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Abstract

Cameras are one of the most common sensors in robotics. They are used in both
research and industrial applications. Two cameras can be, and frequently are, com-
bined into a stereo vision system in order to obtain additional 3D information.
Underwater images suffer from extremely unfavourable conditions. Light is heav-
ily attenuated and scattered. Attenuation creates change in hue, scattering causes
blur and so-called veiling light. Furthermore, underwater images are distorted due
to refraction through water-glass-air interfaces. All of this makes using cameras
underwater exceptionally difficult.

Work presented in this thesis is mainly motivated by the needs of three EU-
founded projects: MORPH, CADDY and DexROV. Work in these projects resulted
in development at every stage in the design, calibration and image processing of
underwater vision systems. This thesis is divided into five parts.

The first part introduces investigated research problems, and describes the back-
ground and motivation of the thesis. Furthermore, exemplar projects are described
to give a good intuition of the state of the art and what advances have been made
in this thesis.

The second part of this thesis describes the issue of refraction-based distortions.
An extensive analysis of the problem is undertaken using a novel method, dubbed
Pinax, that allows for very efficient and accurate modelling of submerged cameras.
The Pinax model does not require any underwater calibration: a single in-air proce-
dure is sufficient to handle a variety of underwater environments, including different
salinities, temperatures and pressures. This method is shown to outperform any
state of the art approach. At the same time, it remains much simpler and more
practical.

The third part focuses on designing the stereo vision system from the perspective
of selecting hardware and setup parameters that would perform best in a given task.
This analysis is performed at a general level, so it may be applied for both in-air
and underwater systems. Furthermore, 3D reconstruction error is discussed and a
new way of modelling it is proposed. This knowledge was also incorporated into the
hardware selection procedure.

Part IV addresses the problem of image degradation. The image formation
process is discussed and an adaptation of the Dark Channel Prior to underwater
conditions is proposed. This resulted with an image correction algorithm that allows
for a reduction in backscattering in the registered images.
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Part V describes of the practical applications of the methods presented earlier.
The achieved results are discussed in terms of their real-life applications. Multiple
examples are also provided. In addition to this, data generated by an underwater
stereo system was further processed to generate a 3D grid map optimized for satel-
lite communication, in order to demonstrate a full use case scenario related to the
DexROV project.

Finally, Part VI summarizes the most important contributions and concludes
this thesis.
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Historical Perspective

The beginnings of robotics may be traced back to early XX century and the Indus-
trial Revolution. The idea of reorganizing production and replacing tedious human
labour with machines was one of the greatest ideas of that time. However, the
beginnings of modern robotics should rather be dated fifty years later, when first
successful attempts of using electric servomechanisms in the design of manipula-
tors were made. At the same time, transistor-based technologies were introduced
to electronics. Shortly after, in 1961, the first Unimation robot was installed at a
General Motors’ casting plant. In 1962 multiple robots were acquired by Ford Motor
Company. The year 1968 brought a commercial breakthrough in industrial robotics
– that year as many as 48 robots were sold worldwide.

The development of mobile robots started with the cybernetic dog built by Henry
Piraux in 1929. Significant progress in that field was made to meet the needs of the
army during the Second World War. At that time the development focused on many
variations of driving and flying bombs, e.g. V1 and V2 rockets had a basic autopilot
and automatic detonation systems. Multiple research projects were conducted after
the war leading to significant progress in mobile robotics and finding new possible
applications. In 1969 a Mowbot was created. It was the very first robot that could
automatically mow the lawn and it was aimed towards the average consumer.

Machine vision started to develop together with television. As early as in 1907
Boris Rosing, a Russian scientist and inventor, developed a photocell detector. The
next major step in the field of computer vision was made in 1950, when the Vidicon
tube was introduced – a device that could be considered the first digital camera. In
1960 Larry Roberts, often referred to as the ’father of computer vision’, discussed
the possibilities of extracting 3D geometrical information from 2D perspective views
in his MIT PhD thesis. From this point on, machine vision started to expand as a
separate field of research.

In its beginnings, underwater exploration was conducted utilizing manned sub-
mersibles. Such systems reached the peak of their popularity in the 1960s, when
multiple US Navy contractors were developing systems of this kind. Safety concerns
and technological progress led to the development of underwater robotics. The first
tethered remotely operated vehicle (ROV), named POODLE, was developed in 1953
by Dimitri Rebikoff. The ROV concept evolved in the 1960s and the 1970s, and was
developed mainly for military applications. In the 1980s ROVs gained popularity in
numerous research applications and became essential for oil and gas industry when
development of offshore technologies exceeded the reach of human divers.

It is difficult to say when different fields of research merged into what we presently
know as robotics. It is no longer surprising to see a mobile platform carrying a ma-
nipulator or an industrial robot using computer vision to make decisions about its
actions. Significant development in mobile robotics was possible thanks to techno-
logical advances in many fields, but two most important factors are the increase
of computational power of modern computers and the development of new types
of sensors. This allowed for fast and accurate acquisition of data as well as online
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processing of this data and reasoning. Typical mobile robots use various sensors
to monitor their environment – from cameras to LIDAR sensors. A 3D model of a
robot’s surrounding is usually accurate and can easily be utilized to complete any
given task.

Figure 1: Mobile robot with manipulator. Robot from Jacobs University during
SpaceBot Cup 2013.

Unmanned underwater vehicles (UUV) were initially developed separately from
other mobile robots and also have to use different sensors. The conditions encoun-
tered under water make it impossible to port technologies developed for robots
operating on the ground to UUVs. Electromagnetic waves are heavily attenuated
by water, which makes it impossible to use GPS, WiFi or any other radio commu-
nication. Usually, all communications and the majority of sensing need have to be
met using with acoustics. This results in significantly lower bandwidth and many
problems not encountered when operating in normal atmosphere, e.g. the multipath
effect and acoustic occlusions. Moreover, visible light is attenuated unequally, e.g.
red light is absorbed much stronger than green light. As a result, underwater im-
ages, already recorded in low light conditions, have a tendency to shift their colours
towards green-blue hue. Furthermore, all electronic equipment needs to be enclosed
in sealed housings. In the case of cameras, this means that a glass panel in front of
the lens may introduce refraction-based distortions. These need to be corrected if
3D reconstruction is to be performed. All of this makes underwater robotics very
special: it utilizes a unique set of sensors and overcomes problems that are not
present in normal atmosphere.
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Chapter 1

Motivation and Research Goal

Over 70 percent of Earth is covered with water. The ocean floor is used for transport-
ing oil and gas, mining, yet the underwater environment remains mostly unexplored.
At present the most accurate map of the ocean floor ( [Sandwell et al., 2014]) has a
resolution of approximately 5km. This means that we know more about the surface
of the Moon or Mars than about our oceans. Of course this does not apply to some
small patches of seabed which were mapped precisely during research or industrial
surveys. Furthermore, there is an urgent need for further development of underwater
robotics as many tasks that are now performed by human divers are dangerous or
cannot be performed with satisfying accuracy. Presently, this need for development
is addressed by numerous research projects. Among these, there are three which
are especially important from the standpoint of the following thesis, as they are
the direct motivation for the work presented here: project MORPH, CADDY and
DexROV.

1.1 Project MORPH

When surveying the marine environment the presently available techniques often
fail to perform well enough or cannot be applied in their entirety. Traditionally,
sensors are mounted on a ship or are towed by one. This way, a survey may be
easily conducted over a large area. However, the costs of operating a ship with
full crew and technical staff are very high. Furthermore, the available resolution
is limited and some sensors, like cameras, may only be used over a short distance
underwater. In some cases, when monitoring steep underwater cliffs, surveying
from surface is impossible. Other operations, like monitoring the population of
species are often performed manually, either by divers or using video footage. All
of this could be greatly improved by using UUVs. The MORPH project (”Marine
Robotic Systems of Self-Organizing, Logically Linked Physical Nodes”, European
Community’s Seventh Framework Programme FP7 – under grant agreement n◦.
288704) advanced the concept of surveying underwater environment using multiple
separate vehicles cooperating for synergistic results. The robots form a physically
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disconnected, yet logically uniform structure. The formation may be morphed to
match the terrain that needs to be investigated. Furthermore using different vehicles
with different sensors allows for easy adaptation to the given task.

Figure 1.1: Example MORPH formations for mapping a flat sea bottom section and
an underwater cliff. Acronyms describe robot’s role in the formation: SSV – surface
support vehicle, GCV – global communication vehicle, CV – camera vehicle and
LSV – local sonar vehicle. [Kalwa et al., 2012]

1.2 Project CADDY

Project CADDY, ”Cognitive Autonomous Diving Buddy”, was a collaborative project
funded under the European Community’s Seventh Framework Programme FP7 –
Challenge 2: Cognitive Systems and Robotics –grant agreement n◦ 611373. As
stated in the official project’s description: ”Divers operate in harsh and poorly mon-
itored environments in which the slightest unexpected disturbance, technical mal-
function, or lack of attention can have catastrophic consequences. They manoeuvre
in complex 3D environments, carry cumbersome equipment, while performing their
mission. To overcome these problems, CADDY aims to establish an innovative set-
up between a diver and companion autonomous robots (underwater and surface) that
exhibit cognitive behaviour through learning, interpreting, and adapting to the diver’s
behaviour, physical state, and actions.” The goal of the project was to replace a hu-
man diver with an autonomous underwater vehicle (AUV) which, together with an
unmanned surface vehicle (USV), will assist and supervise any task performed by
the diver. The CADDY system has been designed to operate in three basic modes
( [Mǐsković et al., 2016]):

• “observer” buddy: continuously monitors the diver, his safety and needs;
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• “slave” buddy: while performing various tasks divers may greatly benefit from
a robot’s direct assistance. Bringing something from the surface, mapping the
area, saving current coordinates or just taking a photo when needed are just
some of the functionalities offered by the CADDY system;

• “guide” buddy: leads the diver through the underwater environment.

Figure 1.2: Three main functionalities of the CADDY system are ”observer”, ”slave”
and “guide”.

1.3 Project DexROV

DexROV: ”Dexterous Undersea Inspection and Maintenance in Presence of Commu-
nication Latencies”, this European Community’s Horizon 2020 project was founded
under grant agreement n◦ 635491 ( [Gancet et al., 2015]). The goal of this project
is to develop a set of hardware and software tools assisting ROV operations. ROVs
are essential for many offshore operations, both commercial and scientific. Unfor-
tunately, the expenditure associated with such operations is very high due to the
costs of maintaining the ship and significant off-shore manpower. The DexROV
project comprises a ROV system which is deployed from a vessel in the Mediter-
ranean sea as well as an onshore Mission Control Centre (MCC) used for controlling
and monitoring the ROV operations (see Fig. 1.3).

In the considered setup three different logical and spatial locations (nodes) should
be considered: onboard the ROV, the operator vessel and onshore in the MCC. In all
these nodes, specific hardware and data has to be present to enable their respective
functionality, for example generating an environment representation with a 3D grid
map:

• stereo image pairs are captured onboard the ROV and transmitted to the vessel

• a 3D grid map is generated on board the vessel using the stereo images and
transmitted to the onshore MCC through a satellite link
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Figure 1.3: In the DexROV project the ROV will be operated via a satellite link
from an onshore control centre.

• the onshore MCC displays the map for the pilots to orient themselves in the
environment.

Other examples of data transmitted between the spatially distant nodes include
the ROV’s current location (onboard → vessel), the poses of objects autonomously
recognized by machine perception (vessel → onshore) or motion commands (onshore
→ onboard).

This way, costs of ROV operations may be significantly reduced by moving some
of the highly trained crew members to and onshore location. Furthermore, the skills
of these people may be used more efficiently, e.g. they may work with one ROV when
another one is on its way to the deployment-site. On the other hand, an ROV needs
to be equipped with an additional perception system, to see, understand and support
the operator. This is especially important when it comes to tasks like manipulation,
where the operator cannot react quickly enough due to communication latency.

1.4 Research Questions

The three projects mentioned earlier require a robust vision systems allowing for pre-
cise 3D reconstruction of underwater environment. In a normal atmosphere, these
specific requirements would be met by almost any stereo vision system. However,
underwater conditions bring about numerous problems that need to be addressed.
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Therefore, the main subject of this thesis is the full process of designing an under-
water stereo vision system that will match the capabilities of a system operating in
a normal atmosphere, overcoming all the difficulties and meeting the requirements
of any given project. Specifically the following questions are addressed:

1. How to design an underwater stereo system? This question relates to optimum
selection of hardware and setup parameters that will guarantee the required
accuracy and density of the 3D reconstruction.

2. How to improve the quality of underwater images? ”Improvement” should be
understood in context of removing haze from the image for best 3D represen-
tation.

3. How to handle refraction-based distortions introduced by glass panels in the
camera housing? A solution that is easy to implement in real life conditions
and allows for closed-form 3D reconstruction is especially desirable.

1.5 List of Publications

The results described in this thesis have been published or contributed to the fol-
lowing papers:

1.  Luczyński, T., Pfingsthorn, M., and Birk, A. (2017). The pinax-model for
accurate and efficient refraction correction of underwater cameras in flat-pane
housings. Ocean Engineering, 133:9 – 22.

2.  Luczyński, T., Pfingsthorn, M., and Birk, A. (2017). Image rectification with
the pinax camera model in underwater stereo systems with verged cameras.
In OCEANS 2017 - Anchorage.

3.  Luczyński, T. and Birk, A. (2017). Underwater image haze removal with an
underwater-ready dark channel prior. In OCEANS 2017 - Anchorage.

4.  Luczyński, T., Fromm, T., Govindaraj, S., Mueller, C., and Birk, A. (2017).
3d grid map transmission for underwater mapping and visualization under
bandwidth constraints. In OCEANS 2017 - Anchorage.

5. Pfingsthorn, M., Rathnam, R.,  Luczyński, T., and Birk, A. (2016). Full 3d
navigation correction using low frequency visual tracking with a stereo camera.
In OCEANS 2016 - Shanghai, pages 1–6.

6. Enchev, I., Pfingsthorn, M.,  Luczyński, T., Sokolovski, I., Birk, A., and Ti-
etjen, D. (2015). Underwater place recognition in noisy stereo data using
fab-map with a multimodal vocabulary from 2d texture and 3d surface de-
scriptors. In OCEANS 2015 - Genoa.
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7. M. Benndorf, M. Garsch, C. Mueller, T. Fromm, T. Haenselmann, N. Gebbeken,
T.  Luczyński, and A. Birk. Robotic bridge statics assessment within strategic
flood evacuation planning using low-cost sensors. SSRR Conference - Shang-
hai, 2017.

1.6 Structure of the Thesis

The order in which results are described in this thesis does not follow the order
of research questions presented in Sec. 1.4. A different organization of topics is
necessary as some findings listed in one part are a basis for discussion in the others.
The remaining part of this thesis is organized in the following way. Part II analyses
the influence of refraction on the camera model and image distortions. Then, a new
camera model is proposed, discussed and tests are described. Part III investigates
the process of designing a stereo system, taking into account the desired accuracy,
3D reconstruction capabilities and various hardware options. Part IV focuses on
underwater image creation model and offers a method for haze removal, as this factor
disturbs 3D reconstruction the most. Part V describes major use cases of algorithms
described in this thesis. In some chapters this description is extended with additional
contributions specific to those applications. Finally Part VI summarizes the most
important contributions and concludes this thesis.
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Chapter 2

Underwater Machine Vision

2.1 Generic Camera Models in Machine Vision

In Part II, a novel way of modelling the camera underwater is presented. This model
combines the projection function of the physically accurate, axial model together
with the desirable pinhole camera model properties. To put this work into perspec-
tive, the generic camera models will be shortly summarised here. As full descriptions
of all camera models would be far too long and are not relevant for the rest of this
thesis, only a summary is presented in this section. Detailed information about each
camera model may be found e.g. in [Sturm et al., 2006].

In machine vision the most popular way of modelling the camera is with the
pinhole camera model (also known as central or perspective camera). This model
assumes that all light rays forming the image cross one point called the centre of
projection. Even though the path taken by light as it travels through the lens may be
much more complex, the registered image can be described with this simple model.
Some additional deformations in the image, which occur due to the use of a lens
instead of a physical pinhole (for example in camera obscura), may be corrected with
the lens distortion model. This approach guarantees easy mathematical description
of the projection of 3D points to the image plane, and is also an easy way of finding
the light rays in the 3D plane, corresponding to a given pixel.

The second generic camera model, called the axial model, assumes that all the
light rays forming an image do not necessarily cross a single point, but instead all
cross a line ( [Ramalingam et al., 2006]). This model may be applied to different
cameras, e.g. a stereo camera setup may be treated as an axial camera - compare
Fig. 2.1.

The axial camera model is especially important for this thesis as the submerged
perspective camera using flat glass panel housing was in fact identified as an ax-
ial camera [Agrawal et al., 2012]. This needs to be taken into account during the
calibration process, and additionally when using underwater images for the 3D re-
construction of the observed scene later on.

Even though these two camera models cover a great majority of cameras being
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Figure 2.1: Examples of axial imaging models. Left: stereo camera setup may be
treated as an axial camera, as all the light rays forming the images cross one line.
Right: a mirror formed by rotating a planar curve about an axis containing the
centre of projection of the perspective camera. Image reprinted from [Ramalingam
et al., 2006].

Table 2.1: Generic camera models and their basic characteristics

Points/lines cutting the rays Description
None Non-central camera

1 point Central camera
2 points Camera with a single projection ray

1 line Axial camera
1 point, 1 line Central 1D camera
2 skew lines X-slit camera

2 coplanar lines
Union of non-central 1D

camera and central camera
3 coplanar lines without a common point Non-central 1D camera

applied in machine vision, other models exist. The summary of these models is
presented in the Table 2.1 (reprinted from [Sturm et al., 2006]).

This classification is very generic and covers all possible vision systems. A differ-
ent categorisation may be used to emphasise other aspects, e.g. construction of the
vision system. Catadioptric systems are a good example: these cameras consist of a
pinhole camera and a mirror in which the scene is reflected. Some additional lenses
in front of the mirrors may also be added. These cameras offer very wide field of
view ( [Nayar, 1997]) or large magnification in a compact form ( [Bahrami and Gon-
charov, 2010]). Within the classification presented here, catadioptric cameras may
be either non-central or axial cameras, depending on the shape and the placement
of the mirror.
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2.2 Challenges in Underwater Machine Vision

When working with underwater machine vision there are unique problems that need
to be addressed. Due to these challenges, reusing methods and algorithms developed
for images registered in air is often impractical or even impossible.

