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Zusammenfassung

Die Bildregistrierung stellt eine der Hauptaufgaben innerhalb der Bildverarbei-
tung dar, die das tägliche Leben in vielerlei Hinsicht beeinflusst. Dies betrifft
so unterschiedliche Bereiche wie die Automobilindustrie (z.B. Fahrer-Assistenz-
Systeme), die Fertigungskontrolle (z.B. Displays, Dichtungen oder CDs) oder
die Medizin.

Innerhalb der medizinischen Bildverarbeitung bezieht sich ein wesentlicher An-
teil der Forschung auf Bildregistrierung, wie die in den vergangenen zwei Jahr-
zehnten stetig zunehmende Anzahl von Veröffentlichungen zeigt (Pluim &

Fitzpatrick, 2003). Gleichzeitig wird die Bedeutung der Bildregistrierung in
der Forschung durch ihren Bedarf in klinischen Anwendungen widergespiegelt.
Hierunter fallen nicht nur diagnostische Anwendungen sondern auch solche in
den Bereichen Bildaquisition sowie Behandlungsplanung, -durchführung und
-evaluation (Maintz & Viergever, 1998). Eingeschlossen sind hierbei die
Bewegungserkennung (gegebenenfalls ergänzt durch Bewegungskorrektur), die
Kombination von Bilddaten aus unterschiedlichen Quellen, die zeitliche Ver-
laufskontrolle von Kontrastmittelgaben sowie der Zeitreihenvergleich von Bil-
dern. Konsequenterweise kann Bildregistrierung als eine notwendige Voraus-
setzung für eine Vielzahl von Methoden betrachtet werden, die zunehmend
wichtiger für den klinischen Alltag werden.

Kurz gefasst besteht das Ziel der Bildregistrierung in der Zusammenführung
von Information aus zwei Bildern. Hierzu ist ein Vektorfeld von Verrückungen
(ein sogenanntes Verrückungsfeld) gesucht, so dass jede Position in dem einen
Bild auf eine zugehörige und sinnvolle Position in dem anderen Bild abgebildet
werden kann. Die Bedeutung von

”
sinnvoll“ wird üblicherweise mit der Forde-

rung übersetzt, dass einerseits die Topologie gewahrt bleibt und andererseits
eine bestimmte geometrische oder physikalische Eigenschaft erfüllt ist.

Bei dem gesuchten Verrückungsfeld unterscheidet man starre von nicht-starren
Abbildungen. Letztere wiederum lassen sich entweder explizit durch Basisfunk-
tionen oder implizit (z.B. als Lösung einer partiellen Differentialgleichung) dar-
stellen. In dieser Arbeit konzentrieren wir uns auf nicht-starre Ansätze und ver-
weisen für eine weitergehende Klassifikation von Ansätzen auf Übersichtsartikel,
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z.B. von Brown (1992), Maurer & Fitzpatrick (1993) oder Maintz &

Viergever (1998).
Eine Vielzahl von nicht-starren Ansätzen erlaubt es, ein bestimmtes Verhalten
des Verrückungsfelds vorzuschreiben. Dieses kann von

”
fast starr“ bis

”
hoch

elastisch“ reichen und wird typischerweise in einer Glattheitsforderung an das
Verrückungsfeld ausgedrückt. Eine häufig benutzte Bedingung ist durch eine
Regularisierung basierend auf dem linearen elastischen Potential der Verrückung
gegeben. Gewöhnlich wird die Bedingung global angewendet, das heißt un-
abhängig von der Bildposition. Insbesondere ist die Bedingung unabhängig von
lokalen Materialeigenschaften, die beispielsweise das elastische Verhalten von
im Bild enthaltenen anatomischen Strukturen wiedergeben können.

Durch eine global konstante Bedingung lassen sich in der Regel zufriedenstel-
lende Ergebnisse erzielen. Dennoch existiert eine Reihe von Fällen, in denen
sich anatomische Strukturen unabhängig voneinander verhalten und sich die
Erhaltung der Topologie als eine ungeeignete Voraussetzung herausstellt.
Bei Weichteilgewebe und Knochen führt der Gebrauch von einheitlichen ela-
stischen Eigenschaften beispielsweise zu Deformationen, die entweder unnötig
restriktiv sind (im Fall, dass eine Knochen-typische Elastizität vorgeschrieben
wird) oder physikalisch unrealistisch sind (falls Knochen in derselben Weise
wie Weichteilgewebe deformiert wird). Ein weiteres Beispiel für voneinander
unabhängiges elastisches Verhalten tritt bei der Therapiekontrolle von Tumo-
ren auf. In diesem Fall hat sich der Erhalt von Form oder Volumen in einem
begrenzten Bildbereich (dem des Tumors) als sinnvoll herausgestellt.
Die Erhaltung der Topologie ist nicht mehr gegeben, falls anatomische Struk-
turen in einem Bild zusammenhängend, im anderen jedoch getrennt dargestellt
sind. Dies tritt beispielsweise in der Folge eines ‘brain shifts’ am Übergang von
Gehirn und Schädel auf. Für eine genauere Betrachtung benötigen wir zwei Be-
griffe – den einer großen Spaltänderung und den einer topologischen Änderung.
Eine große Spaltänderung liegt vor, wenn zwei gegebene Strukturen durch einen
großen Spalt im ersten Bild, jedoch durch einen kleinen Spalt im zweiten Bild
getrennt sind. Wird der kleine Spalt immer weiter verkleinert, ergibt sich eine
Situation, die sich topologisch von der vorherigen unterscheidet: Die Struktu-
ren sind nicht länger voneinander getrennt, eine topologische Änderung hat
stattgefunden. Auch wenn eine topologische Änderung als die logische Erwei-
terung einer großen Spaltänderung erscheint, so unterscheiden sie sich aus ma-
thematischer Sicht in einem wichtigen Punkt: Während im Fall einer großen
Spaltänderung die Abbildung zwischen den Bildern weiterhin stetig ist, kann
im Fall einer topologischen Änderung eine Unstetigkeit im Verrückungsfeld auf-
treten.
Nach diesen Überlegungen ist es naheliegend, die Bedeutung einer

”
sinnvollen“

Abbildung neu zu interpretieren: Eine sinnvolle Abbildung im Kontext dieser
Arbeit

• ermöglicht eine große Spaltänderung bzw. eine topologische Änderung,

• unterstützt lokale Materialeigenschaften und

• erlaubt lokal den Erhalt von Form oder Volumen.
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Für ein medizinisches Beispiel, das sowohl lokal unterschiedliche Materialeigen-
schaften wie auch eine Änderung der Topologie enthält, greifen wir auf den
Fall des ‘brain shift’ zurück. Ein solcher tritt nach der Öffnung des Schädels
auf und bewirkt einerseits die Entstehung eines Spalts zwischen Gehirn und
Schädel und andererseits ein Zusammensinken des Gehirns. Für die Registrie-
rung eines präoperativ mit einem intraoperativ aufgenommenen Bild ergibt
sich die folgende Aufgabe: Gesucht ist eine sinnvolle Abbildung, die einerseits
das Gehirn deformiert, gleichzeitig jedoch die Form des Schädels erhält und
zudem durch den zurückgeklappten und damit im Bild partiell unsichtbaren
Hautlappen nicht beeinträchtigt wird. Für einen Registrierungsansatz, der das
Verrückungsfeld einheitlich regularisiert und/oder global konstante Materialei-
genschaften annimmt, stellt dies eine schwierige, wenn nicht sogar unlösbare
Aufgabe dar.

Diese Arbeit stellt einen neuen Registrierungsansatz vor, der unterschiedliche
Materialien berücksichtigt. Der Ansatz basiert auf einer physkalisch motivier-
ten elastischen Regularisierung (Bajcsy & Kovačič, 1989). Eine solche ist
in unseren Augen besser an die Problemstellung angepasst als eine fluidal-
basierte (Christensen et al., 1996). Auch wenn die Modellierung eines Fluids
topologische Änderungen erlaubt, so sind diese Änderungen nicht auf medizi-
nisch sinnvolle Regionen wie den Gehirn-Schädel Übergang beschränkt sondern
können an jedem beliebigen Ort im Bild auftreten. Ein elastischer Regularisie-
rer wiederum ermöglicht die Wahl von Materialeigenschaften wie sie entweder
typisch für Knochen oder für Weichteilgewebe sind. Allerdings beruht die phy-
sikalische Motivation dieses Ansatzes auf der Annahme von

”
kleinen“ Deforma-

tionen. Die Modellierung von großen Spaltänderungen oder gar von Änderungen
in der Topologie sind hiermit nicht möglich und werden auf eine andere Art und
Weise eingeführt.

Der Beitrag dieser Arbeit besteht in der Herleitung eines Registrierungsansat-
zes, der unterschiedliche elastische Eigenschaften in demselben Bild unterstützt.
Aufbauend auf einem leistungsfähigen Ansatz aus der Literatur wurden va-
riable Regularisierer entwickelt, die lokal unterschiedliche Materialeigenschaf-
ten unterstützen und darüberhinaus große Spaltänderungen ermöglichen. Eine
nochmalige Erweiterung des Konzepts führt schließlich auf stückweise variable
Regularisierer, mit denen auch topologische Änderungen erzielt werden können.

Diese Arbeit gliedert sich wie folgt:

• Kapitel 2 stellt einen theoretischen Rahmen zur Bildregistrierung bereit.
Ausgehend von einem kurzen Vergleich von parametrischen und nicht-
parametrischen Ansätzen konzentrieren wir uns auf letztere und zeigen
ihre Beziehung zu Randwertproblemen. Dieses Kapitel schließt mit dem
Gebrauch einer Finite Differenzen Methode zur approximativen Lösung
eines Randwertproblems.

• In Kapitel 3 wird ein leistungsfähiger Ansatz aus der Literatur beschrie-
ben. Die Registrierung wird als eine Variationsaufgabe behandelt, was
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in den Bereich der partiellen Differentialgleichungen führt. Neben einem
elastisch-basierten Ansatz wird ein sogenannter diffusiver Ansatz unter-
sucht. Aufgrund seiner simplen Struktur eignet sich dieser besonders gut
für die Untersuchung von Variabilität in Regularisierern. Dieses Kapitel
enthält außerdem eine Diskretisierung des resultierenden Systems von par-
tiellen Differentialgleichungen und beschreibt deren numerische Lösung.
Zum Schluss wird auf die Wahl des Regularisierungsparameters und der
Materialparameter eingegangen.

• Kapitel 4 erweitert den Ansatz aus Kapitel 3 um Variabilität. Dies hat zur
Folge, dass weiteres Vorwissen bereitgestellt werden muss, was in Form
einer Segmentierung eines Ausgangsbildes erfolgt. Im Vergleich zu den Re-
gularisierern aus dem vorherigen Kapitel zeichnen sich die hier entwickel-
ten variablen Regularisierer durch eine höhere Komplexität – sowohl in
theoretischer als auch in numerischer Hinsicht – aus. Ihre Fähigkeit, lo-
kal unterschiedliche Materialeigenschaften sowie große Spaltänderungen
zu unterstützen, wird abschließend demonstriert.

• Die Einbeziehung von topologischen Änderungen ist Inhalt von Kapitel 5.
Das Verrückungsfeld kann hier nicht mehr als stetig angenommen werden,
was die Herleitung von sogenannten stückweise variablen Regularisierern
erfordert. Der fundamentale Unterschied zu den variablen Regularisierern
besteht darin, dass nun bestimmte Bildbereiche entstehen oder verschwin-
den können. Allerdings erfordern die stückweise variablen Regularisierer
eine aufwendige Segmentierung beider Bilder.

