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Abstract

This thesis focuses on the development of fast and automated methods for detecting and seg-
menting anatomical structures in various modalities of medical imaging using efficient shape
descriptors. The identification and delineation of these targeted objects are fundamental steps
for further computer assisted applications, such as surgery planning, surgery interventional
guidance, computer-aided detection and diagnosis or information fusion.

First of all, a brief introduction of fundamental topics in medical image processing will
be given, including segmentation, registration, detection and classification. Common tech-
niques and methodologies used in these domains are generally reviewed. Then, a review of
shape descriptors that are commonly used in medical image processing is conducted. The
review will categorize these techniques with respect to different dimensions, such as com-
plexity, efficiency, degree of user interactions and sensitivity to parameters, etc. Afterwards,
to demonstrate how these shape descriptors are applied in each individual clinical task, sev-
eral segmentation, registration, classification and detection tasks, where a variety of shape
descriptors serve as the mainstay, will be described in detail. Specifically, the tasks consist of
the segmentation of femur heads in fluoroscopic images using a Gabor-based Hough shape
descriptor, the segmentation and registration of breasts in magnetic resonance images, the
detection of nipples in 3D breast ultrasound images and the segmentation of liver vessels in
multi-phase computer tomography images using a variety of Hessian-based shape descrip-
tors. Meanwhile, a computer-assisted diagnostic tool dedicated to breast lesion classification
is proposed, on the basis of a series of sphere packing shape descriptors. For each task,
clinical background will be first explained, and the state-of-the-art techniques that attempted
to resolve the problem will be reviewed.
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1
Introduction

Object segmentation, detection, registration, and classification serve as fundamental topics
of research activities in medical image processing. These image processing techniques have
different goal and focus. Various techniques and algorithms have been proposed to tackle the
challenges within these tasks. In this chapter, a brief review of different techniques for each of
the topics will be given. Then, methodologies based on shape descriptors that are commonly
used in these research fields will be reviewed.

1.1. Basic Medical Image Processing Activities
1.1.1. Segmentation
The purpose of segmentation is to partition an image into multiple segments and delimit
the boundaries of target objects as precise as possible. As the most fundamental medical
image processing procedure, a semi- or full-automatic segmentation technique is usually re-
quired to quantitatively analyze the targeting anatomical structures in clinical applications. For
instance, clinical relevant parameters can be extracted from a segmented lesion to assist diag-
nosis or monitor treatment response. With the development of advanced computer graphics
techniques, a 3D visualization of medical imaging data is required, where segmentation of
different tissues are favored, so that they can be visually differentiated with different view-
ing properties. Additionally, applications such as computer-aided diagnosis (CAD), surgery
planning and guidance, and image fusion and registration, etc, usually involve segmentation
tasks.

Many segmentation techniques have been reported in last several decades. These tech-
niques can be categorized into edge-based, region-based and shape-based methods. Edge-
based methods focus on delineating the boundaries that enclose the target objects, while
region-based techniques try to segment the area that the target objects occupy. These algo-
rithms take into account the spatial connectivity of voxels. Edge-based methods search for
inhomogeneity indicating object boundaries, and region-based methods search for continuous
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1. Introduction

regions of voxels with homogeneous properties. The former are typically based on boundary
indicator functions such as the magnitude of the image gradient, which is either directly used
in the edge detection methods, e.g. Canny edge detector, or integrated into the energy func-
tions of the optimal boundary searching method, e.g. active contours [1]. Many region-based
segmentation methods can be expressed in terms of region growing, in which an initial set of
regions are grown until the stopping criterion is met. Common stopping criteria are to grow
until all neighbors exceed certain dissimilarity, or until all voxels are assigned to a region.

The success of both edge-based and region-based techniques relies on the extent of inten-
sity contrast presented in images. The problems caused by the presence of low contrast may
be overcome in two ways. First, additional user interactions can be employed, for instance by
placing more markers, or by offering methods for segmentation editing that are independent
of the segmentation algorithm itself [2]. Second, more domain knowledge or assumptions
can be incorporated. An intermediate approach is to employ stronger smoothness assump-
tions, which may effectively prevent not only jagged contours, but also leakages that are only
connected through some voxels. A typical method using explicit smoothness assumptions is
active contours, originally introduced by Kass et al. [1] (also called snakes). Here, an initial
contour (e.g., a circle or sphere near the object of interest) is moved over time (evolving),
iteratively minimizing an energy functional that typically has two main terms: an external en-
ergy that is minimal near boundaries (based on a boundary indicator function) and an internal
energy that penalizes strong curvature and ”jaggedness” of the contour. Intuitively speaking,
the external energy lets the contours snap to visible boundaries, while the internal energy
prevents leakages and implausible corners (regularization). The contour can be represented
explicitly as a polygonal structure with support points that move over time, or implicitly as
the zero level set [3] of a function that is positive inside the object and negative outside.
Explicit representations are simple to implement and efficient to update, but care has to be
taken when moving support points to prevent extremely uneven sampling distances or topo-
logical problems like self-intersections, if local movements are globally inconsistent with the
contour’s fixed topology. These problems are elegantly prevented with level set [4], but level
set functions are much difficult to update efficiently, which makes level set approaches slow
in general. Both approaches need a good initialization and may get stuck in local minimal.

While the above methods perform iterative optimization of contours, graph cuts have be-
come very popular as a tool for immediate, global optimization. The graphs are typically based
on the voxel grid, i.e. every voxel is a node and connected with its neighbors via weighted
edges that are used for edge-preserving regularization (with stronger connections between
similar voxels). Auxiliary nodes (e.g. source or sink nodes) and edges can be used to encode
prior probabilities or additional energy terms. For instance, algorithms that find a minimum
cut through such a graph by computing the maximum flow from source to sink nodes have
been extensively studied [5]. An advantage of graph cuts in magnetic resonance imaging
(MRI) context is that the formalism can be applied to higher dimensional images (e.g., 4D
time series) equally well. In medical image computing, most segmentation tasks can be bro-
ken down to binary problems with foreground and background classes, thus the limitations of
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1.1. Basic Medical Image Processing Activities

graph cuts with respect to multi-class problems can be ignored. The price for being able to
find global optima is that only certain energy functions can be expressed this way [6].

Methods with explicit and strong representations of prior knowledge used most commonly
are atlas- and shape-based segmentation techniques. Atlas-based segmentation was origi-
nated in the application of brain segmentation [7] and was then improved later in [8]. The
basic principle is to register an image with known, confirmed labeling (e.g. manually seg-
mented), called an atlas, to a similar new input image to be segmented. However, instead
of using just one labeled image, an atlas can be constructed by combining several images
by co-registration. Alternatively, several atlases may be used, selecting one based on image
similarity, or fusing the labels of several relevant atlases, e.g. by majority voting. An overview
of atlas-based segmentation methods is given in [9]. Understandably, the efficiency of these
approaches depends on the registration algorithms used to align the reference segmentations,
on the quality of the atlases (low intra- and inter-observer variance), and on the validity of
the chosen atlas for the case at hand. Different atlas-segmentation strategies were compared
in [10], showing that approaches that combine multiple registration steps yield better results
than a single registration.

An alternative approach that is designed for exploiting prior domain knowledge is shape-
based method that utilizes models of a prototypical shape (mean shape), as well as typical
modes of variation [11] in order to hypothesize plausible object boundaries in areas of missing
contrast. Active contours using statistical shape models are called active shape models (ASM),
and can be further extended into active appearance models (AAM) by treating the appearance
(voxel intensities) in the shape with the same statistical framework. Shape models may show
a stronger bias towards shapes seen in the training set, while smoothness assumptions often
imply a comparable bias towards a simple shape such as a sphere.

1.1.2. Registration
Image registration is often used as a preliminary step in other image processing applications.
It is the process of transforming different sets of data into one coordinate system where the
considered target objects are aligned spatially. Registration process fixates one image (refer-
ence image) and calculates the transformation that maps another image (moving image) onto
the reference image. Misalignment of the target objects in reference and moving images may
occur due to the image acquisition in different imaging modalities, such as computer tomogra-
phy (CT), MRI, or ultrasound imaging, etc. Images taken in different modalities have different
imaging parameters that result in different intensity levels, contrast, resolution, voxel spacing
and field of view. Fusion of the information brought by multiple modalities can improve the
accuracy of screening, diagnosis, treatment, intervention and therapy monitoring. Therefore,
there is a huge clinical need that register the target objects appeared in different modalities
of medical imaging, especially in the age of rapid development of digital imaging techniques.
Another important application scenario of registration is to remove the motion artifacts caused
by patient movements, such as physical movement or breathing. The motion artifact normally
affects the quality of time series image sequences acquired in a specific modality. For instance,
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severe motion artifacts can lead to enormous difficulties to extract functional features from
dynamic contrast enhance MRI (DCE-MRI), which serves as the most important diagnostic
image sequence of breast cancer. To remove motion artifacts, registration between different
time sequences becomes critical during the interpretation of breast DCE-MRI.

Registration techniques can be classified into rigid and non-rigid categories. Rigid regis-
tration only allows for rigid transformations, such as translation, rotation, and scaling, which
can be represented by a transform matrix. On the other hand, non-rigid registration allows for
non linear transform represented by a deformation field that has the same size with reference
image. The deformation field encodes the mapping vector from moving image to the reference
for each single voxel. Solving rigid or non-rigid registration is the process of optimizing the
parameters of transformation matrix or deformation fields, such that the difference between
reference and moving images is minimized. Commonly used difference metrics include sum
of squared differences (SSD), normalized gradient field (NGF) or mutual information (MI). To
assure a smooth transform, a variety of regularization items are taken into account in the
optimization function, such as elastic, diffusive and curvature constraints.

1.1.3. Detection and Classification

Object detection aims to only locate the position of the target instead of a complete delineation
of its region, which means it does not require a precise depiction of its covered region, but
focuses on its existence of location. On the other hand, object classification is the process of
classifying the objects into different categories. For instance, many computer-aided detection
(CADe) and diagnosis (CADx) techniques are designed to detect and classify the lesions into
benign and malignant types. Another important category of methods not mentioned yet is
the ones based on classification or clustering. The simplest example would be thresholding,
which can be seen as a classifier rating each voxel just by its scalar value. Since this does
not take spatial connectivity into account, it typically leads to implausible results, with isolated
voxels being assigned to a different class than all of their neighbors. There are many ways to
improve on this. Apart from the typical morphological post-processing for closing small holes
or removing tiny components of the segmentation mask or a pre-processing of the image
such as smoothing, it is possible to improve the classifier in two ways: First, instead of only
looking at the value of a single voxel, multiple local image features can be extracted such as
gradient magnitude, curvature measures, eigenvalues of the Hessian, or texture features, and
composed into a feature vector. Second, a state-of-the-art classifier can be trained on a set
of training samples and then used to assign class labels or probabilities (e.g. for a fuzzy seg-
mentation result) to each voxel’s feature vector. It should be stressed that the feature vector
contains information about the local neighborhood, which allows the classifier to learn how to
prevent single voxels from being assigned with wrong labels, so that post-processing becomes
unnecessary. Clustering refers to unsupervised learning and is applied if there is no training
data available. This is similar to techniques for finding automatic thresholds such as Otsu’s
method [12] or Gaussian mixture model, but again may use more complex features than just
a single voxel value. In general, well-known clustering algorithms such as k-means or FCM are
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only applied in feature space, and segmentation is derived by looking at connected compo-
nents of the resulting label regions. However, it is also possible to augment the feature vector
with the voxel position, in order to produce more spatially connected clusters. This is the basic
idea of the mean shift approach, the name of which refers to the cluster centers (means) being
iteratively moved (shifted) towards better representatives of image regions [13]. A probabilis-
tic interpretation of classification in feature space treats the segmentation labels as random
variables with a certain probability distribution, where conditional probabilities and Bayesian
theorem relate class probabilities and voxel values. This setting is the basis for Markov random
fields [14], a formalism for coupled random variables, which allows for an elegant probabilistic
integration of the spatial neighborhood in a digital image for regularization.

1.2. Shape Descriptors

Although these different image processing techniques have different intents, they are highly
related to each other in a sense that normally one replies on the performance of another
to improve the overall accuracy. For instance, a prior segmentation of the target objects in
multiple data sets can dramatically improve the registration accuracy by enforcing the regis-
tration strength only on the targets. A detection can be applied first to identify the location of
the targets, which will facilitate subsequent segmentation procedures that require a precise
initialization. Classification is the process of classifying target objects into different categories.
For instance, a major application of classification is to differentiate the lesions into benign
or malignant types. Classification techniques normally require an accurate segmentation of
the objects to extract the morphological or functional features. In the following sections,
typical shape descriptors will be introduced to reveal their advantages and effectiveness in
accomplishing particular image processing applications.

In this dissertation, we put our focus on the efficient shape descriptors that were utilized
in the applications of object segmentation, registration, detection and classification. These
techniques leverage the advantages of the shape priors of the targeting objects, which allows
for automatic recognition of a specific shape pattern. Normally, to describe a specific shape
pattern for each voxel is quite computationally expensive. Therefore, the efficiency of a shape
descriptor matters in practice. The shape descriptors introduced in this dissertation are de-
signed with an intent to keep the balance of performance and complexity. Fulfilling the limited
time requirement in daily clinical routine is one of the key factors that we concern during the
development of each solution. These shape descriptors are versatile to differentiate variant
shape patterns, such as sheet, blob, tube, line, sphere, etc. By accumulating simplified shape
descriptors, complex shapes can be depicted as well. Shape discrimination techniques can
be used in all the fundamental image processing topics introduced above. In the following
section, a review of commonly used shape descriptors, such as active shape index, Hough
transform and Hessian-based filters, etc., will be given.
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1. Introduction

1.2.1. Hessian Shape Descriptors
Filters related to the second derivative of an image are typically used for enhancing structures
with different geometrical shapes, such as tube, sheet or blob. The calculation of these filters
are normally based on the analysis of Hessian matrix. Hessian-based filters are quite versatile
to differentiate different shape structures and have been utilized in many medical image anal-
ysis applications, for instance, the pectoral muscle segmentation leveraging a sheet-like object
enhancement filter [15], the multi-scale line enhancement filter [16], and the vesselness filter
proposed by Frangi et al [17].

Given a 3D image 𝐼(𝑥, 𝑦, 𝑧), the Taylor expansion in the neighborhood of a voxel 𝑉 (𝑥 , 𝑦 , 𝑧 )
can be derived as following:

𝐼(𝑉 + 𝛿 ) ≈ 𝐼(𝑉 ) + 𝛿 Δ , + 𝛿 𝐻 , 𝛿 (1.1)

where the difference vector 𝛿 indicates a small change of position near to 𝑉 at scale 𝑠,
Δ , is the gradient vector for 𝑉 at the scale of 𝑠 and 𝐻 , represents the Hessian matrix
computed at 𝑉 with the scale of 𝑠. The elements of Hessian matrix are the second order
partial derivatives with respect to 𝑥, 𝑦, and 𝑧:

𝐻(𝑉 ) = (
𝐻 , (𝑉 ) 𝐻 , (𝑉 ) 𝐻 , (𝑉 )
𝐻 , (𝑉 ) 𝐻 , (𝑉 ) 𝐻 , (𝑉 )
𝐻 , (𝑉 ) 𝐻 , (𝑉 ) 𝐻 , (𝑉 )

) (1.2)

Based on the linear scale space theory introduced by Florack et al. [18], the second order
derivative of Gaussian kernel at scale 𝑠 convolving with image 𝐼(𝑉 ) will derive the Hessian
matrix at 𝑉 . For instance, the following equation allows for computing the second order
derivative with respect to 𝑥 at scale 𝑠.

𝐼 (𝑉 , 𝑠) = ( 𝜕𝜕𝑥 𝐺(𝑉 , 𝑠)) × 𝐼(𝑉 ) (1.3)

where 𝐺(𝑉 , 𝑠) is the Gaussian kernel at scale 𝑠. The second derivative of 𝐺 builds a probe
kernel that measures the contrast difference between inside and outside the region defined
by [−𝑠, +𝑠], as depicted in Fig. 1.1.

The eigen values and eigen vectors of 𝐻(𝑉 ) encode the local shape variations at 𝑉 . De-
noting the eigen values and eigen vectors of 𝐻(𝑉 ) as 𝜆 , 𝜆 , 𝜆 and 𝑒 , 𝑒 , 𝑒 , the eigen vectors
corresponding to the largest and smallest eigen values represent the directions that attain the
maximum and minimal second derivative variation. The third eigen vector points to the di-
rection that is orthogonal to the others, as depicted in 1.1. Since the objects with different
shapes are attributed with different variations along the eigen directions, the patterns of eigen
values are capable of describing different shape structures. Assuming the eigen values are
sorted based on their absolute values and fulfills the relation |𝜆 | ≤ |𝜆 | ≤ |𝜆 |, the patterns
associated with different shapes can be summarized in Tab. 1.1.

Taking the advantages of different eigenvalue patterns, to design a dedicated filter that is
capable of enhancing a particular 3D shape structure is straightforward. For instance, a sheet-
like object filter was introduced by Wang et al. to segment pectoral muscle boundaries [15],
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1.2. Shape Descriptors

Figure 1.1: Left: the second derivative of Gaussian kernel with . Right: the principle directions corresponding
to each eigenvalue of [17].

Table 1.1: Eigen value patterns corresponding to different shape structures in 3D (H=high, L=low, N=noisy, usually
small and can be positive or negative, +/- indicate the sign of the eigenvalue. Bright and dark indicate that the
structures appear as brighter or darker than surroundings.) [17].

𝜆 𝜆 𝜆 shape structures
N N N noisy, no preferred direction
L L H- sheet-like structure (bright)
L L H+ sheet-like structure (dark)
L H- H- tube-like structure (bright)
L H+ H+ tube-like structure (dark)
H- H- H- blob-like structure (bright)
H+ H+ H+ blob-like structure (dark)

7
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a so-called vesselness filter was proposed in [17] to enhance vascular structures, a tube-like
filter was used to detect nipples in breast ultrasound images [19].

1.2.2. Shape Index
Volumetric shape index and curvedness introduced by Koenderink have been widely used in
describing and differentiating topological shapes of objects [20]. Particularly in the applications
of CADe and CADx, for instance, the characterization and detection of polyps in colon CT
images [21], the detection of small-size pulmonary nodules in helical CT images [22], or
detection of specific landmarks such as fiducial markers scanned in medical images [23].

The computation of volumetric shape index and curvedness of an image point (voxel) is
based on its curvatures associated with a local iso-intensity surface that passes the point.
Classical surface curvature measures, such as the Gaussian and the mean curvature at a
voxel of a surface, are not very indicative of depicting local shapes, as they combine the
two principal curvatures as a single measurement. It would be more informative to depict
different shapes using both principal curvatures. However, a single shape indicator rather than
a pair of numbers is more favored and practical to use. Moreover, a reliable shape indicator
should preferably not depend on the size, i.e. the amount of curvature. Considering these
preferences and constraints, the volumetric shape index and curvedness were designed to
fulfill these requirements [20]. The curvedness is a positive number that specifies the amount
of curvature, whereas the shape index is a number in the range of [0, 1] and is scale invariant.
For a given voxel 𝑣, denoting the two principal curvatures as the 𝜅 and 𝜅 , the shape index
𝑆 and curvedness 𝐶 of 𝑣 can be computed by following equations:

𝑆(𝑣) = 1
2 −

1
𝜋𝑎𝑟𝑐𝑡𝑎𝑛

𝜅 (𝑣) + 𝜅 (𝑣)
𝜅 (𝑣) − 𝜅 (𝑣) (1.4)

𝐶(𝑣) = √𝜅 (𝑣) + 𝜅 (𝑣)2 (1.5)

Different shape index values represent different local shape structures: cup, rut, saddle,
ridge or cap. In Fig. 1.2, the shapes with different shape indices are mapped to a unit
circle spanned by unit curvatures 𝜅 and 𝜅 , where an one to one mapping between distinct
shapes and shape index values is illustrated, such as cup (𝑆 = 0.0), rut (𝑆 = 0.25), saddle
(𝑆 = 0.5), ridge (𝑆 = 0.75) and cap (𝑆 = 1.0). Negative shape index represents the same
shape indicated by its corresponding positive value, but with opposite orientation. Basically,
one can use a value in range of [0, 1] to indicate all distinct shapes. Any value between [0, 1]
corresponds to a unique shape. One of the key advantages of shape index is that continuous
variation of index value reflects the smooth transition from one shape to another. For instance,
the dome shape with 𝑆 = 0.875 is the transient shape from ridge (𝑆 = 0.75) to cap (𝑆 = 1.0).
Moreover, for medical image processing, the shape index can be computed for any voxels of
the image, without explicitly extracting the iso-surface passing the voxels.

The complementary curvedness indicates the amount of curvature for each voxel, ranging
from [0, +∞). A unique shape index value correlates to a unique shape, whereas the corre-
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1.2. Shape Descriptors

Figure 1.2: Illustration of distinct shapes and corresponding shape index values [21].

sponding curvedness expresses the extent how this specific shape is curved. Curvedness 0 is
an extreme case implying no curvature presented, which means the shape is decayed into a
plane. However, by increasing the curvedness value, the shapes with the same shape index
will keep unchanged, but the extent of curvature will be increased, as illustrated in Fig. 1.3.

1.2.3. 3D Zernike Descriptors

Moment-based shape descriptors have been exploited broadly for image retrieval [25], pattern
recognition [26], object recognition [27], and shape matching [28]. A compact numerical
expression of moment-based shape features enable rapid comparisons. Moments such as
2D/3D Zernike moments are based on the theory of orthogonal polynomials [29], which allow
descriptors to be constructed to an arbitrary order with some redundancy. It is also possible
to reconstruct the object from its moments with quality determined by the number of terms
used [26, 30].

The Zernike polynomials were introduced by Frits Zernike in 1934 [31]. Historically, Zernike
introduced a set of orthogonal-normalized (Orthonormal) radial polynomials primarily dedi-
cated to optical applications [32]. Later, the Zernike functions were used to to define Zernike
moments of 2D images [29] (see Fig. 1.4 for 2D Zernike terms). More recent works used
3D Zernike moments to derive robust invariant descriptors of 3D images and/or objects and
perform image/object reconstruction from a finite set of 3D Zernike moments [32].

The Zernike functions 𝑍 (𝑟), are base functions that are constructed to form an orthonor-
mal set over the unit ball (i.e. 0 ⩽ 𝑟 ⩽ 1, 𝑟 = 𝑥 + 𝑦 + 𝑧 ). They are based on the familiar
spherical harmonics, 𝑌 (𝜃, 𝜙) which 𝜃 and 𝜙 are the standard angular spherical coordinates.
The spherical harmonics can be described as [33]:

9
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Figure 1.3: Illustrate the change of shapes when changing shape index and the change of curvature extent when
changing curvedness values [24].

Figure 1.4: Graphical illustration of top 20 Zernike terms as a pyramid. Zernike terms ( ) expansion pyramid is a
function of term’s radial degree (or order) and azimuthal frequency . It is the basis for classifying aberrations
as lower ( ) and higher-order ( ) in ophthalmology. Associated Zernike terms and names of aberrations;
the so called (commonly referred as mode), the polynomial ordering number, is dependent on
and , determining the position of the term in the Zernike terms’ expansion. (Figure taken from www.telescope-
optics.net)
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1.2. Shape Descriptors

𝑌 (𝜃, 𝜙) = 𝑁 𝑒 𝑃 (𝑐𝑜𝑠 𝜃) = 𝑁 ( 𝑥 + 𝑖𝑦
√𝑥 + 𝑦

) 𝑃 (𝑧𝑟) (1.6)

The normalization factor 𝑁 is given by:

𝑁 = √2𝑙 + 14𝜋
(𝑙 − 𝑚)!
(𝑙 + 𝑚)! (1.7)

and 𝑃 (𝑐𝑜𝑠 𝜃) is the associated Legendre polynomial.
The 3D Zernike Descriptors are series expansion of an input 3D function, which allow

rotation invariant and compact representation of a 3D object that is considered as the 3D
function. The mathematical foundation of the 3D Zernike Descriptors was laid by Canterakis
[34]. Later, Novotni and Klein [35] applied them to 3D object retrieval. Below is a brief math-
ematical derivation of them. For detailed derivations and discussions, refer to the literatures
[34, 35].

The 3D Zernike functions are defined as follows [33]:

𝑍 (𝑟) = ∑𝑞 𝑟 𝑒 (𝑟) (1.8)

with the following definitions for parameters:

𝑒 (𝑟) = 𝑟 𝑌 (𝜃, 𝜙), 𝑘 = (𝑛 − 1)/2,

𝑞 = ( ) √2𝑙 + 4𝑘 + 3( )( )( ( ) )/( )
(1.9)

The coefficients 𝑞 are chosen to ensure orthonormality over the unit ball; they can also
be written in terms of 𝑛 as follows:

𝑞 = (−1) √2𝑛 + 3
Γ [ + 𝑣]

𝑣! Γ [1 + − 𝑣] Γ [ + 𝑙 + 𝑣] (1.10)

where Γ[𝑥] is the complete Gamma function. The Zernike functions, therefore, are a 3D
generalization of the spherical harmonics (see Fig. 1.5), which are only orthonormal on the
surface of the unit ball [33].

Two instances of Zernike functions for (𝑛𝑙) = (53) and (𝑛𝑙) = (82) can be seen in Fig. 1.6.
It shows the iso-amplitude surface for the real part of the Zernike function for each individual
function, at an amplitude level equal to 0.1.
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1. Introduction

Figure 1.5: The 3D spherical harmonic basis. Visual representations of some of the first real spherical harmonics.
Green color represents positive function values and red color represents where it is negative. The distance
of the surface from the origin indicates the value of ( , ) in angular direction ( , ). (Figure taken from
www.quora.com)
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Figure 1.6: Example visualizations of selected 3D Zernike functions and . The gray halo around each
function represents the embedding sphere. (Figure taken from [33])
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Note that, as Zernike functions are defined over the unit ball, to compute the moments
using them, the object has to be scaled down to be fitted inside the unit ball before the
computation [33].

1.2.4. Sphere Packing Shape Descriptors
Sphere Packing
Sphere packing is filling an object with a set of non-overlapping spheres. It has diverse appli-
cations in various fields of scientific and engineering, including automated surgical treatment
planning, investigation of processes such as sedimentation, compaction and sintering, powder
metallurgy for 3D laser cutting, cutting different natural crystals, and so forth. Polydisperse
sphere packing is a new and promising data representation for several fundamental problems
in computer graphics and virtual reality such as collision detection and deformable object sim-
ulation. Polydisperse means that the radii of the spheres can be an arbitrary real number
[36].

Here, it is tried to broaden the usages of sphere packing algorithm and utilize it to classify
an object (which here is the breast lesion), using its shape features. In this work, an extended
version of sphere packing algorithm, called Protosphere1, which is a GPU-assisted prototype
guided sphere packing algorithm. The Protosphere is inspired by machine-learning techniques
and uses a prototype-based greedy choice to extend the idea of Apollonian sphere packing
[36]. For an arbitrary given object, it starts with the largest possible sphere that fits in the
object. It iteratively inserts new spheres, under the constraints that first, they must not
intersect the already existing ones and second, they be completely contained inside the object
[37].

The Protosphere algorithm was introduced in 2010 by Weller and Zachmann [37] and was
extended by Teuber et al [36]. It is able to efficiently compute a space filling sphere packing
for arbitrary container objects and object representations (polygonal, NURBS, CSG, etc.) under
the only precondition that it must be possible to compute the distance to the object’s surface
from any point. This packing is achieved by successively embedding the largest possible
sphere into the object [36].

