter space we used the MultiNest nested sampling
algorithm [193], which offers high sampling efficiency, and allows posterior distributions to be
calculated as a by-product.

The timing procedure was carried out in two stages: firstly, all timing parameters were allowed
to vary. Due to the shortness of the pre-glitch segment, the uncertainties in the glitch parameters
dominated those of the remaining timing parameters. We therefore fixed the glitch parameters at
their maximum likelihood values, and fit again for the remaining timing parameters.

When timing radio pulsar glitches, Yu et al. [34] noted that unique solutions for glitch epochs
could not be found for large glitches occurring during an interval between two radio observations.
We observe a similar effect here, although our limiting factor is the photon flux. When phase
folding, a full rotation can be lost/gained if the offset between the model glitch epoch and the true
glitch epoch is more than 1/∆f ≈ 0.3 days; however an average of only 1.4 weighted photons
are observed from the pulsar within this time, making this phase wrap simply undetectable. We
assumed that no phase increment occurred at the glitch, and found that the posterior distribution for
the glitch epoch features several bands, separated by 1/∆f . Due to the multi-modal shape of the
posterior distribution, in Table 3.1 we report the glitch epoch that results in the maximum likelihood
and the 95% credible interval.

The inclusion of an additional nearby source in the source model and raising the energy threshold
to 200 MeV when calculating the photon weights for PSR J1906+0722 increased the S/N (see
Section 3.3.3). Therefore the timing analysis was repeated with the updated photon weights, and
the results are given in Table 3.1. The time versus rotational phase diagram based on this timing
solution is shown in Figure 3.2 and the integrated pulse profile is displayed in Figure 3.3. Through
these refinement and timing procedures, the initial candidate’s Q10-test S/N (Equation 2.18) was
increased from θ10 = 6.86 to the highly significant value of θ10 = 16.55 given by the final timing
solution.

3.3.3 Off-pulse Analysis

Fitting an exponential cutoff model to the spectrum of PSR J1906+0722 revealed a relatively high
cutoff energy compared to typical gamma-ray pulsars (Ec = 6.5 ± 0.9 GeV), suggesting that the
spectrum could be contaminated by the presence of a nearby source as was also noted by Xing &
Wang [192].

To investigate this possibility, we analyzed the off-pulse part of the data using photons with
energies between 200 MeV and 300 GeV. A residual test statistic (TS) map for the off-pulse data (see
Figure 3.3) revealed an excess (0.28± 0.02)◦ away from PSR J1906+0722, at (α, δ) = (286.84◦,
7.15◦), with a TS value of 288.

Modeling this secondary source with a power-law spectrum, we added it to the spectral model
for the region, keeping its location fixed from the off-pulse analysis, but leaving its normalization
and spectral index free, and analyzed again the full phase interval data. As a result, we found that
the log-likelihood value increased slightly, and the new photon weights increased the S/N of the
pulsations from θ10 = 16.38 to θ10 = 16.55.
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The low energy threshold of 200 MeV was chosen to provide improved angular resolution
in order to better separate the pulsar emission from that of the new source. When lower energy
(100–200 MeV) photons were included in the spectral analysis, the pulsation S/N calculated with
the resulting photon weights decreased, suggesting that source confusion at low energies leads to a
less reliable source model.

Figure 3.4 shows TS maps and spectral energy distributions for PSR J1906+0722 and the new
source found in this off-pulse analysis. The integrated energy flux of the secondary source above
100 MeV is 4.34+0.91

−0.67 × 10−11 erg cm−2 s−1 with a spectral index of 2.17 ± 0.07.
The best-fitting location of the secondary source is very close to the western edge of the

supernova remnant (SNR), G41.1-0.3 [3C 397, 195]. Jiang et al. [196] observed a molecular cloud
interacting with the SNR at this location; it is possible that we are observing gamma-ray emission
resulting from this interaction.

3.4 Analysis in Other Wavelengths

3.4.1 Radio and X-ray Observations

In probing for radio emission from PSR J1906+0722, we carried out a 120-minute follow-up
observation with the L-band (1.4 GHz) single-pixel receiver mounted on the 100 m Effelsberg
Radio Telescope in Germany. The gamma-ray-timing ephemeris allowed us to search the data over
dispersion measure (DM) only. No evidence for radio pulsations was found. Assuming a 10%
pulse width, bandwidth ∆F = 150 MHz, telescope gain G = 1.55, np = 2 polarization channels,
system temperature Tsys = 24 K, digitization factor β = 1.2 and a signal-to-noise threshold of
5, by the radiometer equation [Equation (A1.22), 9, p265], we computed a flux density limit of
≈ 21µJy. While this is below the conventional radio-quiet level of 30µJy [80], we note that the
nearby LAT-discovered pulsar PSR J1907+0602 has been observed in radio observations with a flux
density of just 3.4µJy [197], and would therefore not have been detected in this radio search.

To check for a possible X-ray counterpart, we analyzed a 10 ks observation with Swift’s X-ray
Telescope [198]. No counterpart source was detected, with an unabsorbed-flux (0.5–10 keV) upper
limit of 2× 10−13 erg cm−2 s−1 at the pulsar position. This limit yields a gamma-ray-to-X-ray flux
ratio of > 365, or an efficiency LX/Ė . 8.7 × 10−5 at distance dh, similar to other gamma-ray
pulsars [151, 199].

3.4.2 Possible SNR Associations

There are 4 known SNRs lying within 1◦ from the timing position of PSR J1906+0722 [200]. There
is strong evidence that the closest of these, G41.1−0.3, is a Type Ia SNR from a Chandrasekhar mass
progenitor [201], making it unlikely to be the birthplace of a pulsar. Each of the remaining nearby
SNRs lies closer to other young pulsars than to PSR J1906+0722 (G41.5+0.4 and G42.0−0.1 to
PSR J1906+0746; G40.5−0.5 to PSR J1907+0602), making a physical association between any
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of these difficult to verify. Kick-velocity requirements based on the pulsar’s characteristic age and
heuristic distance do not rule out any of these SNRs as the birthplace of the pulsar.

3.5 Discussion

Despite several years of attempts, the identification of 2FGL J1906.5+0720 remained elusive. Now
that this source has been identified as PSR J1906+0722, we here investigate potential reasons for
the failure of previous searches to detect it.

Perhaps the most significant source of difficulty in the detection of PSR J1906+0722 was the
large positional offset between its 3FGL catalog position and its true position. This offset, which
could only be accommodated by the new follow-up method outlined in Section 3.2.2, is most likely
due to the presence of the secondary source described in Section 3.3.3.

The close proximity of PSR J1906+0722 to the Galactic plane (b = 0.03◦) likely also hindered
its detection, as the large majority of the weighted photons can be attributed to the background.
From the pulse profile shown in Figure 3.3, we estimate that the pulsed fraction of the total weighted
photon flux (as defined in Equation 2.2) is as low as 6%5. This low pulsed fraction leads to a low
observable S/N, making detection more challenging.

A further complication for detecting PSR J1906+0722 was the presence of the glitch about one
year into the Fermi mission. This glitch is among the largest detected from a gamma-ray pulsar
in terms of relative magnitude (∆f/f ≈ 4.5× 10−6) [154]. In previous searches using a shorter
total observation time, the data segment after the glitch represented a much shorter fraction of the
total observation time. As the time interval covered by Fermi’s observations since 2008 August 1
continues to increase, the existence of a long timespan in which a pulsar’s signal is stable becomes
ever more likely. The increase in the weighted photon flux offered by the Pass 8 analysis [77] further
increases the observable S/N throughout the observation time, and results in searches that are not
only more sensitive overall [202], but also more robust against glitching or noisy pulsars.

The ability to detect young gamma-ray pulsars in blind searches can be of significant importance
to the overall study of energetic pulsars. For example, [203] use the observed population of
radio-quiet pulsars to investigate the dependence of properties of pulsar emission geometries on
the spin-down energy, Ė. Since pulsars with a high Ė tend to exhibit timing noise and glitches
(which do not typically affect radio searches), they are hard to find in gamma-ray data, where long
integration times are required. Advanced search methods that can detect complicated signals such
as that from PSR J1906+0722 are therefore crucial for reducing a potential bias against young,
energetic and glitching pulsars in the radio-quiet population. As noted by Abdo et al. [80] and
Caraveo [47], such pulsars are indeed lacking in the Fermi pulsar sample.

5Here we define the pulsed fraction as the fraction of the total weighted photon flux. In Chapter 4 we introduce an
alternative quantity, based on the pulsed fraction of the flux attributable to the pulsar. Nevertheless, the high background
level here did make detecting pulsations from PSR J1906+0722 more difficult.
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Abstract

We report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large
Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Ein-
stein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources,
requiring about 10, 000 years of CPU core time. In total, this survey has resulted in the discovery
of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying
paper (in preparation). These pulsars are all young, isolated pulsars with characteristic ages between
12 kyr and 2 Myr, and spin-down powers between 1034 and 4 × 1036 erg s−1. Two of these are
the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitch
∆f/f ≈ 3.5×10−6 during the Fermi mission. In this, the first of two associated papers, we describe
the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in
unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction
of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant,
constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center.
We also present the results of precise timing analyses for each of the newly detected pulsars.
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4.1 Introduction

In this chapter we present 13 new pulsar discoveries from the full Einstein@Home survey of 118
unidentified, but pulsar-like Fermi-LAT sources. These are the result of around 10,000 years of CPU
time generously donated by volunteers. An accompanying paper is being prepared by J. Wu et al.
(hereafter Paper II), which will describe in more detail the source selection and data preparation
procedures; spectral and off-pulse analyses of the newly discovered pulsars; and the results of radio
follow-up searches for these new pulsars.

The chapter is organized as follows: In Section 4.2 the search methods are described; an
investigation of the sensitivity of the search follows in Section 4.3; details of the newly discovered
pulsars and their timing solutions are given in Section 4.4; Section 4.5 contains a discussion of
the sensitivity of blind searches to unidentified gamma-ray pulsars; and finally we summarize our
conclusions in Section 4.6.

4.2 Search Scheme

The following contains some overlap with the two previous chapters. This has been left in to ensure
that this chapter contains a complete description of the Einstein@Home search.

4.2.1 Data

The data searched during the survey consisted of gamma-ray photons detected by the LAT between
2008 August 4 and 2014 April 6 (2014 October 1 for some sources searched later in the survey) with
energies above 100 MeV. Photons were included if they arrived within 8◦ of a target source, with a
zenith angle < 100◦ and when the LAT’s rocking angle was < 52◦. The photons were selected and
analyzed using the P8 SOURCE V3 instrument response functions (IRFs).

For each target source, we performed a likelihood spectral analysis using the pointlike
package [204]. Our source model included all 3FGL catalog sources within 13◦ of
the target source and used the template 4years P8 V2 scaled.fits map cube and
isotropic source 4years P8V3 template to model the Galactic diffuse emission [205]
and isotropic background respectively.

Target sources were modeled with an exponentially cutoff power law typical of gamma-ray
pulsars. During the likelihood fitting, we allowed the normalization of the diffuse models, and the
spectral parameters of the target source and all 3FGL sources within 5◦ to vary. Sources searched
near the beginning of the survey had their sky positions fixed at the 3FGL location. Later sources
were relocalized during the likelihood fitting to exploit the improved angular resolution offered by
the Pass 8 data. Spectral energy distribution (SED) plots and Test Statistic (TS) maps were visually
compared to the corresponding 3FGL sources to diagnose any problems with the fitting. With the
best-fitting source model, we used gtsrcprob1 to compute weights representing the probability

1gtsrcprob is part of the Fermi Science Tools, available at http://fermi.gsfc.nasa.gov/ssc/data/

http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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of each photon having come from our target source based on their reconstructed energy and arrival
direction. Full details of the data preparation methods can be found in Paper II.

The IRFs and diffuse templates used here were internal pre-release versions of the Pass 8
analysis tools, as the final release versions were not yet available when the survey began. When
investigating the gamma-ray emission from the region surrounding PSR J1906+0722 (Chapter 3),
we found that these preliminary IRFs and templates resulted in spectral parameters consistent with
those found using the final Pass 8 release. However, photon weights calculated with the most recent
Pass 8 data usually result in slightly higher pulsation significance within the same time interval; the
sensitivity estimates in Section 4.3 are likely to be more conservative as a result.

4.2.2 Parameter Space

To search for gamma-ray pulsations in LAT data, it is necessary to assume a certain “phase model”
(i.e. a rotation ephemeris) relating the arrival time of every photon to a certain rotational phase, and
test all possible combinations of the model parameters for pulsations, indicated by large values of a
detection statistic (described in Section 4.2.3). In the case where a signal is present, the distribution
of rotational phases will deviate significantly from uniformity. For isolated pulsars, the phase model2

is typically described by a Taylor series expansion in time around a chosen reference epoch tref , for
photon arrival time t at the Solar System barycenter (SSB),

Φ(t) = Φ0 + 2π
∑

m=1

f (m−1)

m!
(t− tref)

m , (4.1)

where f (m) denotes the m-th time derivative of the pulsar’s rotational frequency, f . While the
higher derivative terms are often measurable for young pulsars, it is usually sufficient (and often
only feasible) to include only the first two terms in the blind search, resulting in a simplified phase
model in which the spin frequency decreases by a constant spin-down rate, ḟ ≡ f (1).

Aside from correcting for this constant spin-down, it is also necessary to account for the apparent
Doppler modulation of pulsations that results from the Earth’s orbit around the SSB. This can
be achieved by applying position-dependent corrections to the measured photon arrival times, to
retrieve the set of arrival times at the SSB, hereafter denoted as {tj}. The angular resolution at which
sky positions must be searched increases linearly with the pulsar’s spin frequency (see Equation
4.11). For all but the slowest of pulsars, the required resolution is finer than the gamma-ray source
localization, determined by the LAT’s point spread function. For a blind survey of unidentified
gamma-ray point sources, it is therefore necessary to search in two sky positional parameters (R.A.
α and Decl. δ), making the overall search parameter space four-dimensional. For sources for which
we used the original 3FGL locations, we searched a circular region around the source with an
angular radius that was 50% larger than the semi-major axis of the 95% confidence region. For

analysis/software/
2While we define the phase in radians, in all plots we show phase in rotations for clarity, and re-normalize the pulse

profiles accordingly.
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relocalized sources, we searched a conservatively large region with a radius three times larger than
the semi-major axis of the 68% confidence region.

Some pulsars (e.g. PSRs J2017+3625 and J1350−6225) were found near the edge, or even
slightly outside of their search regions, indicating that the confidence regions may be underestimated,
and pulsars may have been missed by our survey as a result. This could be due to nearby, unmodeled
gamma-ray sources “pulling” the apparent position of the source away from its true position, as
was seen with PSR J1906+0722 (Section 3.3.3). To mitigate this effect in future surveys it may be
necessary to search over larger regions, especially for sources at low Galactic latitude where source
confusion is more likely. However increasing the solid angle over which we search increases the
computational cost of the search by the same factor.

We split the search parameter space into two main regions: the young pulsar region, with spin
frequencies below 80 Hz; and the millisecond pulsar (MSP) region at higher spin frequencies. This
parameter space is shown by the shaded area in Figure 4.1, and covers all currently known young
pulsars, MSPs and magnetars. In the low frequency region we extend the ḟ range from 0 down to
−10−9 Hz s−1 to be sensitive to the youngest and most energetic pulsars. Older, recycled MSPs
have much lower spin-down rates, and we therefore only search from 0 down to −10−13 Hz s−1

in this region. Since more sky locations must be searched at higher frequencies, the majority of
the computational cost of the search is spent in the high frequency and high spin-down regions.
Pulsars whose pulse profile features two similarly sized peaks separated by half a rotation have most
power in the second harmonic of their spin frequency. For this reason, we search up to 1520 Hz,
more than twice the frequency of the fastest known MSP, 716 Hz [206]. Only one known pulsar,
PSR J0537−6910, has its second spin harmonic outside our parameter space [207].

For each of the 118 unidentified LAT sources in which we searched, this parameter space is
split into ∼ 103–106 smaller “work units”, each of which can be searched in a few hours on a
typical home computer. These work units are then distributed amongst Einstein@Home volunteers’
computers.

4.2.3 Detection Statistics

In all stages of a gamma-ray pulsar search, statistical tests are used to measure the strength of
pulsations for given rotational parameters. The detection statistics used in this survey are described
in detail in Chapter 2, and briefly defined here.

Kerr [152] demonstrated the advantages of applying a weight to each photon indicating its
probability of having come from the target source. The photon probability weights mentioned in
Section 5.2.1, denoted by {wj}, were therefore used to weight the contributions of each photon to
a detection statistic. Weighting photons improves the sensitivity of a blind search by avoiding the
need to apply specific photon energy and angular offset cuts, and by increasing the apparent fraction
of flux that is pulsed.

To mitigate the computational cost of a blind search, semicoherent methods can be used, in which
only photons arriving within a certain time difference from one another are combined coherently.
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ḟ

(H
z/

s)

10 33 erg s−1

10 36 erg s−1

10 39 erg s−1

10
14
G

10
13
G

10
12
G

10
11
G

10
3 yr

10
6 yr

10
9 yr

ATNF Pulsar
Gamma-ray Pulsar
New E@H Pulsar

Figure 4.1: Frequency–spin-down diagram, showing the locations of non-gamma-ray pulsars in the ATNF
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The (real-valued) semicoherent detection statistic used in this search is defined as3

S1 =
1

κS1

N∑

j=1

N∑

k 6=j
wjwk e

−i[Φ(tj)−Φ(tk)] Ŵ rect
T (τjk) , (4.2)

where τjk is the time difference, or lag, between the arrivals of the j-th and k-th photons, and Ŵ rect
T

is a rectangular window, of length T ,

Ŵ rect
T (τ) =

{
1, |τ | ≤ T/2
0, otherwise .