Most of the challenges that must be overcome arise from the physical properties
of water and cannot be omitted in any way. Water strongly absorbs electromagnetic
waves, making wireless communication via Bluetooth or WiFi impossible. The visi-
ble spectrum is also affected; different wavelengths of light are absorbed at different
rates, leading to shifts in colour, usually towards the blue end of the spectrum. The
overall intensity of light is also reduced. Additionally, light in water is being scat-
tered, causing blur and haze in the images. This leads not only to inaccurate colour
representation but low quality of the images in general. This issue is discussed in
detail in Part IV of this thesis. A possible way of dealing with hazy images is also
proposed.

A second group of challenges arises from the fact that the cameras must be
physically protected from water and are enclosed in housings. Different constructions
of housing may be used, but there are two main choices for the glass through which
the camera will observe the environment: it is typically flat or spherical (compare
Fig. 2.2). Both options have their advantages and disadvantages. A spherical port
will not introduce any additional distortions to the image if the camera is positioned
so that the centre of projection is in the centre of the sphere. This, however, is
not easy to guarantee and requires tedious manual calibration. Furthermore, each
time the housing is opened, e.g. for maintenance, the calibration process must be
repeated. The glass spheres used in such ports are also not easy to manufacture and
are therefore expensive. Finally, cameras are usually placed in front of the ROV /
AUV and spherical glass is therefore exposed to physical damage in this position.

Figure 2.2: Two typical constructions of the camera housing: with flat glass panel
(left) and with spherical glass (right).

A flat glass panel on the other hand is easy and cheap to manufacture, can be
easily used in many housing designs and is not as exposed as a spherical port. Un-
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fortunately the image registered through a flat glass panel will suffer from significant
image distortions introduced by refraction through water-glass and glass-air inter-
faces. Moreover, it was shown that the pinhole camera model is not valid in this
setup ( [Treibitz et al., 2012]). This problem is addressed in Part II of the thesis, and
a new way of modelling a submerged camera behind a flat glass panel is proposed,
allowing for easy and accurate image rectification.

The final group of challenges is caused by the conditions in which the data is
collected both for testing and in regular use. Limited communication with the
vehicle, limited power and overall harsh conditions make data collection much more
difficult than in air. Usually it is not feasible to record enough data to use deep
learning techniques. Furthermore, some camera interfaces, e.g. Fire Wire, have
limited cable length (4.5m in the case of Fire Wire). As high bandwidth wireless
communication is not possible underwater, recorded images need to be stored or
processed on board of the vehicle. This adds yet another electrical component
that needs to be in housing, protected from the water. Some procedures, such as
camera calibration, are also very challenging underwater, as the diver performing
the calibration will generally not have any visual feedback. It is very hard to get
any reasonable calibration data this way.

In conclusion, there are many unique challenges that need to be addressed in un-
derwater machine vision. A system designed for underwater application is expected
to work robustly against low light, high noise and overall unfavourable conditions.
Many of these problems need to be addressed online, on board of the vehicle, hence
some machine intelligence is expected to process the images reliably. Subsequent
parts of this thesis deal with many of the challenges discussed here, proposing pos-
sible solutions.
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Chapter 3

Overview

3.1 Summary of the Research

Cameras are commonly used in underwater applications. This includes ship hull,
pipeline and other inspection missions [Hollinger et al., 2012,Kim and Eustice, 2013,
Foresti, 2001, Asakawa et al., 2000, Negahdaripour and Firoozfam, 2006, McLeod
et al., 2013,Galceran et al., 2014], habitat mapping [Davie et al., 2008,Bodenmann
et al., 2013], vehicle station-keeping [Negahdaripour and Fox, 1991, Marks et al.,
1994,Lots et al., 2000], archaeology [Bingham et al., 2010,Chapman et al., 2010,Hue
et al., 2011] or search and recovery missions [Purcell et al., 2011] just to name a
few examples. A short overview with respect to underwater vision on unmanned
underwater vehicles (UUV) is given, e.g. in [Horgan and Toal, 2006]. Flat-panel
glass windows are often used for underwater camera housings. While domes provide
optical advantages, they have to be specially engineered to fit the camera and the
integration is not trivial. Flat-pane windows are hence simply a much less expen-
sive and more flexible choice. On the other hand, flat ports introduce significant
distortions due to the refraction at the air-glass and glass-water interfaces.

Most of the results presented in this part of the thesis have been published before
in Ocean Engineering Journal, in the article: ”The pinax-model for accurate and effi-
cient refraction correction of underwater cameras in flat-pane housings”( [ Luczyński
et al., 2017c]). Later publication in the proceedings of the IEEE Oceans’17 confer-
ence, titled ”Image rectification with the pinax camera model in underwater stereo
systems with verged cameras” ( [ Luczyński et al., 2017b]), complemented these find-
ings with analysis of the case when verged cameras are placed behind a single glass
panel and is also presented here. In addition to the previously published results
some extended analysis and simulations for different cases are provided in this part
of the thesis.

Two main contributions are made. Firstly, the problem of underwater camera
modelling from a practitioner’s viewpoint is discussed. Illustrative examples of the
underlying effects and their relevance to real world applications are provided. To
some extent, this also bridges apparent contradictions found in the literature that

35



CHAPTER 3. OVERVIEW

can be explained when contrasting theoretical considerations with typical applica-
tion cases. Secondly, a novel approach for calibration and refraction correction of
underwater images is provided. Proposed method is very convenient to use in real
world applications being very accurate at the same time. This model, dubbed Pinax,
is based on a virtual pinhole camera model - which is demonstrated herein to be
applicable for real world underwater housings where the camera is relatively close
to the flat-pane - while using the projection function of an axial camera. The Pinax
model incorporates the water refraction index, for which - as also experiments show
- it is sufficient to derive it through (estimated) salinity to achieve accurate results.
It is hence sufficient to calibrate the underwater camera only once in air, thus re-
placing tedious in-water calibrations before or during missions. For the rectification,
a look-up table is generated using the projection function of the axial model, for
which we show that it can be used in a significantly simplified fashion within the
Pinax model. The look-up table can be easily computed a priori and allows very fast
real-time refraction correction of single images. An alternative method of represent-
ing correction maps, via lens distortion coefficients, is also discussed. Real world
experiments with different cameras in different fresh and salt water environments
show that the Pinax model outperforms standard methods.

3.2 State of the Art Discussion

The predominant way to handle the refraction-based distortions is to use a standard
perspective projection model and to perform standard camera calibration in-situ,
i.e., in the water or by including estimated correction factors, see e.g., [Shortis and
Harvey, 1998,Gracias and Santos-Victor, 2000,Pessel et al., 2003,Pizarro et al., 2003,
Lavest et al., 2003,Negahdaripour et al., 2006,Negahdaripour et al., 2007,Brandou
et al., 2007, Sedlazeck et al., 2009, Johnson-Roberson et al., 2010, Kunz and Singh,
2010,Beall et al., 2011,Kang et al., 2012].

[Treibitz et al., 2008, Treibitz et al., 2012] show that flat port cameras do not
possess a single viewpoint (SVP), i.e., the perspective projection model is invalid for
flat ports. This is also supported by other works [Li et al., 1997, Kunz and Singh,
2008, Chari and Sturm, 2009, Gedge et al., 2011, Yamashita et al., 2011, Sedlazeck
and Koch, 2011,Jordt-Sedlazeck and Koch, 2012,Agrawal et al., 2012,Servos et al.,
2013, Jordt-Sedlazeck and Koch, 2013, Chen and Yang, 2014, Jordt-Sedlazeck and
Koch, 2012,Yau et al., 2013].

In [Kunz and Singh, 2008] the errors caused by not compensating the refractive
distortions are discussed in some detail and they are identified as significant, how-
ever no solution to this problem is presented. A mathematical model of underwater
imaging through planar glass ports is introduced in [Chari and Sturm, 2009]. Ma-
trices corresponding to fundamental and homography matrices are derived. They,
however, depend on the incident angle of the light ray corresponding to each im-
age pixel, so they cannot be used directly for underwater vision methods. Since
no continuation of this work was published, their results remain as theoretical con-
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siderations of conceptual value. Apart from analysing the general problem from a
largely theoretical perspective, [Treibitz et al., 2008,Treibitz et al., 2012] provide an
approach for a single refractive layer, i.e., when the window is negligibly thin and
the problem can be reduced to only a single air-water interface.

Important insights into the problem and ways towards a solution are presented
in [Agrawal et al., 2012] where a flat port camera is identified to be in fact an axial
camera. [Agrawal et al., 2012] derive a 12th degree polynomial that must be solved
to project a 3D point onto an image plane in this case. A method is proposed
for calibration of the camera but it requires knowledge of the full 3D geometry of
the calibration points in the environment - a requirement which is difficult if not
impossible to fulfil in underwater applications. Furthermore, the underlying axial
model does not allow for a rectification of single images as the axial model implies
that the points are lying on complex curves. Correspondences across multiple images
can, in principle, be exploited, but this is computationally very complex, as also
pointed out in [Jordt-Sedlazeck and Koch, 2013].

When using multiview methods, the SVP model can lead to reasonable results
as explicitly discussed in [Kang et al., 2012]. Nevertheless, [Jordt-Sedlazeck and
Koch, 2013] rely on the results from [Agrawal et al., 2012] by proposing a refractive
Structure from Motion (SfM) method by augmenting the standard perspective SfM
process by incorporating a new error function in the optimization and report clear
improvements. In their further work [Jordt et al., 2016] integrated [Jordt-Sedlazeck
and Koch, 2013] and [Jordt-Sedlazeck et al., 2013] into a complete system for refrac-
tive reconstruction by improving the non-linear optimization. This allowed them to
use their method on larger scenes. While this is an interesting approach, it requires
sufficiently many images with sufficiently different views of the scene and it is still
computationally very demanding.

37





CHAPTER 4. PROBLEM FORMULATION AND PRELIMINARY ANALYSIS

Chapter 4

Problem Formulation and
Preliminary Analysis

4.1 Flat-Panel Camera Setup

The following setup is considered. A physical camera pCam that follows the stan-
dard SVP (single viewpoint) model with an intrinsics matrix pK is enclosed in a
water sealed housing with a flat glass panel through which it observes the under-
water environment. The glass panel is flat and both sides are parallel. The glass
panel introduces distortions that are to be handled by a virtual camera model vCam
that interprets the environment scene from the physical camera pCam. The overall
underwater setup of the physical camera plus its housing with a flat-pane window
submerged into water is denoted as the underwater camera uCam. When the un-
derwater camera is in air, e.g., for the calibration, it is denoted with u

aCam.
If not mentioned otherwise, in this part of the thesis the term camera refers to

the complete underwater set-up and terms virtual camera and physical camera refer
to the model vCam of the glass-panel refraction, or to the in-air physical device
pCam inside the housing, respectively.

The main object of interest for this part of the thesis is defining the virtual camera
model vCam to handle the refraction induced distortions. The related notations and
a schematic view are presented in Fig. 4.1. Following parameters are used:

• d0 - distance from the centre of projection of pCam to the glass window,

• d1 - thickness of the glass,

• x - distance to point of intersection of the light ray with the camera axis,

• ∆x - length of the focus section (discussed in more detail in Sec. 4.3),

• na, ng, nw - refraction indexes (scaled so that na = 1),

• n - normal vector to the glass surface,
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• α - incident angle.

Figure 4.1: Schematic view of a Flat Port setup: d0 - distance from the centre of
projection to the glass window, d1 - thickness of the glass, x - distance to point of
intersection of the light ray with the camera axis, ∆x - length of the focus section,
na, ng, nw - refraction indexes, scaled so that na = 1, n - normal vector to the glass
surface, α - incident angle. The blue line represents the physically accurate light
ray; the green line is the apparent ray traced back to the camera’s optical axis.

4.2 The Flat Port Setup as an Axial Camera

As shown in [Agrawal et al., 2012], the physically accurate model of a flat-port
underwater camera corresponds to an axial camera model. So, light rays creating
the image do not intersect in one point, as in the SVP pinhole model, but they all
intersect one line, called the axis of the camera. Using the pinhole camera model
thus requires approximating the focus section, i.e., the line segment on the axis on
which rays cross, with a single point. The conclusion is that the quality of this
approximation depends directly on the length ∆x of this section. In the limit case,
the pinhole camera can be seen as an axial camera where the focus section of the
camera axis is infinitesimally short. To analyse the refraction, ray tracing through
the air-glass-water interface and the apparent intersection of the rays in the water
with the camera axis can be modelled (compare Fig. 4.1):

β = arcsin sinα
ng
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γ = arcsin sinα
nw

δ = π
2
− γ

For the sake of simplicity, it is assumed that the refractive plane normal and
therefore the camera axis in the axial model is parallel to the optical axis of the
camera. This assumption is without loss of generality since the incident angle α,
i.e., the only parameter related to camera rotation, is one of the inputs, which can
be easily rotated by a fixed off-set. For the sake of completeness, the equations for
finding incident angles α, given the camera pose in the housing is:

v0 = K−1p
α = arccos v0

Tn
|v0||n|

where K is the intrinsic parameter matrix and p represents pixel coordinates on the
image.

The focus distance x for each light ray (Fig. 4.1) can be computed as:

x = tan δ(d0 tanα + d1 tan β)

4.3 Length of the Focus Section

Consider an example setup with a glass refraction index ng = 1.5, a water refraction
index of nw = 1.335 and a glass thickness of d1 = 10mm. Plotting the change of x as
a function of the incident angle α and of the distance d0 illustrates a very important
aspect (Fig. 4.2). As d0 grows, the changes in the focus distance depending on the
incident angle α (along X axis) become more significant, i.e., there is a higher range
of focus distances with increasing d0. This is further illustrated in the following.

Fig. 4.3 shows the length of the focus section ∆x as a function of d0 and d1.
∆x was calculated by finding distance x for different incident angles α and finding
the maximum distance between registered values. The plot shows that changes in
d0 are much more significant than changes in d1, i.e., the distance of the camera to
the flat-pane window has a stronger effect than the thickness of the glass window.
This effect is caused by a relatively small difference between the refraction index of
glass (≈ 1.5) and the average water refraction index (≈ 1.33, [Roswell et al., 1976])
compared to the more significant refraction on the glass-air interface. In Fig. 4.3 it
can be also observed that the best approximation of the axial camera model with a
pinhole model occurs for small values of d0.

To further motivate and illustrate this, Fig. 4.4 shows where the light rays in
water cross the camera’s optical axis for different values of d0. Each line on the
graph corresponds to a different incident angle ranging from 0 to 35 degrees, i.e., a
physical camera with a field of view of 70 degrees. It can be seen that they never
cross the same spot, but for some optimal d0, they are very close to intersecting in
one point. Points of intersection of the light rays in water and the camera axis move
differently, depending on the incident angle α that they correspond to. They get
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Figure 4.2: The focus distance x (in mm) as a function of d0 and α for an example
setup with a glass refraction index of ng = 1.5, a water refraction index of nw = 1.335
and a glass thickness of d1 = 10mm. It can be seen that the changes in the focus
distance x for different incident angles α become more significant for increasing
distances d0 of the physical camera to the flat-pane.

Figure 4.3: The length of the focus section (∆x) as a function of d0 and d1. It can
be seen that the influence of the distance d0 of the physical camera to the flat-pane
is more significant than the thickness d1 of the glass-pane.
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Figure 4.4: Example distances where the light rays traced back from the water
cross the optical axis of the camera depending on d0. Different lines correspond to
different incident angles ranging from 0 to 35 degrees, i.e., a physical camera with a
field of view of 70 degrees.

closer to each other and then they move past each other increasing the value of the
∆x again. To find this optimal value of d0 for some given parameters the following
method is used. We implemented ray tracing based on the above formulation of the
model. Then non-linear optimization is used to minimize the length of the section
where light rays back-traced from the water intersect with the camera optical axis.
For example, for the case where d1 = 10mm, the glass refraction index ng = 1.5,
and the water refraction index nw = 1.335, the method converges to d0 = 1.4282mm
where all light rays intersect the optical axis on a section ∆x that is only 0.0079mm
long, i.e., within a very good approximation of a single point. The result of this
numerical analysis allows us to define the middle of this section ∆x as a secondary
centre of projection placed 0.5851mm away from the glass panel. For this case, the
virtual camera can be treated as an SVP camera and represented with the pinhole
model.

This example motivates that although the pinhole camera model does not repre-
sent the actual physical state, for the purpose of underwater vision it may be used
as basis for a model if the distance between the centre of projection of pCam and
the glass plane is very small. This is a realistic assumption as there are no reasons
to design excessive housing sizes, i.e., the physical camera inside a housing is usually
placed quite close to the flat-pane window.
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4.4 Influence of the Distance of the Camera to

the Flat-Panel

Figure 4.5: Poses of the simulated calibration patterns used for analysing the influ-
ence of the d0 on the pinhole model accuracy.

The influence of the distance of the physical camera to the flat pane is now fur-
ther illustrated in a other motivational example. The thickness of the glass panel
d1 is assumed to be constant at d1 = 10mm. For different values of d0, the camera
is calibrated with a standard procedure. The calibration input data is based on 27
simulated chequerboard in 3D space (Fig. 4.5) by projecting the corner points to the
image plane using the full physical model including refraction. This forward pro-
jection requires solving the twelve-degree polynomial introduced in [Agrawal et al.,
2012]. This data is hence used to calibrate the camera as if it were underwater.

In a second step, a set of 100 random 3D points in front of the underwater cam-
era is generated. This set is then projected onto the image plane twice for each d0.
Firstly, the projection is performed with the full physical model to get the expected
image coordinates and the second time with the camera matrix from calibration
using the pinhole model including undistortion. Then the distance between corre-
sponding points (also called reprojection error) is calculated and used to evaluate
the pinhole approximation for the different d0. Fig. 4.6 and 4.7 show the results
by plotting the average distance between corresponding points for the different d0

values.
It should be noted that here values of d0 up to 500mm are considered. Values

within this range can be found in the literature for experimental setups, especially
in the highly relevant works of [Agrawal et al., 2012] and [Treibitz et al., 2012].
Such big values are used because then the effects of the axial camera model are
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Figure 4.6: An example with a refraction-based (green) and a pinhole (red) pro-
jection of random points in the scene for d0 = 1mm (top), 300mm (centre), and
500mm (bottom) respectively. Please note the increasing deviations in the models
with increasing d0.
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Figure 4.7: An example of the reprojection error for changing d0. Note that for
d0 = 0− 10mm the errors caused by the SVP approximation can be neglected. The
graph is not as smooth as may be expected, e.g., as in Fig. 4.3, because the simulated
patterns were not always in the optimal positions for calibration, e.g., they did not
always cover the whole field of view of the camera - which is a very natural effect
that can also be observed in real world conditions.