• Kapitel 6 stellt Ergebnisse der in dieser Arbeit entwickelten Methoden
sowohl für synthetische als auch für medizinische Bilder vor.

• Kapitel 7 fasst die Resultate dieser Arbeit zusammen und schließt mit
einem Ausblick auf weiterführende Fragestellungen.



Abstract

This thesis is concerned with non-parametric non-rigid image registration. Here,
a vector field of displacements is searched such that each position in one image
is mapped onto a corresponding position in the other image.

Motivated by medical examples where after registration anatomical structures
are deformed in a non-physical way, the overall aim lies in the incorporation of
spatially varying material parameters to let each anatomical structure deform
in a physically meaningful manner.
In addition, it is observed that preservation of topology, as usually assumed in
registration, may be an unsuitable property for certain applications like, e.g.,
brain shift. To this end, the notions of a ‘large gap change’ (that is, if two
structures are separated by a large gap in one image but by a small gap in the
other image) and a ‘topological change’ (here, the gap totally vanishes in one
image) are introduced. The challenge is now to derive a regularisation of the
resulting displacement field which is spatially varying and allows for settings
including a large gap change or a topological change.
Finally, locally a preservation of shape or volume may be reasonable, for in-
stance in the treatment evaluation of tumors. Such a property, again, corre-
sponds to a spatially adapted regularisation of the displacement field.

The main contribution of this thesis is the development of a framework for
multiple-material registration. By extending a state-of-the-art approach for
non-parametric image registration, variable regularisers are derived allowing
for prescribing individual material properties and, moreover, supporting large
gap changes. By further extending the concept towards piecewise variable reg-
ularisers, even topological changes can be achieved.
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1 Introduction

Image registration is one of the major topics in the field of image processing.
It influences daily life with examples ranging from the automobile industry
(e.g. driver assistance systems) over quality inspection (e.g. seals, displays or
compact discs) to various medical applications.

In medical image processing, a substantial part of the research is devoted to im-
age registration. Pluim & Fitzpatrick (2003) observed an increasing number
of journal publications in this field over the past two decades. The relevance
of image registration in the research community is reflected by its demand
for clinical applications. Such applications occur not only within diagnostic
settings, but also in the areas of acquisition, planning, treatment, and evalua-
tion (Maintz & Viergever, 1998). They include motion detection (possibly
followed by motion compensation), the fusion of data from different sources,
treatment verification, the monitoring of agent injections evolving in time, and
the study of temporal series of images (also called follow-up studies). Conse-
quently, image registration can be seen as an application enabler with increasing
impact on the daily clinical practise.

In general, the purpose of image registration is to relate the information con-
tained in one image to information given in another image. To this end, a vector
field of displacements is searched such that each position in the one image is
mapped onto a corresponding and meaningful position in the other image. By
the notion ‘meaningful’ often a type of constraint is meant which both preserves
the topology and prescribes a certain geometrical or physical property in the
entire image domain.

The mapping to be determined is of rigid or of non-rigid type. In the latter case,
it can be described either explicitly in terms of basis functions or implicitly, for
instance as the solution to a partial differential equation. In the following, we
focus on non-rigid approaches and refer for further classification and commen-
taries to surveys carried out by, e.g., Brown (1992), Maurer & Fitzpatrick

(1993), and Maintz & Viergever (1998).

Many non-rigid approaches allow for prescribing a certain ‘behaviour’ of the
resulting displacement field ranging from ‘almost rigid’ to ‘fully elastic’. Typ-
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4 CHAPTER 1. INTRODUCTION

ically, the displacement is computed subject to a smoothness constraint. A
widely chosen constraint is realised by a regularisation based on the linear elas-
tic potential of the displacement, see, e.g., (Bajcsy & Kovačič, 1989; Mod-

ersitzki, 2004; Clarenz et al., 2006) and references therein. Frequently, the
constraint is applied globally with one global regularisation parameter and with
elastic properties independent of the image position and, therefore, independent
of the elastic behaviour of the corresponding anatomical structure.

Often, a globally uniform constraint provides satisfactory results due to the un-
derlying physical model. Nevertheless, there exist several cases where anatom-
ical structures behave different from each other and/or where preservation of
topology is unsuitable.
Soft tissue, for instance, is of different elasticity compared to bone structures.
Therefore, the prescription of a uniform elastic behaviour may lead to defor-
mations which are either unnecessarily restricted (when choosing elastic prop-
erties typical of bone structures) or physically unrealistic (if bone structures
get deformed as soft tissue). Another demand for non-uniform behaviour oc-
curs within the treatment evaluation of tumors. Here, preservation of shape or
volume may be a reasonable property in a certain image region, i.e. the tumor
region, but not in the entire image domain.
A change in topology happens if anatomical structures are connected in one
image but disconnected in the other image, like the brain-skull interface subject
to a brain shift. To explain this issue in more detail, we consider a setting called
a large gap change, that is, if two structures are separated by a large gap in
one image but separated by a small gap in the other image. By shrinking the
small gap even more, a setting can be achieved which is topologically different
from the original one: The structures are no longer separated and a topological
change has occured. Although a topological change simply turns out to be the
logical extension of a large gap change, from a theoretical point of view there
is an important distinction when considering the mapping from the one image
onto the other: In case of a large gap change the mapping remains continuous
but in case of a topological change a discontinuity in the displacement field may
show up. Also, we note that a discontinuous displacement field is reasonable
if adjacent structures move relative to each other, like the liver or a joint and
their surrounding tissues.
Before illustrating these issues with a medical example, the considerations
drawn above are summarised into a reinterpretation of the notion ‘meaning-
ful’: In this thesis a meaningful mapping

1. enables large gap changes (or even changes in topology),

2. supports local material properties, and,

3. allows locally for shape or volume preservation.

An example which involves both anatomical structures of different elasticity
and a topological change is depicted in Figure 1.1. Here, slices from three-
dimensional data sets are displayed. On the left, the head of a patient is shown
pre-operatively, on the right in an intra-operative state. For a tumor resection,



5

Figure 1.1: Example for a registration problem involving both anatomical structures
of different elasticity and a topological change. The change in topology is caused by
a brain shift while transition from the pre-operatively generated image (left) onto the
intra-operatively generated one (right). Image courtesy of Dr. Hastreiter, Department
of Neurosurgery, Friedrich Alexander University of Erlangen-Nuremberg.

the skin (darkest structure) has been partially removed and the skull (depicted
in medium gray) has been opened (the opening itself is not visible in the de-
picted slice) causing a brain shift. The brain shift can be detected on one hand
by an arising gap (consisting of air and liquor) between skull and brain tissue,
on the other hand by a shrinkage of the brain.

The challenge is now to determine a meaningful mapping which deforms the
brain while preserving the shape of the skull, and which is not misled by the
partially missing skin. Certainly, a registration of this image pair is a hard or
even unsolvable task for any approach which regularises the displacement field
uniformly and/or assumes globally constant material properties.

In the literature one can find several attempts dealing with non-rigid image
registration in conjunction with spatially varying regularisation or material pa-
rameters. They can be classified as either parametric or non-parametric. The
latter can be distinguished further into surface- and volume-based approaches.

Parametric approaches based on, for instance, damped spring models (Škrinjar

et al., 2002; Edwards et al., 1998), radial basis functions (Rohde et al.,
2003; Duay et al., 2004) or B-splines with subsequent filtering (Staring

et al., 2005) have been shown to allow for a locally varying deformability of
the resulting displacement field. In addition, with the damped spring models,
anatomical structures can behave independently from each other including the
possibility of topological changes. Here, a network of springs is modelled to con-
strain deformation of tissue structures; bone structures, in contrast, are kept
rigid while fluid regions, such as the cerebral spinal fluid, may deform freely.
By either utilising a contact algorithm (Škrinjar et al., 2002), adding an
energy term (Edwards et al., 1998) or constraining the parameters (Rohde

et al., 2003), folding of structures can be avoided.

Although incorporating a kind of tissue constraint, these approaches tend to
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result in a displacement field interpolating smoothly across soft tissues, rather
than to model the physics of tissues accurately. In particular, the elastic prop-
erties of tissue, such as its (in)compressibility or Young’s modulus, cannot be
controlled.

Often, non-parametric approaches incorporating physical properties of tissue
have been proposed as part of a biomechanical model for brain applications.
Here, based on a segmentation into (at least) bone and tissue structures, an
initial estimate of the displacement field is computed. However, this esti-
mate is restricted to the surfaces of the segmented regions. To model the
displacement field in the entire domain, in a second step either the Navier-
Lamé equations or the Navier-Stokes equations is employed. For the discreti-
sation of the differential equations numerous schemes are used, e.g. a finite
difference method (Davatzikos, 1996; Wang & Staib, 2000), a finite ele-
ment method (Ferrant et al., 2001; Škrinjar et al., 2002) or a boundary
element method (Ecabert et al., 2003). All these approaches have been
reported to be accurate close to the segmented surfaces. However, since no
volumetric information is exploited, the estimated displacement field may be
less accurate far away from the surfaces.
The drawback of a possibly reduced accuracy can be overcome by including
volumetric information as, for instance, in works by Lester et al. (1999),
Hagemann (2001), Rexilius et al. (2002), and Ehrhardt et al. (2003).
These methods either support spatially varying material properties or employ a
coupled model (for instance, consisting of regions modelled as rigid, elastic, or
viscous fluid). Like the surface-based approaches, these methods do not allow
for topological changes.

In this thesis we present a new approach for multiple-material image registra-
tion which overcomes the shortcomings mentioned before. We investigate a
physically motivated constraint for elastic regularisation which is based on the
linear elastic potential of the displacement (Bajcsy & Kovačič, 1989).
In our view, an elasticity-based approach is better adapted to our problem than
a fluid-based one (Christensen et al., 1996): Although the modelling of a
viscous fluid allows for topological changes, such changes are not restricted to
the desired regions (like the brain-skull interface) and may thus occur every-
where in the image, which is not our intent. Moreover, we refrain from the
use of coupled models since these require coupling conditions at the interfaces
which adds significant complexity to the structure of the equation system to be
solved numerically.
Within an elasticity-based approach, an individual choice of material parame-
ters allows us to cope with bone structures as well as with soft tissue. However,
by the linear elastic potential only small deformations can be described and,
therefore, the modelling of large gap changes or topological changes is not sup-
ported and have to be introduced in a different way.

The main contribution of this thesis is the development of a framework for
multiple-material registration. By extending a state-of-the-art approach for
non-parametric image registration, variable regularisers are derived allowing
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for prescribing individual material properties and, moreover, supporting large
gap changes. By further extending the concept towards piecewise variable reg-
ularisers, even topological changes can be achieved.

This thesis is organised as follows.

Chapter 2 provides a general framework for image registration. Based on a
short comparison of parametric and non-parametric approaches, we focus on
the latter and show their relation to boundary value problems. Finally, this
chapter demonstrates the use of a finite difference method to approximately
solve a boundary value problem.

In Chapter 3, a state-of-the-art approach for image registration is described.
The registration problem is treated as a variational problem which involves the
solution of a system of partial differential equations. Apart from an elasticity-
based regulariser, a so-called diffusive regulariser is investigated. Its simple
structure makes it an optimal candidate for studying variable registration ap-
proaches in the following chapters. Furthermore, this chapter presents a dis-
cretisation of the derived system of equations and comments on its numerical
solution. Finally, the choice of regularisation and material parameters is dis-
cussed.

Chapter 4 incorporates variability into the approach from Chapter 3. As a con-
sequence, further a priori knowledge has to be added and is given by a segmen-
tation. Compared to the state-of-the-art regularisers, the variable regularisers
are more complex in terms of theoretical derivation and numerical solution.
However, they allow for locally varying material properties and support large
gap changes as demonstrated at the end of this chapter.

