Seven-Membered Ring Mesomeric Betaines.

From Anti-Hückel Aromatics to Model Compounds of the Pyrrolobenzodiazepine Alkaloids-Circumdatin A and B.

Dissertation
Abbas Gholipour Shilabin

Seven-Membered Ring Mesomeric Betaines. From Anti-Hückel

Aromatics to Model Compounds of the Pyrrolobenzodiazepine

Alkaloids Circumdatin A and B.

(Siebengliedrige Ringe in Mesomeren Betainen. Von Anti-Hückel-Aromaten zu Modellverbindungen der Pyrrolobenzodiazepin-Alkaloide Circumdatin A und B.)

DISSERTATION

 zur Erlangung des Grades eines Doktors der Naturwissenschaftenvorgelegt von

Abbas Gholipour Shilabin aus Talesh, Iran

genehmigt von der
Fakultät für Natur- und Materialwissenschaften der Technischen Universität Clausthal

Die vorliegende Arbeit wurde in der Zeit von April 2002 bis Juni 2005 am Institut für Organische Chemie der Technischen Universität Clausthal im Arbeitkreis von PD Dr. A. Schmidt durchgeführt.

Dekan:
Referent:
Korreferent:

Prof. Dr. Wolfgang Schade
PD Dr. Andreas Schmidt
Prof. Dr. Ernst Schaumann

Mein besonderer Dank gilt Herrn PD Dr. A. Schmidt, dass er mich nach Clausthal gebracht und mir den Arbeitsbeginn ermöglicht hat und für die Überlassung des Themas.

Ich danke Herrn PD Dr. A. Schmidt und Herrn Prof. Dr. E. Schaumann für ihre stete Hilfsbereitschaft und Förderung zur Diskussion, die im Wesentlichen zum Gelingen dieser Arbeit beigetragen hat.

Contents

1. Introduction 1
1.1. General aspects of heterocyclic mesomeric betaines 1
1.2. Mesoionic thioisomünchnones and pyrimidinium betaines 4
1.3. 1,5-Benzodiazepines 6
1.4. DNA and its interactions with bioactive molecules 8
1.5. Pyrrolo[2,1-c][1,4]benzodiazepines and their natural occurrence 10
1.6. Purposes of the work 14
1.6.1. Anti-Hückel mesomeric betaines 14
1.6.2. On Circumdatins as mesomeric natural product betaines 15
2. Anti-Hückel 7-Membered Ring Mesomeric Betaines 18
2.1. General introduction to 1,5-benzodiazepines 18
2.2. Synthesis of 1,2 -diaminobenzene derivatives 20
2.3. Synthesis of benzodiazepinium salts 22
2.4. Betaine formation. 24
2.5. X-Ray structural analysis 28
2.6. Classification of the $4 \mathrm{n} \pi$-electron mesomeric betaines 33
3. Annulated Pyrrolobenzodiazepine Model Compounds 35
3.1. General introduction to annulated pyrrolo[2,1-c][1,4]benzodiazepine derivatives 35
3.2. 11-Aminosubstituted pyrrolobenzodiazepines. 36
3.2.1. Synthesis of cyclic amidines 36
3.2.2. X-Ray structural analysis of amidines 39
3.3. Pyrimidine annulated pyrrolo[2,1-c][1,4]benzodiazepines 39
3.3.1. Synthesis of oxopyrimidines 39
3.3.2. X-Ray structural analysis of oxopyrimidines 46
3.4. Thiazolidine annulated pyrrolo[2,1-c][1,4]benzodiazepines 48
3.4.1. Synthesis of thiazolidines 48
3.4.2. X-Ray structural analysis of thiazolidines 50
3.5. Imidazol- and pyrimidin-4-one annulated pyrrolo[2,1-c][1,4]benzodiazepines 52
3.5.1. Syntheses of 1,3-imidazol-4-one and 1,3-pyrimidin-4-ones 52
3.5.2. X-Ray structural analysis of the 1,3-imidazol-4-one derivative 52
4. Experimental Section 56
4.1. Experiments to chapter 2.2 56
4.2. Experiments to chapter 2.3 61
4.3. Experiments to chapter 3.2.1 80
4.4. Experiments to chapter 3.3.1 88
4.5. Experiments to chapter 3.4.1 98
4.6. Experiments to chapter 3.5.1 102
5. X-Ray Data Section 110
6. References 129
7. Curriculum Vitae 134
8. Summary 136
9. Acknowledgement 138

List of Abbreviations

abs.	Absolute
Bn	benzyl
d	day(s)
DCM	dichloromethane
DMF	N,N-dimethylformamide
DMSO	dimethysulfoxide
DNA	desoxyribonucleic acid
EA	ethyl acetate
EI	electron impact
ESI	electron spray ionisation
Et	ethyl
GC	gas chromatography
GC-MS	gas chromatography-mass spectrometry
h	hour(s)
HSQC	heteronuclear single quantum correlation
HMBC	heteronuclear multiple bond correlation
HR-MS	high resolution mass
IR	infrared
J	coupling constant [Hz]
Lit.	literature
M	molar
M	molecular ion
Me	methyl
min	minute(s)
mp	melting point
MS	mass spectrometry
N	normal
NMR	nuclear magnetic resonance
NOESY	nuclear overhauser effect spectroscopy
pyrrolobenzodiazepine	
menyl	

Py	pyridine
R_{f}	retention factor
TFA	trifluoroacetic acid
THF	tetrahydrofurane
TLC	thin layer chromatography
TMS	tetramethylsilyl
UV	ultra-violet

1. Introduction

1.1. General aspects of heterocyclic mesomeric betaines

Natural products which belong to the class of heterocyclic mesomeric betaines form a relatively small group of compounds with interesting biological properties as primary and secondary metabolites. ${ }^{1}$ In contrast to zwitterions which can be formulated by at least one uncharged covalent structure, heterocyclic mesomeric betaines (MB) are defined as neutral conjugated molecules which can be represented exclusively by dipolar structures in which an even number of positive and negative charges are delocalised within the π-electron system. Conjugated tripoles which possess an odd number of charges within a common π-electron system form a distinct class of compounds. ${ }^{1,2,3}$ A comprehensive classification of 5- and 6membered mesomeric betaines including the well-known class of mesoions (sydnones, münchnones, and derivatives) was proposed in $1985 .{ }^{4}$ All types of mesomeric betaines, including mesoions, ylides, and N -oxides, as well as betainic alkaloids and nucleobases, can be comprehensively divided by their type of conjugation into four major classes, conjugated (CMB), cross-conjugated (CCMB), pseudo-cross-conjugated mesomeric betaines (PCCMB), and heterocyclic N -ylides (Figure 1).

[^0]

Figure 1: Classification of heterocyclic mesomeric betaines according to ref.4.

On the basis of their isoconjugate equivalents to hydrocarbons, these four major classes can be subdivided into four subclasses, respectively. The term isoconjugate, originally introduced by R. S. Muliken, describes two molecules that have the same number of atoms and π-orbitals in the conjugated system. ${ }^{5}$ Conjugated hydrocarbons are either alternant (I, II, III) or nonalternant systems (IV, V, VI) which possess either an even (I, II, IV, V) or an odd number of carbon atoms (III, VI) participating in the conjugated systems (Figure 2). Even alternant hydrocarbons are either Kekulé structures such as benzene (I) or o-quinodimethane, or non-Kekulé structures such as m-quinodimethane (II), which must be a diradical. Odd alternant hydrocarbons must also be radicals; the benzyl radical (III) is given as an example. Conjugated even nonalternant hydrocarbons are either Kekulé structures such as fulvene (IV) or non-Kekulé structures for which the 3,4-dimethylene fulvene is presented (V). As shown, the latter mentioned species (\mathbf{V}) must be a diradical. Odd nonalternant hydrocarbons such as 3-methylene fulvene (VI) are radicals as well.

[^1]

I

IV
v

IX

VI

X

XI

Figure 2

Heterocyclic mesomeric betaines are isoconjugate to dianions such as VII and IX or anions such as VIII or \mathbf{X}, which derive by formal addition of two electrons or one electron to the corresponding radical species, respectively. Thus, the isoconjugate relationships of the four major classes $\mathrm{CMB}, \mathrm{CCMB}, \mathrm{PCCMB}$, and N-ylides to even and odd, alternant and nonalternant hydrocarbon anions and dianions such as VII-X lead to four subclasses, respectively, i.e. to at least 16 distinct classes of heterocyclic mesomeric betaines (Figure 3). Some of these classes (No.1, 4, 5, 7, 8, 11) are well-known and numerous representatives have been described, whereas other classes (No. 3, 6, 15, 16) are very sparsely populated or seemingly still remain theoretically predicted. Few examples, however, are known to date, which are isoconjugate with trianionic hydrocarbons such as XI. ${ }^{6}$

Isoconjugate equivalents	Odd alternant hydrocarbon anions	Odd non-alternant hydrocarbon anions	Even alternant hydrocarbon dianions	Even non-alternant hydrocarbon dianions				
CMB	1.	many	2.	few	3.	two	4.	many
N-Ylides	5.	many	6.	two	7.	many	8.	many
CCMB	9.	ten	10.	none	11.	many	12.	few
PCCMB	13.	ten	14.	four	15.	none	16.	three

Figure 3: Subdivision of isoconjugate equivalents to hydrocarbons in 1985.

[^2]
1.2. Mesoionic thioisomünchnones and pyrimidinum betaines

The term mesoionic is generally restricted to five-membered heterocyclic mesomeric betaines including sydnones, münchnones, and derivatives (iso- and thioisomünchnones). Mesoionic compounds have been known for many years and have been extensively utilized as substrates for 1,3-dipolar cycloaddition chemistry. The peculiar structure and reactivity of such heterocycles continue to receive considerable attention, especially since these mesoionic compounds have been utilized as effective synthones in natural product synthesis. ${ }^{7}$ In addition, these compounds have been shown to be good synthons for the synthesis of various fused heterocyclic systems. ${ }^{8}$ Perhaps the two most extensively studied mesoionic heterocycles are the münchnones and isomünchnones (Scheme 1). These masked 1,3-dipoles readily react with a wide variety of double and triple-bond dipolarophiles.

Scheme 1
thioisomünchnones

Thioisomünchnones which are easily prepared by reaction of N -monosubstituted thioamides with α-haloacyl halides in the presence of NEt_{3}, contain a thiocarbonyl ylide dipole within their backbone. Interest in the thioisomünchnone class of mesoions may be attributed to (a)

[^3]their ease of preparation from simple thioamides, (b) the interesting physical properties they possess, (c) the propensity for its thiocarbonyl ylide dipole to undergo 1,3-dipolar cycloaddition with a wide range of dipolarophiles to produce complex heterocyclic ring systems. ${ }^{9}$ Potts and co-workers have extensively studied the biomolecular cycloaddition behaviour of thioisomünchnone. ${ }^{10}$

On the other hand, during the last decades the synthesis of six-membered heterocyclic pyrimidinium betaines has been extensively studied which are regarded as being good cycloadducts for 1,4-type cycloaddition reactions with electron-poor or electron-rich multiple bond systems. ${ }^{11}$ In recent years, much attention has been focused on the biological and pharmacological activities ${ }^{12}$ of bicyclic six-membered betaines, which are still unexplored. These betainic heterocycles have wide industrial applications e.g. as a nonaqueous electrolyte battery ${ }^{13}$ and pressure transfer photothermographic copying materials; ${ }^{14}$ some show even marked hair-growth stimulation. ${ }^{15}$

In general, reaction of N, N^{\prime}-disubstituted amidines with bis(2,4,6-trichlorophenyl) malonates results in the formation of pyridinium-4-olates. Mechanistically, one possible explanation for the syntheses of these compounds is the ring closure by loss of two molecules of trichlorophenol through a ketene intermediate (Scheme 2). 3-Unsubstituted pyrimidinium betaines $(\mathrm{R}=\mathrm{H})$ could be easily synthesized in excellent yield by condensation of N, N^{\prime} disubstituted amidines with carbon suboxide.

[^4]

Tcp $=$ 2,4,6-Trichlorophenyl
Scheme 2

1.3. 1,5-Benzodiazepines

Benzodiazepines usually occur in the diimine form $\mathbf{1}$ rather than in the conjugated vinamidine forms depicted in formulas 2 and 3. In the diimine form 1, some extra stabilization arises from the conjugation of the imine groups with the benzene ring. Cyclic conjugation as in $\mathbf{2}$ and $\mathbf{3}$ may indeed lead to destabilization of the molecules because it involves interaction of 12 π-electrons around the periphery of the molecule as implied in $\mathbf{2}$ or of 8π-electrons around the 7 -membered ring as in $\mathbf{3}$; either of these are destabilizing $4 \mathrm{n} \pi$-electron systems. ${ }^{16}$

1

2

3

Protonation of benzodiazepines leads to the successive formation of monocations 4 and dicationes 5 (Scheme 3).

[^5]

The conjugated form, which would have eight π-electrons associated with the 7 -membered ring, is electronically an analog of benzocyclooctatetraene. Annular conjugation around either the diazepine ring or the overall periphery makes no positive contribution to the stability of the system, whereas electronic interaction between the benzene ring and the two imino groups in the imino form does.

With a few exceptions the bases are colorless or pale yellow, as are the dications, which must exist as bisiminium salts. In contrast, the monocations are intensely colored, commonly purple or blue. Formation of the monocation involves setting up a stable 6π-electron vinamidinium system; such systems have stabilization energies of the order of $20 \mathrm{Kcal} / \mathrm{mol} .{ }^{17}$ There is energetic advantage in generating the stabilized vinamidinium system, but there is disadvantage if it interacts appreciably with the 6π-electron system of the benzene ring. To minimize such interactions, the bonds linking the nitrogen atoms to the benzene ring are long for aryl $\mathrm{C}-\mathrm{N}$ bonds. More recently a number of X-ray structure determinations have been carried out. ${ }^{18}$ As evidenced by calculations and X-ray single crystal structural analyses, the positive segment of the molecule are separated from the benzene ring by long $\mathrm{C}-\mathrm{N}$ bonds to decrease the possibility of $4 n$ circuit of π-electrons. Thus the benzene ring and the vinamidinium moiety in known molecules are more or less isolated systems as exemplified by 6.

[^6]

6

1,5-Benzodiazepines have been rather overshadowed by the isomeric 1,4-benzodiazepines, which have been of enormous pharmacological interest, largely because of their very wide use as tranquillizers. Some 1,5-benzodiazepines also have physiological effects, inter alia, some 2-amino-4-phenyl derivatives as tranquillizers ${ }^{19}$ and some 2- p-fluorophenyl-4-phenyl-8chloro derivatives as antidepressant agents (in mice). ${ }^{20}$

Some 2-amino-methylthio derivatives act as depressants of the central nervous system and anticonvulsants, whereas 2,4-diamino analogs act as stimulants of the central nervous system convulsants. ${ }^{21}$ Certain benzodiazepines, in particular 2-thioderivatives, show antibacterial activity, ${ }^{22,23,24}$ whereas some 2,4-dimethyl derivatives are said to inhibit the growth of certain sarcomas in rats. ${ }^{25}$ Post emergence herbicidal activity has been shown by certain benzodiazepines. ${ }^{26}$

1.4. DNA and its interactions with bioactive molecules

Deoxyribonucleic acid (DNA) is the genetic material of all cellular organisms and provides the chemical basis for inheritable characteristics to be passed on to the next generation of cells. The structure of DNA was established as a double-stranded helix in 1953 in seminal scientific studies from James Watson and Francis Crick.

The individual bases in DNA are flat and categorized by monocyclic or bicyclic structures, which are referred to as pyrimidines (cytosine and thymine) or purines (guanine and adenine) respectively. The naturally occurring DNA usually consists of two twisted backbone chains of alternating units of phosphoric acid and deoxyribose, linked by cross-pieces of the purine and

[^7]pyrimidine bases. It is the sequence of bases in DNA that encodes the genetic information of the molecule (Figure 4).

Figure 4

There are three helical forms of DNA (A, B and Z) that differ with respect to various parameters that describe their three-dimensional structure. B-form DNA is the most biologically relevant as it persists under physiological conditions.

As a consequence of base pair stacking, the gap between sugars forms continuous grooves in the surface, which are parallel to the sugar-phosphodiester backbone. The asymmetry present in base pairs leads to the formation of two types of groove, referred to as major and minor. The B-form helix has a wide major groove and a narrow minor groove, which are established by the edge of the base pair presented. Depending on the size of molecules this has advantages for drugs which bind. Big molecules, like proteins bind in the major groove. Flat molecules comprising of fused aromatic rings, like polycyclic aromatic hydrocarbons (PAHs) slot in between the bases and are known as intercalators. Some small molecules bind in the minor groove, mainly because they are the same shape as it. Binding can be reversible, e.g. non-covalent groove binders netropsin and distamycin, or irreversible, e.g. covalent groove binders CC-1065, mustards and pyrrolobenzodiazepines (PBDs). Some ligands interact with
specific bases, e.g. PBDs interact with guanine (G). This is important because they can be used in areas where there are known to be lots of guanine bases. If these bases, known as the genetic information, are damaged, the DNA may replicate in an uncontrollable manner and cancer may occur.

1.5. Pyrrolo[2,1-c][1,4]benzodiazepines and their natural occurrence

Alkaloids belong to an important class of natural products which are known as nitrogenous compounds occurring in plants, toads and animals including mammalian and fungi. Most of them are optically active, and nearly all of them are of basic nature. Among the most known naturally occurring alkaloids, benzodiazepines form a class of biologically active compounds from which widely prescribed psychoactive drugs have been developed. ${ }^{27}$ In the area of molecular recognition there is growing interest in ring systems such as the pyrrolo[2,1c][1,4]benzodiazepines (PBDs) that can recognize and bind to specific sequences of DNA. Such compounds have potential as regulators of gene expression with possible application as therapeutic agents in the treatment of certain genetic disorders including some cancers. ${ }^{28}$ They also have potential as highly selective anti-infective agents and as tools such as affinitycleavage reagents for use in molecular biology. ${ }^{27,29}$ The PBD ring system 7 (Scheme 4) is found in a group of naturally-occurring DNA-interactive antitumor antibiotics known as the "anthramycins".

7
Scheme 4

[^8]To date, 13 members are produced by various Streptomyces species; well-known members include anthramycin ${ }^{30} \mathbf{8}$, and tomaymycine ${ }^{31} \mathbf{1 2}$ (Scheme 5). Other antibiotics in the series include abbeymycin ${ }^{32} 18$, chicamycin $A^{33} 17, D C-81^{34} 16$, mazethramycin ${ }^{35} 9$, the neothramycins A and $\mathrm{B}^{36} \mathbf{1 5}$, prothracarcin ${ }^{37} \mathbf{1 3}$, sibanomicin (DC-102) ${ }^{38} \mathbf{1 4}$, sibiromycin ${ }^{39}$ 11, and porothramycin $B^{40} \mathbf{1 0}$. The biosynthesis of number of PBDs has been studied by Hurley. ${ }^{41}$

[^9]

8 Anthramycin ($\mathrm{R}_{8}=\mathrm{CH}_{3}, \mathrm{R}_{9}=\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$)
9 Mazethramycin ($\mathrm{R}_{8}=\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{9}=\mathrm{R}_{2}=\mathrm{H}$)

10 Porothramycin ($\mathrm{R}_{8}=\mathrm{H}, \mathrm{R}_{9}=\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$)

12 Tomaymycin ($\mathrm{R}_{7}=\mathrm{CH}_{3} \mathrm{O}, \mathrm{R}_{8}=\mathrm{OH}, \mathrm{R}=\mathrm{CH}_{3}$)
13 Prothracarcin ($\mathrm{R}_{7}=\mathrm{R}_{8}=\mathrm{H}, \mathrm{R}=\mathrm{CH}_{3}$)
14 Sibanomicin ($\mathrm{R}_{7}=$ sibirosamine pyranoside as in $11, R 8=H, R=E t$)

17 Chicamycin A

11 Sibiromycin

15a Neothramycin $A\left(R_{3}=H, R_{3}{ }^{\prime}=O H\right)$
15b Neothramycin $B\left(R_{3}=O H, R_{3}{ }^{\prime}=H\right)$
$16 \mathrm{DC}-81\left(\mathrm{R}_{3}=\mathrm{R}_{3}{ }^{\prime}=\mathrm{H}\right)$

18 Abbeymycin

Scheme 5

The PBDs differ in the number, type, and position of substituents in both the aromatic A rings and pyrrolo C rings and in the nature of the C ring which is either fully saturated or unsaturated at either $\mathrm{C}(2)-\mathrm{C}(3)$ (endocyclic) or at $\mathrm{C}(2)$ (exocyclic). In the B-ring there is either an imine $(\mathrm{N}=\mathrm{C})$, a carbinolamine $(\mathrm{NH}-\mathrm{CH}(\mathrm{OH}))$ or a carbinolamine methyl ether ($\mathrm{NH}-$ $\mathrm{CH}(\mathrm{OMe})$) at the $\mathrm{N}(10)-\mathrm{C}(11)$ position which is the electrophilic center responsible for alkylating DNA. All naturally-occurring compounds possess the (S)-configuration at the chiral C 11 a which provides the molecules with a right-handed twist when viewed from the C ring toward the A ring. This provides the appropriate three-dimensional shape for snug fit within the minor groove of B-form double-stranded DNA spanning three base pairs, and consequently, the ability to form an adduct in the minor groove enables them to interfere with DNA processing, hence their use as antitumor agents. For instance, the structure of anthramycin methyl ether $\mathbf{8}$ based on X-ray crystallography data ${ }^{29 \mathrm{c}}$ demonstrates the twist of the molecule that provides isohelicity with the minor groove of DNA. Racemization at C11a
can significantly reduce biological activity, and there is one example of a synthetic PBD with the (R)-configuration at C11a that is devoid of antitumor activity and DNA-binding affinity. ${ }^{42}$ The mechanism of action of PBDs derives from their ability to bind covalently within the minor groove, thus interfering with DNA function. ${ }^{43}$ After insertion in the minor groove, an aminal bond is formed through nucleophilic attack of the exocyclic N^{2} of a guanine at the electrophilic C11-position (Scheme 6).

Recently, the structure of the anthramycin-DNA adduct was studied by NMR, fluorescence spectroscopy, and molecular modelling techniques. Structure-activity relationship (SAR) predictions based upon CPK models have also been proposed by Thurston and Hurley. ${ }^{42,44}$ DNA footprinting studies have demonstrated that, in general, PBDs bind to DNA in a sequence-selective manner with a preference for $5^{\prime}-\mathrm{Pu}-\mathrm{G}-\mathrm{Pu}$ motifs and indeed, the adducts span three base-pairs with a rank order of $5^{\prime}-\mathrm{Pu}-\mathrm{G}-\mathrm{Pu}>5^{\prime}-\mathrm{Pu}-\mathrm{G}-\mathrm{Py}$ or $5^{\prime}-\mathrm{Py}-\mathrm{G}-\mathrm{Pu}>5^{\prime}-\mathrm{Py}-$ G -Py sequences (where $\mathrm{Pu}=$ purine base, $\mathrm{Py}=$ pyrimidine base and $\mathrm{G}=$ guanine). Although recent high-field NMR and molecular modelling studies have provided detailed information about the precise three-dimensional structure of some PBD-adducts, including orientation of the molecule in the groove and stereochemistry at C-11 position, however, there is little understanding of the relationship between DNA-binding affinity, sequence-selectivity, and either in vitro cytotoxicity, or in vivo antitumor activity. More recently, PBDs have been joined through their C-8 positions to form potent irreversible DNA cross-linking agents with remarkable cross-linking efficiency and cytotoxicity. ${ }^{45}$ NMR and modelling studies have

[^10]shown that these PBD dimers span six or seven base pairs compared to three for the parent PBD units.

In contrast to the anthramycin family, pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones are a class of compounds that bind to DNA by non-covalent interactions such as hydrophobic, van-der-Waals interactions and hydrogen bonding between ring substituents and DNA, and are also responsible for influencing sequence selectivity. Some dilactams such as (7-methoxy-2-methylcarbonyloxy-5,11-dioxo-(2S)-2,3,5,10,11,11a-hexahydro-1- H -pyrrolo[2,1-c][1,4]-benzodiazepine-5,11-dione-8-yl acetate is reported to possess significant in vivo anti-tumor activity in the P388 rat model. ${ }^{44}$

1.6. Purposes of the work

1.6.1. Anti-Hückel mesomeric betaines

In continuation of our research group activities on heterocyclic mesomeric betaines and highly charged heteroarenium compounds we developed our interest in synthesizing and studying new types of anti-Hückel mesomeric betaines. To the best of our knowledge, however, the synthetic efforts have been described always resulted in mesomeric betaines whose cationic segments contained $(4 n+2) \pi$-electrons and all of which were aromatic. In contrast, our interest was in synthesizing cationic segments containing (4 n) π-electrons, i.e., anti-aromatic system, to ascertain their overall influence on the stability of the mesomeric betaines.

Whereas the first comprehensive classification of mesomeric betaines by Ollis, Stanforth, and Ramsden in 1985 resulted in a better understanding of 5- and 6-membered ring heterocyclic compounds, however, it is apparent that until now only a little information is available on 7membered heterocyclic mesomeric betaines. Most of them rapidly decomposed after formation, or attempts made to synthesize them were failed. Obviously, the reason for these instabilities is the number of (4 n) π-electrons in the cationic part, which contradicts the Hückel rule of aromaticity. We became interested in 1,5-benzodiazepine derivatives, which would result from an intramolecular proton shift and the formation of betainic structures. An additional impetus was the interesting game with the number of π-electrons delocalised in
such systems. We intended to investigate here the syntheses and properties of 2,4-dimethyl-monosubstituted-6,7-benzo-1,5-diazepinium salts as hydrogensulfate, trifluoroacetate, and picrate which on deprotonation of the susceptible acidic group on benzene ring would lead to the corresponding stable 7 -membered ring mesomeric betaines (Scheme 7). Moreover, in order to gain additional insights into these $4 \mathrm{n} \pi$-electron systems, in particular on long distance $\mathrm{C}-\mathrm{N}$ bond length as an effective force to overcome the anti-aromaticity of the system, we like to present typically the X-ray single crystal analysis of resulted 1,5benzodiazepinium mesomeric betaines.

$\mathrm{X}=\mathrm{O}, \mathrm{s}$

$\mathrm{X}=\mathrm{COO}$

Scheme 7

1.6.2. On Circumdatins as mesomeric natural product betaines

According to a recent publication ${ }^{46}$ three new benzodiazepine alkaloids, named Circumdatin A (18), B (19), and C (20), were isolated from the fungus Aspergillus ochraceus (Scheme 8 and Figure 5).

18: $R=O M e$
19: $\mathrm{R}=\mathrm{H}$

20
20

Scheme 8

[^11]

Figure 5: Aspergillus ochraceus, found in grains, soil, and salted food.

The structures 18 and 19 consisted of a seven-membered benzodiazepine ring as part of a cyclic dipeptide, which involved anthranilic acid and L-proline and represent the first naturally occurring zwitterionic benzodiazepines. The fungus Aspergillus ochraceus is cultivated in Petri dishes with Czapek yeast extract agar after incubation at $25^{\circ} \mathrm{C}$ for 22 days. The culture and media are extracted with EtOAc, giving a crude extract which is subjected to purification by liquid chromatography to afford eight fractions. A second fraction is further purified on a HPLC column to yield Circumdatin B as a pure red-orange solid with $[\alpha]^{22}{ }_{D}$ 163° (c $\left.0.040, \mathrm{EtOH}\right)$. Assuming the inability of HMBC technique to discriminate between two-, three, and in some cases, four-bound correlations, recourse has been taken to recently developed ${ }^{1} \mathrm{H}$-detected INEPT2-INADEQUATE NMR (allows detection of coupling between pairs of carbon atoms of which at least one is protonated) and HMBC-INADEQUATE NMR (allows to correlate pairs of J-coupled carbon atoms of which at least one exhibits long-range coupling to a proton) experiments (Figure 6).

Figure 6

Supplementary, the proposed structural fragment $\mathrm{C}(10)-\mathrm{N}(9)-\mathrm{C}(18)-\mathrm{N}(17)$ is reported to be in accordance with several naturally occurring benzodiazepines ${ }^{47}$ and biosynthetic experiments with labelled ${ }^{13} \mathrm{C}$-anthranilic acid are warranted in order to determine if anthranilic acid is a precursor for the pyridine skeleton in 19.
In addition, the hydrolysis products of 19 in $6 N \mathrm{HCl}$ were analysed by ${ }^{1} \mathrm{H}$ NMR and ESIMS identified major degradation products as anthranilic acid, proline, and anthranilic acid coupled with proline. The absolute configuration of the L-proline moiety was determined by reaction of the hydrolysis products with Marfey's reagent.

Taking the aforementioned structure elucidation of Circumdatin B into consideration, some doubts, however remain regarding to the betainic structure of this alkaloid which could be summarized as follows:

- First, the parent pyrido[1,2-c]pyrimidinium-3,4-diolate moiety is - to the best of our knowledge - without precedent in the chemistry of heterocyclic mesomeric betaines.
- Second, a considerable acidity of the α-hydrogen atom of the pyrrolidine moiety is to be expected due to the adjacent delocalised positive charge.
- Third, the resonance frequencies of the anthranilic acid partial structure are not in accordance with a cationic substituent at the benzene ring as they appear between $\delta=7.57$ and 7.82 ppm (Figure 6).
- Fourth, no stabilization of the negative charge can be expected with a methoxy group in the γ-position of the enolate moiety and it is not in accordance with Kröhnke's rule.
In order to ascertain the unambiguous structure elucidation of Circumdatin B we became interested at least in preparation of model compounds and relatively close structures for stereochemically and spectroscopic comparison.

[^12]
2. Anti-Hückel 7-Membered Ring Mesomeric Betaines

2.1. General introduction to 1,5-benzodiazepines

Since the first preparation of a mesomeric betaine (MB) by Emil Fischer ${ }^{48}$ and the recognition that certain representatives play important biological roles as modified nucleobases or alkaloids, this class of compounds were found of considerable interest as valuable starting materials for the synthesis of heterocycles and natural product analogs, drugs, or indicators. However, the existence of 7-membered ring mesomeric betaines was rarely reported. The structures 21 and 22 are mentioned in the literature. ${ }^{49}$ The betaine 21, which was only identified by mass spectrometry, rapidly decomposed in solution. The syntheses of 22a and 22b failed. These observations are due to the number of $4 n \pi$-electrons ($n=3$ or 2) in the cationic part, which contrasts with the Hückel rule.

21

22a: $\mathrm{R}=\mathrm{Ph}$
22b: $R=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$

Scheme 9

For the case of the benzo[b][1,4]diazepinium (1,5-benzodiazepinium) ring system, we intended to take advantage of the destabilizing number of electrons to force a chargeseparation to a mesomeric betaine as shown in Scheme 10. It is known that the diimine form XIII of this ring system, from which numerous examples have been described, is more stable than the conjugated form XII. The latter would have $4 \mathrm{n} \pi$-electrons associated with the 7 membered ring, which is electronically an analog of benzocyclooctatetraene. There is no positive contribution to the stability of the system by annular conjugation around either the diazepine ring or the overall periphery. Obviously, electronic interaction between the benzene ring and the two imino groups in the diimino form XIII and formation of the $3 H$ tautomer, however, causes a considerable stabilization. To the best of our knowledge, the conversion into the mesomeric betaine XIV, which would have $4 \mathrm{n} \pi$-electrons, has never been observed

[^13]to date. Betaine XIV contained a stabilizing, intensely colored vinamidinium chromophor XVII which is known to overcome the destabilizing influence of the number of $4 \mathrm{n} \pi$-electrons in 1,5-benzodiazepinium salts like XV. In strongly acidic media, almost colorless bisiminium salts such as XVI have been observed. ${ }^{16,50}$

Scheme 10

The first example of 1,5-benzodiazepines, the 2,4-dimethyl derivative 23, was prepared in 1907 by Thiele and Steimmig, ${ }^{51}$ by condensation of o-phenylenediamine with acetylacetone in ethanol-acetic acid. Addition of hydrochloric acid precipitated the purple hydrochloride 24 (Scheme 11). Both base and salt are stable in moist air and in moderately strong acidic or basic solutions at ordinary temperature. To date, the most common method for the preparation of 1,5-benzodiazepines indeed remains the reaction of o-phenylenediamine with 1,3dicarbonyl compounds. ${ }^{52}$

Scheme 11

[^14]
2.2. Synthesis of 1,2-diaminobenzene derivatives

We chose 2,3-diaminophenol 25, 3,4-diaminophenol 26, 3,4-diaminobenzenethiol 28, 2,3diaminobenzoic acid 29, and 3,4-diaminobenzoic acid 30 as starting materials for the synthesis of betainic benzo[b][1,4]diazepines and as potentially negatively charged building elements of the target mesomeric betaines which would result from the formation of the olate, thiolate, and carboxylate group, respectively (Scheme 12). For spectroscopic comparison we used 4-methoxy-1,2-diaminobenzene 27 which cannot be deprotonated.

The aromatics 26 and 28 were unknown, and the benzoic acid 29 was prepared by a modification of a patented procedure as described below. As ether cleavage of 4-methoxy-1,2-diaminobenzene dihydrochloride 31, readily available by catalytic hydrogenation of 4-methoxy-2-nitroaniline in the presence of palladium/charcoal, ${ }^{53}$ with $\mathrm{HI}, 48 \% \mathrm{HBr}$ / tetra- n butylphosphonium bromide and thiophenolate, respectively, proved to give only unsatisfactory yields of the starting material 26, we chose an alternative approach. Thus, we found that hydrogenation of the readily available 4-amino-3-nitrophenol 32 in the presence of catalytic amounts of 10% Pd-C resulted in the formation of 3,4-diaminophenol 26 in good yield (Scheme 13). Moreover, the diamine 26 was elegantly prepared by reduction of starting material $\mathbf{3 2}$ with Raney-nickel in the presence of 98% hydrazine hydrate in quantitative yield.

