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Abstract. The trend of increasing rotor diameters and tip-speeds has brought about concerns
of non-negligible compressibility effects in wind turbine aerodynamics. The investigation of
such effects on wakes is particularly difficult when using actuator line models (ALM). This
is because crucial regions of the flow, i.e. the direct vicinity of the blade, are not simulated
but represented by body forces. To separately assess the impact of compressibility on the
wake and the ALM itself, we conduct large-eddy simulations (LES) where the forces of the
ALM are prescribed and based on the local sampled velocity (standard procedure), respectively.
The LES are based on the weakly-compressible Lattice Boltzmann Method (LBM). Further to
the comparison of (near-)incompressible to compressible simulations we investigate cases with
artificially increased compressibility. This is commonly done in weakly-compressible approaches
to reduce the computational demand. The investigation with prescribed forces shows that
compressibility effects in the wake flow are negligible. Small differences in the wake velocity (of
max. 1%) are found to be related to local compressibility effects in the direct vicinity of the
ALM. Most significantly, compressibility is found to affect the sampled velocity and thereby
accuracy of the ALM.

1. Introduction
Traditionally, the numerical modeling of wind turbine and farm aerodynamics is performed
in incompressible frameworks [1]. This choice is generally well in line with the underlying
incompressibility assumption (Ma < 0.3) as tip speeds usually lie below 100 m s−1 [2]. Recently,
however, the occurrence of local Mach numbers beyond this incompressible regime has become
more likely due ever increasing turbine sizes and rotor radii approaching the 100 m mark. Several
studies therefore investigated compressibility effects on airfoil properties [3, 4]. These show that
there are non-negligible changes in the lift and drag that should be taken into account. Sørensen
et al. [4] also showed that common compressibility corrections to incompressible airfoil data such
as the Prantl-Glauert correction [5] are in reasonable agreement with the compressible data.
Based on such compressibility-corrected airfoil properties Yan and Archer [6] investigated the
effects of compressibility on the overall power and thrust coefficient CP and CT , respectively, of
an entire turbine. Using a standard blade element momentum (BEM) approach they found that
noticeable effects on CP and CT only occur at wind speeds u0 and tip speed ratios (TSR) that
are beyond typical operating conditions (u0 > 15m s−1, TSR > 12). In any case, the occurrence
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of high local Mach numbers in the flow past wind turbines mostly results from the rotation of
the blade. Therefore, Wood [7] assumed that compressibility effects are confined to the flow
over the blade. Flow fields obtained from geometrically resolved simulations of full-scale rotors
corroborate this assumption. They show that velocities approaching the compressible regime are
limited to the boundary layer of the airfoil [8, 9]. It therefore appears that compressibility only
plays an indirect role when it comes to the wake of the turbine. To be clear, compressibility-
related changes in CT and CP can obviously alter the wake characteristics. Nevertheless, the
wake flow itself remains in the weakly compressible regime where the effect of density fluctuations
on the solenoidal (incompressible) velocity components is negligible.

These considerations become particularly interesting when the turbine is represented by the
actuator line model (ALM). The ALM, commonly used in large-eddy simulations (LES) of
wind turbines [1], applies velocity-dependent lift and drag forces of discrete airfoil sections
as body forces in the computational domain [10]. The aforementioned regions prone to non-
negligible compressibility are thus not explicitly captured when using the ALM. Yan and Archer
[6] also investigated compressibility effects when using the ALM. The authors compared turbine
performance and wake properties obtained from both compressible and incompressible LES
while using the same uncorrected (incompressible) airfoil data. Even for cases with presumably
low compressibility effects on the airfoil properties (u0 = 7.88 m s−1, TSR=8) notably smaller
velocity deficits and turbulent kinetic energies were obtained in the compressible framework. The
authors argued that these differences are related to an upstream reduction of kinetic energy due
to compression. However, this interpretation is arguably bold in light of turbulent Mach numbers
Mt =

√
k/cs (where k is the turbulent kinetic energy and cs the speed of sound) being reported

in the order O(10−3). Both theory and fundamental investigations of compressible turbulence
suggest that such interactions of dilatational and solenoidal components are typically weak in
this low-Mach number quasi-isentropic regime (Mt < 0.1 .. 0.3) [11, 12, 13, 14].