(4.3)

The κS1 term of Equation (4.2) is a normalizing factor,

κS1 =

√√√√
N∑

j=1

N∑

k 6=j
w2
jw

2
kŴ

rect
T (τjk) , (4.4)

making the noise distribution of S1 well approximated by a normal distribution with zero mean and
unit variance.

The lag window length, T , is an important tuneable parameter for a search based on semicoherent
methods. A longer lag window offers more sensitivity, but requires a finer grid in all four search
parameters, and therefore results in a more costly search.

In the case where the lag window covers the entire observation span, then all photons are
combined fully coherently, and the test statistic reduces to the well known Rayleigh test (modulo a
constant term, and normalization) at the fundamental harmonic, n = 1,

Pn =
1

κ2

∣∣∣∣∣∣

N∑

j=1

wj e
−inΦ(tj)

∣∣∣∣∣∣

2

, (4.5)

with the normalization constant,

κ2 =
1

2

N∑

j=1

w2
j . (4.6)

This is hereafter referred to as the coherent Fourier power at the n-th harmonic.
To gain further sensitivity to weak signals, one can also combine the coherent Fourier power

from several harmonics of the fundamental spin frequency. The well-known H-test developed by
de Jager et al. [176] offers a heuristic method for combining these harmonics in the typical case
where the pulsar’s pulse profile (and hence the distribution of Fourier power amongst the different
harmonics) is unknown in advance by maximizing over the number of included harmonics, M , via

H = max
1≤M≤20

(
M∑

n=1

Pn − 4M + 4

)
. (4.7)

3The subscript 1 here denotes that the detection statistic only sums power in the fundamental harmonic.
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Combining Fourier power from higher harmonics requires finer resolution in all phase model
parameters. It therefore only becomes feasible in later search stages, in which the parameter space
within which a candidate signal could lie is constrained to be very narrow.

As discussed in Chapter 2, a multistage search scheme can be used to combine the efficiency of
a semicoherent search with the superior sensitivity of fully coherent methods. In this scheme, the
majority of the search is spent scanning the entire parameter space with the most efficient method
available, before “following-up” the most interesting candidates in more sensitive stages.

4.2.4 Initial Search Stage

In this survey, the first stage used the semicoherent detection statistic, S1, with a lag window of
length T = 221s≈ 24 days. This lag window is a factor of 2 longer than in previous Einstein@Home
searches [136].

As described in Section 2.5, the semicoherent detection statistic, S1, defined in Equation (4.2),
can be approximated more efficiently as a discrete Fourier transform (DFT), by utilising the FFTW
fast Fourier transform (FFT) algorithms [182]. We hereby refer to the DFT form of the semicoherent
detection statistic as Ŝ1.

Each FFT searched over a frequency bandwidth of ∆fBW = 32 Hz. We applied the technique
of complex heterodyning, i.e. multiplying the FFT input vector by an additional sine wave at the
heterodyning frequency, fH, to shift the search band to higher frequencies, [fH − 16, fH + 16) Hz,
without increasing the FFT memory size, ∆fBWT = 256 MiB. This allows us to search for high
frequency signals, such as those from millisecond pulsars, using typical computing hardware.
Furthermore, since the required resolution in the sky position becomes finer at higher frequencies,
we can construct individual sky grids for each frequency band to avoid oversampling sky positions
at low frequencies. The first frequency band was centered at 0 Hz, and all frequencies below 5 mHz
were ignored to prevent harmonics of Fermi’s orbital frequency (∼ 0.175 mHz) from “drowning
out” any astrophysical signal.

To ensure approximately equal sensitivity throughout the frequency band, we performed lag-
domain interpolation (see Section 2.5.4), whereby each photon pair is interpolated into the 15 nearest
bins on either side in the lag-series using a Welch-windowed sinc kernel [188, 189, p. 176]. Since
this technique introduces an additional computational cost per pair of photons, we performed a
photon weight cutoff to include at most the 30, 000 highest-weight photons, ensuring that the FFT
computation time remained the dominant factor. Identifying the photon weights as the probability of
each photon being from a pulsar, the maximum (coherent) signal-to-noise ratio (S/N) is proportional
to
∑N

j=1w
2
j . For sources where fewer than 30, 000 photons were required to reach 95% of this

maximum (typically sources far from the Galactic plane, where the diffuse background is lower) we
increased the number of interpolation bins, up to a maximum of 30.

A signal whose parameters, denoted by the vector u, lie within the search space will in general
not lie exactly at one of our search-grid points, and some of the S/N is lost as a result of this offset,



90 CHAPTER 4. EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY: PAPER I

∆u. We call this (fractional) loss in S/N “mismatch”,

m = 1− Ŝ1 (u + ∆u)

Ŝ1 (u)
. (4.8)

We can predict the expected mismatch as a function of the distance to the nearest search-grid point
using an analytical “metric” approximation, as described in Section 2.8.7. This prediction can then
be used to construct an efficiently spaced grid of points in the parameter space at which to test for
pulsations.

The spacing of frequency trials is fixed by the DFT formulation of Ŝ1 to be

∆f =
1

T
. (4.9)

While this spacing would result in a large average mismatch, we can improve upon this by performing
simple “interbinning” [141, 186] to partially recover the lost S/N experienced by signals lying
between our frequency bins. This technique does not recover the full S/N for such signals, but is far
more efficient than the alternative of “zero-padding” the FFT to double length.

In the remaining parameters, we construct a cubic lattice with spacings chosen to provide the
optimal maximum mismatch in each parameter of m = 0.15 according to the metric approximation.
In ḟ the spacing depends on the lag window T but also requires a refinement based on the full data
set [179],

∆ḟ =
12
√

10m

πT 2


1 +

60

N

N∑

j=1

(tj − tref)
2

T 2



−1/2

. (4.10)

The grid of sky locations is first defined within a circle (with unit radius) in the ecliptic plane as a
square grid with spacings in each direction of

∆nx = ∆ny =
2
√
m

πfmaxrE

[
1− sinc2(ΩET/2)

]−1/2
, (4.11)

where fmax is the maximum frequency in the searched frequency band, rE and ΩE are the Earth’s
orbital semi-major axis (in light seconds) and orbital angular frequency respectively, and sinc(z) =
sin(z)/z. These locations are then projected back into the celestial sphere to cover the LAT source
localization region. At each location, barycentering corrections are applied to each photon’s arrival
time according to the JPL DE405 solar system ephemeris.

Each work-unit performs an FFT at every location in this cubic lattice within its assigned portion
of the parameter space. The five highest values of Ŝ1 (including interbinned samples) are stored in a
running short list that is updated after each FFT. At the end of the semicoherent stage, this short list
is saved, and each short-listed candidate is automatically “followed up” in additional, more sensitive
search stages.
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4.2.5 Follow-up and Refinement Stages

After the semicoherent stage, we are left with a small number of candidates in each work unit that
have been localized to a small region of the parameter space. However, due to the large number
of work units for each Fermi-LAT source, weak signals in these short lists can be of low overall
significance. To separate weak signals from noise candidates, we can carry out more sensitive
follow-up stages to act as a veto for the large number of candidate signals reported back by the
semicoherent stage.

In the Einstein@Home survey, we implemented an intermediate refinement stage, in which
candidates from the first stage are refined using a double-length lag window (T = 222 s ≈ 48 days).
This step is computationally cheap, and narrows down the volume in which the candidate signal lies
by a factor of ∼ 16.

Following the semicoherent refinement stage, we now have a parameter space volume around
each candidate that is small enough for a fully coherent search to be feasible with just a small
associated computing cost. For this stage, we search only in the fundamental harmonic using the P1

test, with grid spacings according to the coherent metric approximation derived in Section 2.8.2.
All search stages up to this point are carried out on the Einstein@Home volunteers’ computers,

after which the short-listed candidates from the initial semicoherent stage (each of which were
followed-up), and the top candidates from the coherent follow-up stage are sent back to our servers.

As results are sent back, we update the top 20 most significant coherent candidates (see Appendix
4.7.1 for a description of the ranking procedure) overall from each source, and perform further
follow-up and refinement procedures on them. Firstly, we refine the location of the candidate using
the P1 statistic, but calculated over a grid with a smaller mismatch (m = 0.05) than that used in
the third stage. We then perform a fully coherent search using the H-test to incoherently sum the
Fourier power in the first 5 harmonics.

After this refinement step, diagnostic plots for each candidate are produced that illustrate the
candidates’ signals and their evolution throughout the Fermi-LAT observation time. This allows us
to identify pulsars with timing noise, whose pulsations may be visible in these plots despite having
a low apparent coherent power due to variations in their signal phase.

4.3 Sensitivity

In Chapter 2 the sensitivity of a blind search for gamma-ray pulsations was defined as the minimum
pulsed fraction of the observed photon flux that can be detected with a fixed probability, P ∗det, and
with a fixed false-alarm probability, P ∗FA. We now apply this definition to investigate the sensitivity
of our search to each source in the survey.

The quantity of interest is the fraction of the background-subtracted weighted photon flux that is
pulsed, denoted ps. Given a set of photon weights, the fractions of the weighted photon counts that
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Figure 4.2: Gamma-ray pulse profile of PSR J2017+3625 illustrating the definition of the pulsed fraction.
The blue dashed line indicates the background level, b. The pulsed fraction is defined by the area under the
template pulse profile above its lowest level (the orange shaded area), divided by the source fraction, s (that is
the sum of blue and orange areas).

can be attributed to the source, s, and background fraction b, are estimated as [80, 194]

s =

∑N
j=1w

2
j∑N

j=1wj
, b = 1− s . (4.12)

The probability of the j-th photon being pulsed is wj ps, and the overall weighted pulse profile takes
the form

g(Φ) =
b

2π
+ s gs (Φ) , (4.13)

where gs(Φ) is the background-subtracted pulse profile,

gs(Φ) =
1− ps

2π
+ ps gp (Φ) , (4.14)

where gp(Φ) is the pulse profile after subtracting all unpulsed emission (background or otherwise).
These quantities are illustrated in Figure 4.2.

Note that this definition of the pulsed fraction is equal to the area under the pulse in the
normalised pulse profile, as opposed to the “rms pulsed flux” used by e.g. Dib et al. [208], which
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is additionally dependent on the shape of the pulse profile. While the rms pulsed flux provides a
measure of the power of pulsations, this does not provide a physically meaningful measure of the
proportion of pulsed flux emitted by the pulsar [209].

For a pulsar to be detected by this survey, its signal must be strong enough to enter the short list
of semicoherent candidates within the work unit that covers the region of the parameter space in
which the signal lies. That is, the measured value of Ŝ1 at the grid point nearest the signal’s location
in the parameter space must be greater than the lowest value in the short list of candidates, Ŝ∗1 . The
probability that a signal with a pulse profile described by the complex Fourier coefficients {γn} will
be detected by the survey, as a function of the pulsed fraction is

Pdet (ps | {γn}) =

∫ ∞

−∞
P
(
Ŝ∗1 < Ŝ1

)
p
(
Ŝ1 | ps, {γn}

)
dŜ1 , (4.15)

where P
(
Ŝ∗1 < Ŝ1

)
is the (empirically measured) probability that Ŝ∗1 is less than Ŝ1, and

p
(
Ŝ1 | ps, {γn}

)
is the probability density function of the measured value of Ŝ1 for a signal

at a random location within the searched parameter space (see Appendix 4.7.2 for the derivation of
this distribution). Each of these quantities depends additionally on the set of photon weights for each
source; we have omitted these dependencies from Equation (4.15) for readability. This definition
of the detection probability is illustrated in Figure 4.3. This equation can be solved numerically to
recover the minimum pulsed fraction, p∗s , that can be detected at a given probability.

The purpose of the coherent follow-up stage of the survey is to greatly improve the significance
of any true signal that is detected by the first stage, and we apply our final false-alarm probability
threshold to the candidates from this stage. For typical values of ps given by solving Equation
(4.15), the expected coherent power corresponds to an extremely significant signal (P1 ≈ 270,
PFA ∼ 10−59) and hence even a conservative false-alarm threshold has no real effect on the overall
sensitivity estimate. In practice, effects such as glitches or timing noise that are not included in our
simplified isolated pulsar phase model can severely reduce the observed coherent power, resulting
in true signals with large ps appearing with low significance. We attempt to mitigate these effects
somewhat by monitoring the twenty most significant candidates from both the semicoherent stage
and the follow-up stages rather than applying the false-alarm threshold rigorously.

In Table 4.1 we estimate the minimum pulsed fraction, p∗s , that can be detected with P ∗det = 0.95
for each source in our survey, averaged over the pulse profiles from the 30 most significant pulsars
in the 2PC, and assuming constant signal parameters (i.e. no glitches or significant timing noise).
For sources in which a new gamma-ray pulsar was discovered we also report the measured pulsed
fraction for illustration. Note that while some sources have p∗s > 1, this does not necessarily
preclude the detection of pulsed emission from this source, since the assumptions on which these
estimates are based might not always apply. For example, the true pulse profile could be narrower
than average or the photon weights might not accurately represent the probability of each photon
coming from the target source. The results of this sensitivity estimation displayed in Figure 4.4
therefore also illustrate the range of thresholds covered by the various pulse profiles observed.
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Figure 4.3: Illustration of the definition of the detection probability. The orange line indicates the pdf of the
semicoherent detection statistic (including mismatch) in the presence of a signal with fixed pulse profile and
pulsed fraction. The blue dashed line shows the empirical probability that a true signal resulting in a detection
statistic Ŝ1 will be followed-up (and hence detected). The detection probability is therefore the area under the
product of these functions, shown by the grey shaded area.
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Figure 4.4: Cumulative fraction of the total computing cost of the survey, as a function of the estimated
pulsed fraction threshold. The solid line shows the 95% detection probability pulsed fraction threshold
averaged over the pulse profiles of the 30 pulsars in the 2PC with the highest significance. The shaded area
shows the range of pulsed fraction thresholds over these pulse profiles. The dashed vertical line denotes the
maximum expected pulsed fraction of p∗s = 1.

While the semicoherent search stage is rather robust to the presence of timing noise, any
large enough deviation from our simplified constant spin-down model will significantly affect
the sensitivity of our search. Glitching pulsars, for example, are particularly difficult to detect,
as their large jumps in spin frequency prevent the S/N from accumulating steadily throughout
the observations. Pulsars in binary systems are all but impossible to find in a search for isolated
pulsars. Our pulsed fraction thresholds therefore only represent our sensitivity to well-behaved
isolated pulsars. In particular, our sensitivity estimates are likely to be most reliable for sources
far from the Galactic plane, where we would expect to find old, stable millisecond pulsars. Our
sensitivity estimates rely on the assumption that a pulsar lies within the sky region in which we
search. As mentioned in Section 4.2.2, in some cases the extension of this region may have been
underestimated.

We have also not considered the fact that our sensitivity is not exactly constant throughout the
parameter space. Rather, the grid of sky locations slightly overcovers the region at low frequencies
and, due to the lower number of sky points required at low frequencies, work units searching the
lowest frequency band often search at a smaller number of trials. The result is that our survey
is sometimes slightly more sensitive at low spin frequencies. The results of Table 4.1 have been



98 CHAPTER 4. EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY: PAPER I

averaged over all spin frequencies, and assume that the entire parameter space is equally well-covered
by search points.

In the following sections we highlight and discuss the implications of our measured pulsed
fraction upper limits for three sources with well-known counterparts from observations at other
wavelengths, from which no pulsations were detected by our survey.

4.3.1 Pulsed Fraction Upper Limit for W49B

Chandra observations of the supernova remnant (SNR) W49B (3FGL J1910.9+0906), believed to
be the remnant of a jet-driven, core-collapse supernova, place strong upper limits on the presence of
a neutron star [210].

Gamma-rays from W49B have been detected at energies far higher than observed from a typical
gamma-ray pulsar [211, 212], indicating that the majority of the high energy flux from W49B comes
from the SNR itself. Any pulsed emission from a gamma-ray pulsar would therefore likely represent
only a small fraction of the photon flux. Our results place a 95% pulsed fraction limit of 38% of the
weighted photon flux from this source.

Placing W49B at the distance of 10 kpc obtained by Zhu et al. [213] suggests a gamma-ray
luminosity of ∼ 2 × 1036 erg s−1. In order to provide a significant fraction of this emission,
any gamma-ray pulsar would have to have a very large spin-down power, since the efficiency of
converting spin-down power into gamma-ray luminosity tends to be lower for energetic pulsars [80].
The estimated age of the SNR is in the range 1000–4000 yr. Together, these observations suggest
that any potential gamma-ray pulsar would be very young and extremely energetic, and would likely
exhibit large timing noise and glitches as a result. This would seriously reduce the sensitivity of our
blind search of this target, making our upper limit estimate for the pulsed flux unreliable for this
source.

To check for signals with large timing noise, we manually followed up semicoherent candidates
from this source using refinement steps with increasing lag-window lengths, but none revealed a
significant pulsed signal.

