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Abstract

The aim of this study was to verify the applicability of artifi-
cial neural networks to the detection of dairy cows suscep-
tible to clinical mastitis based on veterinary records, milk 
recording data and selected genotypes (lactoferrin, lyso-
zyme, tumor necrosis factor alpha and combined defensin 
genotypes). Moreover, we wanted to determine the effects 
of complete and reduced sets of predictors (input variables) 
on the detection performance of the neural models. A total 
of 24712 test-day records from 990 Polish Holstein-Friesian 
Black-and-White cows were analyzed. Eight continuous  
and eight categorical predictors (including proportion of 
Holstein-Friesian genes, calving age, milk yield and composi-
tion, four genotypes, lactation number and stage, calving 
season) were used. Health state (mastitis vs. healthy) was an 
output variable. Multilayer perceptrons and radial basis func-
tion networks were trained and tested, yielding the percen-
tages of correctly detected cows susceptible to clinical mas-
titis and resistant ones in the range of 57.8 to 63.3 % and 60.3 
to 66.6  %, respectively. The most significant factors affect- 
ing mastitis occurrence were: lactation number and stage, 
calving age, the season of calving and mastitis diagnosis, 
tumor necrosis factor alpha and combined defensin geno-
types. Also, Lactroferrin genotype was quite significant for 
two neural models, whereas lysozyme genotype had a much 
smaller effect on the health status of cows. After reducing the 
initial set of 16 predictors to only five, decreased perfor-
mance of the networks was observed. It can be concluded 
that an indication of cows susceptible to clinical mastitis may 
facilitate the application of preventive measures and conse-
quently reduce mastitis incidence.

Keywords: inflammation, udder, diagnosis, prevention, sen-
sitivity analysis, dairy cattle

Detection of susceptibility of dairy cows to clinical 
mastitis by artificial neural networks based on 
selected genotypes and milk production records

Zusammenfassung

Erkennen einer Mastitis-Anfälligkeit von 
Milchkühen mittels künstlicher neuraler 
Netze auf Basis ausgewählter Genotypen 
und Milchleistungsdaten 

Ziel der Studie war, die Eignung künstlicher neuraler Netze zu 
prüfen, auf Basis tierärztlicher Diagnosen, Milchleistungsdaten 
und ausgewählter Genotypen (Lactoferrin, Lysozym, Tumor- 
nekrosefaktor-α und kombinierte Defensin-Genotypen) die 
Anfälligkeit von Milchkühen zur klinischen Mastitis zu erkennen. 
Zudem wurde der Einfluss der Prädikatorenzahlen auf die 
Detektionsfähigkeit der neuralen Modelle geprüft. Es wurden 
24712 Versuchstagsdaten von 990 polnischen Kühen (Rasse: 
Holstein-Friesian schwarz weiß) analysiert. Verwendet wurden  
8 stetige und 8 nominale Prädikatoren (u. a. Genanteil der Rasse 
Holstein-Friesian, Abkalbealter/-saison, Milchertrag/-zusam-
mensetzung, vier Genotypen, Laktationsnummer/-phase). Der 
Gesundheitszustand (Mastitis/gesund) war Ausgangsvariable. 
Mehrlagige Perzeptronen und Netze mit radialen Basisfunktio-
nen wurden generiert und getestet. Die Werte bei den Mastitis-
anfälligen Kühen lagen bei 57,8 bis 63,3 % , bei den resistenten 
Kühen bei 60,3 bis 66,6 %. Die signifikantesten Faktoren für das 
Auftreten von Mastitis waren: Laktationsnummer/-phase, 
Abkalbungsalter/-saison, Zeit der Mastitis-Diagnose, Tumornek-
rosefaktor α und die kombinierten Defensin-Genotypen. Für  
zwei neurale Netze war der Genotyp des Lactoferrin ebenfalls 
sehr signifikant, obwohl der Lysozym-Genotyp die Gesundheit 
nur wenig beeinflusste. Nach Reduzierung der Prädikatoren von 
16 auf 5 wurde eine verminderte Aussagekraft der neuralen  
Netze beobachtet. Es kann festgehalten werden, dass eine Indikati-
on von Mastitis-anfälligen Kühen Präventivmaßnahmen erleich-
tern und folglich die Mastitis-Häufigkeit in Herden reduzieren kann. 

Schlüsselworte: Entzündung, Euter, Diagnose, Vorbeugung, 
Analyse der Anfälligkeit, Milchvieh
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1  Introduction

Mastitis is defined as an inflammation of the mammary gland 
usually caused by bacterial infections (dos Reis et al., 2013; 
Hillerton and Berry, 2005). It results in a considerable reduc-
tion in milk yield (even up to approx. 375 kg for a single mas-
titis case) (Cavero et al., 2007) and the change in the content 
of its constituents (an increase in somatic cell count – SCC, 
concentration of whey proteins, albumins, immunoglobu-
lins, lactoferrin, sodium and chlorine ions as well as a 
decrease in the content of lactose, lactalbumins, fat, casein, 
concentration of calcium and potassium ions) (Bruckmaier et 
al., 2004; Harmon, 1994), which consequently leads to large 
economic losses estimated at about USD 2 billion annually in 
the USA, about GBP 300 million annually in the UK, GBP 14 
million annually in Northern Ireland, approx. EUR 693 per 
cow annually in Ireland and EUR 164 to 235, on average, per 
cow in the Netherlands (Viguier et al., 2009). These losses also 
result from the costs of diagnosis and treatment, increased 
labor intensity, too early culling of cows, diseases of calves, 
and susceptibility to other disorders post-partum (Wawron, 
2007). The current European Union legal regulations require 
the determination of SCC in raw milk and antibiotic residues 
are prohibited. Therefore, milk that does not meet the above 
criteria cannot be sold and this generates additional costs for 
the farmer. Because antibiotic treatment of cows with masti-
tis is expensive and requires waiting period for the milk, mas-
titis prevention is rather preferred (Pyörälä, 2002). There are 
many risk factors for mastitis such as: genetic factors (e. g. 
genetic selection for a maximum milk yield), environmental 
factors (inappropriately carried out mechanical milking, con-
finement management system, inappropriate bedding and 
nutrition) and physiological factors (Harmon, 1994; Sordillo, 
2005). They lead to the impairment of immunological mecha-
nisms of the mammary gland and, consequently, increase its 
susceptibility to microbial infections such as: Staphylococcus 
aureus, coagulase-negative staphylococci, Streptococcus 
uberis, Streptococcus dysgalactiae, Escherichia coli and others 
(Hettinga et al., 2008), although sometimes an inflammatory 
condition may have a non-infectious etiology (Bradley, 2002). 
A frequently encountered problem in mastitis detection 
under field conditions is the impossibility of indicating 
explicitly disease-causing factors in a herd (Bradley, 2002).

Susceptibility to mastitis is also affected by gene poly-
morphisms such as: tumor necrosis factor alpha gene (TNF-α), 
lactoferrin gene (LTF), macrophage expressed lysozyme 
encoding-gene (mLYZ) or genes encoding defensins (DEF). 
TNF is responsible for the activation of the whole immune 
system, increasing the permeability of vascular endothelium 
and inducing chemotaxis, whereas LTF has broad anti- 
bacterial, antiviral, antifungal and antiparasitic properties 
(Wojdak-Maksymiec and Mikolajczyk, 2012). On the other 
hand, LYZ acts as an antibacterial agent against vegetative 
cells of many different microorganisms; however, Gram-posi-
tive bacteria differ considerably in their sensitivity to lyso-
zyme depending on strain, species and specific conditions, 
while Gram-negative bacteria are, generally, less sensitive to 
lysozyme mainly due to the protection of their cell wall by an 

external membrane, although it has been shown that, e. g., 
bovine milk lysozymes are effective against five Gram-nega-
tive bacteria species that are unaffected by the lysozyme 
from hen egg white, which proves that lysozyme activity dif-
fers depending on its source (Davidson et al., 2010). Finally, 
defensins constitute a wide and varied group of peptide anti-
biotics acting against bacteria, viruses and fungi (Bals, 2000; 
Tunzi et al., 2000), which can be divided into three groups  
(α, β and θ), from which the second one, among others, is 
largely represented in cattle and defensins from this group 
were identified, e. g. in the tracheal, intestinal and tongue 
mucosa (Diamond et al., 1991; Schonwetter et al., 1995;  
Tarver et al., 1998).

Considering a significant role of mastitis in cattle far-
ming, an early indication of susceptible cows is of utmost 
importance. Such detection can be performed by artificial 
neural networks, among others, especially in a situation, 
when a larger number of variables are problematic in a tradi-
tional statistical analysis (Verleysen and François, 2005).

An artificial neural network is a specific information pro-
cessing system simulating a biological nervous system. It is 
composed of basic processing units called artificial neurons 
connected with each other between network layers (each 
neuron of a preceding layer with each neuron of the next  
layer). Weights, corresponding to synaptic potentials in bio-
logical neurons, are associated with these connections. They 
constitute network’s knowledge representation and are 
appropriately modified during the learning process, whose 
aim is to prepare the network for performing specific tasks, 
e. g. classification or regression ones. The artificial neural net-
work (ANN) types most frequently applied to supervised 
classification (e. g. mastitis detection) are multilayer percept-
rons with one (MLP1) and two (MLP2) hidden layers and ra-
dial basis function (RBF) networks. Recent applications of 
ANN in cattle farming include: prediction of 305-day milk 
yield for the first lactation (Njubi et al., 2010), prediction of 
305-day lactation yield from test milking records (Abbassi 
Daloii et al., 2010; Tahmoorespur et al., 2012), prediction of 
lifetime milk yield in cows (Gandhi et al., 2009a, 2009b, 2010), 
analysis and classification of lactation curves for the first one 
hundred days of lactation (Cárdenas Mansilla, 2008), decision 
support for mating animals in a herd (Njubi et al., 2009), pre-
slaughter evaluation of marbling based on ultrasound analy-
sis (Fukuda et al., 2012) and the modeling of fermentation 
processes (concentration of acetate, propionate and buty-
rate) in the rumen (Craninx et al., 2008).

