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Abstract

In recent years, the structural analysis of networks representing a wide range
of real world systems has become common place. Today, the real challenges lie
in the functional analysis of those systems and ultimately the control of the
dynamic processes that occur on the networks.

Here, the abstract network representation is used to draw analogies between
production in cellular metabolism and in logistics companies. The goal is the
transfer of beneficial topological, as well as regulatory principles from biology
to logistics. Metabolism is thought to be robust against multiple types of
perturbations since organisms have survived millions of years of selective evolu-
tion. Some of the challenges handled by metabolic systems are the transport,
transformation and storage of compounds. All biochemical processes in a cell
have to occur at physiological conditions, maintain energy levels and tolerate
fluctuating environmental conditions. The organization and regulation of these
processes is thus of great interest to the field of logistics where solutions to the
dynamic control of complex systems are desperately needed.

However, the functional dynamics of cellular regulation are far from fully
understood, hence structural properties and regulatory dynamics are inves-
tigated here. As a basis, the metabolism and transcriptional regulatory
network (TRN) of Escherichia coli, a thoroughly studied experimental model
organism, are compared with company networks gleaned from actual production
data.

A number of results are established: (i) A direct relation between the
unit components of the metabolic and logistics systems. This involves the
biochemical reactions and manufacturing steps involved with the material flow
on the networks, as well as a concept for the regulatory elements. The results
are solidified by a simulation study of adaptive flow control. (ii) Potentially
beneficial structural elements of metabolic networks are discussed and the
composition of few-node subgraphs as one such indicator is explored in E.
coli’s metabolic network. (iii) The structure of networks tasked with specific
patterns of flow distribution and robust to particular types of local damages are
investigated. A clear relation between shared sub-patterns and the occurrence of
modular structures is observed. (iv) The large-scale organization of regulation
in wild type E. coli and two mutants is confirmed to be dominated by the
two counterbalancing aspects of digital (transcriptional) and analog (physico-
chemical) control over the course of E. coli’s growth cycle. (v) A case is made
for the recording of results as a function of the increasing amount of knowledge
available about objects of study. Accumulation of facts and re-evaluation of
existing knowledge can lead to serious drifts of results over time. It is crucial for
the conception of future research to know which results stand the test of time.

Overall, there are many yet to explore research avenues that this work has
opened up. Especially considerations of the dynamics of the studied systems
promise profound insights and this work forms a solid basis to build upon.
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Introduction 1

“The important thing is not to stop questioning. Curiosity has its own
reason for existence. One cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvelous structure of reality. It
is enough if one tries merely to comprehend a little of this mystery each
day. Never lose a holy curiosity. Try not to become a man of success but
rather try to become a man of value. He is considered successful in our
day who gets more out of life than he puts in. But a man of value will
give more than he receives. [. . . ] Don’t stop to marvel.”

— Albert Einstein, Old Man’s Advice to Youth: “Never Lose a Holy
Curiosity”

Although curiosity is a strong motivator, there are many tangible reasons that
make biological regulation a hot topic1. Being able to understand how an organism
regulates itself also implies the power to interfere with that regulation to one’s own
benefit. It is the promise of that power and its applications that has spurred the
creation of such a large body of scientific literature and has facilitated the funding of
the corresponding research. To mention a few of the actively researched applications:
(i) Specific and effective medication to fend off bacterial and viral infections (Alifano
et al., 2014). (ii) Treatment or correction of genetic diseases (Peng et al., 2015).
(iii) Curbing of cancerous cells and eliciting a targeted immune response (Bachegowda
and Barta, 2014). (iv) Genetic and metabolic engineering in order to increase biomass
yields (Qin et al., 2012).

In a very broad sense, models are simply a representation of our understanding of
our environment. They allow us to formulate our experience about the functioning
of the world. Importantly, a model description can be exchanged and verifiable
predictions can be postulated. The latter part is, of course, at the very core of the
scientific method. Notably, each model also restricts the language in terms of which

1There are more than 675,000 abstracts on PubMed that have been published since
1995 and fit a fuzzy search for biological regulation. The query used to find those ab-
stracts was: ((transcriptional OR metabolic OR regulatory) AND network*) OR ((gene OR
genetic OR transcriptional OR metabolic OR biological) AND regulation).
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1. Introduction

we can describe reality. This restriction means that most models are constrained to
describing only a small subset of reality. It is important to acknowledge a model’s
constraints and specify under what circumstances it applies.

