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Summary 

 

This study to analyse geo-hazard focused mainly on two parameters: geodynamics and mechanical 

property of the orogen. The Alborz region in northern Iran was selected as the study area. The Alborz 

mountain range in Iran is an ideal object to investigate the potential influence of past tectonic regimes 

on the future evolution of this long-lived convergence. For this purpose, previous geodynamic results 

were reviewed and compiled with data on present day tectonic activity at crustal and upper mantle scale. 

Previously published models indicate that the Iran Plate was subjected to a series of extensional and 

compressional tectonic regimes, ultimately linked with the opening and closure of the Tethys Ocean and 

related basins. Two subduction-collision cycles are recognized: one cycle occurred as a result of the 

subduction of the Iran Plate beneath the Turan Plate and in this cycle the subduction phase ceased in 

the Cenozoic and since the Cenozoic it is in a collision phase. The other cycle took place as a result of the 

subduction of the Arabian Plate beneath the Iran Plate, and in this cycle the subduction phase began in 

the Mesozoic and is ending now. Thus, the current tectonic situation in the Alborz is a direct consequence 

from the ongoing Cenozoic subduction-collision cycle.  

GPS and earthquake data indicate that the Alborz region, resulting from the collision of the Iran Plate 

with the Turan Plate, is still an area of recently active compression. Moho and tomographic data show 

that there is no connection between slab remnants of the oceanic crust and the Iran Plate. Furthermore, 

the Moho beneath the central Alborz is about 20 km deeper than in surrounding areas, indicating further 

advancement of collision there. However, the collision is continuing and the shorted area between the 

Iran Plate and the Turan Plate may increase. During the crustal thickening, a deep Moho area can also 

develop. This evolution can be expected in the tectonic cycle between the Arabian Plate and the Iran 

Plate, and also other places of the Alpine-Himalayan Belt (AHB), such as the Caucasus region.  

I investigated also the mechanical properties of the Alborz orogen to analyse geo-hazard in this region. 

For this purpose, the critical taper theory has been applied. This theory can show the equilibrium of an 

orogenic wedge. Stability or instability of an orogenic wedge can affect the initiation of earthquakes and 

landslides. An unstable orogen can generate new geo-hazards (e.g. earthquakes and landslide) and 

reactivate old geo-hazards more than a stable orogen.  

Four main parameters of the critical taper theory, i.e. surface slope (α), basal dip (β), coefficient of 

friction (μ) and pore pressure ratio (λ), which affect the geometry and mechanical wedge situation of an 

orogenic wedge, have been surveyed for the study area. Surface slope from topographic profile and basal 

dip from geological cross-sections have been obtained to calculate the F-value (F = α +  (𝛼 + 𝛽)). First, 

the value of these parameters and consequently the wedge state have been estimated for the Alborz 

and the Caucasus region (as neighboring orogen). Then, a similar analysis was concluded for other 

orogens of the AHB from the Apennines to the Himalayas.  

In order to better analyse the mechanical state of a wedge, several parameters, such as lithology, climate 

and tectonic setting were compared with the results of taper analysis. Three classes were distinguished 

to identify the mechanical state of the AHB orogens: a) Situation of pro- and retro-wedge based on alpha-
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beta values (the critical taper theory), b) Situation of pro- and retro-wedge based on lithology and 

climate, c) Situation of pro- and retro-wedge based on faults and local slopes. This classification indicates 

that all of the AHB orogens are in a critical to stable situation.  
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Zusammenfassung 

 

Diese Studie zum besseren Verständnis von Georisiken konzentriert sich auf zwei Parameter: ein 

geodynamisches Modell und die mechanischen Eigenschaften des Orogens. Als Forschungsgebiet ist die 

Alborz Region in Nord Iran ausgewählt worden. 

Die Alborz Region im Iran ist ein ideales Gebiet, um potenzielle Auswirkung der vergangenen 

tektonischen Regimes auf die zukünftige Entwicklung dieser Konvergenz zu untersuchen. Zu diesem Ziel 

sind die vorherigen geodynamischen Entwicklungen zusammengestellt und mit gegenwärtigen 

tektonischen Aktivitäten, sowohl auf der Oberfläche als auch in der Tiefe, kombiniert worden. 

Bisher veröffentliche Modelle zeigen, dass die iranische Platte verschiedenen Extensions- und 

Kompressionsregimes unterworfen war, die letztendlich in einer Verbindung mit der Öffnung und dem 

Schließen des Tethys-Ozeans und verbundener Becken standen. 

Zwei Subduktion-Kollision-Zyklen werden daraus abgeleitet: ein Zyklus entstand als Folge der Subduktion 

der Arabischen Platte unter die Turan-Platte. In diesem Zyklus endete die Subduktionsphase im 

Känozoikum, seitdem befindet sich die Region in einer Kollisionsphase.  

Der andere Zyklus ereignete sich als Folge der Subduktion der Arabischen Platte unter die Iranische 

Platte; in diesem Zyklus begann die Subduktionsphase im Mesozoikum und endet nun. Deshalb ist die 

momentane tektonische Situation in Alborz eine Konsequenz des laufenden Subduktion-Kollision-Zyklus.  

GPS-und Erdbebendaten zeigen, dass die Alborz Region, die sich aus der Kollision der Iran-Platte und der 

Turan-Platte ergibt, immer noch ein Gebiet rezent aktiver Kompression ist. Moho- und tomographische 

Daten zeigen, dass es keine Verbindung zwischen den Slab-Resten der ozeanischen Kruste und der Iran-

Platte gibt. Außerdem ist die Moho unter Zentral Alborz etwa 20 km tiefer als in der Umgebung, was auf 

weiteres Fortschreiten der Kollision dort hindeutet. Allerdings entwickelt sich die Kollision und deshalb 

könnte der verkürzte Bereich zwischen der Iran-Platte und der Turan-Platte großer werden. 

Während der Verdickung kann sich eine tiefe Moho Region entwickeln. Diese Entwicklung kann man im 

tektonischen Zyklus zwischen der Arabischen Platte und Iran-Platte und auch in anderen Regionen des 

Alpen-Himalaya-Gürtels (AHB) wie der Kaukasus-Region erwarten. 

In dieser Studie wurden die mechanischen Eigenschaften des Alborz-Gebirges untersucht, um die Geo-

Risiken in dieser Region besser zu verstehen. Zu diesem Zweck wurde die Critical Taper Theorie 

angewendet. Die Theorie kann das Gleichgewicht eines Orogens darstellen. Stabilität oder Instabilität 

eines Orogens kann die Initiation von Erdbeben oder Hangrutschen beeinflussen. Beispielsweise kann 

ein instabiles Orogen mehr als ein stabiles Orogen neue Geo-Risiken generieren oder alte Geo-Risiken 

reaktivieren. 

Vier Haupt-Parameter: Oberflächenneigung (α), basale Neigung (β), Koeffizient der Reibung (μ) und 

Porenwasserdruck (λ), die die Keilgeometrie und die mechanische Situation des Orogens beeinflussen 

können, wurden untersucht. Die Oberflächenneigung wurde aus topographischen Profilen, die basale 

Neigung aus geologischen Profielen entnommen, um den sogenannten F-Wert oder die 

Störungsfestigkeit (F = α +  (𝛼 + 𝛽)) zu berechnen. Diese Werte sind erstmalig für die Alborz- und 
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Kaukasus-Region (als Nachbar-Orogen) abgeschätzt worden. Außerdem wurden die Ergebnisse für 

Alborz mit der Situation in anderen Orogenen des Alpen-Himalaya-Gürtels vom Apennin bis zum 

Himalaya verglichen. 

Um den mechanischen Zustand der Orogene besser zu analysieren wurden einige Parameter wie 

Lithologie, Klima und tektonische Eigenschaften mit den Ergebnissen der Taperanalyse korreliert. 

Deshalb wurden drei Klassifizierungen unterschieden, um den mechanischen Zustand der Alpen-

Himalaya Orogene zu identifizieren. Klassifizierung a) Zustand des Orogens basierend auf Alpha- und 

Beta-Werten (Critical Taper Theorie). Klassifizierung b) Zustand des Orogens basierend auf Lithologie 

und Klima. Klassifizierung c) Zustand des Orogens basierend auf Störungen und lokalen Hangneigungen. 

Alle diese Klassifizierungen zeigen, dass alle Orogene des AHB in einem fast kritischen-stabilen Zustand 

sind.  
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1   INTRODUCTION  

 

Geo-hazard is not evenly distributed around the Earth, but mainly occurs in regions of active tectonics, 

such as geologically young mountain belts. This suggests that tectonics and geo-hazard are related and 

that tectonic activity may be an important cause for geo-hazard. On the other hand, research during the 

last three decades has revealed that climate and tectonics are intimately linked to each other (e.g. 

Molnar and England, 1990; Willett et al., 1990; Willet 1993). Therefore, there may be links between 

tectonics, climate, and geo-hazard, which infers that relations between these processes may be 

complicated and multiform. 

The mechanics of orogens may be a key factor to understand what parameters and processes control 

geo-hazard in actively converging tectonic settings (e.g. Hoth et al., 2007; von Hagke et al., 2014). To do 

so, the focus of recent research has been on e.g. active faults (e.g. Berberian, 1976; Nazari et al., 2009; 

Hesami and Jamali, 2006; Landgraf et al., 2009), seismicity (Nazari and Bozorgnia, 1992; Walker et al., 

2005), landslides (e.g. Asadi and Zare, 2014; Hafezi and Ghafoori, 2007), or the mechanical state of an 

orogen, as described by the critical taper theory (e.g. Davis et al., 1983; Dahlen, 1990; von Hagke et al., 

2014), just to name some important topics.  

The Alpine-Himalaya Belt (AHB) of collision orogens, comprising of the Alps, Caucasus, Zagros, Alborz, 

Tibet, Tien Shan, and the Himalayas (Storetvedt, 1990; Fig. 1-1), is a prominent setting of plate 

convergence and a region of major geo-hazard. This is not only true for the entire region but also for its 

individual orogens, such as the Alborz in northern Iran, which is located close to Iran’s capital Tehran and 

makes it one of those mega-cities, which are prone to geo-hazard (e.g. Berberian, 1976; Aghanabati, 

2004). 

The aim of this study is to better understand the geodynamic evolution of the Alborz and characterize 

its mechanical situation by performing a critical taper analysis. Since the Alborz is part of the AHB, its 

mechanical behaviour then is compared to that of other orogens of the AHB. 

 

1.1   Tectonic setting of the Alpine-Himalayan Belt 

According to Dewey and Bird (1970), Smith (1971), and Dewey et al. (1973), the AHB had formed through 

a continental collision of Africa and India with Eurasia, which closed the intervening Tethys Ocean. The 

AHB is one of the most seismic regions in the world and experienced  ̴̴17% of the world's largest 

earthquakes (Storetvedt, 1990). 

Studies addresing the AHB are strongly linked to the evolution of the Tethys (Storetvedt, 1990). Thus, a 

review of the long-term tectonic evolution of the AHB orogens and an assessment of tectonic cycles 

would enable to better illustrate the origin and evolution of this mountain belt.  

http://en.wikipedia.org/wiki/Seismic
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The AHB shows considerable shallow to intermediate-depth (50-300 km) seismicity. Earthquakes deeper 

than 300 km (deep-focus earthquakes) rarely occur throughout the belt (NEIC calatogue: National 

Earthquake Information Center). Most regions of the AHB experienced earthquakes with hypocenters of 

less than 100 km, e.g. Hilmalaya, Iran, Caucasus. These events are crustal, or of interplate origin 

(Storetvedt, 1990). On the other hand, in some regions, such as the Apennines, the Aegean, the Pamir, 

or Indo-China, seismicity nucleates at depths below 100 km (Koulakov et al., 2002). Stress drops of the 

intraplate earthquakes are significantly higher than those of interplate ones on average. Strain rates at 

plate boundaries are higher than those at intraplate faults, and recurrence intervals of interplate 

earthquakes are much shorter than those of intraplate earthquakes (Allmann and Shearer, 2009). 

However, northern Iran is one of the most active parts of the AHB and experienced crustal and interplate 

earthquakes with magnitudes higher than seven and is a populous zone. 

 

 

Figure 1-1. The Alpine Himalayan Belt. Topographic data (NOAA; Amante and Eaklns, 2009), earthquakes greater than 

magnitude 6 (USGS-NEIC Catalogue, 1900 - 2015). 

 

1.2   Iran as a part of the Alpine-Himalayan Belt  
 
The Iran Plate is a part of the AHB and is compressed between the Arabian Plate to the south and the 

Eurasian Plate to the north (Fig. 1-2). This compression is a cause for mountainous terrains in this region 

including Zagros and the Alborz mountains. Besides, tectonic studies indicate that the Iran Plate has a 

very high density of active faults, resulting in considerable shallow seismicity (e.g. Berberian, 1976; 

Aghanabati, 2004; Khodaverdian et al., 2015). Therefore, a contractional phase in present of this region 
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may be a main cause for the formation of fault structures and consequently seismicity. To study the 

evolution of this region helps to understand the tectonic regimes, plate situation, and plate boundaries 

in northern Iran and adjacent regions. For example, for some orogens of the AHB, such as the Caucasus, 

there are different controversial suggestions for the plate tectonic situation (e.g. Mumladze et al., 2015; 

Forte et al., 2013) and it is still to debate, which one is the downgoing plate with the some of the AHB 

orogens. 

 

 

 

Figure 1-2. Tectonic map of the Iran region, after Sorkhabi and Macfarlane (1999).  

 

 

Iran consists of different geological-seismological provinces. A province is defined as an area bounded 

by geological features, which marks a difference in seismic or geological characteristics of one province 

to its neighboring provinces (e.g. Tavakoli and Ghafoori-Ashtiani, 1999; Aghanabati, 2004). The 

boundaries of the provinces are established through analysis of seismic history, tectonic environments, 

active faults, regional geomorphology, and plate boundaries. Various opinions exist about the boundary 

of the provinces, and numerous authors (e.g. Stoklin, 1968; Takin 1972; Berberian, 1976; Tavakoli and 

Ghafoori-Ashtiani, 1999; Aghanabati, 2004) have differently divided Iran into geological-seismological 

provinces, but in all of the published studies, Alborz (North Unit), Zagros (South Unit) and Central Iran 

(Central Unit) have been suggested as main zones (Fig. 1-2). All of these zones have a different seismic 

potential, e.g. the ratio of strain to the number of earthquakes in the Alborz is generally higher than in 

the Kopedagh. Zagros is characterized by extensive seismicity and a high geodetically measurable strain. 

In contrast, Central Iran experiences low seismicity with close to no strain (Masson et al., 2006). The 
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Alborz region is one of the most active parts of northern Iran and has experienced several geo-hazards, 

such as destructive earthquakes M>7 (e.g. Ambraseys and Melville, 1982; Berberian and Yeats, 2001). 

 

1.3   Alborz as a part of the Alpine-Himalayan Belt  
 
The Alborz mountains belong to the orogenic belt of Iran, which is the result of the convergence between 

the Arabian Plate and the Turan Shield as a part of the Eurasian Plate near the north-eastern border of 

Iran (Fig. 1-2) and has mainly developed in the Mesozoic-Cenozoic as a consequence of the closure of 

the Neotethys (e.g. Aghanabati, 2004). The Alborz region is a west-east striking mountain system south 

of the southern coast of the Caspian Sea. It has been affected by several successive tectonic events, from 

the Eo-Cimmerian orogeny to the Late Tertiary-Quaternary intracontinental transpression (Allen et al. 

2003), and is still seismically strongly active (e.g. Ritz et al. 2006; Fig. 1-3). 

 

1.3.1  Tectonic setting of the Alborz region  

 
The Alborz region is a bivergent orogen and experiences active deformation resulting from forces 

accommodating the Iran-Turan collision (Fig. 1-2). Active deformation along the northeastern boundary 

of the Arabia-Eurasia collision zone is taken up by strike-slip faults, which may result from oblique 

convergence in this boundary zone (Vernant et al., 2004 b; Reilinger et al., 2006). Based on GPS data 

Masson et al. (2005) suggested that the Arabia-Eurasia convergence is distributed within several regions 

as mountains belts and large thrust and strike-slip faults. However, the seismotectonics of the Alborz 

range are largely controlled by major thrust faults (Jackson et al., 2002; Ashtari et al., 2005). 

Alborz has experienced different tectonic regimes and is in a contractional phase now (e.g. Berberian 

and King 1981; Aghanabati, 2004; Wilmsen et al., 2009; Ballato et al., 2011). The capital of Iran, Tehran, 

is located near the foothills of the southern Central Alborz range and close to several active faults. As 

mentioned before, this region has experienced destructive earthquakes (e.g. Berberian and Yeats, 2001) 

and landslides (e.g. Ambraseys and Melville, 1982; Hafezi and Ghafoori, 2007; Asadi and zare, 2014). 
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Figure 1-3. Seismicity of the Alborz region. Earthquakes and stress regimes of the Alborz region (a), and available local micro-

seismics with magnitude lower than 3 (b). Topographic data (DTU, Andersen and Knudsen, 2009), earthquakes (NEIC 

catalogue, 1900 to 2014), red lines: main thrust faults (Berberian et al., 1993; Hind et al, 2001; Allen et al., 2003), micro-

seismic events (University of Tehran, 1900-2011), blue arrows: GPS velocity (Vernant et al., 2004 a, b), stress data (WSM 

Catalouge, Heidbach et al., 2008, green: thrust fault).  
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1.3.2  Geo-hazard of the Alborz region  

 
As mentioned, the Alborz zone is a main tectonic and seismic province of Iran and forms a barrier 

between the south Caspian Sea and the Iran Plate. Stress data show a compressional regime in the Alborz 

region and according to the NEIC catalogue, the Alborz region is located in a high hazard region (Fig. 1-3 

a). Several earthquakes also affected the Alborz region during historical times (Ambraseys and Melville, 

1982). Some of the largest recent ones (M>6) occurred in the vicinity of Tehran (e.g. Ambraseys and 

Melville, 1982; Berberian and Yeats, 1999; Berberian and Yeats 2001).      

 

 

 

Figure 1-4. Distribution of landslides in the Alborz region (a) and location of giant landslides (b), after Hafezi and Ghafoori 
(2007), Asadi and Zare (2014); topographic data from DTU (Andersen and Knudsen, 2009). 
 
 

An earthquake with a magnitude higher than seven occurred in central Alborz in Manjil (Fig. 1-3 a). For 

the entire Alborz, there is no local seismic network, but for a small area near Tehran (Qazvin) micro-

seismic data are available from 1900 to 2011 (Fig. 1-3 b). From this data set, it seems that seismicity 

concentrates on the southern side of the Alborz. Generally, the depth of these micro seismic events is 

lower than 20 km. 
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Numerous landslides have been reported from the Alborz region (e.g. Hafezi and Ghafoori, 2007; Asadi 

and Zare, 2014; Fig. 1-4 a, b). In active mountain ranges, landslides in general and giant landslides in 

particular are important erosion processes (Pinto et al., 2008). A landslide is commonly named a “giant 

landslide” if its volume is as large as tens of km³ (Pinto et al. 2008). Such landslides have been reported 

from around the world, e.g. in southwest Iran, in Nepal or Mongolia. The volume of such landslides may 

be as large as 100 km³ and ususally affects an area of 10 -10³ km² (Asadi and Zare, 2014). 
 

About 75 % of the giant landslides have occurred in tectonically active regions such as major orogenic 

belts (Korup et al. 2007; Asadi and Zare, 2014). In these regions, uplift along existing joints and faults can 

provide critical conditions for landslides to occur. On the other hand, earthquakes can also trigger 

landslides. Therefore, landslides can be used as an indicator of seismicity and tectonic activity of a region 

(Asadi and Zare, 2014).  

 

The landslides of the Alborz region have been triggered probably by one or more earthquakes. These 

landslides are mostly located in the central Alborz with areas of   ̴̴16 - 160 km² and volumes of lower than 

10 km³ (Asadi and Zare, 2014). There are also landslides, which are not related to fault activity (Hafezi 

and Ghafoori, 2007), but may relate to the steep slope of the orogen. Therefore, it is worthwhile to study 

the geometry of orogen. 

 

Knowledge of critical taper (Davis et al., 1983) is a key to understand the geometry of orogen, which may 

affect geo-hazards, such as earthquakes or landslides, in an orogenic region (e.g. Hoth et al., 2007). In 

this regard, it is important to consider the effects of climate, such as erosion and precipitation, because 

these factors can change topography and geometry of an orogen, respectively (e.g. Hoth et al., 2007, 

2008). Thus, the mechanics of an orogen and climate are two related topics (Willet et al., 1993; Willet, 

1999; Molnar and England, 1990), which may influence the geo-hazards (Molnar et al., 2007). Besides, 

to have a better understanding of the mechanical setting of an orogen, a review of Earth history of the 

region is needed. 

 

1.4   Mechanics of the Alborz orogen 

 
To better analyse geo-hazard (earthquakes and landslides), the geometry of an orogen or in other words, 

the mechanical state of orogen needs to be studied. If an orogen were considered as a wedge, the 

mechanical situation of the orogen can be estimated. For this analysis, the critical taper theory has been 

successfully applied (e.g. Davis et al., 1983; Dahlen, 1990). According to this theory, four main 

parameters characterize the geometry of an orogenic wedge: surface slope (α), basal dip (β), and 

coefficients of internal and basal friction (𝜇𝑖𝑛𝑡, 𝜇𝑏𝑎𝑠) in case of “dry” wedges such as sand wedges. In 

case of “wet” wedges like orogenic wedges, additionally the internal and basal pore pressure ratio (𝜆𝑖𝑛𝑡, 

𝜆𝑏𝑎𝑠) have to be considered (e.g. Davis et al., 1983; Dahlen, 1990; Fig. 1-5). In fact, the mechanical 

situation of a wedge describes potential equilibrium conditions of an orogen. Stability or instability of an 

orogen can relate to geo-hazards. For example, an unstable orogen can generate new hazard or 
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reactivate old hazard regions more than a stable orogen, but it depends on some factors, such as climate 

and lithology in nature. 

 

Figure 1-5. An orogen as a wedge with main mechanical parameters. α-Surface slope; β-basal detachment; 𝜇𝑖𝑛𝑡-coefficient 

of internal friction;  𝜇𝑏𝑎𝑠-coefficient of basal friction; 𝜆𝑖𝑛𝑡-internal pore pressure ratio; 𝜆𝑏𝑎𝑠-basal pore pressure ratio; 𝜎1-

maximum principle stress; 𝜎3-minimum principle stress; 𝛹0-angle between 𝜎1 and  surface slope;  𝛹𝑏-angle between 𝜎1 

and wedge base), after Dahlen, 1990. 

 

1.5   Research questions   
 
As mentioned above, the Alborz region does not only experience earthquakes but also landslides, which 

have been considered as main geo-hazards for this region. This study focuses on two parameters to 

better analyse geo-hazards in the Alborz region: 1) its tectonic evolution 2) the mechanical state of an 

orogen. 

 

1.5.1  Tectonic evolution  

 
First of all, to better analyse geo-hazard it is important to know their source and origin. In the active 

region, such as the Alborz, this is mainly due to tectonic processes (e.g. Aghanabati, 2004; Berberian 

1976). Thus, to study the tectonic evolution helps to understand the origin of orogens and tectonic 

reasons of geo-hazards. In addition, a study of the long-term tectonic evolution leads to not only 

interpret the recent tectonic situation of the Alborz, but also may help to detect if some tectonic events 

occur repeatedly (tectonic cycle).  

 

Besides, the cycle of tectonic events helps to potentially identify a tectonic relationship, not only 

between past and recent events, but also between recent and probable future events, in some regions. 

For this aim, a long-term geodynamic model with its focus on the Alborz region is needed, a model, which 

indicates all of the related tectonic events from the Precambrian to the present time. The present 

tectonic situation, which is affected by past events, can explain the geo-hazard of the region. 
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Furthermore, a detection of the potential relationship between recent the tectonic situation and geo-

hazards in an orogen, such as the Alborz can be extended to neighboring orogens (e.g. the Caucasus) to 

compare the mentioned relationship. Therefore, to study the tectonic evolution of the Alborz region, 

the following question and sub-quaestions are addressed: 

 Which tectonic processes have occurred in the Alborz region, from the past to the recent time 

and which tectonic regime dominates today?  

- Is there any relationship between tectonic activities in the past and the recent time?  

- Is there any cycle of the tectonic evolution in this region? 

- Are the answers of the above questions the same for orogens near the Alborz (for example the 

Caucasus)? 

 

Answers to the above questions will help us to better assess the recent tectonic situation of the Alborz 

region while considering the effects of past events. It can also assess the relation between recent 

tectonic events and the origin of geo-hazard in an orogen and its surrounding. 

 

This part of the present study is based on a data compilation done in order to establish a new long-term 

geodynamic model, which summarises tectonic events and evolutionary cycles. For this purpose, three 

models as suggested by Berberian and King (1981), Wilmsen et al. (2009), and Ballato et al. (2011) will 

be integrated. To assess the present tectonic activities in the Alborz, I focus on the crust and upper 

mantle. Hence, I will compile the following two data sets: 

 

The first data set consists of surface data, which will be obtained from GPS, seismic activity and stress 

regime data. The second data set consists of Moho and upper mantle data based on gravity, geoid and 

topography. These data define Moho depth and crustal thickness. It enables us to assess, if a tectonic 

phase, such as collision or subduction is over or is continuing.  

 

Combining these data helps us to identify tectonic cycles, which can not only indicate a relation between 

the past and present tectonic events, but also enable to hypothesize a probable future tectonic situation. 

At the end, the Alborz region will be compared with the Caucasus as a neighboring orogen to determine, 

whether these active regions experienced a similar tectonic evolution and are in a same recent tectonic 

situation or not. 

 

1.5.2  Mechanical state of an orogen  

 
To better analyse geo-hazards, the recent mechanical orogenic state needs to be considered. In fact, 

tectonic events can be considered as the primary source of geo-hazards, and the mechanical state of an 

orogen can be considered as an important control on tectonic processes.  

 

After determining the mechanical state of the Alborz and its relationship to geo-hazards of the region, I 

will compare my finding with a neighboring orogen, such as the Caucasus to determine, if they both have 

the same mechanical state and if these have a similar effect on the generation of geo-hazards. 
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Furthermore, since the Alborz and the Caucasus region are parts of the AHB, a comparison with other 

orogens of the AHB, such as the Zagros, the Himalayas, and the Apennines is useful. This provides a large-

scale comparison of orogenic states along the AHB.  
 
Therefore, by studying the recent mechanical orogenic state, I will address the below question and sub-

questions: 

 What is the mechanical orogenic state of the Alborz mountains?  

- Which parameters affect the wedge state the most? 

- Is the orogenic state of the Alborz region similar to that of a neighboring orogen (e.g. 

Caucasus)? 

- Are the mechanical states of the Alborz and Caucasus region the same in all of the AHB 

orogens? 

 

This part of my study is based on critical taper analysis. For this purpose, the critical taper theory will be 

applied. To obtain critical taper components, e.g. surface slope (α) and basal dip (β), topographic profiles 

and geological cross-sections will be used, respectively. By using the resultant (α) and (β) in the critical 

taper equations, the value of other critical taper components e.g. basal friction (μ) will be estimated.  

 

 

1.6   Structure of the thesis  

 
After this introduction in the research questions addressed in this dissertation. Chapter 2 deals with the 

tectonic evolutionary model of the Alborz region. To present a tectonic evolutionary model showing all 

of the tectonic events from the Precambrian to the recent time focusing on the Alborz, three steps will 

be performed:  

 

In a first step, the different models, which were established by other authors will be reviewed and 

combined. Consequently, a model of tectonic events from the Precambrian to the Cenozoic will be 

obtained. In a second step, this model will be joined with the present time tectonics. For the present 

time tectonic situation, the crust and upper mantle will be studied. Data, such as GPS velocities, 

earthquakes and stress regimes will be obtained from different catalogues, such as NEIC, CMT and WSM 

to study the surface.  Tomographic and Moho data will be used to study the upper mantle of the region. 

In a third step, the Alborz region will be compared to the Caucasus as another orogen of the AHB. In this 

part, a tectonic evolutionary model of Caucasus and also its present tectonic situation will be briefly 

presented. 