[^15]

Scheme 13

3,4-Diaminobenzenethiol 28 was synthesized in a three-step procedure. Sequential treatment of 2-nitroaniline with sodium thiocyanate and bromine in glacial acetic acid afforded 2-nitro-4-thiocyanatoaniline $\mathbf{3 3}$ in good yield. ${ }^{54}$ We treated $\mathbf{3 3}$ with potassium hydroxide in ethanol to obtain 4-amino-3-nitrobenzenethiol 34 in 68% yield. The existence of the mercapto function was proved by a singlet at $\delta=3.42 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR spectroscopy which corresponds to one proton. Catalytical hydrogenation of $\mathbf{3 4}$ in the presence of Raney-nickel immediately yielded the symmetric disulfide 35 via the monomeric form on exposure to air in 54% yield (Scheme 14). This dimerization with atmospheric air in alkaline media has also been observed with other aromatic thiols ${ }^{55}$ and can be monitored by the spontaneous formation of a nonpolar spot on the TLC. Correspondingly, the molecular peak is found at $m / z=279.1 \mathrm{amu}\left(\mathrm{M}+\mathrm{H}^{+}\right)$in ESI mass spectrometry. We found that performing the reduction of $\mathbf{3 4}$ with sodium dithionite in aqueous ethanol resulted in the formation of the desired starting material $\mathbf{2 8}$ in excellent yield. The thiol group gives a resonance frequency at $\delta=3.36 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR spectroscopy.

[^16]

2,3-Diaminobenzoic acid 29 was prepared starting from 2-nitrophthalic acid anhydride ${ }^{56}$, which was treated with ammonia to yield 3-nitrophthalamic acid 36. Hofmann rearrangement with potassium hydroxide and bromine afforded 2-amino-3-nitrobenzoic acid 37 which was finally reduced with hydrogen in the presence of palladium/charcoal or sodium dithionite in 50% aqueous ethanol to 2,3-diaminobenzoic acid 29 which we obtained as brown needles after recrystallization (Scheme 15).

Scheme 15

2.3. Synthesis of benzodiazepinium salts

The diamines were reacted with stoichiometric amounts of 2,4-pentanedione in ethanol at room temperature in the presence of sulfuric acid or trifluoroacetic acid to give the corresponding 1,5-benzodiazepinium salts 38a,b-43a,b in high yields as intensely violet solids, respectively (Scheme 16). ${ }^{57}$ It proved to be advantageous to conduct the condensation of the less reactive α-carboxy derivative $\mathbf{3 0}$ to 43a in hydrochloric acid. Anion exchange to hydrogensulfate was then accomplished with excess sulfuric acid.

[^17]

Scheme 16

Moreover, reaction of the 1,2-diaminobenzenes 25-27 with acetylacetone in ethanol in the presence of picric acid gave the 1,5-benzodiazepinium picrates 38c-40c as intensely violet crystals. The presence of picric acid proved to be advantageous in comparison with other acids because the resulting salts readily precipitate from the reaction mixture and are analytically pure after washing with diethyl ether (Scheme 16). Not unexpected, the products are protonated due to the strong acidity of picric acid $\left(p \mathrm{~K}_{\mathrm{a}} 0.25\right)$.

The bisulfide 35 yielded the bis(benzodiazepinium) salts 44 (Scheme 17).

Scheme 17

Depending on the substitution pattern the benzo $[b][1,4]$ diazepinium hydrogensulfates 38a44a, trifluoroacetates 38b-44b, and the picrates display characteristic UV-VIS absorption maxima between $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right)=482 \mathrm{~nm}$ and 536 nm which is due to the stabilizing vinamidinium chromophor. Correspondingly, $\mathrm{C}(3)$ of the salts 38-44 give signals between $\delta=$

94 ppm and 99 ppm in ${ }^{13} \mathrm{C}$ NMR spectroscopy, and the NH groups of the chromophor are detectable at $\delta=9.82-10.75 \mathrm{ppm}$ and $9.68-9.82 \mathrm{ppm}$ in DMSO-d ${ }_{6}$, respectively. All attempts to methylate the salts at the vinamidinium chromophor with methyl iodide in DMF in the presence of potassium carbonate, or dimethylsulfate, methyltrifluoromethylsulfonate, and Meerwein's reagent failed.

2.4. Betaine Formation

The trifluoroacetates were used for titrations in order to prevent protonation/deprotonation equilibria between hydrogensulfate and sulfate. The $p \mathrm{~K}_{\mathrm{a}}$ values for the monocation $\mathbf{X V} /$ base XIII equilibria of benzo[b][1,4]benzodiazepines, which is a combination of the equilibria of the species XII, XIII, and XV depicted in Scheme 10, were determined to be approximately 5. ${ }^{58}$ The $p \mathrm{~K}_{\mathrm{a}}$ for the monocation XV/dication XVI equilibrium was found to be approximately $-1 .{ }^{59}$ Titration of 6-hydroxy-benzo[b][1,4]diazepine 38b with 0.1 N NaOH gives a typical titration curve of a weak acid with a strong base. The release of a proton from one of the NH groups ($p \mathrm{~K}_{\mathrm{a}} 7.8$ in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$) results in the immediate formation of the diimine form 45 . An analogous behaviour was observed on titration of the 7-hydroxy and the 7-methoxy derivatives, the $p \mathrm{~K}_{\mathrm{a}}$ values of which were determined to be 8.9 and 6.8 in water at $25^{\circ} \mathrm{C}$, respectively. These deprotonations can easily be observed by a decolorization of the initially deeply violet solutions to pale yellow and can be monitored by UV-VIS spectroscopy. On deprotonation, the aromatic protons $7-\mathrm{H}, 8-\mathrm{H}$, and $9-\mathrm{H}$ of e.g. 38b shift from $\delta=6.54,6.79$, and 5.99 ppm , respectively, to $\delta=7.02,6.72$, and 6.65 ppm . In the diimine form, the OH protons of $\mathbf{3 8 b}$ and $\mathbf{3 9 b}$ are still detectable at $\delta=8.69$ and $\delta=9.12 \mathrm{ppm}$, respectively. A comparison with the methoxy derivatives $\mathbf{4 0 b}$ and $\mathbf{4 7}$ reveals that mesomeric betaines such as 48 and 49 do not form (Scheme 18).

[^18]

45: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
46: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
47: $R^{1}=H, R^{2}=O M e$

48: $X=6-O$
49: $X=7-O$
Scheme 18

By contrast, the thiol 41b readily forms a mesomeric betaine $\mathbf{5 0}$ as violet solid on increasing the $p \mathrm{H}$ of the solution. Two $p \mathrm{~K}_{\mathrm{a}}$ values at 3.3 and 7.1 were determined on titration of $\mathbf{4 1 b}$ with 0.1 N NaOH in water at $25^{\circ} \mathrm{C}$. Unambiguously, the mesomeric betaine and not the tautomeric diimine 51 forms at $p \mathrm{~K}_{\mathrm{a}}=3.3$, because the characteristic UV-VIS absorption maximum at $\lambda_{\max }=536 \mathrm{~nm}$ remains unchanged. Thus, the vinamidinium chromophor still is intact. The second release of a proton obviously forms the instable anionic species $\mathbf{5 2}$, which immediately dimerizes on air to the pale yellow colored disulfide 53 (Scheme 19). Correspondingly, no anionic species were detected in the electrospray ionisation mass spectra (ESIMS) measured in the negative ion detection mode. Instead, in accordance to structure $\mathbf{5 3}$ the base peak of the spectrum is detected at $m / z=429.0$ amu $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$in the positive ion detection mode spraying from methanol.

Scheme 19

Next, we turned our attention to the benzoic acid derivatives 42 and 43. In agreement with the spontaneous formation of mesomeric betaines in water, aqueous solutions of the salts are acidic while UV-VIS absorption maxima of the vinamidinium chromophor were found at $\lambda_{\max }$ $\left(\mathrm{H}_{2} \mathrm{O}\right)=498 \mathrm{~nm}$ and 520 nm , respectively. On titration of $\mathbf{4 2 b}$ with 0.1 N NaOH in water at $25^{\circ} \mathrm{C}$ the mesomeric betaine $\mathbf{5 4}$ precipitates as a slightly violet solid at $p \mathrm{H}$ values above 2.6, and at $p \mathrm{H}$ above 8.8 the mixture becomes colorless. However, we were not able to isolate the anionic species 55 which decomposed according to an NMR spectrum taken in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$. The titration of the carboxy derivative $\mathbf{4 3 b}$ with 0.1 N NaOH (Figure 7) clearly proves the release of two protons on increasing the $p \mathrm{H}$. The $p \mathrm{~K}_{\mathrm{a}}$ values were determined to be 4.8 and 9.8 , and can unambiguously be attributed to the deprotonation of the carboxylic acid which causes the formation of the mesomeric betaine 56, followed by deprotonation of the vinamidinium chromophor, forming the diimine 57 as sodium salt (Scheme 20).

Scheme 20

The cation-betaine transition can unambiguously be proved by UV-VIS spectroscopy. Thus, the vinamidinium group remains intact after the first deprotonation, as absorption maximum at $\lambda_{\text {max }}=526 \mathrm{~nm}$ is detectable in the range between $p \mathrm{H} 2.2$ (pure substance in $\mathrm{H}_{2} \mathrm{O}$) and 7.0 (Figure 8).

Figure 7: Titration curve of $\mathbf{4 3 b}(\mathrm{NaOH}, 0.1 N)$.

Figure 8: Absorbance $v s$. wavelength (nm) of 43b in various $p \mathrm{H}$ in $\mathrm{H}_{2} \mathrm{O}(0.25 \% \mathrm{w} / \mathrm{v})$

The formation of the mesomeric betaine 56 is accompanied by broadening of the ${ }^{1} \mathrm{H}$ NMR signals, which shift slightly to lower (6-H) and higher field (9-H), respectively. ${ }^{1} \mathrm{H}$ NMR measurements of 43b in $\mathrm{D}_{2} \mathrm{O}$ at various $p \mathrm{D}$ values adjusted by 0.1 NaOD in $\mathrm{D}_{2} \mathrm{O}$ were performed in order to confirm the structure, and to exclude decompositions, ring contractions to benzimidazoles, or ring cleavages from consideration. We focused our attention on the benzene ring protons, because these protons are more stable toward exchange with deuterium (Figure 9). In accordance with the results of the NMR titration and the UV-VIS measurements, the ${ }^{1} \mathrm{H}$ NMR taken in $\mathrm{D}_{2} \mathrm{O}$ at $p \mathrm{D} 5.1$ display the pure betaine $\mathbf{5 6}$, whereas the spectra between $p \mathrm{D} 5.70$ and 7.20 show a mixture of the mesomeric betaine and the diimine 57. The anionic diimine 57 gives resonance frequencies at $\delta=7.79(6-\mathrm{H}), 7.71(8-\mathrm{H}), 7.14(9-$
H), and $2.82 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$ in DMSO- d_{6}, and the imine carbon atoms appear at $\delta=158.31$ and 157.91 ppm in ${ }^{13} \mathrm{C}$ NMR spectroscopy. The electrospray ionization mass spectrometric measurements of the pure compound clearly prove the existence of sodium salt. Thus, the intense peak of the anion $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ of 57 is detected at $m / z=215.1 \mathrm{amu}(100 \%)$ in the negative ion detection mode, spraying a sample from methanol at 0 V fragmentor voltage. An additional peak is found at $m / z=454.1 \mathrm{amu}$ which corresponds to a dimerised anionic species plus one sodium.

Figure 9: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 2 b}$ at various pD values at $25^{\circ} \mathrm{C}$.

2.5. X-Ray structural analysis

In order to gain additional insights into the structure we tried to obtain single crystals for an X-ray analysis. We were finally successful in that by slow evaporation of a concentrated solution of a $1: 1$ mixture of 7 -carboxy-2,4-dimethyl-5 H -benzo[b][1,4]diazepinium 43 and picric acid in methanol. As a consequence of the strong acidity of picric acid ($p \mathrm{~K}_{\mathrm{a}} 0.25$), the substance crystallized as a salt. The elemental cell contains three molecules, the benzodiazepinium cation, the picrate anion, and one molecule of methanol. The crystallographic numbering of the molecule is shown in Figure 10.

Figure 10: ORTEP plot of $\mathbf{4 3}$ as picrate.

As a confirmation of the ${ }^{1} \mathrm{H}$ NMR spectrum and titration curve, the ORTEP drawing shows the presence of a COOH group which is slightly twisted out of the plane of the benzene ring and which is hydrogen bonded to the COOH group of another molecule. The corresponding dihedral angle $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(2)$ is $175.74(17)^{\circ}$. In addition, the nitrogen atoms are slightly twisted out of the plane of the benzene ring $\left[\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)=177.16(16)^{\circ}\right]$, and the 7 -membered ring is slightly twisted as well $\left[\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)=-6.4(3)^{\circ}\right.$; $\left.\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)=4.6(3)^{\circ}\right]$.
By contrast, X-ray analyses of 2,4-dimethylbenzodiazepinium chloride ${ }^{60}$ and hexafluorophosphate ${ }^{61}$ as well as of the hydrochloride of 2,4-dimethylnaphthodiazepine showed nearly planar structures. The vinamidinium chromophor has bond distances characteristic of a fully delocalised 6π push-pull electron system. Thus, the bond lengths $\mathrm{N}(1)-\mathrm{C}(2)$ and $\mathrm{C}(4)-\mathrm{N}(5)$ are $133.4(2)$ and $132.3(2) \mathrm{pm}$, respectively. The bond distances between $\mathrm{C}(2)$ and $\mathrm{C}(3)$, and between $\mathrm{C}(3)$ and $\mathrm{C}(4)$ were determined to be 138.4(3) and 139.4(3) pm, respectively, and are longer than corresponding bond lengths in reported molecules. ${ }^{55,56}$ As the bond distances between the vinamidinium chromophor and the benzene ring are very large $[\mathrm{N}(1)-\mathrm{C}(11)=141.9(2) \mathrm{pm} ; \mathrm{N}(5)-\mathrm{C}(6)=142.6(2) \mathrm{pm}]$ for $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N}-$ bonds, there obviously is no considerable electronic interaction between these two parts of the molecule. This result strongly confirms, that the ($4 \mathrm{n} \pi$)-mesomeric betaines described here

[^19]contain isolated cationic and anionic segments as in XVII (Scheme 10), and that the charges are exclusively restricted to separate parts of the conjugated system. In the crystal the benzodiazepinium molecules form several hydrogen bonds. The $\mathrm{N}(1) \mathrm{H}$ (crystallographic numbering) forms a hydrogen bond to the olate group of the picrate, and $\mathrm{N}(5) \mathrm{H}$ to the oxygen atom of crystallisation methanol. Two molecules form stacks at a distance of 343 pm which is slightly more than the two-fold van-der-Waals radii of carbon atoms ($\mathrm{r}_{v d W}=165-170 \mathrm{pm}$). Two benzodiazepinium molecules are head-to-tail orientated. The stacked molecules are additionally connected by two sets of three $\mathrm{N}(5)-\mathrm{H} . . .(\mathrm{Me}) \mathrm{O}-\mathrm{H} . . . \mathrm{OC}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \ldots \mathrm{~N}(1)^{\prime}-\mathrm{H}$ hydrogen bonds.

Figure 10: ORTEP-drawing of the hydrogen-bonded tetrameric interactions of compound $\mathbf{4 3}$ as picrate.

Complementary information was evolved from an X-Ray analysis of single crystals of 1,5diazepinium picrate 38c, which was obtained by slow evaporation of a concentrated solution in acetone. The compound crystallized triclinic with one molecule of acetone of crystallisation (Figure 11).

Figure 11: ORTEP plot of 38c.

The dihedral angles $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)=13(2)^{\circ}$ and $\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)=-10.3(2)^{\circ}$ confirm the slightly helical structure of the diazepinium moiety which was also found in 2,3-dihydro-1,4-diazepines ${ }^{62}$ and mixed crystals consisting of 2,4-dimethylbenzodiazepinium and benzene-1,2-diammonium cations and chloride anions. ${ }^{63}$ As expected, the bond distances in the vinamidinium chromophor $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$ are in agreement with the extensive delocalisation of 6π-electrons, but they are slightly longer than reported in other systems. By contrast, the bond lengths $\mathrm{N}(1)-\mathrm{C}(11)$ and $\mathrm{N}(5)-\mathrm{C}(6)$ are $142.48(18) \mathrm{pm}$ and $142.38(18) \mathrm{pm}$, respectively, and thus separate the benzene moiety from the 7-membered ring. And so, the molecule avoids a conjugation of $4 \mathrm{n} \pi$-electrons around the periphery of the rings by isolation of the two parts of the molecule. The bond angles in the 7 -membered ring are larger than the 120° expected for sp^{2}-hybridized carbon atoms.

Several hydrogen bonds are formed between the three molecules. One intramolecular hydrogen bond is detected between $\mathrm{N}(1)-\mathrm{H}$ and the oxygen atom of the 6-hydroxy group (Figure 11). The hydrogen atom of this group forms a hydrogen bond to the carbonyl oxygen atom of the acetone molecule of crystallisation. The hydrogen bonds between the acidic $\mathrm{N}(1)-$ H group of the diazepinium moiety and the olate group of the picrate anion on one hand, and between $\mathrm{N}(1)-\mathrm{H}$ and one of the oxygen atom of one of the ortho-nitro groups of the picrate on the other stabilize the layers of 1,5-benzodiazepines (Figure 12). The individual molecules

[^20]are in the layers head-to-tail orientated in such a way, that the 7-membered rings are overlapped (Figure 13). The olate group and two oxygen atoms of the ortho-nitro groups of the picrate combine two stacked 1,5-benzodiazepine molecules by hydrogen bonds through $\mathrm{N}(1)-\mathrm{H}$ and $\mathrm{N}(5)-\mathrm{H}$.

Figure 12

Figure 13

The distance between two molecules of 1,5-benzodiazepinium in two layers is 368 pm which is larger than the two-fold van-der-Waals radii of carbon $\left[\mathrm{r}_{v d W}=165-170 \mathrm{pm}\right]$ and nitrogen $\left[\mathrm{r}_{v d W}=155 \mathrm{pm}\right]$, respectively (Figure 14).

Figure 14

2.6. Classification of the $4 n \pi$-electron mesomeric betaines

Structures of the mercaptobetaine $\mathbf{5 0}$ can be drawn with the negative charge delocalized in the benzene ring as well as in the 7 -membered ring. Formally, common atoms for the delocalization of the positive as well as of the negative charges exist, and this fact is characteristic for conjugated mesomeric betaines (CMB). As the X-ray analysis of 43 revealed, however, obviously there is no conjugation between the positive and the negative part of the molecule, because this would result in the conjugation of $4 \mathrm{n} \pi$-electrons. Thus, the classification of $\mathbf{5 0}$ as conjugated mesomeric betaine seems not to be unambiguous. In contrast, due to the long $\mathrm{C}-\mathrm{N}$ bonds, the negative charges in the mesomeric betaines $\mathbf{5 4}$ and 56 are exclusively restricted to separated parts of the molecule which is characteristic for cross-conjugated mesomeric betaines (CCMB). In conclusion, in completion of the former MB classification we were able to establish the first representatives of stable 7-membered ring mesomeric betaines.

- possible sites for positive charges
- possible sites for negative charges
- common sites for positive and negative charges

Figure 15: Charge distribution according to the canonical formulae of benzodiazepiniumolates and -thiolates (left), and -carboxylates (middle and right).

3. Annulated Pyrrolobenzodiazepine Model Compounds

3.1. General introduction to annulated pyrrolo[2,1-c][1,4]benzodiazepine derivatives

In continuation of our growing interest in alkaloids, nucleobase betaines and ionic heteroaromatics we became interested in this class of compounds, because some alkaloids, Circumdatin A-G, were isolated from the fungus Aspergillus ochraceus and were suggested to be suitable chemotaxonomic markers for this species. Total syntheses of Circumdatin C and F, ${ }^{64}$ and a building block approach to a diverse multi-arrayed library of the Circumdatin family using an aza-Wittig reaction ${ }^{65}$ were published recently. We focussed our attention on compounds related to the proposed structures 18 and 19 for Circumdatin A and B in order to study stereochemical and spectroscopic effects of possible tautomerisations, in particular in view of the biological relevance of the twisted conformation of the pyrrolobenzodiazepine ring system. In this chapter, the investigations concerning syntheses and surprising spectroscopic properties of structures related to these natural products, including 11aminosubstituted and dioxopyrimidine annulated pyrrolobenzodiazepines were reported, which are first representatives of a new ring system. In addition the syntheses and properties of thiazolidinone annulated pyrrolobenzodiazepines which - to the best of our knowledge - are the first representatives of a new ring system have been investigated. We focussed our attention on the potential tautomerism of the thiazole moiety, which is known to be complex ${ }^{66}$ and strongly influenced by the nature and location of the substituents, solvents and architecture of the molecule. ${ }^{67}$ Thus, three forms, thiazolidin-4-one, thiazol-4-ols as well as mesoionic partial structures had to be taken into consideration. The latter mentioned aromatic thioisomünchnone caused an intact (S)-configurated pyrrolidine moiety of this biologically highly important ring system. The aromaticity indices, I_{A} indicates that the mesoionic forms have comparable aromaticities to the parent hydroxy thiazoles. ${ }^{68}$ Finally we wish here to report the syntheses and characterizations of 1,3-imidazol-4-one- and 1,3-pyrimidin-4-one-

[^21]annulated pyrrolobenzodiazepines species, which are important structure elements of the proposed structures, and investigations of the synthetic approaches and spectroscopic properties.

3.2. 11-Aminosubstituted pyrrolobenzodiazepines

3.2.1. Synthesis of cyclic amidines

We started our investigation from the pyrrolo $[2,1-c][1,4]$ benzodiazepine natural product 59 (from Isatis indigotica ${ }^{69}$) which is readily available by refluxing isatoic anhydride $\mathbf{5 8}$ with (S)-proline in DMF by literature procedures. ${ }^{70,71}$ Its methylated derivative $\mathbf{6 0}$ was obtained analogously starting from (S)-methyl proline. Thionation in THF at room temperature with 2,4-bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide (Lawesson’s reagent) ${ }^{72}$ resulted in the formation of the monothiolactams $\mathbf{6 1}$ and $\mathbf{6 2}$ in good yields.

Scheme 21

The monothiolactams 61 and 62 react with amines such as ammonia, methylamine, aniline, and piperidine in the presence of mercury(II)chloride to the cyclic amidines 63-67 in high yields (Scheme 22). Alternatively, amidation could be catalysed in the presence of bismuth compounds such as BiCl_{3} or $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ salts, which are commercially available, inexpensive and easy to handle. This method deals as a substitute for the toxic HgCl_{2} methodology. ${ }^{73}$

[^22]

Scheme 22

We observed that the neat reaction of $\mathbf{6 1}$ and the amines (aniline and piperidine) gave better yields than reactions conducted in THF. The N-unsubstituted amidine 63 reacts quantitatively to the starting material 59 on heating in water or dilute aqueous sodium hydroxide. We obtained 63, 64 and 66 as optically active compounds, whereas 65 racemized under these conditions. In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 4 - 6 6}$ in CDCl_{3} at $20^{\circ} \mathrm{C}$ only one set of signals is present. In DMSO- d_{6} at $20{ }^{\circ} \mathrm{C}$, however, two distinct tautomeric forms of $\mathbf{6 4 - 6 6}$ are detectable. In contrast to 64-66, only one tautomer of the amidine $\mathbf{6 3}$ in DMSO- d_{6} and MeOD is observable. One broad H/D-exchangeable signal of two protons with a center of gravity at δ $=7.49 \mathrm{ppm}$ in DMSO- d_{6} provides strong evidence for the formation of the tautomer 63A under these conditions. Unambiguous peak assignments by a combination of HSQC and HMBC NMR experiments proved the coupling of the more deshielded NH-group with the two ortho-protons of the aniline moiety and $\mathrm{C}(11 \mathrm{a})-\mathrm{H}$ of $\mathbf{6 5}$, and couplings of the more shielded NH -group with $\mathrm{C}(9)-\mathrm{H}$ and $\mathrm{C}(11 \mathrm{a})-\mathrm{H}$, respectively. Thus, at $20^{\circ} \mathrm{C}$ the ratios of $\mathbf{6 4 A}$: 64B, 65A : 65B, and 66A : 66B in DMSO- d_{6} were determined to be $10: 11,10: 6$, and 10 : 12 , respectively. These ratios are changing with temperature. As an example, the ratio $\mathbf{6 5 A}$: 65B changes to $10: 11$ at $100{ }^{\circ} \mathrm{C}$ in DMSO- d_{6} (Figure 16).

Figure 16: Stacked VT- ${ }^{1}$ H NMR experiment of $\mathbf{6 5}$ in DMSO-d $_{6}$.

The tautomeric forms 63C, 64C and 65C, which are assumed to be responsible for racemization of the pyrrolidine moiety, were not detected spectroscopically. A control experiment with the piperidino derivative 67 confirmed these observations. No traces of 67B were found in the ${ }^{1} \mathrm{H}$ NMR spectra in DMSO- d_{6}; only one set of signals was observable regardless of the solvent used.

Methylation of racemic $\mathbf{6 5}$ with sodium hydride and methyl iodide gives only one product $\mathbf{6 8}$, as evidenced by couplings of the methyl group to $\mathrm{C}(9 \mathrm{a})$ and $\mathrm{C}(11)$ in HMBC-NMR experiments.

3.2.2. $\quad \mathrm{X}$-Ray structural analysis of amidines

In the solid state, compound $\mathbf{6 5}$ forms the exocyclic imine 65B in the Z-configuration as evidenced by a single crystal X-ray analysis (Figure 17). The phenylimino group is strongly twisted out of the plane defined by the phenyl ring of the benzodiazepine moiety. The bond length of the $\mathrm{C}=\mathrm{N}$ bond [crystallographic numbering: $\mathrm{C}(2)-\mathrm{N}(2)$] was determined to be $128.03(13) \mathrm{pm}$, whereas the distance between $\mathrm{N}(10)-\mathrm{C}(11)[\mathrm{N}(1)-\mathrm{C}(2)]$ is $138.07(13) \mathrm{pm}$. The bond length between $\mathrm{C}-11$ and $\mathrm{C}-11 \mathrm{a}[\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})]$ is $151.61(13) \mathrm{pm}$.

Figure 17: Molecular structure of $\mathbf{6 5}$ according to a single crystal X-ray analysis.

3.3. Pyrimidine annulated pyrrolo[2,1-c][1,4]benzodiazepines

3.3.1. Synthesis of oxopyrimidines

Neat reaction of the amidines $\mathbf{6 3 - 6 6}$ with bis(2,4,6-trichlorophenyl)-2-phenylmalonates in a Zincke apparatus resulted in the formation of the pyrimidine-annulated pyrrolo-
benzodiazepines 69-77 and the leaving group 2,4,6-trichlorophenol which can be distilled off during the reaction. Dependent on the substitution pattern 69-77 form different tautomers in solution as well as in the solid state. Thus, only the $4,7 \mathrm{a}, 12 \mathrm{~b}$-triaza-dibenzo $[e, g]$ azulenes 69 and 70 resulting from the N^{11}-unsubstituted pyrrolobenzodiazepine $\mathbf{6 3}$ were isolated as optically active compounds. These two new compounds form only one tautomer in DMSO- d_{6}, MeOD , and CDCl_{3} at room temperature, respectively, as evidenced by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A combination of HMBC and HSQC NMR unambiguously proved the existence of enolic partial structures in $\mathbf{6 9}$ and 70 under these conditions, as couplings between $4 \mathrm{~b}-H$ and $\mathrm{C}-5, \mathrm{C}-$ 6 , and C-4a were detected. The latest mentioned carbon atom C-4a appears at $\delta=157.4 \mathrm{ppm}$ (69) and 158.0 ppm (70). The carbon atom C-2 is sp^{2} hybridized and appears at $\delta=103.5$ ppm (11) and $101.6 \mathrm{ppm}(\mathbf{7 0})$. The hydroxy group causes one broad, H/D-exchangeable signal at $\delta=11.45 \mathrm{ppm}$ in DMSO- d_{6} and at $\delta=6.34 \mathrm{ppm}$ in CDCl_{3} in the ${ }^{1} \mathrm{H}$ NMR spectra. NOESY experiments of $\mathbf{6 9}$, which possesses the N-(3-oxopropenyl)formamidine chromophor, provide evidence for close proximities between the hydroxy group at C-3 and the ethyl group as well as $\mathrm{C}-5$ of the pyrrolidine ring.
In contrast to this, the pyrrolobenzodiazepines derived from the N^{11}-substituted pyrrolobenzodiazepines 64 and 65 form the tautomers $71-76$ in good yields on recrystallization of the residue as faintly yellow solids, whereas no isolable compounds were obtained starting from the methylated species 66 (Scheme 23). All NMR spectra taken in CDCl_{3} are in agreement with tautomers 71B-76B which resulted from deprotonation of the α hydrogen atoms of the pyrrolidine ring. The NMR spectrum in CDCl_{3} clearly indicates the existence of only three CH_{2}-groups, and one CH -group which is joined to ethyl, phenyl and benzyl respectively. The latter carbon atom C-2, which appears between $\delta=53.6 \mathrm{ppm}$ and 55.8 ppm , unambiguously is in sp^{3} hybridized. HMBC and HSQC NMR measurements displayed couplings of C-2 with the ethyl, phenyl and benzyl groups, respectively. These results prove the formation of a 3 H -2,4-dioxopyrimidine ring and a sp^{2} hybridized C -11a in tautomers 71B-76B instead of the cross-conjugated mesomeric betaines 71A-76A in CDCl_{3} solution which would resemble to the proposed structures of Circumdatin A and B. Moreover, these findings explain the failure of the reaction of $\mathbf{6 6}$ to 77, which would be compelled to adopt a betainic structure 77A which obviously is not stable.

Scheme 24

A striking feature of 2-phenylpyrimidines (72 and 75), however, is a doubling of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR resonance frequencies in DMSO- $\mathrm{d}_{6}, \mathrm{C}_{6} \mathrm{D}_{6}$, DMF- d_{7}, and MeOD (Figures 17 and 18). Whereas traces of acids and bases, respectively, do not cause any changes of the spectra taken in CDCl_{3}, on addition of DMSO- d_{6} into this solution a splitting of the signals is observable, the chemical shift difference of which depends on the relative concentration of these two solvents.

As evidenced by HSQC, HMBC, NOESY experiments and ${ }^{13} \mathrm{C}$ NMR, either form of $\mathbf{7 5}$ possesses the $\mathrm{C}(=\mathrm{O})-\mathrm{CHPh}-\mathrm{C}(=\mathrm{O})$ partial structure, so that the formation of tautomers such as the mesomeric betaine $\mathbf{7 5 A}$ and enols such as $\mathbf{7 5 C}$ in the solvents mentioned above were excluded from consideration. NOESY-experiments, however, detected closely spaced protons of the pyrrolidine and of the phenyl ring at C-2 $(15-H \leftrightarrow 5-H, 15-H \leftrightarrow 6-H$ 15-H↔7-H, 16$H \leftrightarrow 5-H, 16-H \leftrightarrow 6-H)$ in one of the two conformers, which is observable in the spectra. This finding provides evidence for a conformation of $\mathbf{7 5}$ in which these partial structures are in close proximity and which cause the more shielded resonance frequencies. A boat conformation of the dioxopyrimidine moiety with an axial phenyl ring at $\mathrm{C}-2$ could explain the proximity of these partial structures, and this assumption was supported by the chemical shift difference of $2-H$ which is in agreement to axial and equatorial positions. Interconversion of the ring system obviously is fast in CDCl_{3}. As CDCl_{3}-solutions solidified
to glassy materials on cooling, however, we were prevented from taking NMR spectra at low temperatures.

Figure 17: ${ }^{1} \mathrm{H}$ NMR-spectra of 75 in various solvents.

Figure 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 2,4-dioxopyrimidine 75 in $\mathrm{CDCl}_{3}(\mathrm{a}, \mathrm{b})$ and $\operatorname{DMSO}-\mathrm{d}_{6}(\mathrm{c}, \mathrm{d})$.

We were able to unambiguously assign the resonance frequencies to the two forms from the spectra and our results are presented in Table 1.

Table 1: Chemical Shifts of 75 in CDCl_{3} and DMSO- d_{6}.

position	CDCl_{3}		DMSO-d ${ }_{6}$	
	${ }^{1} \mathrm{H}$ NMR	${ }^{13} \mathrm{C}$ NMR	${ }^{\text {T }}$ H NMR	${ }^{13} \mathrm{C}$ NMR
1		166.7		166.2 / 166.7
2	4.94 (s)	62.3	4.79 (s) / 5.54 (s)	59.3 / 62.0
3		166.7		166.5 / 166.8
$4 \mathrm{a}^{\text {a }}$		128.6		128.9
4 b		119.3		118.7 / 118.1
5	1.61-1.65 (m)	29.3	$1.63-1.68$ (m) / 1.87-2.01 (m)	29.3 / 29.8
	1.73-1.80 (m)		$1.79-1.84(\mathrm{~m}) / 1.87-2.01$ (m)	
6	0.88-1.00 (m)	19.8	0.83-0.94 (m) / 1.77-1.85 (m)	19.9 / 20.3
	1.54-1.60 (m)		1.58-1.62 (m) / $1.77-1.85$ (m)	
7	$3.41-3.47$ (m)	49.5	$3.29-3.35$ (m) / $3.82-3.86$ (m)	49.8 / 50.4
	$3.66-3.73$ (m)		3.55-3.62(m) / $3.82-3.86$ (m)	
8		165.2		164.8 / 165.3
8 a		139.5		139.9
9	8.08 (dd)	132.9	7.92 (dd) / 7.93-7.96 (m)	132.5
10	7.70 (ddd)	134.1	$7.76-7.77$ (m) / $7.72-7.74(\mathrm{~m})$	134.2 / 134.4
11	7.48 (ddd)	128.4	$7.51-7.55$ (m) / 7.48-7.52(m)	128.7
12	7.53 (dd)	126.2	7.75 (d) / $7.71-7.72$ (m)	127.3 / 127.4
12a		139.5		140.4
$13^{\text {a }}$		133.2		133.4
14	$7.40-7.44$ (m)	126.3	7.45-7.48 (m)	126.5
15	7.37-7.40 (m)	129.5	7.37-7.39 (m)	129.9
16	7.35-7.37(m)	132.1	7.41-7.42 (m)	128.9
17		139.0		139.5
18	7.18-7.20 (m)	124.2	7.18-7.21 (m)	124.9 / 125.1
19	$7.29-7.33$ (m)	129.7	7.33-7.35 (m)	130.1
20	7.15-7.18 (m)	126.8	7.22-7.23 (m)	127.1

a : peak assignments exchangeable

In order to confirm these assumptions, we performed ab-initio calculations on boat and chair conformations of the dioxopyrimidine ring of $\mathbf{7 5}$ with equatorial (Ec, Eb) and axial ($\mathbf{A b}, \mathbf{A c}$) substituents at C-2, respectively (Scheme 25). All calculations were carried out with the projector-augmented wave method as implemented in the PAW programme. ${ }^{74,75}$ The calculations show that the boat conformation with axial phenyl ring (Ab) has indeed the lowest total energy. The difference to the boat conformation with equatorial phenyl ring (Eb) is $\Delta \mathrm{E}=8.9 \mathrm{KJ} / \mathrm{mol}$. Both, axial ($\mathbf{A c}$) and equatorial phenyl rings $(\mathbf{E c})$ in chair conformation have a higher energy of $\Delta \mathrm{E}=78.0 \mathrm{KJ} / \mathrm{mol}$ and $\Delta \mathrm{E}=58.2 \mathrm{KJ} / \mathrm{mol}$, respectively. In addition, the calculations show twisted conformations of the pyrrolobenzodiazepine partial structure.

