
Hindawi Publishing Corporation
Advances in Materials Science and Engineering
Volume 2013, Article ID 698476, 8 pages
http://dx.doi.org/10.1155/2013/698476

Research Article
Modelling of Ballistic Impact over a Ceramic-Metal
Protection System

Leandro Neckel,1 Dachamir Hotza,2 Daniel Stainer,3

Rolf Janssen,4 and Hazim Ali Al-Qureshi5

1 Universidade do Extremo Sul Catarinense (UNESC), Unidade Acadêmica de Ciências, Engenharias e Tecnologia,
88806-000 Criciúma, SC, Brazil
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88040-900 Florianópolis, SC, Brazil

3 Construções Mecânicas Cocal Ltda, 88845-000 Cocal do Sul, SC, Brazil
4Hamburg University of Technology (TUHH), Institute of Advanced Ceramics, 21073 Hamburg, Germany
5Universidade Federal de Santa Catarina (UFSC), Centro de Engenharia da Mobilidade, 89218-000 Joinville, SC, Brazil

Correspondence should be addressed to Dachamir Hotza; dhotza@gmail.com

Received 24 February 2013; Revised 26 September 2013; Accepted 1 October 2013

Academic Editor: Augusto Deus

Copyright © 2013 Leandro Neckel et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The behavior of ceramic-metal protection against a projectile impact ismodeled.Themodel takes into account themass and velocity
for each stage of the phenomenon. A former model was modified considering more realistic parameters such as geometries and
deformation profile. To analyze the model, simulations on different parameters have been run. The impact results of different
ballistic projectiles were simulated, and the movement was plotted. In addition, a deterministic simulation on the mechanical
properties of the back metal plate properties was done.

1. Introduction

Gonçalves et al. [1] have developed a mathematical approach
to the behavior of a two-layer system protection of ceramic-
metal system against high speed impact. The scheme of the
protection is presented in Figure 1. The ceramic layer erodes
the projectile, and the back metal plate is responsible for
absorbing the remaining energy by plastic deformation. The
mathematical model separates the penetration into three
different stages and proposes a deterministic equation that
explains the deflection of the metal plate. The movement
equations were manipulated to find a single problem for
velocity and mass separately for each stage. The data and
initial parameters provided by the original work [1] were used
for the differential equations found.Themetal deformity was
reevaluated by deducing the deterministic equation. A more
realistic shape parameter was considered for the postimpact
curvature, and the volume approach was improved. Finally,
the solution was plotted and compared to former results [1].

Themodel was better understood once the solutions were
used to simulate different impacts over the system. Initially,
properties of some ballistic projectiles were used to prevent
the shock absorption. In addition, the mechanical properties
of the metallic plate were modified intending to observe the
effect on the final deformation.

A previouswork [2] has focused on the study of themove-
ment evolution of the projectile. This work has continued
to analyze the penetration of the projectile searching for the
understanding of the final deformation.

The set of data generated in the simulations together
with the newly developed equations for impact and shock
absorption were, in conclusion, observed as an advance for
the understanding of high speed impact phenomena.

2. Materials and Methods

The software Maplesoft Maple V12 was used to solve the
system. Gonçalves et al. work [1] provided all materials,
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Figure 1: Proposal of a two-layer protection made by Gonçalves et
al. [1].

constant values, and initial parameters necessary. Moreover,
the projectile specifications used were from rifle bullets.

