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Summary 

 

Coffee is one of the most important agricultural products worldwide. It provides the livelihood of 25 

million farmers in tropical countries and of approximately 125 million people along the production 

chain. Furthermore, coffee demand has steadily increased in the last decades; a trend that is projected 

to continue in the coming years. Although coffee production is a crucial source of income for several 

million people, it also contributes to the current environmental crisis. Coffee cultivation and boom and 

bust cycles lead to deforestation, negatively affecting carbon and water cycles and biodiversity. On the 

other hand, coffee, as a shade tolerant species, can be intercropped with shade trees in agroforestry 

systems (AGF). And if appropriately managed, AGF can provide several ecosystem services, such as 

climate protection, microclimate regulation, biodiversity conservation, soil protection, and income 

diversification among others. 

 

At the smallholder coffee farmers’ scale, the intercropping of coffee and shade trees can generate a 

range of benefits (i.e. more biodiversity, improved pest control and income diversification) as well as 

trade-offs such as competition for water and nutrients between coffee and shade trees. The degree to 

which these benefits and trade-offs develop depends on the specific environmental conditions, 

management practices and cropping systems. This study aimed to understand the functioning of three 

coffee cropping systems on the slopes of Mt. Elgon Uganda, in particular to gain insights on how these 

cropping systems affected coffee productivity, water use and microclimate regulation at different 

altitudes – ranging beween 1100 and 2100 m.a.s.l. The cropping systems studied were coffee open (i.e. 

shade cover < 20 %, CO), coffee intercropped with bananas (CB) and coffee intercropped with shade 

trees (CT). The data collection consisted of two main components: (i) a field experiment on water use, 

and (ii) a coffee tree inventory and monitoring of reproductive and vegetative growth. The results were 

structured in three research articles as presented below. 

 

Coffee yield (kg ha-1) and coffee yield component performance in different coffee cropping systems 

along an altitudinal gradient and shade cover gradient was evaluated in the first article: “Effect of 

cropping system, shade cover along and altitudinal gradient on coffee yield components at Mt. Elgon, 

Uganda”. Fruit load per branch, productive nodes per branch and number of productive branches per 

stem were monitored on 810 coffee stems distributed over 27 plots (9 belonging to each cropping 

system). Additionally, coffee cherry weight, productive stems per ha and shade cover was monitored in 

each plot for two harvest seasons (2015 and 2016). CB system had higher yields per ha (1086 ± 736 kg 

green beans) than CO (670 ± 457 kg green beans) and CT (428 ± 259 kg green beans). Fruit load per 

branch and number of productive branches per stem were the most important yield components. Both 
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decreased with shade cover above 30 % and were negatively correlated with the number of stems per 

coffee tree. Overall, we did not find differences in cherry weight or productive stems per ha across 

cultivation systems, nor did altitude show a clear effect on yield components. 

 

In the second article, “Water use of Coffea arabica in open versus shaded systems under smallholder’s 

farm conditions in Eastern Uganda” we explored the water relationships of the three previously 

mentioned cropping systems (CO, CB and CC). We found that (i) coffee water use rates did not differ 

across systems, (ii) coffee trees benefited from the microclimate provided by shade trees (banana and 

C. africana), and (iii) CB is an attractive system for smallholder farmers, as it also provides food. Soil 

water content was reduced in shaded systems (CB and CC) compared to CO), especially in coffee 

intercropped with C. africana. This suggested that under harsher conditions (hotter and dryer) than the 

ones recorded in our study, water competition between coffee and shade trees could become a 

problem. 

 

In the third article, “Disentangling effects of altitude and shade cover on coffee fruit dynamics and 

vegetative growth in smallholder coffee systems”, we investigated coffee fruit development (from fruit 

initiation to harvest) and vegetative growth during two production cycles (2015 and 2016) in 810 coffee 

stems distributed over 27 coffee plots. Additionally, microclimate and soil water content were 

monitored (in 18 plots and 16 plots respectively). Shaded systems buffered microclimate. Fruit set was 

not limited by temperature but reduced by increases in shade cover. Whilst fruit drop was similar along 

the shade gradient and was positively related to initial fruit set. Finally, leaf set was the most important 

variable to ensure vegetative and reproductive growth along several production cycles. 

 

Coffee cultivation systems at the slopes of Mt. Elgon are not intensively managed and mostly have low 

yields; but as such they fall within the average range of conditions faced by smallholders in Eastern 

African. There is scope to improve yields by reducing the number of stems per coffee tree (pruning) and 

increasing coffee tree density. Furthermore, a certain level of shade should be maintained to protect 

coffee from increased maximum temperatures and avoid high temperature amplitudes, regardless of 

the system type. Coffee intercropped with bananas showed an optimal balance between microclimate 

regulations, fruit set, fruit drop and yields, and provide staple food and an extra source of income. 
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1. Introduction	
 

Coffee is a major commodity in the international trade (ITC, 2012). Since its introduction in the market 

in the 15th century and its migration to Europe in the 16th century, coffee demand has steadily increased 

(Pendergrast, 1999; Clay, 2004). In 1980 consumption growth rate reached 1.2 % according to the 

International Coffee Organization (ICO, 2011/12) and it is expected to further increase in the coming 

years1 (ICO, 2011; FAO, 2015; USDA, 2018). Coffee is cultivated in around 70 countries across the 

tropical belt (ITC, 2012; FAO, 2015). Brazil, Vietnam and Colombia are listed as the top coffee producers 

in this order. These three countries were accountable for approximately 59 % of the coffee exports in 

2018 (FAOSTAT, 2018; ICO, 2018). 

 

Coffee also plays a crucial role in the economies of Eastern Africa. This is particularly true for Ethiopia, 

Tanzania, Uganda, Rwanda and Burundi, where coffee production contributes up to 30 % to the national 

foreign earnings (DaMatta et al., 2007; ITC, 2012; Nzeyimana et al., 2013; Moat et al., 2017). Moreover, 

coffee provides livelihoods for about 25 million famers, from which 70 % are smallholders, who own 

farms smaller than 10 ha (ITC, 2012; Fridell, 2014). As well, along the value chain, another 125 million 

people benefit from coffee production (ITC, 2012). However, despite the high demand and prolific 

market, a high percentage of smallholder coffee producers are poor and highly vulnerable – mostly due 

to price volatilities, market inequalitites, land pressure, climatic shocks (linked to climate variability), 

pest and diseases outbreaks, poor or declining soil fertility, lack of capital and saving mechanisms, within 

others (DaMatta, 2004; Daviron & Ponte, 2005; Gay et al., 2006; Méndez et al., 2007; Morton, 2007; 

Laderach et al., 2011; Baca et al., 2014). 

 

Coffee plants are highly vulnerable to climate variability, since coffee tree phenology and fruit loads are 

closely linked to microclimate (solar radiation, temperature, rainfall amount and distribution). For 

instance, coffee trees need a stress period (meteorological or agricultural drought) to start flower bud 

development (Alvim, 1960; Cannell, 1985; Carr, 2001) and a distinct rainy period to trigger flowering 

(Cannell, 1985). Frequent rainfall events without a defined dry period would cause scatter flower 

formation and yield reduction (DaMatta & Ramalho, 2006). On the contrary, too extended dry spells 

 
1 Some of reasons behind this steady growth in coffee consumption are: (i) transformation of coffee consumption from a luxury 
habit to a daily routine in a vast portion of the population (Pendergrast, 1999; Clay, 2004), (ii) increase in production linked to 
a price reduction (Clay, 2004; Perfecto et al., 2005), (iii) coffee consumption has expanded to new markets (i.e. Asia) (ITC, 2012), 
(iv) coffee is nowadays used in several other products (cosmetic, pharmaceutic, soft drinks) apart from beverages (ITC, 2012). 
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and high temperature might cause flower abortion, fruit drops and smaller fruits2 (Cannell, 1974; 

Cannell, 1985; Drinnan & Menzel., 1995). 

 

Increases in temperature and rainfall variability due to climate change put extra pressure on the coffee 

sector in general and on small producers in particular (Laderach et al., 2011; Baca et al., 2014; Hirons et 

al., 2018). In fact, climate change is expected to have severe negative impacts on coffee yield, quality 

and the extent of suitable areas for coffee cultivation (i.e. a reduction of up to 50 % by 2050) (Gay et al., 

2006; Bunn et al., 2014; Craparo et al., 2015; Ovalle-Rivera et al., 2015; Moat et al., 2017). The various 

projections, quoted or made by these authors, provide estimates of climate change impact on coffee 

from a global perspective and in particular indicate which regions are likely to be strongly affected, for 

instance Central America (Bunn et al., 2014; Lara Estrada et al., 2017). Such projections help to underline 

the importance of increasing climate resilience in the coffee sector, starting with smallholders who are 

most vulnerable to such changes. 

 

Nevertheless, the applicability of such coarse-resolution projections for guiding actions at field level is 

very limited. The models used for projecting suitability for coffee production in the above mentioned 

studies are very sensitive to initial input data (i.e. current coffee distribution) as well as to the type of 

future climatic scenarios (i.e. the different temperature and rainfall patterns that result from different 

combinations of climate model and emissions scenario) (Luedeling et al., 2014). Moreover, those 

models took into consideration only climatic variables and excluded other important factors, such as 

soil characteristics and social or economic prevailing contiditions, which also play a relevant role to face 

climate change impacts (Lara Estrada et al., 2017; Rahn et al., 2018). In this context, local empirical 

studies on cropping cultivation systems, including their environmental, social and economy dimensions 

and their climate change adaptation potential are crucial for the development and implementation of 

appropriate and sustainable practices (Coe et al., 2014). 

 

Coffee is cultivated in a wide range of cropping systems, from intensified monocrops with “compact”3 

high yielding varieties to complex agroforestry systems4 (Perfecto et al., 2005). Complex agroforestry 

systems can even resemble secondary forest structure and functions (Perfecto et al., 2005; Tscharntke 

et al., 2011). These systems have been associated with the provision of several ecosystem services – in 

addition to producing coffee – such as providing extra food, fiber and wood, regulating microclimate, 

 
2 More information about coffee phenology in section 2.2 
3 Compact coffee varieties refer to dwarf high yielding coffee varietites, in some cases also resistant to specific pest or disease 
4 Agroforestry systems are complex land-use systems that combine in space and time different woody and herbaceous plant 
species and/or animals and provide different products and ecosystem services (Zhang et al., 2007). 
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maintainance of nutrient cycling, within others - due to the multi strata and multi taxa in terms of 

species, space and time (Perfecto et al., 2005; Zhang et al., 2007; Tscharntke et al., 2011; De 

Beenhouwer et al., 2013; Jha et al., 2014; Mbow et al., 2014a; Rapidel et al., 2015; Vaast et al., 2016; 

Perfecto et al., 2019). Agroforestry systems are advocated as providing the best opportunity for 

implementing climate-smart agriculture (CSA) 5  since they can strengthen farmers’ livelihood by 

diversifying products and income source (Gay et al., 2006; Verchot et al., 2007; Mbow et al., 2014b; 

Vaast et al., 2016), capture carbon dioxide (Hergoualc’h et al., 2012; van Rikxoort et al., 2014), and lead 

to higher biodiversity levels than found in intensified monocultures(De Beenhouwer et al., 2013; Jha et 

al., 2014). These aspects are particularly relevant and desirable under the current sustainability crisis 

and the need for serious and effective actions regarding climate change mitigation and adaptation. 

 

Moreover, growing coffee under the shade of other species has been shown to improve cultivation 

conditions for coffee; especially in areas were environmental conditions fall outside the optimal 

thresholds 6  (DaMatta, 2004; Vaast et al., 2016). Shade trees modify the microclimate for coffee 

underneath – resembling the kind of conditions under which coffee naturally evolved (DaMatta, 2004) 

–, and buffer from extreme temperatures (Barradas & Fanjul, 1986; Lin, 2007; Siles et al., 2009; Partelli 

et al., 2014; Araújo et al., 2016). Moreover, at high radiation levels, decoupling of the photosystems at 

chloroplast level can induce leaf senescence, due to an excess of electrons, which stimulate the 

accumulation of reactive oxygen species (DaMatta et al., 2007). Thus, agroforestry systems provide 

benefits at different scales, from plot-farm level to landscape or regional (Tscharntke et al., 2005; Coe 

et al., 2014; van Noordwijk et al., 2014; Vaast et al., 2016). 

 

On the other hand, agroforestry systems have also been associated with some dis-services, competition 

for water and nutrients is one of the most important (Zhang et al., 2007). In the case of coffee, many 

studies argue that shade reduces coffee yields (Campanha et al., 2004; DaMatta, 2004; Franck et al., 

2005; Vaast et al., 2006; Vaast et al., 2008). This is attributed to larger vegetative growth in shaded 

plants, less fruiting nodes and flowers per nodes (Cannell, 1976; DaMatta, 2004). On the contrary, 

several other authors have demonstrated that under appropriate shade management coffee can 

produce comparable yields as in open conditions (Soto-Pinto et al., 2000; Cerda et al., 2017; Meylan et 

al., 2017). Furthermore, reduction of fruit load under shade is offset by reduction of fruit drop, larger 

bean size and heavier beans (Vaast et al., 2008; Boreux et al., 2016; Nesper et al., 2017). Besides, coffee 

 
5 Climate Smart Agriculture address three major issues (i) sustainable increase of productivity and income, (ii) increasing 
resilience to climate change and climate variability and (iii) reducing greenhouse gas emissions (FAO 2018). 
6 More about coffee environmental requirements in section 2.2.2 
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biannual productivity patterns 7  appeared to be less severe under shade, which in the long term, 

improves cumulative years compared to those achieved under open conditions and reduces the risk of 

die-back (DaMatta, 2004; Vaast et al., 2008). 

 

Nonetheless, beyond the debate of shade or no shade for coffee cultivation, which should always be 

specifically addressed in the light of to the prevailing environmental conditions, it is also worthwhile to 

point out that coffee cultivation is always from one hand affected by environmental conditions and 

climate change, and on the other hand has a strongs impact on the environment (van Rikxoort et al., 

2014). Coffee (as any other so-called cash crops such as cocoa or oil palm) becomes a serious 

environmental problem, when due to market price fluctuations, farmers feel motivated to expand their 

coffee areas at the expense of forest areas (Clay, 2004; Clough et al., 2009; Cunningham et al., 2013; 

Hylander et al., 2013). This is in particular serious, because, coffee cultivation areas usually match with 

biodiversity hots pots and/or adjoining protected areas (Moguel & Toledo, 1999; Bhagwat et al., 2008; 

Hylander et al., 2013; Jha et al., 2014). Moreover, through intensification of shade systems in pursuit 

higher yields, the incremental use of synthetic fertilizers is also an issue. Since, use of synthetic fertilizers 

leads to emission of N2O and contamination of water (Hergoualc’h et al., 2012; van Rikxoort et al., 2014; 

Capa et al., 2015; Gomes et al., 2016). 

 

At a global scale, the coffee sector faces the challenge of meeting the growing global coffee demand, 

while ensuring livelihoods and (hopefully) reducing environmental impact. At a local scale the challenge 

turns into how to integrate sound scientific knowledge with local practices and needs, and the 

development of measures which can be adapted to those local conditions. Within this context, 

understanding the functioning of cropping systems already practiced, shade-coffee yield relationships, 

ecosystem services and opportunities for sustainable intensification8 are of high interest. Despite Africa 

being the cradle of coffee, quantitative information referring to coffee agroforestry systems from the 

region is rather scarce, but necessary to adequatey address the challenges mentioned above (De 

Beenhouwer et al., 2013; Wang et al., 2015). 

 

To help closing the various knowledge gaps, this study aims to contribute to a better understanding of 

the agronomic performance and ecological functioning of coffee production systems used at Mt. Elgon, 

 
7 Moreover, coffee plants usually bear more fruit than can physiologically maintain, resulting in a reduction of vegetative 
growth which compromises fruits production in the following year, resulting in biannual bearing patterns (Wintgens, 2004; 
DaMatta et al., 2008; Bote & Vos, 2016)(DaMatta et al., 2008; Wintgens, 2009; Bote and Jan 2016) 
8 Sustainable intensification aims to improve yields of farming systems while reducing their environmental impact (Godfray, 
2015). 
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Uganda 9  The overall goals were to identify major benefits and limitations of the current coffee 

production systems along a climatic gradient (imposed by an altitudinal gradient), and identify potential 

management strategies which could improve yield performance and increase household resilience 

within sustainable intensification boarders (Godfray, 2015). This work focuses on the study of two of 

the four types of ecosystem services10 described by Zhang et al. (2007), coffee yield as provision service, 

microclimate buffering and water balance as regulation services. 

 

Thereby we specify the following research objectives and hypotheses: 

 

a) To determine coffee yield (kg ha-1) and the performance of coffee yield components in different 

coffee cultivation systems along an altitudinal and a shade cover gradient 

 

We hypothesize a reduction in coffee yield with increases in shade cover under optimal 

climatic conditions (midle and high altitude). While, under sub-optimal conditions, hot and 

dry (low altitude), we expect lower or nonexistent yield reduction as a result of shade cover 

increases. 

 

b) To determine the effects of coffee cultivation system and seasonal variation on microclimate, 

soil water content and water use patterns of coffee and associated shade species at suboptimal 

climatic conditions, hotter and drier (Low altitude). 

 

We hypothesize shaded systems do better regulate microclimate but face lower soil water 

contents due to higher transpiration from coffee and shade species combination. In 

addition, we expect coffee trees in shaded systems transpire more than in open systems, 

since stomata closure due to high vapor pressure is less likely to occur under shaded 

conditions. 

 

 
9 This work took place within the project “Trade-offs and Synergies of Climate Change Adaptation in Coffee and Cacao 
cultivation Systems” supported by the German Ministry for Development (BMZ) (through GIZ (under prime agreement no. 
12.1433.7-001.00)). The project included a multidisciplinary team with researchers from different institutions: TROPAGS 
(Division of Tropical Plant Production and Agricultural Systems Modelling, University of Göttingen), International Institute for 
Tropical Agriculture (IITA) and CIAT (International Center for Tropical Agriculture). The main objectives of the project were 
characterized the coffee cultivation systems at the Mt. Elgon region and identify climate change adaptation and mitigation 
management opportunities. The knowledge provided by this work and in general by the project are valuable to coffee farmers 
and Ugandan coffee authorities to support the path towards increasing resilience to climate change and increase coffee 
productivity at the household and national level. 
10 Ecosystem services refer to all processes and functions occurring in an ecosystem, which enable and support human life. 
Zhang et al. (2007) 
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c) To disentangle the effects of the altitudinal gradient and the shade gradient on coffee fruit 

dynamics, fruit drop and vegetative growth. 

 

We hypothesize that lower fruit initiation will occur in heavier shaded systems compared 

to low shaded system, but larger fruit set will lead to larger fruit drop. And this will result in 

comparable fruit sets at harvest along the shade gradient. 

 

These research questions and hypotheses are addressed in detail in chapters 3, 4 and 5. Chapter 2 

provides insights of to the study area, the coffee sector in this region, and how this research helps in 

filling some of the knowledge gaps and address important research needs. Chapters 3, 4 and 5 are 

presented as research articles. In Chapter 3, we explored the effect of cropping system, shade cover 

and altitudinal gradient on coffee yield components. This chapter has been published in the journal 

Agriculture, Ecosystems and Environment (Sarmiento-Soler et al., 2020). In Chapter 4 we examined the 

water use of Coffea arabica in open and shaded systems in smallholder farms in Eastern Uganda. This 

chapter was published in the journal Agriculture and Forest Meteorology ((Sarmiento-Soler et al., 2019). 

Chapter five, “Disentangling effects of altitude and shade cover on coffee fruit dynamics and vegetative 

growth in smallholder coffee systems” was submitted to the Journal Agriculture, Ecosystems and 

Environment in 2020, and has been accepted under Major reviews by the time this thesis is submitted. 

Finally, a summary of key findings of this investigation is presented in Chapter 6, in which the results are 

discussed in a global context, also looking at the main implications of this work, suggesting management 

strategies for the region and pointing out possible future research opportunities. 
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2. Background	information	about	coffee	and	coffee	in	Uganda	
 

2.1 Coffee	
 

The genus Coffea belongs to the Rubiaceae family. From the (approximately) seventy species described 

in the Coffea genus, two of them dominate 99 % of the international market: Coffea arabica L. (Arabica) 

and Coffea canephora Pierre ex A.Froehner. (Robusta) (DaMatta & Ramalho, 2006). Arabica and Robusta 

are both native to Africa; the first one evolved as an understory shrub in the highlands of south-west 

Ethiopia, while Robusta evolved from the lowland forest of the Congo river basin to the African Great 

Lakes region (Burundy, the Democratic Republic of the Cong, Kenya, Malawi, Rwanda, Tanzania and 

Uganda (Coste, 1992; DaMatta, 2004; ITC, 2012). This geographically separated distribution resulted in 

different environmental requirements for the two species. Nowadays, coffee is grown at the tropical 

belt (until 23 ° North and 23 ° South from the Equator, approximately), Arabica dominates at high 

altitudes between 600 – 2800 m.a.s.l. while Robusta is widely distributed in the lowlands between 0 to 

1400 m.a.s.l., depending on the distance to the Equator (DaMatta, 2004). In this study we focus mainly 

on Arabica. 

 

2.1.1 Environmental	requirements	for	coffee	cultivation	
 

It is difficult to define exact environmental thresholds for coffee cultivation, since the interaction of 

several factors, namely temperature (minima, maxima, mean) rainfall amount and distribution, type of 

soil and topography, play a major role in determining coffee performance (DaMatta, 2004). However, 

several studies agree that optimal mean temperature for Arabica ranges between 18 °C to 23 °C, and 

24°C – 26°C for Robusta (See Table 1 for Arabica). Moreover, continuous temperatures above 30° C 

have been associated with leaf chlorosis, blossom wilting, defective fruit set, reduction of 

photosynthesis, development of coffee leaf rust, and accelerate maturation (Heath & Orchard, 1957; 

Franco, 1958; Willson, 1985b; Descroix & Snoeck, 2008). Low temperatures (< 4°C) have also been 

associated with plant injuries and death (Descroix & Snoeck, 2008). 

 

Optimal rainfall for Arabica ranges from 1200 to 1800 mm per year (Alégre, 1959) and although Robusta 

can stand higher temperatures than Arabica, generally it needs higher relative humidity and rainfall (>75 

% and 2000 - 2500 mm). Moreover, for coffee trees, the amount of rainfall per year is as important as 

its distribution (Willson, 1985b) because the production cycle of coffee is intimately related to the 
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distribution of rains. According to Haarer (1958), the presence of a dry season (2 – 4 months, with less 

than 36 mm per month) is a fundamental element in the induction of flower formation. Later on, rainfall 

is necessary to initiate flowering, and constant water supply is crucial during the fruit filling time, when 

the water requirements of the coffee trees are very high (Wintgens, 2004). 

 

Air humidity also plays an important role for coffee physiology, regulation of water loss and coffee 

transpiration. Robusta can stand higher air humidity, close to saturation point, while Arabica develops 

better under drier conditions (DaMatta et al., 2007), although too high vapor pressure deficit can also 

limit coffee growth (Carr, 2001). Optimal relative humidity values are around 60 % for Arabica and 

around 75 % for Robusta. High relative humidity can stimulate the development of pest and diseases 

with possible detrimental effects on coffee quality and productivity. Strong winds can also have a 

negative effect on coffee yields by reducing leaf area and internode length (Caramori et al., 1986). 

Therefore, windy places or places prone to cyclones should be avoided when establishing coffee 

plantations (Wintgens, 2004). 

 

Regarding soil requirements, coffee trees are ubiquitous, this means that coffee trees are able to 

prosper on a wide range of soil types (Willson, 1985b). Nevertheless, proper drainage is very important 

for the coffee roots, as well as sufficient soil depth and good water holding capacity. Coffee roots should 

be able to explore deeper layers of soil when needed. And soils with tendency of being flooded or 

waterlogged, i.e. heavy clays, or sandy, shallow and/or very rocky soils should be avoided. Nutrients 

should be at reasonable levels and macro-nutrient contents should be adequatey balanced (See Willson 

(1985a) for more details). Nitrogen is important for vegetative growth and coffee bean development 

(Clemente at al., 2015) and might also enhance tree resistance to drought (DaMatta, 2004). 

 

When environmental factors fall below or beyond optimal ranges, plants suffer from stress and 

disturbance of their physiological functions (DaMatta & Ramalho, 2006). Ultimately, stress will have a 

detrimental effect on growth, yields and also bean quality (DaMatta & Ramalho, 2006). Long dry spells 

have a deleterious effect on the coffee trees, as well as too abundant rainfall during the year is reported 

to have a negative effect on coffee yields (Maestri & Barros, 1977). 
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Table 1: Environmental requirements for Arabica cultivation 
 
 

Factor Optimal Marginal Non Optimal 

Temperature    

Mean 18-21° (4); 18-20°C (17) > 24°C (2); 25 °C (1); 23°C (4); 24-26°C (17) 

< 14-15 °C (17) ; 17-18°C(6); 15-16°C (13,14) >30°C(5); 26°C <14°C (17) 

Max 25-26 °C (17) >  28 -32°C (17) > 34° (2); 32°C (17) 
Min 15-17 °C (17) < 12°C (2);  6°C (3); 4 - 7 °C (17) <4° C (15) ; 4 °C (17) 
    

Relative Humidity 50 - 60 % (17) > 80 - 90 % (17) 
< 30 – 40 % (17)  < 20 % (17) 

    
Duration of dry 
spell (months) 2 - 4 (7); 2.5 - 3 (17) > 5 - 6 (17) > 6 (17) 

    
Water availability 
(mm year-1) 1200-1800 (4) < 1000 - 1200 and 

> 2000 mm (17) 
 

 
    

Soil    
pH 5.5 - 6 (17) 4.5 - 5 (17) < 4.5 (17) 

Texture Clay, Clayey-silty and silty-
clayey (17) Sand (17) Sand (17) 

    
Wind  Strong (5); (12)  
    

Altitude  < 800 (1)  

Soil Temperature <26° C (Day) (16) 
>20° (Night) (16)   

(1) (Vaast et al., 2006); (2) (Nunes et al., 1968); (3) (Bauer et al., 1985); (4) (Alégre, 1959); (5) (Franco, 1958); (Camargo, 1985); 
(7) (Haarer, 1958); (8) (Coste, 1992); (9) (Matiello, 1998); (Willson, 1999); (11) (Maestri & Barros, 1977); (Matiello et al., 2002); 
(13) (Barros et al., 1991); (14) (Silva et al., 2004); (15) (Ramalho et al., 2003); (16) (Wintgens, 2004); (18) (Descroix & Snoeck, 
2008) 
 

2.1.2.	 Coffee	phenology	
 
Coffee plants need around three years to reach the productive stage and can have one or two harvests 

per year depending on the environment. Flower bud formation occurs during a period of stress, either 

induced by drought or by low temperatures (Alvim, 1960; Camargo, 1985; Carr, 2001). When the first 

rains come, flower bud dormancy is stopped and flowering occurs (Browning, 1975). This happens in 

conjunction with the flush of new leaves, to ensure fruit expansion during the rainy season with high 

water availability. Flowers are open up to 6 days waiting for pollination (Wintgens, 2004). In the case of 

Arabica, auto-pollination is possible, and wind is the most frequent pollination agent. From the 

pollinated flowers, first the so-called pinhead emerges; pinhead stage takes 6 to 8 weeks after 

fecundation (Cannell, 1985). After the 6th week approximately, rapid expansion of the fruits starts and 

it can take from 6 up to 9 months to complete fruit development (Cannell, 1985; Barros et al., 1991; 

DaMatta et al., 2007). Free availability of water is indispensable for fruit filling and ripening (Cannell, 
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1974; DaMatta et al., 2007). Usually, coffee tends to fruit more than what can be physiologically 

maintained by the tree, resulting in a reduction of vegetative growth which compromises fruits 

production in the following year. Extreme over-bearing can lead to die-back, in which the shoots or 

branches die. Die- back is exacerbated by drought stress (Vaast et al., 2006; DaMatta et al., 2007). 

 

During the maturation process, the chlorophyll content is reduced, and fruits turn into red, increasing 

its sugar content. The beans with a sigmodial shape locate inside the fruits and have three layers: silver 

skin, parchment and pulp. Productivity of coffee can be measured as fresh weight, parchment or green 

beans. However, at international markets, the standard used is dry Green beans over a production area 

and a unit of time (Dry green beans kg ha-1 year-1). Normal lifespan of a coffee plantation is 30 years. 

Nevertheless, under appropriate management, coffee trees can be productive up to 80 years (Wintgens, 

2004). 

 

2.1.3.	 Coffee	physiology		
 
Coffee developed in the understory of African rain forests (DaMatta et al., 2007). Therefore, its 

physiology corresponds to a shade adapted species, in which photosynthesis rates are inhibited in full 

sun leaves (7 µmol m-2 s-1), compared to shaded leaves (14 µmol m-2 s-1) (Altman & Dittmer, 1964; Kumar 

& Tieszen, 1980b; Cannell, 1985; Carr, 2001; Wintgens, 2004). Furthermore, Kumar and Tieszen (1980a) 

reported relatively low saturating irradiance values, of the range from 300 to 700 µmol phothon m-2 s-

1. Also, damage in photosynthetic organs has been reported when coffee plants were exposed to 

elevated radiation (DaMatta & Ramalho, 2006). Furthermore, Kumar and Tieszen (1980a) reported a 

reduction of photosynthesis rate when temperatures increased above 25°C – which is probably related 

to stomata sensitivity to high VPD. 

 

Trees function as a medium between the soil and the atmosphere through which water is flowing 

following a water potential (Soil à Plant à Atmosphere). Thus, vapour pressure deficit becomes the 

driving force in this water movement. On the other hand, coffee, and plants more generally, have 

developed certain mechanisms to affect this water movement, such as stomata closure at certain critical 

soil moisture levels, or at high evaporative demand. With respect to coffee’s sensitivity to water stress, 

coffee can be considered as a “water saving” rather than a “dehydrating” species (Sade et al., 2009; 

Moshelion et al., 2015) because it is very sensitive to atmospheric drought (Da Matta et al., 1993). 

Coffee reduces stomata opening in response to high VPD (i.e. above 1.5 kPa) independent of soil 

moisture water content (Carr, 2001; DaMatta & Ramalho, 2006; Ronquim et al., 2006). On the other 

hand, it has been reported that Arabica can maintain transpiration rates even at less than 50 % of the 
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field capacity (Kummar, 1979). Furthermore, Arabica is able to maintain photosynthetic rates at leaves 

that are dehydrated to some degree (Ψ= -4 MPa) (Kanechi et al., 1995). To conclude, coffee stomata 

aperture seems to depend initially on radiation levels; next, stomatal conductance is related to dryness 

of the air (VPD), and only thereafter to soil water content when this falls below certain thresholds (< 50 

% field capacity) (Kummar, 1979). 

 

2.2 Coffee	in	Uganda		
 

Uganda is a landlocked country, surrounded by South Sudan, Kenya, Tanzania, Rwanda and the 

Democratic Republic of Congo. It has an area of 241.000 km2 and lies on average at 1.000 m.a.s.l. It has 

two main mountain chains, in the south west, Ruwenzori Mountains (with the highest peak over 5.000 

m.a.s.l.) and in the east, Mount Elgon (with the highest peak over 4.000 m.a.s.l.). 39 million people live 

in Uganda, of which 32 million populate the rural areas and depend mostly on agriculture. Agriculture 

contributes 28.1 % to the gross domestic product (FAOSTAT, 2016). Coffee is the most important 

exported crop grown in Uganda and it contributes up to 20 % of the value of the total exports of the 

country (UCDA, 2013). Furthermore, it provides the livelihood of approximately 3.5 million farmers, of 

whom 90% have less than 2 hectares of land (UCDA, 2016). 

 

 

Fig. 1. Map of Uganda with coffee regions. Elaborated based on STRM digital elevation maps and data from UCDA (2016) 
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In Uganda, both coffee species, Arabica and Robusta are cultivated, covering approximately 282,284 ha 

(UCDA, 2018)(UCDA 2018). Robusta dominates the lowlands, from 1100 up to 1.500 m.a.s.l. There are 

two main Robusta zones in Uganda, central and northern Uganda (Fig. 1). On the contrary, Arabica is 

cultivated at higher elevation, from around 1300.up to 2600 m.a.s.l. – mainly om the slopes of the 

Ruwenzori Mountains, at Mt. Elgon and in North West Uganda. Despite the higher international price 

of Arabica, Robusta constitutes more than 76 % of the coffee produced in Uganda (Fig. 2) (UCDA, 2016). 

 

 
Fig. 2. Developments from 1990 to 2017 by coffee species: (a) coffee production, (b) total coffee value in US dollars and (c) 
coffee price (US dollars/kg) in Uganda; (Arabica=Blue and Robusta = Orange). Based on data provided by the Ugandan Coffee 
Development Authority (UCDA) accessed April 2018. 

 

Although coffee is native from Africa, and even some Robusta populations originated in Uganda, coffee 

started to be cultivated for economic purposes in Uganda only at the beginning of the 20th century. The 

sector had an exponential growth the following years, until 1959, when the sector started to decline 

due to inefficient management of the cooperatives system (Crawford et al., 1981; Brett, 1992). Farmers 

were forced to sell their coffee to the cooperatives and did not any power on the transaction prices. 

Moreover, the payments were frequently delayed even up to 3 months (Crawford et al., 1981).Thus, 

interest in the coffee sector reduced, and farmers switched to grow other products, especially food 

crops. Then, in 1990, the Ugandan coffee market was liberalize and the previous cooperatives system 

was replaced by the Ugandan Coffee Development Authority (UCDA) (Baffes, 2006). These appeared to 

have had on the sector, especially for the farmers, according to Baffes (2006). 

 

Since 2014/15, the Ugandan government through the UCDA has started the “National Coffee Strategy”. 

This strategy aims to promote the Ugandan coffee sector and lead to the recognition of the Ugandan 

coffee by the international market (UCDA, 2015).Actions will be carried out at different levels of the 

production chain, from producers to retailers, with the objective to increase production and value. 

Nevertheless, currently fundamental knowledge about farmers’ primary productivity, yield gaps and 

yield constraining factors is lacking for most coffee cultivation areas in Uganda. The same holds true for 
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knowledge about the marketing chain (UCDA, 2015). Therefore, results and knowledge gained during 

the project and this dedicated PhD research, aims to reduce some important knowledge gaps. Likewise, 

it may add support to the coffee farmers and Ugandan coffee Development Authority in its effort to 

successfully achieve the National Coffee Strategy goals (UCDA, 2015) and concurrently increase climate 

resilience of coffee cropping systems in the country. 

 

2.2.1 Cultivation	systems	at	Mt.	Elgon	
 
Coffee production in Uganda is performed mostly by smallholders. Thus, coffee cultivation is rather at 

a low level of intensification, with no mechanization, and only scarce use of chemical inputs, and usually 

based on family labor (ITC, 2012; UCDA, 2015). Coffee is mostly intercropped with food crops such as: 

bananas, corn, beans, passion fruits, cassava – among others - and with shade trees, which provide a 

variety of products, such as fruits, timber, firewood, within others (Odoul & Aluma, 1990; Rahn et al., 

2018). Mixing coffee with other crops appears to reduce negative impacts such as crop failure and 

phases of low coffee prices, and it also provides alternative income and food sources beyond the coffee 

harvesting seasons (Odoul & Aluma, 1990; Rutherford, 2006; van Asten et al., 2011). The most common 

coffee cropping system is the so-called Coffee-Banana system, in which coffee trees, as the main cash 

source, are intercropped with bananas, the main staple crop (Odoul & Aluma, 1990; van Asten et al., 

2011). 

 

Mount Elgon is famous for its Arabica coffee. Most of the farmers in the region are involved in coffee 

cultivation on large or small scale. Usually, coffee is intercropped with different species, such as shade 

trees, bananas and annual crops as beans, hence creating a gradient of management intensity and also 

shade intensity (Rahn et al., 2018). As base line of the research project “Trade-off and synergies in 

climate change adaptation in coffee and cocoa systems”, a characterization of coffee cultivation systems 

at Mt Elgon was performed (more results of this study can be found in Rahn et al. (2018). 

 

One hundred forty four farmers were selected following a random stratified sampling according to the 

previously identified altitude classes (Low < 1400 m.a.s.l., Middle 1400 – 1700 m.a.s.l., and High > 1700 

m.a.s.l) and administrative boundaries (2 sub-counties per Altitude Class: 2 parrishes per sub-county: 2 

villages per parrish). A cluster analysis was performed based on plot structure11 to identify different 

cultivation systems. Evident classification of smallholder systems is not easy, since there is high level of 

variability between plots, which are specifically tailored to the farmers’ needs and labor availability. 

 
11 Plot size, Shade cover (%), density of banana mats, density of shade trees and shade tree species richness  
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Nevertheless, as result of cluster analysis, three different coffee cultivation systems were identified in 

the area, named as: 

 

1. Coffee- Open (CO): low shade intensity (Shade cover < 20 %)  

2. Coffee- Banana (CB): Shade cover > 20 % and dominated by Musa sp., although scattered 

presence of other shade tree species. 