Current models of biological regulation range in scope from describing systems
as small as the dynamics of a single biochemical reaction to whole ecosystems.
There are some crucial intermediate levels: (i) The dynamics of transcriptional
regulation of a handful of genes (Kaplan et al., 2008; Shen-Orr et al., 2002). (ii) The
dynamics of pathways. Pathways are collections of a few to dozens of molecular
components thought to act as a unit to produce a fixed set of outcomes in a
metabolic (Antoniewicz, 2013; Quo et al., 2011), gene regulatory (Moriya et al.,
2011) or signal transduction (Ray et al., 2013; Schoeberl et al., 2002) context.
(iii) The consideration of a complete regulatory subsystem of a single cell, for
example, the TRN (Huerta et al., 1998). (iv) The hormonal and feedback regulation
of the metabolism of a whole multicellular organism (Vinciguerra et al., 2014).

As a general rule, the less components are part of a model, the greater the
feasible level of detail. When talking about the dynamics of a system, we usually
consider the model as a system of coupled ordinary (ODEs) or partial differential
equations (PDEs). Yet, despite an exponential growth of computational power, the
size of such systems is often limited by the availability of experimental data required
for the fitting of parameters2. An alternative approach has thus been the recording
of interactions between cellular molecules and the accumulation of those interactions
to networks. The topology of such a network represents a static map of all possible
(experimentally measured) interactions. A network is an abstract representation of
the relationships (links) between components (nodes) of a system and has been used
to study systems as large as the Internet which has billions of nodes3. This work
deals with networks of less than 10,000 nodes.

1.1 Network Topology

Networks have become a successful approach to modeling large complex systems
in many different disciplines, for example, spin systems (Aleksiejuk et al., 2002),
traffic (Lammer and Helbing, 2008), production (Wiendahl and Lutz, 2002), disease
propagation (Lindquist et al., 2011), transcriptional regulation (Shen-Orr et al.,
2002), metabolism (Jeong et al., 2000), financial transactions (Schweitzer et al.,
2009) or social interactions (Ellison et al., 2007). It is the power of abstraction, of
reducing a system to simple nodes and links, that has led to the success of network
representations. The same graph theoretical methods are suddenly available to the
investigation of systems that at first glance appear to be radically different.

Despite all the success, it is often difficult to establish a link between the topology
of a system and its function or dynamic behavior. It is intuitively obvious to most
scientists that the architecture of a system of interest must contain an imprint of
its function. Otherwise interactions would occur between different components of
the system leading to another topology. It is challenging, however, to determine

2The Human Brain Project (https://www.humanbrainproject.eu/) is a notable exception to
this rule.

3http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html
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1.2. Network Function

exactly what makes a certain architecture particular and how that peculiarity is
linked to its function. Null models allow a statistical assurance whether a topology
is different from randomness but tying a certain topological aspect to the function
of the system often remains speculative at best. Devising appropriate random null
models requires a lot of insight into the system at hand and it is a problem that will
reappear in chapters 2, 4, 5, 6 and 7.

This work is mainly concerned with four types of networks: (i) The intrinsically
bipartite, metabolic network. It consists of compound and reaction nodes. A directed
link is then drawn from a compound node to a reaction node that consumes it.
Alternatively, a link is drawn from a reaction to a compound that is produced by that
reaction. A larger structure exists since compounds are shared between reactions.
The topology is thoroughly discussed in chapter 4. (ii) Conceptually similar to the
metabolic network, the production logistics network consists of processing nodes
that produce parts. The network is fully introduced in chapters 2 and 3 which
also elaborate on the parallels between the two systems. (iii) The TRN is the most
important network when talking about biological regulation. It consists of gene
nodes whose expression can be enhanced or inhibited by the products of (other)
genes. Those products are proteins or more specifically transcription factors (TFs).
This type of network is heavily used in chapters 6 and 7. (iv) A completely different
type of network is the undirected gene proximity network (GPN). Unlike the others,
links encode spatial proximity of genes on a chromosome. It can thus serve as an
indicator of expression patterns that are similar in certain neighborhoods of genes.
The GPN is mostly employed in chapter 6 but also appears in chapter 7.