The mathematical model of the penetration process is
divided into three stages. The first represents the initial
impact and erosion of the head of the projectile. In this
situation there is no penetration into the protection.The force
against the projectile is

𝑚(𝑡)

𝑑

𝑑𝑡

V (𝑡) = −𝑌𝐴𝑝,
(1)

and the variation in the geometry is given by

𝑑

𝑑𝑡

𝑚 (𝑡) = −𝐴𝑝𝜌𝑝V (𝑡) , (2)

where 𝑌 is the dynamic yielding of the projectile and 𝐴𝑝

is the effective contact area of the projectile. Also, 𝜌𝑝 is the
density of the projectile’s material. According to Tabor [3],
the dynamic hardness of a metal is the pressure with which
it resists local indentation by a rapidly moving indenter. The
first approximation for the 𝑌 value is a constant and not
necessarily the same as the static pressure necessary to cause
plastic flow. The actual value of the dynamic yield pressure
strongly depends on the velocity of the impact and the
projectile geometry. Tabor [3] also cites different methods to
estimate this value. For simplification, following the original
work [1], this value will be considered a fraction of the static
hardness of the projectile material.

The impact generates a shock wave that travels through
thematerial and reflects back cracking the ceramic plate.This
shock wave is extremely fast and runs through the protection
in a small fraction of a second. Theoretically, the sum of the
incoming with the returning wave generates a region of high
stress. This region is easily observed as a cone in the solids,
which fits with the cracking region. Figure 2 demonstrates
a single scheme for the initial impact and the propagating
shock waves.

The shape and size of the ceramic tile can also affect the
protection performance.The crack cone formation allows the

Shock waves Metal layer

Ceramic layer

Impact point

Figure 2: First stage of the impact. The collision generates a shock
wave that travels through the armor.

necessary scattering to provide enough ceramic particles for
the projectile erosion. With smaller geometry, the crack cone
would not be properly formed once the constructive interfer-
ence of the shock waves would not only occur longitudinally
but also transversally. Those considerations were not taken
into account in this model.

In the second stage the penetration starts pushing an
interface projectile-ceramic with velocity 𝑢(𝑡). This interface
is a small portion of ceramic in contact with the projectile
whichmoves together but with different initial velocity.Thus,
the force against the projectile is the same, but the difference
of the velocities V(𝑡) and 𝑢(𝑡) gives the erosion ratio:

𝑑

𝑑𝑡

𝑚 (𝑡) = −𝐴𝑝𝜌𝑝 (V (𝑡) − 𝑢 (𝑡)) . (3)

It is important to note that the erosion ceases when 𝑢(𝑡) is
equal to V(𝑡). In this moment, the interface reaches the same
velocity as the projectile. With this, if there is no difference
between both velocities, there is no stress applied in the
projectile or interface material.

The modified hydrodynamic theory given by Tate [4]
introduced the dynamic yielding (𝑌) and the resistance
against penetration (𝑅) adopted for the ceramic in this case.
Tate’s law is given by

𝑌 +

1

2

𝜌𝑝(V(𝑡) − 𝑢(𝑡))
2
= 𝑅 +

1

2

𝜌𝑐𝑢(𝑡)
2
, (4)

where 𝜌𝑐 is the density of the ceramicmaterial. Tate’s equation
is used as an important auxiliary equation to solve the model.
This will be present in the next section of this work.

The second stage ends when V(𝑡) = 𝑢(𝑡). After this, the
final fraction of the movement is given by

𝑚𝑝𝑟

𝑑

𝑑𝑡

V (𝑡) = −𝑅𝐴𝑝,
(5)

where𝑚𝑝𝑟 is the remaining mass of the projectile. The metal
plate absorbs the final kinetic energy by plastic deformation.
Simultaneously to the penetration of the projectile, the
metallic base will move and will be deformed elastically.
However, the energy produced by this elastic energy will
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be low and will be neglected [1]. Once the first and second
stage end, the main part of the projectile kinetic energy is
absorbed by ceramic scattering and projectile erosion and
can be computed using 𝑚𝑝𝑟 and the velocity obtained in the
beginning of the third stage. Due to the deceleration of the
bullet caused by the ceramic layer, the metallic plate may not
be perforated. In this case, the secondary layer will suffer
plastic deformation, and the plastic energy consumed by the
plate can be expressed in terms of effective stress and strain
as

𝐸𝑝 = ∫

V
(∫

𝜀

0

𝜎𝜕𝜀)𝑑𝑉. (6)

It is considered a stress-strain curve given by the power
law

𝜎 = 𝐴 ⋅ (𝜀)
𝑛 (7)

and the deflection profile of the plate given by

𝑤 (𝑟) = 𝑤0𝑒
(−𝑘𝑟/𝐷)

, (8)

where 𝑤0 is the maximum deflection of the dimple shape,
𝐷 (m) is the radius of the projectile, 𝑘 (dimensionless) is a
deflection profile constant that can be determined experi-
mentally, and 𝑟 (m) is the radial distance of the impacting
projectile center.