4.3.2 Pulsed Fraction Upper Limit for Cassiopeia A

The SNR Cassiopeia A (Cas A) contains a point-like, central X-ray source, most likely a neutron star
[214], from which no pulsations have been detected in X-rays, gamma rays or radio observations.
The gamma-ray spectrum for this source is also unlike that of any pulsar, again suggesting that any
pulsed emission would likely only contribute a fraction of the total observed flux. The position of
this central compact object (CCO) is within our search region for 3FGL J2323.4+5849, a source for
which our survey sets a pulsed fraction upper limit of p∗s = 57%. The photon flux above 100 MeV
from this source was 3.1(2)× 10−8 photons cm−2 s−1, making our 95% upper limit more than an
order of magnitude lower than the 5σ limit for pulsed flux reported in Abdo et al. [215]. A dedicated
search for pulsations at the known position of the Cas A neutron star, excluding photons above
typical pulsar emission energies, could likely bring this limit down further.
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However, since Cas A is known to be a young SNR (the supernova occurred around A.D. 1680),
if the NS is indeed a pulsar, it will be very energetic and likely have a highly unstable spin, making
detection in a blind search extremely challenging even if the pulsed fraction is far higher than our
stated upper limit. Indeed, the SNR is young enough that the pulsar’s spin-down could even be
outside our search range [216]. Again, we followed up semicoherent candidates from this source,
without success.

4.3.3 Pulsed Fraction Upper Limit for the Galactic Center

As a result of intense and difficult-to-model interstellar emission, the area around the Galactic Center
(GC) is one of the most complicated, and hence poorly understood regions of gamma-ray emission.
Both the 3FGL and the recent First Fermi-LAT Inner Galaxy point source Catalog [217] identify
several bright point sources within a few degrees of the GC, although some of these could be due
to misattributed interstellar emission. Nevertheless, a substantial contribution to the flux from the
GC region is expected to come from other astrophysical sources, such as young or millisecond
pulsars [e.g. 120, 218, submitted, and references therein], or possibly even annihilating dark matter
particles [118, and references therein]. The detection of a gamma-ray pulsar near the GC would
have important implications for these two competing interpretations of the GC GeV flux.

The bright fore-/background from the interstellar medium makes blindly searching for pulsars
near the GC particularly difficult. In order for one single pulsar to be detectable above this
background, it must be extremely bright, especially if it lies at a similar distance as the GC, ∼ 8 kpc.
As an example, the bright source 3FGL J1745.3−2903 searched during this survey has p∗s = 40%,
corresponding to a pulsed photon flux above 1GeV of ∼ 10−8 photons cm−2 s−1. This flux is
similar to the photon flux that the Crab pulsar would produce if it was at the same distance as the
GC. Again, such highly luminous pulsars also exhibit the most timing noise and glitches, further
adding to the difficulty of detecting their pulsations above the bright background flux.

4.4 Timing Analysis

In this section, we describe the methods used to precisely measure the spin and positional parameters
of the 13 new pulsars discovered by this survey.

For the purpose of these follow-up timing analyses, we produced extended LAT data sets until
2015 September 9 for each of the pulsars newly reported in this work. These updated data sets were
produced using the P8R2 SOURCE V6 IRFs, gll iem v06.fits Galactic diffuse emission
template [205], and iso P8R2 SOURCE V6 v06.txt isotropic diffuse background template 4.
The extended data sets had a lower zenith angle cutoff of 90◦. The pulsar’s position was fixed at
its initial timing position. Photons from within a larger 15◦ radius were included in the likelihood
fitting, which was performed using gtlike. Photon weights were then calculated for all photons

4http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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from within 5◦ of the pulsar using gtsrcprob. Further details of the preparation of these data
will be given in Paper II, including the spectral properties of each newly detected pulsar.

To reduce the number of photons included in the timing analysis for computational efficiency,
we applied a photon weight cutoff with the minimum photon weight chosen such that no more than
1% of the maximum coherent Fourier power was lost (again assuming that the maximum coherent
S/N is proportional to

∑N
j=1w

2
j ).

4.4.1 Timing Methods

We performed detailed timing analyses for each new pulsar to precisely determine their sky positions
and rotational parameters, again denoted by the vector u. The analysis follows the procedure
described in Section 4.4.1, as an extension of the method described by Ray et al. [167].

Starting from the spin and positional parameters of the pulsar reported by the refinement stage,
we phase-folded the photon data to obtain a weighted pulse profile. We also phase-folded at half,
and one third of the measured frequency to ensure that the original signal was not a higher harmonic
of the fundamental spin frequency. In two pulsars, J1350−6225 and J1624−4041, this revealed
sharply double-peaked profiles at half of the original candidate frequency, and greatly increased
their measured H-test values, indicative of having identified the true spin frequency.

From the phase-folded data, we constructed a template pulse profile, ĝs (Φ), consisting of a
combination of symmetrical wrapped Gaussian peaks (as defined in Abdo et al. [80]), which were
fit by maximizing the likelihood,

L (ĝs,u) =
N∏

j=1

[wj ĝs (Φ(tj ,u)) + (1− wj)] . (4.16)

The number of peaks in the template profile was chosen by the template that minimizes the Bayesian
Information Criterion [BIC, 219],

BIC = −2 log (L (ĝs,u)) + k log




N∑

j=1

wj


 , (4.17)

where k is the number of free parameters in the model. Because each Gaussian peak consists
of three parameters (central phase, width and amplitude), when fitting the template pulse profile,
k = 3Npeaks. Due to the presence of the second term in Equation (4.17), a new component was only
added to the template profile if its presence significantly increased the likelihood. It therefore acts
as a penalty factor, discriminating against a template profile featuring many “spiky” components,
unless this is warranted by the data. The parameters of the template pulse profiles used to time each
pulsar are given in Table 4.2, and the profiles themselves are shown in Figure 4.5.

After obtaining the template pulse profile, we varied the positional and spin parameters and
explored the resulting multi-dimensional likelihood surface to find the most likely parameter values.
To explore the likelihood surface, we used the Affine Invariant Monte Carlo (AIMC) method
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described by Goodman & Weare [220], in which many Monte Carlo chains are run in parallel, with
proposal jumps for each chain depending on the locations of the other chains5. We used the scheme
described by Foreman-Mackey et al. [221] to efficiently parallelize the likelihood computations
amongst several CPU cores.

With the new parameter values we re-folded the photon data to obtain a new template pulse
profile as above. Additional parameters could then be added to the timing model, and the procedure
was repeated. For each pulsar, we started from the simplified timing model (i.e. up to ḟ ), added
higher frequency derivative terms, found the most likely parameters, and updated the template pulse
profile until the BIC of Equation 4.17 (with k now as the number of parameters in the timing model)
stopped decreasing. With the number of timing parameters selected in this manner, we performed
a final longer Monte Carlo run, using a large number of chains, to obtain precise estimates of the
mean value and uncertainty of each parameter.

With over 100, 000 photons whose individual barycentric arrival times must be computed
each time, each likelihood evaluation is relatively computationally expensive. Hence, efficient
convergence of the Monte Carlo step is crucial to allow us to perform the timing analysis in a
reasonable amount of time. To avoid the possibility of chains getting stuck in low-likelihood
regions, we start all of the chains in a tight ball near our current most-likely point, as advocated by
Foreman-Mackey et al. [221]. Using a lengthy burn-in period, we allow these chains to spread out
throughout the most likely regions of our parameter space. While this initialization can in principle
lead to the Monte Carlo sampling only reaching a local likelihood maximum rather than exploring
the full parameter space to find a global maximum, visual inspection of the phase-folded photon
data can typically reveal any significant residuals in the timing solution requiring further fitting.

The results of these analyses are summarized in Table 4.3. The physical properties of each of
the new pulsars, as derived from their spin frequency and spin-down rate are given in Table 4.4.

These timing solutions allow for sensitive follow-up searches, the identification of candidate
multiwavelength counterparts, and phase-resolved spectroscopy of the on- and off-pulse photons.
Dedicated radio observations of the newly discovered pulsars were also performed, which used the
gamma-ray timing solution to fold the data. These analyses are described in Paper II.

4.4.2 Spin-down vs. Timing Noise

The long-term spin-down behavior of a pulsar can be characterized by the braking index [e.g., 3], n,
where,

ḟ ∝ −fn , (4.18)

n =
f f̈

ḟ2
. (4.19)

5In Chapter 3 this step was performed using the nested sampling algorithm MultiNest [193]. We changed to the
AIMC method due to the extra degree of parallelization that it offers, which greatly speeds up the sampling for pulsars
near the Galactic plane with many low-weight photons.
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Table 4.2. Template Pulse Profile Parameters

Pulsar a1 σ1 ∆µ2 a2 σ2 ∆µ3 a3 σ3 ∆µ4 a4 σ4

J0002+6216 0.32 0.088 −2.476 0.25 0.186 −0.319 0.26 0.217 −1.531 0.68 0.697
J0359+5414 1.36 0.511 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
J0631+0646 0.29 0.145 −1.821 0.62 0.374 −0.663 0.50 0.408 · · · · · · · · ·
J1057−5851 0.43 0.301 −1.143 0.65 0.907 · · · · · · · · · · · · · · · · · ·
J1105−6037 0.19 0.116 −2.026 0.46 0.294 −0.632 0.47 0.866 · · · · · · · · ·
J1350−6225 0.57 0.077 3.053 0.31 0.079 0.278 0.62 0.453 · · · · · · · · ·
J1528−5838 0.13 0.053 0.972 1.42 0.762 · · · · · · · · · · · · · · · · · ·
J1623−5005 0.30 0.151 −2.215 0.17 0.141 −1.438 0.70 0.855 · · · · · · · · ·
J1624−4041 0.31 0.080 −2.715 0.11 0.075 −2.328 0.50 0.383 −0.072 0.42 0.604
J1650−4601 0.38 0.210 2.079 0.33 0.211 1.227 0.52 0.571 · · · · · · · · ·
J1827−1446 1.44 0.311 −1.581 0.13 0.182 · · · · · · · · · · · · · · · · · ·
J1844−0346 1.38 0.467 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
J2017+3625 0.37 0.200 2.356 0.25 0.160 1.843 0.39 0.494 · · · · · · · · ·

Note. — Columns 2–12 give the amplitude (ai), offset in radians from the tallest component (∆µi), and width parameter (σi) for
each wrapped Gaussian component in the template pulse profile.

Table 4.3. Pulsar timing parameters

Pulsar tref (MJD) R.A. Decl. f (Hz) ḟ (10−12 Hz s−1)

J0002+6216 55806 00h 02m 58s.17(2) +62 ◦16 ′09.′′4(1) 8.6682478274(1) −0.448354(5)

J0359+5414 55716 03h 59m 26s.01(2) +54 ◦14 ′55.′′7(3) 12.5901403227(2) −2.65247(1)

J0631+0646 55806 06h 31m 52s.38(2) +06 ◦46 ′14.′′2(7) 9.01071834910(6) −0.293694(2)

J1057−5851 55716 10h 57m 09s.5(2) −58 ◦51 ′07(2)′′ 1.6119541713(3) −0.26135(1)

J1105−6037 55716 11h 05m 00s.48(4) −60 ◦37 ′16.′′3(3) 5.12982912390(8) −0.574649(2)

J1350−6225 55806 13h 50m 44s.45(1) −62 ◦25 ′43.′′8(1) 7.23810134280(6) −0.465408(2)

J1528−5838 55806 15h 28m 24s.3(1) −58 ◦38 ′01(1)′′ 2.81146362521(6) −0.195700(1)

J1623−5005 55716 16h 23m 04s.11(1) −50 ◦05 ′15.′′1(2) 11.7547287226(1) −0.574965(3)

J1624−4041 55716 16h 24m 09s.927(9) −40 ◦41 ′29.′′7(3) 5.95730476591(3) −0.1676839(9)

J1650−4601 55716 16h 50m 18s.62(2) −46 ◦01 ′18.′′6(4) 7.8664037135(1) −0.937157(3)

J1827−1446 55716 18h 27m 24s.60(5) −14 ◦46 ′28(4)′′ 2.0032588600(1) −0.181932(3)

J1844−0346 55716 18h 44m 32s.89(2) −03 ◦46 ′30.′′6(9) 8.8609552273(8) −12.14675(5)

J2017+3625 55716 20h 17m 55s.84(1) +36 ◦25 ′07.′′9(2) 5.99703102436(3) −0.0489063(8)

Note. — Reported values of timing parameters are the mean values obtained from the Monte-Carlo analysis described
in Section 4.4.1 at the reference epoch, tref , with 1σ uncertainties in the final digits given in brackets. Two different
observation spans were used during this survey and the reference epochs were chosen to lie at the middle of the observation,
hence the two distinct values shown in column 2.
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Figure 4.5: Weighted pulse profiles of all pulsars reported in this chapter. The template pulse profiles used
for timing analyses are shown by orange curves. The background fraction is illustrated by the dashed blue
line in each plot.
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Table 4.4. Derived pulsar properties

Pulsar l (◦) b (◦) P (ms) Ṗ (10−15 s s−1) τc (kyr) Ė (1033 erg s−1) BS (1012 G)

J0002+6216 117.33 −0.07 115.363568268(2) 5.96703(7) 306 153 0.8
J0359+5414 148.23 +0.88 79.427232292(1) 16.73359(7) 75 1318 1.2
J0631+0646 204.68 −1.24 110.9789432160(7) 3.61723(2) 486 104 0.6
J1057−5851 288.61 +0.80 620.3650313(1) 100.583(5) 98 17 8.0
J1105−6037 290.24 −0.40 194.938267113(3) 21.83720(6) 141 116 2.1
J1350−6225 309.73 −0.34 138.157778213(1) 8.88352(4) 246 133 1.1
J1528−5838 322.17 −1.75 355.686622097(8) 24.7586(2) 228 22 3.0
J1623−5005 333.72 −0.31 85.0721461635(8) 4.16118(2) 324 267 0.6
J1624−4041 340.56 +6.15 167.861145148(1) 4.72489(2) 563 39 0.9
J1650−4601 339.78 −0.95 127.122893310(2) 15.14468(6) 133 291 1.4
J1827−1446 17.08 −1.50 499.18661037(3) 45.3351(9) 174 14 4.8
J1844−0346 28.79 −0.19 112.85464991(1) 154.7031(6) 12 4249 4.2
J2017+3625 74.51 +0.39 166.7491790419(8) 1.35985(2) 1943 12 0.5

Note. — Columns 2 and 3 give the pulsars’ Galactic longitudes (l) and latitudes (b) respectively. Columns 4 and 5 give the derived
spin period (P = 1/f) and period derivative

(
Ṗ = −ḟ/f2

)
. Characteristic ages, τc, spin-down luminosities, Ė, and surface magnetic

field strengths, BS are calculated as described in Abdo et al. [80].

The exact value of the braking index depends on the physical mechanism causing the pulsar to spin
down; a pulsar whose braking is entirely due to magnetic dipole radiation will have n = 3, whereas
one whose spin-down power is entirely due to the radiation of gravitational waves will have n = 5
or n = 7 [216].

The vast majority of pulsars, however, also exhibit red-spectrum “timing noise”, manifesting as
low-frequency quasi-periodic variations in the arrival times of pulses [e.g., 16, 165]. The amplitude
of this timing noise appears to correlate with the spin-down energy, Ė, which is typically higher
for gamma-ray pulsars than the rest of the pulsar population. For all but the youngest pulsars or
those with the highest magnetic fields, this timing noise obscures the true long time-scale braking
behavior.

In all pulsars measured here, n deviates significantly from any of these integer values (except
for PSR J1650−4601, where the index is low, but poorly constrained), suggesting that the measured
values of f̈ are due to short time-scale timing noise. For pulsars with measurable frequency derivative
terms beyond the first derivative, the evolution of the spin frequency and spin-down rate is shown in
Figure 4.6.

4.4.3 Timing Large Glitches

In addition to slowly varying timing noise behavior, young pulsars also occasionally exhibit large,
sudden changes in their spin frequency, known as “glitches” [e.g. 34]. Pulsars with large glitches
are particularly difficult to detect in blind searches, which require long intervals containing a stable



4.4. TIMING ANALYSIS 105

−7
−6
−5
−4
−3
−2
−1

0
1

∆
f

(t
)

(n
H

z)

J0002+6216

55000 55500 56000 56500 57000
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1

∆
ḟ
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Figure 4.6: Evolution of each pulsar’s rotational frequency during the Fermi-LAT observation time. For each
pulsar, the top and bottom panels show the deviations from a constant spin-down model of the frequency,
∆f(t), and first frequency derivative, ∆ḟ(t), respectively. The shaded areas show 1σ uncertainty regions.
These deviations are most likely due to the pulsars’ intrinsic timing noise, as suggested by their unphysical
braking indices (n, described in Section 4.4.2 and shown in the lower panel for each pulsar).
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signal to accumulate sufficient S/N.
Not only are pulsars with large glitches harder to detect in a blind search, they are also sig-

nificantly more complicated to time. A glitch occurring at time tg, with increments in the spin
frequency (∆fg), the first two frequency derivatives (∆ḟg, ∆f̈g) and an exponentially decaying
frequency increment (∆fD,g, decay timescale τD,g) causes a phase offset at time t > tg of

∆Φg (t) = 2π

[
∆fg(t− tg) +

∆ḟg

2
(t− tg)2+

∆f̈g

6
(t− tg)3 + ∆fD,gτD,g

(
1− e−(t−tg)/τD,g

)]
. (4.20)

If the parameter increments associated with the glitch are large enough then ∆Φg can quickly exceed
a small integer number of rotations. If the photon data are sparse, as is often the case, this can
happen before we have even detected any pulsed photons after the glitch [34, and Chapter 3].

A result is that the likelihood distribution in the glitch epoch, tg, resembles a comb of possible
epochs, with each maximum occurring at a time where ∆Φg (t) equals an integer number of
rotations. Such a highly multi-modal likelihood surface causes problems for our Monte Carlo
sampling method, as chains can easily get stuck in low-likelihood regions between maxima, greatly
reducing the efficiency of the sampling procedure.