The incorporation of topological changes is subject of Chapter 5: The displace-
ment field is no longer necessarily continuous and, consequently, the derivation
of so-called piecewise variable regularisers requires more care. A registration
based on these regularisers allows certain image regions to appear or vanish
which is a fundamental difference to the previous chapter. However, it will
turn out that these regularisers are possibly less suited for clinical applications
since they require the costly segmentation of both images to be registered.

Chapter 6 presents results for multiple-material registration problems. Starting
with synthetic examples we investigate the properties of the newly developed
registration scheme. Finally, medical applications are investigated.

Chapter 7 summarises this thesis, points out possible extensions, and concludes
with suggestions for future work.
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2 Image Registration

This chapter gives an introduction into image registration. Clearly, images play
the key role in registration and we start the introduction by defining an image
in a mathematical sense. Based on this setting, the task of image registration
can be stated resulting in a mathematical model. Finally, a numerical method is
required to approximate a solution of the mathematical model. We will describe
this issue in the last section of this chapter.

2.1 Images

An image can be interpreted as an exposure of a scene from the real-world.
Typically, the scene is assumed to be three-dimensional whereas the exposure
displays an extraction of the scene. The extraction may vary from a one-
dimensional line extraction over the two-dimensional extraction of a slice to the
original three-dimensional scene. We start by an exploration of the properties
of such an exposure and denote its dimensionality by d ∈ N.

Regarding the area of an exposure we observe its connected nature and its
finite size, i.e., it does not decompose in separated subareas and the exposure
is bounded. For mathematical reasons we do not include the boundary in the
area.

Definition 2.1 (Domain). A domain Ω ⊂ R
d is given by a bounded, open

and connected subset. The boundary of Ω is denoted by ∂Ω and its closure by
Ω̄ = Ω ∪ ∂Ω.

Although the boundedness usually does not belong to the properties of a do-
main, cf., e.g. (Königsberger, 2004), in image registration it is obvious to
assume this property due to the boundedness of an exposure.

Thus, an exposure of a scene can be seen as a mapping from the domain of the
exposure onto some quantity represented by one or more channels of intensity-
values. In this thesis only grey-scale images are considered, thus one channel of
information is sufficient. We will use the terms ‘intensity-value’ and ‘grey-value’
interchangeably.

9
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We assume that the intensity-values of an exposure can be described by a
‘smooth’ function. Here, a function is called smooth if, depending on the con-
text, it has sufficiently many continuous derivatives.

Definition 2.2 (Image). Given a d-dimensional domain Ω, a d-dimensional
image I is defined as a smooth mapping I : Ω̄ → [0, 1].
In addition, let Img(Ω) define the set of images on the domain Ω.

Note that the exact degree of differentiability required for I depends on the
mathematical model, see Section 3.3.

In medical applications one is faced with images which are not differentiable,
the so-called digital images (or discrete images). In the first instance, a digital
image seems to be unsuitable for a mathematical model which is based on
differentiable functions. However, an image according to Definition 2.2 can be
linked to a digital image such that the differentiability requirement is fulfilled.
Before establishing this link, we give a short overview on the origin of a digital
image.

Digital images are produced by an image acquisition sensor measuring some
quantity, e.g. the attenuation of x-rays in computer tomography (CT), electro-
magnetic energy in magnetic resonance tomography (MR), photon emissions in
positron emission tomography (PET) or single photon emission computed to-
mography (SPECT). The measurement entails some sampling and quantisation
method which depends on the acquisition device. In principle, the human body
(i.e. the scene) is treated as a regular grid. A digital number is assigned to
each element of the grid. Such an element is named lixel (line element, in one
space dimension), pixel (picture element, in two dimensions) or voxel (volume
element, in any dimension d ∈ N). Its value describes an intensity level corre-
sponding to some physical process, e.g. a rate of radioactive decay in nuclear
imaging.

Definition 2.3 (Digital Image). Given a d-dimensional domain Ω, numbers
N1, N2, . . . , Nd ∈ N, and an array X ∈ R

N1×N2×···×Nd consisting of points x ∈ Ω̄,
a d-dimensional digital image I is defined as a mapping I : X → [0, 1].

However, for the mathematical model described in the following section, the
digital image has to be transformed into a (smooth) image according to Defi-
nition 2.2. This can be done, for instance, by solving an interpolation problem
with appropriately chosen basis functions. In turn, a digital image can be in-
terpreted as a sampled version of a smooth image.

2.2 The Registration Problem

Having ensured that images are differentiable, we can start to develop a math-
ematical model in order to formulate the image registration problem.
Generally spoken, the problem of image registration describes the task of

finding a geometric transformation between two given images.
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Figure 2.1: Artificial one-dimensional image T (left) which can be transformed into R
(centre) using a mapping ϕ (right).

Typically, one of the images is viewed as a reference image R ∈ Img(ΩR) defined
on a domain ΩR, the other one as a deformable template image T ∈ Img(ΩT )
defined on a domain ΩT . The domains are linked by the geometric transforma-
tion which maps the domain of the reference image onto the one of the template
image, ϕ : ΩR → ΩT . For an example we refer to Figure 2.1 where both do-
mains are given by the interval [a, b] and the one-dimensional images are linked
by the transformation ϕ, i.e. T ◦ ϕ = R.

Note that the application of ϕ is understood in a backward Lagrangian sense.
That is, for a position x ∈ ΩR a grey-value at position ϕ(x) ∈ ΩT is taken from
the template image and allocated to a new image (defined on ΩR) at position
x. In contrast, T ◦ ϕ understood in a forward Lagrangian sense allocates a
grey-value T (x) with x ∈ ΩT to those positions in a new image (defined on ΩR)
which are mapped onto x by ϕ. However, in the remaining part of the thesis
we will choose the backward Lagrangian framework since this setting is well
adapted to the numerical treatment of the registration problem.

In general, a transformation ϕ such that T ◦ϕ = R may not exist. Instead, ϕ is
searched in such a way that the transformed template image T ◦ ϕ is ‘similar’
to the reference image R. For a mathematical treatment, ‘similarity’ needs to
be measured in some way. To this end, a similarity (or distance) measure is
required that assigns a scalar (distance) value to a given pair of images.

Note that ϕ can be split up into the identity mapping as the trivial part and a
displacement1 part u, i.e. ϕ(x) = x + u(x).

Problem 2.4 (Registration Problem). For given domains ΩT and ΩR, images
T ∈ Img(ΩT ), R ∈ Img(ΩR), and D : Img(ΩT ) × Img(ΩR) × Cp(Ω̄R, Rd) → R

+
0

as a similarity measure, the registration problem is to find a mapping

ϕ ∈ Cp(Ω̄R, Ω̄T ) , ϕ(x) := x + u(x) ,

1In the literature a displacement is often called a transformation or a deformation. Here,
we differentiate between the transformation ϕ and the displacement u (as the non-trivial part
of the transformation). A deformation, however, is understood in a physical sense, e.g. the
deformation of an elastic body. Consequently, a deformation is also a displacement but a
displacement is only a deformation if the underlying transformation is non-rigid (otherwise
the body does not get deformed but only translated or rotated).
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such that for some functional F

DT,R[u] :=

∫

ΩR

F [T ◦ ϕ,R]dx
u

−→ min .

Thus, the task of image registration can be formulated as the minimisation of D
resulting in a displacement u such that the similarity of T ◦ϕ = T ◦ (id+u) and
R is maximised2. A minimum requirement for p as the degree of differentiability
of ϕ (or u) is pointed out in the following example.

Example 2.5. Let a similarity measure be given by

DT,R[u] :=

∫

ΩR

[(T ◦ ϕ)(x) − R(x)]2dx

and consider two chessboards as images T and R. Then, any black square in
T can be mapped to any black square in R. In all cases the similarity measure
will indicate a minimum but in most cases the mapping ϕ is not continuous.
Restricting, however, the set of admissible mappings to C(ΩR), i.e. the set
of continuous mappings defined on ΩR, it both reduces the set of admissible
mappings and leads to a result being more satisfactory from an application
point of view.

Summarising, the registration problem takes two images and searches for a
smooth mapping such that this mapping applied to the first image results in
a (new) image similar to the second one. The mapping can be described by
either a geometric transformation ϕ or a displacement (field) u.

For a more convenient notation we omit the differentiation between ΩT and ΩR

and define a single domain Ω := ΩT ∪ ΩR instead.

2.3 Approaches for the Registration Problem

In this section the displacement field u as a solution to the Registration Prob-
lem 2.4 will be further investigated. We start by considering the requirements
formulated in Chapter 1, namely

• to support different material properties and

• to allow for large gap changes

in the registration problem. While different material properties may be incor-
porated in D in some way, the incorporation of a large gap change is a complex
task as can be seen from Figure 2.1. When shrinking a gap region of width w,
e.g. the interval [δT

l , δT
r ], to a gap of small size, two positions δR

l , δR
r with small

distance are required to be mapped onto positions δT
l = ϕ(δR

l ), δT
r = ϕ(δR

r )
with |δT

l − δT
r | = w. This requires in the gap region a large gradient of ϕ (and

thus of u) or – in the limit case – even a discontinuity in ϕ.

2A maximised similarity of two images is equivalent to a minimised distance between these
images. Since the term ‘distance’ reminds of a geometric distance (which applies only for
special cases, cf. Section 3.3.1), we prefer the use of the term ‘similarity’.
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Another observation about the Registration Problem 2.4 is included in the
following example.

Example 2.6. Consider a similarity measure and images showing chessboards
as in Example 2.5 but now with a translated second chessboard R such that
the center of each square in T is located on an edge of a square from R. Now,
each black square in R is moved a bit. Depending on the movement, an op-
timisation routine3 determines a solution ϕ to the Registration Problem 2.4
where ϕ transforms each black square in R to the nearest black square from T .
However, the choice of the nearest black square from T depends on the initial
movement and small changes in the image data lead to large changes in the
resulting transformation.

The effect of small changes in the input data leading to large changes in the
output data, causes – beside the non-existence and the non-uniqueness of a
solution – a problem to be ill-posed. In the literature several methods are
known to circumvent the ill-posedness of a registration problem, e.g. (Moder-

sitzki, 2004; Clarenz et al., 2006). So-called parametric approaches restrict
the search space of all differentiable functions to a finite-dimensional subspace
and describe the searched transformation in terms of a finite number of basis
functions. In contrast, the transformation in non-parametric approaches is no
longer restricted to a parametrisable set. Instead, the search space is infinite-
dimensional and the well-posedness is ensured by adding a regularising term to
the similarity measure. In the following, examples for different search spaces
are given and discussed with respect to their ability to allow for topological
changes and for different material properties.

2.3.1 Parametric Approaches

Typical examples for parametric approaches are given below.

• Rigid and affine linear displacements

Let Ed denote the identity matrix of size d× d. A displacement given by
a mapping

u(x) = Ax + b, where A ∈ R
d×d with det(Ed + A) > 0 and b ∈ R

d,

allows for an affine linear transformation including shearing and scaling.
If, in addition, Ed + A is orthogonal with det(Ed + A) = 1, only trans-
lation and rotation are allowed and the transformation is called rigid. In
Figure 2.2, left, as an example, a two-dimensional Cartesian grid function
is transformed by the affine-linear displacement u with

A =

(
0.10 0.22
0.22 −0.12

)
and b =

(
−0.13
−0.05

)
.

3The choice of a specific optimisation scheme is not the key point here; as an example, the
reader may think of a steepest gradient approach.
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Figure 2.2: Examples for displacements based on affine, polynomial and B-spline func-
tions (from left to right).