Assuming that the material will be bulged in an axis
symmetric mode, the effective strain can be written in terms
of the radial strain as

𝜀 = 2𝜀𝑟. (9)

For a small displacement, the radial strain can be approx-
imated to [1, 5, 6]

𝜀𝑟 =
1

2

(

𝜕

𝜕𝑟

𝑤(𝑟))

2

. (10)

Considering a geometry of a small dimple given by
2𝜋𝑟ℎ𝛿𝑟, where ℎ is the thickness of the plate [7, 8], the
manipulation of the equations gives

𝐸𝑝 =
2𝜋ℎ𝐴

𝑛 + 1

(−

𝑘𝑤0

𝐷

)

2(𝑛+1)

∫

∞

0

𝑒
[(−𝑘𝑟(2𝑛+2))/𝐷]

𝑟 𝜕𝑟. (11)

Considering the physical nature of most constants, it
is possible to suppress the negative sign generated by the
derivation demonstrated in (11). Also, the radial variation
of the deflection profile is mirrored in the x-axis, which
demonstrates that this ratio can be used as its own module.
Now it gives

𝐸𝑝 =
2𝜋ℎ𝐴

𝑛 + 1

(

𝑘𝑤0

𝐷

)

2(𝑛+1)

∫

∞

0

𝑒
[(−𝑘𝑟(2𝑛+2))/𝐷]

𝑟 𝜕𝑟. (12)

The solution for the expression is given by

𝐸𝑝 =
1

2

𝜋ℎ𝐴(𝑘/𝐷)
2𝑛
𝑤
2(𝑛+1)

0

(𝑛 + 1)
3

. (13)

After the initial impact, the movement of the interface
starts deforming the metallic plate. It can be argued that,
initially, the metal layer is compressed due to high pressure
generated by the impact. In addition, the plate does not move
significantly because of the low interface velocity. In this way,
it is possible to affirm that the deflection of stainless steel plate
starts at the end of the second stage of penetration.

Considering that the plastic energy absorbed by themetal
plate is equal to the kinetic energy of the projectile in the end
of the second stage, it is possible to write the final deflection
of the plate as

𝑤0 = (

𝑚𝑝𝑟V
2

𝑝
(𝑛 + 1)

3

𝜋ℎ𝐴(𝑘/𝐷)
2𝑛

)

1/(2𝑛+2)

, (14)

where V𝑝 is the velocity of the projectile at the end of the
second stage.

3. Results and Discussion

Themovement solutions were obtained divided by the stages
and by mass and velocity. The equations needed to be
manipulated together to find a unique solvable problem for
mass and velocity for each stage. First it was necessary to find
a differential equation with a unique function. For the first
stage it was

𝑑
2

𝑑𝑡
2
V (𝑡) = −

𝜌𝑝V (𝑡) ((𝑑/𝑑𝑡) V(𝑡))
2

𝑌

(15)

for the velocity and

𝑑
2

𝑑𝑡
2
𝑚(𝑡) =

𝑌𝐴
2

𝑝
𝜌𝑝

𝑚(𝑡)

(16)

for the mass. The auxiliary Tate’s equation was used in the
manipulation to formulate a second degree equation with the
function 𝑢(𝑡) as a result. Naturally, one of the results was
not considered due to its particularity for being a complex
solution, which does not have a physical interpretation. The
𝑢(𝑡) written as a function of V(𝑡) could be used to formulate
the second stage equations. These sentences are given by