1.2 Network Function

Since understanding a system and characterizing its function are often the main
goals of an investigation, how can the aforementioned challenges be overcome? Full
functional dynamics would require systems of ordinary differential equations (ODEs)
or PDEs. Just what we wanted to avoid in the first place. Two approaches are
followed in this work: (i) Devising a simplified model of the real dynamics and
simulating results on top of a given topology. In chapter 2, an extremely simple
stochastic model of traffic is applied to different architectures and an adaptive control
method regulates the traffic flow. Flow distribution through a network with local
perturbations is the theme of chapter 5. The networks undergo a simulated evolution
in order to achieve a prescribed output pattern and increase their robustness towards
certain types of damages. The study in chapter 6, partly makes use of a random
Boolean network model where ON/OFF states are propagated via activating or
inhibitory links. (ii) Mapping of experimental or other data reflecting reality onto a
network representation. The distribution of that data is then evaluated in the context
of the architecture. This is done for metabolic fluxes in chapter 4, time-resolved
gene expression data in chapter 6 and differentially expressed genes in chapter 7.

1.3 Reserach Goals

There are two overarching goals that have driven this work:

11



1. Introduction

Environment

Genome Proteome Metabolome

Figure 1.1: Coupling between organizational components of the holistic unit.
Adapted from (Sobetzko, 2012).

1. Identify principles of robustness found in metabolic production and transfer
them to the design of man-made manufacturing systems.

2. Understand the functioning of the organizational unit, i.e., the interaction of
the various components of system-scale cellular regulation.

The first goal spells out a need in the discipline of logistics. Logistics is struggling
with the increased complexity of production, transport, and storage systems. Prob-
lems arise with the increase in their size and the number of complicated interactions
between their components. These problems are further exacerbated due to global
production processes, outsourcing of suppliers, and more product variants as a con-
sequence of an increased demand for individualized products. Shorter development
cycles and time-to-market lead to larger fluctuations in contract volumes. The
changing processing steps for product variants combined with a goal for saving on
storage costs require ever more flexible production. These issues are discussed in
much more detail in chapters 2 and 3.

Over the course of millions of years, living cells have evolved to integrate environ-
mental signals in their own regulation and ensure their survival despite fluctuating
nutrient levels. Comprehending the mechanics and interconnectedness of all compo-
nents and levels of organization of cellular biology as a holistic unit is the declared
second goal. The idea of a holistic unit was introduced over a number of publi-
cations (Blot et al., 2006; Geertz et al., 2011; Muskhelishvili and Travers, 2013;
Muskhelishvili et al., 2010), the concept is shown in figure 1.1 and is investigated
most obviously in chapter 6.

12



1.3. Reserach Goals

Note

The opening chapter is intentionally minimal in terms of the data, models and
methods presented since each article in the following chapters contains its own
introduction explaining those in much more detail. It is rather a frame that specifies
where each chapter fits in the overall work.
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Comparing Metabolic and Logistics Systems 2

Even though I am second author on (Becker et al., 2011), I choose to include it
here because the research work — in particular the network analyses and simulation
studies — that forms the basis of the article was jointly performed by Till Becker and
myself during a two month stay with Prof. Dr. Dirk Helbing at the ETH in Zurich.
The descriptions of the metabolic system and meditations on regulation are also
my authorship. The article contains a thorough description of our considerations
and the necessary abstractions that allow for a uniform discussion of metabolic and
logistics systems. It is therefore necessary reading for understanding this important
aspect of my work towards a PhD.

This is an article published by Becker, Beber, Windt, Hütt, and Helbing in
Journal of Statistical Mechanics: Theory and Experiment, available online at http:
//stacks.iop.org/1742-5468/2011/i=05/a=P05004.
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Metabolic Production 3

While chapter 2 introduced the terminology and concepts that make metabolic
and logistics systems comparable, (Beber and Hütt, 2012) reviews some of the
important results related to the architecture of the metabolic network. It describes
existing findings on robustness and discusses the applicability of the flux-balance
analysis (FBA) modeling framework in-depth.

This is an article published by Beber and Hütt in Logistics Research, available
online at http://dx.doi.org/10.1007/s12159-012-0090-0.
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Subgraphs Analyses 4

In (Beber et al., 2012), we explored the difficulties that arise in a few-node subgraph
analysis of metabolic networks. We proposed solutions to overcome those issues
and evaluated the distribution of metabolic fluxes across the identified few-node
subgraphs.