• Polynomial displacements

Here, u is given as a polynomial function defined on R
d. As an example,

in Figure 2.2, centre, the mapping

u(x) =

(
(x1 − 0.3)(x1 − 0.9)(x2 − 0.5)
(x2 − 0.4)(x2 − 0.5)(x1 − 0.1)

)

is applied to a Cartesian grid in R
2.

• B-spline displacements

Taking a linear combination with coefficients β and B-splines Bi(x) as
basis functions, a displacement given by a mapping

u(x) =
∑

n1

· · ·
∑

nd

βn1,...,nd

nd∏

i=n1

Bi(x)

with ni, i = 1, . . . , d, depending on the spline degree, is called a B-spline
displacement (cf. Figure 2.2, right, for an application to a two-dimensional
Cartesian grid). A typical property of this type of displacement is the local
influence of the coefficients βni

. Their region of influence depends on the
spline degree and the number of basis functions. Usually, B-splines are
defined on a regular grid but, basically, non-regular grids can be used as
well. Such grids allow for an adaptive placement of basis functions but
require a costly computation of the displacement, cf. (Peckar, 1998).

A classification of these approaches with respect to their ability to allow for
large gap changes or for different material properties is displayed in Table 2.1.
Note that the last row of the table concerning a non-parametric approach is
discussed in the following section.
Clearly, affine linear transformations cannot be used for either of these tasks.
The same result applies to a polynomial transformation where a material depen-
dency cannot be included and where, with reasonable effort, an approximated
discontinuity as in Figure 2.1 cannot be achieved satisfactorily. For a B-spline
displacement a local material property may be incorporated via the coefficients
βni

. To illustrate a large gap change we consider a simple example showing
two objects with a small gap between them (cf. Figure 2.3, left). Then, various
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Figure 2.3: Synthetic example showing a gap to be enlarged (left). Various B-spline
displacements with basis functions of grid spacing 1/3, 1/15, and 1/75 of the image
width are employed (centre left to right). The position of the B-splines is marked by
circles.

Table 2.1: Classification of approaches with respect to their ability to allow for large
gap changes (second column) or for different material properties (last column). See
Sections 2.3.1 and 2.3.2 for further comments.

gap changes material properties

rigid/affine linear − −
polynomial − −
B-splines (+) +
non-parametric + +

displacements based on grids of varying density of basis functions (distributed
equidistantly on a grid with spacings of 1/3, 1/15, and 1/75 of the image width)
are used in order to enlarge the gap without affecting the adjacent objects. From
Figure 2.3, centre left to right, we observe that a simultaneous enlargement of
the gap and shape preservation of the objects is possible but requires a grid
spacing of smaller than voxel size. A small grid spacing, however, gives rise to
a large computational effort and, therefore, we classify a B-spline displacement
to be of limited ability for large gap changes, cf. Table 2.1. The classification
remains the same if non-regular grids as described in, e.g., (Peckar, 1998) are
used. Their costly computation is not compensated by requiring a small grid
spacing in the gap region only.

2.3.2 Non-parametric Approaches

In a non-parametric approach the search space is infinite-dimensional and given
by, for instance, the class of differentiable functions equipped with some bound-
ary conditions. While in a parametric approach we were looking for optimal
parameters of some expansion of the transformation, here, no parameters are
involved in the representation of the transformation. To avoid the ill-posedness
of the registration problem an often used method is to add a regularising
(or smoothing) term. Usually, the regulariser has to be chosen application-
dependent, see (Modersitzki, 2004; Clarenz et al., 2006) and references
therein. Breathing movements in the thorax, for instance, result in a globally
smooth displacement field, whereas heart beat or joint movements are cases
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where a more sophisticated choice of the regularising term4 is essential. Inde-
pendent of specific applications, the Registration Problem 2.4 is rewritten by
adding a regularisation term.

Problem 2.7 (Regularised Registration Problem). Given a domain Ω, images
T,R ∈ Img(Ω), a similarity measure D : Img(Ω) × Img(Ω) × Cp(Ω̄, Rd) → R

+
0 ,

a regularising term S : Cp(Rd, Rd) → R
+
0 and a positive weight α ∈ R

+, the reg-
ularised registration problem is to find a mapping u ∈ Cp(Ω̄, Rd) such that

DT,R[u] + αS[u]
u

−→ min . (2.1)

Note that p will be specified in Section 3.3.

In contrast to a parametric approach, here, an example for the mapping u can-
not be given in an explicit form. Implicitly, u is described by the minimisation
problem in (2.1), where the regularising term can be chosen as, e.g., the linear
elastic potential. A spatially varying choice of elastic properties can then be
used to model a dedicated elastic behaviour in a specific image region. Further-
more, by allowing the regularisation weight α to be spatially dependent, the
regularisation influence can be weighted variably. Decreasing α, for instance,
in a gap region may lead to a mapping u which is locally less smooth, and,
therefore, allows for a large gradient as required to approximate the transfor-
mation in Figure 2.2. Consequently, in Table 2.1 the non-parametric approach
is classified as being able to achieve both goals.

Returning to the Registration Problem 2.7 we note that, in general, it does not
possess an analytical solution in explicit form. However, a numerical solution
can be obtained, for instance by determing its Gâteaux derivative. In broad
outline we note that the Gâteaux derivative of (2.1) yields a system of contin-
uous equations and of boundary conditions. The equations are of differential
type and can be, together with the boundary conditions, described by a bound-
ary value problem. For a comprehensive description of how to achieve this
problem in the context of image registration, we refer to the following chapter.
Here, we turn our attention towards the numerical treatment of boundary value
problems.

2.4 Boundary Value Problems

Boundary value problems belong to the most important problems in mathe-
matical physics. Here, one seeks a function satisfying both a system of partial
differential equations on a domain Ω and specified conditions on the boundary
of the domain. While for the Registration Problem 2.7 the differential equa-
tions arise from the definition of the similarity measure D and the regularisation
term S, the boundary conditions may depend on D and S, too. Alternatively,
they may be explicitly incorporated in the definition of the space of admissible
functions. Two types of boundary conditions shall be investigated in this thesis,

4For a closer interpretation and examples of regularising terms we refer to Section 3.3.
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• a (homogeneous) Dirichlet boundary condition,

u(x) = 0 , x ∈ ∂Ω , (2.2)

• and a (homogeneous) Neumann boundary condition,

∂u(x)

∂n
= 0 , x ∈ ∂Ω , (2.3)

with n the outward pointing unit normal vector. Note that, here and in
the following, one-sided derivatives are considered on ∂Ω.

Alternatively, (2.2) and (2.3) can be combined to

Bu(x) = 0 , x ∈ ∂Ω , (2.4)

with a boundary operator B = id in the first case and B = ∂/∂n in the latter
case. A boundary value problem arising in this thesis is now of the following
form.

Definition 2.8 (Boundary Value Problem). Given a domain Ω, a linear dif-
ferential operator L, the boundary operator B from (2.4), and a continuous
mapping f : R

d → R
d, the boundary value problem is to find a smooth mapping

u : Ω̄ → R
d satisfying

Lu(x) = f(u(x)) , x ∈ Ω ,

Bu(x) = 0 , x ∈ ∂Ω .
(2.5)

Here, f is typically a non-linear function and will be given explicitly, just as L,
based on the registration problem in Chapter 3.

Without doubt, existence and uniqueness of a solution are important properties
of a boundary value problem. For a one-dimensional problem these properties
can be easily verified. However, in more than one dimension it is a challenging
task to establish these properties and further assumptions on L and f are
required. We do not investigate this issue further and refer to the literature
where existence and uniqueness have been shown for special problems from
image registration (Clarenz et al., 2002). In the remaining part of this
thesis, we shall keep in mind that the term ‘solution’ not necessarily implies
uniqueness.

Due to the occurrence of u on the right-hand side of the differential equation
in (2.5), the equation is non-linear in u. A popular approach to resolve the
non-linearity is the so-called fixed-point type iteration scheme. Starting with
an initial guess u(0) fulfilling the boundary condition in (2.5), the differential
equation in (2.5) is replaced by

Lu(l+1)(x) = f(u(l)(x)) , x ∈ Ω , l ∈ N0 . (2.6)

For appropriate L and f , Banach’s fixed point theorem ensures convergence
and the limit function liml→∞ u(l) solves (2.5). However, Modersitzki (2004)
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reported instabilities while solving (2.6) for an image registration problem and
suggested for an improved stability the following slight modification,5

kLu(l+1)(x) + u(l+1)(x) = kf(u(l)(x)) + u(l)(x) , x ∈ Ω , l ∈ N0 , (2.7)

with k ∈ R
+. Then, (2.7) is equal to

u(l+1)(x) − u(l)(x)

k
= −[Lu(l+1)(x) − f(u(l)(x))] , x ∈ Ω , l ∈ N0 , (2.8)

which is sometimes referred to as a semi-implicit time-marching approach. Fur-
thermore, it may be interpreted as the temporal discretisation of an initial
boundary value problem with k as the step size of an artificial time.

Definition 2.9 (Initial Boundary Value Problem). Given a domain Ω, a lin-
ear differential operator L, the boundary operator B from (2.4), a continuous
mapping f : R

d → R
d, and a smooth initial mapping u(0) : Ω̄ → R

d, the initial
boundary value problem is to find a smooth mapping u : Ω̄ × R

+
0 → R

d satisfying

∂u(x, t)

∂t
= −[Lu(x, t) − f(u(x, t))] , x ∈ Ω , t ∈ R

+ ,

u(x, 0) = u(0)(x) , x ∈ Ω̄ ,

Bu(x, t) = 0 , x ∈ ∂Ω , t ∈ R
+ .

(2.9)

Now, instead of a spatial problem, a spatial-temporal problem is to be solved.
As a matter of fact, the solution to the boundary value problem, (2.5), is closely
connected with the one to the initial boundary value problem, (2.9): Inserting
a solution of (2.5) into (2.9) yields ∂u/∂t = 0 indicating a steady state of the
initial boundary value problem. Vice versa, a steady state solution of (2.9)
solves (2.5), too.

Example 2.10 (Reaction-Diffusion Equation). As an example for an initial
boundary value problem we take the differential operator as the negative Lapla-
cian operator L := −∆ and choose a Dirichlet type boundary condition. The
resulting problem is known as a reaction-diffusion system6

∂u(x, t)

∂t
= ∆u(x, t) + f(u(x, t)) , x ∈ Ω , t ∈ R

+ ,

u(x, 0) = 0 , x ∈ Ω̄ ,

u(x, t) = 0 , x ∈ ∂Ω , t ∈ R
+ .

(2.10)

For a steady state the initial boundary value problem simplifies to a boundary
value problem which is the nonlinear Poisson equation,

∆u(x) = −f(u(x)) , x ∈ Ω ,

u(x) = 0 , x ∈ ∂Ω .

We will continue this example in the following section.

5This modification can be interpreted as the addition of the identity function which is –
when considered in a discrete setting – equal to a shift of the eigenvalues.

6For the interested reader we note that the system has a unique solution (in a weak sense)
provided that f is Lipschitz continuous and ∂Ω is smooth (Evans, 1998).
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To solve a differential equation as arising in a boundary value problem numer-
ically, numerous methods are known, for instance the finite difference method
(FDM), the finite element method (FEM), the boundary element method (BEM),
and the finite volume method (FVM).

