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Abstract

The steel industry is among the most competitive industries. Especially European com-
panies are in need to improve their processes in order to survive in the market. The
tasks of production planning and control have a major impact on the logistics target
achievement and therefore on the competitiveness of a company. The steel production
planning process is known to be extremely difficult, with various constraints at the dif-
ferent production stages. As a consequence, not all constraints are respected in higher
planning levels by current planning procedures. Detailed production planning at the
different production stages has the task to derive production programs that are able to
respect all local constraints and at the same time lead to appropriate target achievement.
Current approaches developed for detailed continuous casting planning are not able to
efficiently calculate alternative production schedules and therewith enable decision sup-
port for conflicting objectives.

Within this thesis, the detailed continuous casting problem is presented in detail. A new
approach to decompose the problem is described. With this decomposition, the problem
can be treated as a single machine scheduling problem and effective meta heuristics de-
veloped for similar problems can be exploited. Further, with the chosen decomposition
it is possible to respect the consumption of hot metal within the scheduling of charges.
This important practical constraint could not be respected within the continuous cast-
ing problem in the past. Besides the hot metal consumption, casting specific setup
requirements are considered in the scheduling model. MILP models are presented for
the different extensions of the basic scheduling model. An iterated local search proce-
dure is presented and the effective is shown based on the comparison with a commercial
solver.

The findings obtained from the scheduling research are transferred into a decision sup-
port system for the detailed continuous casting planning. Based on an industry case
study, the application of the developed tool is presented on a real industry situation.
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1 Introduction

1.1 Motivation

The steel industry is the most important supplier of raw material for many industries, e.g.
automotive industry, aircraft, housing and beverage (Cowling et al. 2003); (Balakrishnan
and Geunes 2003) and a central part in industrialized economies (Atighehchian et
al. 2009). Besides its importance, the steel industry is among the most competitive
industries (Appelqvist and Lehtonen 2005). The ten largest manufacturers together
only hold 25% of the market share (IISI 2011). The annual world steel production
is constantly increasing. In the year 2000 the annual production has been 849 million
metric tons. With average annual growth rates of 6.1% (2000-2005) and 4.3% (2005-
2010) it reached 1.414 million metric tons in 2010 (IISI 2011). The supply exceeds the
demand, leading to over-capacities and increasing pressure on the world steel market. At
the same time the costs for raw material (i.e. iron ore and reducing agents coke, cole, oil,
and gas) are rising, adding additional pressure on the profit margins of the companies
(Ernst&Young 2012). Due to the capital intensive character of the steel production
process (high costs for production machinery), a high throughput rate is unavoidable to
keep the unit costs low by maintaining a high machine utilization (Atighehchian et al.
2009).

Especially European manufacturers are affected by high costs and face increasing com-
petition from Asian steel companies (Cowling and Rezig 2000). The market share of
China has tripled from 15.1% in 2000 up to 44.3% in 2010 (IISI 2011). According to
a study from the European Commission on the competitiveness of the European steel
sector, one way to survive on the market is to focus on on high technology and opera-
tional excellence (Ecorys 2008). European producers tend towards high product variety
and quality in combination with superior logistics performance (i.e. short delivery times
and high delivery reliability) in order to differentiate from their competitors (Denton
et al. 2003). The importance of due date reliability is further increasing due to the
close integration of steel producers into the customers’ supply chains. These changes
in target focus, however, most likely incorporate rising production costs. The way to
success for European steel manufacturers lies in a reasonable balancing of the conflict-
ing logistics objectives, in a way that is suitable for current market demands. In order
to be able to make decisions according to a strategic balance of targets, the impact of

1



1 Introduction

different decision alternatives (i.e. generated production plans) must be quantified and
understood.

1.2 Goals of this work

The process of steel production is organized as a hybrid flow shop with multiple stages.
Each stage has highly differing requirements regarding the production sequence (Voß
and Witt 2007). The resulting scheduling problem is too complex for all constraints to be
respected within one planning procedure (Missbauer et al. 2009). Therefore, production
planning in steel production is executed in hierarchical planning levels (Vanhoucke and
Debels 2009). In a higher planning level, the customer orders are scheduled without
considering all constraints of the different production stages. Based on the resulting
schedule, delivery dates are communicated to the customers. Within lower planning
levels, the actual production sequence is decided by taking all detailed requirements of
the individual production stage into account. As a result, conflicting targets arise in
lower level planning. The continuous casting production stage is usually the bottleneck
work system in steel production and therefore can be considered as the most important
stage for detailed planning (Tang and Wang 2008).

Due to the described complexity of detailed continuous casting planning, the generation
of a feasible production program is a time consuming procedure. In practise, this leads
to the situation that only one production program is generated and evaluated according
to different planning objectives. In case the planner is not satisfied with the results,
adjustments are conducted in an iterated way to derive few additional production pro-
grams. The goal of this PhD thesis is to develop a decision support system (DSS) that
is able to generate multiple alternative schedules for a planning situation automatically.
This way, the planner is able to compare more scheduling alternatives and potentially
is able to achieve a more balanced target achievement.

The goals of this PhD thesis can be divided into three parts:

(1) a detailed understanding of the continuous casting planning problem will be achieved.
This includes a structured analysis of all decisions, constraints and objectives involved
in the problem. Based on this understanding and the existing results in the continu-
ous casting planning literature, a decomposition of the problem is proposed, such that
the model is efficiently solvable to generate multiple scheduling alternatives and at the
same time respects more real industry constraints sufficiently, which makes it useful in
practice.

(2), a mathematical model for the problem and a heuristic to solve the problem will be
developed, in order to be able to efficiently generate production programs automatically.

2



1 Introduction

Since the selected decomposition is based on a single machine job scheduling model, the
second intention of this PhD thesis consists of extending existing scheduling models
conducted from the literature, to include relevant continuous casting constraints. Mixed
Integer Linear Program (MILP) models for each extension will be presented to be able
to compare the schedules generated with the heuristic against optimal solutions derived
with a state of the art multi-purpose solver. Appropriate test instances will be created,
to be able to conduct experiments.

(3), the heuristic will be embedded into a DSS that is used by continuous casting
planners in practice. Since the decomposed model only covers part of the problem
decisions, procedures will be developed to solve decision problems not covered in the job
scheduling model. Further, approaches to generate scheduling alternatives that are able
to represent good schedules regarding conflicting targets will be designed. Finally, the
application of the designed DSS and the heuristic for real world instances is presented.

1.3 Overview

This work is organized as follows: Chapter 2 provides a detailed overview of the con-
tinuous casting planning problem and explains the approach selected for this thesis.
Chapter 3 introduces the state of the art for the continuous casting problem as well
as the single machine job scheduling literature that constitute the foundation for the
development of a scheduling method. These two chapters contribute to the first goal of
this PhD thesis. Chapter 4 contains different model extensions of the single machine
family scheduling model to map the continuous casting problem. Chapter 5 presents
the iterated local search heuristic developed to solve the problem. The fourth and fifth
chapter correspond to the second goal of the thesis. In Chapter 6, the application of the
heuristic within a DSS for the continuous casting planning problem is presented. With
Chapter 6, the third goal of this PhD thesis is fulfilled. Finally, Chapter 7 concludes the
work and provides recommendations for future research.

The Continuous Casting Planning Problem

The description to the continuous casting planning problem in Chapter 2, intends to as-
sociate the problem with the overall steel production planning. In order to realize this,
the production process of the different stages of steel production are briefly introduced.
Further, the higher planning process is described. Afterwards, Chapter 2 provides a de-
tailed classification of the continuous casting planning problem. All containing decision
processes are explained and the corresponding constraints are discussed. Further, the
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different planning objectives are presented. After a summary of the elements of continu-
ous casting planning problem, the approach selected for this PhD thesis is presented.

Related Work

The related work in Chapter 3 is split into the two components continuous casting
planning literature and job scheduling literature. For the continuous casting part the
existing literature is clustered into the sub problems involved in the planning problem.
For each literature source, the classification scheme developed in Chapter 2 is applied
to describe the contribution of the reference. Afterwards, limitations of current research
are presented. For the job scheduling part the existing literature is clustered according
to the required extensions for modelling the selected problem decomposition as a job
scheduling problem. Again, the limitations of existing approaches are presented at the
end of the chapter.

Models for the Combined Charge Batching and Sequencing Problem

As described before, the approach of this thesis is to decompose the continuous casting
problem in such a way, that single machine job scheduling can be exploited to solve
it. Chapter 4 presents four different MILP model extensions. Starting from a basic
family scheduling model, upper resource constraints, specific setup constraints and lower
resource constraints are included into the model. For each model, a description, a formal
notation and the MILP model is presented.

Solution Approach

Chapter 5 has three major contents. First, the iterated local search heuristic is described.
The description consists of the general framework, the developed perturbation strategy,
a problem specific tardiness evaluation for each model and the different local search
operators chosen in this thesis. Second, the design of model-specific test instances is
explained and the general experiment setup, chosen to evaluate the developed heuristic,
is presented. Chapter 5 concludes with the presentation and discussion of the experiment
results. Using the generated test instances, the performance of the developed heuristic
is compared to solving the models from Chapter 4 with a state of the art multi purpose
solver.
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Decision Support System for the Detailed Continuous Casting
Planning Problem

Chapter 6 begins with a description of the general structure of the DSS and the data
required and used by the system. Afterwards, the selected approach to generate schedul-
ing alternatives is presented. By generating alternative schedules, the DSS is able to
respect the multi-objective character of the continuous casting planning problem. In
the following section, the selected procedures to solve the preprocessing planning deci-
sions, that are not contained in the job scheduling model, are presented. Afterwards,
the adoptions carried out to use the developed heuristic within the DSS for real world
instances is described. Besides a description of tardiness and target evaluation proce-
dures for the real world instances, acceleration strategies for the local search operations
are presented to further reduce calculation time. Finally, the application of the DSS is
shown on the example of three potential analyses that have been conducted with the
DSS in an industry case study.

Conclusion

Chapter 7 provides a summary of the thesis, a critical discussion of the scientific contri-
bution of this work and recommendations for future research.
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2 The Continuous Casting Planning
Problem

This chapter provides a detailed introduction to the continuous casting planning prob-
lem. Steel production planning is executed in hierarchical planning processes. This is
due to the large complexity arising from the characteristics of the production process in
different stages. In order to understand the challenge of the continuous casting planning
problem, the steel production process is briefly described in Section 2.1. Afterwards,
the high level planning of the entire steel production is introduced in Section 2.2. In the
third Section 2.3, the continuous casting planning problem is described in detail.

2.1 Steel Production Process

This section is describing the steel production process in detail, with a focus on aspects
relevant for continuous casting planning. The process of steel production is organized
as a hybrid flow shop with multiple stages. Each stage has highly differing requirements
regarding the production sequence (Voß and Witt 2007). Figure 2.1 displays the ma-
jor production stages for steel production, the red flash symbols indicate stages with
dominant planning constraints.

Pickling/ 
Cold Roll Milling

Hot Strip Milling Annealing/
Temper Milling/

Coating

Continuous CastingIron Making Steel Making

Figure 2.1: The major steps of the steel production process. The red flash symbols de-
pict production stages with dominant constraints that complicate production
planning.

6



2 The Continuous Casting Planning Problem

Iron Making
In the first stage of steel production, raw material is processed into liquid hot metal.
There are different technologies to execute this process, e.g. blast furnace, direct reduc-
tion or smelting reduction. In the following only blast furnace will be described, since it
is the most common method. One major part of the raw material are ferrous materials
(iron ore) that provide the iron. Iron ores are naturally existing rocks and minerals
that are compounds of iron and oxygen mixed with impurities. Two types of ores are
used in the blast furnace, fine and lump ore. In order to produce fine ore, it is ground
and cleaned to increase the iron content and afterwards agglomerated by sintering and
palletizing to be in the right shape. Within the blast furnace process, the oxygen is sep-
arated from the iron by binding it to a reducing agent, usually coke, coal oil or gas. The
impurities of the ore are also split up using flux additions like limestone. The materials
are fed into the top of the blast furnace in alternating layers. At the lower part of the
furnace, a hot air blast is injected which raises the temperature to about 2200 ◦C. This
high temperature leads to a complex reaction process of the incoming materials. The
result is a pool of molten iron at the bottom part of the furnace. The flux additions
in combination with the impurities form a liquid slag on top of the molten iron. Slag
and molten iron are withdrawn from the furnace and afterwards separated. The molten
iron, often called hot metal, is tapped into ladles or torpedo cars for further processing.
The blast furnace is operated continuously for around 15-20 years (furnace cycle). Since
the hot metal can only be stored for a very limited time in the torpedo cars, the need of
hot metal consumption is an important steel production planning constraint (Ouelhadj
2003), (Degner et al. 2008).

Steel Making
In the second stage, the hot metal is processed into a certain steel grade (i.e. type of
steel) that is requested by the customer. The goals of steel making are to reduce the
carbon content to the specified value, to establish the requested alloy composition and
to remove all unwanted elements left in the hot metal. The steel making process can
be divided into oxygen steel making using a converter and secondary metallurgy where
different ladle treatments are executed to further increase the steel quality. Similar to
iron making, fluxes and alloying agents are added together with the hot metal and scrap
into the converter. The fluxes again build up a slag layer to absorb impurities and to
protect the molten steel from the atmosphere. The necessary chemical reactions are
triggered by blowing pure oxygen into the metal bath. After all required specifications
for a certain steel grade are reached, the liquid steel is tapped into ladles for further
processing. In the field of secondary metallurgy, processes like homogenizing, heating,
degassing and vacuum treatment are used to increase the cleanness and quality in order
to meet today’s high requirements on steel products (Ouelhadj 2003), (Degner et al.
2008).
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Continuous Casting
Continuous casting is one of the major process steps in steel production in which liquid
steel gets solidified into slabs of certain dimensions and weight for further processing.
The input for the casting process is the liquid steel, transported in ladles of a specific
size, referred to as charge or heat. The charge is poured into the first continuous casting
device, the tundish (holds approx. 55 t). The tundish serves as a buffer and transfers
the liquid steel through nozzles into one or multiple water-cooled copper moulds. The
buffer function of the tundish allows for a consecutive production of multiple ladles. The
flow rate can be regulated to realize a stable solidification process. At the beginning of
a run, the mould is closed off by a so-called dummy bar. When the required level of
filling is reached within the tundish, the mould starts to oscillate to avoid an adhesion of
material. Within the moulds, the steel starts to solidify from the outside to the inside.
When the surface of the strand is solid, the stand is transported through the mould
using driving rolls. The geometry of the mould determines the dimensions of the steel
strand. It is usually possible to adjust the mould to a certain degree, allowing varying
slab dimensions within one caster run. Also different strand widths, in case of multiple
strands, are possible. Because the strand shell is very thin, rough or extensive width
changes could lead to a tearing of the shell. When a so-called breakout happens, liquid
steel flows into the casting machine and thus results in loosing the charge. In addition,
expensive cleaning and repair is necessary. The ability to change width during a charge
depends on the steel grade and needs to be considered during caster planning. At the
end of the casting process, the solid strand is cut into the required slab length using gas
torches.

Due to high process temperatures, the refractory lining of the tundish and nozzle can only
be in operation for a limited time (about 8 charges, depending on the steel grade and cast
width). Afterwards, they need to be replaced and prepared in order to be reused. Since
tundish and nozzle together form a piece of equipment, in the following only the term
tundish will be used to describe both parts. To be produced within the same tundish,
consecutive ladles need to consist of similar steel grades in terms of overlapping tolerances
for temperatures and chemical properties. Therefore, metallurgists have developed so-
called cast families, i.e. groups of steel grades that can be produced using the same
tundish. In case consecutive ladles are from different cast families, a setup process
is also required. There are basically three setup possibilities. One is called a caster
turnaround, where the strands are entirely discharged. This process takes between
30 min and 90 min depending on the caster and the steel grade. The second alternative
is called composite casting, where the strand is not discharged, but a plate is inserted
between consecutive charges, preventing the steel grades to mix up. This procedure only
takes between 5 min and 15 min of setup time. The third possibility is called composite
casting without tundish change. It is similar to a regular charge transition, but with
charges from different cast families. The caster is strongly slowed down so the setup
lasts about 15 min. The resulting mixed-zone of the two different steel grades can either
be used for an order with low requirements (only when the steel grades are similar
enough) or has to be scrapped. Besides the steel grade, the width of the strands also
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determines the need and applicable type of setup process. In case consecutive charges
contain differing strand widths that exceed the ability of the caster to adjust the moulds,
a caster turnaround setup is required, independent of the steel grades (Box and Herbe
1988), (Lee et al. 1996), (Degner et al. 2008).

Adjusting and Slab Yard
In the ideal case, the slabs produced at the continuous casting stage are immediately
transported and processed at the hot strip mill. Whenever a steel manufacturer is pro-
ducing a high variety of products, the inhomogeneous constraints of continuous casting
and hot strip milling require an intermediate slab yard to decouple these very asyn-
chronous processes. E.g. some slabs need to be further treated before they are ready
for milling. The reasons for adjusting slabs vary. One is due to planning decisions
such as combining two narrow slabs to one mother slab and splitting it afterwards. A
further reason for slitting occurs when producing wider slabs then required, in order
to complement charges. Another reason is unplanned rework in case of quality issues
during casting. The adjusting processes include slitting, cut-to-length and scarfing. The
adjusting processes involve manual work, therefore slabs need to be stored in the slab
yard to cool down to appropriate temperatures (Tang et al. 2001).

Hot Strip Milling
At the hot strip mill stage, the slabs are processed into sheet metal and usually rolled up
to steel coils. Rolling the steel at high temperature leads to recrystallization processes
that enable a larger degree of deformation at lower forces. An unwanted hardening of the
steel can be avoided. A very important constraint for detailed hot strip mill production
planning is to schedule the slabs in a certain width pattern (coffin shape). This reduces
the wear out of milling rolls which is required to meet quality specifications and reduce
costs. Other constraints are e.g. steel grade and thickness (Degner et al. 2008).

Pickling and Cold Strip Milling
Cold strip milling is used to further improve the product quality in terms of smaller
dimensions and dimensional accuracy, surface quality as well as strength properties.
Before cold milling is possible, the mill scale (thin oxide layer) resulting from hot rolling
needs to be removed. In a pickling processes, the sheet metal is dipped into a vat of
acid that removes the scale. The two processes can either be carried out separately or
interlinked in automated pickling-tandem mills (Degner et al. 2008).

Heat Treatment and Coating
In order to compete in the described challenging market situation, steel manufactur-
ers need to further improve the properties of their final products. Heat treatment and
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coating are finishing processes that lead to highly specialized products with superior
properties. Heat treatment involves annealing, hardening and tempering. All three
processes are used in combination to adjust the micro structure and adjust hardness,
toughness and stress levels as required by the customer. Annealing is heating the mate-
rial to a certain temperature, holding the temperature for a specific time period followed
by a controlled cooling process. Hardening is heating above austenitizing temperature
and rapid cooling. Tempering involves heating with low temperatures below the aust-
enizing point. In order to avoid corrosion or to improve chemical resistance, different
coating processes can be applied. This includes organic coating (e.g. plastics or rubber),
inorganic coating (e.g. ceramic, cement motar) or metallic coating (e.g. zinc, cadmium
or nickel). Metal coating can be carried out as hotdip or electrolytically galvanizing
processes (Degner et al. 2008).

2.2 High Level Steel Planning

The different stages of the steel production process have highly differing requirements on
the production sequence. The resulting scheduling problem is too complex for all con-
straints to be respected within one planning procedure (Voß andWitt 2007), (Missbauer
et al. 2009). Therefore, production planning in steel production is executed in hierar-
chical planning levels (Vanhoucke and Debels 2009). In a higher planning level (rough
production planning), the customer orders are scheduled into planning periods. Based
on the resulting schedule, delivery dates are communicated to the customers. Within
lower planning levels (detailed production planning), the actual production sequence
is decided by taking all detailed requirements of the individual production stage into
account. In the following, a typical rough production planning is introduced.

There are six planning processes belonging to rough planning as considered in this the-
sis. These are (1) demand planning, (2) net requirements calculations, (3) rough alloca-
tion planning, (4) detailed allocation planning, (5) delivery date calculation, (6) rough
scheduling. Figure 2.2 provides on overview of these tasks.

Within (1) demand planning, the sales department is evaluating gross demands based on
existing orders and historical data. This information is estimated for a period of approx.
18 months. This forecasting is not possible on a detailed steel product level, therefore
certain clusters (planning items) were developed based on product categories (e.g. the
input material (hot strip, cold strip) and the executed finishing processes (e.g. coating,
annealing). For these clusters gross demands are defined. Within (2) net requirements
calculations, the information on booked orders is used to estimate the net requirements
on a weekly basis. (3) rough allocation planning is matching these net requirements
with the existing capacities under consideration of already allocated work loads. This
planning step is still done for a mid-term period of approx. 15 months. The result are
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(1)
demand planning

(2)
net requirements
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(3)
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Figure 2.2: Overview of the typical tasks involved in rough planning in the steel industry.

weekly contingents for each planning item. In (4) detailed allocation planning, these
contingents are broken down into more precise product clusters (planning products),
with a higher level of detail regarding product type and process steps. In the next
planning process, (5) delivery date calculation, actual incoming customer orders are
processed. The products that can be ordered by the customer can be categorized by the
type of steel, the specific treatments and the dimensions of the final product. Whenever a
customer requests a certain product, the sales manager first checks whether there is still
capacity for the specific contingent and all legal aspects are clarified within commercial
order clarification (COC). Based on the capacity contingents of the planning product
the customer requests, a preliminary delivery date is calculated as the sum of planned
production lead times for each necessary production step. This preliminary date is
communicated to the customer. In the next step, the order information is passed on
to the technological order clarification (TOC). Based on the product specifications,
a routing through production is determined and requirements in terms of intermediate
products for each production stage are derived. In the last process of rough planning, the
orders are scheduled for the determined production route. This scheduling is referred
to as (6) rough scheduling, due to the incomplete consideration of all constraints for
each production stage. E.g. for continuous casting, often only the overall capacity of
the caster is considered. The necessity to group certain orders together is often not
considered in rough planning. As stated above, due to the highly differing constraints
on each production stage, no overall procedure is known in the literature that is able to
respect all constraints at once. The result of rough scheduling, are due dates for each
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order and every production stage. Based on this information, a promised delivery date
is communicated to the customer.

For every order, the information on the required intermediate product (from TOC) and
the due date are communicated to each necessary production stage. Under consideration
of all constraints of the production stage, feasible short-term production schedules are
derived while trying to meet the planned due dates. The planning process for the
continuous casting stage is described in detail in the next section.

2.3 Continuous Casting Planning Problem

The task of detailed continuous casting production planning is to convert the incom-
ing production orders into a production program for the upcoming planning period,
for all casting facilities. The process is known to be highly challenging (Harjunkoski
and Grossmann 2001). In contrary to rough planning results described in the previous
section, this production program respects all constraints and is feasible to be produced
by the casting facilities. Since modern casters are constructed to produce two strands
from one tundish (see Section 2.1), the following descriptions are based on twin strand
casters.

Tang et al. (2011) describe three decisions that form the continuous casting planning
problem: (1) how the slabs created to fulfil a specific customer order should be dimen-
sioned (referred to as Slab Design in the following), (2) which slabs should be produced
together in one charge (referred to as Charge Batching in then following), and (3) how
many and which charges should be cast together on one tundish (referred to as Cast
Batching in the following). Complemented by a preliminary decision (4) on the allo-
cation of orders to casters (referred to as Caster Selection in the following) and the
concluding decision (5) on how to sequence the generate casts on each caster (referred
to as Cast Sequencing in the following), the five sub problems involved in continuous
casting planning are described. Figure 2.3 depicts the planning elements and decisions of
detailed continuous casting production planning. A production program for one caster
is described by a sequence of casts.

In the following Sections, each decision is described in detail with the corresponding
constraints that limit the decision space. Starting with caster selection (CAS) in Sec-
tion 2.3.1, followed by slab design (SD) in Section 2.3.2, charge batching (CHB) in
Section 2.3.3, cast batching (CB) in Section 2.3.4 and finally, cast sequencing (CS) in
Section 2.3.5. Afterwards, the different planning objectives involved in continuous cast-
ing planning are presented within an extra Section 2.3.6. This is motivated, because the
objectives are often influenced by more then one decision.
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caster
selection

charge
batching

slab design cast batching

cast
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order allocated
order

slab charge cast production
program

Figure 2.3: The elements and decisions of detailed continuous casting production plan-
ning

2.3.1 Caster Selection

In case more than one caster is available for production it has to be chosen which
particular work system to use for a production order. There can be a large difference
on the suitability of a caster for a certain production order. This is due to varying
caster specifications. The most important difference is the ability to squeeze a slab
while rolling it. A caster with a large squeezing range of 300 mm could e.g. produce
a 1500 mm wide hot strip out of slabs with width between 1500 mm - 1800 mm. The
ability to produce certain steel grades and steel qualities can vary significantly between
different casters, e.g. influenced by casting speeds and/or the guiding technology of the
caster. Finally, load levelling between different casters and providing the right orders
to execute the subsequent planning decisions (e.g. to group slabs of equal steel grade
together in Charge Batching) are important aspects of Caster Selection.

Caster Selection is only constrained in case a caster cannot be used to produce a specific
production order due to technological requirements or higher level planning decisions
that are out of scope for continuous casting planning. The constraints are set within
TOC and provided to continuous casting planning (CAS1:applicable caster).

2.3.2 Slab Design

As described previously, customers are ordering final products which are most often
not slabs but coils. The purpose of Slab Design is to create a slab by determining
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the dimensions (width, length, thickness, resulting weight) and the steel grade that is
needed to produce the final product (Tang et al. 2011). They are specified during TOC.
The dimensions of a slab are determined by the mould used in the caster. Since the
thickness of the mould can usually not be adjusted, the only way to vary the thickness
is to exchange the mould. With investment costs of approx. 1 000 000 EUR for a single
mould, the thickness can be considered as a fixed parameter (e.g. 257 mm). The other
parameters that determine the dimensions of a slab, length, width and resulting weight
can be adjusted and therefore need to be determined for each slab. The requirements
for the dimensions of a slab depend on order specification and routing informations
(e.g. the described ability of the allocated hot mill to squeeze slabs). Target values, as
well as tolerance ranges are provided for length (SD1:min/max slab length), width
(SD2:min/max slab width) and weight (SD3:min/max slab weight) for each
slab. Further, a slab quality (described by the surface quality, the purity, and the metal
micro structure of the slab) as well as a steel quality (described by a required steel grade)
are given for each production order.

Within detailed continuous casting production planning the actual dimensions of the
slab to be produced are decided. Because of the given flexibilities there are many pos-
sible outcomes of Slab Design as depicted on an example in Figure 2.4. Only the area
determined by length and width is displayed, since the thickness is usually constant (as
described above).

smallest

possibilitieslargest (length)

largest (width)

1519 mm

5.61 m

17082 kg

9.85 m

30000 kg 1519 mm

1619 mm

9.24 m

30000 kg

9.85 m

1619 mm

Figure 2.4: An example of the decision space of Slab Design.

Considering a sample slab with the following exemplary information provided by TOC:
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• thickness (determined by selected caster): 257 mm

• length: [5.61 m - 11.5 m]

• width: [1519 mm - 1619 mm]

• weight: [15 000 kg - 30 000 kg]

• density: 7800 kg/m3

In this example the smallest possible slab (depicted on the up left corner of Figure 2.4)
would be at the minimum length 5.61 m and width 1519 mm with a resulting weight
of 17 082 kg. A slab with maximum length 11.5 m and width 1619 mm has a resulting
weight of 37 323 kg (not displayed in Figure 2.4) and exceeds the slab weight maximum.
Therefore, biggest slabs either are thin 1519 mm with maximal possible length 9.85 m
(lower left corner corner of Figure 2.4) or wide 1619 mm with length of 9.24 m (lower
right corner corner of Figure 2.4) while not exceeding the maximum weight of 30 000 kg.
There are a large number of possible slab dimensions in between those extremes. The
actual choice of slab dimension is influenced by multiple objectives and interacts with
other decisions of detailed continuous casting production planning (see Section 2.3.6 for
more details).

Another constraint for Slab Design are prohibited slab length clusters as depicted in
Figure 2.5 (SD4:slab length cluster).

permittedprohibited

Figure 2.5: Example of different length cluster that are prohibited within Slab Design

The slab length cluster constraint is determined by the selected routing for a production
order, since its characteristic is depending on the hot strip mill used in further processing
of the slab. Before hot strip milling can be carried out, slabs usually need to be reheated
when a direct rolling is not executed. Therefore, slabs are stacked on orthogonal beams

15



2 The Continuous Casting Planning Problem

in the furnace of the hot strip mill. In order to avoid an unwanted bending of the slabs,
certain slab length cannot be used.

Another aspect of Slab Design occurs whenever orders require slabs with a small width
that is only a fraction of the maximum casting width ability. In that case, it is possible
to produce a wide slab (mother slab) and split it after casting into smaller sub slabs
(daughter slabs). This could be useful in order to complement very wide orders with
very narrow ones in Charge Batching. It is also favourable in terms of production
output, since this leads to wide slabs and therefore more quantity produced within
the same period of time. Whenever mother slabs are composed of slabs from different
production orders, difficulties could arise when order parameters (e.g. slab quality, due
date or slab length) differ from each other. The ability to combine slabs into a single
mother slab is therefore constrained by steel quality compatibility (CHB1:steel quality
compatibility), slab quality compatibility (CB4:slab quality compatibility) and
maximum casting width on a strand (SD5:maximum strand width). The aspects of
steel quality and slab quality compatibility are discussed in more detail in the following
sections. The objectives influenced by the generation of mother slabs are discussed in
more detail in Section 2.3.6.

2.3.3 Charge Batching

One ladle holding a certain amount of steel (e.g. 250 t) is the elementary production
unit of the continuous casting stage as described in Section 2.1. In continuous casting
planning, one ladle is referred to as one charge. Since the actual amount of steel that is
contained within a ladle can vary depending on the steel mill and on the wear status of
the refractory lining, a certain flexibility in the charge size generated in Charge Batching
is provided. The task of Charge Batching is to determine the slabs generated in Slab
Design, that are grouped together within one charge. Further, the allocation of slabs to
the two strands (for twin strand casters as considered in this thesis) and the order in
which the slabs are cast in the strands is selected during Charge Batching. Figure 2.6
depicts one charge, consisting of four slabs in positions k = 0, ..., 3 for each of the two
strands st = 0 and st = 1.

The most important constraint for the Charge Batching decision is the steel grade. A
single charge is characterized by a specific steel grade realized within the steel making
process (see Section 2.1). Only slabs with compatible steel grades can be allocated to
that charge (CHB1:steel quality compatibility). Since a steel grade is character-
ized by certain physical and chemical properties, it is possible to meet a given order
with a steel grade that outperforms the expectations of the customer (i.e. a higher steel
grade). By choosing a high steel grade for a charge, the number of possible slabs avail-
able for scheduling increases. This so called quality upgrading can be used in order to
complement charges.
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k=0

k=1

k=3

k=4

st=0 st=1

Figure 2.6: Example on how eight slabs are allocated to the two strands of a charge.

The need to complement charges arises from the constraint that only full charges are
cast. Whenever not enough slabs are available for a given steel grade (even with quality
upgrading), slabs are produced without having a production order allocated to it. These
so-called open ordered slabs need to be stored in a slab yard to be reallocated to future
production orders, in case of matching specifications. While it is not possible to produce
less than a full charge size, it is also not possible that the sum of all slab weights allocated
to one charge exceeds the charge size (CHB2:charge size).