46



CHAPTER 4. PROBLEM FORMULATION AND PRELIMINARY ANALYSIS

clearly visible and for example the position of the camera in the housing can be
found with nonlinear optimization. There may be applications where the distance
of the physical camera to the flat-pane is quite large, e.g., when observing objects
in an aquarium and the physical camera needs to keep a significant clearance to the
aquarium window for some reason. However, this scenario is very unrealistic for
underwater cameras. Excessive housing sizes to allow for significant distances d0 are
neither necessary nor desirable for underwater applications.

4.5 Influence of the Thickness of the Panel

Second experiment was performed in the same way as in Sec. 4.4, except this time
d0 was fixed at 1mm and the tested parameter was d1. Results are presented in
Fig. 4.8.

Figure 4.8: Reprojection error for changing d1. Local maxima are caused by differ-
ences in the calibration quality for each tested setup and should not be interpreted
as any meaningful result.

This second experiment also shows expected results. The thickness of the glass
panel d1 has much smaller influence on the reprojection error in comparison to d0.
Taking into account that this value will stay in the range of 1 − 20mm for most
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applications, it is safe to ignore this parameter as a source of error. Rapid changes
of reprojection error on Fig. 4.8 are caused by local optima in the simulated camera
calibration.

4.6 Rectification Accuracy near the Calibration

Distance for SVP

Figure 4.9: Arrangement of calibration patterns used for calibrating the camera in
an example illustrating the effects of the distance of the calibration in the pinhole
model under unfavourable parameter conditions.

The following simulation example is designed to illustrate that regardless of the
setup parameters, it is possible to get a reasonable approximation of the physical
state with a standard SVP pinhole model, if the observed part of the scene is al-
ways recorded from roughly the same distance D and the camera calibration was
performed at about the same distance, i.e., the calibration pattern was moved un-
derwater in front of the camera, roughly in the distance D as well. This illustrates
that, e.g., for mosaicking with a vehicle camera in a (roughly) fixed distance over
ground, good rectification results with a pinhole model can be achieved if the cal-
ibration pattern was moved in water at the roughly same distance. On the other
hand, errors emerge once the camera is looking at parts of the scene that are closer
or further then D.

The setup parameters are as follows: d0 = 80mm, d1 = 20mm, i.e., a significant
amount of space between the focal point of the physical camera lens and the glass
panel plus a relatively thick glass pane. So, the parameters, especially d0, are in this
case relatively unfavourable.
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In this illustrating example, the camera is calibrated with 27 pattern poses spread
around a point 2 m away from the camera (Fig. 4.9). Then test points are generated
again randomly but around a given distance from the camera and, using the same
method as above, projected onto the image plane. The reprojection error against
the point distance to the camera is shown in Fig. 4.10.

Figure 4.10: The reprojection error for a changing distance of observed points to
the camera as an example that the SVP pinhole model performs well if the observed
points are close to the distance in which the camera was calibrated with an SVP
model. In this simulation example, the camera was calibrated with patterns around
D = 2 m away from the camera (Fig.4.9), which is exactly the distance were the
reprojection error is minimal.

The pinhole model holds very well only around the distance of calibration. This
shows that for some specific applications, where minimizing d0 is not possible, e.g.,
due to physical size of the lens as part of the camera subcomponent in the housing,
the pinhole model can still be used effectively if the environment is observed from
a known constant distance. As mentioned, one of the applications fulfilling this
assumption can be seabed mosaicking with constant altitude control of the observing
AUV.

This effect can also be observed in [Kang et al., 2012] where the quality of
Structure from Motion under an SVP model is investigated and good results are
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reported even for a larger distance of the camera to the window. The camera rig
used in the experiments leads to a constant distance between the camera and the
investigated object; hence the effect illustrated in this section takes place.
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Chapter 5

The Pinax Model

5.1 Overview

Based on the previous considerations, a system is proposed where a few setup as-
sumptions are used to compensate for the refraction-based distortions of the im-
age. Specifically, a transformation is computed to undistort and rectify the camera
images. The resulting images can be directly used for example in stereo vision
algorithms or for mosaicking, just to name two examples.

The following assumptions are made:

1. The distance d0 between the glass and the centre of projection is small and
near the optimal spot d∗0 where the rays traced back from the water cross in a
minimum focus section ∆x∗.

2. The optical axis of the camera is perpendicular to the glass surface. If not,
a correcting transformation should be applied, e.g., for verged stereo systems
(see section 5.4).

3. The glass thickness and its approximate refraction index are known, e.g., using
standard refraction indexes for glass or plexiglass.

4. The water refraction index is approximately known from tables, e.g., from
[Roswell et al., 1976].

Fulfilling these assumptions allows us to assume a pinhole model for the virtual
camera and hence allows us to model the refraction-based distortions very efficiently.
It also makes it possible to omit any underwater calibration procedures. The first
assumption in the above list is of course by far the strongest and most significant
one. As motivated before, it is at least not unrealistic to assume that underwater
housings are minimized in size and that hence the physical camera inside the housing
is placed as closely as possible to the window. This assumption is also supported by
the real world experiments presented later on in Chapter 8.
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5.2 In-Air Calibration

As the first step in our method, the physical camera pCam is calibrated once in air,
i.e., its intrinsic matrix pK is determined using any standard calibration process
[Hartley and Zisserman, 2003]. From a practical viewpoint it is very interesting
to note that the front window does not have to be removed from the housing. To
be more precise, the physical camera pCam can be calibrated by calibrating the
underwater camera u

aCam in air, i.e., by determining its intrinsic matrix u
aK.

The air-glass and glass-air refractions only lead to a change in perceived camera
location, which is part of the extrinsics, and the relative geometric relations between
points in the scene are preserved. A calibration process of the underwater camera
u
aCam in air is hence the same as when calibrating pCam, i.e., pK = u

aK.

If the calibration of the physical camera was already done outside the housing,
e.g., by the manufacturer, it is of course perfectly fine to use that data. The in-air
calibration of the full underwater system is only an option that is very convenient to
use for already existing complete camera systems. For high quality in-air calibration,
the tool in CamOdoCal( [Heng et al., 2013, Heng et al., 2014, Heng et al., 2015]) is
used in our experiments presented later on in Chapter 8.

5.3 Determining the Optimal d∗0

In an ideal scenario, the optimal distance d∗0 between the glass and the centre of
projection can be taken into account when designing a new underwater camera.
More precisely, the optimal distance pd∗0 of the physical camera should be taken into
account, as the model of the virtual camera vCam has its own, slightly different vd∗0
as discussed in more detail in the following section.

As already sketched in Sec. 4.3, ray tracing and non-linear optimization can be
used to minimize the length of the section where light rays back-traced from the
water intersect with the camera optical axis.

Using pd∗0 in a camera design is the ideal scenario and its computation is included
here for the sake of completeness. In most application cases, the underwater camera
is an off-the-shelf system or an already finished design. Other design constraints on
the housing or the physical camera/lens components may apply as well. However we
consider it safe to assume that for any typical underwater housing the real distance
ˆpd0 is sufficiently close to pd∗0.

As illustrated in Tab. 5.1, pd∗0 tends to be in the order of a few millimetres and
less. At the same time, the physical length of lenses tends to be in the order of their
focal lengths, i.e., the centre of projection tends to be at the front-end of the lenses
of the camera device. Hence placing the physical camera as close as possible to
the glass-pane with possibly a small air gap, i.e., using the standard default set-up
for typical underwater cameras, leads to a close approximation of pd∗0 by ˆpd0 with
negligible errors. An exact quantification of the related errors is discussed below in
the following sections.
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Table 5.1: Optimal d∗0/vd∗0 of the centres of projection of the physical/virtual camera
for different glass thicknesses and two common salinity values

d1 [mm] nw = 1.333(fresh water) nw = 1.342(salty water)
1 0.15mm/0.06mm 0.14mm/0.06mm
3 0.45mm/0.18mm 0.42mm/0.17mm
5 0.76mm/0.31mm 0.70mm/0.29mm

10 1.52mm/0.61mm 1.40mm/0.58mm
15 2.28mm/0.92mm 2.10mm/0.87mm
20 3.04mm/1.22mm 2.80mm/1.15mm

5.4 Verged Systems Behind Single Flat Panel

The assumptions made about the hardware setup allow to treat a physical camera
as if it was in the optimal position with respect to the glass panel without causing
significant errors. These assumptions and further knowledge of the intrinsic and
extrinsic parameters of the complete physical camera system in air allow to compute
the virtual intrinsic and extrinsic parameters for underwater usage. However, when
using verged system behind a single glass panel assumptions presented in Sec. 5.1
must be modified. As the cameras are verged they cannot be orthogonal to the glass
panel. Therefore the images must be corrected to rectify the image with respect to
the glass panel first. The schematic view as applied to a general stereo camera is
presented in Fig. 5.1.

Figure 5.1: Real and virtual cameras used in the method.
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First, the rotation between the two real and the two virtual cameras must be
found (Rright and Rleft). To this end, both virtual cameras are defined to have or-
thogonal optical axes to the glass panel and the Pinax model may be used. However,
there is a known rotation between these cameras R that can be determined by in-air
calibration. The x axis of the final stereo camera system is defined to be along the
translation vector t between the cameras. This ensures that the resulting camera x
axes are aligned. The z axis is taken as the average of the two in-air camera optical
axes. The y axis is set accordingly to the x and z axes. This defines the rotation
matrices for both cameras used later for the image rectification:

x = − t

|t|

a =

 0
0
1

+ R

 0
0
1

 · 0.5
z′ =

a

|a|
y = z′ × x

z = x× y

Rright = (x,y, z)

Rleft = RrightR
T

Here, Rright is constructed by vector concatenation. The transformation (t,R)
is assumed to describe the left camera coordinate frame relative to the right. This
is equivalent to changing the original Pinax assumption, that the camera axis is
orthogonal to the glass panel, to a new assumption: a baseline between the cameras
must be parallel to the front glass panel. In most cases, it will be true as even when
the cameras are verged they are usually mounted on the same plane for simpler
construction. Once the rotation between the real and virtual cameras is known, the
image correction can be computed.
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Chapter 6

Modelling Refraction-based
Distortions

6.1 Integrated Lens and Refraction-based Distor-

tions Modelled with Maps

Figure 6.1: Parameters of the analytical forward projection through a flat refrac-
tive panel with a 12th degree polynomial (reprint from supplementary materials
to [Agrawal et al., 2012]).

The main conclusion from the assumptions in Sec. 5.1, especially from assump-
tion 1 about the distance of the physical camera to the window, is that a pin-
hole camera model can be used for the virtual camera model with a negligible er-
ror. To be more precise, this insight is exploited by defining a virtual Pinax plane
ppa = (dpa,npa) that is assumed to be at distance dpa in the scene with a normal
vector npa that is parallel to the camera axis. The distance dpa is set fixed to 5m as
this is considered a typical viewing distance; but as discussed below, the exact value
is of minor interest as points on Pinax planes at different distances behave similar
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due to the virtual pinhole camera property that follows from small values of d0. vp
and pp denote homogeneous image pixel coordinates. The intensity or colour value
of a given pixel is denoted as I(p).

Each point vp from the image vI of the virtual camera vCam is projected onto
the Pinax plane ppa using a pinhole camera projection. Then this point mw is
projected forward to the inside surface of the glass panel (point ma) using the
method derived from [Agrawal et al., 2012]. Now ma may be transformed to pp
with the in air calibration parameters of pCam to obtain pixel coordinates in the
distorted image pI. This last step may be performed using any camera and lens
distortion model, referenced in Algorithm 1 with the subroutine project3dToImage().
When the calibration of the physical camera is based on a pinhole camera model
with no lens distortion, this is:

pp=pK ·ma
pp=pp · 1

ppz

In order to find the point q1 (point corresponding to ma, expressed in coordi-
nate frame z1, z2) as shown in figure 6.1 (compare also figure 4.1), the twelfth-degree
polynomial method derived in [Agrawal et al., 2012] is used. For the sake of com-
pleteness the most important findings of [Agrawal et al., 2012] are presented here.
As discussed before, it can be shown that a camera behind a flat glass panel is
an axial camera. The camera axis is assumed to be identical to the optical axis.
When tracing the light path all the refractions happen in one plane, called plane
of refraction (POR), so the analysis can be conducted in 2D. To do this mw must
be projected to POR. The new coordinate system is defined as follows. Axis z1 is
identical to the camera axis, z2 is orthogonal to z1 and lays on POR. This way mw

projected to u = [ux, uy] may be used to derive the projection function (compare
Fig. 6.1). This derivation starts with the constraint:

vp2 × (u− q2) = 0

This constraint is valid as the refraction is analysed on the plane of refraction.
Furthermore:

q2 = q1 − d1vp1/vpT
1 n = [x; d0]− d1vp1/vpT

1 n
vp2 = 1

ng
vp1 + b2n = 1

nw
vp0 + ( ng

nw
b1 + b2)n

where:

b1 =
(
d0 −

√
d2

0 − (1− n2
g)(x

2 + d2
0)
)
/ng

and:

b2 =

√
(n2
g−1)(d20+x2)+d20−

√
(n2
g−1)(d20+x2)−(n2

g−n2
w)(d20+x2)+d20

nw

Finally, substituting q2, vp2, b1 and b2 in the initial constraint we get:
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k1

√
D1 + k2

√
D1D2 + k3

√
D2 = 0

where

k1 = x(d0 + d1 − uy)
k2 = (ux − x)

k3 = −d1x

D1 = d2
0n

2
g + n2

gx
2 − x2

D2 = d2
0n

2
w + n2

wx
2 − x2

Removing the square root terms it may be represented as:

(k2
1D1 + k2

3D2 − k2
2D1D2)2 − 4k2

1k
2
3D1D2 = 0.

Algorithm 1: Creating correction maps in the Pinax model (compare Fig.
6.2).

let M be an associative array
for vp ∈ vI do

mw = vK−1· vp · dpa
z1 = (0, 0, 1)T

z2 = z1 × (z1 ×mw)
ux = z2 ·mw

uy = z1 ·mw

q1=solve12thDegPoly(setupParams,[ux, uy])
ma = q1 x · z2 + q1 d · z2
pp=project3dToImage(CameraAndLensModel,ma)
store key-value pair (vp,p p) in M

end

Algorithm 2: Applying Pinax correction maps

Let M be an associative container created with algorithm 1
for vp ∈ vI do

look up value pp for key vp in M
a = floor(pp)
bx = ppx − ax
by = ppy − ay
c1 = bx · pI(a) + (1− bx) · pI(a + (1, 0, 0)T )
c2 = bx · pI(a + (0, 1, 0))T + (1− bx) · pI(a + (1, 1, 0)T )
vI(vp) = by · c1 + (1− by) · c2

end
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Figure 6.2: Left: The map creation in the Pinax model that combines a projection
from the virtual pinhole camera to the Pinax plane (green ray) and back with an
axial projection to the physical camera (blue ray). Right: The virtual (green) rays
are good approximations of the physical rays (blue) once they cross from the glass
panel into water - and the small d0 assumption is fulfilled.

The method solving this polynomial to find q1 is referenced with the subroutine
solve12thDegPoly() in Algorithm 1.

This procedure that combines a pinhole forward and an axial backward projection
has to be computed only once and leads to image transformation for undistortion
and rectification stored in a lookup table (compare Algorithm 1 , 2 and Fig. 6.2).
The main contribution in the context of the Pinax model is of course Algorithm 1,
i.e., the way the correction map is created, while Algorithm 2 is just the standard
procedure for applying correction maps for rectification, which is included here for
the sake of completeness.

6.2 Refraction-based Distortions Modelled with

Distortion Coefficients

As shown in the previous section the lens and refraction-based distortions may be
combined into a single correction map. However it is also possible to model both
sources of image deformation separately. Lens distortion correction map is usually
encoded through a set of parameters dependent on the mathematical model that
is being used. The same model may be used to encode the refraction correction.
Therefore in this section it is assumed that the lens distortion will be corrected
separately. Only refraction-based distortion is modelled, as an additional layer of
image deformation (compare Fig. 6.3).

58



CHAPTER 6. MODELLING REFRACTION-BASED DISTORTIONS

Figure 6.3: Correcting lens and refraction-based distortions separately. Left: raw
image, centre: image after removing lens distortions, right: fully corrected image

6.2.1 Modelling method

The refraction effects on the image may be modelled with lens distortion model
and change in focal length. This requires a few steps to be performed. Firstly
lens distortion is corrected in the image. At this point any additional effects will
be caused by refraction only. Then a grid of 300 arbitrary points covering the
whole image pI is selected. For these points ray tracing is performed as shown in
Sec. 4.2. This step results with a set of vectors corresponding to the light rays in
the water. These vectors are then moved to the centre of projection of the virtual
camera vCam to simulate its image with a new set of points corresponding to initially
selected set.(Fig. 6.4). Unlike the correction presented in Sec. 6.1 this method starts
the analysis at the pCam and traces the light to the vCam. This allows to omit
projection with 12th degree polynomial. However after tracing points from pCam
to vCam a transformation pI → vI still remains to be found. The goal is to find a
set of distortion coefficients [Zhang, 2000] and apparent change in focal length that
will transform initially selected set of points to their desired positions. For this a
non linear optimization is performed. However only four distortion coefficients are
optimized. In the error function the image is undistorted with the currently tested
parameters. Then the new intrinsic matrix that best scales this points to their ideal
position is found. It is done by matching the light ray vectors corresponding to this
point and the ideal ones. These vectors may be easily calculated with:

v0 = pK−1pp

Where v0 is one of the vectors that should be modelled. Then the new intrinsic
matrix may be found with least squares method, as follows:

X = [pux 1]
Y = [puy 1][

fxinnew
uin0

]
= (XTX)−1XTv0x[

fyinnew
vin0

]
= (YTY)−1YTv0y
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Figure 6.4: Set of arbitrary points of the image (red) and corresponding corrected
positions (green). Please note that the registered image points should be moved
into barrel-like shape to correct pincushion distortion caused by the refraction. This
agrees with direct observation presented in Fig.6.3.

Where pu are coordinates of the undistorted points and additional subscripts x or
y means that only respective coordinates are taken into account. All parameters
found this way create inverted matrix of the new intrinsic matrix so:

vK =

fxinnew 0 uin0

0 fyinnew vin0

0 0 1

−1

Difference between calculated light rays vectors (corresponding to current distortion
coefficient and intrinsic matrix) and ideal vectors is then passed to the optimizing
function as a parameter that should be minimized.

6.2.2 Modelling results

In this section all conditions are assumed to be known. The centre of projection is
exactly in the spot, where the pinhole camera model is valid (d0 = 1.4282mm), the
glass surface is orthogonal to the camera optical axis and the refraction index of the
water is known exactly (nw = 1.34).