Much attention has also been paid to the application of 
ANN to mastitis detection based on parameters such as: milk 
electrical conductivity, lactation and daily milk yield, fat  
and protein content in milk, milk flow rate, lactation length, 
number and stage, cow body temperature, and somatic cell 
count (Ankinakatte et al., 2013; Cavero et al., 2008; Hassan et 
al., 2009; López-Benavides et al., 2003; Nielen et al., 1995a,b; 
Wang and Samarasinghe, 2005; Yang et al., 1999, 2000).

Therefore, the aim of the present study was to verify the 
applicability of different ANN types to the detection of dairy 
cows susceptible to mastitis based on veterinary records  
(clinical mastitis cases), milk recording data, the mean values 

of natural logarithm of SCC for the sires of the studied cows 
and the above-mentioned genotypes. Moreover, we wanted 
to determine the effects of both complete and reduced sets 
of selected predictors (input variables) on the detection of 
predicted mastitis cases in cows.

2  Materials and methods

The study involved a total of 990 Polish Holstein-Friesian 
Black-and-White cows kept in one open barn throughout the 
year. They were not pastured in any season. The building in 
which the animals were housed consisted of two wings. The 
milking parlor and the room for cooling and storing milk 
were located between them. The building was a roof shelter 
with incomplete side walls (there was a clearance between 
the roof and the walls to enable the access of light and air cir-
culation). The animals were not stall-tied, which facilitated 
their driving to the milking parlor. The stalls were bedded 
with straw. The cows were fed a normalized diet in the form 
of a total mixed ration (TMR) prepared from maize silage. The 
maize silage was mixed with seasonal ingredients (e. g. green 
forage, root crops). In addition, nutrition was supplemented 
with individually determined (from the current lactation 
yield records) portions of a concentrate and diet supple-
ments. The feed was fed from a mixer-wagon directly to a 
trough. All cows were watered ad libitum from automatic 
drinkers. Milking was carried out twice daily in a herringbone 
milking parlor. The mean herd milk yield was 10,914 kg. 
Udders and teats were examined for clinical mastitis signs 
during each milking. The signs were easily visible without 
extra equipment or were confirmed using a thermometer or 
a strip cup (in order to provide high visibility of clots or flakes 
present in the milk). All alarming symptoms were reported to 
an experienced veterinarian employed on the farm, who ulti-
mately diagnosed clinical mastitis cases. Cows were dried-off 
six weeks before an estimated calving date. Antibiotic pro-
tection was used if the symptoms of an inflammatory condi-
tion classified as mastitis were observed during the dry-off 
period. Otherwise, antibiotic therapy was avoided. 

The present study included test milking records and data 
on mastitis occurrence collected between September 2003 
and April 2008 from cows kept on the farm located in the 
northwestern region of our country. An initial set of 38794 

information records was reduced to 24712 after editing for 
erroneous and incomplete data. The following predictors 
(input variables) were used: percentage of Holstein-Friesian 
genes (HF), calving age (AGE), daily milk yield (MILK), fat per-
centage in milk (FT), protein percentage in milk (PR), lactose 
percentage in milk (LAE), urea content in milk (UR), arithme-
tic mean of lnSCC for a cow’s sire determined from the lnSCC 
of his daughters (SIRE), Lactroferrin genotype (LTF), tumor 
necrosis factor alpha genotype (TNF-α), lysozyme genotype 
(mLYZ), combined defensin genotypes (CDG), lactation  
number (LACT), test milking season (TESTS; autumn from 
September to November, winter from December to February, 
spring from March to May and summer from June to August), 
calving season (CALS; defined as previously described) and 
lactation stage (STAG; first stage from 0 to 30 days, second 
stage from 31 to 60 days, etc. until 315 days of lactation). 
Mean values of continuous predictors are given in Table 1 
and the distributions of categorical predictors are presented 
in Table 2.

Genotypes were assayed with polymerase chain reac-
tion – restriction fragment length polymorphism (PCR-RFLP) 
method based on the DNA isolated from peripheral blood. 
The details on genetic analyses are presented elsewhere 
(Wojdak-Maksymiec, 2009).

Mastitis class determined based on veterinarian’s diagno-
sis (acute or chronic mastitis, drying-off with antibiotic pro-
tection) was an output variable with two categories: a cow 
with mastitis and a healthy cow. Acute mastitis was characte-
rized by a sudden onset of local and systemic clinical symp-
toms. The diseased quarter was red, hot, edematous, painful, 
sensitive to the touch, and the milk quality was changed. It 
was more or less watery with the presence of serous or puru-
lent secretion or blood. Systemic symptoms included an 
increase in internal body temperature, a higher pulse rate, 
weakness, a decrease in or a lack of appetite, reduced milk 
yield or no milk yield at all. Chronic mastitis, on the other 
hand, was characterized by mild, local clinical symptoms in 
the form of small changes in milk such as the presence of 
lumps, flakes, watery consistency and slight discoloration. 
The mastitic quarter was sometimes slightly swollen, red and 
sensitive to the touch. The whole data set (24712 records) 
was randomly divided into a training set (L; 18539 records) 
for network preparation and a test set (T; 6173 records) for 
the verification of mastitis detection performance (Table 1). 

Table 1 
Means and standard deviations (in parentheses) for continuous predictors in the training (L) and test (T) data sets

Set n
HF 
(%)

AGE 
(months)

MILK 
(kg)

FT 
(%)

PR 
(%)

LAE 
(%)

UR 
(mg/l)

SIRE 
ln(cells/ml)

L 18539 85.70 
(13.97)

50.26 
(20.11)

34.10 
(9.54)

4.02 
(0.80)

3.55 
(0.42)

4.82 
(0.25)

242.21 
(80.16)

5.28 
(0.56)

T 6173 85.92 
(13.78)

50.87 
(20.43)

34.16 
(9.62)

4.01 
(0.79)

3.55 
(0.42)

4.81 
(0.26)

239.86 
(79.65)

5.28 
(0.58)

Total 24712 85.75 
(13.93)

50.41 
(20.19)

34.12 
(9.56)

4.02 
(0.80)

3.55 
(0.42)

4.82 
(0.25)

241.62 
(80.03)

5.28 
(0.56)

Variable abbreviations are as given in material and methods section
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Table 2 
Distributions of categorical predictors and output (dependent) variable in the training (L) and test (T) data sets

Set L T Total

Category n % n % n %

LTF

AB 8403 45.33 2796 45.29 11199 45.32

AA 10136 54.67 3377 54.71 13513 54.68

TNF-α

CC 6352 34.26 2138 34.63 8490 34.36

CT 8374 45.17 2829 45.83 11203 45.33

TT 3813 20.57 1206 19.54 5019 20.31

mLYZ

CC 17628 95.09 5903 95.63 23531 95.22

CT 911 4.91 270 4.37 1181 4.78

CDG

A1A2/B1B2/C1C2 13955 75.27 4616 74.78 18571 75.15

A1A2/B2/C1C2 428 2.31 157 2.54 585 2.37

A2/B1B2/C2 106 0.57 42 0.68 148 0.60

A1A2/B1B2/C1 763 4.12 253 4.10 1016 4.11

A2/B1B2/C1C2 518 2.79 178 2.88 696 2.82

A1A2/B1/C1C2 406 2.19 146 2.37 552 2.23

A1A2/B1B2/C2 464 2.50 151 2.45 615 2.49

A1/B1B2/C2 207 1.12 62 1.00 269 1.09

A1/B1B2/C1 169 0.91 60 0.97 229 0.93

A1/B1B2/C1C2 586 3.16 189 3.06 775 3.14

A1A2/B1B2/C2C2 82 0.44 25 0.40 107 0.43

A1A2/B2/C1 65 0.35 26 0.42 91 0.37

A2/B2/C1C2 131 0.71 40 0.65 171 0.69

A1/B1/C1C2 280 1.51 95 1.54 375 1.52

A1A2/B1/C1 123 0.66 49 0.79 172 0.70

A1/B1/C1 37 0.20 14 0.23 51 0.21

A1A2/B1B1/C1 21 0.11 8 0.13 29 0.12

A2/B2/C1 18 0.10 9 0.15 27 0.11

A2/B1B2/C1 62 0.33 23 0.37 85 0.34

A1A2/B1/C2 92 0.50 25 0.40 117 0.47

A1/B2/C1C2 16 0.09 2 0.03 18 0.07

A1A2/B2/C2 10 0.05 3 0.05 13 0.05

LACT

I 4712 25.42 1516 24.56 6228 25.20

II 4947 26.68 1639 26.55 6586 26.65

III 3603 19.43 1224 19.83 4827 19.53

IV 2802 15.11 914 14.81 3716 15.04

V 1778 9.59 621 10.06 2399 9.71

VI 697 3.76 259 4.20 956 3.87

TESTS

Autumn 5157 27.82 1723 27.91 6880 27.84

Winter 5315 28.67 1725 27.94 7040 28.49

Spring 5091 27.46 1728 27.99 6819 27.59

Summer 2976 16.05 997 16.15 3973 16.08

CALS

Autumn 4355 23.49 1458 23.62 5813 23.52

Winter 5066 27.33 1627 26.36 6693 27.08

Spring 4395 23.71 1488 24.10 5883 23.81

Summer 4723 25.48 1600 25.92 6323 25.59

Set L T Total

Category n % n % n %

STAG

I 1773 9.56 584 9.46 2357 9.54

II 1981 10.69 678 10.98 2659 10.76

III 1938 10.45 665 10.77 2603 10.53

IV 1964 10.59 660 10.69 2624 10.62

V 1912 10.31 644 10.43 2556 10.34

VI 1913 10.32 626 10.14 2539 10.27

VII 1883 10.16 618 10.01 2501 10.12

VIII 1785 9.63 607 9.83 2392 9.68

IX 1683 9.08 545 8.83 2228 9.02

X 1246 6.72 383 6.20 1629 6.59

XI 461 2.49 163 2.64 624 2.53

MAST – output variable

Mastitis 1404 7.57 455 7.37 1859 7.52

Healthy 17135 92.43 5718 92.63 22853 92.48

Variable abbreviations are as given in material and methods section

The ratio of “mastitis” to “healthy” records in the training and 
test sets was approx. 1:10. A validation subset (6182 records) 
was also randomly created from part of the training records 
for the current monitoring of learning process and elimina-
tion of overtraining.