3. Coffee – Shade Tree (CT): dense shaded systems, shade provided by diverse shade trees species. 

 

 
Fig. 3. Coffee cropping systems at Mt. Elgon. From left to right, Coffee-Open (CO), Coffee-Banana (CB) and Coffee – Shade 
Tree (CT) 

 

Coffee cropping systems had an average size of 0.14 ± 0.16 ha and around 2147 (± 163) coffee trees per 

ha-1. Type and intensity of shade followed the altitudinal gradient, with higher shade cover and shade 

tree diversity at lower altitudes. Banana densities, on the other hand, increased with altitude and coffee 

open systems were more frequent at higher altitudes (Rahn et al., 2018). Up to 37 different shade tree 

species were identified in the study area. Moreover, shaded systems at low altitude tend to retain higher 

number of shade tree species than systems at high altitude. Climatic conditions and access to forest and 

wealth were identified as the most important determinants of type of coffee system adoption. At lower 

altitudes, temperature is higher and more extreme, and access to forest it is limited. Hence, farmers 

tend to have higher shade tree density and diversity, especially for farmers that had a reduced number 

of coffee plots. On the other hand, wealthier farmers were less likely to have coffee intercropped (Rahn 

et al., 2018). 

 

Further details on materials and methods are given in the following chapters. 
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Abstract 
 

Coffee is a key export commodity of East Africa, but average smallholders’ yields are low. To guide 

sustainable yield improvements of smallholders’ coffee systems, we investigated coffee yield 

components in three different types of coffee cropping systems along an altitude gradient (1100−2100 

m.a.s.l.) during two production years (2015 and 2016). We selected 810 coffee trees distributed over 

27 farms and monitored number of stems per tree, fruit load per branch, productive nodes per branch 

(on four branches of one stem per tree) and number of productive branches per stem (on one stem per 

selected tree) in both years. Additionally, we monitored productive stems per ha, coffee tree density 

and cherry weight in combination with pest and disease occurrence and management information from 

interviews. Coffee farms were classified as Coffee-Open (CO) (< 20 % shade cover), Coffee-Banana (CB) 

(coffee dominantly intercropped with bananas) or Coffee-shade Tree (CT) (coffee dominantly 

intercropped with shade trees). Coffee-Banana had larger yield per ha (green bean kg ha
-1

) (1086 ± 736 

kg ha
-1

) and yield per stem (green bean kg stem
-1

) (0.24 ± 0.16 kg stem-1) than CO (670 ± 457 kg ha
-1 and 

0.21 ± 0.26 kg stem
-1

) and CT (428 ± 259 kg ha-1 and 0.10 ± 0.12 kg stem
-1

). Fruit loads, productive nodes, 

productive branches and cherry weight declined with shade cover, especially for shade cover > 30 %. 

Additionally, the same yield components correlated negatively with number of stems per tree. Fertilizer 

and fungicide use were related to more productive branches and cherry weight respectively, and stem 

borer was identified as the most important pest in this area. Our results suggest that yield in the region 

could be increased, i) by maintaining shade at an intermediate level, particularly at low and mid altitude 

and by reducing the number of stems per coffee tree (< 4), and ii) by improving soil fertility and 

protection against pest and disease. 

 

Keywords: Coffea arabica, Agroforestry, Climate change, Productivity, East Africa, Yield components, 

Sustainable intensification, Production factors 
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Highlights 
 

• Coffee intercropped with banana had larger yield per ha than coffee under shade trees or in 

open conditions. 

• Coffee yield components reduced when shade cover was above 30 %. 

• Reducing number of stems per coffee tree can help to increase coffee yields 

 
Visual abstract 
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3.1.	 Introduction	

 

Coffee is a key source of income for millions of smallholders in the developing world (ITC, 2012). 

However, smallholders’ yields are often low (∼ 500 kg Green beans ha−1) (FAOSTAT, 2018) and sensitive 

to climate variability, extreme events and other hazards (Laderach et al., 2011; Baca et al., 2014; Vaast 

et al., 2016). Hence, identification of management options to improve coffee systems resilience while 

maintaining or enhancing coffee yield is urgently needed in the coffee sector (Laderach et al., 2011; 

Bunn et al., 2014; Craparo et al., 2015; Ovalle-Rivera et al., 2015; Vaast et al., 2016). 

 

Generally, coffee is cultivated in a diverse range of cropping systems, ranging from complex 

agroforestry, mimicking secondary forests, to intensive monoculture with compact coffee varieties 

(Perfecto et al., 2005; Jha et al., 2014). The choice of a specific coffee cropping system is an important 

management decision, since different cropping systems will provide their set of benefits (i.e. pest 

control, microclimate regulation, pollination) and trade-offs (i.e. competition for water and nutrients) 

(Beer et al., 1998; Tscharntke et al., 2011; Jassogne et al., 2012; Jha et al., 2014; Rapidel et al., 2015; 

Padovan et al., 2018; Chain-Guadarrama et al., 2019). For instance, the use of shade trees has been 

specially recommended under sub-optimal environmental conditions (i.e. high temperatures, wind or 

sloping terrain) due to their proven microclimatic regulation and soil protection function (Beer et al., 

1998; Vaast et al., 2016; Sarmiento-Soler et al., 2019). 

 

Despite the fact that coffee yields might be reduced under shade due to less fruit loads (Cannell, 1985; 

Campanha et al., 2004; DaMatta, 2004; Franck et al., 2005; Vaast et al., 2006), several authors argued 

that lower fruit load in shaded systems can be counter-balanced at several levels: (i) coffee tree level by 

improving microclimate, reducing overbearing and die-back risk, reducing fruit drop and biennial 

patterns (DaMatta, 2004; Vaast et al., 2006; Vaast et al., 2008), (ii) plot level by soil nutrient provision, 

reduction of erosion, regulating microclimate (Cannavo et al., 2011; Souza et al., 2012; Villatoro-Sánchez 

et al., 2015; Meylan et al., 2017; Sarmiento-Soler et al., 2019; Sauvadet et al., 2019) and (iii) household 

level by diversifying income and improving food security  (de Souza et al., 2011; Tscharntke et al., 2011; 

Lasco et al., 2014; Vaast et al., 2016). 
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However, despite shaded coffee systems provide several key ecosystem services, coffee yield remains 

the most crucial for coffee farmers (Gobbi, 2000; Perfecto et al., 2005; Godfray & Garnett, 2014). If 

coffee yields are low and not compensated by certification schemes or premium consumer prices, 

farmers may intensify their systems at the cost of short-term, but high-risk, gains (Perfecto et al., 2005; 

Vaast et al., 2006; Tscharntke et al., 2011; Jha et al., 2014). Although, high coffee yield can be achieved 

under open conditions and use of external chemical inputs and/or irrigation (Staver et al., 2001; Perfecto 

et al., 2005; DaMatta et al., 2018a), such conversion can have a detrimental effect on the environment, 

as well as increase the vulnerability of farmers, i.e. dependency on coffee prices, in the long run 

(Perfecto et al., 2005; Tscharntke et al., 2012; De Beenhouwer et al., 2013; Vaast & Somarriba, 2014). 

Therefore, alternatives to increasing production are needed which adapt to local resource availability 

and do not harm the environment (Mbow et al., 2014a; Mbow et al., 2014b). 

 

Within this context, this study aims to gain insights of how coffee yields could be improved under low 

input conditions in a smallholder context in an important Arabica coffee producing region on the foot- 

slopes of Mt. Elgon, Uganda (Liebig et al., 2016; Rahn et al., 2018a). We conducted an on-farm study to 

examine coffee yield components in different cropping systems along a shade cover and climate 

gradient (determined by altitude). We focused on the effects of shade cover and altitude have on the 

different coffee yield components (fruit load per branch, productive nodes per branch, productive 

branches per stem, cherry weight and productive stems per ha). 

 

Specifically, we addressed the following research questions:  

1. (i)  What are the effects of cropping system (type and amount of shade cover) and altitude on 

coffee yield? 

2. (ii)  Which factors (cropping system and altitude) determine the different coffee yield 

components? 

3. (iii)  What are the relationships among the different yield components, and do these depend on 

the cropping system? 

In posing these questions, we hypothesized that (a) low-shade coffee systems have higher yields in the 

more ‘optimal’ high altitude, while (b) at lower altitudes coffee systems produce comparable yield, 

despite their shade level. Moreover, we expect that (c) shade cover reduces branch fruit load, number 

of productive nodes per branch and number of productive branches, while increasing cherry weight. 
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Additionally, (d) altitude positively affects yield components due to more rainfall and lower 

temperatures occurring at high altitude. Finally, (e) we expect a trade-off between fruit load and cherry 

weight, leading to heavier cherries under low fruit loads. Similarly, we expect a trade-off between fruit 

loads per stem and number of stems per tree and per hectare, due to an increase in self-shading with 

increases of stems per tree and per ha. 

 

3.2.		 Material	and	methods	
 

3.2.1.		Study	site	
 

The study site is located on the Western slopes of Mount Elgon (peak at 4321 m a.s.l.) in Eastern Uganda. 

The research area covers 110 km
2
, between 1° 15ʹ 00ʹʹ – 1° 18ʹ 00ʹʹ geographical latitude and 34° 18ʹ – 

34° 24ʹ geographical longitude. It stretches along an altitudinal gradient from 1100 m a.s.l. to 2100 m 

a.s.l. and covers the districts of Bulambuli, Kapchorwa and Sironko. The landscape is characterized by 

escarpments, which divide the cultivation areas in three zones along the slope: low altitude (1100–1400 

m.a.sl.), mid altitude (1400–1700 m.a.s.l.) and high altitude (1.700–2.400 m.a.sl.) (Fig. 1). These three 

zones were used in this study as altitude classes. 

 

 

Fig. 1. Map of Uganda and research area with selected plots (27 plots) at three altitude classes: Low altitude (1100 – 1400 
m.a.s.l.), mid altitude (1400 – 1700 m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l). Plots belong to three different types of 
coffee cropping systems: 9 plots to Coffee Open = CO (Red circle), 9 plots to Coffee-Banana = CB (Yellow triangle) and 9 plots 
to Coffee Tree = CT (Blue square). Star (*) referes to Buginyianya Research Station at 1800 m.a.s.l.). 
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Annual rainfall ranges from 1200 mm at low altitude (1200 m.a.s.l.) to 1670 mm at higher altitudes 

(2000 m.a.s.l). Rainfall is bimodal with January, February and December representing the driest months 

with an average 40 mm month
-1 at low altitude and 55 mm at high altitude (Fick & Hijmans, 2017) (1970–

2000). Mean temperature, extracted from WorldClim, is around 22 ± 0.7 °C at lower (1200 m.a.s.l.) and 

16 ± 0.7 °C at higher altitudes (2000 m.a.s.l.) (Fick & Hijmans, 2017) (Supplementary material, Figure.S1). 

Despite, the generalized used of the WorldClim data set, we found that in our study site, this 

extrapolation underestimates temperature at high altitude, since data from the closest weather station 

(Buginyanya, 1800 m.a.s.l., Supplementary material, Figure.S2), indicated a mean temperature of 18 ± 

2.5 °C in the period between 2005 and 2015. Soils in Mt Elgon are predominantly Nitisols of volcanic 

origin with basalt as parent material (De Bauw et al., 2016). Soils at higher altitude are more weathered 

and have a lower pH (i.e. < 5.5) than at lower altitude (i.e. 7.5) (De Bauw et al., 2016). 

 

3.2.2.		Data	collection	
 
3.2.2.1.		 Farmers	and	plot	selection	
 

Previous studies in the area identified three main coffee systems, namely Coffee-Open (CO) (low shade), 

Coffee-Banana (CB) (coffee dominantly intercropped with bananas) and Coffee-shade Tree (CT) (coffee 

dominantly intercropped with shade trees) (Liebig et al., 2016; Rahn et al., 2018a). In this study, we 

aimed to have a homogenous sample of coffee plots along the three altitude classes: low altitude (1100 

– 1400 ma.s.l.), mid altitude (1400 – 1700 m.a.s.l.) and high altitude (1.700 – 2100 m.a.sl.) (Nine plots 

per altitude class); and across the different types of systems (nine plots per system). Thus, we monitored 

27 plots from a larger sample of 146 coffee farms that are part of the research project described by 

(Liebig et al., 2016) and (Rahn et al., 2018a). Plots were selected based on the following criteria: (i) 

occurrence of coffee trees in reproductive age (> 3 years old), (ii) active coffee management with no 

signs of abandonment, (iii) homogeneity of shade cover. For each coffee plot, we recorded surface area, 

number of coffee trees, bananas and shade trees, number of shade tree species, and shade cover at the 

beginning of the study period. Five replicates of composite topsoil samples (0 – 30 cm depth) were 

collected in each plot and analyzed for pH, soil organic matter (SOM %) and macronutrients (i.e. total 

nitrogen (Kjeldahl), available phosphorous (Mehlich-III), and exchangeable cations (potassium (K), 

magnesium (Mg), calcium (Ca)) as described by (Okalebo et al., 1993). 
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3.2.2.2.		 Farmers	interviews	
 

Each plot owner was interviewed in 2015 about management practices performed in the plot such as: 

coffee pruning, de-suckering, mechanical weeding, shade tree pruning, use of external inputs (ferti- 

lizer, insecticide, herbicide, fungicide) and about the presence of pest and diseases. After cleaning the 

data, and removing incongruent information, we remained with information from only 23 farmers. 

 

3.2.2.3.		 Coffee	system	characterization	
 

Coffee systems differed in density of banana stems, density of shade trees, shade cover, leaf area index 

(LAI) of the system, LAI of shade trees and number of stems per coffee tree (Table 1). We did not find 

significant differences in the density of coffee trees per ha across cropping systems. Similarly, cropping 

systems did not differ in surface area due to a high variability in CO and CT (Table 1). On the other hand, 

CT and CO had significantly more stems per tree than CB, but coffee LAI did not differ between cropping 

systems (Table 1). As expected, CT had the highest LAI of the shade (LAI Shade) component, followed 

by CB, and CO, which had the lowest LAIshade. Nevertheless, we found that shade cover across cropping 

systems as well as LAIshade did not have well defined boundaries, and sometimes overlapped (Fig. 2.a). 

Therefore, in the analysis we included both cropping system and shade cover (as LAIShade) as factors, 

acknowledging that we might have confounding effects between them. Additionally, we did not find any 

significant differences in soil properties across cropping systems (Table 1). Nevertheless, pH decreased 

with increases in altitude and this reduction was system specific, as pH decrease with altitude was more 

accentuated in CB and CT than in CO (Fig. 2.b). Altitude had also a negative effect on exchangeable Ca, 

but no significant cropping system effect (Supplementary material, Figure S3). 
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Table 1: Plot characteristics according to coffee systems (Coffee-Open (CO), Coffee-Banana (CB) and Coffee-shade 

Tree (CT)). 

Variable  
CO 

(n= 9) 
CB 

(n= 9) 
CT 

(n= 9) 
System characteristics 

   

Altitude (m.a.s.l.) 1614 ± 378 1540 ± 314 1533 ± 343 

Area (m2) 2001 ± 1305 1126 ± 597 2062 ± 1572 

Density Coffee (Trees ha-1)  2109 ± 1169 2085 ± 760 1758 ± 491 

Density Banana (Stems ha-1)  148 ± 316a 786 ± 426c 370 ± 472b 

Density Shade Trees(Trees ha-1)  28 ± 27a 36 ± 38a 110 ± 82b 

Shade cover (%) 16 ± 12a 19 ± 12a 46 ± 18b 

N° Coffee Stems Tree-1  3.2 ± 1.5 2.5 ± 1.3 3.7 ± 2 

LAI (System/Shade/Coffee) 1.4a/0.2a/1.2a 2.2b/0.8b/1.4a 2.6b/1.4c/1.2a 

Slope %  11 ± 9 16 ± 8 15 ± 9 

Soil Properties (0-30 cm)     

pH 1 5.9 ± 0.6 5.8 ± 0.5 6.1 ± 0.6 

OM % 4.1 ± 1.5 4.5 ± 2.4 4.6 ± 3 

Soil N (%) 0.2 ± 0.07 0.27 ± 0.05 0.30 ± 0.12 

Soil P ppm 34.1 ± 24.5 35 ± 35 56 ± 53 

Soil K (cmol kg-1) 1.0 ± 0.5 1.08 ± 0.6 1.3 ± 0.8 

Soil Ca (cmol kg-1) 14.7 ± 7.8 11.4 ± 5.5 15.1 ± 4.5 

Soil Mg (cmol kg-1) 4.3 ± 2.7 3.02 ± 4 4.02 ± 2.1 

Significance levels: (.) < 0.1, (*) < 0.05, (**) < 0.01 and (***) < 0.001. 

 

 

Fig. 2. a) Shade cover (%) ~ LAI Shade (m2 m-2) (n=26), b) LAI Shade (m2 m-2) ~ altitude (m.a.s.l.) (n=27), c) pH ~ altitude (m.a.s.l.) 
(n=27), for three coffee systems (Coffee-Open = CO (red circle), Coffee Banana = CB (yellow triangle) and Coffee –shade Tree 
= CT (blue square)(n=26). * Shade cover of one CB system (LAI Shade = 0.4 m2m-2) plot at mid altitude is missing. Line type 
indicates cropping system (solid = all systems, dotted = CO, dash - dotted = CB and dashed = CT). 
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3.2.2.4.		 Coffee	trees	
 

Coffee trees were selected following a systematic sampling in form of transects (Nath et al., 2009). 

Within each selected plot, 2–4 transects crossing at the center of the plot were marked. Afterwards, we 

selected all coffee trees along these transects, or every second tree, or every third tree until we reached 

a total of 30 selected coffee trees, and had approximately the same number of coffee trees per transect. 

On each coffee tree, variables were collected at three levels: (i) tree, (ii) stem (one stem per selected 

tree) and (iii) branch (four branches per selected stem distributed homogenously along the stem) (Fig. 

3). Stem selection was done visually, the task was rotated within the field work team members (4–5 

people) to avoid persistent bias. As principle, we selected average stems, avoiding too young ones or 

too old ones. These variables were monitored 12 times during the whole study period (from March 2015 

to November 2016). Nevertheless, only data before the 2015 harvest season (September - November) 

and 2016 harvest season (September - November) are presented here as this study is focused on the 

final status of yield components just before harvesting time. To estimate coffee yield at stem level, we 

monitored yield components, fruit load per branch, productive nodes per branch and number of fruiting 

branches per stem before harvesting. Additionally, one hundred cherries were picked randomly in each 

plot during harvesting and weighted to estimate cherry weight. Harvesting occurred at different points 

in time depending on altitude, hence at low altitude in September, at middle altitude in October and at 

high altitude in November- December (Table 2). 
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Table 2: Description of variables quantified and time of sampling, FL = fruits load per branch, PB = number of 
productive branches, CW = fresh cherry weight of 100 cherries (g), St = number of stems in a coffee tree. ProSTha 

productive stems per ha, Yield per stem (Green beans kg stem−1), Yield per ha (Green beans kg ha−1 year−1). 

   

Variable Description  Estimation 

Measured variables 

Fruit load per branch 

(FL)  

Number of fruits per branch Counted before harvesta  

Productive node per 

branch  (PN) 

Number of productive nodes per branch Counted before harvesta 

Productive branches 

per stem (PB) 

Number of productive branches per stem Counted before harvesta  

Stems per coffee tree 

(St) 

Number of stems per coffee tree Counted before harvesta  

Cherry weight (CW) Weight of 100 fresh cherries (g) Weighted after harvesta  

Productive stems per 

ha (ProSTha) 

Productive stems per ha Counteda 

CT density Density of coffee trees per hectare (Number trees ha-

1) 

Counted b 

Estimated variables  

Yield per stem Yield of green beans (kg) per stem YieldStem= FL x PB x CW * 0.16c 

   

Yield per ha Yield of coffee green beans per ha (kg ha-1 yr-1) YieldHa = YieldStem x ProSTha 

 

a Harvest season 2015 and 2016. At Mt. Elgon occurs from September to November 

b March 2014 

c Conversion factor used to transform from fresh cherries to green bean 

Coffee yield per hectare (kg ha-1) is a product of coffee yield per tree (kg tree-1) and density of coffee 

trees per hectare (number of coffee trees ha-1) (Cannell, 1985). Yield per tree is derived by fruit weight, 

fruit load per tree and the conversion factor from fresh cherries to green beans. Fruit load per tree is 

based on the fruit load per branch, productive branches per stem and number productive stems per 

tree (Cannell, 1985; Descroix & Snoeck, 2008; Castro-Tanzi et al., 2014) (Fig. 3). Cannell (1985) argues 

that the most important components determining yield are number of productive nodes per branch and 

number of cherries per node. 
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In this study, we included number of productive nodes and the fruit load per branch, since all cherries 

per branch were counted. Furthermore, based on the study of Castro-Tanzi et al. (2014), the position of 

the branch along the stem influenced the fruit load; we sampled four branches along the stem, to 

account for this variability. Moreover, coffee trees have a clear dimorphism in their reproductive and 

vegetative growth, in which, productive nodes are only developed on the lateral branches which grow 

from the nodes of the stems. 

 

Finally, we included productive stems per ha as a yield component to be able to up-scale yield per stem 

to a hectare level. Furthermore, we included the variable number of stems per coffee tree to evaluate 

possible trade-offs between vegetative growth (represented by number of stems per coffee tree, thus 

resources put into formation of new wood and leaves) and reproductive growth (represented by fruit 

load per branch, productive nodes per branch, productive branches per stem and cherry weight). 

Previous studies suggest competition between vegetative and reproductive growth in coffee trees, 

which leads to larger vegetative growth in fruitless trees (Amaral et al., 2001; DaMatta et al., 2007). 

However, more stems per tree relate to more leaves, increasing self-shading and probably negatively 

affect other yield components. 

 
Fig. 3. Coffee yield components and sampling design. Illustration from A. Sarmiento Soler (Visuals in Science LAB) 
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3.2.2.5.		 Shade	cover	and	Leaf	Area	Index	(LAI)	
 

Shade cover was measured once at the beginning of the study, using a Forestry Suppliers spherical 

crown densiometer (Lemmon, 1956). In each plot, four measurement points were taken above coffee 

trees and averaged to determine shade cover (%) of the plot. Furthermore, LAI was monitored five times 

(July 2015, September 2015, November 2015, February 2016 and March 2016) during the study period 

with a LICOR 2200 C plant canopy analyzer (Model LAI-2270C, SR.NO.PCA- 3940, LICOR). LAI was 

measured at twenty points distributed systematically over each plot. During each measurement 

campaign, two different LAI measurements were collected: (a) below coffee trees, to capture LAI of the 

system and (b) above coffee trees to capture LAI of shade trees or banana above coffee trees. Three 

reference points at open areas were taken each time LAI was measured, as recommended by the 

manufacturer (Li-COR, 2009). In the present study, we correlated the averaged LAI (measured five times 

during the study period) with shade cover to extrapolate shade cover values per plot over the study 

period (Shade cover (%) ∼ 18.2 x LAI of shade + 13.4, p-value < 0.00, more details in supplementary 

material Table S1). For the analysis we used LAIShade, but added a figure (Fig. 2.a) to relate LAI Shade with 

shade cover for easier comparison with other studies, since shade cover is frequently used in 

agroforestry context (Soto-Pinto et al., 2000; Muschler, 2001; Romero-Alvarado et al., 2002; Perfecto 

et al., 2005; Boreux et al., 2016; Blaser et al., 2018). 

 

3.2.3.		Data	analysis	
 
3.2.3.1.		 Models	used	
 

We used linear mixed models (lmm) and generalized linear mixed models (glmm) to evaluate the effect 

of coffee systems (CO, CB and CT), shade cover (LAIShade) and altitude on coffee yield and yield 

components (fruit load, productive branches, cherry weight, stems per tree and productive stems per 

plot) averaged for 2015 and 2016 (Gbur, 2012). We introduced standardized altitude and LAIShade in the 

model and also accounted for interactions between these two factors. The selection of the “best model” 

explaining our data was done using the function dredge from the R package MuMIn, in which stepwise 

regression are performed and the model with the lowest Akaike Information Criterion (AIC) is selected 

(Bartoń 2019). PlotID was used as random effects since measurements were nested. Linear or 

generalized models were used depending on the nature of the response variable (continuous as cherry 

weight or discrete as fruit load per branch, productive nodes per branch, productive branches per stem 

and productive stems per ha) (Gbur, 2012). 
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3.2.3.2.		 Evaluation	of	other	production	factors	
 

Additionally, we performed a correlation test between yield components and other production factors 

(Table 3). We used Pearson correlation coefficient for continuous variables, i.e. soil characteristics. The 

effect of management practices and pest and disease incidence, obtained through farmers interviews, 

was tested separately for each yield component through glmm and simplified results: positive, negative 

or no effects are display in Table 3. Detailed model outputs are shown in supplementary material (Tables 

S2 and S3). Due to the reduced number of observations (n = 23), we did not include them in the global 

model. However, the information provided is valuable to understand the observed results and to draw 

conclusions later on. 

 

Data analysis was performed using R (R core team 2017) and the packages: glmmTMB (Brooks et al., 

2017), lme4 (Bates et al., 2015), lmerTest (Kuznetsova  et al., 2017), MuMIn (Bartoń 2019), car (Fox & 

Wiesberg, 2019), and dplyr (Wickham et al., 2019). Graphs were produced using package ggplot2 

(Wickham, 2016)(Wickham, 2016). 
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Table 3: Production factors and yield components 

Production factors 
Type of 
variable 

    

Fruit load 
per 
branch 
(FL) 

Productive 
nodes per 
branch (PN) 

Productive 
branches 
per stem 
(PB) 

N° of 
stems 
per 
tree  
(NSte
m) 

N° of 
productiv
e stems 
per ha 
(ProStem
Ha) 

Cherry 
weigth 
(CW) 

System 
characteristics                       
Altitude (m.a.s.l.) Continuous     (-) *** (-) *** (+) * ns ns ns 
Area (m2) Continuous     ns ns ns ns (-) *** ns 
Shade cover (%) Continuous     (-) * (-)  (-) *** (-) *** ns (-) * 
Age Continuous     ns ns (+) ** (-) *** ns ns 
Soil Properties (0-30 cm)a                      

pH 1 
Continuous     (-) *** (-) *** (-) *** 

(+) 
*** (+) * ns 

OM % Continuous     (-) *** (-) *** (-) *** (+) ** ns ns 
Soil N (%) Continuous     ns ns ns ns ns ns 
Soil P ppm Continuous     ns ns (-) *** (+) **  ns ns 
Soil K (cmol kg-1) Continuous     (-) *** (-) *** (-) *** ns ns ns 

Soil Ca (cmol kg-1) 
Continuous     (-) *** (-) *** (-) *** 

(+) 
*** (+) * ns 

Soil Mg (cmol kg-1) Continuous     (-) *** (-) *** (-) *** 
(+) 
*** (+) * ns 

Managementb 
  

N
A Yes No 

CO|CB|C
T             

Fungicide use (Yes/No) 5 5 17 1 | 1 | 3 ns ns ns ns  ns  
(+) 
*** 

Fertilizer use (Yes/No) 4 8 15 3 | 3 | 2 ns (+) . (+) * ns  ns  ns 

Insecticide use (Yes/No) 5 15 7 1 | 1 | 5 ns ns (-) ** ns  ns  ns 

Herbicide use (Yes/No) 4 18 5 3 | 0 | 2 ns ns ns ns  ns  ns 

Manure use  (Yes/No) 7 15 5 2 | 7 | 6 ns ns ns ns  ns  ns 
Shade trees 
prunning (Yes/No) 4 15 8 2 | 7 | 6 ns ns ns ns  ns  (-) ** 
Mechanical 
weeding (Yes/No) 4 22 1 5 | 9 | 8 ns ns ns (-) ** ns  ns 

Coffee prunning (Yes/No) 4 18 5 4 | 7 | 7 ns ns ns ns  ns  ns 

Desuckering (Yes/No) 7 20 0 4 | 8 | 8 ns ns ns ns  ns  ns  

Stumping (Yes/No) 4 8 15 1 | 2 | 5 ns ns ns ns  ns  ns 

Bioticb   
N
A Yes No 

CO|CB|C
T             

Stemborer (Yes/No) 5 18 4 5 | 6 | 7 (-) * (-) . (-) . ns ns ns 

Coffee leaf rust (Yes/No) 5 14 8 5 | 4 | 5 ns ns ns (-) . ns ns 

Coffee berry borer (Yes/No) 5 2 20 0 | 0 | 1 ns ns ns ns ns ns 

Antesia bugs (Yes/No) 5 1 21 0 | 0 | 1 ns ns ns ns (+)* ns 

Scales (Yes/No) 5 3 19 1 | 1 | 1 ns ns ns ns ns ns 

Coffee leaf miner (Yes/No) 5 1 21 0 | 1 | 0 ns ns ns ns ns ns 

Aphids  (Yes/No) 7 2 18 1 | 0 | 1 ns ns ns ns ns ns 

Mites (Yes/No) 5 1 21 1 | 0 | 0 ns ns ns ns ns ns 
Coffee berry 
disease (Yes/No) 5 4 18 4 | 7 | 7 ns ns ns ns (-) * ns 
a Pearson -Correlation 

b Generalized linear mixed model 

Significance levels: (.) < 0.1, (*) < 0.05, (**) < 0.01 and (***) < 0.001. 
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3.3.		 Results	
 

3.3.1.		Coffee	yield	and	coffee	yield	componenets	in	the	three	studied	systems	
 

Fruit load (FL) and productive branches (PB) were significantly larger in CB (17 ± 9 FL and 35 ± 10 PB) 

than in CO (14 ± 12 FL and 32 ± 11 PB) and CT (11 ± 9 FL and 25 ± 11 PB). Coffee-Open and CB had similar 

number of productive nodes per branch (CO = 5 ± 2 PN and CB = 5 ± 2 PN) and significantly larger than 

in CT (4 ± 1). We did not finnd any significantly differences across systems in cherry weight (CO = 212 ± 

26 g100 cherries, CB = 217 ± 27 g100 cherries and CT = 200 ± 23 g100 cherries). Similarly, systems did not differ 

significantly in the number of productive stems per ha (ProSTha) (CO = 4141 ± 1864, CB = 4540 ± 1428 

and CT = 4289 ± 24443). However, CT had the largest number of stems per tree (St) (3.7 ± 1.2), followed 

by CO (3.3 ± 0.8) and CB had the lowest (St) (2.5 ± 0.8). 

 

When integrating yield components to estimate yield per stem and yield per ha, we found that CB and 

CO had significantly larger yield per stem (i.e. 0.24 kg and 0.20 kg, respectively) than CT (0.10 kg) (Fig. 

4.a). Consequently, CB and CO had larger yield per ha (CB = 1086 kg and CO = 670 kg) than CT (428 kg), 

but significant differences in yield per ha across systems, only occurred between CB and CT (Fig. 4.d). 

Yield per stem and yield per ha reduced significantly with LAIShade increasing and this trend was 

consistent across altitude classes (Fig. 4.b and 4.e). We observed a threshold around LAIShade > 1 m2m-2 

(which matches with 30 % shade cover, see Fig. 2a), below 1 m2m-2 LAIShade, a wide range of yield values 

per stem (0.05 kg - 0.6 kg) and ha (250–2500 kg) occurred. However, for LAIShade > 1 m2m-2, yield did not 

surpass 0.2 kg per stem or 1200 kg per ha (Fig. 4.b and 4.e). Altitude effect on coffee yield (per stem 

and per ha) differed depending on the type of system. In CB, yield (per stem and ha) was reduced with 

altitude while it was the opposite in the case of yield per stem in CT, which increased with altitude (Fig. 

4.c). We did not find a significant altitudinal effect on yield in CO (Fig. 4.c and 4.f). 
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Fig. 4. a) Coffee yield per stem by cropping system, b) Coffee yield per stem ∼ LAI Shade (m2m-2), c) Coffee yield per stem ∼ 
Altitude (m.a.s.l.), (d) Coffee yield per ha by cropping system, e) Coffee yield per ha ∼ LAI Shade (m2m-2), f) Coffee yield per ha 
∼ Altitude (m.a.s.l.). In a) and d), symbol indicates mean per cropping system and solid horizontal bar indicates median per 
cropping system and letters indicate significance values at p-value < 0.05. In b), c), e) and f), cropping systems are identified by 
colour and symbol, Coffee-Open = CO (red circle), Coffee-Banana = CB (yellow triangle) and Coffee –shade Tree = CT (blue 
square). In b) and e) line type indicates altitude class: dashed = Low altitude (1100 – 1400 m.a.s.l.), dotted = mid altitude (1400 
– 1700 m.a.s.l.) and dash-dotted = in high altitude (1700 – 2100 m.a.s.l.). In c) and f), line type indicates cropping system: dotted 
= CO, dash-dotted = CB and dashed = CT).* Three of the four plots with yield per ha > 1500 Green bean kg reported use of 
fertilizer, the other plot did not use fertilizer. See fig. 9 for more details. 

3.3.2.		Factors	affecting	yield	components	
 

We found that the most complex model, a model including LAIShade; altitude and their interaction (LAI 

Shade x altitude) was selected as the “best model” (Lowest AIC) in the case of productive nodes (Table 

4), although, in this model LAIShade – altitude interaction was not significant. For the other yield 

components (fruit load, productive nodes per branch and cherry weight), the “best model” included 

either LAIShade (for PB and CW), or both LAIShade and altitude without interaction; as in the case of fruit 

load. Number of productive stems per ha was neither correlated with LAIShade nor with altitude (Table 

4). 

The studied yield components decrease with LAIShade increases. Similarly, FL and PN reduced with 

altitude increases (Fig. 5). 
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Fig. 5. a) Fruit load per branch ~ LAI Shade (m2 m-2), b) Fruit load per branch ~ Altitude (m.a.s.l.), c) Productive nodes per branch 
~ LAI Shade (m2 m-2), d) Productive nodes per branch ~ Altitude (m.a.s.l.), e) Productive branches per stem ~ LAI Shade (m2 m-2), f) 
Cherry weight ~ LAI Shade (m2 m-2). Cropping systems are identified by colour and symbol, Coffee-Open = CO (red circle), Coffee 
Banana = CB (yellow triangle) and Coffee –shade Tree = CT (blue square)). Line type indicates altitude class: dashed = Low 
altitude (1100 – 1400 m.a.s.l.), dotted= mid altitude (1400 – 1700 m.a.s.l.), dash-dotted= in high altitude (1700 – 2100 m.a.s.l) 
and solid = all classes. 
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Table 4: Best model for each yield component (Fruit load = FL, productive nodes per branch = PN, productive 
branches per stem = PB, productive stems per ha = ProSTha and cherry weight = CW) 
 
 
Model Factors Estimate Std. Error z value Pr(>|z|)   AIC R^2 Std DeV 

Fruit load per branch (FL)                   
1FL ~ Altitude +  LAI Shade 
+ (1|Plot) 

Intercept 
2.54 0.08 30.48 <2e-16 *** 

8594.1  0.4288 

(n=779) Altitude -0.13 0.08 -1.57 0.12     

 LAI Shade -0.26 0.08 -3.02 0.00 **    
 

 
        

Productive nodes per branch (PN)                   

1PN ~ Altitude + LAI Shade 
+  Altitude x LAI Shade + (1|Plot) 
  

Intercept 

1.454 0.06 24.21 <2e-16 *** 

3695.5 

 

0.2918 

(n=779) Altitude -0.132 0.06 -2.21 0.03 *    

 LAI Shade -0.203 0.06 -3.34 0.00 ***    

 Altitude x LAI Shade -0.109 0.06 -1.70 0.09 .    
 

 
        

Productive branches per stem (PB)                   
1PB ~  LAI Shade + (1|Plot) Intercept 3.36 0.06 59.12 <2e-16 *** 8247.2  0.293 

(n=749) LAI Shade -0.24 0.06 -4.22 0.00 ***    
 

 
        

    Estimate Std. Error t value Pr(>|t|)   AIC  R^2   
Productive stems per ha (ProSTha)                   
2ProStemHa ~ NA  - - - - - - - -  
(n=26) - - - - - - - -  
 

 
        

Cherry weight (CW)                   
3CW ~ LAI Shade Intercept 209.91 4.60 45.65 <2e-16 *** 251.9 0.16   
 (n= 27) LAI Shade -10.47 4.69 -2.23 0.03 *       

Significance levels: (.) < 0.1, (*) < 0.05, (**) < 0.01 and (***) < 0.001. 
1 Generalized Linear Mixed Model with log link 
2 Generalized Linear Model with log link 
3 Linear Model  
 

3.3.3.		Correlation	between	yield	components	
 

Number of stems per tree (St) was negatively correlated with fruit load per branch (FL), productive 

nodes per branch (PN), productive branches per stem (PB) and cherry weight (CW) (Table 5 and Figs. 

6.a, 6.b, 6.c and 6.d). Furthermore, productive stems per ha (ProSTha) was negatively correlated with 

FL, PN, PB and CW (Table 5 and Figs. 6.e,. f and. g). Coffee tree density (Tree ha-1) was negatively 

correlated with CW (Fig. 6.h) and St (Table 5), but positively with ProSTha per ha (Table 5). 
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When looking at the correlation between yield components in each system separately, we found similar 

trends as for the overall data set. However, in the case of CB, negative correlations between St and the 

other yield components (FL, PN, PB and CW) were not significant, except for CW ∼ St (Table 5). The 

latter was probably due to the fact that this system had a lower number of stems per tree. 

 

Table 5: Correlation between coffee yield components (Fruit load = FL, productive nodes per branch = PN, 

productive branches per stem = PB, cherry weight = CW and productive stems per ha = ProSTha) 

 

    All CO CB CT 

Yield components estimate sig. estimate sig. estimate  estimate sig. 