(a) (b) (c) (d)

Figure 1.7: Sphere packing prototype convergence visualization. (a) placing the prototype randomly inside the
object; (b) calculating the closest point on the surface and the distance ; (c) moving away from the closest
point; (d) repeating this until the prototype converges. (Figure taken from [36])

1Protosphere: A GPU-Assisted Prototype Guided Sphere Packing Algorithm for Arbitrary Objects
http://cgvr.cs.uni-bremen.de/research/protosphere [Accessed on 6 September 2015]
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Consider the largest sphere 𝑠 inside 𝑂, the surface of a closed and simple object in 3D.
Obviously, 𝑠 touches at least four points of 𝑂, and there are no other points of 𝑂 inside 𝑠.
This implies that the center of 𝑠 is a Voronoi Node (VN) of 𝑂. Consequently, the Apollonian
filling can be formulated as an iterative computation of the VNs of the objects hull 𝑂 plus the
set of all spheres existing so far. To compute the Voronoi Diagram (VD) they approximate the
VNs by placing a single point, the prototype, inside the object and let it move away from the
object’s surface in a few iterations. By choosing a clever movement, the prototype converges
automatically towards a VN (see Algorithm 1, which is taken from [36]). The last step of the
algorithm guarantees that, after each single step, 𝑝 is still inside the object, because the entire
sphere around 𝑝 with radius ‖𝑝 − 𝑞 ‖ is inside the object.

Moreover, moving 𝑝 away from the border, into the direction (𝑝 − 𝑞 ), leads potentially
to bigger spheres in the next iteration. Usually, 𝜖(𝑡) denotes a cooling function that allows
large movements in early iterations and only small changes in the later steps. This process
is parallelized and uses a set of prototypes that are allowed to move independently instead
of inserting just a single prototype, which might end up in a local optimum rather than of
converging toward the global optimum.

Algorithm 1 Sphere packing prototype converge.
1: procedure convergePrototype (prototype 𝑝, object 𝑂 )
2: place 𝑝 randomly inside 𝑂
3: while 𝑝 has not converged do
4: 𝑞 = arg min {‖𝑝 − 𝑞‖ ∶ 𝑞 ∈ surface of 𝑂 }
5: choose 𝜖(𝑡) ∈ [0, 1]
6: 𝑝 = 𝑝 + 𝜖(𝑡) ⋅ (𝑝 − 𝑞 )
7: end while
8: end procedure

In order to apply sphere packing to the binary lesion segmentation (see Fig. 1.8(a)), at
first, it is converted to a mesh geometric object (see Fig. 1.8(b)), then I let Protosphere pack
it with arbitrary number of spheres (here, 4000 is chosen as the maximum number of spheres
inside any lesion object) (see Fig. 1.8(c)). In the following section, a couple of advantageous
shape features are elicited from the internal spheres to create a samples dataset for classifier.

Volume-Radius Histogram
The histogram of volume-radius feature provides an estimate for the proportion of the volume
covered by spheres with a specific radius range. Some experimental observations are done
on the alignment and structure of internal packed lesions:

• Benign lesions in comparison to malignant ones have a more regular shape mostly with
oval or round form. According to the principal essence of the sphere packing algorithm,
which initially tries to occupy as much proportion as it can with the biggest sphere
possible, it is found out that the majority of their internal space is filled with a few
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Figure 1.8: Sphere packing of the lesion 3D volume. Top shows an example of benign lesion. Bottom shows an
example of malignant lesion. (a) is the binary volumetric segmented of the lesion; (b) is converted lesion volume
into a 3D mesh geometry; (c) is the lesion packed with spheres (the spheres color is size based and is only
for better differentiation in visualization).

number of very big spheres and the rest is occupied by smaller ones with considerable
differences in size.

• On the contrary, in malignant lesions, there is no such regularity: most of their volume
is occupied with middle size spheres and the rest are either big ones or small ones which
are scattered along the shape.

Therefore, a histogram can be created such that on the x-axis lies radius of the spheres and
the y-axis is the summation of spheres’ volumes with radius between two bins. An arbitrary
number of bins in x-axis can be considered to form the radius range of spheres. On the y-
axis, the values represent the amount of lesion’s volume occupied by spheres with a particular
radius range.

Figure 1.9 shows two examples of the mentioned histogram for benign lesions (on top) and
two examples for malignant lesions (on bottom). By collecting the corresponding value to each
radius range on x-axis, a feature vector of an arbitrary number of features can be extracted
from this method. This is one of the feature vectors needed to generate the samples dataset
for the classifier.

1.2.5. Other Shape Descriptors
In computer vision, pattern recognition and image retrieval, many other shape descriptors
have been developed to characterize general or specific shapes mainly in 2D. Some of these
descriptors can be extended to describe 3D shapes, but with additional computational efforts.
Belongie et al. introduced a generic shape descriptor called shape context [38]. For each point
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Figure 1.9: The Volume-Radius histogram from the objects packed with spheres of two examples of benign
(on top), and two examples of malignant lesions (on bottom). The difference between histogram shapes can be
seen here, according to the different distribution pattern of sphere sizes. In benign lesions most of the object is
filled with spheres having a big radius; in malignant lesions middle size spheres occupy most of the internal space.
The color of spheres is based on size and is only for better differentiation in visualization.
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on a 2D shape boundary, the shape context captures the distribution of relative positions
to all other neighbors, which are encoded in a 2D log-polar histogram with one dimension
representing the polar angle distribution, and the other dimension indicating the polar radius
distribution. The histogram is computed for each single point sampled on object boundary
(see Fig. 1.10). One of the key advantages of shape context is the invariance to standard
deformations, such as translation, rotation and scaling, due to the usage of relative position
correlation. Moreover, the similarity of two shapes can be measured by computing the distance
between their corresponding shape context distributions (see Fig. 1.10(h)). In case the
number of sample points is not equal, dummy nodes with constant matching cost will be
added to each point set, by which the robustness of the algorithm can be even improved.

Figure 1.10: Illustration of shape context. (a, b) two original ”A” letter shapes. (c, d) sampled boundary points.
(e-g) log-polar histograms encoding the shape distribution on the points indicated by circle, rhombus and triangle.
(h) correspondences found between points on two shapes.

The definition of shape context allows for an easy extension from 2D to 3D shape character-
ization. However, as the number of voxel increases, the computational expense is dramatically
elevated, due to the fact that the dimensionality of histogram will be larger. Therefore, the
shape context descriptor is mainly adopted in the applications of computer vision, pattern
recognition, and image retrieval that deal with 2D images. The same limitation also applies
to other commonly used 2D shape descriptors ranging from moments and Fourier descriptors
[22] to Hausdorff distance and the medical axis transform [39]. Considering the substan-
tial amount of data coming with 3D medical images with much higher spatial and temporal
resolutions, these technique might perform with lower efficiency.

Another category of shape descriptors is constructed on basis of Hough transforms, which
are commonly used to describe the regular shapes that can be expressed mathematically by
analytic functions, such as line, circle, and sphere [40]. To extend its applicability, Chiu et
al. developed a fast and generalized Hough transform algorithm that can depict any arbitrary
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shapes [41].

1.3. Outline of the Dissertation
To demonstrate the applicability and efficacy of the shape descriptors, several practical medical
image processing tasks are introduced with comprehensive algorithm description and rigorous
evaluations. The adoption of a specific shape descriptor is based on the characteristic of each
task, in the purpose of making the proposed solution applicable in real clinical routine, which
means that both the performance accuracy and efficiency have to be guaranteed.

This dissertation is organized as following: chapter 2 presents the first task aiming to
automatically segment the femur heads in 2D fluoroscopy images using Gabor-based Hough
transform. The precise delineation of the femoral heads in a number of 2D fluoroscopic images
can be used to reconstruct 3D position of the relevant anatomy that provide valuable guidance
information for surgeons. The implemented method is used in a surgical guidance software
to improve the positioning accuracy of the instruments in orthopedic surgeries operating on
femur bones.

The second task is to develop a fully automated algorithm to segment breasts in mag-
netic resonance imaging, which is introduced in chapter 3. In this task, a solution leveraging
Hessian-based shape descriptor is designed. Since MRI has become more prevalent in breast
cancer screening and diagnosis due to its high sensitivity, many computer-aided detection
and diagnosis works were developed, where a breast segmentation is critical for the success
of these systems. One of the successful applications taking advantages of automatic breast
segmentation is the follow-up registration of breast MR images, which is also presented in this
chapter.

The application of shape descriptors in object classification is given in chapter 4. In this
task, breast lesions found in MR images are classified into benign and malignant types with
the help of machine learning techniques. Prominent shape descriptors such as sphere packing
related features show their great penitential in distinguishing tumor malignancy.

In the field of object detection, chapter 5 illustrates a task attempting to automatically
detect nipple position in automated 3D breast ultrasound (ABUS). The nipple is recognized
as important landmarks in breast images. Its position can be used in a variety of computer
assisted applications, such as cross-modality registration from ABUS to mammography and
MRI. The detection algorithm developed will be further enhanced by testing with a substantial
amount of datasets. The detection algorithm utilizes again a Hessian-based shape descriptor
that can capture the most prominent characteristic of the shadowing effect adhere to the
nipple.

In chapter 6, a comprehensive framework for liver vascular segmentation in multi-phase
CT images is introduced, which will be integrated into a liver surgery planning software. The
work is sponsored by an industrial project collaborated with Siemens medical solution sector,
Erlangen. The aim of this tool is to provide a virtual resection planning environment that
optimizes the surgery outcomes. The segmentation of vessels (hepatic vein, portal vein and
hepatic arteries) in the liver is a critical procedure of this tool, which directly influences the
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decision-making of resection planes. A semi-automated segmentation framework is designed
for this task to fulfill the accuracy and efficiency defined in this project.

Basically, the outline of each specific task consists of clinical background, related state-of-
the-art techniques, description of proposed solution and quantitative performance evaluation.
At the end, major conclusions, comments and further improvement ideas are summarized in
chapter 7.
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Femur Head Segmentation Using
Gabor-based Hough Transform
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2. Femur Head Segmentation Using Gabor-based Hough Transform

2.1. Introduction
To fixate a fractured femur bone, nails and screws must be implanted in orthopedic surgery
which is usually performed under fluoroscopic intra-operative X-ray tracking, where the two
dimensional projection images have to be interpreted by the surgeons to get an estimation
of the three dimensional anatomy (see Fig. 2.1). In fluoroscopic tracking for fractured femur
bone fixation, a precise identification of the femoral head provides valuable guidance for po-
sitioning the implant instruments such as nails and screws. The precise localizations of the
femoral heads in a number of 2D fluoroscopic images can be used to reconstruct 3D position
of the relevant anatomy that provide valuable guidance for improving positioning accuracy.
The fluoroscopic images are generally acquired with a C-arm device in two standard orien-
tations (Fig. 2.11), i.e., Anterior-Posterior (AP) and Medio-Lateral (ML), and typically exhibit
low signal-noise ratio, non-uniform intensities and textures, occlusions, as well as weak and
spurious edges. The task of extracting the femoral contour automatically is therefore fairly
difficult. Noise, occlusions and weak edges challenge the task of automatically segmenting
the femoral head. In this work, a fast and fully automated method to precisely delineate
the femoral head in fluoroscopic X-ray images is presented. The proposed method comprises
two stages. First, a candidate circle detection stage using a set of curved Gabor filters and
a Gabor-based Hough transform is applied to estimate a few candidate circles approximating
the femoral head. Second, a fine circle determination stage extracts the target circle from the
candidates by analyzing the anatomical features of the femoral head and its spatial relation
to the acetabulum. The validity and robustness of the method were tested on a set of 1184
fluoroscopic images from different vendors.

2.2. Related Works
Most of the analysis of femur heads is carried out in the context of other medical imaging
modalities, such as CT [42–44] and MRI [45]. The task of segmenting femur heads in fluo-
roscopic images is quite specialized and more challenging, because the regions delineated by
femur head boundaries present high non-uniformity in both intensities and textures. However,
through an intensive literature review, several works focusing on the analysis of femur bones
have been found. Among these techniques, model-based approaches are commonly used to
extract the contours of femur bones in X-ray images [46–50].

Generally, these automatic or semi-automatic [49] methods construct either 2D [46, 47]
or 3D [48, 50] generic models, initialize or project the models in the 2D X-ray images, analyze
and extract the prominent features of the bone structures, and register the projected model
onto the X-ray images. The geometrical models used in these works have to be built in a
training stage, which requires a large amount of training samples. Typically, a post-processing
refinement step using active contour [46, 50] or level set [47] algorithms is applied. These
methods were only tested on AP views and will encounter difficulties on ML view images
because the initialization, projection, and registration steps of model-based methods are highly
subject to the viewing direction. Moreover, the involvement of non-rigid registration [48, 50]
makes the methods computationally expensive, which makes them hardly applicable in real
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Figure 2.1: A typical fluoroscopic X-ray image acquired during hip-joint surgery by C-Arm device.

time surgical routines.

To fulfill the performance and time constraints, in this work, a fast and automated method
for precisely extracting the circular contours of femoral heads in both AP and ML views is
developed. The method takes advantages of an efficient shape descriptor, Gabor-based Hough
transform. The investigation of the sphericity of the femoral head ensures the reliability and
feasibility to model the femoral head contour as a circular object in the 2D projection image
[51]. The proposed method comprises two stages. First, a set of curved Gabor filters and
a Gabor-based Hough transform are applied to estimate a few candidate circles. Second,
the target circle from the candidates is extracted by analyzing the anatomical features of
the femoral head and its spatial relation to the acetabulum. The joint consideration of the
acetabular boundaries makes the method more robust.

2.3. Methods

The proposed segmentation procedure can be subdivided into two main stages: candidate
circle detection and fine circle determination. A schematic overview of the detection work-
flow is depicted in Fig. 2.2.
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Figure 2.2: The overall work-flow of the proposed method.

2.3.1. Candidate Circle Detection
In the candidate circle detection stage, a region of interest (ROI) indicating all potential femoral
head projections on the X-ray image is estimated at first. Then, a set of curved Gabor filters
is applied to the ROI to extract the magnitudes and the directions of edge structures. The
extracted and classified edges are utilized to build a 3D Hough space with the occurrence
probabilities of circular objects within a predefined radius range. In the Hough space, a
number of candidate circles with roughly estimated center positions and radii can be found.
Details follow below.

Extraction of the ROI
The ROI is a rectangular box tightly bounding all possible projections of the femoral head in
the X-ray image. During the intraoperative navigation, the 3D position of the nail as well as
the trajectory of the proposed or implanted screw are known. Figure 2.3 illustrates the known
geometric relations of implanted nail, screw and potential femoral head search space. The
possible projected area of the femoral head can be found based on several measurements,
i.e., the femoral head radius, the distance from the femoral head center to the screw hole.
After investigating 636 CT datasets acquired from different sites worldwide in our training
database, the following measures were extracted:

• Femoral head radius range: 𝑟 ∈ [17.63, 29.36]mm
with mean=23.49mm and standard deviation=1.95mm

• Distance from head center to screw hole:
𝑑 ∈ [43.67, 76.31]mm

From these observations, a number of extremal femoral head projected positions are com-
puted for the AP and ML views, and the bounding box delimiting these projections serves as
the ROI, see Fig. 2.4.

Moreover, to keep the parameters and other measurements applied in the succeeding de-
tection algorithms invariant to the resolution of ROI, the ROI is transformed into a standard
image where the mean femoral head has always a radius specified with a fixed number of
pixels, see Fig. 2.5 and 2.7. In the standard image, the possible radius range of the projected
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Figure 2.3: The geometric relations of implant nail, screw, femoral head and world coordinate, by which the
possible projections of the femoral head can be estimated.

femoral heads in the transformed ROI can be derived, which is 𝑟 ∈ [57, 103] pixels. Conse-
quently, a reverse transformation is required to place the detected circle in the transformed
ROI back to the original image.

Curved Gabor Filtering
To extract the edges of the femoral head, we introduce a bending kernel that deforms the
standard Gabor filter into a curved shape with a defined radius. The curved kernel allows the
Gabor filters to enhance curved edge structures and inhibit other forms. The extended Gabor
kernel is defined as follows:

( , ; , , , , , ) ( ) ( ) (2.1)

where , (2.2)

and , { ⋅ ,
⋅ ,

with √( ) , ( ) (2.3)

Equations 2.2 and 2.3 are designed to rotate and bend the original Gabor kernel. In this
work, the size of the curved Gabor kernel is 27 × 27 pixels, and the parameters and their
settings are as follows:

• 𝜆 represents the wavelength of the cosine factor, and is set to 𝜆 = 5.0 pixels.
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Figure 2.4: The estimated ROI that includes all possible projections in AP (left) and ML(right) views.

Figure 2.5: The transformation of ROI into the standard image.

• 𝜃 represents the orientation of the kernel. In total, 72 orientations (5.0 degree increment
within 0∘ − 360∘) are chosen, generating a filter set.

• 𝜓 is the phase offset which is set to 𝜓 = 𝜋/2.

• 𝜎 is the standard deviation of the Gaussian envelope which should be adapted to the
wavelength. Hence, 𝜎 = 𝜆/6 is chosen.

• 𝛾 is the spatial aspect ratio, which specifies the ellipticity of the Gabor function and is
set to 𝛾 = 0.18.

• 𝑟 is set to the average radius of the femoral head : 80 pixels, corresponding to about
23.5mm.

Three examples of extended Gabor filter templates in different orientations are visualized
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in Fig. 2.6. The highest response of the orientated Gabor filter set and corresponding orien-
tation are recorded in separate amplitude and orientation images, which will be used in the
succeeding steps of the algorithm.

Figure 2.6: Extended Gabor filters with different orientations: (a) , (b) / , (c) / .

Binary Edge Detection
Based on the outputs of the Gabor filters, i.e., the amplitude and orientation images, a Gabor-
based edge detector is developed to yield a binary edge distribution. To this end, we replace
the gradient and direction measurements used in the original Canny edge detector with the
amplitude and orientation responses of the Gabor filters. This concept enables the edge
detector to react accurately on all visible boundaries of the femoral head, see Fig.2.7.

Figure 2.7: Thin edge detection: (a) Transformed ROI. (b) Amplitude response of Gabor filters. (c) The detected
thin edges.

Gabor-based Circular Hough Transformation
The Hough transformation is an efficient and robust algorithm for detection of circular shape
objects [40]. In 3D Hough space, each coordinate {𝑐 , 𝑐 , 𝑟} represents a circle with center
{𝑐 , 𝑐 } and radius 𝑟. The Gabor-based Circular Hough transformation implemented in this
work extends the original Hough transformation by integrating the output response of the
Gabor filters. Only the edge pixels in Fig. 2.7(c) contribute to build the 3D Hough parameters
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space. The calculation of the Hough space has two steps: the radius discretization and the
center accumulation. As mentioned earlier, the possible radius range in the transformed ROI
is 𝑟 ∈ [57, 103] pixels. A step size of 2 pixels is chosen for the discretization. For each radius,
each detected edge pixel emanates along its gradient direction a diffused anisotropic spot at
a distance determined by the radius. The anisotropy is needed to take the uncertainty of the
estimated gradient direction into account. All the diffused spots generated by the edge pixels
are accumulated to find the center positions of circles with the current radius. The iteration
through all the radii within the range assembles a 3D Hough space depicted in Fig. 2.8. Finally,
a number of circle candidates are obtained by exploring the highest local maxima in the 3D
Hough space (see Fig. 2.9).

Figure 2.8: The computation of the 3D Hough space indicating center and radius and the accumulation of diffused
anisotropic spots emanated from the edge pixels to locate centers of circles.

Figure 2.9: The accumulated circle probability map computed with respect to different radius .
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2.3.2. Fine Circle Determination
The fine circle determination stage aims to fine tune the candidate circles and determine the
true femoral head. In many cases, the candidate circle with the highest accumulation value
is not necessarily the femoral head but other neighboring circular anatomical structures, e.g.,
the acetabular boundaries. Moreover, the true candidate circle delineating the femoral head
offers only an approximate center position and radius that needs to be fine adjusted.

Head-acetabulum-pair Detection
In this step, a head-acetabulum-pair that comprises the femoral head and the acetabular
boundary circles is detected for each candidate circle. Based on the anatomical relation of
the femoral head and the acetabulum, an acetabular circle in the proximity of the femoral
head circle can be found, see Fig. 2.11. Hence, in the area where the true candidate circle
is located, a head-acetabulum-pair can be detected. The joint consideration of the acetab-
ulum provides more reliable characteristics, e.g., the gradient amplitudes, orientations, and
the spatial relation of both femoral head and acetabular circles, that help to select the true
candidate circle. Moreover, it can prevent the acetabular circle to be erroneously recognized
as part of the femoral head circle.

The edge pixels contributing the accumulation to the center of each candidate circle in the
Hough space are the feature points. The purpose of tracing the feature points is to find the
head-acetabulum-pair by a RANSAC circle fitting algorithm [52]. For each candidate circle, the
femoral head feature points are traced in a search area that has a ring and arc shape, see Fig.
2.10(a). The radius range of the ring search area is defined by multiplying two factors, i.e.,
80% and 120%, to the candidate radius. An optimally fitted femoral head circle is achieved
by adopting the RANSAC algorithm to the sought feature points. The RANSAC algorithm
randomly selects three valid points to compose a circle. The supporters to the current circle
are the feature points that it passes through within a given margin. The circle with the most
supporters is revised with a least square fitting procedure to output the fitted femoral head
circle. The acetabulum feature points can be acquired based on the fitted femoral head circle
in the same manner, see Fig. 2.10(b). Subsequently, the RANSAC algorithm is employed
again to the acetabulum feature points so that an optimally fitted acetabulum circle can be
generated. Finally, the two fitted circles formulate a head-acetabulum-pair, which will be
evaluated in the target circle selection step.

Target Circle Selection
The previous step results in several head-acetabulum-pairs. The additional consideration of
the acetabular circle improves the robustness of the method because it prevents the interfer-
ence between the femoral head and the neighboring acetabulum. The qualities of both circles
are scored by investigating their prominent characteristics: the number of supporters of each
circle in RANSAC, the consistency of the gradient directions of the image pixels at the border
with the normals on the boundary circle, and the gradient amplitudes. The final score of each
candidate pair is a weighted sum of the femoral head and acetabular qualities. The candidate
with the highest score is picked as the detection result.
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Figure 2.10: Trace the feature points and detect the fitted circle for (a) femoral head boundary and (b) acetabular
boundary.

2.4. Results and Quantitative Evaluations
To quantitatively assess the performance of the proposed method, a test dataset comprising
1184 fluoroscopic images with 719 AP views and 465 ML views was used for evaluation.
Test data were not used for the algorithm development. The size of the test images were
640 × 480 pixels. The referenced ground truth was obtained by manually annotating the
center position and the radius of the femoral head. Moreover, the test images were ranked
into normal, moderate and difficult categories, see Fig. 2.12, based on the image qualities,
e.g., the level of noise, the percentage of the visible femoral head edges, the occlusion caused
by the implants. The ground truth circles were established in a four-eye-principle as manual
femoral heads were observed by a second person.

Figure 2.11: The demonstration of the extracted ROI (red box), the detected femoral head circle (red dots) and
the acetabular circle (green dots) for the test image in category (a) normal (AP view), (b) moderate (ML view),
and (c) difficult (ML view).
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The method was implemented in C++ using OpenMP based parallelization for the compu-
tational expensive parts [53]. The average computational time per case was 2.04 seconds in a
Intel Core2 Duo 2.2GHz CPU. Compared with the ground truth circle, the overall error distance
was the summation of the center deviation and radius difference. A detected circle with an
error distance lower than 2 pixels was considered to be accurate. Table 2.1 summarizes the
number of images in each category and the detection rates. From the statistical results, the
detection rate for all test images was 80%, and for normal and moderate categories it was
91.4%. Note that the high detection rate of 98.5% was achieved in the normal category. The
proposed method performed with a low detection rate in difficult category, because the diffi-
cult category enclosed the extremely challenging cases for which even a human observer may
have difficulties to determine the femoral head precisely. In this category, only a little parts of
the femoral heads are visible with faint edges and enormous noises due to low exposure. In
addition, the existing superimposed structures, e.g., the implants, the pelvis, and the surgical
tools, may occlude the femoral head in the projected images. More representative examples
were shown in Fig. 2.13 and 2.11 to demonstrate the performance of the method.

Category Count Detected %
Difficult: 206 53 25.7
Moderate: 308 234 76.0
Normal: 670 660 98.5
All: 1184 947 80.0

Table 2.1: The evaluation results.

2.5. Discussion
This contribution presents a fast and fully automatic method for extracting femoral head con-
tours in fluoroscopic X-ray images. The proposed method comprises two stages: First, a can-
didate circle detection stage estimates a few candidate circles approximating the femoral head
using a set of curved Gabor filters and a Gabor-based Hough transform. Second, a fine circle
determination stage extracts the target circle from the candidates by analyzing the anatomical
features of the femoral head and its spatial relation to the acetabulum. The joint consideration
of the acetabular circle enables the method to cope with some hard cases where the femoral
head is very close to acetabulum, thus, improves the detection performance significantly. The
quantitative experiments showed that the proposed method attained excellent and satisfac-
tory performance for the images with normal and moderate qualities, respectively. Though
the extremely poor quality of difficult category degraded the performance of the method, the
overall detection performance has been proven to be reliable for a large number of clinical
data sets, and the proposed method is to be integrated in a commercial product.

During the development of this method, it has been noticed that most of the related works
have focused on the extraction of femur heads imaged in other modalities, such as CT [42–
44] and MRI [45]. Therefore, it is quite hard for us to compare the performance against
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Figure 2.12: Example input images in category normal (first row), moderate (second row), and difficult (third
row).

other techniques. Shape-model based approaches were commonly used in dealing with the
same challenges in CT images [46, 48]. The construction of shape models for pathological
patients is complicated and error-prone, because larger shape variation of the femur bone can
be observed due to pathological change. Additionally, considering the fluoroscopic images are
acquired intra-operatively, the computational efficiency is prioritized higher than the accuracy.
Hence, the speed of the proposed technique fits in this task better than other techniques.
Certainly, it has to be mentioned that the method might fail when the femur head presents
with extremely lower contrast, or there are substantial other irrelevant circular structures in
the images.
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Figure 2.13: More results examples selected from normal (top row), moderate (middle row) and difficult (bottom
row) groups.
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3.1. Breast Segmentation with Sheet-like Shape Descriptor
3.1.1. Introduction
Breast cancer is the most commonly diagnosed cancer disease among women and a major
cause of death. X-ray mammography is conventionally used for screening and diagnosis of
breast cancer. However, due to its well-known limitations in the cases of imaging dense
or postoperative breasts, Dynamic Contrast Enhanced breast MRI (DCE-MRI or breast MRI
more generally) is regarded as an invaluable complementary tool [54]. In recent years, MRI
is increasingly used as an important tool in the detection, diagnosis, staging and therapy
monitoring of breast cancer [55, 56]. The key benefits of breast MRI are its high sensitivity
in detecting breast carcinoma and the ability of depicting cancers that are occult on mam-
mography, ultrasound, and clinical breast examinations [57]. Thus, it is recommended as an
additional screening modality of breast cancer to mammography in selected population groups
with elevated risk, especially the group of high-risk patients with BRCA 1 & 2 gene mutations
or dense breasts [58].