In addition to purely physical aspects, compressibility does become relevant from a numerical
stand point in weakly compressible formulations. Weakly compressible schemes solve the
compressible Navier-Stokes equations but lack an explicit formulation of the total energy. The
temperature of the simulated system is thus inherently constant. The effects of temperature
fluctuations are consequently not captured thereby limiting the use to the quasi-isentropic
regime and compressible phenomena such as acoustics [12]. When applied to incompressible
flow problems, the occurring compressibility effects are often seen as a mere numerical artefact.
As a matter of fact though, in practice simulations are often run with lower cs than found in the
actual flow problem. Such a choice is motivated by lower computational costs as cs is inversely
proportional to the time step ∆t [15].

In this study we are specifically concerned with the Lattice Boltzmann Method (LBM). Due
to its excellent computational efficiency the LBM has shown to be a promising alternative to
common CFD approaches [16], also in the field of wind energy [17, 18, 19, 20]. The LBM in
its classical form is a weakly compressible formulation. The motivation for an assessment of
weak compressibility effects in ALM simulation of wind turbines is thus twofold. Firstly, recent
discussions of compressibility effects on wakes [6] appear to require additional considerations
due to the aspects outlined above. Among others, Meyer-Forsting et al. [21] showed that the
velocity induced by the ALM itself can have severe impacts on the correct computation of the
body forces. Moreover, in Asmuth et al. [19] it was shown that this inherent problem of the ALM
not only depends on the width of the model’s smearing kernel ε but also the Mach number. We
therefore argue that it is crucial to separate the investigation of compressibility effects between
the ALM and the wake. To this end, we perform ALM simulations with the LBM at different
cs while prescribing the body forces along the actuator line. This permits to avoid potential
differences that could arise from the interaction of the ALM with the flow field. For instance,
those caused by the changes in angle of attack due to variations in the induced velocity. The
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latter was shown to be one of the most sensitive aspects of the ALM when it comes to the correct
representation of the body forces [21]. Most importantly, this aspect relates to a model-specific
issue rather than a correct representation of the interaction of the blade with the surrounding
fluid, be it compressible or incompressible. In a second suite of simulations we use the standard
ALM approach as in [6]. Here, we examine what factors influence the forces along the blade at
different compressibilities and how this again affects the wake characteristics.

The second motivation for this study is more specific to wake simulations using the LBM or
other weakly compressible approaches as in [22, 23]. As outlined above, cs is often chosen lower
than physical. If compressibility effects were to have non-negligible effects on wakes of modern
wind turbines it is crucial to assess how these effects evolve when artificially increasing the
compressibility in a weakly compressible framework. The aforementioned test series therefore
comprise cases with the physically correct speed of sound as well as larger (less compressible)
and lower values (more compressible).

2. The Lattice Boltzmann Method
As opposed to classical Navier-Stokes-based CFD approaches the LBM solves the kinetic
Boltzmann equation. For the sake of brevity we can only give a brief introduction to the
underlying numerical concepts. For a more comprehensive overview we refer to the work by
Krüger et al. [24].

2.1. Governing Equation
The kinetic Boltzmann equation describes the dynamics of so called particle distribution
functions f . These characterise the probability to encounter a particle (mass) density of
velocity ξ at time t at location x. Solving the kinetic Boltzmann equation therefore requires a
discretisation in both physical and velocity space. Using a finite-difference approach in space
and time and a set of discrete velocities (referred to as velocity lattice) we obtain the lattice
Boltzmann equation (LBE)

fijk(t+ ∆t,x+ ∆t eijk)− fijk(t,x) = Ωijk (1)

where eijk = iex + jey + kez is the referring velocity vector of each discrete lattice direction.
The collision operator Ωijk models the redistribution of f through particle collisions, described
by a relaxation towards a Maxwellian equilibrium. Following dimensional analysis we obtain a
macroscopic description of the fluid by means of the raw velocity moments of f

mαβγ =
∑
ijk

iαjβkγ fijk (2)