Another aspect of Charge Batching is the width transition between two consecutive slabs
on a strand. With modern casters, it is possible to adjust the width of the mould during
the casting process. In order to avoid a breakthrough of liquid steel, width changes
can only be executed gradually and the maximum possible width change is limited
(CHB3:slab width transition). Narrowing the width is less dangerous than widening,
therefore the direction of width change has to be distinguished. The maximum width
difference between two consecutive slabs is influenced by the steel grade, the caster, the
slab position within the cast and the direction of width change. The steel grade defines
whether a width change in a certain direction is possible or not. The position within the
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cast and the caster determine the amount of deviation allowed. Further, for certain steel
grades (depending on the carbon content) width changes are not possible. Whenever
the width between consecutive slabs is changed, a trapezoidal transition area results, as
depicted in Figure 2.7. In case the area is sufficiently small, the hot strip mill is able
to compensate for it. Otherwise, an additional production step (slitting) is necessary to
straighten the slab before milling (see Section 2.1). In some cases, large width changes
are favourable in order to connect customer orders with differing width requirements to
meet due date requirements.

Figure 2.7: Example of the resulting trapezoidal area (depicted in red) when adjusting
the slab width during the casting process.

While the maximum width that can be produced on each strand is already considered
within Slab Design, it is necessary during Charge Batching to assure that the sum of the
two strand widths does not exceed the total width limit of the caster (CHB4:maximum
total strand width).

The objectives influenced by the Charge Batching decision are described in Section
2.3.6.

2.3.4 Cast Batching

Within Cast Batching the number of charges grouped into one cast and the sequence of
charges in the cast are determined. A cast is defined as the charges produced using one
tundish, i.e. between two setup processes.
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When producing consecutive charges using the same tundish, a mixed zone of steel
occurs when pouring the subsequent ladle into the tundish. No quality issues occur in
case the steel grades of the two tundishes are equal. Similar to the described steel grade
compatibility in Charge Batching, charges with similar steel grades can also be cast
consecutively on the same tundish whenever chemical properties overlap. Metallurgists
have defined so-called cast families, that describe the groups of steel grades that fulfil
these requirements. Charges that do not belong to the same cast family are not allowed
to be grouped together into the same cast (CB1:cast family compatibility). Since
steel grade and cast families are defined by ranges of technological properties, it is
possible that a certain steel grade fulfils the requirements of multiple cast families. In
this case, a charge with an overlapping steel grade could be allocated to any cast with
respective cast family within Cast Batching.

The number of charges that can be produced consecutively within one cast is constrained
due to the limited lifespan of the tundish. As described in Section 2.1, the refractory
lining of the tundish gets worn out during production and needs to be replaced when a
certain wear status is reached. In the literature, the limit is usually described as a time
span during which a tundish can be utilized. The casting time is basically determined
by the casting width and the casting speed, which is depending on the steel grade.
In practice, the above described informations are usually summarized into a maximum
number of consecutive charges allowed for each cast family (CB2:maximum batch
size).

Similar to the width transition requirements described in Charge Batching, the connect-
ing strands of two consecutive charges need to be within a maximum difference. Again,
trapezoidal slabs occur in case the width needs to be adjusted (CHB3:slab width
transition).

Another aspect, that is determined within Cast Batching, is the slab quality. The slab
quality is divided in the three categories purity, internal structure and surface quality.
Each category is evaluated on a scale reaching from 1 to 9. Therefore, the slab quality can
range from (1/1/1) lowest quality up to (9/9/9) highest quality. The output quality of a
produced slab is depending on the position of the slab within the cast, the caster and the
affiliation to a certain casting cluster (e.g. interstitial free steel). The flow properties
of the liquid steel are the major influencing factor on the achievable slab quality. In
case turbulences disturb a smooth flow of liquid steel, the slab quality is decreased.
This happens prior at the beginning of a cast, when the steel is poured into an empty
tundish. However, when a tundish is running low, or a new charge is poured into the
tundish within a running cast, turbulences in the steel flow occur. Metallurgists have
defined slab position categories within a cast, and associated achievable slab qualities
to each category. Different slab position categories are depicted on an example cast
consisting of three charges in Figure 2.8.

There are two possible beginnings of a cast depending on the setup type used. The first
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beginning slab /
beginning compound slab

pre-transition slab

transition slab

first filtet slab

further filet slab

pre-discharge slab

discharge slab

Figure 2.8: Example of slab positions in a cast with three charges.

slab position is either called beginning slab, in case of caster turnaround, or beginning
compound slab after a compound setup was carried out. Due to the described turbu-
lences attached to filling in the first ladle, the quality of these first slabs is rather low.
Subsequent slabs are of high quality and are named first fillet slab and further fillet
slab. At the transition of two charges, it is distinguished between the pre-transition slab
before the new ladle is used and the transition slab during or right after the ladle change.
Finally, at the end of each cast when the strands are discharged, again turbulences arise
leading to reduced slab quality. This affects the pre-discharge slab and the discharge
slab at the very end of the cast. For a slab to be allowed at a certain slab position,
the customer requested slab quality must be less or equal to the slab quality possible
at that position (CB4:slab quality compatibility). E.g. if a slab position only gen-
erates (3/3/3) quality, slabs from orders where the customer requires higher quality at
any category cannot be used in this position. In case no customer order for that slab
position exists, open ordered slabs have to be produced. In contrast, higher slab quality
than expected by the customer is allowed but should be avoided (see Section 2.3.6 for
further discussion of slab quality upgrading).

Finally, the two strands need to be balanced in terms of total strand length, since both
strands are fed from the same tundish. This constraint is highly dependent on the Slab
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Design decision, because the total length on each strand is defined by the sum of slab
length of the containing charges. A small tolerance is given as a maximum allowed
length difference (CB5:strand length difference).

2.3.5 Cast Sequencing

Within Cast Sequencing the sequence of casts and therewith the final production pro-
gram is generated for each caster. This is usually done on a rolling daily basis.

The basic restriction of Cast Sequencing is the capacity of the caster. Usually casters
are operated continually 24 h per day. However, the available capacity could be reduced
by disruptions or scheduled maintenance (CS1:caster capacity). The casting time
is determined by the caster, the steel grade and the width of the strand. Available
production time and casting time per charge determine the total output of the caster.

Another aspect determined within the Cast Sequencing is the possible setup type be-
tween consecutive casts. As described previously, there are the two main setup options
to change from one cast to another, caster turnaround and composite setup. At the
caster turnaround, the caster is stopped and the strand is completely discharged. This
takes between 30 min and 90 min depending on the caster and the steel grade. During
that time no output is produced. In a composite setup, the caster is only slowed down
and a plate is inserted between the consecutive charges, protecting the steel grades to
mix up. This procedure only takes between 5 min and 15 min of setup time depending
on the caster and steel grade. The plate used for a composite setup costs approximately
additional 1000 EUR. The caster turnaround is always possible, while the ability to carry
out a composite setup is restricted. First, the steel grade of the preceding cast needs to
be bondable with a following cast. Second, the succeeding cast also needs to be bond-
able with a previous cast. These two cases can be discerned for a steel grade. Third,
the width requirements described for Charge Batching and Cast Batching need to be
fulfilled for the connection on both strands (CS2:setup type).

The total number of setup processes, which contain a tundish change, is limited. Every
time a tundish is exchanged, the refractory lining has to be reworked in a special shop.
The amount of possible tundish changes that can be carried out in one day is therefore
determined by the number of tundishes available for a caster and the time required to
rework a used tundish (CS3:maximum setups).

A very important constraint for Cast Sequencing is to fulfil the hot metal consumption
constraint. As described in Section 2.1, hot metal is produced constantly in the blast
furnace. Each charge is consuming a certain amount of hot metal depending on the
steel grade that is processed out of the hot metal and the ware state of the ladle. The
size in terms of number of charges in a cast and the resulting setup process from the
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[t]

[tons]

Figure 2.9: Dependencies of Cast Sequencing and hot metal consumption for an example
production program.

sequence of casts determines the hot metal consumption rate of the caster. At any
time, the generated sequence can only consume at most the amount of hot metal that
is produced. Further, since the ability to store hot metal is limited (see Section 2.1),
the generated production program is forced to consume at least a certain amount of
hot metal at any time (CS4:hot metal consumption). The number of available
torpedo cars is determining the buffer capacity. Figure 2.9 presents the influence of Cast
Sequencing and hot metal consumption requirements. Below the graph, a sequence of
five casts with a total number of (2,1,3,1,2) charges is depicted. The black line represents
the hot metal consumption. During a setup process no hot metal is consumed, leading
to plateaus in the hot metal consumption. The solid red line shows the constant hot
metal supply and the dashed red line, the buffer limit for storing hot metal. The above
described possibility to execute a short composite setup process is depicted for the last
two casts in the given sequence.

While the steel making production stage is quite flexible in producing different steel
grades, one major bottleneck exists. Certain steel qualities require to undergo vacuum
treatment to be realised. This is carried out in the vacuum facility of the steel plant. For
simplification purposes, the capacity of the vacuum facility is usually given on a daily
basis. A generated production program needs to assure that the sum of material that
requires vacuum treatment scheduled within one day does not exceed the given capac-
ity. Similar to upstream vacuum treatment capacities, downstream hot transportation
capacities can place a constraint for Cast Sequencing (CS5:vacuum treatment ca-
pacity). Certain material needs to be further processed at the hot strip mill directly
from casting heat. In order to achieve this, a transportation in special vehicles is re-
quired. Since only a certain amount of those vehicles is available, Cast Sequencing needs
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to assure that the amount of material that requires a hot transport within a planning
period does not exceed the given capacity(CS6:hot transportation capacity).

Another aspect that constraints the Cast Sequencing decision are special casts. Special
casts arise from different reasons (e.g. day shift requirement, material required for
cleaning in downstream production processes, casts for ramp up processes), but lead to
the same planning constraint. They need to be scheduled at a certain point of time
and therewith limit the freedom of Cast Sequencing (CS7:special casts). While this
constraint is not justified by technological requirements, higher planning decision can
still lead to hard constraints for detailed continuous casting planning.

2.3.6 Planning Objectives

In the following Section the different objectives involved in continuous casting planning
are described. Since objectives are often influenced by more than one planning decision,
they are separated from the description of decisions and constraints.

There are two basic classes of objectives. The first class is influenced by the set of
slabs that have been scheduled within a certain planning period. It is determined by
a combination of all planning decisions. The second class of objectives is influenced
by the way the slabs are arranged within the charges, casts and production program.
Again this is influenced by all planning decisions since the ability to generate a certain
arrangement is determined within all decision levels.

Due Date Fulfilment

In order to meet the delivery date communicated to the customer, due dates for each
production stage are determined within high level planning (see Section 2.2). The ability
to meet these due dates at the continuous casting stage is an important target of detailed
continuous casting production planning. The deviation between the actual production
date and the due date is referred to as lateness. Positive values of lateness indicate late
production (tardiness), whereas negative values indicate early production (earliness). In
case of late production, less time is available to process a slab on downstream production
stages and the possibility of late deliveries to the customer increases. Producing slabs
earlier than planned, also leads to negative effects on the logistics performance. First, the
slabs need to be stored and increase the inventory costs. Second, casting capacity used
on early production is lost for orders that were originally planned within the planning
period. Resulting in late production of the postponed orders.

The target is to minimize the deviation of actual production date and scheduled due
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date for each slab produced on the different caster (O1: duedate fulfilment). This
target is primary effected by the set of slabs scheduled for the planning period under
investigation.

Utilization of Upstream and Downstream Facilities

The downstream adjusting facilities, i.e. splitting, scarfing and cut-to-length, are mostly
manual activities. Therefore, the capacity is restricted to the amount of workers avail-
able in a planning period. Since it is very expensive to have excess capacities, labour
requirements are calculated based on average needs. This leads to a certain capacity
available in each planning period. The total quantity of material that requires a certain
adjusting process, planned for a planning period, should not exceed this capacity to
avoid that material stays in inventory for longer than planned. On the other side, not
utilizing the given capacities results in opportunity costs.

The capacities for vacuum treatment and hot transportation constrain the Cast Sequenc-
ing decision as pointed out in Section 2.3.5. Short-term capacity adjustments are very
restricted. Therefore, capacity not utilized during one planning period is lost. This
could lead to insufficient capacities in other periods when a large amount of orders is in
need of the work system. The target of detailed continuous casting production planning
is to equally utilize the constrained work systems. The share of orders that require a
certain facility within one planning period, should be equal to the average total share of
orders for that facility.

To avoid opportunity costs, the target is to maximize the utilization of restricted up-
stream and downstream capacities (O2: up/downstream capacity utilization).
This objective belongs to class one and is influenced by the set of slabs contained in the
planning period under investigation.

Meet Downstream Demands

Within higher-level planning, certain output rates for each hot strip mill are planned in
order to establish an appropriate overall utilization of downstream work systems. These
planning decisions include inter-plant transfers of material from steel mills to hot strip
mills of different locations. Since slabs stored within the slab yards could also be used to
meet hot strip mill demands, a planning department is determining the net requirements
and setting targets and tolerance windows for detailed continuous casting production
planning. A similar situation occurs for other downstream production facilities, e.g.
coating. Higher planning levels determine desired amounts of material for downstream
work systems. The product type specified for each order determines the work plan and
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therefore the traversed facilities for each slab. This information is used to define targets
for material produced at the casting stage in a specific planning period.

The target is to minimize the deviation of produced material and demanded material for
specified downstream work systems (O3: downstream demand fulfilment). This
objective belongs to class one and is determined by the set of set of slabs contained in
the planning period under investigation.

Utilization of Slab Quality

The slab position within a cast determines the slab quality, as described in Section
2.3.4. Each cast always consists of certain slab positions. One task of continuous casting
production planning is to match the available slabs with those slab positions within a
cast. Only when the customer quality requirements behind a set of slabs exactly fit to
the slab quality provided by the positions of a cast, no deviation occurs. While it is not
possible to meet a customer order with a lower quality slab, a fillet slab with highest
quality could be allocated to any order. Meeting an order with slabs of higher quality
than requested results in opportunity costs, since the slab produced at this position
could have been sold to a customer with higher requirements for a higher price.

The target is to minimize the amount of customer orders that are served with slabs of a
higher slab quality then required and thus minimize (O4: slab quality upgrading).
This objective belongs to class two and is determined by the arrangement of slabs within
the casts of a production program.

Utilization of Steel Quality

As described in Section 2.3.3, all slabs within a charge are produced in the same steel
grade and it is possible to serve a customer order with a superior steel grade. Whenever
a charge cannot be completely filled with slabs that require the same steel grade, one
opportunity would be not to produce the charge and wait for matching orders to arrive
in the future. However, if orders with compatible but inferior steel grade requirements
exists, these orders could be used to complement the charge. Orders that are served with
slabs of superior steel grade then requested, result in a quality upgrade that comprises
an opportunity cost.

The target is to minimize the amount of customer orders that are served with slabs of a
higher steel quality then required and thus minimize (O5: steel quality upgrading).
This objective belongs to class two and is determined by the assignment of slabs to
charges with a certain steel grade.
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Open Ordered Slabs

Open ordered slabs are used to complement charges or casts when slabs derived from
existing orders cannot be used to fulfil the constraints of Charge Batching and/or Cast
Batching. This can occur whenever width transitions cannot be achieved, not enough
slabs of a certain steel grade or cast family exist, not enough slabs for the different slab
qualities derived from the cast positions exist, or to level out strand widths in Cast
Batching. They are slabs produced with no associated customer order and therefore
enable the planner to set the dimensions and steel/slab quality specification of the slab
as needed to fulfil all constraints. After production the open ordered slabs are stored
in the slab yard and wait to be allocated to incoming customer orders. During that
time, the slabs create inventory holding costs and there is the risk of never finding an
appropriate order. In case an incoming order is eligible to use the slab, often additional
adjusting processes are needed to fit the slab dimensions.

The target is to minimize the amount of open ordered slabs used to complement the
production program (O6:open ordered slabs). This objective belongs to class two and
is determined by the interaction of Slab Design, Charge Batching and Cast Batching.

Utilization of Hot Strip Mill Furnaces

The decision of Slab Design involves determining the length of each slab. As described
in Section 2.3.2, there is a certain flexibility to increase the slab length by reducing
the width. Long slabs, close to the maximum furnace length, are desired because they
increase the utilization of the hot strip mill furnaces. This is directly influencing the
maximum output rate of the hot strip mill production stage.

The target is to maximize the hot strip mill furnace utilization (O7: HSM furnace
utilization). This objective belongs to class two and is determined within Slab De-
sign.

Utilization of Casters

The continuous casting stage is usually the bottleneck in steel production. Therefore,
the total output generated is closely related to the casting output. In order to maximize
the total production output, the utilization of the casters in terms of effective production
time should be as high as possible. There are basically two factors that influence the
utilization of the casters. First, the amount of time spend on setup processes and
second, the slab width. As described in section 2.1, when changing between different cast
families, the width of consecutive strands differ dramatically or whenever the lifespan of
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the tundish is reached, a setup process is needed to exchange the tundish. Depending
on the setup type, this procedure takes between 5 min and 90 min. Opportunity costs
result whenever the maximum number of charges is not exploited.

Another possible way to maximize the caster utilization is to generate maximum slab
width during Slab Design. The wider the strands, the less time is needed for producing
the same amount of material, and the more material can be produced within one planning
period.

The target is to maximize the caster utilization (O8: caster utilization). This objec-
tive primary belongs to class two and is determined by Slab Design and Cast Sequenc-
ing.

Tundish Utilization

Besides the opportunity costs for not utilizing the maximum possible output for the
caster, opportunity costs arise whenever the maximum number of charges grouped into
a cast is not utilized. This is because each tundish exchange results in labour costs for
the setup process and the reworking of the refractory lining of the tundish.

The target is to maximize the tundish utilization (O9: tundish utilization). This
objective primary belongs to class two and is determined by Cast Batching.

Adjusting

Certain adjusting processes like scarfing and slitting can be avoided during detailed con-
tinuous casting production planning. The need for scarfing depends on Caster Selection.
Slitting can be prevented when the width between consecutive slabs is not changed to
a higher degree than the hot strip mill is able to squeeze nonparallel slabs. This can
be respected at Charge Batching as well as Cast Batching. Otherwise slitting is needed
to prepare the trapezoidal slabs for milling. Another decision is to produce either very
wide mother slabs that consist of two slabs but need to be split before milling, or to
produce thin slabs without adjusting.

The target is to minimize the required amount of adjusting (O10: adjusting). This
objective belongs to class two and is determined by Caster Selection, Slab Design, Charge
Batching and Cast Batching.
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Constraint Planning Decision
CAS1: applicable caster Caster Selection
SD1: min/max slab length Slab Design
SD2: min/max slab width Slab Design
SD3: min/max slab weight Slab Design
SD4: slab length cluster Slab Design
SD5: maximum strand width Slab Design
CHB1: steel quality compatibility Slab Design, Charge Batching
CHB2: charge size Charge Batching
CHB3: slab width transition Charge Batching, Cast Batching
CHB4: maximum total strand width Charge Batching
CB1: cast family compatibility Cast Batching
CB2: maximum batch size Cast Batching
CB3: slab quality compatibility Slab Design, Cast Batching
CB4: strand length difference Cast Batching
CS1: caster capacity Cast Sequencing
CS2: setup type Cast Sequencing
CS3: maximum setups Cast Sequencing
CS4: hot metal consumption Cast Batching, Cast Sequencing
CS5: vacuum treatment capacity Cast Sequencing
CS6: hot transport capacity Cast Sequencing
CS7: special casts Cast Sequencing

Table 2.1: Overview of all constraints involved in Continuous Casting Planning

2.4 Summary of the Continuous Casting Scheduling
Problem

The continuous casting production process is highly challenging from a technological
perspective. This complexity translates into a large number of constraints that need to
be respected during detailed continuous casting production planning. In the previous
sections all constraints have been discussed within the sub section of the respective
planning decision. Table 2.1 provides an overview of all constraints with a link to the
corresponding planning decision. Further, Figure 2.10 illustrates the different constraints
graphically.

The different objectives described in Section 2.3.6 are summarized in Table 2.2. For each
objective, the class (as defined in Section 2.3.6) and the major influencing decision are
listed.
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Objective Class Major Influencing Decisions
O1: duedate fulfilment 1 all
O2: up/downstream capacity utilization 1 all
O3: downstream demand fulfilment 1 all
O4: slab quality upgrading 2 Caster Selection, Charge Batching,

Cast Batching
O5: steel quality upgrading 2 Caster Selection, Charge Batching
O6: open ordered slabs 2 Caster Selection, Slab Design,

Charge Batching, Cast Batching
O7: HSM furnace utilization 2 Slab Design
O8: caster utilization 2 Caster Selection, Slab Design, Cast

Sequencing
O9: tundish utilization 2 Caster Selection, Cast Batching
O10: adjusting 2 Caster Selection, Slab Design,

Charge Batching, Cast Batching

Table 2.2: Overview of all Objectives involved in Continuous Casting Planning

2.5 Research Approach

The target of this thesis is to develop a DSS for the continuous casting planning problem,
that enables a decision maker to balance the conflicting targets. Since the problem
is too complex to consider all decisions, constraints and objectives within one model,
the problem needs to be decomposed. Several decomposition approaches have been
published in the continuous casting literature. They differ in the number of decisions
contained, the constraints selected and objectives considered (see Section 2.3).

The largest issue with current approaches is the insufficient consideration of the CS4:
Hot Metal Consumption constraint (see Section 3.2 for a detailed discussion). Since
the (CS4: hot metal consumption) constraint primary influences the decisions Cast
Batching and Cast Sequencing, the approach of this thesis is to decompose the continuous
casting problem into two parts. The first part contains the decisions Caster Selection,
Slab Design and Charge Batching. The second part contains Cast Batching and Cast
Sequencing. Part 1 can be referred to as the Charge Pool Generation Problem and part
2 as Cast Batching and Sequencing Problem.

The focus of this thesis is set on the Cast Batching and Sequencing Problem. A formal
model for this problem is developed in Section 4 and an iterated local search heuristic to
solve the problem is presented. In Section 6 a DSS is described to support planners to
generate good schedules for the continuous casting planning problem in industry appli-
cations. The DSS contains preprocessing procedures to generate solutions to the Charge
Pool Generation Problem and utilizes the method generated in Section 4 to generate
schedules for the Cast Batching and Sequencing Problem. An approach is developed to
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Figure 2.11: Decomposition approach to separate Caster Selection, Slab Design and
Charge Batching from Cast Batching and Cast Sequencing as selected for
this thesis

respect the multi-objective character of the problem and provide the decision maker with
alternative production programs. This enables him to find a good compromise between
conflicting objectives and to derive a balanced target achievement. Figure 2.11 depicts
a simplified representation of the approach.

The approach selected to solve the Cast Batching and Sequencing Problem is as follows.
Input to the the problem is a set of charges generated by the Charge Pool Generation
Problem. One way to represent a solution to the problem is a permutation of all charges
available. In case consecutive charges fulfil the batching requirements (constraints of
Cast Batching), they are considered to be a cast. This representation is similar to family
scheduling, where jobs are assigned to specific setup families and consecutive jobs of the
same setup family do not require a setup process (see Section 3.3 for the related work).
Using this similarity, a formal model for the Cast Batching and Sequencing Problem
is developed in Section 4. Besides the (CS4: hot metal consumption) constraint,
further constraints that can be considered without determining Slab Design and Charge
Batching decisions are respected. For the Cast Batching sub problem that is (CB1:
cast family compatibility). For the Cast Sequencing sub problem, (CS1: caster
capacity) and (CS2: setup type). All constraints that involve slab width information
and slab position information cannot be respected in the described approach, since this
would require a detailed solution to the Charge Pool Generation Problem which is not
the focus of this thesis.

The multi-objective character of the problem is separated from the formal model derived
for the Cast Batching and Sequencing Problem. Within the model, only the target (O1:
duedate fulfilment) is respected by minimizing total tardiness of all charges. However,
other targets of the detailed continuous casting problem are treated within the DSS.

The following chapter contains the related work for the continuous casting planning
problem and the scheduling literature that is related to the modelling approach selected
for the Cast Batching and Sequencing problem. Further, the reasoning for selecting the
above approach is deduced from limitations in the current continuous casting literature.
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Within the scheduling part of Chapter 3, the extensions of existing scheduling approaches
to model and solve the Cast Batching and Sequencing problem are pointed out.
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3 Related Work

This chapter presents the related work that forms the foundation of this thesis. In
Section 3.1, the state of the art in continuous casting planning is presented. Section 3.2
contains a discussion of the limitations of existing literature. Based on these findings,
the decision on how to approach the problem described in Section 2.5 was deduced.
Section 3.3 presents the state of the art in scheduling relevant to the chosen approach.
Finally, Section 3.4 discusses required extensions of existing scheduling approaches in
order to realize the attempted approach of this thesis.

3.1 Continuous Casting Planning Problem

As described in Section 2, the detailed continuous casting planning problem consists of
the five interrelated sub problems: Caster selection, slab design, charge batching, cast
batching, and sequence selection. Because the combined continuous casting planning
problem is very complex, available approaches in the literature tend to only focus on
parts of the given decisions, constraints and/or objectives. The following sections are
structured according to the degree of sub problem considerations within the problems
considered in the literature. Since there are no papers explicitly concerned with the
caster selection sub problem, it is not presented in an independent section. The first
Section 3.1.1 considers the relevant literature on the slab design problem. The second
Section 3.1.2 considers literature that focuses on problems including charge batching and
potentially slab design. The following Section 3.1.3 presents literature on problems that
derive casts, potentially including charge batching and slab design considerations. Fi-
nally, Section 3.1.4 provides an overview of existing literature that determines sequences
of casts for a caster and therewith final solutions to the continuous casting planning
problem.

General surveys that are relevant to the continuous casting problem have been conducted
by Lee et al. (1996) and Tang et al. (2001).
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3.1.1 Slab Design

There are two streams of literature that focus on the slab design problem. The first
stream only considers order weights and slab weights as well as an order type (color)
when grouping orders to slabs. The literature is primarily focused on developing new
constraint programming solution approaches. The second stream of literature is focused
on real world planning problems and considers more constraints and objectives.

All problems of the first stream focus on constraint (SD3: min/max slab weight).
These problems also consider a color for each order, representing the routing of the order.
In order to avoid additional adjusting processes (O10: adjusting), the problems in the
first stream place a constraint on the number of colors that are allowed to be grouped into
one slab. Frisch et al. (2001a) described three models with different choices of decision
variables for the steel mill slab design problem. They presented constructive heuristics
to solve small problem instances. In a second publication, the authors presented another
model that is solved using constraint programming (Frisch et al. 2001b). Gargani and
Refalo (2007) modelled the problem using a constraint programming formulation. They
presented specified search strategies and combine them with a large neighbourhood
search. Hentenryck and Michel (2008) further modified the search strategy and showed
that they can achieve better results even without using large neighbourhood search.
Schaus et al. (2010) provided an extensive comparison of different approaches developed
for the problem based on existing and developed test instances.

The second stream of literature is concerned with solving real industry problems. Dawande
et al. (2004) considered (SD1: min/max slab length), (SD2: min/max slab
width), (SD3: min/max slab weight), (CHB1: steel quality compatibility)
and (CB3: slab quality compatibility). As targets they considered (O10: adjust-
ing) via a color constraint (similar to literature stream one), (O8: caster utilization)
by generating as few as possible, thus large slabs, and (O6: open ordered slabs) by
minimizing the surplus material produced when grouping unequal daughter slabs on
one mother slab. The authors developed a heuristic that consists of three steps. First a
graph is constructed for all orders that represent possible compatible order combinations.
They used existing algorithms to estimate the maximum weight matching of orders in
the graph to obtain initial slabs. Second, they used a constructive heuristic based on the
idea of bin packing to allocate unassigned orders to slabs and reassign orders in existing
slabs. While slab weights are maximized in the first two steps, step three consists of
resizing slabs to include orders with small weights.

Dash et al. (2007) combined the slab design problem with the problem of generating
only a subset of possible slabs depending on the caster capacity. Dimensional con-
straints (SD1: min/max slab length), (SD2: min/max slab width) and (SD3:
min/max slab weight) were taken into consideration. The authors focused on the tar-
gets (O1: duedate fulfilment) by minimizing unselected rush orders and maximizing
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order completeness, (O6: open ordered slabs) by minimizing the surplus ratio and
(O8: caster utilization) by maximizing the slab weight. In their solution approach
they used the order geometry information to create possible slab patterns that could be
used to fulfil the orders. With this structure they were able to exploit the similarity
to the cutting stock problem and solved it using a column generation approach. They
provided an integer problem formulation and described different solution approaches to
solve the sub problem.

3.1.2 Charge Batching

Lee et al. (2004) developed an algorithm based in interval graphs to perform charge
batching for a single strand caster. For each order, a weight and a range of minimum-
maximum width requirements were given. They assumed that each charge can only
be cast in one single width. The target of their approach was to find a minimum set
of charges with respective width, such that all orders are completely covered. The
authors derived properties of an optimal solution and presented an exact algorithm for
the problem.

Tang and Wang (2008) developed a MIP model for the Charge Batching problem of a
single strand caster. The problem was modelled as a p-median problem to allocate given
slabs to a minimum amount of median slabs to form charges. The objectives minimizing
(O4: slab quality upgrading) and minimizing (O6: open ordered slabs) were
considered. Further, the authors translated due date information into priorities and
minimized the number of unselected slabs with high priority. This objective contributed
to the (O1: duedate fulfilment) objective. Regarding constraints, their model con-
sidered (CHB1: steel quality compatibility), (CHB3: slab width transition)
and (CHB2: charge size). In order to respect higher level constraints and objectives
(associated with Sequence Selection), the authors defined constraints on the minimum
number of charges generated with specific characteristics, i.e. (CS5: vacuum treat-
ment capacity), (O2: up/downstream capacity utilization). To solve the model
they developed a dynamic programming based heuristic that separates slabs into subsets
according to steel grades. Afterwards, a shortest path problem was solved considering
weights and width information as arc weights.

Tang and Jiang (2009) derived an IP for the Charge Batching problem that transfers or-
ders into charges. Using cost penalties in the objective function, the constraints (CHB1:
steel quality compatibility) and (CHB3: slab width transition) were considered.
Further they considered the higher planning objective (O1: duedate fulfilment) by
penalizing due date deviations within a charge. The (CHB2: charge size) was re-
spected explicitly as a constraint in the model. In order to model the allocation of
every order to exactly one charge they used an assignment constraint. They solved the
problem by applying Lagrangian relaxation to the assignment constraint.
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3.1.3 Cast Batching

Chang et al. (2000) developed an IP model for the Charge Batching problem. They
considered the constraint (CHB3: slab width transition) as maximum width dif-
ference between charges grouped into a single cast. The assumed that all slabs within
one charge have the same width. Further (CB1: cast family compatibility) was
included as maximum carbon and manganese content difference for all charges in a cast,
and (CB2: maximum batch size) as the total casting time of charges within a cast.
The objective of their model was to derive a minimum number of casts for all charges,
which is equivalent with (O9: tundish utilization) since large casts are generated.
They reformulated the problem as a knapsack problem. Afterwards, the problem was
solved using a heuristic column generation approach, where fractional solutions were
converted into binary solution using a round of scheme.