To standardize the interpretation procedure of reading breast MRI, the Breast Imaging
Reporting and Data System (Bi-RADS) was developed by the American College of Radiologists
as a standard to rate the level of suspicion of breast MR findings [59]. In this reporting system,
not only the characterization of lesions is included, but also their position and distance to
other relevant anatomical structures such as the nipples, the skin and the pectoral muscle.
For instance, the distance between posterior breast masses and pectoral muscle can be used
to assess the extent of the disease in patients suspected to have tumor invasion into the
underlying muscle [60].

Since breast MRI serves as an invaluable tool in the clinical work-up of patients, many
works focusing on computer-aided diagnostic methods and tools have been developed aiming
to assist the radiologists and physicians in automatic reporting, density analysis, breast tu-
mor detection and diagnosis [61–63]. Normally, precise segmentation of relevant anatomical
structures such as breast region and fibroglandular tissue are required. For CAD systems,
breast segmentation serves as a fundamental step in pre-processing to avoid analyzing irrel-
evant structures, such as air-background and the thoracic organs including heart, liver and
lung. For instance, a good segmentation of breast in MRI is essential for a CAD system to
improve its efficiency and accuracy by eliminating false positives in thoracic region, which are
normally enhanced in DCE-MRI as well. Other clinical applications that might use breast seg-
mentation are breast density measurement, lesion detection and automatic reporting. The
previous clinical studies show that the distance between the posterior breast lesions and the
pectoral muscle can be used to assess the extent of the disease. To enable automatic quan-
tification of the distance from a breast tumor to the pectoral muscle, a precise delineation of
the pectoral muscle boundary is required.

However, the segmentation of breast in MRI is not an easy task. Common imaging arti-
facts, such as intensity inhomogeneity, ghosting and aliasing effect, and the large variation
of anatomical detail and different imaging protocols, such as axial, sagittal or coronal acquisi-
tion, still pose challenges to this segmentation task. Generally, the task of breast segmentation
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can be subdivided into two major modules, the breast-air boundary and the pectoral muscle
boundary segmentation.

3.1.2. Related Works
Methods that have been reported for semi- or fully automated breast segmentation in MRI
can be categorized into contour-based, region-based and atlas-based approaches.

Normally, the contour-based approaches segment the breast in two steps: the identifica-
tion of breast-air boundary and pectoral muscle boundary. The former boundary separates
the air-background and breast region, while the latter boundary separates the pectoral mus-
cle and breast region. A slice-by-slice pectoral boundary detection algorithm was proposed
in [64], consisting of edge enhancing and linking steps, for breast segmentation in sagittal
view. Milenkovich et al. applied a technique to search for the shortest path with a novel cost
function using edge map derived from Gabor filters [65]. Giannini et al. recently introduced a
method that used Otsu’s thresholding for breast-air boundary detection and identified pectoral
muscle boundary by investigating the gradient characteristic of pectoral muscle slab [66].

Region-based methods include the work by Koenig et al., who presented a thresholding-
based algorithm to detect the breast region [67]. Nie et al. combined fuzzy c-mean classifi-
cation, B-spline fitting and dynamic searching to segment breast, where the aortic arch was
initialized by users as a landmark [68]. Lin et al. proposed a semi-automated technique using
Canny edge detection, combined with Bezier curve fitting and k-means clustering [69]. The
segmentation of pectoral muscle boundary was started from the central slice and propagated
superiorly and inferiorly to the other slices. Ivanovska et al. applied a level-set based technique
to simultaneously correct the inhomogeneity artifacts and segment the breast. Thereafter, the
breast region was extracted, and possible leakages into the chest-wall were corrected using
the information from neighboring slices [70, 71].

Atlas-based approaches have been drawn much attention on breast segmentation in MRI.
The prior shape knowledge of the targeted objects is normally encoded into a set of atlas.
When a new input image is given, the atlas images will be registered on to the input image, and
the target object will be segmented through a voting process. Ortiz and Martel presented a
method based on 3D edge detection refined with probabilistic atlas of the breast [72]. Khalvati
et al. proposed a multi-atlas segmentation algorithm, which uses phase congruency maps to
create breast atlas that is robust to intensity variations. The atlas constructed with one MR
sequences can be used to segment the breast from both intra- and inter-sequences [73].
To exclude the body from the breast, Gubern-Merida et al. applied a probabilistic atlas-based
method [74], which contained information of pectoral muscle, lungs, heart, thorax, and breast
tissue.

Unlike other methods that normally require the detection of anatomical landmarks, such as
aortic arch [68] or sternum [74] which might not be always imaged in different MR sequences,
or a large scale of training set [73, 74], the method that we have implemented is fully automatic
and does not rely on the presence of landmarks. A quantitative performance comparison will
be given in the evaluation section, which proves that the proposed approach is capable of
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achieving comparable performance, while it dramatically reduces the computational efforts.

3.1.3. Materials and Methods
In this chapter, we propose a novel solution for breast segmentation in MR acquisitions based
on Hessian shape descriptors, which does not require any anatomical landmarks. The ap-
proach is partially inspired by the work of Sato el al. [16], Frangi et al. [17] and Descoteaux
et al. [75], who used Hessian-based filter for segmenting tube-like structures. It is specially
designed for processing non-fat suppressed breast MRI, where fatty tissue has a high intensity
level compared to parenchyma and pectoral muscle. The method is based on the key obser-
vation that the pectoral muscle and breast-air boundaries exhibit smooth sheet-like surfaces
in 3D, which can be simultaneously enhanced by a Hessian-based sheetness filter [17]. The
enhancement strength of the designed Hessian-based filter correlates with the shape and con-
trast information of the structures, which means that structures with non-specific shapes and
lower contrast will be suppressed. The overall framework consists of four major steps: en-
hancement of the sheet-like structures, segmentation of the pectoral muscle boundary defining
the lower border of the breast region, segmentation of the breast-air boundary delimiting the
upper border of the breast region, and breast extraction which eventually captures the area
of breast tissue.

The schematic overview of the entire segmentation work-flow is depicted in Fig. 3.1, and
the details of each major step are described in the following sections.

Figure 3.1: The workflow of the proposed method.

To validate the proposed method, the segmented breast boundaries of 84 breast MR im-
ages, acquired in five different sites with variant imaging protocols, were compared to the
manual segmentation. An average distance of 2.56mm with a standard deviation of 3.26mm
was achieved.

Hessian-based Sheetness Filter
As introduced in 1.2.1, Hessian-based filters have been widely employed to analyze the local
structures of 3D images. The relation between the Eigenvalues of the Hessian matrix helps to
differentiate several specific geometrical structures of a 3D image, such as blob-like, tube-like
or sheet-like objects [75]. Descoteaux et al. proposed a sheetness measure used for enhanc-
ing bone structures [76]. Each voxel was given a score ranging from 0 to 1, representing the
likelihood that it is located in a sheet-like surrounding neighborhood. Three ratios, 𝑅 ,
𝑅 , 𝑅 were designed in their work to highlight sheet-like structures, eliminate blob-like
and noisy structures and slightly preserve the tube-like structures. In this work, we focus
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on enhancing sheet-like structures and eliminating all other structures. Hence, we choose
a somewhat different and simplified measure constructed by two ratios, whose behavior is
investigated [76] as in Table 3.1

Table 3.1: Theoretical properties of the ratios defined for the sheetness measure assuming the Eigenvalues sorted
in | | | | | |.

Defined ratios sheet-like tube-like blob-like noise
𝑅 = |𝜆 |/|𝜆 | 0 1 1 undefined
𝑅 = √𝜆 + 𝜆 + 𝜆 𝜆 √2𝜆 √3𝜆 0

Ultimately, with the help of these two ratios, we define the sheetness measure:

𝑆 = {
0, if 𝜆 = 0,
exp( )(1−exp( )) otherwise, (3.1)

where the parameters 𝛼 and 𝛽 control the sensitivity of each ratio to the measure. As sug-
gested, in this work, 𝛼 and 𝛽 are set to 0.5 and half of the maximum 𝑅 respectively [16].
The sheetness measure 𝑆 is scaled from 0 to 1. More specifically, its maximum will theo-
retically be assigned to the sheet-like local structures and all other structures will be scored
with low scores. As a second derivative filter, the defined Hessian-based filter results in a
zero-crossing on the target boundaries (step edges) and maximal response on both upper
and lower sides of the edges. By differentiating the sign of the largest eigenvalue, only the
voxels enhanced on the dark region are kept.

Pectoral Muscle Boundary Segmentation
The identification of the pectoral muscle boundary is necessary when separating the irrele-
vant thoracic organs from the breast tissue. The method first generates a region of interest
which covers the pectoral muscle by selecting a specific range of gradient directions of the en-
hanced sheet-like structures. Then, a vector-based connected component filter, which takes
the eigenvectors into considerations, is employed to further segment the pectoral muscle
boundary more accurately. In addition, the method is capable of handling cases where the
parenchyma is quite close to the pectoral muscle in dense breasts.

The pectoral muscle boundary to be segmented in the 3D breast MR images is a dark
step-edge structure (see Fig. 3.2(a)) rather than a pure manifold plane. Applying a second
derivative Hessian-based sheetness filter results in a zero-crossing at exactly the boundary
edge, meanwhile negative (on breast) and positive (on pectoralis) side-lobes on each side of
the boundary, where the eigenvalues with maximal magnitudes possess opposite signs and
roughly equal quantity (see Fig. 3.2(b)). However, considering the fact that the voxels in
the positive side-lobe, which can be adequately close to the boundary by carefully setting the
scale of the filter, exhibit roughly the same eigenvalue patterns as the ones in a sheet-like
object, these boundary-proximal voxels can still be enhanced and segmented by defining a
sheetness filter like what people did to segment sheet-like structures.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: The segmentation workflow. (a) A representative image slice indicating the breast-air boundary and
the pectoral muscle boundary (by white arrows), and the gradient directions of their example voxels labeled by
red and green arrows respectively. (b) Response of the sheetness filter with positive and negative side lobes on
each side of boundary edge. (c) Erase the negative side-lobe. (d) Threshold the sheetness score. (e) Remove the
breast-air boundary. (f) Extract the main part of pectoral muscle using connected component filter. (g) Generate
a mask (ROI) through the main part of pectoral muscle. (h) Apply the sheetness filter within ROI and threshold
the scores followed by a vector-based connected component filter. (i) Extract the boundary contour of the pectoral
muscle and stretch it to the corners (in red) overlaid with input image.
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The segmentation workflow comprises four key steps, preprocessing, detecting the region
of interest of the pectoral muscle, enhancing and segmenting the pectoral muscle, and ex-
tracting and refining the pectoral muscle boundary. The parameters of all used filters were
tested to be robust.

Preprocessing

To reduce the computational efforts and compute the Hessian matrix in a fixed scale for all
input images, the input images are resampled subject to an isotropic voxel spacing 2.5mm ×
2.5mm×2.5mm. The scale of the second order derivative of a Gaussian kernel, which is used
for computing the Hessian matrix, is set to be 2.5mm such that after applying the sheetness
filter, the positive side-lobe lying on the pectoralis would adequately be close to the boundary.
The negative side-lobe generated by the sheetness filter can be easily erased by explicitly
constraining the sign of the eigenvalues with maximal magnitude to be positive (see Fig.
3.2(c)).

Detecting the Region of Interest

After assigning and thresholding the sheetness scores with a threshold value 0.6, only the
highly enhanced structures, such as breast-air and pectoral muscle boundaries, are left (see
Fig. 3.2(d)). The exclusion of the breast-air boundary is essential, because it will be enhanced
by the sheetness even stronger than the pectoral muscle boundary, which confounds the
connected component filter to select the breast-air boundary as the largest component (see
Fig. 3.2(d)). Notice that most voxels proximal to the breast-air boundary and the pectoral
muscle boundary possess roughly opposite gradient directions (see Fig. 3.2(a)). Hence, we
conduct a gradient direction filtering process by selecting the voxels whose gradient directions
point roughly from image top to bottom (indicated by green arrows in Fig. 3.2(a)). Here,
the scale parameter of the first derivative Gaussian kernel used to compute gradient vector
is set to be 2.5mm. Consequently, most parts of the breast-air boundary are eliminated,
whereas a few parts of pectoral muscle are also jeopardized (see Fig. 3.2(e)). Afterwards,
a 3D connected component filter is applied, and the main parts of the pectoral muscle are
extracted by selecting the largest component (see Fig. 3.2(f)). Even though the extracted
main parts are incomplete due to the filtering process of gradient directions, they reveal the
coarse location of the pectoral muscle and can be used to generate a mask image that labels
the ROI of the pectoral muscle (see Fig. 3.2(g)).

Enhancing and Segmenting the Pectoral Muscle

Once the ROI of the pectoral muscle is identified, the designed sheetness filter scores each
voxel again inside the ROI with a value scaling from 0 to 1. A sheetness-score-threshold is set
to be 0.5 in this step, which has been tested to be robust through a large number of experi-
ments. Usually, some unwanted sheet-like anatomical structures, such as the boundaries of
the lung in thorax and the splitting planes between the arm and body, are enclosed in the ROI
and thus enhanced by the Hessian-based filter as well. To eliminate them, a 3D vector-based
connected component filter is exploited to investigate both the geometrical connectivity and
the consistency of the eigen-directions of the segmented objects. Voxels with acute alteration
of the vector direction are regarded as isolated and excluded. Here, the uniformed eigenvec-
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tor associated with the largest eigenvalue is examined in the filter, and the distance threshold
is set to be 0.1, which means the two neighbor voxels will be determined to be connected
if the dot production of their eigenvectors is larger than 0.9. Finally, the largest connected
component with maximal number of voxels is selected as shown in Fig. 3.2(h).

Extracting and Refining the Pectoral Muscle Boundary
Firstly, the holes or gaps of the segmented object are filled and bridged by a connection

cost filter followed by a morphological closing filter with scale of 3 × 3 × 3 both for dilation
and erosion [77]. To fetch a neat and complete pectoral muscle boundary, we employ a
surrounding filter to obtain the outer contours of the segmented object. To extend the resulted
outer contour to the image corners, two nearest points on the contour to the bottom-left and
bottom-right corners are searched out respectively (see Fig. 3.2(h)), and they are linked to
the corresponding corners by drawing two line segments. Finally, the segmented boundary
contour overlaid with the original image is demonstrated in Fig. 3.2(i).

Breast-air Boundary Segmentation
Breast-air boundary segmentation is not a trivial task due to artifacts that can appear in MR
images, such as the presence of aliasing artifacts and fiducial markers, which might cause
failure of intensity based methods. In addition, the absence of one breast due to mastectomy
surgery might also challenge the model based methods (see Fig. 3.3).

Figure 3.3: The artifacts and challenges presented in breast MRI, overlaid with the segmented breasts (red masks),
and the reference breast-air boundaries annotated by a radiologist (green contours): (a) Presence of aliasing
artifacts (ghost shadow). (b) Absence of the left breast. (c) Presence of fiducial markers.

Compared to the response of the pectoral muscle boundary, the breast-air boundary is en-
hanced even stronger by the sheetness filter, which obtains a sheetness score mostly higher
than 0.9, due to the high contrast between air and breast tissue. The mask of the pectoral
muscle segmented in the previous step can remove the thoracic region of the Hessian fil-
ter response, which facilitates the segmentation of the breast-air boundary (Fig. 3.4(a)(b)).
By thresholding the remaining enhanced structures with a minimum threshold of 0.8 on 𝑆,
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Figure 3.4: The breast-air segmentation and the breast extraction: (a) Original input overlaid with pectoral muscle
segmentation (red mask); (b) Masked Hessian filter response where breast-air boundary is highly enhanced;
(c) Breast-air boundary segmented with connected component and morphological filters; (d) Initial breast tissue
segmentation using segmented breast-air and pectoral muscle boundaries; (e) Seed voxels (encoded in red)
extracted from distance transform image of the initial segmentation; (f) Air background detection based on the
initial segmentation; (g, h) 2D and 3D demonstration of segmented breast tissue.

unwanted objects slightly enhanced inside the breast can be filtered out. Then, a 3D vector-
based connected component algorithm is applied to extract the largest connected component,
which is the breast-air boundary (Fig. 3.4 (c)). The algorithm takes the eigen directions of the
voxels into consideration and inspects the connectedness with not only spatial connectivity but
also the consistency of the eigen directions. This enables the algorithm to isolate the attached
parenchyma from the breast boundary. Another observation is that the segmented breast-air
boundary normally has a thickness larger than one single voxel resulting from the scale of the
Hessian filter. However, by properly setting the scale, the segmented boundary can be ac-
quired sufficiently close to the true boundary. In this work, the input image is down-sampled
with an isotropic voxel size of 2.5mm, and the scale parameter of the Hessian filter is set to
2.5mm (1 voxel) as well.

Final Breast Tissue Segmentation
The segmented breast-air and pectoral muscle boundaries delimit the upper and lower borders
of the breast tissue, which already allows for capturing an initial segmentation of the breast
tissue (Fig. 3.4(d)). However, in extreme inferior slices where the visible breast tissue is not
directly connected to the body (see Fig. 3.3(a)), the connected component algorithm may lose
the breast tissue. In addition, the local misalignment of the detected pectoralis and breast-air
boundaries may cause the breast tissue extraction to deviate locally from the true borders. To
cope with this issue and refine the breast tissue segmentation in local areas, an intensity based
region growing algorithm is adopted, working on the basis of the initial breast segmentation.
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Firstly, the seeds of the region growing are automatically identified by analyzing the dis-
tance transform image of the initial breast segmentation (Fig. 3.4(e)). The voxels with high
distance transform values are distributed around the geometric center of the initial segmenta-
tion. More specifically, we choose the voxels above the 70 percent quantile of the histogram
of distance transform values as the seeds (encoded in red overlay in Fig. 3.4(e)) . Secondly,
three constraints are implemented to ensure that the region growing propagates within the
breast and prevent leakages into the thorax and air. The detected pectoral muscle and breast-
air boundaries are superimposed to the original input and the intensities of the covered voxels
are set to zero, aiming to block the growing process. In addition, the intensity level of the air
background is investigated by first segmenting the air region using a ray tracing technique,
where the rays are emitted from the top of the image and travel downwards until hitting the
segmented breast-air boundary (Fig. 3.4(f)), and then analyzing the intensity histogram. The
lower threshold of the region growing is safely set as the mean of this histogram plus three
times the standard deviation. The region growing process makes the assumption that the
breast parenchyma possesses higher intensities than air background. However, in a few rare
cases, where the patient suffered from surgical biopsy or tumor resection, the operated sites
might exhibit similar low signals as the background, which results in a few small-scaled holes
or cavities inside the breast uncovered by region growing. Since these cavities are surrounded
by fatty tissue, they can be easily recovered by hole-filling techniques, such as morphological
closing and connection cost filters. Ultimately, the segmentation result of the region growing
is demonstrated in 2D (Fig. 3.4(g)) and visualized in 3D (Fig. 3.4(h)).

3.1.4. Evaluations
Since pectoral muscle boundary segmentation is the main challenging part of the entire breast
segmentation workflow, we established a separate experiment to test its performance. Af-
terwards, the performance of entire breast segmentation is tested with more test images. In
the end, the proposed method is bench-marked with two atlas-based methods in an extra
comparison study.

Evaluation of Pectoral Muscle Boundary Segmentation
The breast DCE-MR images were acquired in three acquisition protocols, T1-weighted coro-
nal, T1-weighted axial, and T2-weighted axial. The test data set includes 30 independent
non-fat suppressed MR images (none were used during algorithm development) acquired
from 30 different female patients, 10 from each imaging protocol. The method operated on
pre-contrast breast DCE-MR images, and the processing time for the image with maximum
resolution (512 × 512 × 70) was about 6 seconds using a 3.07 GHz Intel CPU and a GeForce
gtx285 graphics card.

To evaluate the method quantitatively, two ground truth sets were built for the test set as
shown in Fig. 3.5(a)(c). The pectoral muscle boundaries were manually annotated by two
independent radiologists, such that the inter-observer variation could be maximally decreased.
The radiologists annotated every 2 to 8 slices depending on the available slice number to make
sure that at least 15 equally distributed slices were annotated for each image as shown in Fig.
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3.5(b)(d). To precisely evaluate how well the segmented boundary surface (see Fig. 3.5(f))
matched the ground truth contours, especially in the parts of the pectoral muscle, the distance
between the points on the ground truth contours and their corresponding paired points on the
segmented pectoral contours (Fig. 3.5(e)) was measured. For each point on the ground truth
contour, its paired point on the segmented pectoralis contour was defined as the one with the
least distance to it. The sum distance was computed over all these point pairs for all slices
that have been annotated in the ground truth. Ultimately, the average distance was calculated
by dividing the sum distance with the count of the point pairs.

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: The ground truth and the segmentation results. (a) A representative contour (the green contour)
annotated by the first radiologist overlaid with input image. (b) The 3D visualization of the contours of the
ground truth image annotated by the first radiologist. (c) The contour (the blue contour) annotated by the second
radiologist for the same input image. (d) The 3D visualization of the contours of the ground truth image annotated
by the second radiologist. (e) The segmented contour (red contour) of the boundary between breast and pectoralis
muscle. (f) The 3D visualization of the segmented surface of the boundary between breast and pectoralis muscle.

Table 3.2 lists the sum distances, the counts of the point pairs, the average distances, and
the imaging protocols for all 30 images in the test data set. Considering the voxel space, all
the distances were given in millimeter and measured twice for both databases of the ground
truth. From the table, it can be observed that the maximal average distance between the
ground truth contours and the segmented surfaces was 2.471 mm, whereas the minimum was
0.546 mm. The mean value of all average distances measured for both ground truth datasets
was 1.434 mm, and the standard deviation was 0.4661 mm. The aberration has no clinical
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(a) (b)

(c) (d)

Figure 3.6: The reformatted axial view of the segmented pectoralis boundaries (red contours) of four extreme
dense breasts in different imaging protocols: (a) T1-weighted coronal, (b) T1-weighted axial (c)(d) T2-weighted
axial.

significance when measuring the distance from the posterior breast lesions to the pectoral
muscle. The segmentation task becomes more challenging for the extreme dense breasts,
because the large amounts of breast parenchyma can be very close to the pectoral muscle
and exhibit approximately the same intensity level. The vector-based connected component
filter can prevent the segmented pectoral muscle boundary from passing the boundary of the
breast parenchyma by constraining the acute variations of the vector directions. Figure 3.6
gives some successful segmentation for extreme dense breasts in different imaging protocols.
To further demonstrate the performance of our approach in clinical application, two more
boundary surfaces of the segmented pectoral muscles selected from the test data set are
visualized in 3D as shown in Fig. 3.7, where the silhouettes of the breast tissues and the
lesion masses are rendered, and the distances from the lesion masses to the pectoral muscle
surfaces are measured and presented as well.

Evaluation of Overall Breast Segmentation
To evaluate the performance of the presented method, a test data set enclosing 84 non-fat
suppressed breast MR images was collected. The test images were acquired in five different
hospitals with different imaging protocols, i.e., T1-coronal, axial, sagittal, T2-axial. Only the
pre-contrast images were processed for dynamic contrast enhanced images. The image res-
olution varied from 256×256×64 to 512×512×80 with different voxel sizes. The reference
segmentations were manually annotated by an experienced radiologist. For each test image,
two individual reference contours, delineating the pectoral muscle boundary and the breast-air
boundary, were annotated, and the combined contours were used as the reference bound-
aries of the breast. Considering the resolution and slice numbers of the data, the radiologist
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Table 3.2: The statistical results of the quantitative evaluation.

Ground Truth 1 Ground Truth 2
No. Sum(mm) Count Average(mm) Sum(mm) Count Average(mm) Protocol
1 2285.63 4189 0.545626 2398.81 4245 0.565092 T1-axial
2 5850.96 4295 1.36227 9153.61 4773 1.91779 T1-axial
3 6491.42 5477 1.18522 6500.38 5513 1.1791 T1-axial
4 5624.79 4543 1.23812 5394.09 4529 1.19101 T1-axial
5 6422.99 5035 1.27567 5595.71 4964 1.12726 T1-axial
6 6528.05 4663 1.39997 5947.65 4587 1.29663 T1-axial
7 3009.71 4367 0.689193 2843.58 3909 0.727445 T1-axial
8 7219.68 4896 1.47461 6496.56 4861 1.33647 T1-axial
9 5058.85 5162 0.980017 5780.14 5287 1.09327 T1-axial
10 5198.9 4179 1.24405 4091.21 3793 1.07862 T1-axial
11 8848.55 5065 1.747 9324.09 5123 1.82004 T1-coronal
12 5746.51 3541 1.62285 6012.54 3509 1.71346 T1-coronal
13 8978.29 4091 2.19464 7823.37 3925 1.99322 T1-coronal
14 7514.22 4127 1.82075 7152.3 4142 1.72677 T1-coronal
15 6830.65 2764 2.47129 6522.88 2710 2.40697 T1-coronal
16 4010.04 2574 1.5579 4082.54 2617 1.56001 T1-coronal
17 9151.6 4218 2.16965 8226.05 4136 1.98889 T1-coronal
18 6976.92 4404 1.58422 7461.65 4293 1.7381 T1-coronal
19 4884.94 4634 1.05415 5178.55 4692 1.1037 T1-coronal
20 5920.8 4134 1.43222 5372 4133 1.29978 T1-coronal
21 13215.7 6445 2.05053 6468.75 5496 1.17699 T2-axial
22 5072.41 5504 0.921587 5520.89 5525 0.999256 T2-axial
23 4979.34 5873 0.847836 4661.12 5822 0.800605 T2-axial
24 5919.46 5733 1.03252 6459.2 5658 1.1416 T2-axial
25 6490.37 5233 1.24028 9634.28 5291 1.82088 T2-axial
26 16073.9 10093 1.59258 15263.6 9928 1.53743 T2-axial
27 7246.87 5899 1.22849 8915.37 5786 1.54085 T2-axial
28 4592.27 4866 0.943746 4756.82 5113 0.930339 T2-axial
29 14415.8 7236 1.99223 15449.8 7164 2.15659 T2-axial
30 26187.9 12381 2.11517 25402 12343 2.05801 T2-axial

annotated the breast-air and pectoral muscle boundaries for every second to eighth slice to
make sure that at least 15 equally distributed annotated slices were provided. The processing
time for the image with maximum resolution was about 10 seconds using a 3.07 GHz Intel
CPU and a GeForce gtx285 graphics card.

The boundary contours of the breast-air and the pectoral muscle were extracted from the
segmented region of the breast. We measured the distances from the reference contours
to the segmented contours in the slices where reference contours exist. The distance from
each voxel in the reference contour to the segmented contour was measured, and the mean,
standard deviation, and maximum of the distance error of each test image were computed.
In addition, an average overlap rate, defined as the percentage of the reference voxels whose
distance error was less than a tolerance threshold of 3mm, was evaluated.

Two experiments were carried out to validate the segmentation accuracy of the pectoral
muscle and the breast-air boundaries by comparing to the corresponding reference bound-

48



3.1. Breast Segmentation with Sheet-like Shape Descriptor

Figure 3.7: Two example visualizations of the segmented surfaces of the pectoral muscle (red plane) and the
lesion masses (yellow entities) overlaid with the silhouettes of the breast tissues. The distances from the lesion
masses to the pectoral muscle surfaces are measured and presented with yellow line segments.