Then for this optimal parameters simulations were performed, as discussed in
Sec. 6.2.1, to find the predicted values of the camera intrinsics and the distortion
coefficients underwater. These simulations were repeated for different focal lengths
to depict usage of different cameras being used in accordance to the method proposed
here. The results are shown on Fig. 6.5.
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Figure 6.5: Left: Simulated values of the vCam focal length depending on this
value for pCam. Right: Predicted values of distortion coefficients required to model
refraction-based distortions. Focal length in both is given in pixel units, as in the
intrinsic matrix.

Fig. 6.5 shows the prediction of the focal length depending on the focal length
of the input camera. The simulated data may be very well estimated with linear
function:

fpredicted = 1.34 · finput
This result agrees with theoretical prediction formulated in [Lavest et al., 2003]:

fpredicted =
nw
na
· finput

Furthermore, as visible on Fig. 6.5 both tangential coefficients are zero and the
refraction may be entirely modelled with two radial coefficients only. What is even
more important, these coefficients are nearly constant, any changes may be result
of residual error in the optimization. Nonetheless both can also be estimated with
linear functions:

κ1 = 2.6517e− 05 · finput + 0.19468
κ2 = −6.1319e− 05 · finput + 0.14491

Approach based on lens distortion model applied to refraction correction has an
advantage of being more compact. Correction maps require significantly more space
when being stored. On the other hand maps should be more precise as correction
is calculated through analytical equations, not optimization. Furthermore image
is corrected only once, lens and refraction-based distortions are being corrected
in one go so interpolation of pixels’ values is performed only once. Finally lens
distortions tend to have barrel nature, where refraction-based are pincushion type.
They compensate each other (compare Fig.6.3) which is yet another reason to use
maps. Therefore in the rest of this thesis whenever Pinax model is used image
correction based on correction maps is used.
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Chapter 7

Numerical Error Analysis

In previous chapters a way of correcting refraction-based distortions with Pinax
model was presented. This model and its limits will now be tested in simulations.
Simulated camera is calibrated and different parameters are being changed, to esti-
mate their influence on the model.

7.1 Influence of the Pinax Plane and d0 Distances

on the Correction Maps’ Accuracy

The essential assumption in our model is that the correction computed for points
in the Pinax plane also generalizes for other points in the scene. Furthermore, we
postulate that minor variations in d̂0 are negligible and that typical underwater
cameras are already designed in a way that allows to fulfil near optimal conditions.
Fig. 7.1 shows the maximum errors between look up pixel values for the optimal ∗d0

and a Pinax plane distance of 5m and scene points that are at different distances
than the Pinax plane, respectively if in addition d0 deviates from the optimal ∗d0.

Fig. 7.1 shows that the errors are very small, i.e., in the order of at most a few
millimetres over some meters distances, even with significant deviations of d0 from
∗d0 of up to 40mm, i.e., under the presence of severe air gaps between the camera
and the front panel. Only if the physical camera is significantly placed away from
the glass panel pronounced errors occur. If d0 is quite close ∗d0, i.e., if the air
gap is small, the theoretical errors are even negligible considering realistic camera
parameters. It can also be noted that the error becomes smaller for larger distances
of the scene points.

7.2 Error Introduced by Camera-Glass Orthogo-

nality Error

The second assumption presented in Sec.5.1 states, that the camera’s optical axis is
orthogonal to the front glass panel. In this section Pinax model is further tested in
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Figure 7.1: Errors between the look up pixel value for the optimal ∗d0 and the Pinax
plane distance of 5m and scene points that are at different distances than the Pinax
plane, respectively for which in addition d0 deviates from the optimal ∗d0. Note that
as long d0 is close to ∗d0, the location of the point in the scene has no influence.
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simulations, where the normal vector of the glass surface is rotated. This will lead
to finding a maximum error introduced by this assumption.

The camera was modelled with the assumption that it is in its optimal position,
∗d0 away from the glass panel and with optical axis orthogonal to the glass. Then
each iteration of the simulation moves rotates the camera up to 0.5◦. A set of
arbitrary points covering whole image is traced into the water to the plane 5m away
from the camera. Once the accurate model is used and, for the second time the
Pinax model, assuming perfect orthogonality. Results of this experiment depicts
Fig. 7.2. The horizontal axis represents angle between simulated normal vector and
assumed one in degrees. The vertical axis represents average and maximum error
found in the experiment.

Figure 7.2: Maximum (red) and average (green) error, caused by orthogonality error.
Error was measured as a displacement of the estimated light ray from the accurate
one 5m away from the camera

The error grows linearly and for biggest assumed orthogonality error of the glass
panel can reach 16.8mm max and 12.8mm on average. It is important to notice that
the error is biggest for the points on the sides of the image. However these points
are often not used in stereo reconstruction.

7.3 The Role of Changes in the Water Refraction

Index

The computation of the predicted underwater camera parameters takes the refrac-
tion index of the water into account. Importance of this factor was tested in simu-
lations. Similarly to the experiment in Sec.7.2 underwater camera is modelled with
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Figure 7.3: The maximum (red) and average (green) error caused by changes of the
water refraction index in an example camera set-up. The error is measured as the
displacement of the estimated light ray from the proper one at a 5 m distance from
the camera.

Pinax method. Water refraction index nw = 1.34 is assumed. Then all the setup
parameters are set to the ideal values, only water refraction index is varied within
the range nw = 1.33−1.35. For each value of the water refraction index the physical
model is used to trace light rays, corresponding to the set of points covering the
whole image, into to water to the plane 5m away from the camera. Displacement
between these rays and the ones predicted with Pinax model is taken as an error
measure. Both the maximum error, which occurs for rays under the maximum in-
cident angle, as well as the average error over all rays are shown. The errors are
substantial, i.e., though there is only a very small change in the water refraction
index, it is very beneficial to take it into account. This also holds for other methods
in general as shown in the experimental results section. While it is sufficient to
simply recompute the correction map in the Pinax model, which can be done very
fast and without the need of gathering any additional vision data, the standard in
water calibration approach requires a new recording of in-situ data to avoid errors.

In our experiments presented below, we simply use estimated salinity and the
related refraction indexes from tables [Roswell et al., 1976], which we found suffi-
ciently precise to accommodate for the effects of changing water refraction indexes.
Nevertheless, the exact water refraction index can also be computed from physical
parameters, e.g., by using the formulas from [Millard and Seaver, 1990] or [Quan
and Fry, 1995]. The predominant factor is the influence of salinity followed, to a
much lesser extent, by temperature and pressure. Very commonly used CTD sen-
sors provide exactly this information, i.e., it is very simple to get an exact indirect
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measurement of the water refraction index if needed. As the computation of the
correction map is relatively fast (see Sec.8.1), this even allows an semi-online re-
computation of the correction map during the mission if the conditions change, e.g.,
if the camera on a vehicle operating at sea passes an fresh water inflow, or if a
mission ranges from warmer shallow waters to much colder deep waters.

7.4 Combined Errors

In this section the combined errors caused by the most important factors discussed
before (non-optimal d0, not orthogonal glass plane and water refraction index known
only approximately) are investigated. Firstly it was checked, how two of those factors
influence the average and maximum error, when occur at the same time. The error
is defined as previously - as a displacement from the optimal position on the plane
5m away from the camera. Results are shown on the Fig. 7.4 and Fig. 7.5.

Figure 7.4: An average error, in mm, caused by the different pairs of the analysed
error driving factors.

Figure 7.5: A maximum error, in mm, caused by the different pairs of the analysed
error driving factors.

Analysing this plots it can be concluded that the maximum error will occur, when
all discussed factors are at its assumed limits: the glass panel orthogonality error
is 0.5◦, water refraction index is smaller, than assumed and equals 1.33, and actual
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distance o the centre of projection to the glass panel reaches its maximum allowed
value. For such conditions the average error equals 18.13 mm and maximum error is
42.84 mm. Of course this error will be smaller closer to the camera and bigger, when
observed further than 5m away. It is worth noticing, that water refraction index
bigger than assumed is compensated by increased d0. It is also very important to
notice, that in many cases the most important error driving factor - water refraction
index- can be checked in the tables ( [Roswell et al., 1976]) before the mission which
will significantly decrease both maximum and average error, up to 22 mm and 13
mm respectively. Finally it must be noted, that most significant errors occur on
the side of the image. However during 3D stereo reconstruction parts of the image
on the sides are rejected as only scene seen by both, left and right camera, may
be reconstructed. Therefore in practical setup measured erros may be smaller than
predicted in these simulations.
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Chapter 8

Experiments and Results

In this section the previous theoretical discussions and numerical analyses of the
Pinax model are complemented with quantitative evaluations with real underwater
camera systems. The underwater systems are based on various components received
from different third parties. None of the systems or system components were de-
signed with knowledge of the Pinax model. In all the experiments stereo cameras are
being used. It allows for quantitative measurements to reliably asses the accuracy
of the Pinax model. However monocular image may be corrected with the Pinax
model just as easily and reliably as stereo pair.

Firstly, run-times for generating and applying the refraction correction maps are
presented in Sec. 8.1. Especially the use of a correction map for rectification is
extremely fast and can hence be applied in real-time on a video stream. Secondly,
qualitative results from field work where the Pinax model is used for in-air calibra-
tion are presented in Sec. 8.2. The qualitative results are based on several third
party systems including a custom-made underwater camera on the Ifremer vehicle
Vortex [Brignone et al., 2011] and several COTS cameras in custom-made underwa-
ter housings, e.g., on the AUV Sparus [Mallios et al., 2011] from the University of
Girona and the AUV Seacat [Enchev et al., 2015] from ATLAS Elektronik. Thirdly,
quantitative evaluations are presented in Sec. 8.3 where the Pinax model is compared
to state-of-the-art underwater calibration. The experiments are conducted with a
Bumblebee XB3 with dual stereo, i.e., three monocular cameras at two different
baselines, in a custom-made underwater housing and with a GoPro Hero3+ Black
Edition stereo rig in a consumer housing from GoPro. The accuracy of underwater
stereo computations on artificial checker-board patterns is used in the quantitative
evaluations as a metric of rectification accuracy.

8.1 Run-Times for Generating and Applying the

Refraction Correction Maps

One of the strengths of the Pinax model is its computational efficiency. The re-
fraction correction maybe done via maps, i.e., simple look-up tables for image rec-
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tification which lead to very efficient operations very well suited for real-time per-
formance. The computations of the maps themselves are also relatively fast and
can be done just once offline. The following runtimes are benchmarked on an Intel
Core i7-3610QM CPU running at 2.3 GHz, i.e., a mobile CPU that is used in an
embedded system suited for integration on robotic vehicles, even within the camera
system itself.

The experiments are done once with MATLAB R2014a on Windows 7 and once
with the Robot Operating System (ROS) Hydro on Ubuntu 12.04. It should be noted
that no optimization is used, and especially that no parallelization is employed. Both
the computation of the correction map itself as well as its application for rectification
can be easily speeded up by parallel computation, e.g., through multithreaded or
CUDA programming if higher processing speeds are required.

Table 8.1: Computation times for generating the correction maps.

time
camera resolution MATLAB ROS

(h:mm:ss) (mm:ss)
Bumblebee2 1024x768 0:11:47 0:20
Bumblebee XB3 / Vortex cam 1280x960 0:18:25 0:32
GoPro Hero3+ Black Ed. 4096x2160 2:12:36 3:50
Fuji FinePix 3DW3 3648x2736 2:29:35 4:20

Tab. 8.1 shows the computation times of the correction maps for different cam-
eras, respectively image resolutions. The computation is linear in the number of
pixels and takes about 0.89925 msec/pixel on MATLAB, respectively 0.026042
msec/pixel on ROS. The computation of a Pinax correction map has to be done
only once. It can hence be simply computed offline.

Each Pinax correction map depends - in addition to the in-air calibration map
of the underlying physical camera - on the water refraction index, i.e., especially
salinity. In the experiments reported later on, only two different correction maps
are used across a wide range of different field experiments, namely one for salty
water and one for fresh water. As discussed in more detail in the relevant sections,
we found two maps to be sufficient. For even more accurate image rectifications, as
mentioned earlier, it is possible to use a CTD sensor to determine the salinity of the
water directly at the location of the mission, respectively even during the mission
if the salinity changes. This then allows to either instantaneously switch between
several pre-computed maps, or to even compute a perfectly fitting map online, which
takes in the order of at most a few minutes under ROS, when no parallelization is
applied.

Tab. 8.2 shows the computation times to apply the correction maps, i.e., to
perform an image rectification, for different cameras, respectively image resolutions.
The computation is just a look-up operation and hence very fast and very well
suited for real-time operation. The underlying algorithm is again also well suited
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Table 8.2: Computation times for applying the correction maps, i.e., for rectification.

time
camera resolution MATLAB ROS

(seconds) (seconds)
Bumblebee2 1024x768 0.025 0.007
Bumblebee XB3 / Vortex cam 1280x960 0.055 0.012
GoPro Hero3+ Black Ed. 4096x2160 0.412 0.085
Fuji FinePix 3DW3 3648x2736 0.453 0.094

for parallel computation; hence it is easy to further speed it up if necessary through
multithreading or CUDA programming.

8.2 Qualitative Results

Table 8.3: The different camera systems used in qualitative evaluations

camera focal imager housing
length (mm) resolution size provider

1 Bumblebee XB3 (Jacobs) 3.8 1280x960 1/3¨ U.Zagreb
2 Bumblebee XB3 (IST) 3.8 1280x960 1/3¨ U.Zagreb
3 Bumblebee2 (UdG) 2.5 1024x768 1/3¨ UdG
4 Bumblebee2 (Jacobs) 2.5 1024x768 1/3¨ ATLAS
5 Vortex Camera 4 1280x960 1/3¨ Ifremer
6 Fuji FinePix 3DW3 6.3 3648x2736 1/2.3¨ FantaSea
7 GoPro Hero3+ Black Ed. 2.65 4096x2160 1/2.3¨ GoPro

In this section qualitative examples, covering a range of different underwater
conditions, are given. They illustrate the usefulness of the method introduced in
this Part for real world applications. Tab. 8.3 gives an overview of seven different
systems where the Pinax model was used, i.e., the cameras in each system were
calibrated just once in air and the Pinax correction tables were used for rectification
of the images. The correction tables were computed with two different refraction
indices, namely nw = 1.333 for fresh water, nw = 1.342 for salty water, respectively.
Depending on the environment conditions, e.g., experiments in a pool or lake, or
in the sea, the relevant map was chosen. The cameras have different technical
parameters, especially with respect to focal length or d1, and they are mounted in
different housings that were all designed by third parties without any knowledge of
the Pinax model, yet fulfilling the underlying assumptions. It was possible as these
assumptions are convergent with usual requirements for such housings.

The test systems are all stereo cameras. The advantage of stereo cameras is
in this context that they not only provide metric information, which will be used
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for a quantitative analysis later on, but that their data also provides very good
qualitative indicators of the calibration and rectification accuracy. Stereo processing
is very sensitive to the accuracy of the image rectification due to the inherent use of
the epipolar constraint. If there are distortions in the two cameras, matching pixel
blocks do not lie on the same line in the two images any more, i.e., the epipolar
constraint is violated and correspondences cannot be established leading to missing
range values. Hence rectification errors not only lead to metric errors in the range
estimates but also to complete failures in the stereo computations.

Figure 8.1: A 2.5D coloured point cloud (center) generated from images (left) from a
custom-made underwater stereo camera on the Vortex vehicle (right) of the Institut
francais de recherche pour l’exploitation de la mer (Ifremer). The stereo point cloud
is very dense, hence indicating very good rectification accuracy.

The trials with different camera systems in various environment conditions show
following main three qualitative results that are interesting for applying the method
introduced in this article in real world applications:

1. In-air calibration of underwater cameras with the Pinax model is applicable to
a range of systems and environment conditions. Pinax-based calibration was
applied to seven different systems used in different environment conditions.
The cameras and housings were from various 3rd parties. In each case, in-air
calibration with the Pinax model was successful and led to (at least) quali-
tatively comparable results to underwater calibration which was the previous
state of practice for the systems.

2. The quality of the in-air calibration matters. The Pinax model allows for
convenient in-air calibration that only has to be done once. The final result of
the rectification is significantly influenced by the quality of this calibration.
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3. The water refraction index, especially due to salinity, matters but to a lesser
extent. Ignoring the influence of the changes in refraction of water due to
environmental parameters, especially in form of salinity, leads to degradation
in accuracy in the rectification.

Regarding aspect 1., the Pinax model was successfully used on all seven systems.
The in-air calibration and the related image rectification lead to high quality results
in all cases as indicated by the density of the 3D point clouds generated by the
stereo processing. Fig. 8.1 and 8.2 show two typical results as illustrative examples.
It should be noted that the “holes” in the point cloud shown in the centre of Fig. 8.1
are visible just due to the perspective view, i.e., due to occlusions in the scene. In
addition to the density of the stereo results, there are also qualitative indications of
the metric accuracy.

(a) wrong in-air (b) wrong salinity (c) correct in-air and salinity

Figure 8.3: An illustration of two of the three main qualitative observations related
to our method, namely that 2. the quality of the in-air calibration matters ( a)
compared to c) ) and that 3. the salinity has an influence ( b) compared to c) ).

Fig. 8.3 illustrates the aspects 2. and 3. with respect to the relevance of the
quality of the in-air calibration, depending on the water refraction index. The point
cloud PCc shown on the right was generated in seawater by system 2 (Bumblebee
XB3 (IST) with U.Zagreb housing) using our method with the proper factory in-
air calibration file as input and our standard salt-water refraction estimation. The
resulting point cloud density ∇PCc provides a comparison baseline for a simple
illustrative example.

The point cloud PCa shown on the left uses the factory in-air calibration file from
exactly the same type of camera, namely the Bumblebee XB3 owned by Jacobs with
identical (nominal) parameters as the one owned by IST, and which is mounted in
the same type of housing, namely the design by U.Zagreb. The proper salt-water
refraction index is used. Nevertheless, the point cloud density ∇PCa is just 19.7%
of the density ∇PCc. So, no correspondences can be found for a significant portion
of the pixels in both images, i.e., the necessary epipolar constraint for stereo vision
does not hold, and so the rectification process is highly unsuccessful in this case.

The point cloud PCb shown in the centre uses the correct factory in-air calibra-
tion file of this specific camera instance. However our standard fresh-water refraction
index is here used in the Pinax model though the data is collected in seawater. The
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point cloud density ∇PCb degrades therefore to 93.2% of the density ∇PCc in this
example. It can be noticed that there is especially missing data at the sides of the
point cloud, which is consistent with what is to be expected when the rectification
quality degrades. The distortion effects due to refraction are most visible at the
sides of the stereo images, hence violations of the epipolar constraint due to de-
graded rectification start taking effect from there. Further examples of the Pinax
model applications are given in the Chapter 16.