FL PN 0.81 *** 0.84 *** 0.80 *** 0.84 *** 

FL PB 0.38 *** 0.37 *** 0.36 *** 0.37 *** 

FL St -0.16 *** -0.21 *** -0.08 n.s. -0.21 *** 

FL CW 0.16 *** 0.26 *** 0.04 n.s. 0.26 *** 

FL ProSTHa -0.08 ** -0.33 *** -0.03 n.s. -0.33 *** 

FL CT density 0.03 n.s -0.12 n.s 0.09 n.s. -0.12 n.s. 

PN PB 0.48 *** 0.50 *** 0.46 *** 0.50 *** 

PN St -0.18 *** -0.28 *** -0.09 n.s. -0.28 *** 

PN CW 0.21 *** 0.37 *** 0.10 n.s. 0.37 *** 

PN ProSTHa -0.09 ** -0.40 *** -0.04 n.s. -0.40 *** 

PN CT density -0.01 n.s -0.17 ** 0.01 n.s. -0.17 ** 

PB St -0.31 *** -0.40 *** -0.24 *** -0.40 *** 

PB CW 0.32 *** 0.41 *** 0.29 *** 0.41 *** 

PB ProSTHa -0.13 *** -0.38 *** 0.03 n.s. -0.38 *** 

PB CT density 0.06 n.s. -0.11 n.s. 0.14 ** -0.11 n.s. 

St CW -0.29 *** -0.43 *** -0.22 *** -0.43 *** 

St ProSTHa 0.00 n.s. 0.23 *** -0.03 n.s. 0.23 *** 

St CT density -0.10 *** 0.10 n.s. -0.35 *** 0.10 n.s. 

CW ProSTHa -0.40 *** -0.60 *** -0.07 n.s. -0.60 *** 

CW CT density -0.25 *** -0.58 *** 0.03 n.s. -0.58 *** 

ProSTHa CT density 0.63 *** 0.68 *** 0.68 *** 0.68 *** 
Significance levels: (.) < 0.1, (*) < 0.05, (**) < 0.01 and (***) < 0.001. 
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Fig. 6. a) Fruit load per branch ~ Number of stems per tree, b) Productive nodes per branch ~ Number of stems per tree, c) 
Productive branches per stem ~ Number of stems per tree, d) Cherry weight  ~ Number of stems per tree, e) Fruit load per 
branch ~ Productive stems per ha, f) Productive nodes per branch ~ Productive stems per ha, g) Cherry weight  ~  Productive 
stems per ha and h ) Cherry weight ~ coffee tree density per ha. Cropping systems are identified by colour and symbol, Coffee-
Open = CO (red circle), Coffee Banana = CB (yellow triangle) and Coffee – shade Tree = CT (blue square)). Line type indicates 
all systems. 

 

3.3.4.		Management	and	pest	and	disease	incidence	reported	by	farmers	
 

The implementation of management practices was homogenously across cropping systems and 

altitudes (Table 3 and Fig. 7), although we missed data from CO systems at high altitude, which could 

explain why at first glance it seemed less farmers with CO systems reported management practices. 

Eight of twenty-three farmers (34 %) reported use of fertilizer (Table 3), however, these farms did not 

always achieve the highest yields. Only three of eight farmers applying fertilizers had yield per ha above 

1000 kg ha-1 (Fig. 7). Insecticide and herbicide use was more even, reported positively by 15 (68 %) 

farmers and negatively by 18 (78 %) farmers (of total 23) (Table 3). As many as 15 out of 20 farmers (75 

%) reported the use of manure, but only 5 (22 %) reported fungicide use. Most of the farmers performed 

mechanical weeding (95 %) (Table 3). In general, use of fertilizer and fungicide correlated positively with 

the number of productive branches per stem and cherry weight respectively (Table 3).  

Stem borer coincided significantly with lower fruit loads. Stem borer was also related to less productive 

nodes per branch and less productive branches per stem (but not significantly p-value = 0.06 and 0.08, 

respectively). Surprisingly, coffee berry borer and coffee berry diseases did not have any effect on any 

of the yield components. Except for coffee berry disease in productive stems per ha (Table 3). 
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Fig. 7. Management implementation and pest and disease incidence reported by farmers. Each column refers to a plot of the 
study. Type of cropping system (CO = Coffee-Open, CB = Coffee-Banana and CT = Coffee-shade Tree) and altitude class are 
depicted on the top and coffee yield per ha (Green beans kg) at the bottom, corresponding to each of the plots. Green colour 
indicates “Yes” to management practices implementation or to pest and disease presence. Orange colour indicates “No”, that 
the management practices were not performed or that the specific pest or diseases were not present in the plot. White colour 
indicates not available information. 
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3.4.		 Discussion	
 

This study investigated coffee yield (per stem and per ha) and coffee yield components (fruit load per 

branch (FL), productive nodes per branch (PN), productive branches per stem (PB), stems per tree (St), 

cherry weight (CW) and productive stems per ha (ProSTha) in three different coffee cropping systems, 

along a shade cover (LAIShade) and altitude gradient. We found larger fruit loads per branch, productive 

nodes per branch and more productive branches per stem in CO and CB systems than in the CT system 

and no system effect on productive stems per ha and cherry weight. This consequently resulted in larger 

yield per stem and per ha in CO and CB than in CT. 

 

Fruit load per branch and productive nodes per branch were best explained by the models including 

LAIShade, and altitude. While, productive branches per stem and cherry weight was better explained only 

by LAIShade. Productive stems per ha did not correlate with altitude nor with LAIShade. LAIShade had a 

negative effect on all coffee yield components (except for Productive stems per ha) and altitude had ei- 

ther negative effect or no effect, depending on the yield component. Additionally, we found a negative 

correlation between St and FL, PN, PB and CW. And between CW and productive stems per ha and 

coffee tree density. Finally, farmers which reported use of fertilizer corresponded with larger productive 

branches per stem and the ones which used fungicide had larger cherry weight. As well, farmers who 

reported stem borer presence tend to have lower FL, PN and PB. Breaking down yields per hectare into 

individual yield components provides practical information for management interventions that help 

improving yields as discussed in detail below. 

 

3.4.1.		Yield	per	ha	
 

Mean annual yields per ha obtained from our study (716 kg green beans ha-1) corresponded with the 

average 700 kg ha-1 reported by Wang et al. (2015) for East Uganda and are above the average yield 

reported by FAOSTAT (2018) for East Africa (∼500 kg ha−1). Coffee banana had the largest yield per ha 

as a result of larger fruit loads per stem, larger number of productive branches per stem and larger 

number of productive stems per ha. This finding agrees with van Asten et al. (2011), who reported that 

coffee yields in Uganda were not lower in fields intercropped with bananas compared to fields without 

inter- cropping. 
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This study did not include information about household income or revenues from other products (food 

consumption, selling fruits or timber), which would provide meaningful insights for a comprehensive 

socio-economic evaluation of the systems (Rice, 2011; Cerda et al., 2014) (Rice, 2011; Cerda et al., 

2014). In the case of Coffee-Banana system, higher banana yields have been reported when 

intercropped with coffee than when cultivated as a monocrop (van Asten et al., 2011). Moreover, 

bananas are the most important staple crop in the region and the main exported food crop of Uganda 

(Wairegi et al., 2010; Jassogne et al., 2012). This makes this system of particular interest in addressing 

multi-dimensional needs (Odoul & Aluma, 1990; van Asten et al., 2011; Jassogne et al., 2012). 

Additionally, due to their architecture, bananas provide intermediate shade, reducing incoming 

radiation less than other shade trees (Sarmiento-Soler et al., 2019). Also, the fast growth of banana 

allows for easier manipulation according to farmers’ needs, in regard to thinning or increasing planting 

density. Furthermore, it is likely that bananas herbaceous pseudo stem cannot be a host for the white 

stem borer, which could help to reduce infestation rate in CB compared to CT plots (Liebig et al., 2016). 

 

Shade-tree coffee systems at Mt. Elgon have been proven to provide several ecosystem services and 

were used by low income farmers to reduce risks, in particular at low altitude (Rahn et al., 2018b). 

However, it is of relevance to quantify the contribution of those systems to farmers’ livelihoods. Such 

analysis would allow for a more meaningful evaluation of the costs and benefits of coffee shade tree 

systems at low altitudes, e.g. to estimate whether the low coffee yields observed in CT compared to CO 

and CB are compensated by provision of other goods and/or by off-farm activities. 

 

3.4.2.		Yield	components	as	affected	by	shade	cover	and	altitude	in	each	system	
 

Our results confirmed our hypothesis that shade cover reduced fruit load per branch, productive nodes 

per stem and productive branches per stem, as this has also been demonstrated by previous studies 

(Campanha et al., 2004; Franck et al., 2005; Vaast et al., 2006; Bote et al., 2018). This reduction most 

likely results from reduced incoming radiation and reduced temperature (DaMatta, 2004; Bote et al., 

2018). Nevertheless, we observed that when shade cover remained below 30 % (LAIShade < 1 m2m-2), 

coffee yield components were larger and similar across cropping systems (Figs. 4 and 5). This is in 

concordance with other studies of coffee under shade (Soto-Pinto et al., 2000; Staver et al., 2001; Cerda 
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et al., 2017; Meylan et al., 2017) and for cacao (Blaser et al., 2018). Moreover, Bote et al. (2018) 

indicated no significant differences in bean yield and biomass accumulation between trees under 100 

% radiation and trees under 70 % radiation in an experiment carried out in Ethiopia. Thus, it appears 

that a maintenance of mid shade cover possibly does not limit coffee yields in this region, while it allows 

farmers to retain shade trees and bananas in their coffee plots and benefit from the ecosystem services 

they might provide (Cerda et al., 2017). 

 

Regarding the relationship between cherry weight and shade cover, we expected heavier cherries in 

shaded systems, as a result of two mechanisms, (i) lower temperatures lead to a slower ripening process 

and larger accumulation of compounds, and (ii) less fruit loads would diminish competition for nutrients 

and assimilates between cherries (Beer et al., 1998; Muschler, 2001; Vaast et al., 2006; Vaast et al., 

2016). Nevertheless, we found a negative relationship between cherry weight and shade cover, which 

requires further investigation. 

 

The negative effect of altitude (on fruit load and productive nodes) or the lack of effect (on productive 

branches per stem and cherry weight), were also surprising results. We had expected a stronger positive 

altitudinal effect with higher values for yield components at mid and high altitude than at lower altitude 

due to suboptimal conditions, in particular, high temperature and high vapor pressure deficit leading to 

sub-optimum growing conditions (Sarmiento-Soler et al., 2019). Although temperatures at low altitude 

were high with respect to established temperature thresholds for coffee cultivation ((DaMatta & 

Ramalho, 2006) and references therein), recent studies (Martins et al., 2016; Rodrigues et al., 2016; 

DaMatta et al., 2018b) question such thresholds and propose stronger resistance of coffee to higher 

temperatures under ample water availability supply. During the investigation period, water was not 

limiting as demonstrated by Sarmiento-Soler et al. (2019). 

 

Thus, our results suggest that the observed patterns of larger fruit components at low and mid altitude 

probably were determined by higher (but not limiting) temperatures in conjunction with larger incoming 

radiation (DaMatta et al., 2007). While, at high altitude, cooler temperatures and cloudiness, reducing 

incoming radiation, could have limited coffee yield components. Absence of a positive altitudinal effect 

on coffee yield have been encountered by a similar study in smallholder farms in Costa Rica (Cerda et 

al., 2017). Another explanation to this altitudinal pattern could be the soil fertility gradient present in 
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the area, with more fertile soils at low altitudes - as reported by De Bauw et al. (2016) and also observed 

in our plots by the a pH decrease (and decrease of other soil parameters) along the altitudinal gradient 

(Table 1 and Fig. 2.c). 

Fertilizer use was positively correlated with productive branches and three of the best performing plots 

(yield per ha > 1500 kg) reported fertilizer use, thus in the long run it appears as a good strategy to 

increase yields. However, here we rather concentrate on suggestions for crop management 

improvement that refer to other options than fertilizer application, which would require a more 

comprehensive investigation as pointed out by De Bauw et al. (2016) and (Wang et al., 2015). Currently 

it is mainly economic constraints that prevent farmers in the region from judicious fertilizer application 

(Jassogne et al., 2012). 

 

Finally, presence of stem borer and coffee berry disease correlated negatively with one or more of the 

studied yield components and very likely influenced final yields. Although, the focus on this study was 

not on pest and diseases incidence, our results are in line with Liebig et al. (2016) who reported high 

incidence of white coffee stem borer and coffee berry diseases for this region - especially in shaded 

systems at low altitude. This may help to better explain the lower yields found in those systems. We 

acknowledge, however, that dedicated further investigation is needed to be able to couple yield losses 

with quantitative assessment of pests and diseases along the environmental and shade gradient. 

 

3.4.3.		Interactions	among	coffee	yield	compoinents	
 

We expected a negative correlation between productive branches per stem and fruit load per branch 

due to a competition in resource allocation (Bote & Vos, 2016). However, the positive correlation 

between these yield components suggest absence of resource competition between branches and 

nodes and underpins the absence of branch autonomy as has also been pointed out by other authors 

(Amaral et al., 2001; Chaves et al., 2012). 

 

We found, however, that too many stems (> 4 stems) per tree might contribute to a reduction of coffee 

yields. Higher number of stems per coffee could occur in response to shade cover. Likewise, farmers try 

to compensate lower flowering, i.e. fruit load under shade, by maintaining a larger number of stems per 
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tree. The negative effect of the number of stems on FL, PN and PB could result from two mechanisms, 

first to self-shading and reducing air circulation, and second, to resource competition between 

vegetative and reproductive organs. Although the latter interpretation was rejected by Chaves et al. 

(2012), their results indicate that fruit sink demands are stronger than vegetative ones, sometimes until 

the point of exhausting tree resources and leading it to die-back. However, this has been mostly tested 

at branch level, and it would be of interest to evaluate the effect of number of stems per tree on the 

other yield components under controlled conditions. This would be especially interesting, because other 

studies also have reported negative relationships between number of stems and other yield 

components similar to the ones encountered in our study (e.g. in Kenya by Njoroge et al. (1992)). 

Furthermore yield improvements have also been achieved through reducing the number of stems 

(Dufour et al., 2019). 

 

Finally, coffee tree density was only negatively correlated with cherry weight, while it was not negatively 

correlated with other yield components. Based on that finding yield could potentially be improved 

through an increase of coffee tree density. Rahn et al. (2018a) also pointed to low coffee tree density 

as a factor causing low yields in the area. Nevertheless, increasing coffee tree density can negatively in 

uflence annual crops, as it reduces the available space as well as the incoming radiation below coffee 

canopies (Jassogne et al., 2012) and would increase nutrient demands on already exhausted soils (De 

Bauw et al., 2016). 

3.5. Conclusion	
 

Coffee-banana systems proved to be the best performing system in the region, by providing the highest 

coffee yield. Coffee yield components were mostly constrained by shade cover above 30 % (LAIShade > 1 

m2m-2), suggesting that a careful shade management below this threshold could allow farmers to benefit 

from reasonable coffee yields while maintaining shade trees and bananas in their plots. Reducing the 

stems per coffee tree (< 4) could improve yields by reducing their negative effect on fruit load. The 

partitioning of yield per stem and per ha into its yield components helped to disentangle the effects of 

cropping system, shade cover and altitude, and to identify management strategies that could enable 

smallholders to improve coffee production within the limitations of low external input use. 
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Abstract 

Coffee cultivation is a major source of income in East Africa. Increasing temperatures and water scarcity 

related to climate change are becoming major challenges for coffee production. Therefore, there is an 

urgent need for sound scientific understanding of the functioning of current coffee cultivation systems 

and the potential of agroforestry as an adaptation strategy to climate change. In a smallholder coffee 

farm on Mt Elgon, Uganda, we assessed the effect of three coffee cultivation systems (i.e., Coffee-Open, 

Coffee-Banana and Coffee-Cordia) on (i) the coffee cultivation environment (e.g. microclimate and soil 

moisture), (ii) water consumption of coffee, (iii) water consumption of banana (Musa sp.) and Cordia 

africana and (iv) water competition or complementary use between coffee and shade tree species. To 

this end, we monitored sap flux density (Js) (g cm-2 hour-1) of coffee, banana and C. africana from March 

2015 to April 2016, using Granier thermal dissipation method, along with microclimate, soil moisture 

and rainfall. Shaded systems reduced irradiance by 70% in Coffee-Cordia system and 58% in Coffee-

Banana system compared to Coffee-Open system. Maximum temperatures and daily temperature 

amplitude were on average reduced by 4 °C in both shaded systems compared to Coffee-Open system. 

Soil water content (SWC) in shaded systems was reduced by 59% in Coffee-Cordia and 6% in Coffee-

Banana compared to Coffee-Open. Daily water consumption of coffee plants was 1.2 ± 0.64 l d-1 and did 

not differ between systems. Water use of banana was 3.1 ± 1.8 l d-1 and 42 ± 40 l d-1 by C. africana. 

Coffee-Banana system had the largest daily transpiration rate, 0.9 ± 0.4 mm d-1 per ground area and 0.6 

± 0.4 mm d-1  per unit leaf area, followed by Coffee-Cordia with 0.37 ± 0.1 mm d-1 (per ground area), 

0.36 ± 0.1 mm d-1 (per leaf area) and Coffee-Open 0.24 ± 0.1 mm d-1 (per ground area), 0.27 ± 0.1 mm 

d-1 (per leaf area). Our results showed that differences in microclimate and SWC between cultivation 

systems did not influence coffee water use during the monitored year. However, water competition 

between coffee and shade trees could likely occur in drier years, due to the reduced SWC presently 

observed in shaded systems. Further research is needed to explore the performance of management 

practices (mulching, pruning and thinning) in interaction with seasonal weather forecast and 

appropriate selection of shade species (provision of extra products, reduced water use, fast growth and 

root zone below 80 cm depth) to match the systems’ water requirements with expected soil water 

availability.  

 

Keywords: Coffea arabica, Musa sp., agroforestry, transpiration, climate change, sap flux  
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Highlights: 

 

• Coffee water use did not differ between cultivation systems during all seasons. 

• Higher system transpiration in Coffee-Banana and Coffee-Cordia than in Coffee-Open. 

• Banana and C. africana buffered microclimate for coffee plants growing underneath. 

• Coffee-Banana intercropping provides multiple services to smallholders at Mt. Elgon. 

 

Visual abstract 
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4.1.		 Introduction	
 

African countries contribute 12 % to global coffee production (FAOSTAT, 2016). Moreover, coffee 

constitutes up to 30% of the export revenues and foreign exchange earnings of East African countries, 

such as Uganda (20 %) or Ethiopia (30 %), where coffee is mostly produced by smallholders (Jassogne 

et al., 2013; Moat et al., 2017). Thus, coffee is an important cash crop that secures both rural livelihoods 

and national economy. Climate models project increasing temperatures, changes in rainfall patterns and 

more frequent extreme events with likely strong implications for coffee cultivation in the region (Moat 

et al., 2017). Coffee sensitivity to climatic variations has been reported by several studies, challenging 

the sustainability of the sector under climate change and demanding the development of climate-

resilient coffee systems (Gay et al., 2006; Zullo et al., 2011; Bunn et al., 2014; Craparo et al., 2015; 

Ovalle-Rivera et al., 2015; Vaast et al., 2016; Moat et al., 2017). Hence, identifying adaptation strategies, 

which help to increase the climate-resilience of the coffee cultivation systems in the region, is of urgent 

need. Finding climate-smart solutions, i.e. practices that help farmers to improve crop productivity, 

adapt to climate change and support mitigation of greenhouse gas emissions, should receive high 

priority. 

 

Coffee intercropped with shade trees is regarded as a climate smart agricultural practice (Tscharntke et 

al., 2011; Vaast et al., 2016). Shade trees help to regulate microclimate by reducing incoming radiation, 

buffering maximum and minimum temperatures at plot level, and reducing soil evaporation rates. 

Ideally, this helps to protect the coffee underneath from direct sunlight, preventing temperature 

extremes and possibly reducing drought stress for the coffee (Barradas & Fanjul, 1986; Muschler & 

Bonnemann, 1997; Siles et al., 2009; Cannavo et al., 2011; Partelli et al., 2014). Furthermore, shade 

trees can help to diversify farmers’ income and thereby increase food security (Rice, 2008; Mbow et al., 

2014a; Vaast & Somarriba, 2014), while capturing CO2 through biomass accumulation (Beer et al., 1998; 

Verchot et al., 2007; Mbow et al., 2014b). In addition, shade trees help to maintain biodiversity at 

landscape level (Garcia et al., 2010; Tscharntke et al., 2011). 

 

Despite the above-mentioned potential benefits, some studies found water competition in agroforestry 

systems between the understory tree crop and the intercropped shade trees (Beer, 1987; Bayala et al., 

2015; Abdulai et al., 2018; Padovan et al., 2018). The risk of water competition between crops and shade 
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trees could pose a severe limitation to agroforestry potential as a climate adaptation strategy, 

particularly in extreme conditions (Abdulai et al., 2018). Shade trees affect soil water content by 

increasing transpiration at system level and increasing rainfall interception, potentially reducing water 

availability for the understory crop (Cannavo et al., 2011; Padovan et al., 2015). However, choice of 

species with different root architectures may allow a partitioning of soil water uptake from different soil 

layers, causing minimal competition and reducing water loss through deep percolation (Sanchez, 1995; 

Cannell et al., 1996; Meinzer et al., 2001; Cannavo et al., 2011). In addition, shade trees reduce soil 

evaporation as demonstrated by Padovan et al. (2018), possibly increasing water availability in the upper 

layers, and hence water use efficiency. Therefore, the role of shade trees in the water balance of 

agroforestry systems will depend on several factors such as species (rooting depth), planting density 

and tree size, soil physical properties, amount and pattern of rainfall, and severity of the dry season 

(Cannavo et al., 2011; Padovan et al., 2018). Given this complexity, designing climate-smart coffee 

agroforestry systems dealing with these challenges requires robust site and species-specific knowledge 

to guide their use when aiming to increase their climate resilience (Van Der Wolf et al., 2016). 

 

Although coffee water use has been previously studied under controlled conditions in green-house 

experiments (Fanjul et al., 1985; Tausend et al., 2000) and field conditions in research stations (van 

Kanten & Vaast, 2006; Cannavo et al., 2011; Padovan et al., 2018), our knowledge of coffee water use 

under smallholder on-farm conditions remains limited, particularly in East Africa. To contribute to 

closing this knowledge gap, we concentrated our study on three coffee systems (Coffee-Open, Coffee-

Banana and Coffee-Tree) prevalent in the Mount Elgon region, Eastern Uganda. These systems differ in 

coffee tree – shade tree ratio, canopy closure and shade plant species (Liebig et al., 2016; Rahn et al., 

2018). Furthermore, they are of particular interest since they provide different services to farmers, such 

as food and cash in the case of Coffee-Banana systems, or access to fuel wood or timber in the case of 

Coffee-Tree systems (Rahn et al., 2018). Within the Coffee- Tree systems, the combination of coffee 

with Cordia africana (Coffee-Cordia system) was selected due to the high frequency of C. africana, 

occurring in more than 25% of the agroforestry systems in this region (Rahn et al., 2018). 

 

The main objective of this study was to assess water use patterns of coffee and associated trees under 

various cultivation systems. To this end, the following specific objectives were set: (i) to understand the 

effect of different coffee cultivation systems (Coffee-Open, Coffee-Banana and Coffee-Cordia) and a 

seasonal variation on microclimate and soil moisture in different seasons, (ii) to determine system and 
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seasonal effects on coffee water use, (iii) to quantify water use of banana and C. africana, (iv) to estimate 

combined transpiration of coffee and shade tree species and (v) to determine current water competition 

or complementary between coffee and shade tree species. We hypothesized that a) shaded systems, 

Coffee-Banana and Coffee-Cordia better regulate temperature extremes and have lower vapor pressure 

deficit (VPD) than Coffee-Open system due to reduction of incoming solar radiation, b) shaded systems 

have higher total transpiration due to the presence of coffee and shade trees, thus shade systems have 

lower soil water content than open system, and c) coffee water use is higher under shaded than under 

non-shaded systems due to more suitable microclimate (reduced VPD and solar radiation) in shaded 

systems. 

 

4.2.		 Materials	and	methods	
 

4.2.1.		Study	site	

	

The study was carried out from March 2015 to April 2016 on a smallholder farm on the Western slopes 

of Mt Elgon, Uganda (1° 15’ 52" N 34° 19’ 19" E; 1300 m.a.s.l.). The soil was classified as Mollic Nitisol 

(Colluvic) according to WRB system (see,(FAO, 2014)), developed from basalt rocks, with a clay texture, 

pH of 6.5 and organic matter content of 2.58% (De Bauw et al., 2016). Annual mean temperature is 22.6 

± 0.7 °C, annual average maximum temperature 29 ± 1.3 °C and annual average minimum temperature 

16 ± 0.4 °C according to Fick and Hijmans (2017)(1970–2000). Annual rainfall sums up to 1243 mm with 

January, February and December being the driest months and receiving on average 40 mm month-1 

(Supplementary material, figure A.1). Highest amounts of rainfall were reported in April and May, both 

with more than 100 mm month-1 (Fick & Hijmans, 2017) (1970–2000). 

 

The coffee plot had a total area of 1941 m2 with a variable slope from 22 % to 32 %. Herbicide 

applications (Glyphosate 48 E) were done three times a year (∼10l ha-1), no fertilizer was applied; 

neither pruning nor other further management was carried out during the experiment span. On the 

farm, three different coffee systems were distinguished according to the abundance of banana (Musa 

sp.) and shade trees (C. africana): Coffee-open (CO), Coffee-banana (CB) and Coffee- Cordia (CC) and 

were distributed along the slope (at the highest point CC, CO and CB at the lowest point) (Supplementary 

material, figure A.2). The CB system had twice as many coffee trees per hectare compared to the other 

two systems (Table 1). Although this high coffee tree density is atypical in the area (Rahn et al., 2018), 
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the plot was selected due to its proximity to the other systems (CO and CC), since sap flow sensors 

needed to be connected to a data logger and a power source. Cordia africana trees were only found in 

the CC system. Coffee stem diameter measured at 30 cm above the stump varied between 2.2 and 2.3 

cm in all three systems, and the average number of stems per coffee tree was between 2.6 and 3.5. 

Coffee individual leaf area (based on 50 randomly selected leaves per system) was significantly higher 

in the CC system compared to CB and CO (Table 1). Individual leaf area was calculated by multiplying 

width (cm), length (cm) and a correction factor of 0.7243 (according to Padovan et al. (2018)). 

 

Table 1: Characteristics of the three coffee systems studied (CO = coffee-Open, CB = Coffee-Banana, CC = Coffee-
Cordia). LAI= Leaf Area Index, BA = Basal Area, SWA = Sap Wood Area. 
 

Variable CO CB CC 
Plot characteristics 

   

Area (m2) 400a 400a 1000a 
Coffee density (Trees ha-1) 1875 3900 1950 
Banana mat density (mats ha-1) - 975 - 
Banana stem density (stems ha-1) - 2450 - 
Cordia africana density (Trees ha-1) - - 50 
N° Coffee Stems per coffee plant 3.1 ± 0.9 3.5 ± 1.2 2.6 ± 0.9 
Coffee Stem Diameter (cm)b  2.20 ± 0.4 2.25 ± 0.4 2.31 ± 0.5 
Individual coffee leaf Area (cm2) 52.1 ± 29 40.2 ± 25 87 ± 34 
LAI (System/Shade/Coffee)c 1.2/0.3d/0.9 2.7/1.2/1.5 2.3/1.5/0.78 
Coffee BA (cm2 Tree-1) 12.5 ± 6.5 14.1 ± 6.4 10.7 ± 5.1 
Coffee BA (m2 ha-1) 2.35 5.5 2.1 
Banana BA (m2 ha-1)e - 61.6 - 
Cordia africana BA (m2 ha-1) - - 25.84 
Slope % 27 22 32 
    
Coffee SWA (cm2 stem-1)b  3.8 ± 0.1 3.9 ± 0.1 4.2 ± 0.2 
Coffee SWA (cm2 stem-1) f 12.7 ± 2.5 10.0 ± 1.6 10.5 ± 3.2 
Musa sp. SWA (cm2 tree-1) - 75.9 ±19.8 - 
Cordia africana SWA (cm2 tree-1) - - 1061 ± 921 
    
Soil Properties (4 Samples per System) 

   

Horizon A (0-40 cm) 
   

pH 6.45 ± 0.1  6.45 ± 0.1 6.25 ± 0.1 
Organic Matter % 4.9 ± 3.4  5.8 ± 1.7  4.6 ± 2 
Sand/Clay/Silt % 33/41/25 29/41/29 30/49/20 
Texture Class Clay Clay Clay 
Bulk Density (g cm-3) 1.3 ± 0.1 1.1 ± 0.1 1.3 ± 0.0 

Total Porosity % 50.6 ± 5.0 56.9 ± 5.3 49.7 ± 2.3 
a Between CO system and CC system there was a buffer area of 141 m2. Supplementary material, figure A.2 
bMeasured on 50 stems  
c LAI measured with LiCOR 2200C as described in section 2.3 
d This LAI of shade in CO might be due to light intercepting branches of trees outside the studied plot  
e Calculated based on: average BA of individual stems (n=8) * banana mat density * 1.5 
f Calculated based on monitored coffee stems (n=15, 5 stems per system) 
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4.2.2.		Microclimate	
 

In each system, two sensors for measuring air temperature (Ta) and relative humidity (RH) 

(Thermochron iButton, Coldchain) were in- stalled inside the coffee canopy at 1.5m above the ground. 

Temperature (Ta) and relative humidity (RH) were recorded every 30 s and averaged every 30 min. 

Photosynthetic radiation was measured in every system using two quantum sensors per system 

(SOLEMS- PAR-CBE80, Palaiseau, France), which were placed above the coffee canopy but below the 

shade tree canopies. Rainfall was measured using a tipping bucket rain gauge (Model ARG, 100, 

Campbell Scientific Inc, Logan, UT, USA) with a resolution of 0.2 mm, which was placed in an open area 

at 2 m above ground. All sensors (except Ta/RH sensors) were connected to a data logger (CR1000 with 

AM 16/31 multiplexer Campbell Scientific Inc. Logan, UT, US), values were recorded every 30 s and 

averaged every 30 min. Photosynthetic radiation sensors were later on calibrated in the green house 

with LI-250A light meter. Additionally, rainfall from the last 10 years was obtained from the closest 

weather station (Buginyanya, 1° 16’ 48" N 34° 22’ 16" E; 1800 m.a.s.l), located at a distance of 5.7 km 

to the study site. Vapor pressure deficit (VPD) and reference evapotranspiration (ET0) was calculated via 

the Penman-Monteith equation (Equation A.1, supplementary material) (Allen et al., 1998). Daily 

radiation was derived from irradiance (W m-2) following the equation proposed by Allen et al. (1998) 

(Equation A.2, supplementary material). Months in which the monthly ratio rainfall/ET0 was > / = 1 were 

considered as wet months, whereas months in which the ratio was < 1 were considered as dry months 

according to Cannavo et al. (2011). 

 

Since it was expected that the response of water use (Qc) to vapor pressure deficit (VPD) and irradiance 

(Irr) varied with soil water content (SWC) (Carr, 2001; DaMatta & Ramalho, 2006) , we examined those 

responses during three distinctive periods: wet period (low VPD and high SWC), early dry period (high 

VPD and high SWC) and late dry period (high VPD and low SWC). 

 

4.2.3.		Soil	water	content	
 

Soil water content (SWC) was monitored every two weeks with a Sentek soil water probe (Diviner 2000). 

Two access tubes of 1.60 m depth were installed in each system and volumetric water content  (mm 

cm-3) was recorded at 10 cm intervals. The default calibration equation provided by Sentek was used to 

convert device readings to volumetric soil moisture content (Scaled Frequency = 0.2746 * (volumetric 
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water content ^ 0.3314) + 0) (Sentek Pty Ltd, 2009). Total water content was calculated as the 

cumulative sum of volumetric water content across the layers and expressed in mm. 

 

4.2.4.		Leaf	area	Index		
 

Leaf area index (LAI) was measured with a LICOR 2200C plant canopy analyzer (Model LAI-2270C, 

SR.NO.PCA-3940, LICOR) five times during the study period (Jul 2015, Sep 2015, Nov 2015, Feb 2016 

and Mar 2016). At each sampling time, two measurements per system were conducted. One 

measurement in which the sensor was placed below coffee trees for capturing system LAI (shade LAI + 

coffee LAI) and during the second measurement, in which the sensor was placed above coffee trees and 

below shade trees, to capture shade LAI. Coffee LAI was determined by subtraction of shade LAI from 

system LAI. Each measurement consisted of 20 points below the foliage (either below coffee or below 

shade), distributed systematically in the system/plot and 2 points in the open area, as recommended by 

Li-COR (2009). 

 

4.2.5.		Quantifying	water	use	
 

Sap flux density was measured with thermal dissipation probes after Granier (1987). Sensors consisted 

of two probes with a length of 2 cm each. Inside each probe, a thermocouple (copper-constantan alloy) 

is located in the middle (at 1 cm). Furthermore, one of the probes was heated by a copper filament 

rolled over the length of the probe, while the other remained unheated. Each probe was inserted 

radially into the trunk sapwood. The sensor pairs were placed at a distance of 10–15 cm from each 

other. In the case of coffee trees, the upper probes were place at a distance of 30 cm from the stump. 

For C. africana trees, probes were inserted at a height of 2 m from the ground. Since bananas develop 

a pseudostem formed by leaves which grow fast and do not have a distinct water conductive area, the 

sensors were inserted in the central cylinder of the corm as suggested by Lu et al. (2002). The heated 

probe was inserted into the upper region of the central cylinder, beneath the cambium region at a depth 

of 1–3 cm in the inner central cylinder. The unheated probe was inserted in the cortex, around 1–2 cm 

away from the heated probe. The upper probes (downstream sensor) were constantly heated by 

batteries recharged via a solar panel, while the lower probe (upstream sensor) remained unheated, 

serving as a reference. The non-flux condition was determined daily as the highest ΔV recorded in the 

period of 24 h for each sensor. Each pair of sensors was connected to a data logger (Data Logger CR1000 
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and AM 16/31 multiplexer Camp- bell Scientific Inc. Logan, UT, US) and values were recorded every 30 

s and averaged every 30 min. Five coffee plants in each system (CO, CB and CC) were monitored from 

March-2015 to April-2016. Additionally, five banana pseudo stems (Musa sp.) and three C. africana trees 

(with five sensors) were monitored. Due to large size of two of the 3 C. africana individuals (DBH > 1 m), 

we decided to place two sensors in each individual to account for possible radial variations of sap flux 

density (Delzon et al., 2004). Sensors were protected from rain and extreme temperatures with isolation 

sheets. Sap flux density (Js) (g cm-2 hour-1) was calculated based on the equation of Granier (1987). We 

did not perform any specific calibration of the equation. 

 

𝐽#	(𝑔	𝑐𝑚)*ℎ𝑜𝑢𝑟)/) = 3600 ∗ 0.0119 ∗ 9:;<∆>)∆>
∆>

?
/.*@/

	(equation 1) 

 

Max ΔV was determined on a daily basis as the highest value in 24h. For estimating mean sap flux density 

(mean Js) only values recorded between 6:00 am (sunrise) to 7:00 pm (sunset) were considered. Hourly 

sap flow (Q) (l hour-1) was derived from the integration of sap flux density over the conductive area or 

sap wood area (SWA):  

 

Q	(𝑙	ℎ𝑜𝑢𝑟)/) = CD	EF	G:HIJKLMHNO∗PQR	(G:I)
/SSS

 (equation 2) 

 

Daily tree water use (Qc) (l d-1) was calculated by summing up the obtained Q values during the day 

(between sunrise and sunset) following the Eq. (3). To determine daily water use of coffee trees, Qc was 

multiplied by the number of stems per tree.  

 

QT	(𝑙	𝑑)/) = ∑ QiX:SSZ[
\]^:SS_[ ) (equation 3) 

 

For determining conductive sapwood area of coffee, the monitored stems were cut and placed in water 

with methyl orange until the water was evaporated. No coloring distinction that indicated heart wood 

was found in monitored stems, thus the entire basal area of the coffee trees was considered to be 

conductive. For C. africana, wood cores (5 mm diameter) were extracted from the different individuals 
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(4–8 cores per tree) in different directions. The sapwood had a distinguished color from the heartwood, 

which allowed to directly determine sapwood depth (depthsw). Later on, measurements were confirmed 

through microscopic inspection of the core samples. The sapwood area of C. africana was calculated 

based on the total radius (Rt) and the sapwood depth (SWDepth) using the following equation:  

 

SWA	(𝑐𝑚) = π ∗	E2 ∗ Rf ∗ SWghZfi	−	(SWghZfi)*O (equation 4) 

 

For banana, the sap wood area corresponds to the area of the central cylinder, thus it can be estimated 

from the diameter of the central cylinder (Dcc) (Eq. (5)). Dcc is determined based on the relationship 

between the diameter of the corm (Dc) and diameter of the central cylinder (Dcc) as suggested by Lu et 

al. (2002):  

Banana	SWA	(cm*) = 	π ∗	pTT
I

q
 (equation 5) 

 

𝐷𝑐𝑐	(𝑐𝑚) = 0.5973 ∗ 𝐷𝑐 (equation 6) 

 

Transpiration per ground area (mm d-1) was estimated by multiplying water use (Qc) (l d-1) by the stand 

density (trees ha-1) and transpiration per unit leaf area (mm d-1) was estimated by dividing transpiration 

per ground area (mm d-1) by LAI (obtained as described in section 2.3) (m2 m-2) (Hernández-Santana et 

al., 2009). 