 

In chapter 3, a critical taper analysis will be performed, first for Alborz and then for other orogens of the 

AHB. To estimate “alpha” I will use topographic profiles derived from SRTM-90 m. The topographic 

profiles will be produced not only from a line, but also from a swath. A linear topographic profile can 

show the variation of elevation in two dimensions, whereas a swath profile can show it in three 
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dimensional views. The study of 2D and 3D topographic profiles provides a better estimation of “alpha”. 

To estimate “beta”, I will use geological cross-sections constructed by other authors. These cross-

sections show basement and sedimentary layers. By means of lithological data, weak and strong layers 

can be identified. This helps to assess the detachment and consequently, to measure the basal dip or 

“beta”. Then, based on “alpha” and “beta” and by appling the critical taper equations, values of basal 

friction will be estimated. For the values of internal friction, the results of published studies (e.g. Dahlen, 

1984) will be applied. Based on these parameters, I will try to suggest the mechanical state of the Alborz 

wedges.  This state will be estimated in a first step by means of the critical taper equations. In a second 

step, the effect of some factors, such as lithology, tectonics, and climate on the estimated orogenic state 

will be considered. 

 

In Chapter 4, the tectonic evolutionary model and the mechanical properties of the Alborz orogen are 

synthesized. This means that the effect of the tectonic and mechanical situation on geo-hazards is 

explained. For the first part (tectonics), I will try to explain a relationship between the detected tectonic 

cycles (refer to chapter 2) and the recent tectonic situation with geohazard. For the second part 

(mechanics), the relation between mechanical orogenic state and geohazard will be interpreted. In this 

regard, the effect of some natural factors, such as climate and lithology on mechanics of orogen will be 

considered. Lastly, I will outline topics of potential future studies. 
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2   A SUBDUCTION-COLLISION CYCLE EVOLUTIONARY MODEL FOR THE ALBORZ, IRAN 

 

Abstract 

 

The Alborz mountain range in Iran is an ideal object to study the potential influence of past tectonic 

processes on the possible future evolution of this long-lived region of convergence. For this purpose, the 

outcome of earlier studies addressing the plate tectonics of the Alborz region has been reviewed and 

compiled with data on the present day tectonic activity at the crustal and upper mantle scale.  

 

Previously published geodynamic concepts indicate that the Iran Plate was subjected to a series of 

extensional and compressional tectonic regimes, ultimately linked to the opening and closure of the 

Tethys Ocean and related basins. Two subduction-collision cycles are recognized. One of these occurred 

as a result of the subduction of the Iran Plate beneath the Turan Plate. In this cycle, the subduction phase 

ceased in the Cenozoic and since the Cenozoic it is in a collision phase. The other convergence cycle took 

place as a result of subduction of the Arabian Plate beneath the Iran Plate, and in this cycle the 

subduction phase began in the Mesozoic and is ending now. Thus, the current tectonic situation in the 

Alborz is a direct consequence of an ongoing Cenozoic subduction-collision cycle. 

 

GPS and earthquake data indicate that the Alborz region is still an area of recently active compression. 

Moho and tomographic data show that there is no connection between slab remnants of the oceanic 

crust and the Iran Plate. In addition, the Moho beneath the central Alborz is about 20 km deeper than in 

surrounding areas, indicating further advancement of collision there. However, collision is continuing 

and the crustal area between the Iran Plate and the Turan Plate is increasingly shortening. This leads to 

thickening of the crust and deepening of the Moho from the center of the Alborz region towards its 

sides. Such an evolution can be also expected in other places of the Alpine-Himalayan Belt (AHB), such 

as the Caucasus region. 

 

2.1   Introduction 

 
Deformation resulting from the Arabia-Eurasia collision affects an area of   ̴3̴ Million km² of continental 

crust, making it one of the largest regions of convergent deformation on Earth (e.g. Allen et al., 2004). 

The Alborz range in northern Iran is a part of this Arabia-Eurasia collision zone (e.g. Allen et al., 2003) 

and builds the northern part of the Alpine-Himalayan orogen in western Asia (Fig. 2-1). It is located south 

of the Caspian Sea with about 3-5 km topography, a length of   ̴600 km in the east-west direction and a 

width of   ̴̴100 km in the north-south direction (Ritz et al., 2006).  
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Figure 2-1. Introducing the Iran region and surroundings. a) Global view of Alpine-Himalayan Belt, b) Map of Iran/Alborz and 

surrounding area. Topography (DTU, Andersen and Knudsen, 2009). The studied profiles: aa´ (Paleozoic evolution, cf. 

Berberian & King 1981; Fig. 2-3), bb´ (Mesozoic evolution, cf. Wilmsen et al., 2009; Fig. 2-4), cc´ (Cenozoic evolution, cf. Ballato 

et al., 2011; Fig. 2-5), geological-seismological zones (e.g. Aghanabati, 2004), SCB\CCB: subduction of the south Caspian Basin 

beneath Central Caspian Basin; Iran\Turan: subduction of Iran beneath Turan; Lut/Afghanistan: subduction of Afghanistan 

beneath Lut; Arabian Plate\Iran: subduction of the Arabian Plate beneath Iran.  

 

 

GPS analysis reveals that shortening is varying across Iran. For example, in southern Iran shortening 

amounts to   ̴̴10 mm/yr, but in northern Iran (study area), within the central Alborz it is   ̴̴5 mm/yr over 

100 km, i.e. 40% of the shortening between Central Iran and Eurasia (Vernant et al., 2004 a; Reilinger et 

al., 2006). Estimates for the crustal thickness of this collisional belt vary between 35 and 60 km in Iran 

(e.g. Tatar, 2001; Radjaee et al. 2007; Jiménez-Munt et al., 2012; Tunini et al., 2015). Dehghani and 

Makris (1984), Sodoudi et al. (2009), and Tatar (2001), suggested a crustal thickness of 35 to 36 km under 

the Alborz region.  Abbassi et al. (2010) and Radjaee et al. (2007) proposed that the crustal thickness 

beneath the northern part of Central Iran and the Alborz mountains is about 58 km at maximum.  
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According to previously published geodynamic concepts, the Alborz region was subjected to a series of 

extensional and compressional tectonic processes, ultimately linked with the opening and closure of the 

Tethys Ocean and related basins (e.g. Ballato et al., 2011; Berberian and King, 1981; Wilmsen et al., 2009; 

Golonka, 2004). These evolutionary models resulted from a variety of different methodological 

approaches involving lithostratigraphy, sedimentology, petrology, and paleogeography focusing either 

on specific geological time intervals, e.g. only the Mesozoic (Wilmsen et al., 2009) or the Cenozoic 

(Ballato et al., 2011) or working at different spatial scales, e.g. Eurasia and the Arabian Plate, (e.g. 

Golonka, 2004) or only the Arabian Plate and the Iran Plate (e.g. Ballato et al., 2011). However, a long-

term geodynamic evolutionary model for entire Iran, especially the Alborz region, involving recent 

tectonic activities on a plate tectonic scale, has not been provided to date. To achieve this goal, it is 

important to know, which tectonic regimes in which geological time dominated the Alborz region. Thus, 

focusing on the paleogeography, sedimentology, lithology, etc. is not the scope of this work. 

 

Such a study will also illuminate a potential relationship between past and present tectonic events and 

also tectonic cycles. A long-term geodynamic model needs also to show the present time tectonic 

situation, comprehensively. For this purpose, I propose to combine studies of processes acting at the 

surface and close to the surface with those processes acting at depth. Knowledge of geodynamic 

processes having acted in the past and also the tectonic situation of the present time helps to develop a 

hypothesis about the tectonic situation of the region and also its future fate (Fig. 2-2).  

 

The Alborz region, as an active area within the AHB, could have had tectonic evolutionary sequences 

similar and comparable to the other parts of this belt. The Caucasus region can be a suitable region for 

comparison, because it is not only a part of the AHB, but also near the Alborz region. A comparison 

between tectonic sequences of parts of the AHB, which helps to better understand the actual structure 

of the AHB orogens, has not been represented yet.  

 

The intention of this study is two-fold. First, I review the tectonic evolution of Iran, especially the Alborz 

region. Second, I compile data to illustrate its present situation with regard to subduction/collision. From 

this, I develop a hypothesis for the ongoing collision of the present time and the future. The findings of 

the review of the geodynamic evolution of the Alborz region provide a consistent geodynamic 

framework from the Precambrian to the present and the future and enable to detect probable tectonic 

cycles and also to better understand the present-day mechanical situation of the orogen. 

 

The main questions of the study are: (a) Which tectonic processes have shaped the Alborz region from 

the past to recent times?  (b) Which regime is recently active? (c) Is there any relation between tectonic 

activities in the past and at present? (d) Is the tectonic evolution of this region a result of convergence 

cycles? (e) Are the answers to the above questions similar for an orogen neighboring the Alborz (for 

example the Caucasus)? 

 

 



 
2   A SUBDUCTION-COLLISION CYCLE EVOLUTIONARY MODEL FOR THE ALBORZ, IRAN 

 

15 
 

2.2   Data 
 
This study has three steps (Fig. 2-2): To establish a geodynamic model from the Paleozoic to the recent 

time, three models suggested by other authors (Berberian and King, 1981; Wilmsen et al., 2009; Ballato 

et al., 2011) are compiled and integrated. To assess present tectonic activities in the Alborz, a study of 

the crust and upper mantle of the area is necessary. To do so, two datasets are used: 

 
 

 
 

Figure 2-2. Schematic structure of the study (chapter 2). 
 

 

The first data set consists of actual near surface and crustal deformation data, which have been obtained 

from GPS, seismic activity and stress regime data. With the help of GPS data, it is possible to study 

horizontal surface deformation. For this purpose, I use GPS data obtained by Vernant et al. (2004 a, b) 

and Reilinger et al. (2006). To understand seismic activity of the area, data from the NEIC catalogue 

(National Earthquake Information Center) from 1900 to 2014 have been used. This catalogue gives 

information, such as coordinates, depth, and magnitude of earthquakes in the studied region. To specify 

the stress regime, data from the Centroid Moment Tensor catalogue (CMT) from 1900 to 2014 and also 

the World Stress Map catalogue (WSM) have been used.  

 

The second data set consists of Moho and upper mantle data based on gravity, geoid studies and 

topography. These data sets can illustrate the crustal depth of orogen. For this part, Moho data obtained 

by Motavalli-Anbaran et al. (2013) have been used. In addition, seismic tomographic data reveal the 

existence of subduction phases and potential connections between the slab and subducted plate. 

Eventually it can be identified, whether subduction is ongoing or if a new collision phase is already 

initiated. To do so, results from tomographic studies (e.g. Bijwaard et al., 1998; Alinaghi et al., 2007; 

Maggi and Priestley, 2005) have been used. To provide digital maps, the GMT software (Generic Mapping 

Tools, Wessel and Smith, 2010) has been used. 

 

From the entire data set described here, I will not only get a good overview about present day tectonic 

activity, but also will be able to develop a hypothesis for the future development of the Alborz region. 

At the end, the Alborz region with the Caucasus as another orogen of the AHB is studied to understand, 

whether these active regions experienced the same tectonic sequence and are in a similar recent 

tectonic situation. 
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2.3   Review of the geodynamic evolution of the Alborz region 

 
2.3.1 Paleozoic 
 
In the Paleozoic, Iran experienced extensional and compressional regimes. From the Precambrian to the 

Mesozoic, strata in the Alborz ranges experienced shortening and uplift (e.g. Berberian and King, 1981; 

Aghanabati, 2004; Fig. 2-3). 

 

An orogenic event, such as the Katangan orogeny, affected the Iran Plate in the Precambrian. After the 

Katangan orogenic event, from the Late Precambrian to the Middle Triassic, Iran as a stable platform has 

been covered by shallow sea, which occasionally was turned to land as a result of uplift and regression 

(Aghanabati, 2004). There are different geological reports about the effect of the Katangan orogeny on 

the Iran Plate. The majority of these reports, based on the age of Precambrian schists in north Iran 

(Gorgan), accepted that the Katangan event affected the region. In contrast, some reports based on 

eventual gradual changing to Neoprotrozoic formations (e.g. Soltanieh Formation), denied that the 

Katangan orogeny had effect on the region (Aghanabati, 2004). 

 

The oldest units exposed in the Alborz are Precambrian low-grade metasediments (Assereto, 1966). The 

following Paleozoic to Early Cenozoic sedimentary sequence is discontinuous, contains several angular 

unconformities, and consists of quartzites, sandstones, limestones, shales, dolomites, and a minor 

component of volcanic rocks, deposited in continental and shallow marine depositional environments. 

The Pre-Cambrian to the Early Cenozoic sedimentary sequence locally reaches ca. 10 km thickness 

(Assereto, 1966). 

 

From the Upper Paleozoic (around the Carboniferous) there was the supercontinent Pangea. This super 

continent began to divide into two continents, Gondwana and Laurasia, in the Upper Paleozoic and 

Lower Mesozoic. Gondwana moved to the south, Laurasia moved to the north and in this time, the 

Paleotethys Ocean formed between these two continents (e.g. Berberian and King, 1981). The Alborz 

(Al.), Central Iran (C.I.), the Sanandaj Sirjan (S.S.), the High Zagros (H.Z.), and the Arabian plate (A.) 

belonged to Gondwana, whereas at that time, Kopedagh (K) belonged to Laurasia (e.g. Aghanabati, 2004; 

Berberian and King, 1981; Fig. 2-3 A, B). 

 
From   ̴250 Ma, a contractional tectonic regime was present between Gondwana and Laurasia and the 

Paleotethys Ocean began to become smaller between the Alborz and Kopedagh (Aghanabati, 2004; 

Berberian and King 1981; Fig. 2-3 C, D). During the closure of the Paleotethys and related subduction, an 

extensional tectonic regime was present in the Main Thrust Fault Zagros (MTFZ) and also formed the 

Neotethys (the 'High-Zagros Alpine Ocean') between Zagros and Central Iran. As a result of these 

processes i.e. the closure of the Paleotethys and forming of the Neotethys, Zagros separated from the 

Arabian Plate and the Iran Plate moved to the north (e.g. Berberian and King, 1981; Fig. 2-3 D; Fig. 2-4 

A).  
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Figure 2-3. Paleozoic-Mesozoic evolution of Iran and surroundings. (A-B), Arabia and Iran belongs to Gondwana, but Turan 
belongs to Laurasia. (C), contractional regime between Iran and Turan, and closure of Tethys. (D), extentional regime in Iran 
and forming of the Neotethys. Arabian Plate (A), Zagros (Z.), Central Iran (C.I.), Alborz (Al.), Kopedagh (K.), after Berberian 
and King, 1981; Aghanabati, 2004. See also Fig. 2-1 for the position of profile aa´.    
 
 

2.3.2  Mesozoic  
 
In the Mesozoic, due to the subduction of the Iran Plate beneath the Turan Plate, and also the subduction 

of the Arabian Plate beneath the Iran Plate with NE-SW directions, a regional contractional regime 

dominated in entire Iran, but some local extensional regimes occured in Central Iran and the Alborz 

region due to rifting processes (e.g. Berberian and King, 1981; Wilmsen et al., 2009; Fig. 2-4 C-F). 

According to Wilmsen et al. (2009), initial Cimmerian collision started in the Carnian with subsequent 

Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction 

shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the 

Triassic-Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post orogenic 

molasse. During the Toarcian-Aalenian Neotethys backarc rifting, a deep-marine basin formed which 

developed into the oceanic South Caspian Basin during the Middle-Late Jurassic (Wilmsen et al., 2009; 

Fig. 2-4). 

2.3.2.1  Lower Triassic (Late Ladinian-Carnian/ ca. 230-216 Ma) 
 
By the Late Ladinian, the residual Paleotethys had narrowed due to northward drift of the Iran Plate. 

Consequently, spreading rates decreased from   ̴̴20 cm⁄yr to   ̴̴6 cm⁄yr (Stampfli and Borel, 2002; Muttoni 
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et al., 2009). In the Early Carnian (c. 225 Ma), the northern margin of the Iran plate transformed into a 

peripheral foreland basin (Fig. 2-4 B). Flexural subsidence led to drown the Carnian platform in northern 

Alborz (e.g. Robertson, 1987, 1994, 2004; Galewsky, 1998; Garfunkel and Greiling, 2002). An “all-round 

erosional unconformity” occurred in the south and caused intensive weathering (deCelles and Giles, 

1996). There was also local erosion due to forebulge uplift in the Paleozoic formations (deCelles and 

Giles, 1996 and references therein). Extensional faulting at the forebulge caused the subaerial eruption 

of basal alkaline volcanics in the central Alborz (Fig. 2-4 B). During rapid flexural subsidence, the northern 

Alborz was filled with red clays derived from erosion of lateritic soils of the Iran Plate, and dark fine-

grained siliciclastics from the Turan margin. This suggests significant coupling between the Iran and the 

Turan Plate during the Carnian (Wilmsen et al., 2009). 

 
2.3.2.2  Lower-Upper Triassic (Norian-Rhaetian / 216-200 Ma) 
 
During the Norian–Rhaetian, the initiation of Neotethys subduction at the southern margin of the Iran 

Plate reduced compression of the Iran Plate with subsequent formation of extensional basins (Fürsich et 

al., 2005 b) and transgression of the sea onto the Iran Plate. During the remainder of the late Triassic, 

the flexural foreland basin in northern Iran was filled with syn-orogenic siliciclastic sediments (Wilmsen 

et al., 2009; Fig. 2-4 C). The Upper Triassic succession of the northern Alborz displays the classical parts 

of an underfilled peripheral foreland basin (Sinclair, 1997 a) with a drowned carbonate platform covered 

by deep marine fines and turbidites (flysch phase; Wilmsen et al., 2009). 

 

2.3.2.3  Main Cimmerian event (c. 200 Ma) to Early Lias (c. 200-183 Ma) 
 
Around the Triassic-Jurassic boundary, a significant deformation event associated with a distinct increase 

in sediment supply affected the Alborz foreland basin (Wilmsen et al., 2009; Fig. 2-4 D). In the north, this 

event was characterized by an angular unconformity at the base of the conglomeratic formation, while 

coarse sandstones were deposited in the south. In the lower Jurassic, during slab break-off, rapid uplift 

and exhumation, molasse-type sediments overlaid the flysch-type Upper Triassic strata (Zanchi et al., 

2009). This caused also in other parts of the AHB, such as North Alpine foreland (von Blanckenburg and 

Davies, 1995; Sinclair, 1997 b; Regard et al., 2008). The events taking place in the Alborz are similar to 

the Cimmerides, in c. 20-25 Ma (Wilmsen et al., 2009; Fig. 2-4 D) and are comparable with the Alpine 

slab- break-off event happening 15-20 Ma after the end of subduction (Sinclair, 1997 b; Regard et al., 

2008). A similar rapid deformation and uplift event occurred also in the Zagros foreland c. 15-20 Ma after 

initial plate coupling followed by deposition of coarse conglomerates (Agard et al., 2005; Mouthereau et 

al., 2006). 
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Figure 2-4. Mesozoic evolution of Iran and surroundings. This model focuses on geodynamic evolution between Iran and 
Turan, Arabian Plate is out of this profile but it is connected to the left of the oceanic crust. (A-B) the first subduction phase 
between Iran and Turan, (C) the second subduction phase between Iran and Arabia, (D) slab breakoff of Iran beneath Turan, 
(E) end of subduction phase between Iran and Turan, (F) birth of the South Caspian Basin with the Alborz mountains forming 
at its southern margin. Different time slices representing important phases of the, Zagros (Z.), Central Iran (C.I.), Alborz (Al.), 
Kopedagh (K), after Wilmsen et al., 2009. See also Fig. 2-1 for the position of profile bb´.
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2.3.2.4  Lower Jurassic-Middle Jurassic (Toarcian-early Bajocian /183-170 Ma) 
 
During the Toarcian-Aalenian, high tectonic subsidence rates (60m/Ma) and rapid N-S thickness changes 

suggest a tectonic control by means of onset of extension in northern Iran (Fürsich et al., 2005 a, 2009 

a). This Toarcian-Aalenian extension was related to the ongoing Neotethys subduction and the final 

opening of large back-arc-rift basins along the Eurasian margin (Zonenshain and Le Pichon, 1986; 

Stampfli, 1996, 2000; Stampfli and Borel, 2002; Brunet et al., 2003; Golonka, 2004). During the Early 

Bajocian, the Alborz basin filled rapidly with large deltaic sediments (Fürsich et al., 2005 a) through a 

short uplift phase of the basin margins (Mid Cimmerian Event; Fürsich et al., 2009 b). 

 
2.3.2.5  Middle Jurrasic (Late Bajocian-Late Jurrasic/170-150 Ma) 
 
According to Wilmsen et al. (2009), after the Mid-Cimmerian event, as a result of crustal extension, a 

renewed phase of rapid subsidence occurred across the entire northern Iran from the Late Bajocian 

onwards. Due to crustal extension, considerable deepening and rotated fault blocks occurred (Fürsich et 

al., 2009 b). This event of increased back-arc-rifting represents the birth of the South Caspian Basin 

(Brunet et al., 2003), with the Alborz forming at its southern margin (Wilmsen et al., 2009; Fig. 2-4 E-F). 

The Late Bajocian-Late Jurassic extension also affected NE Iran and the South Caspian Basin (Taheri et 

al., 2009). The weakness of the Paleotethys suture facilitated the beginning of the rifting phase in the 

Toarcian. The brief mid-Bajocian uplift pulse of the Mid-Cimmerian tectonic event may indicate the 

break-up unconformity of the South Caspian Basin (Brunet et al., 2003; Fürsich et al., 2009 b), which 

developed into a back-arc ocean during the  Middle-Late Jurassic (Stampfli, 2000; Stampfli and Borel, 

2002). 

 

2.3.3  Cenozoic 
 
In the Cenozoic, the subduction of the Arabian Plate beneath the Iran Plate continued, therefore a 

contractional regime accompanied by an intense volcanic eruptive phase occurred in Iran (e.g. Ballato et 

al., 2011). Rapid sedimentation and erosion took place due to acceleration of shortening in Early 

Miocene (Axen et al., 2001). The time period between the initiation of continental collision (36 Ma) and 

the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving 

the “soft” collision of stretched lithosphere at first and “hard” collision following the arrival of 

unstretched Arabian continental lithosphere in the subduction zone (Ballato et al., 2011). Crustal 

shortening in the present Alborz must have started shortly after the end of the arc-magmatic phase at 

ca. 36 Ma. All deformation processes, such as upper plate shortening, uplift, and basin formation 

recorded in the Alborz range were closely related to the convergence between Arabia and Eurasia (e.g. 

Ballato et al., 2008, 2011).    
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Figure 2-5. Cenozoic evolution of Iran and surroundings. This model focuses on geodynamic evolution between Iran and the 

Arabian Plate, Turan is out of this profile but it is connected to the right of Iran. A) Start of subduction of Arabia beneath Iran, 

B-C) continuation of the subduction and slab breakoff, D) start of collision.  Zagros (Z.), Central Iran (C.I.), Alborz (Al.), after 

Ballato et al., 2011. See also Fig. 2-1 for the position of profile cc´. 

 

 

Shortening took place across most of the present day deformation zone during the Latest Eocene to Early 

Oligocene (Ballato et al., 2011, Fig. 2-5). Taken together, tectonic processes during the Cenozoic 

consisted of two parts: continental subduction and plate suturing (e.g. Ballato et al., 2011). In the initial 

stage of continental collision, there was a primary continental subduction, and in this stage most of the 

plate convergence was absorbed by subduction processes. As a result, partial decoupling of sediments 

from the subducting continental crust, deformation along the accretionary prism, and melting of 

subducted continental crust at depth occurred (Chemenda et al., 1996, 2000; Regard et al., 2003; 

Toussaint et al., 2004).  
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Aproximately 480 km of continental lithosphere was subducted between 36 and 20 Ma when the Arabian 

Plate motion slowed from 3 cm/yr to 2 cm/yr (McQuarrie et al., 2003). In other words, if subduction rate 

is 3 cm/yr, about 600 km will be subducted in ca. 20 Ma. Therefore a slow down can only begin at ca. 20 

Ma and plate tectonic reconstructions for the Middle East do not reveal variations in convergence rates 

before ca. 20 Ma (Ballato et al., 2011). 

 

Due to arid climatic conditions in the Arabia-Eurasia region, the effects of erosion and tectonic denuation 

have been limited. Consequently, exhumed remnants of subducted continental lithosphere have not 

been detected (Chemenda et al., 1996). Unequal crustal thickness, in the range of   ̴ 45 km and   ̴75 km 

across the suture zone of the Arabia-Eurasia collision could be a result of underthrusting of the Arabian 

Plate, which may have resulted in more than 30 km of crustal thickening (Paul et al., 2010).  

 

As mentioned, from ca. 20 Ma onward, motion of the Arabian Plate slowed. Since this time, continental 

collision caused a plate suturing phase (Ballato et al., 2011). In this phase, as a result of the progressive 

severing of subduction process, the Arabia-Eurasia convergence rate was decreased (McQuarrie et al., 

2003; Hatzfeld and Molnar, 2010). The time lag between the Late Eocene and Early Oligocene coincided 

with the onset of continental collision and continental accretion following the subduction of stretched 

continental lithosphere (Ballato et al., 2011).  
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Figure 2-6. Map of stress regimes and shortening rates of Iran (a) /Alborz (b). Topography (DTU, Andersen and Knudsen, 

2009), blue arrows:  GPS velocity (Vernant et al., 2004 a, b), beach balls: Focal mechanism (CMT Catalogue, Ekström et al., 

2012), stress regime (WSM Catalogue, Heidbach et al., 2008, WSM Symbols, Red:  normal fault, green:  thrust fault, black: 

strike slip fault). 
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2.4   Recent situation  
 
To complete the proposed geodynamic model, information on recent tectonic activities is reviewed and 

linked with the presented geodynamic models. Studying of these present day activities accompanied by 

the knowledge of past events helps to understand, how previous geodynamic changes affect recent 

tectonic. These processes can deform the surface and depth of a region. Hence, surface and depth of 

the region need to be studied.  
 

2.4.1  Near surface and crustal deformation 
 
According to Mouthereau et al. (2012), deformation developed near the places of underthrusting and 

accretion of Arabian crust  beneath Iran since   ̴25 Ma, then propagated after 15-10 Ma both southward 

to the Zagros Folded Belt (Gavillot et al., 2010; Khadivi et al., 2010, 2012) and northward in the Alborz 

(Guest et al., 2006 b), the Kopedagh, the South Caspian Basin (Hollingsworth et al., 2010; Shabanian et 

al., 2009 a,b), and in to Central Iran (Morley et al., 2009) in association with the uplift of the Iran Plate 

(Mouthereau et al., 2012). 

 

Based on GPS data, present tectonics in Iran are best described as north-south convergence between 

the plates of Arabia to the southwest and Eurasia to the northeast at a rate of about 22 mm/yr (Fig. 2-6 

a). Between Central Iran and the Arabian Plate, the shortening rate is about 7±2 mm/yr. Shortening 

decreases in northern Zagros. North of Central Iran, the Alborz mountain range accommodates 8±2 

mm/yr of north-south compression (e.g. Vernant et al., 2004 a; Masson et al., 2006). According to Djamor 

et al. (2010), the GPS velocities in the Alborz region differ regionally. Velocites in western Alborz are   ̴̴3 

mm/yr faster than in the eastern sites in the Eurasia fixed reference frame. To account for this difference, 

these authors reasoned that the GPS sites northeast of Alborz are farther away from the main active 

thrust fault than the northwestern GPS sites. Another explanation could be that western and eastern 

Alborz have different kinematics (Djamor et al., 2010; Fig. 2-6 b; table 2-1). 

 

Active deformation at the northeastern boundary of the Arabia-Eurasia collision zone is taken up by 

strike-slip faults, which are oblique to the convergence direction in this boundary zone (Vernant et al., 

2004 b; Reilinger et al., 2006). Masson et al. (2005), based on GPS data, found that the Arabia-Eurasia 

convergence is distributed within several regions as mountains belts and large strike-slip faults, but the 

seismotectonics of the Alborz range is largely controlled by major thrust faults (Jackson et al., 2002; 

Ashtari et al., 2005). 