[^23]

Conversion of the configuration at C-2 of $\mathbf{7 5}$ must proceed via an anionic species $\mathbf{7 8}$ as represented in Scheme 25. On isomerisation, the phenyl ring changes from an axial into an equatorial position, which must be accompanied, by a considerable change of the NMR signals. In order to confirm these assumptions, we deprotonated 75 with NaH in dimethoxyethane and indeed obtained the anionic molecule 78 which is a stable yellow solid. The anion displays a single set of signals in the ${ }^{1} \mathrm{H}$ NMR spectra, regardless of the solvent used. In electrospray ionization mass spectrometry in methanol in the negative ion detection mode, the molecular peaks appear at $m / z=434.0 \mathrm{u}$ as base peak. Methylation of the salt 78 with methyl iodide gave 79 in good yield.

Scheme 26

3.3.2. $\quad \mathrm{X}$-Ray structural analysis of oxopyrimidines

The ab-initio calculation results are in qualitative agreement with an X-ray single crystal analysis of 75 which shows tautomer 75B in the solid state (Figure 19): The 6:7:5 pyrrolobenzodiazepine ring system adopts a twisted conformation. The $\mathrm{C}(6)-\mathrm{C}(7)$ bond distance is $132.71(16) \mathrm{pm}$ (calcd.: 135.2 pm) which corresponds to a $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{C}\left(\mathrm{sp}^{2}\right)$ double bond. This $\mathrm{C}=\mathrm{C}$-bond is twisted due to the helicity of the $6: 7: 5$ ring system, so that the dihedral angles $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$ and $\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ are $4.77(18)^{\circ}$ and $6.37(19)^{\circ}$, respectively [calcd. 4.9° and 4.7°, resp.]. In the elemental cell, the $3 H-2,4-$ dioxopyrimidine ring adopts a boat-like conformation with $\mathrm{C}(6)$ and $\mathrm{C}(3)$ above the plane formed by $\mathrm{N}(1), \mathrm{N}(5), \mathrm{C}(4)$, and $\mathrm{C}(2)$, and the phenyl ring at $\mathrm{C}(3)$ in axial position (Figure 20). The phenyl ring is twisted by $-30.16(12)^{\circ}\left[\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)\right.$, calcd. $\left.-34.2^{\circ}\right]$.

Figure 19: Results of an X-ray analysis of 75. The drawing shows the helicity of the benzopyrrolodiazepine moiety of $\mathbf{7 5}$.

Figure 20: X-ray analysis of 75. In the single crystal, the dioxopyrimidine fragment of $\mathbf{7 5}$ adopts a boat-like conformation with the phenyl ring at $\mathrm{C}(3)$ in axial position.

The ab-initio calculations lead to a bond length of 135.3 pm between C-4a and C-4b [crystallographic numbering: $\mathrm{C}(6)-\mathrm{C}(7)$] in conformer $\mathbf{A b}$ (Scheme 25) in which the phenyl ring is in axial position of the boat conformation of the dioxopyrimidine moiety. Again, this double bond is twisted by $-3.5^{\circ}[\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)]$.

In order to compare the structure of a non-splitting derivative in solid state, we performed an X-ray single crystal structure analysis of the benzyl derivative 76. Single crystals were obtained by slow evaporation of a concentrated solution in 2-butanol. The molecular structure and the crystallographic numbering are shown in Figure 21. The molecule crystallized with one molecule of 2-butanol in the elemental cell which forms a hydrogen bond to the $\mathrm{C}(12)=\mathrm{O}(12)$ carbonyl group [crystallographic numbering]. The carbon atom [$\mathrm{C}(3)$] of the 1,3-diketo moiety is sp^{3} hybridized, as its bond angles are $107.89(8)^{\circ}[\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)]$, $113.80(9)^{\circ}[\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)]$, and $112.05(9)^{\circ}[\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(2)]$, respectively. The bond length $\mathrm{C}(6)-\mathrm{C}(7)$ was determined to be $132.93(15) \mathrm{pm}$ and corresponds to a $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{C}\left(\mathrm{sp}^{2}\right)$ double bond. The bond angles $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(5), \mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$, and $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(5)$ are
$114.82(9)^{\circ}, 124.74(10)^{\circ}$, and $123.30(10)^{\circ}$, respectively. The dioxopyrimidine moiety $\mathrm{N}(1)-$ $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$ adopts a boat conformation with the benzyl substituent in equatorial position.

Figure 21: Molecular drawing of 4,7a,12b-triaza-dibenzo $[e, g]$ azulene-1,3,8-trione (76).

3.4. Thiazolidine annulated pyrrolo[2,1-c][1,4]benzodiazepines

3.4.1. \quad Synthesis of thiazolidines

2-Bromoacetyl chloride and its 2-ethyl- and 2-phenyl-substituted derivatives converted the monothiolactam 61 at room temperature in THF into the 5,6-dihydro-4H-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]-azulene-1,7-diones 80-83. This reaction typically proceeds via intermediary iminium salts which can sometimes be trapped and used for heterocyclic synthesis. The treatment of the thiolactam $\mathbf{8 0}$ with 2-(4-nitrophenyl)-2-bromoacetyl chloride, however, resulted in the formation of a complex mixture of compounds from which no nitro
derivative $\mathbf{8 3}$ could be isolated (Scheme 27). The formations of the thiazolidinones $\mathbf{8 0 A} \mathbf{A 2 A}$ in CDCl_{3} and DMSO- d_{6}, respectively, were unambiguously proved by the existence of only three CH_{2}-groups ($4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}$) of the pyrrolidine ring, and one additional sp^{3}-hybridized carbon atom which couples with the ethyl (81A) and phenyl (82A) group, respectively. In the 2-unsubstituted compound ($\mathbf{8 0 A}$), this CH_{2}-group forms a singlet at $\delta=3.83 \mathrm{ppm}$ in CDCl_{3}. In contrast to thiazol-4(5H)-ones, neither the tautomeric thioisomünchnones $\mathbf{8 0 B} \mathbf{8 2 B}$, nor hydroxy isomers $\mathbf{8 0 C}-\mathbf{8 2 C}$ were detectable by NMR spectroscopy, regardless of the solvent used. The $\mathrm{C}(2)-\mathrm{H}$ protons are acidic and can be exchanged by deuterium on addition of $\mathrm{D}_{2} \mathrm{O}$ to the solutions, respectively.

80: $\mathrm{R}=\mathrm{H}(75 \%)$
81: $R=E t(57 \%)$
82: $R=P h(65 \%)$
83: $\mathrm{R}=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ (0\%)

Scheme 27

It is known that aromatizations of thiazolidines can be accomplished by addition to exocyclic double bonds. ${ }^{67}$ We therefore studied the behaviour of the new ring system towards acids, bases, and alkylating agents. The non-nucleophilic base 1,8-dimethylaminonaphthalene (proton sponge ${ }^{\circledR}$) induced an immediate decomposition of $\mathbf{8 2}$ in THF to a complex mixture, whereas 4-dimethylaminopyridine (DMAP) and triethylamine, respectively, were not able to deprotonate this compound. On addition of $\mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}$ to a $\mathrm{DMSO}-\mathrm{d}_{6}$-solution of $\mathbf{8 2}$, the resoncance frequencies shift considerably upfield due to the formation of the enolate $\mathbf{8 4}$. Thus, the proton in the para-position of the phenyl ring, which is overlapped in DMSO- d_{6} by other signals at approximately $\delta=7.39 \mathrm{ppm}$, shifts to $\delta=6.53 \mathrm{ppm}$ on addition of the base.

The signal of $\mathrm{C}(2)-\mathrm{H}$ at $\delta=5.59 \mathrm{ppm}$ disappears in parallel with a shifting of the resonance frequency of $\mathrm{C}(2)$ at $\delta=52.6 \mathrm{ppm}$ to $\delta=72.6 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectra on addition of the base (for numbering, cf. Scheme 27). Potassium tert-butoxide proved to be the most suited base to deprotonate the phenyl derivative $\mathbf{8 2}$ at $\mathrm{C}(2)$ in THF at $-70^{\circ} \mathrm{C}$ to the corresponding enolate on a preparative scale. The enolate could be trapped by methyl iodide to form the 2 -methyl-2-phenyl-substituted pyrrolobenzodiazepine $\mathbf{8 5}$ in 82% yield. HMBC-NMR spectroscopic experiments proved the couplings of the methyl protons with $\mathrm{C}(2), \mathrm{C}(1)=\mathrm{O}$, and the phenyl group. Neither mesoion 86, which - in contrast to 85 - contained two aromatic rings, nor the O-methylated enol 87 were detected. Accordingly, no changes were moreover observable in the NMR spectra on addition of DCl , so that a protonation of the $\mathrm{C}(3 \mathrm{a})=\mathrm{C}(3 \mathrm{~b})-$ double bond could be excluded from consideration under these conditions.

86

84

87

Scheme 28

3.4.2. \quad X-Ray structural analysis of thiazolidines

As remarkable differences in the tautomerisations of thiazols and its reduced derivatives exist in the solid state and in solution, ${ }^{66}$ we performed an X-Ray analysis. Suitable single crystals of the 2-phenyl derivative $\mathbf{8 2}$ were obtained by slow evaporation of a concentrated solution in 2propanol. The compound crystallized monoclinic. The molecular structure and the crystallographic numbering are shown in Figure 22. The 6:7:5 pyrrolobenzodiazepine ring
system adopts a twisted conformation. The $\mathrm{C}(6)-\mathrm{C}(7)$ bond distance (crystallographic numbering) is $132.21(17) \mathrm{pm}$ which corresponds to a $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{C}\left(\mathrm{sp}^{2}\right)$ double bond. This $\mathrm{C}=\mathrm{C}-$ bond is twisted due to the helicity of the 6:7:5 ring system, so that the dihedral angles $\mathrm{C}(5)-$ $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$ and $\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$ are $-173.40(12)^{\circ}$ and $172.06(9)^{\circ}$, respectively. The thiazolidine ring adopts an envelope conformation. The sulfur atom is located above a plane defined by $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(7)$, the dihedral angle of which is $1.44(15)^{\circ}$. The dihedral angles $N(11)-C(7)-S(8)-C(9)$ and $S(8)-C(9)-C(10)-N(11)$ were determined to be $31.81(9)^{\circ}$ and $21.43\left(12^{\circ}\right)$, respectively. The phenyl ring is twisted by approximately 51° around the $\mathrm{C}(9)-\mathrm{C}(91)$-bond. Thus, $\mathbf{8 2}$ displays a different behaviour than thiazol-4-ones, the 4-hydroxy isomers of which predominate in the solid state. One hydrogen bonding is found between the CH -acidic $\mathrm{C}(9)-\mathrm{H}$ and the $\mathrm{C}(1)=\mathrm{O}$ carbonyl group of a neighbouring molecule.

Figure 22: Molecular drawing of 82A (left); hydrogen bonding between two molecules (right)

3.5. Imidazol- and pyrimidin-4-one annulated pyrrolo[2,1-c][1,4]benzodiazepines

3.5.1. Syntheses of 1,3-imidazol-4-one and 1,3-pyrimidin-4-ones

We treated thiolactam 61 and amino acid ethylesters as hydrochlorides in the presence of HgCl_{2} and triethylamine in acetonitrile to give the iminoesters in high yields. Using glycine and β-alanine ethyl ester hydrochlorides furnished the optically active products $\mathbf{8 8}$ and $\mathbf{8 9}$, respectively (Scheme 29).

The ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic signals for the new products, including a methylene multiplet at $\delta 4.10-4.27 \mathrm{ppm}$ for $\mathbf{8 8}$ and two multiplet signals at $\delta 2.64-2.71$ and $3.57-3.74 \mathrm{ppm}$ for compound 89, respectively. Broad signals were observed at $\delta 5.46$ and 5.74 ppm , suggesting secondary amine protons. In comparison with starting material 61, addition of one carbon signal at $\delta 43.7 \mathrm{ppm}$ for $\mathbf{8 8}$ and two carbon resonance peaks at $\delta 33.0$ and 36.7 ppm for $\mathbf{8 9}$, as well as creating of a new carbonyl signal blong to ethylester group, clearly indicated the formation of target molecules. The H,H-COSY experiment showed a correlation between NH group and CH_{2} indicating the enamine group as $\mathrm{N}(10)=\mathrm{C}(11)-\mathrm{NH}$ partially structure.

After many attempts using several bases and different solvents, finally we elegantly succeeded to close the ring in the presence of $2 N \mathrm{NaOH}$ solution in a mixture of dioxane/water (2:1) at room temperature to yield the corresponding 5- and 6-membered imidazole 90 and pyrimidine 91 derivatives as optically active compounds. In contrast to the glycine ester, the β-alanine ester formed the amidine in the presence of sodium hydride in anhydrous DMF at room temperature. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the ethyl signals were exchanged to methylene resonance frequencies, which strongly shifted downfield. They are observed as multiplets at $\delta 4.32-4.35 \mathrm{ppm}$ for $\mathbf{9 0}$ and two methylene signals as a multiplet at $2.36-2.48 \mathrm{ppm}$ and a triplet at $\delta 3.43 \mathrm{ppm}$. In addition, the chemical shift at 59.0 ppm for $\mathbf{9 0}$ and 35.1 and 38.5 ppm for 91 correspond to the formation of the new ring in ${ }^{13} \mathrm{C}$ NMR, respectively.
Surprisingly, during attempts to involve the compound $\mathbf{8 8}$ in an amidation ring closure reaction in acetone in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at reflux temperature we observed the condensation to the olefinic imidazoles in good yields. We optimized this reaction in THF and used acetone and cyclohexanone as typical ketones to afford the corresponding 2isopropylidene and 2-cyclohexylidene-imidazole products, respectinely (92,93). In the ${ }^{13} \mathrm{C}$ NMR spectra, the observation of two new quaternary olefinic sp^{2} carbon signals at $\delta 153.4$ and 156.4 ppm for $\mathbf{9 2}$ and $\delta 156.4$ and 161.3 ppm for $\mathbf{9 3}$ supported the new tetracyclic structure. Moreover, ${ }^{1} \mathrm{H}$ NMR experiment clearly shows the two new methyl singlet signals at $\delta 2.32$ and 2.46 ppm for $\mathbf{9 2}$ and five new methylene resonance frequencies for $\mathbf{9 3}$.

3.5.2. \quad X-Ray structural analysis of 1,3-imidazol-4-one derivative

The single crystals were obtained by slow evaporation of a saturated solution of compound $\mathbf{9 0}$ in acetone with a monoclinic unit cell. The molecular construction and the crystallographic numbering are shown in Figure 23. In accordance with former derivatives, PBD ring involves in a twisted conformation while the 7 -membered ring adopts a boat arrangement. This finding is in agreement with the dihedral angles of $\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})$ (crystallographic numbering) and $\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{N}(6 \mathrm{~A})$ which were determined to be $63.22(14)^{\circ}$ and $42.37(19)^{\circ}$, respectively. Moreover, torsion angles of $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$ with $2.24(19)^{\circ}$ and $\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$ with $-177.28(12)^{\circ}$ further supply this observation. The bond distance of $\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(3)$ is $127.39(17) \mathrm{pm}$ which corresponds to imino $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{N}\left(\mathrm{sp}^{2}\right)$ double bond. The presence of distinct $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$ single bond with
149.96(19) pm unambiguously excludes any involving of 3b-H hydrogen in tautomerization to form an optically inactive tautomer. In the crystal the imidazole-annulated pyrrolobenzodiazepine molecules are lined in chains through $\mathrm{C}(11) \ldots \mathrm{H} \ldots \mathrm{O}(7)$ hydrogen bonds between neighbouring molecules. Figure 24 shows the elemental cell of compound 90.

(a)

(b)

Figure 23: ORTEP drawings of compound $\mathbf{9 0}$ in two perspectives (a, b).

Figure 24: Element cell of compound 90.

4. Experimental Section

General methods: The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE 400 and AVANCE DPX-200 spectrometers and were taken in DMSO- d_{6} and CDCl_{3} at 200 and 400 MHz . The chemical shifts are reported in ppm relative to internal tetramethylsilane ($\delta=0.00$). Multiplicities are described by using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. FT-IR spectra were obtained on a Bruker Vektor 22 in the range of 400 to $4000 \mathrm{~cm}^{-1}$ (2.5% pellets in KBr). The GC-MS spectra (EI) were recorded either on a GC Hewlett Packard 5980, Series II / MS Hewlett Packard 5989 B, or on a Varian GC3900 with SAT2100T. The ESI mass spectra were measured with an Agilent LCMSD Series HP1 100 with APIES. Samples were sprayed from methanol at 0V fragmentor voltage unless otherwise noted. All reactions were monitored by analytical thin layer chromatography using silica gel $60 \mathrm{~F}^{254}$ precoated plates and spots were detected either by UV-absorption or iodine. All commercially available chemicals were purchased from Fluka and Lancaster Chemical Co. and used as received without further purification.

4.1. Experiments to chapter 2.2.

3,4-Diaminophenol (26)

Method A:

Activated palladium on carbon catalyst ($10 \% \mathrm{Pd}, 200 \mathrm{mg}$) was added cautiously as a slurry in methanol (10 mL) to a solution of 4-amino-3-nitrophenol $32(2.0 \mathrm{~g}, 13 \mathrm{mmol})$ in methanol $(100 \mathrm{~mL})$, and the mixture was stirred under a hydrogen atmosphere for 6 hours until the absorption of gas ceased. The catalyst was removed by filtration through Celite, and the filtrate was evaporated to dryness under reduced pressure to afford $\mathbf{2 6}$ as a brown solid.

Yield: $1.50 \mathrm{~g}(93 \%)$.

Method B:

To a suspension of activated Raney nickel (200 mg) and hydrazine hydrate $(98 \%, 2 \mathrm{~mL})$ in ethanol (40 mL) was cautiously added a solution of 4-amino-3-nitrophenol $32(1.54 \mathrm{~g}, 10$ $\mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ and the mixture was stirred for 30 min at room temperature. The
catalyst was then removed by filtration through Celite and the solvent was distilled off under reduced pressure to give 3,4-diaminophenol 26 as a brown pure solid.

Yield: 1.19 g (96 \%).
m.p.: $155^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta=4.21\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{NH}_{2}\right), 5.81(\mathrm{dd}, J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 6.03(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=102.2,103.2,115.8(\mathrm{C}-2), 126.8(\mathrm{C}-4), 136.7(\mathrm{C}-3)$, 149.7 (CO).

UV $\lambda_{\max }(\mathrm{MeOH}): 343 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3398,3353,3272,3024,2931,1621,1606,1510,1486,1382$.

GC-MS (70 eV) $m / z(\%): 124$ (100) $\left[\mathrm{M}^{+}\right], 96$ (28), 68 (11), 52 (12).

Anal. calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ (124.14): C, 58.0; H, 6.5; N, 22.6; found: C, 57.7; H, 6.3; N, 22.5.

3,4-Diaminobenzenethiol (28)

4-Amino-3-nitrobenzenethiol $34(3.40 \mathrm{~g}, 20 \mathrm{mmol})$ was dissolved in 50% aqueous ethanol $(300 \mathrm{~mL})$ and then sodium dithionite $(13.93 \mathrm{~g}, 80 \mathrm{mmol})$ was added portionwise over a period of 20 min . The stirred solution was first refluxed for 1 hour and then extracted with chloroform after cooling to room temperature. The aqueous layer was evaporated in vacuo and the resulting solids were extracted with methanol. Evaporation of the solvent gave a crude solid which was subjected to column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{EtOAc}$ (1:5) to give a fine dark yellow powder.

Yield: $2.07 \mathrm{~g}(74 \%)$.
m.p.: $147-150^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR (200 MHz, DMSO-d $_{6}$): $\delta=3.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 4.18\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{NH}_{2}\right), 6.42(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.49(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, 2-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (50 MHz, DMSO- d_{6}): $\delta=114.0,117.5,121.6(\mathrm{C}-2), 122.6,135.3(\mathrm{C}-4), 136.2(\mathrm{C}-$ $3)$.

UV $\lambda_{\max }(\mathrm{MeOH}): 236,318 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3411,3398,3320,1619,1578,1502,1282$.

GC-MS (70 eV) m/z (\%): 140 (100) [M $\left.{ }^{+}\right], 107$ (39), 95 (16), 80 (16), 52 (13).

Anal. calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$ (140.21): C, 51.4; H, 5.7; N, 20.0; found: C, 51.5; H, 5.4; $\mathrm{N}, 20.3$.

2,3-Diaminobenzoic acid (29)

Sodium dithionite ($1.39 \mathrm{~g}, 8 \mathrm{mmol}$) was added portionwise over a period of 10 min to a solution of 4-amino-3-nitrobenzoic acid ($0.364 \mathrm{~g}, 2 \mathrm{mmol}$) in 50% aqueous ethanol (50 mL) at room temperature. The reaction mixture was heated under reflux for 1 hour and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$ after cooling. The combined extracts were dried over magnesium sulfate and evaporated to dryness. The resulting solid was purified by recrystallization from water to give $\mathbf{2 9}$ as pale brown needles.

Yield: $0.225 \mathrm{~g}(74 \%)$.
m.p.: $198-200^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=6.36(\mathrm{t}, J=7.8,1 \mathrm{H}, 5-\mathrm{H}), 6.69(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}$), 6.86 (br s, $4 \mathrm{H}, 2 \times \mathrm{NH}_{2}$), 7.10 (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=109.7(\mathrm{C}-1), 115.0,117.2,119.4,135.6$ (C-2), 139.7 (C3), 170.3 (CO).

UV $\lambda_{\max }(\mathrm{MeOH}): 232,344 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3420,3361,3331,1635,1559,1467,1375$.

GC-MS (70 eV) $m / z(\%): 152$ (100) [$\left.\mathrm{M}^{+}\right], 134$ (67), 106 (100), 79 (52), 52 (41).

Anal. calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ (152.15): C, 55.2; H, 5.3; N, 18.4; found: C, 55.0 ; H, 5.4; N, 18.4.

4-Amino-3-nitro-benzenethiol (34)

2-Nitro-4-thiocyanatoaniline $33(3.51 \mathrm{~g}, 18 \mathrm{mmol})$ was added portionwise to a stirred solution of potassium hydroxide $(6 \mathrm{~g})$ in ethanol $(100 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$ and the stirring was continued for further 30 min at room temperature. A solution of sulfuric acid in ethanol (5\%) was cautiously added whereupon the color of the mixture changed from dark violet to orange. The mixture was then poured into water $(400 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over magnesium sulfate, and evaporated to give $\mathbf{3 4}$ as a red solid.

Yield: 2.08 g (68 \%).
m.p.: $99-100^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 5.85\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=8.7$ $\mathrm{Hz}, 5-\mathrm{H}), 7.33$ (dd, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, 2-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=116.3$ (C-3), 119.6, 128.3, 139.0, 143.4 (C-6) (one signal not detectable).

UV $\lambda_{\max }(\mathrm{MeOH}): 343 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3463,3344,2555,1634,1554,1502$.

GC-MS (70 eV) $m / z(\%): 170(100)\left[\mathrm{M}^{+}\right], 124$ (69), 97 (23), 80 (30), 52 (19).

Anal. calcd. for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (170.19): C , 42.3 ; $\mathrm{H}, 3.5$; $\mathrm{N}, 16.5$; found: $\mathrm{C}, 42.2 ; \mathrm{H}, 3.5$; N , 16.4.

Bis(3,4-diaminophenyl)disulfide (35)

A 50% suspension of activated Raney-nickel catalyst (100 mg) in water was washed several times with water and methanol, respectively. A solution of $\mathbf{3 4}(0.34 \mathrm{~g}, 2.0 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was added cautiously to the suspension of the catalyst in methanol $(5 \mathrm{~mL})$, and the mixture was stirred under hydrogen atmosphere for 5 hours at room temperature until the absorption of gas ceased. The catalyst was removed by filtration through Celite, and the filtrate was evaporated in vacuo to give crude 35. The product was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (4:1). Recrystallization from water afforded a fine dark yellow powder.

Yield: $0.54 \mathrm{~g}(54 \%)$.
m.p.: $155^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=4.62\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{NH}_{2}\right), 4.78\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{NH}_{2}\right), 6.40-6.51$ (m, 4H, 5, 5', 6, $\left.6^{\prime}-\mathrm{H}\right), 6.68\left(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}, 2,2^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathbf{C}-$ NMR (50 MHz, DMSO- d_{6}): $\delta=114.0,117.5,121.6,122.6,135.3,136.2$.

UV $\lambda_{\max }(\mathrm{MeOH}): 230,318 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3414,3365,1619,1578,1498,1420,1283$.

GC-MS (70 eV) $m / z(\%): 278$ (84) [M $\left.{ }^{+}\right], 140(100), 122$ (9), 112 (12), 95 (25).

Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}$ (278.40): C, 51.7; H, 5.1; N, 20.1; found: C, 51.3; H, 5.3; N, 20.1.

4.2. Experiments to chapter 2.3.

General procedure for the preparation of the 2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfates, trifluoroacetates and picrates (38-43)

Solutions of the diaminobenzene derivatives 25-30 (1.0 mmol) in ethanol (20 mL) were treated with pentane-2,4-dione ($0.1 \mathrm{~mL}, 1.0 \mathrm{mmol}$) and a few drops of concentrated sulfuric acid or trifluoroacetic acid or 0.5 g of picric acid (50% water). The reactions started immediately whereupon the color changed to dark violet. The mixtures were stirred for 30 min at room temperature. After concentrating the ethanolic solutions to 20% of its original volume, addition of diethyl ether precipitated solids which were filtered off and washed with diethyl ether to give intensely violet solids, respectively.

6-Hydroxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate (38a)

2,3-Diaminophenol 25 ($0.124 \mathrm{~g}, 1 \mathrm{mmol}$) was used.

Yield: 0.24 g (92 \%).
m.p.: $195-197{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.32(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $5.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.79(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, $9.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=24.1\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 95.8(\mathrm{C}-3), 113.7,116.3,120.3$, 129.8, 136.2, 149.9, 175.2, 176.6.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 362,492 \mathrm{~nm}$; $\lambda_{\max }(\mathrm{MeOH}): 368,496 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeCN}): 366,520 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3283,3050,1623,1605,1519,1448$.

GC-MS (70 eV) $m / z(\%): 188(80)\left[\mathrm{M}^{+}-1\right], 173$ (28), 148 (49), 64 (100).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$: 189.1028; found: 189.1027.

Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (286.31): C, 46.1; H, 4.9; N, 9.8; found: C, 45.7; H, 4.9; N, 9.6.

6-Hydroxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate (38b)

2,3-Diaminophenol 25 ($0.41 \mathrm{~g}, 3.3 \mathrm{mmol}$) was used.

Yield: 0.82 g (82%).
m.p.: $190-193{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.31(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $6.00(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.56(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.79(\mathrm{t}, J=8.1,1 \mathrm{H}$, $8-\mathrm{H}), 9.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 9.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 11.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}$-NMR (50 MHz, DMSO- $\left.\mathrm{d}_{6}\right)^{\mathrm{i}}: \delta=24.0\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 95.7(\mathrm{C}-3), 113.7,116.3,120.3$, 129.8, 136.2, 150.1, 175.1, 176.4.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 492 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 370,496 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 256,372,484 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3241,3073,3005,1663,1633,1607,1590,1460,1391$.

GC-MS (70 eV) $m / z(\%): 188(100)\left[\mathrm{M}^{+}-1\right], 173$ (44), 148 (46), 107 (15), 79 (11).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$: 189.1028; found: 189.1029.

Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ (302.25): C, 51.7; H, 4.3; $\mathrm{N}, 9.3$; found: $\mathrm{C}, 51.6$; $\mathrm{H}, 4.3$; N , 9.2.

6-Hydroxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium picrate (38c)

2,3-Diaminophenol 25 ($0.372 \mathrm{~g}, 3.0 \mathrm{mmol}$) was used.

Yield: 0.75 g (61 \%).
m.p.: $198-200^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.30(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $5.96(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.51(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.78(\mathrm{t}, J=8.1,1 \mathrm{H}$, $8-\mathrm{H}), 8.60$ (s, 2H, Ph-pic), 9.07 (s, 1H, NH), 9.55 (s, 1H, NH), 10.70 (s, 1H, OH).
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=24.1\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 95.7(\mathrm{C}-3), 113.8,116.2$, 120.2, 124.1, 125.2, 129.8, 136.1, 141.8, 149.9, 160.8, 175.1, 176.5.

[^24]UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 218,256,358 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 356,590 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 258,360 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3313,3083,1609,1566,1542,1429$.

GC-MS (70 eV) m/z (\%): 188 (100) $\left[\mathrm{M}^{+}-1\right], 173(33), 148(29), 91(46), 77(29), 62(85)$, 52(64).

Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{8}$ (417.33): C, $48.9 ; \mathrm{H}, 3.6 ; \mathrm{N}, 16.8$; found: $\mathrm{C}, 49.0 ; \mathrm{H}, 3.5 ; \mathrm{N}$, 16.9.

7-Hydroxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate (39a)

3,4-Diaminophenol 26 ($0.248 \mathrm{~g}, 2.0 \mathrm{mmol}$) was used.

Yield: 0.37 g (64 \%).
m.p.: $225-227^{\circ} \mathrm{C}$.

${ }^{1}$ H-NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta=1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.08(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $5.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.20(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H), $9.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 9.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}-$ NMR $\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): ~ \delta=23.7\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 94.3(\mathrm{C}-3), 110.7,113.0,123.5$, 125.2, 135.3, 158.3, 172.7, 173.7.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 482 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 342,464 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 262,346,450 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3214,3051,2981,1643,1613,1524,1481,1383$.

GC-MS (70 eV) $m / z(\%): 188(80)\left[\mathrm{M}^{+}-1\right], 173(20), 148(26), 118(16), 106(13), 51$ (35).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$: 189.1028; found: 189.1025.

7-Hydroxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate (39b)

3,4-Diaminophenol 26 ($0.248 \mathrm{~g}, 2.0 \mathrm{mmol}$) was used.

Yield: 0.526 g (87%).
m.p.: $181-183{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $5.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.20(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H), $9.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 10.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=23.6\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{3}\right), 94.2(\mathrm{C}-3), 110.8,113.0,123.5$, 125.1, 135.3, 158.4, 172.6, 173.6.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 266,330,480 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 266,344,460 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 268,284$, 346, 472 nm .

IR (KBr): $\tilde{v}=3443,3311,3086,2998,1659,1604,1538,1484,1438,1397,1208$.

GC-MS (70 eV) $m / z(\%): 188$ (100) [$\left.\mathrm{M}^{+}-1\right], 172$ (34), 146 (28), 118 (7), 6 (15), 51 (10).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$: 189.1028; found: 189.1022.

7-Hydroxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium picrate (39c)

3,4-Diaminophenol 26 ($0.248 \mathrm{~g}, 2.0 \mathrm{mmol}$) was used.

Yield: 0.59 g (71 \%).
m.p.: $228-230^{\circ} \mathrm{C}$.

${ }^{1}$ H-NMR (200 MHz, DMSO-d $_{6}$): $\delta=1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $5.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.18(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H), 8.60 (s, 2H, Ph-pic), 9.09 (s, 1H, NH), 9.78 (s, 1H, NH), $9.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}-$ NMR (50 MHz, DMSO-d ${ }_{6}$): $\delta=23.7\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 94.2(\mathrm{C}-3), 110.7,113.0,123.5$, 124.1, 125.2, 135.2, 141.8, 158.3, 160.7, 172.6, 173.6.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 204,262,352 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 284,348 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 268,286,354 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3424,3306,3080,1612,1541,1480,1432$.

GC-MS (70 eV) $m / z(\%): 188(100)\left[\mathrm{M}^{+}-1\right], 173$ (10), 146 (23), 106 (7), 77 (88), 5 (11).

Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{8}$ (417.33): C, 48.9; H, 3.6; $\mathrm{N}, 16.8$; found: C, 48.7; H, 3.8; N , 16.8.

7-Methoxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate (40a)

4-Methoxy-o-phenylenediamine dihydrochloride $27(0.422 \mathrm{~g}, 2 \mathrm{mmol})$ was used.

Yield: 0.505 g (91%).
m.p.: $210-212{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR (200 MHz, DMSO-d ${ }_{6}$): $\delta=1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.05(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.18-6.27(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 6.37-6.43(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 6.53-6.62(\mathrm{~m}$, $1 \mathrm{H}, 8-\mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=23.8\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 94.7(\mathrm{C}-3), 110.7$, 111.1, 125.4, 125.9, 135.9, 159.9, 173.0, 174.1.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 330,500 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 344,506 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeCN}): 332,520 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3407,3308,3070,3005,1642,1608,1528,1482$.

GC-MS (70 eV) $m / z(\%): 202(100)\left[\mathrm{M}^{+}-1\right], 187$ (77), 147 (24), 119 (10), 80 (11).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$: 203.1184; found: 203.1180.