Figure 3.8: The segmented pectoralis and breast-air boundaries (red), the reference contours (green), the overlap
contours (yellow).

aries, respectively. Moreover, the accuracy of the segmented breast boundaries was assessed
by comparing to the reference boundaries of the breast in the third experiment. Table 3.3 lists
the average values of the evaluation metrics obtained in each experiment for all test images.
From the test, it is observed that the pectoral muscle boundary possessed higher accuracy
than the breast-air boundary, with a lower mean distance error and standard deviation. For
the entire breast boundary, the method achieved a mean distance of 2.56mm with a standard
deviation of 3.26mm. The overlap rate reached 87% on average. The relatively larger aver-
age maximum distance recorded as 33.56mm resulted from the deviations in the extremely
inferior slices, where for instance the segmented breast-air boundaries were isolated while the
radiologist annotated a continuous reference breast-air boundary crossing the muscles (Fig.
3.8(a)), no breast tissue volume was presented while the radiologist annotated a continuous
reference pectoral muscle boundary (Fig. 3.8(b)). To demonstrate the results, two segmented
breast boundaries for dense breasts are illustrated in Fig. 3.8(c)(d), and the segmented breast
masks of the forenamed challenge cases are shown in Fig. 3.3.

49



3. Breast Segmentation in MRI: Methods and Applications

Boundary Mean(mm) Std(mm) Max(mm) O.R.
Pectoralis 1.99 2.66 22.16 0.92
Breast-air 2.81 3.22 30.47 0.84
Breast: 2.56 3.26 33.56 0.87

Table 3.3: The average values of the evaluation metrics validating the segmentation accuracy of the pectoral
muscle boundary, breast-air boundary and both (the breast boundary), where O.R indicates overlap rate.

Performance Comparison with Other Methods
In [78], Gubern-Merida et al. has independently compared the performance of our method
with other two approaches based on probabilistic atlas [79] and multi-atlas [80]. Both atlas-
based methods use 27 fully manually segmented MR scans to build the atlas and a dedi-
cated registration framework based on a sternum landmark to segment the body area. The
schematic overview of probabilistic atlas approach is depicted in Fig. 3.9, while the workflow
of multi-atlas based approach is delineated in Fig. 3.10.

Figure 3.9: Probabilistic atlas breast segmentation approach overview [79].

Figure 3.10: Multi-atlas breast segmentation approach overview [80].

Materials and Metrics
In this study, a data set enclosing 52 pre-contrast coronal T1-weighted MR breast scans
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obtained from 52 different patients is collected. The cases were acquired from 2003 to 2009 at
the Radboud University Nijmegen Medical Centre. Reference segmentation of pectoral muscle
and dense tissue reference segmentation were collected for all the data sets. Figure 3.11(a)
shows an example of the reference segmentation for dense tissue and pectoral muscle.

Figure 3.11: Evaluation of breast segmentation in MRI: overview of material and evaluation measures used.

For evaluation, three different measures were defined to precisely quantify the errors that
have the most negative impacts when breast segmentation is utilized in CAD systems. We have
chosen different measures compared with the ones used in previous sections, because more
tissue types were labeled for this test data set. These measures are illustrated in Fig. 3.11(c):

1. The dense tissue error refers to the percentage of dense tissue voxels of the reference
segmentation that are not included in the breast segmentation.

2. The pectoral muscle error refers to the percentage of pectoral muscle voxels of the
reference segmentation that are included in the breast segmentation.

3. The pectoral surface distance refers to the distance between the manually annotated
and automatic determined surface of the pectoral muscle.

Comparison Results
All 52 test cases were segmented by the probabilistic, the multi-atlas and the sheetness-

based breast segmentation approaches. Figures 3.12(a), (b) and (c) show box-plots for each
evaluation measure. Table 3.4 summarizes the median and the interquartile range of each
method with respect to the evaluated measures. Figure 3.14 shows nine segmented examples.
An extreme dense breast presented in Fig. 3.14(b) is a difficult case, since a large part of the
pectoral muscle is connected to the dense breast tissue. In terms of percentage of missed
dense tissue, the sheetness-based method obtained significant better performance than atlas-
based methods (p-values < 0.05, two-sided paired Wilcoxon test). With respect to the pectoral
muscle error, the multi-atlas method significantly outperformed the other approaches (p-values
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< 0.05, two-sided paired Wilcoxon test). It is observed that the sheetness-method commits a
relatively larger pectoral muscle error. One of the reasons is that the sheetness-based method
chooses to delineate the inner boundary of pectoral muscle, which means at least the boundary
voxels of pectoral muscle will be erroneously accounted as pectoral error (see Fig. 3.13).
Finally, in terms of pectoral surface distance, the probabilistic approach obtained significant
better performance than others (p-values < 0.05, two-sided paired Wilcoxon test). In terms
of precision (variance of pectoral surface distance), all the approaches obtained similar scores
(p-values > 0.05, Barlett test of variances). Nine minutes, 3 hours and 20 seconds were the
approximate computation times to segment the breast of an MR image using probabilistic,
multi-atlas and sheetness-based approaches, respectively.

Figure 3.12: Boxplots of evaluation measures for probabilistic, multi-atlas and sheetness-based breast segmenta-
tion methods: (a) percentage of reference dense tissue voxels that are not included in the breast segmentation,
(b) percentage of reference pectoral voxels that are included in the breast segmentation and (c) pectoral muscle
surface distance in mm.

Table 3.4: Median and interquartile range (25th percentile - 75th percentile) for the evaluation measures.

Method Dense tissue error (%) Pectoral error (%) Pect. surface distance (mm)

Probabilistic [79] . ( . . ) . ( . . ) . ( . . )

Multi-atlas [80] . ( . . ) . ( . . ) . ( . . )

Sheetness-based . ( . . ) . ( . . ) . ( . . )

3.1.5. Discussion
In this work, a novel step-wise method to segment the breast tissue in non-fat suppressed
breast MR images is presented. The method is fully automatic without the requirements of
the prior information and tuning parameters. The proposed method is based on exploring the
second derivative information of the 3D image interpreted by the Hessian matrix. The idea
behind the method is the key observation that the voxels proximal to the pectoral muscle and
breast-air boundaries exhibit roughly the same eigenvalue patterns as a sheet-like object in
3D, which can be enhanced and segmented by a specially designed Hessian-based sheetness
filter. To erase some unwanted enhanced structures inside the thoracic cavity, a vector-based
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Figure 3.13: Illustration of the pectoral muscle boundary identified by sheetness-based method. The pectoral
muscle boundary contour is placed on the inner side of pectoral muscle.
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Figure 3.14: Breast segmentation examples: axial slices from 9 different MR scans segmented by the three
evaluated methods.

connected component filter is applied. In the refinement stage, the completely connected
contours of the pectoral muscle boundary are identified. By analyzing the test results, the
designed Hessian-based sheetness filter was proven to be an accurate and robust tool for
enhancing the breast-air and the pectoral muscle boundaries. The automatic initialization
of the seed points and the analysis of the lower threshold of the proposed region growing
technique have proven their robustness on the clinical data.
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To quantitatively evaluate the performance, two experiments were conducted. First, to
access the accuracy of pectoral muscle boundary segmentation, the proposed method was
evaluated with a test set including 30 breast DCE-MR images with variant degrees of difficulties
and alterations acquired in three imaging protocols. Two radiologists manually annotated the
pectoral muscle boundary contours independently and built two data sets of the ground truth.
The method was quantitatively evaluated by measuring the average distances between the
segmented pectoral muscle boundary surface and the annotated surfaces in each ground truth,
and the statistics showed that its mean value was 1.434mm with the standard deviation of
0.4661mm.

Second, to test the performance of overall breast segmentation method, a further extensive
test including 84 data sets was carried out to assess the performance of the algorithm. The
boundaries of the extracted breast region showed a high alignment with the reference contours
annotated manually with an overlap rate of 87%. The performance comparison study has
shown that the proposed method significantly outperform other two atlas-based methods in
term if computational efficiency, while achieving comparable segmentation quality.

The advantages of this method can be summarized as follows:

• Computationally efficient.

• No prior knowledge is required.

• No training stage is required.

• No pre-assumptions of landmarks that have to be presented in the image.

• Robust against the non-fat suppressed MR images acquired with different scanners and
protocols.

The disadvantages of this method have to be mentioned as well. Current version is limited
to be applicable only for non-fat suppressed MR images. Other images such as fat-suppressed
images will be failed. The isotropic down-sampling step in pre-processing stage can result in
fuzzy segmentation boundaries for pectoral muscle and breast-air. For the pectoral muscle
segmentation, it is not clinically certain where the pectoral muscle boundary should end. The
way that the extracted boundary is extended to the corner of the image is determined empir-
ically after carrying out experimental test. As mentioned in previous sections, the proposed
algorithm might fail in the most anterior or inferior slices where heavy aliasing artifacts are
often observed. Addition efforts that might improve the segmentation performance include
the optimization of significant parameters of the presented pipeline, such as the thresholds of
the sheetness filter response and the administration of parallel computing schemes.
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3.2. Applications of Breast Segmentation: Longitudinal Regis-
tration

3.2.1. Introduction
In this section, a typical application that leverages the benefits of breast segmentation is
presented, which is the automated registration of longitudinal breast MRI. As mentioned in
previous section, MRI has been recommended in breast cancer screening for high-risk women.
Compared to other imaging modalities such as mammography or ultrasound, MRI achieves
higher sensitivity of detecting intraductal and hereditary cancers with a comparable specificity
to mammography [81]. Recent findings indicate that the inclusion of prior MRI in breast MRI
reading reduces the rate of false positives associated with initial breast cancer MRI screening
[82].

In breast cancer screening for high-risk women, follow-up MR images are acquired with a
time interval ranging from several months up to a few years. Adding prior studies to screen-
ing will inevitably increase the reading time and workload of clinicians. Prior MRI studies may
provide additional clinical value when examining the current one and thus have the potential
to increase sensitivity and specificity of screening. Therefore, quickly interrogating suspicious
findings in both current and prior MR studies is requested in the screening routine. Automatic
spatial linking of suspicious findings with the help of registration algorithms is desired. How-
ever, a reliable alignment method between follow-up studies is not a trivial task. Tremendous
deformation of breasts are expected in follow-up studies due to the differences in breast com-
pression and positioning. Moreover, various scanners and imaging protocols may be applied
between imaging intervals producing different intensity values and different field of views. As
shown in Fig. 3.15, strong deformation of breast tissue and misaligned skin boundaries are
observed in current and prior MR scans. Moreover, the volumetric and anatomical change
resulting from breast surgeries poses further challenges to registration algorithms.

In this work, we present a fast and robust spatial alignment framework, which combines au-
tomated breast segmentation and current-prior registration techniques in a multi-level fashion.
Given a specific location in the current study, the aim of this work is to find the corresponding
location in the prior study with sufficient accuracy and computational efficiency. First, fully
automatic breast segmentation is applied to extract the breast masks that are used to obtain
an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient
fields as similarity measure together with curvature regularization is applied. A total of 29
subjects and 58 breast MR images were collected for performance assessment. To evaluate
the global registration accuracy, the volume overlap and boundary surface distance metrics
are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean
square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy,
for each subject a radiologist annotated 10 pairs of markers in the current and prior studies
representing corresponding anatomical locations. The average distance error of marker pairs
dropped from 67.37 mm to 10.86 mm after applying registration. In the end, the performance
of our proposed framework is compared with the work presented by Böhler et al. [83].
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Figure 3.15: Illustration of strong deformation between current (left) and prior (right) MR studies of two subjects
(top and bottom rows) with a time interval of one year. The deformation is attributed to different compression
and positioning of breasts and dissimilar imaging views: current studies were acquired in axial view, while prior
studies were taken in coronal view (reformatted to axial view for comparison purposes).

3.2.2. Related Work
Several current-prior registration methods have been proposed to deal with breast MRI follow-
up studies. Roose et al. devised a coupled registration method that integrates a biomechanical
model and iteratively updates boundary conditions. It combines elastic properties of the tissue
with a matching of the enclosed surfaces, namely the skin and chest-wall surfaces. However,
only three data sets acquired with the same scanner in a short time interval were used for
evaluation [84]. Therefore, limited deformations introduced by different subject positioning
were tested. Böhler et al. suggested a two-phase registration framework to align current
and prior MR volumes. First, left and right breasts are separated and registered individually
using an affine transform. Then, the deformation fields obtained for left and right breasts
are stitched together and applied to the prior volume to achieve a rough alignment. Finally,
a non-rigid registration was adopted to further register the deformed prior volume onto the
current one [83]. Diez et al. adopted three commonly used registration algorithms on breast
MRI follow-up studies, including Affine, SyN and Demons [85]. The reported landmark dis-
tance errors of these methods were over 25 mm, indicating that directly applying established
registration algorithms without adaptions for this task may fail.

3.2.3. Materials and Methods
The overall framework contains three steps. Firstly, breasts in both current and prior studies
are automatically segmented. Secondly, the obtained breast masks are aligned with an affine
transform to estimate a rough alignment which serves as an initial transform for subsequent
non-rigid registration step. Thirdly, the segmented breast volumes are registered with a non-
rigid registration algorithm producing a final deformation field. The proposed registration
scheme is inspired by the works of Rühaak et al. [86], which uses the discretize-then-optimize
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paradigm in a multilevel Gauss-Newton optimization framework [87]. A schematic overview
of the entire workflow is given in Fig. 3.16.

Figure 3.16: Overview of the registration workflow by illustrating intermediate segmentation and registration
results.

Automatic Breast Segmentation
Different acquisition views normally cover different portions of the organs in thorax such as
lung and heart in breast MRI. Images acquired in axial views may cover the entire body in
imaging fields, whereas coronal and sagittal views cover fewer organs which can mislead reg-
istration processes to register the organs that are present in one image but absent in the other.
To enforce registration process focusing on breast regions, automated breast segmentation is
required.

We adopt the fully automatic breast segmentation method presented in section 3. The
task of breast segmentation in MR images is subdivided into two steps: pectoralis and breast-
air segmentation. The key observation of this method is that pectoral muscle and breast-air
boundaries exhibit smooth sheet-like surfaces in 3D, which can be simultaneously enhanced
by a Hessian-based sheetness filter. The method consists of four major steps: enhancing
sheet-like structures, segmenting pectoralis muscle boundary that defines the lower border
of breast region, segmenting breast-air boundary that delimits the upper border of the breast
region, and extracting the region between the breast-air and pectoralis boundaries which
finally captures the area of breast tissue as shown in Fig. 3.17.

Affine Pre-registration
Breast deformation between current and prior MR studies can be substantial, thus a good
initialization is critical for the success of subsequent non-rigid registration step. Breast masks
achieved in segmentation step are used to derive an initial guess of deformation field. First,
centers of gravity of the masks are aligned with each other to derive an estimation of transla-
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Figure 3.17: Demonstration of the segmented breast-air (in blue) and pectoral muscle (in purple) boundary sur-
faces in 3D (left) and 2D (right).

tion. Then, an affine transform using Sum of Squared Differences (SSD) similarity measure is
estimated, which roughly positions both images together as shown in Fig. 3.18. The obtained
affine transformation is used to initialize the subsequent non-rigid deformable registration
process.

Deformable Image Registration
In deformable image registration, a common approach consists of formulating the registration
problem as an objective function 𝐽 that is to be minimized [88]. Typically, 𝐽 is built up by an
image similarity measure 𝐷 and a regularizer 𝑆 that penalizes unwanted transformations. Let
𝐹,𝑀 ∶ ℝ → ℝ denote the fixed (or reference current) and moving (or template prior) image
with compact support in domains Ω ⊆ ℝ and Ω ⊆ ℝ , respectively. For a transformation
𝑦 ∶ Ω → ℝ , the objective function in our model is composed of two parts:

𝐽(𝑦) = 𝐷(𝐹,𝑀(𝑦)) + 𝛼𝑆(𝑦). (3.2)

The weighting factor 𝛼 > 0 balances between data fit and deformation regularity. Due
to possibly long intervals between examinations, follow-up studies are likely acquired with
changed protocols or even different scanners. This imposes problems for registrations using
solely intensity-based similarity measures. Hence, we employ the edge-based Normalized
Gradient Fields (NGF) similarity measure [89] which was designed to cope with such varying
intensities. We use the following variant as proposed in [86]:

𝐷(𝐹,𝑀(𝑦)) ∶= ∫ 1 − (
⟨∇𝑀(𝑦(𝑥)), ∇𝐹(𝑥)⟩

‖∇𝑀(𝑦(𝑥))‖ ‖∇𝐹(𝑥)‖ ) d𝑥 (3.3)

with

⟨𝑓, 𝑔⟩ ∶=∑𝑓 𝑔 + 𝜂 and ‖𝑓‖ ∶= √⟨𝑓, 𝑓⟩ (3.4)

59



3. Breast Segmentation in MRI: Methods and Applications

for 𝑓, 𝑔 ∈ ℝ . The parameter 𝜂 > 0 is used to suppress the influence of gradients stemming
from image noise. For transformation regularization, we employ the curvature regularizer as
presented in [90]:

𝑆(𝑦) ∶= 1
2 ∫ ∑‖Δ(𝑦 − 𝑦kern)‖ d𝑥. (3.5)

The curvature regularizer penalizes second derivatives of the deviation of 𝑦 from a given
transformation 𝑦kern, leading the algorithm to favor smooth deformations. We set 𝑦kern to
the result of the affine-linear pre-registration step. All results presented in this work were
calculated with a fixed parameter setting of 𝛼 = 2.5 and 𝜂 = 100.

Moreover, we enforce the registration focus on the breast region by employing the pre-
computed breast masks. Irrelevant structures, such as chest, lung and heart are masked
out and have thus no influence on the registration. The objective function 𝐽 is optimized
with the L-BFGS Newton-type optimization algorithm [91]. The computation is embedded in
a multi-resolution framework for both the images and the deformation, see [86] for details.
The occurring objective function derivatives are calculated in a fully matrix-free manner that
allows for a fast, memory-efficient, and parallel computation [92]. The alignment of breast
volumes driven by affine transform and deformable registration is given in Fig. 3.18, where
the deformed breast masks of the prior study are also shown.

Figure 3.18: Illustration of affine transform and deformable registration: current and prior studies before applying
registration (left column), after initial affine transformation (middle column) and after deformable registration (right
column). The top row depicts the alignment between fixed image (current study) and moving image overlaid in
red (prior study). The bottom row shows boundary alignment between fixed (in white) and moving (in red) masks.
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3.2.4. Results and Evaluations
Data Sets
A collection of 29 individual subjects with 58 breast dynamic contrast enhanced MRI (DCE-
MRI) follow up images were acquired from a screening program running in Radboud University
Medical Center (Nijmegen, Netherlands). For each subject, two consecutive follow-up MRI
studies with a time interval of 1 year were available. Current MRI examinations were performed
in 2011 with a 3 Tesla Siemens scanner (MAGNETOM Skyra), with a dedicated breast coil (CP
Breast Array, Siemens, Erlangen). Subjects were scanned in prone position and transversal
view with following imaging parameters: 448 × 448 × 160; slice thickness: 1 mm; voxel
spacing: 0.8036 × 0.8036 mm; flip angle: 20 degrees; repetition time: 5.03 ms; echo time:
2.06 ms.

Prior MRI examinations were performed in 2010 with a 3 Tesla Siemens scanner (MAGNE-
TOM Trio) with the same breast coils. However, subjects were scanned in prone position and
coronal view with following imaging parameters: 384 × 192 × 160; slice thickness: 1 mm;
voxel spacing: 0.9375 × 0.9375 mm; flip angle: 13 degrees; repetition time: 735 ms; echo
time: 2.39 ms. Current and prior DCE-MRI scans have 5 and 6 time points, respectively. Pre-
contrast images were used for registration in this work. Images of two subjects were shown
in Fig. 3.15.

Evaluation and Comparison
Three metrics were used to quantitatively evaluate alignment accuracy of the proposed method:
Dice Similarity Coefficient [93] (DSC), boundary distance error (BDE) and landmark distance
error (LDE). Dice similarity coefficient validates the volumetric overlap between deformed
breast of prior studies and breasts of current studies. Higher registration accuracy should
deliver better overlapping ratio.

Moreover, agreement of breast-air boundaries and pectoral muscle boundaries are of great
interest for investigation, because it measures how well the breasts with different compression
and shapes coincide after performing registration. Hence, we define the metric of boundary
distance error as the distance between the boundary surfaces of current and deformed prior
breasts.

DSC and BDE are able to quantify the consistencies of breast volumes and boundaries.
However, the registration accuracy of breast parenchyma tissues inside the breasts can not
be reflected directly by DSC and BDE. The most direct way to quantify the alignment quality
of internal breast parenchyma tissue is to annotate a few corresponding landmarks in both
current and prior studies and measure their distances after deformation. Therefore, an expe-
rienced radiologist manually identified salient anatomical landmarks on each pair of current
and prior studies for all subjects. The radiologist tried to spread the landmarks through entire
breast volumes. More specifically, landmark pairs were manually annotated by investigating
subtracted images. Afterwards, all landmarks were visually validated on axial, sagittal and
coronal planes. Nipples were marked in all breast volumes, while prominent vessels and glan-
dular tissue margins were annotated when they occurred in both current and prior studies.
As a result, a total of 10 pairs of corresponding landmarks were set for each current-prior pair
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Figure 3.19: Pair-wise landmarks annotated in the original current (red markers in left) and prior (green markers
in right) studies. The markers with the same label indicate the corresponding locations annotated in 3D. When
a cursor is placed near the red marker labeled with (in left), its corresponding cursor position calculated by
registration is shown (in right).

(see Fig. 3.19).
Markers annotated in a prior study were deformed onto the corresponding current study,

and the distance between deformed landmarks and fixed landmarks was computed. The
landmark distance error (LDE) is defined as the averaged distance of all pairs of landmarks
annotated for a subject, given in the following equation:

LDE =
∑ dist(𝐿 , 𝐷(𝐿 ))

𝑛 (3.6)

where 𝐿 and 𝐿 are the current and prior markers; 𝐷 refers to the deformation trans-
form; 𝑛 is the number of marker pairs. All distances refer to the root mean square distances
(RMSD). Regarding computational expense, the average computation time per volume was
24.55 seconds for breast segmentation and 7.33 seconds for registration on a machine with a
3.2GHz Quad-Core CPU and 12 GB RAM.

Figure 3.20: Annotated landmarks for current study (red) and prior study (green) aligned by affine transform and
deformable registration. For visualization purpose, the breast volume of prior study is rendered in yellow.

Böhler et al. has developed a non-rigid registration approach that can be applied in current-
prior registration [83]. This method uses a slightly different approach to registration. It begins
by rigidly registering each of the two breasts (left and right) independently. However, after
this step the method combines the two deformations obtained into a single deformation field.
The two rigid deformations are combined using Thin-Plate-Splines interpolation. Subsequently
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Table 3.5: Measuremens statistics and performance comparison with the method presented in by Böhler et al.
[83].

Measurements No registration Proposed method Böhler’s method
Mean of DC 0.17 0.96 0.81
Stddev of DC 0.08 0.008 0.05
Mean of BDE (mm) 57.65 1.64 8.53
Stddev of BDE (mm) 18.16 0.73 2.57
Mean of LDE (mm) 67.37 10.86 15.74
Stddev of LDE (mm) 29.52 5.56 7.98

Figure 3.21: Boxplots of landmark distance error (left) and boundary distance error (right) for proposed method
and Böhler’s method.
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a deformable registration step is performed with the images that combine the two breasts.
In comparison with the method implemented by Böhler et al., statistical results, includ-

ing mean and standard deviation (mean ± stddev), of each metric when applying different
methods are listed in Table 3.5. Values obtained without registration are also calculated. The
results showed that the proposed method achieved higher accuracy in terms of volume over-
lap (DC: 0.96±0.008), boundary alignment (BDE: 1.64±0.73) and internal parenchyma tissue
correlation (LDE: 10.86 ± 5.56). To show the alignment accuracy of landmarks, the deformed
landmarks of a prior study when applying affine transform and deformable registration are
visualized in Fig. 3.20. Notice that the prior landmarks progressively approach the current
landmarks. Moreover, the BDE and LDE calculated for all subjects are plotted in Fig. 3.21.

Further Comparison with Other Methods
Methods to Compare

In this evaluation study, we have independently compared the performance of Böhler’s
method again other popular registration frameworks.

First of all, we considered Affine registration. This method provides comparison grounds
for other registration results and is also used as an initialization step by the two non-rigid
methods evaluated. This method was implemented using the Insight Toolkit (ITK) libraries.
Affine (and in some cases Rigid) registration methods are used because they are fast and
produce images that are artifact-free [94]. Although these methods are very convenient for
some applications, they are global in nature (a single motion is applied to the whole of the
image). This characteristic makes it difficult for them to account for local variations [95].

The second registration method studied in this work is SyN, which is part of the Advanced
Normalization Tools (ANTs) package and uses bi-directional diffeomorphism [96]. These bidi-
rectional diffeomorphisms do not need to distinguish between target and source images thus
enhancing their application scenarios.

We also studied a b-spline based method. Specifically, we considered the ITK implementa-
tion of [97], which uses cubic b-splines. The second one was Nifty Reg, which provides faster
convergence as well as the possibility of improved running time by running in the GPU [98].

Another type of methods studied were demons-based methods. First we used the ITK im-
plementation of the classic algorithm (based on Thirion’s demons [99]) using multi-resolution.
Second, we used the diffeomorphic variant CITE AYACHE. This paper reformulated the original
idea by formalizing the original demons optimization (identified from now on as ”DEM”) as an
optimization procedure over the space of displacement fields. This reformulation allowed the
authors to show how Thirion’s formulation, although apparently very different to the classical
registration pipeline based on an interpolator, an optimizer and a measure to be optimized,
could be fit to a similar schema based on SSD minimization. Among the three variants pre-
sented (according to the deformations allowed in deformation field space), for this study and
for the sake of concreteness, we decided on using the additive one. Notice how methods using
the same working principle might differ greatly in their implementation details, initialization
parameters or even optimization functions, so they do not always produce similar results.

We also included the DRAMMS method [100]. This is a general-purpose non-rigid reg-
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istration algorithm that, as opposed to all the other algorithms studied is not solely based
on intensity values. As its authors claim, DRAMMS bridges the gap between intensity and
landmark-based methods. This is achieved by assigning a rich set of Gabor attributes to each
voxel and then computing a non-parametric transformation. The correspondences between
voxels in this transformation are determined by a function named ”mutual saliency” that aims
at giving more weight in the transformation to more distinctive voxels. These two concepts,
attribute matching and mutual saliency, play the role that similarity metrics do for most reg-
istration methods.

Finally, we also included the method developed during the HAMAM European project by
Böhler et al. [83] (noted as ”HAMAM” in this study).

Data Set

In this comparison study, 31 breast T1-weighted DCE-MRI studies were collected in the
Radboud University Nijmegen Medical Centre (Netherlands). For each patient, a pair of DCE-
MRI studies was available: a DCE-MRI exam acquired in 2011 (current) and a DCE-MRI exam
acquired in 2010 (prior). Breast MRI examinations were performed in coronal or transverse
orientation on either a 1.5 or 3 Tesla Siemens scanner (Magnetom Avanto, Magnetom Skyra
or Magnetom Trio).

Similar to the previous test, for evaluation purposes, landmarks were placed in all pairs of
DCE-MRI volumes by a radiologist with expertise in breast imaging. Each annotation consisted
of two corresponding points, each of which was placed on each of the volumes composing
the DCE-MRI pair. Notice how correspondence of landmarks is a key factor, so if a partic-
ular anatomical structure was only visible in one of the scans it was not used for landmark
placement. Annotations were manually performed by comparing time points, and subtracted
images. Annotations were visually validated on axial, sagittal and coronal planes. This process
already yielded some insight in the difficulties faced by registration methods. For example,
differences in the position of patients during image acquisition (prone or supine) made the
placing of landmarks challenging. Technical differences in the acquisition process or physiolog-
ical changes also added to these problems. Concerning the placement of landmarks, nipples
were marked in all cases. Vessels and fat/glandular tissue margins were also placed whenever
possible. A total of 10 pairs of corresponding landmarks were set for each DCE-MRI pair.