8.3 Quantitative Evaluation of the Pinax Accu-

racy

The numerical analyses of the Pinax model as well as the qualitative experiences in
the field indicate that it leads to very accurate calibration and rectification results.
This is now further substantiated with quantitative evaluations of real cameras,
namely a Bumblebee XB3 (Tab. 8.3, system 1) and a stereo rig consisting of two
GoPro Hero3+ Black Edition (Tab. 8.3, system 7). Both systems are quite different
and provide two interesting test cases.

Figure 8.4: The Point Grey Bumblebee XB3 has three monocular cameras that allow
stereo processing with a short and with a wide baseline. The chequerboard pattern
underneath the camera is used for the quantitative accuracy analysis.

The Bumblebee XB3 features three monocular cameras. This allows stereo pro-
cessing with a short and with a wide baseline (Fig. 8.4). The GoPro stereo system
consist of a standard set-up with two cameras (Fig. 8.5). There are hence five
monocular cameras in total that are calibrated and rectified with the Pinax model
in the following experiments.

As it is difficult or even impossible to acquire ground truth data of natural
underwater environments, the analysis is based on artificial chequerboard patterns
where the exact distance between the black and the white fields is known. For the
quantitative evaluations, the stereo systems are placed in a pool filled with fresh or
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Figure 8.5: The stereo system consisting of two Gopro Hero3+ Black Edition cam-
eras in a Gopro Dual HERO underwater housing.

salty water. The chequerboard pattern is then moved at different distances within
the field of view of each camera. Stereo processing is conducted for each sequence
of images acquired at the different distances. The metric stereo estimates of the
distances between the chequerboard markers are finally compared to the ground
truth distances, thus providing an error metric for the rectification accuracy.

Four different methods for calibration and rectification are evaluated, namely:

• standard in-air calibration and rectification

• state-of-the-art underwater calibration with a correct water refraction index
(WRI), i.e., the calibration is performed in-situ in water at exactly the same
salinity conditions as the recording of the evaluation data that is then rectified

• state-of-the-art underwater calibration with a wrong WRI, i.e., the calibration
is performed in a fresh water pool while the recording of the rectified evaluation
data is done in salty water

• Pinax in-air calibration and rectification under arbitrary but roughly known
(fresh or salty) water conditions

All calibrations are based on the popular SVP model by [Zhang, 2000] that can
be found for example in MATLAB. We use here the according method from the
CamOdoCal calibration package [Heng et al., 2013, Heng et al., 2014, Heng et al.,
2015].

Pinax results unfortunately cannot be directly compared with the method of
[Agrawal et al., 2012] or methods that build on it, i.e., that use the proper axial
camera model to determine d0 like for example [Kawahara et al., 2013]. The problem
is that in these methods the non-linear optimization suffers from numerical insta-
bility when d0 becomes small, i.e., when d0 is in the order of several millimetres.
More precisely, the underlying numerical optimization still performs well in these
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(a) d0 1.5mm (b) d0 15mm

Figure 8.6: The method from [Agrawal et al., 2012] becomes numerically unstable
for small d0 under the presence of noise. This is illustrated here with two datasets
for d0 = 1.5mm and d0 = 15mm. In each case, six noise levels from 0 to 0.5 pixel
standard deviation are investigated. For each noise level, 15 runs of the method are
performed on simulated data, i.e., with known ground truth d0.

cases with perfect calibration data. However it diverges as soon as there is noise
on the calibration data, especially when using any real world calibration data. It
is interesting to note that the real world experiments presented in [Agrawal et al.,
2012] or in publications building on it use quite large values for d0, i.e., the cameras
are placed at quite some distance, even half a meter away from the glass panel.

So in the region of interest for Pinax method, i.e., with the camera being close to
the window and d0 being in the order of a few millimetres, the exact, axial, camera
model fails - the observed case starts to be outside the domain of the axial model.
To substantiate this observation, experiments have been conducted with simulated
data for different values of d0, namely for d0 = 1.5mm and d0 = 15mm. Simulated
chequerboard points are projected from 3D to the image plane using the 12th degree
polynomial for a proper axial camera model. Six levels of Gaussian noise from 0
to 0.5 pixel standard deviation are added to the projection. These points are used
as input to the method from [Agrawal et al., 2012] using their released code. 15
runs are performed for each noise level for each value of d0. The results of each run
are shown in Fig. 8.6 as relative error of the result of the non-linear optimization
over the ground truth. It can be observed that the method only leads to stable,
correct results in the absolutely noise-free cases. For d0 = 1.5mm, the output varies
significantly over each run and produces significant errors in the estimate of d0 as
soon as there is the slightest noise present. It can be observed that the situation
improves a bit for d0 = 15mm, but a substantial instability still remains.

Fig. 8.7 shows the results of the evaluations on the three different stereo set-
ups. All errors are normalized, i.e., they are plotted as percentage of the known,
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(a) Bumble XB3, wide baseline

(b) Bumble XB3, short baseline

(c) GoPro

Figure 8.7: The relative errors of the triangulated points in % for the four evaluated
methods on the three different stereo set-ups. The error bars show the upper and
lower quartile values of the error, the centre dots are the medians. The error values
are plotted for each nominal distance of the calibration pattern during the test.78
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Figure 8.8: For the GoPro data, the in-air calibration leads to such severe distortions
that the stereo processing is completely failing in this case. On the left, an example
GoPro image from a test sequence is shown; on the right, the “corrected” image
based on in-air calibration is shown.

measured distance between chequerboard markers. For the GoPro test sequence,
the evaluation of the in-air calibration is omitted as its rectification is performing
so poorly that stereo processing is not possible any more (Fig. 8.8). Also in the case
of the two Bumblebee XB3 set-ups, stereo processing for several of the recorded
image pairs could not be performed due to poor rectification results with the in-air
calibration. These cases would have accordingly lead to significant metric errors;
the reported average errors for the in-air calibration are hence a very optimistic,
best case estimates.

It can be seen that this quantitative evaluation supports the previous numerical
and qualitative observations. The Pinax calibration and rectification leads in all
cases to superior results. Most importantly, the errors are significantly smaller than
using the state-of-the-art underwater calibration. In addition, Pinax calibration is
much more convenient to use as it is based on in-air calibration. The experiments
also show that the salinity matters, i.e., if state-of-the-art underwater calibration
is done for example in a fresh water pool and the camera is used in the sea, the
rectification quality degrades. The Pinax model takes the possible changes of the
water salinity into account and is hence not affected by this.

One might expect from a purely theoretical viewpoint that in-air calibration with
Pinax and a state-of-the-art underwater calibration that is performed in-situ under
the correct water refraction index (underwater with correct WRI) lead to similar, if
not identical results. But it is important to note that underwater visibility is worse
than visibility in air. This holds even in the best possible cases, i.e., over short
distances in a pool. Given the same conditions, i.e., the same number of image
frames for calibration, etc., the underwater calibration data is hence noisier due to
blur affecting the corner detection. Pinax is hence not only more convenient to use,
it also leads to more accurate calibration results in real world applications.
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Chapter 9

Problem Formulation

9.1 Introduction and Related Work

Cameras have been used in robotics and automation for decades. Some of the most
complex tasks such as mobile robot navigation, object recognition or manipulation
may require depth information for work [Desouza and Kak, 2002]. In many cases
the stereo setup is the preferred choice. However, the choice of the camera, lens
and setup parameters (baseline, vergence angle) is rarely discussed. In the recent
work [Zhang et al., 2016] some considerations towards choosing the cameras at
the stage of system design were presented. However, that work focused only on
monocular visual odometry. In [Chen et al., 2007] an attempt was made to formalize
the process of designing stereo systems. However, this work focused on optimizing
the coverage of the human activities space. On the other hand, different factors
must be considered in the case of 3D reconstruction. Estimating the reconstruction
errors which stem from the quantization error in a stereo system [Dubbelman and
Groen, 2009,Matthies and Shafer, 1987,Herath et al., 2006,Pojar et al., 2012,Zhang
and Boult, 2011] requires a considerable amount of work. The quantization error is
caused by the fact, that each pixel on the sensor is a patch of surface, not a point,
therefore represents a volume in space (see Fig.9.1). This is further discussed in
Chapter 10.

This work is mainly motivated by the EU founded project DexROV. A stereo
system is needed for various tasks, ranging from general mapping to object recogni-
tion and visual servoing. However, the design is limited by the size of the vehicles
utilised. Also the expectations regarding modelling accuracy are high, therefore the
design process must be studied carefully. In practice there are several factors that
may and should be considered at the stage of designing the system. This part of
the thesis focuses on the most common design scenarios. All important factors are
identified, modelled and finally these formulations are disentangled into a set of
constraints. Since the considerations presented here are not application-specific, the
proposed solution may be used for designing a stereo system for applications ranging
from industrial to research cases, both in normal atmosphere and underwater.
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Figure 9.1: Schematic view of the proposed setup and visualization of the quantiza-
tion error.

9.2 Research Problem

When designing a stereo vision system there are a few decisions which have to be
made regardless of applications:

• Selection of the camera,

• Selection of the lens,

• Length of the baseline,

• Vergence of the cameras.

At the same time, these choices are limited by the following constraints:

• Minimum observation distance at which the system should provide 3D cover-
age,

• Maximum length of the baseline that may be accommodated in the given
application,

• Desired accuracy of the 3D reconstruction.

• Desired field of view and area covered by an image at the intended distance
to the seafloor.
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Below, we discuss each item and define the challenges related to them. There are
numerous questions related to the selection of a camera e.g. availability, price etc.
When designing a stereo system, a decision has to be made regarding the interface
to be used: USB, GigE, Fire Wire etc. Details of each available option and their
influence on the system are further discussed in chapter 11. The most important
factors to be considered are the resolution of the imaging matrix and the size of a
single pixel. Since the same sensor may be installed in various cameras, from this
point on we will discuss the selection of a sensor, not the camera. There are some
general rules that apply to this selection. A bigger sensor will provide greater field
of view at the same focal length of the lens. A bigger pixel size will result in higher
sensitivity and better performance in low-light conditions. On the other hand, the
bigger the pixel size, the bigger the quantization error. The lens must be compatible
with the camera in terms of mount, supported size of sensor, etc. However, the most
important factor is the focal length. Increasing the focal length will decrease the
quantization error at the cost of decreasing the field of view.

When cameras are selected, they need to be assembled into a stereo rig. The
choice of baseline length and vergence is very important for the performance of
the whole system. In general, increasing the baseline increases the accuracy of
3D reconstruction by minimizing the quantization error [Rodriguez and Aggarwal,
1990]. On the other hand, it also increases the minimum observation distance. This
problem may be solved by verging the cameras, but this in turn narrows the field
of view of the system. The baseline is also very often limited by other factors, e.g.
maximum length that may be accommodated on an assembly line or a mobile robot.
The accuracy that may be expected from the system always decreases as the distance
from the camera decreases. However, in an actual setup certain accuracy at a given
distance is often required and should be considered when designing such systems.
Overall, the relations between the factors to be considered are quite simple, but it
is not always obvious how to choose parameters to maximize the performance of a
system.
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Chapter 10

Quantization Error

10.1 Overview

Quantization error is inherently bound to the way cameras are built and cannot
be eliminated entirely. As each pixel on the imaging matrix of the camera has a
physical size, it covers a patch of the observed surface, not a single point. The
further away from the camera the bigger this patch becomes. When performing 3D
reconstruction position of a point can only be known with some limited accuracy, as
some differences in its 3D position would not be registered by the camera (Fig.10.1).
Usually, quantization error analysis refers to already existing systems. In the case
of this analysis, two main approaches are used. The first, landmark based, assumes
modelling a specific 3D point, feature, and error on both, left and right image
projection [Dubbelman and Groen, 2009, Matthies and Shafer, 1987]. The second
approach assumes that whatever is observed by one of the cameras, e.g. the left
one, is the reference point. The only source of error comes from bias in the other
image [Herath et al., 2006,Pojar et al., 2012]. The way of modelling the error depends
on the intended application of the system. When looking for specific markers in the
environment the quantization error will occur in both, the left and the right camera.
When performing a general reconstruction, e.g. using the sum of absolute differences
algorithm for matching features between rectified images, using the second method
is more appropriate. In any case, it is important to note that for all reasonable
configurations of cameras an error in the reconstructed 3D point is most significant
along the Z axis. Quantization error analysis also leads to the conclusion that in the
case of the smallest errors, a baseline of infinite length should be used [Rodriguez
and Aggarwal, 1990]. In [Zhang and Boult, 2011] an effort was made to define an
optimum finite baseline based on extended analysis of the quantization error and
minimizing its depth component. However, it only lead to results where the optimum
finite baseline can be specified for a given point in space. Therefore, it cannot be
used during designing a general purpose stereo vision system.
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Figure 10.1: Visualization of where the quantization error occurs. Gaussian uncer-
tainty in the image plane increases with the distance. The intersection of two cones
created this way, marked red here, is where the triangulated point is expected to be
in 3D. The quantization error makes it impossible to differentiate points within this
region.

10.2 Modelling Stereo Triangulation Error

Modelling the quantization error, sometimes referred to as the stereo triangulation
error, in 3D reconstruction is complex and requires two assumptions to be made.
Firstly, it is assumed that an error in the image plane is gaussian. This statement
is justified, as the 3D points located in one pixel area are, in general, evenly dis-
tributed. Secondly, it is assumed that the 3D volume where the triangulated point
is located, can also be modelled using normal distribution. In other words, that the
quantization error in 3D is normally distributed. Please note (compare Fig.10.1)
that it is true only with some approximation. The true error distribution should
have diamond-shaped and not elliptical cross section. However, this approximation
is necessary to provide compact and computationally efficient calculations. State of
the art methods use linearisation to model the triangulation error [Dubbelman and
Groen, 2009,Matthies and Shafer, 1987,Herath et al., 2006,Pojar et al., 2012].

For rectified image pairs the triangulation is conducted as follows. We assume
that l = [xl, yl] and r = [xr, yr] are corresponding points in the left and the right
image, respectively. Each point has normally distributed error associated with it,
described with covariance matrices Vl and Vl. The goal of triangulation is to find
a 3D point p = [px, py, pz]

T = ftrian(l, r) that would be projected to l, r:

px = xl
B

(xl−xr)
py = yl

B
(xl−xr)
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pz = f B
(xl−xr)

where B is the baseline of the stereo system and f is the focal length. For this
transformation its Jacobian J needs to be calculated. Then, ftrian may be linearised
to calculate the covariance matrix Vp associated with the 3D point p:

Vp = J

[
Vl 0
0 Vr

]
JT

However, it is important to note that triangulation is not linear. Hence, lin-
earisation may introduce an additional error. Furthermore, the non-linearity of the
triangulation depends on the angle between the traced rays and camera axis, in
other words the non-linearity should be investigated with respect to baseline to
depth ratio.

Modelling stereo triangulation error through linearisation is often based on sem-
inal work by [Matthies and Shafer, 1987]. However, eight years after it was pub-
lished, [Uhlmann, 1995] proposed a new way of calculating how uncertainty prop-
agates through non-linear functions. This method was called unscented transform.
It is based on the assumption that it is easier and more accurate to encode the
mean and covariance in a set of input points and then reconstruct the probability
distribution on the output points. It is therefore essentially a simplified Monte Carlo
approach, where many randomly selected points are substituted with a small set of
carefully selected points and corresponding weights.

It is worth investigating whether using unscented transform in place of the lineari-
sation will increase the accuracy of quantization error estimation. For this purpose,
the following experiment was conducted.

A set of arbitrary setup parameters (intrinsic and extrinsic) and 150 3D points
were selected to cover a wide range of baseline to depth ratios. For each of those
3D points, their projections on the left and the right image were found. Image
coordinates are assumed to be known with 0.5 pixel accuracy:

S =


µl
T , µr

T ,Vl(:)
T ,Vr(:)

T

·
·
·


where µl and µr are mean values of probability distribution of the left and the right
image coordinates, respectively. Vl(:) and Vr(:) are vectorised covariance matrices
corresponding to those means.

To calculate the ground truth, the Monte Carlo Method is used. For each s ∈ S
two sets of 2000 points were randomly selected for the left and the right image,
representing given means and covariances. Then, these points were triangulated
in an each-to-each manner creating 4 million 3D points. Finally, the mean and
covariance were recovered from the triangulated points and saved as a ground truth
result.
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The first method that will be taken into consideration is linearisation. For each
s ∈ S the 3D mean and covariance were calculated accordingly to the method
presented earlier in this section.

Finally, a similar procedure has been performed, only this time unscented trans-
form was used. To apply it, samples s ∈ S must be rewritten to a single mean mUT

and a covariance VUT form for both images:

mUT =
[
µl
Tµl

T
]T

VUT =

[
Vl 0
0 Vr

]
Then, sample points were selected and 3D mean and covariance were found following
the unscented transform procedure [Uhlmann, 1995].

To assess the quality of results of linearisation and unscented transform for each
baseline to depth ratio, the results provided by both methods were compared to the
Monte Carlo ground truth. For this comparison the Kullback–Leibler divergence
was used. The result of this experiment is depicted in Fig.10.2.

Figure 10.2: Comparison of linearisation and unscented transform used in modelling
the stereo reconstruction error.

Using unscented transform resulted in a slight improvement which is especially
noticeable far away from the camera. On the other hand, this gain is only visible in
baseline to depth ratios in the range from 0.02 to 0.04, i.e. for a stereo system with a
25cm baseline it is 6-12m away from the camera. Stereo cameras are rarely expected
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to perform well in terms of 3D reconstruction at such long range. However, some
applications like feature tracking or navigation may benefit from a more accurate 3D
error estimation. That being said, the improvement over linearisation is very modest
(please note, that log scale is used on Y axis) and in the overwhelming majority of
cases the use of any of these two methods will be sufficient.
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Chapter 11

Interface and Sensor

The following chapter will discuss the process on camera interface and sensor type
selection. The three most popular options are USB, GigE and FireWire cameras.
Since the electrical interface determines the possibility of camera synchronization,
this topic is also discussed in other relevant sections. When it comes to sensor type,
CMOS and CCD sensors are taken into consideration.

11.1 USB

A USB interface does not offer any support for synchronization on the interface side.
In principle, it is possible to achieve this via external camera triggers (e.g. generated
by a micro-controller), but the details of the process may differ depending on the
camera manufacturer. It may also require the cameras to be equipped with on-board
clocks which makes them much more expensive.