7-Methoxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate (40b)

4-Methoxy-o-phenylenediamine dihydrochloride $27(1.05 \mathrm{~g}, 5 \mathrm{mmol})$ was used.

Yield: $1.16 \mathrm{~g}(73 \%)$.
m.p.: $208-210^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR (200 MHz, DMSO- $_{6}$): $\delta=1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.02(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.33-6.41(\mathrm{~m}, 2 \mathrm{H}, 6,9-\mathrm{H}), 6.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.82(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 10.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}$-NMR $\left(50 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=23.4\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 94.3(\mathrm{C}-3), 110.3$, 110.7, 125.0, 125.5, 135.5, 159.5, 172.6, 173.7.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 520 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 334,522 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 334,522 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3045,2903,1637,1602,1572,1473,1385$.

GC-MS (70 eV) $m / z(\%): 202(100)\left[\mathrm{M}^{+}-1\right], 187(77), 147$ (16), 118 (7).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$: 203.1184; found: 203.1182.

7-Methoxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium picrate (40c)

4-Methoxy-1,2-diaminobenzene dihydrochloride $27(1.056 \mathrm{~g}, 5.0 \mathrm{mmol})$ was used.

Yield: 1.83 g (86%).
m.p.: $210-212{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR ($200 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.09(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.00-6.04(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 6.39(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}, 8,9-\mathrm{H}), 8.61(\mathrm{~s}$, 2H, Ph-pic), 9.20 (s, 1H, NH), 9.83 (s, 1H, NH).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta=24.5\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{OCH}_{3}\right), 95.3(\mathrm{C}-3), 110.8$, $111.6,124.9,125.7,125.9,126.0,136.0,142.5,160.4,161.5,173.6,174.7$.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 214,264,350 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 350,524 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 266,284,358 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3321,1630,1609,1559,1521,1481,1365$.

GC-MS (70 eV) $m / z(\%): 202(100)\left[\mathrm{M}^{+}-1\right], 187(54), 159(10), 147(18), 118(11), 91(13)$, 77(7), 62(7).

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{8}$ (431.36): C, 50.1; H, 4.0; N, 16.2; found: C, $50.2 ; \mathrm{H}, 3.9 ; \mathrm{N}$, 16.0.

7-Mercapto-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate (41a)

3,4-Diaminobenzenethiol 28 ($0.14 \mathrm{~g}, 1 \mathrm{mmol}$) was used (oily product).

Yield: 0.256 g (85%).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=1.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 3.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 4.23(\mathrm{~s}, 1 \mathrm{H}, 3-$ H), $6.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.99(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=24.0\left(2 \times \mathrm{CH}_{3}\right), 95.9(\mathrm{C}-3), 121.4,124.3,127.3,133.2$, 135.1, 135.9, 175.9, 176.0.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 264,520 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 270,526 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 268,524 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=2977,1636,1590,1508,1474,1374,1283,1175$.

GC-MS (70 eV) $m / z(\%): 204$ (18) $\left[\mathrm{M}^{+}-1\right], 164$ (84), 131 (20), 96 (16), 64 (100).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}$: 205.0799; found: 205.0735.

7-Mercapto-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate (41b)

3,4-Diaminobenzenethiol 28 ($0.14 \mathrm{~g}, 1 \mathrm{mmol}$) was used.

Yield: 0.30 g (94 \%).
m.p.: $130-132{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR (200 MHz, DMSO- d_{6}): $\delta=1.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 3.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 4.21(\mathrm{~s}, 1 \mathrm{H}, 3-$ H), $6.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.98(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}-$ NMR (50 MHz, DMSO- $\left.\mathrm{d}_{6}\right): ~ \delta=23.9\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right), 95.9(\mathrm{C}-3), 121.4,124.2$, 127.2, 133.4, 135.3, 135.9, 175.7, 175.8.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 270,516 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 272,526 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 272,528 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3303,3138,3065,1673,1645,1596,1507,1478,1373$.

GC-MS (70 eV) $m / z(\%): 204(100)\left[\mathrm{M}^{+}-1\right], 163(25), 122(16), 95(11), 69(54), 51$ (26).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}: 205.0799$; found: 205.0791.

6-Carboxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate (42a)

2,3-Diaminobenzoic acid $29(0.188 \mathrm{~g}, 1.24 \mathrm{mmol})$ and concentrated HCl as a catalyst were used. Addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in excess gave the corresponding hydrogensulfate.

Yield: $0.32 \mathrm{~g}(80 \%)$.
m.p.: $182-185^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.68(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $6.82(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.08(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.56(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 10.47(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{NH})$.
${ }^{13} \mathbf{C}$-NMR (50 MHz, DMSO- $\left.\mathrm{d}_{6}\right): ~ \delta=24.4\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 98.7(\mathrm{C}-3), 121.9,127.9,128.0$, 130.8, 135.4, 138.3, 167.8, 177.5, 180.7.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 498 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 344,498 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 244,274,338 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=2956,2823,1689,1639,1594,1543,1481,1378$.

GC-MS $(70 \mathrm{eV}) m / z(\%): 216(10)\left[\mathrm{M}^{+}-1\right], 172(100), 130(87), 103$ (24), 89 (13), 77 (21), 63 (34), 51 (24).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$: 217.0970; found: 217.0973.

Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (314.32): C, 44.6; H, 4.7; $\mathrm{N}, 8.7$; found: $\mathrm{C}, 44.9$; H , 4.4; N, 8.7.

6-Carboxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate (42b)

2,3-Diaminobenzoic acid $29(0.10 \mathrm{~g}, 0.66 \mathrm{mmol})$ was used.

Yield: $0.18 \mathrm{~g}(83 \%)$.
m.p.: $177-179{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.62(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, 6.77 (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.06(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.55(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 10.75$ (br s, $2 \mathrm{H}, 2 \times \mathrm{NH}$).
${ }^{13} \mathbf{C}$-NMR (50 MHz, DMSO-d d_{6}): $\delta=12.4\left(2 \times \mathrm{CH}_{3}\right), 114.9,118.8,124.9,126.8,130.1$, 132.4, 142.9, 153.6, 158.6, 165.6.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 278,318,496 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 276,328,526 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 278,328$, 532 nm .

IR (KBr): $\tilde{v}=2969,1688,1646,1600,1547,1481,1377,1274,1194$.

GC-MS $(70 \mathrm{eV}) m / z(\%): 216(20)\left[\mathrm{M}^{+}-1\right], 172(100), 132(36), 103$ (7), 77 (7).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$: 217.0970; found: 217.0977.

7-Carboxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate (43a)

3,4-Diaminobenzoic acid $30(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ was used.

Yield: $2.85 \mathrm{~g}(90 \%)$.
m.p.: $175-178{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}$): $\delta=1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.24(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $6.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.01(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.41(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $9.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=24.0\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 96.2(\mathrm{C}-3), 123.2,124.0,130.5$, 130.6, 133.6, 138.3, 165.2, 175.5, 176.7.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 520 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 524 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeCN}): 262,520 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3433,3303,3069,3006,1704,1640,1602,1478$.

GC-MS (70 eV) $m / z(\%): 216(100)\left[\mathrm{M}^{+}-1\right], 199(11), 176(13), 159$ (15), 130 (13), $80(18)$.

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$: 217.0970; found: 217.0976.

7-Carboxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate (43b)

3,4-Diaminobenzoic acid $\mathbf{3 0}$ ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$) was used.

Yield: $0.82 \mathrm{~g}(50 \%)$.
m.p.: $185-187^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.24(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $6.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.02(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.42(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 9.84 (br s, $2 \mathrm{H}, 2 \times \mathrm{NH}$).
${ }^{13} \mathbf{C}-$ NMR $\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): ~ \delta=23.9\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right), 96.2(\mathrm{C}-3), 123.2,124.0,130.6$, 130.7, 133.7, 138.3, 165.1, 175.5, 176.7.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 520 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 328,524 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 330,524 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3302,3019,1646,1601,1477,1363$.

GC-MS (70 eV) $m / z(\%): 216(100)\left[\mathrm{M}^{+}-1\right], 199(11), 171$ (12), 159 (12), 130 (16), 69 (21), 51 (20).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$: 217.0970; found: 217.0979.

7-Carboxy-2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium picrate (43c)

3,4-Diaminobenzoic acid $\mathbf{3 0}(1.52 \mathrm{~g}, 10.0 \mathrm{mmol})$ was used.

Yield: 3.87 g (88%).
m.p.: $205-207^{\circ} \mathrm{C}$.

${ }^{1}$ H-NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta=1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $6.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}$, Ph-pic), 8.61 (s, 1H, Ph-pic), 9.63 (s, 1H, NH), 9.85 (s, 1H, NH), 13.15 (br s, 1H, COOH).
${ }^{13}$ C-NMR (50 MHz, DMSO-d ${ }_{6}$): $\delta=24.1\left(2 \times \mathrm{CH}_{3}\right), 96.1(\mathrm{C}-3), 123.1,124.0,124.1,125.2$, $130.6,133.5,133.5,138.2,141.8,165.1,175.3,176.5$.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 268,354 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 352,524 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 242,270,360 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3310,3071,3003,1692,1631,1600,1568,1554,1520,1435$.

GC-MS (70 eV) m/z (\%): 216 (100) [$\left.\mathrm{M}^{+}-1\right], 199(16), 171(21), 159(13), 130(29), 103(13)$, 91(31), 77(28), 63(52), 53(29).

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{9}$ (445.34): C, 48.5; H, 3.4; $\mathrm{N}, 15.7$; found: $\mathrm{C}, 48.6 ; \mathrm{H}, 3.4 ; \mathrm{N}$, 15.4.

7,7'-Dithiobis(2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium hydrogensulfate) (44a)

Bis(3,4-diaminophenyl)disulfide $35(0.208 \mathrm{~g}, 0.75 \mathrm{mmol})$ was used.

Yield: 0.361 g (87%).
m.p.: $170-172{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR (200 MHz, DMSO- d_{6}): $\delta=1.78\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right), 4.23\left(\mathrm{~s}, 2 \mathrm{H}, 3,3^{\prime}-\mathrm{H}\right), 6.49(\mathrm{~d}, \mathrm{~J}=$ $\left.8.3 \mathrm{~Hz}, 2 \mathrm{H}, 9,9^{\prime}-\mathrm{H}\right), 6.61\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 6,6^{\prime}-\mathrm{H}\right), 6.99\left(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}, 8,8^{\prime}-\mathrm{H}\right)$, $9.68(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{NH}), 9.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{NH})$.
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): ~ \delta=24.0\left(2 \times \mathrm{CH}_{3}\right), 24.1\left(2 \times \mathrm{CH}_{3}\right), 95.9\left(\mathrm{C}-3,3^{\prime}\right), 121.4$, 124.3, 127.3, 133.2, 135.2, 135.9, 175.8, 175.9.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 536 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 270,528 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 220,270 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3421,3208,3049,2982,1636,1592,1507,1474,1374$.

GC-MS (70 eV) $m / z(\%): 204$ (7) $\left[\mathrm{M}^{2+} / 2\right], 64$ (100), 58 (11).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{~S}_{2}$: 407.1372; found: 407.1368.

7,7'-Dithiobis(2,4-dimethyl-5H-benzo[b][1,4]diazepin-1-ium trifluoroacetate) (44b)

Bis-(3,4-diaminophenyl)disulfide 35 ($0.062 \mathrm{~g}, 0.223 \mathrm{mmol}$) was used.

Yield: 0.092 g (65%).
m.p.: $138-142{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=1.77\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, 3,3^{\prime}-\mathrm{H}\right), 6.48(\mathrm{~d}, \mathrm{~J}=$ $\left.7.7 \mathrm{~Hz}, 2 \mathrm{H}, 9,9^{\prime}-\mathrm{H}\right), 6.61\left(\mathrm{~s}, 2 \mathrm{H}, 6,6^{\prime}-\mathrm{H}\right), 6.98\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 8,8^{\prime}-\mathrm{H}\right), 9.96(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 4 \times$ NH).
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=23.9\left(2 \times \mathrm{CH}_{3}\right), 24.0\left(2 \times \mathrm{CH}_{3}\right), 95.9\left(\mathrm{C}-3,3^{\prime}\right), 121.4$, 124.2, 127.2, 133.3, 135.3, 135.9, 175.7, 175.9.

UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right): 268,518 \mathrm{~nm} ; \lambda_{\max }(\mathrm{MeOH}): 272,528 \mathrm{~nm} ; \lambda_{\max }(\mathrm{EtOH}): 270,526 \mathrm{~nm}$.

IR (KBr): $\tilde{v}=3418,3301,3058,2559,1672,1597,1506,1480,1377,1202,1132$.

GC-MS (70 eV) $m / z(\%): 204$ (59) [$\left.\mathrm{M}^{2+} / 2\right], 189$ (11), 164 (100), 140 (38), 122 (21), 96 (23), 69 (25), 51 (16).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{~S}_{2}$: 407.1372; found: 407.1364.

General procedure for the preparation of the 2,4-dimethyl-5H-benzo[b][1,4]diazepine derivatives (45, 46, 47, 53 and 57)

A solution of $\mathbf{3 8 b} \mathbf{- 4 3 b}(1 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$ was neutralized with 0.1 N NaOH until the color of the solution changed to light yellow. The diimines were extracted with ethylacetate (2 $\times 30 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and evaporated in vacuo to afford the diimines. Purification of derivative $\mathbf{5 7}$ was accomplished by evaporation of the aqueous solution and extraction of the solids with methanol.

6-Hydroxy-2,4-dimethyl-3H-benzo[b][1,4]diazepine (45)

Salt $\mathbf{3 8 b}(0.302 \mathrm{~g}, 1.0 \mathrm{mmol})$ was used.

Yield: 0.412 g (74 \%).
m.p.: $195-197^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.82(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{H})$, $6.66(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.73(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}$-NMR (50 MHz, DMSO- d_{6}): $\delta=27.0\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 43.3(\mathrm{C}-3), 109.4,117.4,124.8$, 128.6, 140.6, 152.1, 157.6, 157.7.

IR (KBr): $\tilde{v}=3159,2997,1633,1560,1464,1446$.

GC-MS $(70 \mathrm{eV}) m / z(\%): 188(100)\left[\mathrm{M}^{+}\right], 173(41), 148$ (39), 107 (16).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$: 189.1028; found: 189.1029.

Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (188.23): C, 66.9; H, 6.6; $\mathrm{N}, 14.2$; found: C, 66.5; H , 6.3; N, 13.7.

7-Hydroxy-2,4-dimethyl-3H-benzo[b][1,4]diazepine (46)

Salt $\mathbf{3 9 b}$ ($0.302 \mathrm{~g}, 1.0 \mathrm{mmol}$) was used.

Yield: 0.165 g (88%).
m.p.: $155-157^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.83(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{H}), 6.72-6.78(\mathrm{~m}, 2 \mathrm{H}$, 6,9-H), 7.14-7.19 (m, 1H, 8-H), 9.12 (br s, 1H, OH).
${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.1\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{3}\right), 47.8(\mathrm{C}-3), 116.6,118.9,133.3$, 138.2, 146.1, 158.9, 159.9, 162.0.

IR (KBr): $\tilde{v}=3039,2783,1628,1607,1555,1456,1379$.

GC-MS (70 eV) $m / z(\%): 189$ (100) [$\left.\mathrm{M}^{+}+1\right], 171$ (5), 145 (21).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$: 189.1028; found: 189.1020.

7-Methoxy-2,4-dimethyl-3H-benzo[b][1,4]diazepine (47)

Salt 40 b ($0.316 \mathrm{~g}, 1.0 \mathrm{mmol}$) was used (oily product).

Yield: 0.16 g (78 \%).

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{H})$, $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82-6.88(\mathrm{~m}, 2 \mathrm{H}, 6,9-\mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.5\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 43.7(\mathrm{C}-3), 55.4\left(\mathrm{OCH}_{3}\right), 109.1$, 114.0, 128.8, 134.3, 141.1, 155.3, 156.4, 157.2.

IR (KBr): $\tilde{v}=3380,2994,2940,2907,1630,1602,1549,1478,1438$.

GC-MS (70 eV) $m / z(\%): 202(100)\left[\mathrm{M}^{+}\right], 187(69), 147(20), 119(8)$.

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$: 203.1184; found: 203.1182.

7,7'-Dithiobis(2,4-dimethyl-3H-benzo[b][1,4]diazepine) (53)

Salt 41b ($0.32 \mathrm{~g}, 1.0 \mathrm{mmol}$) was used.

Yield: 0.20 g (88%).
m.p.: $104-106{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.82(\mathrm{~s}, 4 \mathrm{H}, 3-$ H), 7.26-7.34 (m, 4H, 8,9-H), 7.51-7.53 (m, 2H, 6-H).
${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.7\left(4 \times \mathrm{CH}_{3}\right), 43.5\left(\mathrm{C}-3,3^{\prime}\right), 124.2,126.1,128.4,133.1$, 139.4, 140.5, 158.0, 158.5 .

IR (KBr): $\tilde{v}=3385,1633,1585,1458,1427,1288,1253$.

GC-MS (70 eV) $m / z(\%): 406(38)\left[\mathrm{M}^{+}\right], 204$ (100), 163 (35), 122 (23), 77 (11), 63 (10).

HRMS (ESI-Tof): calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{~S}_{2}$: 407.1364; found: 407.1359.

Sodium, 2,4-dimethyl-3H-benzo[b][1,4]diazepine -7-carboxylate (57)

Salt 43b ($0.314 \mathrm{~g}, 1.0 \mathrm{mmol}$) was used.

Yield: 0.15 g (63 \%).
m.p.: $>250^{\circ} \mathrm{C}$ (dec.).

${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=2.28\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.32(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{H}), 7.14(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.2 \mathrm{~Hz}, 9-\mathrm{H}), 7.71(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.7 \mathrm{~Hz}, 8-\mathrm{H}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, 6-\mathrm{H})$.
${ }^{13}$ C-NMR (50 MHz, DMSO-d d_{6}): $\delta=27.1\left(2 \times \mathrm{CH}_{3}\right), 42.8(\mathrm{C}-3), 125.3,125.7,128.0,136.5$, 139.0, 140.4, 157.9, 158.3, 169.6.

IR (KBr): $\tilde{v}=3382,1634,1582,1536,1384$.

ESI-MS (anion detection mode): $m / z(\mathrm{amu}): 454.1[2 \mathrm{M}+\mathrm{Na}], 215.1$ [M].

HRMS (ESI-Tof, cation detection mode): calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: 217.0977; found: 217.0977.

4.3. Experiments to chapter 3.2.1.

11a-Methyl-1,2,3,11a-tetrahydro-10H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11-dione (60)

Isatoic anhydride ($1.84 \mathrm{~g}, 11.3 \mathrm{mmol}$) and 2-methyl-proline ($1.47 \mathrm{~g}, 11.3 \mathrm{mmol}$) were dissolved in DMF (10 mL) and were then heated under reflux for 3 h . After cooling, the solvent was removed under reduced pressure to yield an oily residue. Purification by flash column chromatography on silica gel using petroleum ether/EtOAc (5:1) afforded $\mathbf{6 0}$ as a colorless solid.

Yield: $0.20 \mathrm{~g}(77 \%)$.
m.p.: 203-204 ${ }^{\circ} \mathrm{C}$.

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+385.9\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74-1.96(\mathrm{~m}, 3 \mathrm{H}, 1,2-\mathrm{H}), 3.06-3.22(\mathrm{~m}$, $1 \mathrm{H}, 1-\mathrm{H}), 3.64-3.78(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.92-4.02(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 6.99(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H), $7.20-7.28(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 7.43-7.51(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 8.02(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 8.66$ (br s, 1H, NH).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.7(\mathrm{C}-2), 22.1\left(\mathrm{CH}_{3}\right), 38.7(\mathrm{C}-1), 49.8(\mathrm{C}-3), 66.28(\mathrm{C}-$ 11a), 119.7, 124.6, 126.0, 131.4, 132.6, 135.3, 165.1 (CO), 173.3 (CO).

IR (KBr): $\tilde{v}=3227(\mathrm{~N}-\mathrm{H}), 3069,2997,1677(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{O}), 1483,1435,1404,1361$, 1256, 1180.

GC-MS (70 eV) $m / z(\%): 230(99)\left[\mathrm{M}^{+}\right], 187$ (100), 119 (16), 84 (54), 63 (17).

Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (230.26): $\mathrm{C}, 67.8 ; \mathrm{H}, 6.1$; $\mathrm{N}, 12.2$; found: $\mathrm{C}, 67.5 ; \mathrm{H}, 6.1$; N , 12.1.

11a-Methyl-11-thioxo-1,2,3,10,11,11a-hexahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5-one (62)

A mixture of dilactam $\mathbf{6 0}(2.30 \mathrm{~g}, 10.0 \mathrm{mmol})$ and Lawesson's ragent $(2.02 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF (40 mL) was stirred over night at room temperature. Evaporation of solvent in vacuo gave a solid residue, which was purified by flash chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone (100:1) to give pure monothiolactam $\mathbf{6 2}$ as a yellow solid. colorless solid.

Yield: 1.77 g (72 \%).
m.p.: $258-260^{\circ} \mathrm{C}$.

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+113.1\left(c=0.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR (200 MHz, DMSO-d d_{6}): $\delta=1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71-1.86(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 1.90-2.09$ (m, 1H, 1-H), 3.40-3.61 (m, 2H, 1,3-H), 3.71-3.81 (m, 1H, 3-H), 7.29-7.37 (m, 2H, 8,9-H), $7.53-7.62(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.83(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 12.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=20.6(\mathrm{C}-2), 22.2\left(\mathrm{CH}_{3}\right), 42.4(\mathrm{C}-1), 49.4(\mathrm{C}-3), 66.3(\mathrm{C}-$ 11a), 120.7, 125.4, 126.4, 130.4, 132.4, 136.6, 163.6 (CO), 205.0 (CS).

IR (KBr): $\tilde{v}=3178(\mathrm{~N}-\mathrm{H}), 2968,1605(\mathrm{C}=\mathrm{O}), 1582,1519,1479,1419,1352,1270,1146$, 1108, 1076.

GC-MS (70 eV) $m / z(\%): 247$ (24) [M $\left.{ }^{+}+1\right], 162$ (8), 84 (100).

Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (230.26): C, 63.4; H, 5.7; $\mathrm{N}, 11.4$; found: C, 63.2; H, 5.6; N , 11.3.

11-Amino-1,2,3,11a-tetrahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5-one (63)

To a solution of thiolactam $61(1.16 \mathrm{~g}, 5.0 \mathrm{mmol})$ in anhydrous THF (50 mL) was added $\mathrm{HgCl}_{2}(1.63 \mathrm{~g}, 6.0 \mathrm{mmol})$ and pure anhydrous ammonia was bubbled through the mixture for 1 h at $60^{\circ} \mathrm{C}$. After cooling, the resulting suspension was filtered off through a pad of Celite and eluted with methanol. The organic solution was evaporated under reduced pressure at room temperature. Addition of an acetone/ether mixture afforded a white solid which was washed with ether and recrystallized from anisole/methanol.

Yield: 0.925 g (86 \%).
m.p.: $>240^{\circ} \mathrm{C}$ (dec.).

$[\alpha]_{\mathrm{D}}{ }^{20}=+510.5(c=1.0$ in DMSO $)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=1.91-2.00(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.43-$ $2.59(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 3.35-3.42(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.63-3.69(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$,
$11 \mathrm{a}-\mathrm{H}), 7.15$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.22$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.28-7.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NH_{2}), 7.49-7.54 (m, 1H, 7-H), 7.79 (dd, $\left.J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right)$.
${ }^{13}$ C-NMR (50 MHz, DMSO-d d_{6}): $\delta=24.0(\mathrm{C}-2), 26.7(\mathrm{C}-1), 47.4$ (C-3), 55.1 (C-11a), 124.6, 125.1, 127.7, 131.0, 132.8, 141.3, 164.3, 165.4 (CO).

IR (KBr): $\tilde{v}=3125(\mathrm{~N}-\mathrm{H}), 1614(\mathrm{C}=\mathrm{O}), 1578,1456,1239$.

GC-MS (70 eV) $m / z(\%): 215(39)\left[\mathrm{M}^{+}\right], 70(100)$.

Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (215.25): C, 66.9; H, 6.1; N, 19.5; found: C, 66.7; H, 6.3; N, 19.6.

11-Methylamino-1,2,3,11a-tetrahydro-benzo[e]pyrrolo[1,2-a]diazepin-5-one (64)

To a suspension of monothiolactam $61(2.32 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{HgCl}_{2}(3.26 \mathrm{~g}, 12 \mathrm{mmol})$ in THF (100 mL) was added a $2 M$ solution of monomethylamine in THF ($20 \mathrm{~mL}, 40 \mathrm{mmol}$) at room temperature and stirred for 30 min at the same temperature. The mixture was heated at reflux for 15 min . After cooling, the mixture was filtered off through a plug of Celite and dried over MgSO_{4}. Evaporatin of solvent in vacuo gave a white solid residue, which was recrystallized from acetonitril to afford $\mathbf{6 4}$ as colorless crystals.

Yield: 1.90 g (83 \%).
m.p.: 204-206 ${ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+1190.4\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.99-2.14(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.18-2.27(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 3.00(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.56-3.63(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.85-3.91(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.03(\mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $11 \mathrm{a}-\mathrm{H}$), 5.18 (br s, 1H, NH), $7.08-7.12$ (m, 1H, $8-\mathrm{H}$), 7.14 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}$), 7.40 (ddd, $J=8.0,7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.96(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.2(\mathrm{C}-2), 27.1(\mathrm{C}-1), 29.0\left(\mathrm{CH}_{3}\right), 46.9(\mathrm{C}-3), 54.8(\mathrm{C}-$ 11a), 122.6, 126.9 (C-11), 127.3, 130.4, 132.1, 147.9, 157.6, 167.1 (CO).

IR (KBr): $\tilde{v}=3304(\mathrm{~N}-\mathrm{H}), 3061,2887,1620(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{N}), 1536,1453,1406,1226$, 1149.

GC-MS $(70 \mathrm{eV}) m / z(\%): 230(100)\left[\mathrm{M}^{+}+1\right]$.

Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ (229.28): C, 68.1; H, 6.6; $\mathrm{N}, 18.3$; found: $\mathrm{C}, 68.2 ; \mathrm{H}, 6.7 ; \mathrm{N}, 18.4$.

General procedure for preparation of the 11-substituted pyrrolobenzo[1,4]diazepin-5-ones (65-67)

To a stirred suspension of the monothiolactam $\mathbf{6 1}$ and $\mathbf{6 2}(1.16 \mathrm{~g}$ and $1.23 \mathrm{~g}, 5.0 \mathrm{mmol})$ and the corresponding amine $(5.0 \mathrm{~mL})$ was added $\mathrm{HgCl}_{2}(1.75 \mathrm{~g}, 6.5 \mathrm{mmol})$ at $80-90^{\circ} \mathrm{C}$, and the mixture was stirred for further 30 min at this temperature. After cooling to room temperature, chloroform (100 mL) was added and the mixture was filtered through a plug of Celite. The filtrate was then dried over MgSO_{4}, filtered, and the solvent and excess amine were evaporated under reduced pressure. The resultant solid was purified by recrystallization in an appropriate solvent to afford pure colorless crystals in very good yield.

11-Phenylamino-1,2,3,11a-tetrahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5-one (65)

Using starting materials 61 and aniline afforded a crude product which was purified by crystallization from 2-propanol to yield $\mathbf{6 5}$ as colorless crystals.

Yield: 1.32 g (91 \%).
m.p.: $150-152{ }^{\circ} \mathrm{C}$.

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.05-2.24(\mathrm{~m}, 3 \mathrm{H}, 1,2-\mathrm{H}), 3.03-3.05(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 3.67-$ $3.74(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.86-3.92(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.10-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.32-7.41$ (m, 3H, Ph), 7.95 (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right)$ of 8A: $\delta=1.90-2.22(\mathrm{~m}, 3 \mathrm{H}, 1,2-\mathrm{H}), 2.80-2.84(\mathrm{~m}, 1 \mathrm{H}, 1-$ H), $3.50-3.57(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.63-3.72(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}), 6.75(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.01-7.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.36-7.40(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$, 7.73 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right)$ of 8B: $\delta=1.90-2.22(\mathrm{~m}, 3 \mathrm{H}, 1,2-\mathrm{H}), 2.80-2.84(\mathrm{~m}, 1 \mathrm{H}, 1-$ H), $3.33-3.44(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.63-3.72(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}), 7.01-$ 7.13 (m, 3H, Ph), 7.29-7.34 (m, 2H, Ph), 7.40-7.41 (m, 1H, 7-H), 7.78 (dd, $J=7.9,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.8(\mathrm{C}-2), 27.2(\mathrm{C}-1), 47.8(\mathrm{C}-3), 57.1(\mathrm{C}-11 \mathrm{a}), 120.7$, 121.6, 124.2, 124.3, 126.9 (C-11), 130.4, 131.6, 132.6, 137.1, 148.1, 154.0, 166.4 (CO).
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$ of 8A: $\delta=23.8(\mathrm{C}-2), 27.4(\mathrm{C}-1), 47.6(\mathrm{C}-3), 57.3(\mathrm{C}-11 \mathrm{a})$, 122.1, 122.7, 123.5, 123.7, 127.4 (C-11), 130.2, 130.9, 132.5, 138.7, 149.2, 153.7, 165.8 (CO).
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right)$ of 8B: $\delta=24.50(\mathrm{C}-2), 26.8(\mathrm{C}-1), 47.1(\mathrm{C}-3), 55.9(\mathrm{C}-$ 11a), 122.3, 122.9, 123.4, 124.1, 127.3 (C-11), 129.1, 130.4, 132.1, 140.5, 147.6, 155.8, 166.0 (CO).

IR (KBr): $\tilde{v}=3273(\mathrm{~N}-\mathrm{H}), 3246,2945,2876,1649(\mathrm{C}=\mathrm{O}), 1624,1593,1475,1416,1377$, 1264, 1223.

GC-MS (70 eV) $m / z(\%): 291$ (100) [$\left.\mathrm{M}^{+}\right], 251$ (6), 221 (37), 187 (14), 160 (18), 119 (28), 92 (25), 77 (40), 51 (28).

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3}$ (291.35): C, 74.2; H, 5.9; N, 14.4; found: C, 74.2; H, 5.9; N, 14.3.

11a-Methyl-11-phenylamino-1,2,3,11a-tetrahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5one (66)

Using starting materials $\mathbf{6 2}$ and aniline gave $\mathbf{6 6}$ as colorless crystals after crystallization from nitromethane.

Yield: 1.31 g ($86 \%)$.
m.p.: $182-184^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+530.5\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89-2.01(\mathrm{~m}, 3 \mathrm{H}, 1,2-\mathrm{H}), 3.40-3.46(\mathrm{~m}$, $1 \mathrm{H}, 1-\mathrm{H}), 3.74-3.81(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 6.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ph}), 6.60$ (br s, 1H, NH), 6.89 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.09-7.14(\mathrm{~m}, 2 \mathrm{H}, 8,9-\mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}, 7-$ H), 7.48-7.42 (m, 2H, Ph), 7.96 (dd, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.9(\mathrm{C}-2), 24.4\left(\mathrm{CH}_{3}\right), 39.8(\mathrm{C}-1), 50.4(\mathrm{C}-3), 63.7(\mathrm{C}-$ 11a), 119.3, 121.5, 123.8, 124.2, 125.7 (C-11), 130.5, 131.9, 132.7, 137.4, 148.2, 156.3, 166.0 (CO).

IR (KBr): $\tilde{v}=3376(\mathrm{~N}-\mathrm{H}), 3218,3055,2968,1651(\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{N}), 1597,1536,1437$, 1354, 1222, 759, 699.

GC-MS (70 eV) $m / z(\%): 306(100)\left[\mathrm{M}^{+}+1\right]$.

Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (305.37): C, 74.7; H, 6.3; $\mathrm{N}, 13.8$; found: $\mathrm{C}, 74.4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 13.7$.

Using starting materials $\mathbf{6 1}$ and piperidine afforded a crude product which was purified by crystallization from diethylether to give $\mathbf{6 7}$ as colorless crystals.

Yield: 1.26 g (89 \%).
m.p.: $105-107^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): ~ \delta=1.64\left(\mathrm{~s}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.98-$ $2.07(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.22-2.43(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 3.03-3.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.26-3.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$, $3-\mathrm{H}), 3.83-3.89$ (m, 1H, 3-H), 3.95 (dd, $J=7.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}$), 7.05 (dd, $J=8.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 7.45$ (ddd, $J=8.0,7.2, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.76$ (dd, $J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=24.4(\mathrm{C}-2), 24.8\left(\mathrm{CH}_{2}\right), 26.1(\mathrm{C}-1), 29.2\left(2 \times \mathrm{CH}_{2}\right)$, $47.2(\mathrm{C}-3), 50.6\left(2 \times \mathrm{CH}_{2}\right), 56.7(\mathrm{C}-11 \mathrm{a}), 123.6,126.2(\mathrm{C}-11), 127.0,130.2,132.1,147.2$, 164.5, 166.1 (CO).

IR (KBr): $\tilde{v}=3141,2935,2857,2833,1629(\mathrm{C}=\mathrm{O}), 1605,1593,1452,1405,1375,1240$.

GC-MS $(70 \mathrm{eV}) m / z(\%): 283(100)\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ (283.37): C, 72.1; H, 7.5; $\mathrm{N}, 14.8$; found: C, 72.0; H, 7.5; $\mathrm{N}, 14.9$.

11-(N-Phenyl)imino-10-methyl-1,2,3,11a-tetrahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5one (68)

To a suspension of $\mathrm{NaH}(60 \%$ in mineral oil) ($20 \mathrm{mg}, 0.5 \mathrm{mmol}$), which had been washed with n-hexane ($2 \times 10 \mathrm{~mL}$), in anhydrous dimethoxyethane (20 mL) was added cycloamidine $65(146 \mathrm{mg}, 0.5 \mathrm{mmol})$ portionwise at room temperature under nitrogen. A reaction occurred whereupon the color changed to yellow. To the resulting solution was added $\mathrm{CH}_{3} \mathrm{I}(0.5 \mathrm{~mL})$
and the mixture was then stirred for further 30 min at room temperature. Evaporation of the solvent and excess $\mathrm{CH}_{3} \mathrm{I}$ yielded N -methylated cycloamidine $\mathbf{6 8}$ as a colorless solid.