Tang and Wang (2008) developed a MIP model for the Cast Batching problem that
allocates charges to casts and determines the sequence of charges within each cast.
The authors considered (CHB3: slab width transition) as maximum width differ-
ences within a cast, (CB2: maximum batch size) as total casting time of charges
within a cast and (CB1: cast family compatibility). Additionally, higher level con-
straints and objectives (associated with Sequence Selection) were treated as constraints,
i.e. (CS5: vacuum treatment capacity) and (O3: downstream demand ful-
filment). As further objectives, maximizing (O9: tundish utilization), minimizing
(O5: steel quality upgrading) and maximize (O1: duedate fulfilment) as mini-
mizing unselected charges with high priority were used. The input set of charges were
derived from their approach presented in Section 3.1.2. More charges were generated
than the solution required in order to gain flexibility for the Cast Batching problem.
The problem was solved using a tabu search based heuristic. First, given charges were
grouped into sub sets of similar steel grades. Second, casts were generated by grouping
charges according to width requirements and maximum batch size. Third, casts were
greedily selected into an initial solution cast list, respecting a defined caster capacity.
Afterwards, the solution cast list was modified by applying a tabu search approach. Dif-
ferent local search moves that exchange, insert, delete or swap charges from unselected
casts and the casts in the solution cast list were applied. While executing the modifica-
tions, feasibility regarding (CB1: cast family compatibility), (CHB3: slab width
transition) and (CB2: maximum batch size) was assessed. They implemented
an iterated local search approach to escape local optima, but did not describe how the
perturbation was executed.

Wang and Tang (2008) formulated a MILP model to derive charge-lots, i.e. multiple
charges of the same steel grade, from order information. This can be understood as a
combined Slab Design and Charge Batching approach, that is extended by a prelimi-
nary batching of charges. The decisions made in the model consist of assigning order
weights to charge-lots, determining the number of slabs generated for each order and to
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determine the number of charges in each charge-lot. They considered the objectives to
minimize (O6: open ordered slabs), (O1: duedate fulfilment) as minimizing the
amount of unselected order weights and minimizing an assignment costs consisting of
(O5: steel quality upgrading) and (O10: adjusting) resulting from differences in
width. As explicit constraints, their model respected the (CHB2: charge size) and
(SD3: min/max slab weight). They solved the problem by developing a methodol-
ogy combining Lagrangian relaxation on the order assignment constraint, subgradient,
dynamic programming and heuristic approaches. The approach was further improved
in a later publication by combining Lagrangian relaxation with a column generation to
solve the charge-lot batching problem with the same constraints and objectives respected
(Tang et al. 2011).

In their most recent paper, Tang et al. (2014) developed a MILP model for the Cast
Batching problem on a single strand caster, which also considers the sequence of charges
within a cast and the determination of casting width into the decision problem. For
a given set of charges, their model utilized binary three index decision variables that
determined if two charges are cast consecutively with equal or deviating width. They
assumed that at most one width change is possible per charge and a specific cost is
associated with this width change due to required rework. The chosen objective func-
tion tried to maximize a defined reward for producing a cast, i.e. to maximize (O9:
tundish utilization), reduced by (O10: adjusting) penalties resulting from width
changes and (O5: steel quality upgrading) penalties. They considered the con-
straints (CB1: cast family compatibility), (CHB3: slab width transition) and
(CB2: maximum batch size). The problem was solved using a column generation
approach utilizing properties of an optimal solution derived by the authors.

3.1.4 Sequence Selection

Box and Herbe (1988) described a expert system approach for scheduling a twin strand
caster based on a given slab pool. In their approach, a decision maker had to specify a
cast by choosing starting and ending width for both strands as well as a desired number
of charges for a certain cast family. Afterwards, slabs were selected one at a time from
a presorted list. The sequence was derived using a penalty evaluation based on (O10:
adjusting) resulting from slab width transitions, (O7: HSM furnace utilization),
(O1: duedate fulfilment) and (O9: tundish utilization). Further, each extension
was assessed regarding feasibility based on (CB3: slab quality compatibility), (CS4:
hot metal consumption), (CHB3: slab width transition), (SD4: slab length
cluster) and (CB4: strand length difference). Alternative casts were generated
and evaluated using the expert system approach. The sequence of casts was derived
based on a ranking of generated casts evaluated by the described targets.

Most approaches that consider the sequencing of casts are primarily concerned with
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scheduling the steel making stage, which is the predecessor of continuous casting. Bellab-
daoui and Teghem (2006) studied the combined steel making continuous casting problem.
However, they considered the sequence of charges as given input and concentrated on
deriving a complementary production plan for steel making based on a MILP model.
The objective was to minimizes total completion times under various steel making con-
straints. Numao and Morishita (1989) developed an expert system for the combined
steel making continuous casting problem, in which the planner can make modification
that are evaluated by the system according to feasibility and the performance criteria of
minimizing waiting times and maximizing output. Their approach focused on conflicts
between different production steps in steel making.

Tang et al. (2000) developed a linear programming model in which continuous cast-
ing was considered to be an unconstrained single machine sequencing problem and the
sequence was primarily determined by the steel making constraints and objectives.

Harjunkoski and Grossmann (2001) developed a decomposition approach for the com-
bined steel making and continuous casting problem for a single strand caster. In a first
step, products (i.e. slabs) were presorted according to charge and cast batching require-
ments (i.e. steel grades, thickness and width). Second, a MILP model was developed
that allocated all given slabs to casts considering (CHB3: slab width transition)
and (CHB1: steel quality compatibility) requirements via precedence constraints
and (CB2: maximum batch size) of the casts. The objective of the model was to
derive a minimum number of casts for the given set of slabs, thus (O8: caster utiliza-
tion). Sorting the generated casts in descending order of containing slabs, a production
program for the continuous caster was derived. In the next step, a MILP model for
scheduling the steel making facilities was derived based on a job shop scheduling ap-
proach. The third step consisted of a MILP model assigning positions for each cast on
the continuous caster and the associated steel making production steps. This model
considered due dates of the casts (derived from earliest slab in a cast), the makespan
and thickness changes between casts as objectives, without considering additional con-
straints. In a final step, an LP was designed to compress the schedule by solving the
MILP model from step two with fixed binary variables according to the sequence of casts
generated from the previous MILP model in step four.

Missbauer et al. (2009) developed a scheduling system for the combined steel making and
continuous casting problem. They decomposed the scheduling of casts on the caster from
scheduling the charges on the steel making facilities. For both problems they present
MILP models. The decision they considered for the continuous casting problem was
to determine production times as well as starting times for each charge on the caster,
whereas the sequence of casts and containing charges was considered as predefined by
a higher planning level and not subject of the decision problem. In their model, they
were able to consider setup and waiting times between charges (CS2:setup type) as
well as hot metal supply by the furnace and hot metal consumption of charges (CS4:
hot metal consumption). Feasibility was achieved by introducing additional waiting
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times in case the hot metal consumption exceeded the hot metal supply from the blast
furnace. Various additional steel making constraints, such as routing on different facil-
ities, transportation, or crane capacities and scrap supply, were considered. They used
forward and backward constructive heuristics to solve the problem.

Wichmann et al. (2014) considered a single strand continuous casting problem. Input to
their problem was a set of slabs that needed to be sequenced for a single strand caster.
A sequence of slabs automatically presented charges, casts and cast sequences and there-
fore combined charge batching, cast batching and sequence selection into one problem.
They considered the objectives (O6:open ordered slabs), (O8:caster utilization)
and (O9:tundish utilization). In a feasible sequence of slabs they considered the
constraints (CHB3: slab width transition) and (CS2: setup type). The authors
presented a MILP model for the problem with a weighted target function. Since only
small instances were solvable with a commercial solver, they presented a greedy random
adaptive search procedure (GRASP) heuristic that consisted of a construction phase to
generate an initial feasible solution and a local search phase to improve the solution
with regards to the described targets. The construction was established by starting with
an empty sequence and iteratively adding slabs that are evaluated best according to an
incremental objective function increase. In the local search phase, the two simple oper-
ators were used, that (1) try to combine batches with equal steel grade and (2) move
batches within the sequence of slabs to increase the objective function.

3.2 Limitations of Current Approaches for the
Continuous Casting Planning Problem

A fundamental constraint of the continuous casting problem is to sufficiently consume
the hot metal continuously supplied by the blast furnace. The consumption rate of
a schedule is primarily determined by the number of setup processes (defined by the
number of charges grouped into casts) and the production speed (defined by the strand
width and casting speed of scheduled charges).

One stream of existing literature focuses mainly on batching aspects and only implicitly
consider the hot metal consumption constraint by maximizing the number of charges in
a cast (see Section 3.1.3). The other stream of literature that explicitly considers the
hot metal consumption constraint (see Section 3.1.4) and has its primary focus on the
steel making scheduling and the sequence of charges and casts which is assumed to be
given from a higher planning level.

The only source that includes both aspects, batching and sequencing, is Box and Herbe
(1988), and it does not provide a sufficient mathematical description that could be used
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to implement their approach as part of a DSS.

3.3 Job Scheduling

The basic scheduling problem consists of a set of jobs j ∈ J that needs to be sequenced
on one or more machines (Conway et al. 2003). Typical parameters given for jobs can
be the time that it takes to process one job pj, a release date rj when the job is ready to
start processing, a due date dj that represents the time when the job should be produced
determined by a higher planning level and/or a priority weight wj that differentiates jobs
according to their importance. The solution to a scheduling problem is a permutation of
jobs for the available machines. Depending on the sequencing decision, the completion
time Cj of each job j ∈ J is determined and different objectives can be evaluated.

Based on Graham et al. (1979) classification scheme, scheduling problems can be de-
scribed by three categories {α,β,γ}. The machine layout (α), the problem conditions
and constraints (β) and the problem objectives (γ).

α - Machine Layout

The machine layout describes the type of system studied for a problem. It is determined
by the number of machines m under consideration and the connection of these machines.
Table 3.1 lists different machine layouts that have been studied in the scheduling liter-
ature.

β - Characteristics and Constraints

Besides the machine configuration, there are several characteristics and constraints in
practical scheduling problems that need to be considered. These include conditions that
prohibit certain production sequences or additional information given for jobs that is
required for a certain evaluation. Table 3.2 lists different characteristics and constraints
that have been studied in the scheduling literature.

The table provides a rough overview and does not claim to be comprehensive. In case
of setup time and costs, there are several detailed aspects available, which are relevant
for this thesis. They will be discussed in detail in Section 3.3.2. The same holds for
scheduling with resource constraints, which is discussed in Section 3.3.3.
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Abbreviation Name Description
1 single machine all jobs are produced on one machine
P identical parallel machines jobs are produced on m identical ma-

chines
U uniform parallel machines jobs are produced onmmachines with

different job processing times on each
machine based on the machine pre-
cessing speed

R unrelated parallel machines jobs are produced onmmachines with
different job processing times given on
each machine

F flow shop jobs are produced on s production
stages with one machine on each stage

FF flexible flow shop job are produced on s production
stages withm parallel machines on the
different stages

AF assembly flow shop jobs are produced on multiple ma-
chine on a first stage and on only one
machine in the subsequent stage

J job shop jobs are produced on s stages with m
machines and each job has a unique
routing that could leave out stages
or require repeated processing on one
stage.

O open shop jobs are produced on s stages and each
job needs to be produced once on each
machine with different job routings

SC supply chain jobs are produced on multiple facili-
ties that are of any of the described
shop types

NC machine availability determines the patterns in which the
m machines are available

Table 3.1: Selection of machine layouts studied in the scheduling literature
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Abbreviation Name Description
prec precedence rules that predetermine the sequence of certain

jobs
Mj machine eligibility only a subset of the available machines can be

used for job j
pmtn preemption temporarily interrupt processing of a job
Wl workforce only a limited number of operators are avail-

able in pool l for the m machines
rj release date a release date is given for each job and pro-

cessing cannot start before that date
b batch size the maximum number of jobs that can be

batched on a machine
s setup time or costs a certain setup time or cost can be assigned to

a transition between two consecutive jobs on a
machine

rs resource a supplied resource is consumed by the jobs of
a schedule

pir learning effects the processing time of a job decreases depend-
ing on the time or position of the job in the
sequence

Table 3.2: Selection of characteristics and constraints studied in the scheduling literature

A further distinction between deterministic scheduling where all information (e.g. job
processing times) are given as fixed parameters, and stochastic scheduling where certain
information could be described as random variables can be made. Further in static
scheduling problems, all information is known at once. In dynamic scheduling problems,
the information becomes available during the course of scheduling.

γ - performance measures

The solution to a scheduling problem is a permutation of jobs for the available machines.
Whenever the constraints are fulfilled, a schedule is considered to be feasible. However,
one sequence of jobs could be considered superior to another. Depending on the pref-
erences of the scheduler, different measures have been developed to compare alternative
schedules. Table 3.3 lists different performance measures that have been studied in the
scheduling literature.

Any performance measure that is job related could also be used as a weighted version
using job specific priority weights wj. Only the unweighted targets are described in the
following.
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Abbreviation Name Description
Cmax makespan the total completion time of the schedule
Lmax maximum lateness the largest lateness of all jobs∑
j∈J Ej total earliness the earliness of all jobs in a schedule∑
j∈J Tj total tardiness the tardiness of all jobs in a schedule∑
j∈J(Ej + Tj) total earliness/tardiness the sum of earliness and tardiness of all

jobs in a schedule∑
j∈J Uj total late jobs the number of late jobs in a schedule

Tmax maximum tardiness the largest tardiness of all jobs∑
j∈J Cj work in process the sum of completion times for all jobs∑
j∈J Fj total flow time the sum of completion times when con-

sidering release dates for all jobs

Table 3.3: Selection of characteristics and constraints studied in the scheduling literature

The Cast Batching and Sequencing Problem, which is the focus of this PhD Thesis, can be
described as follows. First, since Caster Selection is not considered, the problem is a (1)
single machine problem. Second, the described continuous casting production process
includes (2) setup processes whenever changing from one cast family to another.
Third, a constant amount of hot metal is supplied as a (3) resource to the caster.
Fourth, the major objective of continuous casting planning is to produce orders early
enough to avoid late delivery. Therefore (4) total tardiness has been selected as the
performance measure in this thesis.

The methods developed for specific scheduling problems can often be adopted to suit
similar problems. In the following, the existing literature on scheduling problems that
share at least two out of the four described parts of the Cast Batching and Sequencing
Problem are presented.

3.3.1 Job Scheduling to Minimize Total Tardiness on a Single
Machine

The scheduling objective total tardiness ∑j∈J Tj for a sequence σ is defined as the sum
of tardiness of all jobs in the sequence

Tσ =
∑
j∈J

Tj

.

Depending on the completion time of each job j ∈ J in a given sequence σ, the tardiness
can be calculated as
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Tj = max{0, Cj − dj}

.

The solution to a single machine scheduling problem is a permutation of all available jobs.
This rather simple setting enables polynomial time algorithms for some of the described
performance measures. Jackson (1955) derived the earliest due date (EDD) rule, which
sorts jobs in order of increasing due dates, for solving 1||Lmax. Smith (1956) developed
the shortest processing time (SPT) (sorting jobs in order of increasing processing times)
and shortest weighting processing time (SWPT) (sorting jobs in order of increasing ratio
pj

wj
of processing time and priority weight) rules for solving 1||∑j∈J Cj and 1||∑j∈J wjCj

in polynomial time. The objective 1||∑j∈J Uj can be solved efficiently using the Moore-
Hodgson algorithm (Moore 1968). However, the objective to minimize total tardiness
1||∑j∈J Tj is proven to be NP-hard (Du and Leung 1990) and no polynomial time
algorithm exists.

Minimizing Total Tardiness on a Single Machine

Minimizing total tardiness is referred to as a regular performance measure since it does
not have the property that the objective is non-decreasing in job completion times (Az-
izoglu and Webster 1997). Therefore, there is no idle time in an optimal sequence
(Koulamas 2010). Reviews on scheduling to minimize total tardiness for a single ma-
chine are available from Potts and Van Wassenhove (1991), Koulamas (1994), Sen et al.
(2003) and Koulamas (2010).

Most exact algorithms and heuristics that are concerned with minimizing total tardiness
use properties that have been derived by Emmons (1969) and Lawler (1977). Emmons
(1969) described necessary conditions for the relative order of two jobs i, j ∈ J based on
their due dates and processing times. Lawler (1977) presented a way to decompose a total
tardiness problem into two sub problems using information on the longest job j ∈ J .
Extensions to those properties have been formulated by Potts and Van Wassenhove
(1992), Szwarc (1993),Chang et al. (1995), Yu (1996), Tansel and Sabuncuoglu (1997),
Della Croce et al. (1998), Szwarc (1998), Szwarc et al. (1999), Szwarc (2007) and Kanet
(2007) as described in the survey of Koulamas (2010). More recently, Kanet (2014)
developed a fourth theorem on the ideas of Emmons (1969).

An overview of the literature on single machine scheduling to minimize total tardiness
is provided in the following. The literature is clustered according to the solution type.
Further details can be reviewed in the mentioned survey papers.

Exact solution approaches have been proposed by Shwimer (1972), Fisher (1976), Pi-
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card and Queyranne (1978), Potts and Van Wassenhove (1982), Sen et al. (1983), Sen
and Borah (1991), Potts and Van Wassenhove (1992),Kondakci et al. (1994), Szwarc
and Mukhopadhyay (1996), Della Croce et al. (1998) Hirakawa (1999), Szwarc et al.
(1999),Biskup and Piewitt (2000), Szwarc et al. (2001) and Tansel et al. (2001).

Fully polynomial time approximation schemes have been proposed by Lawler (1982),
Kovalyov (1995), Koulamas (2009).

Heuristic algorithms based on constructive heuristics have been proposed by Carroll
(1965), Holsenback and Russell (1992), Panwalkar et al. (1993), Fadlalla et al. (1994),
Holsenback and Russell (1997), Tansel et al. (2001), Naidu et al. (2002) and Panneer-
selvam (2006).

Heuristic algorithms based on local search methods have been proposed by Wilkerson
and Irwin (1971), Fry et al. (1989), Potts and Van Wassenhove (1991), Antony and
Koulamas (1996), Ben-Daya and Al-Fawzan (1996), Sabuncuoglu and Gurgun (1996),
Bauer et al. (1999) and Cheng et al. (2009).

More recently, Zhou and Liu (2013) developed a new property based on existing heuris-
tics that decreased calculation times in branch and bound procedures for minimizing
total tardiness on a single machine.

Minimizing Total Weighted Tardiness on a Single Machine

The similar problem, minimizing total weighted tardiness on a single machine 1||∑j∈J wjTj,
has been surveyed by Abdul-Razaq et al. (1990), Potts and Van Wassenhove (1991), Sen
et al. (2003). The problem is known to be NP-hard (Lenstra et al. 1977).

Exact algorithms have been proposed by Emmons (1969), Lawler (1977), Picard and
Queyranne (1978), Potts and Van Wassenhove (1991), Szwarc and Liu (1993) and Selim
Akturk and Bayram Yildirim (1998).

Heuristic approaches have been proposed by Crauwels et al. (1998) and Volgenant and
Teerhuis (1999).

After the last available survey paper by Sen et al. (2003) several additional papers on
the 1||∑j∈J wjTj have been published.

Congram et al. (2002) developed an iterated dynasearch algorithm that simultaneously
executed a combination of basic local search moves. Avci et al. (2003) developed a prob-
lem space algorithm that was based on the application of different dispatching rules.
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Grosso et al. (2004) also designed a dynasearch algorithm combining pairwise inter-
changes with job movement operators. Cheng et al. (2005) modified the algorithm of
Lawler (1977) and presented a polynomial-time approximation algorithm for the prob-
lem. Holthaus and Rajendran (2005) designed an ant colony algorithm, while Bozejko
et al. (2006) presented a tabu search approach.

Kolliopoulos and Steiner (2006) described several properties of the problem and derived
a quasi-polynomial time approximation scheme. Ergun and Orlin (2006) described ac-
celeration strategies for increasing solution time of local search heuristics based on job
interchange and job move from O(n3) to O(n2). Tasgetiren et al. (2006) presented two
population based heuristics using particle swarm and differential evolution approaches.
In combination with variable neighbourhood search, they were able to show that both
heuristics performed very good using benchmark instances from the OR library. Bilge
et al. (2007) presented new strategies for designing tabu lists in a tabu search heuristic.
Kellegöz et al. (2008) analysed the efficiency of several different crossover procedures
generated for genetic algorithm (GA)s to solve the problem. Wodecki (2008) developed
dominance properties based on breaking the sequence into blocks. Using these properties
in a branch and bound method, the author was able to optimally solve problems with up
to 80 jobs. He further presented a way to use parallel computing to reduce calculation
times.

Most recently, Wang and Tang (2009) developed a population based variable neighbour-
hood search algorithm. They combined local search moves and greedy procedures to
combine solutions in the population. Their algorithm provided better results at the
expense of increased calculation times compared to Avci et al. (2003), Tasgetiren et al.
(2006) and Bilge et al. (2007).

3.3.2 Job Scheduling with Setup Considerations

In practice, it is often the case that additional time to adjust tooling is necessary when
changing from one job to another on a machine. This is considered by setup times or
costs within the scheduling model.

In the general case, setup times are given for each pair i, j ∈ J and a distinction is made
between sequence dependent and sequence independent setup times or costs (Allahverdi
et al. 2008). A special case is given whenever different jobs share similar tooling re-
quirements and therefore are allocated to so called setup families (Potts and Kovalyov
2000). In this case, no setup time is necessary when producing consecutive jobs from
the same setup family, and a major family setup time is required whenever the family
changes. Allahverdi et al. (2008) referred to a sequence of jobs from the same family as
a batch. While the allocation of jobs to families is given as a parameter, the allocation
of jobs to batches for a certain setup family was part of the decision process. Again, it
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can be distinguished between sequence dependent and independent setup times or costs.
Figure 3.1 depicts the classification of scheduling with setup considerations developed
by Allahverdi et al. (2008).

scheduling problems with setup time or costs

batch / family setup job setup

sequence 
independent

sequence 
dependent

sequence 
independent

sequence 
dependent

Figure 3.1: Classification of scheduling problems with setup time considerations (accord-
ing to Allahverdi et al. (2008)

Using the notation scheme from Graham et al. (1979), the different setup considerations
can be stated in the β part as follows (Allahverdi et al. 2008). Setup time ST can have
index si in case of sequence independence, sd in case of sequence dependence and si, b
or sd, b when family/batch setups are considered. The same notation is used for setup
costs SC.

For family scheduling, another distinction is made regarding the so called group technol-
ogy assumption (GTA) (Potts and Van Wassenhove 1992). In case of GTA, all jobs that
belong to the same setup family need to be scheduled together. Therefore the problem
only consists of finding the sequence of families and the sequence of jobs within each
family. In the other case, without GTA, jobs need to be grouped to batches of arbitrary
sizes, those batches needs to be sequenced and also the jobs within each batches (Schaller
2007), (Allahverdi et al. 2008).

Family scheduling problems can also be separated into batch availability models and job
availability models (Potts and Kovalyov 2000). In the first case, all jobs of the batch
become available for further processing only after the entire batch is processed. In the
latter case, each job becomes available immediately after it is processed, independent
of the completion of other jobs within the batch. A special case of batching occurs in
so called batching machines (Potts and Kovalyov 2000). These are e.g. ovens, that are
capable of producing multiple jobs simultaneously.

Surveys on scheduling with setup considerations or batch considerations have been con-
ducted by Potts and Van Wassenhove (1992), Webster and Baker (1995), Allahverdi
et al. (1999), Potts and Kovalyov (2000) and Allahverdi et al. (2008).

When discussing scheduling with batching, the case of batching machines need to be dis-
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tinguished from producing jobs in batches. A batching machine is capable of processing
multiple jobs (a batch of jobs) simultaneously, while a regular machine can only process
one job of a time. In this thesis, only regular machines are considered. Mathirajan and
Sivakumar (2006) provide a survey for problems considering batching machines.

Family Scheduling on a single machine to Minimize Total Tardiness

As described above, in a single machine family scheduling problem to minimize total
tardiness 1|STb|

∑
j∈J Tj, all jobs are allocated to a certain setup family and no setup

time occurs for consecutive jobs of the same family.

Nakamura et al. (1978) considered the problem with GTA and developed an algorithms
based on Emmons (1969) conditions.

(Schaller 2007) developed a local search heuristic based on five improvement moves:
Console (combining two batches and moving them to position m), Batch Interchange
(exchanging pairs of batches), Move (move jobs from one batch to another of equal
family), Break (break a batch into two sub batches) and Job Interchange (exchanging
pairs of jobs). The author used two procedures to derive initial solutions, one that
produced rather large batches and one that was sorting jobs in EDD order. Afterwards,
the five improvement moves were applied in a fixed order until no further improvement
was achieved.

Gupta and Chantaravarapan (2008) described a MILP model for the problem with GT-
assumption. They developed different heuristics, each consisting of a part to schedule
jobs within each family and a part to schedule the families. For the sequencing of jobs
within each family, the procedure was based on the Panwalker, Smith and Koulamas
(PSK) heuristic of Panwalkar et al. (1993) and the net benefit of relocation (NBR)
heuristic of Holsenback and Russell (1992). For the scheduling of families, they presented
different heuristic approaches based on exchanging and/or moving batches.

Herr and Goel (2014) compared a two-index with a three-index MILP formulation to
solve the problem. While the three-index formulation was able to solve problems up to
18 jobs compared to only 9 jobs with 2-index formulation, calculation times dramatically
increased for the 3-index case.

48



3 Related Work

Single Machine Scheduling with Sequence-Dependent Job Setup Times to
Minimize Total Tardiness

Unlike the family scheduling case, minimizing total tardiness for job setup times on a
single machine 1|STsd|

∑
j∈J Tj has been studied extensively by various authors.

Rubin and Ragatz (1995) developed a GA and provided benchmark problems with 15-
45 jobs. They showed that their GA performs well compared to a previously developed
branch and bound heuristic presented by Ragatz (1993). Tan and Narasimhan (1997)
developed a simulated annealing algorithm and compared it against enumeration and
random sequences. In a later publication, Tan et al. (2000) developed a local search
heuristic based on pairwise job interchange. The heuristic was tested on the (15-45
job benchmarks by Rubin and Ragatz (1995)) and performed good in comparison to
previously developed simulated annealing (Tan and Narasimhan 1997) and GA (Rubin
and Ragatz 1995) methods. Armentano and Mazzini (2000) developed another GA
and showed that it performs similar to the one from Rubin and Ragatz (1995) based
on the (15-45 jobs) benchmark problems. For larger problems the author was able to
present that his GA outperforms the constructive heuristic of Lee et al. (1997). França
et al. (2001) developed a GA and a memetic algorithm (combination of the GA with
local search). Using the (15-45 jobs) benchmark problems the authors were able to
present that their memetic algorithm outperforms previous methods. However, the GA
of Armentano and Mazzini (2000) was not considered. Gagné et al. (2002) developed
an ant colony heuristic to solve the problem. Not considering the GA of Armentano
and Mazzini (2000) and the memetic algorithm of França et al. (2001), the authors
showed that their ant colony approach was superior for all benchmark problems (15-45
jobs). Further, the authors provided additional benchmark problems with 55-85 jobs
and evaluated different parameter settings for their ant colony heuristic.

Armentano and De Araujo (2006) developed a different GRASP heuristics variants with
path re-linking and memory-based construction. Their heuristic outperformed the ant
colony heuristic of Gagné et al. (2002) and the memetic algorithm of França et al.
(2001).

Gupta and Smith (2006) developed two heuristics. First, a GRASP multi-start heuristic
that used a specific cost function to generate initial solutions. Afterwards, a local search
phase was executed using job interchange and job backwards as well as job forwards
moves. Second, a space-based local search that constructed neighbourhood solutions by
modifying job processing times. Using both benchmark problem sets (15-45 jobs and
55-85 jobs), the authors were able to show that the GRASP heuristic outperforms the
ant colony approach of Gagné et al. (2002) in terms of solution quality but at the expense
of computation time. The space-based local search on the other hand performed similar
to the ant colony heuristic but required less calculation time. Liao and Juan (2007) also
developed an ant colony heuristic combined with local search elements. Not considering
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Gupta and Smith (2006), they presented superior performance to Gagné et al. (2002) for
all benchmark problems. Lin and Ying (2008) developed a hybrid approach combining
simulated annealing and tabu search for job interchange and job move local search
operators. With this approach, they were able to outperform the ant colony heuristic
of Liao and Juan (2007) in most cases of the benchmark problems. Ying et al. (2009)
developed an iterated greedy heuristic based on local search combined with destruction
and construction moves. Again using the benchmark problems, the authors were able to
further decrease the best known solution or achieve equally good solutions in almost all
instances. Sioud et al. (2012) proposed a hybrid GA based on a new crossover procedure
combining achieves from multi-objective evolutionary algorithms with transition rules
from ant colony approaches. They tested different variants of their method against recent
results from the literature using both benchmark instance sets. In parallel, Akrout et al.
(2012) developed a combined a GRASP with a population based differential evolution
approach and use an additional variable neighbourhood search to further improve the
solution quality. They presented that their approach was able to outperform the existing
heuristics.

Besides the attempts to generate efficient heuristics for the 1|STsd|
∑
j∈J Tj problem,

several authors worked on generating exact solution methods. Building upon Ragatz
(1993), Souissi and Kacem (2004) developed a branch and bound heuristic. They pre-
sented results for different parameter settings for self-generated test instances. Luo and
Chu (2006) described several dominance properties and developed a branch and bound
algorithm that is able to solve self-generated problem instances with up to 30 jobs.
Bigras et al. (2008) reformulated the problem as a time-dependent travelling salesman
problem and present different column generation approaches. With this approach they
were able to optimally solve all benchmark instances with up to 35 jobs. Not consider-
ing Bigras et al. (2008), Sewell et al. (2012) developed a branch and bound algorithm
based on adopted pruning strategies from a successful application to 1|rj|

∑
j∈J Tj in

Kao et al. (2009). They presented superior performance compared to the results from
Ragatz (1993). When using their branch and bound as a heuristic the authors presented
superior performance on the two benchmark sets compared to the simulated annealing
and tabu search approach of Lin and Ying (2008).

Single Machine Scheduling with Sequence-Dependent Job Setup Times to
Minimize Total Weighted Tardiness

A similar number of publications can be found for the weighted version of the single ma-
chine scheduling problem with sequence dependent job setup times 1|STsd|

∑
j∈J wjTj.

Lee et al. (1997) developed a constructive heuristic based on a newly designed dispatching
rule. The performance is evaluated for different parameters and compared to an existing
dispatching rule. Cicirello and Smith (2005) generated a set of 120 test instances with
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60 jobs and different parameter settings. The authors implemented several stochastic
search heuristics and provided the best results for each of the 120 test instances. In
the following, these test instances will be referred to as the benchmark instances (for
1|STsd|

∑
j∈J wjTj). Liao and Juan (2007) developed an ant colony heuristic combined

with local search elements. They were able to improve 86% of the benchmark instances
provided by Cicirello and Smith (2005).

Lin and Ying (2007) implemented a simulated annealing heuristic, a GA and a tabu
search heuristic based on swap and insertion moves. While all three approaches achieved
similar performance, the authors were able to show that their methods outperform the
results from Cicirello and Smith (2005) provided with the benchmark instances. In
a follow up publication Lin and Ying (2008) developed a hybrid approach combining
simulated annealing and tabu search. Again, they were able to generate superior results
for a large number of test instances. Anghinolfi and Paolucci (2008) developed an ant
colony heuristic. Considering all previously published methods (except Lin and Ying
(2008)), their heuristic was able to outperform existing upper bounds in almost all 120
problem instances.

Ying et al. (2009) developed an iterated greedy heuristic based on local search combined
with destruction and construction moves. Compared to previously developed methods
by Lin and Ying (2007) and Liao and Juan (2007), they claimed to decrease the average
upper bounds of the benchmark problem instances. Valente and Alves (2008) developed
a beam search algorithm that only analyses promising branches in an branch and bound
procedure. Their method was tested using self generated instances and compared to Lee
et al. (1997), not considering recent results. Anghinolfi and Paolucci (2009) created a
population based heuristic motivated by particle swarm optimization. Using the bench-
mark problems, they were able to present improved upper bounds for a large number of
instances.