Evaluation Results

Figure 3.22 presents results for the landmark distance criterion (in mm). The box-plot
shows how all methods managed to improve the distance values before registration (BEF
column). Specifically, distance was reduced 30% by the best methods.

Rigid registration obtained satisfactory results although far from the better performing
methods (differences were observed to be statistically significant for SyN and HAMAM). Best
overall results were obtained on average by the HAMAM method although they were very
close to those obtained by SyN (32.61mm and 33.17mm, respectively). The performance
of the HAMAM method against that of the classical demons method (DEM column) was also
studied. Specifically, the HAMAM methods obtained better results than the classical demons
method (the differences were found to be statistically significant).

65



3. Breast Segmentation in MRI: Methods and Applications

Based on the results of this independent study, we can conclude that the method developed
by Böhler achieved the best performance over others. The previous experiment has proved the
proposed method outperformed Böhler’s method (see Table 3.5), therefore, we can conclude
the proposed method was able to obtain better performance over all methods that were tested
in these two experiments.

Figure 3.22: Results of landmark distance.

3.2.5. Summary
In this section, we developed a fully automated spatial alignment framework in application of
registering breast MRI follow-up studies. The proposed framework combines segmentation
and registration techniques, which run efficiently with acceptable time requirements for clinical
applications. The proposed method requires no user interactions and achieves higher accuracy
in terms of the evaluated metrics. Landmark distance error allows for a precise quantification
of registration accuracy associated with breast parenchyma tissues, where breast lesions are
expected to be observed. Therefore, spatial linking of lesions in current and prior studies
becomes feasible by using the proposed registration method.

Additionally, since we perform breast segmentation ahead of registration, our method de-
livers a reasonably higher agreement in breast boundaries and volumetric overlapping. How-
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ever, errors produced in segmentation will influence registration process as well. Experiments
of automatic breast lesion linking in follow up pairs of MRI examinations and the dedicated
user study were conducted and proved its robustness and applicability in practice. Future
work includes incorporating breast parenchyma segmentation into registration step, which
will potentially further improve alignment accuracy of inner parenchyma tissues.

3.3. Application of Breast Segmentation and Current-Prior Reg-
istration

If we apply the techniques of breast segmentation and current-prior registration together, it
can derive practical solutions for many application scenarios. In the following sections, three
representative applications are briefly introduced to demonstrate the practical usage.

3.3.1. Motion Detection and Quantification in Breast MRI
Introduction
Dynamic contrast enhanced (DCE) MRI is used for breast cancer screening examinations for
women of high risk for developing breast cancer. Motion caused e.g. by muscle relaxation or
coughing during image acquisition can reduce the interpretability of breast MRI. For scans with
strong motion, it might be necessary to repeat the scan, but in typical screening workflow,
this is only detected by the radiologist when the woman has already left the clinic. As a
consequence, the woman might need to be recalled for a repeated scan. In this work, a
fully automated tool based on image-processing is proposed to detect and quantify motion for
unambiguous scan quality evaluation before the woman leaves the clinic.

Materials and Methods
Data Set

The breast MRI data set was provided by Radboud University Nijmegen Medical Centre
(RUNMC) and extracted randomly from original breast cancer screening data. In total, 491
screening exams acquired with the current screening MR protocol of RUNMC from 449 patients
were supplied. An expert radiologist manually annotated the clinical image data concerning
motion artifacts focusing on the high resolution images of time point t0 (pre-contrast) and t1
(first post-contrast), as these were assumed to be representative for the whole data set. The
motion artifact was categorized in four classes: no (1), mild (2), moderate (3), or severe (4)
motion. For simplification, the classification was transformed into a two class categorization.
Cases were considered ”positive” if they showed moderate or severe motion. The rating
results are shown in Fig. 3.23. Generally, in this text, ”positive” refers to an image showing
the considered artifact, while ”negative” indicates that the image is not affected by this artifact,
which means that these two terms do not refer to any diagnostic outcome concerning lesions
or tumors.

Automated Detection of Motion
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As the standard DCE breast MRI protocol takes several minutes, it is quite possible that
the woman moves slightly during the examination. As shown in Fig. 3.24, motion between
time 0 (pre-contrast as t0) and the following sequences (post-contrast as t1,...,tn) leads to
blurred maximum intensity projections (MIPs), as they are based on the subtraction of t0. As
only the motion between t0 and t1 was rated by the radiologist, we only consider t0 and t1
as a simplification in this first approach.

To quantify the motion artifact between t0 and t1 (not within one single acquisition),
prominent edges delineating the boundary contours of parenchyma, skin and pectoral muscle
were detected in both t0 and t1 studies (see Fig. 3.25(a)) using the method introduced in
Section 3.1. Irrelevant motion that occurred in the thorax, such as heart, lung or liver motion,
was excluded by a fully automatic breast segmentation, which confines edge detection only to
the inside of the breast region. Due to the administration of contrast agent and the consequent
enhancement of previously faint structures, normally more edges would be captured in t1
compared to t0 using identical parameter settings for edge detection (see Fig. 3.25(b)). We
adopted the Canny edge detection algorithm using a Gaussian smoothing kernel with sigma
of 1.5 mm (resolution of the images in transversal plane is 0.8mm × 0.8mm). To speed up
processing, we only focused on the 10 central slices instead of the entire volume, based on
the observation that most noticeable motion occurred in these slices and thus, the motion
captured here revealed the extent of motion artifact of the entire difference image.

Motion of corresponding breast tissue structures appearing between t0 and t1 results in
deformation of their boundaries, thus the deformation of edges can be used to quantify mo-
tion strength. In practice, both linear and non-linear deformed edges were demonstrated.
Therefore, a simple distance measure between the two sets of detected edges was not suit-
able to reflect the motion extent, since it was quite difficult to align the two edge sets and
find accurate edge pairs for distance calculation (see Fig. 3.25(c)).

To cope with the alignment problem, we employed the fast and non-rigid registration
method with a volume preservation constraint introduced in Section 3.2, aiming to register t1
(moving image) onto t0 (fixed image). The obtained deformation field had the same resolution
as t0 (see Fig. 3.25(d,e)). A 3D deformation vector was assigned to each single voxel in t0
representing the direction and magnitude (strength) of the motion occurred in that voxel. The
magnitude of the deformation vectors of all the edge voxels detected in t0 was saved to a list,
which encoded the motion strength along edges (see Fig. 3.25(f)). Then, a histogram was
generated from the magnitude list and a set of features was extracted from the histogram as
follows:

• Mean

• Standard deviation

• Peak

• Maximum

• Q25: quantile corresponding to of 25% of the distribution
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• Q50: quantile corresponding to of 50% of the distribution

• Q75: quantile corresponding to of 75% of the distribution

• Q90: quantile corresponding to of 90% of the distribution

• Average on top range: the average of magnitudes in range [Q50, Max]

Finally, these features were used for training a Random Forest (RF) classifier [101], which
served as a decision maker to predict whether a test case had moderate/severe motion artifact
or not. In Fig. 3.25 and 3.26, the motion detection results are shown for the two cases we
previously demonstrated in Fig. 3.24 (a) with motion and (b) without motion. The average
motion strength measured for the case with a motion artifact shown in Fig. 3.25 was 1.21mm,
which means on average the edge voxels were deformed by 1.21 mm, leading our classifier to
make a positive decision. For the case without a motion artifact, the average motion strength
shown in Fig. 3.26 was 0.21 mm, resulting in a negative decision by our classifier. In both
figures, the areas with strong motion are marked by red squares, where one can observe
larger deformation magnitude in the positive case (see Fig. 3.25(e)), while for the negative
case, the deformation magnitude is much lower (see Fig. 3.26(e)).

Figure 3.23: Incidence and degree of motion artifact in the considered data set as rated by an expert radiologist.

Results
To evaluate the performance of the motion classifier, 10-fold cross validation at patient

level was applied to objectively report prediction accuracy. Test results presented as receiver
operating characteristic (ROC) curve and statistical measures are depicted in Fig. 3.27. By
selecting 0.5 as the classification threshold, it was shown that the classifier obtained a high
specificity of 0.965, which means 391 out of 405 cases were classified correctly as showing
no-motion. A sensitivity of 0.535 (46 out of 86 moderate and severe cases were detected
correctly) with low false positive rate (0.035) was achieved. Moreover, if we intended to
further decrease the false positive (FP) rate, elevating the classification threshold to 0.67
would achieve a fairly good (low) FP number as 6, while keeping true positive (TP) number
as high as 36. The overall area under the ROC curve was 0.834.

Representative FP and false negative (FN) cases are demonstrated in Fig. 3.28 and 3.29,
respectively. The FP case shown in Fig. 3.28 was rated by the radiologist as 2 (mild mo-
tion), and the mean motion strength evaluated by the method was 2.76 mm. The reason of
inconsistency between expert annotation and method prediction might be that the criteria of
judging motion artifact is different. Despite of a relatively strong motion in the image, the
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Figure 3.24: Maximum intensity projection images of the difference images (a, b) t1 – t0, (c, d) t2 – t0, (e, f) t3
– t0, of the same woman. Left column represents a case without motion and right column with moderate motion,
especially in the right breast (left in the image).

Figure 3.25: Illustration of motion quantification for the positive case shown in Fig. 3.25(right column). Its average
motion strength is 1.21 mm. Detection scheme: (a) detected edges in t0 (red contours); (b) detected edges in t1
(green contours); (c) detected edges in t1 (green) overlaid with edges in t0 (red); (d) visualization of deformation
vectors showing correspondence between edges in t0 and t1; (e) magnified view of the deformation vectors in
the red square in (d); (f) color map of deformation magnitude (displacement in mm) calculated for edge voxels in
t0, red correlates with strong motion.
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Figure 3.26: Illustration of motion quantification for the negative case shown in Fig. 3.25(left column). Its average
motion strength is 0.21 mm. Detection scheme: (a) detected edges in t0 (red contours); (b) detected edges in
t1 (green contours); (c) detected edges in t1 (green) overlaid with edges in t0 (red), yellow indicates perfect
alignment of both; (d) visualization of deformation vector showing correspondence between edges in t0 and t1;
(e) magnified view of the deformation vectors in the red square in (d); (f) color map of deformation magnitude
(displacement in mm) calculated for edge voxels in t0, blue correlates with weak motion.

ultimate judgment made by the radiologist is to investigate whether the motion can impede
subsequent diagnosis. The same reason might account for the inverse relation between man-
ual annotation and automatic classification. The FN case shown in Fig. 3.29 was rated as 3
(moderate motion) by the radiologist, but the mean motion strength evaluated by the algo-
rithm was only 0.5 mm. The inconsistency might be caused by the fact that the area, where
even mild motion was detected, is quite important for diagnosis, which leads to a higher rating
by human observer. Further improvements might face this challenge.

Figure 3.27: Classification accuracy obtained by 10-fold cross validation: ROC curve (left); classification accuracy
with classification threshold of 0.51 (middle text block) and 0.67 (right text block).

3.3.2. Automatic Spatial Linking of Breast Lesions
In breast cancer screening for high-risk women, inclusion of prior MRI examinations can in-
crease screening specificity. However, interpreting and correlating breast lesions across longi-
tudinal 4D MRI data is time consuming. Therefore, automatically linking the lesions detected
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Figure 3.28: A FP example: (a) detected edges in t0 (red contours); (b) detected edges in t1 (green contours);
(c) detected edges in t1 (green) superimposed with edges in t0 (red), and yellow represents completely overlaid
contours; (d) color map of deformation magnitude (deviation in mm) calculated for edge voxels in t0, and red
correlates with strong motion.

Figure 3.29: A FN example: (a) detected edges in t0 (red contours); (b) detected edges in t1 (green contours);
(c) detected edges in t1 (green) superimposed with edges in t0 (red), and yellow represents completely overlaid
contours; (d) color map of deformation magnitude (deviation in mm) calculated for edge voxels in t0, and blue
correlates with weak motion.
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in breast MRI follow-up examinations is required for the development of a computer-aided
diagnosis system to quantify characteristic changes of the lesions. In this experiment, we
evaluated the registration method on the application of automatic linking of lesions detected
in breast MRI follow-up studies.

From 51 subjects participating in a MRI screening program, we collected 102 dynamic con-
trast enhanced MRI images, forming 51 pairs of follow-up studies. Current and prior examina-
tions were acquired in different scanners with a time interval of one year, using transversal and
coronal views, respectively. One experienced radiologist manually placed 71 pairs of markers,
indicating the center locations of 71 pairs of lesions found in both current and prior studies.

Automatic lesion linking is achieved by registering current and prior MRI examinations us-
ing the non-rigid registration framework that we have proposed (see Section 3.2). Based on
the deformation fields obtained by registration, markers labeling the lesions in the current im-
age were transformed to the prior image frame, where the distance between the transformed
markers and the markers originally labeled in prior images was computed. The average dis-
tance error was 9.6 ± 9.3 mm. The proposed system is potentially applicable to automatically
link the lesions detected in a CAD system to investigate the characteristic changes. The soft-
ware prototype and the linking accuracy are illustrated in Fig. 3.30.

3.3.3. Computer-aided Breast Lesion Localization
In this study, we evaluated a computer-aided lesion tracking system by comparing the time
cost for localizing lesions in follow-up scans with and without tracking aid. The tracking aid
system is based on the registration technique introduced in Section 3.2. From a MRI screening
program, we collected 83 women with 83 pairs of current and prior DCE-MRI images including
a total of 111 enhanced breast lesions. These 166 DCE-MRI scans were acquired in different
scanners with a time interval of one year using different imaging protocols.

A dedicated workstation visualizing current and prior MR scans in two separate axial viewers
was used. Two reading sessions were defined. In the first session without computer aid, for
each pair of follow-up scans, lesions were automatically indicated in the current study. Then,
the reader sought and localized the corresponding lesions in the prior study. In the second
session tracking aid was activated. When a lesion in the current scan was indicated, the system
automatically navigated the cursor in the prior scan to the tracked location of the lesion. The
reader manually adjusted the cursor if it was incorrect. The time since the lesion was indicated
in the current scan until the reader identified it in the prior was recorded in both sessions.

An experienced radiologist (R1) and a radiologist in training (R2) performed the two reading
sessions with one day break in between. The time of each reader spent on localizing lesions
with and without computer aid was compared.

As a result, the two readers succeeded to identify all the lesions in prior studies with
and without the use of the tracking tool. Average localization time without tracking aid was
14.5±13.4 and 20.8±11.1 seconds for R1 and R2, respectively. Average localization time with
tracking aid was 7.5 ± 7.8 and 11.0 ± 6.6 seconds for R1 and R2, respectively. The statistical
result is summarized in Fig. 3.31. The computer-assisted tracking tool led to significant
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Figure 3.30: Illustration of lesion tracking results. Current and Prior subtraction images are visualized on left and
right viewers in axial, coronal and sagittal planes. For the lesion indicated in current study (red arrow), its position
in prior study (green arrow) is automatically given by the tracking system.
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reduction of the time cost for lesion localization in breast MRI follow-up studies. The software
prototype used in this study is given in Fig. 3.32.

Figure 3.31: Statistical results of the time cost spent by two readers with and without computer aids.

Figure 3.32: A snapshot of the workstation with tracking aid. Current and prior subtraction images are visualized
in left and right viewers. For the lesion indicated in current study, its position in prior study is automatically given
by the tracking system.

3.3.4. Summary
In this section, we listed several successful applications that take the advantages of the de-
veloped segmentation and registration techniques. In the application of motion detection
and quantification, an automated approach for motion detection in breast DCE-MR images
was presented. Based on the manually annotated data set, the algorithm showed to extract
meaningful features that allow a robust automatic classification. Such a system can be used
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to trigger an alert after acquisition to warn the technician that the study quality is too low.
This would allow re-scanning the women shortly after the first scan, thus preventing unnec-
essary call-backs. In the applications of automatic lesion spatial linking, we have proved how
the developed tools assist the radiologists in reading current and prior breast MRI studies by
increasing the efficiency of lesion interpretation work flow. We believe more application can
be definitely explored.
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4.1. Introduction
Dynamic contrast enhanced MRI has been widely used in breast cancer screening of high risk
patients, preoperative staging, and post-treatment follow-up, for its high sensitivity. According
to the BI-RADS lexicon, breast lesions are classified into mass, nonmass, and foci [105]. The
detection and diagnosis of breast cancer in its intraductal stage might help to prevent from
growing to invasive cancers [106]. DCE-MRI is increasingly used as an important new tool in
the detection, diagnosis, staging and management of breast cancer [107]. The key benefits
of breast MRI are its high sensitivity in detecting breast carcinoma and the ability of depicting
cancers that are occult on mammography, ultrasound, and clinical breast examinations [108].
Compared to other modalities, DCE-MRI offers not only information on lesion morphology
but also on functional features such as tissue perfusion and enhancement kinetics [109]. The
breast cancer is diagnosed using DCE-MRI by interpreting the enhancement patterns of lesions
and morphological characteristics [110, 111]. Despite possessing a very high sensitivity that
usually exceeds 90%, the reported lower specificity of breast MRI limits its application only on
specific patient groups, such as women with high risk or with suspected abnormalities [108,
110, 112, 113]. In recent years, breast MRI is recommended as an additional screening
modality of breast cancer to mammography in selected population groups with elevated risk.
Annual MRI screening is recommended for the women with a BRCA mutation, women who
are untested first-degree relatives of a BRCA carrier, and women with a lifetime breast cancer
risk between 20−25% or greater [114, 115]. First results of various large prospective studies
have shown that MRI appears to be about twice as sensitive as mammography in detecting
tumors in women at high familial risk of breast cancer [116]. Other than screening, breast
MRI has been shown to be advantageous for evaluating patients with a new breast cancer
diagnosis, monitoring patients undergoing neoadjuvant chemotherapy, and evaluating patients
with metastatic axillary findings [108].

The diagnosis of breast cancer in its intraductal stage might help to prevent it from be-
coming invasive cancer [103]. However, the delineation and diagnosis of non-masses, most
notably DCIS, is challenging in breast MRI reading even for human observers [103, 104].
Clinical evidences show that the kinetic parameters have the potential to distinguish benign
and malignant in masses more effectively, but fail to demonstrate usefulness in discriminat-
ing the non-masses [104]. Therefore, the computer-aided diagnosis tools strongly relying on
kinetic features often fail in classifying non-masses. In terms of sensitivity and specificity in
non-masses, no previous trials achieved a performance matching CAD approaches for solid
masses [103]. To achieve better performance, there is a demand for prominent morphological
features depicting the lesion shapes and distributions [102].

4.2. Related Works
A major limitation of breast MRI is its relatively lower specificity, which can result in many
false positive findings, unnecessary recalls and biopsies [112, 117]. The lower specificity
is attributed to many factors, such as the overlapping imaging features of benign and ma-
lignant lesions [108], lack of standardization regarding image acquisition and interpretation
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guidelines [109], reader expertise in interpreting MRI sequences [118]. Meanwhile, multi-
parametric MRI sequences generate a huge amount of data that increase the working load of
radiologists. Recent studies showed that lesions are regularly overlooked or misinterpreted in
breast cancer screening programs with MRI [119, 120]. Therefore, computer-aided diagnosis
(CAD) systems are required. CAD systems are able to assist radiologists and physicians in ana-
lyzing a substantial amount of morphological, kinetic and texture features of breast suspicious
findings, reducing the intra- and inter-observer reading variability and ultimately improving
the diagnostic accuracy. Clinical evidences have shown that using CAD tools for breast MRI
may help to reduce false positives [110, 121, 122]. Normally, a CAD system of breast MRI
consists of two stages: detection and diagnosis, which are designed with different focus. The
detection stage concentrates on detecting all suspicious lesions, while the diagnosis stage
strives for classifying the suspicious lesions into benign and malignant types.

Recently, a few CAD systems focusing on detecting breast lesions in MRI have been re-
ported [123–127]. A convolutional neural networks (CNNs) was employed by Ertas et al. to
establish a knowledge-based lesion localization technique, which was applied on a 3D normal-
ized maximum intensity-time ratio (nMITR) map [123]. The method developed by Vignati et
al (2011) et al. used subtracted mean intensity projection images over time, which were nor-
malized using the contrast uptake of the mammary vessel [124]. Renz et al. (2012) evaluated
a fully automatic detection system that segmented lesions with a hierarchical 3D Gaussian
pyramid approach [127]. More recently, Chang et al. (2014) combined kinetic and morpho-
logical features to identify focal tumor breast lesions [125]. Gubern-Merida et al. proposed
a two-stage machine learning approach using both voxel and region features to locate the
lesions and evaluate their malignancy degrees [126].

Compared to detection, more studies were published in the field of diagnosis [128–136].
These works assumed the lesions have been detected either manually or automatically. Fea-
tures depicting morphologies, kinetic enhancement patterns and textures of the breast lesions
were explored to discriminate benign and malignant tumors. Chen et al. used a fuzzy c-means
(FCM) clustering-based technique to automatically identify characteristic kinetic curves (CKCs)
from breast lesions and extracted the features from representative CKCs in the task of lesion
classification [128]. The same group developed a subsequent diagnosis system by adding
morphological and texture features that yield better diagnosis performance [129]. Levman et
al. evaluated the effects of variations in temporal feature vectors and kernel functions on the
the separation of malignant and benign DCE-MRI breast lesions by SVM [130]. Textural kinetic
feature expressing the spatiotemporal changes in breast lesion texture was investigated for
lesion discrimination in the work proposed by Agner et al. [131]. A new feature characterizing
the lesion fractional volume of washout was proposed by Huang et al., and the study shows
the washout volume fraction was significantly larger for malignant breast tumors than for be-
nign lesions [132]. Agliozzo et al. developed a CAD system to diagnose mass lesions based
on a support vector machine (SVM), which was trained using a combination of morphological,
kinetic and spatiotemporal feature set [136]. Hoffmann et al. evaluated the discriminative
power of a set of morphological and kinetic descriptors separately, and the Zernike velocity
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moments capturing the joint spatiotemporal behaviors of the lesions, to diagnose a collection
of nonmass breast lesions [133]. More recently, Wang et al. combined a broader range of
characteristic features depicting 3D morphology, shape, texture, and pharmacokinetic model
kinetics of breast lesions, resulting in a higher tumor classification accuracy of 91.67% [134].
Yang et al. investigated a new approach to improve diagnostic performance based on the auto-
mated detection and analysis of bilateral asymmetry of characteristic kinetic features between
left and right breasts [135]. Goto et al. [111] directly compared the diagnostic performance of
DCE-MRI (early enhancement) with that of high-spatial-resolution MRI (morphologic features)
for the first time. They claimed that in the majority of cases breast lesions were correctly di-
agnosed merely based on certain morphologic features, which makes those features more
important than early enhancement for differentiating malignant breast lesions from benign.
The accuracy of 95% and 87% were achieved for masses and non-masses respectively.

In these previous detection and diagnosis CAD systems, most of them were developed and
evaluated on relatively small datasets [124, 125] or on a dataset comprising only mass lesions,
which does not cover the entire spectrum of malignant breast lesions such as nonmass and foci
enhancing lesions [123, 127, 128, 132, 136]. Among the detection systems, the accuracies
in term of free-response operating characteristic (FROC) were reported with a large variance.
The best FROC value reported was 0.69 false positives (FP) per case at detection rate of 99%
on 76 mass lesions [123]. Gubern-Merida et al. achieved a FROC value of 4 FP per case at
detection rate of 89% on a larger data set comprising 219 lesions, whereas benign lesions
were not included [126]. Most of the diagnosis systems did not integrate a detection stage and
assumed that the lesions were identified in advance. A fully automated system incorporating
both stages was present by Renz et al, yielding a diagnostic accuracy of 93.5% by testing
141 mass lesions [127]. The two-class classification performance reported in most diagnosis
systems was measured by area under the curve (AUC) value, which ranged from 0.74 [133] to
0.96 [136]. The minimal AUC was obtained by testing 84 nonmass lesions, while the maximal
AUC was achieved on a data set comprising 73 mass lesions. Discriminating nonmass lesions,
most notably ductal carcinoma in situ (DCIS), is challenging in breast MRI reading. Clinical
evidences show that the kinetic parameters were more effective in discriminating mass lesions,
but failed to discriminate benign from malignant nonmass lesions [137]. Therefore, it is still
an open issue but highly on demand to devise a fully automated CAD system that is:

• equipped with both detection and diagnosis stages.

• applicable on all lesion types: mass, nonmass and foci.

• capable of reaching higher detection and diagnosis accuracy with less computational
efforts.

4.3. Materials and Methods
In this work, we propose three novel morphological features, describing lesion shapes based
on the already existing sphere packing algorithm [138], in combination with Zernike descriptors
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[27]. These features lead to a more precise shape based delineation of malignant and benign
lesions and thus a higher discrimination accuracy. Beside introduction of novel morphological
features, the contribution of this work lies in the feature extraction and selection of the features
and the evaluation of their performance in discriminating benign and malignant non-mass-like
lesions. All these feature types are integrated as modules into a CAD framework implemented
on MeVisLab platform2. The processing pipeline depicting each individual module is shown in
Fig.4.1. To test the performance of the introduced features, we conducted several experiments
using a data set including 86 patients with 106 non-mass-like lesions, among which 68 were
pathologically confirmed malignant, and 38 were benign findings. We evaluated the classifier
performance using the mentioned features with a Random Forest (RF) classifier in a 10-fold
cross-validation scheme, and we achieved an accuracy of 90.56%, precision of 90.3%, and the
area under the ROC curve (AUC) value of 0.94.

Figure 4.1: The integrated framework comprising preprocessing, feature extraction and selection, and lesion
analysis modules.

4.3.1. Imaging Technique and Data Set
The DCE-MRI images were acquired on a 1.5 T scanner (Magnetom Vision, Siemens, Erlangen)
in Nijmegen, Netherlands. A dedicated breast coil (CP Breast Array, Siemens, Erlangen) was
used in prone patient placement. The pixel spacing differed between volumes with values
ranging from 0.625 mm to 0.722 mm. The slice thickness was 1.3 mm, and the volume
size was 512 × 256 × 120 voxels. TR and TE were 6.80 s and 4.00 s, respectively, at a 20
degree flip angle. All patients were histologically confirmed by needle aspiration/excision
biopsy or surgical removal. Subsequently, the amount of malignant lesions were 68, most of
which were diagnosed as DCIS. The rest were diagnosed as invasive ductal carcinoma (IDC),
invasive lobular carcinoma (ILC), lobular carcinoma in situ (LCIS) and metastasis. On the other
hand, benign histologic findings were found in 38 lesions including fibrocystic changes (FCC),
adenosis and hyperplasia. One experienced radiologist retrospectively reviewed the histologic
reports and identified the reported lesions. All the lesions were manually segmented with a
computer-assistant tool using region-growing and manual correction.

4.3.2. Feature Extraction
A total of four morphological features are proposed, including three novel shape descriptors
based on the already existing data structure generated by sphere packing algorithm, plus the
2MeVisLab: Medical image processing and visualization platform:
http://www.mevislab.de [Accessed on 16 March 2016]
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Zernike descriptors. These features are able to efficiently describe the shape and distribution
properties of the lesions.