 

The WSM catalogue shows that the main active tectonic structures of Iran and Alborz are strike slip and 

thrust faults, thus a compressional regime dominates the area (Heidbach et al., 2008). This agrees with 

the results of e.g. Allen et al. (2003), Guest et al. (2006 a, b), Ritz et al. (2006), Berberian and Berberian, 

(1981), Priestley et al. (1994), and Jackson et al. (2002). Extensional structures represented by normal 

faults are not often visible on the map. The CMT catalogue (Ekström et al., 2012) affirms this, too (Fig. 2-

6).  
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At present, active deformation is focused along the northern and southern margins of Alborz with the 

southern margin exhibiting major thrusts that emplace Paleozoic to Eocene rocks on Quaternary alluvial 

gravels (e.g. Annells et al., 1975, 1977; Haghipour et al., 1987). Active faulting along the northern margin 

of the Alborz is more difficult to assess due to the poor exposure and the limited amount of work that 

has been done in the region (Guest et al., 2007). However, the number and activity of faults in northern 

Alborz are lower than in southern Alborz (Stocklin, 1974; Guest et al., 2006 a, b). 

 

 
Table 2-1. Shortening rate in the Alborz region. 

 
 
 
 

GPS  measurements Geological evidences 

Vernant et al.,  
2004 a, b 

Djamour et al., 
2010 

 

N-E shortening oblique to the E-

W structures of central  Alborz 

in Pliocene and Quarternary 

(e.g. Jackson et al., 2002). 

 
Central Alborz 

 
8 ± 2 mm/yr 

Global left lateral 
rate: 4±2 mm/yr 

 
- 

 
North Alborz 

 

  
 

6 mm/yr 
 

 
- 

N-S compression between 
Central Iran and South Caspian 
basin in Miocene (e.g. Jackson 

et al., 2002). 

 
NW-Alborz 

 

14±2 mm/yr 
Velocities in NW Alborz 

are   ̴̴3 mm/yr faster 
than eastern sites 

  ̴̴14 mm/yr (Jackson et al., 
2002). 15-20 mm/yr (Jackson & 

McKenzie, 1984). 

 
NE- Alborz 

 
- 

GPS coverage in NE is 
less than NW. 

Different kinematics of 
east and west of Alborz 

 
- 

 
 
2.4.2  Seismicity 
 
Iran is a seismically highly active region. Since 1978, there have been at least five earthquakes with 

magnitudes of more than 6 that contributed substantial faulting (e.g. Mohajer-Ashjai and Nowroozi, 

1979; Berberian, 1979 a, b, c; Nowroozi and Mohajer-Ashjai, 1981). Seismicity of Iran has been reported 

by a number of authors, e.g. Nabavi (1975), Nabavi and Partoazar (1977), Nowroozi (1971) Berberian 

(1976), and Ahmadi and Nowroozi (1980), Masson et al. (2005) and Engdahl (2006). According to these 

studies, seismicity of Iran does not show the same characteristics everywhere. 

Three seismological zones are identified in Iran by Masson et al. (2005). Zone 1 corresponds to the Zagros 

and Sanandaj Sirjan. It is characterized by extensive seismicity and high geodetic strain. Zone 2, 

corresponding to Central Iran, shows low seismicity and no geodetic strain. Zone 3 is in between, i.e. this 

zone suffers low or moderate seismicity but a high geodetic strain. It corresponds to northwestern Iran, 

the Alborz, Kopedagh, and Lut regions (Fig. 2-1). This last group could be divided into two subzones, 

northwest Iran and the Alborz on one side and Kopedagh and Lut on the other side based on the number 

of earthquakes. The ratio of strain/number of earthquakes is generally higher in the Alborz and 
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northwest Iran than it is in the Lut and Kopedagh. All regions of zone 3 (Alborz) are crossed by large 

strike-slip faults (Masson et al., 2005). 

 
Instrumental earthquake data of the Alborz shows that the most activity is concentrated along the 

mountain ranges (Fig. 2-7). Thus, several regions are vulnerable to destructive earthquakes (e.g. Tavakoli, 

1996; Masson et al., 2005). Besides, for the Central Aborz numerous strong historical earthquakes 

(Tchalenko, 1975; Ambraseys and Melville, 1982; Berberian and Yeats 1999; 2001) are reported. 

 

In addition to the seismological zones, which identified by Masson et al. (2005), seismotectonic provinces 

of Iran is studied by several investigators (e.g. Stoklin, 1968; Takin, 1972; Alavi, 1972; eftekharnezhad 

1980; Berberian, 1976, 1983; Nowroozi, 1976; Tavakoli 1996). Each seismotectonic province bounded by 

geological, tectonical and seismological features, which mark a difference in seismotectonic 

characteristics of one province from its neighboring provinces (e.g. Tavakoli, 1996). In the mentioned 

studies, different divisions for the seismotectonics provinces have been suggested. In each of them, the 

Alborz region is limited by different geographical boundaries. 

 
The comparison of seismic and geodetic strain rates indicates that highly strained zones experience 

mainly aseismic deformation in southern Iran (3% seismic) and seismic deformation in northern Iran (30-

100% seismic, Masson et al., 2005). Spatially, high seismic coupling zones correlate well with high-

magnitude earthquake zones (Masson et al., 2005). Seismicity in northern Iran is mainly limited to the 

Alborz region with Central Iran and south Caspian basin (e.g. Priestley et al., 1994). Since many of the 

region’s earthquakes were not associated with surface faulting, or damaged areas of many of these 

earthquakes are relatively large, locating active faults, which cause earthquakes, becomes complicated 

(Hessami and Jamali, 2006). 

 
The bulk of seismicity in the Alborz region is shallow (<15 km) and partitioned into sinistral strike slip 

faults and thrust fault (e.g. Berberian and Berberian, 1981; Priestley et al., 1994; Jackson et al., 2002; 

Allen et al., 2003). According to the NEIC catalogue, more than 400 earthquakes occurred between 1900 

and 2014. These earthquakes had magnitudes between 3 and 7.5. The NEIC catalogue shows a 

hypocentral depth of 1-60 km for the earthquakes, thus they are crustal earthquakes (Fig. 2-7). 

Epicenters are located in the Alborz mountain chains. This emphasizes that the area is active. Most of 

the earthquakes have hypocentral depth of 30-50 km. Two earthquakes were larger than magnitude 

seven. One of them was located in central Alborz with a hypocentral depth of 20-30 km (Fig. 2-7). It 

should be noted that Fig. 2-7 same as Fig. 1-3a, shows earthquake data but in larger coordinates in 

accordance with other maps of this chapter. Because all maps of this chapter will be correlated at the end 

of chapter. 
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Figure 2-7. Earthquakes and main faults in the Alborz region. Red dotted line: water divide. Red line: main thrust faults 

(Berberian et al., 1993; Hind et al., 2001), topography (DTU, Andersen and Knudsen, 2009), earthquakes (NEIC catalogue 

1900-2014). See also Fig. 2-6 b for the location of map. 

 
 

2.4.3  Moho and upper mantle  
 
Mouthereau et al. (2012) showed that the current elevation of the Iran Plate can be explained by the 

original differences in the initial thickness of the continental crust resulting from subduction and the 

related back-arc thining events. Additional effects due to 1) small-scale convective removal of Iranian 

lithospheric mantle during roll-back of an originally flat slab or 2) slab detachment, may have also 

contributed to the current regional elevation (Mouthereau et al, 2012 and references therein).  
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Crustal thickness varies from 35 to 55 km in the Alborz region and surroundings (e.g. Molinaro et al., 

2005; Hafkenscheid et al., 2006; Kaviani et al., 2007; Paul et al., 2010; Manaman and Shomali, 2010; 

Motavalli-Anbaran et al., 2011; Jiménez-Munt et al., 2012). However, there are different estimations 

about crustal thickness of the Alborz region: 

 

A first group of studies estimated a thin crustal thickness (35-36 km) under the Alborz region (e.g. 

Dehghani and Makris, 1984; Guest et al., 2007; Sodoudi et al., 2009; Tatar, 2001) implying that the area 

is isostatically under-compensated at Moho level with no crustal roots (i.e. the base of crust does not 

move down in the mantle as the density of the crust increases).  

 

A second group of studies proposed a thicker crust beneath the Alborz (Abbassi et al., 2010; Radjaee et 

al., 2007). Radjaee et al. (2007), using receiver functions from a temporary seismic network, obtained a 

crustal thickness of 46-48 km in the south of Alborz, 55 km in its central part and about 44 km at the 

northern flank of the Alborz region. Radjaee et al. (2010) proposed that the central Alborz Mountain 

chain has a moderately thick crustal root but that thickness is insufficient to compensate for the 

elevation of the range. Moho estimates resulting from using receiver functions can be reliable. The Moho 

depth estimated in the studies of the first group may be erroneous due to effects of data interpolation 

(Motavalli-Anbaran et al., 2011). However, results of the second group of studies are in agreement with 

new results of Motavalli Anbaran et al. (2013) and these estimates have been used for our study. 

 

According to the results of Motavalli-Anbaran et al. (2013), the maximum Moho depth in the central 

Alborz is   ̴̴55 km, which indicates a root underneath the Alborz mountains, i.e. it seems that during the 

collision and consequently the forming of the orogen, the thickness of the crust increased. Besides, 

Moho depth in the central Alborz is deeper than west and east of this area (Fig. 2-8).  

 

Figure 2-8 shows Moho depth in the Alborz region obtained from 3D joint inversion modeling of 

lithospheric density structure based on gravity, geoid and topographic data by Motavalli-Anbaran et al. 

(2013). At the center of the map (central Alborz), in an area of around 200 km², a Moho depth of more 

than 50 km is visible. It decreases to the east and west of this area up to about 40 km (Fig. 2-8). A review 

of Moho depth studies of Iran and surrounding areas (e.g. Jiménez-Munt et al., 2012; Motavalli-Anbaran, 

2013) shows that the mentioned difference between the minimum and the maximum depth of Moho 

(about 10 km) is recognizable in other places, such as the Zagros and the Caucasus, too. 

 

It needs to be kept in mind that the collision phase of Alborz is older than that of Zagros, i.e. the collision 

phase which is happening in the Zagros region, had happened in the Alborz region in the Mesozoic (e.g., 

Ballato et al., 2011; Wilmsen et al., 2009). Thus, the Alborz can be viewed as a time window into the past 

to understand current tectonics in the Zagros region. It should be noted that Moho maps obtained from 

older studies are in fact large-scale maps with low resolution (e.g. Laske et al., 2013; Alinaghi et al., 2007). 

High resolution Moho maps for the Zagros region are not available, although it would be desirable to 

better know crustal thickness in the Zagros region. However, Moho depth in the central Alborz region 
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could infer that a new collision phase is at its initial stage. I speculate that a similar situation could be 

possible in the Zagros region in future. 

 

 

 

 
Figure 2-8. Moho depth of the Alborz region. Dotted line: water divide line, Moho data from Motavalli-Anbaran et al., 2013. 
See also Fig. 2-6 for the location of map. 

 
 

Seismic tomography studies of the upper mantle of the Middle East show wide regions with high-velocity 

anomalies at depths of down to 2200 km (Bijwaard et al., 1998; Van der Voo et al., 1999). These 

anomalies have been inferred to correspond to the subducted slab of the Neotethys oceanic lithosphere 

beneath central and southern Iran. Local tomography studies in Iran suggest that along the Zagros 

mountains, Neotethyan slab remnants are only partially connected to the Arabian Plate (Alinaghi et al., 

2007). Tomographic studies indicate also an anomalously high temperature of the uppermost mantle 

beneath central and northwestern Iran (Maggi and Priestley, 2005; Alinaghi et al., 2007). This suggests 

that subduction is no longer active now, and the Neotethys slab might have been partially detached 

following continental collision (Paul et al., 2010). Asthenosphere upwelling and consequently a new 

pulse of magmatic activity could take place as a result of slab break-off (Ballato et al., 2011). 
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2.5   Discussion 

 

2.5.1  Present day tectonic situation  
 
In order to study the Alborz region in the present time, the individually discussed data sets have been 

compiled and are described at a whole (Fig. 2-9). There is a spatial correlation between high GPS derived 

shortening rates, a deeper Moho, high seismicity and compressional regimes. GPS data show similar 

velocities and directions in the center of the Alborz region. Moho beneath the central Alborz is deeper 

than beneath the sides. Moment tensor solutions indicate strike slip and thrust faults.  

 

 

 

 
Figure 2-9. Map of stress regimes, Moho, and GPS velocities of the Alborz region. Moho data (Motavalli-Anbaran et al., 2013), 
earthquakes (NEIC catalogue, 1900-2014), beach ball: focal mechanism (CMT Catalogue, Ekström et al., 2012), blue arrow: 
GPS velocity (Vernant et al., 2004 a, b), stress regimes (WSM Catalogue, Heidbach et al., 2008, Symbols, red: normal fault, 
green: thrust fault, black: strike slip fault). See also Fig. 2-6 for the location of map. 



 
2   A SUBDUCTION-COLLISION CYCLE EVOLUTIONARY MODEL FOR THE ALBORZ, IRAN 

 

31 
 

 

All of the mentioned data imply a higher contractional regime in the center of the Alborz region. 

Additionally, a large earthquake with higher than magnitude 7 and a hypocenter depth of 30-40 km, took 

place at the center of the area. The observations show that a plate tectonic, such as a collision is 

happening in the center of the Alborz area (Fig. 2-9). Thus, the collision phase which started between 

the Iran Plate and the Turan Plate in the Mesozoic-Cenozoic may be continuing in present time. This is 

highly arguable if there is a region of collision, which is manifested in thickened and underthrust 

continental crust. As Moho deepening can occur as a result of crustal shortening and thickening during 

a collision phase, consequently region tectonic processes, such as shortening and seismic activity 

become larger. Thus, a higher collision rate in the center of the Alborz can be possible. 

 

Furthermore, this collision area could develop towards the west and east of the Alborz region in the 

future, because if convergence continues, the shortened and thickened area may also increase. This 

means that Moho depth might increase from the center to the sides of the Alborz region. Accordingly, 

the thickness of lithosphere might increase from the center to the sides of the region. Thus, a wide 

collision area with a deep Moho and a thick lithosphere might arise in the entire Alborz region in the 

future.  
 
 

2.5.2  Past tectonic situation 
 
According to the geodynamic model proposed by Wilmsen et al. (2009), there were two subduction 

phases in Iran, and after each subduction, a collision phase arose. For example, in the Alborz region 

subduction and collision between the Iran and the Turan Plate took place. Wilmsen et al. (2009) argued 

that the detachment of the Iran Plate under the Turan Schield has occurred around 190 Ma (Early and 

Middle Jurassic). Vergés et al. (2011) suggested that there is no slab remnant under the Turan Shield. 

According to the compiled data sets (Moho, GPS, stress regimes, seismicity), there is a compressional 

phase in the region. If we assume that in the Alborz region (between the Iran Plate and the Turan Plate), 

a subduction phase was presented before  1̴90 Ma, and since   ̴190 Ma a collision phase has been 

presented, therefore a cycle of subduction-collision may explain the tectonic evolutionary of the Alborz 

region.  

 
A similar collision cycle might also be a realistic solution for the Zagros region. Some authors, such as 

Vergés et al. (2011), suggested that the subduction of the Arabian Plate beneath Iran is continuing and 

the present day Arabian Plate boundary has a relatively sharp contact dipping about 50° to the northeast. 

Some authors (e.g. Hafkenscheid et al., 2006; Ballato et al., 2011) suggested that there is no connection 

between remnants of the slab and the surface. Hence, collision already takes place in this region (e.g. 

Ballato et al., 2011). However, my geodynamic model of Iran consists of two subduction-collision cycles 

(Fig. 2-10): the first such cycle occurred between the Iran and Turan platform and the second cycle 

occurred between the Arabian Plate and Iran. In the following sections, these cycles will be briefly 

outlined: 
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2.5.2.1  Subduction-collision cycle between Turan and Iran  

 

This subduction-collision cycle started around the transition from the Paleozoic to to the Mesozoic. At 

the boundary of the Mesozoic and the Cenozoic, slab detachment of Iran took place (Wilmsen et al., 

2009; Ballato et al., 2011).  

 

According to the tomographic results, there is no slab remnant under the Turan Shield now (Vergés et 

al., 2011). Thus, the subduction phase of the Iran Plate beneath the Turan Plate is completely finished. 

GPS data show a shortening of 8±2 mm/yr between the Turan and Iran Plate (Vernant et al., 2004 a, b). 

This shortening indicates that a convergence phase, such as collision is happening in the Alborz region, 

now. Furthermore, earthqukakes, stress regime data, and focal mechanism data all confirm the 

convergence in the Alborz region (Fig. 2-9).  

 

2.5.2.2  Subduction-collision cycle between Arabian Plate and Iran  

 

This subduction-collision cycle started in the Mesozoic and continiues in the present time. After the 

Mesozoic, the slab of the Arabian Plate started to detach.  

 

Tomographic studies show that along Zagros there is no connection in some places between the slab 

and the Arabian Plate (e.g. Hafkenscheid et al., 2006), but in some places partial connection has been 

seen (e.g. Alinaghi et al., 2007). This may indicate that subduction between the Arabian Plate and Iran is 

not still finished, compeletly. GPS data show a shortening of 4 -11 mm/yr along Zagros (Vernant et al., 

2004 a, b).  Additionally, stress regimes and focal mechanism data indicate that thrust faults dominate 

the Zagros region (Fig. 2-6 a). These data show that there is a contractional regime in the Zagros region. 

 

However, this cycle is younger than the cycle between Turan and Iran and the events between Turan 

and Iran may occur between the Iran and Arabian Plate. Thus, in the future a collision phase would start 

and consequently a shortened plate can be expected for the Arabian Plate, Iran and Turan (Fig. 2-10). 

Figure 2-10 is a summary of the tectonic phases and provides a view of a schematic long-term 

geodynamic model as well as the subduction-collision cycles and the hypothesis of the tectonic situation 

in the future.  

 

It should be noted that the movements of the Arabaian, Iran, and Turan Plates arise from the Arabian-

Eurasian collision (e.g. Aghanabati, 2004; Wilmsen et al., 2009; Ballato et al., 2011). During the first cycle, 

the Alborz ranges formed and during the second cycle, the Zagros ranges formed (Aghanabati, 2004; 

Wilmsen et al., 2009; Ballato et al., 2011). Between the Alborz and the Zagros ranges, Central Iran Block 

is located. It is characterized by coherent plate motion (internal deformation <2 mm/yr; Vernant et al., 

2004 a, b) and comprises narrow mountain ranges. It has been considered as a relatively stable area 

between the Zagros and Alborz (e.g. Aghanabati, 2004; Axen et al., 2001). 

 

 



 
2   A SUBDUCTION-COLLISION CYCLE EVOLUTIONARY MODEL FOR THE ALBORZ, IRAN 

 

33 
 

 

 

 

 
 

Figure 2-10. Sketch of long-term geodynamic model as well as the subduction-collision cycles from the Paleozoic. Z.: Zagros, 
C.I.: Central Iran, Al., Alborz, K.: Kopedagh. The first phase of subduction (Iran beneath Turan) started in the Paleozoic and 
changed to a collision in the Cenozoic, whereas the second phase of subduction (Arabia beneath Iran) started in the Mesozoic 
and changed to a collision in the recent time. The image is schematic and not scaled. 
 

 
 
Given the two similar subduction-collision cycles, the question follows, which parameters affect these 

cycles. Some parameters, such as climate and vegetation could affect these cycles considerably. It is 

useful to know, whether these parameters are similar during both cycles. If no, why are they different? 

Is it comparable with other place of the AHB, such as Caucasus? Answers to these questions are beyond 

the scope of this study and could be a topic for a later study. 

 

2.5.3  Caucasus 
 
Subduction-collision can also be observed in other places of the AHB, such as the Caucasus region. As is 

near the Alborz region (Fig. 2-11 a), it can be a relevant case to compare. In the following, the tectonic 
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situation of the Caucasus region has been reviewed and compared with the Alborz to find out if the plate 

tectonic evolution of these two regions shows any similarities.  

 

The Caucasus comprises four main morphological and tectonic units: (1) the Ciscaucasian plain (Scythian 

platform) including the foredeeps of the Greater Caucasus (SP), (2) the Greater Caucasus (GC) itself, 

stretching in a WNW-ESE direction, (3) the Transcaucasian system of intermontane basins (TC), and (4) 

the Lesser Caucasus (LC) with an arcuate N-convex shape and the most heterogeneous structure (e.g. 

Khain, 1975, 1997; Eppelbaum and Khesin, 2012; Fig 2-11 a).  

 

The Caucasus region, similar to Iran, is squeezed between the Arabian and Eurasian Plates. Thus the 

geodynamics of the GC orogen corresponds to an intercontinental collision zone inverting a deep 

Mesozoic-Cenozoic basin that is not located above a subduction regime, but bordered to the east and 

west by deep sedimentary basins that have their origin in the Mesozoic and are filled with Cenozoic-

Quaternary sediments. To the north and south of GC, there are the foreland basins of the Terek-Kuban 

and the Kura-Kakheti-Kartli-Rioni, respectively (e.g. Ershov et al., 1999, 2003; Mikhailov et al., 1999; 

Ulmishek, 2001; Daukeev et al., 2002). To the east and west , the Caspian Sea and the Black Sea are 

located (e.g. Shikalibeily and Grigoriants, 1980; Ismail-Zade et al., 1987; Narimanov, 1992; Abrams and 

Narimanov, 1997; Mangino and Priestley, 1998; Allen et al., 2002; Brunet et al., 2003; Nikishin et al., 

2003). 

 

Present day Caucasus is dominated by thrust faulting due to continental collision. From the Jurassic to 

the Paleogene eras, subduction of the Tethian seafloor occurred along the southern margin of the 

Turkish and Iranian blocks, resulting in calc-alkaline arc volcanism and a wide backarc basin system. The 

spread of the Red Sea began during the Early Miocene, and the Arabian Plate migrated northward, 

accompanied by a reduction in width of the Tethys. At ca. 20 Ma, subduction shifted to the north (e.g. 

Eppelbaum and Khesin, 2012). As a result of the indentation of the Arabian Plate, the continuous backarc 

basin was separated and the oceanic crust remained only in the Black Sea and the southern Caspian Sea. 

The continuous northward drift of the Anatolian Plate led to an initial continental collision expressed by 

the formation of the LC and the subsequent rebirth of the GC during the Middle Pliocene. Currently, 

continental convergence continues at a rate of up to   ̴̴30 mm/yr along thrust faults with strike slip 

component where most of the modern tectonic activity is localized (Eppelbaum and Khesin, 2012). 
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Figure 2-11. Recent tectonic situation of the Caucasus region. a) Caucasus and surroundings. Topography (DTU, Andersen 

and Knudsen, 2009), blue arrows: GPS velocity (Vernant et al., 2004 a, b), beach balls: Focal mechanism (CMT Catalogue, 

Ekström et al., 2012), stress regime (WSM Catalogue, Heidbach et al., 2008, WSM Symbols, Red:  normal fault, green:  thrust 

fault, black: strike slip fault). A: Arabian Plate, B-P: Bilits-Pürtürge, T-A-A-B: Tauride-Anatolide and Armenian Block, EU: 

Eurasian Plate. SP: Scythian Platform, GC: Greater Caucasus, TC: Transcaucasus, LC: Lesser Caucasus. b) Sketch of subduction-

collision phases in the recent time and future. The sketch is not scaled. 

 
 
Studies based on GPS data in the GC have confirmed the regional picture of convergence across the 

Caucasus region (McClusky et al., 2000; Nilforoushan et al., 2003; Reilinger et al., 2006). The average 

convergence of Arabia and Eurasia is 18-23 mm/yr. It led to deforming the GC, mainly in its southern 

part (Vernant et al., 2004 a, b; Fig. 2-11 a). During the Mesozoic and the Cenozoic, the Caucasus region 

experienced different tectonic phases. In the following, a geodynamic model of the Caucasus region, as 

developed by Saintot et al., (2006) is discussed:  
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1) In the Permo (?)-Triassic, rifting and volcanism were widespread in the fore-Caucasus region and in 

the northern part of the GC (Nazarevich et al., 1986; Lordkipanidze et al., 1989; Tikhomirov et al., 2004; 

Saintot et al., 2006). 2) In the Late Triassic, the Eo-Cimmerian tectonic phase lead to a contractional 

regime (Nikishin et al., 1998 a, b, 2001; Gaetani et al., 2005) which probably was related to the collision-

accretion of Gondwana-derived blocks, which together form the composite Iran plate (Saidi, 1995; Besse 

et al., 1998). 3) In the Early-Middle Jurassic, a new rifting phase occurred (e.g. Zonenshain et al., 1990; 

Nikishin et al., 1998 a, b, 2001), which probably was related to north-dipping subduction, south of the 

Transcaucasus (i.e. LC). 4) In the Bathonian, a Mid-Cimmerian orogenic event developed. For this time a 

uniconformity has been identified, which was related either to the syn-to post-rift transition or to a 

collisional event at the active margin (e.g. Coward et al., 1987; Tankard and Balkwill, 1989; Frostick and 

Steel, 1993; Williams and Dobb, 1993; Busby and Ingersoll, 1995; Stephenson et al., 1996; Cloetingh et 

al., 1997; McCann and Saintot, 2003). 5) From the Middle-Late Jurassic to the Eocene, post-rift 

subsidence dominated (e.g. Milanovsky and Khain, 1963; Lordkipanidze, 1980; Koronovsky, 1984; 

Adamia and Lordkipanidze, 1989; Zonenshain et al., 1990). 6) From the Late Eocene, a main Cimmerian 

orogenic event developed (e.g. Shardanov and Peklo, 1959; Beliaevsky et al., 1961; Milanovsky and 

Khain, 1963; Khain, 1975, 1994). Additionally, an inversion of the basin related to the final closure of the 

Paleotetethys began in this time (Saintot et al., 2006). 7) From the Late Miocene to the present time, a 

second shortening phase accompanied by uplift and magmatism and corresponding to the final stages 

of the Arabia-Eurasia collision dominated the region (e.g. Shardanov and Peklo, 1959; Beliaevsky et al., 

1961; Milanovsky and Khain, 1963; Khain, 1975, 1994; Zonenshain et al. 1990; Nikishin et al. 1998 b). 

 
Thus, the Caucasus like Iran has experienced several subduction and collision phases accompanied by 

shortening, uplift and magmatism during the Mesozoic-Cenozoic (e.g. Rolland et al., 2012; Saintot et al., 

2006; Allen et al., 2004). A review of geodynamic models suggests that during the Mesozoic and 

Cenozoic, a collision phase took place after a subduction phase between the Arabian Plate and Bilitis-

Prütürge, between the Bilitis-Prütürge and the Tauride-Anatolide-Armenian Block and finally between 

Tauride-Anatolide-Armenian Block and Eurasia. In recent times, a collision phase is prevailing in the 

Caucasus region (e.g. Rolland et al., 2012; Saintot et al., 2006). 

 

GPS data reveal shortening rates similar to the Alborz region. According to the WSM catalogue (Heidbach 

et al., 2008), thrust and strike slip faults dominate in the Caucasus and there is a compressional regime 

in the region. Data from the NEIC catalogue reveal that this area has also experienced large earthquakes 

with magnitude >6. The maximum hypocenter depth is 50 km for this region (Fig. 2-11 a). Based on these 

data, tectonic regimes that are similar to those identified in Iran, especially in the Alborz region, may 

exist in the Caucasus region. Results of tomographic studies show that there is only a partial connection 

between slabs and subducted plates along the Europa-Caucasus-Arabian Plate (e.g. Hafkenscheid et al., 

2006; Koulakov et al., 2012). It can be argued that subduction is ending and a collision phase is beginning 

now (Fig. 2-11 b). 
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2.6   Conclusion 
 
A review of published geodynamics models suggests that the Iran Plate was subjected to two similar 
subduction-collision cycles from the Masozoic to the recent time: 

 
Cycle 1 took place between the Iran Plate and the Turan Plate and consists of 4 main parts: (a) start of 

subduction in the Paleozoic-Mezosoic (b) end of subduction in the Mesozoic-Cenozoic (c) slab break off 

in the Mesoyoic-Cenozoic (d) start of collision in the recent time and future (Fig. 2-10). Cycle 2 took place 

between the Arabian Plate and the Iran Plate and consists of 4 main parts: (a) start of subduction in the 

Mesozoic (b) end of subduction in the Mesozoic-Cenozoic (c) slab break off in the recent time (d) start 

of collision in the recent time and future (Fig. 2-10). Thus, I propose that two collision phases already 

dominate in Iran which can be able to source the earthquakes of Iran and the Alborz region.  