Training data were pre-processed before being fed to the 
network’s input layer through the scaling of continuous pre-
dictors to an appropriate interval (using the mini-max 
method) and the conversion of categorical predictors to a 
numeric form (using the binary or one-of-N encoding). 
Network’s output values were then converted to a class label 
during the post-processing stage (Bishop, 1995). A classical 
back-propagation algorithm proposed by Rumelhart et al. 
(1986) was used for the MLP network training. In this method, 
input signals were propagated forward through successive 
network layers to the output layer, where the network’s re-
sponse was compared against the real (desired) value of an 
output variable and thus an error of output neurons was cal-
culated. Next, this error was back-propagated to preceding 
(hidden) layers and multiplied by the same weights that were 
used for passing the signal from input to output. This process 
was repeated iteratively until reaching the minimum of an 
error function. In the present study, the conjugate gradient 
algorithm was additionally used to fine-tune network’s 
weights at the last stage of training. It consisted in an itera-
tive determination of the search direction of an error func-
tion minimum, finding this minimum and then identifica-
tion of a new search direction that was orthogonal to all 
previous directions (Haykin, 2009). The training of the RBF 
networks was performed in two stages: determination of the 
RBF centers (in the form of weights of the hidden layer neu-
rons) and RBF radii (in the form of hidden neurons’ bias  
values) and optimization of the output (linear) layer using 
pseudoinversion (StatSoft, 1998).

Network performance was assessed based on the root 
mean squared error (RMSE) on the validation set (Salehi et al., 
1998). Statistica® Neural Networks software (v. 4.0F, StatSoft 

Inc., Tulsa, OK, USA) was used for building and training the 
MLP and RBF networks. It enabled the choice of an optimal 
network architecture, learning algorithm and network para-
meters (error function, activation functions, acceptance and 
rejection thresholds, learning epochs, learning rate and 
momentum, as well as the appropriate methods of the RBF 
center and radius determination for the RBF networks). The 
exhaustive search mode of the program was selected in 
order to maintain the trade-off between network’s perfor-
mance and complexity. Calculations were performed using 
Pentium 2.40GHz IBM-PC compatible machine and lasted for 
approx. 40 hours. The MLP and RBF networks with the lowest 
RMSE on the validation set were used for the detection of 
cows susceptible to mastitis.

Akaike information criterion (AIC), Bayesian information 
criterion (BIC) and the G-square statistic were applied to the 
comparison of the MLP and RBF networks quality (perfor-
mance on the training and validation sets). They were calcu-
lated according to the following formulae (Dayton, 2003; 
Liddle, 2007; StatSoft, 2011):
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where
MSE		 mean squared error, 
k 			   number of model parameters, 
N			   number of training records, 
Oi 		  observed number of records, 
Ei 			  number of records predicted by the model.
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The minimum values of these criteria were considered when 
choosing the best model. The detection performance of the 
MLP and RBF networks was assessed using sensitivity (Se), 
specificity (Sp) and accuracy (Acc). In addition, false positive 
P(FP) and false negative P(FN) rates, as well as the a posteriori 
probabilities of true positives P(PSTP) and true negatives P(P-
STN) were calculated (Yang et al., 1999). Statistical signifi-
cance of the differences between the probabilities was deter-
mined with the test for proportions. Moreover, the receiver 
operating characteristic (ROC) curves were plotted and the 
area under the curves (AUC) was estimated. The ROC curve 
shows the relationship between sensitivity and the false posi- 
tive rate (1-specificty), summarizing, at the same time, the 
sensitivity and specificity values for different cut-off points. 
The standard error of AUC [SE(AUC)] was also computed 
according to the following formula (Greiner et al., 2000):
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where
N0			  number of records without mastitis, 
N1			  number of records with mastitis (N0 + N1 = N).

Apart from assessing the detection performance of the neu-
ral models based on the test set, the sequence of predictors 
(input variables) was also established according to their con-
tribution to the determination of mastitis/health class (mas-
titis vs. no mastitis). The following criteria were used for this 
purpose:
1.	 	 Ratio of the network’s error after removing a given pre-

dictor to the error for the full model (the greater the 
ratio, the more important the predictor);

2.	 	 RMSE after variable’s removal;
3.	 	 Rank, ordering predictors according to their decreasing 

error (rank of 1 denotes the most significant variable, 
rank of 2 indicates slightly less significant variable, etc.).

Network’s sensitivity analysis was performed on the training 
and validation sets.

Bearing in mind that smaller networks learn easier, better 
generalize acquired knowledge and are less costly in exploi-
tation (require fewer input variables whose values need to be 
determined), we also aimed in the present study at checking 
(based on the error ratio) how the reduction of a predictor 
set affected the quality of the models and their detection 
performance. In order to do so, a two-stage procedure was 
applied, in which the number of predictors was reduced  
twice (first to the eight most significant variables out of 16 in 
the initial model and then to only five most important ones 
out of the eight previously used). After each stage, the net-
works were re-trained and re-evaluated. The same statistical 
tests as previously described were applied to difference sig-
nificance testing.

3  Results

3.1  Model quality
Of the analyzed ANNs, three- and four-layer MLP networks 
were characterized by the RMSE values on the validation set 
equal to 0.2626 and 0.2627, respectively. They had the fol-
lowing architectures: 60-2-1 and 60-31-31-1 (the number of 
neurons in the input layer, hidden layer(s) and the output lay-
er, respectively). The first one was trained for 50 epochs with 
the back-propagation algorithm and, additionally, for 14 
epochs with the conjugate gradient method, whereas the 
second one was trained for 46 epochs with the back-propa-
gation algorithm only. On the other hand, the RBF network 
(with a 60-51-1 architecture) was characterized by the RMSE 
value of 0.2656. The values of the quality measures for the 
MLPs with one and two hidden layers and the RBF networks 
calculated from the training set are shown in Table 3. As can 
be seen, significant differences in Se were recorded between 
MLPs and the RBF networks (P ≤ 0.05). Moreover, significant 
differences in Sp and Acc were observed for each pair of the 
neural models (P ≤ 0.05).

Table 3 
Values of G2, AIC, BIC, sensitivity (Se), specificity (Sp) and  
accuracy (Acc) for the training set (n = 18539)

Parameter MLP1 MLP2 RBF

G2 16013.80 15252.06 18238.64

AIC -50247.52 -44107.54 -45395.82

BIC -49269.07 -22378.15 -30092.92

Se (%) 65.53a 67.59a 61.89b

Sp (%) 64.88a 66.17b 61.09c

Acc (%) 64.93a 66.28b 61.15c

MLP1 – 
MLP2 –  
RBF –  
AIC – 
BIC –    
a, b, c – 
 

multilayer perceptron with one hidden layer,  
multilayer perceptron with two hidden layers,  
radial basis function network,  
Akaike information criterion,  
Bayesian information criterion,  
values within rows with different superscript letters are significantly 
different (P ≤ 0.05)

3.2. The most significant variables
The results of network sensitivity analysis (indicating input 
variables most significant to the model) are presented in  
Table 4. The most important predictors for the neural models 
included: STAG and LACT (for all models), AGE (especially for 
MLP1), CALS (for MLP2 and the RBF network), CDG (for MLPs) 
and TESTS (especially in the case of the RBF networks). Of the 
remaining genotypes investigated in the present study, also 
TNF-α and LTF had a relatively large effect on the output vari-
able category (the former was ranked fifth by all network 
types and the latter was ranked sixth by MLP2 and the RBF 
network). Only the influence of mLYZ was much smaller. In 
general, it can be stated (based on the error ratio) that none 
of the analyzed input variables had a dominant influence on 
mastitis class in relation to other variables.

3.3  Mastitis detection performance
Mastitis detection results for individual ANN types obtained 
from the test set (which was not used during the network 
training and shows its effectiveness during exploitation on 
new data) are presented in Table 5. Statistically significant 
differences in Sp, Acc and P(FP) were found for each pair of 
the analyzed networks (P ≤ 0.05).

Table 5 
Results of mastitis detection in cows based on the test set  
(n = 6173)

Parameter  
(%)

MLP1 MLP2 RBF

Se 63.30 62.20 57.80

Sp 65.04a 66.58b 60.30c

Acc 64.91a 66.26b 60.12c

P(FP) 34.96a 33.42b 39.70c

P(FN) 36.70 37.80 42.20

P(PSTP) 12.59a 12.90 10.38b

P(PSTN) 95.70 95.68 94.73

MLP1 –   
MLP2 –  
RBF –     
a, b, c –    

multilayer perceptron with one hidden layer, 
multilayer perceptron with two hidden layers,  
radial basis function network,  
values within rows with different superscript letters are significantly 
different (P ≤ 0.05), parameter abbreviations are as given in material and 
methods section

The ROC curves and their corresponding AUC and SE(AUC) 
values calculated from the test set for the MLP networks with 
one and two hidden layers and the RBF networks are presen-
ted in Figure 1. The AUC values were higher for MLPs com-
pared with those for the RBF networks [AUC ± SE(AUC) was 
0.6863 ± 0.0142, 0.6857 ± 0.0142 and 0.6295 ± 0.0145 for the 
MLP1, MLP2 and RBF networks, respectively].