𝑑
2

𝑑𝑡
2
V (𝑡)

= (𝜌𝑝(
𝑑

𝑑𝑡

V (𝑡))
2

× (V (𝑡) (2𝜌𝑝 − 𝜌𝑐)

+√2𝜌𝑝𝑅 − 2𝜌𝑝𝑌 + 2𝜌𝑐𝑌 − 2𝜌𝑐𝑅 + 𝜌𝑐𝜌𝑝V(𝑡)
2
))

× (𝑌 (𝜌𝑐 − 𝜌𝑝))

−1

(17)
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for the velocity and

𝑑
2

𝑑𝑡2
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𝑐
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𝑐
𝜌2
𝑝
𝐴2
𝑝
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𝐴2
𝑝
𝑌
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−1

)

(18)

for the mass. For the deflection of the metal plate, the new
deflection profile was adopted considering the null derivative
in 𝑟 = 0:

𝑤 (𝑟) = 𝑤0 𝑒
(−𝑘 mod 𝑟

2
/𝐷)

, (19)

where 𝑤0 is the maximum deflection of the dimple shape,
𝐷 (m) is the radius of the projectile, 𝑘 mod (m−1) is amodified
deflection profile constant, which is determined experi-
mentally, and 𝑟 (m) is the radial distance of the impacting
projectile center.

Also, the dimple shape after the impact, shown by
Figure 3, was then approximated to the volume of a small
paraboloid given by

𝑑𝑉 =

4

3

𝜋𝑟ℎ𝜕𝑟. (20)

The newly deducedmetal final deformity equation is now
given by

𝑤0 = (𝐷(

1

2

(𝑚𝑝𝑟V
2

𝑝𝑟
(𝑛 + 1))

×(𝐴𝜋ℎ ⋅ Γ (𝑛 +

5

2

)

⋅(

2𝑘 mod (𝑛 + 1)

𝐷

)

−𝑛−(5/2)

)

−1

)

1/(2𝑛+2)

)

×(2𝑘 mod )
−1
,

(21)

where 𝑘 mod is the modified profile constant and Γ is the
mathematical gamma function, which is an extension of the
factorial function, with its argument shifted down by 1, to real
and complex numbers.

In addition, for a solid two-layered system, it is necessary
to consider the time needed for the generated wave to reflect
in the back part of the protection and return to the initial
point and, furthermore, start to crack the ceramic layer. The
time needed for the wave to travel and reflect back is given by

𝑡𝑖 =
2𝑒𝑐

𝑐𝑐

+

2𝑒𝑚

𝑐𝑚

, (21)

where 𝑒𝑐 and 𝑐𝑐 are, respectively, the thickness and the
longitudinal velocity of sound for the ceramic material and
𝑒𝑚 and 𝑐𝑚 are the same constants for the metallic material. It
is known that the shock wave travels with the longitudinal

W0

W0

(a)

(b)

Figure 3: Shape of the metallic plate after impact.

Table 1: Properties of the steel nucleus of the projectile.

Property Value
Initial velocity (m/s) 835
Mass (g) 9.54
Vicker’s hardness (HV) 817.5
Dynamic yield stress (GPa) 2.82
Density (g/cm3) 8.41
Diameter (mm) 7.62

velocity of sound in the solid, and this velocity can be
calculated by [9]

𝑐 = √

𝐸

𝜌

, (22)

where 𝐸 is the elastic modulus of the material.
The substitution of (22) in (21) gives

𝑡𝑖 = 2𝑒𝑐√

𝜌𝑐

𝐸𝑐

+ 2𝑒𝑚√

𝜌𝑚

𝐸𝑚

, (24)

where 𝐸𝑐 and 𝐸𝑚 are the elastic modulus for the ceramic and
metallic material, respectively.