Tasgetiren et al. (2009) developed a discrete differential evolution algorithm that used
different procedures to generate initial solutions and combined it with local search pro-
cedures. With their approach the authors reduced the upper bounds of 42.5% of the
benchmark instances, while 41.67% where equally good compared to the best solution
found of existing methods. Liao et al. (2012) discussed the three local search neigh-
bourhoods job interchange, job insertion/move and twist (i.e. reversing the order of a
subset of jobs). They provided theorems to reduce calculation times when evaluating a
neighbourhood and presented acceleration strategies to reduce the number of evaluation
that needs to be executed when exploring a neighbourhood.

Recently Tanaka and Araki (2013) developed an exact algorithm based on a successive
sublimation dynamic programming algorithm originally developed for 1||∑j∈J Tj Tanaka
and Fujikuma (2012). Subramanian et al. (2014) developed an iterated local search
heuristic for the single machine sequence dependent job setup time problem to minimize
weighted tardiness 1|STsd|

∑
j∈J wjTj.

51



3 Related Work

Family Scheduling to Minimize total Weighted Tardiness on Machine Layouts
other then Single Machine

This section describes family scheduling problems to minimize total weighted tardiness
on different machine layouts X|STb|

∑
j∈J wjTj. In a recent paper, Schaller (2014) has

developed a GA using uniform order-based crossover and job/batch move local search
procedure, for the P |STb|

∑
j∈J Tj problem.

Minimizing Total Tardiness with Sequence-Dependent Job Setup Times on
Machine Layouts other then Single Machine

Naderi et al. (2009) solved FF |STsd|
∑
j∈J Cj,

∑
j∈J Tj using a simulated annealing based

local search heuristic. Ruiz and Stützle (2008) developed an iterated local search heuris-
tic for the F |STsd|Cmax,

∑
j∈J Tj.

3.3.3 Job Scheduling with Resource Constraints

As described in Section 2, the continuous casting stage is fed with liquid steel that
is processed from a constant supply of hot metal within steel making. Each charge
produced at the continuous casting stage consumes a certain amount of liquid steel and
therewith hot metal. A similar situation occurs for example in assembly processes, where
material is produced to stock and assembled to order in the last production stage. While
make to stock production can be regulated, the supply of hot metal in steel production
cannot (see Section 2.3.5).

Figure 3.2 illustrates the implication of the resource constraint on the example of schedul-
ing with setup times. In the figure, the amount of resources available is shown as a solid
line with a constant supply rate. The dashed vertical lines illustrate completion times
of individual jobs and the cumulative resource demand over time is shown as a solid
piece-wise linear curve. Horizontal segments of this curve illustrate times during which
the machine is not processing any job because of a setup or because of necessary waiting
time required in order to meet the resource constraint.

Job Scheduling with resource consideration did not receive much attention in the liter-
ature. The problem was first mentioned by Carlier and Kan (1982) and a first study on
complexity as well as classification is given in Blazewicz et al. (1983). Grigoriev et al.
(2005) published a survey paper and distinguished three types of resource constraints.
First, when each job is allocated to a unique resource supply. Second, all jobs require a
common resource supply. Third, there are multiple raw material supplies that could be
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cumulative supply

cumulative demand

Figure 3.2: Depiction of the resource constraint in the context of scheduling with family
setup times.

required by an order. They extended the classification scheme by introducing ddc (dif-
ferent dedicated raw materials) for case one, rm (m sources of undedicated raw material)
for cases two (rm=1 ) and three (rm=m).

A different stream of literature that involves resource constraints, deals with complex
flexible flow shops with multiple stages, machines, and resources in the process industry
(see e.g. Schwindt and Trautmann (2000), Neumann et al. (2005)). Since these sources
consider different machine layouts and are usually concerned with minimizing maximum
makespan Cmax, they will not be discussed in detail in this thesis. Resource constraints
have also been studied in the context of resource-constrained project scheduling problems
(see the review paper of Hartmann and Briskorn (2010) for an overview). Only those
problems relevant to the job scheduling problem treated in this thesis will be mentioned
below.

Single Machine Scheduling with Resource Constraint and Performance Metrics
other then Total Tardiness

Neumann and Schwindt (2002) discussed project scheduling problems with inventory
constraints. Instead of considering a time span for tasks, the authors considered to
schedule events in a project and modelled the problem as a single machine scheduling
problem with resource constraints to minimize makespan 1|rm = m|Cmax. Besides the
requirement to have sufficient amount of resource available to process a job, they also
considered to consume enough resource not to excess an given inventory. They described
several properties for the problem and developed a branch and bound algorithm based
on these properties.
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Grigoriev et al. (2005) proved that the single machine scheduling problem with resource
constraints and unit processing times to minimize maximum lateness 1|rm = 1, pj =
1|Lmax can be solved in polynomial time. Further, the authors showed that 1|rm =
1|Cmax is strongly NP-hard, but in case of equal processing times pj = p or unit supply
of raw material, the problem can be solved in polynomial time.

Briskorn et al. (2009) developed a generic GA and presented different solution repre-
sentations and evaluation functions to solve 1|rm = 1|∑j∈J wjCj, 1|rm = 1|∑j∈J Lmax,
1|rm = 1|∑j∈J wjUj and 1|rm = 1|∑j∈J wjTj.

Briskorn et al. (2010) discussed scheduling problems with inventory constraints. They
distinguished between the two cases of increasing and decreasing inventories when pro-
cessing jobs. The latter case is equivalent to consuming a supplied resource. They
proved NP-hardness for problems 1|rm = 1|∑j∈J Cj, 1|rm = 1|∑j∈J wjCj, 1|rm =
1|∑j∈J Lmax, 1|rm = 1|∑j∈J Uj and developed polynomial time algorithms for special
cases of these problems. The authors further stated, that the single machine scheduling
problem with resource constraints has not been studied for the objectives to minimize
total tardiness and minimize total weighted tardiness.

In a later publication Briskorn et al. (2013) discussed different properties for the single
machine scheduling problem with resource constraints to minimize total weighted com-
pletion times 1|rm = 1|∑j∈J wjCj. Based on these properties the authors developed a
branch and bound algorithm that is able to solve with up to 20 jobs.

Drótos and Kis (2013) discussed scheduling problems with inventory releasing jobs. They
provide complexity discussions for special cases of the problem and a fully polynomial
approximation scheme a special case of the minimize total tardiness problem. Based on
these findings, Györgyi and Kis (2014) studied the problem 1|rm = 1|Cmax and proved
that there exists no polynomial time approximation scheme for this problem. However,
they provided polynomial time algorithms for special cases of the problem (for specific
supply patterns of the resource).

3.4 Necessary Extensions of Current Scheduling
Approaches for the Cast Batching and Sequencing
Problem

The requirements of the (CS4: hot metal consumption) constraint have not been
sufficiently analysed in the existing scheduling literature. Especially in the combined
consideration with family scheduling. Further, benchmark test instances, that enable a

54



3 Related Work

comparison of different solution approaches, have not been published for family schedul-
ing problems.
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Batching and Sequencing Problem

The combined charge batching and sequencing problem, as studied in this thesis, can be
described as a single machine family scheduling problem with upper and lower resource
constraints, to minimize total tardiness. Within the following sections, the specific aspect
of each constraint is presented by gradually extending a basic single machine family
scheduling model. Further, the link between the model variants and the constraints
derived from practical requirements are discussed. Models 2 and 3 have originally been
presented by Herr and Goel (2015).

4.1 Model 1 - Single Machine Family Scheduling Model

Input to the combined charge batching and sequencing problem is a set of charges that
needs to be processed on a single continuous caster. A solution to the problem is given
as a permutation of all charges. A charge will be referred to as a job in the following, in
order to use common scheduling notation. As described in Chapter 2, setup processes
occur during continuous casting whenever two consecutive charges are from different cast
families. This requirement can be modelled using a family scheduling approach, where
each job is assigned to a specific setup family, and setups occur whenever consecutive
jobs are from different setup families.

4.1.1 Notation

Let J denote a set of jobs to be processed by a single machine. Each job is characterised
by a due date dj and a processing time pj. Furthermore, each job belongs to a given setup
family fj. For any pair of jobs i, j ∈ J with fi 6= fj, a setup of duration sij is required
between processing jobs i and j. A single machine is available that can process one job
at a time and preemption is not allowed. A solution to the problem is represented by a
sequence σ of all jobs. The completion time of a job the solution is represented by Cj.
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The goal is to find a sequence that minimises total tardiness, with tardiness calculated
as Tj = max{0, Cj − dj}.

Let us now assume that each job has to be processed without interruption and that
the machine can be idle for any period of time after completion of one job and before
starting to process the next job. For the ease of notation it is assumed that sij = 0 for
any pair of jobs i, j ∈ J with fi = fj. Furthermore, it is assumed that each schedule
begins with a dummy job j∗ that is included in J . This job has a due date far enough in
the future such as it will never be late, has zero precessing time and resource demand,
and no setup time is required before processing any other job. Let xij denote a binary
variable indicating whether job j ∈ J is scheduled immediately after job i (xij = 1) or
not (xij = 0).

4.1.2 MILP Formulation

Model 1 can be described by the following MILP:

minimize
∑
j∈J

Tj (4.1)

subject to ∑
i∈J\{j}

xij = 1 for all j ∈ J (4.2a)
∑

j∈J\{i}
xij = 1 for all i ∈ J (4.2b)

xjj = 0 for all j ∈ J (4.2c)

Cj∗ = 0 (4.3a)
Cj ≥ Ci + sij + pj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.3b)

Tj ≥ 0 (4.4a)
Tj ≥ Cj − dj for all j ∈ J (4.4b)

xij ∈ {0, 1} for all i, j ∈ J (4.5)
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The objective (4.1) is to minimize the sum of tardiness of all jobs in the production
schedule. Constraints (4.2a), (4.2b) and (4.2c) require each job to be fulfilled exactly
once. Constraint (4.3a) and (4.3b) require that the completion time of a job must be
at least as large as the the completion time of the preceding job plus the setup time –
if a setup is required – and the processing time. Constraints (4.4a) and (4.4b) restrict
the tardiness of each job. Finally, constraint (4.5) restricts the domain of the binary
decision variables.

4.2 Model 2 - Single Machine Family Scheduling with
Upper Resource Constraint

As described in Section 2.3.5, the continuous caster is fed with a supply of hot metal with
a constant rate. The hot metal is processed into the required hot steel and transferred
to the casting staqe in charges, consuming a certain amount of hot metal.

Translated into the scheduling problem, a resource is supplied at a constant rate. Each
job consumes a certain amount of resource whenever it is produced. Jobs can only be
produced whenever a sufficient amount of resource is supplied. Whenever a job in a
given sequence is short of resource, the production has to wait.

4.2.1 Notation

Again, let J denote a set of jobs to be processed by a single machine. Each job is
characterised by a due date dj, a processing time pj, a job family fj, a completion time
Cj and a tardiness Tj. A setup time sij is defined for each pair of i, j ∈ J , with sij = 0 for
fi = fj and a binary variable xij indicating whether job j ∈ J is scheduled immediately
after job i (xij = 1) or not (xij = 0).

The resource required is supplied with a constant rate of r per unit of time, and initially
an amount of r∗ of the resource is available. For each job, the quantity qj of a resource
required by the machine to process the job is given. It is assumed that the resource is
consumed at a constant rate qj/pj. For each job j ∈ J let Qj denote the accumulated
amount of the resource requirements.

The fundamental difference of this problem to the case without resource constraints
is, that it may be necessary that the machine is idle because the required resource for
the next job is net yet available, whereas in the case without resource constraints the
machine is only idle for the time of the setups that may be required. In the case without
resource constraints the optimal duration of any subsequence of jobs is always the sum

58



4 Models for the combined Charge Batching and Sequencing Problem

of all processing times and the required setups. Figure 4.1 shows an example where the
minimum duration of a sequence is larger than the sum of processing and setups times
because the machine has to wait for the resource required. In the example shown in the
figure, it is not possible to schedule job j immediately after job i and the completion of
the setup, because the cumulative resource requirements exceeds the cumulative resource
supply if no additional waiting time is scheduled.

waiting time
setup time

quantity

time

cumulative supply

i

jj

Ci Ci+sij Cj-pj Cj

Figure 4.1: Example how required waiting time can result in an increased completion
time.

Without resource constraints, any sequence of jobs of the same family can be reordered
without impacting the completion time of this sequence and the tardiness of subsequent
jobs. Therefore, it is possible to locally optimise the order, in which jobs of the same
family are scheduled. In the presence of resource constraints, however, any permutation
of jobs may lead to an increase or decrease of the cumulative duration due to necessary
waiting times. Therefore, the tardiness of subsequent jobs may change if the order of
jobs within a subsequence is modified.

Because of the resource constraints it is necessary to be able to efficiently determine
completion times and tardiness of all jobs in a sequence.

4.2.2 MILP Formulation

Model 2 can be described by the following MILP:

minimize
∑
j∈J

Tj (4.6)
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[t]

[tons]

j1

j2 j3
j1

j2j3

σ1=[j1,j2,j3]

σ2=[j3,j2,j1]

Figure 4.2: Example on how the sequence of jobs within a batch can influence the feasi-
bility of a sequence.

subject to ∑
i∈J\{j}

xij = 1 for all j ∈ J (4.7a)
∑

j∈J\{i}
xij = 1 for all i ∈ J (4.7b)

xjj = 0 for all j ∈ J (4.7c)

Cj∗ = 0 (4.8a)
Cj ≥ Ci + sij + pj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.8b)

Tj ≥ 0 (4.9a)
Tj ≥ Cj − dj for all j ∈ J (4.9b)

Qj∗ = 0 (4.10a)
Qj ≥ Qi + qj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.10b)

Qj ≤ r∗ + rCj for all j ∈ J (4.11)
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xij ∈ {0, 1} for all i, j ∈ J (4.12)

The objective (4.6) is to minimize the sum of tardiness of all jobs in the production
schedule. Constraints (4.7a), (4.7b) and (4.7c) require each job to be fulfilled exactly
once. Constraint (4.8a) and (4.8b) require that the completion time of a job must be
at least as large as the the completion time of the preceding job plus the setup time –
if a setup is required – and the processing time. Constraints (4.9a) and (4.9b) restrict
the tardiness of each job and constraints (4.10a) and (4.10b) the cumulative resource
requirements before any job. The cumulative resource requirements must not exceed the
amount available until completion of the job as required by constraint (4.11). Finally,
constraint (4.12) restricts the domain of the binary decision variables.

4.3 Model 3 - Single Machine Family Scheduling with
Upper Resource Constraint and Setup Constraint

The ability to wait after any charge until enough resource is supplied, as used in Model
2, is not valid for continuous casting production. When producing charges from the same
cast family, consecutive charges need to be produced without interruption. This is due
to the inability to stop the caster during production, because of quality and technological
requirements.

Translated into the scheduling problem, waiting time between two jobs can only be
included whenever a setup process is executed.

4.3.1 Notation

Again, let J denote a set of jobs to be processed by a single machine. Each job is
characterised by a due date dj, a processing time pj, a quantity of resource requirement
qj, a job family fj, a completion time Cj and a tardiness Tj. The resource is supplied
at rate r and initial amount r? of the resource is available. A setup time sij is defined
for each pair of i, j ∈ J , with sij = 0 for fi = fj and a binary variable xij indicating
whether job j ∈ J is scheduled immediately after job i (xij = 1) or not (xij = 0).

Because of operational requirements, it is not always possible that a machine can be
idle for an arbitrary period of time after completion of one job and before starting to
process the next job. This is the case, if a machine must be brought to a state in which
it can remain idle, e.g. if cleaning is required. For such cases, it can be assumed that
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the duration of a setup that may be required between jobs of different families can be
increased by an arbitrary amount of time, however, an additional setup between jobs
of the same family is required if the job does not start immediately after completion of
the preceding job. Model 3, is therefore extended to have sij > 0 for jobs i, j ∈ J with
fi = fj. It is assumed that for each family, the setup time is identical for any pair of jobs
in the family. As this setup between jobs of the same family is not always necessary,
a binary variable yij, indicating whether a setup is conducted between jobs i and j, or
not, is introduced to the model.

Obviously, any feasible solution for Model 3 is also a feasible solution for Model 2.
However, the sequences of jobs that are optimal for the two Models may differ. Let us
consider the example with two jobs belonging to the same setup family with parameters
d1 = 0, p1 = 14 and d2 = 15, p2 = 12. Furthermore, assume that at the beginning of
the planning horizon there is an initial inventory that is sufficient to process either of
the jobs without delay, but not both, and that after 30 units of time the resource supply
reaches a level that is sufficient to process both jobs. Furthermore, let us assume that
for Model 3, the duration of a setup between the two jobs is sufficiently large, so that an
optimal solution will not have a setup between the two jobs. Figure 4.3 illustrates the
optimal sequences for both Models. The optimal sequence is illustrated by a solid line,
whereas the inferior sequence by a dashed line. For Model 2, where the machine may be
idle for any period of time after completion of one job and before starting to process the
next job, the optimal sequence is to process job 1 before job 2 with C1 = 14, T1 = 14,
C2 = 30, T2 = 15 and a total tardiness of 29. If job 2 is processed before job 1, there
is C1 = 30, T1 = 30, C2 = 12, T2 = 0 and a total tardiness of 30. For Model 3, where
an additional setup between jobs of the same family is required if the job does not start
immediately after completion of the preceding job, it is better to delay the start of the
first job in the optimal sequence instead of adding an additional setup. The optimal
sequence is to process job 2 before job 1 with C1 = 30, T1 = 30, C2 = 16, T2 = 1 and
a total tardiness of 31. If job 1 is processed before job 2, there is C1 = 18, T1 = 18,
C2 = 30, T2 = 15 and a total tardiness of 33.

Model 2

time

quantity

12 14 16 18 30

r∗

cumulative supply

j1

j2

j2

j1

Model 3

time

quantity

4 16 18 30

r∗

cumulative supply

j1

j2

j2

j1

Figure 4.3: Example on how the optimal sequences can differ for both problem variants.

As the above example and the example of Figure 4.2 illustrate, the optimal sequence
depends on both the resource availability as well as the operational details determining
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when necessary waiting times can be scheduled. Thus, the previously developed opti-
mality conditions for minimising total tardiness, e.g. those presented by Schaller (2007),
are not valid for scheduling with resource constraints. As a result, a solution approach
cannot exploit these properties.

4.3.2 MILP Formulation

Due to the described extensions of Model 3, constraints need to be added to the MILP
formulation to respect additional setups between jobs from the same family. Further, the
introduction of additional setups possibly changes the completion times and therefore
constraints (4.8a) and (4.8b) need to be modified.

Model 3 can be described by the following MILP:

minimize
∑
j∈J

Tj (4.13)

subject to ∑
i∈J\{j}

xij = 1 for all j ∈ J (4.14a)
∑

j∈J\{i}
xij = 1 for all i ∈ J (4.14b)

xjj = 0 for all j ∈ J (4.14c)

Cj∗ = 0 (4.15a)
Cj ≥ Ci + yijsij + pj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.15b)
Cj ≤ Ci + pj + (1− xij + yij)M for all i ∈ J, j ∈ J \ {j∗}. (4.15c)

Tj ≥ 0 (4.16a)
Tj ≥ Cj − dj for all j ∈ J (4.16b)

yij = xij for all i, j ∈ J : fi 6= fj (4.17a)
yij ≤ xij for all i, j ∈ J : fi = fj (4.17b)
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Qj∗ = 0 (4.18a)
Qj ≥ Qi + qj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.18b)

Qj ≤ r∗ + rCj for all j ∈ J (4.19)

xij ∈ {0, 1} for all i, j ∈ J (4.20a)
yij ∈ {0, 1} for all i, j ∈ J (4.20b)

The objective (4.13) is to minimize the sum of tardiness of all jobs in the production
schedule. Constraints (4.14a), (4.14b) and (4.14c) require each job to be fulfilled exactly
once. Constraints (4.15a) and (4.15b) require that the completion time of a job must
be at least as large as the the completion time of the preceding job plus the setup time,
if a setup is conducted, and the processing time. Furthermore, constraint (4.15c) en-
sures that job j is processed immediately after completing a preceding job i if no setup
is conducted. Constraints (4.16a) and (4.16b) restrict the tardiness of each job. Con-
straint (4.17a) ensures that a setup is conducted if jobs of different families are processed
after another, whereas constraint (4.17b) allows a setup to be conducted if jobs of the
same family are processed after another. Constraints (4.18a) and (4.18b) restrict the
cumulative resource requirements before any job. The cumulative resource requirements
must not exceed the amount available until completion of the job as required by con-
straint (4.19). Finally, constraint (4.20a) and constraint (4.20b) give the domain of the
additional binary decision variables.

4.4 Model 4 - Single Machine Family Scheduling with
Upper and Lower Resource Constraint and Setup
Constraint

Within the previous models, the constant supply of hot metal was taken into consid-
eration in terms of minimum hot metal required for producing a charge. There, setup
processes are introduced into the sequence, in order to increase the amount of available
hot metal until it meets demand. In case a large number of setup processes is scheduled,
because the sequence of charges consists of a large number of charge family changes, a
corresponding large amount of hot metal is supplied. The ability to store hot metal is
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limited as described in Section 2.3.5. Therefore, a schedule must also assure that enough
hot metal is consumed.

Translated into the scheduling problem, the accumulated amount of resource require-
ments, at any point within a given sequence, needs to be at least the accumulated
resource supplied subtracted by the maximum buffer capacity to store the resource.

4.4.1 Notation

Again, let J denote a set of jobs to be processed by a single machine. Each job is
characterised by a due date dj, a processing time pj, a quantity of resource requirement
qj, a job family fj, a completion time Cj and a tardiness Tj. The resource is supplied at
rate r and initial amount r? of the resource is available. A setup time sij is defined for
each pair of i, j ∈ J , with sij > 0 for fi = fj. Binary variable xij indicating whether job
j ∈ J is scheduled immediately after job i (xij = 1) or not (xij = 0) and binary variable
yij indicates whether a setup is conducted between jobs i and j, or not.

Within Model 3, a common resource that is consumed by each job was introduced. This
extension is forcing the schedule to execute setups or introduce waiting times whenever
the supply of the common resource is not sufficient for production. Now let us consider
a schedule that accumulates a large number of setups or waiting times. This schedule
results in a situation where more resources are supplied then consumed by the jobs. The
excess material needs to be stored until it is consumed. Since the available capacity for
buffering surplus inventory is limited in practical applications, the generated sequence
could need to locally reduce the use of setups and waiting times to avoid infeasible
schedules.

The problem formulated in Model 3 needs to be extended by the constant parameters
B, indicating the available buffer inventory capacity. Figure 4.4 illustrates a situation,
where a large number of setups leads to a buffer overflow.

While insufficient supply could always be compensated by introducing additional waiting
times in Model 3, the a maximum buffer level extended in Model 4 could lead to infeasible
solutions. This makes the problem studied in Model 4 fundamentally different. In Model
3 there is no interdependency between different setup processes and as long as enough
resource is supplied, necessary setups are scheduled towards the end of the sequence to
minimize the sum of completion times and the resulting total tardiness. In Model 4,
the accumulation of setups towards the end of the sequence could lead to infeasibility.
Therefore, an optimal sequence could require an equal distribution of setup processes
that leads to a larger sum completion times and a higher total tardiness. Figure 4.5
depicts the described situation. The left part shows an infeasible schedule where setups
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[t]

[wt]

cumulative supply

cumulative production

buffer level

buffer overflow

Figure 4.4: Example on how a large number of setups leads to an infeasible solution.

are accumulated at the end of the sequence. The right part shows a feasible schedule
that shifted part of the setups towards the beginning of the sequence.

[t]

[wt]

[t]

[wt]

infeasible feasible

Figure 4.5: Example on how a limited inventory capacity increases the total tardiness of
a sequence.

4.4.2 MILP Formulation

The described extension requires a modification of the MILP formulation in Model 4. An
additional constraint needs to be added to the cumulative resource requirement, forcing
the schedule to consume enough resource such that the buffer is not exceeded.

Model 4 can be described by the following MILP:

minimize
∑
j∈J

Tj (4.21)
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subject to ∑
i∈J\{j}

xij = 1 for all j ∈ J (4.22a)
∑

j∈J\{i}
xij = 1 for all i ∈ J (4.22b)

xjj = 0 for all j ∈ J (4.22c)

Cj∗ = 0 (4.23a)
Cj ≥ Ci + yijsij + pj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.23b)
Cj ≤ Ci + pj + (1− xij + yij)M for all i ∈ J, j ∈ J \ {j∗}. (4.23c)

Tj ≥ 0 (4.24a)
Tj ≥ Cj − dj for all j ∈ J (4.24b)

yij = xij for all i, j ∈ J : fi 6= fj (4.25a)
yij ≤ xij for all i, j ∈ J : fi = fj (4.25b)

Qj∗ = 0 (4.26a)
Qj ≥ Qi + qj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.26b)
Qj ≤ Qi + qj + (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (4.26c)

Qj ≤ r∗ + rCj for all j ∈ J (4.27a)
Qj ≥ r∗ + r(Cj)−B for all j ∈ J (4.27b)

Qi ≥ r∗ + r(Cj − pj)−B − (1− xij)M for all i, j ∈ J (4.27c)

xij ∈ {0, 1} for all i, j ∈ J (4.28a)
yij ∈ {0, 1} for all i, j ∈ J (4.28b)
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The objective (4.21) is to minimize the sum of tardiness of all jobs in the production
schedule. Constraints (4.22a), (4.22b) and (4.22c) require each job to be fulfilled exactly
once. Constraints (4.23a) and (4.23b) require that the completion time of a job must
be at least as large as the the completion time of the preceding job plus the setup time,
if a setup is conducted, and the processing time. Furthermore, constraint (4.23c) en-
sures that job j is processed immediately after completing a preceding job i if no setup
is conducted. Constraints (4.24a) and (4.24b) restrict the tardiness of each job. Con-
straint (4.25a) ensures that a setup is conducted if jobs of different families are processed
after another, whereas constraint (4.25b) allows a setup to be conducted if jobs of the
same family are processed after another. Constraints (4.26a) and (4.26b) constraint the
cumulative resource requirements before any job and (4.26c) constraints the increase in
cumulative resource to be exactly the resource requirement of job j. The cumulative re-
source requirements must not exceed the amount available until completion of the job as
required by constraint (4.27a). On the other side, enough resource needs to be consumed
not to exceed the buffer limit, both after a potential setup process (4.27b) and after the
production of any job (4.27c). Finally, constraint (4.28a) and constraint (4.28b) give the
domain of the additional binary decision variables.
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The problem studied in this thesis combines family scheduling (see Section 3.3.2) with
resource constraint scheduling (see Section 3.3.3) and scheduling to minimize total tar-
diness (see Section 3.3.1). All three problems are known to be NP-hard (e.g Cheng et al.
(2003), Briskorn et al. (2010), Du and Leung (1990)). Therefore, solving the problem
using a MILP-solver is in general too time consuming for problem instances with larger
numbers of jobs.

The approach of this thesis is motivated from the literature on heuristics to solve schedul-
ing problems that share similar characteristics (family scheduling, resource constrained
scheduling and/or scheduling to minimize total tardiness). As described in Section 3.3,
good results have been reported by using simple operators to modify the sequence of jobs
in combination with a meta-heuristic framework to escape local optima. The approach
in this thesis consists of an iterated local search approach as used e.g. in Subramanian
et al. (2014). The general framework of the heuristic is presented in Section 5.1. An im-
portant part of the heuristic is the evaluation of a given sequence. Section 5.2 describes
how total tardiness can be evaluated for the different models presented in Section 4 and
how feasibility considerations are respected. The different local search operators selected
for this thesis are presented in Section 5.3.In order to escape local optima, perturbation
has been found to be a good approach (Lourenco et al. 2003). Section 5.4 describes the
details on how sequences are perturbated in this thesis.

5.1 Heuristic Framework

The pseudocode of the heuristic used within this PhD thesis is shown in Figure 5.1.

The approach begins by generating an initial solution which can be any sequence of jobs.
The procedure to generate initial solutions for the different models is presented in Section
5.5. It then initialises an iteration counter and repeats the same steps until the iteration
counter has reached a given limit. In each iteration the approach generates a random
sequence of operators, which are subsequently applied. For each operator, all possible
moves are examined. If an improving solution is found, this solution is accepted as the
new incumbent solution. If within an iteration run, no improvement can be obtained
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1: set s := initialsolution()
2: set i := 1;
3: while i ≤ k do
4: repeat
5: select neighbourhood operator Ω
6: for all possible applications of Ω
7: if tardiness(Ω(s)) < tardiness(s) then
8: set s := Ω(s)
9: end if

10: next
11: until s is locally optimal for all operators
12: set s := perturbation(s)
13: set i := i+ 1;
14: end while;

Figure 5.1: Heuristic

by any of the operators, a locally optimal solution is found. Following the iterated local
search framework of Lourenco et al. (2003), the search process is repeated in order to
be able to escape from local optima of poor quality. Before continuing with the next
iteration, the incumbent solution is perturbed in order to obtain a new solution that
potentially can be improved using the operators.

The solution approach comprises three main components: the evaluation of tardiness of
a given sequence of jobs, different neighbourhood operators to modify sequences, and a
method to perturb a solution.

5.2 Tardiness and feasibility evaluation

To evaluate the tardiness of a particular sequence, the approach has to compute comple-
tion times and tardiness values for each job in the sequence. The tardiness evaluation
considers waiting times that may be required due to limited resource availability as
described below. Depending on the model under consideration, an evaluation of the
feasibility of the given sequence is also taken into account.

5.2.1 Model 1

For the simple single machine family scheduling problem, completion times and tardiness
for each job in a sequence can be calculated very easy.
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The first job in the sequence has completion time

Cj = pj.

For all other jobs j the completion time is

Cj = Ci + sij + pj,

where job i is the predecessor of j. The tardiness of any job j is

Tj = max{0, Cj − dj}.

5.2.2 Model 2

In the case of the single machine family scheduling problem with upper resource con-
straints, where the machine may be idle for any period of time after completion of one
job and before starting to process the next job, optimal completion times for a given
sequence of jobs can still be computed easily. For any job j, the amount of resources
required Qj is the cumulative quantity of resource required by all jobs in the sequence up
to job j. The completion times of the jobs in the sequence can be computed as follows.
The first job in the sequence has completion time

Cj = max{pj,
Qj − r∗

r
}.

and cumulative quantity
Qj = rj

For all other jobs j the completion time is

Cj = max{Ci + sij + pj,
Qj − r∗

r
},

the cumulative quantity is
Qj = Qi + rj,

where job i is the predecessor of j. The tardiness of any job j is

Tj = max{0, Cj − dj}.

5.2.3 Model 3

Now let us consider the case of the single machine family scheduling model with upper
resource constraints and setup constraints, where an additional setup between jobs of
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the same family is required if the job does not start immediately after completion of the
preceding job and no waiting times are allowed. If the values yij indicating whether there
is a setup between i and j are known, completion time and tardiness can be scheduled
analogously to the method described above. The solution approach used in this thesis,
however, is only based on operators changing the sequence of jobs and the decision
whether a setup is taken or not is not explicitly taken by the operators. Instead, this
decision is taken when calculating the completion times of the jobs in the sequence. The
cumulative resource requirement Qj is calculated as in Section 5.2.2. The first job in
the sequence is tentatively given the completion time

Cj = max{pj,
Qj − r∗

r
}.