where α, β and γ denote the order of the moment in the referring lattice direction. Using
eq. (2), the mass density ρ is then obtained from the zeroth-order moment m000. Analogously,
the momentum in x, y and z is given by the first-order moment in the referring coordinate
direction m100,m010 and m001, respectively. In the classical BGK (Bhatnagar-Gross-Kroog [25])
collision model the particle distribution functions are directly relaxed towards the equilibrium
using a single constant relaxation rate ω. Due to poor numerical stability numerous alternative
collision models have been suggested. A comprehensive review thereupon can be found in
[26]. In this work we apply the cumulant collision model (CLBM) introduced by Geier et
al. [27]. As opposed to the BGK or moment-based multiple relaxation time models (MRT)
as, for instance, [28], the CLBM relaxes cumulants of the PDFs, i.e. independent observable
quantities. Substantial advantages of the CLBM are a maximisation of Galilean invariance and
the elimination of spurious couplings between observable quantities. As a result, the CLBM
provides a drastic reduction of numerical errors and improved numerical stability especially for
high-Reynolds number flows [27, 29].
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2.2. Compressibility in the Lattice Boltzmann Method
A Chapman-Enskog [24] or Taylor expansion [30] of the LBE reveals that it recovers the
compressible Navier-Stokes equations with a corresponding isothermal equation of state p = ρc2s.
The LBM thus inherently captures weakly compressible phenomena as found in low Mach
number flows. Among others, it is therefore commonly applied in the field of aeroacoustics.
See, for instance [31, 32].

From a physical point of view, the isothermal assumption of the LBM prohibits the simulation
of flows beyond the weakly compressible regime. In addition, the use of classical collision
operators like the BGK or MRT is numerically limited to low Mach numbers. The latter relates
to a velocity-dependent error O(u3) in the recovery of the stress tensor. As the velocity u on the
lattice level scales with the Mach number this viscosity error itself effectively scales with Ma2

[33]. Low Mach numbers are therefore required in order to keep the cubic defect in reasonable
bounds. Or, framing it inversely, changes in compressibility can imply changes in the numerical
diffusivity. The CLBM, however, corrects for this defect as well as other violations of Galiliean
invariance. Also, the use of parametrised collision rates [29] further reduces Ma-dependent
errors in the viscosity. Accordingly, the CLBM appears as a suitable method to investigate
compressible phenomena in wind turbine wakes in a range of low Mach numbers.

2.3. The Actuator Line Model
The utilised ALM closely follows the standard procedures presented in [10] and others. The
forces at each blade element of the actuator line are determined using the respective relative
velocity urel, with

urel =
√
u2n + (Ω r − uθ)2 , (3)

where un is the blade-normal (streamwise) velocity, uθ the tangential velocity, Ω the rotational
velocity of the turbine and r the radial position of the blade element. The local blade forces per
unit length are given by

F = 0.5 ρ u2rel c (CL(α) eL + CD(α) eD) , (4)

with ρ being the fluid density and c the chord length. The lift and drag coefficients CL and CD,
respectively, are interpolated from tabulated airfoil data as functions of the local angle of attack
α. The blade forces are smeared in space using a three-dimensional Gaussian convolution kernel
with characteristic smearing width ε. The resulting body force per control volume is finally
applied in the CLBM collision operator. Further details upon the latter can be found in the
original work by Geier et al. [27].

3. Numerical Framework
3.1. The Lattice Boltzmann Solver elbe
The simulations are performed with the GPU-based Efficient Lattice Boltzmann Environment
elbe1 [34] mainly developed at Hamburg University of Technology (TUHH). The CLBM
implementation in elbe was recently validated by Gehrke et al. [35, 36] by means of several
fundamental test cases. Further applications include ALM simulations as presented in [19, 20].

3.2. Case set-up
The presented investigation is based on simulations of the NREL 5MW reference turbine [37]
in a sheared turbulent inflow. The simulated turbine is situated in a rectangular domain of 20
rotor diameters D in the stream-wise direction x and 6D in the lateral direction y and vertical
direction z, respectively. The uniform grid spacing measures ∆x = D/32. The turbine is located

1 https://www.tuhh.de/elbe

https://www.tuhh.de/elbe
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3D downstream of the inlet. Furthermore, we define the coordinate origin such that the turbine
hub refers to x = {0, 0, zhub = 0.79D}.