 
Based on resultant Moho data from Motavalli-Anbaran et al. (2013), and  the suggested collision phase 

of the present day in the region, it can be especulated that by ongoing collision, Moho depth may 

increase from the center of the Alborz region to the sides (Fig. 2-8). Furthermore, if we accept that Moho 

increasing, collision, and suturing processes lead to increase crustal thickness (e.g. Dehghani and Makris, 

1984; Guest et al., 2007; Sodoudi et al., 2009; Ballato et al., 2011), hence a thick and short crust could 

be expected for the Alborz region and then for the Arabian Plate, the Iran Plate, and the Turan Plate at 

the end of the two suggested cycles (Fig. 2-9, 2-10). Due to this compression and thickening, increasingly 

large earthquakes not only for Alborz but also for entire Iran could be expected in the future.  

 

This study also suggests that a similar cycle of alternating subduction-collision may also have 

characterized the evolution of the Caucasus region.  
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3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-

HIMALAYAN BELT 

 
 

Abstract 
 

In this study, I investigate the mechanical properties of the Alborz orogen to analyse the geo-hazards in 

this seismically active region. For this purpose, the critical taper theory has been applied. While focusing 

on the Alborz, for comparison, a critical taper analysis has also been performed for other orogens of the 

Alpine-Himalayan Belt (AHB). 

 
Surface slope (α) and basal dip (β) have been estimated from topographic data and geological cross-

sections, respectively. α-values amount range from 0°- 8° in the Alborz and Caucasus region, 0°- 3° in the 

Apennines, -2°- 6° in Himalayas, and -6°- 3.5° in the Zagros.  Beta values approximate   ̴3° in the Alborz 

and   ̴5° in the Caucasus, 0°-2° in the other AHB orogens. 

 
Based on the estimated α and β values, the strength parameter “F” has been estimated. This parameter 

changes from -0.20 to 0.35 in the entire AHB. However, the F-value solely can not determine the 

geohazards of the studied regions and the effect of some parameters, such as climate and lithology need 

also to be considered. By means of F-values and the mentioned parameters, I proposed a “critical to 

stable” situation for the Alborz and the entire AHB orogens. 

 
3.1   Introduction 
 

Knowledge of the mechanical properties of a subduction or collision orogen is a means to shed light on 

the stability or non-stability of an orogenic wedge. Wedge stability may control geo-hazards, i.e. an 

unstable orogen can generate landslides or earthquakes. The critical taper theory has been successfully 

applied to explain the mechanics of a wedge (e.g. Davis et al., 1983; Dahlen, 1984) and the mechanical 

state of orogens, such as Taiwan (e.g. Suppe, 2007), the Hikurangi convergent margin (Kukowski et al., 

2010), or the Swiss Alps (von Hagke et al., 2014). However, this theory has been not applied to the Alborz 

region and surroundings so far. 

  

Mechanical properties of an orogen describe its geometry. The geometry of an orogen is a fundamental 

parameter for seismic and landslide hazard assessment studies (e.g. Hoth et al., 2007). Besides, natural 

factors such as climate can influence the geometry of orogen (e.g. Hoth et al., 2008). Tectonics, the 

geometry of an orogen, and climate are related subjects (Willet et al., 1993; Willet, 1999; Molnar and 

England, 1990), which may have an impact on seismicity (Molnar et al., 2007). This relationship has not 

yet been studied in the Alborz region. 
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For an active orogen, such as the Alborz region, which experiences many earthquakes and landslides and 

also is a populous area, it is necessary to identify the wedge stability and its relationship to geo-hazards 

by considering climate. Besides, this situation is to be compared with a neighboring orogen, i.e. Caucasus, 

to examine, if two neighboring orogens have a similar mechanical state. As the Alborz and the Caucasus 

regions are parts of the AHB, it is useful to compare these regions with other orogens of the AHB to 

understand, why the orogenic states are similar or different. Consequently, mechanical state for the 

entire AHB will be determined. 

  

In this part, the following questions will be addressed: (a) What is the mechanical state of the Alborz 

mountains? (b) By which parameters is the mechanical state of orogen mostly affected? (c) Is the 

orogenic state of the Alborz similar to the neighboring orogen (Caucasus) and other orogens of the AHB? 

 

3.2   Mechanical setting of a bivergent orogen 
 

According to the mechanical model proposed by Willet et al. (1993), an underlying plate can slide 

beneath another plate (Fig. 3-1 a). This movement causes constant velocity boundary conditions at the 

base of the overlying layer. To the “left” of the singularity (towards the lower plate) the velocity of layers 

is constant and positive, whereas to the “right” of the singularity (towards the upper plate) it is zero.  At 

the singularity point, effective stresses within the layer cause discontinuity in the horizontal boundary 

velocity. Due to basal velocity boundary conditions, two conjugate shear zones develop from the 

singularity to the surface (Fig. 3-1 a). 

 
At first, the shear zones form at 45° relative to the direction of maximum compressive stress, which is 

approximately horizontal. The initial stress-strain rate fields lead to a symmetric geometry. Afterwards 

it changes to asymmetric conditions and remains so for three stages (Fig. 3-1 b). At first, the shear zones 

are located at the singularity. The region in between the shear zones forms a triangle, which then 

translates to the right to build an uplifted block. Deformation propagates outwards of the shear zones 

as the layer begins to slide on detachments that develop between the singularity and deformation front. 

A basal detachment forms first to the left of the singularity. It is named “pro” direction and also the 

overlaying zone of deformation is named “pro-wedge”. In contrast, downstream of the singularity is 

called the "retro" direction and its zone of deformation is called the “retro-wedge” (Willet et al., 1993). 

 
In the next stage, the retro-wedge is detached from its base. The deformation front propagates 

significantly into the undeformed layer to the right and starts to form the formation of a lower taper 

wedge. In this stage, there is an asymmetric deformation and the strain in the pro-wedge is more 

separated than strain in the retro-wedge. It is caused by the movement of material through the 

movement of pro-wedge. In contrast, material deformed in the retro-wedge remains in place and trends 

to have concentrated deformation (Willet et al., 1993; Fig. 3-1 b). 
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It should be noted that natural processes, such as erosion, volcanism, deposition, or ground freezing 

could modify the basic model. As an important factor, erosion has to be taken into account. Surface 

erosion and denuation lead to large-scale removal of mass from an orogen and cause adjustment of the 

velocity field to replace eroded material by material from within (e.g. Molnar and Englan, 1990; Willet 

et al., 1993; 1999; Molnar et al., 2007; Hoth et al., 2008). Deformation can also adjust the replacement 

of removed material. Therefore, denuded zones exhibit increased exhumation rates. This leads to 

steady-state behavior of small collisional orogens undergoing asymmetrical denudation. This situation 

occurs, where precipitation is orographically controlled and orogen is wet, rapidly denuded, windward 

side and a dry side with little erosional denudation (Willet et al., 1993; 1999).   

 
Steady-state retro-wedge denudation can change rock trajectories to exhume highest-grade 

metamorphic rocks at the retro-deformation front. It is joined by windward denudation. The replaced 

mass is derived from the pro-wedge. Therefore, the pressure temperature history of material in the 

orogen must reflects the path and time taken for mass to move across the entire width of the orogen. 

There is no net growth, uplift, or exhumation of the pro-wedge.  In contrast, steady-state pro-wedge 

denudation creates a non-deforming, non-eroding retro-wedge against which pro-wedge material is 

decoupled and exhumed. This leads to reduce the path length and a resident situation for the orogen. 

Under steady-state pro-wedge denudation, the metamorphic grade of surface rocks increases across the 

pro-wedge (Willet et al., 1993; 1999; Fig. 3-1 c). 

 

According to analog experiments, parameters, such as erosion and the type of an orogen’s material can 

affect the mechanical setting of orogen (e.g. Lohrmann et al., 2003; Hoth et al., 2008). By changing the 

material in analog experiments, different kinematics or different behaviors of faults have been also 

observed (e.g. Lohrman et al., 2003). Besides, the type of material can determine the erodibility. Thus, 

material type and effect of erosion are two related parameters (e.g. Lohrman et al., 2003; Hoth, 2005).  

Applying erosion to bivergent wedges, Hoth et al. (2008) suggested that erosion of the retro-wedge 

affects the pro-wedge and vice versa. This means that erosion of the retro-wedge leads to retro-wedge 

deformation, pro-wedge internal deformation and lastly general effects, such as fault activity on the pro-

wedge (Fig. 3-1 d). In nature, the effects of erosion and the orogen’s material on the mechanical state of 

an orogen can be detected by studying climate and the lithology of an orogenic region, respectively.  
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Figure 3-1. Bivergent setting. a) Bivergent setting with uniform crust extending from surface to depth (H) is deformed under 
basal velocity boundary conditions. For these boundary conditions, there is not backstop, b) Stages of basic model 
development. Shaded layer: passive marker, dotted lines: instantaneous flow lines, not particle trajectories, arrows: 
proportional to velocity, c) Effect of steady-state erosion and denudation. Left: Retro-wedge denudation. Right: Pro-wedge 
denudation. Passive shaded layer shows exhumed position of middle crust. Lines are material trajectories, dots are 
progressive equal-time positions of points initially aligned vertically. Schematic metamorphic grade is for surface rocks 
assuming initial equilibrium conditions, after Willet et al. (1993), d) Erosion of the pro-wedge and its effect on the retro-
wedge, after Hoth et al. (2008). 
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3.3   Method 
 
3.3.1  Critical taper theory  

 
The subduction-accretion process leads to the formation of an orogenic wedge with a geometry 

controlled by its basal and internal mechanical properties (e.g. Davis et al., 1983; Willett et al., 2001). 

The critical taper theory is applied to understand the mechanical behaviour of such orogens (e.g. Davis 

et al., 1983; Dahlen, 1984, 1990).   

 

To understand the mechanics of an orogen, it is thought of as a wedge that forms in front of a moving 

bulldozer or snowplough. Therefore, if a snowplough starts to move through a fresh layer of snow two 

scenarios can be considered: If the internal strength of the snow is lower than the basal friction (friction 

of the road), then the snow will be moved withouth internal deformation in front of the plow. If the 

internal strength is larger than the basal friction then the snow can move and deform internally and also 

its surface can incline (Davis et al., 1983; Hoth, 2005; Fig 3-2). 

 

 

 

 

 
 

Figure 3-2. Convergent wedge and its controlling parameters (e.g. in the Alborz region formed between the Turan and Iran 

Plate). α-surface slope; β-basal dip; 𝜇𝑖𝑛𝑡-coefficient of internal friction;  𝜇𝑏𝑎𝑠-coefficient of basal friction; 𝜆𝑖𝑛𝑡-internal pore 

pressure ratio; 𝜆𝑏𝑎𝑠-basal pore pressure ratio; ρ-density of rocks; 𝜌𝑊-density of seawater; 𝜎1-maximum principle stress; 

𝜎3-minimum principle stress; 𝛹0-angle between 𝜎1 and  surface slope;  𝛹𝑏-angle between 𝜎1 and wedge base; after Davis 
et al. (1983).  
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According to the critical taper theory, four parameters characterise the geometry of a wedge: surface 

slope (α), basal dip (β), coefficient of friction (μ) and pore pressure ratio (λ) (Dahlen, 1984). In a 

mechanically homogeneous wedge, the critical taper equation using the small angle approximation is 

Dahlen (1990, equation 99):  

 

(𝛼 + 𝛽) ≈ 
(1−𝜌𝑓/𝜌)𝛽+𝜇𝑏 (1−𝜆𝑏)+𝑆𝑏/𝑝𝑔𝐻

(1−𝜌𝑓/𝜌 )+2(1−𝜆)(
𝑠𝑖𝑛𝜙

1
−𝑠𝑖𝑛𝜙)+𝐶/𝜌𝑔𝐻

                                                                                    (1) 

 

Where 𝜌𝑓 is the density of fluid above the wedge (water or air), 𝜌 is the mean density of rock, 𝜇𝑏 is the 

basal friction coefficient, 𝜆𝑏is the basal pore fluid to lithostatic pressure ratio, 𝑆𝑏 is basal cohesion, 𝐶 is 

compressive wedge strength, 𝜙 is the angle of internal friction, and 𝐻  is wedge thickness. In simple 

terms, the critical taper angle (𝛼 + 𝛽) is dependent on the ratio of basal fault strength and wedge 

internal strength (von Hagke et al., 2014). This equation was also used as the main equation by von 

Hagke et al. (2014) to mechanically study the Swiss Alps.  According to Suppe (2007), if we take “𝑊” to 

mean all wedge-strength term values and “F” to mean all fault strength term values, then the reordered 

critical taper equation  becomes: 

 

F = α (1 − 𝜌𝑓/𝜌) +  (𝛼 + 𝛽)𝑊                                                                                                        (2) 

 

According to von Hagke et al (2014), since the Central Alps are a subaerial wedge, 𝜌𝑓/𝜌 will be negligible 

and it is possible to substitute  (1 − 𝜌𝑓/𝜌) ≈ 1. Therefore, for the Alborz region and other orogens of 

the AHB, equation 2 can be simplified to  
 

F = α + (𝛼 + 𝛽)𝑊                𝑊 ≈ 1                                                                                                 (3) 

 

𝑊 (wedge strength) is a dimensionless parameter and a dimensionless measure of horizontal to vertical 

stress at failure. F is also analogous to 𝑊, dimensionless and a function of 𝜇𝑏. F is the normalized basal 

shear traction at failure of the detachment, or in other words is fault strength (Dahlen, 1990; Suppe, 

2007). F and 𝑊 in equation (3) are compatible with the critical taper theory and allow calculating the 

basal detachment strength only from determination of α and β, under the assumption of the finite 

wedge-strength parameter 𝑊 (Suppe, 2007; von Hagke et al., 2014). 

 

3.3.2  Measurements 

 

In order to determine the F-values of the Alborz orogen, two parameters have to be measured:  the 

detachment dip (β) and the slope (α). 
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3.3.2.1  basal dip (β)  
 
In this study, the dip of detachment (β) was obtained from geological cross-section. A geological cross-

section is a conceptual model summarizing what is known about a certain region. It is compiled from 

variation kinds of information, such as seismic profiles, seismological data, drill hole data, geological 

mapping, etc. It should be noted that the available cross-sections do not show the same information and 

the same quality and resolution.  Additionally, for applying the critical taper theory, cross-sections which 

show the accretionary wedge are needed. This is not available for the entire AHB. In this study, I try to 

estimate the mechanical state with the help of the available cross-sections. 

 

The available cross-sections are not numerous and for each orogen, there is only one cross-section 

(except Alborz with three cross-sections). Therefore, our results will be limited along the geological 

cross-section. To develop the study area, i.e. not only the area along the cross-section, but also its 

surroundings, according to von Hagke et al (2014), some profiles that are parallel and near to the 

available cross-sections and perpendicular to the orogen are added (Fig. 3-3). These help to better 

describe the taper analysis of the region. 

 

Basal dip was graphically estimated from geological cross-sections available in the literature. To obtain 

the basal dip, lithological contents of sedimentary layers were compared. It shows which layer is weak 

and can slip and thus helps to find the detachment level. After that, the angle between the detachment 

and horizontal direction was meassured, i.e. two points must be chosen on the detachment to get a line. 

The angle of this line and the horizon was measured. Normally a detachment level is not always linear, 

thus there is sometimes more than one possibility for determination of the line for a detachment (e.g. 

Fig. 3-7 b). Using all of the assumptive lines, it is possible to approach an error estimation for beta from 

each detachment.  

 

For the Alborz region, three sections have been utilized in this study. Between these profiles, there are 

different distances (e.g. Fig. 3-3), between profile 1 (Allen et al., 2004) and profile 5 (Alavi, 1996) there 

is a distance of   ̴100 km². Three extra profiles between the place of available published cross-sections 

(profile 1 and 5) have been interpreted  (Fig. 3-3). These profiles have been taken every ca. 40 km, as 

long or as parallel as side profiles and perpendicular to the orogenic range. This helps to analyse the 

surroundings of the main profiles, because from these extra profiles, topographic data and thus surface 

slope (α) can be obtained (Fig. 3-4). Along these extra added profiles, there is no beta value available 

because there is no cross-section for this region. As mentioned, to overcome this lack of beta value, 

there are two possibilities: a) using approximate beta from main profiles for the extra profiles (distance 

between two main profiles), b) using beta interpolation. For beta interpolation, the following equation 

has been used: 
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𝛽2 =
𝛽1.b+𝛽5a

a+b
                                                                                                                                     (4) 

 
 

Figure 3-3. Beta interpolation between two studied profiles (1 and 5). Green point: water divide line, red dashed line: extra 
added profiles, red line: location of geological cross-section. See also Fig. 3-5 for the location of profiles. 
 

 

It should be noted that beta interpolation can be applied only for the Alborz region, because for this 

region, in between two available geological cross-sections which showed different beta values, there is 

a wide area and hence it is difficult to estimate the beta value for its middle part. For the other orogens, 

there is only one geological cross-section and near this cross-section, some extra profiles have been lined 

parallel. Thus, for these other orogens the basal dip value of the main profile can be valid for the 

surrounding area. Hence, for these cases, no beta interpolation is needed. 

 

Beta interpolation is tested for the Alborz region but the beta values resulting from this method are not 

used for the next steps of taper analysis. I just want to show that there is a possibility to estimate beta 

values of each point of a region. Beta values in this study are approximate values, which have been 

obtained from geological cross-sections, i.e., a beta value for the pro-wedge and a beta value for the 

retro-wedge have been used. 

 

3.3.2.2  Slope (α)  
 
In order to measure the slope (α) along the geological cross-sections, topographic profiles based on 

SRTM 90 m (SRTM: Shuttle Radar Topography Mission) digital elevation data were examined. For this 

purpose, Arc-GIS software (arc map) was used. To obtain topographic profiles along a geological cross-

section, coordinates of the cross-section need to be found in the topographic map (in arc map). 

 

There are two possibities to get the surface slope: 

The first way is from a linear topographic profile. This way results in topographic profiles in 2D, i.e. only 

along the geological cross-section. The topographic profiles can be segmented in to general form 

(connection of big peaks of the topgraphic profile) or local form (connection of small peaks of the 

topographic profile) to estimate surface slope. In this study, general segmentation has been applied. 

Because the small peaks of profile can be existence of faults, river or erosion changes. To obtain the local 
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slope of the entire region, a local slope map is generated from the topographic map by Arc-GIS software. 

This map shows local slope of each point of orogen. 

 

The second possibility to determine surface slope is to measure the surface slopes from each swath 

profile. From the topographic map, it is possible to get swath profiles (along each geological cross-

section) which can show the 3D variation of elevation. From each swath, an average profile provides 

representative slopes along the swath. In order to get an average topographic profile, the digital 

elevation data of each swath have been computed in MATLAB. In the middle of each swath, the main 

profile is located. 

 

Both the ways (2D and 3D) were tested in this study and similar results for surface slopes were obtained. 

Nevertheless, as in other studies, e.g. von Hagke et al (2014), the second way (3D variation of 

topography) was used for the taper analysis. 

 

Every profile shows the geometry of an orogen which consists of different segments. These segments 

were formed during contractional regimes through the orogenic processes. Each segment has a certain 

slope. Thus, segmentation of orogen is important to estimate the slope of orogen.  In order to obtain 

correct segments along each topographic profile, the water divide line or crest line should be considered 

as the highest point of orogen. The segmentation should be performed from the sides of profile to the 

middle (highest point of orogen).   

 

The watershed is a geographic region within which water flows down into a specified body, such as a 

river, lake, etc. It can be outlined on a topographic map by tracing the points of highest elevation (usually 

ridge crests) between two adjacent stream valleys (e.g. Leopold et al., 1964). The runoff area of a large 

river usually contains many smaller streams, which is referred as a drainage basin. In the areas studied 

here, the crest of an orogen is usually coincident with the main watershed, but at some locations, the 

watershed line is located outside of the crest region. This indicates a variation of surface slope near to 

the crest of an orogen (e.g. Leopold et al., 1964). However, for critical taper analysis of an orogen, it is 

important to determine the main topographic border between the pro- and retro-wedge. For this goal, 

the detection of the crest of an orogen in SRTM maps is useful. To better detect the orogenic crest and 

better identify the surface of an orogen, different color scales have been tested for topographic maps 

but the black-white scale was more suitable for detection of the watershed (Fig. 3-4 a, b).  

 

Additionally potential effects of faults, rivers or fluvial systems, erosional valleys, climate and lithology 

should be considered. There is a relationship between tectonics, climate and erosion rates. These 

parameters control the shaping of topography (e.g. Montgomery, 2003; Kirby and Whipple, 2012). 

Furthermore, erosion affects the variation of climate, vegetation, geology and tectonics (Riebe et al., 

1991, a, b). Besides, changes in climate or tectonic forcing can variedly affect landscape scale erosion 

rates. In low-relief landscapes, the erosion is characterised by changes in hillslope steepness, whereas in 

high-relief landscapes, it is characterised by adjustments in the frequency of slope failure (Montgomery, 

http://geology.com/dictionary/glossary-t.shtml
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2003). However, the effect of all of the above mentioned phenomena on the original orogenic surface 

complicates the recognition of actual segments.  

  

 

a)                                                                                                         b) 

 
c) 

 
                              

d)                                                                                              e) 

 
Figure 3-4. Surface slope estimation. Detection of orogenic crest in the Alborz region (a), and Caucasus (b) in the area of 

profiles, see also Fig. 3-20 c and 3-23 for the location of Fig. 3-4 a and b, respectively. c) Variation of slope (α) along a profile, 

d) Variation of elevation and general orogenic segments along studied profile by Alavi, 1996. e) Estimation of surface slope 

from topographic profile for one segment as an example. See also Fig. 3-5 for the location of profile.  
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For example, along the profile studied by Allen et al. (2004) in the Alborz region, thrust faults and V-

shape rivers affected the surface and morphology through deformation and erosion (Fig. 3-10 c). In this 

profile between a distance of 33 km and 66 km, two valleys are visible. Each of them could be considered 

as a segment (green line in Fig 3-10 c). However, from a distance of 30-40 km and 50-60 km, there are 

two rivers and faults, which led to the formation of the above mentioned valleys. Hence, these valleys 

should not be considered as a segment of the orogen. In fact, the region from 20-77 km is the main 

segment. Hence, erosion complicates the identification of segments in nature. This identification is an 

important step to determine the alpha values. In this study, natural features, such as rivers, valley, or 

faults have been considered in segmentation.  The slope of each segment was calculated (Fig. 3-4 d, e) 

by: 

Slope = ∆y/∆x=tan (θ)                                                                                                                               (5)                                                                                                                           

As mentioned before, natural parameters deform the surface slope. It complicates segmentation. 

Therefore, in some places of an orogen, different possibilities for segmentation have been considered. 

Effect of these parameters, such as erosion makes it impossible to imagine the actual form of an orogen, 

i.e. the shape of orogen before the effect of erosion or other phenomena. Thus, segmentation of the 

slope in such region needs to be performed in a general form. 
                                                                                  

Climatic and lithological data were compiled to estimate erosion. In addition to topographic  profiles, 

local slope profile also have been tested to identify faults and rivers (Fig. 3-4 c). These profiles can be 

obtained from the slope map, which has been produced from the obtained SRTM map. This profile as 

elevation profiles, illustrates the features similarly. Therefore, only elevation profile are used for 

identification of segments for all of the profiles and orogens (Fig. 3-4 d, e). 

 

It should be noted that the slope values obtained from the topographic profiles, are average slope values. 

To get local slope values, local slope maps from topographic map (SRTM 90 m) were produced. Hence, 

both the local and regional slope are available for the Alborz region and also the AHB orogens. 

 

Local slope maps show the local variation within the study area (entire an orogen). These maps illustrate 

slopes with 90 m resolution. Using other SRTM, such as 500m or 1 km, one can show smoother 

topography and thus lower variation of surface slope. In other words, the mentioned resolution (500m 

and 1000 m) can simplify the map, but this map can not show all the slopes. This is because in the map 

with 500-1000 resolutions, a lot of variation of slope are eliminated. As mentioned, SRTM 90 m illustrates 

change of slopes in every 90 m, but the other forms can show changes only in every 500 m or 1 km, 

which can remove main surface slopes. Thus, SRTM 90 m can be a suitable selection for this goal. Besides, 

by using the “Filter” tool in Arc-GIS (arc map), the resulting local slope maps have been tried to be 

smoothened by a lower data elimination, by more than 4 times, but only small differences have been 

observed. Because, the regions comprise high a variation of local slope values and the volume of data is 

anyway very large, therefore, it is difficult to have a clear look at the map. 
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3.3.2.3  Fault strength (F) 

 
According to equation (3), for calculating normalized shear strength or fault strength ‘F’ of the 

detachment with retrieved “α” and corresponding “β” values, a “W” value of 1.0 as determined for the 

European basement by Suppe (2007) was used. For the Alborz region there is no data about wedge 

strength (W) and therefore, it was assumed that the mentioned W-value (Suppe, 2007) may be valid also 

for other orogens, such as the Alborz.  Equation (3) was used to obtain the F-value for each profile. 

Different types of “alpha” and “beta”, i.e. beta-approximate, beta-range, alpha-local, and alpha-regional, 

led to different F-values: 

𝐹 = 𝛼𝑙𝑜𝑐𝑎𝑙 + (𝛼𝑙𝑜𝑐𝑎𝑙 + 𝛽𝑟𝑎𝑛𝑔𝑒)𝑊                                                                                                                                                              (6) 
 

𝐹 = 𝛼𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 + (𝛼𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 + 𝛽𝑟𝑎𝑛𝑔𝑒)𝑊                                                                                                                                            (7) 
 

𝐹 = 𝛼𝑙𝑜𝑐𝑎𝑙 + (𝛼𝑙𝑜𝑐𝑎𝑙 + 𝛽𝑎𝑝𝑝𝑟𝑜𝑥.)𝑊                                                                                                                                                          (8) 

 

𝐹 = 𝛼𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 + (𝛼𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 + 𝛽𝑎𝑝𝑝𝑟𝑜𝑥.)𝑊                                                                                                                                         (9) 

 
The F-maps obtained from the local slope values were not useful, because each point of the map shows 

a certain slope, which is different from the neighboring points. This difference decreases the resolution 

of the F-maps. Thus, the estimation of wedge stability becomes impossible. Hence, only the regional 

slope (mean alpha), and approximate beta (mean, minimum and maximum beta values) were used to 

produce the F-maps (Table 3-1).  

 

In order to determine the effect of beta on F-maps, minimum and maximum beta values were replaced 

with mean beta values. Alpha values are from SRTM data and for each point, there is a defined alpha 

value. There is not much information available regarding the accuracy of SRTM data. However, probable 

errors can exist in SRTM data, but these errors can be considered comparatively small and can have only 

small effect on my results. 

 

The resulted alpha and beta values from geological cross-sections and topographical profiles have just 

one dimension, i.e. there is only ‘x’ axis coordinate (longitude), but each profile has a depth which shows 

the border between pro- and retro-wedge. The pro- and retro-wedge of each profile have specific alpha 

and beta values. To use these alpha and beta values in map generating, 1D point of each profile has been 

transformed to 2D point ‘x, y’ (longitude and latitude) with MATLAB programming to plot these values 

on a map. Accordingly, for each point of a profile there are one mean alpha and three beta values (mean, 

minimum and maximum value). F-values between profiles can be correlated with GMT. After doing these 

processes, F-maps for each region were created. 

 
In addition to the F-maps based on “regional” alpha, we can have a general view of F-value for the entire 

orogen with the local slope maps, which were obtained from SRTM 90 m (e.g. Fig. 3-20 a, b). In fact, 

these local slope maps show the local alpha, but can also show the variation of F-values. Since ‘F’ resulted 
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from 2α+β (equation 3), hence it means that alpha (slope) exerts the main effect on F-value, therefore 

with the variation of alpha values, different F-values can be determined. 

 
3.4   Alborz  
 
3.4.1  Tectonic setting 
 
Knowledge of the tectonics of an orogen helps to better identify the slope and basal dip of an orogen. A 

tectonic map, which shows the situation of plates, e.g. the situation of the pro- and retro-wedge and 

also the fault structure of a region, can provide a better determination of the basal detachment and 

surface slope, respectively. 