The FDM and the FEM are the most popular methods, sometimes used to-
gether as a hybrid. The FDM dominated the early development of numerical
analysis of partial differential equations, cf. (Larsson & Thomée, 2003), and
is still often used if the problem is defined on a simple (e.g. rectangular or cylin-
drical) geometry. A substitution of derivatives by difference quotients reduces
the differential equation problem to a finite linear system of algebraic equations.
Assembled in matrix-vector form, the resulting matrix is typically sparse and
highly structured. However, the FDM shows disadvantages for complex geome-
tries. In such cases, the FEM is preferred since here the domain discretisation
is more flexible. The range of application of the BEM includes problems with
partially unbounded domains. It is based on a reformulation of the differen-
tial equation as an integral equation over the boundary of the domain. This
equation can be used for the numerical approximation which typically yields a
system of equations which is small but neither sparse nor symmetric. In general,
the BEM is more restricted compared to FDM and FEM. Finally, the FVM is
used if the differential equation is based on a conservation law. Its application
range lies mainly in the field of computational fluid dynamics.

In the context of image registration we are concerned with a simple geometry
as domain, namely a d-dimensional cuboid. Since, moreover, a digital image
consists of voxels which are all of identical size, a FDM turns out to be the
natural choice to solve the differential equation arising in this thesis numerically.

2.5 Finite Differences

As sketched in Section 2.3, the non-parametric registration approach is given
by a minimisation problem which can be solved numerically by determing its
Gâteaux derivative. In addition, in the previous section it has been shown that
the resulting system of (partial) differential equations can be embedded into an
initial boundary value problem.

For a numerical solution of an initial boundary value problem we employ the
finite difference method and start with a discretisation of the domain and the
time axis. By replacing the differential operator by difference quotients we
arrive at a discretised initial boundary value problem consisting of a discrete
equation with respect to each point of the discretised domain.

For clarity we restrict the notation to the case of the unit square Ω = (0, 1)2

with the origin in the upper left corner. The first coordinate, x1 is assumed in
vertical direction, the second one, x2, in horizontal direction.

2.5.1 Domain Discretisation

For the discretisation of Ω̄ by an equispaced grid consisting of r× s grid points,
let h := (h1, h2) := ((r − 1)−1, (s − 1)−1) collect the grid spacings in each
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x0,0 x0,1 x0,s−1

x1,0 x1,1 x1,s−1

xr−1,0 xr−1,1 xr−1,s−1

x0,0 x0,1 x0,s

x1,0 x1,1 x1,s

xr,0 xr,1 xr,s

Figure 2.4: Schematic visualisation of an edge-point (left) and a mid-point discreti-
sation (right). Filled circles indicate grid points within the domain Ω, empty circles
represent grid points on ∂Ω in the edge-point case and so-called ghost points outside
Ω̄ in the mid-point case.

coordinate.7 Then, a so-called edge-point discretisation arises,

Ω
edge
h := {xi,j = (ih1, jh2) | i = 1, . . . , r − 2 , j = 1, . . . , s − 2} ,

∂Ω
edge
h := {xi,j = (ih1, jh2) | i = 0, . . . , r − 1 , j = 0, . . . , s − 1} \ Ω

edge
h .

(2.11)

Note that all points of ∂Ω
edge
h are included in ∂Ω.

Alternatively, a so-called mid-point discretisation is given by

Ωmid
h := {xi,j = ((i − 1

2)h1, (j −
1
2)h2) | i = 1, . . . , r − 1 , j = 1, . . . , s − 1} ,

∂Ωmid
h := {xi,j = ((i − 1

2)h1, (j −
1
2)h2) | i = 0, . . . , r , j = 0, . . . , s} \ Ωmid

h .
(2.12)

Note that the grid defined by Ωmid
h contains one additional column/row com-

pared to Ω
edge
h . Furthermore, none of the points in ∂Ωmid

h (the so-called ghost
points) is included in Ω̄.
For an illustration of both types of discretisation we consider an image, say
I ∈ Img(Ω), and employ a domain discretisation to derive a digital image. As
described in Definition 2.3, a digital image is defined on an array of discrete

points, X. Now, X is given by either Ω
edge
h ∪ ∂Ω

edge
h or Ωmid

h ∪ ∂Ωmid
h . In the

case of an edge-point discretisation the grid points are located on the edges of
the voxels (cf. Figure 2.4, left) whereas with a mid-point discretisation they
are located in the voxel centres of the digital image (right). To express the
dependence of a digital image on the grid spacing h, we attach a subscript and
denote it by Ih in the following.

While the type of grid discretisation is of minor importance for the discretisation
of the differential equations occurring in the initial boundary value problem, it

7In medical applications such a differentiation is essential at least for three-dimensional
data sets. Here, voxels are in general non-isotropic in size.
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will turn out to be crucial when discretising its boundary conditions. Nonethe-

less, we will use the notation Ωh and ∂Ωh instead of Ω
edge
h , Ωmid

h , ∂Ω
edge
h , and

∂Ωmid
h whenever the statement is valid for both types of discretisation.

Likewise, we discretise the time domain similarly to the edge-point discretisation
by placing a grid on the temporal axis, {tl}l∈N0 , where tl = lk and k ∈ R

+

denotes the grid spacing.

2.5.2 Difference Quotients

Based on the discretisation of Ω and the time axis, we will discretise the initial
boundary value problem (IBVP) itself. For a moment we denote the IBVP by

LIBVPu = 0 (2.13)

and a discretised version of it by

LIBVP
h,k U = 0 (2.14)

with U as a pointwise function U = (U1, U2)
T approximating

U i,j,l
n =̂ un(xi,j, tl) , n = 1, 2 .

Here, xi,j is chosen accordingly to (2.11) and (2.12) in the edge-point case and
in the mid-point case, respectively.
The question arising here is how well the solution U of the difference equation
approximates the solution u of the boundary value problem. There are various
sources for an error ‖u − U‖ such as:

• U is computed at certain positions in space yielding a spatial error,

• U is computed at certain positions in time yielding a temporal error,
i.e. in general, U will not solve the corresponding boundary value problem
exactly,

• derivatives included in the differential equation are approximated by dif-
ference quotients.

By substituting u into (2.14) and subtracting it from (2.13), the so-called con-
sistency error can be determined,

τh,k := max
i,j,l

|LIBVPu(xi,j, tl) − LIBVP
h,k u(xi,j , tl)| .

However, consistency is one piece of information and does not ensure the solu-
tion of the difference equation to converge towards the solution of the underlying
partial differential equation. The most common method to ensure convergence
for difference equations is described by, e.g., Thomas (1995): The Lax The-
orem allows to prove convergence of a difference scheme by showing that the
discretisation is consistent with the original problem as well as that the scheme
is stable. In this thesis we spend some effort on ensuring consistency as a,
roughly spoken, necessary condition for convergence and do not focus on the
stability.
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Definition 2.11 (Consistency, Local Order of Accuracy (LOA)). Given an
IBVP and a corresponding discretisation with spatial and temporal grid spacings
h, k, the discretised problem is called consistent with the IBVP if

τh,k → 0 for h → 0 and k → 0 .

Furthermore, the discretisation has a local order of accuracy8 p in space and q
in time, denoted by O(hp + kq), if

τh,k ≤ c1h
p + c2k

q

with constants c1, c2.

To replace derivative terms occurring in the IBVP by difference quotients we
proceed by approximating derivatives. Note that the overall LOA of a discre-
tised IBVP is the lowest order used in any part of the problem.

For the following considerations we require u to be four times continuously
differentiable in space and twice continuously differentiable in time. Then, an
exploitation of Taylor series leads to the following single first order derivatives

∂−
1 un(x, t) :=

un(x, t) − un(x − h1e1, t)

h1

= ∂x1un(x, t) + O(h1) ,

∂+
1 un(x, t) :=

un(x + h1e1, t) − un(x, t)

h1

= ∂x1un(x, t) + O(h1) ,

∂±
1 un(x, t) :=

un(x + h1
2 e1, t) − un(x − h1

2 e1, t)

h1

= ∂x1un(x, t) + O(h2
1) ,

called backward, forward and central difference quotients, respectively. The dif-
ference quotients with respect to the variables x2 and t are defined analogously.
For second order and mixed derivatives we have for instance

∂±
11un(x, t) :=

un(x − h1e1, t) − 2un(x, t) + un(x + h1e1, t)

h2
1

= ∂x1x1un(x, t) + O(h2
1) ,

∂±
12un(x, t) :=

un(x + h1
2 e1 + h2

2 e2, t) − un(x + h1
2 e1 −

h2
2 e2, t)

h1h2

−
un(x − h1

2 e1 + h2
2 e2, t) − un(x − h1

2 e1 −
h2
2 e2, t)

h1h2

= ∂x1x2un(x, t) + O(h2
1 + h2

2) ,

8Note that the order depends on the chosen norm which is the l∞-norm. For simplicity,
we assumed an isotropic grid spacing, i.e. h1 = h2 =: h
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which are both defined using central differences. In addition we define an aver-
aging quotient, here for instance with respect to x1,

∂a
1un(x, t) :=

un(x − h1
2 e1, t) + un(x + h1

2 e1, t)

2

= un(x, t) + O(h2
1) ,

where the equality follows again by Taylor’s Theorem.

These quotients will now be applied to the approximation U . According to the
discretisation scheme we choose (x, t) = (xi,j , tl) ∈ Ωh and obtain

∂−
1 U i,j,l

n =
U i,j,l

n − U i−1,j,l
n

h1
,

∂+
1 U i,j,l

n =
U i+1,j,l

n − U i,j,l
n

h1
,

∂±
1 U i,j,l

n =
U

i+ 1
2
,j,l

n − U
i− 1

2
,j,l

n

h1
,

∂±
11U

i,j,l
n =

U i−1,j,l
n − 2U i,j,l

n + U i+1,j,l
n

h2
1

,

∂±
12U

i,j,l
n =

U
i+ 1

2
,j+ 1

2
,l

n − U
i+ 1

2
,j− 1

2
,l

n − U
i− 1

2
,j+ 1

2
,l

n + U
i− 1

2
,j− 1

2
,l

n

h1h2
,

∂a
1U i,j,l

n =
U

i− 1
2
,j,l

n + U
i+ 1

2
,j,l

n

2
.

(2.15)

for all l ∈ N0 and n ∈ {1, 2}.

Now, the differential equations included in the IBVP can be discretised. For
each grid point a discrete equation in terms of U can be formulated,

(
∂−

t U i,j,l+1
1

∂−
t U i,j,l+1

2

)

= −Lh

(
U i,j,l+1

1

U i,j,l+1
2

)

+ fh

(
U i,j,l+1

1

U i,j,l+1
2

)

,
(i, j) ∈ Ωh

l ∈ N0
.

Here, Lh and fh denote 2× 2-matrices of difference quotients which result from
the derivative operators included in L and f , respectively.

With U i,j,l := (U i,j,l
1 , U i,j,l

2 )T a reformulation yields

(idh + kLh)U i,j,l+1 = U i,j,l + kfhU i,j,l+1 , (i, j) ∈ Ωh , l ∈ N0 . (2.16)

Care has to be taken when xi,j has a neighbouring grid point which belongs

to the boundary ∂Ωh. In such a case a difference quotient for U i,j,l
n typically

includes function values on the boundary and (2.16) provides #Ωh equations for
#(Ωh∪∂Ωh) unknowns. Further equations will result from the discretisation of
the boundary conditions included in the IBVP. Here, we consider the two types
of boundary conditions defined in (2.4) and consider, without loss of generality,
the edge ∂Ω|x2=0 only.
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• Let B = id, i.e. the boundary condition reads u(x) = 0 on ∂Ω.

– If an edge-point discretisation is employed, the boundary condition
can be directly transformed into a condition for U , i.e.

U i,0,l
n = 0 , i = 0, . . . , r − 1 , l ∈ N0 , n = 1, 2 .

– If, in contrast, a mid-point discretisation is employed, ∂Ωmid
h is not

a subset of ∂Ω and we identify xi, 1
2

as a point on ∂Ω. Here, an

averaging yields

∂a
2U

i, 1
2
,l

n = 0 ⇔ U i,0,l
n = −U i,1,l

n

for i = 0, . . . , r, l ∈ N0, and n = 1, 2.