The velocity at the inlet is prescribed by a logarithmic profile u(z) = u∗/κ ln(z/z0) that is
perturbed with synthetic Mann turbulence [38]. At the top we prescribe a geostrophic wind
based on the velocity profile. The lateral direction is periodic and an extrapolation boundary
condition is applied at the outlet. At the bottom we also apply a velocity boundary condition
with uBC = u(z = ∆x). Mind, that wall modelling in the LBM is still at an early stage when
compared to classical LES [39, 40]. It is therefore not considered in this study. As for the
CLBM scheme, we apply a limiter λ = 0.01 to the relaxation of the third-order cumulants as
suggested in [29]. Furthermore, the CLBM is applied without explicit turbulence model, in line
with various other studies [15, 20, 36].

The inlet velocity is chosen such that the turbine operates at rated power, i.e. u0 = 11.4m s−1

(u∗ = 0.495m s−1, z0 = 0.01m). The imposed Mann turbulence refers to a turbulence intensity
of Ti0 = 2.8%. The rotational speed of the turbine is fixed based on the optimal tip-speed
ratio TSR = 7.55. This point of operation implies the highest possible local Mach numbers at
the blades excluding above-rated conditions. All simulations are run for a total of 18 domain
flow-through times Tft with respect to u0. Statistics are gathered after 6Tft. In each test series
we investigate four different speeds of sound. All cases will be referred to with a corresponding
Mach number with respect to u0. The lowest Mach number Ma0.5pc = 0.017 corresponds to twice
the actual speed of sound with cs = 680m s−1. This case shall serve as a near-incompressible
(NI) reference as compressibility is indeed negligible as shown in section 4.1. Accordingly,
Mapc corresponds to the physically correct (PC) Mach number (Mach-matched). Ma2pc and
Ma4pc refer to a half and a quarter the physically correct cs, respectively (more compressible).
Furthermore, note, that Ma2pc and Ma4pc are commonly found in the literature when simulating
supposedly incompressible flow problems with the LBM. All cases are run with smearing widths
of ε = 1 ∆x and ε = 2 ∆x, respectively in order to assess the impact of the regularisation kernel.

For the sake of consistency it should also be mentioned that all cases are run in double-
precision floating-point format in order to accurately represent the non-dimensional viscosity in
the LBM scheme at all Ma. In single-precision, which is commonly used in GPU-based LBM
solvers, the viscosity with Ma0.5pc would be numerically indistinguishable from zero. For a
further discussion of this topic the interested reader is referred to Lenz et al. [15].

4. Results and Discussion
4.1. Prescribed Rotor Loads
In the first test series we decouple the ALM from the surrounding fluid. Therefore, the local
velocity in eq. (4) is prescribed by the inlet velocity profile, i.e. un = u(z) and uθ = 0, and
not sampled from the flow field. In fig. 1 we compare the difference of each case with ε = 1 ∆x
towards the reference Mar,NI in the mean streamwise velocity ∆ū(x, z) = ū(x, z) − ūr,NI(x, z)
as well as turbulence intensity ∆Ti(x, z) = Ti(x, z) − Tir,NI(x, z) normalised by u0 and Ti0,
respectively. The most distinct differences in the velocity can be found in the the near-wake.
Here, the velocity deficit in the upper shear layer is lower than in the reference while the opposite
holds for the lower shear layer. This characteristic gets more pronounced the higher the Mach
number with a maximum difference of about 2.5% for Ma4pc. Further downstream a clear trend
can not be observed as differences are more scattered in space. The turbulence intensity in the
near-wake decreases the higher Ma. In the far-wake differences are again rather scattered except
for Ma4pc. The latter case shows notably higher Ti in the entrainment zone as the wake recovers.

For a better quantification of the differences we compute the spatial mean of the magnitude of
the difference in the velocity and turbulence intensity 〈|∆ū|〉 and 〈|∆Ti|〉 within cross-sectional
planes of −D ≤ y ≤ D, z ≤ 2D at different positions x, shown in fig. 2. As an additional
reference we provide the the differences found in cases without turbine. Mind, that results of the



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062057

IOP Publishing

doi:10.1088/1742-6596/1618/6/062057

6

0

2

z
/
D

Mapc

0

2

z
/
D

Ma2pc

0 2 4 6 8 10 12

x/D

0

2

z
/
D

Ma4pc

0 2 4 6 8 10 12

x/D

−0.02 −0.01 0.00 0.01 0.02
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Figure 1: Contour plots of the normalised difference in mean streamwise velocity ∆u/u0 (left)
and turbulence intensity ∆Ti/Ti0 (right) in vertical planes at y = 0 with ε = 1 ∆x. Grey line
inidcating the rotor plane.
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Figure 2: Spatial mean of the absolute error of ū and Ti across cross-sectional planes at
different downstream positions. No turbine (Mapc:�, Ma2pc:�, Ma4pc:�), ε = 1 ∆x (•,•,•),
ε = 2 ∆x (N,N,N).