The only reasonable choice in terms of bandwidth is USB 3.0. This however
requires 9 leads in the connector (three differential pairs, Vcc, Ground, and a signal
drain), which is more than is usually found in off-the-shelf underwater cables, cre-
ating the need for using custom-made and more expensive cables and connectors.
On the other hand, USB has a big advantage of being very popular, which makes
integration with different system relatively easy. This should also minimize any
compatibility issues in the future.

11.2 Gigabit Ethernet (GigE)

Some GigE cameras have the advantage of supporting the precision time protocol
(ptp, IEEE1588). It allows for very precise synchronization between the cameras or
synchronization with an external clock, e.g. GPS clock. However, this option makes
the cameras quite expensive (up to a factor of two).

It is possible that cameras will need to share the bandwidth with other commu-
nication made over the Ethernet, which may significantly limit the available frame
rate or make the system unreliable. Furthermore, the GigE protocol does not allow
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for direct synchronization (when ptp is not supported), also making an external
trigger system necessary.

Electrically, it is compatible with off-the-shelf underwater cables (8 wires, with
4 differential pairs), SubConn even markets a line of Gigabit Ethernet cables with
and without extra power conductors.

11.3 Fire Wire

Fire Wire has multiple advantages over the other options. Numerous cameras can
be ”daisy chained”, which means they are connected in series without the need
for using a switch or a hub. This can dramatically reduce the length and thus
the weight of cables required. Additionally, the Fire Wire Camera Sub-Protocol
provides interface-level synchronization of all daisy chained cameras. Some camera
manufacturers (e.g. Flir / Point Grey) provide software to synchronize cameras
across chains. This allows to reuse a proven synchronization method, which signif-
icantly eases development. On the other hand, cameras in one chain need to share
bandwidth, possibly limiting the maximum frame rate.

Fire Wire 800 (IEEE 1394b-2002) requires 7 leads (two differential pairs, Vcc,
Ground, and shield) and is compatible with standard Cat5e twisted pair cables as
used in Ethernet connections. This makes it also compatible with standard Ethernet
underwater cables and connectors (e.g. by SubConn).

The main drawback is that Fire Wire 800 is not a very common interface any
more, making it somewhat harder to find cameras with modern sensors and requiring
extension cards (e.g. via PCI Express) on the computer side. Furthermore Fire
Wire is very sensitive to cable shielding. This may cause additional problems when
working with non-proprietary underwater cables - to the best of our knowledge there
are no underwater cables designed for Fire Wire.

11.4 CMOS vs CCD

When choosing a camera, one of the most important components to be considered
is its sensor. Sensor type (CMOS/CCD), model and resolution influence numerous
important aspects. To begin with, CMOS sensors, due to their design, allow for
accessing only selected pixels without reading the whole matrix. In general, CMOS
sensors allow for faster reading of the pixel values and therefore provide a higher
frame rate. However, high frame rate is not needed for the given task and what
is more, it is necessary to keep the field of view as big as possible. On the other
hand, CCD sensors are, in general, more sensitive and have lower noise in low-light
conditions. Therefore, in underwater applications, it may be the most beneficial to
use a camera with a CCD sensor. Any further analyses require the knowledge of
the sensor’s resolution and pixel size: this depends on the sensor model. A detailed
description of the selection method is presented in the following chapter.

94



CHAPTER 12. OPTIMIZATION OF THE SETUP PARAMETERS

Chapter 12

Optimization of the Setup
Parameters

12.1 Redefining the Minimum Range of the Sys-

tem

The cameras are assumed to be identical, with the same lenses and they are verged
symmetrically. The setup will be analysed in the XZ plane. This assumption allows
for simpler the analysis of all important factors without any losses. Presented below
is the notation used in the following analysis (compare Fig.12.1):

Figure 12.1: Overview of the considered situation and the notation.

• B is the baseline lengh

• f is the focal length of the lens

• γ is the field of view of the camera

95



CHAPTER 12. OPTIMIZATION OF THE SETUP PARAMETERS

Figure 12.2: Example of influence of the radius of the object on stereo imaging.
Three cameras are 25cm from each other (50cm between the left and the right one).
The cylinders are 120mm, 80mm and 45mm in diameter.

• δ is the vergence angle

• s.w is the width of the sensor s in pixels

• s.p is the size of a pixel of the sensor s

• dmin is the theoretical minimum range of the system

• β is the angle defining minimum arc of the object that should be observable

• d′ is the minimum range corresponding to the β angle

Usually, the minimum range of the system is defined by the border pixels of the
two cameras (Fig. 9.1). However, this is only valid when observing a planar surface.
To generalize this case, we will approximate the observed non-zero curvature of the
object with a sphere or a cylinder (a circle in a projection on the XZ plane). When
observing an object like this, we are interested in reconstructing its surface. It is
only possible for an arc that can be seen by both cameras. Let’s define this arc with
an angle β. This in turn will redefine the minimum range as d′ (Fig.12.1). Selection
of β will depend on the size of the objects that are expected to be modelled and the
task given to the system. In a limit case, for a plane, the β may be infinitely small.
To visualize this concept, compare Fig.12.2. Three cameras were positioned every
25 cm. In front of them, three cylinders were placed (120mm, 80mm and 45mm
in diameter). It is visible that as the diameter gets smaller, the size of the surface
patch that may be reconstructed also shrinks, but the angular measure of this patch
remains constant. It must be noted that d′ defined this way is shorter than the
actual distance to the surface of the object. However, it was decided to leave it this
way, as it will make the results of the algorithm more robust when modelling objects
with more complex shapes, only approximated with a cylinder/sphere.
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12.2 Non Verged Case

In this section the simplest case will be analysed. We assume that no vergence is
allowed (δ = 0). This allows for maintaining the field of view of the system identical
to the field of view of the cameras used. Therefore, it is also the most versatile
and commonly used in e.g. mobile robotics. Below, we formulate the constraints
resulting from the input data.

12.2.1 Maximum baseline constraint

There are two factors limiting the maximum baseline that may be used. The first
one is the maximum length allowed by the user Busr, the second stems from the
minimum range / β constraint. It must be also noted that if the following analysis
is to be object size invariant, the minimum βmin angle must be specified. Its value
is defined with an assumption that the whole object needs to be in the field of view,
thus the shortest arc can be observed when the two light rays, tangential to the
cylinder/sphere, correspond to pixels on the borders of images (Fig. 12.1).

βmin = 2 ∗ (90− γ

2
) (12.1)

If the user inputs β < βmin, this value is increased to the value of βmin. As the
minimum distance d′ does not denote the distance to the object’s surface, this pre-
liminary analysis can be performed without specifying the size of the object.

Having β specified, the maximum baseline can be calculated:

B′ =
2 ∗ d′

tan β
2

(12.2)

Finally, the first constraint is formulated

Bmax = min(B′, Busr) (12.3)

12.2.2 Minimum baseline constraint

The minimum baseline constraint arises from the minimum accuracy specified by
the user. As discussed earlier, even if we assume calibration and matching to be
perfect, the quantization error remains. The user is expected to specify a set of
distances di and accuracies ai expected at these locations. Let’s consider a point
P lying on a centre line between the cameras at the distance of di. To model the
quantization error we assume that the x coordinate of the projected points can vary
by s.p

2
. This constraint is specified iteratively. The baseline is increased by a fixed

step and the accuracy is tested if it already fulfils the assumed value. This way
a minimum baseline Bi

min is specified (one for each given distance/accuracy pair).
The final constraint is:

Bmin = max(B1
min, ..., B

i
min) (12.4)
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This way, all the specified accuracy requirements will be fulfilled.

12.2.3 Full algorithm

Once both the minimum and the maximum baseline constraints are calculated, the
solution may be provided. Three major cases may be specified. In the first case,
Bmin > Busr, there is no solution. It means that even at the maximum baseline
allowed by the user it is impossible to achieve the required accuracy. In the second
case, Bmax < Bmin < Busr. This means that there is no solution when using
two cameras, but adding more cameras may potentially help. A pair with a wider
baseline will guarantee the required accuracy further away and a shorter baseline
will provide the coverage of the objects close to the system. Of course in some
cases this may not be an option, as very high accuracy at a short distance may be
required. Finally, when Bmin < Bmax, a solution may be given. In general, any
baseline length within this range will satisfy the requirements specified by the user.
However, it needs to be noted that additional sources of errors may occur, both in
the quality and density of the reconstruction, so selecting the border values of the
returned range is not recommended. The algorithm requires the following input:β,
d′, Busr, a list of sensors to be considered S, a list of available focal lengths F and a
list of required accuracies at given distances (di, ai). NULL in Algorithm 3 encodes
the case with no solution.

12.3 Limited Vergence Case

The second case considered describes a situation when the user allows for vergence,
but wants to maintain the unlimited maximum range. In other words δ < γ

2
.

The equation for βmin (12.1) must be modified:

βmin = 2 ∗ (90− γ) (12.5)

A vergence angle δ must also be provided. If the solution may be provided, δ is
calculated as:

δ = 90− arctan(
2 ∗ d′

B
)− γ

2
(12.6)

The changes in the Algorithm3 must also be made accordingly to (12.6). The
vergence angle δ is also limited to positive values – there is no point in turning
the cameras away from each other. The results of δ calculation are given for Bmin

and Bmax.

12.4 Unlimited Vergence Case

In the last analysed scenario, vergence δ is not limited. This may be useful e.g. when
using lenses with a long focal length to model an enclosed space of known relative
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Algorithm 3: Stereo system design algorithm, non verged case.

for each s ∈ S do
for each f ∈ F do

fp = f
s.p

l = [−s.w; 0; fp], r = [s.w; 0; fp]
l.normalize(), r.normalize()
γ = arccos (lT ∗ r)
if 90− γ

2
> β

2
then

β = 2 ∗ (90− γ
2
)

Bmax = 2∗d′
tan(β

2
)

for each (di, ai) do
B = 0.02
step = 0.005
while not solved do

B+ = step
P = [−B

2
; 0; di]

Img = P∗f
P.z

Imgmin = Imgmax = Img
Imgmin.x = Img.x+ s.p

2

Imgmax.x = Img.x− s.p
2

P ′ = Imgmin
Imgmin.x

∗ B
2

P ′′ = Imgmax
Imgmax.x

∗ B
2

e = |P ′.z − P”.z|/2
if e < ai then

solved
Bi
min = B

else if B < Busr then
solved
Bi
min = NULL

if max(B1
min, ..., B

i
min) == NULL then

Results(s, f) = NULL

else if max(B1
min, ..., B

i
min) > Bmax

&&min(B1
min, ..., B

i
min) > Bmax then

Results(s, f) = NULL

else if max(B1
min, ..., B

i
min) > Bmax

&&min(B1
min, ..., B

i
min) < Bmax then

Results(s, f) = MORE CAMERAS NEEDED

else
Results(s, f) =< Bmin, Bmax >

output: Results
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position with high accuracy. In this case, there is a risk that one of the distances for
which the desired accuracy was specified, will be beyond the maximum range dmax
of the system. Therefore, a new constraint for Bmax must be formulated.

γ < arctan(
2 ∗ dmax
Bmax

)− arctan(
2 ∗ d′

Bmax

) (12.7)

However, the Bmax value cannot be extracted from (12.7). Therefore, the Algorithm
3 is modified by adding Algorithm 4 to solve this constraint iteratively. A simple
solver with fixed step is proposed here, as this is only used for specifying initial clues
for the further design decisions and an exact solution is not necessary.

Algorithm 4: Additional constraint for Bmax.

α = arctan(2∗dmax
Bmax

)− arctan( 2∗d′
Bmax

)

while α > γ do
Bmax− = 0.05
γ < arctan(2∗dmax

Bmax
)− arctan( 2∗d′

Bmax
)

12.5 Analysing the Chosen Setup

The algorithm presented earlier in this chapter provides the range of baselines for
which the given conditions are be fulfilled. Choosing a baseline closer to the max-
imum value increases the accuracy, while choosing a shorter baseline increases the
observable part of the surface (β ). Both values are subject to additional sources
of errors. The predicted accuracy may be lowered by errors in camera calibration,
motion blur, bad light conditions, etc. The β angle may decrease due to the above
factors, but also due to a featureless texture and a quantization error. In this case,
the quantization error will manifest on the side of the cylinder where within one
pixel both the background and a part of the cylinder are visible. Some of these
effects depend on the size of the object. Therefore, a second step of the design
process is introduced. After selecting the sensor, lens, baseline, etc. all these values
are analysed to calculate the predicted parameters of reconstruction accuracy and
β angle. In this instance, β is calculated together with the predicted influence of
quantization error. Since this influence depends on the cylinder’s diameter, it is pre-
sented in the form of a graph. The predicted value of β corrected for quantization
error (denoted as βc) can be calculated as:

σ = arcsin(cos(α)− cos(α) tanα tan(
β

2
)− B tanα cosα

2R cos(β
2
)

) (12.8)

βc = β − 2(90− α− σ) (12.9)
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where α is the angle defined by the size of a single pixel for the given focal length f
and σ is the auxiliary angle used in calculations.

The accuracy of the system is calculated by estimating the maximum quantiza-
tion error as in Algorithm 3. An example use of this method, applied in the DexROV
project, is presented and discussed in Chapter 15, Part V of this thesis.

12.6 Evaluation

To evaluate the quality of the analysis proposed in Sec. 12.5, the following experi-
ment was conducted. Three different systems were assembled. One with a baseline
B = 0.25m, another with B = 0.1m and a final system with a baseline of B = 0.4m.
The system with B = 0.25m is considered the reference setup, while longer and
shorter baselines are tested to evaluate the influence of setup parameters on the re-
construction capabilities. For each system an analysis was performed, as described
in Sec. 12.5. Then, the reconstruction capabilities were verified empirically. A
cylinder was placed in front of the system (compare Fig. 12.3), the lines printed
on its surface were applied every 10 degrees to simplify the measurement of the β
angle. This way, the predicted values can be compared to the real images. On the
other hand, it is important to note that this is only a theoretical value, whereas the
actual reconstruction capabilities depend on many other factors, i.e. texture, light
conditions, reconstruction method etc. The results of this comparison are presented
in Table 12.1

Table 12.1: Predicted values of βp and measured βm for different systems.

Baseline /
Distance

0.1m 0.25m 0.4m

0.3m
βp = 143
βm = 135

βp = 120
βm = 115

βp = 98 βm = 95

0.5m
βp = 146
βm = 140

βp = 133
βm = 125

βp = 118
βm = 115

To minimize the errors coming from the aforementioned sources of reconstruction
errors, the β angle of the arc visible on both cameras is read manually with the help
of lines printed on the cylinder. This measurement has an accuracy of up to 5
degrees. Just as expected, the shorter the baseline, the bigger part of the object is
seen by both cameras at the same time. Also, the measured values are only slightly
smaller than predicted, so this part of the design process worked as intended.

In the second experiment, the accuracy prediction for the system was evaluated.
The same three stereo systems were used: with 0.1m, 0.25m and 0.4m baseline.
Each system recorded the calibration pattern at 0.5m, 1m and 2m distances. A
calibration pattern was used, as the markers on it can be detected with subpixel
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Figure 12.3: Example view of the cylinder as seen by the left and the right camera,
used in evaluation process.

accuracy, providing ground truth reference. The positions of these markers were later
rounded to full pixels and after triangulation, their 3D positions were compared to
the ground truth. This simulates the effect of quantization error when reconstructing
the position of a feature in the environment. Please note that when performing a
full 3D reconstruction, a different approach to modelling errors should be used and
only the quantization error of one of the cameras should be taken into account. In
other words, it is assumed that the patch of the surface seen by a pixel of one of
the cameras is the reference feature and the error is only the result of matching this
patch by the second camera (compare Chapter 10 and [Herath et al., 2006, Pojar
et al., 2012]). However, the choice of a modelling method does not influence the
algorithm, so validation is performed only once. The results of this experiment are
presented in Fig. 12.4. As the algorithm predicts the maximum error resulting from
quantization, it is also compared to the maximum error recorded in the experiment.

The obtained results have confirmed that the measured values align with the
predicted ones quite well. As the distance to the object increases and the maximum
reconstruction error gets very large, the measured error remains a bit smaller. This
is simply due to the fact that the worst possible scenario did not occur, yet the
prediction worked as intended, providing a clue on what the worst case scenario
may be.

102



CHAPTER 12. OPTIMIZATION OF THE SETUP PARAMETERS

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Distance to the camera [m]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

M
ax

im
um

 e
rr

or
 [m

]

Predicted accuracy for 10cm baseline
Measured accuracy for 10cm baseline
Interpolation for measured data, 10cm baseline
Predicted accuracy for 25cm baseline
Measured accuracy for 25cm baseline
Interpolation for measured data, 25cm baseline
Predicted accuracy for 40cm baseline
Measured accuracy for 40cm baseline
Interpolation for measured data, 40cm baseline

Figure 12.4: Evaluation of the accuracy prediction algorithm.
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Chapter 13

Underwater Imaging

13.1 Overview

Underwater imaging suffers from exceptionally bad light conditions and significant
refraction-based distortions. Image deformations have already been discussed in
Part II. However problems related to underwater light propagation are much more
complex. Light is strongly attenuated and scattered. Basis of underwater image
formation model was formulated seminal paper by [Jaffe, 1990]. Further analysis
of the image formation process can be found in multiple subsequent papers, e.g.,
[Schechner and Karpel, 2005,Chiang and Chen, 2012,Yamashita et al., 2007]. Many
attempts have been made to improve the quality of underwater images. An overview
of these results is given for example in [Schettini and Corchs, 2010]. As identified
in [Schechner and Karpel, 2005] and [Treibitz and Schechner, 2009] backscattering
is the dominant degradation component. A physically accurate, polarization based
method for haze removal is proposed in [Schechner and Karpel, 2005]. However this
method requires artificial light with a polariser and to take two images from the
same viewpoint with the analyser being physically differently oriented. Therefore
this method is difficult, or in some cases impossible, to apply, especially on moving
vehicles. On the other hand there is a well known method for haze removal from
images taken in air, called Dark Channel Prior (DCP) [He et al., 2011]. Some
attempts to adapt this method for underwater conditions were made [Jr et al.,
2013,Cheng et al., 2015]. Details of this research is discussed later.

Work presented in this Part is motivated by the DexROV project. These results
have been published earlier in the proceedings of the IEEE Oceans’17 conference, ti-
tled ”Underwater image haze removal with an underwater-ready dark channel prior”
( [ Luczyński and Birk, 2017]).