To avoid this, we can include an arbitrary phase increment at the time of the glitch in our phase
model, and allow it to vary as part of the Monte Carlo sampling. This phase increment removes the
multi-modal nature of the likelihood surface by accounting for the phase offset for glitch models
that do not occur at one of the maxima described above. While the phase increment is highly
correlated with the glitch epoch, we can predict and account for the dominant contribution to the
time-dependent part of the glitch increment to remove this correlation, ensuring efficient sampling
(see Appendix 4.7.3 for further details).

Apart from PSR J1906+0722, (described in Chapter 3) one other pulsar detected by the
Einstein@Home survey, PSR J1844−0346, experienced a glitch during the Fermi mission. Occurring
in July–August 2012, with ∆f/f ≈ 3.5× 10−6, it was comparable to some of the largest glitches
detected from gamma-ray pulsars [154]. With a characteristic age of τc = 11.6 kyr, and spin-down
energy Ė = 4.2× 1036 erg s−1, this pulsar is by far the most energetic pulsar found by our survey,
and also displays a correspondingly large degree of timing noise. The evolution of the spin frequency
and spin-down rate of PSR J1844+0346, including the glitch, are shown in Figure 4.7. The glitch
parameters obtained from the timing analysis are given in Table 4.5.

4.4.4 Pulse Profile Variability

We checked for variations in the pulse profiles of all pulsars detected in this survey by visually
inspecting their phase–time diagrams, and by measuring their Fourier coefficients in a small number
of time intervals. In one pulsar, PSR J1350−6225, small changes in the first and second Fourier
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Figure 4.7: Evolution of the rotational frequency of PSR J1844−0346 during the Fermi-LAT observation
time, as in Figure 4.6.

coefficients were observed. This was also observed in the phase–time diagram for this pulsar (shown
in Figure 4.8) where the trailing peak seems to appear less prominently in the latter portion of the
Fermi mission than in the earlier data.

To investigate the significance of this effect, we compared the distributions of the observed
photon phases before and after MJD 55750 (chosen to maximize the change in the pulse profile’s
first Fourier coefficient) by calculating the Weighted Kuiper Test statistic [222],

Vw1,w2 = max {G1(Φ)−G2(Φ)}+ max {G2(Φ)−G1(Φ)} , (4.21)

where G1(Φ) and G2(Φ) are the empirical weighted cumulative distributions of the photon phases
before and after MJD 55750 respectively.

The distribution of Vw1,w2 under the null hypothesis is unknown, and calculating significances
based on the properties of the unweighted statistic always under-estimates the false-alarm rate. To
estimate the significance, we therefore performed a Monte Carlo analysis. Using the observed sets
of photon weights (before and after MJD 55750), we randomly generated two sets of photon phases,
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Table 4.5. PSR J1844−0346 Glitch Parameters

Parameter Value

Glitch epoch, tg (MJD) . . . . . . . . . . 56135(7)
Frequency increment, ∆fg (Hz) . . . 3.06(1)× 10−5

ḟ increment, ∆ḟg (Hz s−1) . . . . . . . −9.4(3)× 10−14

f̈ increment, ∆f̈g (Hz s−2) . . . . . . . −7.0(9)× 10−22

Decaying f increment, ∆fD,g (Hz) 4.5(7)× 10−7

Decay time constant, τD,g (d) . . . . . 117(22)

Note. — Reported values of glitch parameters are the mean
values obtained from the Monte-Carlo analysis described in
Section 4.4.1 with 1σ uncertainties in the final digits given in
brackets.

with the j-th photon’s phase drawn from a common pulse profile6 with the probability p = wj ,
otherwise distributed uniformly. This process was repeated many times to estimate the distribution
of Vw1,w2 under the null hypothesis.

From this analysis, we find that the observed value of Vw1,w2 corresponds to a p-value of 0.038.
Given that all 13 pulsars were checked for pulsations, and that a small number of trials were
performed when choosing the date defining the boundary between the two intervals, we conclude
that this is not a significant variation.

Long-term monitoring of the Fermi-LAT data from this pulsar would be required to detect the
presence of any pulse profile mode changes, either by observing another such mode change, or by
reducing the uncertainty on the new template pulse profile. A change in pulse profile has only been
detected in one gamma-ray pulsar to date, PSR J2021+4026 [113]. This variation was accompanied
by abrupt changes in the pulsar’s gamma-ray flux and spin-down rate, neither of which are observed
from PSR J1350−6225.

4.5 Discussion

4.5.1 Sensitivity

Recent publications have argued, both by modeling the emission mechanisms of known radio and
gamma-ray pulsars [223] and by constructing an unbiased sampling of radio-loud and radio-quiet
gamma-ray pulsars [224], that Fermi-LAT should detect significantly more non-recycled gamma-ray

6The distribution of Vw1,w2 under the null hypothesis should be independent of the chosen pulse profile, since it only
tests the possibility that the observed phases are drawn from the same distribution, regardless of the true underlying
distribution.
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pulsars that are radio quiet than are radio loud, by a factor of ∼ 2. The 13 new pulsars reported
here, only two of which appear to be radio loud (see Paper II) bring the total number of radio-quiet
and radio-loud non-recycled gamma-ray pulsars to 51 and 61 respectively7. This would suggest
that there are still large numbers of unidentified radio-quiet gamma-ray pulsars requiring blind
gamma-ray pulsation searches to be detected. In this section, we compare the newly discovered
pulsars to the earlier population of blind-search discovered gamma-ray pulsars to identify and
discuss the overall trends in blind search sensitivity.

One question that we may like to address is, how bright does an unidentified gamma-ray pulsar
need to be in order to be detectable in a blind search? In particular, we would like to know the
lowest point source significance within which pulsations can be detected, and how this threshold
changes as more data are accumulated.

In Figure 4.9, we have plotted the point source significance vs H-test value for each pulsar in
the 2PC, as well as the blind search pulsars detected after this catalog was produced [136], and those
discovered by this survey, including PSR J1906+0722 from Chapter 3. We can see that the H-test
value for a pulsar can be well approximated by its point source Test Statistic (TS) value (as shown
by the dashed line in Figure 4.9). The values plotted here for pulsars detected in previous blind
searches have been scaled back to represent their value at the time of their discovery.

We begin by looking at how the coherent detection statistic, P1, varies with the observation
duration, Tobs. Since the H-test is a maximized sum over Pn values, the relevant scalings with
respect to the observation time will be unchanged. As shown in Section 2.3.1, the expected values
of P1 for a signal with average photon arrival rate, µ, pulse profile Fourier coefficients, {γn}, and
pulsed fraction ps over an observation lasting Tobs is approximately

Ep [P1] ≈ 2p2
s µ |γ1|2 Tobs + 2 . (4.22)

This shows the well-known result that P1 (and hence H) increases linearly with time. This is
relevant for detecting gamma-ray pulsations using known radio or X-ray ephemerides; since only a
small number of trials are required, fully coherent searches are perfectly feasible and signals only
need to overcome a low threshold to be detected. As Tobs increases, so too does the point source
significance, and pulsars whose gamma-ray pulsations are not initially above the detection threshold
will eventually be detectable. Indeed, pulsations have been detected in this way from sources all the
way down to the point source detection threshold [110].

However, the limiting factor in our blind searches is the sensitivity of the initial semicoherent
stage. The expected semicoherent (power) S/N, given a lag-window length, T , is

θ2
S1

= Ep [S1] ≈ p2
s µ |γ1|2 T 1/2 T

1/2
obs .

The semicoherent S/N accumulates much more slowly, only with the square root of Tobs. Substituting
this into Equation (4.22), we can identify the effective coherent threshold, P∗1 , in terms of the

7We use the definition from the 2PC that a radio-loud pulsar has a flux density S1400 > 30 µJy. Two gamma-ray
pulsars have radio detections with lower fluxes, we count them here as radio-quiet.
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Figure 4.9: Point source significance vs. H-test value for all pulsars in 2PC, and those detected by the
Einstein@Home survey. The dashed line denotes where H = TS. The H-test values and significances for
previously detected blind-search pulsars have been scaled back from their 2PC values to estimate their value
in the data used in their original searches.

semicoherent S/N threshold, S∗1 , as

P∗1 ≈ 2S∗1

(
Tobs

T

) 1
2

+ 2 . (4.23)

This reveals an unintuitive result: with a fixed semicoherent threshold and lag-window size, as the
observation time increases our sensitivity threshold in terms of the coherent signal power (and hence
point source significance) actually increases.

Equation (4.23) also reveals the solution to this problem: if we are to maintain the same source
significance threshold in searches using longer observation times, we must also increase the lag-
window duration by the same factor. However, as was derived in Section 2.4.2, the computational
cost associated with a blind semicoherent search scales with T 4 Tobs.

In Figure 4.10, we have estimated the semicoherent S/N at the time of discovery for all gamma-
ray pulsars detected in previous blind searches by calculating their P1 values from the data provided
by the 2PC, and scaling these down to the Tobs used in each search. We have also estimated the
computational cost that would be required to perform each search (only covering the young pulsar
parameter space) using the original lag-window size (T = 220 s) and observation length, but with
otherwise the same search scheme described in Section 4.2. Searches prior to Pletsch et al. [151]
only searched for pulsations from the LAT point source location, rather than searching over many
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Figure 4.10: Computing cost vs. Semicoherent signal-to-noise ratio comparison for all LAT-discovered
gamma-ray pulsars. Those newly discovered in this work are shown by orange squares, previously detected
pulsars are shown as blue circles. The locations on this plot of the newly detected pulsars represent their
expected location if our survey had used the 50% shorter lag-window used in previous searches. The lowest
semicoherent S/N for all blind-search pulsars is given by the blue dashed line, we consider signals below this
line to be undetectable. The orange diagonal lines show how the computational cost and S/N increased for the
newly discovered pulsars due to the longer lag window used in this survey.

possible sky locations. While this significantly decreases the required computational cost, this
requires pulsars either to be close to the LAT source’s estimated position, or to have a strong pulsed
signal, such that they can be detected despite a large positional offset. This also rules out the
detection of isolated millisecond pulsars, whose high frequency requires us to search sky locations
with much finer resolution. We therefore exclude the cost of searching for millisecond pulsars from
our estimated computing costs.

In this figure, we have also estimated the computational cost and S/N that each of the new
pulsars would have had if we had performed these searches with the lag-window duration used by
previous searches. At least 4, possibly as many as 7 pulsars would have been below the lowest
semicoherent S/N from a previously detected pulsar, and therefore most likely would not have been
detected had we not performed the more expensive search with the longer lag window.

Figure 4.10 also shows how the computing cost and S/N increased for these pulsars as a result of
using a lag-window with double the length. We see that only one pulsar detected here required less
computing time than any previously detected gamma-ray pulsar, with the most expensive detection
being more than 100 times more costly. Based on this argument, the current survey should have
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taken many years to complete, even taking into account a generous estimate of a doubling of the
computing power between the two surveys computed on Einstein@Home. In actuality, the first
118 sources were searched in just over one year, similar in duration to the first gamma-ray pulsar
survey. We consider this a testament to the improved efficiency of the search methods developed in
Chapter 2.

The signal detected here with the lowest coherent power was from PSR J1105−6037 with
P1 = 165. From the spread about the diagonal of Figure 4.9, we estimate that a pulsar with a
particularly narrow pulse profile should be detectable with a TS of around 100 (a significance of
approximately 10σ)8. The lowest-significance point source in which a pulsar was detected here (PSR
J1350−6225) had a TS of 356.6 (approximate significance 19σ). This could be because the ranking
method for our target sources depends on the sources’ significance; brighter Fermi-LAT sources
were searched earlier than dimmer sources with similar spectral properties. It is therefore possible
that as our survey continues we may yet detect a pulsar with a lower point-source significance.

In any case, the following trend is clear: as the Fermi mission continues, dimmer pulsars will
gradually become detectable to blind searches, but the computing cost required to detect equally
low H-test signals will rise quickly as we search longer data sets. This survey received a large boost
to its sensitivity in the form of the “free” (in terms of computational cost) increase in the observed
photon counts offered by the Pass 8 data reprocessing [77]. It is unlikely that such a welcome jump
in sensitivity will occur again in the near future, and therefore it may become necessary to make
some sacrifices to maintain the current search sensitivity without the computing cost requirements
becoming unrealistic. For example, reducing the spin-down range to which we are sensitive by a
factor of ∼ 10 will reduce the computational cost by the same factor, while only losing sensitivity
to the most energetic of pulsars. Indeed, one could argue that we already have greatly reduced
sensitivity to these pulsars since they typically exhibit the most timing noise and large glitches.

Another option would be to focus our available computing resources to perform more sensitive
searches of only the most promising target sources, rather than performing wide-ranging surveys
of many unidentified sources as was done here. Indeed, if we look at how the computing cost was
distributed amongst sources, as shown in Figure 4.4, we can see that, even with a favorable pulse
profile, some sources would require a pulsed fraction far higher than unity for us to detect pulsations.
The procedures described in Section 4.3 allow us to reliably predict our search sensitivity to new
sources for the first time. Now that we are able to predict this in advance, we can remove such
sources from our search list and focus our efforts on improving our sensitivity to the more promising
sources. If we relax the requirement of 95% detection probability used in producing Figure 4.4
slightly to reflect a more moderate chance of detecting pulsations from each source, we find that
∼ 25% of the computing cost of this survey could perhaps have been better spent by removing
unpromising sources.

8Note that one of the latest pulsars to be found by Einstein@Home, described in Chapter 7, has a TS of 108.9, making
it the faintest pulsar to be found in a blind search, and likely close to the limit of the survey’s sensitivity; this fact was
only discovered after this chapter was written.
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4.5.2 New Pulsars

The group of pulsars detected here appears to be very consistent with the overall population of
young gamma-ray pulsars (see Figure 4.1). Two of the new pulsars reported here (PSR J1057−5851
and PSR J1827−1446) are the most slowly spinning gamma-ray pulsars yet discovered, at 1.6 Hz
and 2.0 Hz respectively. While the existence of these pulsars is not in tension with estimates of the
gamma-ray pulsar “death line” [88], their discovery does extend the known population of gamma-ray
pulsars down to lower spin frequencies. Sensitive blind searches that can detect these pulsars are
important to ensure that the entire pulsar population is being fully explored, and to reduce biases
inherent in the radio-quiet gamma-ray pulsar population.

Also of interest are the pulsars detected here despite exhibiting significant timing noise, PSR
J1844−0346, and PSR J0359+5414. The large contributions of higher frequency derivatives mean
that the original phase model used in the blind search could not maintain phase coherence over the
full duration of the data. These effects make it very difficult for the coherent follow-up stages to
pick up these signals. On the other hand, the semicoherent stage is largely unaffected by timing
noise, although large glitches are also detrimental to the semicoherent sensitivity. Noisy pulsars
will therefore only appear as semicoherent candidates, and may easily escape detection from our
pipeline, which focuses on the results from the final coherent follow-up. Further investigation of the
vast number of semicoherent candidates reported by Einstein@Home may yet reveal more noisy
pulsars lurking in our results.

4.6 Conclusions

We have presented the discovery of 13 new gamma-ray pulsars found by the ongoing Einstein@Home
survey of unidentified Fermi-LAT sources. Amongst these pulsars are two new energetic pulsars
with Ė > 1036 erg s−1, one of which experienced a large glitch; and the two slowest spinning
gamma-ray pulsars yet detected.

As the Fermi mission continues and the LAT gathers more data, the sensitivity to weak pulsar
signals will increase, and many currently undetectable pulsars could rise above the detection
threshold in the near future, although future searches with more data will also require even more
computing power to be sensitive to similarly weak signals.

We also placed realistic upper limits on the pulsed flux from point sources from which no
pulsations were detected. The framework for this allows us to also predict our sensitivity to other
sources, enabling us to identify promising targets for searching, and also to veto sources from which
pulsations would be almost impossible to detect. This will allow us to focus our computing power
on increasing our sensitivity to the most promising sources in future surveys.

The Einstein@Home survey continues to run, and while it is now searching sources that
could be considered somewhat less promising than the 118 sources searched in this work, we
are still hopeful that more interesting detections can be made by this survey. A further exciting
new advancement is the development of the first Einstein@Home survey for gamma-ray pulsars
in candidate binary systems with well constrained orbital parameters, similar to the search that
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discovered PSR J1311−3430 [135]. The additional computing power of Einstein@Home will
enable more complicated searches, allowing for searches from sources with larger uncertainties in
their orbital parameters, or even with slight eccentricities.
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4.7 Appendix to Chapter 4

4.7.1 Candidate Ranking

In the final follow-up stages, performed offline, we would like to only search the most significant
candidates. To rank candidates by their significance, we need to account for the effective number of
trials from which each candidate has resulted. While the number of (semicoherent) independent
trials is approximately the same in each work unit within each source, there are more work units in
higher frequency bands due to the density of sky locations increasing with frequency. Additionally,
since the grid of sky locations searched in the first stage is constructed at the highest frequency in
the band, whereas the “zoomed in” grids are defined by the candidates’ spin frequencies, the number
of trials in the refinement step varies from candidate to candidate.

The overall result of these effects is that candidates with high detection statistic values are more
likely to occur by chance in higher frequency bands than in lower frequency bands, and at the higher
end of the frequency band. We construct a consistent ranking statistic by comparing candidates’
false alarm probabilities whilst taking the differing number of trials into account.

We start from the result [225] that the cumulative distribution function (cdf), G(Xmax), of the
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maximum value of N samples of the random variable X , is related to F (X), the cdf of X , by

G(Xmax) = [F (Xmax)]N . (4.24)

The false alarm probability of Xmax after N samples is therefore

PFA,N(Xmax) = 1− [1− PFA,1(Xmax)]N

≈ NPFA,1(Xmax) , (4.25)

where we have assumed that PFA,1 � 1/N . In our case, the single-trial false alarm for a candidate
with coherent power P1 is

PFA,1(P1) =

∫ ∞

P1

χ2
2

(
P ′1
)
dP ′1 (4.26)

= e−P1/2 , (4.27)

where χ2
2(X) is the central chi-squared distribution with two degrees of freedom.