fully coupled ALM cases will be discussed in section 4.2. First of all, the impact of compressibility
on the ambient flow (no turbine) is found to be small. The difference in ū between the PC and
the NI case amounts to less than 0.1% in all investigated cross sections. With higher Ma the
differences increase, yet remain below 0.5% in the entire domain. As for the Ti the differences
are about one order of magnitude higher with a maximum of about 4% for the highest Ma. The
presence of the turbine increases Ma-related differences when compared to the ambient flow.
Particularly, the differences grow throughout the near-wake but remain rather constant in the
far-wake. Generally, it can be seen that the magnitude of the deviations is close to the one in
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ā ×10−3

x = 3D

−5 0 5
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Figure 3: Comparison of the relative dilatation. Left : vertical profiles of the mean relative
dilatation ā at different positions downstream. ε = 1 ∆x: Ma0.5pc ( ), Mapc ( ), Ma2pc
( ), Ma4pc ( ). ε = 2 ∆x in corresponding dashed-dotted lines. Mind the different of scale
on the abscissa at x = −∆x. Ti of Mapc ( ) is given with respect to the upper abscissa.
Dashed grey line marking zhub. Rotor swept area shaded in light grey. Right : PDF of a at
x = (−∆x, 0, zhub +R).

the ambient flow up until the rotor plane. Thus, turbine-induced compression/expansion mostly
seems to affect the flow field downstream. The effect of the smearing width ε on the velocity
is found to be mostly negligible. A notable impact can only be observed in the Ti in the rotor
plane which increases with Ma. The latter can be expected since smaller ε imply higher local
pressure gradients which again lead to larger changes in density the higher Ma. Nevertheless, it
is noticeable that ε only plays a minor role downstream of the rotor.

In order to characterise the occurring compressibility we evaluate the relative dilation

a =
∂ui
∂xi

(
∂un
∂xm

∂un
∂xm

)− 1
2

, (5)

i.e. the velocity dilatation (divergence) normalised by the magnitude of the velocity gradient
tensor. Algebraically, a is limited to the range {−

√
3,
√

3}. Negative values indicate
compression (decrease in volume) while positive values indicate expansion (increase in volume)
[41]. Statistical comparisons of a are depicted in fig. 3. Mind, that we choose to show ā at
x = −∆x instead of the rotor plane since the latter corresponds to the zero-crossing of ā in
the stream-wise direction. Accordingly, we find almost the exact negative of this profile at
x = ∆x. In the wake departures from zero only occur in regions of high Ti. Yet, the magnitude
thereof is consistently low. Even for the highest Ma maximal values are O(10−3) which can be
considered negligible referring to fundamental studies of compressible turbulence [41, 42]. The
latter is not surprising in the sense that local turbulent Mach numbers in Ma4pc are O(10−2) and
correspondingly lower in the other cases. Hence, the wake flow consistently corresponds to the
weakly compressible regime where compressibility effects are negligible. The mean dilatation
close to the ALM is considerably higher, yet still low in absolute terms. On the other hand,
the probability density function (PDF) of a reveals that non-negligible dilatations do occur.
This particularly stands out for Ma4pc showing secondary peaks at relatively large positive and
negative values. The spectra of a (not shown here for the sake of brevity) prove the obvious
conjecture that these peaks originate from the blade passage. This also explains the lower
magnitude of the secondary peaks with ε = 2∆x. Moreover, it is noticeable that major changes
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Figure 4: Relative difference er of the tangential force Ft, angle of attack α, mean density
ρ and relative velocity urel (from left to right) with respect to the NI reference case along the
actuator line with ε = 1 ∆x and ε = 2 ∆x using the same colors and lines as in fig. 3.

in the PDF due to ε only occur with Ma4pc. Note, that the effect thereof was shown earlier in
fig. 2 in terms of an increased 〈|∆Ti|〉 in the rotor plane.