The first results were obtained using the projectile and
system data presented in the former work [1]. Table 1 presents
the projectile data. In the former work, basically two different
compositions were used for the ceramic plate during the
experimental tests.The composition and reference properties
of the ceramic plates are shown in Tables 2 and 3, respectively.

In Figures 4(a) and 4(b), the upper curve, V(𝑡), corre-
sponds to the projectile velocity and the lower curve, 𝑢(𝑡),
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Table 2: Ceramic compositions.

Composition Al2O3 A-1000SG
(wt.%)

Al2O3 Tubular T-60
(wt.%)

TiO2
(wt.%)

B 90 8 2
C 85 13 2

Table 3: Mechanical and physical properties of the ceramic plates.

Property Composition
B C

Weibull modulus (m) 8.4 8.8
Mean strength parameter, 𝜎50 (MPa) 175.0 171.3
Reference rupture strength, 𝜎0 (MPa) 182.8 178.5
Vicker’s hardness (HV) 1551.4 1259.8
Resistance against penetration on
ceramic, 𝑅𝑐 (GPa)

4.43 3.60

Density (g/cm3) 3.90 3.80
Average grain size (𝜇m) 18 ± 8 22 ± 9

Table 4: Fraction of loss of velocity, mass and energy of the
projectile in the three stages (adapted from previous work [2]).

Stage Velocity loss (%) Erosion (%) Absorbed energy (%)
1st 10.62 19.18 35.73
2nd 30.27 40.77 50.32
3rd 59.10 — 13.93

shows the equivalent results obtained in a previous work
[1, 2]. Figure 4(a) presents the results obtained in this work,
and Figure 4(b) shows the former work [1] results.

In both graphs it is possible to observe the different
stages of penetration in the graph. During the first stage,
there is no interface velocity. In the beginning of the second
stage, the interface begins to move tending to reach the same
velocity as the projectile. The third and final stage begins
with the projectile and interface velocities equalized. During
this final fraction of the movement, both projectile and
interface decelerate together. With the solutions it is possible
to estimate the fraction of mass, velocity, and energy lost in
each stage. These values are presented in Table 4.

There were more two ceramic compositions presented in
thematerial selection. However, both of these structures were
not stable enough to be molded in the system.

The values of the constants were given by the former work
[1] together with the initial velocities and mass. The different
ceramic plate thicknesses tested by the authors of the former
work are also declared in the table. In addition, the first stage
duration, calculated using (24), is also presented due to the
different thickness and composition. Most of the constants
and mechanical properties [10, 11] used in the model are
presented in Table 5.

These data (21) together with the solved movement
equations can give the results for the maximum deflection
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Figure 4: Velocity against time for (a) this work and (b) previous
work [1, 2], respectively.

of the back metal plate. The comparisons are presented in
Table 6. It is possible to note that the proportional errors both
in the original and in the modified theory (OT and MT) are
of the samemagnitude.This fact is related to the simplicity of
themodel and the amount of neglected variable in the energy
absorption, such as impact angle, ceramic porosity, andmetal
grain size, among others.

However, the results of the maximum deflection showed
that the new theories can generate good results not only
for the high speed impacts, but also for lower velocities,
differently from the former theory. Simulations for different
calibers [12] were performed using the new developed theory.
The tested calibers with their specification are shown in
Table 7. The movement evolutions for the different calibers
are presented in Figure 5. Finally, the results are presented
in Table 8. In addition, Table 8 also presents the penetration
into the ceramic layer by each simulated caliber. This can be
calculated by numeric integration of second stage movement
equations, considering that the main penetration occurs in
this stage.
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Table 5: Values of the constants used in the modified model.