 

4.2.6.		Data	analysis	
 

Statistical analysis was conducted using R version 3.3.3 (R Development Core Team, 2015). Data were 

analyzed using linear mixed models (Package lmer, lmerTest and multicomp) (Bates et al., 2015; 

Kuznetsova  et al., 2017). To evaluate system effects (CO, CB and CC) on microclimatic parameters at 

daily and hourly resolution (mean tem- perature, max temperature, min temperature, radiation, vapor 

pressure deficit and soil moisture), the system was used as a fixed effect and the date as random effect 

(microclimate variable ∼ System + (1| Date). To evaluate system (CO, CB or CC) or period (Wet, early 

dry or late dry) effect on coffee mean sap flux density (Js), coffee water use (Qc) and coffee transpiration 
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per unit basal area (Tr basal area) and transpiration per unit leaf area (Tr per unit leaf area), system or 

period was used as fixed effects and coffee stem ID and date were used as random effects (mean Js ∼ 

System or season + (1|ID) + (1|Date)). The same model was used to evaluate period effect on Js, Qc and 

Tr per unit LA of banana and C. africana. When significant differences were encountered, we used a 

post-hoc test using the “multicomp” package and “Tukey” as the multiple-comparison procedure to 

identify significant difference among systems and/or periods (Hothorn et al., 2008). Data were 

evaluated whether they fulfill the assumptions of homogeneity of variance and normality, and 

transformed whenever necessary. All figures were produced with package ggplot2. 

 

4.3. Results	
 

4.3.1.		Microclimate	
 

Daily mean temperature during the study period from 01 March 2015 to 16 April 2016 was 22.7 ± 2.3 

°C, and precipitation summed up to 1699 mm. Average daily VPD was 0.9 ± 0.7 kPa and daily radiation 

7.8 ± 2.8 MJ m-2 d-1. Calculated daily average reference evapotranspiration (ET0) was 4.1 (± 1.8) mm d-1. 

Monthly ET0 was in the order of 123 (± 54) mm per month and exceeded monthly rainfall in March, July, 

and August 2015, as well as during the dry period from December 2015 to March 2016 (Fig. 1A). April, 

May, Jun, Sep, Oct, Nov 2015, and April 2016 were considered as wet periods, (monthly rainfall > 

monthly ET0). Dry months (monthly rainfall < monthly ET0) were divided into early dry (July, Aug., Dec. 

2015, and Jan. 2016) and late dry (March 2015, Feb. and March 2016), depending on the reduction of 

soil water content (Fig. 1B). 
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Fig. 1. A) Monthly rainfall totals (mm) (Black bars) and monthly totals of potential evapotranspiration (solid line with open 
triangles). B) Daily rainfall (mm d-1) (black bars, soil water content (SWC) in the 0 to 90 cm  layer per system (Coffee-Open = CO 
(Red) (- -- -), Coffee-Banana = CB (Green) (....) and Coffee-Cordia = CC (Blue) (-- -- --)) at the experimental site for the study 
period (March 2015 - April 2016). Background color represents the period, Wet (dark grey) (April, May, Jun, Sep, Oct and Nov 
2015, Apr 2016), early dry (intermediate grey) (Jul, Aug and Dec 2015, Jan 2016) and late dry (light grey) (Mar 2015, Feb and 
Mar 2016). 

 

Mean temperature, maximum temperature, irradiance and vapor pressure deficit were significantly 

higher in CO than in CC and CB, averaged over the whole study period (supplementary material Table 

A.1) and in each period separately (Table 2). CC displayed lowest Ta max and highest Ta min, as well as 

the lowest amplitude (Ta max –Ta min) and lowest irradiance. CB system had the lowest daily mean VPD 

and Ta mean, and an intermediate irradiance (See Table 2). Temperature, vapor pressure deficit and 

irradiance followed a strong increase during February and March (Late dry) for all systems (Fig. 2). 
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Table 2: Total soil water content down to 90 cm (mm), mean vapor pressure deficit (VPD) (kPa), daily irradiance  
(Irr) (6:00 am – 7:00 pm) (W m-2 d-1), mean temperature (°C), maximum temperature (°C), minimum temperature 
(°C) and temperature amplitude (T max – T min) for three different periods Wet (April, May, Jun, Sep, Oct and Nov 
2015, Apr 2016), early dry (intermediate grey) (Jul, Aug and Dec 2015, Jan 2016) and late dry (light grey) (Mar 
2015, Feb and Mar 2016).Letters refer to significant differences (p < 0.05) between systems in each period. 

 

Nevertheless, despite significant temperature differences between systems, differences remained 

below 1°C for Ta mean and Ta min (Table 2). Differences for Ta max were larger and reached up to 4 °C 

when between comparing CO and CC. The temperature amplitude between systems ranged accordingly 

from 4 to 5 °C. Daily Ta patterns revealed temperatures above 30 °C from 10:00 to 18:00 h in all systems 

during the late dry period. VPD in CO and CC did not significantly differ during late dry period, while VPD 

was recorded to be significantly lower in CB for all periods (Table 2). The highest VPD was recorded 

between 14:00 and 16:00 and remained below 2 kPa for the wet and early dry periods. During the late 

dry period, however, VPD surpassed 2 kPa already at 10:00 h in all systems, and reached values as high 

as 4.5 kPa (Fig. 2). As reported in several studies, 2 kPa is marked as a relevant threshold for stomata 

closure of coffee (> 1.6 kPa) and many other species (Butler, 1977; Fanjul et al., 1985; Gutiérrez et al., 

1994; Kanechi et al., 1995; Carr, 2001; DaMatta & Ramalho, 2006; van Kanten & Vaast, 2006; Jung et 

al., 2010). 

Highest irradiance was recorded in CO during all periods (Table 2). Irradiance was higher in CB than in 

CC during the wet and early dry period; however, no significant differences between these two systems 

were found during the late dry period (Table 2). Irradiance increase in CB had 1 h lag-phase compared 

to CO and CC in the first hours of the day, probably due to the topography of the plot (Fig. 2).  

Wet Early dry Late dry 

CO CB CC CO CB CC CO CB CC 
Total Soil water content (SWC) (Down to 90 cm depth) 

340 ± 35 a 340 ± 52 b 206 ± 38 c 335 ± 33 a 298 ± 49 b 191 ± 46 c 249 ± 48 a 237 ± 44 b 151 ± 29 c 

VPD (kPa) 

0.5 ± 0.25 a 0.3 ± 0.2 c 0.4 ± 0.2 b 0.8 ± 0.3 a 0.6 ± 0.2 c 0.7 ± 0.3 b 1.9 ± 0.8 a 1.8 ± 1 b 1.8 ± 0.8 a 

Irradiance (W m-2) 

1419 ± 827 a 689 ± 711 b 233 ± 253 a 1872 ± 582 a 599 ± 475 b 386 ± 186 c 2348 ± 1171 a 1038 ± 766 b 1034 ± 719 b 

Mean temperature (°C) 

21.5 ± 4 a 20.8 ± 3.2 c 21.1 ± 2.6 b 22.3 ± 4.8 a 21.4 ± 3.9 c 21.9 ± 3.2 b 26.1± 6.2 a 25.9 ± 5.9 b 25.9 ± 5.2 a 

Max temperature (°C) 

30.3 ± 3.7 a 27.3 ± 3.4 b 26.1 ± 2.6c 32.0 ± 3.1 a 28.7 ± 2.5 b 27.7 ± 2.2 c 37.8 ± 4.2 a 36.8 ± 4.5 b 34.8 ± 3.9 c 

Min temperature (°C) 

17.4 ± 0.7 a   17.5 ± 0.7 a 18.0 ± 0.7 b 17.3 ± 0.9 b 17.2 ± 0.6 c 18.1 ± 1.0 a 19.2 ± 1.1 c 19.5 ± 1.3 b 20.0 ± 1.4 a 

Temperature amplitude (ΔTa) (°C) 

12.8 ± 3.8 a 9.8 ± 3.4 b 8.2 ± 2.5 c 14.6 ± 3.3 a 11.5 ± 2.5 b 9.5 ± 2.2 c 18.6 ± 4 a 17.3 ± 4.2 b 14.8 ± 3.3 c 
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Fig. 2. Daily patterns of Temperature (°C), vapor pressure deficit (VPD) (kPa),irradiance (W m-2) and sap flux density (cm3 cm-2 

hour-1) for three periods: Wet (April, May, Jun, Sep, Oct and Nov 2015, Apr 2016), early dry (Jul, Aug and Dec 2015, Jan 2016) 
and late dry (Mar 2015, Feb and Mar 2016).In three different systems (Coffee-Open = CO (Square)(Red), Coffee-Banana = CB 
(Circle) (Green) and Coffee-Cordia = CC (Triangle) (Blue)and coffee (Coffee-CO (Empty square) (red), Coffee-CB (empty 
circle)(Green), Coffee-CC (empty triangle)(Blue), Musa sp. (Fill circle)(Green) and C. africana (Fill triangle)(Blue). Line indicates 
mean values and error bar indicates standard error. 
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4.3.2.		Soil	water	content	
 

Total soil water content (SWC) (down to 90cm depth) was the highest in CO and varied between periods 

from 340 mm (wet) to 249 mm (late dry). CC had the lowest total SWC in all periods compared to CO 

and CB (Table 2). Water uptake by plants occurred mostly in the first 90 cm. Between 20 to 80 cm depth, 

CO had higher SWC (30–40 mm) per depth compared to CC (10–20 mm), and this trend was consistent 

during the early dry period and wet period (Fig. 3). In the first 30 cm, SWC in CB decreased during the 

early dry period and late dry period to 10–30mm per depth and during the wet period to 20–30 mm per 

depth, while for CO such decreases were only observed during the late dry period. Below 90 cm depth, 

SWC values of the CO and CC remained at similar levels (30–40 mm per depth) during the wet period, 

while during the dry period, CC dropped below 30 mm per depth between 100 cm and 130 cm depth 

(Fig. 3). Due to technical problems, no data were available for CB below 90 cm. 

 

 
Fig. 3. Soil water content (mm) per 10 cm depth interval during distinct periods (wet, early dry period and late dry period) down 
to 150 cm depth except for CB system for which measurements were only available down to 90 cm depth. (Coffee-Open = CO 
(Square) (Red), Coffee-Banana = CB (Circle) (Green) and Coffee-Cordia = CC (Triangle) (Blue). Line indicates mean values and 
error bar indicates standard error. Dotted lines indicate 20 cm and 40 cm depths. 
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4.3.3.		Water	use	
 

Coffee mean sap flux density (Js) averaged over the study period, was 2.6 ± 2 g cm-2 h-1 in Coffee-CO, 3 

± 2.6 g cm-2 h-1 in Coffee-CB and 2.7 ± 2.4 g cm-2 h-1 in Coffee-CC and did not differ significantly between 

systems. Coffee mean Js did also not differ between systems when compared for each period separately 

(wet, early dry, late dry, Table 3). A significant increase in coffee mean Js occurred in Coffee-CO during 

the early and late dry periods, while Coffee-CB mean Js increased during the early dry compared to wet 

period. And decreased again during the late dry period (Table 3). For Coffee-CC, highest mean Js was 

recorded during the early dry period, and it was significantly larger than mean Js during the wet period. 

No significant differences in mean Js of Coffee-CC were found between mean early period and late dry 

period or between late dry period and wet period. Coffee daily Qc per tree (l d-1) was not significantly 

different between systems with mean daily values of 1.3 ± 0.55 (l d-1) for Coffee-CO, 1.4 ± 0.76 (l d-1) for 

Coffee-CB and 1.0 ± 0.63 (l d-1) for Coffee-CC. Furthermore, no significant system effect on Qc was found 

for any of the three distinct periods (Table 3). Qc of Coffee-CO and Coffee-CC significantly increased 

during early and late dry period compared to the wet period, namely by 18 % for Coffee-CO and 19 % 

for Coffee-CC. On the other hand, Qc of Coffee-CB increased 14 % during the early dry period and 

decreased again during the late dry period. 

Table 3: Mean Js, daily Qc and transpiration per unit leaf area for coffee in each system (Coffee-CO, Coffee-CB, 
Coffee-CC for each of the three periods Wet (April, May, Jun, Sep, Oct and Nov 2015, Apr 2016), early dry (Jul, Aug 
and Dec 2015, Jan 2016) and late dry (Mar 2015, Feb and Mar 2016) . Capital letters indicate significant differences 
between systems for each period. Small case letters indicate significant differences across seasons for each 
system. Significances at p-value < 0.05 
 

 Wet Early dry Late dry 

 Coffee-CO Coffee-CB Coffee-CC Coffee-CO Coffee-CB Coffee-CC Coffee-CO Coffee-CB Coffee-CC 

N° of monitoring 

Days * 
182 179 152 123 123 89 85 86 86 

Mean Js 

(g cm-2 h-1) 

2.35 ± 1.05 

A,b 

3.02 ± 1.40 

A,b 

2.54 ± 1.37 

A,b 
2.73 ± 1.15 
A,a 

3.34 ± 1.45 
A,a 

2.8 4 ± 1.17 
A,a 

2.92 ± 1.21 A, 

a 
2.70 ± 1.21 
A,b 

2.92 ± 2.03 
A,ab 

Daily Qc 

(l d-1) per stem 

0.38 ± 0.16 

A,b 

0.40 ± 0.22 

A,b 

0.33 ± 0.17 

A,b 
0.44 ± 0.18 
A,a 

0.44 ± 0.24 
A,a 

0.38 ± 0.20 
A,a 

0.47 ± 0.19 
A,a 

0.38 ± 0.19 
A,b 

0.41 ± 0.34 
A,a 

Daily Qc 

(l d-1) per coffee 

tree 

1.20 ± 0.52 

A,b 

1.41 ± 0.77 

A,b 

0.86 ± 0.45 

A,b  
1.38 ± 0.56 
A,a 

1.57 ± 0.84 
A,a 

1.00 ± 0.54 
A,a 

1.47 ± 0.58 
A,a 

1.33 ± 0.68 
A,b 

1.06 ± 0.90 
A,a 

* Number of days in which data is available for at least three replicates. Days with less than 2 replicates were not included in 
the analysis.  
** SWA (Coffee-CO = 12.7 ± 2.5 cm2, Coffee-CB=10.0 ± 1.6 cm2 and Coffee-CC=10.5 ± 3.2 cm2) 
*** N°stems per coffee tree ( Coffee-CO= 3.1 ± 0.9, Coffee-CB = 3.5 ± 1.2 and Coffee-CC=2.6 ± 0.9 ) 
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Coffee leaf area index (LAI) increased during the early dry period when compared to the wet period in 

Coffee-CO by +21 % and Coffee- CC by + 25 %. On the other hand, LAI of Coffee-CB decreased by -11 % 

in the early dry period (Fig. 4). During the late dry period, LAI decreased in Coffee-CO by -28 % and 

Coffee-CB by -36 %. Whereas, LAI of Coffee-CC increased by + 35 % during the late dry season. Daily 

coffee transpiration per unit leaf area (mm d-1) averaged over the study period did not differ between 

systems. On the other hand, daily coffee transpiration per unit leaf area varied between periods 

differently depending on the system. In CB, coffee increased transpiration per unit leaf area by 33 % 

during the early and late dry period compared to the wet period. In CO, coffee increased transpiration 

per unit leaf area during the late dry period by 70 % compared to transpiration per leaf area during the 

wet period. On the other hand, Coffee-CC presented higher transpiration rates during the wet period, 

compared to the early dry and late dry periods (Fig. 4). Variations in coffee transpiration per leaf area 

corresponded to variations in LAI. Coffee transpiration per ground area was significantly higher in CB 

than in CO and CC, which corresponded with higher coffee tree density (Fig. 4). 

 

 
Fig. 4. Leaf area index (LAI), transpiration (Tr) per ground area (Qc * Tree density) and transpiration(Tr) per unit leaf area (Tr per 
ground area/LAI ) for coffee, shade (Musa sp in CB and Cordia africana in CC) system (Coffee + shade) in three systems (Coffee-
Open = CO (Red), Coffee-Banana = CB (Green) and Coffee-Cordia = CC(Blue)), for three distinct periods Wet (April, May, Jun, 
Sep, Oct and Nov 2015, Apr 2016), early dry (Jul, Aug and Dec 2015, Jan 2016) and late dry (Mar 2015, Feb and Mar 2016) 
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Daily water use (Qc) was significantly different between shade species (p-value < 0.001). The shade tree 

species C. africana had a higher daily water use rate per tree (41 ± 39 l d-1) than banana (3 ± 2 l d-1). 

Although, mean Js was lower for C. africana than for banana, it did not differ significantly from each 

other (Table 4). Banana Js however differed significantly across periods. Lowest values were recorded 

during the wet period, while highest values occurred during the late dry period (Table 4). Mean Js of C. 

africana, on the other hand increased significantly during the early dry period; and decreased during 

the late dry period and the wet period (Table 4). Banana transpiration per ground area was significantly 

larger than C. africana transpiration per ground area only for the late dry period (Fig. 4). Cordia africana 

transpiration per unit leaf area increased during the late dry period compared to the wet and early dry 

periods due to leaf senescence (Fig. 4). 

 

Table 4: Mean Js, Daily Q and Transpiration per unit leaf area transpiration for bananas and Cordia africana for 
Wet (April, May, Jun, Sep, Oct and Nov 2015, April 2016), early dry (July, Aug and Dec 2015, Jan 2016) and late dry 
(March 2015, Feb and March 2016) . Capital letters indicate significant differences between species (Banana and 
Cordia africana) for each period. Small case letters indicate significant differences across periods within each 
species at p-value < 0.05 

 Banana Cordia africana 

 Wet Early dry Late dry Wet Early dry Late dry 

N° Monitoring 

Days 
69 49 110 102 85 153 

Mean Js 

(g cm-2 h-1) 
2.05 ± 1.07 A,c 3.16 ± 1.80A,b 3.52 ± 1.86 A,a 1.96 ± 0.86 A,a 2.16 ± 1.41 A,a 1.95 ± 1.25 A,b 

Daily Q 

(l d-1) 
2 ± 1 B,c 3 ± 2 B,b 4 ± 2 B,a 39 ± 30 A,b 45 ± 46 A,a 41 ± 45 A,b 

* Number of days in which data is available for at least three replicates. Days with less than 2 replicates were not included in 
the analysis. 
** SWA (Banana = 76 ± 20 cm2 , C. africana = 1061 ± 921 cm2  
 

CB system had the largest system transpiration per ground area (0.9 ± 0.4 mm d-1) and per unit leaf area 

(0.6 ± 0.4 mm d-1) (p- value= < 2.26 e-16), which was consistent among all three periods (Fig. 4). CC 

transpired 0.37 ± 0.1 mm d-1 per ground area and 0.36 ± 0.1 mm d-1 per unit leaf area, which was 

significantly larger than the transpiration rates of CO that displayed values of 0.24 ± 0.1 mm d-1 per 

ground area and 0.27 ± 0.1 mm d-1 per unit leaf area. Coffee contributed on average 55% to the system 

transpiration per ground area in CB and 47% in the CC system, whereas bananas contributed up to 45% 

and Cordia africana up to 53% of the system transpiration per ground area (Fig. 4). For calculation of 

transpiration it was assumed that weeds were absent. 
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4.3.4.		Influence	of	VPD	on	hourly	sap	flux	density	for	different	periods	
 

Bananas showed a linear increase in Js when VPD was increasing and higher values of Js were reached 

during the late dry period (supplementary material, figure A.4). Coffee in contrast showed initially an 

increase until a VPD threshold of around 2–3kPa was achieved, whereas Js was maintained or reduced 

with further increases in VPD. This pattern was consistent across all systems and periods. Nevertheless, 

when VPD was below 2kPa, Coffee-CB and Coffee-CC reached higher values of Js compared to Coffee-

CO during the wet period (Fig. 2). Js patterns of C. africana showed a poor correlation with VPD for all 

the different periods, and Js tended to be larger at lower VPD during the early dry period (supplementary 

material, figure A.4). 

 

4.4.	 Discussion	
 

Coffee water consumption per tree, with 1.2 ± 0.64 l d-2, was similar across cultivation systems with an 

increase during early and late dry periods, when VPD increased. Consequently, we could not observe a 

system effect on coffee water use, and hence hardly any signs of water competition between coffee 

and associated shade species. This was most likely due to the fact that rainfall amount and SWC were 

sufficient to meet water requirements of the studied systems. Daily water use per tree was lower in 

bananas than in C. africana, but daily transpiration rate per ground area and unit leaf area were larger 

for bananas (Fig. 4). Daily system transpiration was higher in CB than in CC and CO (Fig. 4), due to higher 

coffee plant densities than CC and CO, and the higher banana densities than the one of C. africana. 

 

Temperature during the late dry period surpassed critical thresholds of optimum temperature (Tmean 

between 18 °C and 22 °C and Tmax below 30 °C) range for C. arabica according to Descroix and Snoeck 

(2008), even under shaded systems. Compared to CO and CB, CC reduced incoming radiation and 

showed better buffering effects against extremes (Ta max and Ta min) and, hence had smaller daily 

temperature amplitude (Ta max – Ta min). Shade trees consequently protected the coffee underneath 

from high temperature and high radiation; and reducing coffee leaf area oscillations between seasons. 

CC on the other hand, lowered SWC in comparison to CO and CB, which might result in water 

competition under drier conditions than experienced in our study. Detailed discussion of various factors 

follows below. 
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4.4.1.		Microclimate	differences	between	cultivation	systems	
 

The microclimate regulating role of shade trees has already been described by several authors (Barradas 

& Fanjul, 1986; Muschler & Bonnemann, 1997; Siles & Vaast, 2002; Partelli et al., 2014; Carvalho et al., 

2017) and was confirmed by the present results. Nevertheless, when examining the three defined 

periods, it was found that the differences in VPD between systems were very low (around 0.1 K Pa), and 

not always significant. We attributed this to the patchiness at landscape level with a close proximity of 

the various systems within neighboring small farms. Our findings confirmed the importance of studying 

microclimate at different temporal resolutions to identify if at certain hours of the day, relevant coffee 

physiological thresholds such as VPD > 2 kPa, are reached and the time span that such microclimate 

conditions last. This is of interest since intensity, duration and speed of certain stresses will influence 

the plant acclimation ability, and therefore their coping capacity against stresses (DaMatta & Ramalho, 

2006). 

 

The reduced SWC in the upper layers (0–40cm) in all systems, confirmed that coffee soil water uptake 

occurs mostly in the top 40 cm of the soil profile, although it could extend down to 70 cm. This is in 

congruence with Padovan et al. (2015), who reported that 56 % of coffee roots were encountered in 

the upper 30 cm and was also reported in other studies (Pereira, 1957; Wallis, 1963; Van Kanten et al., 

2005; van Kanten & Vaast, 2006). Water uptake by C. africana was mainly concentrated in the top 90 

cm, extended even down to 130 cm depth during the dry periods (early and late dry) (Figs. 3 and 4). This 

indicates that the first 40 cm were overlapping with the active coffee root zone, which reduced soil 

water content of CC system compared to CB and CO. Consistent lower values of SWC in heavy shaded 

systems in comparison with low shaded or non-shaded systems have also been reported by Siles et al. 

(2009) and Padovan et al. (2015), which they explained as a result of higher combined transpiration of 

coffee and shade trees under high shade. This is also the case in our study (Fig. 4). 

 

Nevertheless, despite larger transpiration in CB than in CC, we found lower SWC in CC during all seasons 

(Fig. 3 and Table 3). We attributed this to a better water use efficiency in the CB system due to an effect 

of the intermediate shade of the bananas. It is hypothesized that banana shade reduced soil evaporation 

of upper layers, and intercepted less rainfall than C. africana trees, hence allowing higher soil water 

availability for coffee and banana transpiration. Moreover, the aspect of the plot (slope > 20%) and 

distribution of systems along the slope (CC at the highest point and CB at the lowest point, see 
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supplementary material figure A.2) could have influenced water redistribution (runoff and lateral 

infiltration), increasing soil water content in CB. Nevertheless, clearly, additional data, such as soil 

evaporation rates, run-off, lateral infiltration and rainfall interception would be required to prove these 

hypotheses. 

 

4.4.2.		Sap	flux	density,	water	use	and	transpiration	
 

Sap flux density (Js) of coffee under all systems as well as C. africana decreased when VPD was > 2 kPa, 

which can be attributed to stomatal sensitivity to high VPD. In the case of coffee, this threshold has 

already been reported in several studies (Butler, 1977; Fanjul et al., 1985; Gutiérrez et al., 1994; Kanechi 

et al., 1995; Carr, 2001; DaMatta & Ramalho, 2006; van Kanten & Vaast, 2006). Also in other woody 

species, such as Ulmus davidian, Terminalia ivorensis and Eucaliptus de- glupta, a similar VPD threshold 

could also be observed (van Kanten & Vaast, 2006; Jung et al., 2010). On the contrary, banana followed 

a linear increase with increasing VPD without an observable threshold, thus without stomatal control. 

These results are in line with patterns described by Lu et al. (2002)and (Liu et al., 2008). 

 

Daily coffee water use did not differ significantly between systems (Table 4), which can be attributed to 

several factors. Firstly, although significant, differences in VPD between systems were in the range of 

0.2 kPa, which might be too small to generate any system-specific response in Js for coffee. Secondly, 

hourly VPD values frequently crossed the 2kPa threshold in all systems, therefore restricting increases 

in coffee Js, and subsequently in coffee Qc. Thirdly, as a shade-adapted species, coffee maintains 

stomatal conductance, thus photosynthetic rates, and water use (DaMatta & Ramalho, 2006; Franck & 

Vaast, 2009), even at reduced irradiance as in the case of CB and CC. Finally, a high variability in Js 

between individuals within the same system, as indicated by the high standard deviation, certainly 

hindered to some extent the system comparison. 

 

Similarly, coffee transpiration per unit leaf area did not significantly differ between systems. 

Nevertheless, coffee transpiration per unit leaf area had different seasonal responses depending on the 

system. Coffee- CO and Coffee-CB increased transpiration per unit leaf area during the late dry period, 

while Coffee-CC increased during the wet period. Such variations can be attributed to the increase of Js 
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during the late dry period combined with the reduction of the coffee LAI up to 40% and 15% in the case 

of Coffee-CO and Coffee-CB, respectively (Fig. 4). LAI in Coffee-CC increased during the early and late 

dry periods by 10 % compared to the wet period. Maintenance of coffee sap flow rates despite changes 

in leaf area were also reported by Tausend et al. (2000). 

 

We attributed LAI reduction in Coffee-CO to a combined effect of high irradiance and VPD, on top of 

large air Ta diurnal variations, which could have increased leaf damage and reduced leaf growth 

(Gutiérrez et al., 1994; Siles & Vaast, 2002; DaMatta & Ramalho, 2006). The transpiration rates per leaf 

area recorded during our study remained low compared to the ones reported by (Padovan et al., 2018). 

As well as coffee LAI and coffee tree density per hectare recorded in our study was half when compared 

to 4700–5000 tree ha-1 and coffee LAI = 4.6 in full sun reported by Cannavo et al. (2011). And 4000 trees 

ha-1, coffee full sun LAI = 2.39 ± 0.10 SE shaded coffee LAI = 3.57 ± 0.10 SE reported by Padovan et al. 

(2018). 

 

To our knowledge, our study is the first aiming to estimate water use of C. africana with thermal 

dissipation probes. Cordia africana was found to consume 10 times more water per day than banana 

and 100 times more than coffee, which can be mainly attributed to its larger canopy size and sap wood 

area. Nevertheless, when normalized by unit leaf area, lower transpiration per unit leaf area for C. 

africana than for coffee or banana was observed. On average, C. africana consumed similar amounts of 

water as other deciduous shade species such as Tabebuia rosea with 60 to 170 l d-1 (Padovan et al., 

2018). Transpiration per ground area of C. africana (0.16 ± 0.16 mm d-1, 50 trees ha-1) was lower than 

transpiration per ground area reported for Inga densiflora (0.49 ± 0.5 mm d-1, 277 tree ha-1) reported 

by Cannavo et al. (2011), Simarouba glauca (0.20 ± 0.02 SE mm d-1, 75 trees ha-1) and Tabebuia rosacea 

(from 0.24 mm d-1 to 1.05 mm d-1, 113 trees ha-1) reported by Padovan et al. (2018). Banana, on the 

other hand, had comparable transpiration per ground area (0.34 ± 0.20 mm d-1, 975mats ha-1) to the 

above-mentioned species, although at higher densities per hectare. 

 

Despite no significant differences in coffee daily water use between systems were observed and water 

competition appeared to be absent due to sufficient rainfall, extended periods without rain and a 

decrease in rainfall amount, could pose a problem for coffee when intercropped with other species. This 

became visible in the lower soil moisture content in shaded systems, particularly CC and is in line with 
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the observations by Cannavo et al. (2011), Padovan et al. (2015),Padovan et al. (2015), and Padovan et 

al. (2018). Our results showed that transpiration rates of coffee and agroforestry systems appeared to 

be highly dependent on system structure (coffee density and shade trees density, LAI and tree size), and 

hence difficult to compare across regions. Therefore, we recommend the reporting of transpiration 

rates per ground and leaf area, accompanied with water use per tree (Qc), size of individuals, LAI and 

density per ha, to provide a comprehensive description of water use in coffee agroforestry systems. 

 

CB had the highest transpiration rates due to the high coffee tree density, in addition to a linear 

response of banana Js to vapor pressure deficit, under non soil water limiting conditions. Bananas lack 

a water saving mechanism under high evaporation demand, as demonstrated by the high Js rates at high 

VPD values of our study (Fig. 2). This could lead to faster soil water depletion and water competition 

between coffee and bananas. Nevertheless, we could not demonstrate this hypothesis in our study, 

since rainfall appeared to be enough to sustain transpiration demand of all studied systems and no 

water limitation was observed. Furthermore, other studies indicated that despite the fact that banana 

sap flux density responses linearly to VPD, bananas are very sensitive to reduced SWC (pF > 2.8), thus 

reducing water use at low soil water content (Kissel et al., 2015). 

 

This would mean that under soil water scarcity, bananas would reduce their water use. However, it 

remains to be documented if this transpiration reduction would appear early enough to avoid water 

competition with associated coffee and hence become an attractive climate-smart adaptation strategy. 

Clearly, CB systems are of particular interest since bananas are the most important staple crop in the 

region and provide farmers with food and extra source of income (van Asten et al., 2011). Furthermore, 

due to fast banana growth, coffee intercropped with banana allows for a more dynamic shade 

management than coffee intercropped with woody shade trees. Indeed, farmers could voluntarily cut 

down banana if the dry season becomes too severe and detrimental to coffee. Further research is 

required to assess the water dynamics of these systems under harsher conditions, namely lower annual 

rainfall and prolonged dry season. 
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4.4.3.		Caveats	of	the	study	and	future	recommendations	
 

We acknowledge that the heterogeneity of the studied systems, in terms of structure: slope, distribution 

along the slope, coffee tree density and shade tree density could certainly interfere in our comparison 

of the systems. It has to be kept in mind, however this study was performed under on-farm conditions 

and high variability is inherent to research within smallholder farmers’ conditions. Furthermore, water 

use experiments require certain compromises due to technical restrictions, namely availability of a 

power source and distance to the data logger. Nevertheless, we presented in this study, not only 

transpiration at system level, but as well at individual level and the scaling factors used in order to 

account for these differences in system structure. Presentation of these parameters helps 

understanding how system structure might influence transpiration rates of agroforestry systems. 

Furthermore, we strongly recommend this to become a common practice in water use studies of 

agroforestry systems, where, as pointed out before, systems structures can be very diverse. 

 

Additionally, we propose for future research activities to expand the period of time, over which water 

use patterns are monitored to several seasons and years. Moreover, we propose to consider other 

shade tree species commonly used (e.g. Ficus sp., Persea americana, Grevillea robusta, Markhamia 

indica) at Mt Elgon (Rahn et al., 2018). Furthermore, sap flow techniques should be combined with other 

measurements, such as stomatal conductance, photosynthesis, and leaf water potential, to include 

more indicators of coffee stress. Finally, high variability in Js between trees should be addressed by 

increasing the number of monitored trees per system, as well as increasing the number of plot 

replicates. 
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4.5.		 Conclusion	
 

To our knowledge, this is the first study investigating jointly the water use patterns of Coffea arabica, 

Musa sp and Cordia africana in the context of agroforestry systems in Africa. Our results are valuable to 

support farmers in managing their coffee farms and inform extension services and other stakeholders 

aiming to adapt coffee cultivation to climate change as well as food security and livelihoods of 

smallholder coffee farmers in particular in Eastern Africa. 

 

In the present study, we found no competition for water between coffee and banana, or coffee and C. 

africana, since coffee water use remained similar across systems. Shade trees modified the 

microclimate for coffee underneath by reducing total soil water content, incoming radiation, maximum 

temperatures and temperature amplitude, and by increasing minimum temperatures. Despite the fact 

that the microclimate-buffering effects of shade trees were reduced during the late dry period, shade 

trees still benefited coffee by reducing the combined, negative effect of high radiation and high VPD on 

leaf growth and integrity. 

 

Nevertheless, under more extended dry seasons, water competition between coffee and banana or 

Cordia africana, might occur due to the higher combined transpiration of coffee and associated shade 

plants in agroforestry systems compared to open system. The Coffee-Banana system is an attractive 

cultivation system since banana reduces solar radiation, VPD and maximum temperatures for coffee 

underneath, while providing food and an extra cash sources to rural households. Furthermore, fast 

banana growth allows dynamic density management to reduce water competition with coffee in case 

of need, i.e. a particular prolonged dry season. 

 

Based on this study addressing water relations, we recommend the cultivation of coffee underneath 

medium shade (20–40 %), the careful selection of shade species, either for its contribution to income 

or food security (as in the case of banana) or for its physiological characteristics (reduced water use 

under water limited conditions and fast growth) or morphological characteristics (rooting depth below 

80 cm and hence below the main coffee rooting zone). Furthermore, farm management activities such 

as mulching, pruning and thinning should be combined with weather forecast to tailor the system water 

demand to the soil water availability of the season.  
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Abstract 
 
Increases in temperature and more erratic rainfall patterns due to climate change threatens the already 

fragile, livelihood of smallholder coffee farmers. Shaded coffee in an agroforestry system appear as a 

good alternative to protect coffee from extreme temperatures while providing additional ecosystem 

services, such as extra food and soil protection. Likewise, excessive shade might reduce coffee yields. 

This study analyzed the effect of shade cover (type represented by cropping system (Coffee-Open (CO), 

Coffee-Banana (CB), Coffee-shade tree (CT)), and amount by leaf area index of the shade cover) along 

an altitude gradient on: (i) microclimate, (ii) soil water content and (iii) coffee reproductive and 

vegetative growth. Data was collected during two fruit development cycles (2015 and 2016) in 

smallholder coffee farms (n=27) on the west slopes of Mt. Elgon Uganda. Shade cover buffered 

microclimate extremes. Fruit set was not limited by temperature but reduced with shade cover 

increases during the second year (2016). Whilst fruit drop per stem was similar across cropping system 

during both studied years. Leaf set was the most important variable to ensure vegetative and 

reproductive growth along several production cycles. Intermediated shade cover (LAI ~ 1 m2m-2), as 

occurred in coffee intercropped with bananas showed an optimal balance between microclimate 

regulations, fruit set and fruit drop, and provide staple food and an extra source of income. 

 

Keywords: Arabica coffee, fruit development cycle, fruit set, fruit drop, climate change, vegetative 

growth, agroforestry, piecewise structural equation modelling 

 
Highlights: 
 

• Maintenance of coffee leaf set is crucial to ensure coffee yield over several seasons 

• Intermediate shade levels (LAI ~ 1) buffer microclimate and reduces leaf senescence under 

suboptimal conditions without reducing yields 

• Coffee trees withstand yield at higher temperatures than previously though 
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5.1.	 Introduction	
 
Coffee cultivation is the economic backbone of several developing countries and the main source of 

cash for millions of smallholder farmers across the topical belt (DaMatta et al., 2007; ITC, 2012; DaMatta 

et al., 2018a). As for any other agricultural product, coffee production is sensitive to climate variability. 

Therefore, temperature increases, more erratic rainfall patterns and increase in frequency and severity 

of extreme events related to climate change are expected to drastically impact coffee yield and 

consequently coffee producers’ livelihoods (Baca et al., 2014; Bunn et al., 2014; Craparo et al., 2015; 

Ovalle-Rivera et al., 2015; Tavares et al., 2017). 