From the perspective of the project, when using artificial lightning backscattering
effects may be especially visible. On the other hand, 3D stereo reconstruction is to
be used, therefore haze removal, even at a cost of degrading the colour information,
is crucial (compare Fig.13.1). As our initial tests showed, state of the art haze
removal methods did not lead to sufficient results for robust stereo processing - they
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either cannot be applied to a moving ROV ( [Schechner and Karpel, 2005,Schechner
and Averbuch, 2007]) or the improvement was considered to be insufficient ( [Jr
et al., 2013, Cheng et al., 2015]). The goal of the research presented in this Part is
to modify the DCP so that it can be applied to underwater images. The proposed
method is be compared to state of the art methods based on DCP, namely [Jr
et al., 2013,Cheng et al., 2015], and the physically more accurate polarization based
method [Schechner and Karpel, 2005,Schechner and Averbuch, 2007].

Figure 13.1: ROV with the DexROV system attached. Please note that significant
amount of light is scattered around the cameras.

13.2 Image Formation Model

An underwater image formation model is described in multiple papers [Schechner
and Karpel, 2005,Jaffe, 1990]. For our work the following model is used. The signal
forming the image is a sum of three components:

ET = Ed + Ef + Eb (13.1)

13.2.1 Direct Transmission and Light Attenuation

ET is a total radiance sensed by the camera. The first component forming ET
is the direct transmission Ed of the radiance reflected from the object Eo. Light,
after being reflected from the scene, is attenuated. Attenuation is responsible for
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absorbing light with the distance from the source. This absorption depends on the
wavelength, hence causing change in perceived colour of the observed scene:

Ed = Eoe
−cλr (13.2)

Where r is a distance and c is a total attenuation coefficient. Subscript denotes that
c depends on the wavelength.

Figure 13.2: Attenuation of light underwater.

13.2.2 Forward- and Backscattering

The two remaining components of ET are caused by scattering and can be further
divided into two phenomena: forward Ef and back scattering Eb. The underlying
physics for both is the same but the source of the scattered signal differs, they
therefore have different influences on the image. Forward scattering occurs when
light reflected from the scene scatters on its way to the camera. This results in
slight blur in the image that can be described by convolution:

Ef = Ed ∗ gr (13.3)

Where gr is a point spread function (PSF) and is parametrized with distance r.
There are several models of the underwater PSF [Voss, 1991], but their details do
not matter to the work presented here and they will hence not be discussed any
further.

Finally, backscattering, sometimes called the veiling light, occurs when an am-
bient light is being scattered and reflected back to the camera, adding a new signal
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Figure 13.3: Underwater image formation scheme: green denotes light reflected from
the object. This signal is getting weaker with distance, as the light is attenuated and
scattered. Blue shows the veiling light caused by the artificial source and natural
light coming from the surface. It is scattered and partially reflected back to the
camera. The backscatter signal is getting stronger with the distance and may,
eventually, dominate the direct transmission and occlude the observed scene. The
goal of the haze removal is to extract and reduce the backscattered signal (blue), so
that even if the remaining direct signal (green) is weak it is possible to retrieve the
information.

component to the registered image. The further the scene from the camera, the
stronger and more visible the backscattering component gets (compare Fig. 13.3).
It can be compared to observing the environment in the fog. When no natural light
is present the amount of backscattered signal depends on the overlap between the
line of sight and the cone of artificial light being used. For that reason it may be
desirable to use light separated from the camera to illuminate the scene from the
side. However in most practical applications, e.g., when using ROV, the light is
placed close to the camera, thus creating relatively strong backscatter. Backscatter
signal caused by ambient light may be calculated as:

Eb = Binf(1− e−cλr) (13.4)

Where Binf is a background signal, i.e., what would be seen if the camera was
looking into open water with no objects in front of it. It is important to note,
that it depends on light conditions, therefore may change, especially when only
natural light is present. Furthermore, the bigger the distance of the camera to the
observed scene, the stronger the veiling light. Because of that, the image cannot
be corrected as a whole - for each pixel a different distance may apply, therefore
different correction operations per pixel are necessary.

13.2.3 Practical Notes

From the practical perspective, when 3D stereo reconstruction is the main goal,
attenuation, forward and back scattering have different influence on the sensed im-
age. Attenuation changes the colour and lowers the overall intensity but does not
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influence the stereo 3D reconstruction significantly. Forward scattering introduces
a slight blur, effectively smoothing the image, which may be beneficial for matching
correspondences between the images. Finally back scattering was identified [Schech-
ner and Karpel, 2005] as the main source of the image degradation and reducing
this phenomenon is therefore most important for accurate 3D reconstruction.
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Chapter 14

Dark Channel Prior in
Underwater Conditions

14.1 Dark Channel Prior

The mechanism causing veiling light underwater is also present in air, only on a
much smaller scale. It is caused by water and dust particles and may be observed
on larger distances. In recent years, the Dark Channel Prior (DCP) [He et al., 2011]
became a popular method in this context. The dark channel Idark of a given image
I is defined as:

Idark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Ic(x)

)
(14.1)

The dark channel is formed by taking a minimum value from all the colour channels
within a patch around the given pixel. The Dark Channel Prior is based on the
observation that in most of the non-sky patches (in outdoor images) at least one
colour channel has some pixels with very low intensity. Therefore:

Idark → 0 (14.2)

For the sake of a more compact notation the double min operator used to calculate
the dark channel will be further denoted as:

min
y∈Ω(x)

(
min

c∈{r,g,b}
...

)
= DC(...) (14.3)

As shown in [He et al., 2011] usually bright patches in the dark channel on non-
sky regions appear due to the backscattering. Therefore it can be used to estimate
and correct its influence on the image. Of course this method has its limitations,
e.g., it cannot be used to process a snowy scene or a view at big white wall from
close distance. However, in air the need for correcting backscattering occurs only
when imaging outdoor scenes at long ranges. Therefore, DCP can be successfully
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used in most cases. The haze removal in (long range) outdoor scenes with DCP
assumes a similar model as in underwater vision:

J(x) = I(x)t(x) + A(1− t(x)) (14.4)

where J is an image without the haze, A is a global atmospheric light - which
corresponds to Binf - and t(x) is a transmission function:

t(x) = e−βλr (14.5)

β corresponds to the underwater attenuation coefficient c. In the first step A is
estimated. It is based on an other assumption, namely that atmospheric light is
white and is calculated by taking the most haze-opaque region of the image (which
can be found as the brightest region of the dark channel image). Then both sides
of (14.4) are normalized with A:

J(x)

A
= t(x)

I(x)

A
+ 1− t(x) (14.6)

Then, the dark channel is calculated on both sides:

DC

(
J(x)

A

)
= t(x)DC

(
I(x)

A

)
+ 1− t(x) (14.7)

Using the dark channel prior on the haze-free image in the equation:

DC

(
I(x)

A

)
= 0 (14.8)

This finally leads to the estimation of the transmission function:

t(x) = 1−DC
(
J(x)

A

)
(14.9)

In the last step, the estimation of the transmission function is refined with soft
matting [Levin et al., 2008]. This step improves the quality of the corrected image,
but also takes quite a long time to compute making the online application of this
method impossible.

As noticed earlier, the haze model underlying the dark channel prior correction
method corresponds to the underwater backscatter model. Therefore it is imme-
diately obvious that there is a significant potential in this method for underwater
applications where the haze in the images is much more pronounced. Unfortunately,
the dark channel prior cannot be used directly on underwater images. The method
assumes that the backscatter component is white, which is true in air, but the heavy
attenuation underwater causes the red wavelength to disappear very quickly (com-
pare Fig. 13.2), leaving a (distance dependent) blueish hue of the veiling light. This
also causes the dark channel to be completely black. If brighter regions appear,
they usually correspond to the light patches of, e.g., sediment close to the camera
(Fig.14.1).
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Figure 14.1: A raw underwater image (left) and its dark channel (right). Due to
the high attenuation of the red light, the dark channel is almost completely black.
The image is taken from [Schechner and Karpel, 2005, Schechner and Averbuch,
2007]; the image is shared for non-commercial use: http://webee.technion.ac.il/ ∼
yoav/research/ underwater.html. It is one of the images used here for comparing our
results to other DCP-based methods and the physically accurate approach presented
in [Schechner and Karpel, 2005,Schechner and Averbuch, 2007].

Figure 14.2: Raw underwater image (left) and its underwater dark channel calcu-
lated with [Jr et al., 2013] (right). There is a visible improvement compared to the
classic DCP, but the result is still not ideal - the heavily hazed part of the image is
not recognized as such.
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14.2 Underwater Adaptations to Dark Channel

Prior

Two major attempts to adjust the dark channel prior to underwater conditions were
made before. In [Jr et al., 2013] it was noticed that attenuation of the red light is
very strong. Therefore it was proposed to use green and blue channels only. The
authors called this method Underwater Dark Channel Prior (UDCP). This modifies
(14.3):

min
y∈Ω(x)

(
min
c∈{g,b}

...

)
= UDC(...) (14.10)

Results, when using UDCP, are a bit better than those with DCP but the calculated
dark channel is still not correct (Fig. 14.2). The brightest region in the dark channel
is the patch of sand close to the camera. This is understandable, as DCP in general
does not handle regions like that well. A more severe drawback is that the heavily
hazed background of the image is relatively dark, where in the optimal case it should
be white.

The authors of [Cheng et al., 2015] build on the observation that the red light
is attenuated so strongly that its presence implies a weak backscattering signal.
Therefore, the complement of the red channel is used when calculating the dark
channel. This method is here referred to as Red-Dark Channel Prior (RDCP).
Equation (14.3) is therefore modified to:

min
y∈Ω(x)

(
min

c∈{1−r,g,b}
...

)
= RDC(...) (14.11)

Similar to UDCP, this method shows some improvements over DCP, but the dark
channel calculated with this method is far from optimal (Fig. 14.3).

For example results of haze removal for all three methods please refer to Fig.
14.4.

14.3 Proposed Method

Observations made by authors of [Jr et al., 2013] and [Cheng et al., 2015] are in-
disputably correct. However, we believe that this problem should be handled differ-
ently. The observation underlying the original DCP can be formulated as follows:
at least one colour channel has some pixels with very low intensity for most of
the non-sky patches. This can be reformulated to: the stronger the backscattering
component, the whiter the region gets. Formulating the problem like this gives a
better intuition for the adjustment of DCP to underwater: the backscattered light
is (predominantly) blue in the underwater scenario, not white. Furthermore, it is
only important for the proper estimation of the global atmospheric light A. If that
step is performed correctly, the normalization step (14.6) removes the influence of
the colour light.
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Figure 14.3: Raw underwater image (left) and its underwater dark channel calcu-
lated with [Cheng et al., 2015] (right). There is a visible improvement comparing to
the classic DCP, but the result is similar to the UDCP method and still not correct
- the heavily hazed part of the image on is not recognized as such.

Figure 14.4: Comparison of the literature dark channel methods. From the left:
raw image, classic DCP [He et al., 2011], UDCP [Jr et al., 2013] and RDCP [Cheng
et al., 2015]
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Therefore, the core of DCP does not need to be modified, but the method of
estimating A needs to be changed instead. Before estimating the global atmospheric
light, all the colours in the image should be shifted in the colour space so that blue
becomes white. After this modification A may be estimated from the dark channel of
the modified image and the rest of the procedure remains as in [He et al., 2011]. The
modified procedure is as follows. To transform blue into white, the RGB coordinate
system is shifted (compare Fig. 14.5):

R′ = 255−R (14.12)

G′ = 255−G (14.13)

B′ = B (14.14)

Figure 14.5: Proposed colour transformation for easy and accurate estimation of
Binf .

For the image with the shifted RGB coordinate system, its dark channel is cal-
culated. As visible in Fig. 14.7, the calculated dark channel represents the veiling
light in the image much better than the other methods (compare Fig. 14.2 and
14.3). At this point, A may be estimated by taking the colour corresponding to the
brightest value in the dark channel. After that, the original image is normalized and
processed without any modifications to the original method.

14.4 Results

14.4.1 Comparison to Other Dark Channel Based Methods

In a first test, our method is compared to RDCP and UDCP. A small set of sample
images is processed with all three methods for direct comparison. The results are
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Figure 14.6: Comparison on different example images. Image 1 and 2
are taken from [Schechner and Karpel, 2005, Schechner and Averbuch, 2007],
shared by authors for non-commercial use: http://webee.technion.ac.il/ ∼
yoav/research/underwater.html. Images 3 and 4 were recorded during MORPH
project trials on the Azores. Following rows present results of image correction with
different methods.
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Figure 14.7: The raw image and the corresponding dark channel calculated with
proposed method. Please note that the heavily hazed region in the top left corner
of the image is white in the dark channel, correctly indicating very strong presence
of the backscattering component.

presented on Fig. 14.6.

Depending on the contrast of the raw image, the recovery results may vary.
In the worst case, the gain in quality is minimal or none, but the colours after
proposed correction are never distorted, as it happened for RDCP and UDCP, e.g.,
with sample image 3. Furthermore, there is almost no loss in brightness. Overall the
results are promising, as they outperform competing dark channel based methods.
The adaptation proposed in this paper adapts the DCP to underwater conditions,
preserving all the advantages of this method. On the other hand all the drawbacks
of the original work are also present here: computation takes a lot of time and, for
some images that do not fulfil statistical assumptions underlying DCP, the results
may be faulty.

14.4.2 Comparison to Polarization Based Reconstruction

A second test is conducted to compare our results to a physically accurate, polar-
ization based method [Schechner and Karpel, 2005]. Two images used in that work
are processed with our method (images 1 and 2 on Fig. 14.6). Since the results
presented in [Schechner and Karpel, 2005] are also further processed by correcting
with white balance, the same post-processing is also applied to our method. The
effects are depicted in Fig. 14.8 and 14.9.

The results achieved with [Schechner and Karpel, 2005] outperform the dark
channel based approach. There are fewer artefacts and the overall contrast is higher.
That being said, our results show significant improvement over the raw images and
does not need any special procedure when capturing the image. Despite superior
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results, changing polarization filter during capture is impossible in most real life
underwater applications.

Figure 14.8: Image corrected with [Schechner and Karpel, 2005] (left) and our results
(right).

Figure 14.9: Image corrected with [Schechner and Karpel, 2005] (left) and our results
(right).

121





Part V

APPLICATIONS

123





CHAPTER 15. DEXROV HARDWARE SELECTION AND SYSTEM DESIGN

Chapter 15

DexROV Hardware Selection and
System Design

In this chapter, the application of the algorithm described in Part III is presented.
The work was motivated by the needs of the DexROV project. Vision system meet-
ing high accuracy requirements had to be designed. Additional constraints were
created by the maximum baseline limited by the ROV size and the task given.
Object recognition and manipulation requires dense 3D reconstruction.

15.1 Requirements

15.1.1 Hardware Constraints

• Stereo system baseline limited to 0.5m by ROV size. This constraint already
takes into account a reserve for the size of the housings and mounting elements.

• Operating at the depth of 1500m. This constraint does not influence the
design of the stereo system, only the housings. However, it is a part of the
specification and is included here for the sake of completeness.

15.1.2 Hard Performance Requirements

• Accuracy within given range: 1cm standard deviation 2m away from the cam-
era and 15 cm standard deviation at the distance of 5m, as specified in de-
liverable 2.2. When estimating the accuracy of the system during the design
stage a maximum error is usually computed. Therefore ±1.5σ will be taken as
a measure for maximum error allowed. Distances of 2m and 5m away where
chosen as expected distances for recognition and navigation respectively. I.e.
we want to guarantee that the system will provide reliable navigational data
as early as 5m away from the obstacle and will be able to perform at least
initial recognition 2m away.
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• Minimum observing distance: 30cm. This constraint guarantees that it will
be possible to use the stereo system in manipulation tasks.

15.1.3 Soft Performance Requirements

• 3D reconstruction of the observed environment that is as dense as possible.

• Frame rate > 10 fps. Usually, lowering the resolution allows for increasing
frame rate (bandwidth is the limiting factor). The 10fps constraint arises
from our experience in performing similar tasks. However, the exact value will
only be specified following initial tests. In general, the higher the frame rate,
the better.

15.2 Implementation and Adaptation to Under-

water Conditions

The algorithm was implemented in Matlab. There are two scripts in the package.
The first is responsible for the design process as described in Sec. 12.2-12.4. The
second script allows for analysing the chosen setup as presented in Sec. 12.5. In
the first step, β is fixed and equal to 120◦. It can be set as any value, but the
actual reconstruction of the object’s surface depends on many other factors: light
conditions, texture, reconstruction method etc. Therefore, even though β = 120◦

may seem large, the part of the surface that can actually be reconstructed is smaller.
As it is only used for providing an initial suggestion for the final selection, it is also
not that important. This was also discussed in detail in Sec. 12.6. When designing
a stereo system for underwater applications, refraction effects need to be taken into
consideration. A detailed description of this phenomenon and methods for handling
them were already discussed in Part II. In the DexROV project, Pinax is applied
and housings with flat front glass panes are used. Therefore, the perceived image
is magnified. This needs to be taken into account at the design step. Fortunately,
this magnification may be easily estimated. As discussed in Sec. 6, the change in
focal length is equal to the ratio of the water to air refraction index. Therefore, it
may be easily estimated by increasing this parameter for each lens by 30%. With
this adaptation the remaining part of the algorithm may be applied as usual.

15.3 Application Example

The DexROV project required the design of a stereo system that could be reliably
used for both navigation and supervising manipulation tasks performed by the ROV.
It was decided that Fire Wire cameras will be used. To limit the choice even further
only cameras offered by Point Grey are taken into account. This manufacturer was
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Table 15.1: List of sensor models and most important parameters

Model Resolution Pixel size [µm]
Sony ICX414 CCD 648 x 488 9.9
Sony ICX274 CCD 1624 x 1224 4.4
Sony ICX818 CCD 1928 x 1448 3.69
Sony ICX267 CCD 1384 x 1032 4.65
Sony ICX687 CCD 1928 x 1448 3.69
Sony ICX674 CCD 1932 x 1452 4.54
Sony ICX694 CCD 2736 x 2192 4.54
Sony ICX808 CCD 2016 x 2016 3.1
Sony ICX285 CCD 1384 x 1036 6.45
Sony ICX625 CCD 2448 x 2048 3.45
Sony ICX825 CCD 1384 x 1032 6.45

chosen as we have good experience in cooperating with them. The list of sensors
taken into consideration is presented in the table 15.1.