This value may have to be increased if a subsequent job without intermediate setup
cannot be processed due to resource constraints.

For any other job j, it has to be distinguished between several cases. If fi 6= fj, where
job i is the predecessor of j, then a setup is required and the completion time job j is
tentatively set to

Cj = max{Ci + sij + pj,
Qj − r∗

r
}.

If fi = fj then two alternatives must be considered. In the first alternative an additional
setup is included and the completion time of job j is tentatively set to

Cj = max{Ci + sij + pj,
Qj − r∗

r
}.

In the second alternative, no setup is made between i and j and the completion time of
job j is tentatively set to

Cj = max{Ci + pj,
Qj − r∗

r
}.

To eliminate possible idle time between jobs, the completion time of all jobs prior to j
which are not separated by a setup is increased by

∆ = max{0, Qj − r∗

r
− (Ci + pj)}.

As above, the tardiness of any job j is

Tj = max{0, Cj − dj}.

The approach can efficiently be implemented as follows. For any job j in a given sequence
of jobs let l = (ltime, ltardiness, llastsetup) be a label where ltime denotes the completion time
of job j, ltardiness denotes the cumulative tardiness until completion of job j and llastsetup
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denotes the sequence position of the last setup that was executed. The approach begins
swith a label l = (0, 0, 0). Then it iterates through the given sequence of jobs and
calculates completion times and tardiness values as described above. In case a setup
occurs, the sequence position of the last setup is updated. The information on the
sequence position of the last setup is used when eliminating idle times, as described
above. For each different alternative a new label is generated. A tree of alternatives is
generated by extending each alternative label.

To reduce the number of alternative labels to be considered the following dominance
criteria are used to reduce the number of labels.

Proposition 1. Let l1 and l2 denote labels associated to schedules up to the same point
i in a sequence of jobs and let j denote the next job in the sequence. Label l1 dominates
label l2 if

ltime
1 + sij ≤ ltime

2

and
ltardiness
1 ≤ ltardiness

2 .

Proof: Let l̂1 denote the label associated to the schedule obtained by adding job j
to the schedule associated to l1 at the earliest time after a setup of duration sij and
let l̂2 denote the label associated to any schedule obtained by extending the schedule
associated to l2 by job j. We have l̂time

1 ≤ l̂time
2 and l̂tardiness

1 ≤ l̂tardiness
2 . Furthermore, for

any extension of l̂1 and l̂2 adding setups at the same positions, every job in the schedule
associated to the former will be completed earlier or at the same time compared to the
same job in the schedule associated to the latter. Thus, the total tardiness of the former
will be smaller or equal to the latter and l1 dominates l2.

By eliminating all dominated labels, the size of the search tree build to evaluate total
tardiness is reduced effectively.

It must be noted that total tardiness can similarly be evaluated for non-constant supply
and demand rates. By replacing all occurrences of the term Qj−r∗

r
with a function that

calculates the earliest point in time when the job j can be completed subject to a suffi-
cient resource availability, arbitrary supply and demand patterns can be considered.

5.2.4 Model 4

For the single machine family scheduling model with upper and lower resource constraints
and setup constraints, a lower limit on the cumulative quantity constraint is introduced.
Consequently, a sequence could possibly be infeasible as described in Section 4.4.

73



5 Solution Approach

There are two possible cases that could lead to infeasibility. First, when a setup process
is required. In this case, additional resource sijr is supplied during the setup process.
Since no consumption takes places during setups, the buffer before starting the setup
process, given as Qi− (Cir+ r?−B), needs to greater than or equal to the additionally
supplied resource:

Qi − (Cir + r? −B) ≥ sijr.

The second case occurs whenever the consumption rate given as qj/pj is smaller than
the supply rate r. In this case, the additional resource supply during the production
process is the difference of supply pjr and consumption qj and again the buffer needs to
be able to assimilate it:

Qi − (Cir + r? −B) ≥ (pjr − qj).

Figure 5.2 illustrates the two cases.

[t]

[tons]

[t]

[tons]

Figure 5.2: Two cases that could lead to infeasible sequences in Model 4.

The feasibility check is implemented as part of the labeling approach described in Sec-
tion 5.2.3. Whenever a setup occurs (fi 6= fj) or the consumption rate is less then the
supply rate, feasibility is evaluated using the equations above. In case the sequence is in-
feasible, the tardiness calculation terminates and the move that triggered the evaluation
is rejected.

5.3 Local Search Operators

This section describes the set of operators used by the local search approach proposed
in this thesis. It consists of job move (Section 5.3.1), job exchange (Section 5.3.2), batch
move (Section 5.3.3), batch exchange (Section 5.3.4), batch combine (Section 5.3.5) and
batch break (Section 5.3.6). The first two operators are directly based on the sequence
of jobs, whereas the other operators are based on batches, i.e. subsequences without a
setup. The advantage of such batch-based operators is that some structural properties
of the current solution are maintained and unnecessary setups can be avoided.
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5.3.1 Job Move

The “Job Move” operator selects a job and inserts it at another position in the sequence.
Figure 5.3 illustrates all possible operator moves for a given job. After selecting a job,
the operator iterates through the sequence of jobs and evaluates the insertion of the
job at all possible positions. If total tardiness can be reduced, the job is moved to
the position leading to the lowest total tardiness. This operator is a generalization of
the Move operator used by Schaller (2007), who limited the search to only move jobs
within batches of the same family. By also moving jobs to other positions, sequences
are generated that are not covered by the other operators.

Figure 5.3: Example of all possible job move operations for a selected job.

5.3.2 Job Exchange

The “Job Exchange” operator selects a job and and exchanges its position with another
job in the sequence. Figure 5.4 illustrates a single operator move. After selecting a job,
the operator iterates through the sequence of jobs and evaluates the exchange of the job
with any other job in the sequence. If total tardiness can be reduced, the positions of the
two jobs leading to the lowest total tardiness reduction are exchanged. This operator is
equivalent to the JI procedure proposed by Schaller (2007).

Figure 5.4: Example of exchanging two jobs. In this example the two jobs belong to
different setup families and are located in the middle of a batch. The job
exchange in the example therefore results in two additional setup processes.

5.3.3 Batch Move

The “Batch Move” operator selects a batch and inserts it at another position in the
sequence. Figure 5.5 illustrates the operator move. After selecting a batch, the operator
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iterates through the sequence of batches and evaluates the insertion of the complete
batch at any sequence position. If a reduction of the total tardiness can be achieved,
the batch is moved to the position leading to the lowest total tardiness.

Figure 5.5: Example of moving a selected batch to all possible sequence positions.

5.3.4 Batch Exchange

The “Batch Exchange” operator selects a batch and and exchanges its position with
another batch in the sequence of batches. Figure 5.6 illustrates a single operator move.
After selecting a batch, the operator iterates through the sequence of batches and eval-
uates the exchange of the positions of the complete batches. If total tardiness can be
reduced, the positions of the two batches leading to the lowest total tardiness reduction
are exchanged. A similar operator (SW ), that only considers neighbouring batches or
randomly selected batches was proposed by Gupta and Chantaravarapan (2008). The
operator selected for this thesis is equivalent to the BI procedure proposed by Schaller
(2007), which can be considered a generalization of the previous operators.

Figure 5.6: Example of exchanging two batches. In this example, the exchange of the
two batches result in the reduction of two setup processes, since the moved
batches are inserted right before batches from the same setup family.

5.3.5 Batch Combine

The “Batch Combine” operator selects a batch and combines the batch with the next
batch of the same family. Figure 5.7 illustrates a single operator move. It removes the
jobs of both batches and iterates through the sequence to evaluate whether reinsertion
of the combination of both batches can reduce total tardiness. If total tardiness can
be reduced, the combined batch is inserted at the position leading to the lowest total
tardiness. Baker (1999) proposed an operator that combines two batches from the same
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family and sorts the new sequence in EDD order of batches. The operator selected for
this thesis is equivalent to the CONSOL procedure proposed by Schaller (2007), which
can be considered a generalization of the previous operators.

Figure 5.7: Example of combining two batches from setup family "green" and evaluat-
ing the insertion at any sequence position in between the original sequence
position of both batches

5.3.6 Batch Break

The “Batch Break” operator selects a batch, breaks the batch into two parts and inserts
both parts at a new position in the sequence. Figure 5.8 illustrates a single operator
move. After selecting a batch, the operator sorts all jobs within the batch according to
their due date and divides the batch at the position of the largest due date difference. The
operator then iterates over all possible sequence positions for both parts and evaluates
the total tardiness. If total tardiness can be reduced, the parts are inserted at the
positions leading to the lowest total tardiness.

Other then the Break operator in Schaller (2007), all sequence positions of both parts of
the broken batch are examined. This is motivated by possible inhomogeneous due dates
within a batch, which broken sub parts could be better placed further up and down the
sequence. The S-Neighbourhood operator of Baker (1999) first tries to split the last job
of a batch and move it to a subsequent batch of equal setup family (similar to Move of
Schaller (2007)). In case this does not lead to improvements, generating an additional
batch (breaking the former batch) is considered, too.

Figure 5.8: Example of breaking a "blue" batch and inserting each broken part at differ-
ent sequence positions.
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5.4 Perturbation Strategy

A well known problem of local search techniques is to get stuck in local optima. Although
the described structure of using different neighbourhood types already contributes to
approach the global optimum, large travel in search space is not present. An easy but
powerful approach to break out of local optima is called iterated local search (Lourenco et
al. 2003). In this procedure, local search is used to arrive at a local optimum. Afterwards,
perturbation is used to modify the locally optimal sequence in order to reach a different
area of the solution space. After perturbation, local search is used again to find the best
local solution in the new solution space area. These two steps (perturbation and local
search) are repeated until a termination condition is met.

The approach for perturbation selected for this thesis is motivated by Lü and Hao (2009).
Their critical element guided perturbation (CEGP) strategy investigates a current best
solution and calculates a scoring variable for each job. Based on the scores, which are
derived from problem characteristics, a new initial sequence is derived.

The idea of the perturbation approach used in this thesis is to evaluate the most promis-
ing sequence position in terms of tardiness minimization for each job in a given current
best sequence σ. First, the lateness is calculated as

Lσj = Cσ
j − dj

for each job in the current best sequence. A positive lateness indicates that this job
should ideally be shifted towards the beginning of the sequence, whereas a negative
lateness indicates a backwards shift. In order to estimate a promising shift in sequence
positions, each lateness is divided by the average job processing time

∆pos
j =

Lσj∑
pj
.

Finally, the calculated shift is subtracted from the original sequence position in the
current best sequence σ to get a value for the most promising sequence position

k?j = kσj −∆pos
j .

The new initial solution sequence σ′ after perturbation is a sequence of jobs in order of
most promising sequence position k?. The former position in the current best sequence
kσj serves as a tie breaker.
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5.5 Experiment Design and Test Instances

This section presents the setup of computational experiments conducted to evaluate the
proposed approach for all model variants of the problem. The approach is evaluated
using artificially generated instances motivated from the real-world scheduling problem
of the case study (see Chapter 6). The generated instances share common characteristics
of the real-life problem, however, for confidentiality reasons, these characteristics cannot
be described in detail.

Unfortunately, there are no public problems available for family scheduling with or
without consideration of additional constraints. In order to enable a comparison of
alternative approaches, as possible for other scheduling problems (e.g. single machine
scheduling to minimize total tardiness: Section 3.3.1), the test instances used in this
thesis can be downloaded under: http://www.telematique.eu/research/download.

The txt files contains the following information:
• NUMBER_OF_JOBS
• NUMBER_OF_FAMILIE
• DUEDATES
• PROD_WEIGHT
• SETUPFAMILY
• SETUPMATRIX

• SETUPMATRIX_F
• INIT_BUFFER
• MAX_BUFFER
• SupplyRate
• START

The following subsections present a detailed description on how the test instances have
been generated for the different model variants (Sections 5.5.1 - 5.5.3). Afterwards, the
setup for the experiments is explained in Section 5.5.4.

5.5.1 Model 1

For each instance, a set of jobs J and a set of families F are generated. Each family
is randomly assigned one job and the remaining jobs are distributed across the families
according to an exponential distribution as illustrated in Figure 5.9.

In the real-life problem, processing times of a job depends on its setup family and the
production width. Therefore, for each setup family f ∈ F processing times pf are
randomly generated in the range [2400; 3000]. Then, for each job j in family f , the pro-
cessing time pj is randomly generated in the range [max(0.9pf , 2400); min(1.1pf , 3000)].
This way, processing times are similar for jobs of equal setup family, but still can vary
as a result of the production width.

For any pair of families, setup times between jobs of these families are randomly selected
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Figure 5.9: Distribution of jobs per setup family

to be either 900 or 2700. This is also motivated from real world instances, where a
reduced setup time is possible in case certain characteristics are given.

The due date dj of any job j is set as follows. First, orders are sequenced under GTA,
that is all orders belonging to one family are grouped together in a batch and batches are
sequenced in order of descending size. The minimum total time t1 required to produce
all jobs can then be calculated for this sequence. The due date for each job is randomly
selected from range [−0.25t1; 1.25t1], however, any negative value is set to zero. Thus,
as in real-life, instances contain some jobs which will be tardy for any position in the
sequence.

5.5.2 Model 2 and Model 3

In Model 2 and 3, an upper bound on the cumulative resource consumption is introduced
as described in Section 4.2. The test instances used for Model 2 and Model 3, share the
same requirements. Motivated from the real problem instances, the resource demand qj
of job j ∈ J is set to a random number in range [250, 270].

The due date of jobs are set as for Model 1.
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∑
j∈J

qj

Figure 5.10: Supply rate and initial inventory are derived from two
reference sequences.

In order to generate instances, in which the resource constraint is not satisfied trivially
and does not always require waiting times, the supply rate r and the initial inventory
r∗ are determined as follows. Another sequence is generated, in which jobs are ordered
according to their due dates, with the earliest due date first. The minimum total time
t2 required without resource constraints is calculated for this sequence. For all instances
t1 < t2 is given because more setups are required. The supply rate r is chosen as r =

2
t1+t2

∑
j∈J qj. As shown in Figure 5.10, the resource supply (without initial inventory)

grows at a rate that is between the average demand rates of the two sequences generated.
The initial inventory is now set to 75% of the largest difference between the cumulative
demand of the first sequence and the supply curve without initial inventory. As a result,
the first sequence, which minimises the total number of setups, would be infeasible
without additional waiting times. When searching for a solution with low total tardiness,
a good tradeoff between minimising the number of setups and minimising waiting times
thus has to be found.

5.5.3 Model 4

The extension of Model 4 consists of a lower bound on the cumulative resource con-
sumption (see Section 4.4). Within instance generation, the parameter B, describing
the maximum buffer capacity, needs to be defined. The task is to define B such that
not all sequences fulfil the requirements and at the same time, some sequences do.

A similar approach to the one used for the upper constraint limit is used (see Section
5.5.2). This time, the largest difference between the EDD sequence σEDD and the supply
curve is estimated. Afterwards, 75% of this largest difference plus the initial inventory
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level is defined to be the buffer capacity:

B = 0.75 max
j∈σEDD

rCj −Qj

The above described procedure is motivated by excluding a certain share of sequences
by cutting away σEDD and similar sequences. Besides that, the buffer level B must be
sufficiently large to contain enough resource to produce any job in order to generate
feasible instances. Therefore, the maximum buffer is set to be the maximum of both
conditions:

B = max
{

0.75 max
j∈σEDD

rCj −Qj,max
j∈J
{rj − pjr}

}

Figure 5.11 depicts both conditions on an example test instance.

time

quantity

r*

r

t2

B

t1σEDD

σGTA

Figure 5.11: Example on how the buffer capacity B is generated.

Especially for very small test instances (e.g. 8 Jobs from 2 setup families), the differences
between σGTA and σEDD is very small. In this case, the above procedure could not be
sufficient to guarantee feasible test instances. Therefore, a feasibility check is executed
within instance generation. Whenever the σGTA cannot be produced with the given
buffer capacity, the buffer capacity is extended by the required amount.

5.5.4 Experiment Design

In order to evaluate the developed heuristic for the different model alternatives, test
instances have been generated using the described procedure.
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For small test instances, the number of families nf were selected from set {2,3,4} and
the number of jobs nj from set {8,10,12,15}. For each combination of nf and nj, five in-
stances were randomly generated. Additionally, medium sized instances were generated
with nf from set {4,5,6} and nj from set {20,30,40,50}.

Two different methods are compared to each other: an exact solution approach and
the developed heuristic. First, the described MILP model (see Section 4) was solved
using the commercial solver CPLEX with version 12.6.0, 3600 s CPU calculation time
limit, 2 GB RAM, 10 GB tree limit and 1 thread on an Intel Xeon(R) CPU W3530 @
2.80GHz X 4 with UBUNTU 14.04 64-bit operating system. The second method tested,
is the iterated local search heuristic described in Section 5. In order to establish a fair
comparison, each method is started from an equal initial feasible solution. For models
1-3, this solution is generated by ordering jobs in order of earliest due date and inserting
waiting time according to the tardiness evaluation scheme presented in Section 6.2.1.
For model 4 the initial feasible solution is generated by sorting jobs according to their
families, generate batches for each jobs and sorting the batches in decreasing batch
size.

5.6 Results

This section describes the results obtained by running the experiments described in
Section 5.5. For all models, five experiments have been conducted for each number of
jobs from set {8,10,12,15,20,30,40,50}. Further, the number of families has been varied
from set {2,3,4} for instances with up to 15 jobs and from set {4,5,6} for larger problem
instances. This results in a total of 15 instances for each problem size. In the following
Sections, the average results from all instances are presented for each problem size.
Detailed results can be found in the Appendix.

In the result overview tables, provided for each model variant in the following Sections,
the first column indicates the number of jobs. The second column gives the average
computation time (in seconds) required by the MIP solver. The third column gives the
average degree to which the gap between solution value of the initial solution to the best
lower bound has been closed (GAP). This value is calculated as follows:

GAP = TTinit − UBmethod

TTinit − LBMIP

(5.1)

A value of 100 indicates that the gap is closed to 100 per cent, i.e. that the solution is
optimal. The next two columns give the same information for the heuristic. The last
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column indicates the ratio between the GAP value for the heuristic divided by the GAP
value for the MIP. A ratio larger than 1 indicates that the heuristic outperforms the
MIP.

5.6.1 Model 1

This Section discusses the results derived by solving the test instances using model 1.
Table 5.1 presents an overview with average values for all 15 test instances for each
problem size. Detailed results for all 120 test instances solved using model 1 can be
found in the Appendix.

MIP Heuristic
Jobs CPU GAP CPU GAP Ratio
8 5.59 100.00 0.01 100.00 1.00
10 373.39 100.00 0.02 100.00 1.00
12 2096.72 81.18 0.04 80.51 0.99
15 3360.45 55.97 0.07 55.96 1.00
20 3360.09 52.92 0.19 52.81 1.00
30 3600.00 56.21 0.72 57.59 1.02
40 3600.00 46.21 1.75 59.44 1.29
50 3600.00 42.41 4.01 66.59 1.57

Table 5.1: Average results for Model 1

The results in Table 5.1 show that CPLEX is able to provide optimal solutions (the GAP
presented in column 2 is 100 % closed) for all problem instances with up to 10 jobs, given
the calculation time limit of 3600 s. With increasing problem sizes, the ability of CPLEX
to close the gap between the initial solution value and the best lower bound obtained is
strongly diminished.

Looking at the ratio between gap closing ability of CPLEX and the heuristic, it can be
observed that on average CPLEX and the heuristic are able to derive similar results for
problem instances with up to 30 jobs. However, the average calculation time required
by CPLEX is 2132 s compared to only 0.18 s used by the heuristic.

For problem instances with 40 jobs and more, the heuristic is able to outperform CPLEX,
still requiring only 2.88 s calculation time.

In the following, the statistics of the detailed results presented in the Appendix are
displayed.

For Model1, CPLEX was able to solve 40 out of 120 problem instances with up to 20
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jobs. The developed heuristic was able to solve 39 or 97.5 % of those instances as well.
However, the heuristic only required an average of 0.028 s while CPLEX was running
299 s on average to solve the instances.

For 17 out of 120 problem instances, the upper bound of CPLEX was equal to the solution
obtained by the heuristic. This can be observed for problem instances with up to 15
jobs. In this case, it is likely that the upper bound of CPLEX is the optimal solution,
but optimality could not be proven within the 1 h time limit. The average calculation
time required by the heuristic is 0.07 s compared to 3600 s run time of CPLEX.

In 52 out of 120 problem instances, the heuristic outperformed CPLEX within the given
time limit. The average calculation time required by the heuristic for those rather large
instances was 1.86 s, which is still significantly smaller then the CPLEX time limit of
3600 s.

5.6.2 Model 2

This Section discusses the results derived by solving the test instances using model 2.
Table 5.2 presents an overview with average values for all 15 test instances for each
problem size. Detailed results for all 120 test instances solved using model 2 can be
found in the Appendix.

MIP Heuristic
Jobs CPU GAP CPU GAP Ratio
8 8.72 100.00 0.02 99.97 1.00
10 624.70 100.00 0.03 100.00 1.00
12 2387.21 76.38 0.06 76.07 1.00
15 3364.40 55.65 0.11 55.62 1.00
20 3361.35 51.84 0.32 53.26 1.03
30 3600.00 48.44 1.18 58.17 1.20
40 3600.00 35.02 2.95 59.79 1.71
50 3600.00 32.57 6.80 67.27 2.07

Table 5.2: Average results for Model 2

The results in Table 5.2 show that CPLEX is able to provide optimal solutions for
problem instances with up to 10 jobs, given the calculation time limit of 3600 s. Again,
with increasing problem sizes, the ability of CPLEX to close the gap between the initial
solution value and the best lower bound obtained is strongly diminished.

Looking at the ratio between gap closing ability of CPLEX and the heuristic, it can be
observed that on average CPLEX and the heuristic are able to derive similar results for
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problem instances with up to 20 jobs. However, the average calculation time required
by CPLEX is 1949 s compared to only 0.11 s used by the heuristic.

For problem instances with 30 jobs and more, the heuristic is able to outperform CPLEX,
still requiring only 3.64 s calculation time on average.

In the following, the statistics of the detailed results presented in the Appendix are
displayed.

For Model2, CPLEX was able to solve 39 out of 120 problem instances with up to 20
jobs. The developed heuristic was able to solve 35 or 89.7 % of those instances as well.
However, the heuristic only required an average of 0.04 s while CPLEX was running
425.5 s to solve the instances.

For 21 out of 120 problem instances, the upper bound of CPLEX was equal to the solution
obtained by the heuristic. This can be observed for problem instances with up to 15
jobs. In this case, it is likely that the upper bound of CPLEX is the optimal solution,
but optimality could not be proven within the 1 h time limit. The average calculation
time required by the heuristic is 0.12 s compared to 3600 s run time of CPLEX.

In 55 out of 120 problem instances, the heuristic outperformed CPLEX within the given
time limit. The average calculation time required by the heuristic for those rather large
instances was 3.04 s, which is still significantly smaller then the CPLEX time limit of
3600 s.

5.6.3 Model 3

This Section discusses the results derived by solving the test instances using model 3.
Table 5.3 presents an overview with average values for all 15 test instances for each
problem size. Detailed results for all 120 test instances solved using model 3 can be
found in the Appendix.

The results in Table 5.3 show that CPLEX is able to provide optimal solutions for
problem instances with up to 10 jobs, given the calculation time limit of 3600 s. With
increasing problem sizes, the ability of CPLEX to close the gap between the initial
solution value and the best lower bound obtained is strongly diminished.

Looking at the ratio between gap closing ability of CPLEX and the heuristic, it can be
observed that on average CPLEX and the heuristic are able to derive similar results for
problem instances with up to 20 jobs. However, the average calculation time required
by CPLEX is 2051 s compared to only 1.92 s used by the heuristic.
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MIP Heuristic
Jobs CPU GAP CPU GAP Ratio
8 11.46 100.00 0.25 100.00 1.00
10 766.85 100.00 0.47 100.00 1.00
12 2539.22 70.06 0.98 70.06 1.00
15 3576.96 54.85 1.82 55.46 1.01
20 3361.76 52.33 6.09 53.97 1.03
30 3600.00 51.19 23.89 58.20 1.14
40 3360.00 35.16 67.88 57.26 1.63
50 3360.00 28.67 169.39 63.30 2.21

Table 5.3: Average results for Model 3

For problem instances with 30 jobs and more, the heuristic is able to outperform CPLEX,
still requiring only 87.05 s calculation time.

In the following, the statistics of the detailed results presented in the Appendix are
displayed.

For Model3, CPLEX was able to solve 38 out of 120 problem instances with up to 20
jobs. The developed heuristic was also able to solve 38 or 100 % of those instances.
However, the heuristic only required an average of 0.58 s while CPLEX was running
543 s to solve the instances.

For 23 out of 120 problem instances, the upper bound of CPLEX was equal to the solution
obtained by the heuristic. This can be observed for problem instances with up to 15
jobs. In this case, it is likely that the upper bound of CPLEX is the optimal solution,
but optimality could not be proven within the 1 h time limit. The average calculation
time required by the heuristic is 2.18 s compared to 3600 s run time of CPLEX.

In 57 out of 120 problem instances, the heuristic outperformed CPLEX within the given
time limit. The average calculation time required by the heuristic for those rather large
instances was 69.98 s, which is still significantly smaller then the CPLEX time limit of
3600 s.

5.6.4 Model 4

This Section discusses the results derived by solving the test instances using model 4.
Table 5.4 presents an overview with average values for all 15 test instances for each
problem size. Detailed results for all 120 test instances solved using model 4 can be
found in the Appendix.
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MIP Heuristic
Jobs CPU GAP CPU GAP Ratio
8 10.04 100.00 0.23 100.00 1.00
10 997.90 100.00 0.52 99.88 1.00
12 2560.05 79.53 1.14 79.45 1.00
15 3528.85 72.00 1.98 72.58 1.01
20 3362.36 60.46 6.41 61.56 1.02
30 3600.00 64.35 30.52 70.24 1.09
40 3360.00 52.29 74.75 66.43 1.27
50 3360.00 48.30 221.88 71.32 1.48

Table 5.4: Average results for Model 4

The results in Table 5.4 show that CPLEX is able to provide optimal solutions for
problem instances with up to 10 jobs, given the calculation time limit of 3600 s. With
increasing problem sizes, the ability of CPLEX to close the gap between the initial
solution value and the best lower bound obtained is strongly diminished.

Looking at the ratio between gap closing ability of CPLEX and the heuristic, it can be
observed that on average CPLEX and the heuristic are able to derive similar results for
problem instances with up to 20 jobs. However, the average calculation time required
by CPLEX is 2092 s compared to only 10.28 s used by the heuristic.

For problem instances with 30 jobs and more, the heuristic is able to outperform CPLEX,
still requiring only 109.05 s calculation time on average.

In the following, the statistics of the detailed results presented in the Appendix are
displayed.

For Model4, CPLEX was able to solve 39 out of 120 problem instances with up to 20
jobs. The developed heuristic was able to solve 37 or 94.87 % of those instances as well.
However, the heuristic only required an average of 0.59 s while CPLEX was running 700 s
on average to solve the instances.

For 18 out of 120 problem instances, the upper bound of CPLEX was equal to the solution
obtained by the heuristic. This can be observed for problem instances with up to 15
jobs. In this case, it is likely that the upper bound of CPLEX is the optimal solution,
but optimality could not be proven within the 1 h time limit. The average calculation
time required by the heuristic is 1.68 s compared to 3600 s run time of CPLEX.

In 60 out of 120 problem instances, the heuristic outperformed CPLEX within the given
time limit. The average calculation time required by the heuristic for those rather large
instances was 83.35 s, which is still significantly smaller then the CPLEX time limit of
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3600 s.
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6 Decision Support System for the
Continuous Casting Planning
Problem

Generating a production program, i.e. a schedule to the continuous casting planning
problem, is very time consuming in practice. As described in detail in Chapter 2, the
problem consists of five interrelated sub decisions that are limited by 21 constraints.
When selecting a schedule, ten different and partly conflicting objectives need to be
taken into consideration. With order books containing hundreds of customer orders
that result in even more slabs that need to be produced, the solution space of the prob-
lem cannot be accessed entirely. Current planning procedures concentrate on generating
feasible schedules that are able to fulfil all constraints of the problem. The ability to
compare alternative production programs and therewith balance between the conflict-
ing objectives, is limited with current mostly manual planning procedures. The DSS
described in this Chapter supports planners to find more balanced production programs
by generating a larger number of planning alternatives automatically.

As described in Section 3.1, the continuous casting planning problem cannot be solved
efficiently with current procedures. Since a planner in practice has only limited time to
find production programs, an approach is required that is able to find good schedules
regarding solution quality in very short calculation times. The approach of this thesis
is a novel decomposition of the problem into two parts. In the first part, preprocessing,
the sub problems caster selection, slab design and charge batching are considered. The
second part consists of cast batching and cast sequencing and is called the scheduler
part of the DSS. The decomposition is depicted in Figure 6.1.

During cast batching, the batch size of a cast and therewith the total number of setups is
determined. This has a major influence on the objective (O1: Duedate Fulfilment),
since it directly affects the available production time. The most important constraint
for the number of setups is the (CS4: Hot Metal Consumption) constraint, which
is dependent on the sequence of casts. With the selected decomposition, these two
aspects can be considered simultaneously within the scheduler. In Chapter 4, an efficient
procedure for the combined cast batching and cast sequencing problem was developed
based on a family scheduling model. In order to be used in practice, the developed

90



6 Decision Support System for the Continuous Casting Planning Problem

preprocessing

charge
pool

scheduler

orders
allocated

orders
slabs charges cast production

program
production
program

caster selection

slab design
charge batching

cast batching
cast sequencing

Figure 6.1: Decomposition of the five sub problems of continuous casting planning into
the two parts preprocessing (caster selection, slab design, charge batching)
and scheduler (cast batching, cast sequencing).

method needs to be embedded into the DSS to generate a production program, i.e. a
solution for the complete continuous casting problem.

Starting with given customer orders, the preprocessing selects a caster, generates slabs to
serve the customer orders and groups slabs together into charges. Within preprocessing,
the constraints associated with the three sub problems caster selection, slab design and
charge batching need to be considered. Since the focus of this thesis is set on the
cast batching and cast sequencing sub problems, the preprocessing is simplified by only
considering the steel grade and weight of slabs but not the width and actual position of
slabs within a charge. Therewith, constraints concerned with slab width do not need to
be respected when generating production programs. A detailed description of included
and excluded constraints is given in Section 6.1. The result of preprocessing is a pool of
charges. The scheduler transforms the pool of charges into a final production program
by batching charges into casts and simultaneously sequencing the casts. In order to meet
practical requirements, the model described in Section 4.4 needs to be further extended.
While the major constraint (CS4: Hot Metal Consumption) as well as (CS1:
Caster Capacity), (CS2: Setup Type) are respected, (CS3: Max Setups) and
(CB2: Max Batch Size) are not considered in the formal family scheduling model
within this thesis (see Section 6.2 for a detailed discussion).