Figure 1 
The ROC curves plotted for different ANN types based on 
the test set
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MLP1 (AUC = 0.69 ± 0.01)

MLP2 (AUC = 0.69 ± 0.01)

RBF    (AUC = 0.63 ± 0.01)

Table 4 
Sensitivity analysis results for artificial neural networks

Item Variable MLP1 MLP2 RBF

Rank Error Ratio Rank Error Ratio Rank Error Ratio

1. LTF 16 0.2529 1.00024 6 0.2495 1.00873 6 0.2575 1.00037

2. TNF-α 5 0.2545 1.00649 5 0.2496 1.00927 5 0.2577 1.00114

3. mLYZ 11 0.2531 1.00080 12 0.2479 1.00234 8 0.2575 1.00020

4. CDG 4 0.2551 1.00896 4 0.2512 1.01580 12 0.2574 1.00001

5. LACT 2 0.2559 1.01215 2 0.2517 1.01769 2 0.2580 1.00224

6. TESTS 13 0.2531 1.00076 7 0.2491 1.00703 4 0.2577 1.00124

7. CALS 7 0.2539 1.00418 3 0.2515 1.01695 3 0.2578 1.00167

8. STAG 1 0.2566 1.01492 1 0.2547 1.02983 1 0.2598 1.00936

9. MILK 8 0.2537 1.00350 14 0.2477 1.00170 9 0.2574 1.00011

10. FT 9 0.2537 1.00348 11 0.2479 1.00251 14 0.2574 0.99997

11. PR 12 0.2531 1.00077 16 0.2473 1.00000 15 0.2574 0.99994

12. LAE 6 0.2543 1.00553 8 0.2487 1.00537 7 0.2575 1.00027

13. UR 10 0.2536 1.00288 10 0.2480 1.00292 10 0.2574 1.00011

14. HF 14 0.2530 1.00062 13 0.2478 1.00181 11 0.2574 1.00006

15. AGE 3 0.2552 1.00925 9 0.2482 1.00343 16 0.2574 0.99990

16. SIRE 15 0.2530 1.00055 15 0.2477 1.00155 13 0.2574 1.00000

MLP1 –  multilayer perceptron with one hidden layer,  
MLP2 –  multilayer perceptron with two hidden layers,  
RBF –      radial basis function network, variable abbreviations are as given in material and methods section
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3.4  Effect of reducing the number of input 
variables on the quality and detection perfor-
mance of the models
Input variables included in individual ANN models after the 
first and the second stage of reduction are given in Table 6.  
In general, all networks selected the same set of predictors  
at both reduction stages, although their sequence of impor-
tance varied depending on the network type. The main diffe-
rences in the first phase of reduction concerned AGE and 
MILK, which were retained only by MLP1 as well as mLYZ, 
which was selected only by the RBF network. At the second 
stage, AGE was still retrained only by MLP1, LAE by MLP2 and 
CALS and TESTS by the RBF network (Table 6).

Table 6 
Input variables included in individual neural models after 
the first and the second stage of reduction

Rank MLP1 MLP2 RBF

First stage of reduction

1. STAG STAG STAG

2. LACT LAE LACT

3. AGE CDG TESTS

4. CDG LACT CALS

5. TNF-α TNF-α TNF-α

6. LAE TESTS mLYZ

7. MILK CALS LTF

8. CALS LTF LAE

Second stage of reduction

1. LACT STAG LACT

2. STAG CDG STAG

3. CDG LACT TNF-α

4. AGE TNF-α CALS

5. TNF-α LAE TESTS

MLP1 – multilayer perceptron with one hidden layer,  
MLP2 – multilayer perceptron with two hidden layers,  
RBF –     radial basis function network, variable abbreviations are as given in material 
                and methods section

The values of individual probabilities calculated from the training 
set for the ANNs with reduced numbers of input variables are pre-
sented in Table 7. The G2 values increased with a decreasing num-
ber of input variables (which shows the quality deterioration of the 
neural models since smaller G2 values indicate better models), 
except for MLP2, for which an initial increase (for the model with 
eight inputs) was followed by a decrease in G2 (for the model with 
only five variables). In the case of AIC for MLP1, a reduction in the 
number of inputs resulted in its constant increase, whereas AIC for 
MLP2 and RBF initially decreased (for the model with eight inputs) 
and then increased (for the model with only five predictors). A  
similar trend in BIC was observed for all ANNs, for which the BIC 
value first fell (after the first stage of reduction) and then rose (after 
the second stage of reduction) (Table 7). A statistically significant 
difference in Se (P ≤ 0.05) was present for the RBF network be-
tween the full model or the model with eight variables and the 
model with only five variables (Table 7). Also statistically significant 
differences in Sp and Acc (P ≤ 0.05) were found for each pair of the 
MLP1 and RBF models, whereas significant differences in Sp and 
Acc (P ≤ 0.05) for MLP2 exited between the full model and the 
model with eight variables or that with only five inputs (Table 7).

The next stage of the present study was the evaluation of 
the modified models in terms of their detection perfor-
mance. The probability values (expressed as a percentage) 
for the ANNs with a reduced set of predictors calculated from 
the test set (n = 6173) are shown in Table 8. Specificity, accu-
racy and P(FP) differed significantly (P ≤ 0.05) for all model 
types. Significant differences in Sp and P(FP) were found for 
MLP1 for each pair of compared models, whereas the respec-
tive differences for MLP2 were observed only between the 
full model and both reduced models. Finally, in the case of 
the RBF networks, differences in Sp and P(FP) existed be-
tween the full model or that with eight variables and the 
model with five inputs. The significant differences in Acc, on 
the other hand, were found between the full model or the 
one with eight variables and that with five predictors in the 
case of MLP1 and the RBF network, and between the full 
model and both reduced models for MLP2 (Table 8).

The ROC curves plotted based on the test set for individual 
ANN types after reducing the number of input variables and 
their corresponding AUC and SE(AUC) values are given in 
Figures 2 and 3. Similarly as in the case when all predictors 
were considered, the AUC values for multilayer perceptrons 
after retaining only the eight most significant input variables 
were higher than those for the RBF networks [AUC ± SE(AUC) 
values were 0.6861 ± 0.0142, 0.6908 ± 0.0142 and 0.6174 ± 
0.0145 for the MLP1, MLP2 and RBF networks, respectively). 
Also, after retaining only the five most significant predictors, 
the same trend in the AUC values for individual ANN types 
was present (MLP2 had the highest AUC value of 0.6639 ± 
0.0143, MLP1 had a slightly smaller AUC of 0.6472 ± 0.0144, 
whereas the RBF network had the smallest AUC of 0.5862 ± 
0.0145).

Figure 2 
The ROC curves for individual ANN types plotted based on 
the test set for models including only the eight most signifi-
cant input variables (Se – sensitivity, Sp – specificity,  
MLP1 – multilayer perceptron with one hidden layer,  
MLP2 – multilayer perceptron with two hidden layers,  
RBF – radial basis function network)
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Figure 3 
The ROC curves for individual ANN types plotted based on 
the test set for models including only the five most signifi-
cant input variables (Se – sensitivity, Sp – specificity,  
MLP1 – multilayer perceptron with one hidden layer,  
MLP2 – multilayer perceptron with two hidden layers,  
RBF – radial basis function network)

4  Discussion

4. 1 Model quality
Considering the values of probabilities such as sensitivity 
(percentage of correctly diagnosed cows with mastitis), spe-
cificity (percentage of correctly identified healthy cows) and 
accuracy (percentage of correctly identified cows from both 
classes), calculated from the training set (Table 3), it can be 
stated that, in general, classification quality was good,  
which was also reflected in the low RMSE values (0.2626 to 
0.2656) for individual ANNs. The RBF network was character-
ized by a worse quality compared with MLPs, which was 
further confirmed by the statistically significant differences 
in the calculated probabilities.
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Table 7 
Values of G2, AIC, BIC, sensitivity (Se), specificity (Sp) and accuracy (Acc) for the training set (n = 18539) after the reduction of 
an initial set of input variables

Variables Type G2 AIC BIC Se (%) Sp (%) Acc (%)

All MLP1 16013.80 -50247.52 -49269.07 65.53 64.88a 64.93a

8 MLP1 16627.82 -50215.25 -49409.00 66.38 63.66b 63.87b

5 MLP1 17802.48 -49691.91 -47922.86 64.67 61.65c 61.87c

All MLP2 15252.06 -44107.54 -22378.15 67.59 66.17a 66.28a

8 MLP2 15970.67 -49972.72 -48642.02 65.53 64.96b 65.00b

5 MLP2 15857.59 -43870.90 -22696.54 66.60 65.09b 65.20b

All RBF 18238.64 -45395.82 -30092.92 61.89a 61.09a 61.15a

8 RBF 19172.99 -49409.98 -47954.04 60.75a 59.53b 59.63b

5 RBF 20923.86 -49041.05 -47483.35 56.70b 56.89c 56.87c

MLP1 – 
MLP2 – 
RBF –  
AIC –  
BIC –  
a, b, c – 

multilayer perceptron with one hidden layer, 
multilayer perceptron with two hidden layers, 
radial basis function network,  
Akaike information criterion, 
Bayesian information criterion, 
values within columns with different superscript letters are significantly different (P ≤ 0.05)

Table 8 
Results of mastitis detection in cows obtained on the test set (n = 6173) for the ANNs with a reduced set of predictors 