 

As mentioned in chapter 2, the Alborz region has formed as a result of the convergence between the 

Iran Plate (in the south) and the Turan Plate (in the north). The southern flank of the Alborz is the pro-

wedge and its northern flank is retro-wedge (e.g. Aghanabati 2004; Berberian and King 1981; Fig. 2-9). 
 

 
Figure 3-5. Generalized geological-structural map of the Alborz, after Rezaeian (2008). Profile 1: geological cross-section of 
Allen et al. (2004; Fig. 3-9), profile 2, 3 and 4: extra added profiles for better taper analysis, profile 5: geological cross-section 
of Alavi (1996; Fig. 3-8), profile 6: geological cross-section of Allen et al. (2003; Fig. 3-7). 

 

 

In the entire Alborz, i.e. on its northern and southern flanks, different fault zones formed (e.g. Berberian 

et al., 1993, Berberian and Yeats, 1999; Guest et al., 2006 a, b; Ritz et al., 2006; Hessami and Jamali, 

2006; Mokhtari and Kiarasi, 2008; Nazari et al., 2007, 2009, 2010; Landgraf et al., 2009; Solaymani Azad 

et al., 2011 a, b; Fig. 3-5) . As mentioned in chapter 2, fault zones consist of thrust faults and strike slipe 
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faults (Fig. 2-6). According to Berberian et al. (1993),  major reverse faults in the study area are the Khazar 

fault, the North Tehran fault, the Mosha fault (with a strike slip component), the Banan fault (with strike 

slip component), the Kandevan fault, the North Qazvin fault and the Taleghan fault (with strike slipe 

component). All of the mentioned faults are active except the Kandevan and the Banan fault, which 

might have turned inactive recently (Berberian et al., 1993; Fig. 3-5).  

 

The WSM catalogue (Heidbach et al., 2008; Fig. 2-6 b) confirms that in the Alborz region the thrust faults 

dominate. From this data, it could be assumed that in this region, there is a general compressional 

regime. The strike slip component enables partitioning and potential local extension. Since these 

components are minor as compared to the reverse components, hence the thrust faults and the resulting 

compressional regimes have been considered for the tectonic phase of the Alborz region.  

 

3.4.2  Lithology 
 
Lithological data help to better identify the detachments. If we know about the lithology of the individual 

layers, we can assume, which layer may be relatively weaker than the others and thus can serve 

detachment. Based on lithofacies analyses, the Alborz has different tectonostratigraphic units and each 

unit includes several formations formed in a tectonically-controlled environment (Alavi, 1996). The units 

formed from the Precambrain to the end of Mezosoic (before the Cenozoic) have been named as Pre-

Tertiary to simplify the lithological view of the region (Allen et al., 2003; Fig. 3-5). The below subsections 

describe the different units. 

 

3.4.2.1  Pre-Tertiary  
 
These units consist of shallow water, rippled, tuffaceous shales, siltstones and sandstones which are 

interlayered with tuffs (Alavi, 1996) and possibly evaporates (Allen et al., 2003). The Proterozoic-Trassic 

platform succession is   6̴ km thick along the section studied by Allen et al. (2003). They are overlain by 

alternating shales, dolomites, and dolomitic limestones containing the Precambrian-Cambrian boundary 

in the middle part (Hamdi et al., 1989), which grade upward into well-bedded, interbedded limestones 

and micaceous siltstones with several thin volcanic interlayers (e.g. Assereto, 1966; Alavi, 1996; 

Aghanabati, 2004). The Lower Jurassic consists of fluvial deltaic clastics, including coals. Marine Middle 

Jurassisc-Early Cretaceous carbonates and clastics (Alavi, 1996) were followed by Late Cretaceous 

carbonates, basaltic and andesitic volcanic across a large part of the Alborz region (e.g. Alavi, 1996; 

Zanchi et al., 2009). 

 

3.4.2.2  Paleocene-Eocene  
 
Paleocene units consist of conglomerate, and Eocene units consist of interbedded andesitic volcanics 

and clastics with locally gypsum and anhydrite, large scale slumps and mudstones rich in orogenic 

material indicating deposition in a deep-water basin (e.g. Alavi, 1996; Zanchi et al., 2009; Aghanabati, 

2004). Volcanoclastic units consist of lavas and green tuffs with lesser amounts of shales, sandstone, 



 
3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-HIMALAYAN BELT 

 

52 
 

mudstones and calcareous tuff deposited in a marine deep-water system (Davoudzadeh et al., 1997; 

Ballato et al., 2008). 

 

3.4.2.3  Neogene-Quaternary  
 
Neogene-Quaternary sediments show every aspect of fluvial regimes of sedimentation and include 

coarse to fine material: northward-coarsening, polymict fanglomerates, red argillites, and breccias with 

reworked sediments of Neogene age, as well as pebbles and boulders that are mainly derived from the 

Alborz magmatic assemblage. Neogene clastics cover Mezosoic strata disconformably. On the northern 

flank, there were not Lower Tertiary strata. It is questionable, if there were never any Tertiary strata, or 

if they were eroded prior to the Neogene (Allen et al., 2003). However, in a general lithological view, a 

hard lithology for the northern flank and a soft lithology for the southern flank of Alborz has been 

suggested (Rezaiean, 2008). 

 

3.4.3  Climate 
 

Climate, especially rainfall, can affect pore fluid pressure, which is among the main parameters that 

control the mechanical state of a wedge (e.g. Dahlen, 1984). The Alborz mountains form a gently sinuous 

east-west mountain range across northern Iran, south of the Caspian Sea. They face the humid Caspian 

depression to the north and the arid plateau of Central Iran to the south (Naqinezhad et al., 2009; 

Rezaeian, 2008; Fig. 3-6). Steppic plant assemblages associated with the dry climate on the south-facing 

slope of the Alborz mountains (e.g. Klein, 2001) are very different from the forest vegetation associated 

with the wet climate of the north-facing side (e.g. Assadollahi et al., 1982; Frey and Probst, 1986; Zohary, 

1973).  

 

V-shape valleys are detectable at different elevations on the Alborz region, but in the northern flank, 

their number is higher. According to Rezaeian (2008), rivers and precipitation affect the surface of the 

Alborz region and lead to an annual erosion of up to 1.3 mm (Fig. 3-6 a). Erosion is not uniformly 

distributed across the Alborz mountains. There is a general trend from lower erosion rates in the east 

(up to 0. 3 mm/y) to higher erosion rates (up to 1.3 mm/y) in the west. More remarkably, erosion rates 

are higher (up to 1.3 mm/y) on the southern flank of the mountain belt than on the northern flank (up 

to 0.3 mm/y), with the exception of a series of small, fast eroding catchments in the NW ranges. This is 

in strong contrast to the expectations based on precipitation patterns across the mountain belt.  

 

The Alborz mountains have a wet northern flank and a (semi) arid southern flank with stream power 

being distributed even more asymmetrically. It is clear that climate is not the primary control for erosion 

at present. Strong rocks mostly exert low erodibility and vegetation can also decrease the effect of 

erosion. Hence, erosion rates on the steep and wet northern flank of the mountain belt is suppressed by 

the strength of rocks at the surface, and by the effects of dense vegetation cover (Rezaeian, 2008; Fig. 

3-6 b). 
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On the southern flank of the mountain belt, strong rocks only cover some limited parts and the 

vegetation density is low, permitting whatever runoff that occurs to erode efficiently and in proportion 

to the local slope. Therefore, the pattern of erosion on the scale of the mountain belt is influenced by 

the erodibility of the substrate (Rezaeian, 2008). 

 

 

        a) 

 
     b) 

 
                                                                                         
Fig. 3-6. Precipitation and erosion in the Alborz region (mm/yr). a) Total annual precipitation in the Alborz, derived from 877 
meteorological stations (Rezaeian 2008). b) Spatial distribution of average annual erosion (Rezaeian, 2008), red frame: central 
Alborz (study area). 
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3.4.4  Parameters compiled for the critical taper analysis applied to the Alborz 

 

3.4.4.1  Basal dip (β) 

 

In order to measure the basal dip of the Alborz region, all published cross-sections have been collected 

(Fig. 3-5, cross-section 1, 5, 6). As mentioned, these cross-sections do not have the same resolution. One 

of them (cross-section 6 - Allen et al., 2003) is a high resolution section and illustrates more layers in the 

sedimentary cover. So from all the collected cross-sections, only this cross-section is suitable for the 

assessment of basal dip. Nevertheles, basal dip in all of the available cross-sections has been measured 

(Table 3-1).  

 

The cross-section published by Allen et al. (2003; Fig. 3-7): This cross-section is based on seismological 

data and geological studies. The décollement was identified at a depth of about 17 km, and the basement 

seems to be deformed.Thus, here, we consider thick-skinned tectonics. Above the basement, there are 

different lithological layers. The first layer is the Kahar Formation and according to Alavi (1996), this 

formation was fromed in the Precambrian to the Lower Ordovician and consists of tuffaceus shale, 

siltstone, and sandstone with interlayered pyroclastics (such as tuff). Allen et al. (2003) illustrated a 

possible section of evaporates for the Kahar Formation. 

 

The Cambrian-Middle Triassic section is a mixed layer of clastic carbonate (Fig. 3-7) and metamorphic 

(Gorgan schist as Paleotethyan collision, in the northeast). According to Alavi (1996) this section can 

consist of different formations (Kahar, Soltanieh, Barut, Mila, Dorud, Rute, Nessen, etc.), and each 

formation has its own properties. Altogether, the general lithology of the mentioned formations is 

clastic, carbonate and volcanic. 

 

In this profile (Fig. 3-7) it is difficult to decide, which layer is weaker. This is because the lithostratigraphic 

data illustrated poorly the rock distribution of each unit. Besides, a precise lithostratigraphic profile for 

each layer is not available. Thus, it is only possible to get a general view regarding the  durability of layers. 

For the cross-section of Allen et al. (2003), there are three possibilities for position of detachment as 

explained below. 

 

1) If we think that the Kahar Formation consists of clastics with possible evaporative rocks, then this 

unit could be assumed as a weak layer in comparison to the basement. Therefore, it can be taken 

as a detachment, because its overlaying layers can slip on it (detachment A in Fig. 3-7 a). 

 

2) a) If we consider that the Kahar Formation consists of evaporites, it can be assumed that the 

Cambrian-Middle Triassic section can slip on the Kahar Formation and the detachment would 

then be between them. 

b) If we think that the Kahar Formation has no evaporitic units and consists of Cambrian-Middle      

Triassic successions, then we have two layers with clastics and volcanics. But, how do we know, 

how much volcanics and how much clastics are there? The lithostratigraphic section just provides 



 
3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-HIMALAYAN BELT 

 

55 
 

 

general information and indicates no data about the distribution of clastics and volcanics and if 

similar layers are observable. However, the Kahar Formation can also be considered as weaker 

than the above layers. This would be the same detachment as that in the profile studied by Alavi 

(1996) (detachment B in Fig. 3-7). 

 

 

 
 

Figure 3-7. Measurement of basal dip in the Alborz, along the profile of Allen et al. (2003). a) Three detachments (A, B, C) 

with different aspect lines for the northern and southern flank. Beta values: 2.7°±1° for the RW and 2°±1.8° for the PW. See 

also Fig. 3-5 for the location of cross-section, lithological data (Alavi, 1996; Allen et al., 2003, 2004). b) Different 

lines/viewpoints and different beta values for a detachment. 

 

 

 

3) The lithology of the Cambrian-Middle Triassic section consists of clastic, carbonate and volcanic 

rocks (in the northeast). The lithology of the Jurassic layer consists of fluvial deltaic clastics 

including coals. Regardless of the metamorphic units in the northeast of both units (the 

Cambrian-Middle Triassic and Jurassic units), the Jurassic unit could also be taken as a weak layer, 

because it has fluvial deltaic clastics. In addition, there is a fault at the base of the Jurassic section. 

It can be assumed as a weak point. This part is near surface and can be considerd as a thin-skinned 

part (detachment C in Fig. 3-7 a).  
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For this cross-section for each detachment, there are three aspect lines, i.e three possibilities for the 

place of the detachment line (Fig. 3-7 b). On the whole, for this profile there are nine different 

estimations for beta values. The average of them is 2.7°±1° for the RW and 2°±1.8° for the PW (Fig. 3-7 

a, b).  

 

The cross-section published by Alavi (1996; Fig. 3-8): This section is derived from geological and structural 

studies of Stocklin, (1968) and compiled by Alavi (1996). It reaches down to about 10 km depth. The 

basement is not included. This cross-section can be consiederd as a thin-skinned tectonic model that 

consists of Precambrian to the Quaternary units with different lithologies.  

 

In this profile, just the border between the Precambrian and the sedimentary covers is observable. 

Hence, there is only one possibility to assume a detachment. The detachment can be considered 

between the Precambrian and the overlying layers (it is the same as detachment B in the profile of Allen 

et al. (2003)). For this detachment, there are three aspect lines to place the detachment line. The average 

of them is 2.2°±1.5° for the north and 4°±1.1° for the south (Fig. 3-8). 

 
 
 

 
 
Figure 3-8. Measurement of basal dip in the Alborz, along the profile of Alavi (1996). Only one possibility to place the 
detachment for the northern (1) and the southern flank (2) has been identified. Beta values: 2.2°±1.5° for the RW and 4°±1.1° 
for the PW, lithological data (Alavi, 1996; Allen et al., 2003, 2004). See also Fig. 3-5 for the location of cross-section. 
 

 

The cross-section published by Allen et al. (2004; Fig. 3-9): This section goes down to a depth of 40 km. 

It shows that there might be a deformation of the basement (thick-skinned model). It reaches from the 

Caspian Basin to the Zagros folded zone. From this section, a sub section (from the south of the Caspian 

Sea to the end of Alborz) has been clipped. The end point of this section is detectable in the topographic 

map (SRTM data) with the help of Arc-GIS (arc map).  

 

In this cross section, only a border between the basement and the sedimentary cover is seen (Fig. 3-9). 

Therefore, it has been taken as detachment. Furthermore, there are two detachments for the PW. Both 
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of them have been measured and finally an average has been calculated. The average beta is 0.7°±0.7° 

for the north and 4°±1.9° for the south (Fig. 3-8). It should be noted that the Moho depth indicated in 

this profile is not compatible with more result estimations of Moho depth (Fig. 2-8).  

 

 
 
Figure 3-9. Measurement of basal dip in the Alborz, along the profile of Allen et al. (2004). One detachment for the northern 
(1) and two detachments for the southern flank (2, 3). Beta values: 0.7°±0.7° for the RW and 4°±1.9° for the PW, lithological 
data (Alavi, 1996; Allen et al., 2003, 2004). See also Fig. 3-5 for the location of cross-section. 

 
 
As explained, since the first cross-section (Fig. 3-7) shows a clear sedimentary cover and enables to better 

identify the detachment, this cross-section has been regarded as the main cross-section to obtain beta 

values. Therefore, the beta values estimated from this cross-section have been considered as 

representative beta for the Alborz region. Altogether from the geological profiles, it can be suggested, 

thet the PW detachment is dipping   ̴ 2°- 4°, whreas the RW detachment is dipping    ̴0.7°-2.7° (Table 3-

1).  

 
3.4.4.2. Slope (α) 
 
As noted, an orogen may consist of different segments, which were formed during convergence and 

orogenic processes. Each segment may have a certain average slope. Thus, in order to obtain the slope 

(α) of an orogenic wedge, potential segments have been identified. Each segment indicates an average 

slope and is valid up to the next variation of average slope. The border between two segments is 

characterised by abrupt difference of slope. Topographic profiles of each cross-section have been 

produced to identify a potential segmentation of the wedge. In such a profile, the main peaks have been 

connected. The smal peaks of topographic profile may be formed due to the effect of faults, rivers, or 

erosion. The structural map/cross-section and SRTM data of the region can also help to identify surface 

phenomena and segments. Whereas in some places the identification of segments is easy, in other places 

(such as 22-44 km in profile 6, Fig. 3-10 a) different possibilities for a segmentation can be considered. 

Below is an overview of the surface slope along the three geological cross-sections. 
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Along the cross-section constructed by Allen et al. (2003), thrust faults and V-shape rivers (Fig. 3-6 a) 

affect the orogenic surface and consequently the values of alpha. In this region, there is also an erosion 

effect, which on the northern side is smaller than on the southern side (Rezaeian, 2008; 3-6 b). 

In the obtained topographic profiles (Fig. 3-10 a) two sections are identified, but within the distances of 

22-44 km and 60-88 km there are two possibilities for the segmentation: 

1) Regional segmentation:  if we assume that the big V-shape (in distance of 22 to 33 km) could be 

a faulted area or formed as a result of effect of erosion (red line). 

2) Local segmentation: if we assume that the V-shape is formed due to the orogenic event without 

the effect of erosion (green line). 

 

Along this profile, from the north (left) to the south (right), six segments with different average slopes 

have been identified (Fig. 3-10 a). 

 

Along the cross-section of Alavi (1996), some valleys, which can be a location of faults or rivers, are 

visible. At the distance of   ̴95 km, a border between the orogen and the Tehran plain is obvious, but it is 

difficult to identify the real shape of the orogen, because erosion or sedimentation in foreland could 

deform the surface of orogen. Additionally, the material fall from top of the orogen can change the real 

border between orogen and plain. For this profile, from the north (left) to the south (right), nine surface 

slopes (alphas) have been identified (Fig. 3-10 b).                                                                                                                                          
 

Along the cross-section of Allen et al. (2004), there are also thrust faults and large V-shape valleys. This 

would lead to two possibilities for the segmentation (Fig. 3-10 c):  

 

1) Local segmentation: if we assume that each big V-shape as a segment without considering 

the role of faults and rivers, which can deform the surface, then in Fig. 3-10 c the green 

dashed line can be taken for the segmentation. 

2) Regional segmentation: we consider that faults or rivers deformed the surface of region, also 

the first assumption can be false. Moreover, in the southern flank, which has soft  stones, the 

effect of erosion is much more than in the northern flank (Rezaeian, 2008). Thus, a regional 

segmentation is reasonable for this section (red lines in Fig. 3-10 c). 

 

For this red line, two surface slopes (alphas) have been obtained (Fig.3-10 c). The values from the profiles 

in between are available in the appendix (Fig. 6-1).  
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a) 

 
b) 

 
c)   

 
 
Figure 3-10. Regional slope along the studied profile in the Alborz, as well as the table of coordinates and α-values of the 
segments. The α-values of extra profiles are available in the appendix (6-1). a) Along the profile of Allen et al. (2003; Fig. 3-
7), b) Along the profile of Alavi (1996; Fig. 3-8), c) Along the profile of Allen et al. (2004; Fig. 3-9), black dashed line: crest of 
orogen, red line: general segmentation, green dashed line: local segmentation. 

 X Y Z Slope (°) 

1 51.3000 36.7000 -29.0000 5.42 

2 51.3000 36.5320 1478.3907 -0.03 

3 51.3000 36.3200 1464.6290 6.59 

4 51.3000 36.2447 2286.7464 2.72 

5 51.3000 36.0680 3082.1031 0.19 

6 51.3000 35.8004 2998.0897 4.74 

 Min. slope : -0.03° 
Max. slope : 6.59° 
Mean slope : 2.97° 

 X Y Z Slope (°) 

1 51.2000 36.7000 -2.1261 7.32 

2 51.2000 36.5902 1528.1423 1.19 

3 51.2000 36.4751 1789.2999 3.59 

4 51.2000 36.3746 2475.0099 0.90 

5 51.2000 36.2348 2715.2897 4.16 

6 51.2000 36.1622 3288.7201 1.70 

7 51.2000 36.0993 3491.7962 1.74 

8 51.2000 35.8266 2593.1131 5.71 

9 51.2000 35.7694 1972.2384 2.70 

 Min. slope : 0.90° 
Max. slope : 7.32° 
Mean slope : 3.06° 

 X Y Z Slope (°) 

1 50.5000 36.9000 45.3874 7.91 

2 50.4053 36.7422 3270.1811 1.23 

 Min. slope : 1.23° 
Max. slope : 7.91° 
Mean slope : 3.34° 
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3.5   Caucasus 

 

The Caucasus is a neighboring orogen to the Alborz, which is in a similar tectonic and geodynamic 

situation as the Alborz. Here, the Caucasus region is addressed within the framework of mechanical 

properties. Then, the mechanical properties of this orogen is compared with the mechanical properties 

of the Alborz region. As for the Alborz, average values of α and β will be estimated from SRTM data and 

geological cross-sections, respectively. 

 
3.5.1  Tectonic setting 
 
The Caucasus is located between the Black Sea to the west and the Caspian Sea to the east. As shown in 

chapter 2, similar to Iran, the Caucasus lies between the converging the Eurasian Plate in the north and 

the Arabian Plate in the south. Due to the northward motion of the Arabian Plate, the Caucasus 

mountains have been formed and are characterized by a complex crustal structure (e.g. Saintot et al., 

2006; Fig. 2-11).  

 

The Greater Caucasus (GC) is the northern extent of the Arabia-Eurasia collision zone and represents the 

main place of shortening within the center of the collision zone between 40° and 48°E. Since the Plio-

Pleistocene, much of the shortening in the eastern part of the Caucasus has taken place in the Kura fold-

thrust belt along the southeastern margin of the GC (Forte et al., 2013). 

 

The GC is composed of Precambrian and Paleozoic volcanic and metamorphic units (e.g. Triep et al., 

1995; Zonenshain et al., 1990), which are a result of the Paleozoic ocean continent-collisions of the 

Paleotethys Ocean with the margins of the Eurasian und the Gondwana/Africa-Arabian Plate. According 

to Triep et al. (1995), Zonenshain et al. (1990), and Zonenshain and Le Pichon (1986), mainly back arc 

basin sediments have been deposited at the southern slope of the GC northbound to the Lesser Caucasus 

(LC). This mountain range is characterized by fold-and-thrust-belts and shows considerable seismic and 

volcanic activity (Mosar et al., 2010; Triep et al., 1995).   
 

The structural inventory of the GC reveals a complicated interaction between deformation, syn-tectonic 

sedimentation, and erosion. Therefore, the GC underwent a very heterogeneous structural and 

stratigraphic development along strike and structures show variability even on the local scale (Forte et 

al., 2013). 

 
According to the WSM catalogue (Heidbach et al., 2008), the main active structures in the GC are thrust 

faults. Some normal faults can be detected in the GC, but a compressional regime prevailes (Fig. 2-11). 

These structures have been also reported by Ruppe and Mcnutt, (1990), Milanovsky and Khain, (1963), 

and Dotduyev, (1987).  
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3.5.2  Lithology 
 

According to the geological map of the region, Paleozoic units are outcropping only in the west, but 

Mezosoic and Cenozoic rocks are found all over the GC. Mesozoic units consist of Jurassic and Cretaceous 

strata (Fig. 3-11). 
 

The Jurassic sedimentary succession of the GC basin can be subdivided into two large lithological 

packages divided by an unconformity (Ruban, 2007 a, b). The lower lithological package comprises of the 

siliciclastic dominated deposits up to 10 km thick, the age of which ranges from the Sinemurian to the 

Bathonian. The upper lithological package includes Callovian-Tithonian carbonate-and evaporite-

dominated deposits with a total thickness of up to 3 km (Ruban, 2008). Tertiary sediments are known as 

Molasse type successions, which may consist of conglomerate, sandstone and shales. There are also 

Quarternary volcanic rocks in the GC (Dotduyev, 1987). The axial zone of the GC includes Jurassic 

sedimentary rocks (Azerbaiijan), a pre-Mesozoic basement (Georgia, Russia), and Pliocene intrusions. 

Both, the external fold-and-thrust belts consist mainly of Cretaceous and Cenozoic sedimentary rocks 

(Khain, 1997).  

 
 
Figure 3-11. Geological and structural map of the Caucasus, after Mosar et al. (2010). Profile 3: studied geological cross-
section by Mosar et al. (2010), profile 1, 2, 4 and 5: extra added profiles for better taper analysis. 
 

 
In the study area of Mosar et al. (2010) from the center to the sides, Mesozoic (Jurassic, cretaceous) and 

Cenozoic (Tertiary) units are visible. According to the geological map, on both the flanks of orogen, 
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Mesozoic and Cenozoic units with different lithological hardness are spread, but toward the crest of 

orogen first the Cenozoic units and then Mesozoic units are located (Mosar et al., 2010; Fig. 3-11). 

 

3.5.3  Climate 
 
The climate of the Caucasus region varies both vertically (according to elevation) and horizontally (by 

latitude and location). Temperature generally decreases with elevation. This region is known for a high 

amount of snowfall. The GC mountains are covered with forests at higher elevations. Some of the lowest 

areas of the region are covered with steppes and grasslands (Kvavadze and Rukhadze, 1989). The littoral 

zones have a humid subtropical climate with mild winters and hot summers. Facing strong westerly 

winds, this area receives high precipitation of 1300-1500 mm per annum, mostly in autumn and winter 

(Arslanov et al., 2007).  

 

As a result of high levels of precipitation and the melting of snow, many V-shape valleys are developed 

in the Caucasus region. The flow of most rivers in the GC is dependent on season. Additionally, in the 

rivers facing south, flood during the spring period, snowmelt and rainfall reach their peak. Summer 

floods are very common among rivers facing north at higher elevations (Coene, 2010). During other 

periods of the year, many rivers tend to dry up. Most Caucasian rivers flowing into the Black Sea are 

relatively short but extremely numerous where the mountains region almost touches the coastline. In 

contrast, the rivers flowing into the Caspian Sea are generally much longer (Coene, 2010).  

 
On the whole, according to the NOAA images (e.g. Amante and Eaklns, 2009), vegetation in the western 

part of the Caucasus, especially close to the Black Sea is denser than in the east. Different climates 

dominate the area, but a comparison of the NE and SW parts of the GC with the Alboirz indicates almost 

the same conditions for the both orogens. In general, the distribution of forest and rivers in NE and SW 

can be considered almost the same. 

 

3.5.4  Parameters compiled for the  critical taper analysis applied to the Caucasus 
 
3.5.4.1  Basal dip (β) 

 

In order to estimate the dip of the detachment for the Caucasus, a cross-section (Mosar et al., 2010; 

Egan et al., 2009; Fig. 3-12) has been used. In  this profile, Mosar et al. (2010) illustrated the place of the 

pro- and the retro-wedge in the Caucasus. They suggested that the northern flank of the Caucasus is the 

retro-wedge wheras the southern flank is considered to be the pro-wedge (first model). In contrast, the 

geodynamic models of the region obtained by e.g. Saintot et al. (2006) and Mumladze et al. (2015) place 

the pro-wedge in the north and the retro-wedge in the south of the region (second model). 

 

 

http://en.wikipedia.org/wiki/Steppes
http://en.wikipedia.org/wiki/Grasslands
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According to Eppelbaum and Khesin (2004), the depth of the Moho decreases from the center to the 

south and north of the GC. Beneath the northern flank, the Moho depth is higher than beneath the 

southern flank. This indicates that the basal dip of the northern flank may be higher than the southern 

flank and consequently, the northern flank can be considerd as retro-wedge and the southern flank as 

pro-wedge. This affirms the first model. 

 

In contrast, according to the topography of the GC, a pro-wedge for the northern flank and a retro-wedge 

for the southern flank can be considered. This matches with the second model. But it is to be noted that 

this inversion could have happened as a result of constant and focused erosion at the same time in the 

southern and northern flank. Therefore, the pro-wedge has a higher surface slope but the retro-wedge 

has a lower surface slope. While the Caucasus region is located between two seas and has a wet climate 

(Kvavadze and Rundhadze), the effect of erosion on both flanks could be a compelling reason for this 

feature. Hence, according to the geodynamic models (e.g. Mosar et al., 2010; Saintot et al., 2006), Moho 

shape (Eppelbaum and Khesin, 2004), and considering the effect of wet climate (Kvavadze and 

Rundhadze, 1989) in the Caucasus, it can be considered that there are more convincing reasons to accept 

the first model to take the northern flank of the GC as the retro-wedge and its southern flank as the pro-

wedge.  

 
 

 
 

Figure 3-12. Measurement of basal dip in the Caucasus along the profile of Egan et al. (2009)-the below cross-section and 
Mosar et al. (2010)-the above cross-section. Beta values: 3.3°±1.8° for the RW and 2.2°±1.6° for the PW, lithological data 
(Mosar et al., 2012). See also Fig. 3-11 for the location of cross-section. 