As described, the continuous casting problem is subject to multiple objectives. Within
the formal models presented in Chapter 4, only the objective (O1: Duedate Fulfil-
ment) is respected. In order to support a planner with balancing conflicting targets, the
DSS needs to be able to generate different production programs that represent decision
alternatives when evaluated according to the ten objectives. To realise this requirement,
different procedures to generate differing solutions have been developed together with
experienced planners from practice (see Section 6.1.5 for procedures within preprocessing
and Section 6.2.3 for procedures within the Scheduler part of the DSS). By adjusting
defined parameters during the preprocessing and/or scheduler, the planner is able to
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generate alternative charge pools and in the end alternative production programs that
are evaluated for the different planning objectives. This provides him with a decision
basis for a more balanced target achievement. As described above, not all constraints
are respected within the DSS. Especially the width of individual slabs are not deter-
mined within the DSS. In order to create a production plan that can be used for the
actual production execution, the selected alternative generated with the DSS needs to
be finalized, i.e. dimensions of the slabs need to be set by another planning procedure.
This is out of scope of this thesis. The general structure of the DSS is presented in
Figure 6.2.

preprocessing

Decision Support System

charge 
poolcharge 
poolcharge 
poolcharge 
poolcharge 
poolcharge 
poolcharge 
pooljob
pool

scheduler

charge 
poolcharge 
poolcharge 
poolcharge 
poolcharge 
poolcharge 
poolcharge 
poolproduction 
program

Figure 6.2: The general structure of the DSS including the preprocessing to generate
alternative charge pools and the scheduler to generate production programs
that strive to minimize total tardiness for each alternative job pool.

The rest of this chapter is organised as follows. First, Section 6.1 describes the procedures
used to derive results for caster selection, slab design and charge batching. Second,
Section 6.2 describes how the heuristic developed in Chapter 5 is modified to be used
in the DSS. Finally, Section 6.3 presents how the DSS is applied in practice based on a
case study conducted with an industry partner.

6.1 Preprocessing

The preprocessing procedure of the DSS is used to derive a pool of jobs for the scheduler
of the DSS, as well as to generate alternative pools in order to balance conflicting
targets. Input to the preprocessing procedure is the pool of known customer orders.
A certain share of customer orders has due dates that are weeks ahead. Because the
scheduling horizon of continuous casting is usually between 1 and 7 days, only overdue
and due orders, i.e. within the selected planning horizon, are considered within the DSS.
Exceptions are made whenever non due orders are required in order to fulfil constraints or
facilitate objectives. In this case, non due orders are used for complementation. Figure
6.3 depicts the basic steps of the preprocessing to generate the job pool for the scheduler
from existing customer orders. The different sub procedures are displayed from top to
bottom.
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Figure 6.3: Preprocessing steps to generate job pools from production orders

In the first step, the planner selects a caster. Within caster selection (see Section 6.1.1),
orders for the caster are extracted for the chosen caster. In the next step, possibly
filters can be applied in order to generate alternative production programs. With this
step, certain selected orders are forced to be scheduled at the end of the sequence (see
Section 6.1.5 for a detailed discussion of this possibility to generate alternative produc-
tion programs using filters). The result is a set of orders and a set of filtered orders
for the selected caster. As described, the problem size is reduced by only considering
due orders, i.e. orders within a selected planning period. Both sets, orders and filtered
orders are therefore further separated into the sets of due orders, non due orders, due
filtered orders and non due filtered orders. In the slab design step, due orders and due
filtered orders are transferred into sets of due slabs and due filtered slabs using the slab
design procedure described in Section 6.1.2. Since only due orders need to be respected
for generating production programs, slab design is only executed for the due share of
orders and filtered orders. Within the next step, charge batching 6.1.3, due slabs and
due filtered slabs are converted into due charges and due filtered charges. Within charge
batching non due orders are used for complementation as depicted with an arrow in
Figure 6.3. The reasons are discussed in Section 6.1.3. The next step in preprocessing is
to convert due charges and due filtered charges into due jobs 6.1.4. In order to be able
to fulfil the hot metal consumption constraint, large batch sizes might be necessary in
order to reduce the amount of setups. Therefore, within job generation, additional jobs
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are generated from non due orders in case the total number of orders for a given setup
family is less then the maximum batch size (see Section 6.1.4 for further details).

Besides the possibility to filter orders, planners can generate alternative solutions by
forcing the DSS to only consider jobs with a minimum batch size to facilitate the (O9:
tundish utilization) objective (see Section 6.1.5 for a detailed discussion). This is
realized by applying a filter on the list of due jobs that do not reach the minimum
number, leading to a final set of jobs and filtered jobs as the result of preprocessing.

6.1.1 Caster Selection

For each order, a list of possible continuous caster is given, which is derived from tech-
nological order requirements and caster specification. Therewith, constraint (CAS1:
Applicable Caster) is considered. Further a preferred caster is marked based the
calculation of a technological priority. Both steps are carried out outside the DSS and
are considered as given. The DSS by default uses the preferred caster as the decision
of caster selection. However, this data field can be adjusted by the planner to influence
the allocation of orders to the different continuous caster.

6.1.2 Slab Design

The slab design procedure generates slabs to serve customer orders. As described in
Section 2.3.2 this consists of determining the slab dimensions (width, length, thickness,
weight) as well as the steel grade of the slab. Since the focus of this thesis is the scheduler
part, only the weight of slabs is determined, to reduce the problem complexity. Therefore
constraint (SD3: min/max slab weight) is respected whereas (SD1: min/max
slab length), (SD2: min/max slab width), (SD4: slab length cluster) and
(SD5: maximum strand width) are not considered and need to be respected when
the selected production program is finalised by the planning department.

The algorithm to execute the slab design is based on the information of minimum and
maximum slab weight, order target slab weight as well as the total weight requested for
each order. The target of slab design is to allocate the total weight requested on different
slabs, such that each slab is within the defined minimum and maximum range (SD3:
min/max slab weight) while maximizing the individual slab weight (O8: caster
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utilization). The algorithm used for slab design is presented in the following:

for every due order i available for the selected caster do
if order requested weight < max slab weight then

if order requested weight < min slab weight then
no slab is generated

else
generate one slab with the requested order weight

end
else

generate (order requested weight/maximum slab weight) slabs with maximum
slab weight

end
if left over material > min slab weight then

generate one slab with left over material
else

generate one slab with minimum slab weight
end

end
Algorithm 1: Slab Design

6.1.3 Charge Batching

Within charge batching, slabs are grouped together to form charges. Constraint (CHB2:
charge size) is described by a given minimum, maximum and target charge size. In
order to respect (CHB1: steel quality compatibility), the given slabs are separated
by steel grade and charges are generated for each steel grade independently. In order to
facilitate good results for the (O1: due date fulfilment) objective, charge batching
strives to minimize the deviation of due dates within a charge. At the same time, as few
charges as possible are generated in order to minimize objective (O6: open ordered
slabs). In order to realize this, slabs are first sorted according to the due dates and
afterwards subsequently assigned to charges that offer enough space to add the given
slab. The algorithm for charge batching is displayed below:
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for each steel grade do
get a list of available due slabs
sort the slabs according to their due dates
initialize an empty set of temporary charges
initialize an empty set of finalized charges
for each slab do

set placed marker to FALSE
for each charge in the set of temporary charges do

if weight of charge + weight of slab < target size then
insert slab into charge
leave charge open and continue with next slab

else if weight of charge + weight of slab < max size then
ins ert slab into charge
close charge and continue with next slab

else if weight of charge < min size AND weight of charge + minimum
possible weight of slab < max size then

decrease slab size and insert slab into charge
close charge and continue with next slab

open new charge and append it to the temporary charge list
insert slab into new charge

end
if placed marker is FALSE then

generate new charge and append it to the temporary charge list
place slab into new charge

else
continue with next slab

end
end

end
Algorithm 2: Charge Batching - Allocation of Slabs

After allocating all due slabs, it is possible that not all charges have been filled up to the
minimum charge size. Since only full charges can be produced (CHB2: charge size),
this would lead to the production of open ordered material which should be minimized
(O6: open ordered slabs). Therefore another algorithm is executed to fill up charges
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using slabs generated from non due orders:

for each charge in the set of temporary charge do
if charge weight < minimum charge size then

complement charge with non due orders using slab design algorithm
if charge weight < minimum charge size then

fill up charge with open ordered material
add charge to finalized charge list

else
add charge to finalized charge list

end
else

add charge to finalized charge list
end

end
Algorithm 3: Charge Batching - Complement Charges

Since the width of slabs is not determined during slab design, the constraints (CHB3:
slab width transition) and (CHB4: maximum total strand width) are not taken
into consideration.

6.1.4 Job Generation

After distributing all slabs into charges, the charges need to be transferred into jobs
for the scheduler. A job used in scheduling is characterized by a processing time (the
time required to produce the charge), a due date (a cumulated due date for the entire
charge derived from included orders), a cast family (the setup family of the steel grade),
a weight (the total weight of the charge) and a maximum batch size (maximum number
of consecutive charges based on technological requirements). Most of these parameters
can directly derived from the charge to the jobs. The maximum batch size and the cast
family are retrieved from a knowledge database. In order to calculate the processing time
of a job, additional calculations are necessary. First, an average strand width needs to
be derived from the orders contained in the charge

w̄ =
∑

slab∈charge

slabmaxWidth + slabminWidth

2 .

As described in Section 2.3.2, it is possible to combine multiple thin slabs into one
mother slab in case the sum of slab width is less then the caster’s width constraint.
In order to respect this within the DSS, for each caster the average strand width w̄ is
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compared to the maximum cast width of the caster and in case it is possible, the average
strand width of the charge is reduced accordingly.

With the additional parameters weight of the charge wtch, slab thickness produced by
caster tca, casting speed of steel grade and caster vch,ca and specific weight of the steel
grade γsg derived from knowledge database, the processing time of the job pj is given
as:

pj = wtch
2w̄tcavch,caγsg

As described above, the approach of the DSS is to only consider due orders to reduce
problem complexity. However, large batch sizes might be necessary within the scheduler
in order to fulfil the (CS4: hot metal consumption) constraint. To facilitate this,
additional jobs are generated from the set of non due orders to complement setup families
to be able to produce maximum batch sizes if necessary. Further, if the decision maker
chose to only accept minimum batch sizes, all jobs of a given setup family are filtered
out in case they do not meet the requirements. The following algorithm is used for the
job fill up and filter tasks:

for each setup family do
get a list of available jobs
if number of jobs < maximum batch size then

complement list of jobs with non due orders using slab design and charge
batching algorithm
if number of jobs < minimum batch size then

filter out all jobs
else

add additional jobs to the list of available jobs
continue with next setup family

end
else

continue with next setup family
end

end
Algorithm 4: Job Generation - Complementation for Hot Metal Consumption Con-
straint

A final step of job generation is used to support the alternative generation described
in Section 6.2.3. In order to improve the (O3: downstream demand fulfilment)
objective, it needs to be assured that a sufficient amount of material is available in the
set of jobs. The following algorithm is implemented to complement the list of jobs by
generating additional jobs from non due orders that contain material requested by the
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planner:

for each user defined target do
calculate the total required amount over all planning periods
calculate the total available amount in the list of jobs
if total required amount < available amount then

for each steel grade do
get list of non due orders that could complement to the target
sort orders according to due date
complement list of jobs with non due orders using slab design and charge
batching algorithm
update available amount
if total required amount < available amount then

continue with next steel grade
else

continue with next target
end

end
else

continue with next target
end

end
Algorithm 5: Job Generation - Complementation for Target Achievement

6.1.5 Alternative Generation

One way to generate good production program alternatives regarding objectives other
then (O1: due date fulfilment) is the filter option implemented within the prepro-
cessing of the DSS. By selecting certain parameters, the planner is able to separate
a specific set of orders and postpone their production. As depicted in Figure 6.3, the
filtered orders result in a filtered set of jobs that is separated from the regular set of
jobs. In the evaluation of the production program alternative, the filtered orders are se-
quenced at the end of the regular orders. This way, different objectives can be influenced
as described in the following sub sections.

Sink For each order, the destination after continuous casting is given. This destination
could be a specific hot strip mill, the inventory stock or it could be sold directly as a
slab without further processing. Within higher planning levels, certain destinations are
considered to be less important. Therefore a production program alternative consists of
excluding orders for the given destination in order to increase the (O3: downstream
demand fulfilment) objective.
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Devaluation Material Material specified as devaluation material has the property that
it is often produced unintended when quality requirements for a superior product are
not met during the casting process. Therefore an alternative planning decision is not to
focus on orders requesting this type of material. With this option planners are able to
improve the (O5: steel quality upgrading) target.

Type The type of order determines which production stages are required during further
processing. An alternative planning scenario is to only feed a certain production stage
from a specific caster. Therefore all other casters need to exclude the orders of the given
type. This filter option enables planners to generate solutions that increase the (O2:
up/downstream capacity fulfilment) objective.

Steelgrade Certain steelgrades are considered unfavourable within higher planning
levels (e.g. if the profit margin is very low). This provides another possibility to generate
an alternative production programs and improve the target of (O5: steel quality
upgrading).

Slab Quality Orders that require a very low slab quality can be fulfilled using slabs,
which have intentionally be produced for other orders with higher slab quality. Therefore
a planning decision is to focus on higher quality slabs and to exclude certain slab qualities
from the planning basis. This option again contributes to the (O5: steel quality
upgrading) objective.

Width The production width has a large impact on the production time of a charge.
Together with the number of setups scheduled, the width is the major influencing factor
for fulfilling the (CS4: hot metal consumption) constraint. By filtering certain
width ranges, the planner is able to generate alternative scenarios that use more or less
setup processes.

Vacuum Treatment Vacuum treatment is an additional production step that could
be required for an order. In order to reduce costs, a planning alternative is not to utilize
this production stage at every shift.

Hot Production Hot production requires to roll slabs directly after the continuous
casting stage. In order to do so, either a direct hot transport needs to be organized, or
an intermediate heating is required. Similar to vacuum treatment, a planning decision
is not to produce hot production material at a certain time.
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Scorch Degree The scorch degree of an order determines the necessary slab treatment
after the casting stage. Certain scorch degrees need to undergo manual treatment before
milling can be carried out. Again, excluding such material is an alternative planning
decision and contributes to the (O10: adjusting) objective.

6.2 Scheduler

As described above, the scheduler receives a job pool as input and generates a production
program based on the heuristic developed in Chapter 5. Depending on the chosen number
of planning periods (days to be planned) and the number of due orders available, real
industry problems can contain hundreds of jobs. In order to be able find schedules to
these problems in computation times required in practice, adjustments to the heuristic
are necessary.

Section 6.2.1 describes how the tardiness evaluation procedure of the heuristic is adopted
to cope with industry size problems. Besides the aspect of calculation times, the heuris-
tic used in practice needs to respect additional constraints not implemented in the formal
model in Section 4.4. A second modification to decrease calculation times is described in
subsequent Section 6.2.2. Assumptions are formulated that allow the design of acceler-
ation strategies to decrease the number of evaluations required within a move. Finally,
Section 6.2.3 presents possibilities to generate alternative production programs, that are
associated with the scheduler of the DSS.

6.2.1 Tardiness Evaluation

In order to decrease the calculation time for the tardiness evaluation within the DSS, the
evaluation as used for Model 4 (see Section 5.2.4) is modified. Instead of applying the
labelling algorithm developed in Model 3 (see Section 5.2.3), the evaluation is carried
out as if waiting times are permitted in between any two jobs (as used for Model 2 in
Section 5.2.2). When converting a sequence into a production program, the "mistake"
is corrected by summing up all waiting times in between consecutive jobs of the same
setup family and shifting them to the setup process at the beginning of the batch. The
error made during this procedure only effects jobs within the respective batch and the
influence on the evaluation of an improvement move is negligible.

Different from the models described in Chapter 4, the real industry case has a known
starting job 0 derived from the previous planning period. Further, the planning period
starts at a certain user specified date tstart. Since the calculation of cumulative resource
and completion times are defined to start at zero , the tardiness evaluation needs to
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respect the actual staring date of the planning. In order to implement the additional
constraint (CB2: maximum batch size), batch counter CTRbatch is used to determine
the number of consecutive jobs that are produced without a setup process. Whenever
two consecutive jobs are from the same setup family fi = fj and the maximum batch
size the job bj is not reached, the counter is incremented by one. Otherwise, either an
additional setup process is introduced or a regular setup takes place and the counter is
reset to one:

CTRbatch =

CTRbatch + 1 if fi = fj and CTRbatch + 1 < bj

1 else

The completion times and resource consumptions of the jobs in the sequence can be
computed as follows. The first job in the sequence has completion time

Cj = max{sf0,fj
+ pj,

Qj − r∗

r
}.

and cumulative quantity

Qj = rj

For all other jobs j the completion time is

Cj =

max{Ci + pj,
Qj−r∗
r
} if fi = fj and CTRbatch + 1 < bj

max{Ci + sfi,fj
+ pj,

Qj−r∗
r
} else

the cumulative quantity is

Qj = Qi + rj,

where job i is the predecessor of j.

The tardiness of any job j is

Tj = max{0, tstart + Cj − dj}.
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There are different conditions that need to be fulfilled in a feasible schedule. Due to
the described procedures to complement charges and jobs in Section 6.1.4, usually more
jobs are available for scheduling then required for the user specified number of planning
periods. Since the feasibility requirements are only of interest for the desired planning
periods, the following test are only executed for jobs within this time span.

First, the aspect of maximum buffer capacity could lead to an infeasible schedule as
described in Section 4.4 due to constraint (CS4: hot metal consumption). This is
evaluated by calculating the buffer level before and after the execution of a job

bufferbefore = (Ci + sij)r + r? −Qi

bufferafter = Cjr + r? −Qj

and comparing both buffer levels to the maximum allowed buffer level B specified by
the decision maker. In case this maximum buffer level is exceeded, either before or after
the completion of a job, the schedule is considered to be infeasible.

A second feasibility check is implemented within the DSS that has not been addressed in
the models described in Chapter 4 to respect the (CS3: max setups). Each continuous
caster has only a limited number of tundishes available (see Section 2.3.5). One tundish
is used for the production of a single batch and another tundish is required whenever
a setup process occurs. This translates into the scheduling problem as a restriction on
the number of setups that can be carried out during one day. In order to implement
this constraint into the sequence evaluation, a setup counter CTRsetups,day is used for
each day of the specified planning periods. After each job, it is evaluated in which day
index day the completion of the job is located. This is done by dividing the completion
time of the jobs, given in seconds from the beginning of the sequence, by the number of
seconds in one day and applying a floor function to the results:

day =
⌊

Cj
86400

⌋

Now each time a setup takes place, i.e. the batch counter CTRbatch is reset to 1, the
setup counter CTRsetups,day for the given day index day is increased by one. In case
CTRsetups,day is greater then the number of ladles available for the given caster (given
as a constant in a knowledge data base), the sequence is considered to be infeasible.
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6.2.2 Acceleration Strategies

This section describes acceleration strategies that have been implemented for the differ-
ent improvement operators described in Section 5.3 to decrease the required calculation
time. The idea of the acceleration strategies is that a lot of evaluations executed in the
operators are not leading to improvements. The goal is to use general knowledge on
tardiness minimization to create rules that reduce the number of evaluations executed
for each move. In the following, the different acceleration strategies are described for
each improvement operator. Two types of acceleration are distinguished in each Section.
First, when using the operator to minimize total tardiness and second, when using it for
any other target (see Section 6.2.3 for a discussion of different targets).

Job Move

The general job move operator attempts each and every sequence position for a given
job, leading to n− 1 evaluations per job.

In case of total tardiness evaluation, the lateness of jobs in the sequence can be used.
When moving a given job j forward, i.e. towards the beginning of sequence, the com-
pletion times of all jobs that are skipped is increased. Therefore, only in case job j is
late, the move could contribute to minimize total tardiness. Moving a non late job j
forward is similar to moving many late jobs i backwards and skipping job j. Therefore
an acceleration can be achieved when only evaluating one direction of movement. The
two aspects are described in the following acceleration rule:

• only evaluate forward movements of job j

• only evaluate job j in case it is late

In case of accessing a target different then total tardiness, the lateness cannot be used
for excluding evaluations. Instead, moves that do not effect the selected planning period,
do not influence the target fulfilment.

• only evaluate moves for jobs within the planning period or
move positions that insert jobs into the planning period
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Job Exchange

The job exchange operator attempts to exchange the position of a job j with every other
job in the sequence, leading to n− 1 evaluations.

In order to reduce the amount of necessary evaluations, properties of optimal solutions
regarding total tardiness as described in Section 3.3 can be used. Emmons (1969) showed
for a single machine scheduling problem to minimize total tardiness, that in an optimal
sequence j1 is sequenced before j2 in case dj1 ≤ dj2 and pj1 ≤ dj2 . Although this aspect
is not valid when considering family scheduling and resource requirements, it could
be used as an acceleration strategy to increase solution time while allowing optimality
violations.

• only exchange jobs j1, j2 with j1 ≺ j2, when pj1 ≤ pj2 or

dj1 ≤ dj2

Similar to the job move operator, for evaluating non total tardiness targets, an exchange
of two jobs i and j is only considered when at least one of the jobs is scheduled within
the planning period.

• only exchange jobs j1, j2 when at least one job is within the
planning period

Batch Move

The batch move operator evaluates all nbatches positions for a selected batch. The accel-
eration strategy consists of removing unpromising evaluations.

Since all batches are evaluated, only the evaluation of moving in one direction is neces-
sary. The backward movement, towards the beginning of the sequence is chosen due to
the following reasons. A backward move has two effects. First, the completion times of
skipped batches is increase, what possibly increase total tardiness. Second, the comple-
tion time of the moved batch is reduced, what could decrease total tardiness in case the
batch is late in the current sequence position. Using this information, an acceleration
strategy is defined, that only moves batches backwards, that have at least one late job.
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• only evaluate backward movements of batch b

• only evaluate batch b in case at least one containing job is
late ∑j∈b Tj > 0

Batch Exchange

Similar to the job exchange operator, the properties for minimizing total tardiness de-
rived by Emmons (1969) can be used to reduce the number of necessary evaluations for
the batch exchange move. Let us consider to exchange two batches b1 and b2, with batch
b1 sequenced before batch b2 in a given sequence. It is unlikely to improve the solution
whenever batch b2 has a larger batch processing time and at the same time larger average
due dates then batch b1. In case of larger batch processing time, all batches in between
the two batches will suffer from prolonged completion times, which has a negative impact
on the total tardiness. This could only be compensated when the due dates of batch b2
are smaller then of batch b1. An acceleration strategy for batch exchange is defined by
only exchanging two batches in case at least one of the two properties are fulfilled.

• only exchange batches b1, b2 with b1 ≺ b2, when
∑
j∈b2 pj <∑

j∈b1 pj or
∑

j∈b2
pj

nb2
<

∑
j∈b1

pj

nb1

Batch Combine

The batch combine operator evaluates all possible sequence positions for the combined
batch. This leads to nbatches evaluations.

A simple way of reduce the number of evaluations is to only assess positions in between
the two former sequence positions of the involved batches b1 and b2. Assuming that the
batch move operator has been applied already, the sequence positions of the individual
batches already reflect the due dates. When combining the two batches, a setup is
saved on the expense of forcing jobs with potentially inhomogeneous due dates to be
sequenced together. It is unlikely that the combined sequence position is outside the
former positions of the individual batches.

• only evaluate sequence positions between batches b1 and b2
for the combined batch

106



6 Decision Support System for the Continuous Casting Planning Problem

Batch Break

The batch break operator evaluates all combinations of sequence positions before and
after the broken batch. This leads to (n2 )2 evaluations.

One way to improve the calculation speed of the operator is to assess the forward shift
and the backward shift of the two broken batch parts separately while leaving the other
part at a fixed position. This reduced the number of possible evaluations to n.

• evaluate backwards and forwards movement separately for
the two broken parts

Analysis of Acceleration Strategies

The target of the DSS is to analyse different planning alternatives to aid the daily
planning process. An analysis consists of multiple solutions that need to be generated
to be compared. In order to be applicable in the real industry planning process, a
maximum calculation time of 5 min or 300 s needs to be achieved. At the same time,
the solution quality is not allowed to drop too far from the best solution that can be
generated using the heuristic.

In order to evaluate the applicability of the acceleration strategies describe above and to
compile a set of operators that fulfil the requirements stated above, the following analysis
has been carried out. For a sample test instance from the industry case study with 308
jobs out of 68 families, each improvement move is executed on the initial solution. Each
move is carried out exhaustively, i.e. for the entire sequence (e.g. job move is executed
for every job in the sequence). To assess the performance, total tardiness reduction
[%] as well as computation time [s] to excessively apply the move are examined. Table
6.1 displays the results for all move operators and the corresponding accelerated move
operators.

Table 6.1 displays that in general accelerated moves are not able to achieve the same
improvements as non accelerated moves. E.g. the ""job move"" operator is able to de-
crease total tardiness by 11.44 % when applied excessively to the initial solution of the
test instance, whereas the accelerated variant is only able to achieve a total tardiness re-
duction of 10.01 %. However, the reduction in calculation time is magnitudes higher for
accelerated versions. The job exchange and job move operators are the most effective,
but naturally tend to require larger calculation times because more moves need to be
evaluated. The break operator without applied acceleration has by far the largest calcu-
lation time and therefore is unlikely to be useful for an effective and efficient heuristic.
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Move Name Total Tardiness Reduction [%] Calculation Time [s]
Job Move 11.44 193.71
Job Move Acc. 10.01 17.45
Job Exchange 11.28 177.25
Job Exchange Acc. 11.07 62.61
Batch Move 9.76 17.91
Batch Move Acc. 8.59 3.12
Batch Exchange 8.21 15.23
Batch Exchange Acc. 8.26 7.74
Batch Break 9.91 496.05
Batch Break Acc. 8.33 8.95
Batch Combine 2.93 1.53
Batch Combine Acc. 0.53 0.66

Table 6.1: Performance comparison of different improvement moves with acceleration
strategies applied

The relative poor performance of the batch combine operators can be explained by the
generation of large batching in the initial solution generation procedure.

In order to find a combination of move operators to be used in the DSS, the following
experiment has been conducted. Four different combinations of job moves are defined
and evaluated for the test instance using the heuristic framework described in Chapter 5.
The first variant (1) consists of all move operators in the accelerated version described in
this section (i.e. Job Move Acc., Job Exchange Acc., Batch Move Acc., Batch Exchange
Acc., Batch Break Acc. and Batch Combine Acc.). The second version (2) consists
of all accelerated moves on batch level (i.e. Batch Move Acc., Batch Exchange Acc.,
Batch Break Acc. and Batch Combine Acc.). This version is motivated by the relative
small calculation times of batch level operators compared to job level operators. Variant
(3) is the opposite of variant (2) and consists of the two accelerated operators on the
job level (i.e. Job Move Acc. and Job Exchange Acc.). Finally, variant (4) consists of
all non accelerated moves, except the very time consuming batch break move (i.e. Job
Move, Job Exchange, Batch Move, Batch Exchange and Batch Combine). Table 6.2
displays the results for running the four variants on the test instance with a 5 min time
limit. Column 1 identifies the version, column 2 presents the reduction in total tardiness
obtained [%] and column 3 depicts the calculation time [s].

Heuristic Version Total Tardiness Reduction [%] Calculation Time [s]
1 14.01 300
2 13.95 105
3 11.71 172
4 14.01 300

Table 6.2: Tested heuristic compositions using the described accelerated and unacceler-
ated local search operators
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The results in Table 6.2 show that the largest decrease in total tardiness can be obtained
by applying either all accelerated or non accelerated moves (variants 1 and 4). However,
similar good results could be achieved by applying only local search moves on the batch
level (variant 2). Relative poor results where obtained by not using operators on the
batch level (variant 3). Since the solution time is significantly smaller for variant 2 with
only a small reduction in solution quality, this variant is used within the scheduler of
the DSS.

6.2.3 Alternative Generation

Besides the filter option to generate alternative production programs described in Sec-
tion 6.1.5, the DSS has three additional options that are associated with the scheduler.
The first option presented in the first paragraph of this section describes an approach to
generate production programs that improve the (O3: downstream demand fulfil-
ment) objective by allowing the planner to define targets for certain downstream work
systems. The second option described in the second paragraph of this section contributes
to the (O9: tundish utilization) objective by restricting generated cast sizes to min-
imum batch sizes defined by the planner. Finally, a third option is presented in the
third paragraph of this section that is associated with the (O1: due date fulfilment)
objective.

Downstream Demand

Derived from higher planning levels, certain daily demands are defined for downstream
production systems. One target of continuous casting planning is to fulfil these demands
with the scheduled production program (O3: downstream demand fulfilment). In
order to realize a production program that performs good regarding this target, the
following procedure is implemented within the DSS.

The planner can define target values for hot strip mills and production types (that de-
termine the use of downstream work systems) for a production program alternative. For
each target tgt ∈ TGT , a desired daily amount is specified wt?tgt. Now this information
is used within the evaluation part of the scheduler. While the day index is calculated as
described in Section 6.2.1, the actual amount for each target and the given day wttgt,day
is increased by the job’s contribution to the given target tgtj:

wttgt,day = wttgt,day + tgtj

To evaluate the target achievement for the entire sequence, the absolute deviation from
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desired daily amount wt?tgt and actual amount wttgt,day is calculated for every target and
every day. The sum of all absolute deviations is used as the key performance indicator
total target deviation (TTD) to evaluate the target achievement:

TTD =
∑

tgt∈TGT,day∈PP
(wttgt,day − wt?tgt)

In case an improvement operator move is able to decrease the deviation and the feasibility
conditions descried in Section 6.2.1 are fulfilled, the move is executed.

When only TTD is considered as a target to guide the search of the heuristic, it is likely
that poor tardiness performance results. Therefore, two strategies are implemented to
avoid this effect. First, the heuristic builds upon the reference solution generated for
minimizing total tardiness. This way, all jobs that are not effected by changes stay
in the order that was found best regarding total tardiness. Second, after the target
improvement heuristic was executed, an adopted version of the total tardiness heuristic
is applied. In this version, reductions in total tardiness are only executed in case the
value of TTD is not increased.

Minimum Batch Size

In order to increase the performance of the (O9: tundish utilization) objective, plan-
ners try to avoid the production of small batches. One production program alternative
is to only allow batch sizes larger then or equal to defined minimum batch sizes. Within
the DSS, the planner has the possibility to define these minimum batch sizes and to
force the scheduler to respect them.

In order to implement minimum batch sizes, the tardiness evaluation described in Section
6.2.1 needs to be extended. An additional feasibility check is necessary in case the user
defined to generate only batches that fulfil at least minimum batch size requirements
bminj . Whenever two consecutive jobs are from different families fj 6= fj+1, the current
batch counter CTRbatch is compared to the minimum requirement bminj and the sequence
is considered to be infeasible in case CTRbatch < bminj .

Hot Metal Supply

Another option to generate alternative production programs is the distribution of hot
metal to the different casters. In a situation where hot metal is produced for multiple
caster, the amount of hot metal dedicated to each caster is a planning decision. The
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daily amount of hot metal determines the hot metal supply rate described in model 4
(see Section 4.4). This has a major influence on the required batch sizes to fulfil the
(CS4: hot metal consumption) constraint and therefore on the performance of a
production program (especially on the (O1: due date fulfilment) objective).

Within the DSS the planner has the option to define the amount of hot metal dedicated
to a certain caster and therewith can analyse the effect of different distributions of hot
metal on the target achievement (see Section 6.3 for an example).

6.3 Industry Case Study

This section describes the use of the developed DSS on three exemplary analysis con-
ducted within an industry case study. In Section 6.3.1 the DSS is used to evaluate
alternative planning programs regarding (O1: due date fulfilment) and (O3: down-
stream demand fulfilment). In Section 6.3.2 the hot metal supply option of the DSS
described in Section 6.2.3 is used to evaluate alternative distributions of hot metal on
two different casters regarding the (O1: due date fulfilment) objective. Finally, in
Section 6.3.3 the DSS is used to evaluate how to balance (O1: due date fulfilment)
and (O3: downstream demand fulfilment) when a hot strip mill could be served
by two different casters.