 
On the other hand, recent studies report that coffee trees (referring to both commercially used species: 

Coffea arabica L. and Coffea canephora) are more resistant to heat than previously thought and that 

coffee trees can maintain photosynthetic rate up to 37°/30° (Day/Night) (Martins et al., 2016; Rodrigues 

et al., 2016). Hence, these findings suggest that current projections of climate change impacts on coffee 

production and distribution of suitable areas for coffee cultivation (Bunn et al., 2014; Ovalle-Rivera et 

al., 2015) should be revaluated (DaMatta et al., 2018a; DaMatta et al., 2018b). Nonetheless, these 

studies (Martins et al., 2016; Rodrigues et al., 2016) focus on photosynthesis rate, but knowledge about 

impacts of abiotic stresses (i.e. heat and drought) on key phenological phases in the coffee cycle, such 

as fruit development (from flower initiation to harvest), is still insufficient and urgently needed (Drinnan 

& Menzel., 1995; DaMatta et al., 2007; Rahn et al., 2018b). 

 
Understanding the impact different environmental factors, such as radiation, temperature and water 

availability, have during the fruit development process might help to adapt management practices in 

order to improve sustainability and resilience of coffee cultivation, especially under low input farming 

systems. This is particularly needed as the constant and gradual increase in coffee demand over the last 

decades has led to coffee cultivation rises in marginal areas, according to “climate suitability thresholds” 

(Mean temperature, unsuitable ≤ 10 °C and ³ 30 °C, suboptimal: < 15 – 16 °C and > 23, optimal 18 – 23 

°C (Lara Estrada et al., 2017) and maximum temperature: unsuitable > 32 °C (Descroix & Snoeck, 2008), 

suboptimal: (Descroix & Snoeck, 2008), optimal: 25-26°C (Descroix & Snoeck, 2008). 

 
Higher radiation and temperature conditions met in coffee full-sun or low shade systems might 

stimulate larger number of flowers, but excessive temperature can also cause flower deformation or 

even inhibit flowering. For instance, Drinnan and Menzel (1995), reported flowering failure at 

temperatures above 33°/28°C (Day/Night) and flower malformation at 28°/23°. Whilst Marias et al. 

(2017) found flowering is inhibited when coffee trees were exposed to 49 °C for more than 45 minutes. 
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Moreover, higher incoming radiation will stimulate heavy flowering and sub-sequent high fruit load in 

coffee trees. But heavy fruit loads have been related to die-back (death of fruiting twigs and even the 

whole tree), higher susceptibility to pests and diseases and biennial production patterns (high yield in 

current year at expenses of vegetative growth, which results in lower yields in the following year) 

(Cannell, 1985; Franck et al., 2005; DaMatta et al., 2007). 

 
Therefore, cultivating coffee under shade is promoted as one management option to reduce these 

threats (DaMatta, 2004; Vaast et al., 2016; Rigal et al., 2020). For instance, shade has been associated 

with lower flower initiation and lower initial fruit set (Franck et al., 2005), which could lead to lower 

yield in shaded coffee systems (DaMatta, 2004; Vaast et al., 2008). However, lower fruit sets might be 

compensated by less fruit drop (Vaast et al., 2008; Bote & Vos, 2016; Rigal et al., 2020). A lower fruit set 

would also reduce fruit carbon-sink demands and allow coffee trees to invest into vegetative growth, 

which will result in a more balanced development of fruiting nodes for the following year (Franck et al., 

2005). This consequently reduces biennial fruiting patterns and improves cumulative yields over several 

years (Vaast et al., 2008; Bote & Vos, 2016). 

 
Most of the studies assessing the effects of shade vs. non-shade or other environmental variables on 

coffee yield focus mostly on coffee yield at harvest; which of course is key, since farmers ultimately 

depend on coffee yield to generate their livelihoods. However, disentangling the effects of 

environmental variables in relation to coffee reproductive vs vegetative growth processes could give 

insights on the role of shade during the fruit development process, and how it could be managed to 

potentiate its benefits, while reducing the trade-offs. To address these issues, we monitored coffee fruit 

development (from fruit initiation to harvest) during two production cycles (2015 and 2016) in three 

different coffee cropping systems (Coffee – Open (CO), Coffee – Banana (CB) and Coffee – shade tree 

(CT)) along an altitudinal gradient on the western slopes of Mt. Elgon Uganda. The study area is 

characterized by low inputs systems with pronounced shading gradients (Wang et al., 2015; Liebig et 

al., 2016; Rahn et al., 2018a). Specifically, we aim to answer the following questions: 

 
(i) To what extent do shade cover (type and amount) and altitude (as a climate proxy) modify 

microclimate and soil water content for coffee grown underneath? We hypothesize that 

shade (type of system and amount of shade) improve microclimate, i.e. by reducing 

maximum temperature, vapor pressure deficit and temperature amplitude and increasing 

minimum temperature. And that this buffering effect is maintained along the altitudinal 

gradient. 
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(ii) Do shade cover and altitude have an effect on coffee fruit development from initial fruit set 

to harvest? Are lower fruit initiation rates under high shade cover counterbalanced by lower 

fruit drop rates? Does shade cover reduce biennial bearing patterns? We expect that 

altitude has a positive effect on reproductive and vegetative growth, due to a reduction of 

extreme temperatures and an increase in effective rainfall with increasing altitude. 

Moreover, lower fruit initiation will occur in heavier shaded systems compared to low 

shaded system, but larger fruit set will lead to larger fruit drop. Thus, this will result in 

comparable fruit sets at harvest along the shade gradient. 

(iii) Which effect do fruit set, number of leaves and number of internodes have on fruit 

development of a given year (n) and on fruit development in the following year (n +1)? We 

expect that larger leaf set will lead to less fruit drop, due to larger capacity for carbon 

assimilation. While, larger fruit sets will inhibit branch growth, due to larger sink priority of 

fruits. 

 

5.2.	 Materials	and	methods	
 

5.2.1.	Study	site	
 
The study site was located on the western slopes of Mt. Elgon, Uganda (1° 15’ 00’’ – 1° 18’ 00” 

geographical latitude and 34° 18’ – 34° 24’ geographical longitude) and covered an altitude gradient of 

1100 m.a.s.l. to 2200 m.a.s.l. Annual rainfall varies from 1200 mm year-1 at low altitude (1200 m.a.s.l.) 

to around 1670 mm year1 at high altitude (1800 m.a.s.l.) distributed in a bi-modal rainfall pattern, with 

a strong dry season (~ 40 mm month-1) between December – February and a moderate dry season (110 

mm month-1) between June –July (Fick & Hijmans, 2017). The region is characterized by coffee 

cultivation occurring in a mosaic of different coffee cropping systems with varied shade intensities and 

shade trees species (Liebig et al., 2016; Rahn et al., 2018a). Soils in the region are classified as Nitisols 

(FAO, 2014) with a pH reduction (from 7 to 5.5) along the altitudinal gradient (De Bauw et al., 2016; 

Sarmiento-Soler et al., 2020). 
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5.2.2.	Data	collection	
 
We collected data on coffee fruit development and vegetative growth on 810 coffee stems (in 810 

coffee trees) in 27 coffee plots (30 trees/plot) for two years (2015 and 2016). Coffee plots were 

distributed along the altitudinal gradient and belonged to three different types of cropping systems (9 

plots per type of cropping system): Coffee - Open (CO) = coffee with 16 ± 12 % shade cover; Coffee - 

Banana (CB) = coffee mostly intercropped with bananas and 19 ± 12 % shade cover; and Coffee - shade 

Tree (CT) = coffee intercropped with varied shade tree species and with 46 ± 18 % shade cover (Fig. 1) 

as described in more details by (Liebig et al., 2016; Rahn et al., 2018a; Sarmiento-Soler et al., 2020). 

 
Fig. 1. Map of Uganda and research area with selected plots (27 plots) at three altitude classes: Low altitude (1100 – 1400 
m.a.s.l.), mid altitude (1400 – 1700 m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l).Plots belong to three different types of 
systems: 9 to Coffee-Open = CO (Red circle), 9 to Coffee-Banana = CB (Yellow triangle) and 9 to Coffee- shade Tree = CT (Blue 
square). “T” symbol indicate plots in which microclimate was monitored (18 Plots)(from January 2015 to April 2016), “W” 
indicates plot in which soil water content was monitored (17 Plots) (From April 2015 to April 2016); and “R” indicates where 
rainfall was recorded (at low altitude and high altitude). 

 

Coffee farmers in this region tend to cultivate a mixture of different coffee varieties (Bugisu local, 

Catimor, KP, Ruiiru11, SL14 and SL18, (WCR, 2019)), although Bugisu local is the most prominent (Rahn 

et al., 2018a). For this study we did not differentiate between the different coffee varieties, except of 

Catimor, due to its different morphology and reduced coffee quality (WCR, 2019). Crop management 

information was gathered through farmers interviews. After cleaning the management data, we 

remined with information about 23 coffee plots from the initial 27 (Sarmiento-Soler et al., 2020). 

Fiveteen of 23 farmers reported use of insecticide and 18 of 23 used herbicide. However, only 8 of 23 

used fertilizer and 5 of 23 usedfungicide. Finally, 18 of 23 reported to have pruned their coffee in the 

last year. Intensity and frequency of management activities did not follow an identifiable pattern, i.e. 

higher management intensity in low shaded systems, or vice versa (more details can be found in 

Sarmiento-Soler et al. (2020). 
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We also monitored microclimate (Temperature = Temp and relative humidity =RH) at hourly intervals 

from January 2015 to April 2016 in 18 out of the 27 plots and soil water content (SWC) was measured 

every two weeks in 17 out of the 27 plots (Fig. 1). Leaf area index (LAI) of the cropping systems (shade 

and coffee trees combined) was measured five times during the study period using a LICOR 2200 C plant 

canopy analyzer and averaged for the study period (Model LAI-2270C, SR.NO.PCA-3940, LICOR). Type of 

cropping system did not have any effect of soil properties (pH, soil organic matter and macronutrients) 

(Sarmiento-Soler et al., 2020) (Table 1). 

 
Table 1: Plot characteristics according to coffee systems (Coffee-Open (CO), Coffee-Banana (CB) and Coffee-shade 
Tree (CT) based on Sarmiento-Soler et al. (2020) 
 
 

Variable  
CO 

(n= 9) 
CB 

(n= 9) 
CT 

(n= 9) 
System characteristics 

   

Altitude (m.a.s.l.) 1614 ± 378 1540 ± 314 1533 ± 343 

Area (m2) 2001 ± 1305 1126 ± 597 2062 ± 1572 

Density Coffee (Trees ha-1)  2109 ± 1169 2085 ± 760 1758 ± 491 

Density Banana (Stems ha-1)  148 ± 316a 786 ± 426c 370 ± 472b 

Density Shade Trees(Trees ha-1)  28 ± 27a 36 ± 38a 110 ± 82b 

Shade cover (%) 16 ± 12a 19 ± 12a 46 ± 18b 

N° Coffee Stems Tree-1  3.2 ± 1.5 2.5 ± 1.3 3.7 ± 2 

LAI (System/Shade/Coffee) 1.4a/0.2a/1.2a 2.2b/0.8b/1.4a 2.6b/1.4c/1.2a 

Slope %  11 ± 9 16 ± 8 15 ± 9 

Soil Properties (0-30 cm)     

pH 1 5.9 ± 0.6 5.8 ± 0.5 6.1 ± 0.6 

OM % 4.1 ± 1.5 4.5 ± 2.4 4.6 ± 3 

Soil N (%) 0.2 ± 0.07 0.27 ± 0.05 0.30 ± 0.12 

Soil P ppm 34.1 ± 24.5 35 ± 35 56 ± 53 

Soil K (cmol kg-1) 1.0 ± 0.5 1.08 ± 0.6 1.3 ± 0.8 

Soil Ca (cmol kg-1)2 14.7 ± 7.8 11.4 ± 5.5 15.1 ± 4.5 

Soil Mg (cmol kg-1) 4.3 ± 2.7 3.02 ± 4 4.02 ± 2.1 
Letters indicate significant differences between cropping systems (p-value < 0.05, Post-Hoc Tukey Test) 

 
5.2.2.1.		 Coffee	reproductive	and	vegetative	variables	
 
On each selected coffee tree, a stem was selected for monitoring reproductive and vegetative growth 

variables. We aimed to select stems with “average characteristics”, meaning, not too young (not 

reproductively active) or too old. To avoid strong bias during the stem selection procedure, the task was 

rotated between team members (5 people), following the criteria described above. In each selected 

stem, we marked four primary branches distributed homogenously along the stem. On these branches, 

we monitored fruit set per branch (FS per branch), leave set per branch (LS per branch) and number of 

internodes per branch (INT per branch) at intervals of 6 to 8 weeks, starting after flowering (March-
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April) and finishing at harvesting (September-October) (Table 2). Fruit drop per branch (FD) was 

calculated from the difference in fruit set between two monitoring sessions (i.e. FD 1 = 100 x (FS 2015 Week 

8 – FS 2015 Week 0)/ FS 2015 Week 0) (Table 2). Monitoring was done over production cycle in 2015 and repeated 

in 2016 on the same branches. Additionally, we counted total number of branches and number of 

productive branches in each monitored stem, at fruit initiation and at harvest for each year (2015 and 

2016). Fruit set per branch was upscaled to fruit set per stem by multiplying fruit set per branch x 

productive branches. Similarly, vegetative variables (leaf set per branch and number of internodes) were 

upscaled to stem level by multiplying by total number of branches (Table 2). 
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Table 2: Description of monitored variables and their inclusion in the respective in piecewise structural equation 
models. 

 Description 
Explanatory or/and 
Response variable 

Environmental variables   

Altitude  
Explanatory (Model 1 
and Model 2) 

Shade cover Leaf area index of shade (m2m-2) 
Explanatory (Model 1 
and Model 2) 

Temperature (Temp) Recorded every 60 minutes from January 2015 to April 2016 
Explanatory and 
response (Model 1) 

Relative humidity (RH)  Recorded every 60 minutes from January 2015 to April 2016 
Explanatory and 
response (Model 1) 

Soil water content (SWC) Recorded every 2 weeks from January 2015 to April 2016 Response (Model 1) 
Vapor pressure deficit 
(VPD) 

Calculated based on daily temperature and daily relative humidity after Allen et al., 
1998 

Explanatory and 
response (Model 1) 

Reproductive growth   

Fruit set per branch (FS 
per branch) 

Number of pinheads + cherries counted in: Week 0 (after flowering), Week 4, Week 
8, Week 17 and at harvest Not included 

Productive branches per 
stem 

Number of productive branches counted on: Week 0 (after flowering) and at 
harvest Not included 

Fruit set per stem (FS per 
stem) 

FS per branch x Productive branches per stem. Estimated for: Week 0 (after 
flowering) and at harvest 

Explanatory and 
response (Model 2) 

Vegetative growth   
Leaf set per branch (LS 
per branch) Number of leaves per branch on: Week 0 (after flowering), Week 17 and at harvest Not included 

Internodes per branch 
(INT per branch) 

Number of internodes per branch on: Week 0 (after flowering), Week 17 and at 
harvest Not included 

Total branches per stem Total number of branches per stem counted on: Week 0 (after flowering) and at 
harvest Not included 

Leaf set per stem (LS per 
stem) 

LS per branch x total number of branches. Estimated for: Week 0 (after flowering) 
and at harvest 

Explanatory and 
response (Model 2) 

Internodes per stem (INT 
per stem) 

INT per branch x total number of branches. Estimated for: Week 0 (after flowering) 
and at harvest 

Explanatory and 
response (Model 2) 

Fruit drop   
Fruit drop per branch (FD 
per branch) Percentage of dropped cherries per branch = 100 x (FSSession – FSSession -1)/FS Session -1 Not included 

Death branches 
Percentage of productive death branches per stem= 100 x (Productive branches per 
stemHarvest – Productive branches per stem Week 0)/Productive branches per stem 
Harvest Not included 

Fruit drop per stem (FD 
per stem) 

Percentage of fruit drop per stem= 100 x (FD per stem Harvest –FD per stem Week 0)/FD 
per stem Harvest 

Explanatory and 
response (Model 2) 
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5.2.2.2.			 Microclimate	and	soil	water	content	
 
Air temperature and relative humidity were recorded at 60 minutes intervals using iButtons (DS1923 – 

Hygrochron Temperature and Humidity Data logger). Each ibutton (2 ibuttons per plot) was placed 

within the canopy of a coffee tree at 1.5 m from the ground. Each sensor was protected by an aerated 

aluminum shield to avoid direct sunlight incidence. Mean daily vapour pressure deficit (VPD) was 

calculated from daily temperature (min Temp and max Temp) and daily relative humidity (min RH and 

max RH) following Allen et al. (1998). 

 

Soil water content (SWC) was monitored using a Sentek soil probe (Diviner 2000). In each plot, three to 

five access tubes (down to 1.6 m) were installed and SWC monitored every two weeks from April 2015 

to April 2016. We used the default calibration recommended by the manufacturer to convert device 

readings to soil water content (Scaled Frequency = 0.2746 *; volumetric water content (mm mm-1) ^ 

0.3314) (Sentek Pty Ltd 2009). 

 

5.2.3.	Data	analysis	
 
5.2.3.1.	Linear	mixed	models	and	generalized	mixed	models	
 
For each day, mean temperature (mean Temp), minimum temperature (min Temp), maximum 

temperature (max Temp), temperature amplitude (Temp ∆), mean VPD, mean relative humidity (RH) 

were calculated based on the hourly records from the Ibuttons (temperature and relative humidity 

sensors). For SWC, an average per plot and date was calculated. We used linear mixed models (LMM) 

to test the effect of cropping system, altitude and consequently interaction (cropping system x altitude) 

on microclimate and SWC. PlotID was used as a random effect to account for the non-indepency of the 

data due to the repeated measures (daily microclimate variables ~ Altitude x coffee cropping system + 

(1|PlotID)). When the cropping system effect was significant, we applied a Post-Hoc analysis (Tukey test) 

to determine the different groups. 

 

Similarly, we used generalized mixed models (GLM) with PlotID as random effect, to evaluate differences 

in coffee reproductive variables (poisson distribution), vegetative variables (poisson distribution) and 

fruit drop (linear mixed models) between coffee cropping systems for each altitude class (Low altitude, 

mid altitude and high altitude) and for all altitude together (all) (Fig. 6, 7 and 8). Finally, when the type 

of cropping system had a significant effect on the studied variables, a Post Hoc test was applied to identy 

the different groups. 
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5.2.3.2.	Piecewise	Structural	Equation	Model	
 
Piecewise structural equation model (PiecewiseSEM) is a multivariate statistical analysis technique, 

which permits the evaluation of multiple predictors and multiple response variables and allows testing 

the direct and indirect effects within a causal network, particularly in cascade processes (Lefcheck & 

Freckleton, 2016). Relationships between variables are represented with arrows, which indicate the 

pathways of the model, and pathways are hypothesized to be causal. Thus, applying the PiecewieseSEM 

models requires a prior conceptual model that indicates directions and dependences. Along the path, 

some variables act as explanatory (predictors) or response variables, or even both. 

 
5.2.3.3.		 Conceptual	model	
 

Based on scientific literature and expert knowledge, we develop a simplified conceptual model which 

represents effects of environmental variables and management on coffee fruit development process 

(Fig. 2). We consider that environmental conditions are at first influenced by geographical location 

(latitude and longitude) and topography, which we divided in three elements: altitude, slope and aspect. 

Thus, for a given geographical location, topography influence climatic variables such as: radiation, 

rainfall and wind. Later on, the interaction of these climatic variables will determine temperature and 

relative humidity, and consequently vapor pressure deficit (Ong et al., 1991; Allen et al., 1998; Littmann, 

2008; Bote et al., 2018) (Fig. 2). 
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Fig. 2. Conceptual model describing relationships between geographical, environmental variables and cropping systems 
characteristics. Arrows indicate the direction of the relationships between the different variables or processes. Illustration by 
Visuals in Science LAB.  

 

Rainfall, radiation and wind entering the coffee system are regulated by shade (amount and type), thus 

creating a particular microclimate to which the coffee trees are exposed (Monteith et al., 1991; Vaast 

et al., 2008; Siles et al., 2009). Moreover, transpiration of shade trees and of coffee trees will also 

influence the microclimate in which the coffee trees grow, depending on the morphologic and 

physiologic characteristics of the shade tree (Cannavo et al., 2011; Partelli et al., 2014; Sarmiento-Soler 

et al., 2019). Additionally, shade trees also influences soil properties, notably soil water holding capacity, 

through soil aggregate formation (Vaast et al., 2008; Padovan et al., 2015; Defrenet et al., 2016). Finally, 

soil water content from one hand might be reduced by larger transpiration (shade trees + coffee) and 

throughfall, but on the other hand soil water evaporation would reduce due to shading (Ong et al., 1991; 

Cannavo et al., 2011; Padovan et al., 2015; Padovan et al., 2018). 
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Flower formation is stimulated by higher incoming radiation and by the number of reproductive nodes, 

which result from branch growth and formation of internodes during the previous year (n – 1) (Franck 

et al., 2005; Vaast et al., 2006; DaMatta et al., 2007). Higher flower set will lead to higher fruit initiation 

(assuming pollination success is not influenced by the shade type and amount). Higher fruit loads will 

lead to a higher fruit drop due to two mechanisms: (i) sink competition between fruits (sink organs) and 

(ii) competition between fruits (sink organs) and leaves (source organs) (Vaast et al., 2005). Eventually, 

if sink demand is too high exceeding source capacities, the branches will die (so called die-back). 

Moreover, higher fruit loads reduce available resources for new internodes formation during the same 

year (n). This means that the following year (Year n + 1), flower formation will be hampered, since there 

are less nodes where flowers could develop. This will be resulting in lower fruit loads. With less fruit 

loads, competition between fruits, and between fruits and leaves is reduced, leading to a lower fruit 

drop rate and higher vegetative growth (more new internodes) which can give place to more leaves and 

productive nodes the following year. 

 

Explanatory and response variables 

 

We used altitude (as a proxy for combined influence of radiation, temperature, vapor pressure deficit 

and precipitation) and shade cover as explanatory variables in the model 1 and 2 (Table 2). Fruit set per 

stem, leave set per stem, number of internodes per stem and fruit drop per stem acted as response and 

explanatory variables, depending on their temporal situation along the fruit development process. For 

instance, at fruit initiation in 2015, number of internodes per stem acted first as a response variable, 

since growth is influenced by radiation and temperature (hence shade and altitude). Concurrently, 

number of internodes has an effect of fruit set, acting therefore as an explanatory variable (Cannell, 

1985). Similarly, for 2016 we tested the effect of several coffee variables occurring during the previous 

year (2015) and determine the most relevant ones, affecting the fruit development during 2016. In Table 

2 we specify the variables included in the model and whether they were considered as explanatory or 

response variables, or both. 
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5.2.3.4.		 Use	of	Piecewise	Structural	Equation	Model	
 
5.2.3.4.1.	 Variables	and	model	selection	
 
Microclimate and soil water content data was only available for 16 plots (plots including simultaneously 

soil water content and microclimate data), whereas data about coffee growth was from 27 plots. Due 

to the different sample size of the available data sets, we decided to run two separate piecewiseSEM 

models. In this way, we avoided an excessive reduction of sample size (from n= 27 to n=16) in the case 

all data sets would have been analyzed together. Model 1 evaluated the effect altitude and shade cover 

have on microclimate (temperature and vapor pressure deficit) and soil water content (16 plots) (Fig.5). 

Model 2 evaluated the effect of altitude and shade cover on coffee growth (fruit set per stem, leave set 

per stem, number of internodes per stem, and fruit drop per stem) and the effect of coffee growth 

during 2015 on coffee growth in 2016. Despite using separate models, insights from the two models 

were combined in the discussion for a better interpretation of the results. 

 
Single model selection 

For each individual path in our conceptual model, we selected the best model explaining the 

relationships between explanatory variables and response variables. Model selection was done stepwise 

using the dredge function from the R package MuMIn and selecting the model with the lowest AIC. We 

used linear mixed model (LMM), with plot number (PlotID) as a random effect (Hurlbert, 1984). 

Continuous variables were standardized and tested for normality, via visual evaluation of residual 

distribution. This procedure was repeated until there was one single equation representing each path 

of our conceptual model, this set of equations was nominated “basic set” (Lefcheck & Freckleton, 2016). 

 

Path selection and model selection 

We introduced this basic set in the piecewise SEM function first for optimization. This was done by two 

procedures: (i) look for possible missing paths (non-included relationships between explanatory and 

response variables), which is indicated by Fisher r value < 0.05 (Shipley, 1999; Lefcheck & Freckleton, 

2016) and (ii) identify predictors with very low coefficients (< 0.001) or not significant. Those were 

removed after verifying that their removal did not lead to missing paths (as mentioned above) or to an 

increase of AIC of the piecewise SEM model. Accordingly, the best basic set explaining our data set was 

selected based on their piecewise SEM output (Lowest AIC) (Shipley, 1999; Lefcheck & Freckleton, 

2016). In the final model (lowest AIC and with the larger number of variables) good fitness was tested 

via chi squares statistics (Shipley, 1999; Lefcheck & Freckleton, 2016) and are displayed in the 

supplementary materials as Table S1 (Model1) and Table S2 (Model 2). 
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We used R (R Development Core Team, 2017) and the packages “lmer”, “glmmTMB” (Brooks et al., 

2017), “lme4” (Bates et al., 2015), “lmerTest” (Kuznetsova  et al., 2017), “MuMIn” (Bartoń 2019), “Car” 

(Fox & Wiesberg, 2019), and “dplyr” (Wickham et al., 2019). Piecewiese SEM models were run using the 

function modellist (), from the package “piecewiseSEM” (Lefcheck & Freckleton, 2016). Finally, the 

visualization of results was done using the R package ggplot2 (Wickham, 2016) and Adobe Illustrator 

(Mordy, 2010). 

 

5.3.	 Results	
 

5.3.1.	 	 Effect	of	shade	(type	and	amount)	and	altitude	on	microclimate	and	
soil	water	content	
 

In the study area, precipitation (from 1st January 2015 to 30th April 2016) amounted to 1733 mm at 1300 

m.a.s.l. (low altitude) and 2252 mm at 1800 m.a.s.l. (high altitude). Mean temperature (mean Temp) 

from 1st January 2015 to 30th April 2016 under open conditions was 22.6 ± 1.7 °C at low altitude, 21.6 ± 

1.8°C at mid altitude, and 19.2 ± 2.2°C at high altitude. All temperature related variables (mean min 

temperature, mean temperature, mean max temperature, mean temperature amplitude), vapor 

pressure deficit (VPD) and soil water content decreased significantly with altitude (Table 3 and Fig.3). 

Differences between cropping systems were significant for mean temp, max temp and temp amplitude 

(Table 3). Coffee-Open had the largest max temp, mean temp and temp amplitude (Table 3). An 

interaction effect between altitude and cropping system was significant for min temp, max temp, temp 

amplitude, VPD and SWC. In the case of min temp and SWC the negative effect of altitude was more 

pronounced in CO than in CB and CT (Fig.3.a and Fig.3.g). While in CO, max temp decrease with altitude 

was less pronounced than in the other systems (CB and CT) (Fig.3.c). On the contrary, temp amplitude 

and VPD increased along altitude in CO, but not in CB and CT (Fig.3.d and Fig.3.e). 
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Fig. 4. Scatterplots of microclimate variables and soil water content vs altitude for three coffee cropping systems, a) Mean 
minimum temperature (°C), b) Mean mean temperature (°C), c) Mean maximum temperature (°C), d) Mean temperature 
amplitude (°C), e) Vapour pressure deficit (kPa), f) Relative humidity (%) and g) Soil water content (mm). Colour and symbol 
indicate coffee cropping system (Coffee-Open = CO (Red circle), Coffee – Banana = CB (Yellow triangle), Coffee- shade tree = 
CT (Blue square). Black line indicates all systems together. Dotted line indicates environmental coffee thresholds. 
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Table 3: Results from linear mixed models to evaluate the effect of cropping system and altitude on 
microclimate and soil water content 
 

Minimum temperature              

 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 
System 0.709 0.354 2.000 21.082 0.274 0.763  
Altitude 87.322 87.322 1.000 21.554 67.471 0.000 *** 
System:Altitude 12.150 6.075 2.000 21.563 4.694 0.020 * 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 16.052 0.269 21.142 59.626 < 2.00E-16 *** 
CB -0.285 0.388 21.150 -0.734 0.471   
CT -0.103 0.399 21.041 -0.258 0.799   
Altitude -1.358 0.215 21.810 -6.314 0.000 ***  
CB:Altitude -0.200 0.340 21.657 -0.587 0.563   
CT:Altitude 0.818 0.328 21.554 2.493 0.021 *   
Mean temperature              

 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 
System 23.630 11.810 2.000 19.439 3.642 0.045 * 
Altitude 450.430 450.430 1.000 20.547 138.870 0.000 *** 
System:Altitude 17.610 8.810 2.000 20.569 2.715 0.090 . 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 21.341 0.257 19.608 83.101 <2e-16 ***  
CB -0.935 0.371 19.605 -2.523 0.020 *  
CT -0.770 0.380 19.348 -2.030 0.056 .  
Altitude -1.185 0.208 21.232 -5.698 0.000 ***  
CB:Altitude -0.734 0.327 20.799 -2.240 0.036 *  
CT:Altitude -0.480 0.316 20.569 -1.520 0.144     
Maximum temperature              

 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 
System 253.320 126.660 2.000 20.703 9.313 0.001 ** 
Altitude 489.950 489.950 1.000 21.521 36.026 0.000 *** 
System:Altitude 93.280 46.640 2.000 21.536 3.430 0.051 . 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 31.235 0.645 20.817 48.446 <2e-16 ***  
CB -3.292 0.930 20.823 -3.539 0.002 **  
CT -3.663 0.954 20.634 -3.840 0.001 ***  
Altitude -0.866 0.518 21.993 -1.670 0.109   
CB:Altitude -1.558 0.818 21.703 -1.904 0.070 .  
CT:Altitude -1.916 0.789 21.528 -2.428 0.024 *   

Temperature amplitude 
 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 

System 155.260 77.630 2.000 20.976 5.571 0.011 * 
Altitude 63.380 63.380 1.000 21.557 4.549 0.045 * 
System:Altitude 114.400 57.200 2.000 21.567 4.105 0.031 * 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 15.187 0.789 21.051 19.238 0.000 ***  
CB -3.003 1.139 21.059 -2.636 0.015 *  
CT -3.557 1.169 20.925 -3.043 0.006 **  
Altitude 0.499 0.632 21.878 0.790 0.438   
CB:Altitude -1.378 0.998 21.684 -1.380 0.182   
CT:Altitude -2.754 0.964 21.558 -2.857 0.009 **   
Vapor pressure deficit               

 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 
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System 0.596 0.298 2.000 21.041 0.843 0.444  
Altitude 2.665 2.665 1.000 21.413 7.542 0.012 * 
System:Altitude 2.640 1.320 2.000 21.419 3.736 0.041 * 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 1.252 0.159 21.087 7.867 0.000 ***  
CB -0.281 0.230 21.094 -1.224 0.235   
CT -0.225 0.236 21.008 -0.956 0.350   
Altitude 0.074 0.127 21.610 0.581 0.567   
CB:Altitude -0.438 0.201 21.493 -2.182 0.040 *  
CT:Altitude -0.466 0.194 21.411 -2.403 0.025 *   
Relative humidity               

 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 
System 137.440 68.720 2.000 20.932 0.319 0.730  
Altitude 313.930 313.930 1.000 21.323 1.459 0.240  
System:Altitude 1254.400 627.200 2.000 21.330 2.914 0.076 . 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 71.924 3.815 20.981 18.851 0.000 ***  
CB 4.399 5.505 20.988 0.799 0.433   
CT 2.156 5.652 20.898 0.381 0.707   
Altitude -3.870 3.044 21.532 -1.271 0.217   
CB:Altitude 10.891 4.812 21.408 2.263 0.034 *  
CT:Altitude 7.913 4.648 21.322 1.702 0.103     
Soil Water Content               

 Sum Sq Mean Sq NumDF DenDF F-value Pr(>F) Sig 
System 8382.000 4191.000 2.000 16.773 0.997 0.390  
Altitude 43182.000 43182.000 1.000 16.597 10.270 0.005 ** 
System:Altitude 40834.000 20417.000 2.000 16.585 4.856 0.022 * 

        
 Estimate Std.Error df t-value Pr(>|t|) sig  

(Intercept) 484.460 20.410 17.200 23.734 0.000 ***  
CB -38.760 27.510 16.910 -1.409 0.177   
CT -19.320 27.500 16.890 -0.703 0.492   
Altitude -83.470 22.780 16.710 -3.664 0.002 **  
CB:Altitude 92.060 29.650 16.620 3.105 0.007 **  
CT:Altitude 48.230 28.650 16.640 1.683 0.111     

 

We found that microclimate and soil water content oscillations followed the seasonal patterns 

described for the region, with a strong dry season from December to February and a rainy season from 

April to June (Fig. 4). This latter period coincides with the fruit developing period (Fig. 6). From June to 

September there is another short dry season, which affects SWC at low and middle altitudes, while at 

high altitude rainfall reduction was moderated. Soil water content was lower at higher altitude (Fig. 4.b) 

and also less variable along the year, where SWC values did not reach the amplitude observed at low 

and mid altitude (Fig. 4.b). Maximum temperatures surpassed 30 °C frequently at low altitudes in all 

systems (Fig. 4.a). At mid and high altitudes, 30 °C threshold was exceeded predominantly in CO and in 

the other systems only during the dry season (Fig. 4.a). From October 2015 to January 2016, maximum 

temperatures in CO coincided with a decrease in soil water content in the same system, suggesting 

higher evapotranspiration demand in CO compared to CB for this altitude. Vapor pressure deficit (VPD) 

was above 1.5 kPa during dry periods regardless of altitude and system (Fig 4.c). 
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Fig. 4. Timeline of total soil water content and microclimate variables during the study period in different coffee cropping 
systems (January 2015 – April 2016) along the altitude gradient. a) Daily rainfall and Mean monthly minimum temperature 
(Min Temp C°) and mean monthly maximum temperature (Max Temp C°), b) Soil water content (mm) from 0 to 160 cm depth, 
c), d) Vapour pressure deficit (VPD kPa). Altitude classes: Low altitude (1100 – 1400 m.a.s.l.), mid altitude (1400 – 1700 m.a.s.l.) 
and high altitude (1700 – 2100 m.a.s.l). Symbol and colour indicate type of coffee cropping system: Coffee-Open = CO (Red 
circle), Coffee-Banana = CB (Yellow triangle) and Coffee- shade Tree = CT (Blue square).  
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The path model (piecewise SEM) confirmed that altitude and shade reduced mean and maximum 

temperature, as well as VPD (Fig. 5). Minimum temperature reduced along with altitude increases while 

it was positively affected by shade. Finally, we found a negative effect of VPD and min temp on soil 

water content (Fig. 5) (Detail model results can be found in supplementary material Table S1). 

 

 
 
Fig 5. Piecewise structural equation model for the effect of shade cover (LAI m2m-2 and altitude (m.a.s.l.) on microclimate 
parameters (Mean minimum temperature °C (Mean Min Temp), mean mean temperature °C  (Mean Mean Temp), mean 
maximum temperature °C (Mean Max Temp) and vapor pressure deficit kPa (VPD) and total soil water content (mm) (0 – 160 
cm depth) (SWC). The arrows indicate unidirectional relationship between variables (p-value < 0.05). Standardized regression 
coefficients accompanying the arrows indicate the magnitude of the relationship between variables. Negative relations are 
indicated by “-“symbol before the corresponding coefficient. Grey arrows and coefficients indicate previously defined 
relationships among variable introduced in the model. 

 

5.3.2.	Fruit	set,	leaf	set	and	branch	growth	
 
Fruit set per branch 

 

Differences in fruit set per branch between cropping systems varied from one year (2015) to the next 

one (2016). In 2015, fruit set was similar across cropping systems along the fruit development process 

for low and high altitude (Fig. 6.a (Low and high altitude)). On the other hand, at mid altitude, CB had 

larger fruit initiation (FS 2015 Week 0) than CO and CT (CO =26 ± 31, CB = 54 ± 39, CT = 31 ± 34) (Fig. 6.a Mid 

altitude). Those differences decreased towards the end of fruit development cycle. Thus, at harvest 

2015, CB had larger fruit set than CO, while CT was situated in between (CO = 7 ± 9, CB = 13 ± 12, CT = 

9 ± 7) (Fig. 6.a Mid altitude). When pooling all altitude classes together, fruit set differences between 

cropping systems occurred only at week 8, when CT had lower fruit set than CO and CB (Fig. 6.a (all). 

However, at harvest, these differences were no longer significant (Fig. 7.a (all)). 
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Fruit initiation in 2016 (FS 2016 Week 0) was delayed by one month, starting in April 2016, compared to 

2015. When pooling altitude classes, Coffee in CT systems had the lowest fruit set (10 ± 15) at fruit 

initiation (CO=29 ± 12 and CB=22 ± 32). And, this pattern was repeated in week 8 of 2016 (CO= 28 ± 43, 

CB= 19 ± 28, CT= 9 ± 13) and week 17 of 2016 (CO= 20 ± 27, CB= 15 ± 23, CT= 8 ± 11). However, at 

harvest we did not see any differences in fruit set between systems (CO= 3 ± 8, CB= 1 ± 3, CT= 0.6 ± 2.3) 

(Fig. 6.a. (all)). Lower fruit set in CT than in CO and CB occurred at low and mi altitude, while there were 

no systems differences in fruit set along the fruit development process at high altitude (Fig. 6.a). 