Since the system is supposed to support navigation of the vehicle, it was decided
that a focal length no longer than 5.5mm in air will be used to maintain a wide field
of view. For the same reason, a non-verged design was selected. This guarantees the
field of view of the system big enough for the task given. To begin with, a general
analysis was performed as described in Sec. 12.2.3. A summary of this analysis is
presented in Tab. 15.2

Figure 15.1: DexROV stereo system. Left: integrated and ready to work on the
ship’s deck. Right: in use, underwater.
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This provided very important clues on how to design the system. Finally, Point
Grey Grasshopper2 1394b cameras were selected (with Sony ICX285 CCD sensors,
and lenses with a focal length of 4.8mm). A baseline of 0.3m was chosen. This setup
was then analysed as described in Sec. 12.5 (see the results in Fig. 15.2).

The obtained results meet the requirements of the project, so it was decided
to use them in the final setup. This concludes the design stage. The system was
manufactured and assembled in accordance to the optimized parameters (Fig.15.1).
It was also successfully deployed and used during DexROV trials, Marseille 2017.
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Table 15.2: Table of results given by the algorithm

Focal
lengths /
Sensors

2.8 mm 3.8 mm 4 mm 4.8 mm 5.5 mm

Sony
ICX414

CCD

More
cameras
required

More
cameras
required

0.335
/0.34641 m

0.28
/0.34641 m

0.245
/0.34641 m

Sony
ICX274

CCD

0.21
/0.34641 m

0.155
/0.34641 m

0.15
/0.34641 m

0.125
/0.34641 m

0.11
/0.34641 m

Sony
ICX818

CCD

0.18
/0.34641 m

0.13
/0.34641 m

0.125
/0.34641 m

0.105
/0.34641 m

0.09
/0.34641 m

Sony
ICX267

CCD

0.225
/0.34641 m

0.165
/0.34641 m

0.16
/0.34641 m

0.13
/0.34641 m

0.115
/0.34641 m

Sony
ICX687

CCD

0.18
/0.34641 m

0.13
/0.34641 m

0.125
/0.34641 m

0.105
/0.34641 m

0.09
/0.34641 m

Sony
ICX674

CCD

0.22
/0.34641 m

0.16
/0.34641 m

0.155
/0.34641 m

0.13
/0.34641 m

0.115
/0.34641 m

Sony
ICX694

CCD

0.22
/0.34641 m

0.16
/0.34641 m

0.155
/0.34641 m

0.13
/0.34641 m

0.115
/0.34641 m

Sony
ICX808

CCD

0.15
/0.34641 m

0.11
/0.34641 m

0.105
/0.34641 m

0.09
/0.34641 m

0.08
/0.34089 m

Sony
ICX285

CCD

0.31
/0.34641 m

0.23
/0.34641 m

0.22
/0.34641 m

0.18
/0.34641 m

0.16
/0.34641 m

Sony
ICX625

CCD

0.165
/0.34641 m

0.125
/0.34641 m

0.12
/0.34641 m

0.1
/0.34641 m

0.085
/0.34641 m

Sony
ICX825

CCD

0.31
/0.34641 m

0.23
/0.34641 m

0.22
/0.34641 m

0.18
/0.34641 m

0.16
/0.34641 m
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Figure 15.2: The results of system analysis for: Sony ICX285 CCD sensor, 4.8mm
lens, B = 0.3m, d′ = 0.3m, no vergence. Top: reconstruction capabilities as a
function of the diameter of the cylinder placed at the minimum observing distance.
Bottom: predicted accuracy of the reconstruction at given distances.
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Chapter 16

Pinax Applications

Pinax model was implemented and the code was released. Two implementations are
provided: Matlab and C/C++ ROS packages. Code examples and some test data
are available on GitHub: https://github.com/tomluc/Pinax-camera-model .

16.1 Matlab Examples

16.1.1 Script #1: Finding the optimal d∗0 distance

Open Optimal d 0/Main.m. Adjust setup parameters: camera intrinsic matrix K,
glass thickness d1, water and glass refraction indices nw and ng. Run the script:
pd∗0 = optimal phisical d 0 [mm], vd∗0 =virtual d 0 [mm].

16.1.2 Script #2: Calculating the correction maps

To run this example mex opencv is required (https://github.com/kyamagu/mexopencv).
Code responsible for analytical forward projection was provided by authors of [Agrawal
et al., 2012]. To see the example open and run Find correction map/FindMap.m.
Remember to adjust all the camera information and setup parameters. As an output
two files are created: MapX.txt and MapY.txt. These can be used for image correc-
tion, e.g. with opencv remap(...) function (compare C/C++ examples). There is
also a test image loaded, remapped and saved.

16.2 Robot Operating System C/C++ Examples

Example code consists of the following packages:

• jir refractive image geometry msgs and jir refractive image geometry : support
packages with the definition of message type used in our processing pipeline
and some support functions.
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• jir rectification remap lib: library providing image correction given correction
maps.

• defraction map finder : package used to find correction maps, given calibration
information and setup parameters.

• jir image remapper : example of node correcting refracted image images.

16.2.1 Example of use

As an example let’s see the full process of correcting the images with our method.

1. Calibrate your stereo system. In our work we used camodocal [Heng et al.,
2013,Heng et al., 2014,Heng et al., 2015]. This allowed for using more complex
camera/lens distortion models. Parts of camodocal code were reused by us
when implementing camera models (check license headers in the source code
files). Resulting calibration files should be saved (e.g. camera left.yaml).

2. Calculate correction maps for underwater usage. Run defraction map finder
node in defraction map finder package. This will produce correctionMap.yaml.
Save it in preferred location.

3. Play included bag file with sample image. Use - -loop option.

4. Run image remapper.launch file. Remember to specify the path to the cor-
rectionMap.yaml. Corrected image is published on the topic specified in the
launch file.

16.3 FishGUI

As an answer to the need for collecting data on fish size and population in the Azores
region a set of tools based on Pinax model was developed. This task was performed
within the MORPH project and was called the FishGUI. Measuring fish is a tedious
and difficult task that may be impossible to perform without highly autonomous
system. Current methods base on ”educated guess” of trained diver estimating the
size (and population in the case of observing a school) of fish. Other state of the art
method utilizes video assistance, but the fish need to be at the known distance from
the camera, orthogonally to the optical axis. This makes it hard to use in most real
life conditions.

Proposed solution consists of stereo camera and software developed especially for
the purpose of measuring fish. Prototype was built with of the shelf GoPro cameras.
Software assisting the scientists allows for loading left and right and processing it to
get the disparity image. Then any two valid points on the disparity image may be
selected to calculate the distance between them. Measured distance may be labelled,
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Figure 16.1: FishGUI: graphical user interface utilising Pinax model and stereo
reconstruction for measuring fish.

e.g. with the name of the species and saved to a .csv file for further analysis (compare
Fig.16.1).

Hardware and software tools discussed here were used in real life conditions. One
of the companies responsible for the air transport of live fish needed to estimate the
total biomass of a shipment of fish very sensitive to manipulation (pilot fish) in
order to optimize transport conditions (volume, O2, etc.). The goal was to reduce
the mortality rate. As reported by our partners from Marine and Environmental
Sciences Centre and University of Azores this was a success.
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Chapter 17

3D Grid Map Transmission
Optimization

The DexROV project, as described in Sec. 1.3, requires a significant amount of data
to be transmitted over the satellite link. Among other tasks the surroundings of the
ROV must be modelled and the model compressed before the transmission. Part III
discussed the design process of the perception system. Thanks to findings described
in Part II the environment may be reliably modelled in 3D. This chapter describes
usage of the 3D grid map for efficient modelling and transmission of this data.
The main goal of this research is to minimize the bandwidth usage, while preserving
maximum information about the environment. These results have been published in
the proceedings of the IEEE Oceans’17 conference, titled ”3d grid map transmission
for underwater mapping and visualization under bandwidth constraints” ( [ Luczyński
et al., 2017a]).

17.1 Map Representation

The ROV generates a 3D map based on an underwater stereo system with accurate
calibration using the Pinax model (see Part II) with the help of navigation sensors.
The mapping task may be performed in multiple ways from odometry using simple
sensors to advanced self-localization and mapping techniques, allowing to trade map
quality with required computation power and update rates. However this lies beyond
the scope of this thesis and will not be discussed here.

Once the map has been built, an efficient representation is required to store the
3D map on the ROV for further navigation and as basis for transmission to the MCC.
It was decided that 3D grid map will be used. The octree data-structure [Meagher,
1980] is well known to be a very efficient basis for a 3D grid map representa-
tion [Meagher, 1982] and the OctoMap [Hornung et al., 2013] software is a widely
used implementation of this data-structure, which is also used here. The octree
provides several beneficial properties, which are exploited in this work for the ef-
ficient data transmission under bandwidth constraints. A major advantage is its
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Figure 17.1: Top: OctoMap coloured with our approach. Bottom: naive implemen-
tation, last registered point decides about the colour of the given voxel. Please note
that our method eliminates the sharp colour changes on the edges of registered scans
(e.g. marked with a red loop). It also improves the overall appearance and colour
accuracy when recording inconsistently illuminated environment.

storage efficiency, which is a major criterion with respect to the given bandwidth
constraints. This representation is further modified to improve the transmission ef-
ficiency to the MCC. Furthermore, a colour enhancement of the map is introduced
by exploiting the OctoMap representation. The details of this modifications and the
whole process will be discussed in the following sections.

17.2 Colour Representation

Underwater images suffer from exceptionally bad light conditions. Not only is there
often a low amount of natural light in the scene, but the present light is heavily
attenuated and scattered. Description of the underwater image formation model is
provided in Chapter 13.

Colour deterioration may be partially reduced when using an OctoMap. Each
voxel, which is the smallest data unit used in an OctoMap, accumulates multiple
observations of the same region. These measurements may differ in perceived colour.
This gives the possibility of selecting the most accurate colour to create a map with
overall more accurate colours than those in the registered images.

Theoretically, when a constant ambient light illuminates the whole scene equally,
colours from the shortest distance should be taken. However there is a more efficient
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way of achieving the same result: when multiple points fall into the same voxel the
brightest colour is selected to be stored in a voxel. With this simple measure we
guarantee that the map colours are taken from points when the camera was close to
the surface and/or the additional lights (if available) were in the optimal position
to properly illuminate the given patch of the surface.

In order to present the results of the proposed method for assigning colours to
the voxels, the following experiment has been conducted, producing the results of
Fig. 17.1: The same data was accumulated in the OctoMap twice. The first run
was performed using the method proposed here and the second time with a naive
implementation – a voxel takes the colour of the last point falling into the given
voxel. The data used here was recorded in Biograd na Moru in Croatia in 2015
within the MORPH project. The AUV was moving near the surface recording the
seabed. It is easy to observe that there are sharp lines on the edges between the
subsequent stereo scans, whereas in the colour-optimized OctoMap these differences
are not visible (compare Fig. 17.1).

17.3 OctoMap Transmission

As discussed earlier, representing the environment using an octree has multiple
advantages. On the other hand, this also creates some challenges for the DexROV
application scenario. After each registration of a new point cloud from stereo, an
updated map would have to be transmitted to the Mission Control Center to give the
operator the best knowledge about the environment. Of course this is not acceptable
from the perspective of bandwidth limitations. Very often, once the map has been
built, new point clouds typically only change a small part of the 3D map.

It is important to notice at this point that from the perspective of the MCC the
OctoMap structure per se is not important either. ROV operators make the decisions
based on the visualization, but the navigation happens internally on board of the
vehicle. Therefore sending the full OctoMap after registering each new point cloud is
not only impossible from the bandwidth limitation perspective but also unnecessary.
Furthermore, for the majority of the map, higher-level voxels (with a low resolution)
can just be transmitted as in many regions high resolution is not needed. Only in
certain regions specified by the operator the maximum resolution is necessary.

This allows for the following operation scheme:

• The OctoMap is constructed with the maximum possible resolution (with re-
spect to the on-board computer computation capabilities).

• Every time a new point cloud is registered, the OctoMap is locally updated.

• When integrating the point cloud into the map, it is checked if any voxel
has changed its state, i.e., if a previously unknown region is now identified as
free/occupied, a voxel that was occupied is now free or the free voxel is now
occupied.
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• The user has an option to specify the bounding box for a region of interest.
Voxels in this region will be transmitted with highest available resolution and
with colour, voxels outside this bounding box will be transmitted with lower
resolution and without colour. Following this rule, voxels that have changed
their state are added to the list of voxels that will be published with adequate
colour information and resolution.

• When all the points from the given point cloud are integrated into the Oc-
toMap, four lists of voxels are being published: newly-occupied voxels with
coarse resolution, newly-occupied voxels within the bounding box using fine
resolution and the respective lists of newly-unoccupied voxels.

This way, in the beginning of the mission every new region is transmitted to the
operator with low resolution. After this first stage of the mission, when the ROV flies
over already known terrain, no data is transmitted unless high resolution for some
region is needed or the environment has changed. At the same time the log odds in
the OctoMap are constantly updated on board of the vehicle. Of course the MCC
may request the transmission of the full OctoMap with highest possible resolution.
This operation will take more time but is only triggered when online visualization is
not needed, e.g. after completing the mission, for the documentation, or to (re)plan
the mission.

17.4 Effectiveness Validation in Simulation

17.4.1 Scene Modeling

Within the DexROV framework, a simulation environment has been developed and
utilized in a continuous integration manner [Fromm et al., 2017]. The system in-
cludes a simulated ROV equipped with sensors as well as simulated textured envi-
ronment.

In order to allow for the operator to quickly perceive the current vehicle view,
occupied areas, and autonomously recognized objects, a simulated depth camera
beneath a simulated RGB camera was used (Fig. 17.2(c) & (e)) to autonomously
recognize and localize objects in the scene (Fig. 17.2(f)) using different texture
and shape-based machine recognition methods [Bülow and Birk, 2013] [Mueller and
Birk, 2016]. The same RGBD input is used to generate the OctoMap, which is
used for autonomous collision avoidance and coarse-grained scene representation
(Fig. 17.2(d)).

With the help of this testbed, it is possible to evaluate proposed method with
ground truth data.

17.4.2 Bandwidth Constraint Modeling

In order to simulate the bandwidth constraints imposed on the scenario software
components are deployed in one Docker [Merkel, 2014] container each for the ROV,
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Figure 17.2: Scene Modelling Overview, reprinted from [Fromm et al., 2017]

the operator vessel and the MCC stations. These containers are interfaced with a
network simulator [Pfingsthorn, 2016] based on network emulation tool netem which
allows for dynamic changes of several parameters:

• available bandwidth

• delay (with variance)

• package loss percentage

• package corruptness percentage.

Setting these parameters on realistic limitations reflects the actual system in a re-
alistic way.

17.4.3 Results

Experiments were conducted as follows: stereo point clouds and navigation data
are recorded in the simulator. The ROV is teleoperated to first explore a small
region of the seabed and then move around this already known environment. This
scenario allows to evaluate the bandwidth usage when building a map and during
update of an existing one. Furthermore, as mentioned in Sec. 17.3, it is possible to
use non-coloured and low-resolution voxels in some regions of the map; during this
experiment, however, the whole map was treated as a priority region and transmitted
with the highest possible resolution and with colour. The bandwidth used for this
transmission is compared to transmitting the same map as a full OctoMap – each
time a new scan is integrated the full OctoMap is transmitted.
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Figure 17.3: Comparison of bandwidth usage for 10 (red) and 15 (blue) cm resolution
OctoMap. In both cases the full OctoMap was transmitted after each scan (classic
transmission scheme).

This experiment was conducted twice on the same dataset: once with the Oc-
toMap working on 10 cm resolution and the second time on a 15 cm resolution.
Fig. 17.3 shows how the bandwidth usage is changing over time, when transmitting
the full OctoMap for both resolutions. Fig. 17.4 shows a comparison of the same
scenarios, only this time using our proposed method. Finally Fig. 17.5 presents
a direct comparison of our method and a transmission of the full OctoMap using
15 cm resolution.

The incremental update obviously clearly outperforms the continuous retrans-
mission of the map. More importantly, the overall implementation is suited to be
used in the context of remote ROV control under high bandwidth constraints.
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Figure 17.4: Comparison of bandwidth usage for 10 (black) and 15 (orange) cm
resolution OctoMap. In both cases the our transmission scheme was used.

Figure 17.5: Direct comparison of our method (orange) and transmission of the full
OctoMap (blue) using 15cm resolution.
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Chapter 18

Summary of Contributions

In this thesis an underwater vision system was analysed on every stage of develop-
ment: from hardware selection through calibration to the processing of the recorded
data. Being motivated by real needs of multiple research projects results presented
here are robust and were tested in various conditions, serving multiple applications.
Contributions to the scientific community presented in this thesis answer the re-
search questions stated in Section 1.4 and are shortly summarized below.

18.1 New Underwater Camera Model

A new camera model, called Pinax, was proposed. This model is based on a virtual
pinhole camera model - which was demonstrated to be applicable for real world un-
derwater housings where the camera is relatively close to the flat-pane - while using
the projection function of an axial camera. In practice this lead to simplifying the
calibration significantly - no underwater procedure is necessary. In-air calibration
followed by some calculations is enough to get a valid, underwater pinhole represen-
tation. This allows for using a wide range of computer vision algorithms, developed
for dry environment, underwater. Especially it is possible to apply closed-form
stereo reconstruction algorithms. Removing the need of performing in situ under-
water calibration procedure also reduces significantly operational costs for such a
mission.

18.2 Stereo System Design Algorithm

An analysis of the 3D reconstruction error was provided: what causes this error, how
it may be modelled and some ways of minimizing it. This analysis was then used to
develop an algorithm for selecting the cameras, lenses and optimal position for them
in the stereo setup. This contribution is important from the practical perspective
as it allows for improving the stereo 3D results already at the level of designing the
system, even before buying any hardware.
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18.3 Haze Removal from Underwater Images

Investigating the underwater image formation process lead to the conclusion that
backscatter, responsible for fogginess of the image, is the main factor reducing the 3D
reconstruction capabilities. A new method of enhancing the image quality, based on
the Dark Channel Prior, was proposed. This contribution showed good performance
and promising results, when tested on real underwater data.

18.4 Other

Apart from the main contributions summarized before a range of applications was
presented, demonstrating that work discussed in this thesis is not only valid but
also has a potential of making a significant impact on the practical underwater com-
puter vision processing. For example a vision system designed in accordance to the
method presented in Part III was calibrated with the Pinax camera model and the
data generated by this system was used to build a map of the underwater environ-
ment. Later on, as this was required by the conditions of the project, this map
was successfully compressed to be transmitted over the satellite link with significant
bandwidth limitations.
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[ Luczyński et al., 2017b]  Luczyński, T., Pfingsthorn, M., and Birk, A. (2017b). Im-
age rectification with the pinax camera model in underwater stereo systems with
verged cameras. In OCEANS 2017 - Anchorage.
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