 
3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-HIMALAYAN BELT 

 

64 
 

In the cross-section of Mosar et al. (2010), a detachment is visible between basement and sediment 

layers. This detachment is clear and may be a suitable level for estimating β. From this detachment, for 

the retro-wedge a beta value of 3.3±1.8° and for the pro-wedge a beta value of 2.2±1.6° was estimated 

(Table 3-1). For this orogen, we have beta values only along one profile. To taper analyse in the 

surrounding area of the profile, four extra profiles have been added near and parallel to the main profile 

(e.g. Fig. 3-20 a).    
 

3.5.4.2. Slope (α) 

 
Along this section, such as for the Alborz region, the effect of faults, especially thrust faults and also V-

shape rivers are to be considered. In this section, as in the previous section, considering the effect of 

thrust faults and rivers, a general segmentation is presented (red lines in Fig. 3-19 a). In this profile from 

the north (left) to the south (right) seven values for the regional slopes have been estimated. The 

resultant values from the extra profiles are available in the appendix (Fig. 6-2). 

 
3.6   Other orogens of the Alpine-Himalayan Belt 
 
A comparison of critical taper parameter values (surface slope, basal dip and fault strength) in the Alborz 

and Caucasus indicates that these regions may be in a similar mechanical situation. As discussed in 

chapter 2, this may be the result of a similar tectonic history. 

 
As the Alborz and Caucasus regions are parts of the AHB, the question follows, whether other orogens 

on this belt exhibit a similar mechanical behaviour. For this purpose three more orogens, the Zagros, the 

Apennines, and the Himalayas are studied. In the following, the critical taper parameters as well as 

tectonics, lithology and climate are compiled for the other regions of the AHB. At the end, all of the 

studied orogens are compared in detail (Table 3-2). 

 
3.6.1  Zagros 
 
3.6.1.1  Tectonics, Lithology and Climate 

 
In the general context of the Alpine-Himalayan orogenic system, the Zagros fold-thrust belt (ZFTB) is the 

most recent result of the convergence and closure of the Neotethys oceanic domain between Arabia and 

Eurasia (Takin, 1972; Haynes and McQuillan, 1974; Ricou et al., 1977; Alavi, 1994; Stampfli et al., 2001). 

In the ZFTB, the Arabian passive margin sequence has been decoupled from its basement and deformed 

by large-scale folding and thrusting. According to seismicity records, within the underlying Pan African 

basement, shortening is presently accommodated by reverse faulting (Jackson and Fitch, 1981; 

Berberian, 1995). The ZFTB is characterized by a relatively intense seismic activity increasing from NW 

to SE. All earthquakes in Zagros are limited to depths shallower than about 20 km (Maggi et al., 2000; 

Talebian and Jackson, 2004). 
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Numerous blind faults are known to be active beneath the sedimentary cover. In particular, the active 

Mountain Front Fault (MFF) and High Zagros Fault (HZF) are considered as major segmented reverse 

faults, whose seismogenic and morphologic signature is recognized throughout the Zagros orogen 

(Berberian, 1995). The movement accumulated by the ensemble of these faults has generated a total 

vertical displacement in the order of up to 6 km (Berberian, 1995; Molinaro et al., 2005). The WSM 

catalogue shows strike slip and thrust faults with a domination of thrust faults (Heidbach et al., 2008; 

Fig. 2-6 a). 

 

In the region where the cross-section published by Molinaro et al. (2005) is located, there are units from 

the Paleozoic to the Cenozoic (Fig. 3-13). On the basement, the Lower Mobile Group is detectable which 

represents the Late Precambrian Hormuz evaporite layers. This level forms the main regional 

décollement level for most of the larger folds within the ZFTB (Colman-Sadd, 1978; Kent, 1979). 

Subsequent Zagros folding has remobilized the salt, which flows from the synclines toward the cores of 

the anticlines. Therefore, its present thickness must be highly variable, ranging from almost zero beneath 

the synclines to perhaps thousands of meters in the cores of the anticlines (Edgell, 1996). 

 

A 4-5 km-thick Cambrian to the Lower Miocene sequence forms the Competent Group. Apart from the 

initial Cambrian-Carboniferous clastic formations, the majority of this group until the Upper Cretaceous 

consists of massive platform carbonate rocks (e.g. James and Wynd, 1965; Sharland et al., 2001). The 

upper part of the group is lithologically more variable. Approximately 400 m of Upper Cretaceous marine 

marls (Gurpi formation) are overlain by 400-600 m of competent Eocene limestone and dolomite 

(Asmari-Jahrum formation) and 50-100 m of lower Miocene gypsiferous red marl (Razak formation). 

Polymictic conglomerates are visible within this latter formation, suggesting an important change of the 

depositional environment possibly related to early regional tectonic movements.  (e.g. Edgell, 1996).  

 

 
Table 3-1. Beta values of several orogens of the AHB 

orogens beta 
range 

PW/RW 

beta     
mean 

(PW/RW) 

beta 
minimum 
(PW/RW)      

beta 
maximum  
(PW/RW) 

Alborz 2.0°±1.8°/2.7°±1° 2.0°/2.7° 0.2°/1.7° 3.8°/3.7° 
Caucasus 2.2°±1.6°/3.3°±1.8° 2.2°/3.3° 0.6°/1.5° 3.8°/5.1° 

Apennines 0°/1.4°±1.5° 0°/1.4° 0°/-0.1° 0°/2.9° 
Zagros 1.1°±1.2° 1.1° -0.1° 2.3° 

Himalayas 1.7°±0.6° 1.7° 1.1° 2.3° 
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Figure 3-13. Geological map of the Zagros, after Molinaro et al. (2005). Profile 3: cross-section of Molinaro et al. (2005), profile 
1, 2, 4 and 5: extra added profiles for better taper analysis. 

 
 

From a structural point of view, the Cambrian to Upper Cretaceous sequence is the main unit underlying 

the large wavelength anticlines of the region. The remainder of the stratigraphic sequence is represented 

by Middle Miocene to the recent clastic sediments. These molasse-type sediments, derived from the 

uplift and erosion of the Zagros mountains, show a coarsening upward evolution from marine clastics to 
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continental clastics (Agha Jari Formation) and coarse conglomerates (Bakhtyari Formation) at the top. 

Structures observed within these formations include small-scale thrusting and thrust-related folds soling 

out into the Mishan marls (Molinaro et al., 2005; Fig. 3-13). 

 
The Zagros mountains are exposed to different climates. Prominent among them are the forest and 

forest steppe areas with a semi-arid climate. The annual precipitation ranges from 400 mm to 800 mm 

and falls mostly in winter and spring. Winters are severe with temperatures often below −25 °C. The 

region exemplifies a continental variation of the Mediterranean climate pattern, with a snowy, cold 

winter and mild rainy spring followed by a dry summer and autumn (Frey and Probst, 1986). According 

to Kottek et al. (2006) the region is a hot and arid area. Rivers and precipitation affect the surface of the 

Zagros region causing V-shape valleys and erosion respectively, but the effect of tectonics may be higher. 

 
3.6.1.2  Parameters compiled for a critical taper theory applied to the Zagros 
 
Basal dip (β): The cross-section published by Molinaro et al. (2005) constructed from geological and 

seismological data shows a thick-skinned section (Fig. 3-14). From this cross-section, the basal 

detachment can be identified reasonably well. The evaporative unit between the basement and the 

deformed sediments can be assumed as a weak layer, which serves as detachment. This cross-section 

consists of two parts: the Zagros simple fault and the high Zagros belt. This study only focuses on the 

simple fault zone, because the high Zagros is incompletely illustrated in this cross-section. It should be 

noted that in this cross-section, only the pro-wedge of the simple fault zone (south side of the Zagros 

orogen) is illustrated. 

 

The cross-sections published by Tunini et al. (2015) are large scale profiles and the sedimentary layers 

and structures, such as faults and folds and also the near surface deformation are not clearly illustrated. 

Therefore, these profiles have not been used. 

 

Slope (α): in the topographical profile along the chosen Zagros cross-section (Fig. 3-19 b), two main 

basement faults and rivers were identified. These two faults have changed the surface of the region. 

Thus, to segment the orogen on the topographic profiles the effect of these faults and rivers has been 

considered (Fig. 3-19 b, red dashed line). In Fig. 3-19 b, the segment of the northern side is unclear 

(segment 1). This part could not be retro-wedge. It seems that near to the first peak from the north, 

there is another peak but this peak is out of the section. Therefore, there is a negative slope for the first 

segment. The values resulting from the extra profiles are available in the appendix (Fig. 6-3). 

 

 

http://en.wikipedia.org/wiki/Forest
http://en.wikipedia.org/wiki/Forest_steppe
http://en.wikipedia.org/wiki/Semi-arid_climate
http://en.wikipedia.org/wiki/Precipitation_%28meteorology%29
http://en.wikipedia.org/wiki/Mediterranean_climate
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Figure 3-14. Measurement of basal dip in the Zagros region, along the profile of Molinaro et al. (2005). Beta values: 1.1°±1.2° 
for the entire profile, See also Fig. 3-13 for the location of cross-section. 
 

 

3.6.2  Himalayas 
 
3.6.2.1  Tectonics, Lithology and Climate 
 
The closing and subduction of the Paleotethys Ocean located between India and Asia during the 

Paleozoic, followed by collision of the continents, produced the present day structures and lithologies in 

the Himalayas. Consequently, the mountains and surrounding regions are characterized by a variety of 

deformed lithologies and several phases of tectonic and deformational events (Windley, 1995). Heim 

and Gansser (1939) and Gansser (1964) divided the rocks of the Himalayan fold-and-thrust belt in Nepal 

into four tectonostratigraphic zones that are characterized by distinctive stratigraphy and physiography. 

From the south to the north, there are the Subhimalayan, the Lesser Himalayan, the Greater Himalayan, 

and the Tibetan Himalayan zones (Fig. 3-15).  

 

Subhimalayan zone: The topographic front of the Himalayas rises from elevations of 150-250 m in the 

active foreland basin system to form the Subhimalayan zone, which is the frontal part of the fold-thrust 

belt (e.g. Nakata, 1989; Powers et al., 1998). The Subhimalayan zone is a 10 to 25 km area consists of 

Neogene Siwalik (or Churia) Group rocks that crop out in several northward dipping thrust sheets (e.g. 

Gansser, 1964; Valdiya, 1980; Powers et al., 1998).  

 

Lesser Himalaya: This zone is bounded by the Main Central Thrust (MCT) to the north and the Main 

Boundary Thrust (MBT) to the south. Unlike the higher Himalaya, the lessers only experienced 
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metamorphism up to the green schist facies. The rock types outcrupping here are different. They are 

primarily sedimentary rocks from the Indian platform. Rock units here also show a series of anticlines 

and synclines that in many cases are quite sheared. Fossils have been found in this zone, but they do not 

occur at the same frequency as Tehtyan zone fossils (e.g. DeCelles et al., 2001; Fuchs and Frank, 1970; 

Frank and Fuchs, 1970; Valdiya, 1980; Stöcklin, 1980).  

 

Higher Himalaya: This zone consist of paragneiss schists, migmatites, marbles, and orthogneisses. To the 

north of the Main Central thrust, rocks are metamorphosed to amphibolite facies, whereas the rocks of 

the Dadeldhura thrust sheet are generally in the upper greenschist facies (e.g., DeCelles et al., 2001; 

Sorkhabi and Macfarlane, 1999).  

 

 

 
 

 

Figure 3-15. Geological map of the Himalayas, after Yin et al. (2010). Profile 1: geological cross-section of Lavé and Auouac, 
2000 (Fig. 3-16), profile 2, 3 and 4: extra added profiles for better taper analysis.       
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Tibetan-Himalaya: The Tethyan Himalayas consist of 10-17km marine sediments that were deposited on 

the continental shelf and slope of the Indian continent. This occurred when India was drifting still in the 

southern hemisphere (Verma, 1997). Sediments are largely unmetamorphosed, which consist of 

synclinorium basins fossils. Some regions have experienced greenschist facies deformation (Windley, 

1995). Altogether, a lot of studies on the Himalayas (e.g. Gansser, 1964; Sorkhabi and Macfarlane, 1999; 

DeCells et al., 2001) show that the lithology of the northern Himalayas is mechanically harder than those 

of the southern Himalayas. Annual precipitation ranges from 200 to 5000 mm/yr. In the region dry 

climate dominates. Vegetation in the southern Himalayas is denser than the northern Himalayas (Kottek 

et al., 2006; NOAA images). 
 

3.6.2.2  Parameters compiled for a critical taper theory applied to the Himalayas 

 
Basal dip (𝛽): There are several studies about the depth of the Himalayas detachment but all of them 

have used a common cross-section, which has been studied by Lavé and Avouac (2000) and is also used 

for this study (Fig. 3-16). This cross-section constructed from geological and seismological data shows 

basement and sedimentary layers. Along this section, the units from the Paleozoic to the Tertiary are 

detectable (Fig. 3-15). For this section, there are different possibilities to place the basal dip: 

1) Along the MFT (main frontal fault) slipping can occur. If we take it as a detachment, beta is 

between 6° and 9°. It seems that this value for beta is unusually large. Thus, this possibility can 

be eliminated. 

2) A detachment can be assumed between the metasediment unit and the basement (detachment 

B). This metasediment unit consists of phyllite, philitic siltide, chloritic schist, which could be 

weaker than the basement. It leads to slipping of the metasediment member above the upper 

crust. The beta value for this detachment is estimated 1.7° ± 0.6°. 

3) A weak boundary can be assumed between the Paleozoic and the overlaying sediments 

(detachment A). The sediment unit consists of claystone, siltstone, sandstone and conglomerate. 

The boundary between this unit and Paleozoic layer can be consiederd as a weak plate, which 

has a beta value the same as the detachment B (1.7° ± 0.6°). 

For this cross-section beta values of about 1.7° ± 0.6° have been estimated (table 3-1). These values are 

for PW (southern side). 

Slope (α): Along the mentioned cross-section, there are normal and thrust faults and also V-shaped 

valleys. Therefore, as for the other orogens, a regional segmentation was identified to find α. 

Precipitation and vegetation affected the surface of the region. In the south of the area, climate is humid 

and vegetation is dense but dry climate dominates in the region. According to Vance et al. (2003) the 

maximum erosion rate for this region is 10 mm/yr. Considering the mentioned parameters, a regional 

segmentation (red line) has been identified (Fig. 3-19 c). The values resulting from the extra profiles are 

available in the appendix (Fig. 6-4). 
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Figure 3-16. Measurement of basal dip in the Himalayas, along the profile of Lavé and Avouac (2000). Beta values: 1.7°±0.6° 
for the entire profile, lithological data (Lavé and Avouac., 2000). See also Fig. 3-15 for the location of cross-section. 
 
 

3.6.3  Apennines 

3.6.3.1  Tectonics, Lithology and Climate 
 
The southern Apennines fold and thrust belt results from the convergence between the Africa-Apulian 

and the European plates since the Late Cretaceous (Mazzoli and Helman, 1994, and references therein). 

The Apennine orogen comprises several tectonic units characterized by Mesozoic-Tertiary shallow water 

to slope-facies carbonates (Apennines and Apulian carbonate platforms) and pelagic basin (Lagonegro) 

successions. They originate from the deformation of the Apulian continental paleomargin, as well as 

unconformably overlying Miocene-Pliocene wedge-top and foredeep basin deposits (Bonardi et al., 

2009; Mazzoli et al., 2008). The orogenic mass is tectonically covered by remnants of an accretionary 

wedge, which was superposed onto the Apennine Platform domain in the Early Miocene (Bonardi et al., 

2009; Ciarcia et al., 2009). 
 

Generally, the area comprises southern Tethys passive margin sediments, basins, ramps and structural 

highs of Triassic to Miocene age (Parotto and Praturlon, 1975). These are dominated by various 

carbonate facies (platform, margin and basin) that are dissected by Cenozoic and Mesozoic faults. 

Between the major thrust-related culminations of these carbonates, Late Miocene and Pliocene 

siliciclastics (flysch) overlie them. From the south-west to the north-east, the onlap of progressively 

younger flysch onto the pre-tectonic carbonates has been used to support a model of piggy-back 

thrusting that migrated towards the north-east (Cipollari and Cosentino, 1995). In a general view, this 

region from the south to the north consists of hard to soft lithological units (Fig.3-17). 

http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib9
http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib4
http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib4
http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib10
http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib4
http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib4
http://www.sciencedirect.com/science/article/pii/S1631071310000921#bib6
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Figure 3-17. Geological map of central Italy, after Rosenbaum et al. (2002). Profile 3: studied cross-section by Tozer et al. 
(2002, Fig. 3-18), profile 1, 2, 4 and 5: extra added profiles for better taper analysis. 
 
 
 

Italy has a variety of climate systems. Between the north and the south, there can be a considerable 

difference in temperature. The east coast of Italy is not as wet as the west coast, but it is usually colder 

in winter. The east coast is occasionally affected by cold winds in winter and spring. Precipitation rate is 

different in the entire region, but mostly a wet climate dominates (Kottek et al., 2006). 
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3.6.3.2  Parameters compiled for the critical taper theory applied to the Apennines 

 

Basal dip (β): The cross-section published by Tozer et al. (2000) consists of different layers, such as 

carbonate of Triassic-Middle Miocene, alluvial sediment of the Pliocene-Quarternary and also flysch of 

the Miocene-Pliocene and some volcanic of the Pleistocene (Fig. 3-18), which can be considered as a 

thin-skinned model. The detachment can be assumed between the basement and the basal Triassic 

layers. For this detachment, beta values of 1.4° for the retro-wedge and 0° for the pro-wedge have been 

estimated.  

 

 

 
Figure 3-18. Measurement of basal dip in the Apennines, along the profile of Tozer et al. (2002). Beta values: 1.4°±1.5° for 
the RW and 0° for the PW, lithological data (Tozer et al., 2002). See also Fig. 3-17 for the location of cross-section. 

 
 
 

Slope (α): Along the mentioned cross-section, thrust faults dominate especially on the NE side and affect  

the surface slope. V-shape rivers also are detectable along the profiles. Thus, like for the other regions, 

a regional segmentation has been identified from the topographic profile along the geological cross-

section (Fig. 3-19 d, red dashed line). α-values from the extra profiles are available in the appendix (Fig. 

6-5). The α and β estimated for the Apennines indicate that the retro-wedge is coincident with the 

northern flank and pro-wedge with the southern flank which is compatible with Moho data and the 

geometry of the orogen (Piana and Amato, 2009). 
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a) 

 

b) 

 

c) 

 

 

 X Y Z (m) Slope (°) 

1 48.6000 41.5000 266.5227 1.27 

2 48.4569 41.3160 838.0704 3.58 

3 48.3511 41.1800 2028.5969 2.96 

4 48.2466 41.0456 3000.7369 4.87 

5 48.2265 41.0197 3308.3883 6.98 

6 48.1604 40.9349 1856.3602 2.17 

7 48.0003 40.7290 763.6015 1.73 

 Min. slope :  1.27° 
Max. slope : 6.98° 
Mean slope : 3.01° 

 X Y Z Slope (°) 

1 56.2000 28.2000 1064.1899 -2.17 

2 56.2361 27.8389 2708.8227 2.42 

3 56.2649 27.5363 1172.0310 1.64 

 Min. slope : -2.17° 
Max. slope :  2.42° 
Mean slope : 2.01° 

 X Y Z Slope (°) 

1 85.3000 28.3000 5411.5605 -2.5 

2 85.2957 28.2913 5719.7684 1.2 

3 85.2939 28.2398 5656.0976 5.7 

4 85.2847 28.2143 4130.2993 0.51 

5 85.2595 28.0857 3756.6191 3.40 

6 85.2422 27.7325 2070.7949 0.26 

7 85.2033 27.2322 640.2755 2.21 

 Min. slope :  -2.5° 
Max. slope :  5.7° 
Mean slope : 1.74° 
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d) 

 

Figure 3-19. Regional slope along the main profiles, as well as the table of coordinates and α-values of the segments. The α-
values of the extra profiles are given in the appendix. Regional slope of a) the Caucasus (along the profile of Mosar et al., 
2010; Fig. 3-11), b) the Zagros (along the profile of Molinaro et al., 2005; Fig. 3-13), c) the Himalayas (along the profile of Lavé 
and Avouac, 2000; Fig. 3-15), d) the Apennines (along the profile of Tozer et al., 2002; Fig. 3-17), black dashed line: crest of 
orogen, red line: general segmentation, green dashed line: local segmentation. 
    

 

3.7   Critical taper analysis 
 

In the following, I present a critical taper analysis for the Alborz and other orogens of the AHB in terms 

of computing F-value maps. Then, I argue, if the F-maps can show the wedge stability of the Alborz and 

other orogens of the AHB. For this purpuse, all compiled data, such as tectonics, lithology, climate, 

earthquakes and landslides have been used. Since this study mainly focuses on the Alborz, extensive 

data have been compiled for this region and then for the Caucasus region. For some regions, the 

available data are local not regional.  

 

3.7.1  Alborz 

 
 

In western Alborz, the number of faults are higher than on its eastern side (Fig. 3-20 b). According to the 

critical taper theory, the faults can be a result of internal deformation of orogen. According to the local 

slope map (Fig. 3-20 b), on the western side, local slope can be higher than 30°, but on the eastern side, 

these values are up to 20°. Increasing slope (α) leads to an increase in the F-value (von Hagke et al., 

2014). Therefore, by means of the local slope map, it is possible to estimate the local F values. Thus, if 

the local slope map shows  high values in a location, it means that this location has  high local F-values 

(Fig. 3-20 b). The local slope values are higher in western Alborz. This can indicate a higher wedge stability 

for the western part than the eastern part. Given the mentioned data, a non-uniform mechanical wedge 

state can be expected for the Alborz. 

 X Y Z (m) Slope (°) 

1 13.9500 42.8000 3.6530 1.61 

2 13.5321 42.3666 1811.3874 0.27 

3 13.2978 42.1237 1638.1286 0.76 

4 13.1428 41.9629 1321.2745 0.07 

5 13.1057 41.9245 1314.0352 2.09 

6 13.0517 41.7334 593.3720 0.44 

7 12.75 41.5580 390.4798 0.86 

 Min. slope :  0.07° 
Max. slope : 2.09° 
Mean slope : 0.98° 



 
3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-HIMALAYAN BELT 

 

76 
 

                   a) 

 
 

                   b) 
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                            c)  

 

 
 

Figure 3-20. Elevation, local slope and earthquakes of the Alborz region. a) Elevation map from SRTM 90 m, b) Local slope 

from elevation map. Faults: Berberian et al.(1993);  Hinds et al. (2001); Allen et al. (2003), Guest et al. (2006 a, b); Nazari et 

al. (2007), Moho: Motavalli-Anbaran et al. (2013), c) Earthquakes and stress regimes and location of F-maps, earthquakes 

(NEIC catalogue, 1900 to 2014 ), red lines: main faults (Berberian et al., 1993; Hind et al, 2001; Allen et al., 2003), blue arrows: 

GPS velocity (Vernant et al., 2004 a, b), focal mechanism (CMT Catalogue, Ekström et al., 2012), stress data (WSM Catalouge, 

Heidbach et al., 2008, green: thrust fault), black line: location of geological cross-section, blue line: location of topographic 

profile. 

 

 

A high frequency of earthquakes is obvious in eastern Alborz (Fig. 3-20 c). It shows that this part of the 

Alborz may have a relatively lower wedge stability. Besides, a higher number of landslides appear in 

eastern Alborz (Fig. 1-4 a). It should be noted that a regional map of landslides, which shows the size and 

volume of landslides, is not available for the Alborz region. There is just data about the location of 

landslides in the Alborz. Furthermore, for a small section, there are data about the size and volume of 

some giant landslides, which are located mostly in northern Alborz (Fig. 1-4 b). Additionally, more rivers 

are observed in eastern Alborz than in western Alborz (Fig. 3-6 a). Rivers can be taken as wetness, which 

could increase the pore fluid ratio. Where the pore fluid ratio is high, effective friction is low (e.g. Dahlen, 

1984). 

 

With the obtained values of “alpha” and “beta” and with the help of equation (3), the F-value for the 

Alborz region has been calculated. If in this equation, we considere 𝑊=1, then we have F = 2α + β. The 

F-maps are based on regional alpha (mean alpha) but different beta values (minimum; Fig. 3-21 a, mean; 

Fig. 3-21 b, and maximum; Fig. 3-21 c). According to the equation (3), any change in “beta” has in fact a 

little effect on the obtained F-values, but every change in “alpha” can change F-values, effectively. The 
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obtained F-maps show that F-values range from 0.03 to 0.35 in the region. The lowest F-values (0.03-

0.10) appear in the east and west of the region (Fig. 3-21 a, b, c). In the north and some places of the 

south, F-values are greater than 0.15. The highest F-values are mostly visible in the NW. However, all F-

maps show a relatively higher F-value in northern Alborz (retro-wedge; Fig. 3-21 a, b, c).  

 

The minimum F-value is comparable with result of Suppe (2007) for Taiwan (0.08) and Niger delta in 

Nigeria (0.04) based on the W-value of 0.6 and 0.7, respectively. F-values of Taiwan were between 0.07 

and 0.11, if 𝑊=1 (Suppe, 2007), which  is less than in the Alborz region. According to the obtained F-

maps of the Alborz, in the region of studied profiles, fault strength may be higher in northern Alborz than 

in southern Alborz. If we consider that the F-values are in fact an equivalent of basal friction (𝜇𝑏) (e.g. 

von Hagke et al., 2014), then, there is relatively higher friction (𝜇𝑏) in northern Alborz, consequently 

northern Alborz may be more stable than southern Alborz (Fig. 3-21 a, b, c). 
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a) 

 

b) 
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c) 

 

d) 

  

Figure 3-21. Map of F-values in the Alborz region. Higher F-values in the north of the area based on mean alpha and minimum 

beta values (a), mean alpha and mean beta values (b), mean alpha and maximum beta values (c), mean alpha and beta with 

geo-hazards (earthquakes: NEIC Catalogue, 1900 - 31.05.2015; landslides: Hafezi and ghafoori, 2007) (d). See also Fig. 3-20 c 

for the location of maps. 
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To analyse if hazard is related to orogen mechanics, especially F-values of the Alborz, and geo-hazard, 

i.e. earthquakes and landslides are plotted on the F-maps (Fig. 3-21 d).  As mentioned, the obtained F- 

maps showed a relatively higher stability in northern Alborz. It is comparable with the geo-hazards 

distribution in the region. There are some landslides and earthquakes in northern and southern Alborz, 

but a high frequency of landslides is observed in a trend of NW-SE area in the middle part of the region. 

To complete the comparison of F-value and geo-hazards and thus for a better interpretation of wedge 

stability, to study of micro earthquakes is necessary. For the Alborz region, in the coordinate of F-maps, 

there are no microseismic data available, but for another part of Alborz (west part) microseismic data 

from 1900 to 2011 were available (Fig. 1-3 b). Taken together, based on the F-maps, earthquakes and 

microsesimicity, it can be explained that in northern Alborz the F-values are higher. Therefore, the 

northern Alborz may be more stable than southern Alborz in the location of F-maps.  

 

3.7.2  Caucasus 

 
In this region, the variation of local slope or local F-values is the same as Alborz and is between 0°-35°. 

The maximum local F-values are detectable in the entire orogen (Fig. 3-22 a, b). Faults, especially thrusts, 

are detectable along the orogenic line but in the center, near to the west part, smaller faults also are 

visible (Fig. 3-22 b). The entire Caucasus experiences earthquakes and landslides (Fig. 3-23, 3-24), but a 

high frequency of earthquakes and large landslides are observed mostly on the southern side of the 

orogen (the pro-wedge).  The Entire Caucasus (pro- and retro-wedge) is covered by forest and a wet 

climate dominates in the region (Kvavadze and Rukhadze, 1989; Kottek et al., 2006). F-maps show a 

general variation between 0 and 30 radian. In mostly three parts of the map, i.e., in the NE, E, and middle 

part of the region high F-values are observed (3-25 a, b, c) 
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a)  

 
c)  

 

 
Figure 3-22. Elevation and local slope in the Caucasus region. a) Elevation map from SRTM 90 m, b) Local slope from the 

elevation map. Faults: Saintot et al. (2006), Moho: Eppelbaum and Khesin (2012). 
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Figure 3-23. Map of earthquakes and tectonic regimes in the Cuacasus. Topography (DTU, Andersen and Knudsen, 2009), 
blue arrows:  GPS velocity (Vernant et al., 2004 a, b), beach balls: Focal mechanism (CMT Catalogue, Ekström et al., 2012), 
stress regime (WSM Catalogue, Heidbach et al., 2008, WSM Symbols, Red:  normal fault, green:  thrust fault), red line: main 
thrust fault, black line: location of geological cross-section, blue line: location of topographic profile. 