6.3.1 Analysis 1 - Higher Planning Level Decisions

The first application of the DSS describes the evaluation of higher planning level deci-
sions on the performance of a certain continuous caster (called caster 1 in the following).
The total daily amount of hot metal available for this caster is 6000 t and a production
program should be generated for 2 days. In this example, three different higher planning
decisions are assessed. First, the requirement to produce a certain amount of material
for a specific target hot strip mill (Target Hot Strip Mill). This decision is made at the
master planning department to level hot strip milling capacities. In the example dis-
cussed in this section, a total of 4000 t of material for hot strip mill 1 is assumed. Second,
the constraint not to produce any material that requires vacuum treatment. At the steel
mill planning department, the staffing of vacuum facilities is decided upon. Because of
cost savings, or the allocation of vacuum capacity to another caster that utilizes the
facility, it could be set out of service for a given planning period (Vacuum Treatment).
Third, the requirement to produce a certain amount of material of a specified product
type that is produced on a certain coating work system. This could result from the
desire to maximally utilize the coating work system (Target Product Type). In this ex-
ample, product type 1 requires a daily production of 1000 t. While the general target of
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continuous casting is to produce optimally regarding due date performance, the ability
to meet the higher level planning decisions also contributes to the overall continuous
casting performance. Therefore a compromise needs to be found regarding the different
targets. In this analysis, a two day planning period is selected for evaluation.

The effect of the higher planning decisions on the performance of the caster can be
analysed using the developed DSS. Besides generating a reference solution, that does
not consider any higher planning level decisions, parameter adjustments are used to
generate seven additional scenarios representing the higher planning level decisions, as
presented in Table 6.3. The "X" in the table indicates that the target is active in the
scenario.

Number Alternative Name Hot Strip Mill Vacuum Treatment Product Type
1 Reference Solution O O O
2 HSM X O O
3 Type O O X
4 HSM+Type X O X
5 NOVAC O X O
6 NOVAC+HSM X X O
7 NOVAC+Type O X X
8 NOVAC+HSM+Type X X X

Table 6.3: Different scenario alternatives for analysis 1

Figure 6.4 depicts a comparison between the eight planning alternatives described in
Table 6.3, regarding the targets due date fulfilment (upper part of the spider web),
ability to meet the requested hot strip mill demand (right part of the spider web), the
ability not to include vacuum material (lower part of the spider web) and the ability to
meet a requested amount of material of the specified type (left part of the spider web).
All four targets are normalized using the best value achieved by any solution as the
reference. The first eight radar charts display the performance of each of the alternative
solutions, whereas the last radar chart is used as the legend for the Figure.

As depicted in Figure 6.4, there is no alternative that is Pareto optimal, i.e. it is
best regarding all performance measures. When considering due date performance,
measured as the percentage of due orders produced within the planning period and
scaled by the maximum value reached, (1) Reference, (5) NOVAC and (7) NOVAC+Type
perform best. This is not surprising, since the heuristic is set to only focus on tardiness
minimization for (1) Reference. In solutions (5) NOVAC and (7) NOVAC+Type, all
material that requires vacuum treatment is not considered for the planning periods.
However, enough due material is available to reach a similar good due date performance
as shown in solution (5) NOVAC. Solution (7) NOVAC+Type has an equal performance
because there is no material of the desired type that does not need to undergo vacuum
treatment and therefore both scenarios are equal in this case.

The best performance regarding the target to equally supply the selected hot strip
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Figure 6.4: Depiction of target fulfilment influenced by higher planning decisions.

mill was reached by solutions (2) HSM, (4) HSM+Type, (6) NOVAC+HSM and (8)
NOVAC+HSM+Type. This shows that the available orders are sufficient to meet the
hot strip mill target. Even when only material that does not need vacuum treatment
is considered ((6) NOVAC+HSM and (8) NOVAC+HSM+Type) or other targets are
considered simultaniuously ((4) HSM+Type and (8) NOVAC+HSM+Type).

Regarding the equal supply of material for the specified production type, only solution
(3) Type is able to reach a good performance. While solutions (1) Reference and (4)
HSM+Type at least are able to contribute to the target achievement, all other solutions
do not include any material for the selected product type.

Solution (4) HSM+Type can be considered as the most even compromise, because all
targets are at least partially considered. However, when renouncing a target, e.g. the
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product type fulfilment in solution (2) HSM all other target fulfilments could be in-
creased. The overview in Figure 6.4 can be used to negotiate with all higher planning
departments in order to reach a compromise, that best fits the overall company targets
at the time of planning.

The selected production program can be used as a specification for the planning depart-
ment to finalize an actual plan for the execution in the production department.

6.3.2 Analysis 2 - Distribution of Hot Metal on Casters

Whenever more then one caster is fed from the same blast furnace or transport of hot
metal/hot steel is possible, a decision on how to allocate the hot metal on the different
caster is necessary. Depending on the order structure and the distribution of orders to
the casters, a different performance can be achieved when alternating the allocation of
hot metal on the casters. The numbers presented in the analysis have been scaled for
confidentiality reasons.

In the industry case study, 10 000 t of hot steel (that is processed from hot metal) need
to be allocated to two different casters. Table 6.4 depicts possible alternative scenarios
considering minimum and maximum production amounts for each caster.

Number Hot Steel Caster 1 Hot Steel Caster 2
1 3300 6700
2 3600 6400
3 4000 6000
4 4300 5700
5 4600 5400

Table 6.4: Different solution alternatives for Analysis 2

The results for analysis 2 are displayed in Figure 6.5. The blue bars display the due
date performance, measured in percentage of due orders produced within the planning
period, for caster 1. The same measure is depicted in orange bars for caster 2. The red
curve displays the average due date performance for the different solution alternatives.

From Figure 6.5 it can be seen that in general, due dates can be better met in case
smaller hot metal amounts are processed. For caster 1, 98 % can be achieved when
generating a production program for 3300 t daily hot metal in seven planning days. This
value drops to 92 % when 4600 t of daily hot metal need to be consumed. The same
effect is shown for caster 2, with a best performance of 94 % with 5400 t and only 90 %
with 6400 t. No result is shown for caster 2 and 6700 t, because it was not possible to
construct a production program that is able to consume this large amount of daily hot
metal with the given set of orders for a period of seven days. This also explains the
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Figure 6.5: Depiction of target fulfilment influenced by higher planning decisions.

performance decrease with increasing hot metal supply. In order to be able to consume
the hot metal, a production program needs to contain very large batches. However, the
available due material might not be sufficient for that and non due orders are needed to
complement the batches.

The difference in average due date performance for the solution alternatives presented
in Table 6.4 is negligible as depicted in Figure 6.5. For the given set of orders, the
decision on how to distribute the available hot metal on the two caters is independent
from the due date performance. However, the analysis revealed, that the developed DSS
is applicable to evaluate the distribution of hot metal. The planning department can
use this analysis prior to the actual generation of production programs.

6.3.3 Analysis 3 - Distribution of Hot Strip Mill Requirements

As already described for Scenario 1 (see Section 6.3.1), a target amount of material that
needs to be produced for a given hot strip mill is determined within higher level planning.
Since slab transports between different plant locations are carried out, continuous casting
planning can decide to produce certain amounts of material for the respective hot strip
mill. Again the presented numbers have been scaled for confidentiality reasons.

In the case of analysis 3, 12 000 t of material needs to be produced at location 1 and
transported to the hot strip mill at location 2. Since two casters are available in location
1, a planning decision is to decide how much material for location 2 is produced on each
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caster. The analysis is conducted for a planning period of seven days. Table 6.5 depicts
different scenarios that will be evaluated in the following. In scenario 1, e.g. the total
amount of 12 000 t demanded for the hot strip mill in location 2 is produced at caster 1
and 0 t are produced on caster 2.

Number Caster 1 Caster 2
1 12000 0
2 10000 2000
3 8000 4000
4 6000 6000
5 4000 8000
6 2000 10000
7 0 12000

Table 6.5: Different scenarios for the production of 12 000 t material for a hot strip mill
in location 2 using two possible casters at location 1

The results for analysis 3 are displayed in Figure 6.6. The bars display the average
due date performance (O1: due date fulfilment) for both casters (right axis) and
the orange line depicts the average amount of material that is daily scheduled for the
considered hot strip mill (left axis) contributing to the (O3: downstream demand
fulfilment) objective.
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Figure 6.6: Depiction of target fulfilment influenced by higher planning decisions.

The results in Figure 6.6 show that it is possible to supply the desired amount of ma-
terial for the selected hot strip mill using different distributions of hot metal. The two
best distributions (8000/4000 and 6000/6000) also only differ slightly in due date per-
formance. However, the due date performance of any solution that is forced to realize a
certain slab supply for the hot strip mill, is much worse in (O1: due date fulfilment)
compared to the reference solution without considering (O3: downstream demand
fulfilment) targets.
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Again this analysis can be used by the planning department to find a compromise be-
tween the conflicting targets. The amount of material produced on the casters is used
as a specification for the actual generation of executable production programs.
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7.1 Summary

Within this PhD thesis, a DSS for the detailed continuous casting planning problem has
been developed. The DSS is able to efficiently planning alternatives and supports the
planner to find better compromises for conflicting planning objectives.

In Chapter 2, the thesis provides a detailed overview of the continuous casting planning
problem. First, the planning problem is set into context of overall steel production
planning. By briefly introducing the production processes of the different stages of steel
manufacturing, the conflicting requirements for detailed planning are revealed. The
description of the higher planning levels of steel production planning demonstrate a main
source of conflicting objectives in detailed continuous casting planning. Afterwards, the
continuous casting planning problem is classified by the decision problems involved in
the problem as well as the planning objectives. Each of the five interrelated problems
Caster Selection, Slab Design, Charge Batching, Cast Batching and Cast Sequencing is
discussed and all relevant constraints are worked out. In total 21 constraints have been
identified and associated with the different decisions. Additionally, ten different planning
objectives where detected and explained. Based on the classification of the planning
problem, the existing research was surveyed and the decomposition approach selected
for this thesis was deduced (see Chapter 3). When combining Cast Batching and Cast
Sequencing into the Cast Batching and Sequencing Problem, the important constraint of
hot metal consumption can be considered simultaneously with the batching decision.

For the selected decomposition approach, single machine job scheduling has been identi-
fied to deliver promising solution procedures. After identifying the constraints required
to model the Cast Batching and Sequencing problem as a single machine job scheduling
problem, the relevant literature has been surveyed in Chapter 3. Local search heuris-
tics based on simple exchange, move, break and combine operators where successfully
implemented for similar problems in the scheduling literature. However, the required
model extensions have not been treated sufficiently in the literature and needed to be
developed within this thesis.

Chapter 4, presents five different model extensions to the basic job scheduling model.
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For each model extension, a detailed description, the formal notation and a MILP model
are presented. Model 1 includes the family scheduling character of producing multiple
charges from the same tundish. Model 2 extends the basic family scheduling model
by introducing a constraint handling the limited supply of hot metal. In model 3, the
disability to introduce waiting times after producing a charge within a cast is included.
Finally, Model 4 respects maximum buffer capacities for storing surplus hot metal in
case a production program is consuming less hot metal then supplied.

In Chapter 5, the heuristic to solve the models is presented and evaluated. An iterated
local search framework has been selected based on good performance on similar problems
reported in the job scheduling literature. Six different local search operators where
selected. The two operators job exchange and job move work on the job level and are
the most used operators in heuristics for single machine scheduling problems. In order to
exploit the problem characteristic of having jobs grouped together into batches of equal
setup families, four additional operators have been selected on the batch level. These are
batch move, batch exchange, batch combine and batch break. The local search operators
are randomly applied within a single improvement iteration. In order to escape local
optima, a problem specific perturbation strategy has been developed. For each of the
model extensions described in Chapter 4 a modified evaluation of total tardiness was
required. While models 1 and 2 could been evaluated rather easily, models 3 and 4
required a labelling algorithm for the evaluation.

In order to test the effectiveness and efficiency of the developed heuristic, 120 test
instances with job sizes between 8 and 50 jobs and distributed on 2 to 6 families have
been generated for each model type. The experiments revealed that the heuristic was
generating near optimal solutions for all instances that could been solved by CPLEX.
Further, the heuristic was able to outperform CPLEX for larger instances that could
not been solved within a 1 h time limit.

Within Chapter 6, the DSS has been developed. The general structure of the DSS
decomposes the five sub problems of detailed continuous casting planning into a pre-
processing step (Caster Selection, Slab Design, Charge Batching) and a scheduler step
(Cast Batching and Sequencing). Within the preprocessing step, developed procedures
transform a given set of customer orders into a pool of charges. This pool of charges
is afterwards translated into a set of jobs and planning alternatives are generated using
the developed heuristic. In order to respect the multi-objective character of the detailed
continuous casting planning problem, three different approaches have been implemented
in the DSS. First, a filter possibility to exclude certain orders from being considered
early in the schedule. Second, the problem parameters hot metal supply and a minimum
batch size can be adjusted to change the character of the problem and thus, generate
an alternative. Third, targets for specific downstream work system can be defined and
the result is modified to meet these demands. On the example of three possible analysis
that arise in practical planning situations, the application of the developed DSS was
demonstrated.

119



7 Conclusions

7.2 Scientific Contribution

The work carried out during this PhD thesis contributed to the continuous casting
research, the scheduling research and delivered a transfer of scientific results into the
practise.

As a benefit to the continuous casting research, a detailed description of all relevant
decisions, constraints and objectives for the continuous casting planning problem was
presented. The developed classification enables researchers in the field to identify re-
search gaps and simplifies the comparison of different approaches. Further, the presented
decomposition fills a gap in the existing literature, by including the hot metal consump-
tion constraint into the batching decision of continuous casting. The developed heuristic
is able to efficiently generated production programs from an input set of charges. Fur-
ther simple procedures are presented to generate charges from order information. This
presents a good foundation for further developing methodologies to assists the continuous
casting planning.

As a benefit to the scheduling research, the basic family scheduling model has been
extended to resource constraint scheduling and continuous casting specific setup re-
quirements. For all problem types, benchmark test instances have been generated that
are made public under http://www.telematique.eu/research/download. As presented in
Chapter 3, large improvements regarding solution quality and calculation time could be
realized, when benchmark instances for a scheduling problem are available. By pub-
lishing the instances used in this PhD thesis I am hoping to facilitate the generation of
solution procedures for family scheduling problems and it’s extensions.

As a benefit to the practise, the developed DSS was implemented within an industry
case study. Besides the analysis presented in Chapter 6, the planners in the continu-
ous casting department are now able to generate alternative planning solutions quickly
and therewith are able to compare a larger set of possible solutions regarding different
planning objectives.

7.3 Future Research

As discussed above, this thesis extended the existing single machine job scheduling mod-
els by including family scheduling, resource constraints and continuous casting specific
setups. For each extension, benchmark test instances have been generated and are
now available to use. Similar to the 1|STsd|

∑
j∈J Tj problem, a promising improvement

could be achieved by testing heuristic approaches, other then the iterated local search
heuristic described in this thesis. Further, more advanced exact solution approaches like
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column generation could be used to solve larger problem instances and enable a better
assessment of heuristic quality.

In the field of continuous casting planning, a novel decomposition approach has been
presented combining Cast Batching with Cast Sequencing. For this combined problem,
an efficient heuristic was presented. The other decision problems, Caster Selection, Slab
Design and Charge Batching have been treated within a preprocessing to generate a pool
of charges. This preprocessing was executed sequentially with rather simple procedures.
Within the preprocessing, the practical constraints concerned with the width of slabs
have not been respected within this PhD thesis. The procedures that are described in the
literature that focus on this aspect of the problem, only consider single strand caster. In
the continuous casting problem concerned in this thesis, twin-strand casters are assumed.
Since the complexity to generate feasible charges from slabs for this situation is very
complex, it was excluded for this thesis. However, the consideration of slab width and
the corresponding constraints is very important for the practice and should be subject
of future research.

Using a procedure to generate feasible charges from slabs would highly improve the
solution quality of the presented DSS, since all constraints would be considered and the
results are directly producible. Further, a large number of objectives for the continuous
casting planning problem can only be evaluated when the exact dimensions of slabs
within a charge are specified. Therefore, the DSS could again be extended to include
more objectives into the comparison of solutions.
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Appendix

Detailed Experiment Results

In this appendix detailed results for all instances are reported. Tables 7.1 - 7.8 give the
results for Model 1, Tables 7.9 - 7.16 give the results for Model 2, Tables 7.17 - 7.24 give
the results for Model 3, Tables 7.25 - 7.32 give the results for Model 4. In the tables the
first column provides the name of the instance. The names of the instances are formatted
as |F |X|J |_k where k ∈ {1, 2, 3, 4, 5} is a counter to distinguish different instances with
the same number of jobs |J | and families |F |. The second column in the tables give the
total tardiness of the initial solution. The next columns present the results for the MIP
and the heuristic. The tables shows the calculation time (CPU), lower bound obtained
by CPLEX (LB), the upper bound (UP), and the degree to which the gap between initial
solution and lower bound is closed (GAP). The last column indicates the ratio between
the GAP value for the heuristic divided by the GAP value for the MIP.

Model 1

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X8_1 55704 8.73 37825 37825 100.00 0.01 37825 100.00 1.00
2X8_2 16395 3.59 7450 7450 100.00 0.01 7450 100.00 1.00
2X8_3 27717 1.60 20409 20409 100.00 0.01 20409 100.00 1.00
2X8_4 36554 11.85 30489 30489 100.00 0.01 30489 100.00 1.00
2X8_5 42766 7.45 28104 28104 100.00 0.01 28104 100.00 1.00
3X8_1 4150 0.01 2444 2444 100.00 0.01 2444 100.00 1.00
3X8_2 67692 17.34 54453 54453 100.00 0.02 54453 100.00 1.00
3X8_3 37320 6.16 29895 29895 100.00 0.02 29895 100.00 1.00
3X8_4 8988 2.30 4694 4694 100.00 0.02 4694 100.00 1.00
3X8_5 3479 0.29 0 0 100.00 0.01 0 100.00 1.00
4X8_1 51740 4.04 24191 24191 100.00 0.02 24191 100.00 1.00
4X8_2 28070 2.89 27624 27624 100.00 0.02 27624 100.00 1.00
4X8_3 48078 6.11 45934 45934 100.00 0.02 45934 100.00 1.00
4X8_4 19234 0.91 12432 12432 100.00 0.02 12432 100.00 1.00
4X8_5 92953 10.60 44948 44948 100.00 0.02 44948 100.00 1.00

Table 7.1: Results for Model1 and instances with 8 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X10_1 84884 988.24 53070 53070 100.00 0.03 53070 100.00 1.00
2X10_2 42667 199.78 33714 33714 100.00 0.02 33714 100.00 1.00
2X10_3 28516 128.74 26679 26679 100.00 0.02 26679 100.00 1.00
2X10_4 98254 1555.89 66866 66866 100.00 0.02 66866 100.00 1.00
2X10_5 31682 32.20 24466 24466 100.00 0.02 24466 100.00 1.00
3X10_1 49587 220.41 47780 47780 100.00 0.03 47780 100.00 1.00
3X10_2 64449 237.09 43408 43408 100.00 0.03 43408 100.00 1.00
3X10_3 36900 74.03 29142 29142 100.00 0.02 29142 100.00 1.00
3X10_4 78409 598.68 57941 57941 100.00 0.02 57941 100.00 1.00
3X10_5 60166 54.83 17315 17315 100.00 0.03 17315 100.00 1.00
4X10_1 6667 0.01 6667 6667 100.00 0.02 6667 100 1.00
4X10_2 37546 62.16 29211 29211 100.00 0.02 29211 100.00 1.00
4X10_3 8157 7.83 7926 7926 100.00 0.03 7926 100.00 1.00
4X10_4 108993 460.56 59626 59626 100.00 0.03 59626 100.00 1.00
4X10_5 102591 980.37 63809 63809 100.00 0.03 63809 100.00 1.00

Table 7.2: Results for Model1 and instances with 10 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X12_1 19042 1837.79 18015 18015 100.00 0.02 18015 100.00 1.00
2X12_2 53813 3600.00 21010 28202 78.08 0.03 28202 78.08 1.00
2X12_3 136353 3600.00 26149 100606 32.44 0.02 100606 32.44 1.00
2X12_4 121291 3600.00 20993 42905 78.15 0.02 42905 78.15 1.00
2X12_5 12266 68.94 12156 12156 100.00 0.03 12156 100.00 1.00
3X12_1 23750 353.79 16206 16206 100.00 0.05 16206 100.00 1.00
3X12_2 37493 589.72 15415 15415 100.00 0.04 15415 100.00 1.00
3X12_3 97812 3600.00 16329 43479 66.68 0.05 43479 66.68 1.00
3X12_4 26492 2170.65 18114 18114 100.00 0.04 18114 100.00 1.00
3X12_5 84666 3600.00 22060 39967 71.40 0.05 39967 71.40 1.00
4X12_1 21125 986.06 2453 2453 100.00 0.04 3276 95.59 0.96
4X12_2 45495 243.90 4482 4482 100.00 0.04 4482 100.00 1.00
4X12_3 119403 3600.00 27705 63532 60.93 0.04 68689 55.31 0.91
4X12_4 173096 3600.00 28459 129725 29.99 0.04 129725 29.99 1.00
4X12_5 2615 0.01 2615 2615 100.00 0.04 2615 100 1.00

Table 7.3: Results for Model1 and instances with 12 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X15_1 127971 3600.00 5583 46763 66.35 0.06 48305 65.09 0.98
2X15_2 63924 3600.00 11522 43956 38.11 0.05 43956 38.11 1.00
2X15_3 29305 3600.00 14544 26031 22.18 0.05 26031 22.18 1.00
2X15_4 74120 3600.00 17112 58199 27.93 0.06 58199 27.93 1.00
2X15_5 18787 3600.00 16102 18133 24.36 0.04 18133 24.36 1.00
3X15_1 20798 6.77 0 0 100.00 0.08 0 100.00 1.00
3X15_2 97023 3600.00 9448 60175 42.08 0.08 60279 41.96 1.00
3X15_3 57338 3600.00 2427 6544 92.50 0.06 6544 92.50 1.00
3X15_4 81896 3600.00 16303 38215 66.59 0.06 36408 69.35 1.04
3X15_5 78642 3600.00 9463 22692 80.88 0.09 22692 80.88 1.00
4X15_1 72424 3600.00 19912 48370 45.81 0.07 48370 45.81 1.00
4X15_2 113754 3600.00 22429 61453 57.27 0.09 61453 57.27 1.00
4X15_3 184398 3600.00 19134 106872 46.91 0.10 106659 47.04 1.00
4X15_4 200300 3600.00 12122 101062 52.74 0.09 101062 52.74 1.00
4X15_5 140666 3600.00 0 33961 75.86 0.10 36222 74.25 0.98

Table 7.4: Results for Model1 and instances with 15 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X20_1 265123 3600.00 21343 133403 54.03 0.17 142891 50.14 0.93
4X20_2 207909 3600.00 20262 115389 49.31 0.14 115389 49.31 1.00
4X20_3 167173 3600.00 11174 107780 38.07 0.17 107714 38.11 1.00
4X20_4 317106 3600.00 23204 213753 35.17 0.15 230557 29.45 0.84
4X20_5 177897 3600.00 11414 76847 60.70 0.18 72000 63.61 1.05
5X20_1 969 1.34 0 0 100.00 0.17 0 100.00 1.00
5X20_2 230635 3600.00 14855 87189 66.48 0.23 87189 66.48 1.00
5X20_3 384441 3600.00 10951 191148 51.75 0.20 190261 51.99 1.00
5X20_4 77030 3600.00 11941 69100 12.18 0.17 62981 21.58 1.77
5X20_5 145405 3600.00 11921 64469 60.63 0.17 64331 60.74 1.00
6X20_1 281750 3600.00 2768 63305 78.30 0.20 63095 78.38 1.00
6X20_2 325432 3600.00 13781 180297 46.57 0.25 183133 45.66 0.98
6X20_3 161737 3600.00 11253 87698 49.20 0.26 85416 50.72 1.03
6X20_4 115942 3600.00 7108 75510 37.15 0.20 75195 37.44 1.01
6X20_5 212566 3600.00 16419 106287 54.18 0.18 117404 48.52 0.90

Table 7.5: Results for Model1 and instances with 20 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X30_1 386564 3600.00 19564 167430 59.71 0.90 159149 61.97 1.04
4X30_2 466068 3600.00 18412 192521 61.11 0.92 198440 59.78 0.98
4X30_3 144750 3600.00 14659 100486 34.03 0.51 101701 33.09 0.97
4X30_4 411299 3600.00 13116 203483 52.19 0.70 196553 53.93 1.03
4X30_5 211918 3600.00 15416 98461 57.74 0.52 94777 59.61 1.03
5X30_1 627441 3600.00 14148 274419 57.56 0.66 282216 56.29 0.98
5X30_2 446013 3600.00 8717 131598 71.90 0.46 128107 72.70 1.01
5X30_3 346319 3600.00 12478 152240 58.14 0.59 149660 58.91 1.01
5X30_4 87998 3600.00 13769 67019 28.26 0.48 66859 28.48 1.01
5X30_5 347529 3600.00 12502 91712 76.36 0.72 81627 79.37 1.04
6X30_1 538234 3600.00 14102 168247 70.59 0.79 161687 71.84 1.02
6X30_2 812431 3600.00 12546 378033 54.31 1.00 374328 54.77 1.01
6X30_3 516467 3600.00 18856 305321 42.43 0.95 273848 48.76 1.15
6X30_4 303037 3600.00 12658 116236 64.33 0.70 111969 65.80 1.02
6X30_5 568231 3600.00 16298 267068 54.57 0.86 245326 58.50 1.07

Table 7.6: Results for Model1 and instances with 30 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X40_1 293184 3600.00 25683 257352 13.40 1.25 252664 15.15 1.13
4X40_2 627610 3600.00 25417 504425 20.46 1.42 424931 33.66 1.65
4X40_3 589173 3600.00 20559 183193 71.40 2.11 143547 78.37 1.10
4X40_4 696412 3600.00 26485 400961 44.10 1.53 309855 57.70 1.31
4X40_5 511118 3600.00 19557 191182 65.09 1.06 166866 70.03 1.08
5X40_1 578993 3600.00 13734 366871 37.53 1.82 232224 61.35 1.63
5X40_2 769975 3600.00 21809 487727 37.73 1.44 295300 63.45 1.68
5X40_3 798876 3600.00 20365 432047 47.12 2.14 300267 64.05 1.36
5X40_4 632271 3600.00 12554 245750 62.37 1.78 117655 83.04 1.33
5X40_5 528118 3600.00 28064 348491 35.92 1.91 293866 46.85 1.30
6X40_1 457376 3600.00 10503 124364 74.52 1.77 60362 88.84 1.19
6X40_2 641393 3600.00 11706 267167 59.43 1.74 208497 68.75 1.16
6X40_3 874697 3600.00 25598 579821 34.73 1.62 554819 37.67 1.08
6X40_4 841873 3600.00 11508 503746 40.72 2.86 336077 60.91 1.50
6X40_5 794153 3600.00 25737 420355 48.65 1.84 319011 61.83 1.27

Table 7.7: Results for Model1 and instances with 40 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X50_1 425795 3600.00 12400 115859 74.97 2.74 103198 78.04 1.04
4X50_2 1417590 3600.00 21490 895528 37.39 3.63 431985 70.60 1.89
4X50_3 842473 3600.00 16317 256681 70.91 3.06 110445 88.61 1.25
4X50_4 1660006 3600.00 23791 1001345 40.26 3.50 547299 68.00 1.69
4X50_5 741559 3600.00 30961 419225 45.36 3.00 364669 53.04 1.17
5X50_1 994567 3600.00 18971 706975 29.48 4.09 260422 75.25 2.55
5X50_2 1643400 3600.00 26840 1070550 35.44 6.65 603631 64.32 1.82
5X50_3 364084 3600.00 7758 169476 54.62 3.48 146443 61.08 1.12
5X50_4 1042037 3600.00 13907 428146 59.71 3.90 180526 83.79 1.40
5X50_5 1073657 3600.00 18289 810885 24.90 4.21 461768 57.98 2.33
6X50_1 1002086 3600.00 25420 596912 41.49 5.43 356252 66.13 1.59
6X50_2 529915 3600.00 21654 374260 30.63 3.76 234926 58.04 1.90
6X50_3 1335091 3600.00 34281 927520 31.33 4.60 708052 48.20 1.54
6X50_4 1209774 3600.00 22680 882116 27.60 2.83 433832 65.36 2.37
6X50_5 651200 3600.00 23932 450340 32.02 5.35 272518 60.37 1.89

Table 7.8: Results for Model1 and instances with 50 jobs

137



Bibliography

Model 2

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X8_1 55704 20.27 39413 39413 100.00 0.02 39413 100.00 1.00
2X8_2 16395 6.02 8671 8671 100.00 0.02 8671 100.00 1.00
2X8_3 27717 1.91 20409 20409 100.00 0.01 20409 100.00 1.00
2X8_4 36554 16.76 30489 30489 100.00 0.02 30489 100.00 1.00
2X8_5 42766 12.84 28701 28701 100.00 0.02 28701 100.00 1.00
3X8_1 4150 0.13 2444 2444 100.00 0.02 2444 100.00 1.00
3X8_2 67692 23.34 55756 55756 100.00 0.02 55777 99.82 1.00
3X8_3 37320 8.58 29895 29895 100.00 0.02 29895 100.00 1.00
3X8_4 8988 2.95 4694 4694 100.00 0.02 4694 100.00 1.00
3X8_5 3805 1.24 918 918 100.00 0.02 918 100.00 1.00
4X8_1 51740 6.61 25699 25699 100.00 0.03 25699 100.00 1.00
4X8_2 29559 5.56 29113 29113 100.00 0.02 29113 100.00 1.00
4X8_3 48078 8.48 45934 45934 100.00 0.02 45934 100.00 1.00
4X8_4 19294 0.47 13189 13189 100.00 0.02 13189 100.00 1.00
4X8_5 92953 15.67 51678 51678 100.00 0.02 51777 99.76 1.00

Table 7.9: Results for Model2 and instances with 8 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X10_1 84884 1698.34 54690 54690 100.00 0.03 54690 100.00 1.00
2X10_2 42667 265.97 33714 33714 100.00 0.02 33714 100.00 1.00
2X10_3 28516 168.90 26679 26679 100.00 0.03 26679 100.00 1.00
2X10_4 98254 2508.31 67671 67671 100.00 0.02 67671 100.00 1.00
2X10_5 31682 76.02 24466 24466 100.00 0.03 24466 100.00 1.00
3X10_1 49587 420.33 47780 47780 100.00 0.04 47780 100.00 1.00
3X10_2 64449 344.40 43408 43408 100.00 0.03 43409 100.00 1.00
3X10_3 36900 120.21 29142 29142 100.00 0.03 29142 100.00 1.00
3X10_4 78409 823.88 57941 57941 100.00 0.03 57941 100.00 1.00
3X10_5 60166 74.09 17315 17315 100.00 0.04 17315 100.00 1.00
4X10_1 6667 0.01 6667 6667 100.00 0.03 6667 100 1.00
4X10_2 37546 110.80 29211 29211 100.00 0.03 29211 100.00 1.00
4X10_3 8157 7.12 7926 7926 100.00 0.05 7926 100.00 1.00
4X10_4 108993 721.89 60815 60815 100.00 0.04 60815 100.00 1.00
4X10_5 102591 2030.22 68178 68178 100.00 0.05 68178 100.00 1.00