4.2. Fully Coupled ALM
The second test series investigates the standard fully coupled ALM as described in section 2.3.
The L1-norm given in fig. 2 shows that Ma-related changes in the velocity behave similarly
with ε = 2∆x when compared to the cases with prescribed forces. The same accounts for
the turbulence intensity. With ε = 1∆x differences in the rotor plane and near-wake increase
notably. Also, deviations of Ti towards the reference show a significant increase in the near-
wake region in comparison to ε = 2∆x. The force distribution along the actuator line reveals
that higher deviations in the flow field go along with corresponding changes in the forces. An
estimate thereof can be obtained from the relative difference of the tangential force Ft towards
the reference (er(Ft) = Ft/Ft,NI − 1) depicted in fig. 4. Similar characteristics are found for the
normal force Fn which is omitted here in the interest of brevity. Moreover, the sensitivity of the
forces to compressibility is found to be larger the smaller ε.

From eq. (4) we can also identify possible terms causing changes in Ft and Fn. The influence
of the flow field on the magnitude of urel is naturally small since it is dominated by Ω r which
we set. Also, deviations of the mean density from the reference case only amount to a maximum
of 0.2%, see fig. 4. Hence, we can identify the angle of attack as the main influencing factor
on er(Ft) based on both magnitude and correlation with er(Ft). To be precise, the correlation
coefficient of the two errors RFt,α > 0.95 for all cases. Moreover, supplementary simulations in
uniform inflow (not shown here for the sake of brevity and, similar to the findings presented in
[19]) reveal that large er(Ft) also imply large deviations from BEM results.

Force deviations of the ALM from BEM or lifting line theory have been widely discussed
in the literature [43, 21, 44]. Typically, these are found near the root and tip of the blade.
Meyer Forsting et al. [21] discussed that such deviations mostly relate to changes in the angle
of attack due to the velocity induction of the trailing vortices. Here we show that an increasing
compressibility as well as decreasing smearing width introduce an additional error in α. This,
however, is not concentrated at the root and tip as shown in fig. 4. It therefore appears that
low ε and high Ma also affect the bound vortex of the actuator line and thereby the sampled
velocity along the line.

5. Conclusion
The present work investigates several aspects of compressibility in ALM simulations of wind
turbine wakes in weakly compressible frameworks. Firstly, the analysis of cases with prescribed
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rotor forces showed that non-negligible compressibility effects only occur in the direct vicinity
of the ALM. All differences in the wake flow therefore trace back to local changes near the
rotor plane. In this way, the presented results are in agreement with the initial assumptions
on the locality of compressibility. Furthermore, it is shown that even large relative changes
in the dilation due to small ε only mildly affect the wake flow characteristics. From an ALM
perspective this can be appreciated. Ultimately, it implies that the smearing width as such
does not introduce significant ALM-specific compressibility-related effects on the flow field in
addition to those known from incompressible frameworks [21, 44, 45].

Using the fully-coupled ALM compressibility can become an issue for the accurate
computation of the rotor forces. More precisely, it can introduce deviations from the angle
of attack as predicted by BEM theory. These deviations come in addition to those also present
in incompressible frameworks near the root and tip. Regardless of the compressibility of the
surrounding fluid, deviations from BEM theory are undesirable for the ALM. Discussions on
compressibility in the context of ALM simulations as presented in [6] should thus be taken
with due care. After all, changes in the wake flow field can be attributed to compressibility-
related changes in the forces of the ALM and not necessarily compressibility effects in the flow.
Eventually, additional correction models might be required to mitigate such deviations.

At last, following conclusions can be drawn regarding the the two main motivations of this
study. The former was the comparison of (near-)incompressible to (Mach-matched) compressible
wake flows. Bearing in mind that the latter corresponds to Mapc the observed differences
can arguably be considered negligible. This even corresponds to the fully-coupled ALM cases
which include the aforementioned changes in the blade forces. In agreement with the common
practice we therefore conclude that compressibility can be neglected when simulating wind
turbine wakes. The second motivation was the investigation of wake flows with artificially
increased compressibility as commonly done in weakly compressible frameworks. As for the
wake alone compression/expansion was consistently found to remain negligible even for the
highest investigated Mach number. The blade-induced dilatation of the rotor, however, can
reach magnitudes which locally exceed the non-negligible regime depending on the smearing
width. Hence, it should be taken into account that this formally violates the underlying weakly-
compressible assumption even though the impact on the wake remains reasonably small.
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