Features Based on Sphere Packing
The morphological features that we explored are extracted using the data structures gener-
ated by the sphere packing technique [138], which is a new and promising data representation
for several fundamental problems in computer graphics and virtual reality, such as collision
detection and deformable object simulation. The algorithm iteratively fills the lesion with a
fixed number of non-overlapping spheres starting with the one with the largest possible ra-
dius, under the condition that they should completely locate inside the lesion. Next, all the
components of the spheres (3D coordinates and radius) are normalized by scaling down to
unit length with respect to their minimum and maximum values of the components. Once
each lesion is packed by the aforementioned spheres, the following morphological features
are extracted.

a) Volume-radius histogram: A histogram in which the radius ranges of internal spheres
lie on the x-axis with an arbitrary number of bins and the y-axis is the sum of the sphere
volumes with the radius falling into a bin. The sphere packing initially occupies as much vol-
ume from the lesion as possible with the biggest possible sphere. Therefore, in benign lesions
(with a more regular or round shape), the majority of the lesion space is occupied by a few
number of sizable spheres and the rest by considerably smaller ones. In contrast, in malignant
lesions, most of the volume is occupied with medium-sized spheres (Fig. 4.2). More detailed
description about this feature is given in Sec. 1.2.4.

Figure 4.2: The volume-radius histogram (indicated by blue distribution) of two lesions packed with spheres.
In benign lesions (left) most of their space is filled with sizable spheres; in malignant lesions (right), medium-sized
ones occupy most of the internal space.

b) Packing fraction of enclosing sphere: For each lesion, all the internal spheres gen-
erated by the sphere packing algorithm were enclosed by a bigger sphere or ball and the
occupied fraction of that is calculated as a feature. It is dimensionless and always less in unit
range. Several strategies can be applied to define the center point’s location of the afore-
mentioned sphere, such as mean centering of coordinates, placing it between the two most
distant spheres, in the center of the largest internal sphere, and the center of the smallest
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enclosing ball [139]. In benign lesions (which often have a regular and round shape) the
enclosing sphere is more occupied and has less empty gaps than the malignant ones. This
fraction is closer to one for benign and is near zero for malignant lesions.

c) Graph topological features: Graph analysis can assist characterizing the complex
structures, leading to a better realization of relations that exist between their components
[140]. In this work, it is adapted to characterize the spatial arrangement of the lesion’s inter-
nal spheres. We constructed the graphs, in which the center points of embedded spheres are
considered as nodes, and spatial relationship between them as edges with weights accord-
ing to their distance. Several structures, including Prim’s and Kruskal’s minimum spanning
trees, relative neighborhood, Gabriel, and 𝛽-skeleton graphs were examined to gain the best
accuracy (Fig. 4.3). Finally, the Gabriel graph showed the highest [141]. Furthermore, spa-

(a) (b) (c) (d)

Figure 4.3: Kruskal’s (a) and Prim’s (b) minimum spanning trees, relative neighborhood (c), and Gabriel (d) graph
structures obtained by connecting internal spheres.

tial constraints such as maximum neighbors (K-Max) were employed to form sub-graphs. We
used several cluster validity indices, such as graph compactness indices, edge density, struc-
ture linearity [142], Dunn’s Index, Davies Bouldin index, MinMaxCut, graph’s cohesion [143],
modularization quality, global silhouette index, Jaccard Coefficient, Folkes, Mallows, Hubert,
and Arabie’s indices [144] to extract the global and local graph-based geometrical features.
The feature vector is formed by the values of all the aforementioned indices.

3D Zernike Descriptors
Moment-based descriptors have been broadly used for object recognition [27] and shape
matching [28] to provide a compact numerical expression of the spatial features. We extracted
3D Zernike descriptors using an extension of spherical-harmonics-based descriptors, presented
by Novotni and Klein [35], which captures object coherence in the radial direction. More
detailed description about the Zernike features is given in Sec. 1.2.3.

4.4. Results and Evaluations
To evaluate the machine learning methods, the following metrics were used:

• TP Rate is the rate of true positives in results.

• FP Rate is the rate of resulted false positives.
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• Precision is defined as the fraction of elements correctly classified as positive out of all
the elements the algorithm classified as positive.

• ROC Area is the area under the curve (AUC), the evaluation for the classifier perfor-
mance.

4.4.1. Classification Results without Feature Selection
To examine the performance of the proposed features, the first evaluation was conducted
without applying any feature selection. We adopted all 106 findings comprising 68 malignant
and 38 benign lesions. Each lesion was packed with 4000 spheres. The parameter tuning
for the aforementioned features was performed by parameter sweeping of values in a multi-
dimensional parameter space and applying the following classification on the feature vectors
of each combination to get the best parameter values of the highest accuracy (see Table 4.1).

Feature extraction module Parameters Best value No. Features
Volume-radius histogram Number of bins 50 50
Packing fraction of the enclosing ball Center point’s location Mean centering 1
Graph morphological features K-Max, Graph type No. nodes, Gabriel 19
Zernike descriptors Maximum order 15 72

Table 4.1: Feature types and their parameter space, plus the optimized values and number of their output features.

For validation of the extracted features, binary classifiers - including Random Forest, Naive
Bayes, AdaBoost, and Support Vector Machine (SVM) - were trained with a total of 142 fea-
tures acquired from the above mentioned methods. For each classifier, a stratified 10-fold
cross-validation scheme was applied on the lesions in the data set. The classification power,
expressed as AUC is listed in Table 4.2. The best results were achieved with the RF classifier.

Classifier type TP Rate FP Rate Precision AUC
ben. mal. ben. mal. ben. mal. ben. mal.

Random Forest 0.78 0.91 0.08 0.21 0.83 0.88 0.90 0.90
Naive Bayes 0.86 0.44 0.55 0.13 0.46 0.85 0.66 0.81
AdaBoost 0.65 0.89 0.10 0.34 0.78 0.82 0.83 0.83
Support Vector Machine 0.68 0.29 0.70 0.31 0.35 0.62 0.48 0.48

Table 4.2: The TP and FP rates, precision, and AUC values from classification results of different lesion types using
four different classifiers (ben. is benign and mal. is malignant). Here the RF classifier outperforms the other three.

4.4.2. Classification Results with Feature Selection
For the machine learning algorithms, it is important to use feature reduction mechanisms to
decrease over-fitting of the training data. Taking advantage of Mean Decrease in Accuracy
(MDA) and Mean Decrease GINI (MDG) [145] as variable importance criteria, from a total of
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142 features in features set, the top 30most effective ones were selected for evaluation. Using
the RF classifier, MDA ranking showed a higher accuracy than MDG. Among the top features
rated by MDA, volume-radius histogram, packed fraction of enclosing ball, graph features, and
Zernike descriptors features gained the highest order respectively. It should be mentioned
that, among those features, only three graph features of linear structure, new compactness
index 𝐶𝑝∗, and Dunn’s index [144] (Eq. 4.1) appeared on the top 30 MDA features.

( )
( , )
( ) , ∗

∑ ∑ ( , )

( )/ (4.1)

Figure 4.4 shows the variable importance plot obtained from RF. It can be seen that among
the 30 most important features in both MDA and MDG rankings, the first place belongs to the
features of volume-radius histogram method (black features). Zernike moments features are
in the second place of importance, especially in MDA ranking. The third rank belongs to the
graph features, including only three features of New Compactness Index CP , linear structure
and Dunn’s Index. As not many spherical shape histogram features can be seen among the
most important features, they place fourth.
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Figure 4.4: Variable importance in Random Forest evaluation. On left, the Mean Decrease Accuracy ranking
depends on how well the model actually predicts. On right, the Mean Decrease Gini ranking reflects the overall
goodness of fit. The two indices measure different things, but they are related.

Furthermore, applying the Principal Component Analysis (PCA) feature selection was in-
vestigated to reduce the dimensionality even more and find the best correlation between the
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features. However, no improvement was seen in the evaluation results. Table 4.3 shows the
classification results of the RF using 10-FCV before and after applying MDA, MDG, PCA over
MDA, and PCA over MDG.

Feature No. TP Rate FP Rate Precision Accuracy AUC
selection features ben. mal. ben. mal. ben. mal. ben. mal. ben. mal.

No selection 142 0.789 0.912 0.088 0.211 0.833 0.886 13.2% 86.79% 0.907 0.907
MDG 30 0.816 0.956 0.044 0.184 0.912 0.903 9.43% 90.56% 0.935 0.935
MDA 30 0.816 0.956 0.044 0.184 0.912 0.903 9.43% 90.56% 0.94 0.94
PCA on MDG 5 0.763 0.941 0.059 0.237 0.879 0.877 12.26% 87.73% 0.935 0.935
PCA on MDA 5 0.816 0.926 0.074 0.184 0.861 0.900 11.32% 88.67% 0.936 0.936

Table 4.3: The classification results of the RF using 10-FCV before and after applying MDA and MDG rankings, plus
PCA on them (ben. is benign and mal. is malignant).

To sum up, the proposed method in differentiating between malignant and benign lesions,
achieved the accuracy of area under the ROC curve of 0.936 using Random Forest classifier.
The processing time for the trained classifier to provide the results is around 4.2 seconds using
a 3.5 GHz Intel CPU and a GeForce GTX 680 graphics card.

Figure 4.5 shows some of samples in evaluation which are correctly classified ((a), (b),
(c), (d)), along with the cases which are classified incorrectly ((e), (f)). Several illustrations
can be seen in the figure which represent different steps of feature extraction process.

4.5. Discussion
This paper focuses on utilizing the sphere packing (non-overlapping and non-uniform radii) to
develop a set of novel morphological features to classify breast non-mass-like lesions. Under
the assumption that malignant lesions tend to have irregular shapes and margins compared to
benign lesions (which have more regular and round shape), the sphere packing based features
can effectively capture the shape differences and thus increase the discrimination accuracy.
All the proposed features are translation, rotation, and scaling invariant, since they either are
coordinate free features, or because we normalized the data at first.

To our knowledge, this is the first time that such an shape representation has been in-
vestigated for classifying non-mass lesions in MRI. One advantage of sphere packing is that it
can describe volumetric shapes more concisely than a voxel representation or mesh surface.
In addition, it allows for deriving additional meta-representations (e.g. proximity graphs and
skeletons), which we investigated in this work too. Among many other insights, we discov-
ered that the volume-radius histogram is a particularly efficient shape descriptor to classify
non-mass breast lesions into benign and malignant.

To reduce the redundancy of the extracted features, we investigated the application of two
feature selection techniques: MDA and PCA to decrease the over-fitting of the data. The classi-
fication performance of these features was tested with a data set of 106 non-mass-like lesions
collected from 86 patients. Two experiments comparing the performance with and without
feature selection were conducted. The classification accuracy, using different classifiers was
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evaluated. The best AUC value of 0.94 was achieved when using MDA selected features with
a RF classifier and 10-FCV scheme. The experiment demonstrated the discriminative power of
our proposed features and their potential to increase the diagnostic accuracy of a CAD system.
Reducing the number of features to 30 using MDA leads to very low over-fitting and unbiased
results at the end. In the future, we will focus on further improving the calculation efficiency
of these features and also investigate more features based on the sphere packing.

We acknowledge that there are limitations in our study. To the best of our knowledge, there
is no validated data set for non-masses publicly available that we can perform a benchmark
on and compare the results with others. Therefore, we used the aforementioned data set that
was labeled meticulously by radiologists, which makes it the best-suited data set for our work.
The result could differ from what we have achieved when a different dataset is given.
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Figure 4.5: Classification evaluation sample data. In this figure several steps of feature extraction are illustrated
for different benign and malignant cases. From left to right: the original lesion volume, the packed lesion ge-
ometry with spheres, the graph topology based on connecting the center points, enclosing spherical wire frame
that partitions lesion’s surrounding space to acquire elements (embedded spheres) distributions, volume-radius
histogram, and the corresponding chart based on the Principal Components (PC) attributes of the lesion are rep-
resented. (a,b) show two examples of true positive cases which their types are benign and they are classified as
benign too. (c,d) show two examples of true negative cases which their types are malignant and they are classified
as malignant too. (e) shows an example of false negative case which its type is malignant but it is classified as
benign. (f) shows an example of false negative case which its type is benign but it is classified as malignant.
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5.1. Introduction
In complement to mammography, automated breast ultrasound (ABUS) emerges as an impor-
tant imaging modality applied in breast cancer screening, especially on patients with dense
breasts where the sensitivity of mammography is poor. Mammography suffers poor sensitivity
in screening patients with dense breasts. Recent studies reported that supplemental ABUS
increases detection rate of small and mammography occult breast cancers [146, 147]. In clin-
ical diagnostic procedure, nipple position provides useful diagnostic informations in reading
automated 3D breast ultrasound (ABUS) images. Hence, the interpretation of ABUS data has
gained significant interests in computer-aided diagnosis (CAD) of breast cancer [148, 149].

In a CAD system, nipple position is an important reference marker which allows for local-
izing the quadrants of breast lesions. On the other hand, the nipple position can be used to
measure the distance between the breast lesions and the nipple. Furthermore, given data ac-
quired in other imaging modalities, such as mammography, MRI or tomosynthesis, registering
images across multiple modalities requires nipple positions as effective reference landmarks
to improve registration accuracy. However, the presence of speckle noises caused by the
interference waves and variant imaging directions in ultrasonography challenge the task of
automatic identification of the nipple position.

In this chapter, the application of Laplacian-based and Hessian-based shape descriptors is
presented to demonstrate how these descriptors have been used in the task of automatic de-
tection of nipple position in 3D ultrasound images. The algorithm description and performance
evaluation are organized in the following sections: First, section 5.3.1 introduces a fast and
automated algorithm to detect nipples in 3D breast ultrasound images. The method fully takes
advantages of the consistent characteristics of ultrasonographic signals observed at nipples
and employs a multi-scale Laplacian-based blob detector to eventually identify nipple posi-
tions. Second, to combine the power of Hessian and Laplacian shape descriptors, in section
5.3.2, a hybrid fully automatic method to detect nipple positions in ABUS images is presented.
The method extends the multi-scale Laplacian-based method that we proposed previously,
by integrating a specially designed Hessian-based method to locate the shadow area beneath
the nipple and areola. Subsequently, the likelihood maps of nipple positions generated by
both methods are combined to build a joint-likelihood map, where the final nipple position is
extracted.

5.2. Related Works
Compared with other commonly used imaging modalities, such as mammography, 2D ultra-
sound, MRI or Ct, 3D breast ultrasound is a relatively new imaging sequence. Therefore, only
a few groups are dedicated in the development of automated processing algorithms or tools,
including nipple detection. After a rigorous literature review on this topic, to the extent of
our knowledge, only one scientific publication was found, which is the work of Moghaddam et
al. [150]. In their contribution, a machine learning based approach was proposed. First, all
images were normalized to eliminate the intensity variation to improve the feature expression
ability. Then, multi-scale blobness features were extracted and fed to a gentle boost classifier
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for training. To assess the performance of the trained classifier, a total of 294 different 3D
breast ultrasound images were used for testing. As a result, the method could accurately
located the nipple in 90% of the anterior-posterior views and 79% of other views. It was
noticed that the proposed method was sensitive to the image acquisition view. Additionally,
attributed to trait of machine learning techniques, the training procedure has to be rebuilt
when a new data set is collected.

5.3. Materials and Methods
5.3.1. Nipple Detection Based on Laplacian Shape Descriptor
The method is comprised of several pre-processing steps to find the region of interest (ROI) of
the nipple and build a binary mask that excludes background. Then, a multi-scale blob detector
is employed to detect the nipple tip point. A schematic overview of the entire detection
workflow is illustrated in Fig. 5.1.

Figure 5.1: A schematic overview of the detection workflow.

Pre-processing
Normally, ABUS volumes are scanned in transversal planes. In pre-processing step, we re-
formatted all images to coronal planes, because the features extracted from coronal planes
will be analyzed in subsequent steps. Depending on different scanning views, the ultrasound
transducer panel touches and compresses the target breast in different ways. Usually, in coro-
nal planes, the nipple is imaged in the center of an ABUS volume scanned in AP view, whereas
other views, such as MED or LAT, can push the nipple to peripheral imaging borders. One
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Figure 5.2: 3D visualization of the extracted nipple slab (yellow) and mask slab (green)

of the key anatomical observations is that the nipple is always near to the transducer panel,
despite its centric or peripheral positions. Therefore, the nipple always appears in a bunch of
anterior coronal slices that are not far away from transducer. Based on this observation, a
nipple slab with the thickness of 1.5 mm enclosing a pile of anterior coronal slices is extracted,
which starts with the slice with a distance of 0.35 mm to the transducer panel (see Fig. 5.2).
The nipple slab defines a ROI, where subsequent nipple detection algorithms are applied to
localize nipple tip points. In addition, to get rid of background, another mask slab with the
same thickness following the nipple slab is extracted (see Fig. 5.2).

Then, the minimum intensity projection (MinIP) image over all slices of the mask slab is
calculated, resulting in a 2D projected image where the intensities of background areas are
almost zero (Fig. 5.3(b)(1)). By a simple thresholding process, a binary mask containing the
pixels with intensities larger than 1 is obtained. Followed by a morphological closing operation
with a kernel size 5×5, possible holes and gaps of the binary mask are filled (Fig. 5.3(b)(2)).
Similarly, the maximum intensity projection (MaxIP) image of the nipple slab is computed,
resulting in a 2D map, in which the nipple tip point will be searched for (Fig. 5.3(b)(3)). To
reduce computational expense, the MaxIP image of the nipple slab and the mask image are
down-sampled to a lower in-plane resolution defined by a fixed scale factor: 0.125 × 0.125.
To eliminate disturbing structures, the MaxIP image is further smoothed by a Gaussian kernel
with 𝜎 = 3 (Fig. 5.3(b)(4)).

Blob Detection
A key observation is that the nipple appears as a 2D dark blob structure in the MaxIP image
of the nipple slab, which can be enhanced by a commonly used blob descriptor: Laplacian
of Gaussian filter (LoG) [151]. Given a MaxIP image 𝐼(𝑥, 𝑦) and a Gaussian kernel at scale
𝜎: 𝑔(𝑥, 𝑦, 𝜎), the MaxIP image convolved with multiple Gaussian kernels with variant sizes
leads to a scale-space representation: 𝐿(𝑥, 𝑦, 𝜎) = 𝐼(𝑥, 𝑦) ⋆ 𝑔(𝑥, 𝑦, 𝜎) [152]. The Laplacian
operator ∇ 𝐿 = 𝐿 + 𝐿 is then calculated at each scale 𝜎, which produces strong negative
response in dark blob regions (Fig. 5.3(b)(5)). We adopted a multi-scale LoG filter with variant
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Figure 5.3: workflow of blob structure detection: (1) MinIP image of the mask slab; (2) generated binary mask;
(3) MaxIP image of the nipple slab; (4) down-sampled and smoothed MaxIP image; (5) response of LoG filter at
scale ; (6) extracted global minima and detected nipple position (red).

𝜎 ranging from 1.5 to 15 mm with a step size of 1.5 mm. The optimal scale that delivers the
global minimal response is selected, and the corresponding 2D coordinate in the MaxIP image
is recorded as the nipple position in 𝑋 and 𝑌 dimensions. To fetch the 𝑍 dimension, we
projected the 2D point back to the middle slice of the nipple slab, which reconstructs the 3D
position of the nipple (Fig. 5.3(b)(6)).

5.3.2. Nipple Detection Based on Hybrid Shape Descriptor
The hybrid method combines the detection power of both Hessian detector and Laplacian
detector. The tube-like shadow observed beneath nipple and areola in ABUS data inspires the
idea of applying a 3D Hessian-based tubular filter to enhance the shadowing region, resulting
a Hessian-based likelihood map. Meanwhile, the multi-scale Laplacian blob detector builds a
Laplacian-based likelihood map. Multiplying these two maps ends up with a joint probability
distribution of nipple position, where the most probable nipple position can be estimated. A
schematic overview of the proposed hybrid method is given in Fig. 5.4.

Hessian-based Nipple Detection
Due to the acoustic properties of the nipple and areola, the strength (amplitude) of echo
signals received from tissues beneath nipple and areola is normally weak. Hence, a tube-like
structured shadow beam is formulated beneath the nipple and areola. Normally, the shadow
beam attached to the nipple and areola starts from the first several anterior slices and extends
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Figure 5.4: Schematic workflow of the hybrid detection method

to the posterior slices in coronal view (see Fig. 5.5). In comparison to other dark regions with
variant lengths and shapes originated by other tissues and lesions, it almost traverses through
the breast and reaches to chest wall. Based on these observations, a Hessian-based tubular
filter is designed to locate the nipple shadow beam, from which the corresponding nipple
position can be identified.

Hessian-based filters have been widely employed to analyze local structures of 3D images.
Eigen values of the Hessian matrix present different patterns for various geometrical struc-
tures, such as blob-like, tube-like or sheet-like objects [153]. Assuming the Eigen values or-
dered in 𝜆 ≥ 𝜆 ≥ 𝜆 , a dark tube-like structure conforms to a pattern of 𝜆 ≈ 0, 𝜆 ≈ 𝜆 ≫ 0,
where the first and second Eigen values are positive and larger than 0 (see Fig. 5.5). For
other geometrical structures, the second Eigen values of sheet-like and noise structures are
approximately close to 0, and all the Eigen values of blob-like structures are equally larger
than 0 [17].

To exclude background, a mask volume is built by analyzing the intensity histogram of
the input ABUS volume. The quantile of 25𝑡ℎ percent is chosen as the minimal intensity to
eliminate background air (see Fig. 5.6(b)). Then, the Eigen values of each voxel is computed
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Figure 5.5: (Left) Shadow beam beneath nipple and areola in orthogonal views: (a) axial (b) coronal and (c)
sagittal; (Right) A heat map visualized the computed second largest Eigen value (red represents larger values)

(see Fig. 5.6(c)). To build a fast and efficient tubular filter to enhance nipple shadow beam,
we chose a simplified measure 𝑆 that accumulates all the second larger Eigen values along
the depth direction in coronal view: 𝑆 = Σ 𝜆 (Fig. 5.6(d)), where 𝑛 is the depth dimension.
After integral over the depth dimension, a 2D likelihood map scaled between 0 and 1 is built,
from which the maxima is extracted which expresses the projected 2D position of the center
line of the nipple shadow beam. Ideally, this position represents the nipple position as well, as
the center of the nipple correlates with the center line of shadow beam. Finally, the position
of the maxima is projected back to the top anterior location which is 0.75 mm to the first
coronal slice, and recognized as the final detected 3D nipple position. It is noticed that blob-
like structures also yield a larger 𝜆 . However, due to the limited amounts and scales of the
blob-like structures presented in volumes, they do not produce significant larger accumulation
on the likelihood map after integrating over the depth dimension.

Figure 5.6: Workflow illustration of Hessian-based method: (a) a 3D input ABUS volume; (b) the mask volume;
(c) the heat map of (red represents larger values); (d) the accumulated response of Hessian tubular filter: .

Hybrid Detection Method
Both Hessian-based and Laplacian-based methods yield two likelihood maps indicating the
probability distribution of nipple position. Therefore, it is natural to combine them to estimate
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a hybrid joint distribution, which is potentially able to improve detection accuracy. Since the
original Laplacian response conveys negative values to the dark blob region, the sign of its
value is inverted. Then, both response images are scaled in the range of [0, 1] to estimate
probability distribution (Fig. 5.7(a,b)). Eventually, the two likelihood maps are multiplied,
resulting in a joint map (Fig. 5.7(c)), where the most probable nipple position is extracted
(Fig. 5.7(d)).

Figure 5.7: (a) the likelihood map built by Laplacian method; (b) the likelihood map built by Hessian method; (c)
the hybrid likelihood map; (d) the maxima extracted from hybrid map, indicating most probable nipple position.

5.4. Results and Evaluations
5.4.1. Dataset
Compared with our previous study [154], we enhanced the data set with more collected scans,
including 926 ABUS image sequences acquired by Siemens S2000 ABVS systems as part of the
iMODE-B (imaging and molecular detection for breast cancers) study at the University Breast
Center Franconia, University Hospital Erlangen, Germany. The study was approved by the
Ethics Committee of the Medical Faculty, Friedrich-Alexander University Erlangen Nuremberg
and all patients gave written informed consent. Breasts were scanned in five possible imag-
ing views: anterior-posterior (AP), medial (MED), lateral (LAT), superior (SUP) and inferior
(INF) (as shown in Fig. 5.8). Acquisitions in different views involve different compressions
of breasts, which leads to variant imaging characteristics of nipples. The presence of nipples
varies according to different acquisition views. The locations of nipples were clearly identified
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in AP views and distributed in peripheral regions in other views. For several extreme cases
where the nipples were pushed to the image borders, a portion of the nipples were still vis-
ible. The in-plane image resolution of the collected ABUS volumes is 719 × 565 with a slice
number of 318, associated with in-plane voxel spacing of 0.2×0.07 mm and slice thickness of
0.525 mm. To validate the performance of our method, an experienced radiologist annotated
all images by pinpointing the tip points of nipples (a tip point is the most anterior point of a
nipple in coronal planes), serving as the ground truth.

Figure 5.8: ABUS scans for the left breast of a patient, illustrating nipple positions in different imaging views: AP,
MED, LAT, SUP and INF.

5.4.2. Evaluation of Laplacian Filter
We ran the algorithm on 113 ABUS volumes in the testing data set. The average computation
time per ABUS volume was 0.6 seconds on a machine with a 3.7GHz CPU. The detection accu-
racy was quantitatively measured by calculating the root-mean-square distance in mm (RMSD)
between detected nipple positions and annotated ground truth in 3D. Statistical analysis of
the distance error was conducted, obtaining a result of 6.6 ± 8.9mm (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑). Figure
5.9 demonstrates the histogram analysis of RMSD, showing the majority of distance deviation
falls in the interval of (0, 15) mm. Moreover, the distribution of detection rates against variant
tolerant thresholds of distance errors is depicted in Fig. 5.9. It is noticed that nearly half of
the test images achieved a distance error less than 4 mm, and more specifically when setting
tolerance as 8 mm, where is the average size of the nipples in our database, nearly 78% of
test images were correctly detected. Nevertheless, the method might fail when nipples were
pushed to image borders during acquisition and imaged partially in extracted nipple slabs (see
Fig. 5.10). The LoG filter was proved to perform stably in detecting global minimal response
that is supposed to associate with the target nipple position.

5.4.3. Evaluation of Hybrid Filter
The proposed method was tested on 926 healthy and pathological ABUS volumes. The aver-
age computation time per ABUS volume was 5 seconds on a machine with a 3.7GHz CPU. The
detection accuracy was quantitatively measured by calculating the root-mean-square distance
in mm (RMSD) between detected nipple positions and annotated ground truth in 3D. Statistical
analysis of the distance error were conducted, obtaining a result of 7.08±10.96mm for the hy-
brid method. To demonstrate the improvement of combining both methods, the performance
of each single method was tested separately, resulting in 8.18±15.64 mm for Laplacian-based
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Figure 5.9: Histogram analysis of RMSD (left). Detection rates against variant tolerant distance errors (right).

Figure 5.10: A failed example overlaid with the annotated marker (green) and the detected nipple (red), notice
the nipple is imaged partially and very close to borders.

method and 13.67±20.73 mm for Hessian-based method (see Fig. 5.11). Figure 5.12 demon-
strates the histogram analysis of RMSD, showing the majority of distance errors of all methods
fall in the interval of (0, 10) mm. The hybrid method outperforms each single method. More-
over, the distribution of detection rates against variant tolerant thresholds of distance errors
is depicted in Fig. 5.13. It is noticed that the hybrid method obtains higher detection rate
when tolerant error is larger than 7 mm. More specifically, when setting tolerance as 10 mm,
which is the average size of nipples in our database, nearly 88% of test images were correctly
detected by hybrid method, which again exceeds 85% of Laplacian-based method and 74%
of Hessian-based method.