 

 
 

Fig.6. Timeline of coffee reproductive variables, (a) Fruit set per branch, (b) productive branches per stem, (c) fruit set per 
stem. Colour and symbol indicates coffee cropping system (Coffee-Open = CO (Red circle), Coffee – Banana = CB (Yellow 
triangle), Coffee- shade tree = CT (Blu square) and all systems = All (Black diamond) in three altitude classes altitude classes 
(Low altitude (1100 – 1400 m.a.s.l.), mid altitude (1400 – 1700 m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l) during the study 
period (from April 2015 to December 2016). Letters indicate significant differences across systems in the specified point in time 
(p-value > 0.05, generalized mixed models). Absence of letters indicate no significant differences across systems. 
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Productive branches per stem 
 
Mean number of productive branches per stem was 36 ± 16 at fruit initiation in 2015 and 29 ± 20 in 

2016 (Fig. 6.b, (All)). At harvest, number of productive branches decreased by 28 % (26 ± 15) in 2015 

but increased by 27 % (37 ± 25) in 2016 compared to the same variable at fruit initiation (Fig. 6.b, (all)). 

In 2015, there were no differences in number of productive branches (at fruit initiation and at harvest) 

across systems (Fig. 6.b). On the contrary, in 2016 coffee trees in CT systems had a smaller number of 

productive branches at low and mid altitude at fruit initiation and at harvest (Fig. 6.b). This pattern also 

occurred when pooling all altitude classes together (Fruit initiation: CO = 35 ± 20, CB=31 ± 18 and CT= 

21 ± 18 and harvest: CO = 41 ± 25, CB=44 ± 26 and CT= 28± 21) (Fig. 6.b (all)). Finally, no differences in 

productive branches across systems occurred at high altitude (Fig. 6.b, High altitude). 

 

Fruit set per stem 
 

Similarly, as with number of productive branches, differences in fruit set per stem across cropping 

systems occurred only at mid altitude in 2015 and at low and mid altitude in 2016 (Fig. 6.c). In 2015, 

mean fruit set per stem at fruit initiation (2015 Week 0) was 1871 ± 2283 and at harvest fruit set per 

stem was 679 ± 816 (-63 %). In this year, at mid altitude coffee in CB system had larger FS Stem than the 

other systems at fruit initiation (CO = 1289 ± 1671, CB = 2543 ± 1932 and CT = 1228 ± 1127 and at 

harvest (CO = 317 ± 410, CB = 700 ± 886 and CT = 349 ± 253) (Fig. 6.c ,Mid altitude). The following year 

(2016), mean FS Stem at fruit initiation (Week 4) was 1317 ± 2370 and at harvest 110 ± 314 (- 92 %). 

Coffee in CT systems had consistently smaller FS Stem at fruit initiation and at harvest in low and mid 

altitude classes (Fig. 6.c Low altitude, Mid altitude and all). 

 

Fruit drop per branch 
 
In 2015, fruit drop per branch in the first 8 weeks (Week 8) averaged 30 ± 26 % for all systems. At week 

17th (FD 2015 Week 17) averaged 41 ± 27 % and at harvest cumulated 57 ± 27 % (Fig. 7.a (all)). We did not 

find differences in fruit drop per branch across systems in any of the altitude classes nor in all data 

pooled together (Fig. 7.a (all)). The largest fruit drop per branch occurred at Mid altitude (67 ± 24 %) 

(Low altitude = 49 ± 27 %, High altitude = 55 ± 29 %) (Fig. 7.a). In 2016, the fruit drop per branch in the 

first eight weeks averaged 19 ± 27 %; after 17th week, fruit drop per branch was 30 ± 30 % and at harvest 

it accumulated up to 76 ± 38 %. Coffee - Banana had the largest fruit drop (83 ± 33 %) and CT the smallest 

(65 ± 45 %) when altitude classes are pooled together (Fig. 7.a (all)). At low altitude, CT had also the 

smallest fruit drop (44 ± 48 %) compared to CO (75 ± 33 %) and to CB (86 ± 27 %) (Fig. 7.a (Low altitude)). 
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Productive branch death 
 
At harvest in 2015, there were 30 % less productive branches than at fruit initiation of the same year. 

We did not find any differences between cropping systems or along the altitude gradient. In the 

following year, 2016, there were 10 % less productive branches at harvest compared to fruit initiation. 

As in the previous year, we did not find any significant differences in branch death across systems and 

altitude (Fig. 7.b). 

 

Fruit drop per stem 

 

In 2015, mean fruit drop per stem was 55 ± 29 % and in 2016 fruit drop per stem was 74 ± 50 %. Fruit 

drop per stem did not differ between cropping systems, probably due to the high variability between 

trees of the same plot, as it is indicated by the standard deviation and the lower number of plots 

sampled in relation to the number of trees per plots (Fig. 7.c). 
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Fig. 7. (a)Percentage of fruit drop per branch, (b) percentage of branch death, (c)percentage of fruit drop per stem. Colour 
indicates coffee cropping system (Coffee-Open = CO (Red), Coffee – Banana = CB (Yellow), Coffee- shade tree = CT (Blue) and 
all systems = All (Grey) in three altitude classes altitude classes (Low altitude (1100 – 1400 m.a.s.l.), mid altitude (1400 – 1700 
m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l) during the study period (from April 2015 to December 2016). Letters indicate 
significant differences across systems in the specified point in time (p-value > 0.05, generalized mixed models). Absence of 
letters indicate no significant differences. 

 

Leaf set  
 

For both years (2015 and 2016), mean number of leaves per branch increased in the first 17 weeks after 

fruit initiation, while in the last weeks of fruit development, leaf set per branch stagnated in 2015 or 

even reduced in 2016 (Fig. 8.a). Differences in leaf set across systems were more pronounced in 2015 

than in 2016 and varied depending on the altitude class. At low altitude, coffee in CO systems had less 

leaves per branch than CT and CB. On the contrary, at mid and high altitude, CT had less leaves per 

branch than the other systems (Fig. 8.a). 
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Number of internodes per branch 
 

Similarly, as with leaf set per branch, number of internodes per branch increased more pronounced in 

the initial weeks of fruit development and stagnated towards the harvest. At low altitude, coffee in CT 

had more internodes per branch than in the other cropping systems, but only during 2015. In 2016, at 

mid altitude and high altitude, CT had less internodes per branch than CO and CB (Fig. 8.b). 

 

Total number of branches per stem 
 

In 2015, total number of branches per stem was similar across systems, except for CT at mid altitude 

where coffee trees had less branches at fruit initiation. In 2016, CB had more branches at low and mid 

altitude, while at high altitude, CO had higher number of branches (Fig. 8.c). 

 

Total number of leaves per stem 
 

In 2015, leaf set per stem was 508 ± 467 at fruit initiation and at harvest 874 ± 735. We did not find any 

significant differences between cropping systems when altitude classes were pooled together, neither 

when analyzed by altitude class. In 2016, CT had less leaves per stem at mid, high altitude and when 

pooling all altitude classes together. On the other hand, at low altitude, CT had less leaves at fruit 

initiation than CO and CB, but at harvest CO had the smallest leaf set per stem (Fig. 8.d). 

 

Total number of internodes per stem 
 

Mean number of internodes constantly increased along the study. In 2015, all systems had similar 

number of internodes per stem. While the following year, CT system had less internodes per stem at 

low and mid altitude at fruit initiation and at high altitude at harvest. When pooling all data together, 

CT had a smaller number of internodes per stem than CO and CB (Fig. 8.e) 
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Fig. 8. (a) Leaf set per branch, (b) internodes per branch, (c) total branches per stem, (d) leaf set per stem and e) internodes 
per stem. Colour indicates coffee cropping system (Coffee-Open = CO (Red), Coffee – Banana = CB (Yellow), Coffee- shade tree 
= CT (Blue) and all systems = All (Grey) in three altitude classes altitude classes (Low altitude (1100 – 1400 m.a.s.l.), mid altitude 
(1400 – 1700 m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l) during the study period (from April 2015 to December 2016). 
Letters indicate significant differences across systems in the specified point in time (p-value < 0.05, generalized mixed models). 
Absence of letters indicate no significant differences. 
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5.3.3.	Piecewise	Structural	Equation	Model	(SEM)	
 
According to the piecewise SEM , altitude had a direct and positive effect on total number of internodes 

at harvest in 2015 (Int 2015 Harvest) (Table 4 and Fig. 9.a) but a negative effect on total number of leaves 

also at harvest in 2015 (LS 2015 Harvest) (Table 4 and Fig. 9.b). Altitude had no significant effect on the other 

variables or was excluded by the piecewise SEM (Table 4). On the other hand, shade reduced fruit drop 

in the first year (2015) (FD 2015) (Table 4 and Fig. 9.c), while in the second year (2016) fruit set at fruit 

initiation (FS 2016 Week 0) and at harvest (FS 2016 Harvest) was negatively affected by shade (Table 4 and Fig. 

9.d and Fig. 9.e). For the other variables the path model indicated non-significant effect of shade or 

shade was excluded from the model (Table 4). Finally, the path model indicated a negative interactive 

effect of altitude and shade on total number of leaves at harvest for both years (LS 2015 Week 17) and LS 2016 

Week 17) (Table 4, Fig. 9.f and Fig. 9.g). 

 

Table 4: Summarized results from piecewiseSEM (Model 2). Effect of shade cover and altitude on coffee 
reproductive and vegetative growth in 2015 and 2016 (Alt = Altitude (m.a.s.l.), Shade = Sahde cover (m2m-2), Int = 
Internodes per stem, LS = leaf set per stem, FS = fruit set per stem and FD = fruit drop). 

 
    2015 2016 

  Alt Shade Alt X 
Shade 

Int 
Week 0 

LS 
Week 0 

FS 
Week 0 FD  Int 

Harvest 
LS 

Harvest 
FS 

Harvest 
Int 

Week 0 
LS 

Week 0 
FS 

Week 0 FD  Int 
Harvest 

LS 
Harvest 

FS 
Harvest 

Alt                                   

Shade                                   
2015                                   
Int 
Week 0  n.s. n.s. n.s.                             

LS 
Week 0 

n.s. // // 0.63 
***                           

FS 
Week 0 

// n.s. // 0.27 
*** 

0.33 
***                         

FD 
// -0.22 

** // 0.22 
** 

-0.11 
* 

0.16 
**                       

Int 

Harvest  
0.16 

* // // (+) 
*** 

0.52 
*** 

0.13 
*** n.s.                     

LS 
Harvest  

-
0.20 
** 

n.s. 0.16 
* 

-0.32 
*** 

(+) 
*** n.s. // 0.79 

***                   

FS 
Harvest 

// // // -0.37 
*** 

0.34 
*** 

(+) 
*** 

(-) 
*** 

0.40 
*** 

0.10 
*                 

2016                                   

Int 
Week 0  

n.s. // // (+) 
*** 

0.55 
*** n.s. 0.09 

** 
(+) 
*** // //               

LS 
Week 0 

// n.s. // -0.46 
*** 

(+) 
*** 

0.17 
*** // // (+) 

*** // 0.83 
***             

FS 
Week 0 

// -0.15 
** // 0.19 

** 
-0.26 
*** n.s. // -0.49 

*** 
0.61 
*** // 0.35 

*** 
0.20 
***           

FD 
n.s. // // -0.23 

** n.s. -0.16 
* 

0.69 
*** 

0.20 
*** 

-0.20 
* 

0.26 
*** //  n.s. 0.23 

***         
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Int 
Harvest 

// // // (+) 
*** 

0.39 
*** n.s. // (+) 

*** n.s. n.s. (+) 
*** 0.11** 0.10 

** //       

LS 
Harvest 

n.s. n.s. -0.25 
* 

-0.16 
** 

(+) 
*** // n.s. // (+) 

*** 
0.26 
*** n.s. (+) ** 0.09 

* 
0.14 
*** 

0.52 
**     

FS 
Harvest 

// -0.18 
* // // // // -0.10 

* 
-0.26 

** 
0.34 
*** 

-0.10 
* 

0.21 
** // (+) * (-) 

*** // 0.1 *   

Sig 
// Excluded by the path model 
n.s. Non- significant (p-value > 0.05) 
Values in grey indicate obvious relationships between variables 
 

In general, total number of leaves had a positive effect on both vegetative growth (total number of 

internodes) and fruit set and a negative effect on fruit drop (Table 4). This pattern was consistent for 

both years (2015 and 2016). More intricate is the effect of total number of internodes, since it varied 

depending on the point of the fruit development cycle. A higher total number of internodes 

corresponded with higher fruit initiation in 2015 and larger number of leaves (Table 4). The opposite 

trend occurred at harvest, were initial large number of internodes had a negative effect on fruit set (FS 

2015 Harvest) and leaf set (LS 2015 Harvest) (Table 4). Nevertheless, more internodes at harvest (Int 2015 Harvest) 

corresponded with higher fruit set (FS 2015 Harvest) and leaf set (LS 2015 Harvest) (Table 4). Similarly, total 

number of internodes at harvest in 2015 had a negative effect on initial fruit set (FS 2016 Week 0) and at 

harvest (FS 2016 Harvest) in 2016. While a larger number of internodes at fruit initiation in 2016 

corresponded with larger fruit initiation (FS 2016 Week 0) and fruit set at harvest (FS 2016 Harvest) (Table 4). 
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Fig. 9. a) Internodes per stem 2015 Harvest vs altitude (m.a.s.l.), b) leaf set per stem 2015 Harvest vs altitude (m.a.s.l.), c) fruit drop per 
stem 2015 vs shade cover (m2m-2), d) fruit set per stem 2016 Week 4 vs shade cover (m2m-2), e) fruit set per stem 2016 Harvest vs shade 
cover (m2m-2), f) leaf set per stem 2015 Harvest vs shade cover (m2m-2) and g) leaf set per stem 2016 Harvest vs shade cover (m2m-2). 
Colour indicates coffee cropping system (Coffee-Open = CO (Red), Coffee – Banana = CB (Yellow), Coffee- shade tree = CT (Blue) 
and all systems = All (Grey) in three altitude classes altitude classes (Low altitude (1100 – 1400 m.a.s.l.), mid altitude (1400 – 
1700 m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l) during the study period (from April 2015 to December 2016). 

 

Higher fruit set at fruit initiation in 2015 lead to larger fruit drop in the same year (FD 2015) but had a 

negative effect on fruit drop the following year (FD 2016). On the other hand, larger fruit set at harvest 

stimulated larger fruit drop the following year, resulting in less fruit set at harvest in 2016, but more 

leaves. Initial fruit set in 2016 was also related to larger fruit drop (FD 2016), larger number of internodes 

and number of leaves at harvest (Table 4). Finally, fruit drop in 2016 (FD 2016) had a negative effect on 

the following total number of leaves and internodes (Table 4) (The complete piecewise SEM can be 

found in supplementary materials in Table S2.). 
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5.4.	 Discussion	
 
Microclimatic differences across coffee cropping systems were noticeable regarding mean temperature 

(mean Temp), maximum temperature (max Temp) and temperature amplitude (∆ Temp). A more 

extreme microclimate occurred in low shaded systems along the altitudinal gradient. Finally, differences 

in soil water content (SWC) across coffee cropping systems varied depending on altitude and, contrary 

to our expectations, SWC decreased with altitude, probably due to different soil characteristics along 

the altitudinal gradient. 

 

Shade (represented by type of cropping system and shade cover) had an effect on fruit set only during 

the second year and at low and mid altitude, with CT systems presenting smaller fruit set per stem. On 

the contrary, differences in vegetative growth across systems were pronounced during the first year, 

when coffee in CT systems tend to have more leaves and internodes at low altitude. Whereas the 

opposite occurred at mid and high altitude. Fruit drop did not differ across systems, except for the low 

altitude in 2016, and it was directly correlated with initial fruit set. Finally, fruit set in 2016 was lower 

than in 2015 irrespective of cropping system. 

 

In general, larger leaf set had a positive effect on vegetative and reproductive growth along the fruit 

development process in both years. More internodes are positively related with larger fruit set in each 

specific point of the fruit development process. However, previous larger number of internodes have a 

negative effect on following fruit set. On other hand, the piecewieseSEM did not show a negative 

significant effect of fruit set on following internode development. Further details are discussed below. 

 

5.4.1.		Microclimate	and	soil	water	content	
 
Shaded systems buffered coffee from extreme microclimate conditions in comparison to open systems 

and reduced soil evaporation. These findings agree with Sarmiento-Soler et al. (2019) for the same area 

and microclimate studies from other coffee regions (Campanha et al., 2004; Lin, 2007; Partelli et al., 

2014; Oliosi et al., 2016; Rigal et al., 2020). Despite the microclimate buffering effect provided by shaded 

systems, maximum temperatures still surpassed recommend thresholds for coffee cultivation 

(Maximum temperature: unsuitable > 32 °C (Nunes et al., 1968; Descroix & Snoeck, 2008), suboptimal:  

(Descroix & Snoeck, 2008), optimal: 25-26°C (Descroix & Snoeck, 2008)).  

 

However, despite the high temperatures, we could not observe any detrimental effects of high 

temperature on initial fruit set, as expected following Drinnan and Menzel. (1995). Our results concur 

with field observations of other coffee regions, in which coffee trees maintain their production despite 
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high temperatures whenever rainfall and hence water supply are sufficient (Verhage et al., 2017). This 

was certainly the case during the period from January 2015 and April 2016, as reported by Sarmiento-

Soler et al. (2019). Thus, these findings support the statement of DaMatta et al. (2018b) that coffee tree 

could endure temperature rise better than previously projected and encourage to focus on the 

importance of sufficient water supply to ensure coffee yields during current and future climate change 

scenarios. The importance of sufficient water supply has also been addressed by Rahn et al. (2018b) and 

Verhage et al. (2017), who predicted through a modelling exercise that CO2 fertilization effect can offset 

negative impacts of heat given water supply is not limiting. 

 

It is interesting to notice that soil water content was unexpectedly lower at high altitude compared to 

low and mid altitudes, despite higher rainfall. One reason for this could be differences in soil 

characteristics, as demonstrated by De Bauw et al. (2016), which might have not been sensitive to the 

soil water content measurement method we used (Sentek Device with default equation). Another 

explanation could be that despite VPD reduces with altitude, VPD values were high enough to stimulate 

transpiration, but not high enough to trigger stomata closure as a water protection mechanism. Thus, a 

constant transpiration at this altitude class in addition to higher exposure to winds could also be a reason 

behind lower soil water content found at high altitude, although more data would be necessary to test 

this hypothesis. 

 

5.4.2.	Fruit	development	process	
 
The use of piecewise SEM analysis allowed to confirm certain relationships between fruit set, fruit drop 

and environmental variables addressed in previous studies (Franck et al., 2005; Bote & Vos, 2016; Cerda 

et al., 2017). It also allowed us to disentangle the effects of environmental conditions on coffee growth 

vegetative and reproductive in a specific year, from the effects of coffee growth (vegetative and 

reproductive) of one year on coffee growth during the following year. 

 

Based on our hypothesis, we expected that shade reduced directly fruit initiation, by reducing radiation 

and temperature (Cannell, 1985; Franck et al., 2005; Franck & Vaast, 2009; Rigal et al., 2020). This was 

confirmed by our study, however not consistently across years. Our results indicated different responses 

of fruit set and fruit drop to shade and cropping system depending on the year. In the first year (2015), 

shade cover or cropping system did not have any significant effect on fruit set. However, fruit drop 

reduced with shade cover as indicated by the piecewise SEM (Table 4 and Fig. 9.c). We attributed the 

effect of shade cover on fruit drop in 2015 as a result of the microclimate buffering effect, higher leaf 

set in shaded systems, especially at low altitude and a slightly lower initial fruit set. Thus, our results 
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highlight the importance of maintaining a adequate leaf area/fruit ratio with an estimated optimal range 

around 15-20 cm2 of leaf per fruit (Vaast et al., 2006). 

 

In the second year (2016), fruit set was significantly reduced by shade cover, which was also visible in 

the differences in fruit set across cropping systems, in particular at low and mid altitude (Fig. 6.a., Fig. 

9.d and Fig. 9.e). Moreover, fruit drop remained similar across cropping systems and along the shade 

cover gradient. Therefore, a lower fruit initiation in shaded systems was not compensated by a smaller 

fruit drop rate, contradicting our fruit drop-shade hypothesis. Yet, fruit drop was positively correlated 

with initial fruit set as confirmed by the piesewiese SEM, which was also reported by Bote and Vos 

(2016) in their fruit thinning experiment in Ethiopia and by others (Vaast et al., 2005; Vaast et al., 2006). 

 

Additionally, we did not find a consistent pattern in fruit drop phases. While in the first year, most of 

the fruit drop (30 % of 50 %) occurred within the first 8 weeks and was therefore related to fecundation 

failure according to DaMatta et al. (2007). In the second year, most of the fruit drop occurred during 

the last weeks, which points towards high competition between fruits, which is also indicated by the 

piesewiese SEM through the highest estimate and significance level (Table 4). The fact that during the 

second year, fruit drop per branch and per stem was stronger than in the first year, despite higher leaf 

set in the second year and smaller initial fruit sets, suggest that fruit drop cannot only be attributed to 

fruit/leaf ratios, but also other mechanisms take place which require further investigation. 

 

We also did not find a clear altitudinal pattern, when focusing exclusively on altitude. This contradicts 

our hypothesis of a positive altitudinal effect on coffee reproductive and vegetative growth due to 

better growing conditions with increasing altitude. However, altitude interacted with shade and had a 

negative effect on vegetative growth, as, evidenced by the piecewise SEM (Table 4, Fig. 9.f and Fig. 9.g). 

We observed, that shade had a positive effect on leaf set at low altitude, probably as a result of reduced 

radiation and VPD (reducing heat and drought stress). But with increasing altitude (mid and high 

altitude), CT systems had a lower number of internodes and consequently less leaves, probably due to 

the combined effect of lower temperatures from altitude increases, and the buffering effect from the 

shade. This agrees with the observations of Drinnan and Menzel. (1995), that vegetative growth is 

related to temperature, and that at highest temperature more growth occurs both in elongation and in 

number of nodes. 
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Nevertheless, despite a decrease of vegetative growth as a result of the interaction of altitude and 

shade, this did not affect fruit set at high altitude, which was comparable across cropping systems for 

the two years of the study (Fig. 6.a.). We also did not observe a negative effect of fruit set on leaf set, 

as it was expected from the strong competition between reproductive and vegetative growth reported 

by other authors (Vaast et al., 2005; Bote & Vos, 2016; Charbonnier et al., 2017). Which reinforces the 

need to study further mechanisms controlling fruit drop, beyond fruit/leaf area ratios and competition 

(Vaast et al., 2005). 

 

We observed contradictory effects of the number of internodes per stem with fruit set along the fruit 

development process. Number of internodes at fruit initiation was positively related with initial fruit set 

in the same year (i.e. FS 2015 Week 0 ~ (+) Int 2015 Week 0 and FS 2015 Week 0 ~ (+) Int 2015 Week 0), merely more 

internodes, more places were flower buds can develop. However, number of internodes at harvest had 

a negative effect on initial fruit set of the following year (FS 2016 Week 0 ~ (+) Int 2015 Harvest), which was 

contrary to our expectation, that a higher vegetative growth in 2015, would lead to higher fruit set in 

the following year (Vaast et al., 2005). Hence, this suggests that shoot growth allows the development 

of more flowers (providing more nodes where flowers can develop), but also on the other side competes 

with flower development. Thus, as suggested by (Bote & Vos, 2016) biennial patterns could not only be 

explained by reduced number of potential flowering nodes, but also by less or no flower formation on 

those nodes.  This would need further studies and a closer monitoring of hormonal growth control. 

 

Finally, number of leaves demonstrated to be the most important variable determining fruit set, further 

vegetative growth and reducing fruit drop. This is rational since carbon assimilation in coffee trees 

occurs mostly on the leaves, although it has been demonstrated that green coffee fruits perform 

photosynthesis (Vaast et al., 2005). Initial leaf set in 2015 (LS 2015 Week 0) was one of the most determinant 

variables for fruit set and growth in 2015 and 2016, which could be explained by the fact that mature 

leaves are more resistant to heat and other stress (Marias et al., 2017), thus reducing leaf senescence 

and ensuring carbon assimilation through the fruit development process. 

 

The relevance of leaf set in determining yields has also been demonstrated by Cerda et al. (2017), who 

pointed out that defoliation due to pest incidence, was one of the main determinants for yield losses, 

in particular during the second year. DaMatta et al. (2007) also pointed out that leaf maintenance is 

associated with improved vegetative growth. Hence, our study highlights the importance to maintain 

leaf area in coffee trees and reduce early leaf senescence. 
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5.4.3.	Caveats	of	the	study	
 
Firstly, our data presented a high standard deviation, high differences in reproductive and vegetative 

growth between trees belonging to the same plots. This made it difficult to clearly distinguish cropping 

systems effects. However, high variability is typical for small holder systems and should be also 

addressed as a strategy to improve yields, e.g. to bring all coffee trees in a plot to similar growth levels. 

Secondly, our study covered only two years of coffee fruit development. Three or more years would 

have been ideal to confirm biennial patterns and to better address and disentangle environmental 

effects from growth effects on those biennial patterns. Finally, the soil water content probe was used 

(Sentek deviner) with the default equation which allowed to explicitly compare soil water content across 

similar soil profiles. However, when soil properties change (as was the case due to the altitudinal 

gradient), those comparisons turn difficult and less accurate. Hence, for further studies, soil type of each 

profile should be determined to derive the appropriate equation to allow more confident comparisons. 

 

5.5.	 Conclusion	
 
This study remarks the importance of maintaining a shade cover in coffee cropping systems to buffer 

coffee cultivated underneath from microclimate extremes. However, shade cover has to be managed, 

to allow for optimal vegetative growth and leaf area maintenance, without hampering fruit set. 

Moreover, leaf set proved to be a crucial variable to maintain vegetative and reproductive growth 

throughout several seasons. Further studies are needed to explain high fruit drop causes beyond 

unbalanced fruit/leaf area ratios. Intermediated shade cover (LAI ~ 1 m2m-2), as occurred in coffee 

intercropped with bananas showed an optimal balance between microclimate regulations, fruit set and 

fruit drop, a part of provide an important staple food and an extra source of income. 
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6. Discussion	
 
This research took place in an important coffee Arabica region in Eastern Africa (Mt. Elgon) dominated 

by smallholder farmers (with farms smaller than 2 ha). Rising of temperatures and increase of rainfall 

variability as consequences of climate change impose serious challenges on the coffee sector, 

particularly for smallholder famers, as the ones located on Mt. Elgon. Whithin this context, better 

understanding of agronomic performance and ecological functioning of coffee cropping systems can 

guide climate change adaptation measures in this region. The overall goals of this study were to identify 

major benefits and limitations of the current coffee cropping systems along a climatic gradient (imposed 

by an altitudinal gradient) and identify management strategies which could improve yield performance 

and increase household resilience within sustainable intensification bounds (Godfray 2015). 

 

To achieve this, we studied two types of ecosystem services: i.e. provisioning (coffee yield) and 

regulating (microclimate buffering and water balance) services, in different coffee cropping systems 

(coffee low shade (Coffee-Open), coffee intercropped with bananas (Coffee-Banana) and coffee 

intercropped with shade trees (Coffee-Shade Tree) on the slopes (1100 – 2100 m.a.s.l.) of Mt Elgon in 

Uganda. And addressed the following questions, (i) How does coffee yield (kg ha-1) and coffee yield 

components vary along the shade and altitudinal gradient? (ii) How do coffee cultivation conditions vary 

as a funtions the the type of cropping system and seasonal climate variation? Do these differences affect 

coffee water use and how? (iii) How do shade and altitudinal gradient affect coffee fruit development, 

coffee fruit drop and coffee reproductive/vegetative growth dynamics? 

 

We found that coffee-Banana (CB) had larger coffee yields than coffee-Open (CO) and coffee-shade Tree 

(CT), while CT had the lowest coffee yields. This partially supports our first hypothesis, in which shade 

cover increases has a detrimental effect on yield. However, significant variation of yield along the 

altitudinal gradient was not observed, which contradicted our expectations. Concerning our second 

hypothesis, we found that indeed, shaded systems, CB and CT better regulated microclimate for the 

coffee planted underneath than CO. For instance, CB systems reduced by 30 % incoming radiation and 

CT by 60%, this incoming radiation decrease was associated with a reduction of maximum temperatures 

and temperature amplitude by 4°C. Shaded systems had lower soil water content than CO (CB – 6 % and 

CC – 54 %) at low altitude. However, despite microclimate and soil water content differences across 

systems, coffee water use did not differ significantly across cultivation systems.  
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Furthermore, we found that lower fruit inititation in shaded CT systems was not compensated by less 

fruit drop, since all cropping systems had similar fruit drop rates. On the other hand, shade cover helps 

to maintain leaf set, which is a key variable to ensure reproductive and vegetative growth. Therefore, 

shade cover should be carefully managed to allow for optimal reproductive growth and leaf 

maintainance. Finally, maximum temperature was above 30°C for several consecutive days in all systems 

studied during the dry season, but this did not have a dramatic effect on fruit development, suggesting 

that coffee trees might stand higher temperatures than previously thought. 

 

Overall, we did not find the expected coffee yield increases with increasing altitude. This may be 

attributed to lower temperatures that may have been sub-optimal for various processes affecting flower 

formation, dry matter accumulation and coffee yield and or to the soil characteistics gradient found in 

the study area. This lacking effect of altitudinal gradient on coffee yield requires further investigation in 

the research area and comparison compared with similar and differing mountainous coffee growing 

regions. 

 

6.1.	 Merits	and	caveats	of	the	study	
 
This is a unique dataset on coffee performance (vegetative and reproductive growth), microclimate and 

soil water content under smallholder conditions along an environmental gradient. Moreover, to our 

knowledge, this is the first study that explicitly investigates microclimates and coffee water use in coffee 

intercropped with bananas. This coffee-banana cropping system is of particular interest due to 

importance of both species to Ugandan livelihoods and diets (van Asten et al., 2011). 

 
We acknowledge that research conducted under on-farm smallholder conditions implies higher 

variability and confounding factors than with using the more classical, controlled experimental set-up. 

This is visible in our large standard deviation across several monitored parameters. We found large intra- 

and inter-plot variability, which, combined with various spatial and temporal scales, increases data 

complexity. This study was based on the detailed monitoring of twenty-seven coffee plots along an 

altitudinal and management gradient. In each coffee plot, 30 coffee trees were monitored in detail. We 

found that for further research of this kind, it could be of major interest to increase the number of plots 

as much as possible (given financial and labour constraints). High intra-plot variability requires more 

measurements within the plot in order to fully understand the drivers behind variability and find 

potential management practices to focus on. However, the high intra-plot variability provides valuable 

insights into the realities of smallholder livelihoods in the region and valuable quantitative information 

as well. 
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In the following sections it is discussed in more detail how the results are related to the objectives and 

hypotheses presented in the introduction and what their impact are, e.g. how the findings contribute 

to the needs of Mt. Elgon farmers, other relevant resource managers in the region and the Ugandan 

coffee industry more generally. 

 

6.2. Coffee	yield	implications	for	livelihoods	in	the	region	
 
As mentioned before, while agroforestry systems provide many ecosystem services, their provisioning 

services (yield) remain key for social and economic sustainability, at least in current economic and 

market scenarios (Gobbi, 2000; Perfecto et al., 2005; Godfray & Garnett, 2014). If the cropping system 

provides low yields, which are not compensated by premium consumer prices, for instance, as is the 

case of certified production; farmers may look into intensifying their systems for potentially short-term 

and high-risk gains. Such conversion can, however, have a detrimental effect on the environment such 

as biodiversity loss and increasing CO2 emission. It also may lead to increased vulnerability of the 

smallholder farmers in the long run (Perfecto et al., 2005; Tscharntke et al., 2012). 

 

In our study, we found yields ranging from 0 kg ha-1 to 2300 kg ha-1with a mean value of 716 kg ha-1. 

Similar average farmer’s yields and yield ranges have been reported by Wang et al. (2015) for the same 

region. Same authors suggest there is a yield gap of 57%, which is the difference between the average 

observed and the attainable yield (defined as the maximum observed yield in the same area by Wang 

et al. (2015)). Our results indicate an even larger yield gap (68 %)12 which suggests that yields could be 

increased, at least, up to the currently observed maximum yield in the region, by using more appropriate 

management practices (e.g. regulating amount of shade, maintaining a maximum number of 3 stems 

per coffee tree) (Chapter 3). Coffee cultivation at Mt Elgon is characterized by low intensification levels 

(De Bauw et al., 2016; Liebig et al., 2016; Rahn et al., 2018a). This was also reflected in our results by 

the low coffee tree density and low LAI (Chapter 3, Table 1). Despite low coffee yields in the region, 

when compared to the attainable yield, or to yield levels achieved in so-called high yielding countries 

such as Colombia, Costa Rica or Vietnam13 (average yields above 1000 kg ha-1, from 2014 to 2016), 

observed yields in our study area during the given study period (2015-16) are still above the average 

yields reported by FAOSTAT for East Africa1 (~566 kg ha-1, from 2014 to 2016). 

 

 
12 Estimated from the maximum observed yield (2300 kg ha-1) and the average observed yield (716 kg ha-1) 
13 Colombia (945 kg ha-1), Vietnam (945 kg ha-1),  Burundi  (848 kg ha-1),  Costa Rica (1099 kg ha-1), Kenya (408 kg ha-1), 
Rwanda (570 kg ha-1), Ethiopia (705 kg ha-1)  according the data provided by FAOSTAT (2018-11-28) average yield (kg ha-1) 
from 2014 to 2016. 
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We found that the observed yields at stem level (~0.2 kg) and fruit loads per stem (~ 1500) were 

comparable to the results of other studies, including those run under experimental conditions in Costa 

Rica and Ethiopia (Bote & Vos, 2016; Cerda et al., 2017b). Comparable yield (and fruit load values) 

between our study (under on-farm conditions) and other studies (under experimental controlled 

conditions) supports that coffee trees at Mt: Elgon could have better yields if management is improved. 

For instance, a key result from chapter 3 was the negative correlation between several coffee yield 

components and number of stems per coffee tree. Frequent coffee pruning, maintaining a maximum of 

three stems per tree could help increase coffee yield per stem on Mt. Elgon. Furthermore, we found 

that low coffee tree density also maintains low coffee yield per ha in this area. This agrees with Wang 

et al. (2015) and Rahn et al. (2018a), who reported that coffee yields per ha could be improved through 

an increase in coffee planting density which currently at Mt Elgon is approx. 2000 coffee trees ha-1. 

 
Increasing coffee tree density might have negative knock-on effects that should be considered carefully. 

For instance, Jassogne et al. (2013) warns that increasing coffee tree density can negatively influence 

the intercropping with annual food crops (cultivated in between the coffee trees), as it reduces the 

space, soil water, and nutrients available, as well as the incoming radiation below coffee canopies. In 

addition, an increased density of coffee trees can also increase competition for water and nutrients 

among coffee trees. From our water use study (Chapter 4), we learned that during our measurement 

campaign at Mt Elgon, available water had been sufficient to support shaded systems, even for high 

density coffee stands (4000 coffee trees ha-1). 

 

However, we cannot claim the same for soil nutrients, as we did not investigate this in detail, nor did 

we find significant differences between soil properties across systems. However, other studies warn of 

the poor soil fertility in the area (van Asten et al., 2011; Wang et al., 2015; De Bauw et al., 2016). For 

Mt. Elgon, De Bauw et al. (2016) indicated soil fertility decreased along the altitudinal gradient. 

Moreover, same authors indicated that nutrients deficiencies also varied along the altitudinal gradient, 

nitrogen being a limiting factor at low altitude and sulfur at high altitude, which is to be expected based 

on temperature and rainfall gradients for the Nitisols developed from the volcanic substrate of Mt. Elgon 

(Sombroek & van de Weg, 1980; Jones et al., 2013). Nonetheless, De Bauw et al. (2016) was not able to 

relate soil nutrients gradient with coffee nutrient deficiency gradients. Thus, further studies on the soil 

nutrient status combined with analyses of nutrient uptake (at least of macro-nutrients NPK) and their 

concetrations in various plant organs will help to better understand nutrient deficiencies in the region 

(see, Janssen et al. (1990)). 
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Capa et al. (2015), suggested through their experiment that moderate applications of fertilizers could 

help to increase yields in full-sun systems without considerable increasing N2O emissions and NO3 

leaching. We suggest that an improvement in soil nutrition could help to improve coffee productivity on 

Mt. Elgon, since due to the low intensification of the systems, nutrient replenishment might be 

insufficient14. If poor soil fertility is one of the main reasons behind the current yield gap this problem is 

likely to become more serious in the future. Before fertilizer recommendations can be made, it is 

important to locally test practices that improve nutrient recycling for their performance in the various 

cultivation systems present in the region.  

 
Our hypothesis, that higher shade cover reduces yields was confirmed by our results (Chapter 3), in 

which fruit load per branch and productive branches per stem reduced with shade cover in all cultivation 

systems. For this region, the negative relationship between shade cover (or shade tree density) and 

yields was also reported by Wang et al. (2015) and by several other studies in other coffee regions 

(Campanha et al., 2004; DaMatta, 2004; Morais et al., 2006; López-Bravo et al., 2012). Nevertheless, we 

also found that intermediate shade level systems (below 40 % and above 20 %), such as CB can provide 

higher or equal yields than low (< 20 %) shaded systems. Similar findings were also reported for Uganda 

by van van Asten et al. (2011) and for other coffee regions (Soto-Pinto et al., 2000; Cerda et al., 2017a; 

Meylan et al., 2017). Higher maximum temperatures and higher temperature amplitude combined with 

higher radiation in low shaded systems might be one of the reasons for limited yields under open 

conditions in our study. Furthermore, low shaded systems were more exposed to heavy rains that could 

have caused of fruit drop. On the other hand, under heavier shaded systems (CT), yields were also 

reduced. This was due to lower fruit initiation as demonstrated in chapter 5. 