It is considerably more difficult to estimate the effective number of independent trials, since
each candidate is the result of a large number of trials in previous search stages using different
detection statistics. However, since at this stage we are only interested in ranking candidates within
each source, and the number of independent trials in the semicoherent step is approximately the
same for each candidate, we only need to consider the varying number of trials in the follow-up
stages, and the total number of work units in each frequency band.

The overall false-alarm probability is therefore a function of the frequency of the candidate, f ,
and the coherent power:

PFA(P1, f) = KNW(f)NF(f) e−P1/2 , (4.28)

where the constant of proportionality, K, is the (unknown) number of independent trials per work
unit, NW (f) is the number of work units within the appropriate frequency band and NF (f) is the
number of trials in the coherent follow-up stage for a candidate at frequency f .

We define the ranking statistic, R̂ for follow-up analyses according to the logarithm of the
inverse of the false alarm probability,

R̂(P1, f) ≡ − log

[
PFA(P1, f)

K

]

=
P1

2
− log [NW (f)]− log [NF (f)] , (4.29)

where we have removed the constant term corresponding to K. We note that the above formulation
of R̂ can only be used to rank pulsar candidates from the same source, as the effective number of
independent trials per work unit (K) varies from source to source.
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4.7.2 Distribution of S1 with a Signal

To estimate the sensitivity of the search, it is necessary to know the expected distribution of Ŝ1 in the
presence of a signal for each source. To derive this, we first expand the double sum of Equation (4.2)
and separate it into terms in which photon indices are never equal. Identifying the photon weights
as the probability that each photon originated from the source in question, and therefore assuming
that each photon has a probability wjps of having been pulsed, we find the following expressions,

Ep

[
wmj e

−inΦ(tj)
]

= wm+1
j ps γn , (4.30a)

Ep

[
wmj e

inΦ(tj)
]

= wm+1
j ps γ

∗
n . (4.30b)

The expectation value and variance of S1 in the presence of a signal are therefore found, after some
relabeling and rearranging, to be

Ep(ps, {γn})[S1] =
p2

s |γ1|2
κS1

N∑

j=1

N∑

k 6=j
w2
jw

2
kŴ

rect
T (τjk) , (4.31)

σ2
p(ps, {γn})[S1] =

1

κ2
S1

N∑

j=1

N∑

k 6=j


w2

j w
2
k Ŵ

rect
T (τjk)


1 + p2

s |γ2|2wj wk − 2p4
s |γ1|4w2

j w
2
k

+
N∑

l 6=j 6=k
w2
l Ŵ

rect
T (τjl)

[
2p2

s |γ1|2 + 2p3
s<
(
γ2 (γ∗1)2

)
wj − 4p4

s |γ1|4w2
j

]



 . (4.32)

The expected semicoherent S/N for a signal with pulsed fraction ps and a pulse profile with Fourier
coefficients {γn} is therefore

θ2
S1

(ps, {γn}) =
Ep[S1]− E0[S1]√

σ2
0[S1]

= p2
s |γ1|2

√√√√
N∑

j=1

N∑

k 6=j
w2
jw

2
k Ŵ

rect
T (τjk) . (4.33)

In addition to the statistical variance of S1, a signal at a random location in the parameter space will
be detected at the nearest grid point, and some signal power will be lost as a result of this offset.
Denoting this mismatch by m, the pdf of Ŝ1 is therefore the pdf of the product of S1 and (1−m),
which we approximate as a Gaussian with the same mean and variance,

Ep

[
Ŝ1

]
= Ep [S1 (1−m)] = Ep [S1] (1− E [m]) , (4.34a)

σ2
p

[
Ŝ1

]
= σ2

p [S1] σ2 [m] + σ2
p [S1] (1− E [m])2 + σ2 [m] Ep [S1]2 . (4.34b)
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Figure 4.11: Glitch epochs and phase increments from Monte Carlo sampling during timing of PSR
J1844−0346. In the left panel, the phase increment was completely free to vary and exhibits high correlation
with the glitch epoch. In the right panel, the glitch epoch-dependent part of the phase increment was accounted
for, and a small random increment allowed to vary on top of this, removing the correlation.

The values of E [m] and σ2 [m] depend on the geometry of the search grid. For the grid used in
this survey, which had a maximum mismatch per parameter of 0.15 and an interbinned frequency
spectrum, E [m] ≈ 0.22 and σ2 [m] ≈ 8× 10−3. This pdf is illustrated in Figure 4.3.

4.7.3 Efficient Sampling of Glitch Parameters

As mentioned in Section 4.4.3, when timing large glitches, a phase increment occurring at the time
of the glitch can be included in the phase model to ensure that the likelihood surface in the glitch
epoch is continuous and easy to sample.

However, this increment is strongly correlated with the glitch epoch, as can be seen in the
first panel of Figure 4.11, which can lead to inefficient Monte Carlo sampling. Once an initial
combination of valid glitch parameters has been found (including a suitable combination of glitch
epoch and phase increment that removes any phase discontinuity at the glitch) we can remove
this correlation by separating the total phase increment in our phase model into separate terms: a
glitch epoch-dependent term accounting for the known difference in phase between the glitch model
parameters being sampled and the initial “reference” glitch model, plus a random offset that is
allowed to vary as part of the Monte Carlo sampling. Denoting the reference glitch model with the
subscript g0, and the sampled glitch model parameters by the subscript g1, the total phase increment
is

Φg1 = δΦg1 + Φg0 +

{
−∆Φg1 (tg0) , tg1 < tg0

∆Φg0 (tg1) , tg1 > tg0
, (4.35)
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where, for i = 0, 1,

∆Φgi(t) = 2π

[
∆fgi(t− tgi) +

∆ḟgi

2
(t− tgi)2+

∆f̈gi

6
(t− tgi)3 + ∆fD,giτD,gi

(
1− e−(t−tgi )/τD,g

)]
. (4.36)

The first term of Equation (4.35) ensures that the phase increment is free to vary over a small
range to find the glitch parameters with the highest likelihood. The other terms ensure that the
reference glitch model’s desirable property of causing no large phase discontinuity between the
pulse before and after the glitch also applies to the sampled glitch parameters. This ensures that the
sampling rate (and hence the efficiency of the timing procedure) is not unnecessarily burdened by
having to phase-fold the data with glitch models resulting in large phase discontinuities, which will
obviously have a low likelihood and be rejected.

Removing the correlation between the glitch epoch and the part of the phase increment that is
being sampled ensures that the Monte Carlo chains explore the parameter space efficiently. This
is especially helpful at the beginning of the Monte Carlo run, as the starting locations of the chain
are spread uniformly throughout the parameter space, and could otherwise easily get stuck in
low-likelihood regions, as they struggle to jump to the very narrow, highly correlated region of high
likelihood.
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The Braking Index of a
Radio-quiet Gamma-ray Pulsar
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Abstract

We report the discovery and timing measurements of PSR J1208−6238, a young and highly
magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-
ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of
unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home.
No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope,
with a flux density upper limit at 1369 MHz of 30µJy. By timing this pulsar, we measure its
braking index during five years of LAT observations to be n = 2.598± 0.001± 0.1, where the first
uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking
index has been similar since birth, the pulsar has an estimated age of around 2,700 yr, making it the
youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet
gamma-ray pulsar. Despite its young age the pulsar is not associated with any known supernova
remnant or pulsar wind nebula. The pulsar’s inferred surface magnetic field strength is 3.8× 1013 G,
almost 90% of the quantum-critical level. We investigate some potential physical causes of the
braking index deviating from the simple dipole model but find that LAT data covering a longer time
interval will be necessary to distinguish between these.
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5.1 Introduction

The physical mechanisms by which pulsars radiate rotational energy are as yet unclear. The dominant
process can be inferred by measuring a pulsar’s braking index, n, the index of a power law relating
the pulsar’s spin frequency, f , to its spin-down rate, ḟ , via

ḟ ∝ −fn . (5.1)

For example, the simple model of a pulsar as a spinning magnetic dipole predicts n = 3 [226].
A pulsar’s braking index can be calculated from measurements of the first two time-derivatives

of its spin frequency,

n =
ff̈

ḟ2
. (5.2)

However, most young pulsars exhibit unpredictable fluctuations in their spin frequency on top of
their long-term spin-down behavior [16] known as “timing noise”. Observations spanning a long
time interval are required to discriminate the overall braking behavior in these fluctuations.

Braking indices can therefore only be measured for the youngest or most highly magnetized
pulsars, whose long-term braking is still large enough to dominate their spin-down variation. Reliable
measurements of braking indices have been possible for just nine pulsars [3, 227–233]. All of these
braking indices deviate significantly from n = 3, with only PSR J1640−4631 having n > 3 [233].

One pulsar with a measurable braking index, PSR J1119−6127 [234], is particularly unusual.
Its emission properties (e.g. radio pulsations, exponentially cut-off power-law gamma-ray spec-
trum) were, until recently, typical for a “normal” rotationally powered pulsar [235], despite its
almost magnetar-level magnetic field (4.1 × 1013 G). The recent magnetar-like outburst from
PSR J1119−6127 [236, 237], and similar events from PSR J1846−0258 [238], therefore offer
insights into the connection between magnetars and rotationally-powered pulsars.

The Large Area Telescope [LAT; 74] on board the Fermi Gamma-ray Space Telescope has
proven to be a valuable instrument for the study of young pulsars [87]. The LAT’s 8 years of
almost continuous coverage of the entire gamma-ray sky has led to the detection of more than 200
gamma-ray pulsars1. This long observation span enables precise timing analyses of gamma-ray
pulsars [e.g. 165–167] immediately after their detection.

Blind searches in LAT data have led to the discovery of a sizeable population of young, radio-
quiet gamma-ray pulsars [132–134, 136, 151, and Chapters 3 and 4]. However, until now, only
pulsars discovered through their radio or X-ray pulsations have had measurable braking indices.

In this chapter, we describe the discovery and investigation of PSR J1208−6238, a very young,
highly magnetized gamma-ray pulsar with very similar properties to those of PSR J1119−6127,
including a measurable braking index.

1http://tinyurl.com/fermipulsars

http://tinyurl.com/fermipulsars
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5.2 Observations

5.2.1 LAT Data

In the Einstein@Home survey, we searched for pulsations in gamma-ray photons from unidentified
sources in the Fermi-LAT Third Source Catalog [3FGL; 138]. One such source, lying close to the
Galactic plane, was 3FGL J1208.4−6239.

Our data consist of the LAT arrival times of SOURCE-class2 photons above 100 MeV, and
weights representing the probability of each photon having come from the target source [152]. The
initial data in which the pulsar was originally discovered spanned 2008 August 4 to 2014 October 1
and were produced using internal preliminary versions of the Pass 8 [77] instrument response
functions (IRFs) and background models. We included photons from within a 8◦ region of interest
(ROI) around the 3FGL position, with a maximum zenith angle cut-off of 100◦, and a maximum
cut-off on the LAT’s rocking angle of 52◦.

After discovering the pulsar, we produced an extended dataset covering observations until
2016 February 16 for use in follow-up spectral (Section 5.2.3) and timing analyses (Section 5.3).
This used the P8R2 SOURCE V6 IRFs, a lower zenith angle cut-off of 90◦, and a larger 15◦ ROI.

We calculated probability weights for photons within 5◦ of the target source with gtsrcprob
using the results of a binned likelihood spectral analysis performed with pointlike. Our source
model included all 3FGL sources within a radius 5◦ larger than the ROI. The target source’s spectrum
was modeled with an exponentially cut-off power law. Its sky position and spectral parameters
were free to vary, as were the spectra of 3FGL sources within 5◦, and the normalizations of the
background models.

When producing the extended dataset the spectral analysis was performed with gtlike,
the Galactic diffuse emission and isotropic diffuse background were modeled with the
gll iem v06.fits [205] and iso P8R2 SOURCE V6 v06.txt templates3 respectively, and
the pulsar’s position was fixed at its preliminary timing position.

5.2.2 Discovery in a Blind Search

The first stage of this survey employs a “semicoherent” search, in which only photons arriving within
221 s (≈ 24 days) of one another are combined coherently (Section 4.2). Candidates from this stage
are then “followed up” in more sensitive stages (including a fully coherent stage) to increase their
significance. While our search model assumes a constant spin-down rate, the semicoherent stage
is sensitive to signals with varying spin-down4, provided

∣∣∣f̈
∣∣∣ . 3× 10−22 Hz s−2 . Nevertheless,

2The photon class refers to the selection of cuts that each potential photon event must pass in order to be selected
for analysis. SOURCE-class photons are suitable for long-duration analyses of point sources. In comparison, when
studying short transient events one can accept higher background rates; or conversely if studying the diffuse gamma-ray
background, one requires more stringent cuts to further reduce cosmic ray contamination. See Ackermann et al. [76] for
details.

3http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
4This can be seen by calculating the Ḡf̈ f̈ component of the semicoherent metric of Section 2.8.7

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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the overall search is less sensitive to pulsars with
∣∣∣f̈
∣∣∣ & 5× 10−24 Hz s−2, since these will not be

detected in the coherent follow-up stage5, and must have strong enough signals to appear as highly
significant semicoherent candidates.

Visual inspection of a candidate signal from 3FGL J1208.4−6239 revealed clear pulsations,
but with large variations in the pulse phase. Including a second frequency derivative of 3.3 ×
10−22 Hz s−2 in the phase model removed the majority of these phase variations.

5.2.3 Off-pulse Analysis

After refining the pulsar’s spin parameters, the integrated pulse profile showed significant emission
above the background at all phases, indicative either of flux from the pulsar or from a nearby
unmodeled source.

To investigate this unpulsed flux, we assigned rotational phases to all photons using our initial
timing solution, and performed a spectral analysis of the off-pulse emission. This revealed additional
nearby gamma-ray sources, the closest and most significant of which lies 20′ from the pulsar’s
timing position, with a spectral index of Γ = 2.56 ± 0.09 and (40 ± 13)% of the energy flux of
PSR J1208−6238.

The nature of these sources is unclear; without likely counterparts at other wavelengths it is
difficult to tell whether these are point sources or residuals from the Galactic diffuse emission
template. Their steep spectra are consistent with LAT-detected supernova remnants [SNRs; 239],
but kick velocity requirements make an association with the pulsar unlikely (see Section 3.5).

After including these additional sources in our model, re-fitting the ROI and re-calculating the
photon weights for PSR J1208−6238, the pulsation significance increased. These weights were
subsequently used in the timing analyses described in Section 5.3, resulting in the pulse profile
shown in Figure 5.1, with a final H-test value 1454.2. The spectral properties of the pulsar are given
in Table 5.1.

5.2.4 Radio Observations

On 2016 March 28 and 2016 April 14 we observed the pulsar timing position with the 64-m Parkes
radio telescope for 2.5 hr and 4.3 hr respectively using the H-OH receiver at a center frequency of
1369 MHz. With PDFB4 we recorded 256 MHz of bandwidth filtered into 512-channel spectra with
256µs sampling. Using the gamma-ray ephemeris, we folded the data over 690 dispersion measure
(DM) trials from 0–1500 pc cm−3 and visually inspected the summed profiles over a range of phase
and time binnings. We found no plausible pulsar candidates. Recent flux-calibrated observations
using the same configuration show a root-mean-square noise level of 130µJy/hr for a 32-bin pulse
profile. With a detection threshold of one or more phase bins with S/N >8, then optimally our
longer observation would have detected a source with a mean flux density >17µJy. Accounting for
scalloping losses due to binning in time and DM, and for the unknown pulse duty cycle, we estimate
an upper limit of 30µJy, equal to the radio-quiet threshold defined by Abdo et al. [80].

5Similarly to footnote 4, this can be seen from the relevant component of the coherent metric



5.2. OBSERVATIONS 125

Table 5.1. Properties of PSR J1208−6238

Parameter Value

Range of photon data (MJD) 54682–57434
Reference epoch, tref (MJD) 56040

Timing parametersa

R.A. (J2000.0) 12h 08m 13s.96(6)
Decl. (J2000.0) −62 ◦38 ′02.′′3(4)
Spin frequency, f (Hz) 2.26968010518(7)

Spin-down rate, ḟ (10−12 Hz s−1) −16.842733(5)
Braking index, n 2.598(1)

ḟ -increment epoch (MJD) 55548(23)

ḟ -increment, ∆ḟ (10−15 Hz s−1) 0.59(9)
n-increment, ∆n −0.10(2)

Derived propertiesb

Galactic longitude, l (◦) 297.99
Galactic latitude, b (◦) -0.18
Spin period, P (ms) 440.59072365(1)

Period derivative, Ṗ (10−12 s s−1) 3.2695145(9)
Surface B-field stength, BS (1012 G) 38.4
Estimated agec, τ (yr) 2672

Spin-down power, Ė (1036 erg s−1) 1.5
Maximum distance, d100% (kpc) 18.9
Heuristic distance, dh (kpc) 3.0

Spectral parameters above 100 MeVd

Spectral index, Γ 1.73± 0.08± 0.04
Cutoff energy, Ec (GeV) 4.86± 0.59± 0.70
Photon flux, F100 (cm−2 s−1) (4.41± 0.86± 0.37)× 10−8

Energy flux, G100 (erg cm−2 s−1) (3.49± 0.44± 0.29)× 10−11

Note. — The reported values for f and ḟ at the reference time include the effect of the earlier ḟ
increment.

aFor timing parameters, we report mean values and 1σ uncertainties on the final digits in brackets
from the results of the timing analysis described in Section 5.3 using the phase model in Equation 5.4.

bDerived properties are calculated as described in Abdo et al. [80]. Maximum and heuristic distances
are calculated assuming isotropic emission and gamma-ray luminosities of Ė and

√
1033Ė respectively.

cThe estimated age was calculated using the measured braking index.
dThe first uncertainty is statistical, the second estimates systematic uncertainties in the

LAT’s effective area, estimated by performing the same spectral analysis with rescaled ef-
fective areas (see http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/
Aeff_Systematics.html for details), and in the Galactic diffuse emission model, estimated
by performing the spectral analysis with the normalization of the Galactic diffuse emission rescaled by
±6%.

http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/Aeff_Systematics.html
http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/Aeff_Systematics.html
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Figure 5.1: Gamma-ray pulse profile of PSR J1208−6238, using the photon weights described in Section
5.2.3 and the Taylor series timing solution from Section 5.3. The dashed blue line shows the background
level, estimated from the photon probability weights as described in Abdo et al. [80]. The solid orange curve
shows the template pulse profile used in the timing analysis, described in Section 5.3.