Table 7.10: Results for Model2 and instances with 10 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X12_1 19042 3443.00 18015 18015 100.00 0.04 18015 100.00 1.00
2X12_2 53813 3600.00 18759 29561 69.18 0.05 29561 69.18 1.00
2X12_3 136353 3600.00 24043 103491 29.26 0.05 103491 29.26 1.00
2X12_4 121291 3600.00 18815 43492 75.92 0.04 43685 75.73 1.00
2X12_5 12266 279.81 12156 12156 100.00 0.04 12156 100.00 1.00
3X12_1 23750 553.78 16206 16206 100.00 0.06 16206 100.00 1.00
3X12_2 37493 891.21 15415 15415 100.00 0.07 15415 100.00 1.00
3X12_3 97812 3600.00 14249 43479 65.02 0.08 43479 65.02 1.00
3X12_4 26492 3600.00 10317 18114 51.79 0.06 18114 51.79 1.00
3X12_5 84666 3600.00 20977 39967 70.18 0.06 39967 70.18 1.00
4X12_1 21125 1647.46 2579 2579 100.00 0.05 3428 95.42 0.95
4X12_2 45495 192.94 4482 4482 100.00 0.07 4482 100.00 1.00
4X12_3 119403 3600.00 24880 63532 59.11 0.05 63532 59.11 1.00
4X12_4 173096 3600.00 26714 136091 25.28 0.07 136091 25.28 1.00
4X12_5 2615 0.01 2615 2615 100.00 0.06 2615 100 1.00

Table 7.11: Results for Model2 and instances with 12 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X15_1 127971 3600.00 5365 46763 66.24 0.13 48305 64.98 0.98
2X15_2 63924 3600.00 10420 43956 37.32 0.07 43956 37.32 1.00
2X15_3 29305 3600.00 14126 26031 21.57 0.07 26031 21.57 1.00
2X15_4 74120 3600.00 16434 58199 27.60 0.09 58199 27.60 1.00
2X15_5 18787 3600.00 16102 18133 24.36 0.06 18133 24.36 1.00
3X15_1 20798 65.97 0 0 100.00 0.10 0 100.00 1.00
3X15_2 97023 3600.00 9261 60175 41.99 0.12 60279 41.87 1.00
3X15_3 57338 3600.00 2427 6544 92.50 0.13 6544 92.50 1.00
3X15_4 81896 3600.00 16366 38215 66.66 0.10 38215 66.66 1.00
3X15_5 78642 3600.00 9201 22692 80.57 0.14 22692 80.57 1.00
4X15_1 72424 3600.00 19382 48370 45.35 0.11 48370 45.35 1.00
4X15_2 113754 3600.00 20085 61453 55.84 0.14 61453 55.84 1.00
4X15_3 184398 3600.00 18424 106963 46.66 0.15 110647 44.44 0.95
4X15_4 200300 3600.00 12747 101062 52.91 0.15 101062 52.91 1.00
4X15_5 140666 3600.00 0 34958 75.15 0.10 30502 78.32 1.04

Table 7.12: Results for Model2 and instances with 15 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X20_1 265123 3600.00 21642 133150 54.20 0.28 132733 54.37 1.00
4X20_2 207909 3600.00 22709 115389 49.96 0.22 115389 49.96 1.00
4X20_3 167173 3600.00 11242 107714 38.13 0.27 107714 38.13 1.00
4X20_4 317106 3600.00 23305 214142 35.05 0.24 230557 29.46 0.84
4X20_5 177897 3600.00 10672 79192 59.03 0.36 73221 62.60 1.06
5X20_1 969 20.27 0 0 100.00 0.24 0 100.00 1.00
5X20_2 230635 3600.00 15255 91104 64.78 0.36 87189 66.60 1.03
5X20_3 384441 3600.00 10037 190563 51.78 0.39 190261 51.86 1.00
5X20_4 77030 3600.00 12423 70498 10.11 0.30 62981 21.75 2.15
5X20_5 145405 3600.00 11768 64331 60.67 0.25 64331 60.67 1.00
6X20_1 281750 3600.00 2768 69791 75.98 0.33 66761 77.06 1.01
6X20_2 325432 3600.00 13679 177012 47.61 0.43 172187 49.16 1.03
6X20_3 161737 3600.00 10941 92394 45.98 0.43 85416 50.61 1.10
6X20_4 115942 3600.00 9565 77790 35.86 0.30 75236 38.27 1.07
6X20_5 212566 3600.00 16288 117404 48.48 0.32 117404 48.48 1.00

Table 7.13: Results for Model2 and instances with 20 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X30_1 386564 3600.00 19579 191775 53.08 1.45 159149 61.97 1.17
4X30_2 466068 3600.00 18175 257730 46.52 0.94 190882 61.44 1.32
4X30_3 144750 3600.00 15503 102682 32.55 0.82 101701 33.31 1.02
4X30_4 411299 3600.00 13169 213723 49.63 1.00 196553 53.94 1.09
4X30_5 211918 3600.00 16189 100906 56.72 1.00 94777 59.85 1.06
5X30_1 627441 3600.00 15930 360661 43.63 1.38 258312 60.36 1.38
5X30_2 446013 3600.00 8757 167941 63.59 1.01 128006 72.73 1.14
5X30_3 346319 3600.00 13112 163951 54.73 0.91 149660 59.02 1.08
5X30_4 87998 3600.00 13590 67079 28.11 0.79 66859 28.41 1.01
5X30_5 347529 3600.00 12503 172063 52.37 1.61 81627 79.37 1.52
6X30_1 538234 3600.00 16714 282238 49.09 1.14 158595 72.79 1.48
6X30_2 812431 3600.00 11452 389472 52.81 1.57 358200 56.71 1.07
6X30_3 516467 3600.00 21304 332262 37.20 1.36 277794 48.20 1.30
6X30_4 303037 3600.00 13165 126631 60.86 1.38 111969 65.91 1.08
6X30_5 568231 3600.00 17765 316617 45.71 1.41 245603 58.61 1.28

Table 7.14: Results for Model2 and instances with 30 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X40_1 293184 3600.00 24290 261192 11.90 1.94 252664 15.07 1.27
4X40_2 627610 3600.00 25417 526430 16.80 2.66 424931 33.66 2.00
4X40_3 589173 3600.00 20559 349195 42.20 3.93 146161 77.91 1.85
4X40_4 696412 3600.00 26537 566610 19.38 2.95 309750 57.72 2.98
4X40_5 511118 3600.00 17136 291183 44.52 1.75 169769 69.10 1.55
5X40_1 578993 3600.00 13768 437589 25.02 2.59 213008 64.75 2.59
5X40_2 769975 3600.00 23337 495289 36.79 2.12 269797 66.99 1.82
5X40_3 798876 3600.00 20365 604130 25.02 2.00 304394 63.52 2.54
5X40_4 632271 3600.00 13617 283182 56.43 2.69 119019 82.96 1.47
5X40_5 528118 3600.00 30566 378142 30.14 3.46 293866 47.08 1.56
6X40_1 457376 3600.00 11888 173227 63.78 3.33 60362 89.12 1.40
6X40_2 641393 3600.00 13449 367095 43.68 3.25 208497 68.94 1.58
6X40_3 874697 3600.00 23688 643714 27.14 3.09 554819 37.59 1.38
6X40_4 841873 3600.00 11295 567459 33.04 4.15 338766 60.57 1.83
6X40_5 794153 3600.00 24457 413240 49.49 4.36 317720 61.90 1.25

Table 7.15: Results for Model2 and instances with 40 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X50_1 425795 3600.00 13277 169496 62.13 6.02 103198 78.20 1.26
4X50_2 1417590 3600.00 21490 913488 36.11 9.71 431369 70.64 1.96
4X50_3 842473 3600.00 16317 544471 36.07 7.46 104468 89.33 2.48
4X50_4 1660006 3600.00 23791 1371699 17.62 7.05 546758 68.04 3.86
4X50_5 741559 3600.00 29803 494861 34.66 6.28 364669 52.95 1.53
5X50_1 994567 3600.00 21174 514103 49.36 6.01 260422 75.42 1.53
5X50_2 1643400 3600.00 26840 1100611 33.58 6.09 608532 64.02 1.91
5X50_3 364084 3600.00 7430 304413 16.73 7.43 152537 59.31 3.55
5X50_4 1042037 3600.00 16163 494152 53.41 6.62 180526 83.98 1.57
5X50_5 1073657 3600.00 18289 725481 32.99 6.29 457844 58.35 1.77
6X50_1 1002086 3600.00 25420 864384 14.10 6.21 357472 66.00 4.68
6X50_2 529915 3600.00 21588 420953 21.44 6.83 217381 61.48 2.87
6X50_3 1335091 3600.00 34281 943004 30.14 7.60 582573 57.85 1.92
6X50_4 1209774 3600.00 22680 894068 26.59 5.40 433832 65.36 2.46
6X50_5 651200 3600.00 21410 501977 23.69 6.93 285516 58.06 2.45

Table 7.16: Results for Model2 and instances with 50 jobs
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Model 3

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X8_1 55704 20.73 40874 40874 100.00 0.29 40874 100.00 1.00
2X8_2 16395 7.67 8671 8671 100.00 0.29 8671 100.00 1.00
2X8_3 27717 1.59 20409 20409 100.00 0.22 20409 100.00 1.00
2X8_4 36554 20.33 30489 30489 100.00 0.25 30489 100.00 1.00
2X8_5 42766 19.13 29904 29904 100.00 0.21 29904 100.00 1.00
3X8_1 4150 0.08 2444 2444 100.00 0.26 2444 100.00 1.00
3X8_2 67692 31.74 55795 55795 100.00 0.41 55795 100.00 1.00
3X8_3 37320 10.58 29895 29895 100.00 0.21 29895 100.00 1.00
3X8_4 8988 3.55 4694 4694 100.00 0.18 4694 100.00 1.00
3X8_5 3805 1.49 918 918 100.00 0.25 918 100.00 1.00
4X8_1 51740 11.99 26695 26695 100.00 0.24 26695 100.00 1.00
4X8_2 30303 6.14 29857 29857 100.00 0.20 29857 100.00 1.00
4X8_3 48078 11.06 45934 45934 100.00 0.23 45934 100.00 1.00
4X8_4 19309 1.21 13655 13655 100.00 0.28 13655 100.00 1.00
4X8_5 92953 24.60 52120 52120 100.00 0.22 52120 100.00 1.00

Table 7.17: Results for Model3 and instances with 8 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X10_1 84884 2370.24 55881 55881 100.00 0.49 55881 100.00 1.00
2X10_2 42667 379.95 33714 33714 100.00 0.50 33714 100.00 1.00
2X10_3 28516 300.66 26679 26679 100.00 0.37 26679 100.00 1.00
2X10_4 98254 3146.18 68666 68666 100.00 0.44 68666 100.00 1.00
2X10_5 31682 68.43 24466 24466 100.00 0.37 24466 100.00 1.00
3X10_1 49587 439.61 47780 47780 100.00 0.42 47780 100.00 1.00
3X10_2 64449 412.76 43408 43408 100.00 0.38 43408 100.00 1.00
3X10_3 36900 139.01 29142 29142 100.00 0.42 29142 100.00 1.00
3X10_4 78409 789.04 57941 57941 100.00 0.47 57941 100.00 1.00
3X10_5 60166 93.63 17315 17315 100.00 0.60 17315 100.00 1.00
4X10_1 6667 0.02 6667 6667 100.00 0.42 6667 100 1.00
4X10_2 37546 141.14 29211 29211 100.00 0.47 29211 100.00 1.00
4X10_3 8157 22.44 7926 7926 100.00 0.57 7926 100.00 1.00
4X10_4 108993 852.70 61535 61535 100.00 0.61 61535 100.00 1.00
4X10_5 102591 2346.90 69151 69151 100.00 0.46 69151 100.00 1.00

Table 7.18: Results for Model3 and instances with 10 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X12_1 19042 3600.00 11986 18015 14.55 0.66 18015 14.55 1.00
2X12_2 53813 3600.00 15693 30453 61.28 1.28 30453 61.28 1.00
2X12_3 136353 3600.00 23703 107190 25.89 1.38 107190 25.89 1.00
2X12_4 121291 3600.00 18463 43492 75.66 1.33 43492 75.66 1.00
2X12_5 12703 398.83 12593 12593 100.00 1.40 12593 100.00 1.00
3X12_1 23750 1354.80 16206 16206 100.00 0.74 16206 100.00 1.00
3X12_2 37493 802.63 15415 15415 100.00 0.73 15415 100.00 1.00
3X12_3 97812 3600.00 13170 43479 64.19 1.18 43479 64.19 1.00
3X12_4 26492 3600.00 11485 18114 55.83 0.89 18114 55.83 1.00
3X12_5 84666 3600.00 19580 39967 68.68 0.84 39967 68.68 1.00
4X12_1 21125 2902.54 2705 2705 100.00 0.99 2705 100.00 1.00
4X12_2 45495 229.48 4482 4482 100.00 0.82 4482 100.00 1.00
4X12_3 119403 3600.00 26376 63532 60.06 0.80 63532 60.06 1.00
4X12_4 173096 3600.00 26168 136758 24.73 0.88 136758 24.73 1.00
4X12_5 2615 0.01 2615 2615 100.00 0.76 2615 100 1.00

Table 7.19: Results for Model3 and instances with 12 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X15_1 127971 3600.00 5219 46763 66.16 1.99 46763 66.16 1.00
2X15_2 63924 3600.00 9964 43956 37.01 1.70 43956 37.01 1.00
2X15_3 29305 3600.00 14201 26031 21.68 1.53 26031 21.68 1.00
2X15_4 74120 3600.00 15990 58199 27.39 1.61 58199 27.39 1.00
2X15_5 18787 3600.00 15421 18133 19.43 1.45 18133 19.43 1.00
3X15_1 20798 3254.33 0 0 100.00 1.91 0 100.00 1.00
3X15_2 97023 3600.00 8563 60175 41.65 1.93 60021 41.83 1.00
3X15_3 57338 3600.00 2427 7496 90.77 1.91 6544 92.50 1.02
3X15_4 81896 3600.00 15592 40569 62.33 1.72 36408 68.61 1.10
3X15_5 78642 3600.00 9199 22692 80.57 1.90 22692 80.57 1.00
4X15_1 72424 3600.00 16412 48918 41.97 1.62 48370 42.94 1.02
4X15_2 113754 3600.00 21762 61453 56.85 1.81 61453 56.85 1.00
4X15_3 184398 3600.00 18112 107084 46.49 2.07 107084 46.49 1.00
4X15_4 200300 3600.00 11592 101062 52.59 2.26 101062 52.59 1.00
4X15_5 140666 3600.00 0 31067 77.91 1.93 31067 77.91 1.00

Table 7.20: Results for Model3 and instances with 15 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X20_1 265123 3600.00 21506 132853 54.29 6.02 132733 54.34 1.00
4X20_2 207909 3600.00 21121 115389 49.53 5.24 115389 49.53 1.00
4X20_3 167173 3600.00 12253 108737 37.72 5.37 107714 38.38 1.02
4X20_4 317106 3600.00 23633 213753 35.22 7.03 213753 35.22 1.00
4X20_5 177897 3600.00 11114 72446 63.23 7.81 72000 63.49 1.00
5X20_1 969 26.38 0 0 100.00 4.14 0 100.00 1.00
5X20_2 230635 3600.00 14890 89445 65.44 6.57 87189 66.49 1.02
5X20_3 384441 3600.00 11050 200634 49.23 7.56 190261 52.00 1.06
5X20_4 77030 3600.00 8286 68276 12.73 4.34 62981 20.44 1.60
5X20_5 145405 3600.00 12519 74397 53.44 6.53 64331 61.01 1.14
6X20_1 281750 3600.00 2768 72481 75.01 5.05 66318 77.22 1.03
6X20_2 325432 3600.00 14497 178470 47.26 8.00 172187 49.29 1.04
6X20_3 161737 3600.00 11130 85416 50.68 4.75 85416 50.68 1.00
6X20_4 115942 3600.00 8539 75277 37.86 5.59 75277 37.86 1.00
6X20_5 212566 3600.00 16186 108014 53.24 7.29 107298 53.60 1.01

Table 7.21: Results for Model3 and instances with 20 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X30_1 386564 3600.00 19829 181165 56.01 19.41 158092 62.30 1.11
4X30_2 466068 3600.00 20611 235036 51.86 35.97 190882 61.78 1.19
4X30_3 144750 3600.00 6551 102377 30.66 17.19 99664 32.62 1.06
4X30_4 411299 3600.00 13471 218770 48.40 19.93 194038 54.61 1.13
4X30_5 211918 3600.00 16131 105347 54.43 16.65 94777 59.83 1.10
5X30_1 627441 3600.00 16041 325794 49.34 26.31 258022 60.42 1.22
5X30_2 446013 3600.00 10009 152285 67.37 21.04 128006 72.94 1.08
5X30_3 346319 3600.00 12101 168277 53.27 14.95 149660 58.84 1.10
5X30_4 87998 3600.00 4599 67761 24.27 15.80 66859 25.35 1.04
5X30_5 347529 3600.00 12524 114924 69.43 36.22 79428 80.03 1.15
6X30_1 538234 3600.00 16739 192892 66.22 24.65 158595 72.80 1.10
6X30_2 812431 3600.00 12489 430278 47.77 33.85 358412 56.76 1.19
6X30_3 516467 3600.00 19029 319878 39.52 31.55 273848 48.77 1.23
6X30_4 303037 3600.00 13899 123783 62.00 17.80 111969 66.08 1.07
6X30_5 568231 3600.00 17731 308181 47.24 26.98 238915 59.82 1.27

Table 7.22: Results for Model3 and instances with 30 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X40_1 293184 3600.00 12720 270621 8.04 48.09 252664 14.45 1.80
4X40_2 627610 3600.00 37741 464718 27.61 77.85 424931 34.36 1.24
4X40_3 589173 3600.00 31271 285883 54.36 94.49 143547 79.88 1.47
4X40_4 696412 3600.00 25674 447987 37.04 77.90 309750 57.65 1.56
4X40_5 511118 3600.00 17136 321693 38.35 46.39 166866 69.69 1.82
5X40_1 578993 3600.00 14222 366116 37.69 64.25 213008 64.80 1.72
5X40_2 769975 3600.00 25463 458556 41.83 104.23 269797 67.18 1.61
5X40_3 798876 3600.00 22917 441287 46.08 85.56 293756 65.10 1.41
5X40_4 632271 3600.00 12554 380088 40.69 64.03 117655 83.04 2.04
6X40_1 457376 3600.00 12114 188539 60.38 61.58 57585 89.79 1.49
6X40_2 641393 3600.00 11803 306900 53.13 74.68 208497 68.76 1.29
6X40_3 874697 3600.00 36584 598956 32.90 75.49 554819 38.17 1.16
6X40_4 841873 3600.00 11295 640612 24.23 71.92 319527 62.89 2.60
6X40_5 794153 3600.00 27991 601620 25.13 71.77 309896 63.21 2.52

Table 7.23: Results for Model3 and instances with 40 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X50_1 425795 3600.00 15012 225781 48.69 119.44 103198 78.53 1.61
4X50_2 1417590 3600.00 21490 931298 34.83 233.69 430751 70.69 2.03
4X50_3 842473 3600.00 16388 618477 27.12 150.54 105119 89.26 3.29
4X50_4 1660006 3600.00 18676 1142522 31.53 163.36 537155 68.41 2.17
4X50_5 741559 3600.00 31310 548576 27.17 175.20 364669 53.06 1.95
5X50_1 994567 3600.00 19871 614189 39.03 165.56 254427 75.94 1.95
5X50_2 1643400 3600.00 30152 1258894 23.83 222.79 603631 64.45 2.70
5X50_3 364084 3600.00 7430 296383 18.98 156.94 146443 61.02 3.21
5X50_4 1042037 3600.00 11017 609230 41.98 155.17 181297 83.48 1.99
5X50_5 1073657 3600.00 19189 626315 42.42 162.52 450608 59.09 1.39
6X50_1 1002086 3600.00 14348 682046 32.40 258.23 350495 65.97 2.04
6X50_2 529915 3600.00 19384 390174 27.37 168.46 217381 61.22 2.24
6X50_3 1335091 3600.00 34281 1074879 20.00 217.20 582573 57.85 2.89
6X50_5 651200 3600.00 24853 559159 14.69 191.75 272080 60.53 4.12

Table 7.24: Results for Model3 and instances with 50 jobs
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Model 4

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X8_1 49867 16.43 40874 40874 100.00 0.27 40874 100.00 1.00
2X8_2 23983 11.18 8671 8671 100.00 0.26 8671 100.00 1.00
2X8_3 61521 2.51 20409 20409 100.00 0.20 20409 100.00 1.00
2X8_4 51949 13.31 30489 30489 100.00 0.26 30489 100.00 1.00
2X8_5 52136 20.50 30192 30192 100.00 0.21 30192 100.00 1.00
3X8_1 20501 0.68 2444 2444 100.00 0.23 2444 100.00 1.00
3X8_2 59675 20.94 55795 55795 100.00 0.24 55795 100.00 1.00
3X8_3 49171 9.90 29895 29895 100.00 0.19 29895 100.00 1.00
3X8_4 13122 3.75 4694 4694 100.00 0.23 4694 100.00 1.00
3X8_5 10374 1.19 918 918 100.00 0.24 918 100.00 1.00
4X8_1 48266 13.03 26695 26695 100.00 0.26 26695 100.00 1.00
4X8_2 38030 2.41 29857 29857 100.00 0.08 29857 100.00 1.00
4X8_3 67450 9.23 45934 45934 100.00 0.23 45934 100.00 1.00
4X8_4 36360 1.29 13655 13655 100.00 0.34 13655 100.00 1.00
4X8_5 68640 24.17 52120 52120 100.00 0.24 52120 100.00 1.00

Table 7.25: Results for Model4 and instances with 8 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X10_1 82335 2997.65 55881 55881 100.00 0.60 55881 100.00 1.00
2X10_2 74701 520.19 35337 35337 100.00 0.60 35337 100.00 1.00
2X10_3 74668 337.15 55279 55279 100.00 0.52 55279 100.00 1.00
2X10_4 92222 3579.99 68666 68666 100.00 0.45 68666 100.00 1.00
2X10_5 63596 117.01 24466 24466 100.00 0.63 24466 100.00 1.00
3X10_1 81567 542.56 47780 47780 100.00 0.43 47780 100.00 1.00
3X10_2 84009 558.15 43408 43408 100.00 0.47 43408 100.00 1.00
3X10_3 71232 256.77 29142 29142 100.00 0.47 29142 100.00 1.00
3X10_4 103900 1245.31 57941 57941 100.00 0.50 57941 100.00 1.00
3X10_5 62464 110.03 17315 17315 100.00 0.50 18099 98.26 0.98
4X10_1 60091 1.71 6667 6667 100.00 0.42 6667 100.00 1.00
4X10_2 56115 148.60 29211 29211 100.00 0.41 29211 100.00 1.00
4X10_3 54464 42.28 9303 9303 100.00 0.51 9303 100.00 1.00
4X10_4 109544 1319.90 61535 61535 100.00 0.68 61535 100.00 1.00
4X10_5 109457 3191.21 69151 69151 100.00 0.55 69151 100.00 1.00

Table 7.26: Results for Model4 and instances with 10 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X12_1 65138 3044.70 18015 18015 100.00 1.04 18015 100.00 1.00
2X12_2 113771 3600.00 15029 30453 84.38 1.49 30453 84.38 1.00
2X12_3 128325 3600.00 22175 108899 18.30 1.62 108899 18.30 1.00
2X12_4 112482 3600.00 14698 43492 70.55 1.70 43492 70.55 1.00
2X12_5 61206 652.86 13137 13137 100.00 1.40 13137 100.00 1.00
3X12_1 84910 1625.90 16206 16206 100.00 0.77 16206 100.00 1.00
3X12_2 63933 1628.17 15415 15415 100.00 1.04 15415 100.00 1.00
3X12_3 109140 3600.00 11746 43479 67.42 1.36 43479 67.42 1.00
3X12_4 65853 3600.00 9558 18114 84.80 1.18 18114 84.80 1.00
3X12_5 101413 3600.00 16558 39967 72.41 0.91 39967 72.41 1.00
4X12_1 50209 2351.09 2705 2705 100.00 0.92 3276 98.80 0.99
4X12_2 58171 294.72 4482 4482 100.00 0.94 4482 100.00 1.00
4X12_3 136471 3600.00 24306 63532 65.03 0.87 63532 65.03 1.00
4X12_4 185712 3600.00 22758 136672 30.09 1.08 136672 30.09 1.00
4X12_5 45938 3.31 2615 2615 100.00 0.82 2615 100.00 1.00

Table 7.27: Results for Model4 and instances with 12 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
2X15_1 129442 3600.00 2149 46763 64.95 1.85 46763 64.95 1.00
2X15_2 135144 3600.00 7375 43956 71.37 2.03 43956 71.37 1.00
2X15_3 117760 3600.00 10466 33185 78.83 1.84 33185 78.83 1.00
2X15_4 138149 3600.00 10410 58199 62.59 1.86 58199 62.59 1.00
2X15_5 123634 3600.00 12018 22975 90.18 1.66 22975 90.18 1.00
3X15_1 64896 2532.71 0 0 100.00 1.57 0 100.00 1.00
3X15_2 170043 3600.00 5630 60274 66.76 1.87 60175 66.82 1.00
3X15_3 97450 3600.00 2427 6544 95.67 2.53 6544 95.67 1.00
3X15_4 145991 3600.00 14204 40569 79.99 2.03 36408 83.15 1.04
3X15_5 115500 3600.00 8989 22692 87.13 1.96 22692 87.13 1.00
4X15_1 143307 3600.00 15363 48370 74.20 2.11 48370 74.20 1.00
4X15_2 176081 3600.00 17716 61453 72.38 1.94 61453 72.38 1.00
4X15_3 171239 3600.00 16602 107084 41.49 2.06 106659 41.76 1.01
4X15_4 151941 3600.00 10934 101062 36.08 2.20 101062 36.08 1.00
4X15_5 83645 3600.00 0 34808 58.39 2.25 30502 63.53 1.09

Table 7.28: Results for Model4 and instances with 15 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X20_1 255894 3600.00 11256 148176 44.03 5.69 142891 46.19 1.05
4X20_2 349652 3600.00 14320 119603 68.60 6.78 115389 69.86 1.02
4X20_3 234221 3600.00 2871 109091 54.09 5.67 107714 54.68 1.01
4X20_4 345891 3600.00 11553 214178 39.40 6.22 213753 39.52 1.00
4X20_5 219619 3600.00 7718 76443 67.57 6.72 72000 69.66 1.03
5X20_1 51672 35.44 0 0 100.00 3.62 0 100.00 1.00
5X20_2 198919 3600.00 10513 87189 59.30 6.73 87438 59.17 1.00
5X20_3 354969 3600.00 8305 191553 47.14 7.33 190261 47.51 1.01
5X20_4 241928 3600.00 7943 68276 74.21 5.98 62981 76.48 1.03
5X20_5 244604 3600.00 6084 65170 75.23 7.32 64331 75.58 1.00
6X20_1 168777 3600.00 2768 66761 61.45 6.37 66318 61.72 1.00
6X20_2 264475 3600.00 8808 180725 32.76 6.81 172187 36.10 1.10
6X20_3 268969 3600.00 6822 87991 69.04 3.13 85416 70.02 1.01
6X20_4 175382 3600.00 5497 77520 57.60 6.06 75277 58.93 1.02
6X20_5 240067 3600.00 11023 110762 56.45 11.69 107298 57.97 1.03

Table 7.29: Results for Model4 and instances with 20 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X30_1 582668 3600.00 3926 181722 69.28 23.75 157131 73.53 1.06
4X30_2 521741 3600.00 11365 215698 59.96 30.52 190882 64.83 1.08
4X30_3 443084 3600.00 286 103934 76.59 16.31 99664 77.56 1.01
4X30_4 574239 3600.00 6412 221204 62.17 24.01 191700 67.37 1.08
4X30_5 365957 3600.00 8454 116510 69.77 20.11 94777 75.85 1.09
5X30_1 665628 3600.00 10302 313875 53.68 48.18 258022 62.20 1.16
5X30_2 435302 3600.00 4693 169708 61.68 42.56 128006 71.36 1.16
5X30_3 634293 3600.00 846 179090 71.86 24.19 149660 76.51 1.06
5X30_4 406038 3600.00 7371 75412 82.93 26.35 67827 84.84 1.02
5X30_5 362700 3600.00 10086 115534 70.10 31.48 79428 80.33 1.15
6X30_1 531750 3600.00 10088 218233 60.10 18.95 158595 71.53 1.19
6X30_2 729692 3600.00 1798 388882 46.82 30.61 358412 51.01 1.09
6X30_3 678466 3600.00 12 309876 54.33 51.50 273848 59.64 1.10
6X30_4 430915 3600.00 10472 136116 70.12 37.40 111969 75.86 1.08
6X30_5 602690 3600.00 8734 270995 55.85 31.79 238915 61.25 1.10

Table 7.30: Results for Model4 and instances with 30 jobs
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MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X40_1 845835 3600.00 2130 357549 57.87 82.12 252664 70.31 1.21
4X40_2 964199 3600.00 6 530368 44.99 71.39 424931 55.93 1.24
4X40_3 847041 3600.00 0 278367 67.14 112.68 144812 82.90 1.23
4X40_4 957772 3600.00 268 399078 58.35 79.55 309750 67.68 1.16
4X40_5 735978 3600.00 24 303539 58.76 91.84 166866 77.33 1.32
5X40_1 945374 3600.00 0 422518 55.31 51.61 213008 77.47 1.40
5X40_2 822105 3600.00 3567 361697 56.25 128.41 269837 67.47 1.20
5X40_3 923663 3600.00 0 396055 57.12 19.81 297915 67.75 1.19
5X40_4 628945 3600.00 0 225810 64.10 24.78 117655 81.29 1.27
6X40_1 771828 3600.00 0 215101 72.13 36.95 51007 93.39 1.29
6X40_2 831109 3600.00 1957 324799 61.06 89.81 208497 75.09 1.23
6X40_3 1087414 3600.00 1176 690153 36.57 142.88 554819 49.03 1.34
6X40_4 980084 3600.00 0 492527 49.75 44.33 348180 64.47 1.30
6X40_5 948465 3600.00 60 522378 44.93 145.10 319011 66.37 1.48

Table 7.31: Results for Model4 and instances with 40 jobs

MIP Heuristic
Instance Start CPU LB UB GAP CPU UB GAP Ratio
4X50_1 1138794 3600.00 0 282775 75.17 226.98 103198 90.94 1.21
4X50_2 1550732 3600.00 0 858106 44.66 201.73 430751 72.22 1.62
4X50_3 1117723 3600.00 0 466983 58.22 246.63 104468 90.65 1.56
4X50_4 1690356 3600.00 0 980546 41.99 314.95 546758 67.65 1.61
4X50_5 1270069 3600.00 0 678833 46.55 215.53 365413 71.23 1.53
5X50_1 1566497 3600.00 2779 517158 67.11 148.09 254427 83.91 1.25
5X50_2 1455756 3600.00 0 908699 37.58 300.42 602364 58.62 1.56
5X50_3 1026309 3600.00 0 413481 59.71 83.95 160277 84.38 1.41
5X50_4 1080624 3600.00 0 578369 46.48 183.54 180526 83.29 1.79
5X50_5 1562113 3600.00 0 719140 53.96 567.47 450608 71.15 1.32
6X50_1 1212442 3600.00 32 722661 40.40 362.46 350495 71.09 1.76
6X50_2 1128870 3600.00 0 567702 49.71 80.20 243557 78.42 1.58
6X50_3 1651105 3600.00 0 938007 43.19 147.45 582573 64.72 1.50
6X50_5 1459566 3600.00 52 587733 59.73 248.87 270256 81.49 1.36

Table 7.32: Results for Model4 and instances with 50 jobs
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