Yield: $0.15 \mathrm{~g}(98 \%)$.
m.p.: $65-68^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.88-1.96(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.77-2.83$ $(\mathrm{m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.60-3.67(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.80-3.85(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.28(\mathrm{~d}, J=$ 6.7 Hz, 1H, 11a-H), 6.82 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.13$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.23-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1H, 6-H).
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.0(\mathrm{C}-2), 28.3(\mathrm{C}-1), 42.4\left(\mathrm{CH}_{3}\right), 46.9(\mathrm{C}-3), 60.2(\mathrm{C}-$ 11a), 120.8, 122.0, 123.5, 125.7, 129.0, 130.0, 131.5 (C-11), 132.4, 144.4, 149.9, 153.3, 166.5 (CO).

IR (KBr): $\tilde{v}=3347,2968,2875,1637(\mathrm{C}=\mathrm{O}), 1591,1457,1412,1359$.

GC-MS (70 eV) $m / z(\%): 306(100)\left[\mathrm{M}^{+}+1\right]$.

Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (305.37): C, 74.7; H, 6.3; $\mathrm{N}, 13.8$; found: C, 74.4; H, 6.2; $\mathrm{N}, 13.6$.

4.4. Experiments to chapter 3.3.1.

General procedure for preparation of the 2-hydroxy-4-oxopyrimidines and 2,4-dioxopyrimidines (69-76)

A mixture of the cycloamidines 63-65, respectively, (1.0 eq.) and 2-phenyl bis-2,4,6trichlorophenyl malonate (1.0 eq.) was heated at $170-180^{\circ} \mathrm{C}$ for 10 min in a Zincke apparatus
under high vacuum. The residue was treated with diethyl ether $(20 \mathrm{~mL})$ to give a precipitate which was collected by filtration and washed with diethylether. The crude solids were purified by crystallization in an appropriate solvent.

2-Ethyl-3-hydroxy-4b,5,6,7-tetrahydro-4,7a, 12b-triaza-dibenzo[e,g]azulene-1,8-dione (69)

Cycloamidine 63 ($0.430 \mathrm{~g}, 2.0 \mathrm{mmol}$) and 2-ethyl bis(2,4,6-trichlorophenyl)malonate (0.982 $\mathrm{g}, 2.0 \mathrm{mmol}$) were used, to give colorless crystals after crystallization from nitromethane.

Yield: $0.529 \mathrm{~g}(85 \%)$.
m.p.: $>250^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}^{20}}=-6.1(c=0.5$ in DMSO $)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=1.00\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92-1.98(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, 2.01-2.12 (m, 2H, 5,6-H), 2.35 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.74-2.81 (m, 1H, 5-H), 3.38-3.45 $(\mathrm{m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.61-3.66(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.48-4.50(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 7.49-7.51(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{H})$, $7.51-7.55(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 7.61(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.79(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $9-\mathrm{H}), 11.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}$-NMR (100 MHz, DMSO-d d_{6}): $\delta=13.3\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{2}\right), 24.2(\mathrm{C}-6), 27.0(\mathrm{C}-5), 47.0$ (C-7), 58.9 (C-4b), 103.5 (C-2), 129.2, 129.7, 129.8, 131.1, 132.7, 133.8, 157.4 (C-4a), 163.6, 163.9, 164.3.

IR (KBr): $\tilde{v}=1650,1554,1458$.

GC-MS (70 eV) $m / z(\%): 311$ (100) $\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.5\left(\mathrm{H}_{2} \mathrm{O}\right)(311.34)$: C, 63.7; $\mathrm{H}, 5.7$; $\mathrm{N}, 13.1$; found: $\mathrm{C}, 63.5$; H , 5.5; N, 13.3.

2-Benzyl-3-hydroxy-4b,5,6,7-tetrahydro-4,7a,12b-triaza-dibenzo[e,g]azulene-1,8-dione (70)

Cycloamidine 63 ($0.430 \mathrm{~g}, 2.0 \mathrm{mmol}$) and 2-benzyl bis(2,4,6-trichlorophenyl)malonate (1.106 $\mathrm{g}, 2.0 \mathrm{mmol}$) were used to afford colorless crystals after crystallization from methanol.

Yield: $0.537 \mathrm{~g}(72 \%)$.
m.p.: $>250^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-29.6(c=0.5$ in DMSO $)$.

${ }^{1} \mathbf{H}-$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.92-1.97(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.01-2.14(\mathrm{~m}, 2 \mathrm{H}, 5,6-\mathrm{H})$, $2.75-2.77(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37-3.44(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.58-3.69(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$, $4.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.21-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.48(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 7.59-7.64(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 7.80(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{H}), 11.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathbf{C}-$ NMR (100 MHz, DMSO- d_{6}): $\delta=24.1(\mathrm{C}-6), 27.0(\mathrm{C}-5), 29.6\left(\mathrm{CH}_{2}\right), 47.0(\mathrm{C}-7), 58.9(\mathrm{C}-$ 4b), 101.6 (C-2), 126.6, 129.0, 129.2, 129.3, 129.7, 129.8, 131.1, 132.6, 133.8, 141.4, 158.0 (C-4a), 163.8, 164.2, 164.5.

IR (KBr): $\tilde{v}=1667,1626,1604,1558,1458$.

GC-MS $(70 \mathrm{eV}) m / z(\%): 373(100)\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.5\left(\mathrm{H}_{2} \mathrm{O}\right)$ (373.40): C, 69.1; H, 5.3; N, 11.0; found: C, 68.9; H, 5.3; N, 10.8.

Cycloamidine $64(0.458 \mathrm{~g}, 2.0 \mathrm{mmol})$ and 2-benzyl bis(2,4,6-trichlorophenyl)malonate (0.982 $\mathrm{g}, 2.0 \mathrm{mmol})$ were used. The crude product was recrystallized from xylene to afford a pale yellow crystals.

Yield: 0.507 g (78 \%).
m.p.: $185-187^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.16\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.04-2.16(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, 2.09 (dd, $J=7.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.20-2.28(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.72-2.77(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H})$, $3.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.25-3.28(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.00-4.06(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 7.35(\mathrm{dd}, J=8.2,0.8$ $\mathrm{Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 7.59$ (ddd, $J=8.1,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 8.05$ (dd, $J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{2}\right), 20.9(\mathrm{C}-6), 29.7(\mathrm{C}-5), 29.7$ $\left(\mathrm{NCH}_{3}\right), 49.7$ (C-7), 53.6 (C-2), 120.6, 125.8, 127.7, 129.0, 129.7, 132.6, 133.6, 140.5, 165.6 (CO), 167.1 (CO), 168.4 (CO).

IR (KBr): $\tilde{v}=1681,1632,1574,1489,1452$.

GC-MS (70 eV) $m / z(\%): 325(100)\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (325.36): C, 66.5; H, 5.9 ; $\mathrm{N}, 12.9$; found: $\mathrm{C}, 66.4 ; \mathrm{H}, 5.9$; N , 12.9.

Starting materials cycloamidine $\mathbf{6 4}$ and 2-phenyl-bis(2,4,6-trichlorophenyl) malonic acid ester $(2.695 \mathrm{~g}, 5.0 \mathrm{mmol})$ were used. The crude product was purified by crystallization from 2propanol to give $\mathbf{7 2}$ as faintly yellow crystals.

Yield: 1.417 g (76 \%).
m.p.: $225-227^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94-1.07(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 1.67-1.85(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.04-2.10$ $(\mathrm{m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.35-2.44(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.54-3.60(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.69-$ 3.75 (m, 1H, 7-H), $4.82(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.27-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.38-7.45(\mathrm{~m}, 2 \mathrm{H}, 11,12-\mathrm{H})$, 7.62 (ddd, $J=8.0,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 8.03(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.3(\mathrm{C}-6), 29.3(\mathrm{C}-5), 35.6\left(\mathrm{CH}_{3}\right), 49.3(\mathrm{C}-7), 61.5(\mathrm{C}-2)$, 120.6 (C-4b), 126.0, 126.4, 128.1, 128.5, 129.0 (C-4a), 129.3, 131.0, 132.2, 132.7, 133.8, 140.1, 165.3 (CO), 166.7 (CO), $168.4(\mathrm{CO})$.

IR (KBr): $\tilde{v}=3082,2972,1724(\mathrm{C}=\mathrm{O}), 1697(\mathrm{C}=\mathrm{O}), 1682(\mathrm{C}=\mathrm{O}), 1632,1493,1452,1380$, 1354, 1258, 1155.

GC-MS (70 eV) $m / z(\%): 373$ (100) $\left[\mathrm{M}^{+}\right], 344$ (27), 305 (7), 256 (8), 187 (22), 118 (18), 89 (17), 63 (12).

Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (373.40): C, $70.8 ; \mathrm{H}, 5.1 ; \mathrm{N}, 11.2$; found: $\mathrm{C}, 70.5 ; \mathrm{H}, 5.2$; N , 11.0.

Cycloamidine $64(0.458 \mathrm{~g}, 2.0 \mathrm{mmol})$ and 2-benzyl bis(2,4,6-trichlorophenyl)malonate (0.982 $\mathrm{g}, 2.0 \mathrm{mmol}$) were used. The crude product was purified by crystallization from xylene to yield pale yellow crystals.

Yield: 0.619 g (80%).
m.p.: $185-187^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.95-2.06(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.14-2.19(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.62-2.72$ $(\mathrm{m}, 2 \mathrm{H}, 5-\mathrm{H}), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.42\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.57-3.60(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $3.91-4.01(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 7.21-7.42(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 8.01(\mathrm{dd}, J=7.7$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.7(\mathrm{C}-6), 29.3(\mathrm{C}-5), 29.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 35.7\left(\mathrm{NCH}_{3}\right), 49.7$ (C-7), 54.9 (C-2), 120.2, 125.7, 126.8, 127.8, 128.8, 129.0, 129.2, 130.1, 132.7, 133.7, 140.4, 140.6, 165.5 (CO), 166.7 (CO), 168.0 (CO).

IR (KBr): $\tilde{v}=1721,1682,1644,1597,1487,1450$.

GC-MS (70 eV) $m / z(\%): 387(100)\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (387.16): C, 71.3; H, 5.5; $\mathrm{N}, 10.8$; found: $\mathrm{C}, 71.4 ; \mathrm{H}, 5.5$; N , 11.6 .

2-Ethyl-4-phenyl-4,5,6,7-tetrahydro-4,7a,12b-triaza-dibenzo[e,g]azulene-1,3,8-trione (74)

Cycloamidine $\mathbf{6 5}$ ($0.582 \mathrm{~g}, 2.0 \mathrm{mmol}$) and 2-benzyl bis(2,4,6-trichlorophenyl)malonate (0.982 $\mathrm{g}, 2.0 \mathrm{mmol}$) were used. Resulting crude product was purified by crystallization from n butanol to afford pale yellow crystals.

Yield: 0.612 g (79 \%).
m.p.: $201-202{ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19\left(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.82-2.02(\mathrm{~m}, 3 \mathrm{H}$, $5,6-\mathrm{H}), 2.08-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.44-2.50(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.47(\mathrm{td}, J=6.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ H), 3.94-3.98 (m, 2H, 7-H), 7.08-7.20 (m, 3H, Ph), 7.27-7.34 (m, 2H, Ph), 7.41-7.46 (m, $2 \mathrm{H}, \mathrm{Ph}), 7.61-7.66(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 8.07-8.09(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.9\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{2}\right), 20.4(\mathrm{C}-6), 29.8(\mathrm{C}-5), 50.0(\mathrm{C}-7)$, 54.5 (C-2), 119.1, 124.5, 124.8, 126.7, 128.0, 129.2, 129.6, 131.7, 132.9, 133.9, 139.1, 139.9, $165.6(\mathrm{CO}), 166.9(\mathrm{CO}), 167.0(\mathrm{CO})$.

IR (KBr): $\tilde{v}=1724,1684,1635,1600,1490,1453$.

GC-MS (70 eV) $m / z(\%): 387(100)\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (387.43): C, 71.3; H, 5.5; N, 10.8; found: C, 71.0; H, 5.6; N , 10.7.

2,4-Diphenyl-4,5,6,7-tetrahydro-4,7a,12b-triaza-dibenzo[e,g]azulene-1,3,8-trione (75)

The starting materials cycloamidine $\mathbf{6 5}$ and 2-phenyl-bis(2,4,6-trichlorophenyl) malonic acid ester ($2.695 \mathrm{~g}, 5.0 \mathrm{mmol}$) gave $\mathbf{7 5}$ as pale yellow crystals after recrystallization from 2butanol.

Yield: 1.78 g (82 \%).
m.p.: $207-208^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.90-0.98(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 1.56-1.65(\mathrm{~m}, 2 \mathrm{H}, 5,6-\mathrm{H}), 1.73-$ $1.80(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.41-3.47(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.67-3.74(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.13-$ 7.20 (m, 3H, Ph), 7.28-7.43 (m, 7H, Ph), 7.47-7.51 (m, 1H, 11-H), 7.53 (dd, $J=8.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, 12-\mathrm{H}$), 7.70 (ddd, $J=8.0,7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 8.08$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.8$ (C-6), 29.2 (C-5), 49.5 (C-7), 62.3 (C-2), 119.3 (C$4 b), 124.2,126.2,126.3,126.9,128.3,128.6,129.3$ (C-4a), 129.5, 129.7, 132.1, 132.9, 133.1, $134.1,138.9,139.5,165.2(\mathrm{CO}), 166.6(\mathrm{CO}), 166.7(\mathrm{CO})$.

IR (KBr): $\tilde{v}=3057,2967,1732(\mathrm{C}=\mathrm{O}), 1709(\mathrm{C}=\mathrm{O}), 1694(\mathrm{C}=\mathrm{O}), 1632,1597,1495,1454$, 1256.

GC-MS (70 eV) $m / z(\%): 435$ (100) $\left[\mathrm{M}^{+}\right], 407$ (6), 317 (10), 260 (6), 172 (7), 90 (14).

Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (435.47): C, 74.5; H, 4.9; N, 9.6; found: C, 74.4; H, 4.8; $\mathrm{N}, ~ 9.4$.

2-Benzyl-4-phenyl-4,5,6,7-tetrahydro-4,7a,12b-triaza-dibenzo[e,g]azulene-1,3,8-trione (76)

Cycloamidine $65(0.582 \mathrm{~g}, 2.0 \mathrm{mmol})$ and 2-benzyl bis(2,4,6-trichlorophenyl)malonate (0.982 $\mathrm{g}, 2.0 \mathrm{mmol}$) were used to afford pale yellow crystals after crystallization from 2-propanol.

Yield: 0.790 g (88 \%).
m.p.: $187-188^{\circ} \mathrm{C}$.

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.82-1.97(\mathrm{~m}, 3 \mathrm{H}, 5,6-\mathrm{H}), 2.39-2.45(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.47(\mathrm{~d}$, $\left.J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.81(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.87-3.98(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 7.06-7.09(\mathrm{~m}$, 2H, Ph), 7.15-7.19 (m, 1H, Ph), 7.22-7.35 (m, 5H, Ph), 7.42-7.48 (m, 4H, Ph), 7.63-7.67 (m, $1 \mathrm{H}, 10-\mathrm{H}), 8.06-8.08(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.2(\mathrm{C}-6), 29.3(\mathrm{C}-5), 29.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 50.0(\mathrm{C}-7), 55.8(\mathrm{C}-$ 2), 118.7, $124.5,125.8,126.8,128.1,128.9,129.2,129.4,129.7,130.2,132.1,132.9,134.0$, 139.1, 139.8, 140.6, 165.5 (CO), 166.4 (CO), 166.6 (CO).

IR (KBr): $\tilde{v}=1735,1695,1633,1619,1574,1496,1454$.

GC-MS (70 eV) $m / z(\%): 449(100)\left[\mathrm{M}^{+}\right]$.

Anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.5$ (2-propanol) (449.50): C, 73.9; H, 5.7; N, 8.8; found: C, 73.7; H, 5.7; N, 8.7.

Sodium 3,8-dioxo-2,4-diphenyl-4,5,6,7-tetrahydro-3H,8H-4,7a,12b-triaza-dibenzo[e,g]-azulen-1-olate (78)

To a solution of dioxopyrimidine $75(0.435 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous dimethoxyethane (20 $\mathrm{mL})$ was added $\mathrm{NaH}(60 \%$ in mineral oil) $(20 \mathrm{mg}, 0.5 \mathrm{mmol})$, which had been washed with n hexane ($2 \times 10 \mathrm{~mL}$), and the mixture was stirred at room temperature for further 30 min . The solvent was then removed under reduced pressure to afford the product $\mathbf{7 8}$ as a yellow solid.

Yield: 0.444 g (97 \%).
m.p.: $>250^{\circ} \mathrm{C}(\mathrm{dec})$.
$[\alpha]_{\mathbf{D}}{ }^{20}=0\left(c=0.5\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$.

${ }^{1} \mathbf{H - N M R}$ (400 MHz, DMSO- d_{6}): $\delta=1.46-1.54(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 1.69-1.79(\mathrm{~m}, 2 \mathrm{H}, 5,6-\mathrm{H}, 2.10-$ $2.16(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.57-3.63(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.67-3.77(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.76-6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph})$, 6.91-6.95 (m, 1H, Ph), 7.03-7.07 (m, 2H, Ph), 7.11-7.22 (m, 6H, Ph), 7.47-7.51 (m, 1H, 10H), 7.75 (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.85-7.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=20.6$ (C-6), 28.3 (C-5), 48.8 (C-7), 87.9 (C-2), 121.6, 122.4 (C-4b), 123.6, 124.7, 125.8, 126.4, 126.5 (C-4a), 126.8, 128.7, 130.2, 130.5, 131.7, 132.9, 141.7, 143.9, 147.2, 164.7 (CO), $166.4(2 \times \mathrm{CO})$.

IR (KBr): $\tilde{v}=3057,2934,1634(\mathrm{C}=\mathrm{O}), 1575,1550,1488,1404,1068$.

GC-MS (70 eV) $m / z(\%): 435$ (4) $\left[\mathrm{M}^{+}\right], 390$ (12), 185 (100), 119 (9), 93 (34), 66 (13).

Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{NaO}_{3}$ (457.46): C, 70.9; H, 4.4; N, 9.2; found: C, 70.5; H, 4.7; N, 9.4 .

2-Methyl-2,4-diphenyl-4,5,6,7-tetrahydro-4,7a,12b-triaza-dibenzo[e, g]azulene-1,3,8-trione (79)

A suspension of pyrimidine-olate $78(0.457 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous dimethoxyethane (20 mL) was treated with $\mathrm{CH}_{3} \mathrm{I}(1.0 \mathrm{~mL})$ at room temperature and the mixture was then heated at $60{ }^{\circ} \mathrm{C}$ for 3 h . Evaporation of the solvent and excess $\mathrm{CH}_{3} \mathrm{I}$ under reduced pressure gave a residue which was purified by flash column chromatography on silica gel using EtOAc/petroleum ether (2:1) to afford the dioxopyrimidine 79 as a colorless solid.

Yield: 0.40 g (89 \%).
m.p.: $112-114^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1}$ H-NMR (400 MHz, DMSO- d_{6}): $\delta=0.58-0.66(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 0.79-0.89(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 1.49-$ $1.62(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.06-3.12(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.16-$ $7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.35-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.52(\mathrm{ddd}, J=8.0,7.1,1.3$ $\mathrm{Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 7.70(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 7.73-7.77(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 7.89(\mathrm{dd}, J=$ $7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$.

[^25]IR (KBr): $\tilde{v}=3069,2989,1720(\mathrm{C}=\mathrm{O}), 1685(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{O}), 1598,1490,1454,1356$, 1259.

GC-MS (70 eV) $m / z(\%): 450(100)\left[\mathrm{M}^{+}+1\right], 289$ (6), 261 (8), 172 (16), 132 (20), 104 (15), 77 (14).

Anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ (449.50): C, 74.8; H, 5.2; N, 9.3; found: C, 74.6; H, 5.2; N, 9.1.

4.5. Experiments to chapter 3.4.1.

General procedure for the preparation of the benzocyclopentaazulene-1,7-diones (80-82)

To a solution of monothiolactam $61(0.232 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous THF (30 mL) was added the corresponding freshly distilled bromoacetyl chloride (1.2 mmol). The mixture was stirred for 4-6 hours at room temperature under nitrogen and then quenched by addition of saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. After extraction with chloroform $(2 \times 20 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The crude residue was subjected to flash silica gel column chromatography using $\mathrm{EtOAc} /$ petroleum ether (1:4) as eluent to give yellow solids.

5,6-Dihydro-4H-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (80)

α-Bromoacetyl chloride ($0.19 \mathrm{~g}, 1.2 \mathrm{mmol}$) was used. Crystallization from ethanol afforded yellow crystals.

Yield: 0.20 g (75 \%).
m.p.: $165-167^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.98-2.05(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.83$ (s, 2H, 2-H), 3.90-3.94 (m, 2H, 6-H), 7.28-7.32 (m, 1H, 10-H), $7.44(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $11-\mathrm{H}), 7.51-7.55(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 8.00(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.8$ (C-5), $31.1(\mathrm{C}-4), 35.8(\mathrm{C}-2), 50.1(\mathrm{C}-6), 115.5$, 124.3, 124.9, 127.2, 128.5, 133.3, 133.6, 138.9, 165.4 (CO), 172.7 (CO).

IR (KBr): $\tilde{v}=3074,2983,2934,1721,1700,1625,1528,1489,1451,1393,1325,1242$, 1209.

GC-MS (70 eV) $m / z(\%): 272$ (100) [$\left.\mathrm{M}^{+}\right], 230$ (9), 201 (11), 76 (12), 50 (13).

Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (272.32): C, 61.7; H, 4.4; $\mathrm{N}, 10.3$; found: $\mathrm{C}, 61.4 ; \mathrm{H}, 4.4 ; \mathrm{N}$, 10.2.

2-Ethyl-5,6-dihydro-4H-3-thia-6a, 11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (81)
α-Bromoethylacetyl chloride ($0.22 \mathrm{~g}, 1.2 \mathrm{mmol}$) was used to afford yellow crystals after crystalization from ethanol.

Yield: 0.17 g (57 \%).
m.p.: $131-132{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.10\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.86-2.08\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, 5-\mathrm{H}\right)$, $2.11-2.32(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.64-2.72(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.88-3.95(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 4.03(\mathrm{dd}, J=8.7$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.24-7.32(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 7.40(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 7.47-7.56$ (m, 1H, 9-H), 7.99 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.6\left(\mathrm{CH}_{3}\right), 20.5(\mathrm{C}-5), 25.8\left(\mathrm{CH}_{2}\right), 30.8(\mathrm{C}-4), 49.7(\mathrm{C}-6)$, 52.1 (C-2), 114.3, 123.9, 124.3, 126.6, 128.0, 132.8, 133.0, 138.6, 165.0 (CO), 174.4 (CO).

IR (KBr): $\tilde{v}=2966,2874,1724,1703,1628,1451,1393,1319,1199$.

GC-MS (70 eV) $m / z(\%): 300(100)\left[\mathrm{M}^{+}\right], 195$ (10).

Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (300.38): C, 64.0; H, 5.4; $\mathrm{N}, 9.3$; found: C, 63.8; H, 5.3; $\mathrm{N}, ~ 9.4$.

2-Phenyl-5,6-dihydro-4H-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (82)
α-Bromophenylacetyl chloride ($0.28 \mathrm{~g}, 1.2 \mathrm{mmol}$) was used. Crystallization from 2-propanol gave yellow crystals.

Yield: $0.26 \mathrm{~g}(65 \%)$.
m.p.: $193-195^{\circ} \mathrm{C}$.

${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.96-2.07(m, 2H, 5-H), 2.65-2.77(m, 2H, 4-H), 3.90-4.00 (m, 2H, 6-H), 5.15 (s, 1H, 2-H), 7.29-7.33 (m, 1H, Ph), 7.36-7.48 (m, 6H, Ph), 7.51-7.56 (m, 1H, $9-\mathrm{H}), 8.02$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$.

[^26]IR (KBr): $\tilde{v}=3057,2896,1719,1699,1625,1574,1489,1451,1394,1328,1242,1201$.

GC-MS (70 eV) $m / z(\%): 348$ (100) $\left[\mathrm{M}^{+}\right], 320(6), 199$ (7), $90(8)$.

Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (348.42): C, 68.9; H, 4.6; $\mathrm{N}, 8.0$; found: C, 69.1; H, 4.7; $\mathrm{N}, 7.8$.

2-Methyl-2-phenyl-5,6-dihydro-4H-3-thia-6a, 11b-diazabenzo[g]cyclopenta[e]azulene-1,7dione (85)

To a solution of phenylthiazolidinone $\mathbf{8 2}(0.174 \mathrm{~g}, 0.50 \mathrm{mmol})$ in anhydrous THF (10 mL) was added of potassium tert-butoxide $(0.068 \mathrm{~g}, 0.6 \mathrm{mmol})$ portionwise at $-70{ }^{\circ} \mathrm{C}$ under nitrogen. The resulting mixture was stirred for additional 10 min at the same temperature. Methyl iodide (0.3 mL) was then added at $-70^{\circ} \mathrm{C}$, and the mixture was warmed to rt over a period of 10 min . Stirring was then continued for additional 30 min at rt . Then, the reaction was cautiously quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and extracted with of chloroform ($2 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by flash chromatography using EtOAc/petroleum ether (1:3) as eluent and crystallization from acetonitrile gave product $\mathbf{8 5}$ as colorless crystals.

Yield: 0.148 g (82%).
m.p.: $230-232{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.74-1.99(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52-2.78(\mathrm{~m}, 2 \mathrm{H}$, 4-H), 3.83-3.90 (m, 2H, 6-H), 7.28-7.42 (m, 4H, Ph), 7.50-7.60 (m, 4H, Ph), 7.97-8.02 (m, $1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.6(\mathrm{C}-5), 26.4\left(\mathrm{CH}_{3}\right), 31.1(\mathrm{C}-4), 49.7(\mathrm{C}-6), 60.4,123.9$, 126.1, 126.7, 127.9, 128.0, 128.6, 132.7, 133.1, 138.7, 140.5, 165.2 (CO), 175.4 (CO).

IR (KBr): $\tilde{v}=3070,2965,1715,1690,1630,1489,1454,1389,1328,1197$.

GC-MS (70 eV) m / z (\%): 363 (100) [$\left.\mathrm{M}^{+}+1\right], 333$ (25), 301 (18), 226 (37), 195 (29), 159 (14), 104 (20), 79 (8).

Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (362.45): C, 69.6; H, 5.0; N, 7.7; found: C, 69.4; H, 5.0; N, 7.8.

4.6. Experiments to chapter 3.5.1.

General procedure for preparation of 11-imino-ethylester pyrrolobenzo[1,4]diazepin-5-ones (88 and 89)

To a suspension of thiolactam $61(0.232 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{HgCl}_{2}(0.272 \mathrm{~g}, 1.0 \mathrm{mmol})$ in acetonitril (30 mL) was added glycine ethyl ester hydrochloride and β-alanine ethyl ester hydrochloride (0.21 g and $0.23 \mathrm{~g}, 1.5 \mathrm{mmol}$), and then $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL})$ at room temperature. Refluxing for $2-3 \mathrm{~h}$, whereupon the color changed to intense black, and subsquent cooling, results in a mixture, which was filtered through a plug of Celite and washed with chloroform. The filtrate was washed with saturated NaHCO_{3} solution (20 mL) and a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(20 \mathrm{~mL})$. The solvents were removed under reduced pressure to give the corresponding crude products which were purified by recrystallization from appropriate solvents.
(5-Oxo-1,2,3,5,10,11a-hexahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-11-ylideneamino)acetic acid ethyl ester (88)

Glycine ethyl ester hydrochloride gave an oily crude product. By addition of diethyl ether (15 mL) and stirring for 10 min at room temperature, the crude product precipitated as a pale yellow solid which was filtered off and washed with diethyl ether. Recrystallization from EtOAc/petroleum ether afforded faintly yellow crystal.

Yield: 0.25 g (83%).
m.p.: $89-91{ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{20}=+717.2\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.04-2.18(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H})$, $2.22-2.38(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 3.54-3.61(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.86-3.92(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.06(\mathrm{dd}, J=7.8$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}), 4.10-4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 4.27\left(\mathrm{qd}, J=7.1,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 5.46 (br s, 1H, NH), 7.08-7.12 (m, 2H, 8,9-H), 7.38-7.42 (m, 1H, 7-H), 7.96 (dd, $J=8.3,1.7$ Hz, 1H, 6-H).
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.2(\mathrm{C}-2), 27.2(\mathrm{C}-1), 43.7\left(\mathrm{NHCH}_{2}\right)$, 46.9 (C-3), $54.5(\mathrm{C}-11 \mathrm{a}), 62.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 123.1,127.0,127.2,130.5,132.0,147.0,156.2(\mathrm{C}-$ 11), $166.9(\mathrm{CO}), 171.0\left(\mathrm{CO}_{2}\right)$.

IR (KBr): $\tilde{v}=3312(\mathrm{NH}), 3055,2976,1784,1620,1593,1541,1461,1277,1199$.

GC-MS (70 eV) $m / z(\%): 301$ (100) $\left[\mathrm{M}^{+}\right], 255(42), 226$ (10), 186 (13), 158 (25), 131 (14), 102 (16), 70 (17).

Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (301.34): C, 63.8; $\mathrm{H}, 6.4 ; \mathrm{N}, 13.9$; found: $\mathrm{C}, 63.8 ; \mathrm{H}, 6.1$; N , 13.5.

3-(5-Oxo-1,2,3,5,10,11a-hexahydro-benzo[e]pyrrolo[1,2-a][1,4]diazepin-11-ylideneamino)propionic acid ethyl ester (89)
β-Alanine ethyl ester hydrochloride afforded a solid crude product which was purified by crystallization from benzene to yield $\mathbf{8 9}$ as colorless crystal.

Yield: 0.222 g (70 \%) .
m.p.: $122-124{ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+878.5\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.93-2.35(\mathrm{~m}, 4 \mathrm{H}, 1,2-$ H), 2.64-2.71 (m, 2H, COCH_{2}), 3.48-3.62 (m, 1H, 3-H), 3.57-3.74 (m, 2H, NHCH 2), 3.81$3.92(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.00-4.05(\mathrm{~m}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}), 4.27\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.74(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}$), 7.04-7.12 (m, 2H, 8,9-H), 7.36-7.44 (m, 1H, 7-H), 7.40 (ddd, $J=8.1,7.2,1.6 \mathrm{~Hz}$, 1H, 6-H).
${ }^{13} \mathbf{C}-$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.6(\mathrm{C}-2), 26.6(\mathrm{C}-1), 33.0\left(\mathrm{COCH}_{2}\right), 36.7$ $\left(\mathrm{NHCH}_{2}\right), 46.4(\mathrm{C}-3), 54.4(\mathrm{C}-11 \mathrm{a}), 60.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 122.4,126.5,126.6,130.1,131.6,146.7$, $156.2(\mathrm{C}-11), 166.9(\mathrm{CO}), 171.0\left(\mathrm{CO}_{2}\right)$.

IR (KBr): $\tilde{v}=3283(\mathrm{NH}), 3059,2973,2870,1728,1603,1524,1465,1342,1174,1032$.

GC-MS (70 eV) $m / z(\%): 315$ (100) $\left[\mathrm{M}^{+}\right], 270$ (19), 242 (52), 215 (14), 200 (19), 172 (28), 146 (34), 118 (15), 70 (31).

Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (315.37): $\mathrm{C}, 64.7$; $\mathrm{H}, 6.7$; $\mathrm{N}, 13.3$; found: $\mathrm{C}, 64.6 ; \mathrm{H}, 6.5$; N , 13.3.

General procedure for preparation of 1,3-imidazol- and 1,3-pyrimidine-4-one-pyrrolobenzo[1,4]diazepin-5-ones (90 and 91)

To a solution of cycloamidine ethyl esters $\mathbf{8 8}$ and $\mathbf{8 9}$ (1.505 g and $1.575 \mathrm{~g}, 5.0 \mathrm{mmol})$ in a mixture of dioxane/water $(2: 1)(50 \mathrm{~mL})$ was added a solution of $\mathrm{NaOH}(2 N)(3.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (ice-bath). The reaction mixture was stirred for 30 min at room temperature, and then acidified to $\mathrm{p} H=3$ with $\mathrm{HCl}(0.5 \mathrm{~N})$ at $0^{\circ} \mathrm{C}$. Compound 90 was purified by extraction with chloroform ($2 \times 50 \mathrm{~mL}$), drying of the combined organic layers over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvent under reduced pressure to afford the crude solid residue. The mixture containing compound 91 was extracted with dichloromethane (50 mL) to remove impurities. The aqueous phase was evaporated in vacuum to leave a solid residue. Extraction with methanol and evaporation of solvent gave 91 as colorless solids.

3b,4,5,6-Tetrahydro-2H-3,6a,11b-triaza-benzo[g]cyclopenta[e]azulene-1,7-dione (90)

Ethyl ester $\mathbf{8 8}$ afforded a solid crude product which was purified by crystallization from acetone to yield $\mathbf{9 0}$ as faintly yellow crystals.

Yield: 1.084 g (85 \%).
m.p.: $199-201^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+130.5\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1}$ H-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.98-2.31(\mathrm{~m}, 3 \mathrm{H}, 4,5-\mathrm{H}), 2.84-2.98(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.60-$ $3.68(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.82-3.93(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.32-4.35(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 4.41-4.45(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{~b}-$ H), 7.41 (ddd, $J=7.9,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.54-7.63(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 7.69(\mathrm{dd}, J=7.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 7.99(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.3(\mathrm{C}-5), 26.0(\mathrm{C}-4), 47.3(\mathrm{C}-6), 53.9(\mathrm{C}-3 \mathrm{~b}), 59.0(\mathrm{C}-2)$, 122.3, 126.4, 127.8, 129.5, 130.4, 131.1, 162.8 (C-3a), 164.0 (CO), 177.4 (CO).
$\mathbf{I R}(\mathrm{KBr}): \tilde{v}=2959,2876,1749,1624,1465,1340,1220,1170,1026$.