5.3 Timing Analysis

To investigate the braking properties of PSR J1208−6238, we performed a dedicated timing analysis,
following the procedure described in Pletsch & Clark [166] and Chapters 3 & 4, a modification of
the methods developed by Ray et al. [167]. For efficiency, we removed around 750,000 photons
with a weight below 0.7%, which contribute negligibly to the signal.

Our phase model consisted of a Taylor series,

Φ(t) = Φ0 +
∑

m=0

f (m)

(m+ 1)!
(t− tref)

m+1 , (5.3)

where f (m) denotes the m-th time-derivative of the pulsar’s rotational frequency at the reference
epoch, tref .

Starting with our initial solution, consisting of the pulsar’s sky position, frequency and first two
frequency derivatives (ḟ ≡ f (1) and f̈ ≡ f (2)), we phase-folded the photon data and fit a template
pulse profile (shown in Figure 3.3) by maximizing the likelihood. We used the Bayesian Information
Criterion [BIC; 219] to estimate the appropriate number of components to include in the template,
finding that two wrapped Gaussian peaks were sufficient.
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We then sampled the pulsar’s spin and positional parameters with an Affine Invariant Monte
Carlo algorithm [220, 221], using the template pulse profile to evaluate the likelihood at each point.
The process continued iteratively; after each sampling stage the photons were re-folded with the
most likely parameters and the template pulse profile was updated. Higher frequency derivatives
were added to the phase model after each stage, again using the BIC to find the appropriate number
of terms.

The solution that optimized the BIC contained nine frequency derivatives. However, the phase
residuals from this model contain some remaining “red” noise, indicating that the timing noise is
not entirely captured in this solution. We were unable to remove this effect by including higher
frequency derivatives, up to the 12th derivative.

We can calculate n with Equation (5.2) using the measured values of ḟ and f̈ , finding n =
2.578± 0.007. However, as explained by Antonopoulou et al. [240], truncating the Taylor series at
the second derivative means that the measured value of n depends on the arbitrarily chosen reference
epoch. Making the simple assumption of a constant braking index, a self-consistent physically
motivated phase model can be derived, which avoids this problem [240],

Φ(t) = Φ0 +
f2

ḟ(2− n)



[

1 +
ḟ

f
(1− n)(t− tref)

] 2−n
1−n

− 1


 . (5.4)

In this model, one only fits for f, ḟ and n. Faster timing noise variations on top of this long term
spin-down are left unmodelled.

Carrying out this fit for PSR J1208−6238, we find that a constant braking index fits well in the
last five years of LAT data, but cannot account for the pulsar’s spin-down over the entire span of the
LAT data, as is clear from Figure 5.2. Instead, we find that increments in the pulsar’s braking index
and spin-down rate are required. The results of this fit, including these increments, are given in
Table 5.1. We cannot tell whether these were sudden or gradual changes as it takes many months for
an offset in either of these parameters to cause a detectable phase offset. We note that Archibald et al.
[241] required a similar change in ḟ and n in their timing model for PSR J1846−0258 covering six
years of observations.

5.4 Discussion

PSR J1208−6238 is the first radio-quiet gamma-ray pulsar with a measured braking index6, and
only the tenth pulsar of any kind with such a measurement. Its estimated age, assuming its braking
index has been constant since birth, is around 2,700 yr, making it the youngest known radio-quiet
gamma-ray pulsar.

PSR J1208−6238 shares many similarities (e.g. age, spin-down power) with PSR J1119−6127,
an otherwise unique pulsar. They are both highly magnetized, with inferred surface magnetic field

6Although Kuiper & Dekker [242] recently detected faint pulsations from PSR J1846−0258 in LAT data below
100 MeV.
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Figure 5.2: Measured phase residuals from our timing models. The blue lines and gray shaded regions
represent the best-fitting Taylor series phase model and 1σ uncertainties. The “TOAs” shown here were
not used to perform the fit, which was an entirely unbinned likelihood maximization, but are included
here to illustrate the validity of the phase models. Upper panel: residuals between the Taylor series and
a pure dipole-braking model with n = 3. The decreasing cubic curve is characteristic of a significantly
over-estimated braking index. Middle panel: residuals between the Taylor series model and a best-fitting
constant braking index model. A significant deviation is evident in the early mission. Lower panel: as above,
but with increments in the braking index and spin-down rate occurring at the time marked by the dashed
vertical line included in the phase model.
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strengths, BS = 3.2 × 1019(−ḟf−3)1/2, of 3.8 × 1013 G (PSR J1208−6238) and 4.1 × 1013 G
(PSR J1119−6127), close to the quantum-critical limit Bcr = 4.4 × 1013 G [243]. Such a high
magnetic field is expected to affect a pulsar’s high-energy emissions, however both PSR J1208−6238
and PSR J1119−6127 have gamma-ray spectra that are typical of young pulsars [80]. Given their
similar magnetic fields, one may speculate that PSR J1208−6238 could in the future exhibit similar
magnetar-like activity as was recently detected from PSR J1119−6127 [236]. However, no X-ray
emission has yet been detected from PSR J1208−6238 [198].

Radio emission is thought to be suppressed by high magnetic fields, as pair production in the
magnetosphere is inhibited by photon splitting [234, 243]. To predict whether to otherwise expect
radio emission from PSR J1208−6238, we modeled the gamma-ray emission geometry using the
methods of Johnson et al. [85], with outer gap (OG) and two-pole caustic (TPC) models described
therein. Our simulations used P = 100 ms and Ṗ = 10−15 s s−1. While these are different from
those in Table 5.1 these parameters only determine the size of the magnetic polar cap and radio
emission altitude and the gamma-ray profile dependence on these is weak at these values. We used
steps in gap widths of 1% the polar cap opening angle. Additionally, while Johnson et al. [85] fit the
unweighted counts using Poisson likelihood, we used weighted counts and the χ2 statistic. The TPC
model is slightly, although not significantly, favored over the OG model by the likelihood, with the
angle between the line-of-sight and magnetic angle, β = 2+1

−1
◦, predicting visible radio pulsations.

The OG fit gives β = 28+8
−6
◦, with no visible radio emission. We caution, however, that performing

these fits without constraints on the radio emission can lead to large systematic errors [86], and note
that neither model perfectly reproduces the observed peak separation.

Despite the pulsar’s very young inferred age, no positionally associated SNR or pulsar wind
nebula has been detected by radio imaging [244], X-ray observations [198, 245], or in TeV emission
[246]. There is, however, a luminous H II region [IRAS 12073−6233; 247] less than 0.5◦ away
from PSR J1208−6238, whose radio emission could mask a faint SNR near the pulsar. A dedicated
search for an associated SNR may be required to clarify this. The two nearest known SNRs
(G298.6−0.0 and G298.5−0.3) are more than half a degree away from the pulsar [200]. Due to
the pulsar’s young age, an association with either of these SNRs implies an unrealistically high
kick velocity, approximately 3000 (d/1 kpc) km s−1 for pulsar distance 3 kpc . d < 19 kpc (see
Table 5.1). A bias on the pulsar’s timing position due to timing noise [165] is insufficient to account
for the positional offsets between the pulsar and the nearest SNRs.

The braking index measurement is also sensitive to the pulsar’s intrinsic timing noise, and is
likely to contain some bias due to this effect. The uncertainty on n of ±10−3 quoted in Table 5.1 is
statistical only; low frequency timing noise will lead to an additional unknown bias on this value.
Assuming that the observed change in n around MJD 55600 was due to timing noise, we take this
increment, ∆n = 0.1, as an estimate of this systematic uncertainty.

The larger braking index in the earlier data could alternatively be caused by the pulsar re-
laxing from a glitch occurring before the start of the Fermi mission, of the kind observed from
PSR J1119−6127 [231, 240, 248]. However, a timing model featuring an exponentially decaying
frequency term in the early mission is disfavored by the BIC.

Nevertheless, our timing measurements constrain the braking index to be below the n = 3
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predicted by a simple dipole braking model, as evident from the large cubic residuals shown in
Figure 5.2. A reduced braking index can be explained by the pulsar’s physical properties varying
over time. Differentiation of the dipole braking model gives [3],

n = 3 + 2
f

ḟ

[
µ̇

µ
+

α̇

tanα
− İ

2I

]
, (5.5)

where µ is the magnetic dipole moment, inclined at an angle α to the spin axis, and I is the pulsar’s
moment of inertia. The measured braking index can be explained by fractional changes in these
parameters of ∼ 5× 10−5 yr−1.

A low braking index can be explained by a growing magnetic field [249]. One possible cause of
this could be that the pulsar’s initial magnetic field was “buried” by matter accretion shortly after
birth, and is gradually growing back to its original strength [250]. This implies a braking index that
evolves back to 3 over a timescale of ∼ 105 yr. This evolution of n is undetectable with current
observation lengths even in the absence of timing noise.

A varying α naturally leads to evolution of the pulsar’s observed pulse profile. This has been
observed from the Crab pulsar, where a measured increase in the (angular) peak separation of
≈ 6× 10−3 ◦ yr−1 implies a similar magnitude for α̇ [251]. This effect, which could be caused by
free precession [252], is sufficient to explain its low braking index.

Fits to TPC and OG models described above estimate α = 81+1
−1
◦ and α = 57+8

−5
◦ respectively

for PSR J1208−6238. For the variation in α to account for the reduced braking index requires
α̇ ≈ 2× 10−2 ◦ yr−1 (TPC) or α̇ ≈ 4× 10−3 ◦ yr−1 (OG). For either model, the expected evolution
of the gamma-ray pulse profile caused by the required α̇ is too small to be measured with the current
data.

Lyne et al. [3] note that a decreasing moment of inertia could be caused by decoupling between
the pulsar’s crust and interior, although they conclude that such a mechanism should not last long
enough to explain the even lower braking index of the older Vela pulsar.

Low braking indices can also be explained by a portion of the total spin-down torque being
applied by a process with a different braking index, e.g. angular momentum being lost to an
outflowing particle wind [n = 1; 253, 254], or propeller torque from an in-falling disk [n = −1;
255]. The fraction, ε, of the total spin-down torque that a process with a braking index of n2 must
account for to explain an observed index n is7

ε ≈ 3− n
3− n2

. (5.6)

Under these models, as the pulsar spins down ε will increase (provided n2 < 3), leading to a
time-varying braking index, where

ṅ ≈ ḟ

f
ε (n2 − 3) (n2 − n) . (5.7)

7 Lyne et al. [3] define ε as the ratio of wind-induced torque to dipole-induced torque, rather than wind-induced torque
to total spin-down torque. This definition may have been used in error by Archibald et al. [233, 241], although their
conclusions are unchanged.
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For the above wind (disk) model, we find ε ≈ 20% (10%) and ṅ ≈ −1.5 × 10−4 yr−1 (−3.4 ×
10−4 yr−1). The braking index variations are not currently measurable, but may become so with
future LAT data.
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5.5 Additional Material: Alternative Spin-down Models

This chapter was written to a strict word limit for submission to The Astrophysical Journal Letters.
The following section will not appear in the final published version, but is included here for additional
information.

In Section 5.4, it was stated that a pulsar whose spin-down torque is partially provided by a
process other than dipole braking will have a lower braking index, and that its braking index will
change over time. In this case, the assumption behind the phase model of Equation (5.4), that
the braking index is constant, clearly does not hold. We therefore derive self-consistent, exact
expressions for a pulsar’s spin frequency as a function of time, assuming the wind (n2 = 1) and
disk (n2 = −1) models discussed above.

We start with the simple spin-down models, and defining ε as the fraction of the spin-down
torque due to an alternative braking process (denoting the wind and disk models by the subscript w
and d respectively),

ḟwind = −Af3 −Bf , A = −(1− ε0,w)
ḟ0

f3
0

, B = −ε0,w
ḟ0

f0
, (5.8)

ḟdisk = −Cf3 − D

f
, C = −(1− ε0,d)

ḟ0

f3
0

, D = −ε0,df0 ḟ0 , (5.9)
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where the values of parameters with a subscript 0 are taken at the reference epoch. Integrating these
models from t′ = tref to t′ = t gives the resulting expressions for the pulsar’s spin frequency as a
function of time.

fwind(t) = f0

[
1− 1

ε0,w

(
e
−2ε0,w

ḟ0
f0

(t−tref) − 1

)]− 1
2

(5.10)

fdisk(t) = f0

(
ε0,d

1− ε0,d

) 1
4

(
tan

[
−2
√
ε0,d(1− ε0,d)

ḟ0

f0
(t− tref) + tan−1

(√
1− ε0,d
ε0,d

)]) 1
2

.

(5.11)
Equation (5.11) corresponds to Equation (8) of Menou et al. [255]. To the author’s knowl-

edge, Equation (5.10) has not been published previously, although Harding et al. [254] derive the
corresponding “age” of such a pulsar via a similar integration.

In Figure 5.3 these models are compared to the constant braking index model underlying
Equation (5.4), whose frequency model (also presented in [37]) is,

f(t) = f0

[
1− ḟ0

f0
(n− 1)(t− tref)

] 1
1−n

. (5.12)

The lower panel of Figure 5.3 shows the corresponding phase residuals between these models.
The dominant term in the frequency residuals is cubic, hence the value of the third frequency

derivative could alternatively be used to discern between these models. This would be equivalent to
measuring the “second deceleration parameter”, p =

...
f f2/ḟ3 [e.g. 3, 249]. However, this parameter

suffers from the same problem as the braking index does when calculated via Equation (5.2), namely
that if there is timing noise its value changes depending on the arbitrary reference time. Furthermore,
to measure this parameter, one needs to fit both n and p, rather than only fitting for ε as for either of
the above models.

Unfortunately, the differences between these models will be even more biased by timing noise
than measurements of braking indices, likely rendering them indistinguishable for most young
pulsars. For the youngest pulsars, where these models are of most interest, one would need to jointly
fit their parameters with the parameters of a timing noise model [e.g. 165, and references therein].
Also, while these models have pleasingly simple underlying assumptions, dipole braking and
wind/disk torques are far from the only processes which can brake pulsars; for example alignment
torque [e.g. 256], precession [e.g. 252, 257] or even quadrupole radiation [e.g. 226, 233] can
introduce further terms (which are not necessarily frequency dependent) into the initial spin-down
equation.
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Figure 5.3: Differences between the constant braking index model, and models where the pulsar’s spin-down
torque contains contributions from a wind or a disk. The top panel shows the differences (∆f(t)) in the
spin frequency of PSR J1208−6238 between each model and the constant braking index model (dashed line
at ∆f(t) = 0) over the observation interval. The lower panel shows the resulting phase residuals between
these models obtained by numerically integrating the above frequency offsets. Note that the largest phase
differences at the start and the end of the observation time are comparable to the absolute uncertainty on
the pulsar’s phase, shown in Figure 5.2. However the presence of the apparent increments in the spin-down
rate and braking index of PSR J1208−6238, which we speculate in Section 5.4 could be due to timing
noise or potentially a glitch recovery, reduce the time-span over which we could apply one of these models
consistently, making these residuals unmeasurable in this case.
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Chapter 6

The Discovery of Two Possibly Radio-Quiet
Gamma-ray Millisecond Pulsars

Following the initial submission and defense of this thesis we obtained dedicated follow-up radio
observations of both MSPs described in this chapter. The results of these observations will be
described in an upcoming publication.

Abstract

Millisecond pulsars (MSPs) are old neutron stars, with typical ages of at least a billion years, that
spin rapidly at hundreds of times per second. As yet, all spin-powered MSPs have shown radio
pulsations, interpreted as co-rotating beams of emission intersecting our view from Earth with each
turn. While many radio-detected MSPs are also bright gamma-ray sources, until now the existence
of a radio-quiet gamma-ray MSP population has remained hidden. Exploiting the aggregated
computing power of the Einstein@Home distributed computing project, we conducted a blind search
for pulsations in gamma-ray data from the Fermi Large Area Telescope. This survey discovered
two isolated MSPs, both of which remain undetected in extensive radio follow-up searches. One
explanation could be that their radio beams miss Earth, putting existing emission models to test.

135
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6.1 Introduction

Over the last few years, the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope
[74] has revealed entirely new populations of gamma-ray emitting objects, radiating in the 0.1–
100 GeV energy band. Among these are millisecond pulsars (MSPs): old neutron stars thought to be
spun-up by accreting matter from a companion star [19, 258], reaching fast rotation rates of hundreds
of revolutions per second [206]. Recent observational evidence underpins this model [259]. The
origin of the 20% fraction of Galactic MSPs that are isolated [14] is still less clear. One explanation
for their formation could be that the companion was fully evaporated by the high-energy radiation
of the MSP [260, 261]. However, in several cases the time-scales inferred from observations for
complete evaporation of the companion seem too long [106].