 

As we observed in chapter 5, the yield differences across systems were initially determined by reduced 

fruit initiation in CT, which was not fully counterbalanced by reduced fruit drop in the same system. 

Contrary to our expectations, that shaded systems, CB and CT, would have significantly lower fruit drop 

rates than CO, especially under suboptimal conditions, we found all systems had similar fruit drop rates. 

These results are surprising, since based on other studies (Vaast et al., 2008; Bote & Vos, 2016; Rigal et 

al., 2020) we expected loss fruit drop in shaded systems due to two mechanismus, (i) lower fruit load 

reduces competition between fruits and (ii) improved microclimate reduce leaf senecensce and plant 

stress. These findings conflicting with some previous work also call for further investigation. 

 

 
14 Muschler (2000) reported the following nutrient extraction (in 1500 kg green coffee ha-1): 27 kg ha-1  of Nitrogen, 1.5 kg ha-1 
of Phosporous, 3.6 kg ha-1 of Potassium and 1.4 kg ha-1 of Calcium. 
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Although we did not focus on pests and diseases in this work, we have to acknowledge that they play a 

significant role in terms of yield losses, as has been demonstrated by (López-Bravo et al., 2012), (Cerda 

et al., 2017b) and (Garedew et al., 2017). Furthermore, Liebig et al. (2016) already points out 

bidirectional effects of shade and altitude on different coffee pest and diseases in this region, thus 

further increasing complexity of the relationship between coffee yields and altitudinal gradient. For 

example, shaded systems at low altitude experienced larger white stem borer infestation rates, while 

coffee berry disease was more prominent at high altitudes in open systems (Liebig et al., 2016). Similarly, 

López-Bravo et al. (2012) suggest a direct and indirect effect of shade on leaf rust infections on coffee. 

While infestation rates were related to fruit load, i.e. larger infestations in open conditions, shaded 

conditions (more relative humidity) offered more appropriate conditions for leaf rust development 

(López-Bravo et al., 2012). These scenarios could cause similar fruit drop levels at low shade and high 

shade. Combining our results with knowledge on pest and diseases is certainly key for the further 

development of our understanding of the mechanisms behind yield losses – as found in our study. 

 

6.3. Microclimate	regulation	
 
Our results showed that in shaded systems, coffee intercropped with shade trees and with bananas, 

reduce maximum temperatures and temperature amplitude (Tmax –Tmin) up to 4 ° C along the 

altitudinal gradient. Microclimate regulation by agroforestry systems has already been studied by 

several authors in the context of coffee agroforestry systems and also in forest (Partelli et al., 2014; 

Araújo et al., 2016; de Carvalho et al., 2020). Nevertheless, such studies have taken place mostly in Latin 

America or Asia, whereas microclimate studies in African agroforestry systems are rather scarce, thus 

this work provides valuable dataset and evidence to add. Furthermore, we found that despite CB 

systems intercept less light than CT systems (Chapter 4) relative humidity is higher in this system than 

in coffee intercropped with other shade trees species. We attributed this to the linear response of 

bananas’ transpiration to vapor pressure deficit increases. And this is of highly importance, due to coffee 

stomata sensitivity to atmospheric drought (VPD >1.5 - 2 kPa). Despite, we did not find significant 

differences in coffee water use across systems due to high variability; nevertheless, we observed high Js 

values in CB, which could indicate better microclimatic conditions for coffee in those systems. 

 

To our knowledge, this is the first study that explicitly investigates microclimate in coffee intercropped 

with bananas. These cultivation systems are of particular interest due to importance of both species to 

the livelihood and diet in Uganda (van Asten et al., 2011). Although, some constrains could occurs in 

coffee-bananas intercrop, for instance a faster depletion of soil water content under drought conditions, 

if bananas do not show a stomatal control mechanism for saving water. A contrary argument to this, is 



 | P a g e  
 

131 

the study of Kissel et al. (2015), which reports banana transpiration decreases when soil water content 

(pF) falls below 2.8. Hence, this suggests that banana water saving mechanism is related to edaphic 

drough more than to atmospheric drought. Certainly, more research of water dynamics in CB systems 

needs to be done, to explore longer hotter and dryer conditions. This would allow answering the 

following questions: (i) Do bananas deplete faster soil water content than other shade trees (ii) do 

bananas reduce transpiration due to low soil water content before coffee trees reduce transpiration? 

(iii) Until which extent banana morphology influences rainfall partition and how does that benefits 

coffee underneath? 

 

As mentioned before, mean temperature during our study period ranged within coffee optimum 

thresholds (18°C – 23°C) along the altitudinal gradient (Descroix & Snoeck, 2008). However, maximum 

temperature exceeded 30°C at low altitude in all systems and in CO at higher altitude. With these 

temperatures we expected less fruit initiation at low altitude than at middle and high altitude, since 

Camargo (1985) and Drinnan and Menzel. (1995)15 suggested flower abortion with high temperature. 

Furthermore, according to Liebig et al. (2016), farmers at low altitude stated poor flowering as the main 

reason for low yields. However, from our results (chapter 5) we could not relate temperatures above 

30 °C with flower abortion, since fruit initiation had not a clear pattern along altitude and varied from 

system to system. From this point, we question the validity of previous climatic thresholds proposed for 

coffee and suggest coffee plants are more heat resistant than expected. This argument is supported by 

recent findings from Martins et al. (2016) and Rodrigues et al. (2016), who suggested a higher coffee 

tolerance to heat stress under the conditions of high water availability (and VPD < 1.5 – 2 kPa). These 

authors proposed that coffee can maintain photosynthesis rates up to 34°C degrees. And even at higher 

temperatures (42/34°C, day/night) under enhanced atmospheric CO2 concentrations (i.e. 700 µl CO2 l-1) 

ppmv). 

 

In the light of these results, water appeared to be a crucial factor determining coffee tolerance of heat. 

From Martins et al. (2016) and Rodrigues et al. (2016) we learnt that we might have to reconsider the 

already “institutionalized” coffee temperature thresholds. Nevertheless, in their experiments, relative 

humidity was controlled to maintain stable evaporative demand. Yet, as stated before and shown in our 

study (chapter 4), coffee stomata are sensitive to high VPD and under field conditions relevant 

thresholds were crossed even under shade (chapter 4). Thus, designing agroforestry systems for 

improving climate resilience of coffee should consider not only to reduce temperature, but also to 

maintain optimal relative humidity conditions, and consequently VPD. Nonetheless, it is important to 

 
15 Camargo (1985) Camargo 1985 said 30 °C and Drinnan and Menzel. (1995)28 °C 
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note that such microclimatic conditions (high temperature combined with high relative humidity) could 

be conducive to pest and disease development. Such relationships, therefore, should be investigated 

and quantitatively described before implementing respective management advice. 

 

Turning to soil moisture, our results on chapter 4 indicated lower soil moisture in shaded systems, CB (-

6 %) and CC (-59 %), compared with CO. Under sufficient rainfall, as it was the case of our study, shaded 

coffee has a more efficient water use, since it is used in coffee and shaded species, rather than been 

loss by evaporation and/or infiltration, as it is more likely to occur in the open system (Chapter 5 and 

Lin (2010)). On the other hand, under water limited conditions, the larger transpiration rate of shaded 

coffee (due to the combination of coffee and shade trees transpiration) can lead to water competition 

between coffee and shade trees. This has been already suggested by other studies in coffee (Cannavo 

et al., 2011; Padovan et al., 2018) and has been observed during an extreme drought event in shaded-

cocoa systems by (Abdulai et al., 2018). 

 

On the other hand, our results from chapter 5 indicated similar water content across cropping system 

for similar microclimatic conditions (same altitude class) as the experiment carried out in chapter 4. We 

attributed these contrasting results to the effect slope might have had on soil water content. The CT 

system used in the experimental plot of chapter 4 had a slope of 32 %, while monitored fields in chapter 

5 had an averaged slope of 7%, which could be one of the reasons behind the differences in soil water 

content among cropping systems in both studies. However, this discrepancy highlights the importance 

of considering topography when designing agroforestry systems to increase climate resilience. This, ads 

to other several factors that should be considered, e.g. species, use, phenology, morphology (size and 

root depth) and physiology, plot arrangement and tree management and spatial arrangement and 

position in the landscape (Vaast et al., 2008; Vaast et al., 2016; Van Der Wolf et al., 2016; Rahn et al., 

2018a; Rahn et al., 2018b). 
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6.4. Shaded	systems	for	sustainable	intensification	and	climate	smart	
agriculture	

 
Coffee farmers at Mt. Elgon practice agriculture at low intensity and intercrop their coffee with other 

species, at diverse densities. Thus, there is hardly any farmer that only specializes in coffee cultivation. 

With this scenario in mind, it appears more reasonable to improve local practices and reduce the trade-

offs occurring in the current systems, rather than to promote a costly and risk prone innovation toolbox 

such as intensified coffee monocultures with high yielding compact varieties (Tscharntke et al., 2011). 

The observed yields, despite being low compared with other regions, in conjunction with estimated 

yield gaps, indicate that coffee productivity in the region could be improved with better management, 

such as improved pruning. Nevertheless, it is clear that interventions aiming to improve yield will usually 

require an increment of labour input and of growers’ commitment and will likely not work if such 

interventions do not show larger economic return than current practices. Moreover, beyond the 

improvement of agronomic practices, it is also important to strengthen post-harvest processing and 

facilities and improve marketing opportunities. 

 

Even though the functioning of CT at low altitude requires further investigation since coffee yields of 

these systems were inconsistent at that altitude; shade trees and bananas demonstrated an important 

microclimate regulation function at field level, and their intercropping with coffee trees should be 

maintained and promoted. Moreover, the role trees play in regulating water and climate for larger areas 

(e.g. landscape and regional) should not be underestimated. Trees and forest have shown to modify 

meso-climatic conditions, especially rainfall and wind circulation parterns at landscape and larger scales 

(Lawton et al., 2001; van Noordwijk et al., 2014). Trees also significantly contribute towards the 

potential of farm income diversification (Rice, 2008; Mbow et al., 2014; Vaast & Somarriba, 2014; Cerda 

et al., 2017a) and soil erosion protection (Kimmins et al., 2008). 

 

Based on our study, and to ensure shade tree maintenance at field level, we propose dynamic shade 

management, in which shade components are pruned or thinned according to the forecasted severity 

of the dry season. For instance, if the dry season is rather short, and not too hot, shade should be pruned 

to allow for more access to light. If the dry season is short and very hot, shade should be maintained (no 

pruning performed) to protect lower coffee canopies. If the dry season is forecasted to be long but not 

very hot, shade trees should be pruned, and more mulching provided to reduce water evaporation from 

the soil as well as water transpired by shade trees as much as possible. Finally, if it is a very severe dry 

season (long and hot) shade should be maintained until certain soil water content thresholds are 
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reached. Afterwards, shade tree water use should be reduced as much as possible through pruning to 

guarantee water competition does not impact coffee production. To our knowledge, this type of 

dynamic shade management has not been proposed yet, and would need to have extensive testing 

before being promoted as a management tool. Furthermore, within the above-mentioned options, 

coffee is the main actor, and measures are taken to favour its survival under extreme drought events. 

While such measures may not guarantee high yields under extreme drought, coffee tree survival can be 

ensured, as well as a functional shade canopy. However, this should be combined with other strategies 

that increase resilience at a household level, such as fostering money saving strategies and/or crop 

insurances in case of extreme events. 

 

6.5. Outlook	
 
In the various discussion sections, we have mentioned a number of opportunities for further research, 

as summarized in the following: 

 

1. To explore water-use patterns of other species used in the area (including bananas) under 

normal and also harsher conditions (longer and hotter dry periods). For instance, with shade 

trees that reduce water use before coffee does (temporal complementarity) or shade trees that 

obtain water from different soil layers than coffee (morphologic complementarity). 

2. To focus not only on coffee performance, but explore smallholder farms from a systemic 

perspective, in which yield (or growth), their role in the farmer’s livelihood, and role in the farm 

ecosystem of other intercropped species is addressed. 

3. To streamline coffee phenology combinations with microclimates, flower initiation, flower 

abortion, fruit initiation and fruit development.  

4. To investgate the role of soil nutrients /nutrient recycling and the investigation of various local 

species and their nutrient provision to the soil. 

5. To explore the genetic diversity and genotypic performance of coffee under typical coffee 

cultivation environments. 

6. To ensure that all field experiments should help to generate datasets that can be used for the 

parametrization and improvement of (process-based) ecopysiological models, which allow 

studying  genotype x environment x management (GxExM) interactions and are especially useful 

to guide management recommendations under different current climatic conditions, as well as 

under climate change scenarios as proposed by Bayala et al. (2015) and Rahn et al. (2018b).  
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7. Conclusion	
 

This research took place in an important coffee region dominated by smallholder farmers (farms smaller 

than 2 ha) in Eastern Africa (Mt. Elgon, Uganda). Two types of ecosystem services were studied: 

provisioning (coffee yield) and regulating (microclimate and water balance) in different coffee cropping 

systems (coffee low shade (Coffee-Open, CO), coffee intercropped with bananas (Coffee-Banana, CB) 

and coffee intercropped with shade trees (Coffee-Shade Tree, CT). 

 

Coffee-Banana systems had larger yields than Coffee-Open and Coffee-Shade Tree. This was due to 

better fruit initiation/fruit drop ratio in CB compared to the other two systems. Fruit load per branch 

and number of productive branches were the most important yield components determining yield per 

ha and were negatively correlated with the number of stems per coffee tree. Shaded systems (CB and 

CT) improved the microclimate for coffee trees beneath through reducing incoming radiation, maximum 

temperature, and temperature amplitude along the altitudinal gradient. We found higher transpiration 

rates in shaded systems (CB and CT) compared to CO. Water availability during our study period was 

sufficient to main shaded systems without water competition between coffee and shade trees. 

 

We found that coffee yields on Mt. Elgon are low compared to other high yielding regions around the 

world. However, yields were within the average range of smallholder coffee yields for Eastern Africa. 

Yields could be improved by reducing the number of stems per coffee tree (pruning) and increasing 

coffee tree density. However, this last recommendation needs to be combined with a sustainable soil 

nutrient replenishment strategy. Also, opportunities for intercropping coffee with annual crops should, 

wherever meaningful, not be reduced. Furthermore, we found that coffee trees benefit from the 

microclimates provided by shade trees, which emphasizes the notion that a certain level of shade should 

be maintained throughout such cultivation systems. We observed maximum temperatures above a 

recognized optimal coffee threshold temperature, which confirms the recommendation on shade 

maintenance.  

 

Finally, species choice and spatial arrangement should be in line with seasonal climate forecasts and 

also consider future conditions as indicated by climate change projections for the region. The 

inconsistent altitudinal pattern observed in this study, highlights the complexity of management x 

environment x pests and diseases x genotype interactions, and calls for more comprehensive 

interdisciplinary research efforts
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8. Supplementary	material	

8.2. Chapter	2:	Background	information	about	coffee	and	coffee	in	Uganda	

8.2.1. Climate	data	
 
In this study we use an altitude gradient (from 1100 m.a.s.l. to 2100 m.s.l.) as a climate proxy to evaluate 

the performance of coffee cultivation systems under different climatic conditions. Although long term 

data sets as AgMerra or Worldclim could be suitable for reflecting the climate trends and patterns. They 

perform poorly for capturing climate variations in a very low spatial resolution and a large altitudinal 

gradient, as in the case of our study area (10 Km2 and 1000 m. gradient). Therefore, to capture the 

climatic variation along the altitudinal gradient, we use the correlation of altitude and the different 

parameters (Rainfall, Tmean, Tmax and Tmin). As data input, we used the weather data collected from 

our experimental site at low altitude (from March 2015 to April 2016, 1300 m.a.s.l.) (Fig. 1, microclimate 

(Ta and relative humidity) collected in different fields along the altitudinal gradient (see chapter 5), 

climate data obtained from the closest weather station (from 2005 to 2015, 1800 m.a.s.l.) and annual 

rainfall amounts reported by Mbogga (2012) at different altitudes for other locations at Mt Elgon. 

 
Fig. 1. A) Correlation of anual rainfall and altitude B) Location of annual rainfall records 

 
Long term data for the area were obtained from AgMERRA database (Ruane et al., 2015), with a 

horizontal resolution of approximately 25 km and a time spam from 1980 to 2010. Daily mean 

temperature is 22.5 ± 1.5 °C, mean minimum temperature is 16.4 ± 1.2 °C and mean maximum 
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temperature is 29.6 ± 2.8 ° C. Annual precipitation is around 1262 mm. January, February and December 

are the driest months and receive on average 40 mm month, while April and May are the wettest 

months, with an average of 180 mm per month.  

 
Fig. 2. Climate at the research area from 1980 to 2010 from AgMERRA (Ruane et al., 2015) 

 

8.2.2. Development	of	the	coffee	sector	in	Uganda	
 

 
Fig.3. Timeline of the coffee sector in Uganda. Line represents total green coffee production in Uganda from 1961 to 2016 
based on data provided by FAOSTAT accessed April 2018. 

 

8.2.3. Group	discussions	with	farmers	at	Mt.	Elgon	
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We carried out group discussions about coffee and climate change with the coffee farmers that 

participate in the project on September 2015. During these group discussions, we aimed: (i) to get an 

understanding of farmers perception about climate change and climate change impacts on coffee 

cultivation, (ii) to share and discuss project objectives and methodologies and finally (iii) to understand 

farmers expectations and concerns. The meetings were carried out following a participatory dynamic, 

in which farmers were first asked to give their own definitions and answers to questions such as:  

• What is climate? 

• What is climate change? 

• Which are the effects of climate change? 

• Which are the effects of climate change on coffee? 

• Do farmers care about coffee quality? Why?  

 

And later on, farmers’ answers were contrasted with definitions provided by the International Panel for 

Climate Change (IPCC, 2014). Thereby, we also discussed about the farmers’ perception on the role of 

different cultivation systems and which preferences farmers have regarding systems management. 

Farmers were informed about the objectives of the research and instructed in the different 

methodologies used for collecting data. Finally, a list of farmers’ concerns, and expectations was 

completed. 

 

 
Fig. 4: Group discussions with farmers at Mt. Elgon 
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Farmers demonstrated a broad understanding of climate, climate change and its implications for coffee. 

Farmers defined the Mt. Elgon climate as - “in the past there was two rainy seasons, one light from 

March to May and another stronger from August to October, but this is not predictable anymore”-. 

Furthermore, they defined climate change as -“variation in the amount of rain and increase of 

temperatures”-, and many agreed that would represent a change in planting dates and a more 

unreliable starting date of the rains, which would imply shorter rainy seasons and longer dry season, 

with less food and poor crop performance. Regarding specifically to climate change impacts on coffee, 

farmers at all altitudes mentioned their concern about pest and diseases increases and a reduction of 

coffee quality. At lower altitudes, farmers also mention water stress, coffee reaching wilting point and 

threads to food security. While at middle and higher altitudes, farmers were more concern about crop 

damages occasioned by heavy storms and landslides. Finally, farmers recognized coffee plays an 

important role in their economies, as well, farmers mentioned coffee importance for Uganda’s foreign 

exchange earnings. 

 

8.2.4. Data	management	
 
We followed the data life cycle suggested by German Federation for Biological Data (gfbio) for the 

research data collected in this study. 

 

Plan: during the planning it was decided which variables are crucial to answer the objectives descried 

before and could they be recorded. We had data collected automatically through data loggers and 

sensors, while other type of data collected manually. For the last type, a field data collection manual 

was written, in which it was specified which variables needed to be monitored and the procedure to do 

so. Furthermore, the field manual was tested by team members and improved before data collection 

started. Empty data set with variables names and description were created with the objective to 

facilitate the data collection in the field and ensure consistency on measurements taking at several 

points on time. 

 

Data collection: depending on the data loggers and sensors capacity, data were downloaded into a 

computer in the field from every 2 weeks with a maximum span of two months. Manual data were 

collected every two- or three-months using tablets (Samsung Galaxy Tab Pro 8.4). All raw data were 

uploaded to the GWDG cloud after each field workday in order to have more than one backup. 

 

Assure: for manual data, each data set was double checked for typing mistakes and formatting errors. 

The new version was saved as a new file to ensure the existence of primary raw data and avoid 
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information lost. Furthermore, data were analyzed for impossible values and outliers. In the case 

automatized data, original files were arranged to facilitate data analysis and saved in a new version. 

Data were subject to quality check to identify correct functioning of the sensors during the data 

collection period. All quality check procedures were performed by a script based program, R Core Team 

(2017), to ensure reproducibility of data cleaning and analysis procedures. 

 

Describe: for each data set or data set group a metadata was written in which it is described the context 

of the data set. Location and time frame in which data were collected, as well as data collection 

procedures and meaning of the variables. 

 

Submit: data sets were (will be) submitted to Dataverse in different Dataverse Objects depending on 

the research article there were linked with. Data were (will be) submitted in comma separated value 

(csv) format to ensure readability in the long term. 

 

Data analysis: Microsoft Excel (2010) and R Core Team (2017) were used for data manipulation and 

cleaning, while data analysis was performed using the program R Core Team (2017) and several 

packages within it (dplyr, lmer, lubridate, ggplot, multicomp, lmertest). Most of the data analysis 

presented in this work consisted in comparison of different coffee variables (water use, production, 

growth) across different management systems, altitude classes and/or seasons. Therefore, we use linear 

mixed models or generalized linear mixed models (depending on the characteristics of the variable of 

interest) to determine the effect of the independent variables. 

 

Linear mixed models were used when the dependent variable was continuous, meaning that between 

to values can be infinite numbers, as in the case of weight (g), yield (Kg), water use (L tree-1). To fulfil 

the assumptions of linearity, homoskedasticity and normality of residuals linear models, visual 

assessment of residual plots and as and histogram was done, and transformations (most of the cases 

log () transformation) were used when necessary. Significance levels were determined at p-value < 

0.005. On the other hand, we used generalized mixed models for the analysis when dependent variables 

had different distribution from normal (Poisson, binomial), as in the case of number of cherries, number 

of productive branches. Furthermore, since the experimental design involved repeated measures in 

time and as well as nested effects (trees inside plots), we used random effects to accounts for the 

pseudo replication of some data points (Hurlbert, 1984). 
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8.3. Chapter	3:	Effect	of	cropping	system,	shade	cover	and	altitude	
gradient	on	coffee	yield	components	at	Mt.	Elgon,	Uganda	

 

 
Fig.S.2. a) Monthly temperature (max (solid line), mean (dotted line) and min (dashed line) and b) Monthly 
precipitation at low altitude (34° 30’ 87’’ – 1° 30’16’’,  1200 m a.s.l.), middle altitude (34° 34’ 11’’ – 1° 28’40’’,  1600 
m a.s.l.) and high altitude (34° 37’ 63’’ – 1° 26’29’’,  2000 m a.s.l)  from WorldClim (1980 -2010) (Fick and Hijmans 
2017). 
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Fig.S.2. a) Monthly temperature (Tmax (solid line) and Tmin (dashed line) at the Buginyanya research station (1800 
m.s.l.) from 2005 to 2015. 

 

 
Fig.S.3. a) Ca (cmol/ kg soil) ~ Altitude (n=27), b) Shade cover (%) ~ altitude (m.a.s.l) for three coffee systems 
(Coffee-Open = CO (red circle), Coffee Banana = CB (yellow triangle) and Coffee –shade Tree = CT (blue square) 
(n=26). * Shade cover of one CB plot at mid altitude is missing. 

 
Table S1: Linear regression Shade cover (%) ~LAI Shade (m2m-2) 

 
Residuals:     

 

Min 1Q Median 3Q Max  

-28.687 -11.105 0.477 9.849 37.775  
      

Coefficients:    
 

 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 13.445 5.171 2.6 0.01569 * 

LAI Shade 18.261 4.964 3.679 0.00118 ** 

---     
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Residual standard error: 16.05 on 24 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.3606, Adjusted R-squared:  0.3339  
F-statistic: 13.53 on 1 and 24 DF,  p-value: 0.001182 

 

 

 

Fig.S4: a) Fruit load per branch, b) productive nodes per branch, c) productive branches per stems, d) number of 
stems per coffee tree, productive stems per ha, f) cherry weight (g) of 100 fresh cherries. Symbol indicates mean per 
system and solid horizontal bar indicates median per system. Systems are identified by colour and symbol, Coffee-
Open = CO (circle), Coffee Banana = CB (triangle) and Coffee –shade Tree = CT (square)). Letters indicate significance 
values at p-value < 0.05. 
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Table 2: Model results from management practices 
 

Fruit load (FL) 

  Estimate Std.Error z value Pr(>|z|)   
(Intercept) 2.46 0.04 55.58 <2e-16 *** 
Stumped (YES) -0.47 0.08 -6.20 0.00 *** 

        
(Intercept) 2.31 0.04 52.67 <2e-16 *** 
Fungicide use (Yes) -0.03 0.09 -0.35 0.72   

        
(Intercept) 2.14 0.05 46.97 <2e-16   
Fertilizer use (Yes) 0.45 0.07 6.00 0.00 *** 

        
(Intercept) 2.70 0.08 34.39 <2e-16 *** 
Manure use (Yes) -0.54 0.09 -5.89 0.00 *** 

        
(Intercept) 2.37 0.05 51.50 <2e-16 *** 
Insecticide use (Yes) -0.23 0.08 -2.79 0.01 ** 

        
(Intercept) 2.40 0.06 37.87 <2e-16 *** 
Shade tree prunning (Yes) -0.15 0.08 -1.96 0.05 * 

        
(Intercept) 1.89 0.18 10.47 <2e-16 *** 
Mechanical weeding (Yes) 0.42 0.18 2.27 0.02 * 

        
(Intercept) 2.25 0.04 53.57 <2e-16 *** 
Herbicide use (Yes) 0.19 0.09 2.15 0.03 * 

        
(Intercept) 2.49 0.08 32.04 <2e-16 *** 
Coffee prunning (Yes) -0.24 0.09 -2.78 0.01 ** 
        
(Intercept) 2.17 0.06 38.46 <2e-16 *** 
Chemicaluse (Yes) 0.22 0.07 2.95 0.00 ** 

        
Productive branches (PB) 

  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 3.38 0.03 123.51 <2e-16 *** 
Stumped (YES) -0.43 0.05 -8.99 <2e-16 *** 

        
(Intercept) 3.22 0.03 115.47 <2e-16 *** 
Fungicide use (Yes) 0.04 0.06 0.73 0.47   

        
(Intercept) 3.11 0.03 108.91 <2e-16 *** 
Fertilizer use (Yes) 0.34 0.05 7.15 0.00 *** 
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(Intercept) 3.37 0.05 67.72 <2e-16 *** 
Manure use (Yes) -0.21 0.06 -3.66 0.00 *** 

        
(Intercept) 3.38 0.03 122.95 <2e-16 *** 
Insecticide use (Yes) -0.47 0.05 -9.49 <2e-16 *** 

        
(Intercept) 3.35 0.04 83.90 <2e-16 *** 
Shade tree prunning (Yes) -0.18 0.05 -3.70 0.00 *** 

        
(Intercept) 2.81 0.12 23.83 <2e-16 *** 
Mechanical weeding (Yes) 0.44 0.12 3.69 0.00 *** 

        
(Intercept) 3.19 0.03 119.81 <2e-16 *** 
Herbicide use (Yes) 0.21 0.06 3.66 0.00 *** 

        
(Intercept) 3.46 0.05 70.92 0.00 *** 
Coffee prunning (Yes) -0.30 0.06 -5.33 0.00 *** 

        
(Intercept) 3.28 0.04 91.60 <2e-16 *** 
Chemicaluse (Yes) -0.09 0.05 -1.93 0.05 . 

        
Productive nodes (PN) 

  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 1.53 0.03 48.73 <2e-16 *** 
Stumped (YES) -0.35 0.05 -6.37 0.00 *** 

        
(Intercept) 1.40 0.03 44.39 <2e-16 *** 
Fungicide use (Yes) 0.04 0.06 0.56 0.58   

        
(Intercept) 1.30 0.03 38.60 <2e-16 *** 
Fertilizer use (Yes) 0.30 0.05 5.76 0.00 *** 

        
(Intercept) 1.64 0.05 30.71 <2e-16 *** 
Manure use (Yes) -0.31 0.06 -5.07 0.00 *** 

        
(Intercept) 1.46 0.03 44.21 <2e-16 *** 
Insecticide use (Yes) -0.14 0.06 -2.43 0.02 * 

        
(Intercept) 1.52 0.04 34.70 <2e-16 *** 
Shade tree prunning (Yes) -0.17 0.05 -3.18 0.00 ** 

        
(Intercept) 0.95 0.14 6.75 0.00 *** 
Mechanical weeding (Yes) 0.48 0.14 3.34 0.00 *** 

        
(Intercept) 1.37 0.03 44.68 <2e-16 *** 
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Herbicide use (Yes) 0.18 0.06 2.95 0.00 ** 

        
(Intercept) 1.60 0.05 30.33 <2e-16 *** 
Coffee prunning (Yes) -0.24 0.06 -4.07 0.00 *** 

        
(Intercept) 1.30 0.04 31.76 <2e-16 *** 
Chemicaluse (Yes) 0.18 0.05 3.53 0.00 *** 

        
N° of Stems per tree (St) 

  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 1.172 0.026 44.670 <2e-16 *** 

Stumped (YES) 
0.040 0.044 0.900 0.366   

        
(Intercept) 1.200 0.024 49.300 <2e-16 *** 
Fungicide use (Yes) -0.099 0.053 -1.880 0.061 . 

        
(Intercept) 1.245 0.025 49.100 <2e-16 *** 
Fertilizer use (Yes) -0.179 0.046 -3.940 0.000 *** 

        
(Intercept) 1.167 0.046 25.628 <2e-16 *** 
Manure use (Yes) -0.045 0.053 -0.858 0.391   

        
(Intercept) 1.132 0.027 42.170 <2e-16 *** 
Insecticide use (Yes) 0.140 0.045 3.100 0.002 ** 

        
(Intercept) 1.106 0.037 29.777 <2e-16 *** 
Shade tree prunning (Yes) 0.121 0.045 2.672 0.008 ** 

        
(Intercept) 1.885 0.071 26.480 <2e-16 *** 
MechanicalWeeding Yes -0.746 0.075 -10.010 <2e-16 *** 

        
(Intercept) 1.171 0.024 48.750 <2e-16 *** 
Herbicide use (Yes) 0.068 0.050 1.360 0.174   

        
(Intercept) 1.154 0.046 25.158 <2e-16 *** 
Coffee prunning (Yes) 0.041 0.052 0.792 0.428   

        
(Intercept) 1.208 0.032 38.160 <2e-16 *** 
Chemicaluse (Yes) -0.040 0.042 -0.940 0.350   

        
        
N° of productive stems per ha (ProStemHa) 

  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 8.288 0.019 429.100 <2e-16 *** 
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Stumped (YES) 0.067 0.033 2.000 0.041 * 

        
(Intercept) 8.368 0.018 462.600 <2e-16 *** 
Fungicide use (Yes) -0.229 0.038 -6.000 0.000 *** 

        
(Intercept) 8.299 0.019 428.700 <2e-16 *** 
Fertilizer use (Yes) 0.036 0.033 1.100 0.271   

        
(Intercept) 8.427 0.035 241.390 <2e-16 *** 
Manure use (Yes) -0.113 0.040 -2.810 0.005 ** 

        
(Intercept) 8.391 0.019 439.400 <2e-16 *** 
Insecticide use (Yes) -0.235 0.034 -6.900 0.000 *** 

        
(Intercept) 8.254 0.026 312.750 <2e-16 *** 
Shade tree prunning (Yes) 0.088 0.033 2.690 0.007 ** 

        
(Intercept) 8.165 0.075 109.100 <2e-16 *** 
Mechanical weeding (Yes) 0.153 0.077 2.000 0.045 * 

        
(Intercept) 8.360 0.017 485.100 <2e-16 *** 
Herbicide use -0.223 0.037 -6.000 0.000 *** 

        
(Intercept) 8.229 0.033 246.600 <2e-16 *** 
Coffee prunning (Yes) 0.106 0.038 2.810 0.005 ** 

        
(Intercept) 8.433 0.023 368.000 <2e-16 *** 
Chemicaluse (Yes) -0.215 0.030 -7.100 0.000 *** 

        
Cherry weigth (CW) 

  Estimate Std.Error t value Pr(>|t|)   

(Intercept) 204.9 6.071 33.749 <2e-16 *** 
Stumped (YES) 10.037 10.294 0.975 0.341   

        
(Intercept) 203.118 5.495 36.961 <2e-16 *** 
Fungicide use (Yes) 21.582 11.527 1.872 0.0759 . 

        
(Intercept) 202.4 5.798 34.91 <2e-16 *** 
Fertilizer use (Yes) 17.225 9.831 1.752 0.0943 . 

        
(Intercept) 207.9 11.02 18.874 2.61E-13 *** 
Manure use (Yes) 1.9 12.72 0.149 0.883   

        
(Intercept) 206.5 6.314 32.707 <2e-16 *** 
Insecticide use (Yes) 4.786 11.193 0.428 0.674   
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(Intercept) 226.438 6.961 32.53 <2e-16 *** 
Shade tree prunning (Yes) -27.671 8.62 -3.21 0.0042 ** 

        
(Intercept) 175.5 22.89 7.666 1.62E-07 *** 
Mechanical weeding (Yes) 34.39 23.41 1.469 0.157   

        
(Intercept) 206.306 5.582 36.962 <2e-16 *** 
Herbicide use 9.594 11.971 0.801 0.432   

        
(Intercept) 221.2 10.28 21.525 8.58E-16 *** 
Coffee prunning (Yes) -16.37 11.62 -1.409 0.173   

        
(Intercept) 200.95 7.289 27.569 <2e-16 *** 
Chemicaluse (Yes) 13.165 9.695 1.358 0.189   
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Table 3: Model results from Pest and diseases (Stemborer, CLR = coffee leaf rust, CBB=coffee berry 
borer, antesia bugs, scales, CLM = coffee leaf miner, aphids, mites, CBD = coffee berry disease) 
 

Fruit load (FL)   
  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 2.88 0.08 35.57 0 *** 
Stemborer (Yes) -0.70 0.09 -7.7 1E-14 *** 

        
(Intercept) 2.32 0.06 37.10 <2e-16 *** 
CLR (Yes) -0.01 0.08 -0.14 0.886   

        
(Intercept) 2.31 0.04 57.06 <2e-16 *** 
CBB (Yes) 0.05 0.13 0.36 0.719   

        
(Intercept) 2.32 0.04 59.19 <2e-16 *** 
Antesia bugs (Yes) -0.26 0.18 -1.41 0.16   

        
(Intercept) 2.27 0.04 55.29 <2e-16 *** 
Scales (Yes) 0.31 0.11 2.88 0.00397 ** 

        
(Intercept) 2.31 0.04 58.64 <2e-16 *** 
CLM (Yes) 0.04 0.18 0.21 0.836   

        
(Intercept) 2.32 0.04 57.68 <2e-16 *** 
AphidsYes -0.13 0.13 -1.01 0.311   

        
(Intercept) 2.27 0.04 58.83 <2e-16 *** 
Mites (Yes) 0.89 0.17 5.27 1E-07 *** 

        
(Intercept) 2.31 0.04 54.28 <2e-16 *** 
CBD (Yes) 0.00 0.10 0.02 0.987   

        

Productive branches (PB) 

  Estimate Std.Error z value Pr(>|z|)   
(Intercept) 3.55 0.05 66.05 <2e-16 *** 
Stemborer (Yes) -0.36 0.06 -6.06 0.00 *** 

        
(Intercept) 3.42 0.04 89.39 <2e-16 *** 
CLR (Yes) -0.28 0.05 -5.71 0.00 *** 

        
(Intercept) 3.24 0.03 127.70 <2e-16 *** 
CBB (Yes) 0.14 0.08 1.67 0.10 . 