GC-MS (70 eV) m / z (\%): 255 (100) [$\left.\mathrm{M}^{+}\right], 226$ (25), 198 (14), 184 (16), 172 (16), 158 (34), 130 (36), 103 (31), 69 (23).

Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (255.27): C, 65.9; H, 5.1; $\mathrm{N}, 16.5$; found: $\mathrm{C}, 65.4 ; \mathrm{H}, 5.1$; N , 16.1.

2,3,4b,5,6,7-Hexahydro-4,7a,12b-triaza-dibenzo[e,g]azulene-1,8-dione (91)

Ethyl ester $\mathbf{8 9}$ gave a solid crude product which was purified by crystallization from $\mathrm{EtOH} / 2-$ propanol to yield $\mathbf{9 1}$ as colorless crystals.

Yield: 1.049 g (78 \%).
m.p.: 194-196 ${ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+485.2\left(c=1.0\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$.

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=1.87-2.12(\mathrm{~m}, 3 \mathrm{H}, 5,6-\mathrm{H}), 2.36-2.48(\mathrm{~m}, 3 \mathrm{H}, 3,5-\mathrm{H})$, $3.33-3.38(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.43(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.57-3.64(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.91(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 6.96-7.00(\mathrm{~m}, 2 \mathrm{H}, 11,12-\mathrm{H}), 7.36$ (td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}$), 7.70 (dd, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=24.1$ (C-6), 26.7 (C-5), 35.1 (C-3), 38.5 (C-2), 47.1 (C7), 55.1 (C-4b), 121.7, 127.2, 127.5, 130.4, 132.0, 148.6, 158.1 (C-4a), 166.2 (CO), 175.4 (CO).

IR (KBr): $\tilde{v}=2967,2873,1693,1630,1455,1394,1257,1202$.

GC-MS (70 eV) $m / z(\%): 270$ (100) [$\left.\mathrm{M}^{+}+1\right], 240$ (8), 216 (26), 201 (13), 172 (17), 146 (9), 103 (8), 63 (11).

Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (269.30): C, 66.9; H, 5.6; $\mathrm{N}, 15.6$; found: $\mathrm{C}, 66.6 ; \mathrm{H}, 5.7$; N , 15.2.

General procedure for preparation of 2-imidazolidenone derivatives of PBD (92 and 93)

To a solution of cycloamidine ethyl esters $\mathbf{8 8}$ and $\mathbf{8 9}$ (0.301 g and $0.315 \mathrm{~g}, 1.0 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g})$ and the appropriate ketone $(1.0 \mathrm{~mL})$ at room temperature. The mixture was heated at reflux for $4-6 \mathrm{~h}$. After cooling, the the exess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the filtrate was evaporated in vacuum to give a solid residue. The crude product was subjected to a flash column chromatography on silica gel using EtOAc/petroleum ether (1:1) to afford the corresponding pure products 92 and 93 .

2-Isopropylidene-3b,4,5,6-tetrahydro-2H-3,6a,11b-triaza-benzo[g]cyclopenta[e]azulene-1,7dione (92)

Ethyl ester $\mathbf{8 8}$ and acetone afforded compound $\mathbf{9 2}$ as faintly yellow solids.

Yield: 0.23 g (78 \%).
m.p.: $214-217^{\circ} \mathrm{C}$.
$[\alpha]_{\mathbf{D}}{ }^{20}=-4.8\left(c=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.96-2.27(\mathrm{~m}, 3 \mathrm{H}, 4,5-\mathrm{H}), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.95-3.08 (m, 1H, 4-H), 3.62-3.89 (m, 2H, 6-H), 4.46-4.50 (m, 1H, 3b-H), 7.38 (ddd, J $=7.9,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.57(\mathrm{ddd}, J=8.0,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.69(\mathrm{dd}, J=7.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 7.99(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 23.4(\mathrm{C}-5), 26.0(\mathrm{C}-4), 47.2(\mathrm{C}-6)$, 53.6 (C-3b), 123.5, 126.9, 128.9, 131.2, 131.3, 131.9, 136.0, 153.4, 156.4 (C-3a), 165.1 (CO), $166.2(\mathrm{CO})$.

IR (KBr): $\tilde{v}=2942,2869,1709,1641,1459,1395,1334,1234,1155,1064$.

GC-MS (70 eV) $m / z(\%): 295$ (100) $\left[\mathrm{M}^{+}\right], 280(31), 227$ (14), 199 (17), 130 (30), 102 (34).

Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (295.34): $\mathrm{C}, 69.1$; $\mathrm{H}, 5.8 ; \mathrm{N}, 14.2$; found: $\mathrm{C}, 68.8 ; \mathrm{H}, 5.6$; N , 14.0.

2-Cyclohexylidene-3b,4,5,6-tetrahydro-2H-3,6a,11b-triaza-benzo[g]cyclopenta[e]azulene-1,7-dione (93)

Ethyl ester $\mathbf{8 9}$ and cyclohexanone gave compound $\mathbf{9 3}$ as pale yellow solids.

Yield: 0.24 g (71 \%).
m.p.: $161-164{ }^{\circ} \mathrm{C}$.

$$
[\alpha]_{\mathbf{D}}{ }^{20}=0\left(c=0.5 \text { in } \mathrm{CHCl}_{3}\right) .
$$

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.65-1.82\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.95-2.31(\mathrm{~m}, 3 \mathrm{H}, 4,5-\mathrm{H})$, 2.79-2.85 (m, 2H, CH 2), 2.94-3.05 (m, 1H, 4-H), 3.07-3.15 (m, 2H, CH $)$, 3.62-3.89 (m, 2H, $6-\mathrm{H}), 4.44-4.50(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}), 7.38$ (ddd, $J=7.9,7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.57$ (ddd, $J=8.0$, $7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.69(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 7.98(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H).
${ }^{13} \mathbf{C}-$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.4(\mathrm{C}-5), 26.0(\mathrm{C}-4), 26.1\left(\mathrm{CH}_{2}\right), 28.2\left(2 \times \mathrm{CH}_{2}\right), 28.7$ $\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 47.2(\mathrm{C}-6), 53.6(\mathrm{C}-3 \mathrm{~b}), 123.5,126.9,128.9,131.2,131.3,131.8,133.4$, 156.4, 161.3 (C-3a), 165.2 (CO), 166.7 (CO).

IR (KBr): $\tilde{v}=2934,2853,1715,1651,1459,1396,1284,1173$.

GC-MS (70 eV) $m / z(\%): 335$ (100) [$\left.\mathrm{M}^{+}\right], 307$ (7), 227 (14), 281 (27), 255 (13), 199 (11), 130 (15), 102 (20).

Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ (335.40): C, 71.6; H, 6.3; $\mathrm{N}, 12.5$; found: C, $71.3 ; \mathrm{H}, 6.2$; N , 12.1.

5. X-Ray Data Section

Table 2: Crystal data and structure refinement for 38c.
Empirical formula:
Formula weight:
Temperature:
Wavelength:
Crystal system:
Space group:
Unit cell dimensions:

Volume:
Z:
Calculated density:
Absorption coefficient :
$F(000)$:
Crystal size:
Θ-Range for data collection:
Limiting indices:
Reflections collected:
Unique
Absorption correction :
Refinement method:
Data / restraints / parameters:
Goodness-of-fit on F^{2} :
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$:
R indices (all data):
Largest diff. peak and hole:

Table 3: Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 38c.

$N(1)-C(2)$	$1.3307(18)$
$N(1)-C(11)$	$1.4248(18)$
$N(1)-H(1 N)$	$0.872(12)$
$C(2)-C(3)$	$1.385(2)$
$C(2)-C(12)$	$1.498(2)$

$\mathrm{N}(5)-\mathrm{C}(4)-\mathrm{C}(13)$	$115.17(13)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	$117.62(13)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$130.07(12)$
$\mathrm{C}(4)-\mathrm{N}(5) \mathrm{H}(5 \mathrm{~N})$	$115.111)$
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N})$	$114.7(11)$

C(3)-C(4)	1.388(2)
$\mathrm{C}(4)-\mathrm{N}(5)$	1.3258(18)
$\mathrm{C}(4)-\mathrm{C}(13)$	1.500(2)
N(5)-C(6)	1.4238(18)
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N})$	0.861(13)
C(6)-C(7)	1.386(2)
$\mathrm{C}(6)-\mathrm{C}(11)$	1.3946(19)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.390(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.377(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.394(2)
$\mathrm{C}(10)-\mathrm{O}(1)$	1.3538(17)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.397(2)
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	0.902(14)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	1.2538(16)
C(1')-C(2')	1.449(2)
C(1')-C(6')	1.4529(19)
$\mathrm{C}\left(2^{\prime}\right)$ - $\mathrm{C}\left(3^{\prime}\right)$	1.3822(19)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	1.4496(17)
C(3')-C(4')	1.3825(19)
C(4')-C(5')	1.392(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	1.4471(18)
C(5')-C(6')	1.3615(19)
$\mathrm{C}\left(6^{\prime}\right)$-N(6')	1.4633(18)
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	1.2297(15)
$\mathrm{N}\left(2^{\prime}\right)$ - $\mathrm{O}\left(22^{\prime}\right)$	1.2361(14)
$\mathrm{N}\left(4^{\prime}\right)$ - $\mathrm{O}\left(42^{\prime}\right)$	1.2339(15)
$\mathrm{N}\left(4^{\prime}\right)$ - $\mathrm{O}\left(41^{\prime}\right)$	1.2351(16)
$\mathrm{N}\left(6{ }^{\prime}\right)$-O(61')	1.2289(14)
$\mathrm{N}\left(6^{\prime}\right)$ - $\mathrm{O}\left(62{ }^{\prime}\right)$	1.2290(15)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	1.2223(17)
$C(1 A)-C(3 A)$	1.492(2)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.494(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	129.86(13)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	115.8(10)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	113.9(10)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	126.42(14)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	114.91(13)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(12)$	118.66(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	129.37(14)

C(7)-C(6)-C(11)	119.72(13)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(5)$	115.19(13)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{N}(5)$	125.10(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.93(14)
C(9)-C(8)-C(7)	120.00(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.35(14)
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	122.33(13)
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	116.49(13)
C(9)-C(10)-C(11)	121.16(13)
$\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	110.6(11)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	118.83(13)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(1)$	126.26(13)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	114.87(13)
$\mathrm{O}\left(1^{\prime}\right)$-C(1')-C(2')	126.16(12)
$\mathrm{O}\left(1^{\prime}\right)$ - $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	122.68(13)
C(2')-C(1')-C(6')	111.12(12)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	124.24(12)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	115.56(12)
$\mathrm{C}\left(1^{\prime}\right)$ - $\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	120.18(12)
C(2')-C(3')-C(4')	119.15(13)
$\mathrm{C}\left(3^{\prime}\right)$-C(4')-C(5')	121.15(13)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	119.60(12)
$\mathrm{C}\left(5^{\prime}\right)$-C(4')-N(4')	119.22(12)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	118.60(12)
C(5')-C(6')-C(1')	125.48(13)
$\mathrm{C}\left(5^{\prime}\right)$-C(6')-N(6')	116.73(12)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	117.79(12)
$\mathrm{O}\left(21^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(22^{\prime}\right)$	122.26(11)
$\mathrm{O}\left(21^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	120.14(11)
$\mathrm{O}(22$ ')-N(2')-C(2')	117.60(11)
$\mathrm{O}\left(42{ }^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(41^{\prime}\right)$	123.15(12)
$\mathrm{O}\left(42{ }^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	118.10(12)
$\mathrm{O}\left(41^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	118.74(11)
$\mathrm{O}\left(61^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(62^{\prime}\right)$	124.04(12)
$\mathrm{O}\left(61^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	118.11(12)
$\mathrm{O}(62 ')-\mathrm{N}\left(6^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	117.83(11)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	120.38(15)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	121.79(14)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	117.83(14)

Table 4: Torsion angles [${ }^{\circ}$] for $\mathbf{3 8 c}$.

$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-10.3(2)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	170.71(13)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-13.6(3)
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	165.30(15)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	11.6(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	-164.33(15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	13.0(2)
$\mathrm{C}(13)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	-170.95(13)
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	160.18(14)
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	-19.7(2)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-0.1(2)
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-179.97(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-0.1(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.8(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	-179.64(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-1.4(2)

C(6')-C(1')-C(2')-C(3')	-4.80(19)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	-4.0(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	173.53(12)
C(1^{\prime})-C(2')-C(${ }^{\prime}$) -C(4^{\prime})	2.1(2)
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	-176.30(12)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	2.9(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	-179.13(12)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-4.5(2)
$\mathrm{N}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	177.52(12)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	1.3(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	-179.19(12)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-179.31(13)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	3.1(2)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	1.1(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	-176.44(11)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	-161.98(13)

$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$-0.41(19)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$179.41(12)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(1)$	$177.40(13)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(1)$	$-2.8(2)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$179.51(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$1.2(2)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	$1.47(17)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	$-176.87(12)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(6)$	$22.0(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$-160.12(14)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$177.72(13)$

$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	$19.5(2)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(22^{\prime}\right)$	$17.77(18)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(22^{\prime}\right)$	$-160.70(13)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(42^{\prime}\right)$	$-175.30(13)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(42^{\prime}\right)$	$2.7(2)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(41^{\prime}\right)$	$3.94(19)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(41^{\prime}\right)$	$-178.04(13)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(61^{\prime}\right)$	$125.92(13)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(61^{\prime}\right)$	$-54.50(17)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(62^{\prime}\right)$	$-52.95(17)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(62^{\prime}\right)$	$126.63(13)$

Table 5: Hydrogen bonds for $\mathbf{3 8 c}$ [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<(\mathbf{D H A})$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{O}\left(1^{\prime}\right)$	$0.872(12)$	$2.242(14)$	$2.9671(16)$	$140.5(13)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{O}\left(61^{\prime}\right)$	$0.872(12)$	$2.439(14)$	$3.1548(16)$	$139.7(12)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{O}(1)$	$0.872(12)$	$2.174(16)$	$2.6012(16)$	$109.7(13)$
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N}) \ldots \mathrm{O}\left(1^{\prime}\right) \# 1$	$0.861(13)$	$2.050(13)$	$2.8773(15)$	$160.9(14)$
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N}) \ldots \mathrm{O}\left(21^{\prime}\right) \# 1$	$0.861(13)$	$2.534(15)$	$3.1361(17)$	$127.7(13)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) \ldots \mathrm{O}(1 \mathrm{~A})$	$0.902(14)$	$1.802(14)$	$2.6937(15)$	$169.7(17)$

Symmetry transformations used to generate equivalent atoms:
$\# 1-x+2,-y+1,-z+1$

Table 6: Crystal data and structure refinement for $\mathbf{4 3}$ as picrate.

Empirical formula	$\begin{aligned} & \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{10} \\ & \left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)+\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right) \text { - methanol } \end{aligned}$
Formula weight	477.39
Temperature	123(2) K
Wavelength	0.71073 Å (MoK α)
Crystal system	Triclinic
Space group	P-1 (No.2)
Unit cell dimensions	$\mathrm{a}=8.8117(2) \AA, \quad \alpha=79.339(1)^{\circ}$
	$\mathrm{b}=11.0726(2) \AA, \beta=73.059(1)^{\circ}$
	$\mathrm{c}=11.2477(3) \AA, \gamma=86.946(1)^{\circ}$
Volume	$1031.68(4) \AA^{3}$
Z	2
Calculated density	$1.537 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.127 \mathrm{~mm}^{-1}$
F(000)	496
Crystal size	$0.50 \times 0.40 \times 0.10 \mathrm{~mm}$
Θ-Range for data collection	2.91 to 25.00°
Limiting indices	$-10<=\mathrm{h}<=10,-13<=\mathrm{k}<=13,-13<=\mathrm{l}<=13$
Reflections collected	17842
Unique	$3648\left[\mathrm{R}_{\text {int }}=0.0368\right]$
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3648 / 4 / 322
Goodness-of-fit on F^{2}	1.074
Final R indices [I>2	$\mathrm{R} 1=0.0431, \mathrm{wR} 2=0.1165$
R indices (all data)	$\mathrm{R} 1=0.0519, \mathrm{wR} 2=0.1218$
Largest diff. peak and hole	0.673 and -0.413 e \AA^{-3}

Table 7: Bond lengths $[\AA]$ and angles [$\left.{ }^{\circ}\right]$ for $\mathbf{4 3}$ as picrate.

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.334(2)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.419(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$0.861(15)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.384(3)$
$\mathrm{C}(2)-\mathrm{C}(13)$	$1.493(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.394(3)$
$\mathrm{C}(4)-\mathrm{N}(5)$	$1.323(2)$
$\mathrm{C}(4)-\mathrm{C}(14)$	$1.503(2)$
$\mathrm{N}(5)-\mathrm{C}(6)$	$1.426(2)$
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N})$	$0.851(15)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.384(2)$
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.409(2)$

$\mathrm{N}(5)-\mathrm{C}(4)-\mathrm{C}(14)$	$115.10(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	$117.89(16)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$131.11(15)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N})$	$115.7(14)$
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N})$	$113.0(14)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$118.61(16)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(5)$	$115.16(15)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{N}(5)$	$126.23(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$122.13(16)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.08(16)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)$	$120.00(16)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)$	$120.92(16)$

$\mathrm{C}(7)-\mathrm{C}(8)$	$1.395(3)$
$\mathrm{C}\left(8^{2}\right)-\mathrm{C}(9)$	$1.386(2)$
$\mathrm{C}(8)-\mathrm{C}(12)$	$1.488(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.386(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.385(3)$
$\mathrm{C}(12)-\mathrm{O}(2)$	$1.235(2)$
$\mathrm{C}(12)-\mathrm{O}(1)$	$1.301(2)$
$\mathrm{O}(1)-\mathrm{H}(10)$	$0.878(16)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	$1.264(2)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.443(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1.447(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.368(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$1.459(2)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$1.387(3)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1.374(3)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	$1.448(2)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1.380(3)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	$1.453(2)$
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(22^{\prime}\right)$	$1.227(2)$
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	$1.233(2)$
$\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(41^{\prime}\right)$	$1.230(2)$
$\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(42^{\prime}\right)$	$1.232(2)$
$\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}(62 ')$	$1.219(2)$
$\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(61^{\prime}\right)$	$1.221(2)$
$\mathrm{O}(1 \mathrm{E})-\mathrm{C}(1 \mathrm{E})$	$1.384(3)$
$\mathrm{O}(1 \mathrm{E})-\mathrm{H}(1 \mathrm{E})$	$0.836(17)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	$131.11(15)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$115.8(14)$
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$113.0(14)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.28(16)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(13)$	$114.70(16)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(13)$	$118.00(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$130.23(17)$

C(8)-C(9)-C(10)	119.04(17)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	122.38(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	118.70(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	115.28(15)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(1)$	126.02(16)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{O}(1)$	124.43(16)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(8)$	120.29(15)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(8)$	115.27(15)
$\mathrm{C}(12)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	111.1(16)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	122.89(17)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	125.84(17)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	111.27(16)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	125.72(16)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	115.64(16)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	118.63(15)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	118.18(17)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	121.22(17)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	120.08(16)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	118.68(16)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	119.72(17)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	123.75(17)
$\mathrm{C}\left(5^{\prime}\right)$-C(6')-N(6')	115.42(16)
$\mathrm{C}\left(1^{\prime}\right)$ - $\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	120.83(16)
$\mathrm{O}(22 ')-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	123.99(17)
$\mathrm{O}\left(22^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	118.45(17)
$\mathrm{O}(21)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	117.53(16)
$\mathrm{O}\left(41^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(42^{\prime}\right)$	123.61(16)
$\mathrm{O}\left(41^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	118.57(16)
$\mathrm{O}\left(42^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	117.80(16)
$\mathrm{O}(62 ')-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(61^{\prime}\right)$	121.99(17)
$\mathrm{O}\left(62^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	118.79(16)
$\mathrm{O}\left(61^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	119.18(16)
$\mathrm{C}(1 \mathrm{E})-\mathrm{O}(1 \mathrm{E})-\mathrm{H}(1 \mathrm{E})$	113(2)

Table 8: Torsion angles [${ }^{\circ}$] for $\mathbf{4 3}$ as picrate.

$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$4.6(3)$
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(13)$	$-177.08(18)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$4.3(3)$
$\mathrm{C}(13)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-173.96(19)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	$-4.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	$174.98(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$-6.4(3)$
$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$174.49(17)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-169.23(18)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	$11.3(3)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$0.6(3)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-178.91(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$1.8(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)$	$-177.33(16)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-2.4(3)$
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$176.71(16)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.7(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$1.7(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	$-178.07(16)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$-2.3(2)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$177.16(16)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(1)$	$177.43(16)$

$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$-178.75(18)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.6(3)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$2.7(3)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$-176.98(15)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$-3.7(3)$
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$174.97(16)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$2.0(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)$	$-179.45(16)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1.4(3)$
$\mathrm{N}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$-177.08(17)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$-3.6(3)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	$176.92(16)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$-177.54(18)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$2.1(3)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	$1.9(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)$	$-178.46(16)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(22^{\prime}\right)$	$-130.71(18)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(22^{\prime}\right)$	$48.0(2)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	$47.2(2)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}\left(21^{\prime}\right)$	$-134.05(17)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(41^{\prime}\right)$	$-8.1(3)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(41^{\prime}\right)$	$173.34(17)$

$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(1)$	$-3.1(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$173.30(18)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(6)$	$-6.5(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(2)$	$-3.4(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(2)$	$175.74(17)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(1)$	$177.44(16)$

$C\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(42^{\prime}\right)$	$170.17(19)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}\left(42^{\prime}\right)$	$-8.4(3)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(62^{\prime}\right)$	$19.9(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(62^{\prime}\right)$	$-159.6(2)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(61^{\prime}\right)$	$-157.92(19)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(6^{\prime}\right)-\mathrm{O}\left(61^{\prime}\right)$	$22.6(3)$

Table 9: Hydrogen bonds for 43 as picrate $\left[\AA\right.$ and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<$ (DHA)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{O}(1 ') \# 1$	$0.861(15)$	$2.202(16)$	$3.0626(19)$	$176.9(19)$
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N}) \ldots \mathrm{O}(1 \mathrm{E})$	$0.851(15)$	$1.950(16)$	$2.793(2)$	$170(2)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) \ldots \mathrm{O}(2) \# 2$	$0.878(16)$	$1.758(17)$	$2.6354(18)$	$178(3)$
$\mathrm{O}(1 \mathrm{E})-\mathrm{H}(1 \mathrm{E}) \ldots \mathrm{O}\left(1^{\prime}\right)$	$0.836(17)$	$1.894(18)$	$2.728(2)$	$176(3)$

Symmetry transformations used to generate equivalent atoms:

$$
\# 1-x+1,-y+1,-z+2 \quad \# 2-x+2,-y,-z+2
$$

Table 10: Crystal data and structure refinement for Schmidt 65.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Diffractometer
Θ-Range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.00$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [${ }^{2}$ sigma(I)]
R indices (all data)
Largest diff. peak and hole

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} \\
& 291.35 \\
& 123(2) \mathrm{K} \\
& 0.71073 \mathrm{~A} \\
& \text { Orthorhombic, Pna2(1) }(\mathrm{No} .33) \\
& \mathrm{a}=14.17263(2) \mathrm{A} \quad \alpha=90^{\circ} \\
& \mathrm{b}=10.2387(1) \mathrm{A} \quad \beta=90^{\circ} \\
& \mathrm{c}=9.7927(1) \mathrm{A} \quad \gamma=90^{\circ} \\
& 1421.01(3) \mathrm{A}^{3} \\
& 4,1.362 \mathrm{Mg} / \mathrm{m}^{3} \\
& 0.087 \mathrm{~mm}^{-1} \\
& 616 \\
& 0.50 \times 0.50 \times 0.50 \mathrm{~mm} \\
& \text { Nonius KappaCCD } \\
& 3.22 \text { to } 27.48{ }^{\circ} \\
& -18<=\mathrm{h}<=18,-13<=\mathrm{k}<=13,-12<=1<=12 \\
& 27829 / 3253[\mathrm{R}(\text { int })=0.0300] \\
& 99.5 \% \\
& \text { None } \\
& \text { Full-matrix least-squares on } \mathrm{F}^{2} \\
& 3253 / 2 / 202 \\
& 1.038 \\
& \mathrm{R} 1=0.0259, \mathrm{wR} 2=0.0673 \\
& \mathrm{R} 1=0.0263, \mathrm{wR} 2=0.0675 \\
& 0.176 \text { and }-0.172 \text { e. } \mathrm{A}^{-3}
\end{aligned}
$$

Table 11: Bond lengths [$\AA \AA$] and angles [${ }^{\circ}$] for compound 65.

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.3807(13)$
$\mathrm{N}(1)-\mathrm{C}(10 \mathrm{~A})$	$1.4079(12)$
$\mathrm{N}(1)-\mathrm{H}(1)$	$0.880(12)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.2803(13)$
$\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})$	$1.5161(13)$
$\mathrm{N}(2)-\mathrm{C}(21)$	$1.4181(13)$
$\mathrm{C}(21)-\mathrm{C}(26)$	$1.3951(15)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.4003(14)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.3900(15)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.3889(19)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.3983(18)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.4749(11)$
$\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})$	

$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})$	$115.75(8)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)$	$121.84(8)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.86(10)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{N}(2)$	$122.22(9)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(2)$	$118.54(9)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.17(11)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$120.77(11)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$119.26(10)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$120.37(11)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$110.50(10)$
$\mathrm{N}(5 A)-\mathrm{C}(2 A)-\mathrm{C}(2)$	$103.39(7)$
$\mathrm{N}(5 A)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)$	$113.92(8)$
$\mathrm{C}(2)-\mathrm{C}(2 A)-\mathrm{C}(3)$	

$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)$	$1.5339(13)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5310(15)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5229(14)$
$\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})$	$1.4697(12)$
$\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)$	$1.3426(12)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1.2380(12)$
$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})$	$1.4978(13)$
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7)$	$1.4036(14)$
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	$1.4066(13)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3822(14)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.3933(14)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.3841(15)$
$\mathrm{C}(10)-\mathrm{C}(10 \mathrm{~A})$	$1.4072(14)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(10 \mathrm{~A})$	$127.47(8)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1)$	$112.8(9)$
$\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)-\mathrm{H}(1)$	$114.6(9)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(1)$	$124.50(9)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})$	$119.69(8)$

C(4)-C(3)-C(2A)	103.89(8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	103.01(9)
$\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{C}(4)$	102.32(7)
$\mathrm{C}(6)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(5)$	120.98(8)
$\mathrm{C}(6)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	124.99(8)
$\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	112.21(7)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{N}(5 \mathrm{~A})$	121.33(9)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})$	120.48(9)
N(5A)-C(6)-C(6A)	118.19(8)
C(7)-C(6A)-C(10A)	118.64(9)
$\mathrm{C}(7)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(6)$	114.76(8)
C(10A)-C(6A)-C(6)	126.54(9)
C(8)-C(7)-C(6A)	122.10(9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.98(10)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.18(10)
C(9)-C(10)-C(10A)	121.18(9)
C(6A)-C(10A)-C(10)	118.86(9)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)$	125.63(9)

Table 12: Torsion angles [${ }^{\circ}$] for compound 65.

$\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	176.41(10)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})$	0.71(14)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)$	5.57(15)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)$	-177.41(9)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(26)$	65.70(14)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	-121.40(11)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	0.93(16)
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-172.22(9)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	1.28(17)
C(22)-C(23)-C(24)-C(25)	-2.72(17)
C(23)-C(24)-C(25)-C(26)	1.96(16)
C(24)-C(25)-C(26)-C(21)	0.24(16)
C(22)-C(21)-C(26)-C(25)	-1.68(15)
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	171.20(9)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})$	118.30(10)
$N(1)-C(2)-C(2 A)-N(5 A)$	-64.43(11)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)$	2.56(13)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)$	179.83(8)
$\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)-\mathrm{C}(4)$	-25.05(10)
$C(2)-C(2 A)-C(3)-C(4)$	94.69(10)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	38.24(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})$	-35.94(10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)$	-173.38(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	21.23(11)

$\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)$	75.52(11)
$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)$	-162.30(9)
$\mathrm{C}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(5)$	-119.79(8)
$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(5)$	2.38(10)
$\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)-\mathrm{O}(6)$	3.18(14)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)-\mathrm{O}(6)$	166.61(9)
$\mathrm{C}(5)-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})$	-176.77(8)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})$	-13.34(14)
O(6)-C(6)-C(6A)-C(7)	-27.33(13)
$\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7)$	152.61(9)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	149.58(10)
$\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	-30.47(14)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(8)$	-1.03(15)
$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(8)$	176.15(9)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-1.27(16)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	1.97(16)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{~A})$	-0.39(16)
$\mathrm{C}(7)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(10)$	2.58(14)
C(6)-C(6A)-C(10A)-C(10)	-174.23(9)
$\mathrm{C}(7)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)$	177.88(9)
$\mathrm{C}(6)-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)$	1.08(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	-1.92(15)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{~A})-\mathrm{N}(1)$	-177.69(9)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	36.84(15)

Table 13: Hydrogen bonds for compound 65 [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(6) \# 1$	$0.880(12)$	$2.5272(13)$	$2.9882(11)$	$138.5(11)$
$\mathrm{C}(10)-\mathrm{H}(10) \ldots \mathrm{O}(6) \# 1$	0.95	2.50	$3.2384(12)$	134.7

Symmetry transformations used to generate equivalent atoms:
\#1 $\mathrm{x}+1 / 2,-\mathrm{y}+1 / 2, \mathrm{z}$

Table 14: Crystal data and structure refinement for compound 75.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group Unit cell dimensions

Volume
Z, Calculated density Absorption coefficient F(000)
Crystal size
Diffractometer
Θ-Range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.02$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I^{2} sigma(I)]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$
435.47

123(2) K
0.71073 A

Monoclinic, P2(1)/n (No.14)
$\mathrm{a}=11.4423(1) \mathrm{A} \quad \alpha=90^{\circ}$
$\mathrm{b}=12.8594(2) \mathrm{A} \quad \beta=105.130(1)^{\circ}$
$\mathrm{c}=15.0055(2) \mathrm{A} \quad \gamma=90^{\circ}$
$2131.39(5) \mathrm{A}^{3}$
$4,1.357 \mathrm{Mg} / \mathrm{m}^{3}$
$0.090 \mathrm{~mm}^{-1}$
912
$0.60 \times 0.40 \times 0.30 \mathrm{~mm}$
Nonius KappaCCD
3.23 to 25.02°
$-13<=\mathrm{h}<=13,-15<=\mathrm{k}<=15,-17<=1<=17$
$37476 / 3763$ [$\mathrm{R}($ int $)=0.0358$]
99.8 \%

None
Full-matrix least-squares on F^{2}
3763 / 0 / 298
1.072
$\mathrm{R} 1=0.0320, \mathrm{wR} 2=0.0832$
$\mathrm{R} 1=0.0387, \mathrm{wR} 2=0.0867$
0.159 and -0.233 e. A^{-3}

Table 15: Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for compound 75.

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.3736(15)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.4275(14)$
$\mathrm{N}(1)-\mathrm{C}(18)$	$1.4318(14)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.2146(14)$
$\mathrm{C}(2) \mathrm{C}(3)$	$1.5308(16)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5299(16)$
$\mathrm{C}(3)-\mathrm{C}(31)$	$1.5327(16)$
$\mathrm{C}(31)-\mathrm{C}(36)$	$1.3886(17)$
$\mathrm{C}(31) \mathrm{C}(32)$	$1.3903(16)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.3881(18)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.3819(18)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.3809(18)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.3849(18)$

$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	118.91(11)
C(36)-C(31)-C(3)	121.29(10)
C(32)-C(31)-C(3)	119.77(10)
C(33)-C(32)-C(31)	120.27(11)
C(34)-C(33)-C(32)	120.30(11)
C(35)-C(34)-C(33)	119.73(12)
C(34)-C(35)-C(36)	120.13(12)
C(35)-C(36)-C(31)	120.66(11)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(5)$	124.31(11)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	123.58(10)
N(5)-C(4)-C(3)	112.10(9)
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	116.32(9)
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$	122.68(9)

C(4)-O(4)	1.2154(13)
C(4)-N(5)	1.3767(15)
$\mathrm{N}(5)-\mathrm{C}(6)$	1.4240(14)
N(5)-C(51)	1.4390(15)
C(51)-C(52)	1.3820(16)
C(51)-C(56)	1.3860(16)
C(52)-C(53)	1.3896(18)
C(53)-C(54)	1.3800(18)
C(54)-C(55)	1.3813(18)
C(55)-C(56)	1.3840(18)
C(6)-C(7)	1.3271(16)
$\mathrm{C}(7)-\mathrm{N}(11)$	1.4052(14)
C(7)-C(8)	1.4979(15)
C(8)-C(9)	1.5335(18)
C(9)-C(10)	1.5218(16)
$\mathrm{C}(10)-\mathrm{N}(11)$	1.4808(15)
$\mathrm{N}(11)-\mathrm{C}(12)$	1.3691(14)
$\mathrm{C}(12) \mathrm{O}(12)$	1.2306(14)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.4994(17)
C(13)-C(18)	1.4001(17)
C(13)-C(14)	1.4010(16)
C(14)-C(15)	1.3803(18)
C(15)-C(16)	1.3852(19)
C(16)-C(17)	1.3829(17)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.3916(17)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	116.00(9)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(18)$	124.51(9)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)$	118.45(9)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(1)$	124.70(10)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	122.84(11)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.46(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	110.63(9)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)$	110.89(9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	111.95(9)

C(6)-N(5)-C(51)	119.92(9)
C(52)-C(51)-C(56)	120.50(11)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{N}(5)$	120.70(10)
C(56)-C(51)-N(5)	118.79(10)
C(51)-C(52)-C(53)	119.14(11)
C(54)-C(53)-C(52)	120.66(11)
C(53)-C(54)-C(55)	119.74(12)
C(54)-C(55)-C(56)	120.21(12)
C(55)-C(56)-C(51)	119.73(11)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(5)$	122.73(10)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(1)$	122.29(10)
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	114.76(9)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	124.13(10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	127.14(10)
$\mathrm{N}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	108.42(9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	100.99(9)
C(10)-C(9)-C(8)	103.55(9)
$\mathrm{N}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	103.57(9)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(7)$	128.70(10)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(10)$	117.82(9)
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	109.89(9)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{N}(11)$	118.93(11)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)$	119.70(10)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.37(10)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	117.83(11)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	126.66(10)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	115.43(10)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	121.41(12)
C(14)-C(15)-C(16)	119.74(11)
C(17)-C(16)-C(15)	120.33(12)
C(16)-C(17)-C(18)	119.82(12)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	120.87(11)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(1)$	119.05(10)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(1)$	120.05(10)

Table 16: Torsion angles [${ }^{\circ}$] for compound 75.