Shortly after launch, by folding gamma-ray photon arrival times using rotational ephemerides
from concurrent radio telescope observations [115], the LAT discovered that many radio-detected
MSPs also emit gamma-rays [92]. In addition, dedicated radio searches in unidentified LAT sources
have been conducted with great success [96–103].

The LAT is also sensitive enough for direct pulsar detection through blind searches for periodicity
in gamma-ray photon arrival times. Pulsars’ gamma-ray beams are typically wider than their radio
beams and therefore are visible from a larger range of inclination angles [121]. They are also
not subject to dispersion, scattering or scintillation as they propagate through the interstellar
medium. Blind gamma-ray pulsar searches are therefore sensitive to a population of pulsars that is
complementary to that which can be found in radio searches.

So far, blind gamma-ray pulsar searches have found several tens of solitary younger, slower
spinning pulsars [132–134, 136, 151, Chapters 3, 4 & 5]. However, the blind-search detection of
gamma-ray MSPs has proven challenging. In just one case a direct search of LAT data revealed an
MSP in a binary system [135] by exploiting partial knowledge of the orbit from prior identification
of the heated companion at optical and X-ray wavelengths [191]. Subsequently, this MSP was also
detected in the radio band [262], unlike the majority of young blind-search gamma-ray pulsars
which appear to be radio-quiet [80].

Thus, until now, no gamma-ray MSP without detectable radio emission has been found, despite
population syntheses [163, 164] predicting that several such objects reside among the unidentified
LAT sources.

The apparent absence of this source class is most likely due to the inherent difficulty of detecting
the signal of an MSP with an unknown sky position in a blind gamma-ray pulsation search. Such
signals gain additional Doppler modulations due to Fermi’s motion through the Solar System, which
must be corrected by applying position-dependent corrections to the LAT-recorded photon arrival
times to retrieve their arrival times at the Solar System Barycenter. The precision with which these
must be applied depends on the pulsation frequency. The localization of unidentified gamma-ray
sources, limited by the LAT’s angular resolution to a few arcmin [138], is insufficiently precise
to detect pulsations from MSPs, where a precision of a few arcseconds is often required. Tens to
hundreds of thousands of sky locations covering the source localization region must therefore be
searched, incurring a large computational cost. Additionally, without the complex heterodyning
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technique (see Section 2.5.3) first used for blind gamma-ray pulsar searching in Pletsch et al. [151],
very long FFTs are required to search at high spin frequencies, in which case memory constraints
can become limiting [e.g. 127].

6.2 MSP Discoveries by the Einstein@Home Search

In Chapter 2 we made improvements to the semicoherent search method which, in addition to
increasing their sensitivity to weak pulsations, mean that fewer search locations are required to
cover a given solid angle, reducing the cost of searching for MSPs.

To avoid repetition with previous chapters, we here refer the reader to the relevant sections. The
LAT data were prepared using the methods described in Section 4.2.1. The blind search methods
are described in Section 4.2.

Among the sources searched by the Einstein@Home survey described in this thesis were two of
the three most significant unassociated 3FGL sources, 3FGL J1035.7−6720 and 3FGL J1744.1−7619
[138] (the remaining source likely being a binary MSP [263]). Both of these have significantly
curved spectra and low variability, marking them as promising pulsar search targets. Their locations
off the Galactic plane (b = −7.8◦ and b = −22.5◦ respectively) also made young pulsar explana-
tions unlikely. While searching in 5.5 years of data from these sources, the Einstein@Home survey
discovered strong pulsations at 348 Hz and 213 Hz respectively, with the final timing solutions
giving weighted H-test [152, 176] values of 459 and 722 corresponding to single-trial false alarm
probabilities < 10−79 and < 10−125 respectively. These gamma-ray sources are therefore identified
as isolated MSPs, now known as PSR J1035−6720 and PSR J1744−7619.

6.3 Pulsar Properties

Following their detections we extended our data for each pulsar to cover observations until
2016 February 161. We refined the parameters of each signal through an unbinned timing analysis2.
The resulting estimates and uncertainties on the astrometric and rotational parameters for both
pulsars are given in Table 6.1. The photon phases and integrated pulse profiles given by the final
timing solution are shown in Figure 6.1.

With the pulsars’ locations fixed at their timing positions, we performed binned likelihood
spectral analyses using gtlike, following the procedure described in Section 4.4.1. The resulting
spectral parameters for each pulsar are given in Table 6.1. The spectral properties (Γ & Ecut) of
both pulsars are similar to those of the MSP population seen in the Second Fermi-LAT Catalog of
Gamma-ray Pulsars [2PC; 80].

The inclusion of proper motion in our timing models led to a slight decrease in the BIC (see
Equation (4.17)), ∆BIC = −5.2, for PSR J1035−6720 and a significant decrease, ∆BIC = −29.0,
for PSR J1744−7619. Assuming this is due to each pulsars’ motion, and not an effect of timing

1The extended datasets were produced using the procedure described in Section 4.4.
2The unbinned likelihood timing procedure is described in Section 4.4.
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Figure 6.1: Pulsed signals from the newly discovered MSPs. Lower panels: Phase–time diagram showing
the arrival times and phases of gamma-ray photons from the pulsar. The grayscale intensity represents the
weight of each photon, or the probability that each photon is from the pulsar. Upper panels: The integrated
gamma-ray pulse profile. The dashed horizontal blue lines show the estimated backgrounds, based on the
distributions of photon weights [via Equation (4.12)]. The orange curves show the template pulse profile used
to time each pulsar.
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Table 6.1. Measured and derived MSP parameters

Parameter PSR J1035−6720 PSR J1744−7619

Range of Photon Data (MJD) 54682–57434
Reference epoch (MJD) 55716

Timing parametersa

R. A. (J2000.0), α 10h 35m 27s.477(1) 17h 44m 00s.491(2)
Decl. (J2000.0), δ −67 ◦20 ′12.′′693(6) −76 ◦19 ′14.′′709(1)
Proper motion in R. A., µα cos δ (mas yr−1) −12(3) −22(3)
Proper motion in Decl., µδ (mas yr−1) −1(3) −8(4)
Spin frequency, f (Hz) 348.18864014054(8) 213.33223675349(5)

1st frequency derivative, ḟ (10−15 Hz s−1) −5.634(2) −0.439(1)

2nd frequency derivative, |f̈ | (10−25 Hz s−2) < 1.6 < 1.2

Derived quantitiesb

Galactic longitude, l (deg) 290.37 317.11
Galactic latitude, b (deg) −7.84 −22.46
Spin period, P (ms) 2.8720063916972(7) 4.687524094896(1)

Period-derivative, Ṗ (10−20 s s−1) 4.647(1) 0.967(3)

Spin-down luminosity, Ė (1034 erg s−1) 7.7 0.4
Characteristic age, τc (109 yr) 1.0 7.6
Surface magnetic field, BS (108 G) 3.7 2.2
Light-cylinder magnetic field, BLC (105 G) 1.4 0.2

Phase-averaged gamma-ray spectral parametersc

Photon index, Γ 1.37± 0.07± 0.23 1.06± 0.11± 0.01
Cutoff energy, Ec (GeV) 2.33± 0.18± 0.51 1.87± 0.21± 0.04
Photon flux above 0.1 GeV, F (10−9 photons cm−2 s−1) 22.8± 3.5± 2.9 19.2± 4.6± 3.9
Energy flux above 0.1 GeV, G (10−12 erg cm−2 s−1) 20.6± 2.3± 1.1 21.2± 3.8± 3.7

Off-pulse spectral parametersc

Off-pulse phase range (rotations) 0.297–0.437 0.812–1.272
Test statistic (TS) 4.2 127.0
TS of exponential cutoff, TScut · · · 42.3
Photon index, Γ · · · 0.01± 0.03± 0.01
Cutoff energy, Ec (GeV) · · · 0.53± 0.05± 0.01
Photon flux above 0.1 GeV, F (10−9 photons cm−2 s−1) · · · 2.6± 1.2± 0.3
Energy flux above 0.1 GeV, G (10−12 erg cm−2 s−1) · · · 2.6± 1.4± 0.3

Note. — The reference time scale is Barycentric Dynamical Time (TDB).
aQuoted values for the timing parameters are the values giving the highest likelihood in the unbinned timing

analysis, with 1σ uncertainties on the final digits quoted in brackets.
bDerived quantities are calculated as in [e.g. 80]. The reported values for Ė have not been corrected for the

pulsars’ proper motions (see Section 6.3 and Figure 6.2).
cThe first uncertainty is statistical, the second estimates systematic uncertainties in the LAT’s effective

area, estimated by performing the same spectral analysis with rescaled effective areas (see http://fermi.
gsfc.nasa.gov/ssc/data/analysis/scitools/Aeff_Systematics.html for details), and in
the Galactic diffuse emission model, estimated by performing the spectral analysis with the normalization of the
Galactic diffuse emission rescaled by ±6%.

http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/Aeff_Systematics.html
http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/Aeff_Systematics.html
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noise (which can bias MSPs’ timing positions and proper motions [165]), a portion of the observed
spin-down rate (ḟOBS) for each must be caused by the Doppler shift introduced by their velocity
gaining an increasing radial component, also known as the Shklovskii effect [80, 264]. Correcting
the pulsar’s intrinsic spin-down rate (ḟINT) for the Doppler-induced apparent spin-down (ḟSHK)
requires knowledge of the pulsars’ distances, which are uncertain without dispersion or parallax
measurements. However, we can use the pulsars’ observed gamma-ray fluxes (G100) and proper
motions (µ), and assume certain gamma-ray efficiencies (η), to retrieve constraints on the pulsars’
distances (d) by solving,

ḟOBS = ḟINT + ḟSHK (6.1)

= −G100fΩd
2

ηπIf
− µ2df

c
. (6.2)

Figure 6.2 shows the results of this, assuming a canonical moment of inertia I = 1045g cm2, a
gamma-ray beaming factor of fΩ = 1 and a realistic range of gamma-ray efficiencies 0.01 < η < 1
[80]. From the inferred distances we can retrieve Shklovskii-corrected spin-down powers, (Ė), via
Ė = G1004πfΩd

2/η. These ranges are shown in the right-hand panels of Figure 6.2.
We find that this Doppler correction can account for up to 20% and 65% of the spin-down rates

of PSR J1035−6720 and PSR J1744−7619 respectively at an efficiency of η = 1. If the efficiency
of PSR J1744−7619 is high its spin-down power could be as low as 1.3 × 1033 erg s−1, which
would make this one of the least energetic gamma-ray MSPs and close to the empirical gamma-ray
“death line”, i.e. the minimum spin-down power an MSP must have to emit in gamma-rays [89].

6.4 Radio Observations

In a search with the Parkes radio telescope of 56 unidentified Fermi-LAT sources, Camilo et al. [102],
detected 11 MSPs, 10 of them discoveries. The LAT sources associated with PSRs J1035−6720
and J1744−7619 were among the targets of this survey. Here we summarize these searches, which
yielded no radio counterparts to the new gamma-ray MSPs.

We observed the LAT sources now known to be associated with the two MSPs multiple times
between 2009 and 2012, at a center frequency of 1390 MHz using an analog filterbank system.
The total power from the central beam of the Parkes multibeam receiver (FWHM = 14′), filtered
through 512 frequency channels spanning a bandwidth of 256 MHz, was sampled every 125µs and
recorded for off-line analysis.

Typical integration times were around 1 hr, although they ranged between 41 and 136 minutes
for these two sources (see Table 1 of Camilo et al. [102]). The LAT source associated with
PSR J1035−6720 was observed a total of nine times, at a typical offset from the actual pulsar
position of 4.′3. This reduced the sensitivity of those observations to 80% of the maximum (on-axis)
sensitivity. The LAT source associated with PSR J1744−7619 was observed ten times at a typical
offset of 1 ′, with no material impact on the sensitivity.
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Figure 6.2: Left panels: constraints on MSP distances, as in Figure 11 of Abdo et al. [80]. Assuming certain
gamma-ray efficiencies (η), constraints on the pulsar distances are inferred from their gamma-ray fluxes and
spin-down powers (Ė), using the measured proper motion (maximum likelihood value shown by the dashed
line with the 1σ range given by the grey shaded region) to correct for the Shklovskii effect. The physically
realistic region is to the left of the 100% efficiency line. The ḟINT = 0 line shows the required distance if
the observed spin-down is purely due to the Shklovskii effect. Lines of constant tangential velocity are also
shown. Right panels: Spin-down powers after correcting ḟ . For each assumed efficiency the range of valid
distances (i.e. where the curves in the left panels cross the shaded proper motion ranges), and corresponding
Ė range, is shown by a shaded region. The dashed line shows the uncorrected Ė, i.e. if there was no proper
motion.
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All the data were analyzed using standard pulsar search techniques implemented in PRESTO
[265]. Before the new gamma-ray pulsars were known, the data were searched as described in
Camilo et al. [102], considering possible dispersion measures (DMs) up to approximately twice
the maximum DM predicted by the NE2001 model [266] for the corresponding line of sight (about
500 pc cm−3 for PSR J1035−6720 and 200 pc cm−3 for PSR J1744−7619; Table 1 of Camilo et al.
[102]). Subsequently we re-analyzed the data sets using the timing ephemerides obtained from
gamma-ray data, folding the radio data while searching only in DM. None of the observations
yielded significant radio pulsar candidates.

Some of the MSPs discovered by Camilo et al. [102] were not detected in all their search
observations. This can be caused by a combination of orbital acceleration, eclipses, or interstellar
scintillation. The first two effects are not relevant for the two new isolated MSPs. Depending on
the unknown DM (or equivalently distance) of the new MSPs, especially if they are nearby objects,
interstellar scintillation could very much modulate any putative radio flux density recorded by our
Parkes observing system. However, we know of no established radio-loud MSP in the Galactic disk
that is undetectable as much as 90% of the time.

It therefore seems likely that PSRs J1035−6720 and J1744−7619 either have radio flux densities
beamed towards the Earth that are below the nominal threshold of these searches, or if they emit
radio waves their beams do not intersect the Earth. The nominal threshold for these searches
depends on the putative radio duty cycle of these pulsars and their DM. For an assumed duty cycle
of 25% and DM . 50 pc cm−3, an indicative 1.4 GHz flux density threshold for PSR J1035−6720
is about 0.25 mJy normalized to a 1 hr integration. For PSR J1744−7619 the equivalent figure is
approximately 0.15 mJy.

How restrictive these S1400 flux density limits are depends on the assumed distance to the pulsars,
which are as yet uncertain. For PSR J1035−6720, with its higher spin-down rate and therefore
less well-constrained distance, we find a “pseudo-luminosity” upper limit of L1400 = S1400d

2 ≈
3.75 mJy kpc2, which is greater than the average L1400 of MSPs in the ATNF Catalog [14] with flux
density and distance measurements. However, for PSR J1744−7619, our estimated distance upper
limit, assuming 100% gamma-ray efficiency, implies a maximum L1400 ≈ 0.15 mJy kpc2. Just 3%
of the MSPs in the ATNF Catalog have a lower pseudo-luminosity, and this number drops to zero if
we take a more typical 10% efficiency. PSR J1744−7619 therefore has (at least) an unusually low
radio luminosity. Deeper searches would be required to determine just how radio-quiet these pulsars
are.

6.5 Pulse Profile Modeling

To investigate the possibility that the MSPs’ radio beams do not cross our line-of-sight, we modeled
the pulsars’ gamma-ray emission geometry by fitting simulated pulse profiles to the observed
photon phases, using the fitting technique described in Johnson et al. [85]. We considered three
emission models: an outer gap (OG) model, a two-pole caustic (TPC) model and a pair-starved polar
cap (PSPC) model. Johnson et al. [85] also give descriptions of these models, which we briefly
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summarize here.
In the OG and TPC models, particle acceleration takes place in narrow “gaps” in the magneto-

sphere, where the plasma charge density deviates from the force-free configuration. In both models
these gaps border the last-closed magnetic field lines. In the OG model [e.g. 67, 68], the lower
bound of the gap is defined by the “null-charge surface”, where the plasma charge density changes
sign. In the TPC model [267], the gap begins at the pulsar surface and extends to the light cylinder.

The PSPC model [268] is valid for low-Ė pulsars, where pair creation may be insufficient to
reach the force-free configuration [94], allowing for particle acceleration throughout the regions of
open-field-lines. For illustrations of the acceleration regions in these models, we direct the reader to
Figure 2 of Caraveo [47].

We used simulated rotation periods of 2.5 ms and 4.5 ms respectively and a simulated period
derivative of 1 × 10−20 s s−1 for both. Instead of the Poisson likelihood, we used a χ2 statistic
to fit the weighted-counts light curves, using 60 bins for both MSPs, with background levels and
uncertainties calculated as in Abdo et al. [80]. The best-fitting magnetic inclination angles (α),
line-of-sight inclinations (ζ) and estimated beaming fractions (fΩ) for each model are given in
Table 6.2, with 95% confidence-level uncertainties estimated as described in Johnson et al. [85].
The best-fitting light curves from all models for each pulsar are shown in Figure 6.3. It should be
noted that, as pointed out by Pierbattista et al. [86], fitting only the gamma-ray light curves with
these geometric models can lead to systematic biases in the best-fit parameters of ∼10◦.

For both MSPs, the models favored by the likelihood and best matching the qualitative features
of the light curves predict radio emission, assuming a hollow-cone model [163], that should be
beamed in our direction at both 1400 and 300 MHz. These predictions have our line of sight cutting
across the emission cone and not merely clipping it. The lack of radio emission is therefore not
easily explained by small offsets of a few degrees in the best-fitting parameters of these models.
For the models that do not predict radio emission (TPC and OG for PSR J1035−6720 and OG
for PSR J1744−7619), the lines-of-sight barely miss the edges of the emission cones at 300 MHz,
suggesting that it might be possible to detect these MSPs at even lower frequencies. We note,
however, that no model considered here successfully reproduces the broad double-peaked pulse
profile of PSR J1035−6720.