 

 

Figure 3-24. Landslide map of the Caucasus region, after Armenian second national communication 2010 (http://www.undp-
alm.org). 

http://www.undp-alm.org/
http://www.undp-alm.org/
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F-maps based on alpha (mean) and beta (mean, minimum and maximum value) (Fig. 3-25) show values 

between 0.05 and 0.35 radian for the Caucasus region. This is lower than the F-values of Taiwan (0.07-

0.11 radian, Suppe, 2007).  

 

According to the F-maps, a high F-value (greater than 0.15) region in NE, W and the center of the 

Caucasus is detectable. The other regions are almost between 0.05 and 0.15. Altogether, it can be 

interpreted that in the east Caucasus the higher F-values are detectable in the northern and southern 

sides of the orogen, but they may be relative higher in the northern side, i.e. the retro-wedge (Fig. 3-25 

a, b, c). 

 

If we accept that the northern flank of the Caucasus orogen has higher F-values, then it can be assumed 

that the northern flank can have a higher basal friction (𝜇𝑏) and may be more stable than the other parts 

of Caucasus orogen. This result is almost the same as for the Alborz region (Fig. 3-21 a, b, c), i.e. in the 

Alborz region, F-values on the northern flank (RW) are higher than on the southern flank (PW).  

 

Furthermore, similar to the Alborz, earthquakes and landslides are more numerous in the southern part 

of the Caucasus (Fig. 3-25 d), which is not in agreement with the distribution of F-values. It means that I 

expected a higher number of earthquakes in the lower F-value parts of the Caucasus but the higher F-

value parts also experienced earthquakes and landlides. This may depend on some natural factors, such 

as differences in lithology and climate. As mentioned, lithology and climate of the Caucasus are not 

similar to the Alborz and on both the northern and southern flanks, are mostly the same. However, for 

this region in the compiled data (lithology, climate, tectonics, surface slope, earthquakes, landslide) and 

F-maps, no specific differences between pro- and retro-wedge have been identified. It can be assumed 

that the mechanical state of the wedge is the same in the entire region. 
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a) 

 

 

b) 

 

 

 



 
3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-HIMALAYAN BELT 

 

86 
 

c) 

 

 

d) 

 

Figure 3-25. Map of F-values in the Caucasus region.  Higher F-values in the northeast and in the small location of the west 
and center, based on mean alpha and minimum beta values (a), mean alpha and mean beta values (b), mean alpha and 
maximum beta values (c), mean alpha and mean beta with geo-hazards (earthquakes: NEIC Catalogue 1900-31.05.2015; 
landslides: Armenian second national communication 2010 (d). See also Fig.3-23 for the location of maps. 
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3.7.3  Zagros 

 
As shown, the region of the Zagros is a part of a bivergent orogen, i.e. the pro-wedge part. Faults have 

almost a NW-SE trend in this region and a higher number of these faults are obvious in the NE and W of 

the region (Fig. 3-26). The dominant local slope values are between 5°-25° and local slope values higher 

than 30° are presented in some limited small areas near the faults (Fig. 3-26). The lithological map of the 

region indicates that the eastern part has mechanically stronger units in comparison to the western part 

(Fig. 3-13). According to the NOAA images and the Köppen Geiger climate classification, this region has 

an arid climate (Kottek et al., 2006). 

 

 

 
 

 
 
Figure 3-26. Local slope map of the Zagros region. Slope data from SRTM 90, Faults: Molinaro et al. (2005), Moho: Manaman 

et al. (2011), Nasrabadi et al. (2008). 
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The obtained F-maps of the Zagros region show a variation of F-values between -0.20 and 0.15. Based 

on the minimum, mean and maximum F-values, the south of the area and some locations in the west 

and east have relatively higher F-values (Fig. 3-27 a, b, c). This indicates that mostly the south of the 

Zagros region may have a higher basal friction (𝜇𝑏) and consequently may have a higher wedge stability 

in comparison to the north of the region. Since this section shows a part of bivergent orogen, I do not 

compare this section with the section of the Alborz. The lowest F-values are obtained for the northern 

part of the profiles (Fig. 3-27 a, b, c). Plotting earthquakes epicenters on an F-map (Fig. 3-27 d) indicates 

high epicenters in the middle to the eastern part of this region (F-value of 0 - 0.1). This is in agreement 

with the local slope map and the number of faults (Fig. 3-26). In the eastern part, the number of large 

faults are lower than the western part. Besides, the high local slope values are rarely detectable in the 

eastern part. This means the eastern part may have a low stability.  

 

According to Hafezi and Ghafoori (2007), the studied Zagros region experienced a lower number of 

landlsides (less than 5). However, complete data with coordinates and size of the landslides are not 

available. Thus landslides are not shown on the F-maps and are not correlated with the F-values. 
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c) 

d)                                  

 

Figure 3-27. Map of F-values in the Zagros region. Higher F-values in the south, based on mean alpha and minimum beta 

values (a), mean alpha and mean beta values (b), mean alpha and maximum beta values (c), mean alpha and mean beta with 

earthquakes (NEIC Catalogue, 1900- 31.05.2015) (d). See also Fig. 3-13 for the location of maps. 
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3.7.4  Himalayas 
 
The studied part of the Himalayas, is located within the pro-wedge. Thrust faults dominate in this region 

and generally show an E-W trend and are equally frequent all over the study area. Only one normal fault 

with the same trend was located in to the north of the studied region. This means that the thrust faults 

dominate in the region (Fig. 3-28). Besides, higher local F-values are obvious in the middle part of the 

region in a trend of east-west (Fig. 3-28). It can be assumed that in the region of thrust faults, i.e in the 

middle part as a result of a compressional regime and higher local slope, higher friction along these faults 

may exist. The lithological map of the region shows a relatively stronger northern part in comparison to 

the southern part (Fig. 3-15). There are some landslide areas in this region (Ives and Messerli, 1989), but 

a regional map, which shows the coordinates and size of them is not available. NOAA images and Köppen 

Geiger climate classification reveal an arid area for Himalayas (Kottek et al., 2006).  

 

 
 

 

Figure 3-28.  Local slope map of the Himalayan region. Slope data from SRTM 90, Faults: Lavé and Auouac (2000), Zhao et al., 

1993; Yin et al, (2010), Moho: Zhao et al. (1993).                    
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According to the obtained F-maps, a variation of F-values from -0.05 up to 0.25 are observable in the 

Himalayas. In the middle part of the region, in a NW-SE trend, the highest F-values are obvious. This 

indicates that these locations may have a higher basal friction (𝜇𝑏) and consequently may have a higher 

wedge stability. The lowest F-value is visible in two sections of the northern part. These negative values 

are a result of negative surface slope in equation (3). F-values between 0.05 and 0.20 dominate in the 

region (Fig. 3-29 a, b, c). The region has experienced many earthquakes (Fig. 3-29 d). Plotting earthquake 

epicenters on an F-map indicates that at the higher F-value locations, epicenters are rarely detectable 

(Fig. 3-29 d). Earthquakes concentrate almost in the northern part of the region, which shows lower F-

values. For this orogen, no specific differences have been detected within the region. It can be assumed 

that the entire Himalaya region may have a same wedge stability. 
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c) 

 

d) 

                                                           

Figure 3-29. Map of F-values in the Himalayan region. Higher F-values in a trend of W-E and also in the south, based on mean 
alpha and mean beta values (a), mean alpha and minimum beta values (b), mean alpha and minimum beta values (c), mean 
alpha and mean beta with earthquakes (NEIC Catalogue, 1900- 31.05.2015) (d).See also Fig. 3-15 for the location of maps. 
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3.7.5  Apennines 

 
Faults are located with a trend of NW-SE the entire region to the NE. A variation of local slope values 

between 20° and 30° is observed in the region and values higher than 30° are limited to small areas in 

some places, mostly in the east (Fig. 3-30).  These may indicate to a relatively higher friction in the 

eastern part.  The lithological map indicats that the southern part of this region is mechanically stronger 

than the northern part (Fig. 3-17). NOAA images and the Köppen Geiger climate classification reveal a 

wet climate for the region (Kottek et al., 2006).  

 

 
 

 
 

Figure 3-30. Local slope map of the Apennines region. Slope data from SRTM 90 m, Faults: Tozer et al. (2002), Calamita et al. 
(2014); Moho: Piana and Amato (2009). 
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According to the obtained F-maps, a variation of the F-value from 0 to 0.10 is observed for the Apennines 

region. The northern flank shows maximum F-values. In contrast, the southern flank shows minimum F-

values (Fig. 3-31 a, b, c). This indicates that the north of the region may have a higher basal friction (𝜇𝑏) 

and consequently may have a higher stability. This is comparable with the northern Alborz region, which 

shows a higher wedge stability. F-values between 0 and 0.05 dominate the Apennines region (Fig. 3-31 

a, b, c). Plotting earthquake epicentres on an F-map shows that in the north of the region, some 

epicenters are detectable, but they are numerous in a NW-SE trend in the middle part of the region. The 

northeast of this region has higher F-values, but a lower number of earthquakes. It is compatible with 

the faults number and the local slope values (Fig. 3-30), which may indicate more stability for the 

northeastern part, i.e. for the retro-wedge of the orogen (Fig. 3-29 d). The entire Apennines is in a 

landslide hazard region (Guzzeti et al., 2005), but a general map with coordinates of the landslides was 

not available. Thus, they are not plotted on the F-maps. 

 

In the next sections, I compare the wedge stability of all of the the AHB orogens from different 

viewpoints.  
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a) 

 

 

b) 
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c) 

 

d) 

 

Figure 3-31. Map of F-values in the Apennines region. Higher F-values in NE based on mean alpha and mean beta values (a), 

mean alpha and minimum beta values (b), mean alpha and minimum beta values (c), mean alpha and mean beta with 

earthquakes (NEIC Catalogue, 1900-31.05.2015) (d).  

 

 

 



 
3   CRITICAL TAPER ANALYSIS OF THE ALBORZ AND OTHER OROGENS OF THE ALPINE-HIMALAYAN BELT 

 

99 
 

 

Table 3-2. Comparison of the AHB orogens (black: finding from literature review; blue: result of this research). 

 Alborz Caucasus Zagros Himalayas Apennines Alps         

Local slope  0-35° 

east: 5-25°/West: 

25-35°, in PW 

slope value bigger 

than 30° is more 

than RW (Fig. 3-

20 b). 

0-35° 

same distribution 

for east and west       

in PW slope value 

bigger than 30° is 

more than RW (Fig. 

3-22 b). 

0-35° 

slope 0-5° 

dominate the 

area, slope 25°-

35° in west and 

center is higher 

than E and NE 

(Fig. 3-26). 

0-45° 

slope 25°-45° in 

west and center of 

orogen is higher, 

Center and south is 

steeper than north 

(Fig. 3-28). 

0-35° 

0-15° dominate the 

area, slope 15°-35° 

in the area of 

profiles is higher 

(Fig. 3-30). 

            

            0-5° 

(von Hagke et al., 

2014) 

Regional slope 

(mean) 

0 - 8° 

in some profile 

RW is steeper 

than PW, in some 

profile invers (Fig. 

3-19, 6-1). 

0 -7° 

in some profile 

PW is steeper than 

RW, but in some 

of those are invers 

(Fig. 3-19 a, 6-2). 

-6°-3.5° 

in some profile 

more segment 

(Fig. 3-19 b, 6-3). 

-2.7°- 6° 

in some profile 

more segment (Fig. 

3-19 c, 6-4). 

0°-2.5° 

more segmentation 

in PW (Fig. 3-19 d, 

6-5). 

 

 

Basal 

detachment 

(mean) 

Pw: 2.7° ± 1° 

Rw: 2° ± 1.8°  (Fig. 

3-7) 

Pw: 2.2°± 1.6° 

Rw: 3.3° ± 1.8° 

(Fig. 3-12) 

PW: 1.1° ± 1.2° 

(Fig. 3-14) 

PW: 1.7° ± 0.6° 

(Fig. 3-16) 

                Pw: 0° 

Rw: 1.4° ± 1.5°      

(Fig. 3-18) 

                2.9° 

(von Hagke et al., 

2014) 

Lithology east and west 

almost same 

hardness. S to N 

weak to strong 

units (Fig. 3-5).   

center of orogen is 

stronger than 

north and south, 

same hardness for 

PW and RW (Fig. 

3-11). 

almost same, but  

sometimes in 

north is stronger 

than south. West is 

stronger than east 

(Fig. 3-13). 

south to north:   

weak to strong (Fig. 

3-15). 

south to north:   

weak to strong (Fig. 

3-17). 

south to north:                  

strong to weak 

Moho 30-60 km           

(Fig. 2-8; 

Motavalli-Anb. et 

al., 2013) 

40-60 km            

(Fig. 3-22b 

Eppelbaum&Khesi

n, 2012) 

45-55 km               

(Fig. 3-26; e.g. 

Manaman et a., 

2011) 

55-65 km                   

(Fig. 3-28; Zaho et 

al., 1993) 

25-40 km                   

(Fig. 3-30; 

Piana&Amato, 

2009) 

30-45 km 

(Molinari et al., 

2012) 

Climate east &west: same       

PW/RW:arid/wet 

east &west: same       

Pw & RW: wet 

arid arid Pw & RW: wet Pw & RW: wet 

F       0 - 0.35          

(Fig. 3-21) 

0 - 0.30             
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Figure 3-32. Stability diagram. a) State of wedges for the orogens of the AHB based on different  𝜙𝑏 (angles of basal friction) 

value; b) State of wedges if   𝜆  = 𝜆𝑏 = 0,  𝜙 = 30°,   𝜙𝑏=10° , after Dahlen (1984); c) state of wedges based on different basal 

friction angles (𝜙𝑏): 1- 𝜙𝑏=0°; 2- 𝜙𝑏=20°; 3- 𝜙𝑏=30°. d) Zooming of minimum and maximum alpha and beta values. Alpha and 

beta values of the Alps are from the study of von Hagke et al. (2014). See also Fig. 1-1 for the location of each orogen. 
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3.8   Discussion 
 
3.8.1  Mechanical state of orogens based on critical taper analysis 

Based on alpha (approximate surface slope) and beta (approximate basal dip) for the pro- and retro-

wedge, respectively F-values for each orogen have been estimated. According to these values, among 

the AHB orogens, the maximum average alpha was obtained to the Alborz and Caucasus region (8°), 

whereas Zagros had the minimum alpha value (-6°). The Zagros region indicated relatively higher 

negative values for alpha (Table 3-2). In southern Iran, i.e. Zagros and its surroundings, salt plays an 

important role for the structural development of the orogen (e.g. Kent, 1979; Talbot and Jarvis, 1984; 

Jahani et al., 2009) and could affect the surface slope, thus the negative values for alpha could be a result 

of existence of the salt zones.  The beta values of the AHB orogens vary from 0° to 3.3° (Table 3-2). The 

maximum and minimum beta values obtained in this study were for the retro-wedge of the Caucasus 

region (  3̴.3°) and the pro-wedge of the Apennines region (0°), respectively (Fig. 3-32 d).  

As mentioned, with the help of the alpha and beta values and equation (3), an estimation of the wedge 

state for each orogen is possible (Fig. 3-32 a). For this purpose, alpha and beta are used in equation (3) 

to illustrate the stability diagram suggested by Dahlen (1984). By varying alpha and beta, the angle of 

friction (𝜙𝑏) will be also varied. However, in this diagram, almost all of the AHB orogens are in the same 

state, i.e. in a critical-stable state (Fig. 3-32 b).  

If we consider 𝜙𝑏 in a range of 0° to 10°, then some orogens are located in the stable region and some 

of them in the unstable (under-critical) region and also on the border between the stable and unstable 

state, i.e. they may be critical. With  𝜙𝑏 of more than 10° (e.g. 20°), the orogens are located mostly in 

the non-stable part. If 𝜙𝑏=30°, then all the orogens are located in the non-stable region (Fig. 3-32 c).  

Taking everything together, 𝜙𝑏 in a range of 0° to 10° is realistic for the AHB orogens and thus in Fig. 3-

32 b, c, the obtained  curves of 𝜙𝑏 is similar for all orogens. If we consider 𝜙𝑏 to be 10°, then it can be 

suggested that the Alborz and Caucasus region, especially the pro-wedge of the Alborz and the retro-

wedge of the Caucasus are more stable than the other orogens of the AHB. It should be noted that the 

data of the Alps are based on the study of von Hagke et al. (2014). In their results, beta is 2.9°, which 

only addressed the Alps pro-wedge (Fig. 3-32 a, b, d). 
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3.8.2. Wedge state of orogens based on F-value, lithology, slope and climate 
 

In this part, I apply my findings to obtain the natural wedge state, i.e. F-values correlated with some 

natural factors. These factors are lithology, local slope, faults, rivers, precipitation and climate. All of 

these parameters help to better identify the mechanical state of wedges. For example, the F-map 

illustrates basal friction (𝜇𝑏, e.g. von Hagke et al., 2014), which is impossible to measure in nature. Faults 

can also be an indicator for friction. Slope map give hints to local wedge stability. All of these parameters 

should be compared with the F-values. This also helps to show a local wedge state. For this goal, three 

classes can be represented (Fig. 3-33): 

a) Situation of the pro- and retro-wedge based on only alpha-beta values.  

b) Situation of the pro- and retro-wedge based on climate and lithology.  

c) Situation of the pro- and retro-wedge based on local slope and faults.  

 

The first classification (a) has been explained already earlier (Fig. 3-32). It is based on the alpha values, 

which have been estimated from topographic profiles (SRTM data), and also beta values, which have 

been estimated from geological profiles. According to this classification, all of the orogens are in a 

critical-stable state. This situation does not seem to depend on the geographic location, because from 

the east to the west of the AHB no special systematic change is observable (Fig. 3-33 a).  

 

The second classification (b) is based on lithology and climate type (Fig. 3-33 b). As mentioned, wet 

climate and weak lithology lead to lower stability and in contrast, arid climate and strong lithology lead 

to higher stability. Lithology or material of an orogen relates to the friction of the orogen (e.g. Lohrman 

et al., 2003), i.e a “hard” lithology may have a higher coefficient of friction than a “soft” lithology. Wet 

climate with precipitation and humidity can reduce the friction of an orogen (e.g. Dahlen, 1984). In 

contrast, an arid climate can lead to higher friction. Friction plays a crucial role in controlling thrust 

faulting and wedge stability (e.g. Dahlen et al., 1984). 

 

Classification (b) indicates that the northern Alborz (retro-wedge) with a strong lithology and wet climate 

may be more stable than the southern side (pro-wedge). This result is comparable with the F-maps of 

the Alborz region. These maps and also the distribution of earthquakes and landslides (Fig. 1-3, 1-4 and 

3-21) indicate that the northern Alborz is more stable than its southern side.  

 

Based on classification (b), the southern Apennines (pro-wedge) has a relatively “harder” lithology and 

could be more stable than its northern side (retro-wedge). According to the geological map illustrated 

by Rosenbaum et al. (2002) it seems that the southern part consists of a relatively stronger lithology. 

Earthquakes (Fig. 3-31 d) are more numerous in the center and NE part of this region. This is compatible 

with the F-maps. F-values do not change very much in the entire Apennines, but in the retro-wedge, F-

values are relatively higher and indicate that the retro-wedge of Apennines can be more stable than the 

pro-wedge.  
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According to the second classification (b), the northern Alps (pro-wedge) has a wet climate and weak 

lithology, thus making it potentially weaker than the southern side (retro-wedge), which has a wet 

climate and strong lithology. It is interesting to note that all of these orogens have a N-S difference in 

lithology. However, in this classification, because of the lack of regional data for the Zagros, the Caucasus 

and the Himalayas, the interpretation of the wedge state is difficult. Altogether, this classification shows 

a critical-stable wedge state for all of the orogens. 

 

The third classification (c) is based on fault distribution and local slope. Faults can be considered as an 

indicator of internal deformation and also movement along two walls. Besides, by means of local slope 

maps we can have a view of general the F-values. As mentioned, F-value is an equivalent of basal friction 

(𝜇𝑏). Hence, according to the classification (c), the entire Alborz is not similar. Based on faults and the 

local slope map, it can be demonstrated that the western Alborz may have a relatively higher stability 

than its eastern part (Fig. 3-33 c).  

 

This wedge state is valid also for the Zagros region. According to the local slope map and fault distribution 

(Fig. 3-26), eastern Zagros is more stable than western Zagros. This is confirmed by the F-maps of this 

region (Fig. 3-27). Variation of lithology and climate is difficult to distinguish within the area. For the 

Apennines region, based on local slope maps and fault distribution (Fig. 3-30), it can be suggested that 

the eastern part has a relatively higher stability than the western part. This is confirmed with the F-values 

(Fig. 3-31), but lithology data indicated that the pro-wedge has a strong lithology and thus may be more 

stable (Fig. 3-33 b).  

 

Classification (c) also reveals a critical-stable state for all of the orogens. There is no relation between 

geographic locations (west or east orientation) and the wedge state in the entire AHB. This may be also 

valid within Iran, because the Alborz and the Zagros show the same east-west differences of local wedge 

state. As mentioned, for the Alps, a critical state was obtained by von Hagke et al. (2014). For the 

Caucasus and the Himalayas region, because of unclear data, to determine the local wedge state is not 

possible, but it can be assumed that these regions are similar to the other AHB orogens an equal 

mechanical state (critical-stable) dominates. 
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Figure 3-33. Local wedge state. Situation of pro- and retro-wedge based on alpha-beta values (a) as well as natural factors 

such as lithology and climate (b). Situation of pro- and retro-wedge according to the local slope and fault distribution (c). 

Rectangulars with dashed line are regions with poor or unclear data for local wedge state estimation. 

 

With the help of these three classifications, a comparison of the wedge state of the AHB orogens based 

on all of the studied factors is possible.  Additionally, with the help of the suggested classifications, a 

local wedge state of the orogens can be determined (final classification, Fig. 3-34 a).  

 

As mentioned, according to the stability diagram (Fig. 3-32), all of the AHB orogens are in a critical-stable 

state. The Alborz region, based on classification (b), has a more stable northern side or retro-wedge, 

whereas based on classification (c), its western part is more stable than the eastern part. If these data 

can be correlated, then it can be suggested that the Alborz region is in a critical-stable situation, but the 

pro-wedge of the eastern part is mostly in a critical state. For this location, the generation of new hazard 

(earthquakes and landslides) regions and also the reactivation of old hazard regions could be expected 
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more likely than for other regions of the Alborz, because friction seems to be lower here. This is 

comparable with the F-maps (Fig. 3-21) and nature. According to Fig. 3-21 d, the entire Alborz 

experiences earthquakes and landslides but in critical locations, their frequency and magnitude are much 

higher. In other words, these high geo-hazard may be a result of the critical state of the wedge (Fig. 3-

34 a, b).  

 

The Apennines region, based on the classification (b), has a more stable pro-wedge (the southern part), 

but according to the classification (c) has a more stable western part. By correlating of these data, it can 

be suggested that this orogen is also in a critical-stable situation, but the retro-wedge of the western 

part has a relatively more critical state and in this location, we can expect more geo-hazards than in 

other locations (Fig. 3-34 a). 

 

The Zagros region, based on the classification (c), has a more stable western part, which is compatible 

with the F-maps (Fig. 3-27) and thus in the eastern part, more geo-hazards can be expected than in the 

western part (Fig. 3-34 b). In other orogens, such as the Caucasus, the Himalayas and the Alps no 

difference within the regions has been detected. Thus, about the mechanical situation of these orogens, 

only based on alpha and beta can be suggested that they are in a critical-stable state, whereas the local 

state of orogens is difficult to assess.  

 

According to the all of the mentioned data, classifications, and their correlation with nature, for the study 

area (the Alborz region), it can be suggested that this region is in a critical-stable state, but southeastern 

Alborz may be in a critical state. Therefore, the entire Alborz experienced geohazard (earthquakes and 

landslides), but most earthquakes and landslides are occurring in the southeastern part. Furthermore, 

an earthquake with magnitude higher than 7 has been observed here, which may emphasize the 

difference of this part compared to other parts of the Alborz orogen (Fig. 3-34 b). Hence, the mechanical 

wedge state obtained from the taper analysis, the compiled data of lithology, climate, tectonics, and 

classification is compatible with the natural mechanical wedge state and geo-hazard in the region.  
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a) 

 
 

b) 

 
 
Figure 3-34. Local wedge state based on final correlation. a) Final classification, situation of the pro- and retro-wedge based 

on alpha-beta values as well as all natural factors together, b) Comparison of the local orogenic state with the Alborz region. 

 

3.8.3  Comparison with analog experiments 
 
The results of laboratory sandbox experiments indicate that parameters, such as erosion can affect the 

shape and size of a wedge. Besides, erosion on one part of wedge, e.g. the pro-wedge may affect the 

other part of a bivergent orogen (retro-wedge, Hoth et al., 2008). More specifically, pro- and retro-

wedge erosion retard the lateral growth of the pro-wedge. This effect is higher for pro-wedge erosion. 

Similarly, pro- and retro-wedge erosion delay the lateral growth of the retro-wedge. In this case, the 

effect is stronger for retro-wedge erosion. Retro-wedge erosion increases vertical growth, whereas pro-

wedge erosion significantly decreases it. Hence, every change of deformation in e.g. pro-wedge can 

cause of erosion in the retro-wedge and vice versa (Hoth et al., 2008).   

 

The influence of erosion on an orogenic wedge is well confirmed from the critical taper theory (e.g. Davis 

et al., 1983). Erosion of a critically tapered wedge may lead to internal deformation, thus changing α 

(surface slope) and β (detachment dip) by a shift of the center of the orogenic load towards the interior 
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of the orogen. This in turn may modify the amount and distribution of erosion. Additionally, changing 

the load configuration of e.g. the pro-wedge, has a direct influence on the geometry of deformation 

within the retro-wedge and the retroforeland basin. With the help of this concept the Pyrenean 

Mountain belt (Spanian-France) has been interpreted as a natural observation (Hoth et al., 2008). This 

can be applied for the studies region (the Alborz orogen) too. 

 

In the Alborz region, erosion on the southern flank is higher than on the northern flank (Fig. 3-6 b; 

Rezaeian, 2008), i.e. the pro-wedge erosion is higher than the retro-wedge erosion. The retro-wedge 

area in the western Alborz is more narrow than the pro-wedge area. Besides, local slopes higher than 

30° are visible on the southern flank of the western Alborz (Fig. 3-20 b). The shape and deformation in 

the retro-wedge can be caused due to the erosion of the pro-wedge. This could also change fault 

kinematics in the retro-wedge. Hoth et al. (2008) demonstrated that the impact of pro-wedge erosion is 

most dominant within the pro-wedge but also modifies the shape and size of retro-wedge, which in turn 

changes the geometry and propagation velocity of retro-foreland basin and vice versa. 

 

Some authors (e.g. Axen et al., 2001; Jackson et al., 2002; Allen et al., 2003; Ritz et al., 2006; Ballato et 

al., 2008; Hollingsworth et al., 2010) considered a regional change in kinematics during the Neogene for 

the Alborz region. Additionally, Stocklin (1974) and Guest et al. (2006 a, b) suggested that in the northern 

part of the Alborz faults are smaller and less active than in the southern part. If we compare this orogen 

with the analog experimental results of Hoth et al. (2008) related to the erosion factor, it can be 

interpreted that the relatively lower fault activity in the retro-wedge of the Alborz may be due to the 

erosion processes of the pro-wedge, i.e. the erosion of the pro-wedge may change the shape and fault 

activity in the retro-wedge. 
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3.9   Conclusions 
 
The obtained values of ‘α’, ‘β’ and consequently ‘F’ values for the Alborz and Caucasus regions are almost 

the same. The local slope values (local alpha values) are between 0° and 35°, and the mean Alpha values 

of both Alborz and Caucasus orogens are between 0° and 8° in both of the orogens. Beta values of the 

Alborz are around 2.7° for the retro-wedge and 2° for the pro-wedge, and for the Caucasus 2.2° for the 

pro-wedge and 3.3° for the retro-wedge. Based on these values, F-values between 0 and 0.35° for the 

Alborz and the Cuacasus regions have been estimated (Table 3-2). This similarity could be a result of the 

same tectonic situation (as concluded in chapter 2). These values are different in the other orogens of 

the AHB. This difference can also be due to the different situations, mainly with regard to tectonics, 

lithology and climate. 