Symbol Property Value

𝜌𝑐 Ceramic density (g/cm3) Composition B
3.9

Composition C
3.8

𝐸𝑐 Ceramic elastic modulus (GPa) 300
𝑒𝑐 Ceramic thickness (mm) 11.3 9.3 7.3

𝑅𝑐 Resistance against penetration on ceramic (GPa) Composition B
4.43

Composition C
3.60

𝜌𝑚 Metal density (g/cm3) 7.77
𝐸𝑚 Metal elastic modulus (GPa) 193
𝑒𝑚 and ℎ Metal thickness (mm) 15
𝐴 Metal strength (MPa) 935
𝑛 Metal hardening exponent 0.29
kmod Metal modified deflection profile constant (m−1) 0.0018
𝑌 Projectile dynamic yielding (GPa) 2.82
𝜌𝑝 Projectile density (g/cm3) 8.41

Table 6: Comparison of the former and new results.

Composition Thickness
(mm)

Duration of the
1st stage (𝜇s) Impact velocity (m/s) Maximum deflection Errors

Experimental
data (mm)

Original
theory, OT

(mm)

Modified
theory, MT

(mm)
|OT| (%) |MT| (%)

B 11.3 8.6 792.7 16.5 17.0 17.2 2.9 4.3
C 11.3 8.7 858.2 20.0 17.6 18.4 13.6 8.8
B 9.3 8.2 628.9 18.0 17.8 18.8 1.1 4.2
C 9.3 8.2 651.1 17.5 17.7 18.3 1.1 4.3
B 7.3 7.7 428.8 15.5 17.3 14.6 10.4 6.0
C 7.3 7.8 448.4 13.0 16.6 13.0 21.7 0

In Figure 5 it is possible to observe the marked region.
This region in the graph corresponds to the probable area
of velocity and time where the erosion does not occur.
In addition, the shifts in the curvatures of the velocities
represent the beginning of the third stage. This helps to
investigate the effect of the ceramic’s characteristics in the
impact absorption and in the erosion. This graph and this
model of simulation can be used to search for specific
properties in the ceramic plate and/or to improve its shock
absorption property.

The not highlighted region in Figure 5 represents a pene-
tration stage where projectile erosion and ceramic scattering
occur. If it is desired not to have a large deformation in
the metallic plate, it is necessary to improve ceramic impact
absorption. These improvements will affect 𝑅𝑐, 𝑒𝑐, and 𝐸𝑐,
which will also modify the graph.

Considering the back metal plate as another important
energy absorber and integrity maintainer for the system, a
deterministic simulation was run using the new deformation

law together with the deflection profile function. Then it
gives

𝑤 (𝑟) = (𝑑((

1

2

)𝑚𝑝𝑟V
2

𝑝𝑟
(𝑛 + 1)

×(𝐴𝜋ℎ ⋅ Γ (𝑛 +

5

2

)

⋅(

2𝑘 mod (𝑛 + 1)

𝑑

)

−𝑛−(5/2)

)

−1

)

1/(2𝑛+2)

)

× (2𝑘 mod )
−1

⋅𝑒
(−(𝑘 mod 𝑟

2
)/𝑑)

.

(23)

The variable 𝑟 is the radial distance of the projectile
impact. The maximum deflection as a function of the hard-
ening exponent 𝑛 and the radial distance 𝑟 is presented in
Figure 6. In addition, the effect of the thickness ℎ of the
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Table 7: Specifications of the different calibers used in the simulation.

Type Specification Bullet diameter (mm) Mass (g) Initial velocity (m/s)
II .357 Magnum 9.07 10.2 453
IIA 9mm 9 8 373
IIA .40 S&W 10.2 12 300
IIIA .357 SIG 9.07 8.1 440
IIIA .44 Magnum 11.2 16 460

Table 8: Results of the simulation for several different calibers.

Type Specification Third stage velocity (m/s) Third stage mass (g) Final deflection value (mm) Penetration in the ceramic (%)
II .357 Magnum 170 6.66 19.48 87.5
IIA 9mm 129 5.80 18.71 41.4
IIA .40 S&W 104 9.45 18.63 49.6
IIIA .357 SIG 163 5.36 17.40 84.4
IIIA .44 Magnum 197 10.38 20.15 90.1
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Figure 5: Movement evolution for the simulation on different
calibers.

plate together with the radial distance of the impact center
is presented in Figure 7.