$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$178.11(11)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{CC}(2)-\mathrm{O}(2)$	$10.02(18)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-1.41(14)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-169.49(10)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-131.82(12)$
$\mathrm{N}(1) \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$47.71(13)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$103.96(13)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$-76.52(12)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(36)$	$-140.88(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(36)$	$-16.80(16)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	$41.22(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	$165.30(10)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$-0.03(18)$
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$177.92(11)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$0.9(2)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{CC}(34)-\mathrm{C}(35)$	$-0.9(2)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$0.1(2)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	$0.8(2)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	$-0.83(19)$
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	$-178.75(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$131.21(11)$

$\mathrm{C}(51)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	-121.50(11)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	127.60(12)
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-63.57(15)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(5)$	-47.22(13)
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(5)$	121.62(11)
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	179.17 (10)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	4.77 (18)
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	6.37 (19)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-168.03(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	143.57(12)
$\mathrm{N}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-30.16(12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	36.40(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)$	-30.14(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	40.17(18)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	-145.88(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	-162.06(11)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	11.90(12)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	172.40(10)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(7)$	11.90(13)
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	164.80(11)
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	8.51(16)

$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$-103.96(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	$-47.95(13)$
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	$76.89(11)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$-177.16(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$1.99(13)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$	$-9.07(17)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$	$170.07(10)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)$	$58.45(15)$
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)$	$-133.88(11)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(56)$	$-122.15(12)$
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(56)$	$45.52(15)$
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$-1.20(18)$
$\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$178.20(11)$
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$0.16(19)$
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$0.79(19)$
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	$-0.7(2)$
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(51)$	$-0.3(2)$
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	$1.28(18)$
$\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	$-178.13(11)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-127.86(12)$
$\mathrm{C}(51)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$63.70(15)$

$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-14.28(18)$
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-170.57(10)$
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$153.82(12)$
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$-27.11(18)$
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-22.63(16)$
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$156.44(11)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$0.33(18)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$177.10(11)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-0.71(19)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.7(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-0.3(2)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$-0.04(19)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(1)$	$177.93(11)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$0.05(17)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$-176.32(11)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(1)$	$-177.90(10)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(1)$	$5.73(18)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	$43.10(16)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	$-124.71(12)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(13)$	$-138.91(12)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(13)$	$53.27(15)$

Table 17: Hydrogen bonds for compound 75 [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<$ (DHA)
C(8)-H(8B) ..O(2)\#1	0.99	2.52	$3.1458(14)$	121.2
C(54)-H(54) ...O(12)\#1	0.95	2.50	$3.2056(15)$	131.2

Symmetry transformations used to generate equivalent atoms:
\#1-x+1/2,y-1/2,-z+1/2

Table 18: Crystal data and structure refinement for compound 76.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group Unit cell dimensions

Volume
Z, Calculated density Absorption coefficient F(000)
Crystal size
Diffractometer
Θ-Range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.02$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $\left[\mathrm{I}^{2}\right.$ sigma(I)]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3.5}$
$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}-0.5$ 2-butanol
486.55

123(2) K
0.71073 A

Triclinic, P-2 (No.2)
$\begin{array}{ll}\mathrm{a}=10.9276(1) \mathrm{A} & \alpha=106.467(1)^{\circ} \\ \mathrm{b}=11.6818(1) \mathrm{A} & \beta=115.771(1)^{\circ} \\ \mathrm{c}=11.6878(1) \mathrm{A} & \gamma=99.841(1)^{\circ} \\ 1211.439(18) \mathrm{A}^{3} & \\ 2,1.334 \mathrm{Mg} / \mathrm{m}^{3} & \\ 0.088 \mathrm{~mm}^{-1} \\ 514 \\ 0.50 \times 0.30 \times 0.20 \mathrm{~mm} \\ \text { Nonius KappaCCD } \\ 2.95 \text { to } 27.47{ }^{\circ} \\ -14<=\mathrm{h}<=14,-15<=\mathrm{k}<=15,-15<=1<=15 \\ 23952 / 5427[\mathrm{R}(\text { int })=0.0292] \\ 97.8 \% \\ \text { None } \\ \text { Full-matrix least-squares on } \mathrm{F}^{2} \\ 5427 / 16 / 330 \\ 1.074 \\ \mathrm{R} 1=0.0387, \text { wR2 }=0.0982 \\ \mathrm{R} 1=0.0431, \text { wR2 }=0.1008 \\ 0.387 \text { and }-0.360 \text { e. } \mathrm{A}^{-3}\end{array}$

Table 19: Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound 76.

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.3763(14)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.4224(13)$
$\mathrm{N}(1)-\mathrm{C}(18)$	$1.4316(13)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.2134(13)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5322(14)$
$\mathrm{C}(3)-\mathrm{C}(31)$	$1.5240(15)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5151(15)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.3858(18)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.3935(18)$
$\mathrm{C}(32)-\mathrm{C}(37)$	

C(32)-C(31)-C(3)	$114.67(9)$
C(33)-C(32)-C(37)	$118.49(12)$
C(33)-C(32)-C(31)	$120.22(11)$
C(37)-C(32)-C(31)	$121.25(11)$
C(34)-C(33)-C(32)	$121.05(14)$
C(35)-C(34)-C(33)	$120.40(14)$
C(34)-C(35)-C(36)	$119.74(13)$
C(35)-C(36)-C(37)	$119.89(15)$
C(32)-C(37)-C(36)	$120.42(13)$
O(4)-C(4)-N(5)	$124.32(10)$

C(33)-C(34)	1.380(2)
C(34)-C(35)	1.375(3)
C(35)-C(36)	1.386(3)
C(36)-C(37)	1.394(2)
C(4)-O(4)	1.2151(13)
$\mathrm{C}(4)-\mathrm{N}(5)$	1.3852(13)
$\mathrm{N}(5)-\mathrm{C}(6)$	1.4236(13)
$\mathrm{N}(5)-\mathrm{C}(51)$	1.4318(14)
C(51)-C(52)	1.3915(15)
C(51)-C(56)	1.3932(15)
C(52)-C(53)	1.3905(17)
C(53)-C(54)	1.3857(18)
C(54)-C(55)	1.3866(17)
C(55)-C(56)	1.3864(16)
C(6)-C(7)	1.3293(15)
$\mathrm{C}(7)-\mathrm{N}(11)$	1.4105(14)
C(7)-C(8)	1.5015(15)
C(8)-C(9)	1.5367(17)
C(9)-C(10)	1.5224(18)
$\mathrm{C}(10)-\mathrm{N}(11)$	1.4819(14)
$\mathrm{N}(11)-\mathrm{C}(12)$	1.3680(15)
$\mathrm{C}(12)-\mathrm{O}(12)$	1.2316(14)
C(12)-C(13)	1.4942(16)
C(13)-C(18)	1.3972(15)
C(13)-C(14)	1.4035(16)
C(14)-C(15)	1.3799(18)
C(15)-C(16)	1.3894(18)
C(16)-C(17)	1.3870(16)
C(17)-C(18)	1.3927(15)
C(1B)-C(2B)	1.501(5)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$	1.439(4)
C(2B)-C(3B)	1.512(4)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{BO})$	0.849(18)
C(3B)-C(4B)	1.529(5)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	116.95(9)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(18)$	122.89(9)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)$	119.16(9)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(1)$	123.71(10)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	125.38(10)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	110.87(9)
C(31)-C(3)-C(2)	112.05(9)
C(31)-C(3)-C(4)	113.80(9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.89(8)

O(4)-C(4)-C(3)	124.23(10)
$\mathrm{N}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.44(9)
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	115.51(9)
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$	123.74(9)
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{C}(51)$	119.55(8)
C(52)-C(51)-C(56)	120.13(10)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{N}(5)$	120.92(10)
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{N}(5)$	118.95(9)
C(53)-C(52)-C(51)	119.07(11)
C(54)-C(53)-C(52)	121.20(11)
C(53)-C(54)-C(55)	119.20(11)
C(56)-C(55)-C(54)	120.51(11)
C(55)-C(56)-C(51)	119.88(10)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(1)$	121.85(10)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(5)$	123.30(10)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(5)$	114.82(9)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	124.74(10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	127.12(10)
$\mathrm{N}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	107.94(9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	101.21(9)
C(10)-C(9)-C(8)	104.42(10)
$\mathrm{N}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	103.90(9)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(7)$	131.28(9)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(10)$	117.80(9)
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	110.29(9)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{N}(11)$	118.71(10)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)$	120.31(10)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.84(10)
C(18)-C(13)-C(14)	118.31(10)
C(18)-C(13)-C(12)	125.44(10)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	116.24(10)
C(15)-C(14)-C(13)	120.77(11)
C(14)-C(15)-C(16)	120.04(11)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.45(11)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.28(11)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	121.12(10)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(1)$	119.24(9)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(1)$	119.64(9)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	111.2(3)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	105.3(2)
$C(1 B)-C(2 B)-C(3 B)$	112.4(2)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{BO})$	103(2)
$C(2 B)-C(3 B)-C(4 B)$	113.2(2)

Table 20: Torsion angles [${ }^{\circ}$] for compound 76.

$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$-179.17(10)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$-10.68(16)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$3.03(12)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$171.52(9)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$3.96(15)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$-178.28(9)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$129.99(11)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-52.26(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	$-162.90(9)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	$74.36(12)$
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$-115.08(12)$
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	$67.25(15)$
$\mathrm{C}(37)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$0.8(2)$

$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$135.43(11)$
$\mathrm{C}(51)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-56.58(14)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$-42.62(12)$
$\mathrm{C}(51)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$125.38(10)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	$-0.74(17)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	$-178.65(9)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$173.45(10)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-4.46(18)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-144.00(12)$
$\mathrm{N}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$30.98(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-34.42(12)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)$	$25.97(13)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	$-30.00(19)$

$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$-176.98(12)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$-0.6(2)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$-0.1(2)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$0.7(2)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{C}(36)$	$-0.12(19)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{C}(36)$	$177.59(12)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(32)$	$-0.6(2)$
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$1.84(15)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$-123.15(11)$
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	$-179.01(9)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	$56.00(11)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$169.74(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$-9.41(12)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$	$2.31(16)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$	$-176.84(9)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)$	$-42.59(15)$
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)$	$150.45(10)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(56)$	$138.01(10)$
$\mathrm{C}(6)-\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(56)$	$-28.94(14)$
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$-0.92(17)$
$\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$179.69(10)$
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$-0.02(18)$
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$0.66(19)$
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	$-0.36(18)$
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(51)$	$-0.57(17)$
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	$1.22(16)$
$\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	$-179.39(10)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$-131.32(11)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$59.74(14)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(5)$	$46.76(12)$

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	$154.87(12)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	$159.49(11)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	$-15.64(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	$-178.88(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(7)$	$-6.93(13)$
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	$-178.65(11)$
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	$-8.71(16)$
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-3.04(18)$
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$166.89(10)$
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$-151.56(12)$
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$32.90(17)$
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$27.45(16)$
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-148.09(11)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$0.08(18)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-179.00(11)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-1.03(19)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.59(19)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$0.80(18)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$-1.78(17)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(1)$	$177.26(10)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$1.33(16)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$-179.68(11)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(1)$	$-177.70(10)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(1)$	$1.29(17)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	$-47.93(14)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.32(11)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(13)$	$131.12(11)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(13)$	$-60.62(13)$
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	$59.5(3)$
$\mathrm{C}(1 B)-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 B)-\mathrm{C}(4 \mathrm{~B})$	$-179.3(4)$

Table 21: Hydrogen bonds for compound 76 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	d(D.H)	d(H...A)	d(D...A)	$<($ DHA
$\mathrm{O}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{BO}) \ldots \mathrm{O}(12)$	$0.849(18)$	$2.01(2)$	$2.825(2)$	$160(3)$
$\mathrm{C}(54)-\mathrm{H}(54) \ldots \mathrm{O}(2) \# 1$	0.95	2.33	$3.2552(14)$	164.6
$\mathrm{C}(17)-\mathrm{H}(17) \ldots \mathrm{O}(4) \# 2$	0.95	2.59	$3.4312(14)$	147.7
$\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B} 2) \ldots \mathrm{O}(4) \# 3$	0.98	2.47	$3.435(4)$	168.2
$\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B} 3) \ldots \mathrm{O}(4) \# 4$	0.98	2.57	$3.524(4)$	163.3
$\mathrm{C}(3)-\mathrm{H}(3) \ldots \mathrm{O}(12) \# 4$	1.00	2.62	$3.5897(14)$	162.5
$\mathrm{C}(3)-\mathrm{H}(3) \ldots \mathrm{O}(2 \mathrm{~B}) \# 4$	1.00	2.50	$3.242(2)$	130.6

Symmetry transformations used to generate equivalent atoms:
\#1 x-1,y,z \#2-x+1,-y+1,-z+1 \#3 x+1,y,z+1 \#4-x+2,-y+2,-z+2

Table 22: Crystal data and structure refinement for compound $\mathbf{8 2}$.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Diffractometer
Θ-Range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.02$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I^{2} sigma(I)]
R indices (all data)
Largest diff. peak and hole

```
\(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\)
348.41
123(2) K
0.71073 A
Monoclinic, P2(1)/n (No.14)
\(\mathrm{a}=13.4178(3) \mathrm{A} \quad \alpha=90^{\circ}\)
\(\mathrm{b}=9.1816(2) \mathrm{A} \quad \beta=100.101(1)^{\circ}\)
\(\mathrm{c}=13.4360(4) \mathrm{A} \quad \gamma=90^{\circ}\)
1629.61(7) A \({ }^{3}\)
\(4,1.420 \mathrm{Mg} / \mathrm{m}^{3}\)
\(0.215 \mathrm{~mm}^{-1}\)
728
\(0.50 \times 0.30 \times 0.15 \mathrm{~mm}\)
Nonius KappaCCD
2.97 to \(27.48^{\circ}\)
\(-17<=\mathrm{h}<=17,-11<=\mathrm{k}<=11,-17<=1<=17\)
\(15182 / 3629[\mathrm{R}(\mathrm{int})=0.0347]\)
99.8 \%
None
Full-matrix least-squares on \(\mathrm{F}^{2}\)
3629 / 0 / 226
1.081
R1 \(=0.0329\), wR2 \(=0.0850\)
\(\mathrm{R} 1=0.04511, \mathrm{wR} 2=0.0890\)
0.260 and -0.303 e. \(\mathrm{A}^{-3}\)
```

Table 23: Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound $\mathbf{8 2}$.

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.2341(16)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.3607(17)$
$\mathrm{C}(1)-\mathrm{C}(17)$	$1.4977(18)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.4188(16)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.4844(17)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.515(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.530(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.4980(18)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.3221(17)$
$\mathrm{C}(7)-\mathrm{N}(11)$	$1.7626(15)$
$\mathrm{C}(7)-\mathrm{S}(8)$	$1.8366(13)$
$\mathrm{S}(8)-\mathrm{C}(9)$	$1.5025(18)$
$\mathrm{C}(9)-\mathrm{C}(91)$	

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$104.33(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$101.98(11)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)$	$125.22(12)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$127.64(12)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$106.83(11)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	$124.81(12)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$	$109.37(9)$
$\mathrm{N}(11)-\mathrm{C}(7)-\mathrm{S}(8)$	$88.49(6)$
$\mathrm{C}(7)-\mathrm{S}(8)-\mathrm{C}(9)$	$114.53(10)$
$\mathrm{C}(91)-\mathrm{C}(9)-\mathrm{C}(10)$	$112.53(9)$
$\mathrm{C}(91)-\mathrm{C}(9)-\mathrm{S}(8)$	$105.02(8)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{S}(8)$	$118.74(12)$
$\mathrm{C}(96)-\mathrm{C}(91)-\mathrm{C}(92)$	

C(9)-C(10)	1.5315(17)
C(91)-C(96)	1.3907(17)
C(91)-C(92)	1.3936(18)
C(92)-C(93)	1.3819(18)
C(93)-C(94)	1.385(2)
C(94)-C(95)	1.379(2)
C(95)-C(96)	1.3881(19)
$\mathrm{C}(10)-\mathrm{O}(10)$	1.2102(15)
$\mathrm{C}(10)-\mathrm{N}(11)$	1.3816(16)
$\mathrm{N}(11)-\mathrm{C}(12)$	1.4374(15)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.3921(18)
$\mathrm{C}(12)-\mathrm{C}(17)$	1.3956(18)
C(13)-C(14)	1.3818(19)
C(14)-C(15)	1.382(2)
C(15)-C(16)	1.383(2)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.4002(17)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	119.10(12)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(17)$	119.84(12)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(17)$	120.88(11)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(6)$	131.21(11)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	118.21(11)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(3)$	110.27(10)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	104.11(11)

C(96)-C(91)-C(9)	119.64(11)
C(92)-C(91)-C(9)	121.62(11)
C(93)-C(92)-C(91)	120.55(12)
C(92)-C(93)-C(94)	120.18(12)
C(95)-C(94)-C(93)	119.84(13)
C(94)-C(95)-C(96)	120.10(13)
C(95)-C(96)-C(91)	120.56(13)
$\mathrm{O}(10)-\mathrm{C}(10)-\mathrm{N}(11)$	124.87(12)
$\mathrm{O}(10)-\mathrm{C}(10)-\mathrm{C}(9)$	124.17(11)
$\mathrm{N}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	110.93(11)
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(7)$	113.99(10)
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	122.39(10)
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	120.05(10)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	120.36(12)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(11)$	117.97(12)
$\mathrm{C}(17) \mathrm{C}(12)-\mathrm{N}(11)$	121.58(11)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.32(13)
C(13)-C(14)-C(15)	120.20(13)
C(14)-C(15)-C(16)	119.55(13)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	121.46(13)
C(12)-C(17)-C(16)	118.09(12)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(1)$	127.05(12)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(1)$	114.85(12)

Table 24: Torsion angles [${ }^{\circ}$] for compound 82.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(6)$	175.70(12)
$\mathrm{C}(17)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(6)$	0.6(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	2.73(18)
$\mathrm{C}(17)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	-172.40(11)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	179.60(11)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	5.23(14)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-24.96(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	34.73(14)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	29.9(2)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-156.68(12)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	-156.14(13)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	17.26(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	141.69(13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	-32.06(14)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	-0.7(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)$	-173.40(12)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$	172.06(9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$	-0.6(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)-\mathrm{C}(9)$	-141.92(12)
$\mathrm{N}(11)-\mathrm{C}(7)-\mathrm{S}(8)-\mathrm{C}(9)$	31.81(9)
C (7)-S(8)-C(9)-C(91)	-154.78(9)
$\mathrm{C}(7)-\mathrm{S}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-29.57(9)
C(10)-C(9)-C(91)-C(96)	129.54(13)
$\mathrm{S}(8)-\mathrm{C}(9)-\mathrm{C}(91)-\mathrm{C}(96)$	-110.61(12)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(91)-\mathrm{C}(92)$	-50.98(16)
$\mathrm{S}(8)-\mathrm{C}(9)-\mathrm{C}(91)-\mathrm{C}(92)$	68.86(14)
C(96)-C(91)-C(92)-C(93)	-0.70(19)
C(9)-C(91)-C(92)-C(93)	179.82(12)
C(91)-C(92)-C(93)-C(94)	1.6(2)
C(92)-C(93)-C(94)-C(95)	-1.3(2)
C(93)-C(94)-C(95)-C(96)	0.0(2)
C(94)-C(95)-C(96)-C(91)	0.9(2)

C(9)-C(91)-C(96)-C(95)	178.95(12)
C(91)-C(9)-C(10)-O(10)	-36.58(17)
$\mathrm{S}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(10)$	-160.53(11)
C(91)-C(9)-C(10)-N(11)	145.38(11)
$\mathrm{S}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)$	21.43(12)
$\mathrm{O}(10)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(7)$	-176.59(11)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(7)$	1.44(15)
$\mathrm{O}(10)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	24.75(19)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	-157.23(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	148.52(12)
$\mathrm{S}(8)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(10)$	-25.26(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	-52.27(17)
$\mathrm{S}(8)-\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)$	133.95(10)
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	33.23(17)
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-124.19(13)
$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	-150.38(12)
$\mathrm{C}(7)-\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	52.21(16)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	0.40(19)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	176.84(11)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	0.80(19)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-0.7(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-0.5(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	-1.60(18)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	-177.91(11)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(1)$	176.88(12)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(1)$	0.6(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	1.67(19)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(1)$	-176.99(12)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(17)-\mathrm{C}(12)$	154.77(13)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(17)-\mathrm{C}(12)$	-30.14(19)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(17)-\mathrm{C}(16)$	-26.71(17)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(17)-\mathrm{C}(16)$	148.38(13)

Table 25: Hydrogen bonds for compound $\mathbf{8 2}$ [\AA and ${ }^{\circ}$].

D-H....A	d(D-H)	d(H...A)	d(D...A)	$<$ (DHA)
$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1) \# 1$	1.00	2.21	$3.1308(16)$	153.0

Symmetry transformations used to generate equivalent atoms:
$\# 1-x+3 / 2, y+1 / 2,-z+1 / 2$

Table 26: Crystal data and structure refinement for compound 90.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Diffractometer
Θ-Range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=27.48$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I^{2} sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
255.27

123(2) K
0.71073 A

Monoclinic, P2(1) (No.14)
$\mathrm{a}=9.3330(2) \mathrm{A} \quad \alpha=90^{\circ}$
$\mathrm{b}=7.0934(2) \mathrm{A} \quad \beta=114.714(1)^{\circ}$
$\mathrm{c}=9.4243(3) \mathrm{A} \quad \gamma=90^{\circ}$
596.86(3) A ${ }^{3}$

2, $1.420 \mathrm{Mg} / \mathrm{m}^{3}$
$0.098 \mathrm{~mm}^{-1}$
268
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Nonius KappaCCD
3.65 to 27.48°
$-12<=\mathrm{h}<=12,-9<=\mathrm{k}<=7,-11<=\mathrm{l}<=12$
$5713 / 2197[\mathrm{R}(\mathrm{int})=0.0233]$
98.9 \%

None
Full-matrix least-squares on F^{2}
3629 / 0 / 226
1.081

R1 $=0.0282$, wR2 $=0.0677$
$\mathrm{R} 1=0.0304, \mathrm{wR} 2=0.0686$
-0.1(10), cannot be determined reliable
0.129 and -0.215 e. A^{-3}

Table 27: Bond lengths [$\AA \AA$] and angles $\left[{ }^{\circ}\right]$ for compound 90.

O(1)-C(1)	1.2134(16)
$\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})$	1.3913(17)
C(1)-C(2)	1.5117(17)
C(2)-N(3)	1.4660(19)
$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})$	1.2739(17)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	1.4085(16)
C(3A)-C(3B)	1.4996(19)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})$	1.4769(18)
C(3B)-C(4)	1.5309(17)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.530(2)
C(5)-C(6)	1.523(2)
$\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})$	1.4739(18)
$\mathrm{N}(6 \mathrm{~A})$-C(7)	1.3439(17)
$\mathrm{C}(7)-\mathrm{O}(7)$	1.2402(17)

$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	115.43(12)
$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$	127.26(11)
$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$	117.27(10)
$\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})$	108.63(11)
N(6A)-C(3B)-C(4)	102.78(11)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4)$	113.29(11)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3 \mathrm{~B})$	103.92(11)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	103.39(11)
$\mathrm{N}(6 \mathrm{~A})$-C(6)-C(5)	103.46(12)
$\mathrm{C}(7)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(6)$	121.29(12)
$\mathrm{C}(7)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$	126.19(11)
$\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$	112.33(10)
$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{N}(6 \mathrm{~A})$	121.46(13)
$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})$	120.22(12)

$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})$	$1.504(2)$
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8)$	$1.3992(17)$
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$1.4001(19)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.382(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.385(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.3867(17)$
$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})$	$1.3891(18)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	$1.4277(16)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})$	$126.73(12)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$129.47(13)$
$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(1)-\mathrm{C}(2)$	$103.73(11)$
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$106.87(11)$
$\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(3)-\mathrm{C}(2)$	$105.88(10)$

$\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})$	$118.30(12)$
$\mathrm{C}(8)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$118.09(13)$
$\mathrm{C}(8)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(7)$	$116.68(12)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(7)$	$125.21(11)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7 \mathrm{~A})$	$121.52(14)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.36(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.52(14)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})$	$119.87(14)$
$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	$120.62(11)$
$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	$118.25(13)$
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	$121.10(12)$
$\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 A)$	$108.00(10)$
$\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})$	$125.86(11)$

Table 28: Torsion angles [${ }^{\circ}$] for compound 90.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	-179.79(14)
$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	-2.68(14)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})$	2.87(15)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	-2.02(16)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$	175.64(13)
$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})$	-114.40(15)
$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})$	63.22(14)
$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4)$	-0.9(2)
$\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4)$	176.75(12)
$\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4)-\mathrm{C}(5)$	30.26(13)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4)-\mathrm{C}(5)$	-86.76(14)
C(3B)-C(4)-C(5)-C(6)	-38.14(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})$	30.49(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)$	163.27(12)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})$	-11.99(15)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)$	-66.18(15)
$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)$	173.53(12)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(6)$	108.80(12)
$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(6)$	-11.49(14)
$\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{O}(7)$	5.3(2)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{O}(7)$	179.83(13)
$\mathrm{C}(6)-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})$	-176.80(13)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})$	-2.24(19)
$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8)$	38.6(2)
$\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8)$	-139.35(13)

O(7)-C(7)-C(7A)-C(11A)	-139.68(15)
$\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	42.37(19)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8)-\mathrm{C}(9)$	-1.1(2)
$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8)-\mathrm{C}(9)$	-179.47(14)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.5(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0.4(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})$	-0.6(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	0.0(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	178.14(13)
C(8)-C(7A)-C(11A)-C(11)	0.82(19)
$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(11)$	179.09(13)
$\mathrm{C}(8)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	-177.28(12)
$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})$	1.0(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})$	178.78(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})$	1.56(14)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})$	-5.1(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})$	177.70(12)
$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(1)$	0.26(16)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(1)$	-177.64(11)
$\mathrm{N}(3)-\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})$	-175.87(13)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(11 \mathrm{~A})$	6.23(19)
$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(1)$	-40.27(19)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(1)$	137.88(14)
$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})$	135.19(13)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(11 \mathrm{~B})-\mathrm{C}(3 \mathrm{~A})$	-46.67(19)

Table 29: Hydrogen bonds for compound $90\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
$\mathrm{C}(11)-\mathrm{H}(11) \ldots \mathrm{O}(7) \# 1$	0.95	2.45	$3.1389(17)$	129.3

Symmetry transformations used to generate equivalent atoms:
\#1 x,y+1,z

6. References

1) Schmidt, A., Adv. Heterocycl. Chem. 2003, 85, 67.
2) Schmidt A., Kindermann, M. K., J. Org. Chem. 1998, 63, 4636.
3) (a) Schmidt, A., Nieger, M., Heterocycles 1999, 51, 2119. (b) Schmidt, A., Nieger, M., Heterocycles 2001, 55, 827. (c) Schmidt, A., Mordhorst, T., Habeck, T., Org. Lett. 2002, 4, 1375. (d) Schmidt, A., J. Heterocycl. Chem. 2002, 39, 949.
4) Ollis W. D., Stanforth S. P., Tetrahedron 1985, 41, 2239.
5) Platt, J. R., J. Chem. Phys. 1951, 19, 101.
6) Schmidt. A., Curr. Org. Chem. 2004, 8, 653.
7) Osterhout, M. H., Nadler, W. R., Padwa, A., Synthesis 1994, 123.
8) (a) Potts, K. T., Rochanapurk, T., Coats, S. J., Hadjiarapoglou, L., Padwa, A., J. Org. Chem. 1993, 58, 5040. (b) Sainsbury, M., Strange R. H., Woodward, P. R., Barsanti, P. A., Tetrahedron 1993, 49, 2065. (c) Padwa, A., Austin, D. J., Price, A., Weingarten, M. D., Tetrahedron 1996, 52, 3247.
9) Hertzog, D. L., Nadler, W. R., Zhang, Z. J., Padwa, A., Tetrahedron Lett. 1992, 33, 5877.
10) (a) Potts, K. T., Houghton, E., Singh, U. P., J. Org. Chem. 1974, 39, 3627. (b) Potts, K. T., Chen, S. J., Kane, J., Marshall, J. L., J. Org. Chem. 1977, 42, 1633. (c) Potts, K. T., Baum, J., Datta, S. K., Houghton, E., J. Org. Chem. 1976, 41, 813. (d) Potts, K. T., Baum, J., Houghton, E., J. Org. Chem. 1976, 41, 818.
11) (a) Potts, K. T., Sorm, M., J. Org. Chem. 1972, 37, 1422. (b) Kappe, T., Lube, W., Mh. Chem. 1971, 102, 781. (c) Kappe T., Lube, W., Angew. Chem. 1971, 83, 967. (d) Gotthardt, H., Schenk, K. H., Chem. Ber. 1985, 118, 4567.
12) (a) Kappe, C. O., Kappe, T., Arch. Pharm. 1991, 324, 863. (b) Satyanarayana K., Rao, M. A., Indian J. Pharm. Sci. 1995, 57, 243.
13) Kurisu, N., Chiba, N., Sasaki, Y., H., JP 054246, Feb 1993; Chem. Abstr. 1993, 119 , 52892.
14) Yabuki, Y., Kojima, T., Hiroyuki, H., JP 05313362, Nov 1993; Chem. Abstr. 1994, 121, 191433.
15) Yokomori, S., Takeki, T., Oota, T., Hasegawa, M., Harayama, K. JP 05139936, Jun 1993; Chem. Abstr. 1993, 119, 146349.
16) Lloyd, D., McNab, H., Adv. Heterocycl. Chem. 1998, 71, 1.
17) Lloyd, D., Marshall, D. R., Chem. Ind. (London), 1972, 335.
18) (a) Speakman, J. C., Wilson, F. B., Acta Crystallogr., Sect. B, 1976, B32, 622. (b) Blake, A. J., Schröder, M., Sorbie, R. J., Z. Kristallogr., 1991, 194, 148. (c) Svensson, C., Timby, L., Cryst. Struct. Commun., 1981, 10, 429.
19) Tajana, A., Pennini, R., Nardi, D., Farmaco, Ed. Sci. 1980, 35, 181.
20) Joshi, K. C., Pathak, V. N., Arya, P., Chand, P., Pharmazie 1979, 34, 718.
21) Roma, G., Vigevano, E., Balbi A., Ermili, A., Farmaco, Ed. Sci. 1979, 34, 718.
22) Nardi, D., Massarani, E., Tajana, A., Cappelletti, R., Veronese, M., Farmaco, Ed. Sci., 1975, 30, 727.
23) Giodano, F., Greco, C., Silipo, C., Vittoria, A., Boll. Sco. Ital. Biol. Sper. 1975, 51, 1069.
24) Greco, C., Silipo C., Vittoria, A., Farmaco, Ed. Sci. 1977, 32, 909.
25) Kravchenco, A. I., Farmakol. Toksikol. (Moscow) 1974, 37, 474.
26) Clifford, D. P., Jackson, D., Edwards, R. V., Jeffrey, P., Pestic. Sci. 1976, 7, 453.
27) Medina, H. J., Paladini, A. C., Izqierdo, I., Behav. Brain. Res. 1993, 58, 1.
28) (a) Hurley, L. H., Boyed, F. L., TIPS 1988, 9, 402. (b) Hurley, L. H., J. Med. Chem. 1989, 32, 2027. (c) Thurston, D. E., Thompson, A. S., Chem. Br. 1990, 26, 767.
29) Dervan, P. B., Science 1986, 232, 464.
30) (a) Leimgruber, W., Stefanovic, V., Schenker, F., Karr, A., Berger, J., J. Am. Chem. Soc. 1965, 87, 5791. (b) Leimgruber, W., Batcho, A. D., Schenker, F., J. Am. Chem. Soc. 1965, 87, 5793. (c) Arora, S. K., Acta Crystallogr. 1979, B35, 2945.
31) (a) Arima, K., Kohsaka, M., Tamura, J., Imanaka, H., Sakai, H., J. Antibiot. 1972, 25, 437. (b) Nishioka, Y., Beppu, T., Kohsaka, M., Arima, K., J. Antibiot. 1972, 25, 660. (c) Tazuka, Z., Takaya, T., J. Antibiot. 1983, 36, 142.
32) Hochlowski, J. E., Andres, W. W., Theriault, R. J., Jackson, M., McAlpine J. B., J. Antibiot. 1987, 40, 145.
33) Konishi, M., Ohkuma, H., Naruse, N., Kawaguchi, H., J. Antibiot. 1984, 37, 200.
34) Kyowa Hakko Kogyo Co. Ltd., Jpn Kokai Tokyo Koho JP 58180487, 21 Oct 1983; Chem. Abstr. 1984, 100, 173150.
35) Kunimoto, S., Masuda, T., Kanbayashi, N., Hamada, M., Naganawa, H., Miamota, M., Takeuchi, T., Umezawa, H., J. Antibiot. 1980, 33, 665.
36) (a) Takeuchi, T., Miamota, M., Ishizuka, M., Naganawa, H., Kondo, S., Hamada, M., Umezawa, H., J. Antibiot. 1976, 29, 93. (b) Miyamoto, M., Kondo, S., Naganawa, H., Maeda, K., Ohno, M., Umezawa, H., J. Antibiot. 1977, 30, 340.
37) Shimizu, K.-I., Kawamoto, I., Tomita, F., Morimoto, M., Fujimoto, K., J. Antibiot. 1982, 35, 972.
38) (a) Hara, M., Tamaoki, T., Yoshida, M., Morimoto, M., Nakano, H., J. Antibiot. 1988, 51, 702. (b) Itoh, J., Watabe, H.-O., Ishii, S., Gomi, S., Nagasawa, M., Yamamoto, H., Shomura, T., Sezaki, M., Kondo, S., J. Antibiot. 1988, 41, 1281.
39) Leber, J. D., Hoover, J. R. E., Holden, K. G., Johnson, R. K., Hecht, S. M., J. Am. Chem. Soc. 1988, 110, 2992.
40) Tsunkawa, M., Kamei, H., Konishi, M., Miyaki, T., Oki, T., Kawakuchi, H., J. Antibiot. 1988, 41, 1366.
41) (a) Hurley, A. H., Acc. Chem. Res. 1980, 13, 263. (b) Hurley, A. H., Speedie, M. K. In Antibiotics IV. Biosythesis; Corcoran, J. W., Ed.; Springer-Verlag: Berlin, Heidelberg, 1981; pp 261-294.
42) Hurley, A. H., Reck, T., Thurston, D. E., Langley, D. R., Holden, K. G., Hertzberg, R. P., Hoover, J. R. E., Gallagher, G. Jr., Faucette, L. F., Mong, S.-M, Johnson, R. K., Chem. Res. Toxicol. 1988, 1, 258.
43) Thurston, D. E., Advances in the study of pyrrolo[2,1-c][1,4]benzodiazepine (PBD) Antitumour Antibiotics. In Molecular Aspects of Anticancer Drug-DNA Interactions; Neider, S., Waring, M. J., Eds.; Macmillan Press Ltd.: U.K. 1993; Vol. 1, pp 54-88.
44) (a) Thurston, D. E., Hurley, L. H., Drugs Future 1983, 8, 957. (b) Hurley, L. H., Thurston, D. E., Pharm. Res. 1984, 2, 52.
45) Kaneko, T.; Wong, H.; Doyle, T. W.; Rose, W. C; Bradner. W. T., J. Med Chem. 1985, 28, 388.
46) Rahbaek, L., Breinhold, J., Frisvad, J. C., Christophersen C., J. Org. Chem. 1999, 64, 1689.
47) Sun, H. H., Barrow, C. J., Sedlock, D. M., Gillum, A. M., Cooper, I., J. Antibiot. 1994, 47, 515.
48) Fischer, E., Besthorn, E., Ann. 1882, 212, 316.
49) Potts, K. T., Murphy, P. M., Kuehnling, W. R., J. Org. Chem. 1988, 53, 2889.
50) (a) Boyd, G. V. in 'Houben-Weyl: Six-membered and Larger Hetero-Rings with Maximum Unsaturation', Schaumann, E. (Ed.), Thieme Verlag, Stuttgart, New York, 1998, Vol. E9d, p. 299. (b) Chimirri, A., Gitto, R., Grasso, S., Monforte, A. M., Omeo, G., Zappalà, M., Heterocycles 1993, 36, 865. (c) Fryer R. I., Walser, A., Chem. Heterocycl. Compd. 1991, 50, 209. (d) Lloyd, D., Cleghorn, H. P., Adv. Heterocycl. Chem. 1974, 17, 27.
51) Thiele, J., Steimmig G., Ber. 1907, 40, 955.
52) Linand, A. L., Hoch, J. M., Arzneim.-Forsch. 1984, 34, 640.
53) Kim, J. S., Sun, Q., Yu, C., Liu, A., Liu, L. F., LaVoie, E. J., Bioorg. Med. Chem. 1998, 6, 163.
54) Dalton, S. E., Gingell, W. G., Jenkins, D. C., King, L. G., Lee, G. E., Thompson, G. M., US Patent, Jan. 31, 1978, 4.071.528; Chem. Abstr. 1978, 87, 84983.
55) Hirano, M., Yakabe, S., Chikamori, H., Clark, J. H., Morimoto, T., J. Chem. Res. (S) 1998, 310.
56) Griffin, R. J., Calvert, A. H., Curtin, N. J., Newell, D. R., Golding, B. T., US Patent, Oct. 30. 2001, 6.310.082; Chem. Abstr. 2001, 126, 212151.
57) The diazepinium 43 was already described as perchlorate: Lloyd, D., McDougall, R. H., and Marshall, D. R., J. Chem. Soc. 1965, 3785.
58) (a) Schwarzenbach, G., Lütz, K., Helv. Chim. Acta 1940, 23, 1147. (b) Halford, J. O., Fitch, R. M., J. Am. Chem. Soc. 1963, 85, 3354. (c) El-Rabbat, N. A., Youssef, A. F., Omar, N. M., Analyst (London) 1980, 165.
59) Schwarzenbach, G., Lütz, K., Helv. Chim. Acta 1940, 23, 1162.
60) Speakman, J. C., Wilson, F. B., Acta Crystallogr., Sect. B 1976, B32, 622.
61) Rodier, N., Agafonev, A., Dubois, P., Mariand, M., Levillain, P., and Sense, J. M., Acta Crystallogr., Sect. C 1993, C49, 156.
62) Brisander, M., Harris, S. G., Lloyd, D., McNab, H., Parsons, S., J. Chem. Res. (S) 1998, 72.
63) Svensson, C., Timby, L., Cryst. Struct. Commun. 1981, 10, 429.
64) Witt, A., Bergman, J., J. Org. Chem. 2001, 66, 2784.
65) Grieder, A., Thomas, A. W., Synthesis 2003, 11, 1707.
66) Elguero, J., Marzin, C., Katritzky, A. R., and Linda, P., in 'The Tautomerism of Heterocycles,' Academic Press, New York, 1976, p. 363.
67) Kikelj, D., Urleb, U., in 'Science of Synthesis' Vol. 11, ed. by E. Schaumann, Chapter 11.17, Thieme Verlag, Stuttgart, 2002, p. 627.
68) Bird, C. W., Heterocycles 1994, 37, 249.
69) Wu, X., Y. Liu, W. Sheng, J. Sun, G. Qin, Planta Med. 1997, 63, 55.
70) Kamal, A., J. Org. Chem. 1991, 56, 2237.
71) Wright, Jr., W. B., Brabander, H. J., Greenblatt, E. N., Day, I. P., Hardy, Jr., R. A., J. Med. Chem. 1978, 21, 1087.
72) Kamal, A., Howard, P. W., Reddy, B. S. N., Reddy, B. S. P., Thurston, D. E., Tetrahedron 1997, 53, 3223.
73) Cunha, S., Lima, B. R., Souza, A. R., Tetrahedron Lett. 2002, 43, 49.
74) Blöchl, P. E., Phys. Rev. B. 1994, 50, 17953.