 

The beta values of the AHB orogens are between 0°and 3.3°. The values are higher for the retro-wedges 

are than for the pro-wedges. The difference between the pro- and retro-wedges is between 0.7° and 

1.4° for all of the orogens. This difference is 0.7° for the Alborz and for the Caucasus 1.1°. The maximum 

and the minimum beta values belong to the Cucasus and the Apennines, respectively (Table 3-1).These 

values do not depend on Moho depth. Moho is even deeper beneath the Himalayas, but this orogen 

does not have the highest beta values.Its beta value is almost the same as the beta values of Apennines 

(0°-1.4°), which has the shallowest Moho (Table 3-2).  

 

The alpha values of the AHB orogens are between -6° and 8° from the regional slope, and between 0° 

and 45° from the local slope. The Zagros region shows the highest negative values for alpha. These 

negative values could be caused as a result of the existence of the salt layers in the region, which can 

affect the amount of alpha. The maximum local slope can be detected in Himalayas (45°), but in the 

other orogens the dominant local slope is up to 35°. The regional slope (mean value) for the Alborz and 

the Caucasus is more than 8° and can be considered as the maximum value of the AHB (Table 3-1). 

 

The F-values of the all AHB orogens are between 0 and 0.15. In comparison to the other orogens, the 

Alborz region has the maximum F-value after the Alps. It can be suggested that this region has a relatively 

high basal friction (𝜇𝑏). After that, the Caucasus and Apennines with a maximum F-value of 0.3 can be 

placed. It should be noted that the climate of these regions are not similar. The Alps have an F-value 

between 0 and 0.5 as shown by von Hagke et al. (2014). 

 

Based on only alpha and beta values, if 𝜆  = 𝜆𝑏 = 0,  𝜙 = 30°, 𝜙𝑏=10° ,   it can be suggested that the AHB 

orogens are in a “critical-stable” state. According to the alpha-beta diagram (Fig. 3-32), the AHB is located 

at the border between “critical” and “stable”. In this order, the Caucasus, the Alborz and the Alps are 

the first orogens, which are in the “stable” area. Thus, it can be suggested that the Caucasus and the 

Alborz are relatively more stable than the other orogens. The Himalayas and the Zagros are the last 

orogens, which are located mostly in the critical area. These orogens could have a relative low stability 

(Fig. 3-32). 
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Fault strength and rainfalls are two important parameters, which affect the wedge state. ‘F’ as fault 

strength or basal friction (𝜇𝑏 ) and rainfalls and humidity as basal pore fluid pressure (𝜆𝑏 ) can be 

considered in nature. Besides, the effect of some factors, such as lithology, tectonics, fault distribution 

and climate should not be neglected. Based on all of the mentioned factors it can be suggested that 

although all of the AHB orogens are in a “critical-stable” situation, the pro-wedge of the eastern Alborz, 

pro-wedge of the eastern Zagros and retro-wedge of the western Apennines are mostly in a critical state. 

Therefore, in the critical state locations (pink), friction may be low, thus leading to higher geohazard 

(earthquakes and landslides; Fig. 3-34 a, b).  

 
All of the AHB orogens are in a “critical-stable” state but have different behaviors in the generation or 
reactivation of geo-hazards, such as earthquakes. This difference depends on the effect of tectonics, 
lithology and climate, mainly.  
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4   SYNTHESIS AND OUTLOOK 

 

The tectonic situation and geometry of an orogen both can cause geohazard (e.g. Berberian 1976; Ritz 

et al., 2006; Landgraf et al., 2009; von Hagke et al., 2014). Therefore, to better analyze geo-hazard of an 

active region, such as the Alborz, the relationship between the mentioned parameters (tectonics and 

mechanics) and geo-hazard has been studied in this research.  

 
4.1   Tectonic evolution of Alborz 
 
The study of the long-term geological Earth history of Iran showed that two similar tectonic cycles are 

detectable. There are several studies about the tectonic evolution (e.g. Berberian and King, 1981; 

Wilmsen et al., 2009; Ballato et al., 2011), but they do not focus on a long-term tectonic evolution model 

and the tectonic cycles. However, according to the detected tectonic cycles, two main collision phases 

dominated the region: Cycle 1) Collision phase between the Arabian Plate and the Iran Plate, which 

formed the Alborz ranges, and Cycle 2) Collision phase between the Iran Plate and the Turan Plate, which 

formed the Zagros ranges (Fig. 4-1). 

 

Cycle 2 is out of the Alborz region. By focusing on cycle 1, which formed the Alborz region, it is interpreted 

that since the Middle Mesozoic (190 Ma), a collision phase dominated the Alborz region (e.g. Aghanabati, 

2004; Wilmsen et al., 2009). Before collision, there were subduction phases in Iran, which could shape 

the collision phase and in other words, the collision phase can be considered as a consequence of 

subduction. Whereas this collision phase is after a subduction phase, it can be assumed that this collision 

phase is developing now (Fig.4-1). However, the mentioned collision phase and its different crustal 

shortening rates can be considered as the primary source of the recent fault structures (thrust and strike 

slip faults) of the region, which can cause the earthquakes and landslides of the Alborz region (Fig. 1-3, 

1-4).  

 

The mentioned earthquakes triggered landslides in some areas of the Alborz (e.g. Asadi and Zare, 2014). 

There are also landslides, which are not related to fault activity (Hafezi and Ghafoori 2007). Thus, we 

cannot consider only the tectonic effect for the cause of geo-hazards, but potentially also the geometry 

of an orogen. Geometry and slope of an orogen can affect fault activity (e.g. Lohrmann et al., 2003; Hoth 

et al., 2007) and geo-hazards.  

 

The mechanical orogenic state may not have always been the same throughout the mentioned period 

of time, and since 190 Ma a cycle of wedge state may happen (Fig. 4-1). In an orogenic wedge during a 

collision phase, faults could show different behaviors, such as activation, non-activation and re-

activation phases (Hoth et al., 2007). In the Alborz region, most of the faults are active currently (e.g. 

Berberian 1976) but the mentioned behaviour is observed by the recurrence time of earthquakes (e.g. 

Berberian, 1976; Ambraseys and Melville, 1982), i.e. the active faults generated several earthquakes, 

mostly, but they were also without seismicity in a certain period of time.  
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Figure 4-1. Cycle of wedge state in the collision phase of the Alborz region and the recent mechanical state of orogen. 

 

The fault activity and geometry of orogen are parameters depending on the other and each of them can 

affect the other. If the geometry of an orogen controls fault activity (e.g. Hoth, 2005; Hoth et al., 2007; 

Lohrmann et al., 2003), the mechanical  state of an orogen could be a key to understand fault activity 

and its relation with geo-hazards. The concept of critical taper has been studied by many authors (e.g. 

Davis et al., 1983; Dahlen, 1984; Lohrmann et al., 2003; Hoth, 2005; Hoth et al., 2007, 2008) to address 

different questions, but it was not applied to the Alborz region before this research.   

 

To study the tectonic evolution helps to determine the effect of past events on present tectonic events 

and also analyse the situation of orogenic regions. Furthermore, for the recent time, different data, such 

as the stress regime, Moho depth, GPS and earthquakes data were compiled to determine the recent 

tectonics regimes (Chapter 2). According to this review, the Alborz mountains formed as a result of 

subduction of the Iran Plate (in the south) beneath Tutan Plate (in the north). This phase is finished and 

since   ̴190 Ma dominated a collision phase.  

 

To complete our data set for the recent situation and also to better analyse the recent geo-hazard, I also 

included the present mechanical wedge state of the Alborz orogen, which can be considered as another 

cause of earthquakes or landslides (Chapter 3).  
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4.2   Mechanical analysis of Alborz 

 

The southern flank of the Alborz orogen is the pro-wedge and the northern flank is the retro-wedge. 

Average basal dip values of the southern flank were lower than the northern flank (Fig. 3-7) and average 

slope values of the northern flank were almost higher than those of the southern flank (Fig. 3-10). 

 

Basal dip (β) values were estimated between 2°- 3° for the Alborz region. Surface slope (α) values of the 

Alborz region, were estimated between 0°- 8°. According to these results and with the help of the 

stability diagram of Dahlen (1984), considering internal friction of 30° and basal friction values between 

0° and 10°, a “critical-stable” state has been suggested for the Alborz orogen. By increasing the angle of 

basal friction (up to 30°), the wedge was located in the non-stable parts (Fig. 3-32).  
 

Based on the resulting “alpha” and “beta” and by means of the equation (F= 2α+β) , the fault strength 

(F) of the orogen was also estimated. This parameter is equivalent to the effective friction (μ) (von Hagke 

et al., 2014). It amounts from 0.05 to 0.35 radian and shows that the northern Alborz has higher F- values. 

This means that the friction of this part is higher and thus it may be more stable than the other parts. 

Nevertheless, earthquakes and landslides are concentrated also in the middle and east of the Alborz (Fig. 

3-21 d). Pore pressure ratio (λ), especially basal pore pressure (𝜆𝑏𝑎𝑠), is impossible to measure in nature, 

because it is difficult to access the basal detachment. However, in this research pore pressure is assessed 

qualitatively from some factors, such as precipitation. For example, in a wet regions, the effect of pore 

pressure can be considered higher than in an arid region. It can affect the effective friction, the higher 

the pore pressure, the lower the friction.  

 

A comparison of Alborz with its neighboring orogen (the Caucasus) showed that these two orogens 

experienced a similar tectonic evolution. The study of surface deformation (GPS velocity, stress regimes, 

and seismicity) and depth (Moho and tomography) of the region indicated that the Caucasus is like the 

Alborz, in the same recent tectonic situation, i.e. a collision phase dominated in the present time and led 

to the development of the thrust faults and earthquakes (Fig. 2-11).  Additionally, from the framework 

of mechanics or taper analysis, they are in the same wedge state, i.e. “critical-stable” state (Fig. 3-32). 

 

Based on the estimated “alpha” and “beta” and the stability diagram (Dahlen, 1984), the AHB orogens 

are located in a border region between the “critical” and the “stable” state. The Caucasus, the Alborz 

and the Alps plot rather in the “stable” area. Therefore, it can be suggested that the Caucasus and the 

Alborz are more stable than other orogens of the AHB. The Himalayas and the Zagros rather plot in the 

“critical” area. The latter orogens therefore might be less stable (Fig. 3-32). 

 

Since the Middle Mesozoic collision dominated and developed in the Alborz region (e.g. Aghanabati, 

2004; Wilmsen et al., 2009), hence the mechanical state of the Alborz could change from one form to 

other form (e.g. stable to critical state, or critical to unstable). It can be assumed that a mechanical cycle 

of stable-critical-unstable has been repeating since the forming of orogen, consistently (Fig. 4-1).  
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Therefore, a frequent reshaping of the mechanical state of the Alborz can be expected. It could repeat 

also in the present and future time. However, for the recent mechanical state of the Alborz orogen a 

critical-stable state is estimated (Fig. 4-1). This hypothesis can be applied to the Alborz region and other 

regions with a contractional regime, such as the AHB orogens. The velocity of this repetition could 

depend up on the velocity of convergence or the shortening rate of orogen. This relation should be 

studied in detail in future studies so as to address the following questions: 

 How long does the stability/unstability phase take place in the Alborz region? 

 Is it comparable with the other orogens of the AHB? 

 Which parameters affect the duration of the mechanical state of an orogenic wedge? 

 Are they the same in the other orogens of the AHB?  

 

However, according to the stability diagram (Fig. 3-32 b), the Alborz is in a stable-critical state and along 

every profile, the surface slope values (α) decrease from the north to the south. Consequently, the values 

of fault strength (F) decrease from the north to the south of each profile, but the distribution of the geo-

hazards is not equal along them (Fig. 3-21 d). In the southeast of Alborz a concentration of epicenters 

and landslides appears. In contrast, a lower amount of earthquakes and landslides is obvious in the 

southwest of Alborz (Fig.  3-34). Therefore, solely F values cannot explain geo-hazard. While some 

natural factors, such as erosion, lithology can affect the wedge state (e.g. Hoth, 2005; Hoth et al., 2007; 

Molnar et al., 2007; Lohrmann et al., 2003; Willet et al., 1993; Willet, 1999), hence in addition to F values, 

the effect of climate, lithology, etc. on the mechanics of orogen and its impact on geo-hazard was 

considered. 

 

4.3   Impact of the mechanical state of an orogen on geo-hazard 

 

My critical taper analysis showed that the Alborz region as part of the AHB is in a “critical-stable” state. 

This state is estimated also for all of the AHB orogens, but in every region, it has different effects on the 

generation of geo-hazards. As mentioned, this difference can be a result of the different effects of 

natural parameters, such as climate or erosion (e.g. Hoth et al., 2007; Molnar et al., 2007).  

 

Mountain topography in convergent orogens is a result of a balance between tectonics, uplift and 

erosion (e.g. Willet et al., 1993; Willet, 1999; Molnar et al., 2007). Climate, especially rainfall can affect 

pore fluid pressure and fault strength, which then control the wedge state (e.g. Dahlen, 1984). 

Additionally, lithology or materials of an orogen affect erodibility (e.g. Rezaiean, 2008) and friction (e.g. 

Lohrmann et al., 2003).  

 

The Alborz mountains have a wet northern flank and (semi) arid southern flank. Strong rocks mostly 

exert low erodibility and vegetation can also decrease the effect of the erosion. Hence, erosion rates on 

the steep and wet northern flank of this mountain belt are suppressed by the strength of rocks at the 

surface, and the effects of the dense vegetation cover (Rezaeian, 2008; Fig. 3-6 b). On the southern flank, 

strong rocks have limited coverage, and the vegetation density is low, permitting whatever runoff occurs 
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to erode efficiently and in proportion to the local slope. Therefore, the pattern of erosion on the scale 

of the mountain belt is set by the erodibility of the substrate rather than the erosivity of the climate and 

its derivatives (Rezaeian 2008). Thus, lithological and climate data indicate that the Alborz region has a 

more stable northern flank.  

 

With regard to geo-hazards, in the northern part, the frequency and location of landslides and 

earthquakes is not the same as in the southern part of Alborz. According to Fig. 3-34 b, the northern part 

experienced earthquakes with magnitude <5, generally. The numbers of earthquakes and landslides are 

different in the northeastern and northwestern part. In the northeastern part, it is lower than the in 

northwestern part. Moreover, the depth of earthquakes on the northwest part is lower (20 km) than 

that on the northeast part (more than 40 km). The magnitude of earthquakes is almostly similar to the 

entire northern part (Fig. 3-34). 

 

In the southern part, especially the southeastern part, frequent landslides and earthquakes have 

occurred. The number and magnitude of earthquakes in this part of the Alborz are higher than in other 

parts of this region. Some earthquakes with magnitudes >5, two earthqakes with magnitudes >6, and >7 

have occurred here. The depth of hypocenters is up to 50 km. In the southwestern part, the number of 

landslides and earthquakes is lower than in the southeastern and northwestern part of the Alborz. 

Besides, according to Fig. 3-5, the number of faults in southeast Alborz is lower than in southwest Alborz, 

but the number of earthquakes and landslides in southeast Alborz is higher than in southwest Alborz 

(Fig. 3-34).  

 

Taken together, in south Alborz the number and magnitude of earthquakes and frequency of landslides 

are higher than in north Alborz, but some differences are visible between east and west Alborz. Thus, 

east and west Alborz could be affected by other parameters, such as fault distribution and local slope.  

 

Fault distribution and local slope may qualitatively indicate stability of a wedge. Fault strength (F) can be 

used as an indicator of friction (von Hagke et al., 2014). According to von Hagke et al. (2014), by 

increasing the slope of orogen the F-values increase (F=2α+β), which refers to higher stability. The values 

of the local slope (α) in the western part of Alborz are higher than the eastern part and the number of 

faults are higher, thus it seems that the western part of Alborz is more stable than the eastern part, 

which would explain the lower frequency of earthquakes and landslides here (Fig. 3-34). 

 

In eastern Alborz, the number of rivers and amount of precipitation are higher than in western Alborz. 

As mentioned, precipitation and rivers can lead to increase pore fluid pressure and decrease effective 

friction. Therefore, the pore fluid pressure is higher and effective friction is lower in the eastern part (Fig. 

3-6 a). In contrast, the effect of precipitation and rivers is lower in western Alborz, consequently a higher 

wedge stability for western Alborz can be expected. Moreover, according to the local slope map, on the 

western side, local slopes of more than 30° are observed. But on the eastern side, the average local slope 

is up to maximum 20° (Fig. 3-20 b). Hence, as a result of the effect of precipitation and the amount of 
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local fault strength, the frequency of earthquakes and landslides in the eastern part is lower than the 

western part of Alborz.  

 

Taken together, the recent collision phase may be responsible for the recent mechanical state of the 

Alborz region. However, considering natural parameters, such as lithology, climate, tectonics and fault 

distribution, it is suggested that although the Alborz region is in a “critical-stable” state in the recent 

time (Fig. 4-1), the pro-wedge of the eastern Alborz (southeast Alborz) is rather in a “critical” state and 

frequency of landslides and earthquakes with magnitudes >6 is higher at this region. This indicates that 

stability and friction here is lower than in other parts of the Alborz. 

 

Solely critical taper analysis can not explain the geo-hazard of an orogen completely and hence additional 

analysis of natural parameters, such as climate, lithology, and faults is mandatory. The effects of these 

parameters need to be correlated. These parameters and probably other unknown parameters may 

change the mechanical state of a wedge. Accordingly, the more natural parameters can be evaluated, 

the better the mechanical state of wedge can be estimated. 

 

According to published analogue experiments, during convergence, horizontal and vertical changes of 

the wedge and consequently inactivity and reactivity of faults occurred (e.g. Lohrmann et al., 2003). As 

mentioned, changing the geometric situation of a wedge leads to changes in fault activity. Hence, during 

the orogenic processes, faults may activate or reactivate (e.g. Lohrmann et al, 2003; Hoth et al., 2007). 

This activity can be accompanied by earthquakes and landslides (e.g. Berberian, 1976; Aghanabati, 2004; 

Nazari and Ritz, 2008). Thus, if changes of the mechanics of an orogenic wedge affect fault activity, fault 

activity or earthquakes could be also a key to assess the local wedge state.  

 

In this regard, the detection of very small earthquakes with local networks may be suitable to identify 

fault activity. For this goal, long-range observation of micro seismicity is needed. Migration of epicenters 

during a certain period of time (e.g. 100 years) could indicate local temporal changes of the mechanical 

state. This means that the concentration of epicenters in a location shows fault activity and thus, 

migration of epicenters during a period of time can show the path of fault activities. Whereas fault 

activity relates to the mechanical state of an orogen, accordingly by studying microseismicity, it is 

possible to obtain local-temporal changes of mechanical state of orogen. This detection could also 

illustrate a dominant tendency of the mechanical state during the period of time (e.g. critical-stable, but 

rather to stable state). This parameter also helps to correlate to the other parameters (lithology, climate, 

etc). 

Given the mentioned assumptions, the following questions can be addressed: 

 Which relationship exists between the local wedge state and number, magnitude and intensity 

of micro-seismic activities in a certain period of time e.g. 100 year?  

 Can the micro-seismic activities show the tendency of wedge state, quantitatively?   

The mentioned questions should be addressed in future studies, first for the Alborz region, then for 

the AHB orogens. 
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Figure 6-1. Alborz, regional slope for the extra profiles, as well as table of coordinates and α-values of the segments. 
Dashed line: crest of orogen. See Fig 3-5 for the location of profiles. 

 

 X Y Z (m) Slope (°) 

1 50.6000 36.8000 110.0452 6.34 

2 50.5698 36.7296 1083.8392 6.74 

3 50.5269 36.6294 2556.3982 4.22 

4 50.4937 36.5519 3257.5464 0.97 

5 50.4624 36.4790 3412.2281 1.93 

6 50.3501 36.2169 2314.7501 3.72 

 Min. slope :   0.97° 
Max. slope :   6.74° 
Mean slope :  3.51° 

 X Y Z (m) Slope (°) 

1 50.8000 36.7000 54.2169 5.38 

2 50.7353 36.4413 2892.8359 2.31 

3 50.6904 36.2617 3745.1186 3.22 

4 50.6345 36.0380 2262.2113 3.76 

 Min. slope :   2.31° 
Max. slope :  5.38° 
Mean slope : 4.12° 

 X Y Z (m) Slope (°) 

1 51.0000 36.7000 12.4751 6.85 

2 50.9727 36.4251 3613.0144 2.61 

3 50.9644 36.3419 4027.2167 1.61 

4 50.9384 36.0807 3222.8416 2.77 

 Min. slope :   1.61° 
Max. slope :  6.85° 
Mean slope : 3.57° 
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 X Y Z (m) Slope (°) 

1 48.0000 41.9000 894.7230 3.70 

2 47.9545 41.8375 1457.9725 1.76 

3 47.8005 41.6257 2366.0638 0.75 

4 47.5136 41.2312 3092.6212 2.71 

 Min. slope :  0.75° 
Max. slope :  3.70° 
Mean slope : 1.88° 

 X Y Z (m) Slope(°)  

1 48.3000 41.7000 333.7481 3.13 

2 48.0013 41.2733 3536.4313 0.06 

3 47.9293 41.1705 3552.9491 5.79 

4 47.8337 41.0339 1654.3769 1.62 

 Min. slope :   0.06° 
Max. slope :  5.79° 
Mean slope : 2.83° 

 X Y Z (m) Slope (°) 

1 48.0000 41.2000 419.8867 4.42 

2 48.7223 41.1093 1436.6347 1.81 

3 48.5734 41.9356 2233.0733 0.60 

4 48.4835 40.8308 2072.1668 2.42 

 Min. slope :   0.6° 
Max. slope :  4.42° 
Mean slope : 1.98° 
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Figure 6-2. The Caucasus, regional slope for the extra profiles, as well as table of coordinates and α-values of the 

segments. Dashed line: crest of orogen. See also Fig. 3-11 for the location of profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 X Y Z (m) Slope (°) 

1 49.0000 41.0000 559.1082 3.04 

2 48.8960 40.8700 1551.5852 1.37 

3 48.8713 40.8353 1658.3653 1.54 

4 48.7756 40.7194 1193.4833 1.17 

5 48.7308 40.6635 1028.6694 0.81 

6 48.6226 40.5283 751.8502 4.12 

 Min. slope :   0.81° 
Max. slope :  4.12° 
Mean slope : 1.40° 
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 X Y Z (m) Slope (°) 

1 55.6000 28.1000 1165.1692 -0.17 

2 55.6293 27.7774 280.8723 0.40 

3 55.6574 27.4683 1018.6689 -1.15 

4 55.6721 27.3064 1409.4911 1.94 

5 55.6935 27.0715 454.1298 3.00 

 Min. slope :  -1.15°      
Max. slope :    3.00° 
Mean slope :   0.50° 

 X Y Z (m) Slope (°) 

1 55.9000 28.2000 857.7554 -5.98 

2 55.9092 28.0992 2052.4483 1.47 

3 55.9398 27.7621 1346.5803 0.15 

4 55.9496 27.6546 1283.1782 1.13 

5 55.9723 27.4048 675.6757 1.15 

6 55.9920 27.1877 248.9633 1.17 

 Min. slope :   -5.98°         
Max. slope :    1.47° 
Mean slope :   0.38° 

 X Y Z (m) Slope (°) 

1 56.5000 28.2000 1066.0723 -1.82 

2 56.5134 28.0662 596.3545 0.21 

3 56.5359 27.8406 1491.9992 0.44 

4 56.5564 27.6355 1295.3508 1.36 

 Min. slope :   -1.82° 
Max. slope :  1.36° 
Mean slope : 0.84° 
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Figure 6-3. The Zagros, regional slope for the extra profiles as well as table of coordinates and α-values of the 
segments. Dashed line: crest of orogen. See also Fig. 3-13 for the location of profiles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 X Y Z (m) Slope (°) 

1 56.7000 28.2000 1689.8026 -3.69 

2 55.7085 28.1357 2167.6285 1.12 

3 55.7129 27.0578 1991.6750 3.11 

4 55.7251 27.9244 1157.1283 0.46 

5 55.7419 27.7390 983.5096 0.65 

6 55.7555 27.5894 786.6818 0.79 

 Min. slope : -3.69°       
Max. slope :   3.11° 
Mean slope :  0.76° 



 
6   APPENDIX 

 

136 
 

 

 
 

 
 

 
Figure 6-4. The Himalayas, regional slope for the extra profiles, as well as table of coordinates and α-values of the 

segments. Dashed line: crest of orogen. See also Fig. 3-15 for the location of profiles. 

 X Y Z (m) Slope (°) 

1 85.8000 28.2000 5663.6488 0.41 

2 85.7722 27.8110 5341.0539 3.88 

3 85.7410 27.3747 1907.6494 0.30 

4 85.7187 27.0621 1712.0416 2.58 

 Min. slope :  0.30°         
Max. slope :   3.88° 
Mean slope :  1.87° 

 X Y Z (m) Slope (°) 

1 86.3000 28.1000 6247.7238 0.17 

2 86.2700 28.0011 6091.9851 2.43 

3 86.2598 27.6796 5374.4936 3.98 

4 86.2408 27.5367 3188.7819 2.15 

5 86.2084 26.8176 1174.7600 3.53 

 Min. slope :  0.17°         
Max. slope :   3.98° 
Mean slope :   2.05° 

 X Y Z (m) Slope (°) 

1 86.8000 28.000 4700.0136 -2.77 

2 86.7802 27.7227 6368.9276 -0.43 

3 86.7726 27.6160 6469.6983 1.26 

4 86.7623 27.4715 6072.7177 4.83 

5 86.7517 27.2339 4523.2161 2.81 

6 86.7323 27.0523 2866.7506 1.57 

7 86.7038 26.6532 837.3542 3.79 

 Min. slope :  -2.77°         
Max. slope :   4.83° 
Mean slope :  1.41° 
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 X Y Z (m) Slope (°) 

1 13.4000 43.6500 40.8513 0.85 

2 13.1061 43.3470 700.2116 0.66 

3 13.9167 43.1516 1027.6561 0.46 

4 12.5397 42.7628 570.4441 0.10 

5 12.3732 42.5911 526.3797 -0.03 

6 12.0916 42.3007 555.0075 0.36 

7 11.8374 42.0386 312.4165 2.33 

 Min. slope :   -0.03°       
Max. slope :   2.33° 
Mean slope :  0.78° 

 X Y Z (m) Slope (°) 

1 13.7500 43.3000 1.5404 1.24 

2 13.2514 42.7853 1645.6465 0.08 

3 12.9259 42.4493 1572.6752 1.74 

4 12.7556 42.2736 785.4413 0.53 

 Min. slope :     0.08°         
Max. slope :    1.74° 
Mean slope :   0.80° 

 X Y Z (m) Slope (°) 

1 14.2500 42.4500 39.2092 0.82 

2 13.9289 42.1235 752.1837 1.33 

3 13.7821 42.9741 1277.8085 0.49 

4 13.6133 42.8025 1503.0063 0.42 

5 13.5273 41.7151 1405.8835 1.47 

6 13.2924 41.4762 477.8022 0.54 

7 13.1826 41.3645 318.0798 0.96 

 Min. slope :    0.42°         
Max. slope :    1.47° 
Mean slope :   1.01° 
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Figure 6-5. The Apennines, regional slope for the extra profiles as well as table of coordinates and α-values of the 

segments. Dashed line: crest of orogen. See also Fig. 3-17 for the location of profiles. 

 

 

 

 

 

 
Figure 6-6. F-values of all of the orogens based on local slopes

 X Y Z (m) Slope (°) 

1 14.5500 42.2000 65.3600 1.67 

2 14.2781 41.9137 1323.1869 1.01 

3 14.0675 41.6921 1910.5471 0.67 

4 13.6428 41.2450 562.4181 1.28 

 Min. slope :      0.67°       
Max. slope :     1.67° 
Mean slope :    1.27° 
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