By investigating the outliers with large errors, we find that the method might fail when
nipples were pushed to image borders during acquisition and imaged partially in extracted
nipple slabs. Besides, both the LoG and Hessian filters were proved to perform stably in
detecting target nipple position. However, when the breast mask extracted from mask slab is
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Figure 5.11: Boxplot of distance errors associated with hybrid (1), Laplacian-based (2) and Hessian-based (3)
methods.

not sufficiently accurate, or a lesion that mimics the features of the nipple appears in the nipple
slab, they might be attracted by spurious structures and recognize them as nipple positions.

5.4.4. Performance Comparison with Other Methods
As introduced in Section 5.2, Moghaddam et al. proposed an automatic nipple detection
algorithm based on machine learning technique [150]. We have established a comparison
study to validate the performance of both methods.

Test Data Set
The comparison study independently collected 345 ABUS volumes, which were not used in

the previous evaluations for all the methods. The reference nipple positions were annotated
by an experienced technician, but finally validated or corrected by expert radiologists.

Evaluation and Results
In [150], the classifier was trained using a set of blobness features and finally generated a

likelihood map indicating the probability map of the nipple position. There are two strategies
to extract the nipple position out of the likelihood map:

• Smooth the likelihood map and pick the global maximum (denoted as ”LocalMax”).

• Threshold the likelihood map at 0.7 and take the gravity center of the largest connected
component as the nipple position (denoted as ”CCA”)

Since our method is based on the Laplacian and Hessian filters, it was denoted as ”LapHess”.
The nipple position of each ABUS volume was detected by these three methods. The distance
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Figure 5.12: Histogram distribution of RMSD calculated for each method.

Table 5.1: Detection rates of the methods

Method Number of Correct Detection (total 345) Detection Rate (%)
LapHess 253 73
LocalMax 183 53
CCA 220 64

error between the detected and reference nipple positions was computed. The tolerance of
distance error was set to 8 mm, which is the mean nipple radius. The detection accuracy of
the three methods was listed in Table 5.1, based on which it was shown that the LapHess
method outperformed other two methods in terms of the detection accuracy.

Since two different searching strategies were used for the nipple position based on Moghad-
dam’s approach, it is necessary to test if there two strategies have correlated performance,
i.e., if the distance error of LocalMax correlates with that of CCA. Figure 5.14 plotted the dis-
tance error of all test cases for both methods, from which we can see these two detection
strategies correlate quite tightly. The same type of correlation plots of LapHess against CCA
and LapHess against LocalMax were also drawn in Fig. 5.15 and in Fig. 5.16, respectively.
It is observed that the LapHess method does not correlate with other two methods, which
means they could potentially compensate the performance of each other. To further prove
this observation, we plotted the cases which have at least 20 mm distance error derived at
least by one algorithm in Fig. 5.17, which has shown that the errors differ strongly for the
different algorithms as shown in the histogram. Many cases with a small error with LapHess
approach (high blue bar) have quite large errors with the LocalMax or CCA approaches and
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Figure 5.13: Detection rates against variant tolerant distance errors drawn for each method.

vice versa, which means the detection performance has a great potential to be increased by
combining the LapHess with LocalMax or CCA methods.

Confidence Index

One common property of these methods is that they finally yield a probability map. The
local maximum with the highest probability value 𝑣 in range [0, 1] is recognized as the nipple
position. To quantify the confidence level of the result, we defined an index called ”confidence
index”, which indicates quantitatively the reliability of the detected nipple position. The basic
assumption behind it is that the second local maximum 𝑣 should be much smaller than 𝑣 in
case 𝑣 has a larger confidence level to be closer to the ground truth position. The confidence
index (CI) is defined in the following equation:

𝐶𝐼 = ( 𝑣
𝑣 + 𝑣 − 0.5) × 2 (5.1)

From the equation, it is noted that 𝐶𝐼 is a value in the range of [0, 1]. Index 0 indicates the
result is almost like a random guess, while index 1 indicates the result is quite reliable that is
very likely to be the real nipple position. To investigate the reliability of the LapHess method,
we have plotted the distribution of confidence rates against distance error for LapHess (in Fig.
5.18), CCA (in Fig. 5.19), and LocalMax (in Fig. 5.20). The Pearson’s correlation coefficients
were computed for each of them. As a result, the LapHess method achieved the most negative
correlation coefficient value −0.51. It proved that the cases for which LapHess had higher
distance error had lower confidence index. In other words, the LapHess method can not only
detect the nipple position in a relatively higher detection rate, but also can predict the reliability
of the result.
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Figure 5.14: Distance error correlation between LocalMax and CCA methods.

5.5. Discussion
In this work, we first presented a fast and automated method to detect nipple positions in
ABUS scans. The method fully investigates the anatomical and ultrasonographic properties
of nipples in coronal planes. A multi-scale blob detector based on Laplacian filters permits
the detection of nipples with variant sizes and signal strengths. A test on 113 ABUS volumes
shows its capability of precisely detecting nipples, resulting in a distance error of 6.6±8.9 mm
(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑).

Then, we further investigate the capability of the Hessian-based shape descriptor for nipple
detection. In ultrasound images, the shadow areas associated with solid tissues in breast are
commonly. The acoustic properties of the nipple and areola result in a tube-like shadow area
beneath them. The identification of this associated shadow area helps to locate the nipple
position based on their spatial relationship. The presented method performs a simplified
Hessian-based measure to enhance and locate the dark shadow area correlated with the
nipple and areola. Then, a 2D measure map is generated from which the first maxima is
extracted that indicates the location of the center line of the shadow area. Finally, the nipple
position is achieved by projecting the maxima to the first anterior slice. The proposed method
was tested intensively with a large number of data sets, and the experimental results showed
that a detection rate of 88.9% was reached.

The Hessian-based method could be improved by considering multi-scales Laplacian filter
to adapt with variant nipple sizes and investigating more features of the nipple in the first
several anterior slices, which leads to a hybrid shape descriptor that combines the power
of both. The Laplacian-based method is designed to detect nipple in an extract nipple slab,
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Figure 5.15: Distance error correlation between LapHess and CCA methods.

using a 2D Laplacian-based blob detector, whereas, Hessian-based method explores the entire
ABUS volume and seeks for the location of shadow beam associated with nipple and areola.
By combining these two detectors, a joint likelihood map is built, providing more accurate
estimation of nipple position. A test on 926 ABUS volumes shows the capability of the hybrid
method to precisely detect nipples, resulting in a distance error of 7.08 ± 10.96 mm (𝑚𝑒𝑎𝑛 ±
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛).

Both Laplacian and Hessian methods are designed under different assumptions: Laplacian
method assumes the nipple appears near to transducer and exhibits as a dark blob structure,
which could be mimicked by other type of lesions; Hessian method assumes the presence of
shadow beam beneath nipple and areola, which is robust against the presence of lesions that
normally exhibit weaker shadowing strength than nipple and areola. The idea of combining
both methods is inspired by the fact that the hybrid method could overcome the shortcomings
of each individual. However, in case the nipple is not sufficiently scanned in the field of view,
or the structures, such as lesions, which mimic the properties of nipples, the hybrid method
might fail.
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Figure 5.16: Distance error correlation between LapHess and LocalMax methods.

Figure 5.17: Stacked plot of the cases which have the distance error larger than 20 mm obtained at least from
one method.
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Figure 5.18: Plot of confidence index value against the distance error of LapHess method

Figure 5.19: Plot of confidence index value against the distance error of CCA method
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Figure 5.20: Plot of confidence index value against the distance error of LocalMax method
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Vesselness Shape Descriptor
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6.1. Introduction
According to the data from the GLOBOCAN project, liver cancer is the sixth most common
cancer worldwide in 2012 [155] and is ranked the second most common cause of cancer
deaths. To ensure the sufficient function and survival of the remaining liver tissue after therapy,
the supply and drainage of blood as well as the connection to the bile ducts have to be
secured. Detailed models of hepatic vein (HV), portal vein (PV), hepatic artery (HA) and bile
duct (BD) are necessary to integrate these conditions into the liver surgery planning process.
In clinical routine, liver venous vasculatures can be enhanced by contrast agents administrated
in multi-phase computer tomography images of livers. During the acquisition of multi-phase
CT images, venous and arterial vessels are enhanced by injecting contrast agent. Along with
the wash-in and wash-out procedures of contrast agent in different vascular branches, CT
volumes are acquired in different time points to extract the phases where each individual
vessel is maximally enhanced. The analysis of these enhanced vascular structures in different
phases is required to explore patient-individual branching patterns. Segmentation of these
vascular structures is the prerequisite for model construction and computer-assisted surgery
planning. Combined with tumor segmentation, spatial relations between vessels and tumors
can be quantitatively analyzed. Moreover, the segmentation of vessels builds the basis for
vascular risk analyses [156] and virtual resection planning [157]. In addition, labeling vessels
helps identify vascular territories.

The segmentation of these tree structures is a non-trivial task. The enhanced signals
established by contrast agent are often not stably acquired due to non-optimal acquisition
time. Inadequate contrast and the presence of large lesions in oncological patients, make the
segmentation task quite challenging.

In this chapter, a novel framework and efficient workflow with minimal user interactions
to analyze liver vasculature in multi-phase CT images are introduced. To ensure segmenta-
tion quality and efficiency, a set of semi-automatic algorithms are applied to initially segment
different vascular structures in different phases. A fully automatic vessel separation proce-
dure runs parallel to separately connected hepatic and portal veins. In addition, an interactive
editing method is integrated into the framework to refine the segmentation of each individual
structure. Quantitative evaluations of segmented vessels were conducted, for which three
metrics, including skeleton distance, branch coverage and boundary surface distance, are
defined to quantitatively and objectively assess the misalignment between segmented and
reference vessels.

6.2. Related Works
Even though a substantial amount of research has been conducted on the analysis of vascular
structures, it is still considered as an open problem (see [158–160]). Hessian-based filters
are the major methods used in these efforts so as to enhance tube-like structures but sup-
press others. Specifically, enhancing tube-like structures is normally based on the analysis of
eigenvalues and eigenvectors of the Hessian matrix. A variety of tubular filters have been de-
fined using the ratio of eigenvalues to distinguish tubes from planes and blobs [16, 17, 161] .
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Manniesing [162] employed the eigenvalues to define the diffusion tensor of anisotropic filters
to enhance vascular structures. Addition to eigenvalues, the eigenvectors were also used to
develop medialness functions to extract the vascular centerlines [163, 164]. To handle vessels
of different radii, a multi-scale framework is usually incorporated in the Hessian-based anal-
ysis. The other methods such as the model-based approaches and the level-set techniques
were also explored. A directional filter bank was presented by Truc et al. to enhance tubular
structures and used 2D images for evaluation [165]. Qian et al. defined an enhancement filter
based on the probability density function in a polar coordinate [166]. Agam et al. proposed an
enhancement filter using the eigenvalues of the correlation matrix of gradient vectors [167],
while Aylward et al. traced the intensity ridges as the medial axis of tubes [168]. A statistical
framework, attempting to estimate a solution vector including the next point on the medial
axis, the tangent vector to the next point, and the scale of the tube, was reported by Wong
et al. [169]. Gulsun et al. proposed a medialness function to look for the medial axis through
the minimum-path-cost algorithm [170]. Wörz et al. improved a vascular model for small
and large vessels and employed an optimization algorithm to fit the model, find the medial
axis, and estimate the radius [171]. Gooya devised a new formulation of level-sets to evolve
the front in the longitudinal direction of a tube [172]. In [160], a new filter that enhances
medial axis of tubes with a symmetric cross-section was proposed. Normally, performance
comparison of these methods is not applicable, due to different test data sets and variant
measurements for evaluation were used.

6.3. Materials and Methods

6.3.1. Segmentation and Separation of Hepatic Vein and Portal Vein

In this section, a framework with minimal user interactions to analyze venous vasculatures in-
cluding HV and PV in multi-phase CT images will be introduced. Firstly, presented vasculatures
are automatically segmented adopting an efficient multi-scale Hessian-based vesselness filter.
The initially segmented vessel trees are then converted to a graph representation, on which
a series of graph filters are applied in post-processing steps to rule out irrelevant structures.
Eventually, we develop a semi-automatic workflow to refine the segmentation in the areas of
inferior vena cava and entrance of portal veins, and to simultaneously separate hepatic veins
from portal veins. In multi-phase liver CT, contrast enhanced images of HV and PV can be
either acquired in a common phase or two individual phases. The proposed method is capa-
ble of handling both cases to segment HV and PV simultaneously or individually. Figure 6.1
illustrates the processing pipeline.

Figure 6.1: Schematic overview of the work flow.
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Preprocessing
In preprocessing, we segment the liver on the selected venous phase (see Fig 6.2(a)). The
liver mask confines the calculation of vesselness response within the liver to reduce compu-
tational expense. Due to the enhancement by contrast agent, venous structures appear as
hyperdense. To preclude the extreme hypodense voxels that definitely don’t belong to HV and
PV, we analyze the histogram of the liver CT image and determine a minimum threshold 𝐿 ,
corresponding to the peak of the histogram distribution. We assume that the venous voxels
should not appear with the highest frequency in the liver, which means that any voxels be-
low 𝐿 are assumed not belonging to venous vessels and will be excluded from subsequent
steps.

Automatic Initial Segmentation of HV and PV
Hessian-based filters have been widely employed to enhance tube-like structures in 3D im-
ages. There are several vesselness filters published in previous works [17, 153]. Because the
contrast of venous vessels in different input images are quite heterogeneous, we choose the
multi-scale, Hessian-based vesselness filter introduced by Frangi et al. to enhance the vessels
in a CT volume [17]. The major benefits of Frangi’s vesselness filter include the integration
of information from all three Eigenvalues and the independence from their absolute values,
which are associated with contrast levels of vessels. The outputs of the filter are scaled within
the range between 0 and 1. Assuming the Eigenvalues of Hessian matrix are sorted in order:
|𝜆 | ≤ |𝜆 | ≤ |𝜆 |, Frangi’s vesselness filter is defined as follows:

𝑓(𝜎) = {
0 if 𝜆 > 0 𝑜𝑟 𝜆 > 0
(1−exp( ))exp( )(1−exp( )) otherwise

(6.1)

where
𝑅 = |𝜆 |/|𝜆 |, 𝑅 = |

√| |
and

𝑆 = √𝜆 + 𝜆 + 𝜆 .
The ratio 𝑅 is designed to differentiate vessels from sheet-like structures, whereas 𝑅

is used to distinguish vessels from blob-like structures. The term 𝑆 aims to suppress noise
structures. The scale parameter 𝜎 indicates the size of Gaussian kernel used for calculating
Hessian matrix. The parameters used in this filter, 𝛼, 𝛽 and 𝑐 are set to 0.5, 0.5 and 10.
Considering the radius range of HV and PV, we choose three optimized scales for 𝜎: 1.5 mm,
2.25 mm, and 3 mm based on our experimental tests, which are able to capture vessels with
thin, medium, and thick radii (see Fig. 6.2(b)). The ultimate vesselness response is obtained
by extracting the maximum across all scales. Normally, calculating the Hessian matrix is quite
expensive when increasing the size of Gaussian kernel. To speed up, we adopt an inverse
multi-scale strategy which keeps the kernel size constant at 1.5 mm, but down-samples input
volumes to larger voxel spacing.

On the basis of vesselness response, we initially segment HV and PV utilizing an automatic
region-growing algorithm. The seeds of region-growing are automatically found by analyzing
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the histogram of vesselness outputs. All voxels with a vesselness value between 90 and
99 percentiles are taken as seed points. The lower and upper thresholds of region growing
are chosen as 75 and 99.9 percentiles, respectively. If the HV and PV possess high con-
trast against their surrounding structures, the initial segmentation normally yields satisfactory
results (see Fig. 6.2(c)).

Nevertheless, for the cases where HV and PV exhibit extremely low contrast or where
large hypodense lesion areas with internal hyperdense structures are present, many irrelevant
structures will be enhanced by the vesselness filter and captured in region-growing step.
Therefore, we first transform the segmented vessel tree structure into a graph representation
[173] and validate the graph tree using two criteria:

1. The volume of each independent graph tree should exceed a lower limit Tmin.

2. The edge length of branches should be longer than a minimum threshold Emin .

These two graph filters can rule out most irrelevant tree structures and prune disturbing
branches. Other issues lie in the areas of inferior vena cava and entrance of PV, which are
normally not enclosed by the segmented liver mask. Moreover, the inferior vena cava can
be hypodense or hyperdense depending on the contrast agent density. We propose a robust
interactive solution to recover the segmentation in both regions. Two markers need to be
placed in the regions where main branches of HV and PV are joined (see Fig. 6.2(e)). Then,
a fast marching algorithm is applied in the predefined neighborhoods of these two markers
[174]. The efficient computation of the algorithm permits instant display of segmented regions
when marker positions are adjusted until optimal positions are reached.

Refinement of HV and PV Segmentations
In case the HV and PV exhibit extremely low contrast, or large hypodense lesions with internal
hyperdense structures are present, many irrelevant structures will be enhanced as well by the
vesselness filter and captured in the region-growing step. For refinement, we first transform
the segmented vessel trees into a graph representation [173] and validate the graph tree using
two graph filters. Unconnected components of the segmented vessels will be transformed into
different graph trees. Each graph tree has three basic elements: root, node, and edge. One
of the attributes of a graph tree is volume size. The first filter introduces a lower limit to the
volume size of each individual graph tree. The graph trees with volume less than 0.5 ml are
filtered out. Hence, unconnected components can be removed by this filter. Additionally, we
measure the edge length of all branches in a graph tree and assign a minimum threshold to
truncate small branches shorter than 10 mm. From our experiments, these two graph filters
are able to rule out isolated trees and prune spurious branches (see Fig. 6.2(d)).

Other issues lie in the areas of inferior vena cava and entrance of PV, which are normally
not enclosed by the liver mask and thus not segmented. Moreover, the inferior vena cava
can be hypodense or hyperdense depending on the density of contrast agent. We propose a
robust interactive solution to recover the segmentation in both regions. Two markers need to
be placed in the regions of inferior vena cava and entrance of PV (see Fig. 6.2(e)). Then, a fast
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marching algorithm is applied in the predefined neighborhoods of these two markers [174].
The speed map of fast marching is determined by commonly used Sigmoid filter which applies
Sigmoid function on intensities [175]. A local spherical neighborhood region with a radius of
20 mm is defined for each marker. The parameters 𝛼 and 𝛽 of the Sigmoid function are
set as 10 and the mean intensity of the voxels in defined spherical neighborhoods, respectively.
The stop value of propagation is set to 50. The efficient computation of the algorithm permits
instant display of the segmented region when each marker is adjusted, until the optimal
position is reached.

Separation of HV and PV
The HV and PV will be simultaneously segmented when they present in a common phase.
For liver surgical planning, it is demanding to separate and analyze them individually. The
separation process is triggered when HV and PV markers are placed. To meet time constraints,
we employ an interactive watershed transform algorithm that takes the HV and PV markers
as the seed points of two different classes [176]. The cost image of the watershed transform
is the original intensity image, smoothed with an edge-preserving diffusion filter. The entire
volume is classified into two classes associated with the HV and PV markers. Eventually, the
segmented HV and PV can be separated by applying the class labels on the segmentation
results (see Fig. 6.2(f)).

6.3.2. Segmentation of Hepatic Artery
Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indis-
pensable in liver surgery planning. The branching patterns of HA are suffered with several
types of variations. To get a clear picture of each individual HA branching pattern is critical
before the administration of surgery, since unusual HA branch can be erroneously resected
which completely fail the therapy.

During image acquisition, the hepatic artery is enhanced by the injection of contrast agent.
The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other
vascular structure, such as hepatic vein or portal vein, can be enhanced as well in the arterial
phase, which can adversely affect the segmentation results. Furthermore, the arteries might
suffer from partial volume effects due to their small diameter. To overcome these difficulties,
we propose a framework for robust hepatic artery segmentation requiring a minimal amount
of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on
the artery phase CT image, aiming to enhance vessel structures with specified diameter range.
Second, the vesselness response is processed using a Bayesian classifier to identify the most
probable vessel structures. Considering the vesselness filter normally performs not ideally
on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection tech-
niques are proposed. The first technique uses a directional morphological operator to dilate
vessel segments along their centerline directions, attempting to fill the gap between broken
vascular segments. The second technique analyzes the connectivity of vessel segments and
reconnects disconnected segments and branches. Finally, a 3D vessel tree is reconstructed.
A schematic overview of the entire workflow is illustrated in Fig. 6.4.
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Figure 6.2: HV/PV segmentation and separation: (a) segmented liver mask; (b) response of multi-scale vesselness
filter represented with color map: red, green and blue indicates response of small, medium and large scales, re-
spectively; (c) initial segmentation of HV/PV; (d) HV/PV segmentation after graph filters; (e) interactive refinement
of HV/PV segmentation: HV and PV markers displayed with green and red dots; (f) result of separating HV and
PV.

Figure 6.3: Depiction of evaluation metrics: (a) computation of distance between reference skeleton (blue) and
segmented skeleton (red); (b) calculating proportion of segmented skeleton (red) covered by reference volume
(light blue), and the uncovered skeletons are indicated in green; (c) surface distance between segmented volume
(red) and reference volume (blue).
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Figure 6.4: Schematic overview of the entire segmentation workflow.

Multi-scale Vessel Enhancement Filter

Because the contrast level of HA in different input images is quite heterogeneous, we used the
multi-scale, Hessian-based vesselness filter defined in equation 6.1 with different parameter
settings. The scale parameter 𝜎 indicates the size of Gaussian kernel used for calculating
Hessian matrix. The parameters used in this filter, 𝛼, 𝛽 and 𝑐 are set to 0.5, 0.5 and 10.
Considering the radius range of HA, we choose three optimized scales for 𝜎: 1 mm, 1.2
mm, and 1.4 mm based on our experimental tests, which are able to capture vessels with
thin, medium, and thick radii. The ultimate vesselness response is obtained by extracting the
maximum across all scales.

Bayesian Vessel Classifier

The vesselness outputs of three scales are individually assessed with a Bayesian vessel clas-
sifier that uses a Gaussian mixture model (GMM), assuming that the image is a mixture of
a finite number of Gaussian distributions with unknown parameters. The Bayesian vessel
classifier is supposed to differentiate the vasculature from non-vasculature based on the ves-
selness response. Therefore, the number of Gaussian distributions in the GMM is assumed
as two. The expectation maximization (EM) algorithm is exploited to estimate the mean and
the variance of each Gaussian distribution. Since the EM algorithm requires initializing all pa-
rameters, mean, variance and probability for both classes have to be estimated. The Frangi’s
vesselness measurement is comparable across scales and images, which makes it possible to
determine a set of initial parameters. To further simplify the process, a minimal vesselness
threshold was used to discard background voxels with close to zero vesselness response. Us-
ing the parameters calculated by the EM algorithm, the probability distribution of vasculature
and non-vasculature classes are achieved. Thus, a voxel belonging to a class 𝑐 based on it’s
vesselness value 𝑥 can be obtained using Bayesian formula: .

𝑝(𝑐|𝑥) = (𝑝(𝑥|𝑐) × 𝑝(𝑐))/𝑝(𝑥) (6.2)

Each voxel is then assigned to the class with higher probability. This classification is con-
ducted for all three vesselness outputs. A voxel is marked as vessel in a binary output image
(as shown in Fig. 6.5 (b)), if it is classified as vessel in one of the three scales.
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Directional Morphological Dilation

The binary output of the Bayesian vessel classifier depicts the most probable vessel segments
with gaps and holes. To close small gaps in between and also fill holes, a directional morpho-
logical dilation along the vessel orientation is applied.

Figure 6.5: (a) directional dilation kernel (red line) applied in a background voxel (blue); (b) vessel segments
resulted from Bayesian classifier; (c) vessel segments resulted from directional dilation; (d) the reconstructed HA
vessel tree (green) obtained by connecting and merging vessel segments.

Although dilation is a common used morphological operator to fill the gap in binary images,
it often merges irrelevant neighboring structures. To overcome this problem, the orientation of
a vessel segment, which is derived from the eigenvector of the hessian matrix that correlates
to the smallest eigenvalue, is incorporated in the dilation process. The structure element
is defined as a line with a fixed length along the local vessel orientation (see Fig. 6.5(a)).
The directional dilation performs only on the background voxels near to the detected vessel
segments. The voxel values of the line element are interpolated. The percentage of foreground
voxels is computed and compared to a percentage threshold. If the percentage exceeds the
threshold, the currently processed background voxel is labeled as foreground in the output
image. To achieve a higher level of connectivity, this dilation procedure is performed twice.
The second round utilizes the result of the first round as the input. Compared with the vessel
segments identified by Bayesian classifier (see Fig. 6.5(b)), the dilated vessel segments as
depicted in Fig. 6.5(c) tend to be more connected with fewer gaps.
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Vessel Connectivity Analysis
To some extent, the directional dilation shows its ability to bridge the gaps between vessel
segments, but still does not work well enough to build a complete HA vessel tree. Particularly,
the bifurcations connecting different level of branches can be missing, due to the inherent
weakness of the vesselness filter, which normally performs imperfectly in joint regions. To
build a complete vessel tree, a root is required to be identified, and the connectivity of all
vessel segments to their parent branches, and ultimately to the root needs to be analyzed.
We analyze the vessel connectivity by computing the cost of the path connecting a vessel
segment to the root, which consists of several steps.

Skeleton Components Extraction
First, a connected component analysis is performed on the skeletons of the dilated vessel
segments. The skeleton, representing the centerline voxels of a vessel segment, is extracted
by a thinning operation. A component is defined as a group of skeleton voxels and has a
unique index. The size of a component is the number of its skeleton voxels. The radius and
the 3D position of each skeleton voxel are saved. All vessel segments are traversed, and their
corresponding components are constructed. Not all components will be fed to the subsequent
steps, and a valid component should fulfill two conditions:

• its size should be larger than a minimum threshold.

• it should not form a ring structure.

Figure 6.6: (a) Mapping function to compute the cost image; (b) illustration of optimal path from components to
the root and the connection cost (arrow length is proportional to the cost strength) between primary component
(such as Comp 1) to its follower (Comp 2). Comp 4 will not be reconnected to the root due to the cost exceeding
the threshold; (c) 3D visualization of reference HA volume (red) and segmented HA skeleton (green).

Connection Cost Computation
The HA vessel system is assumed to be a tree structure with a root node that can be selected
as any point on the main HA branch, before it further splits to small branches in the liver. Con-
sidering the HA anatomy, the root may be defined either inside or outside the liver. To ensure
the accuracy of the root position, it was decided to place the root by the user interactively.
To calculate the connection cost from a skeleton component to the root, a cost image has to

118



6.4. Results and Evaluations

be built. We generate a cost image by applying a transfer function on the intensities of the
original CT image as depicted in Fig. 6.6(a). First, the mean (𝑚) and standard deviation (𝑠)
of the intensities are calculated. The function maps all the intensities smaller than 𝑚 − 𝑠 to
1 and all the ones larger than 𝑚 + 𝑠 to 0. The intensities in between will be mapped linearly
to the range of (0, 1). Additionally, the cost value of all skeleton voxels in each component
is set to 0. Then, the Dijkstra algorithm is applied on the cost image, and the optimal path
with the minimal cost from any voxel to the root can be found. Because the cost traveling
from one skeleton voxel to another within a component is 0, the voxels belonging to the same
component will result in the same optimal path. This path is then defined as the optimal path
for the component to reach the root, and the corresponding connection cost is the sum of the
cost values along the path.