6.6 Off-pulse and Spectral Analysis

Gamma-ray emission from pulsars is normally concentrated in one or more narrow peaks. However,
depending on the viewing geometry and emission mechanism, a pulsar can have significant magneto-
spheric emission outside of the peaks of the pulse. The integrated pulse profile for PSR J1744−7619
includes unpulsed emission at all phases above the estimated background level, which is consistent
with the best-fitting (TPC) emission model (shown in Figure 6.3). We performed a spectral analysis
of this “off-pulse” emission to determine whether this is indeed magnetospheric, or contamination
from a nearby source, and also to search for unpulsed emission from PSR J1035−6720.

We defined off-pulse regions for the two pulsars using the Bayesian Block decomposition method
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Figure 6.3: Gamma-ray pulse profiles of the newly detected MSPs. The overlaying curves are the best-fitting
pulse profiles predicted by fits to outer-gap (OG), two-pole caustic (TPC) and pair-starved polar cap (PSPC)
gamma-ray emission models. The dashed black line is the estimated background level, derived from the
photon weights as in Abdo et al. [80].
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Table 6.2. Best-fit parameters from gamma-ray pulse profile modeling

Parameter PSR J1035−6720 PSR J1744−7619

Model TPC OG PSPC TPC OG PSPC
-ln(L) 75.5464 81.99390 72.8106 55.5374 81.3759 68.4602

α (deg) 7+3
−2 9+3

−3 51+4
−5 62+2

−2 66+19
−2 62+8

−1

ζ (deg) 70+1
−1 75+1

−1 78+3
−4 44+2

−4 32+2
−6 74+6

−3

fΩ 0.62+0.08
−0.1 0.22+0.25

−0.03 0.98+0.16
−0.04 0.89+0.02

−0.10 0.91+0.08
−0.07 1.14+0.15

−0.14

Note. — For PSR J1744−7619, the confidence contours of the parameters of the OG model are
not simply connected, see [85] for details.

described by Lande et al. [269]. The definitions of the off-pulse regions can be found in Table 6.1.
It is worth noting that the duty cycle for PSR J1035−6720 is close to 100%; in fact only ∼ 14% of
the total spin phase was selected for the analysis. We first computed residual test statistic (TS) maps
with gamma-ray photons coming solely from the off-peak region to look for putative sources around
the pulsar position. No significant off-pulse emission was detected from PSR J1035−6720, although
this could be due to the low photon statistics in the defined off-pulse region. Off-pulse emission
consistent with the position of PSR J1744−7619 was detected with TS = 127. We computed
the TS value at the pulsar position with both power-law (PL) and exponentially-cutoff power-law
(PLEC) models to test for curvature of the gamma-ray spectrum. The off-pulse emission from
PSR J1744−7619 has a significant cutoff, with TScut = 42, further suggesting a magnetospheric
origin [80].

6.7 X-ray Observations

In a quest to find X-ray counterparts for unidentified 3FGL sources [270], the fields of PSRs
J1035−6720 and J1744−7619 were observed by XMM-Newton for 25 ks. They were selected prior
to the pulsars’ discoveries because their gamma-ray properties indicated a probable pulsar nature.

Plausible X-ray counterparts for both pulsars were detected with a significance greater than
10σ at locations consistent with the newly discovered pulsars’ timing positions. Their unabsorbed
X-ray flux in the 0.3–10 keV energy range is 3.06+0.96

−0.50× 10−14 erg cm−2 s−1 for PSR J1035−6720
and 1.92+0.59

−0.39 × 10−14 erg cm−2 s−1 for PSR J1744−7619. See Table 11 of Saz Parkinson et al.
[270] for additional information. We computed the probability that the association between the
X-ray source and the MSP is due to a chance coincidence using P = 1 − exp(πρr2), where r
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is the matching radius (in our case the X-ray source error radius) and ρ is the density of X-ray
objects in the XMM-Newton EPIC field, regardless of their flux. We estimated P ∼ 1.3 × 10−4

for PSR J1035–6720 (r = 2′′ and ρ ∼ 0.038 arcmin−2) and P ∼ 1.4× 10−4 for PSR J1744–7619
(r = 1.9′′ and ρ ∼ 0.046 arcmin−2), which make a chance positional coincidence unlikely. In
addition, the gamma-ray-to-X-ray flux ratios of the two likely X-ray counterparts (∼ 700 and
∼ 1100 respectively) are consistent with an MSP nature [199] confirming their associations.

6.8 Implications

The two new pulsars described in this chapter are the only known MSPs to remain undetected in
radio observations. Direct gamma-ray pulsation searches such as those described in this thesis are
the only way to detect and study such pulsars, and hence to gain a full picture of the local MSP
population. The fact that our survey discovered two isolated MSPs also implies that there could be a
far larger number of binary MSPs that are potentially only detectable by the LAT, assuming the ratio
of binary/isolated radio-quiet MSPs is similar to that for radio-loud MSPs. The detection of binary
MSPs requires orbital constraints from studies of their X-ray or optical counterparts, such as those
that led to the discovery of PSR J1311−3430 [135, 191], to reduce the otherwise prohibitively large
parameter space. Several such candidate systems have already been identified for 3FGL sources
[e.g. 263, 271–274].

Mirabal et al. [117] highlighted a number of high Galactic latitude, unidentified LAT sources
with curved spectra consistent with dark matter annihilation in ultra-faint dwarf spheroidal galaxies
or dark matter subhalos [275, 276]. However, such sources are perhaps more likely to be MSPs (or
globular clusters featuring many MSPs), whose spectra are almost indistinguishable. A sensitive
survey specifically targeting these sources may be able to identify isolated MSPs amongst the group.
While such sources are perhaps most likely to be MSPs in binary systems, blind searches such as
this are necessary to rule out at least an isolated, radio-quiet MSP explanation for these dark matter
candidates.

It has been suggested that MSPs have wide radio beams [203, 277] that are detectable over a
broad range of possible viewing geometries, implying very few radio-quiet MSPs. The discovery
of these new, potentially radio-quiet, MSPs could therefore have important implications and help
discriminate between existing radio and gamma-ray emission models. Indeed, the lack of detectable
radio pulsations from PSR J1744−7619 in particular already implies an unusually low radio
luminosity, and is in tension with the best-fitting gamma-ray emission model.
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Chapter 7

Latest Results from the
Einstein@Home Survey

While Chapter 4, which describes the results from the first 118 sources, was being written, the
Einstein@Home survey continued to search through a further 34 sources. Because we sorted the
target sources by how likely they were to contain pulsars, these latest sources could be considered
to be less promising targets, either because their spectra are less typical of gamma-ray pulsars,
or because they have a lower photon flux (details of the ranking procedure, which followed the
techniques used by Lee et al. [95], will be given in J. Wu, et al., 2017, in preparation). However,
despite this, the Einstein@Home survey has discovered two further pulsars from these sources.

These pulsars were found in Pass 8 data, covering LAT observations until 2015 July 07. Their
initial search datasets were produced using the methods described in Section 4.2.1, but using the
P8R2 SOURCE V6 IRFs, a zenith angle cut-off of < 90◦, and a larger 15◦ ROI. The Galactic
and isotropic diffuse emission were modeled with the latest gll iem v06.fits [205] and
iso P8R2 SOURCE V6 v06.txt templates respectively1.

Again, after discovering the pulsars, we produced extended datasets including photons up to
2016 February 16, using gtlike to perform the binned spectral analysis with the pulsars’ locations
fixed at their preliminary timing positions. The unbinned timing analysis described in Section 4.4.1
was performed on these pulsars. The resulting photon phases and integrated pulse profiles are
illustrated in Figure 7.1 and the timing and spectral properties of each pulsar are given in Table 7.1.

7.1 PSR J1641−5317

PSR J1641−5317 was discovered by the computers of Einstein@Home volunteers James Drews
of UW-Madison, WI, USA and The ATLAS Cluster, AEI, Hannover, Germany, during a search of
3FGL J1641.5−5319. It is a fairly typical, “middle-aged” gamma-ray pulsar, and displays little

1http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Figure 7.1: Photon phases and integrated pulse profiles from newly discovered pulsars as in Figure 6.1.
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Table 7.1. Properties of New Pulsars

Parameter PSR J1641-5317 PSR J1817-1742

Range of Photon Data (MJD) 54682–57434
Reference epoch (MJD) 55946

Timing Model Parametersa

R.A. (J2000.0) 16h 41m 15s.91(6) 18h 17m 09s.034(5)
Decl. (J2000.0) −53 ◦17 ′48.′′8(9) −17 ◦42 ′01.′′1(6)
Spin frequency, f (Hz) 5.71081786086(8) 6.67806213863(7)

Spin-down rate, ḟ (10−12 Hz s−1) −0.120706(2) −0.917844(4)

Second frequency derivative, f̈ (10−24 Hz s−2) · · · 6.0(2)

Derived Parametersb

Galactic longitude, l (◦) 333.29 13.34
Galactic latitude, b (◦) −4.56 −0.70
Spin Period, P (ms) 175.106267502(2) 149.744039399(2)

Period derivative, Ṗ (10−15 s s−1) 3.70110(7) 20.58107(9)

Spin-down power, Ė (1033 erg s−1) 27 242
Characteristic age, τc (kyr) 750 115
Surface magnetic field strength, BS (1012 G) 0.8 1.8
Light-cylinder magnetic field strength, BLC (103 G) 1.4 4.9

Spectral Parametersc

Spectral index, Γ 1.95± 0.02 0.55± 0.11
Cutoff Energy, Ec (GeV) 3.47± 0.12 1.94± 0.15
Photon flux > 100 MeV, F100 (10−8 cm−2 s−1) 3.40± 0.13 0.67± 0.09
Energy flux > 100 MeV, G100 (10−11 erg cm−2 s−1) 1.93± 0.05 1.31± 0.24

aThe quoted values of the timing parameters are the mean values of the posterior distributions from the
results of timing analyses following the procedures described in Section 4.4.1 with 1σ uncertainties on
the final digits given in brackets.

bThe derived parameters (Ė, τc, BS, BLC) are calculated as in [e.g. 80, 151].
cThe uncertainties quoted on the spectral parameters are statistical only, and do not include estimates

of the systematic uncertainties from the LAT’s collecting area and Galactic diffuse emission, which are
likely to be larger. Additionally, PSR J1817−1742 lies less than 15◦ from the Galactic center, where
the systematic uncertainies from the Galactic diffuse emission are likely to be even higher. The reported
spectral parameters should therefore be treated with caution.
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timing noise, in that the inclusion of a second frequency derivative in the timing model did not
decrease the BIC, giving a 2σ upper limit of

∣∣∣f̈
∣∣∣ < 3.8× 10−25. We note that, given the pulsar’s

singly peaked pulse profile, it is possible that the timing solution given in Table 7.1 corresponds
to its second frequency harmonic. Folding at half the spin frequency resulted in an H-test value
which neither increased nor decreased significantly. However, the two resulting peaks appeared very
similar, as one would expect from folding the data at half of the pulsar’s true spin frequency.

7.2 PSR J1817−1742

PSR J1817−1742 was discovered by the computers of Einstein@Home volunteers Dave Billenness
of Victoria BC, Canada and Jonathan L. Kerfoot of Bixby, Oklahoma, USA while they searched
for pulsations from 3FGL J1817.2−1739. The source in which it was discovered has a LAT point-
source test statistic (TS) of just 108.9 (corresponding to a significance of≈ 10σ), making it the least
significant unidentified source in which pulsations have been detected (see Figure 4.9 for the H-test
and significances of blind-search gamma-ray pulsars at their time of discovery). This is very close
to the threshold value estimated in Chapter 4 as the minimum TS a pulsar can have while still being
detectable by our survey. Despite its weak photon flux, PSR J1817−1742 was significantly detected
by our survey at its second and fourth spin harmonics, most likely as a result of its extremely narrow
pulse profile, visible in Figure 7.1b.

Seven frequency derivative terms were required in the timing solution for PSR J1817−1742 to
minimize the BIC. In the early part of the Fermi mission, its spin frequency appears to decrease
exponentially, as one may expect if the pulsar was relaxing from a glitch prior to the beginning of
the LAT data. The evolution of the spin frequency and spin-down rate of PSR J1817−1742 is shown
in Figure 7.2. Shannon et al. [278] recently reported a similar detection of a glitch from the Vela
pulsar occurring before the start of their observations2.

A timing model consisting of five frequency derivatives and an exponentially decaying frequency
term in the early mission gives a slightly lower likelihood (∆ logL ≈ −10) with the same number of
free parameters as the pure Taylor series model. This decrease in the log-likelihood could potentially
be explained by the fact that we have removed two higher frequency derivatives, which can repro-
duce faster phase variations throughout the data, and replaced these with the two glitch recovery
parameters, which can only model a decreasing frequency in the early data. That is, the glitch
recovery could accurately model the pulsar’s phase in the early mission, but the higher frequency
derivative terms included in the Taylor series model additionally improve the log-likelihood in the
late mission. The best-fitting decaying frequency term corresponds to a recovering glitch increment
of ∆fD = (1.4± 0.1)× 10−7e−(tg−t0)/τD Hz, with a decay constant τD = 218± 11 days, where
tg is the unknown glitch epoch, occurring before the start of the data interval at t0 = 54682 MJD.
The magnitudes of these parameters are consistent with those of typical pulsar glitch recoveries
[33, 34]. This could therefore be a hint that PSR J1817−1742 may suffer large glitches, which may
be observed in future LAT data as the Fermi mission continues.

2With thanks to M. Kerr for bringing this to the author’s attention.
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Figure 7.2: Evolution of the spin frequency and spin-down rate of PSR J1817−1742 during the LAT
observation time, after subtracting the spin-down rate measured at the reference epoch, as in Figure 4.6. The
decreasing frequency residuals visible in the first part of the data could suggest that the pulsar is relaxing
following a large glitch occurring before the start of the Fermi mission.
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There is a supernova remnant, G013.3−1.3 [200], just over half a degree away from the timing
position of PSR J1817−1742. Given the pulsar’s characteristic age, and the apparent distance to the
SNR of ∼ 3 kpc [279], then PSR J1817−1742 would require a proper motion of ∼ 9 mas yr−1 and
a kick velocity of around 120 km s−1. We added proper motion parameters to our timing model,
and measured a significant (> 3σ) velocity in the α direction of −120 ± 30 mas yr−1. This is at
least qualitatively in the right direction for an association with the SNR, however at a distance of
3 kpc this implies a tangential velocity of ∼1,700 km s−1, which is very high compared to known
pulsar velocities.

Pulsar timing positions and proper motions can be significantly biased by timing noise [165]; an
unbiased determination of the pulsar’s motion would require joint modeling of the pulsar’s spin and
positional parameters with the parameters of an assumed timing noise power spectrum.

7.3 Future Gamma-ray Pulsar Surveys

One lesson learned from our sensitivity investigation in Chapter 4 is that there remain a number of
promising pulsar-like candidates amongst the unidentified 3FGL sources. The ability to determine
quantitively in advance which sources our survey is most sensitive to will allow future surveys to
focus most of their computational power on promising sources, and waste little on the others. As
mentioned in the discussion in Section 4.5, the computational resources required to maintain a low
sensitivity threshold will increase as the Fermi mission continues, so savings like this will become
even more crucial.

One way to substantially reduce the cost of a pulsar search is to target the searched sky position
at the location of a potential counterpart [e.g. 132]. There are a number of 3FGL sources for
which likely multiwavelength counterparts, with precise positions, have been identified [e.g. 270] at
which we could target searches. A notable example would be the Cas A neutron star discussed in
Section 4.3.2. Such searches could feasibly be run quickly (and sensitively) “offline” on a cluster
computer.

Perhaps one of the most important outstanding questions of high energy astronomy is the origin
of the GeV excess observed towards the Galactic Center (GC) [217]. The high dispersion and
absorption along the line-of-sight to the GC limit the sensitivity of radio searches; blind gamma-ray
searches are potentially the only way to discern between a pulsar explanation and a dark matter
interpretation. Searching for pulsations from sources in the inner galaxy will therefore be a key
focus. In Section 4.3.3, we estimate that our blind search may have been able to detect a Crab-like
pulsar at the Galactic Center, if such a pulsar existed and did not glitch during the observation
interval. A dedicated survey focusing only on this region may be able to gain additional sensitivity,
and allow more common, less luminous pulsars to be detected.

As mentioned in Chapter 6, blind searches targeting high galactic latitude sources may also be
required to rule out a radio-quiet MSP origin for potential dark matter candidates. However, such
searches can only detect isolated pulsars, with the detection of binary MSPs requiring additional
observations to constrain their orbital parameters.
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This brings us nicely on to the current work being performed on Einstein@Home. X-ray and
optical counterparts with periodic flux modulations consistent with binary pulsar systems have been
identified for a number of 3FGL sources [e.g. 263, 271–274]. Using the constraints on the orbital
parameters that spectroscopic and photometric observations have provided for these candidates,
targeted searches, much like the one in which PSR J1311−3430 was discovered [135], are being
prepared by L. Nieder. The first of these is currently running on Einstein@Home, and includes many
of the sensitivity improvements developed in Chapter 2.

We are hopeful that the methods developed during this work will lead to interesting new pulsar
discoveries, and that the pulsars discovered by the Einstein@Home survey will contribute to the
understanding of the properties and behavior of neutron stars.
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