Variables Type Se (%) Sp (%) Acc (%) P(FP) (%) P(FN) (%) P(PSTP) (%) P(PSTN) (%)

All MLP1 63.30 65.04a 64.91a 34.96a 36.70 12.59 95.70

8 MLP1 63.74 63.64b 63.65a 36.36b 36.26 12.24 95.66

5 MLP1 61.10 61.09c 61.09b 38.91c 38.90 11.11 95.18

All MLP2 62.20 66.58a 66.26a 33.42a 37.80 12.90 95.68

8 MLP2 64.40 64.39b 64.39b 35.61b 35.60 12.58 95.79

5 MLP2 59.78 64.43b 64.09b 35.57b 40.22 11.80 95.27

All RBF 57.80 60.30a 60.12a 39.70a 42.20 10.38 94.73

8 RBF 55.16 58.94a 58.66a 41.06a 44.84 9.66 94.29

5 RBF 56.70 56.10b 56.15b 43.90b 43.30 9.32 94.21

MLP1 – 
MLP2 –  
RBF –  
a, b, c –   

multilayer perceptron with one hidden layer,  
multilayer perceptron with two hidden layers, 
radial basis function network, 
values within columns with different superscript letters are significantly different (P ≤ 0.05), parameter abbreviations are as given in material and methods section
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Montgomery et al. (1987), using discriminant function analy-
sis for mastitis detection in cows based on predictors such as: 
previous mastitis occurrence, decreased body condition, 
changed milk organoleptic properties, udder swelling and 
raised body temperature, obtained a correct classification 
rate of 0.78, sensitivity ranging from 0.32 to 0.45 and specifi-
city ranging between 0.91 and 0.97, whereas in the study by 
Nielen et al. (1995a), on mastitis detection using ANN (based 
on electrical conductivity, milk yield and its temperature 
during milking), sensitivity on a training set was approx. 0.75 
and specificity was approx. 0.90. In a later study on mastitis 
detection (based only on milk electrical conductivity and 
quarter milk yield) Nielen et al. (1995b) obtained sensitivity 
of 0.92 and specificity of 1.0. The research on mastitis detec-
tion in cows (using ANNs and data on milk electrical conduc-
tivity, milk flow rate and the number of days in milk) was also 
carried out by Cavero et al. (2008), who recorded sensitivity 
in the range of 0.75 to 0.81 and 0.80 to 0.82 and specificity in 
the range of 0.60 to 0.66 and 0.77 to 0.79 depending on mas-
titis definition (SCC above 100,000 cells/ml or above 400,000 
cells/ml). Finally, Krieter et al. (2007) assuming a minimum 
block sensitivity of 0.80, noted the specificity of 0.61 and 0.78 
depending on mastitis definition, using the aforementioned 
input variables. As can be seen from the above review, sensiti-
vity, specificity and accuracy in the present study were similar 
to or lower than those obtained by other authors, which re- 
sulted mainly from the use of weaker predictors in our work.

The values of G2, AIC and BIC (Table 3) showing the good-
ness-of-fit and the trade-off between goodness-of-fit and 
model complexity, indicated that the best model was MLP2 
according to G2 and MLP1 according to AIC and BIC.

4.2  The most significant variables
As can be seen from Table 4, the most important mastitis pre-
dictors for ANNs were STAG, LACT, AGE, CALS, TESTS and the 
variables referring to genotypes, i. e.  CDG, TNF-α and LTF.

Many studies have shown a significant effect of lactation 
stage (the STAG variable) on mastitis incidence, although 
results reported by different authors vary. In the study by 
Bunch et al. (1984) on cows in their first or second lactation, it 
was found that, on average, approx. two-fifths of clinical 
mastitis cases occurred before 30 days of lactation. Similar 
results were reported by Hammer et al. (2012), who observed 
the greatest risk of mastitis at a quarter level between 10 and 
29 days in milk. On the other hand, an investigation carried 
out in the Scandinavian countries (Valde et al., 2004) showed 
that the highest risk of mastitis occurred from two days ante-
partum to 14 days post-partum. In Polish Holstein-Friesian 
Black-and-White cattle, Bogucki et al. (2014), who studied an 
effect of lactation stage on SCC in milk, found that the natural 
logarithm of SCC increased steadily with successive lactation 
stages, whereas Nałęcz-Tarwacka and Dembińska (2013) did 
not observe any significant effect of lactation stage on SCC.

As for primipara, most clinical mastitis cases occur at an 
early stage of lactation, until about 30 days in milk (Myllys 
and Rautala, 1995; Nyman et al., 2007; Svensson et al., 2006). 
Persson Waller et al. (2009) showed that two-thirds of all 

mastitis cases in primipara occurred directly before calving 
or in the first month of lactation – most frequently during the 
first week post-calving. Moreover, these authors also found 
significant differences in mastitis incidence depending on 
lactation stage between primi- and multipara. For the former, 
65 % cases occurred in the period from seven days antepar-
tum to 30 days postpartum, while 15 % and 20 % in the  
period from 31 to 120 days in milk and beyond 120 days in 
milk, respectively. Respective percentages for older cows 
were 36 %, 35 % and 28 %. In Polish Holstein-Friesian Black-
and-White primipara, Gierdziewicz et al. (2009) stated that 
SCC was highest at the beginning and end of lactation, while 
its level at peak lactation (third and second month) was  
lowest. This result was further confirmed by Guliński et al. 
(2016), who found that SCC was lowest during the three  
middle months of lactation (sixth to eighth) and the natural 
logarithm of SCC was significantly higher in the ninth and 
tenth month of lactation compared with all the preceding 
ones. The authors explained this phenomenon by the “dilution” 
effect associated with a higher milk yield at peak lactation.

The next significant variables, i. e. lactation number or 
parity (LACT) and calving age (AGE) are usually discussed 
together. The general trend is towards an increased mastitis 
incidence with older age/higher parity (Olde Riekerink et al., 
2007; Persson Waller et al., 2009; Wolf et al., 2010). Also Rupp 
and Boichard (2000) reported the highest mastitis  
incidence in the second and sixth lactation, respectively, 
whereas Valde et al. (2004) estimated the risk of mastitis 
during a 305-day lactation at 0.127 to 0.215 in primiparous 
cows and 0.204 to 0.358 in cows of second or higher parity. In 
addition, Hammer et al. (2012), who studied 2- to 9-year-old 
cows grazed on pasture, found the more frequent occur-
rence of mastitis with an increasing parity. According to  
Pantoja et al. (2009), the likelihood of mastitis in an udder 
quarter of a cow in her fifth or later lactation is 4.2 times  
higher than that in the udder quarters of cows in their  
second lactation. An effect of lactation number on the risk  
of clinical mastitis may also be attributed to the pathogen 
species responsible for this condition (Green et al., 2004). In 
the study on Polish Holstein-Friesian Black-and-White cows, 
it was found that the lowest SCC was characteristic of the 
cows in their first lactation compared with subsequent  
ones and that SCC rose with increasing parity/calving age  
(Gierdziewicz et al., 2009; Król et al., 2009; Nałęcz-Tarwacka 
and Dembińska, 2013; Otwinowska-Mindur et al., 2008). 
Similar observations in the same breed were made by  
Bogucki et al. (2014), who recoded the lowest natural loga-
rithm of SCC in the second lactation, slightly higher one in 
the first lactation and the highest one in the third and subse-
quent lactations.

Important input variables indicated by the network sen-
sitivity analysis (especially for the RBF network) included also 
calving season (CALS; third position) and mastitis occurrence 
season (TESTS; fourth position. In a study on 242 Polish  
Holstein-Friesian cows kept on a single farm, a higher in-
cidence of mastitis was observed during summer months 
(June, July and August) compared with winter ones (Miciński 
et al., 2010), whereas in US Holsteins the highest mastitis 

occurrence was typical of the cooler months of the year 
(Abdel Azim et al., 2005). In the work by Olde Riekerink et al. 
(2007), a highly significant effect of season on mastitis in-
cidence was found in Dutch Holstein-Friesian and Friesian 
cows. The authors observed a generally higher risk of clinical 
mastitis in late autumn (December) than in summer and a 
slightly increased frequency of mastitis cases was noticed  
in the second half of July in the herds with a high bulk tank 
SCC, which resulted from a wider spread of E. coli and Staphy-
lococcus aureus pathogens in this period. The changes of 
mastitis frequency in different seasons were also reported for 
other microbial species. Finally, an interaction between 
season and management system was additionally recorded. 
Similar seasonal trends caused by a different spread of mas-
titis-causing pathogens were shown by Østerås et al. (2006), 
whereas Hristov et al. (2007) did not find any significant 
effect of season on mastitis incidence. Also, in the study on 
the effect of calving season on the content of SCC in the milk 
from Polish Holstein-Friesian Black-and-White cows, it was 
found that this effect was statistically insignificant (Nałęcz-
Tarwacka and Dembińska, 2013). However, other works on 
the same breed showed that the differences in the SCC be-
tween seasons were statistically significant. For instance, 
Otwinowska-Mindur et al. (2008) reported that the somatic 
cell score was highest between April and June and lowest 
between October and December, whereas Guliński and 
Salamończyk (2007) found that SCC was highest from June to 
August and lowest from September to November.