Vessel Component Connecting
After the optimal paths to the root for all the components have been found, the component
connecting process is triggered. First of all, two additional attributes are assigned to each
component: the follower and the cost to the follower. For a primary component, its optimal
path is traced towards the root. If another component is found on the path, the tracing process
stops. The found component is assigned as the follower for the primary one, and the cost
between them is the subtraction of their costs to the root. Certainly, it is possible that no other
component is found on the optimal path till the root, and then the follower for the primary
component is set as the root and the cost to the follower is identical as the cost to the root.
Afterwards, the costs to the follower for all components are sorted in ascending order. The
component connecting and merging process is started with the one with the minimal cost and
iterate through all the components based on the cost order. To avoid unreliable connecting,
the primary component and its follower will be connected and merged only if the cost is under
a threshold. For the components of which the followers are the root, the cost threshold is
doubled, because the root might be placed a little bit far from the liver arising higher cost.
The entire process is illustrated in Fig. 6.6(b). The gap between a primary component and its
follower is filled with the skeleton voxels on the optimal path. The radii of these skeleton voxels
are interpolated with the radii of the primary and the follower component voxels. Finally, all
connected and merged components that can reach the root are selected to build the complete
HA vessel tree, which serves as the segmentation results as shown in Fig. 6.6(c).

6.4. Results and Evaluations
6.4.1. Evaluation Metrics
Evaluating the alignment of two vessel trees is not as easy as other mass objects. Two
major features characterizing a tree structure are branching patterns and radii. To measure
the consistency of branching patterns and radii more specifically, besides the widely used
overlap metric: Dice Coefficient (DC), we introduce three additional metrics: skeleton distance,
branch coverage, and boundary surface distance. First of all, the skeletons (indicated as 𝑆𝐾
and 𝑆𝐾 ) of the segmented and reference vessel volumes (indicated as 𝑉 and 𝑉 ) are
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extracted, and similarly the boundary surfaces (indicated as 𝐵𝑆 and 𝐵𝑆 ) of both volumes
are automatically derived as well.

Dice Coefficient
Dice Coefficient (𝐷𝐶) is computed to measure the overlap between 𝑉 and 𝑉 . Generally,
it is able to reflect both misalignment of branches and errors of radii to some extent. The
results obtained for the calculation of 𝐷𝐶 were 0.52 ± 0.11 (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑𝑒𝑣)

Skeleton distance
Skeleton distance metric aims to particularly measure the alignment of branching patterns by
computing the distance between two skeletons: 𝑆𝐾 and 𝑆𝐾 (see Fig. 6.3(a)). It is a
bi-directional distance measure. The average distance from 𝑆𝐾 to 𝑆𝐾 is calculated as
following: for each point of 𝑆𝐾 , its paired point on 𝑆𝐾 was defined as the one with the
least distance to it. The sum distance was computed over all these point pairs. Ultimately,
the average distance 𝐷 was calculated by dividing the sum distance with the count of
point pairs. Inversely, the average distance 𝐷 from 𝑆𝐾 to 𝑆𝐾 can be obtained
in the same way. Ultimately, the average distance between 𝑆𝐾 and 𝑆𝐾 is defined as
𝐷 = (𝐷 + 𝐷 )/2. Experiments showed that the mean of 𝐷 was 7.82 mm with a
standard deviation of 2.96 mm. In Fig. 6.7, the distributions of Dice Coefficient and skeleton
distance illustrated by box-and-whisker plots were given.

Branch coverage
Branch coverage metric 𝑃 reports the percentage of 𝑆𝐾 covered by the correspond-
ing reference volume 𝑉 (see Fig. 6.3(b)), and the same percentage 𝑃 is computed
inversely for the skeleton of reference 𝑆𝐾 . The average 𝑃 of the two percentages depicts
branching consistency of both vessel trees from another perspective. More specifically, it is
able to reflect two typical types of errors arose in segmentation problems: under-segmentation
or over-segmentation. Under-segmentation correlates with the relation that 𝑃 is greatly
larger than 𝑃 , and over-segmentation behaves in opposite way. The experimental re-
sults of the average branch coverage 𝑃 achieved a mean of 0.64 with a standard deviation of
0.11.

Boundary surface distance
The metric of boundary surface distance investigates the deviation of both branching patterns
and radii. It evaluates the distance between 𝐵𝑆 and 𝐵𝑆 (see Fig. 6.3(c)). Similar to
the computation of skeleton distance, it is again a bi-directional distance. The distance from
𝐵𝑆 to 𝐵𝑆 is indicated as 𝑆𝐷 , and 𝑆𝐷 represents the inverse distance. The
average surface distance 𝑆𝐷 is derived by 𝑆𝐷 = (𝑆𝐷 + 𝑆𝐷 )/2. The mean and
standard deviation of 𝑆𝐷 were 4.74 mm and 2.16 mm, respectively. Additionally, to fetch an
overview of the distributions of branch coverage and surface distance, the box plots of these
two measures were demonstrated in Fig. 6.8.

120



6.4. Results and Evaluations

6.4.2. Evaluation of HV and PV Segmentation
To evaluate the performance of the proposed method, a test set enclosing 60 multi-phase
hepatic CT scans acquired from 30 liver donors and 30 oncological patients was collected.
HV/PV phases were taken for all scans. The volumes of HV/PV were manually segmented
by an experienced radiologist, serving as reference for quantitative evaluation. In addition,
the markers used to refine and separate the HV and PV were placed manually and saved
prior to automatic testing. Image resolution of HV/PV phases in test images ranges from
512 × 512 × 189 to 512 × 512 × 310. Calculation of the multi-scale vesselness filter takes
15 to 40 seconds depending on different image resolutions. The initial segmentation and
subsequent refinement of HV/PV take maximally 3 seconds using a 3.07 GHz Intel CPU.

Table 6.1: Metrics and if they express a specific type of misalignment error.

Dice Coefficient skeleton distance branch coverage surface distance

branching pattern errors Yes Yes Yes Yes
radii errors Yes No No Yes

Table 6.2 lists the statistical results of all proposed metrics for the entire test cases. It is
easy to observe that branch coverage from segmentation to reference is better than inverse
direction on average. The reason is that our radiologists tend to delineate the complete
reference vessels including very thin vasculatures whose radii are less than 1 mm, which are
normally not detected by the method and of less interest for liver surgical planning in clinical
practice.

Table 6.2: The statistical analysis results of the volumetric difference and surface distance measurements.

(mm) (mm) (mm) (mm) (mm) (mm)
Mean 0.52 4.92 10.72 7.82 0.78 0.51 0.64 3.30 6.18 4.74
Stdev 0.11 5.29 3.26 2.96 0.19 0.13 0.11 3.97 2.18 2.16
Min 0.25 1.02 5.12 4.81 0.23 0.18 0.28 0.55 3.44 2.38
Max 0.68 30.70 24.15 20.37 0.99 0.77 0.79 23.37 14.31 14.11

To better correlate visual inspection with the proposed quantitative metrics, four exemplary
segmented and corresponding reference masks of HV and PV are visualized in Fig. 6.9, where
the values of associated metrics for each case were attached. Notice that branch coverage 𝑃
manifests the same trend with Dice Coefficient. However, skeleton distance 𝐷 and boundary
surface distance 𝑆𝐷 behave slightly differently compared to 𝐷𝐶 in the first two cases, where
case 2 has a larger 𝐷𝐶, but larger distance errors expressed by 𝐷 and 𝑆𝐷. The reason is that
they basically measure the distances in different dimensions. 𝐷 tries to measure the distance
between lines, and 𝑆𝐷 measures the distance between surfaces, whereas 𝐷𝐶 measures the
distance between volumes. Therefore, they reflect the two types of errors, branching pat-
terns and radii, with different strength and focus. Table 6.1 lists the focus of each metric in
measuring misalignment of two vessel trees. In case 2, a larger 𝐷𝐶 value indicates a better
alignment in the parts with larger volume sizes, such as vena cava, whereas its alignment with
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respect to branching patterns is actually worse than case 1 slightly, because a larger 𝑆𝐷 is
observed. In this sense, 𝑆𝐷 is a more reliable metric than 𝐷𝐶 in reflecting both errors brought
by branching patterns and radii in comparison of vessel trees.

Figure 6.7: Distribution of Dice coefficient and skeleton distance: box plot of (left); box plots of ,
and (right).

Figure 6.8: Distribution of brach coverage and boundary surface distance: box plots of , and
(left); box plots of , and (right).

6.4.3. Evaluation of HA Segmentation
We collected 18 hepatic multi-phase CT datasets with tumors for the evaluation of our ap-
proach. All data sets have a voxel spacing of 0.7mm × 0.7mm × 0.8mm. For each dataset,
the liver was imaged once in the venous phase and once in the arterial phase. The liver mask
and HA vessel were segmented manually by a medical professional (MeVis Distant Service,
Bremen, Germany), and the latter serves as the reference for evaluation. The similarity of two
vessel trees is difficult to express with a single measurement. Regarding the time efficiency,
processing one dataset overall took about 1 minute on average on a machine with a 6-Core
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Figure 6.9: Four examples of segmentation results and their associated metric values: segmented HV and PV (top
row); reference segmentation of HV and PV (middle row); corresponding values of the metrics used for evaluation
(bottom row). Each column relates with one particular case.
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3.5 GHz CPU, in which about 5 seconds were taken to place the root interactively.
The error of misalignment can result from two sources: branching pattern and radius,

which need to be addressed with different measurements. To assess the quantitative seg-
mentation quality, the following metrics were used:

• Skeleton coverage (SC): percentage of the segmented skeleton covered by the reference
vessel volume

• Mean symmetrical distance (MSD): mean distance between the segmented and reference
skeletons

If the branching pattern of the segmentation is accurate, its skeleton should be completely
covered by the reference volume, resulting in a higher SC value. MSD is even more sensitive to
the error of branching patterns. These metrics were computed inside the liver mask. The mean
and standard deviation values of SC and MSD were 0.55±0.27 and 12.7±7.9mm, respectively.
Figure 6.10 demonstrates two example cases with relatively high and low SC values. It can
be observed that the algorithm is capable of capturing the majority of enhanced HA vessels
which are enhanced properly with a significant contrast with surroundings. On the other hand,
in the cases where the segmentation performs not well, normally HV and PV vasculatures are
substantially enhanced as well, due to imperfect imaging time during the acquisition. If the
HA phase is taken imperfectly with enormous enhancement of other vasculatures such as
HV and PV, the algorithm can be misled and generate a substantial amount of false positive
segmentation. Additionally, as shown in Fig. 6.6(c), the manually annotated reference often
did not reach the small HA branches deep inside the liver. Some more examples visually
depicting the performance are given in Fig. 6.11.

6.5. Discussion
In this work, we developed a semi-automatic approach which is dedicated to precisely seg-
menting and separating venous and arterial vasculatures in liver CT images, which is a crucial
task for liver surgery planning. An extensive assessment for the proposed method was con-
ducted with a large scale of test images, for which manual annotations by radiologists were
built as the ground truth. Three new quantitative measurements: skeleton distance, branch
coverage, and boundary surface distance, were proposed to review the performance from
different perspectives.

For the segmentation of HV and PV, multi-scale vesselness filter is sensitive in detecting
vascular structures in different contrast levels. Considering the balance between performance
and computational expense, we choose three scales in this work, which consumes the time
in acceptable range. In practice, the disturbing structures resembling vasculatures locally will
be enhanced as well, especially in the patients with oncological lesions. The graph filters and
manual editing tool in post-processing step are capable of ruling out these false positives. The
optimal parameter settings for the graph filters used in post-processing were obtained through
a brutal test iterating through all possible combinations. The success of Water-Shed transform
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Figure 6.10: Examples showing two cases with high (left column) and low (right column) SC values. (Top row)
the 2D view of ground truth (red) and segmentation (green); (Middle row) the vessel segments (red) and the
reconnected vessel branches (green); (Bottom row) the 3D visualization of ground truth (red) and segmentation
(green).

Figure 6.11: Visual demonstration of the reference (red) and segmented (green) HA vessels.
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algorithm used in separation of HV and PV depends on the marker positions. We search for the
local maxima in the near of two placed seed markers and extend number of seeds by adding
neighboring points. The correction of seed markers helps to improve the robustness and
reliability of the separation method. The proposed semi-automatic segmentation framework
is capable of capturing venous vasculatures in both healthy and oncological livers. The latter
case normally consists of lesions with varied sizes and incomplete vasculatures. The extensive
quantitative test proves the applicability in the application of computer-aided surgery planning.
A user study, aiming to measure the performance gain, is planned for the further work.

For the segmentation of HA, the proposed directional dilation morphological operator along
the vessel centerline orientation is capable of bridging the gap between the broken vessel
segments to some extent. The subsequent Dijkstra-based vessel connectivity algorithm has
a great potential to reliably reconstruct the complete vessel tree, and thus to improve the
workflow of liver surgery planning. To guarantee the performance of the algorithm, the HA
phase CT should be taken with a satisfactory quality where no substantial amount of other
vasculatures are enhanced.

The segmentation of vasculatures has been one of the most popular and challenging tasks
in clinical routines. Many imaging modalities dedicated to delineating vessel structures are
applied, such as 2D or 3D angiography based on CT, MRI or ultrasound [161, 167, 177].
Therefore, many contributions related to vessel segmentation have been reported with various
focus. A large portion of these works focuses on the extraction of the center line of a vessel
in 2D or 3D [163, 169, 178], where no reliable radius estimation is investigated. Among
the works proposed to segment complete vessel in 3D, there are two main categories of
approaches, Hessian- or model-based methods [171, 177]. As mentioned in previous sections,
no standard metrics have been proposed to evaluate the segmentation quality with respect
to both center line and radius accuracy, which makes a horizontal performance comparison
between different studies quite difficult. Moreover, the scale and quality of test images used in
different contributions are very inhomogeneous. Many works only reported the results based
on either synthetic images or a data set with very limited number of cases [163, 165, 171].
Our approach was developed with an intention to fulfill the standard of commercial usage.
Compared to other solutions, our approach is computational efficient, robust against bad
image qualities suffering low signal to noise ratio, and applicable for various input images
without any assumptions of prior knowledge. Certainly, a few drawbacks of our approach
have been explored. For instance, it attempts to over-segment rather than under-segment
the vasculatures, considering the fact that deleting unwanted branches is easier than adding
missing branches in subsequent interactive editing mode. Furthermore, the error inherited
from Hessian vesselness filter, such as the enhancement error of branch bifurcation, was not
completely avoided, which might lead to broken branches, especially for thin vessels.
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The theoretical principles and practical applications of various shape descriptors have demon-
strated their efficiency and efficacy on several fundamental image processing tasks, ranging
from segmentation, registration to detection and classification. Shape information of the tar-
get objects to be analyzed plays an important role in computer vision and image processing.
Particularly in the field of medical image processing, due to the fact that specified organs or
body structures normally sustain solid shapes, a prominent descriptor that is dedicated to a
specific shape can dramatically simplify the task of object extraction. A shape filter can not
only enhance the structures possessing a particular shape but also suppress other structures
with different or none (such as noise) shapes. Therefore, shape filters are more favored
when handling an object with a relatively stable 2D or 3D morphology compared to other
basic edge or line filters, which are sensitive to only intensity change. In this thesis, we
have demonstrated a series of typical applications that leverage the discrimination power of
shape descriptors. These filters are selected by considering both performance and efficiency,
because time constraints have to be fulfilled in practical clinical routines.

In Chapter 2, we investigated the usage of a modified version of Hough transform, aim-
ing to locate and segment the boundary of femur heads in 2D fluoroscopic images. Hough
transform has been commonly adopted in describing regular shapes that can be expressed
analytically by mathematical equations, such as a circle, eclipse or line [40]. It can be also
extended to identify arbitrary shapes by building a map encoding the shape characteristics.
The task of femur head identification in fluoroscopic images is full of challenges, for instance,
the intensity inhomogeneity, low signal to noise ratio, varying imaging views and so on. To
overcome these obstacles, we have designed a dedicated framework based on Gabor-based
Hough transform. First of all, the prominent edge pixels were detected by Gabor filters that
capture the gratitude and orientation of the gradient direction. Considering the discontinuity
of femur head boundary, we extended the Gabor filter by introducing a curve operator that
bends the Gabor filter into an arc shape, to better fit with the curved boundary of femur
head. Our experiments shown the curved Gabor filter outperformed the traditionally used
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Canny edge detector. Then, the Hough transform is applied only to the detected edge pixels,
such that the accumulation map will not be influenced by irrelevant pixels other than femur
head boundary. To cope with the false positive results appeared in the acetabular region, we
enforced scanning procedure to search for the circle pairs representing both acetabular and
femoral boundaries. The quantitative experiments, using a test data set comprising 1184 flu-
oroscopic images with 719 AP views and 465 ML views, were carried out. From the statistical
results, the detection rate for all test images was 80%, and for normal and moderate cate-
gories it was 91.4%. Note that the high detection rate of 98.5% was achieved in the normal
category, which proved its capability in normal clinical practice. Moreover, the method was
implemented in C++ using OpenMP based parallelization for the computationally expensive
parts. The average computational time per case was 2.04 seconds in an Intel Core2 Duo
2.2GHz CPU, such that the efficiency is guaranteed for practical usage.

In Chapter 3, a Hessian-based shape descriptor has proven its applicability to enhance
sheet-like structures [75]. The boundary surface of many human organs exhibit as sheet-like
plane. A typical example is the pectoral muscle in 3D breast MR images. The segmentation
of pectoral muscle is the most challenging step in the whole breast segmentation work flow,
attributed to the bias field artifacts which lead to the intensity variation even for the same type
of tissue. This type of non-uniformity can fail many segmentation techniques that assume the
intensity in-homogeneity is not severe. However, normally the quality of breast MRI suffers
a lot from this artifact. The sheetness filter we designed has shown its potential to cope with
this problem. Since the Hessian-based shape descriptor is quite invariant to continuous in-
tensity variation caused by bias field artifact, it is able to enhance and capture the structures
with sheet-like shapes, as long as the local contrast to neighboring tissue of an object still
preserves the shape appearance. We have designed the sheetness filter in a way that its
response is always positive and normalized from 0 to 1. It acts like a probability map that
indicates the likelihood of each voxel lying on a sheet. The response normalization is a very
important feature that allows for comparison across different data sets. Dislike CT images, the
gray value of MRI is not standardized and can vary a lot between different image sequences.
Therefore, it is quite beneficial to develop a filter whose response is normalized and compa-
rable when applying on MR images. Furthermore, the computational efficiency is taken into
account as a key property. We have optimized the filter to minimize its computational expense
when processing 3D MR volumes with high resolution. To prove the performance of the filter
and the entire segmentation framework, two major experiments were conducted to evaluate
pectoral muscle segmentation and the breast segmentation. The method of pectoral muscle
segmentation was evaluated quantitatively with a test data set which includes 30 breast MR
images by measuring the average distances between the segmented boundary and the an-
notated surfaces in two ground truth sets, and the statistics showed that the mean distance
was 1.434 mm with the standard deviation of 0.4661 mm. In the second experiment, the
segmented breast boundaries of 84 breast MR images, acquired in five different sites with
variant imaging protocols, were compared to the manual segmentation. An average distance
of 2.56mm with a standard deviation of 3.26mm was achieved.
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Since the breast segmentation method was developed, it has been integrated as a key
preprocessing procedure in many applications, for instance, the registration of breast current
and prior MRI studies (see Section 3.2), the construction of breast deformation models[179,
180], the segmentation of breast fibroglandular tissue [181], bias field correction in breast
MRI [182], breast density estimation based on MRI [71] or the computer-aided diagnostic
tools such as lesion classification (see Chapter 4).

In Chapter 4, a computer-aided diagnostic system dedicated to automating the breast le-
sion interpretation is introduced. In the clinical routine of reading breast MRI, the delineation
and diagnosis of nonmass breast lesions such as ductal carcinoma in situ are among the most
challenging tasks. Recent studies show that kinetic features derived from dynamic contrast
enhanced MRI are less effective in discriminating malignant nonmasses against benign ones
due to their similar kinetic characteristics [104]. Adding shape descriptors can improve the
differentiation accuracy. From another aspect, based on the standard BI-RADS guideline of in-
terpreting breast MRI lesion, shape characteristics are recommended as very important factors
to adjudge the malignancy of the lesions [105]. A mass lesion with round or oval shapes tends
to be benign compared to irregular shapes with spiculated margins. In this work, we proposed
a set of novel morphological features using the sphere packing technique, aiming to discrimi-
nate breast lesions based on their shapes. Among the features that we have introduced, it is
found that the volume-radius histogram feature is the most prominent one. Meanwhile, other
features like packing fraction index, graph topological features, and 3D Zernike descriptors
have shown their potential to discriminate the lesion types. As many of our previous work, to
test the performance of this system, we have collected 106 findings comprising 68 malignant
and 38 benign lesions extracted from 86 patients. As a result, we achieved an accuracy of
89.62%, precision of 90.1% and area under the ROC curve of 0.972 for the differentiation of
benign and malignant types. Our study using the volume-radius shape descriptor achieved
very high discrimination accuracy.

In Chapter 5, Laplacian and Hessian-based shape descriptors used for automatic nipple de-
tection in 3D breast ultrasound sequences are proposed. Three dimensional breast ultrasound
emerged as a new imaging modality for breast cancer screening and diagnosis, especially for
the high-risk group of women [146, 147]. Since this imaging technique has not been widely
exploited in clinical routine, there are a few groups focusing on the development of com-
puter assisted tools for this modality. Nipple position provides useful diagnostic information in
reading automated 3D breast ultrasound images. The identification of nipples is required to
localize and determine the quadrants of breast lesions. Nevertheless, the presence of speckle
noise induced by interference waves and variant imaging directions in ultrasonography poses
challenges to the task. In this work, we first propose a fast and automated algorithm to
detect nipples in 3D breast ultrasound images. The method fully takes advantages of the
consistent characteristics of ultrasonographic signals observed at nipples and employs a multi-
scale Laplacian-based blob detector to eventually identify nipple positions. Then, we extend
the multi-scale Laplacian-based method, by integrating a specially designed Hessian-based
method to locate the shadow area beneath the nipple and areola. Subsequently, the likelihood
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maps of nipple positions generated by both methods are combined to build a joint-likelihood
map, where the final nipple position is extracted. To validate the efficiency and robustness,
the extended hybrid method was tested on 926 ABUS images, resulting in a distance error of
7.08 ± 10.96 mm (mean ± standard deviation). To the extent of our knowledge, none of the
published works have used such a scale of test data for evaluation. Therefore, we have much
confidence in the performance and efficiency of this hybrid method, which has a potential to
commercial usage.

In Chapter 6, we propose a framework based on a novel vesselness shape descriptor to
analyze liver vasculatures in multi-phase CT images. The major vessels of liver are critical for
liver surgical planning and diagnosis of liver disease, which are hepatic vein (HV), portal vein
(PV), and hepatic artery (HA). First of all, we focus on the venous vasculatures: HV and PV.
During the acquisition of multi-phase CT images, both of the venous vessels are enhanced by
injected contrast agent and acquired either in a common phase or in two individual phases.
Therefore, the analysis normally consists of two important preprocessing tasks: segmenting
both vasculatures and separating them from each other by assigning different labels. The
enhanced signals established by contrast agent are often not stably acquired due to non-
optimal acquisition time. Inadequate contrast and the presence of large lesions in oncological
patients, make the segmentation task quite challenging. Firstly, presented vasculatures are
automatically segmented by adopting an efficient multi-scale Hessian-based vesselness filter.
The initially segmented vessel trees are then converted to a graph representation, on which
a series of graph filters are applied in post-processing steps to rule out irrelevant structures.
Eventually, we develop a semi-automatic workflow to refine the segmentation in the areas of
inferior vena cava and entrance of portal veins, and to simultaneously separate hepatic veins
from portal veins.

The segmentation of hepatic artery is not an easy task, because HA is normally very thin
inside liver. However, segmentation of hepatic arteries in multi-phase computed tomogra-
phy images is indispensable in liver surgery planning, since the distribution of HA has many
variations. If these variations were not observed before surgery, vessel damage might occur
during the surgery. During image acquisition, the hepatic artery is enhanced by the injection
of contrast agent. The enhanced signals are often not stably acquired due to non-optimal con-
trast timing. Other vascular structure, such as hepatic vein or portal vein, can be enhanced as
well in the arterial phase, which can adversely affect the segmentation results. Furthermore,
the arteries might suffer from partial volume effects due to their small diameter. To overcome
these difficulties, first, an efficient multi-scale Hessian-based vesselness filter is applied on the
artery phase CT image, aiming to enhance vessel structures with specified diameter range.
Second, the vesselness response is processed using a Bayesian classifier to identify the most
probable vessel structures. Considering the vesselness filter normally performs not ideally
on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection tech-
niques are proposed. The first technique uses a directional morphological operator to dilate
vessel segments along their center line directions, attempting to fill the gap between broken
vascular segments. The second technique analyzes the connectivity of vessel segments and
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reconnects disconnected branches. Finally, a 3D vessel tree is reconstructed.
To evaluate the segmentation method, intensive tests enclosing 60 CT images from both

healthy liver donors and oncological patients was conducted. To quantitatively measure the
similarities between segmented and reference vessel trees, we propose three additional met-
rics: skeleton distance, branch coverage, and boundary surface distance, which are dedicated
to quantifying the misalignment induced by both branching patterns and radii of two vessel
trees. These proposed metrics could be helpful to measure the similarity between two tree-like
structures.

By reviewing these five application challenges chosen in this dissertation, all of them aim
at a fully automated image processing solution, each for a clinically relevant problem, and
always applied to routine clinical image data. In many instances, a comparison to existing
methods was performed and the suitability of the achieved solutions was demonstrated. Due
to the real-world orientation of these five experiments, the development of these solutions was
facing a highly challenging situation in each of them due to variability in image acquisition,
anatomical and pathological variability, numerous imaging artifacts, and the lack of a valid and
complete geometric model for the structure to be detected. It should be noted that in the
chosen area, publications exist with higher accuracy values, but often those contributions are
based on much less problematic cases as compared to the presented solutions.

The latest trend in medical image computing is that the methods based on deep learning
techniques have shown their huge potential in dealing with the challenges in segmentation,
registration, detection and classification. Tremendous contributions using deep learning have
been published in recent years, after their great success in the applications of computer vision.
Many tasks including the applications introduced in this dissertation are reported to be handled
well with higher accuracy [183, 184]. Deep learning approaches have their inherit advantages
in detection and classification tasks if a large scale of training samples were given. In com-
puter vision, 2D images serve as the most common input for training and testing. However, in
medical image computing, 3D or even 4D images are the most common input for algorithms.
Therefore, deep learning might encounter some difficulties in interpreting 3D data. Smart
strategies of partitioning 3D images and parallel training have to be considered. Deep learn-
ing techniques are suitable for analyzing gray level images, while the shape analysis can be
applied on binary images containing shape information. Another bottle neck limiting the per-
formance of deep learning in medical image computing is the scale and quality of the training
samples. It has been proved that deep learning performs worse than traditional techniques
when no sufficient training samples with annotation can be provided [185]. Hence, to build
a ”MedImageNet” data set that is equivalent to the scale and quality of the ”ImageNet” for
computer vision is the most urgent task [186]. Once this medical data set is built, it will boost
the performance of many deep learning solutions for medical imaging tasks.

In summary, in this thesis, we have explored several versatile and cost-effective shape
descriptors and their typical applications in basic medical image processing procedures. The
extensive tests have shown that the shape descriptors are of great value in solving practical
challenges due to their advantages in accuracy, efficiency, and effectiveness.
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