This is an article published by Beber, Fretter, Jain, Sonnenschein, Müller-
Hannemann, and Hütt in Journal of The Royal Society Interface, available online at
http://rsif.royalsocietypublishing.org/content/9/77/3426.
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Flow Distribution Networks 5

A simple model of flow distribution was investigated in (Beber et al., 2013). The
results on how various requirements of that flow distribution affect the network
topology should be general and thus can be investigated in metabolic and production
logistics networks.

This is an article published by Beber, Armbruster, and Hütt in The Euro-
pean Physical Journal B, available online at http://dx.doi.org/10.1140/epjb/
e2013-40672-3.
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Time-resolved Expression Profiles 6

Time-resolved transcriptomes that represent snapshots of the growth cycle of Es-
cherichia coli and two mutants were analyzed in (Beber et al., 2016b). There,
we investigated the balance between the digital and analog control components of
bacterial regulation at specific points in time.

This is an article published by Beber, Sobetzko, Muskhelishvili, and Hütt in EPJ
Nonlinear Biomedical Physics, available online at http://dx.doi.org/10.1140/
epjnbp/s40366-016-0035-7.
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Database Drift 7

In (Beber et al., 2016a), we highlighted an important aspect of bioinformatics
and any other scientific work: The accumulation of knowledge may significantly
change the way we model systems and subsequently cause a drift of results in time.
Predicting the future of such a development is impracticable but monitoring results
and pinpointing the effect of changes to the system on results will lead to a more
profound understanding, improve credibility and can generally be considered good
scientific practice.

This is an article published by Beber, Muskhelishvili, and Hütt in Database,
available online at http://dx.doi.org/10.1093/database/baw003.
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Conclusion and Outlook 8

At the beginning of this work, two main goals were postulated:

1. Identify principles of robustness found in metabolic production and transfer
them to the design of man-made manufacturing systems.

2. Understand the functioning of the organizational unit, i.e., the interaction of
the various components of system-scale cellular regulation.

So in terms of these goals, what has been achieved and where might future
research lead to? Chapter 2 introduced the deep parallels between the individual
units of work in metabolic and production logistics systems. This means that any
findings in either system can now be directly transferred to the other system. We
clearly demonstrated that fact by applying a method for adaptive traffic control to
a metabolism-like network topology. The original idea was, of course, the transfer of
knowledge in the other direction.

At the level of periodic devices, we are talking about regulating material flow. A
desirable property of metabolism is the relatively stable output given fluctuating
inputs. Despite the challenges mentioned in section 1.1, design and implementation
of a metabolism-inspired regulation of material flow will be a necessary next step.
This should probably start at the level of a pathway for which detailed models
exist (Chassagnole et al., 2002) and that is well understood. The method of regulation
could then be transferred to an ODE or stochastic model of production in logistics.
Known methods of metabolic regulation, such as positive or negative feedback, can
then be tested in a logistics setting. Such feedback is probably also present in the
planning of a logistics processes and by the job shop manager but such rules and
the controlling actions taken need to be clarified and cataloged. The possibility of
an immediate response via, for example, autonomous control (Scholz-Reiter et al.,
2004), could open the door to improved handling of fluctuations.

Homeostasis, the tendency ascribed to living cells to maintain stable physiological
conditions, is one of the main concepts that have made biology desirable for logistics.
One important aspect of homeostasis is the organization of a cell as a holistic
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8. Conclusion and Outlook

unit Muskhelishvili and Travers (2013). In terms of production, the large-scale
organization of metabolism into catabolism and anabolism is extremely interesting.
Catabolic reactions break down molecules into precursor building blocks which are
then used by anabolic reactions to produce other essential molecules. The building
blocks can be produced from a wide range of compounds found in the environment.
A specific investigation of supply chain disruption and risk diversification with
metabolic network structures in mind could afford strategies for greater production
reliability. A potential starting point could be the model proposed by Schmitt and
Singh (2012) but with a stronger focus on company internal network dynamics.