        
(Intercept) 3.27 0.02 133.68 <2e-16 *** 
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Antesia bugs (Yes) -0.40 0.12 -3.48 0.00 *** 

        
(Intercept) 3.24 0.03 124.83 <2e-16 *** 
Scales (Yes) 0.06 0.07 0.85 0.40   

        
(Intercept) 3.23 0.02 132.60 <2e-16 *** 
CLM (Yes) 0.51 0.11 4.69 0.00 *** 

        
(Intercept) 3.27 0.03 129.72 <2e-16 *** 
Aphids (Yes) -0.18 0.08 -2.16 0.03 * 

        
(Intercept) 3.23 0.02 132.00 <2e-16 *** 
Mites (Yes) 0.43 0.11 3.88 0.00 *** 

        
(Intercept) 3.27 0.03 122.84 <2e-16 *** 
CBD (Yes) -0.10 0.06 -1.64 0.10   

        

Productive nodes per branch (PN) 

  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 1.72 0.06 30.66 <2e-16 *** 
Stemborer (Yes) -0.36 0.06 -5.70 0.00 *** 

        
(Intercept) 1.44 0.04 32.69 <2e-16 *** 
CLR (Yes) -0.02 0.05 -0.35 0.72   

        
(Intercept) 1.43 0.03 49.01 <2e-16 *** 
CBB (Yes) -0.02 0.09 -0.21 0.83   

        
(Intercept) 2.32 0.04 59.19 <2e-16 *** 
Antesia bugs (Yes) -0.26 0.18 -1.41 0.16   

        
(Intercept) 1.38 0.03 46.96 <2e-16 *** 
Scales (Yes) 0.30 0.07 4.29 0.00 *** 

        
(Intercept) 1.42 0.03 49.93 <2e-16 *** 
CLM (Yes) 0.07 0.12 0.58 0.56   

        
(Intercept) 1.44 0.03 49.64 <2e-16 *** 
Aphids (Yes) -0.13 0.09 -1.38 0.17   

        
(Intercept) 1.40 0.03 49.83 <2e-16 *** 
Mites (Yes) 0.61 0.11 5.68 0.00 *** 

        
(Intercept) 1.44 0.03 47.34 <2e-16 *** 
CBD (Yes) -0.08 0.07 -1.12 0.26   
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Number of stems per tree (St)            

  Estimate Std.Error z value Pr(>|z|)   

(Intercept) 0.96 0.06 17.05 <2e-16 *** 
Stemborer (Yes) 0.21 0.06 3.46 0.00 *** 

        
(Intercept) 1.01 0.04 25.73 <2e-16 *** 
CLR (Yes) 0.20 0.05 4.18 0.00 *** 

        
(Intercept) 1.15 0.02 50.12 <2e-16 *** 
CBB (Yes) -0.16 0.08 -1.94 0.05 . 

        
(Intercept) 1.13 0.02 50.09 <2e-16 *** 
Antesia bugs (Yes) 0.10 0.10 0.99 0.32   

        
(Intercept) 1.16 0.02 49.37 <2e-16 *** 
Scales (Yes) -0.17 0.07 -2.44 0.01 * 

        
(Intercept) 1.15 0.02 51.44 <2e-16 *** 
CLM (Yes) -0.38 0.13 -3.01 0.00 ** 

        
(Intercept) 1.12 0.02 47.93 <2e-16 *** 
Aphids (Yes) 0.19 0.07 2.69 0.01 ** 

        
(Intercept) 1.15 0.02 51.28 <2e-16 *** 
Mites (Yes) -0.31 0.12 -2.55 0.01 * 

        
(Intercept) 1.131 0.024 46.200 <2e-16 *** 
CBD (Yes) 0.040 0.056 0.700 0.483   

        

Number of productive stems per ha (ProStHa)         

  Estimate Std.Error z value Pr(>|z|)   
(Intercept) 8.23 0.04 216.22 <2e-16 *** 
Stemborer (Yes) 0.11 0.04 2.59 0.01 ** 

        
(Intercept) 8.17 0.03 312.99 <2e-16 *** 
CLR (Yes) 0.23 0.03 6.91 0.00 *** 

        
(Intercept) 8.33 0.02 487.50 <2e-16 *** 
CBB (Yes) -0.08 0.06 -1.50 0.15   

        
(Intercept) 8.28 0.02 542.20 <2e-16 *** 
Antesia bugs (Yes) 0.81 0.07 11.30 <2e-16 *** 

        
(Intercept) 8.37 0.02 499.30 <2e-16 *** 
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Scales (Yes) -0.36 0.05 -8.00 0.00 *** 

        
(Intercept) 8.29 0.02 514.60 <2e-16 *** 
CLM (Yes) 0.52 0.08 6.90 0.00 *** 

        
(Intercept) 8.32 0.02 486.20 <2e-16 *** 
Aphids (Yes) 0.01 0.06 0.20 0.81   

        
(Intercept) 8.32 0.02 499.00 <2e-16 *** 
Mites (Yes) -0.09 0.08 -1.10 0.27   

        
(Intercept) 8.422 0.015 547.900 <2e-16 *** 
CBD (Yes) -0.568 0.036 -15.800 <2e-16 *** 

        

Cherry weigth (CW)           

  Estimate Std.Error t value Pr(>|t|)   

(Intercept) 222.87 11.28 19.76 0.00 *** 
Stemborer (Yes) -15.87 12.47 -1.27 0.22   

        
(Intercept) 209.19 8.29 25.23 <2e-16 *** 
CLR (Yes) 1.10 10.39 0.11 0.92   

        
(Intercept) 211.95 5.02 42.25 <2e-16 *** 
CBB (Yes) -22.70 16.64 -1.36 0.19   

        
(Intercept) 211.36 4.88 43.30 <2e-16 *** 
Antesia bugs (Yes) -32.36 22.89 -1.41 0.17   

        
(Intercept) 206.13 4.88 42.26 <2e-16 *** 
Scales (Yes) 27.54 13.21 2.09 0.05 . 

        
(Intercept) 208.57 4.93 42.31 <2e-16 *** 
CLM (Yes) 28.93 23.12 1.25 0.23   

        
(Intercept) 209.88 5.25 40.01 <2e-16 *** 
Aphids (Yes) 0.13 17.40 0.01 0.99   

        
(Intercept) 208.31 4.84 43.00 <2e-16 *** 
Mites (Yes) 34.69 22.72 1.53 0.14   

        
(Intercept) 206.00 5.14 40.08 <2e-16 *** 
CBD (Yes) 21.38 12.05 1.77 0.09 . 
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8.4. Chapter	4:	Water	use	of	Coffea	arabica	in	open	versus	shaded	systems	
under	smallholder’s	farm	conditions	in	Eastern	Uganda	

 

 
Fig.1 Annual temperature and rainfall patterns according to WorldClim (1970-2010) for the farm location (1° 15’ 52" N 34° 19’ 
19" E) 

 

 
 
Fig A.2: a) Map of Uganda and location of research area, b) Topographic map of research area with plot location (red point)  
at 1.300 m.a.s.l c) Map of the research plot with three systems (Coffee-Open = CO, Coffee-Banana = CB and Coffee-Cordia = 
CC and a buffer area). 
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Equation A.1:  
 
 

𝐸𝑇S =	
0.408	∆	(𝑅z − 𝐺) + 	𝛾	

900
𝑇 + 273	𝑢*	(𝑒# −	𝑒;)	

∆ +	γ	(1 + 0.34	𝑢*)
 

 
ET0 = reference evapotranspiration (mm d-1) 
Rn = net radiation at the crop surface (MJ m-2 d-1) 
G = soil heat flux density  
T = mean daily air temperature at 2 m height (°C) 
u2= wind speed at 2 m height (m s-1) 
es = saturation vapour pressure (kPa) 
ea = actual vapur pressure (kPa) 
es – ea = vapour pressure deficit (VPD) (kPa) 
Δ = slope vapour pressure curve (kPa °C-1) 
γ = psychrometric constant kPa °C-1 

(Allen et al. 1998) 
 
Equation A.2:  
 

1	𝑤𝑎𝑡𝑡	𝑝𝑒𝑟	𝑚*	(𝑊	𝑚)*) = 0.0864	𝑀𝐽	𝑚)*𝑑𝑎𝑦)/ 
 
 
(Allen et al., 1998)

 
Fig.3: Mean Js of Coffee in different systems (Coffee-CO, Coffee-CB and Coffee-CC), of Banana and Cordia africana during 
distinct three periods:  wet (April, May, Jun, Sep, Oct and Nov 2015, Apr 2016), early dry (Jul, Aug and Dec 2015, Jan 2016) and 
late dry (Mar 2015, Feb and Mar 2016). 
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Fig.A.4. Regression Js ~ VPD during for coffee under different systems (Coffee-CO, Coffee-CB and Coffee-CC), Banana and Cordia 
africana during distinct  three periods:  wet (April, May, Jun, Sep, Oct and Nov 2015, Apr 2016), early dry (Jul, Aug and Dec 
2015, Jan 2016) and late dry (Mar 2015, Feb and Mar 2016). 
 
Table A.1: Differences in mean microclimatic daily data between systems ((Coffee-Open = CO, Coffee-Banana = 
CB and Coffee-Cordia = CC) during the study period (Mar 2015 – Apr 2016); values with different letters were 
significantly different at p < 0.05. 
 

Variable CO CB CC 

Ta max (°C) 32.8 ±4.7 a 29.7 ± 4.8 b 28.4 ± 4.1 c 

Ta min (°C) 17.8 ± 1.2 c 17.9 ± 1.1 b 18.5 ± 1.2 a 

Ta mean(°C) 22.8 ± 2.3 a 22.1 ± 2.4 c 22.3 ± 2.3 b 

∆T (Ta max – Ta min) (°C) 14.6 ± 4.3 a 11.9 ± 4.3 b 10 ± 3.6 c 

VPD (KPa) 0.9 ± 0.7 a 0.7 ± 0.7 c 0.8 ± 0.6 b 

Radiation (Mj m-2 d-1) 7.8 ± 2.8 a 3.5 ± 2.8 b 2.2 ± 2 c 
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Table A.2: Mean soil water content per depth (mm) by system (Coffee Open = CO, Coffee Banana = CB and Coffee-
Cordia = CC) and soil depth every 10 cm for three periods Wet (April, May, Jun, Sep, Oct and Nov 2015, April 2016), 
early dry (intermediate grey) (July, Aug. and Dec. 2015, Jan 2016) and late dry (light grey) (March 2015, Feb. and 
March 2016). (2 access tubes per system) 
 

 Wet  Early dry  Late dry 

Depth CO CB CC  CO CB CC  CO CB CC 

10 29 ± 5 18 ± 5 13 ± 8  28 ± 11 13 ± 7 14 ± 11  6 ± 7 3 ± 4 2 ± 3 

20 35 ± 4 32 ± 5 23 ± 8  35 ± 8 25 ± 10 18 ± 8  15 ± 11 12 ± 11 7 ± 3 

30 33 ± 4 36 ± 7 13 ± 4  34 ± 5 31 ± 8 12 ± 5  19 ± 9 20 ± 7 6 ± 2 

40 35 ± 5 36 ± 9 12 ± 8  37 ± 4 30 ± 9 12 ± 6  24 ± 7 19 ± 6 5 ± 2 

50 37 ± 5 43 ± 9 10 ± 8  39 ± 5 38 ± 8 13 ± 7  26 ± 6 25 ± 8 7 ± 6 

60 39 ± 6 49 ± 8 22 ± 8  39 ± 6 44 ± 6 23 ± 7  30 ± 8 32 ± 9 16 ± 8 

70 42 ± 5 48 ± 9 31 ± 5  43 ± 4 46 ± 5 31 ± 7  34 ± 8 36 ± 8 23 ± 7 

80 44 ± 4 43 ± 8 39 ± 6  45 ± 2 42 ± 4 38 ± 6  38 ± 7 34 ± 7 31 ± 5 

90 43 ± 5 42 ± 8 43 ± 6  45 ± 2 41 ± 4 41 ± 5  39 ± 6 33 ± 5 37 ± 2 

100 43 ± 5 NA 42 ± 6  45 ± 2 NA 41 ± 5  39 ± 5 NA 37 ± 2 

110 41 ± 4 NA 39 ± 7  43 ± 2 NA 38 ± 6  38 ±  4 NA 35 ± 2 

120 45 ± 4 NA 39 ± 8  47 ± 1 NA 37 ± 6  43 ± 5 NA 34 ± 3 

130 43 ± 4 NA 43 ± 6  46 ± 1 NA 45 ± 4  42 ± 5 NA 40 ± 4 

140 42 ± 4 NA 44 ± 6  44 ± 1 NA 45 ± 4  41 ± 3 NA 41 ± 5 

150 44 ± 3 NA 45 ± 6  45 ± 2 NA 46 ± 4  44 ± 3 NA 42 ± 6 
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8.5. Chapter	5	Disentangling	effects	of	altitude	and	shade	cover	on	coffee	
fruit	dynamics	and	vegetative	growth	in	smallholder	coffee	systems	

 
TableS1: Piecewise Structural Equation Model of microclimate and SWC 

Structural Equation Model of modelList  
 
Call: 
  Tmean ~ Alt + Sha 
  Tmax ~ Alt + Sha 
  Tmin ~ Alt + Sha 
  VPD ~ Alt + Sha 
  SWC ~ VPD + Tmin 
  Tmax ~~ Tmean 
  Tmin ~~ Tmean 
  Tmean ~~ VPD 
  Tmax ~~ VPD 
 
    AIC      BIC 
 59.685   133.226 
 
--- 
Tests of directed separation: 
 
     Independ.Claim Test.Type       DF Crit.Value P.Value  
    SWC ~ Alt + ...      coef 128.0624    -1.8135  0.0721  
    SWC ~ Sha + ...      coef 112.0459     0.3562  0.7223  
  SWC ~ Tmean + ...      coef 131.8230     0.7548  0.4517  
  Tmin ~ Tmax + ...      coef 128.0157     0.6661  0.5065  
   SWC ~ Tmax + ...      coef 118.5654     0.2063  0.8369  
   VPD ~ Tmin + ...      coef 117.3599     0.2661  0.7907  
 
Global goodness-of-fit: 
 
  Fisher's C = 9.685 with P-value = 0.644 and on 12 degrees of freedom 
 
--- 
Coefficients: 
 
  Response Predictor Estimate Std.Error       DF Crit.Value P.Value Std.Estimate     
     Tmean       Alt  -0.7362    0.0389 114.2457   -18.9162  0.0000      -0.7362 *** 
     Tmean       Sha  -0.1117    0.0273 101.7575    -4.0875  0.0001      -0.1117 *** 
      Tmax       Alt  -0.4179    0.0722 136.7031    -5.7890  0.0000      -0.4179 *** 
      Tmax       Sha  -0.3896    0.0563 107.0985    -6.9253  0.0000      -0.3896 *** 
      Tmin       Alt  -0.8157    0.0499 136.5084   -16.3311  0.0000      -0.8157 *** 
      Tmin       Sha   0.1404    0.0403 104.3197     3.4848  0.0007       0.1404 *** 
       VPD       Alt  -0.1458    0.0602 122.5442    -2.4201  0.0170      -0.1458   * 
       VPD       Sha  -0.1790    0.0433 103.0632    -4.1349  0.0001      -0.1790 *** 
       SWC       VPD  -0.4186    0.0773  59.6600    -5.4160  0.0000      -0.4186 *** 
       SWC      Tmin   0.5371    0.0703 135.1262     7.6417  0.0000       0.5371 *** 
    ~~Tmax   ~~Tmean   0.7368         - 140.0000    12.7570  0.0000       0.7368 *** 
    ~~Tmin   ~~Tmean   0.3598         - 140.0000     4.5137  0.0000       0.3598 *** 
   ~~Tmean     ~~VPD   0.7559         - 140.0000    13.5140  0.0000       0.7559 *** 
    ~~Tmax     ~~VPD   0.9263         - 140.0000    28.7715  0.0000       0.9263 *** 
 
  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 
 
--- 
Individual R-squared: 
 
  Response method Marginal Conditional 
     Tmean   none     0.41        0.93 
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      Tmax   none     0.22        0.64 
      Tmin   none     0.68        0.82 
       VPD   none     0.03        0.81 
       SWC   none     0.35        0.45 
 

 
TableS2: Piecewise Structural Equation effect of altitude and shade cover on reproductive and vegetative growth 
for 2015 and 2016. 
 
StructuralEquationModelofmodelList 
 
Call: 
scale(Int Stem 2015 Week 0)~scale(Shade cover)*scale(Altitude) 
scale(LS per Stem 2015 Week 0)~scale(Altitude)+scale(Int Stem 2015 Week 0) 
scale(FS per stem 2015 Week 0)~scale(Shade cover)+scale(Int Stem 2015 Week 0)+scale(LS per Stem 2015 Week 0) 
scale(FD per Stem 2015)~scale(FS per stem 2015 Week 0)+scale(Shade cover)+scale(Int Stem 2015 Week 0)+scale(LS per 
Stem 2015 Week 0) 
scale(Int per Stem 2015 Harvest)~scale(FS per stem 2015 Week 0)+scale(FD per Stem 2015)+scale(Altitude)+scale(LS per 
Stem 2015 Week 0) 
scale(LS per stem 2015 Harvest)~scale(Int per Stem 2015 Harvest)+scale(FS per stem 2015 Week 0)+scale(Shade 
cover)*scale(Altitude)+scale(Int Stem 2015 Week 0) 
scale(FS per stem 2015 Harvest)~scale(Int per Stem 2015 Harvest)+scale(Int Stem 2015 Week 0)+scale(LS per Stem 2015 
Week 0) 
scale(Int per Stem 2016 Week 4)~scale(LS per stem 2015 Harvest)+scale(FS per stem 2015 Week 0)+scale(FD per Stem 
2015)+scale(Altitude)+scale(LS per Stem 2015 Week 0) 
scale(LS per stem 2016 Week 4)~scale(Int per Stem 2016 Week 4)+scale(FS per stem 2015 Week 0)+scale(Shade 
cover)+scale(Int Stem 2015 Week 0) 
scale(FS per stem 2016 Week 4)~scale(LS per stem 2016 Week 4)+scale(Int per Stem 2016 Week 4)+scale(LS per stem 2015 
Harvest)+scale(Int per Stem 2015 Harvest)+scale(FS per stem 2015 Week 0)+scale(Shade cover)+scale(Int Stem 2015 Week 
0)+scale(LS per Stem 2015 Week 0) 
scale(FD per Stem 2016)~scale(LS per stem 2016 Week 4)+scale(FS per stem 2016 Week 4)+scale(FS per stem 2015 
Harvest)+scale(LS per stem 2015 Harvest)+scale(Int per Stem 2015 Harvest)+scale(FS per stem 2015 Week 0)+scale(FD per 
Stem 2015)+scale(Altitude)+scale(Int Stem 2015 Week 0)+ 
scale(Int per Stem 2016 Harvest)~scale(FS per stem 2016 Week 4)+scale(LS per stem 2016 Week 4)+scale(FS per stem 2015 
Harvest)+scale(LS per stem 2015 Harvest)+scale(FS per stem 2015 Week 0)+scale(LS per Stem 2015 Week 0) 
scale(LS per stem 2016 Harvest)~scale(FD per Stem 2016)+scale(Int per Stem 2016 Harvest)+scale(FS per stem 2016 Week 
4)+scale(Int per Stem 2016 Week 4)+scale(FS per stem 2015 Harvest)+scale(FD per Stem 2015)+scale(Shade 
cover)*scale(Altitude)+scale(Int Stem 2015 Week 0) 
scale(FS per stem 2016 Harvest)~scale(FS per stem 2015 Harvest)+scale(LS per stem 2016 Harvest)+scale(Int per Stem 2016 
Week 4)+scale(LS per stem 2015 Harvest)+scale(Int per Stem 2015 Harvest)+scale(FD per Stem 2015)+scale(Shade cover) 
scale(Int Stem 2015 Week 0)~~scale(Int per Stem 2015 Harvest) 
scale(LS per Stem 2015 Week 0)~~scale(LS per stem 2015 Harvest) 
scale(FS per stem 2015 Week 0)~~scale(FS per stem 2015 Harvest) 
scale(FD per Stem 2015)~~scale(FS per stem 2015 Harvest) 
scale(Int Stem 2015 Week 0)~~scale(Int per Stem 2016 Week 4) 
scale(Int per Stem 2015 Harvest)~~scale(Int per Stem 2016 Week 4) 
scale(LS per Stem 2015 Week 0)~~scale(LS per stem 2016 Week 4) 
scale(LS per stem 2015 Harvest)~~scale(LS per stem 2016 Week 4) 
scale(Int Stem 2015 Week 0)~~scale(Int per Stem 2016 Harvest) 
scale(Int per Stem 2015 Harvest)~~scale(Int per Stem 2016 Harvest) 
scale(Int per Stem 2016 Week 4)~~scale(Int per Stem 2016 Harvest) 
scale(LS per Stem 2015 Week 0)~~scale(LS per stem 2016 Harvest) 
scale(LS per stem 2015 Harvest)~~scale(LS per stem 2016 Harvest) 
scale(LS per stem 2016 Week 4)~~scale(LS per stem 2016 Harvest) 
scale(FS per stem 2016 Week 4)~~scale(FS per stem 2016 Harvest) 
scale(FD per Stem 2016)~~scale(FS per stem 2016 Harvest) 
 
AICBIC 
278.541764.162 
 
--- 
Testsofdirectedseparation: 
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Independ.ClaimTest.TypeDFCrit.ValueP.Value 
scale(LS per Stem 2015 Week 0)~scale(Shade cover)+...coef23.82190.0720.9432 
scale(FS per stem 2015 Harvest)~scale(Shade cover)+...coef25.4334-0.40030.6923 
scale(FD per Stem 2016)~scale(Shade cover)+...coef20.45131.19930.2441 
scale(Int per Stem 2015 Harvest)~scale(Shade cover)+...coef24.7512-1.18260.2482 
scale(Int per Stem 2016 Week 4)~scale(Shade cover)+...coef24.35-1.15010.2613 
scale(Int per Stem 2016 Harvest)~scale(Shade cover)+...coef25.2614-0.82670.4162 
scale(FS per stem 2015 Week 0)~scale(Altitude)+...coef23.2377-0.76120.4542 
scale(FD per Stem 2015)~scale(Altitude)+...coef19.2901-0.11340.9109 
scale(FS per stem 2015 Harvest)~scale(Altitude)+...coef22.7988-1.4520.1601 
scale(LS per stem 2016 Week 4)~scale(Altitude)+...coef21.99090.85640.401 
scale(FS per stem 2016 Week 4)~scale(Altitude)+...coef20.83340.35550.7258 
scale(Int per Stem 2016 Harvest)~scale(Altitude)+...coef22.8490.14510.8859 
scale(FS per stem 2016 Harvest)~scale(Altitude)+...coef21.4326-1.46080.1586 
scale(FS per stem 2016 Harvest)~scale(Int Stem 2015 Week 0)+...coef431.17640.99640.3196 
scale(FS per stem 2016 Harvest)~scale(LS per Stem 2015 Week 0)+...coef445.2201-0.89480.3714 
scale(LS per stem 2016 Harvest)~scale(FS per stem 2015 Week 0)+...coef451.18020.54570.5855 
scale(FS per stem 2016 Harvest)~scale(FS per stem 2015 Week 0)+...coef452.4518-0.92410.3559 
scale(LS per stem 2015 Harvest)~scale(FD per Stem 2015)+...coef454.5521-0.51480.6069 
scale(LS per stem 2016 Week 4)~scale(FD per Stem 2015)+...coef459.07070.31190.7552 
scale(FS per stem 2016 Week 4)~scale(FD per Stem 2015)+...coef412.5626-0.10930.913 
scale(Int per Stem 2016 Harvest)~scale(FD per Stem 2015)+...coef457.13450.54280.5876 
scale(FS per stem 2015 Harvest)~scale(LS per stem 2015 Harvest)+...coef457.27650.26040.7946 
scale(LS per stem 2016 Week 4)~scale(FS per stem 2015 Harvest)+...coef446.14850.48730.6263 
scale(FS per stem 2016 Week 4)~scale(FS per stem 2015 Harvest)+...coef365.6229-0.83630.4035 
scale(Int per Stem 2016 Week 4)~scale(FS per stem 2015 Harvest)+...coef459.8882-0.89180.373 
scale(Int per Stem 2015 Harvest)~scale(LS per stem 2016 Week 4)+...coef455.20270.24270.8084 
scale(FS per stem 2016 Harvest)~scale(LS per stem 2016 Week 4)+...coef456.9395-0.66930.5037 
scale(Int per Stem 2016 Week 4)~scale(FD per Stem 2016)+...coef455.2302-0.27730.7817 
scale(Int per Stem 2016 Harvest)~scale(FD per Stem 2016)+...coef450.4133-0.90.3686 
scale(Int per Stem 2015 Harvest)~scale(LS per stem 2016 Harvest)+...coef454.99320.32460.7457 
scale(FS per stem 2016 Harvest)~scale(Int per Stem 2016 Harvest)+...coef379.0249-0.74220.4584 
 
Globalgoodness-of-fit: 
 
Fisher'sC=44.541withP-value=0.954andon62degreesoffreedom 
 
--- 
Coefficients: 
 
ResponsePredictorEstimateStd.ErrorDFCrit.ValueP.ValueStd.Estimate 
scale(Int Stem 2015 Week 0)scale(Shade cover)-0.16820.107723.7533-1.56170.13160 
scale(Int Stem 2015 Week 0)scale(Altitude)0.01370.116720.74030.11770.90740.0019 
scale(Int Stem 2015 Week 0)scale(Shade cover):scale(Altitude)0.0550.114625.17780.47960.63570.0208 
scale(LS per Stem 2015 Week 0)scale(Altitude)-0.09260.07822.0467-1.18770.2476-0.058 
scale(LS per Stem 2015 Week 0)scale(Int Stem 2015 Week 0)0.63590.0377460.52816.864102.9533*** 
scale(FS per stem 2015 Week 0)scale(Shade cover)-0.11080.078727.0527-1.40880.17030 
scale(FS per stem 2015 Week 0)scale(Int Stem 2015 Week 0)0.27280.0496464.47465.501900.2415*** 
scale(FS per stem 2015 Week 0)scale(LS per Stem 2015 Week 0)0.33740.0478464.9847.05300.0643*** 
scale(FD per Stem 2015)scale(FS per stem 2015 Week 0)0.16860.0543463.70513.10330.00214.6453** 
scale(FD per Stem 2015)scale(Shade cover)-0.26080.088522.3418-2.94780.0074-0.005** 
scale(FD per Stem 2015)scale(Int Stem 2015 Week 0)0.22530.0599461.33883.76070.000217.3264*** 
scale(FD per Stem 2015)scale(LS per Stem 2015 Week 0)-0.11790.059463.9996-1.99890.0462-1.9519* 
scale(Int per Stem 2015 Harvest)scale(FS per stem 2015 Week 0)0.13630.0399463.42363.41870.00070.2213*** 
scale(Int per Stem 2015 Harvest)scale(FD per Stem 2015)0.01960.0338463.01870.57980.56240.0004 
scale(Int per Stem 2015 Harvest)scale(Altitude)0.16290.076421.96122.13270.04440.0316* 
scale(Int per Stem 2015 Harvest)scale(LS per Stem 2015 Week 0)0.5290.0384463.703213.787300.1637*** 
scale(LS per stem 2015 Harvest)scale(Int per Stem 2015 Harvest)0.79680.0702411.156611.348601.6744*** 
scale(LS per stem 2015 Harvest)scale(FS per stem 2015 Week 0)0.03140.0448425.73910.7020.48310.1073 
scale(LS per stem 2015 Harvest)scale(Shade cover)-0.09220.057522.229-1.60370.1229-0.0001 
scale(LS per stem 2015 Harvest)scale(Altitude)-0.20360.059318.3664-3.43270.0029-0.083** 
scale(LS per stem 2015 Harvest)scale(Int Stem 2015 Week 0)-0.32680.0703425.4247-4.64670-0.9869*** 
scale(LS per stem 2015 Harvest)scale(Shade cover):scale(Altitude)-0.16810.061823.464-2.71760.0122-0.1925* 
scale(FS per stem 2015 Harvest)scale(Int per Stem 2015 Harvest)0.40690.0806464.91065.050900.7559*** 
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scale(FS per stem 2015 Harvest)scale(Int Stem 2015 Week 0)-0.37530.0764464.8864-4.91160-1.0017*** 
scale(FS per stem 2015 Harvest)scale(LS per Stem 2015 Week 0)0.34240.0558464.56536.140100.1968*** 
scale(Int per Stem 2016 Week 4)scale(LS per stem 2015 Harvest)0.10220.0414462.99332.47020.01390.0388* 
scale(Int per Stem 2016 Week 4)scale(FS per stem 2015 Week 0)-0.02430.0418462.9823-0.58020.5621-0.0314 
scale(Int per Stem 2016 Week 4)scale(FD per Stem 2015)0.09540.0354460.91842.69660.00730.0014** 
scale(Int per Stem 2016 Week 4)scale(Altitude)0.13020.077621.22261.6770.10820.0201 
scale(Int per Stem 2016 Week 4)scale(LS per Stem 2015 Week 0)0.55740.0465462.976911.975700.1374*** 
scale(LS per stem 2016 Week 4)scale(Int per Stem 2016 Week 4)0.8310.0561463.821914.799401.1864*** 
scale(LS per stem 2016 Week 4)scale(FS per stem 2015 Week 0)0.17750.0427452.33684.15700.3278*** 
scale(LS per stem 2016 Week 4)scale(Shade cover)-0.11370.062326.3704-1.82310.07960 
scale(LS per stem 2016 Week 4)scale(Int Stem 2015 Week 0)-0.46080.0608463.6624-7.57510-0.7532*** 
scale(FS per stem 2016 Week 4)scale(LS per stem 2016 Week 4)0.20790.0501443.20464.149700.1126*** 
scale(FS per stem 2016 Week 4)scale(Int per Stem 2016 Week 4)0.35530.0784437.39554.530300.2748*** 
scale(FS per stem 2016 Week 4)scale(LS per stem 2015 Harvest)0.6170.0492406.543612.549500.1809*** 
scale(FS per stem 2016 Week 4)scale(Int per Stem 2015 Harvest)-0.49380.0849330.6093-5.81730-0.3042*** 
scale(FS per stem 2016 Week 4)scale(FS per stem 2015 Week 0)-0.05930.0458345.1989-1.29430.1964-0.0593 
scale(FS per stem 2016 Week 4)scale(Shade cover)-0.15170.049124.4053-3.09090.00490** 
scale(FS per stem 2016 Week 4)scale(Int Stem 2015 Week 0)0.19930.0747431.3742.66790.00790.1765** 
scale(FS per stem 2016 Week 4)scale(LS per Stem 2015 Week 0)-0.26740.0571386.1225-4.67840-0.051*** 
scale(FD per Stem 2016)scale(LS per stem 2016 Week 4)-0.0810.0509453.8112-1.59350.1117-3.2855 
scale(FD per Stem 2016)scale(FS per stem 2016 Week 4)0.23420.0489457.98584.7912017.5339*** 
scale(FD per Stem 2016)scale(FS per stem 2015 Harvest)0.26690.0605451.47734.407506.6249*** 
scale(FD per Stem 2016)scale(LS per stem 2015 Harvest)-0.20490.0603456.934-3.39570.0007-4.496*** 
scale(FD per Stem 2016)scale(Int per Stem 2015 Harvest)0.20780.0877432.70342.36950.01829.5825* 
scale(FD per Stem 2016)scale(FS per stem 2015 Week 0)-0.16110.0648440.1996-2.48610.0133-12.0603* 
scale(FD per Stem 2016)scale(FD per Stem 2015)0.69750.0472448.712114.785700.601*** 
scale(FD per Stem 2016)scale(Altitude)0.12090.065219.96491.8530.07871.0812 
scale(FD per Stem 2016)scale(Int Stem 2015 Week 0)-0.23930.0839412.5993-2.85310.0045-15.8603** 
scale(FD per Stem 2016)scale(LS per Stem 2015 Week 0)0.09920.0627447.72721.58230.11431.4157 
scale(Int per Stem 2016 Harvest)scale(FS per stem 2016 Week 4)0.10870.0407451.36792.6710.00780.1239** 
scale(Int per Stem 2016 Harvest)scale(LS per stem 2016 Week 4)0.11640.0423457.76552.75320.00610.0719** 
scale(Int per Stem 2016 Harvest)scale(FS per stem 2015 Harvest)0.00550.0429458.21530.12780.89840.0021 
scale(Int per Stem 2016 Harvest)scale(LS per stem 2015 Harvest)0.00620.048458.0510.12970.89680.0021 
scale(Int per Stem 2016 Harvest)scale(FS per stem 2015 Week 0)0.04080.0475461.05860.85740.39170.0465 
scale(Int per Stem 2016 Harvest)scale(LS per Stem 2015 Week 0)0.39540.0478456.97068.279500.0859*** 
scale(LS per stem 2016 Harvest)scale(FD per Stem 2016)-0.14890.0427451.2746-3.48870.0005-0.0038*** 
scale(LS per stem 2016 Harvest)scale(Int per Stem 2016 Harvest)0.52350.0735456.98387.122900.877*** 
scale(LS per stem 2016 Harvest)scale(FS per stem 2016 Week 4)0.09380.039448.46712.40120.01670.179* 
scale(LS per stem 2016 Harvest)scale(Int per Stem 2016 Week 4)-0.06120.0781451.0524-0.78360.4337-0.0903 
scale(LS per stem 2016 Harvest)scale(FS per stem 2015 Harvest)0.26080.0413454.34856.316700.1652*** 
scale(LS per stem 2016 Harvest)scale(FD per Stem 2015)0.08730.0497454.21131.75610.07970.0019 
scale(LS per stem 2016 Harvest)scale(Shade cover)-0.01130.099524.4422-0.11370.91040 
scale(LS per stem 2016 Harvest)scale(Altitude)0.01480.107220.81660.13790.89170.0034 
scale(LS per stem 2016 Harvest)scale(Int Stem 2015 Week 0)-0.16770.0593449.7564-2.82810.0049-0.2835** 
scale(LS per stem 2016 Harvest)scale(Shade cover):scale(Altitude)-0.25860.104124.4184-2.48390.0202-0.1657* 
scale(FS per stem 2016 Harvest)scale(FS per stem 2015 Harvest)-0.10570.0512420.0729-2.06280.0397-0.2754* 
scale(FS per stem 2016 Harvest)scale(LS per stem 2016 Harvest)0.10690.053420.9912.01760.04430.4399* 
scale(FS per stem 2016 Harvest)scale(Int per Stem 2016 Week 4)0.21030.0808436.98632.60330.00951.2779** 
scale(FS per stem 2016 Harvest)scale(LS per stem 2015 Harvest)0.34710.055460.50036.311500.7996*** 
scale(FS per stem 2016 Harvest)scale(Int per Stem 2015 Harvest)-0.26090.0888434.0219-2.93760.0035-1.2631** 
scale(FS per stem 2016 Harvest)scale(FD per Stem 2015)-0.10540.0481453.6814-2.19090.029-0.0095* 
scale(FS per stem 2016 Harvest)scale(Shade cover)-0.18590.072127.5058-2.57720.0156-0.0003* 
~~scale(Int Stem 2015 Week 0)~~scale(Int per Stem 2015 Harvest)0.5061-46912.665800.5061*** 
~~scale(LS per Stem 2015 Week 0)~~scale(LS per stem 2015 Harvest)0.3538-4698.166200.3538*** 
~~scale(FS per stem 2015 Week 0)~~scale(FS per stem 2015 Harvest)0.5686-46914.920100.5686*** 
~~scale(FD per Stem 2015)~~scale(FS per stem 2015 Harvest)-0.3841-469-8.98140-0.3841*** 
~~scale(Int Stem 2015 Week 0)~~scale(Int per Stem 2016 Week 4)0.4257-46910.156700.4257*** 
~~scale(Int per Stem 2015 Harvest)~~scale(Int per Stem 2016 Week 4)0.6695-46919.455300.6695*** 
~~scale(LS per Stem 2015 Week 0)~~scale(LS per stem 2016 Week 4)0.2004-4694.415800.2004*** 
~~scale(LS per stem 2015 Harvest)~~scale(LS per stem 2016 Week 4)0.3636-4698.424500.3636*** 
~~scale(Int Stem 2015 Week 0)~~scale(Int per Stem 2016 Harvest)0.3492-4698.044300.3492*** 
~~scale(Int per Stem 2015 Harvest)~~scale(Int per Stem 2016 Harvest)0.5241-46913.283300.5241*** 
~~scale(Int per Stem 2016 Week 4)~~scale(Int per Stem 2016 Harvest)0.6641-46919.176700.6641*** 
~~scale(LS per Stem 2015 Week 0)~~scale(LS per stem 2016 Harvest)0.1415-4693.08650.00110.1415** 
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~~scale(LS per stem 2015 Harvest)~~scale(LS per stem 2016 Harvest)0.1914-4694.210700.1914*** 
~~scale(LS per stem 2016 Week 4)~~scale(LS per stem 2016 Harvest)0.4096-4699.691200.4096*** 
~~scale(FS per stem 2016 Week 4)~~scale(FS per stem 2016 Harvest)0.0843-4691.82590.03430.0843* 
~~scale(FD per Stem 2016)~~scale(FS per stem 2016 Harvest)-0.3121-469-7.09250-0.3121*** 

 

 
Fig. S1. Timeline of volumetric water content from 0 to 160 cm depth averages by layers (0 – 30 cm, 40 – 60 cm, 70 – 90 cm, 
100 – 120 cm and 120 – 160 cm) displayed by altitude class (Low altitude (1100 – 1400 m.a.s.l.), mid altitude (1400 – 1700 
m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l.) and coffee cropping system  (Coffee – Open (CO), Coffee – Banana (CB) and 
Coffee- shade tree (CT). 
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Fig.S1. Volumetric water content across the soil profile (0 – 160 cm depth) for three altitude classes and coffee cropping 
systems. Colour and symbol indicates coffee cropping system (Coffee-Open = CO (Red circle), Coffee – Banana = CB (Yellow 
triangle), Coffee- shade tree = CT (Blue suare) in three altitude classes altitude classes (Low altitude (1100 – 1400 m.a.s.l.), mid 
altitude (1400 – 1700 m.a.s.l.) and high altitude (1700 – 2100 m.a.s.l). 
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