Therefore, this kind of boundary condition can be exactly described by an
edge-point discretisation and approximated with second-order accuracy
by a mid-point discretisation. Choosing the former we define

Bh :=

(
1 0
0 1

)
(2.17)

yielding

Bh(U i,j,l
1 , U i,j,l

2 )T = 0 ⇔ U i,j,l
n = 0 , (i, j) ∈ ∂Ω

edge
h , n = 1, 2 .

(2.18)

• Let B = ∂
∂n

, i.e. the boundary condition reads ∂u
∂n

= 0 on ∂Ω, or, with

respect to the considered edge, ∂u
∂y

= 0 on ∂Ω|x2=0.

– Here, an edge-point discretisation leads to the one-sided approxima-
tion

∂+
2 U i,0,l

n =
U i,1,l

n − U i,0,l
n

h2
= 0 ⇒ U i,0,l

n = U i,1,l
n

for i = 0, . . . , r − 1, l ∈ N0, and n = 1, 2. Note that by employ-
ing a central difference quotient a representation of U i,0,l

n cannot be
achieved.

– In contrast, a mid-point discretisation allows for an approximation
by central differences. Again, we consider a point xi, 1

2
and derive

∂±
2 U

i, 1
2
,l

n =
U i,1,l

n − U i,0,l
n

h2
= 0 ⇒ U i,0,l

n = U i,1,l
n

for i = 0, . . . , r, l ∈ N0, and n = 1, 2.

Although at first sight, the representations of U i,0,l
n look the same for both

types of discretisation, they differ due to the different position of U i,0,l
n

(located on the boundary in the edge-point case but with a distance of
h2/2 outside of the boundary in the mid-point case, cf. Figure 2.4).
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Consequently, this kind of boundary condition can be approximated with
first-order accuracy by an edge-point discretisation and with second-order
accuracy by a mid-point discretisation. Choosing the latter we define

Bh :=

(
∂∗ 0
0 ∂∗

)
(2.19)

with ∂∗ a difference quotient such that

Bh(U i,j,l
1 , U i,j,l

2 )T = 0 ⇔ U i,j,l
n = U ı̂,̂,l

n , (i, j) ∈ ∂Ωmid
h , n = 1, 2 ,

(2.20)
where (̂ı, ̂) denotes the, with regard to ∂Ω, mirrored position to (i, j).

Finally, the initial condition of the IBVP shall be discretised. This task is trivial
and consists of a pointwise evaluation of u(0) with respect to the chosen type of
discretisation, i.e.

U i,j,0
n = u(0)

n (xi, yj) , (i, j) ∈ Ω̄h , n = 1, 2 . (2.21)

The discretisation of the IBVP (2.9) is completed now. In summary, it consists
of

• the discretised differential equation (2.16),

• the discretised initial condition (2.21),

• and the discretised boundary condition (2.18) or (2.20).

By choosing appropriate difference quotients from (2.15) an overall LOA of
O(h2 + k) can be achieved. With regard to the discretised differential equation
(2.16) we observe the time level of its last term fhU i,j,l+1 to differ from the one
in the time-marching approach9 (2.8), f(u(l)(x)). However, replacing fhU i,j,l+1

by fhU i,j,l in (2.16) does not change the temporal LOA of the discretisation of
the IBVP as shown by the following lemma.

Lemma 2.12. Given the IBVP as in (2.9) and a discretised version

(idh + kLh)U i,j,l+1 = U i,j,l + kfhU i,j,l , (i, j) ∈ Ωh , l ∈ N0 ,

U i,j,0 = u(0)(xi, yj) , (i, j) ∈ Ω̄h ,

BhU i,j,l+1 = 0 , (i, j) ∈ ∂Ωh , l ∈ N0 ,

(2.22)

with Lh, fh, and Bh as (at least) second-order approximations to L, f , and B,
respectively, the discretised problem has a LOA of O(h2 + k).

Proof. We start with the differential equation of the IBVP. By employing a
forward difference in time with respect to the l-th time level and a backward

9Recall that the time-marching approach served as the motivation for the investigation of
an IBVP instead of a BVP.
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one with respect to the l + 1-th time level we are faced with approximations
which are both of first oder in time,

∂−
t U i,j,l+1 = −[LhU i,j,l+1 − fhU i,j,l+1] ,

∂+
t U i,j,l = −[LhU i,j,l − fhU i,j,l] .

Summing up we have, by Taylor’s Theorem,

U i,j,l+1 − U i,j,l

k
= −Lh

U i,j,l+1 + U i,j,l

2
+ fh

U i,j,l + U i,j,l+1

2

= −Lh[U i,j,l+1 + O(k)] + fh[U i,j,l + O(k)] ,

which is equivalent to the assumption. Furthermore, since the discretised
boundary conditions (2.17) and (2.19) are of, at least, second-order accuracy,
the overall LOA of the discretised IBVP is O(h2 + k).

As an example for a discretised IBVP we revisit Example 2.10 and consider it
in two dimensions.

Example 2.13 (Reaction-Diffusion Equation Revisited). For a discretisation
of (2.10) we choose the type of discretisation first. Since the boundary condition
is of Dirichlet type, an edge-point discretisation is used for the spatial domain.
We assume the grid spacing h to be isotropic, i.e. h1 = h2 =: h. Replacing the
derivative terms in (2.10) by difference quotients from (2.15) and (2.18), and
applying Lemma 2.12 we end up with a discretisation of the reaction-diffusion
system

(idh + kLh)U i,j,l+1 = U i,j,l + kfhU i,j,l , (i, j) ∈ Ωh , l ∈ N0 ,

U i,j,0 = 0 , (i, j) ∈ Ω̄h ,

BhU i,j,l+1 = 0 , (i, j) ∈ ∂Ωh , l ∈ N0 ,

(2.23)

with

Lh := −
1

h2

(
∂±

11 + ∂±
22 0

0 ∂±
11 + ∂±

22

)
(2.24)

being of second-order accuracy in space and first-order in time.

Having determined the discretisation of an IBVP, usually the next steps are

1. to assemble for each time step l the set of difference equations into a
system of matrix-vector type,

2. to incorporate the discretised boundary conditions, and,

3. by starting with the discretised initial condition, to iteratively solve the
assembled system for the discrete function U .

To investigate the properties of the assembled system, the distribution of eigen-
values and in particular the symmetry of the system matrix are of great interest.
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However, to establish the matrix symmetry is a rather technical task. More-
over, the size of the matrix prevents its specification in a readable full form
and, last but not least, an element-wise depiction is little descriptive. As an
alternative, we will employ the stencil notation (as described by Trottenberg

et al. (2001) for instance) and link it to the discretised operator as well as to
the system matrix as visualised by the scheme

discretised operator idh+kLh ⇒ stencil notation ⇒ system matrix .

Then, with regard to the steps formulated above, the scope of the remaining
chapter comprises:

• the formulation of discrete equations as in (2.22) but in stencil notation
from which a linear system of equations can be assembled,

• the incorporation of discretised boundary conditions,

• the proof of symmetry of the assembled system matrix provided the un-
derlying stencil is symmetric (which is easy to establish),

• and the solution of the assembled system.

2.5.3 Stencil Notation

In order to introduce the stencil notation in two dimensions we start by defining
a 3 × 3-matrix of discrete values around a centre U i,j,l

n ,

G(U i,j,l
n ) := (gi,j,l

n )−1≤i,j≤1 :=




U i−1,j−1,l

n U i−1,j,l
n U i−1,j+1,l

n

U i,j−1,l
n U i,j,l

n U i,j+1,l
n

U i+1,j−1,l
n U i+1,j,l

n U i+1,j+1,l
n



 .

Now, each of the spatial difference quotients from (2.15) can be described al-

ternatively by convolving G(U i,j,l
n ) with an appropriate matrix of coefficients,

called the stencil.

Definition 2.14 (Stencil). A stencil (of size 1) is given by a matrix S with
entries sκ1,κ2, κ1, κ2 ∈ {−1, 0, 1}, such that

S :=




s−1,−1 s−1,0 s−1,1

s0,−1 s0,0 s0,1

s1,−1 s1,0 s1,1



 .

Then the convolution of G(U i,j,l
n ) with a stencil is given by

S ∗ G(U i,j,l
n ) =

1∑

κ1,κ2=−1

sκ1,κ2gκ1,κ2,l
n , (2.25)

where ∗ is interpreted as a discrete convolution operator, see, e.g., (Trotten-

berg et al., 2001).
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Example 2.15. As an example we consider the mixed-derivatives operator in
(2.15) and assume an isotropic grid spacing, i.e. h1 = h2 =: h,

∂a
1∂a

2∂±
12U

i,j,l
n = S ∗ G(U i,j,l

n ) with S :=
1

4h2




1 0 −1
0 0 0

−1 0 1



 .

Note that without applying the averaging quotients ∂a
1∂a

2 to ∂±
12 we would have

ended up with inter-grid positions.

For the case of a matrix of difference quotients as, for instance, in (2.24), we
define a block stencil.

Definition 2.16 (Block Stencil). A block stencil S (of size 2) is given by a 2×2
matrix of stencils Sω1,ω2 with ω1, ω2 ∈ {1, 2}.

The convolution for a block stencil is then defined by a componentwise convo-
lution,

(
S1,1 S1,2

S2,1 S2,2

)
∗

(
G(U i,j,l

1 ) G(U i,j,l
2 )

G(U i,j,l
1 ) G(U i,j,l

2 )

)
:=

(
S1,1 ∗ G(U i,j,l

1 ) S1,2 ∗ G(U i,j,l
2 )

S2,1 ∗ G(U i,j,l
1 ) S2,2 ∗ G(U i,j,l

2 )

)

An important property of great utility later on concerns the symmetry of a
(block) stencil. This requires the definition of the transpose of a stencil.

Definition 2.17 (Transpose of a Stencil). Given stencils S1 and S2 with entries
sκ1,κ2
1 and sκ1,κ2

2 , κ1, κ2 ∈ {−1, 0, 1}, S2 is transposed to S1 if

sκ1,κ2
1 = s−κ1,−κ2

2 , κ1, κ2 ∈ {−1, 0, 1} . (2.26)

We denote the transpose of a stencil by T, i.e. S1 = ST

2 = (ST

1 )T.

Definition 2.18 (Symmetric Stencil, Block-Symmetric Block Stencil). Given
a stencil S with entries sκ1,κ2, κ1, κ2 ∈ {−1, 0, 1}, S is called symmetric if it is
equal to its transpose, i.e., if S = ST.
Furthermore, a block stencil S = (Sω1,ω2)ω1,ω2 is called block-symmetric if

• each stencil Sω1,ω1 ∈ S is symmetric, and

• each stencil Sω1,ω2 ∈ S, ω1 6= ω2, is equal to ST
ω2,ω1

.

Note that the conditions for block-symmetry are equivalent to the single con-
dition

Sω1,ω2 = ST

ω2,ω1

to hold for all ω1, ω2 ∈ {1, 2}.

Example 2.19 (Reaction-Diffusion Equation Revisited). The discretised op-
erator idh + kLh in (2.23),

(
1 0
0 1

)
−

k

h2

(
∂±

11 + ∂±
22 0

0 ∂±
11 + ∂±

22

)
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can be described by the block stencil

S =








0 0 0
0 1 0
0 0 0








0 0 0
0 1 0
0 0 0








−

k

h2








0 1 0
1 −4 1
0 1 0








0 1 0
1 −4 1
0 1 0








.

It is easy to verify that S is block-symmetric.