The results from chapters 5 and 4 help illuminate other potential topological
measures. The architectures of metabolic systems are clearly particular and the
dynamics of some few-node subgraphs are highly favorable (Kaplan et al., 2008).
Nonetheless, we have been unable to generate networks with a desired subgraph
content1. However, a profiling of essentiality on few-node subgraphs, as was done
for E. coli’s metabolic network in chapter 4, has never been attempted for logistics
networks.

In principle, the results presented in chapter 5 could help in the design of
production networks. As was suggested in that chapter, the relation between
output pattern complexity and network structure can be studied systematically in
metabolism and production alike. Furthermore, given a desired output pattern, the
simulated evolution of those types of networks could serve as a guideline for the
design of a production network that will contain modules of shared work, where
possible, and is robust against, for example, node removal (machine failure).

Continuing the topology-based approach, there have been a number of recent
studies investigating cascading failures (Buldyrev et al., 2010; Lorenz et al., 2009)
and evaluating topological node essentiality, as well as methods to improve network
robustness (Rohden et al., 2012). A further comparative study of these methodologies
in metabolic and logistics networks could further illuminate structural differences
and beneficial principles.

FBA, introduced in detail in chapter 3, actually has its origins in operations
research. However, the ubiquitous representation of metabolism as mass-balanced
reactions in FBA is virtually unknown in logistics. Since each manufacturing step
has clearly defined parts and products, the same modeling approach can readily
be extended to logistics. There are two benefits to following this line of thought:
(i) Within the linear programming framework that is FBA, a cost can be defined
for the acquisition and maintenance of machines. The balance between increased
throughput and thus profit and the costs of introducing multiple machines can be
integrated in the model. Additionally, the benefit of increased redundancy in case of
failure can be computed. (ii) Waste material of each processing step can be explicitly
modeled as “side products”. Improvements that decrease the amount of waste have
a direct effect on model fluxes and the savings of reduced waste are immediately
apparent. Moreover, models of the evolution of metabolism (Tosh and McNally,
2015) also consider an energy cost per protein and still redundant networks appear.
Is the lack of redundancy in man-made systems a consequence of underestimating
failure costs or is the abundance of redundancy in living organisms a consequence of

1This was the topic of Pencho Yordanov’s master’s thesis.

104



life having no other insurance policies?
Regarding the second goal, chapter 6 presents a quantitative confirmation of the

counterbalancing of digital and analog control introduced before (Marr et al., 2008).
In (Muskhelishvili et al., 2010), it was proposed that any part of the organizational
unit is a reflection of the state of the other parts and thus of the whole. The network
coherence method used in a number of studies (Marr et al., 2008; Sonnenschein
et al., 2011) excels at quantifying such global states but it fails to answer questions
such as: What initiated a change in global state? What is the dynamic response
to the initiation of change and how is this propagated to the other components of
the holistic unit? In other words, what defines the interface between the different
components?

In a reductionist approach, the fis and hns mutants of E. coli are not ideal
subjects of study as they play an important role in digital control via direct binding
in the promoter region of transcription units (TUs), as well as in the analog component
via stabilization of larger-scale chromosomal structures. Studying other proteins
whose effects are unique to one of the control components could yield further insight.

In all of this work, only the regulation and metabolism of E. coli have been
considered. This choice is reasonable considering that it is a unicellular prokaryote,
i.e., considered to have rather simpler mechanisms of regulation, and is one of the best
studied experimental model organisms. Nevertheless, relying only on one dataset, as
we have also shown in chapter 7, is problematic. It increases the risk of over-fitting
models and over-interpreting results. Fortunately, there are a number of resources
that can be exploited: The BioCyc (Karp et al., 2005) database comprises manually
curated metabolic pathway information for the following model organisms that have
been and could be used in the creation of metabolic models: E. coli - EcoCyc, Homo
sapiens - HumanCyc, Saccharomyces cerevisiae - YeastCyc, Arabidopsis thaliana
- AraCyc, Leishmania major - LeishCyc, and MetaCyc which combines pathways
from many different organisms. The KEGG (Kanehisa and Goto, 2000; Kanehisa
et al., 2012) database is another excellent resource in a similar vein to MetaCyc.
Whole genome models can be found in publications, the BiGG (Schellenberger et al.,
2010) database and the BioModels (Chelliah et al., 2014; Le Novère et al., 2006; Li
et al., 2010) database in addition to manually curated models today contains 2641
automatically generated whole genome models using the Path2Models tool(Buchel
et al., 2013).
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