7. Curriculum Vitae

Abbas Gholipour Shilabin
Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, D38678 Clausthal-Zellerfeld, Germany email: abbas.gholipour@tu-clausthal.de

Date of Birth: June 23, 1968
Nationality: Iranian
1983-1987 Natural Science Diploma, Dr. Ali Shariati High School, Talesh, Iran.
1987-1992 B.Sc., Chemistry, University of Tabriz, Iran.
1992-1994 Military Service.
1994-1997 M.Sc., Organic Chemistry, University of Tabriz, Iran.
Supervisor: Professor Ali Akbar Entezami
Thesis title: Electrochemical and chemical polymerization of furan derivatives containing thiophene and pyrrole and ethylenic spacers.

1997-2000 Research Assistant, R\&D department, Zakaria pharmaceutical company, Tabriz, Iran.

2000-2002 Research Manager, Naghmeh Kimya Co., Esfahan, Iran.
2002-2005 Ph.D., Organic Chemistry, Clausthal University of Technology, Germany. Supervisor: Privatdozent Dr. Andreas Schmidt Thesis title: Seven-Membered Ring Mesomeric Betaines. From Anti-Hückel Aromatics to Model Compounds of the Pyrrolobenzodiazepine Alkaloids Circumdatin A and B .

Awards:
2002-2005 Funding of the Deutsche Forschungsgemeinschaft (DFG).
Publications:

- A. Schmidt, A. Gholipour Shilabin, M. Nieger, Heterocycles 2005, 65, 625-632.

Synthesis and X-Ray Analysis of Pyrimidine-Annulated Pyrrolobenzodiazepines

\author{

- A. Schmidt, A. Gholipour Shilabin, J. C. Namyslo, M. Nieger, S. Hemmen, Eur. J. Org. Chem. 2005, 1781.
 Pyrimidine-annulated Pyrrolobenzodiazepines. A New Ring System Related to Aspergillus Alkaloids.
}
- A. Schmidt, A. Gholipour Shilabin, M. Nieger, Heterocycles 2004, 63, 2851-2858.

Thia-diazabenzo[g]cyclopenta[e]azulene-diones. Syntheses and Properties of a New Ring System.

- A. Schmidt, A. Gholipour Shilabin, M. Nieger, Org. Biomol. Chem. 2003, 1, 4342-4350.

On Benzo[b][1.4]diazepinium-olates, -thiolates and -carboxylates as Anti-Hückel Mesomeric Betaines.

- A. Schmidt, A. Gholipour Shilabin, M. Nieger, Heterocycles 2003, 60, 2645-2651. Synthesis and X-ray Structure of 2,4-Dimethyl-6,7-benzo[1,5]diazepinium Picrates.
- A. Gholipour Shilabin, A. A. Entezami, European Polymer Journal, 2000, 36, 2005-2020. Electrochemical behavior of conducting polyfuran derivatives containing pyrrole, thiophene and ethylenic spacers.
- A. Gholipour Shilabin, A. A. Entezami, Journal of Science and Technology of Polymers, 1997, 10(3)(persian).
A review on coducting polyfurans synthesis, properties and their applications.

Poster Presentations:
A. Schmidt, A. Gholipour Shilabin, XXI European Collopuium on Heterocyclic Chemistry, Abstract TP-46, 12.- 15. Sept. 2004, Sopron, Hungary.
On Betaine Pyrrolobenzodiazepines as Derivatives of Circumdatins

8. Summary

Mesomeric betaines have attracted considerable interest in the chemistry of heterocyclic compounds during the last decades. In contrast to 5- and 6-membered representatives which have been extensively reported in the literature, information about 7-membered mesomeric betaines is rare. This fact stimulated our interest in syntheses and characterisations of betainic benzo $[b][1,4]$ diazepiniums which possesses $4 \mathrm{n} \pi$-electrons (anti-Hückel heteroaromatics). 2,3-Diaminophenol, 3,4-diaminophenol, 4-methoxy-1,2-diaminobenzene, 3,4-diaminobenzenethiol, 2,3-diaminobenzoic acid and 3,4-diaminobenzoic acid were the starting materials for reactions with 2,4-pentanedione in the presence of sulfuric acid, trifluoroacetic acid and picric acid, respectively, for the synthesis of benzo[b][1,4]diazepinium salts. Among these, the hydroxy-benzo $[\mathrm{b}][1,4]$ diazepinium salts do not form mesomeric betaines (MB) on deprotonation. Instead, they are converted into diimines. By contrast, the 7-mercaptobenzo $[\mathrm{b}][1,4]$ diazepinium salt yields the corresponding thiolate on increasing the $p \mathrm{H}$ of the solution. This MB, which possesses $4 \mathrm{n} \pi$-electrons, does not fit into the classification system of heterocyclic mesomeric betaines accepted today. The carboxy derivatives readily form cross-conjugated mesomeric betaines. X-Ray structural analysis of 7-carboxy and 6-hydroxybenzo $[\mathrm{b}][1,4]$ diazepinium picrates unambiguously demonstrate the unique construction of the 7-membered ring with respect to $\mathrm{C}-\mathrm{N}$ bond distances which are unusually longer than conjugated bonds. This observation is clearly in contrast to the formation of Anti-Hückel 4 n π-electron systems, as conjugation is interrupted in order to avoid anti-aromaticity. In the single crystal, the benzodiazepinium molecules form layers with overlapped 7-membered rings in head-to-tail arrangement.

Next, we turned our attention to the proposed structures of Circumdatin A and B which have been recently reported as new pyrrolobenzodiazepine alkaloids with an annulated pyrimidinium olate cross-conjugated betainic structure. They were isolated from the fungus Aspergillus ochraceus by Christophersen et al. As the proposed structures are without precedent in heterocyclic as well as natural product chemistry, we prepared first representatives of this class of heterocyclic mesomeric betaines as model compounds or closely related structures for stereochemical and spectroscopic comparisons.

First, a pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione was converted into the corresponding C-11-monothiolactam and subsequently treated with amines to cyclic amidines which form tautomers (NMR, X-ray analysis) under basic conditions. Depending on the substitution
pattern as well as the reaction conditions, these amidines racemize and loose their isohelicity to the minor groove of DNA which cause the considerable biological activity of this class of compounds. We then reacted N-substituted cycloamidines with bis(trichlorophenyl)malonic esters. Formation of neutral tautomers of 1,3,8-triones instead of corresponding betainic structures resulted in twisted molecules with helical as well as chiral structure elements (NMR, X-ray analysis). These stereochemical features cause a splitting of the NMR signals of this new ring system into two sets. X-Ray single crystal analyses and ab-initio calculations confirm the boat conformation of the dioxopyrimidine moiety with the phenyl ring in axial position. The stereochemical outcome of this reaction strongly depends on substituent effects. Thus, reaction of N-unsubstituted cycloamidine with malonic esters resulted in the formation of the 3-hydroxy-4b,5,6,7-tetrahydro-4,7a,12b-triaza-dibenzo $[e, g]$ azulene-1,8-diones as optically active compounds.

After we were able to show that a cross-conjugated charge-separation in model compounds of the proposed structures of Circumdatin A and B is not stable, we next focused our interest on thioisomünchnones of pyrrolobenzodiazepines which possess a formal charge separation. First representatives of the new ring system of the 3-thia-6a,11b-diazabenzo[g]cyclopenta[e]-azulene-1,7-diones were synthesized starting from a thiolactam and 2-bromoacetyl chlorides. Tautomerisations including the biologically important C-11a position in solution as well as in the solid state were examined by spectroscopic investigations and an X-ray analysis.
Consequently, the reaction of the thiolactam and amino acid esters and subsequent ring closure afforded 1,3-imidazol-4-one- and 1,3-pyrimidin-4-one-annulated pyrrolobenzodiazepines. They are important structure elements of the proposed structures. We investigated the synthetic approaches and spectroscopic properties.

In conclusion, we present first representatives of new tetracyclic ring systems, 5,6-dihydro-4H-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene and 4,5,6,7-tetrahydro-4,7a,12b-triazadibenzo $[e, g]$ azulene and its precursors, which are related to biologically interesting natural products, and which display a priori unexpected spectroscopic features. Interestingly these findings prove that neither pyrimidine nor thiazolidine derivatives are able to form iminium partially structures $\left([\mathrm{N}=\mathrm{C}-\mathrm{N}]^{+}\right)$in proximity of the acidic hydrogen in the pyrrolidine moieties. Instead, they adopt the more stable neutral tautomers. Thus, spectroscopic comparisons of our annulated new compounds with the originally proposed structures of Circumdatin A and B gain knowledges about possible constitution of these natural products.

9. Acknowledgement

With a deep sense of gratitude, I wish to express my sincere thanks to my supervisor PD Dr. A. Schmidt for his immense help in planning and executing the interesting field of naturally occurring mesomeric betaines. His overly enthusiasm and integral view on research and his mission for providing the high quality work has made a deep impression on me. I owe him lots of gratitude for his help with great patience in correcting of this work.

I would like to thank my research advisor, Prof. Dr. E. Schaumann for his productive advices and providing me constant encouragement during the course of research.

I am also very grateful to Prof. Dr. D. Kaufmann, head of institute, for his kind support during the period of my work.
I also want to thank Prof. F. Vögtle, Prof. K.-H. Dötz, Prof. E. Niecke and Dr. M. Nieger (University of Bonn) for providing the X-ray facilities.

Dr. Gerald Dräger (University of Hannover) is gratefully acknowledged for measuring the HR-ESI-TOF mass spectra.

Special thanks are due to Prof. P. Blöchl and Sascha Hemmen for timely carrying out some important ab-initio calculations.
My best regards I want to give Dr. Konstantin Benda and Dr. Tobias Wagner for having very pleasure time together and kindly collaborations.
I also thank the NMR group, Dr. Jan C. Namyslo, Claudia Stanitzek and Birgit Stövesand for their structural analysis.
I am very thankful to Tobias Habeck, Ariane Beutler and Dheeraj Jain for kindly editing of my thesis as well as other colleagues in my research group, Thorsten Mordhorst and Lars Merkel for very exciting and kind co-operation.

I want to thank graduated co-workers Daniel Kahakeaw, Stefanie Fröbe, Anette Mayer, Jochen Pöhler, and Benjamin Schäffner for performing some experimental work.

The Deutsche Forschungsgemeinschaft (DFG) and the Fonds der chemischen Industrie (FCI) are gratefully acknowledged for the financial support.
Finally, I would like to extend my thanks to all whose direct and indirect support helped me completing my thesis in time.

[^0]: ${ }^{1}$ Schmidt, A., Adv. Heterocycl. Chem. 2003, 85, 67.
 ${ }^{2}$ Schmidt A., Kindermann, M. K., J. Org. Chem. 1998, 63, 4636.
 ${ }^{3}$ (a) Schmidt, A., Nieger, M., Heterocycles 1999, 51, 2119. (b) Schmidt, A., Nieger, M., Heterocycles 2001, 55, 827. (c) Schmidt, A., Mordhorst, T., Habeck, T., Org. Lett. 2002, 4, 1375. (d) Schmidt, A., J. Heterocycl. Chem. 2002, 39, 949.
 ${ }^{4}$ Ollis W. D., Stanforth S. P., Tetrahedron 1985, 41, 2239.

[^1]: ${ }^{5}$ Platt, J. R., J. Chem. Phys. 1951, 19, 101.

[^2]: ${ }^{6}$ Schmidt. A., Curr. Org. Chem. 2004, 8, 653.

[^3]: ${ }^{7}$ Osterhout, M. H., Nadler, W. R., Padwa, A., Synthesis 1994, 123.
 ${ }^{8}$ (a) Potts, K. T., Rochanapurk, T., Coats, S. J., Hadjiarapoglou, L., Padwa, A., J. Org. Chem. 1993, 58, 5040.
 (b) Sainsbury, M., Strange R. H., Woodward, P. R., Barsanti, P. A., Tetrahedron 1993, 49, 2065. (c) Padwa, A., Austin, D. J., Price, A., Weingarten, M. D., Tetrahedron 1996, 52, 3247.

[^4]: ${ }^{9}$ Hertzog, D. L., Nadler, W. R., Zhang, Z. J., Padwa, A., Tetrahedron Lett. 1992, 33, 5877.
 ${ }^{10}$ (a) Potts, K. T., Houghton, E., Singh, U. P., J. Org. Chem. 1974, 39, 3627. (b) Potts, K. T., Chen, S. J., Kane, J., Marshall, J. L., J. Org. Chem. 1977, 42, 1633. (c) Potts, K. T., Baum, J., Datta, S. K., Houghton, E., J. Org. Chem. 1976, 41, 813. (d) Potts, K. T., Baum, J., Houghton, E., J. Org. Chem. 1976, 41, 818.
 ${ }^{11}$ (a) Potts, K. T., Sorm, M., J. Org. Chem. 1972, 37, 1422. (b) Kappe, T., Lube, W., Mh. Chem. 1971, 102, 781. (c) Kappe T., Lube, W., Angew. Chem. 1971, 83, 967. (d) Gotthardt, H., Schenk, K. H., Chem. Ber. 1985, 118 , 4567.
 ${ }^{12}$ (a) Kappe, C. O., Kappe, T., Arch. Pharm. 1991, 324, 863. (b) Satyanarayana K., Rao, M. A., Indian J. Pharm. Sci. 1995, 57, 243.
 ${ }^{13}$ Kurisu, N., Chiba, N., Sasaki, Y., H., JP 054246, Feb 1993; Chem. Abstr. 1993, 119, 52892.
 ${ }^{14}$ Yabuki, Y., Kojima, T., Hiroyuki, H., JP 05313362, Nov 1993; Chem. Abstr. 1994, 121, 191433.
 ${ }^{15}$ Yokomori, S., Takeki, T., Oota, T., Hasegawa, M., Harayama, K. JP 05139936, Jun 1993; Chem. Abstr. 1993, 119, 146349.

[^5]: ${ }^{16}$ Lloyd, D., McNab, H., Adv. Heterocycl. Chem. 1998, 71, 1.

[^6]: ${ }^{17}$ Lloyd, D., Marshall, D. R., Chem. Ind. (London), 1972, 335.
 ${ }^{18}$ (a) Speakman, J. C., Wilson, F. B., Acta Crystallogr., Sect. B, 1976, B32, 622. (b) Blake, A. J., Schröder, M., Sorbie, R. J., Z. Kristallogr., 1991, 194, 148. (c) Svensson, C., Timby, L., Cryst. Struct. Commun., 1981, 10, 429.

[^7]: ${ }^{19}$ Tajana, A., Pennini, R., Nardi, D., Farmaco, Ed. Sci. 1980, 35, 181.
 ${ }^{20}$ Joshi, K. C., Pathak, V. N., Arya, P., Chand, P., Pharmazie 1979, 34, 718.
 ${ }^{21}$ Roma, G., Vigevano, E., Balbi A., Ermili, A., Farmaco, Ed. Sci. 1979, 34, 718.
 ${ }^{22}$ Nardi, D., Massarani, E., Tajana, A., Cappelletti, R., Veronese, M., Farmaco, Ed. Sci., 1975, $30,727$.
 ${ }^{23}$ Giodano, F., Greco, C., Silipo, C., Vittoria, A., Boll. Sco. Ital. Biol. Sper. 1975, 51, 1069.
 ${ }^{24}$ Greco, C., Silipo C., Vittoria, A., Farmaco, Ed. Sci. 1977, 32, 909.
 ${ }^{25}$ Kravchenco, A. I., Farmakol. Toksikol. (Moscow) 1974, 37, 474.
 ${ }^{26}$ Clifford, D. P., Jackson, D., Edwards, R. V., Jeffrey, P., Pestic. Sci. 1976, 7, 453.

[^8]: ${ }^{27}$ Medina, H. J., Paladini, A. C., Izqierdo, I., Behav. Brain. Res. 1993, 58 , 1.
 ${ }^{28}$ (a) Hurley, L. H., Boyed, F. L., TIPS 1988, 9, 402. (b) Hurley, L. H., J. Med. Chem. 1989, 32, 2027. (c) Thurston, D. E., Thompson, A. S., Chem. Br. 1990, 26, 767.
 ${ }^{29}$ Dervan, P. B., Science 1986, 232, 464.

[^9]: ${ }^{30}$ (a) Leimgruber, W., Stefanovic, V., Schenker, F., Karr, A., Berger, J., J. Am. Chem. Soc. 1965, 87, 5791. (b) Leimgruber, W., Batcho, A. D., Schenker, F., J. Am. Chem. Soc. 1965, 87, 5793. (c) Arora, S. K., Acta Crystallogr. 1979, B35, 2945.
 ${ }^{31}$ (a) Arima, K., Kohsaka, M., Tamura, J., Imanaka, H., Sakai, H., J. Antibiot. 1972, 25, 437. (b) Nishioka, Y., Beppu, T., Kohsaka, M., Arima, K., J. Antibiot. 1972, 25, 660. (c) Tazuka, Z., Takaya, T., J. Antibiot. 1983, 36, 142.
 ${ }^{32}$ Hochlowski, J. E., Andres, W. W., Theriault, R. J., Jackson, M., McAlpine J. B., J. Antibiot. 1987, 40, 145.
 ${ }^{33}$ Konishi, M., Ohkuma, H., Naruse, N., Kawaguchi, H., J. Antibiot. 1984, 37, 200.
 ${ }^{34}$ Kyowa Hakko Kogyo Co. Ltd., Jpn Kokai Tokyo Koho JP 58180487, 21 Oct 1983; Chem. Abstr. 1984, 100, 173150.
 ${ }^{35}$ Kunimoto, S., Masuda, T., Kanbayashi, N., Hamada, M., Naganawa, H., Miamota, M., Takeuchi, T., Umezawa, H., J. Antibiot. 1980, 33, 665.
 ${ }^{36}$ (a) Takeuchi, T., Miamota, M., Ishizuka, M., Naganawa, H., Kondo, S., Hamada, M., Umezawa, H., J. Antibiot. 1976, 29, 93. (b) Miyamoto, M., Kondo, S., Naganawa, H., Maeda, K., Ohno, M., Umezawa, H., J. Antibiot. 1977, 30, 340.
 ${ }^{37}$ Shimizu, K.-I., Kawamoto, I., Tomita, F., Morimoto, M., Fujimoto, K., J. Antibiot. 1982, 35, 972.
 ${ }^{38}$ (a) Hara, M., Tamaoki, T., Yoshida, M., Morimoto, M., Nakano, H., J. Antibiot. 1988, 51, 702. (b) Itoh, J., Watabe, H.-O., Ishii, S., Gomi, S., Nagasawa, M., Yamamoto, H., Shomura, T., Sezaki, M., Kondo, S., J. Antibiot. 1988, 41, 1281.
 ${ }^{39}$ Leber, J. D., Hoover, J. R. E., Holden, K. G., Johnson, R. K., Hecht, S. M., J. Am. Chem. Soc. 1988, 110, 2992.
 ${ }^{40}$ Tsunkawa, M., Kamei, H., Konishi, M., Miyaki, T., Oki, T., Kawakuchi, H., J. Antibiot. 1988, 41, 1366.
 ${ }^{41}$ (a) Hurley, A. H., Acc. Chem. Res. 1980, 13, 263. (b) Hurley, A. H., Speedie, M. K. In Antibiotics IV. Biosythesis; Corcoran, J. W., Ed.; Springer-Verlag: Berlin, Heidelberg, 1981; pp 261-294.

[^10]: ${ }^{42}$ Hurley, A. H., Reck, T., Thurston, D. E., Langley, D. R., Holden, K. G., Hertzberg, R. P., Hoover, J. R. E., Gallagher, G. Jr., Faucette, L. F., Mong, S.-M, Johnson, R. K., Chem. Res. Toxicol. 1988, 1, 258.
 ${ }^{43}$ Thurston, D. E., Advances in the study of pyrrolo[2,1-c][1,4]benzodiazepine (PBD) Antitumour Antibiotics. In Molecular Aspects of Anticancer Drug-DNA Interactions; Neider, S., Waring, M. J., Eds.; Macmillan Press Ltd.: U.K. 1993; Vol. 1, pp 54-88.
 ${ }^{44}$ (a) Thurston, D. E., Hurley, L. H., Drugs Future 1983, 8, 957. (b) Hurley, L. H., Thurston, D. E., Pharm. Res. 1984, 2, 52.
 ${ }^{45}$ Kaneko, T.; Wong, H.; Doyle, T. W.; Rose, W. C; Bradner. W. T., J. Med Chem. 1985, 28, 388.

[^11]: ${ }^{46}$ Rahbaek, L., Breinhold, J., Frisvad, J. C., Christophersen C., J. Org. Chem. 1999, 64, 1689.

[^12]: ${ }^{47}$ Sun, H. H., Barrow, C. J., Sedlock, D. M., Gillum, A. M., Cooper, I., J. Antibiot. 1994, 47, 515.

[^13]: ${ }^{48}$ Fischer, E., Besthorn, E., Ann. 1882, 212, 316.
 ${ }^{49}$ Potts, K. T., Murphy, P. M., Kuehnling, W. R., J. Org. Chem. 1988, 53, 2889.

[^14]: ${ }^{50}$ (a) Boyd, G. V. in Houben-Weyl: 'Six-membered and Larger Hetero-Rings with Maximum Unsaturation', Schaumann, E. (Ed.), Thieme Verlag, Stuttgart, New York, 1998, Vol. E9d, p. 299. (b) Chimirri, A., Gitto, R., Grasso, S., Monforte, A. M., Omeo, G., Zappalà, M., Heterocycles 1993, 36, 865. (c) Fryer R. I., Walser, A., Chem. Heterocycl. Compd. 1991, 50, 209. (d) Lloyd, D., Cleghorn, H. P., Adv. Heterocycl. Chem. 1974, 17, 27.
 ${ }_{51}^{51}$ Thiele, J., Steimmig G., Ber. 1907, 40, 955.
 ${ }^{52}$ Linand, A. L., Hoch, J. M., Arzneim.-Forsch. 1984, 34, 640.

[^15]: ${ }^{53}$ Kim, J. S., Sun, Q., Yu, C., Liu, A., Liu, L. F., LaVoie, E. J., Bioorg. Med. Chem. 1998, 6, 163.

[^16]: ${ }^{54}$ Dalton, S. E., Gingell, W. G., Jenkins, D. C., King, L. G., Lee, G. E., Thompson, G. M., US Patent, Jan. 31, 1978, 4.071.528; Chem. Abstr. 1978, 87, 84983.
 ${ }^{55}$ Hirano, M., Yakabe, S., Chikamori, H., Clark, J. H., Morimoto, T., J. Chem. Res. (S) 1998, 310.

[^17]: ${ }^{56}$ Griffin, R. J., Calvert, A. H., Curtin, N. J., Newell, D. R., Golding, B. T., US Patent, Oct. 30. 2001, 6.310.082; Chem. Abstr. 2001, 126, 212151.
 ${ }^{57}$ The diazepinium 43 was already described as perchlorate: Lloyd, D., McDougall, R. H., and Marshall, D. R., J. Chem. Soc. 1965, 3785.

[^18]: ${ }^{58}$ (a) Schwarzenbach, G., Lütz, K., Helv. Chim. Acta 1940, 23, 1147. (b) Halford, J. O., Fitch, R. M., J. Am. Chem. Soc. 1963, 85, 3354 . (c) El-Rabbat, N. A., Youssef, A. F., Omar, N. M., Analyst (London) 1980, 165.
 ${ }^{59}$ Schwarzenbach, G., Lütz, K., Helv. Chim. Acta 1940, 23, 1162.

[^19]: ${ }^{60}$ Speakman, J. C., Wilson, F. B., Acta Crystallogr., Sect. B 1976, B32, 622.
 ${ }^{61}$ Rodier, N., Agafonev, A., Dubois, P., Mariand, M., Levillain, P., and Sense, J. M., Acta Crystallogr., Sect. C 1993, C49, 156.

[^20]: ${ }^{62}$ Brisander, M., Harris, S. G., Lloyd, D., McNab, H., Parsons, S., J. Chem. Res. (S) 1998, 72.
 ${ }^{63}$ Svensson, C., Timby, L., Cryst. Struct. Commun. 1981, 10, 429.

[^21]: ${ }^{64}$ Witt, A., Bergman, J., J. Org. Chem. 2001, 66, 2784.
 ${ }^{65}$ Grieder, A., Thomas, A. W., Synthesis 2003, 1707.
 ${ }^{66}$ Elguero, J., Marzin, C., Katritzky, A. R., and Linda, P., in 'The Tautomerism of Heterocycles,' Academic Press, New York, 1976, p. 363.
 ${ }^{67}$ Kikelj, D., Urleb, U., in 'Science of Synthesis,' Vol. 11, ed. by E. Schaumann, Chapter 11.17, Thieme Verlag, Stuttgart, 2002, p. 627.
 ${ }^{68}$ Bird, C. W., Heterocycles 1994, 37, 249.

[^22]: ${ }^{69}$ Wu, X., Y. Liu, W. Sheng, J. Sun, G. Qin, Planta Med. 1997, 63, 55.
 ${ }^{70}$ Kamal, A., J. Org. Chem. 1991, 56, 2237.
 ${ }^{71}$ Wright, Jr., W. B., Brabander, H. J., Greenblatt, E. N., Day, I. P., Hardy, Jr., R. A., J. Med. Chem. 1978, 21, 1087.
 ${ }_{72}^{72}$ Kamal, A., Howard, P. W., Reddy, B. S. N., Reddy, B. S. P., Thurston, D. E., Tetrahedron 1997, 53, 3223.
 ${ }^{73}$ Cunha, S., Lima, B. R., Souza, A. R., Tetrahedron Lett. 2002, 43, 49.

[^23]: ${ }_{75}^{74}$ Blöchl, P. E., Phys. Rev. B. 1994, 50, 17953.
 ${ }^{75}$ The wavefunctions were expanded into augmented plane waves up to a cutoff energy of $30 \mathrm{Ry}(408 \mathrm{eV})$, the densitiy up to $60 \mathrm{Ry}(816 \mathrm{eV})$. The number of projector functions of ($\mathrm{s}, \mathrm{p}, \mathrm{d}$) type were as follows: $\mathrm{H}:(1,0,0)$; C, N, O: $(1,1,0)$. The frozen-core approximation was employed for the corresponding next-lower noble-gas shell, that is, a $[\mathrm{He}]$ core for C, N and O . Periodic boundary conditions were used, with an fcc unit cell spanned by the lattice vectors [0.012 .512 .5], [12.5 0.0 12.5], [12.5 12.50 .0 (in \AA). To prevent electrostatic interactions between the periodic images, the charge decoupling scheme due to Blöchl was used. The calculations were done within the local-density approximation as parameterized by Perdew and Wang with gradient corrections for exchange and correlation due to Perdew, Becke and Ernzerhof.

[^24]: ${ }^{\text {i }}$ After prolonged measuring time the trifluoroacetate anions are detectable at $\delta=118$ ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=299 \mathrm{~Hz}$). The coupling constant and the long dipolar relaxation time of the CF_{3} carbon atom cause a very small intensity of these signals.

[^25]: ${ }^{13} \mathbf{C}-$ NMR (100 MHz, DMSO-d d_{6}): $\delta=19.6(\mathrm{C}-6), 23.4\left(\mathrm{CH}_{3}\right), 28.9(\mathrm{C}-5), 49.6(\mathrm{C}-7), 61.5(\mathrm{C}-$ 2), 118.8 (C-4b), 125.1, 125.2, 127.0, 127.4, 128.5, 128.6, 129.6 (C-4a), 129.9, 130.0, 132.4, $132.8,134.3,139.6,140.0,140.7,164.8$ (CO), 168.9 (CO), 169.0 (CO).

[^26]: ${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.0(\mathrm{C}-5), 31.3(\mathrm{C}-4), 50.2(\mathrm{C}-6), 54.3(\mathrm{C}-2), 114.3$, 124.4, 125.6, 127.2, 128.5, 128.8, 129.1, 129.5, 133.3, 133.6, 136.6, 139.1, 165.5 (CO), 173.3 (CO).