Based on Figures 6 and 7, it is possible to affirm that the
mechanical property 𝑛 and the thickness ℎ of the metal layer
have an important effect on the maximum deflection. The 𝑛
constant demonstrates the ductile behavior of the material.
However, if a lower deflection is required, it is important to
note that a hardermaterial could shearmore easily depending
on the energy of the projectile. Moreover, a change in the
thickness of the metal plate will certainly affect the structure
weight, which could be an aggravating factor in the carrier’s
mobility.

4. Conclusions

Thevalues obtained from themodel demonstrate how impor-
tant the ceramic plate is in the protection, responsible for
absorbing approximately 85% of the total energy. Moreover,
the value for the deflection of the metal plate was close to
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Figure 6: Deformation𝑤 in function of the radial distance 𝑟 and the
hardening exponent 𝑛.

the experimental data, which validates the model. Together
with the optimized deflection equation the model could also
prevent the effects of different projectile impacts.

In addition, the simulation demonstrated different
aspects of the model and some predictable effects in collision
phenomena. The control of the properties and its effects
were analyzed with the developed computational method.
Some of the effects predicted by the program could not be
studied experimentally. However, future studies can use the
presented results to validate the theory and, then, analyze
some internal phenomena in a deeper way.

The present work is a theoretical analysis of the impact
phenomenon in a specified type of protection. In the future
studies, the current model and its solutions and simulations
can be used to perform experimental test to evaluate the
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reliability of the model. Also, if the model can be considered
valid for the impact, the considerations and formulations
can be kept or improved to a more advanced modeling as
finite elementmodeling (FEM). In addition, the experimental
confirmation of the presented modeling also permits deeper
investigation of the impact phenomenon, such as the effect
of the interfacial friction between the projectile and sheared
surfaces.
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[1] D. P. Gonçalves, F. C. L. de Melo, A. N. Klein, and H. A.
Al-Qureshi, “Analysis and investigation of ballistic impact
on ceramic/metal composite armour,” International Journal of
Machine Tools and Manufacture, vol. 44, no. 2-3, pp. 307–316,
2004.

[2] L. Neckel, D. Hotza, D. Stainer et al., “Solutions for impact over
aerospace protection,” Key Engineering Materials, vol. 488-489,
pp. 25–28, 2012.

[3] D. Tabor,TheHardness of Metals, Oxford University Press, 1951.
[4] A. Tate, “A theory for the deceleration of long rods after impact,”

Journal of the Mechanics and Physics of Solids, vol. 15, no. 6, pp.
387–399, 1967.

[5] R.Hill,TheMathematicalTheory of Plasticity, OxfordUniversity
Press, 1950.

[6] H. A. Al-Qureshi and J. D. Bressan, “Investigation of the degree
of biaxiality on the limit strains in sheet metal stretching,” in

Proceedings of the 9th North American Manufacturing Research
Conference (NAMRC ’81), pp. 538–541, 1981.

[7] D. Ishikura and H. A. Al-Qureshi, “An investigation of perfo-
ration of metallic and composite plates by projectiles,” in Pro-
ceedings of the 5th Pan-American Congress of Applied Mechanics
(PACAM ’97), pp. 194–197, 1997.

[8] M. L. Wilkins, “Mechanics of penetration and perforation,”
International Journal of Engineering Science, vol. 16, no. 11, pp.
793–807, 1978.

[9] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics,
vol. 2, John Wiley & Sons, New York, NY, USA, 4th edition,
1996.

[10] Accuratus, “Aluminum oxide, ceramic properties,” http://
accuratus.com/alumox.html.

[11] Azom Materials, “Stainless steel, grade 304,” http://www.azom
.com/article.aspx?ArticleID=965.

[12] U.S. National Institute of Justice, “Ballistic resistance of body
armor,” NIJ Standard–0101.06, 2008.