Of the variables referring to the genotypes of lactoferrin 
(LTF), tumor necrosis factor alpha (TNF-α), lysozyme (mLYZ) 
and defensins (CDG), three predictors, i. e. TNF-α, CDG, and 
LTF were ranked relatively high by all ANN types. As de- 
scribed earlier, TNF-α is a pro-inflammatory cytokine, which 
activates the whole immune system and increases the vas-
cular endothelial permeability, facilitating diapedesis and,  
as a chemoattractant, inducing chemotaxis, that is, the mi- 
gration of leucocytes towards the focus of inflammation  
(Wojdak-Maksymiec and Mikołajczyk, 2012). Moreover, this 
cytokine raises the secretion of many other cytokines, being 
itself secreted at higher amounts by phagocytic cells as a 
result of bacterial lipopolysaccharide action (Wojdak- 
Maksymiec et al., 2013). These authors also found a signifi-
cant effect of an interaction between a TNF-α genotype and 
lactation number on mastitis incidence and the T allele was 
associated with a lower number of mastitis cases in earlier 
lactations. On the other hand, the action of defensins con-
sists in damaging the cell membrane of microorganisms and 
its perforation, which results in the loss of intracellular con-
tent and the penetration of the molecules that could not 
enter the cell initially. At the same time, the synthesis of nu-
cleic acids and proteins as well as the respiration process are 
inhibited (Mak, 1994; Risso, 2000). Due to their broad anti-
biotic spectrum, defensins are also involved in combating 
pathogens that most often cause mastitis in dairy cows  
(Roosen et al., 2004; Ryniewicz et al., 2003).

Finally, LTF acts against many microbial species including 
Gram-negative and Gram-positive bacteria, enveloped and 
non-enveloped viruses, fungi and other parasites. It is 

capable of binding iron ions as well as phosphorus and zinc, 
which are necessary for growth promotion. Therefore, the 
action of LTF limits the availability of these agents to potenti-
al pathogens (Wojdak-Maksymiec et al., 2013). LTF is present 
in many secretory fluids of mammals and secondary gran-
ules of neutrophils being an important mediator in host 
defense against different environmental factors (Zimecki et 
al., 2004). In cattle, bovine LTF present in milk is involved in 
the innate response of the mammary gland against bacterial 
infections. It was shown that its concentration depended on 
the SCC level in Polish Holstein-Friesian cows, along with the 
concentrations of interleukin-1β and tumor necrosis factor 
alpha, which makes these inflammatory mediators poten-
tially useful indicators of mastitis occurrence (Sobczuk-Szul 
et al., 2014). At the molecular level, it was also found that the 
polymorphism within intron 6 of the LTF gene identified with 
PCR-RFLP in the same breed using the EcoRI restriction en-
zyme was associated with the level of SCC (the BB genotype 
was related to a significantly higher SCC level compared with 
AA and AB) (Sender et al., 2006).

The last investigated genotype (lysozyme) had a less sig-
nificant effect on mastitis status, similarly to other input vari-
ables included in the neural models (variables referring to 
milk yield and composition, proportion of Holstein-Friesian 
genes and the mean lnSCC for a sire).

4.3  Detection performance
After training the MLP and RBF networks, the best one from 
each category was selected and used on the test set in order 
to verify its effectiveness of diagnosing cows susceptible to 
mastitis. These records were not used for the network train-
ing or its monitoring. Considering calculated probabilities 
and sensitivity in particular (percentage of correctly detected 
cows with mastitis), it can be stated the ability of the models 
to detect this condition was good (approx. 62 %) (StatSoft, 
1998). Statistically significant differences in Sp, Acc and P(FP) 
were present between all neural model types, however, the 
lowest values were observed for the RBF networks, which 
proves their somewhat worse detection properties (Table 5). 
In the study by Montgomery et al. (1987) on mastitis detec-
tion using discriminant function analysis, sensitivity, spe- 
cificity and accuracy on a test set were 0.39, 0.91 and 0.75, 
respectively, whereas in the aforementioned work by Nielen 
et al. (1995b) the respective values were 0.33 to 0.77; 0.69 to 
1.00 and 0.67 to 0.77, depending on the manner of test 
records selection. Also, Yang et al. (1999) and Yang et al. 
(2000) obtained quite different values of discussed probabili-
ties depending on the way, in which test records were se- 
lected and the proportion of mastitis and non-mastitis cases 
(sensitivity, specificity and accuracy in the range of 0.24 to 
0.75, 0.67 to 1.0 and 0.55 to 0.99, respectively). On the other 
hand, sensitivity and specificity in the study by Cavero et al. 
(2008) were 0.63 to 0.93 and 0.38 to 0.87 depending on mas-
titis definition, whereas Krieter et al. (2007) obtained spe- 
cificity of 0.51 to 0.75, assuming the minimum sensitivity of 
0.80. These data show that the values reported by different 
authors are similar to those in the present study, although 
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Sun et al. (2010), using ANNs for the same purpose, reported 
Se, Sp and Acc in the range of 0.79 to 0.87, 0.91 to 0.92 and 
0.87 to 0.91, respectively, which were relatively high and  
higher than those in the present work. Finally, it should be 
mentioned that ANNs were also applied to mastitis detec-
tion, in which more than two categories of an output variable 
were distinguished (Hassan et al., 2009).

It is also important for mastitis detection to avoid false 
positive results (i. e. healthy cows diagnosed as ill) and, espe-
cially, false negative ones (cows suffering from mastitis re- 
cognized as healthy by the model), which in the latter case 
result in much more serious consequences. The rate of the 
so-called false alarms was similar for both MLP types (approx. 
35 %) and only the RBF network was characterized by their 
higher percentage (Table 5). Also P(FN) values were at a simi-
lar level for all ANN types and comparable with the false  
positive rate. In the available literature on mastitis detection 
using ANN, these values vary considerably in the range of 0.0 
to 0.76 (Cavero et al., 2008; Nielen et al., 1995b; Wang and 
Samarasinghe, 2005; Yang et al., 1999).

Additional probabilities calculated from the classification 
(confusion) matrix included P(PSTP) and P(PSTN), which in-
dicate the proportions of cows assigned to the “healthy” or 
“mastitis” class by the model that really belonged to these 
categories. The P(PSTP) values obtained in the present study 
(Table 5) were definitely too low for all ANN types. An oppo-
site situation occurred in the case of P(PSTN), which proves 
high reliability of predicting healthy cases by ANNs. The 
P(PSTP) and P(PSTN) values reported in the available litera-
ture are in a relatively broad range from 0.02 to 1.00 (Nielen 
et al., 1995b; Yang et al., 1999)

The last stage of the detection performance assessment 
was the plotting of the ROC curves (Figure 1) for the test set 
records and the calculation of AUC. AUC assumes the values 
in the range of 0.5 (no discrimination) to 1.0 (perfect discrimi-
nation), constituting, at the same time, the probability that a 
measure or predicted risk is higher for a case belonging to a 
given class than for a case that does not belong to this class 
(Cook, 2007). In the present study, the optimum cut-off value 
minimizing the number of misclassifications to both distin-
guished classes, was 0.93 (assuming equal misclassification 
costs), while the highest AUC value (indicating the best 
discrimination power of the neural model) was found for 
MLP1 (Figure 1). For comparison, Yang et al. (1999) reported 
the AUC values in the range of 0.77 to 0.87 depending on the 
proportion of mastitis to non-mastitis records and the  
optimal cut-off value.

4.4  An effect of a reduced number of input 
variables on the quality and detection perfor-
mance of the models
A reduction in the number of input variables for ANN may 
lead to obtaining a model of higher quality, learning more 
easily, having better generalization abilities and being less 
costly during its exploitation. The final set of five variables 
was almost the same for all ANN types, except for AGE, LAE 
and the season of calving and test day, which were selected 

only by MLP1, MLP2 and the RBF network, respectively. 
Unfortunately, this final set for MLPs included also CDG,  
whose practical use can be problematic due to the necessity 
of determining polymorphic variants of defensins, which is 
rather costly and requires laboratory tests. A similar study on 
an effect of different combinations of input variables on the 
quality of the neural models used for mastitis detection was 
preformed by Yang et al. (2000), who analyzed models  
trained only on the basis of milk recording data, confor- 
mation traits data or both data sets combined. The most sig-
nificant production variables were lactation stage, milk yield 
and SCC, which were similar to those in the present study 
(except for SCC), whereas the influence of conformation 
traits was much smaller. The same authors in their previous 
study (Yang et al., 1999) investigated MLPs trained on a data 
set of only traditional mastitis predictors (such as cow age, 
lactation stage and SCC) and on a combined data set of tra-
ditional and additional predictors (e. g. calving season, milk 
composition, conformation class) showing that the effect of 
additional variables was negligible. In other studies on the 
use of ANN for mastitis detection, different possible sets of 
predictors were also analyzed, although on a much smaller 
scale. For instance, Heald et al. (2000) reduced an initial set of 
23 predictors to only 13, retaining in the model variables 
such as: mean SCC for lactation, test-day SCC, 305-day milk 
yield, lactation number, days in milk, the ratio of monthly 
milk yields for two subsequent months of lactation, the  
number of test days with somatic cell score (SCS) above 4.9 
and the contribution of cow’s individual SCC to bulk tank 
SCC. As can be seen, the final set of selected predictors deter-
mined from the sensitivity analysis was similar to the set of 
five input variables in the present study. Also, Sun et al. (2010) 
investigated four different sets of predictors such as: running 
mean of the normalized quarter milk yield and the norma-
lized electrical conductivity, deviation from the minimum of 
the second aforementioned variable, as well as the first three 
principal components, concluding that the best prediction 
properties (sensitivity, specificity and accuracy) were charac-
teristic of MLPs trained on principal components. On the 
other hand, Ankinakatte et al. (2013) considered five diffe-
rent sets of input variables such as: days in milk, SCS, concen-
tration of lactate dehydrogenase, electrical conductivity and 
daily milk yield, finding that the exclusion of the second and 
the last above-mentioned variables significantly deterio-
rated ANN detection performance.