For the stencil notation introduced so far, boundary conditions have been dis-
regarded. However, if the convolution in (2.25) is applied to a grid point for
which a neighbouring grid point belongs to ∂Ωh, boundary conditions apply.

We recall the equivalences (2.18) and (2.20) for a Dirichlet and a Neumann
boundary condition, respectively, and consider without loss of generality a grid
point (i, j) with a neighbouring grid point belonging to ∂Ω|x2=0 and with no
neighbouring grid point belonging to ∂Ω|x1=0 (i.e. a left edge of Ω). Then the
specific stencil for the grid point (i, j) changes to so-called boundary stencils




s−1,0 s−1,1

s0,0 s0,1

s1,0 s1,1



 and




s−1,0 s−1,1

s0,0 +
∑1

i=−1 si,−1 s0,1

s1,0 s1,1



 (2.27)

in the case of a Dirichlet condition and a Neumann condition, respectively.

The stencil symmetry in both cases is not affected by the changes, since the
condition (2.26) is only applied for those (κ1, κ2) for which a stencil entry at
the position (−κ1,−κ2) exists and since the central entry in the Neumann case
is symmetric to itself. Moreover, the block-symmetry condition is not affected
since a boundary condition acts on all stencils of a block stencil simultaneously.

2.5.4 Assembling

By use of the stencil notation a system of discrete equations as in (2.22) can be
reformulated with a block stencil. The next step will be to assemble a linear
system of equations of matrix-vector type,

AU(l+1) = U(l) + kF(l) , l ∈ N
0 ,

and to include the discretised boundary conditions from (2.22). Finally, this
system will be solved for U(l+1). Assuming Ωh consists of N1 × N2 grid points,
the system is of size 2N1N2. We make use of the abbreviation

N≤c := {i ∈ N : i ≤ c}

and denote a block matrix

A =

(
A1,1 A1,2

A2,1 A2,2

)
with each matrix Aω1,ω2 = (ai,j

ω1,ω2
)i,j∈N≤N1N2
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Figure 2.5: Visualisation of the grid point mapping ξ.

taking – following an order to be specified – the coefficients from the block
stencil and thus from the discrete operator idh + kLh. Furthermore, U(l) and
F(l) denote vectors which include, following the same order, all values U i,j,l and
fhU i,j,l, respectively.
With the assembly of the system in mind we specify the order by the component-
specific mapping

ξ : N≤N1 × N≤N2 → N≤N1N2 , ξ(i, j) = (i − 1)N2 + j (2.28)

returning to each grid point (i, j) a number less or equal than N1N2 (see Fig-
ure 2.5 for a visualisation of the arrangement). Then, U(l) and F(l) are given
by

U(l) := (U1,1,l
1 , . . . , U1,N2,l

1 , . . . , . . . , UN1,1,l
1 , . . . , UN1,N2,l

1 ,

U1,1,l
2 , . . . , U1,N2,l

2 , . . . , . . . , UN1,1,l
2 , . . . , UN1,N2,l

2 )T ,

F(l) := ((fhU1,1,l)1, . . . , (fhU1,N2,l)1, . . . , . . . , (fhUN1,1,l)1, . . . , (fhUN1,N2,l)1,

(fhU1,1,l)2, . . . , (fhU1,N2,l)2, . . . , . . . , (fhUN1,1,l)2, . . . , (fhUN1,N2,l)2)
T ,

and for each stencil Sω1,ω2 ∈ S the corresponding matrix Aω1,ω2 can be con-
structed. To this end let i ∈ N≤N1, j ∈ N≤N2. By choosing κ1, κ2 ∈ {−1, 0, 1}
provided that i + κ1 ∈ N≤N1 and j + κ2 ∈ N≤N2 we ensure that (i + κ1, j + κ2)
do not refer to values outside Ωh. Each non-zero entry of Aω1,ω2 is then defined
by

aξ(i,j),ξ(i+κ1,j+κ2)
ω1,ω2

:= sκ1,κ2
ω1,ω2

. (2.29)

Note that all entries belonging to the boundary ∂Ωh are zero. Thus, a boundary
stencil with an incorporated Dirichlet condition as in (2.27, left) is automatically
included10. In contrast, the incorporation of a boundary stencil for a Neumann
type condition as in (2.27, right) requires an update of those diagonal elements
for which i ∈ {1, N1} or j ∈ {1,N2}. Dependent on i and j, eight cases can be
distinguished:

10Since both boundary conditions used in this thesis are zero-conditions, F(l) does not need
to be updated.
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1. upper left corner, i.e. i = 1, j = 1,

aξ(1,1),ξ(1,1)
ω1,ω2

:= s0,0
ω1,ω2

+ s1,−1
ω1,ω2

+ s0,−1
ω1,ω2

+ s−1,−1
ω1,ω2

+ s−1,0
ω1,ω2

+ s−1,1
ω1,ω2

,

2. upper edge, i.e. i = 1, j /∈ {1,N2},

aξ(1,j),ξ(1,j)
ω1,ω2

:= s0,0
ω1,ω2

+ s−1,−1
ω1,ω2

+ s−1,0
ω1,ω2

+ s−1,1
ω1,ω2

,

3. upper right corner, i.e. i = 1, j = N2,

aξ(1,N2),ξ(1,N2)
ω1,ω2

:= s0,0
ω1,ω2

+ s−1,−1
ω1,ω2

+ s−1,0
ω1,ω2

+ s−1,1
ω1,ω2

+ s0,1
ω1,ω2

+ s1,1
ω1,ω2

,

4. right edge, i.e. i /∈ {1, N1}, j = N2,

aξ(i,N2),ξ(i,N2)
ω1,ω2

:= s0,0
ω1,ω2

+ s−1,1
ω1,ω2

+ s0,1
ω1,ω2

+ s1,1
ω1,ω2

,

5. lower right corner, i.e. i = N1, j = N2,

aξ(N1,N2),ξ(N1,N2)
ω1,ω2

:= s0,0
ω1,ω2

+ s−1,1
ω1,ω2

+ s0,1
ω1,ω2

+ s1,1
ω1,ω2

+ s1,0
ω1,ω2

+ s1,−1
ω1,ω2

,

6. lower edge, i.e. i = N1, j /∈ {1,N2},

aξ(N1,j),ξ(N1,j)
ω1,ω2

:= s0,0
ω1,ω2

+ s1,1
ω1,ω2

+ s1,0
ω1,ω2

+ s1,−1
ω1,ω2

,

7. lower left corner, i.e. i = N1, j = 1,

aξ(N1,1),ξ(N1,1)
ω1,ω2

:= s0,0
ω1,ω2

+ s1,1
ω1,ω2

+ s1,0
ω1,ω2

+ s1,−1
ω1,ω2

+ s0,−1
ω1,ω2

+ s−1,−1
ω1,ω2

,

8. left edge, i.e. i /∈ {1, N1}, j = 1,

aξ(i,1),ξ(i,1)
ω1,ω2

:= s0,0
ω1,ω2

+ s1,−1
ω1,ω2

+ s0,−1
ω1,ω2

+ s−1,−1
ω1,ω2

.

Due to the symmetry of the stencil Sω1,ω2 the cases (1) and (5), (2) and (6),
(3) and (7) as well as (4) and (8) coincide and we are left with

aξ(i,j),ξ(i,j)
ω1,ω2

:=






∑
κ1+κ2≤0 sκ1,κ2

ω1,ω2 , (i, j) ∈ {(1, 1), (N1 ,N2)}∑1
κ2=−1 s1,κ2

ω1,ω2 + s0,0
ω1,ω2 , i ∈ {1,N1}, j /∈ {1,N2}∑

κ2≥κ1
sκ1,κ2
ω1,ω2 , (i, j) ∈ {(1,N2), (N1, 1)}∑1

κ1=−1 sκ1,1
ω1,ω2 + s0,0

ω1,ω2 , i /∈ {1,N1}, j ∈ {1,N2}

. (2.30)

Summarising, by (2.29) and – in the case of Neumann type conditions – in addi-
tion by (2.30), a linear system of equations in matrix-vector form is assembled,

AU(l+1) = U(l) + kF(l) , l ∈ N
0 , (2.31)

which, together with the discretised initial condition

U(0) = 0 , (2.32)

represents the discretised IBVP.
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Remark. By (2.29) and (2.30) we observe that each row of the matrix Aω1,ω2

has at most as many non-zero entries as the corresponding stencil has non-zero
entries. Disregarding the updated matrix entries in the Neumann-case, the
entries on each diagonal are the same since the stencil does not depend on the
grid position.

As mentioned before, for solving the system (2.31), it may be particularly useful
to be familiar with its properties. One possible way to ensure the symmetry of
the block matrix A is to ensure the block-symmetry of the corresponding block
stencil as pointed out in the following lemma. To our best knowledge, its proof
is not published in the literatur yet.

Lemma 2.20 (Symmetry of the System Matrix A). Let S = (Sω1,ω2)ω1,ω2 de-
note a block stencil of size 2, let A denote a block matrix with matrices Aω1,ω2,
ω1, ω2 ∈ {1, 2}, defined via (2.29) in the case of Dirichlet boundary conditions
and additionally via (2.30) in the case of Neumann boundary conditions.

Then A is symmetric if S is block-symmetric.

Proof. Let S be block-symmetric. Then, following Definition 2.18, the stencils
S1,1, S2,2 are symmetric and we have S1,2 = (S2,1)

T. We start by showing the
symmetry of A1,1 and A2,2 and disregard, in the first instance, the boundary
stencils.
Let i ∈ N≤N1, j ∈ N≤N2 . In addition, let κ1, κ2 ∈ {−1, 0, 1} provided that
i + κ1 ∈ N≤N1 and j + κ2 ∈ N≤N2. Then we can express any non-zero entry of
A1,1 by

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,1 = sκ1,κ2

1,1

which is equal to s−κ1,−κ2
1,1 due to the symmetry of the stencil. We choose ı̂, ̂

such that ı̂, ı̂−κ1 ∈ N≤N1 and ̂, ̂−κ2 ∈ N≤N2. Then the entry a
ξ(̂ı,̂),ξ(̂ı−κ1,̂−κ2)
1,1

exists and is, moreover, given by s−κ1,−κ2
1,1 . Finally we choose a coordinate

transformation

ı̂ = i + κ1 , ̂ = j + κ2

and end up with the equality

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,1 = sκ1,κ2

1,1 = s−κ1,−κ2
1,1 = a

ξ(̂ı,̂),ξ(̂ı−κ1,̂−κ2)
1,1 = a

ξ(i+κ1,j+κ2),ξ(i,j)
1,1

showing the symmetry of A1,1.
Coming back to the boundary stencils, their incorporation does not change the
conclusion: In the Dirichlet case the argumentation above fits as well, in the
Neumann case only diagonal elements of A1,1 are updated by (2.30), which does
not affect the symmetry of A1,1. The symmetry of A2,2 can be proven analo-
gously.
We are left with the equivalence of any non-zero entry in A1,2 and the corre-
sponding entry in A2,1. Let i, j, κ1, κ2 be as above. It remains to show that

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,2

!
= a

ξ(i+κ1,j+κ2),ξ(i,j)
2,1 .
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Here, the argumentation from the case A1,1 can be reused and we obtain, dis-
regarding any boundary stencils for a moment, in a similar manner

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,2 = sκ1,κ2

1,2
∗
= s−κ1,−κ2

2,1 = a
ξ(̂ı,̂),ξ(̂ı−κ1,̂−κ2)
2,1 = a

ξ(i+κ1,j+κ2),ξ(i,j)
2,1 ,

where in ∗ the block-symmetry of S has been employed. Again, boundary sten-
cils from a Dirichlet condition do not change the conclusion. In the Neumann
case only entries with κ1 = κ2 = 0 are updated. Thus we have (i, j) = (̂ı, ̂) and

it is easy to verify that a
ξ(i,j),ξ(i,j)
1,2 = a

ξ(̂ı,̂),ξ(̂ı,̂)
2,1 holds, due to S1,2 = (S2,1)

T, for
all four cases from (2.30).
Thus, A is symmetric.