As for the quality criteria calculated from the training set 
for ANNs with reduced sets of predictors (Table 7), a general 
upward trend for G2 was visible, which indicates a lower ANN 
quality (except for MLP2, for which a decrease in G2 was 
observed for the model with five variables relative to the one 
with eight predictors). A different situation was, however, 
observed for AIC and BIC, whose values changed differently 
depending on the network type. In the case of MLP1, AIC 
constantly increased, whereas for MLP2 and RBF, the values 
first decreased and then increased. The same trend was 
observed in BIC for all classifiers and consisted in an initial fall 
of the criterion value and then its rise. This result shows that 
the initial reduction in the number of input variables led to 

less complex models that still fit the training data sufficiently 
well. However, further reduction in the number of predictors 
(and a model complexity) resulted in their poorer goodness-
of-fit, which was reflected in the higher values of the infor-
mation criteria applied. Also, the significantly lower Se, Sp 
and Acc values were observed for some ANN types after 
removing some input variables. The elimination of pre- 
dictors had a similar effect on mastitis detection on the test 
set (Table 8). Sp, Acc, and P(FP) differed significantly for all 
network types, while the remaining probabilities remained 
at a similar level irrespective of the number of predictors.  
An additional verification of the effect of input variables 
reduction on the network detection performance was per-
formed by plotting the ROC curves and calculating the  
AUC values (on the test set). The downward trend was  
present for MLP1 and the RBF network, while MLP2 was  
characterized by the different values of this area depending 
on the number of predictors included.

To sum up, it should be stated that the reduction in the 
number of input variables may be advantageous in their 
application to mastitis detection on a farm (especially with 
regard to genotype determination) but an effect of this pro-
cedure on the quality of ANNs can be observed. In the case of 
MLPs, a combined defensin genotype was also included in 
the final set of five variables, and the necessity of its determi-
nation may be quite costly.

5  Conclusions

The results of mastitis detection in dairy cows obtained in the 
present study from the relatively easily available data on milk 
recording and the four selected genotypes, using three types 
of ANNs, showed satisfactory effectiveness. MLPs were  
slightly better in this respect, although sensitivity, specificity 
and accuracy were similar for all ANNs. The role of mastitis 
risk factors described in the literature (lactation stage, parity, 
calving age, season) was confirmed in our study, whereas all 
remaining factors (daily milk yield, its composition, propor-
tion of Holstein-Friesian genes or the mean lnSCC for a sire) 
had a small influence on the udder health status. Of the 
genotypes included in the neural models, tumor necrosis 
factor alpha, lactoferrin and combined defensin genotypes 
were relatively important, whereas the last considered geno-
type, i. e. lysozyme did not significantly improve the net-
works’ detection performance.

It is possible to reduce the original set of 16 input vari-
ables to five, but a lower detection performance of the RBF 
network and the necessity of combined defensin genotype 
assay should be taken into account. An indication of cows 
more susceptible to mastitis facilitates the proper applica-
tion of preventive measures, which may ultimately limit the 
number of cows suffering from mastitis in a herd.

References

Abbassi Daloii T, Tahmoorespur M, Nassiri MR (2010) Prediction of 305 days 
milk production using artificial neural network in Iranian dairy cattle. In: 
Book of abstracts of the 61st Annual Meeting of the European Associa-
tion for Animal Production, Heraklion - Crete Island, Greece,  
23-27 August 2010. Wageningen : Wageningen Acad Publ, p 177

Abdel-Azim GA, Freeman AE, Kehrli ME, Kelm SC, Burton JL, Kuck AL, Schnell S 
(2005) Genetic basis and risk factors for infectious and noninfectious  
diseases in US Holsteins : I. Estimation of genetic parameters for single 
diseases and general health. J Dairy Sci 88(3):1199–1207

Ankinakatte S, Norberg E, Løvendahl P, Edwards D, Højsgaard S (2013)  
Predicting mastitis in dairy cows using neural networks and generalized 
additive models : a comparison. Comput Electron Agric 99(11):1–6

Bals R (2000) Antimikrobielle Peptide und Peptidantibiotika. Med Klin 
95(9):496–502

Bishop CM (1995) Neural networks for pattern recognition. Oxford :  
Clarendon Pr, 482 p

Bogucki M, Sawa A, Neja W (2014) Effect of changing the cow’s milking  
system on daily yield and cytological quality of milk.  
Acta Sci Pol Zootech 13(4):17–26

Bradley AJ (2002) Bovine mastitis : an evolving disease. Vet J 164(2):116–128
Bruckmaier RM, Ontsouka CE, Blum JW (2004) Fractionized milk composition 

in dairy cows with subclinical mastitis. Vet Med (Praha) 49(8):283–290
Bunch KJ, Heneghan DJS, Hibbitt KG, Rowlands GJ (1984) Genetic influences 

on clinical mastitis and its relationship with milk yield, season and stage 
of lactation. Livest Prod Sci 11(1):91–104

Cárdenas Mansilla CS (2008) Recognition of lactation pattern curves through 
neural networks and discriminate analysis, during the first third of  
lactation in dairy cows from the IX Region. Agro Sur 36(1):43–48

Cavero D, Tölle K-H, Rave G, Buxadé C, Krieter J (2007) Analysing serial data for 
mastitis detection by means of local regression. Livest Sci 110(1):101–110

Cavero D, Tölle K-H, Henze C, Buxadé C, Krieter J (2008) Mastitis detection in 
dairy cows by application of neural networks. Livest Sci 114(2):280–286

Cook NR (2007) Use and misuse of the receiver operating characteristic curve 
in risk prediction. Circulation 115(7):928–935

Craninx M, Fievez V, Vlaeminck B, De Baets B (2008) Artificial neural network 
models of the rumen fermentation pattern in dairy cattle. Comput  
Electron Agric 60(2):226–238

Davidson PM, Sofos JN, Branen AL (2010) Antimicrobials in food. Boca Raton : 
CRC Pr, 720 p

Dayton CM (2003) Model comparisons using information measures. J Mod 
Appl Stat Meth 2(2):2

Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal 
antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal 
mucosa : peptide isolation and cloning of a cDNA. Proc Nat Acad Sci USA 
88(9):3952–3956

dos Reis CBM, Barreiro JR, Mestieri L, de Felício Porcionato MA, dos Santos MV 
(2013) Effect of somatic cell count and mastitis pathogens on milk com-
position in Gyr cows. BMC Vet Res 9(1):67

Fukuda O, Nabeoka N, Miyajima T (2012) Estimation of marbling score in live 
cattle based on dynamic ultrasound image using a neural network. In: 
Proceedings of the 19th International Conference on Systems, Signals 
and Image Processing (IWSSIP), 2012 held in Vienna, Austria, 11-13 April 
2012. Piscataway : IEEE, pp 276-279

Gandhi RS, Raja TV, Ruhil AP, Kumar A (2009a) Evolving prediction equations 
for lifetime milk production using artificial neural network methodology 
in Sahiwal cattle. In: Dairying for livelihood and growth! : 37th Dairy In-
dustry Conference, Goa, India, 7-9 February 2009. New Delhi : Indian 
Dairy Ass, p 7

Gandhi RS, Raja TV, Ruhil AP, Kumar A (2009b) Prediction of lifetime milk  
production using artificial neural network in Sahiwal cattle. Indian J Anim 
Sci 79(10):1038–1040

Gandhi RS, Raja TV, Ruhil AP, Kumar A (2010) Artificial neural network versus 
multiple regression analysis for prediction of lifetime milk production in 
Sahiwal cattle. J Appl Anim Res 38(2):233–237

Gierdziewicz M, Otwinowska-Mindur A, Ptak E (2009) Effect of herd size and 
daily milk yield on somatic cell score in Polish Holstein-Friesian cows 
Black-and- White variety. Sci Ann Pol Soc Anim Prod 5(2):65-72



159158   
D. Zaborski, K. Wojdak-Maksymiec, W. Grzesiak  ·  Landbauforsch  ·  Appl Agric Forestry Res  ·  2 2016 (66)145-160D. Zaborski, K. Wojdak-Maksymiec, W. Grzesiak  ·  Landbauforsch  ·  Appl Agric Forestry Res  ·  2 2016 (66)145-160

Green MJ, Green LE, Schukken YH, Bradley AJ, Peeler EJ, Barkema HW, de Haas 
Y, Collis VJ, Medley GF (2004) Somatic cell count distributions during  
lactation predict clinical mastitis. J Dairy Sci 87(5):1256–1264

Greiner M, Pfeiffer D, Smith R (2000) Principles and practical application of  
the receiver-operating characteristic analysis for diagnostic tests. Prev Vet 
Med 45(1–2):23–41

Guliński P, Salamończyk E (2007) Estimation of chosen milk performance 
traits, length of lactation and udder health in high-yielding Polish  
Holstein-Friesian cows of Black-and-White variety. Sci Ann Pol Soc Anim 
Prod 3(1):29–36

Guliński P, Wyszomierski K, Salamończyk E (2016) Relationship between so-
matic cell count and milk performance of Polish Holstein-Friesian cows. 
Sci Ann Pol Soc Anim Prod 12(1):17–23

Hammer JF, Morton JM, Kerrisk KL (2012) Quarter-milking-, quarter-,  
udder-and lactation-level risk factors and indicators for clinical mastitis 
during lactation in pasture-fed dairy cows managed in an automatic 
milking system. Aust Vet J 90(5):167–174

Harmon RJ (1994) Physiology of mastitis and factors affecting somatic cell 
counts. J Dairy Sci 77(7):2103–2112

Hassan KJ, Samarasinghe S, Lopez-Benavides MG (2009) Use of neural  
networks to detect minor and major pathogens that cause bovine  
mastitis. J Dairy Sci 92(4):1493–1499

Haykin SS (2009) Neural networks and learning machines. New York : Pearson, 
906 p

Heald CW, Kim T, Sischo WM, Cooper JB, Wolfgang DR (2000) A computerized 
mastitis decision aid using farm-based records: An artificial neural  
network approach. J Dairy Sci 83(4):711-720

Hettinga KA, Van Valenberg HJF, Lam T, Van Hooijdonk ACM (2008) Detection 
of mastitis pathogens by analysis of volatile bacterial metabolites. J Dairy 
Sci 91(10):3834–3839

Hillerton JE, Berry EA (2005) Treating mastitis in the cow : a tradition or an  
archaism. J Appl Microbiol 98(6):1250–1255

Hristov S, Joksimović-Todorović M, Relić R, Stojanović B, Stanković B, Vuković 
D, Davidović V (2007) The influence of udder disinfections, period of  
lactation and season on cow mastitis occurrence. Savrem poljopr  
56(1-2):138–143

Krieter J, Cavero D, Henze C (2007) Mastitis detection in dairy cows using  
neural networks. In: Böttinger S, Theuvsen L, Rank S, Morgenstern M (eds) 
Agrarinformatik im Spannungsfeld zwischen Regionalisierung und 
globalen Wertschöpfungsketten : Referate der 27. GIL Jahrestagung,  
05.-07. März 2007, Stuttgart, Germany, pp 123-126

Król J, Litwinczuk A, Brodziak A, Topyla B (2009) Milk quality of three cow 
breeds during the successive years of performance. Sci Ann Pol Soc Anim 
Prod 5(4):181–188

Liddle AR (2007) Information criteria for astrophysical model selection.  
MNRAS Letters 377(1):L74–L78

López-Benavides MG, Samarasinghe S, Hickford JG (2003) The use of artificial 
neural networks to diagnose mastitis in dairy cattle. In: Proceedings of 
the International Joint Conference on Neural Networks 2003, Portland, 
Oregon 20-24 July 2003 : vol 1. Piscataway : IEEE, pp 582-585

Mak P (1994) Antibacterial proteins and peptides of human neutrophils : the 
search for new antibiotics. Adv Cell Biol Suppl 3:157–173

Miciński J, Zwierzchowski G, Ropelewska K (2010) Milking process manage-
ment and the quantity and quality of milk produced in two milking  
systems. Sbornik Naucznych Trudow 1(1):289-299

Montgomery ME, White ME, Martin SW (1987) A comparison of discriminant 
analysis and logistic regression for the prediction of coliform mastitis in 
dairy cows. Can J Vet Res 51(4):495

Myllys V, Rautala H (1995) Characterization of clinical mastitis in primiparous 
heifers. J Dairy Sci 78(3):538–545

Nałęcz-Tarwacka T, Dembińska B (2013) The influence of some factors on  
somatic cell count in milk of high yielding cows. Prz Hod 81(4):3-5

Nielen M, Schukken YH, Brand A, Haring S, Ferwerda-van Zonneveld RT 
(1995a) Comparison of analysis techniques for on-line detection of clini-
cal mastitis. J Dairy Sci 78(5):1050–1061

Nielen M, Spigt MH, Schukken YH, Deluyker HA, Maatje K, Brand A (1995b) 
Application of a neural network to analyse on-line milking parlour data 
for the detection of clinical mastitis in dairy cows. Prev Vet Med 22(1):15–28

Njubi DM, Wakhungu J, Badamana MS (2009) Mating decision support system 
using computer neural network model in Kenyan Holstein-Friesian dairy 
cattle [online]. To be found at <http://www.lrrd.org/lrrd21/4/njub21045.
htm> [quoted 21.08.2016]

Njubi DM, Wakhungu JW, Badamana MS (2010) Use of test-day records to  
predict first lactation 305-day milk yield using artificial neural network  
in Kenyan Holstein–Friesian dairy cows. Trop Anim Health Prod 
42(4):639–644

Nyman A-K, Ekman T, Emanuelson U, Gustafsson AH, Holtenius K, Waller KP, 
Sandgren CH (2007) Risk factors associated with the incidence of  
veterinary-treated clinical mastitis in Swedish dairy herds with a high 
milk yield and a low prevalence of subclinical mastitis. Prev Vet Med 
78(2):142–160

Olde Riekerink RGM, Barkema HW, Stryhn H (2007) The effect of season on  
somatic cell count and the incidence of clinical mastitis. J Dairy Sci 
90(4):1704–1715

Østerås O, Sølverød L, Reksen O (2006) Milk culture results in a large  
Norwegian survey : effects of season, parity, days in milk, resistance, and 
clustering. J Dairy Sci 89(3):1010–1023

Otwinowska-Mindur A, Gierdziewicz M, Ptak E (2008) Effect of year, season 
and age of calving on somatic cell score in Polish Holstein-Friesian cows 
of Black-and-White variety. Sci Ann Pol Soc Anim Prod 4(2):29–36

Pantoja JCF, Hulland C, Ruegg PL (2009) Somatic cell count status across the 
dry period as a risk factor for the development of clinical mastitis in the 
subsequent lactation. J Dairy Sci 92(1):139–148

Persson Waller K, Bengtsson B, Lindberg A, Nyman A, Ericsson Unnerstad H 
(2009) Incidence of mastitis and bacterial findings at clinical mastitis in 
Swedish primiparous cows : influence of breed and stage of lactation.  
Vet Microbiol 134(1):89–94

Pyörälä S (2002) New strategies to prevent mastitis. Reprod Dom Anim 
37(4):211–216

Risso A (2000) Leukocyte antimicrobial peptides : multifunctional effector 
molecules of innate immunity. J Leukocyte Biol 68(6):785–792

Roosen S, Exner K, Paul S (2004) Bovine beta-defensins : identification and 
characterization of novel bovine beta-defensin genes and their  
expression in mammary gland tissue. Mamm Genome 15:834–842

Rumelhart DE, Hintont GE, Williams RJ (1986) Learning representations by 
back-propagating errors. Nature 323(6088):533–536

Rupp R, Boichard D (2000) Relationship of early first lactation somatic cell 
count with risk of subsequent first clinical mastitis. Livest Prod Sci 
62(2):169–180

Ryniewicz Z, Zwierzchowski L, Bagnicka E, Flisikowski K, Maj A, Krzyżewski J, 
Strzałkowska N (2003) Association of the polymorphism at defensin gene 
loci with dairy production traits and milk somatic cell count in Black-and-
White cows. Anim Sci Pap Rep 21:209–222

Salehi F, Lacroix R, Wade KM (1998) Improving dairy yield predictions through 
combined record classifiers and specialized artificial neural networks. 
Comput Electron Agric 20(3):199–213

Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics  
induced at sites of inflammation. Science 267(5204):1645–1648

Sender G, Korwin-Kossakowska A, Hameid KGA, Prusak B (2006) Association 
of the polymorphism of some genes with the occurrence of mastitis in 
cattle. Med Weter 62(5):563–565

Sobczuk-Szul M, Wielgosz-Groth Z, Nogalski Z, Pogorzelska-Przybyłek P 
(2014) Changes in the content of whey proteins during lactation in cow’s 
milk with a different somatic cells count. Vet Zootech 45(87):79–84

Sordillo LM (2005) Factors affecting mammary gland immunity and mastitis 
susceptibility. Livest Prod Sci 98(1):89–99

StatSoft (1998) Statistica neural networks user guide. Tulsa OK : Statsoft, 315 p
StatSoft (2011) Statistica 10 user guide. Tulsa OK : Statsoft
Sun Z, Samarasinghe S, Jago J (2010) Detection of mastitis and its stage of 

progression by automatic milking systems using artificial neural net-
works. J Dairy Res 77(02):168–175

Svensson C, Nyman A-K, Waller KP, Emanuelson U (2006) Effects of housing, 
management, and health of dairy heifers on first-lactation udder health 
in southwest Sweden. J Dairy Sci 89(6):1990–1999

Tahmoorespur M, Hosseinnia P, Teimurian M, Aslaminejad AA (2012) Predic-
tions of 305-day milk yield in Iranian dairy cattle using test-day records 
by artificial neural network. Indian J Anim Sci 82(5):63-68

Tarver AP, Clark DP, Diamond G, Russell JP, Erdjument-Bromage H, Tempst P, 
Cohen KS, Jones DE, Sweeney RW, Wines M, Hwang S, Bevins CL (1998) 
Enteric beta-defensin : molecular cloning and characterization of a gene 
with inducible intestinal epithelial cell expression associated with  
Cryptosporidium parvum infection. Infect Immun 66(3):1045–1056

Tunzi CR, Harper PA, Bar-Oz B, Valore EV, Semple JL, Watson-MacDonell J, 
Ganz T, Ito S (2000) Beta-defensin expression in human mammary gland 
epithelia. Pediatr Res 48(1):30–35

Valde JP, Lawson LG, Lindberg A, Agger JF, Saloniemi H, Osteras O (2004)  
Cumulative risk of bovine mastitis treatments in Denmark, Finland,  
Norway and Sweden. Acta Vet Scand 45(3-4):201–210

Verleysen M, François D (2005) The curse of dimensionality in data mining 
and time series prediction. In: Cabestany J, Prieto A, Sandoval F (eds) 
Computational intelligence and bioinspired systems : 8th International 
Work-Conference on Artificial Neural Networks, IWANN 2005, Vilanova  
i la Geltru, Barcelona, Spain, June 8-10, 2005 ; proceedings. Berlin : 
Springer, pp 758-770

Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R (2009) Mastitis  
detection : current trends and future perspectives. Trends Biotechnol 
27(8):486–493

Wang E, Samarasinghe S (2005) On-line detection of mastitis in dairy herds 
using artificial neural networks [online]. To be found at <http://www.ms-
sanz.org.au/modsim05/papers/wang_e.pdf> [quoted 22.08.2016]

Wawron W (2007) Drying-off with non-antibiotic preparation protection.  
Biul Lub Izby Lek-Weter 2007(3):11–17

Wojdak-Maksymiec K (2009) Poszukiwanie związków pomiędzy wybranymi 
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