If A is symmetric, its eigenvalues are real. Under this condition, the Theorem of
Gershgorin can be used to estimate the distribution of eigenvalues. Note that
then the positiveness of all eigenvalues is equal to A being positive definite.

Theorem 2.21 (Gershgorin). Suppose A ∈ R
N×N is symmetric. If A is split

up in a diagonal matrix D = (di)i and a rest F = (fij)ij with zero diagonal,
i.e. A = D + F, then

EV (A) ⊂
N⋃

i=1

[di − ri, di + ri]

where ri =
∑N

j=1 |fij| for i = 1, . . . ,N .

Proof. Can be found in (Golub & van Loan, 1996).

Eventually, we recall the reaction-diffusion example one last time.

Example 2.22 (Reaction-Diffusion Equation Revisited). An assembling of the
system matrix from Example 2.13 yields a block matrix

A =

(
A11 0

0 A22

)
∈ R

2N×2N ,

where N := #Ωh, with matrices

A11 = A22 = (ai,j)1≤i,j≤N where ai,j =






−k/h2 , |i − j| = N1

−k/h2 , |i − j| = 1
1 + 4k/h2 , i − j = 0

0 , else

.

Then, by Theorem 2.21 the eigenvalues of the system matrix are included in the
interval [1, 1 + 8k/h2]. Since each eigenvalue is positive, A is positive definite.

For the solution of the linear system we refer to literature: A general overview
is given, for instance, by Golub & van Loan (1996). Fast numerical schemes
with complexities of O(N log N) or O(N) especially adapted for image registra-
tion problems can be found in (Fischer & Modersitzki, 1999, 2002, 2004).
Last but not least, multi-grid techniques are advisable, cf., e.g., (Trottenberg

et al., 2001).
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3 Variational Approach

This chapter introduces the variational approach for the image registration
problem. Here, given a domain Ω, images T,R ∈ Img(Ω), and some set of
differentiable functions1, U : Ω̄ → R

d, the regularised Registration Problem 2.7
searches for a minimising function u ∈ U such that

DT,R[u] + αS[u]
u

−→ min on Ω̄ .

Rewriting the problem in a more general context, we consider the minimisation
of a general functional J : U → R,

J [u]
u

−→ min on Ω̄ . (3.1)

To solve this general minimisation problem, a necessary condition for a min-
imum of J [u] can be determined which typically yields the formulation of a
boundary value problem. Such a condition must be fulfilled by a candidate
solution and can be derived following a method by Lagrange. Here, the idea
is to assume the existence of a solution u∗ to (3.1) and to embed this solution
into a set of candidate functions,

{uτ : Ω̄ → R
d | uτ (x) = u∗(x) + τv(x)}

with τ ∈ R and v a test function, see Section 3.1. Then, this candidate set de-
scribes a one-dimensional subspace of U and, assuming appropriate differentia-
bility and boundary properties (detailed requisites will be given in Section 3.1),
the function J : R → R ,

J(τ) := J [uτ (x)] = J [u∗(x) + τv(x)] ,

possesses a global minimum for τ = 0, since u∗ is a minimiser of J . J is an
ordinary function of the real variable τ and thus the necessary condition for a
minimum of J is given by the vanishing of the so-called first variation of J in
the direction of v,

J ′(0) =
dJ [u∗ + τv]

dτ

∣∣∣∣
τ=0

= 0 .

1On the boundary ∂Ω the differentiability is to be understood in a one-sided meaning.
Alternatively, the domain of U could be defined as an open superset of Ω̄.

35
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Later on we will see that for an image registration problem this condition takes
the form of a boundary value problem for u∗. The link between, on the one
hand, the task of solving a boundary value problem and, on the other hand, the
task of finding a function that minimises a functional, is part of the calculus
of variation. In this context, (3.1) is called the variational formulation of a
boundary value problem for u∗.

The outline of this chapter is as follows. We start by introducing the calcu-
lus of variations as the core method of this chapter and consider the general
minimisation problem in more detail. The boundary conditions of the resulting
boundary value problem are discussed in Section 3.2. Afterwards, the general
problem will be animated – a similarity measure and a regularising term are
included as the two key aspects in non-parametric registration. By linking the
registration problem to an initial boundary value problem, it can be discretised
(Section 3.4) and solved numerically (Section 3.5). In the final section of this
chapter the choice of parameters will be discussed.

3.1 Introduction into Calculus of Variations

We return to Lagrange’s method described above and present the underlying
definition and analysis. Here, we follow the introductions given by Oberle

(1998), Königsberger (2004), and Axelsson & Barker (1984).

For a proper description of the general minimisation problem (3.1), U denotes
a solution space consisting of admissible functions with boundary conditions of
‘suitable’ type,

U := {u | u ∈ C2(Ω̄, Rd), u fulfills given boundary conditions} . (3.2)

For a detailed comparison of different boundary conditions we refer to Sec-
tion 3.2. By V we denote a test space consisting of all functions which can be
written as the difference between any two admissible functions,

V := {v | v = u − û, u, û ∈ U} . (3.3)

Here, the boundary conditions follow from those chosen in U . Note that V is a
linear space by construction.

We proceed by considering a particular subset of U .

Definition 3.1 (Neighbourhood). Given a solution space U , a function û ∈ U
and ε > 0, then Bε(û) denotes the neighbourhood of û as

Bε(û) := {u | u ∈ U , ‖u − û‖L2(Ω̄) < ε} .

To keep notation simple, by a neighbourhood we also refer to a subset of a
domain, i.e. Bε(x̂) := {x | x ∈ Ω, ‖x − x̂‖2 < ε}. If a neighbourhood with
respect to either a function space or a domain is meant, will be clear from the
context.

With the general functional from (3.1) in mind, a local minimiser can be defined.



3.1. INTRODUCTION INTO CALCULUS OF VARIATIONS 37

Definition 3.2 (Local Minimiser). Given a solution space U and a functional
J : U → R, û ∈ U is said to be a local minimiser of J if a number ε > 0 exists
such that

J [û] ≤ J [u] for all u ∈ Bε(û) .

To define the necessary condition for a local minimum of J , the existence of a
directional derivative is required.

Definition 3.3 (Gâteaux Derivative). Given a solution space U , a test space
V, and a functional J : U → R, J is Gâteaux-differentiable for u ∈ U in the
direction of v ∈ V if

1. a number τ̂ > 0 exists such that uτ := u + τv ∈ U for all |τ | ≤ τ̂ , and

2. the function J(τ) := J [uτ ] is differentiable in τ = 0.

The first order Gâteaux derivative (or directional derivative or first variation)
of J for u in the direction of v is defined by

δJ [u; v] := J ′(0) =
dJ [u + τv]

dτ

∣∣∣∣
τ=0

.

Now, a stationary point can be defined.

Definition 3.4 (Stationary Point). Let a solution space U , a test space V, and
a functional J : U → R be given. Suppose that for some û ∈ U, J is Gâteaux-
differentiable for all test functions v ∈ V. Then û is said to be a stationary
point of J if

δJ [û; v] = 0 for all v ∈ V. (3.4)

A necessary condition for a minimiser can be formulated by linking a stationary
point to a local minimiser.

Theorem 3.5 (Necessary Condition for a Local Minimiser). Let a solution
space U with an admissible function û ∈ U , and a test space V be given. In
addition, let J : U → R denote a functional which is Gâteaux-differentiable for
û and all directions v ∈ V.

If û is a local minimiser of J , then û is a stationary point of J .

Proof. Can be found in, for instance, (Axelsson & Barker, 1984).

With this theorem in mind we investigate the condition for a stationary point
in more detail. To this end we specify the general functional J as

J [u] :=

∫

Ω
F [x, u(x),∇u(x)]dx (3.5)

with F : Ω̄ × R
d × R

d×d → R denoting a functional depending on x, u(x), and
∇u(x). Here and in the following, we assume J to be Gâteaux-differentiable in
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all directions of the respective test space, thus F is assumed to have continuous
partial derivatives with respect to each of its arguments.2

Before investigating the condition for a stationary point, (3.4), some notation
is introduced.

To distinguish the usual gradient3 ∇F = (∂F/∂x1, . . . , ∂F/∂xd)
T from the

gradient of F with respect to u, i.e. with respect to its second argument,

∇uF =




∂F/∂u1

...
∂F/∂ud



 ∈ R
d , (3.6)

we emphasise the dependence of the gradient by adding an index ‘u’ to the
operator. In a similar way, the gradient of F with respect to ∇u, i.e. its third
argument, is given by

∇∇uF =




∂F/∂u1,1 . . . ∂F/∂u1,d

...
...

∂F/∂ud,1 . . . ∂F/∂ud,d



 ∈ R
d×d , (3.7)

again indexed by the dependent variable. Note that ui,j is an abbreviation for
∂ui/∂xj .

The condition for a stationary point of J is given by the following lemma.
For this moment we will restrict the solution space U by prescribing a specific
boundary condition, i.e.

Ũ := {u | u ∈ C2(Ω̄, Rd), u = c on ∂Ω} .

Then, the corresponding test space is given by

Ṽ := {v | v ∈ C2(Ω̄, Rd), v = 0 on ∂Ω} .

However, in Section 3.2 the following result will be extended to the spaces U
and V. Note, that we will use

(
· , ·
)

and ∇· to denote the Euclidian scalar
product and the divergence operator, respectively.

Lemma 3.6 (Stationary Point of J ). A function u ∈ Ũ is a stationary point
of the general functional J (3.5) if

∫

Ω

(
∇uF −∇ · ∇∇uF , v

)
dx = 0 (3.8)

holds for all test functions v ∈ Ṽ.

2In fact, for a stationary point of J the differentiability of F with respect to its second
and its third argument would be sufficient.

3A consistent notation would be ∇x instead of ∇. For purpose of readability we remain
with the latter version keeping in mind that the gradient operator with no index refers to the
usual gradient with respect to the coordinates.
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Proof. Let τ ∈ R. Then, by setting the Gâteaux derivative of J for u in the
direction of v to zero, we get

0 = δJ [u; v] =
dJ [u + τv]

dτ

∣∣∣∣
τ=0

∗
=

∫

Ω

dF [x, u(x) + τv(x),∇u(x) + τ∇v(x)]

dτ

∣∣∣∣
τ=0

dx

=

∫

Ω

d∑

n=1

(
∂F

∂(un + τvn)

∂(un + τvn)

∂τ

)∣∣∣∣
τ=0

+

d∑

n,m=1

(
∂F

∂(un,xm + τvn,xm)

∂(un,xm + τvn,xm)

∂τ

)∣∣∣∣
τ=0

dx

=

∫

Ω

d∑

n=1

∂F

∂un
vn +

d∑

n,m=1

∂F

∂un,xm

vn,xmdx for all v ∈ Ṽ

(3.9)
where we employed in (∗) an interchange of differentiation and integration4

followed by application of the chain rule. By using Gauß’s Theorem as well as
the abbreviations (3.6) and (3.7) we deduce

0 =

∫

Ω

d∑

n=1

∂F

∂un
vndx −

∫

Ω

d∑

n,m=1

d

dxm

∂F

∂un,xm

vndx +

∫

∂Ω

d∑

n=1

(
∇∇unF , n

)
vndx

=

∫

Ω

(
∇uF −∇ · ∇∇uF , v

)
dx +

∫

∂Ω

d∑

n=1

(
∇∇unF , n

)
vndx

(3.10)
holding for all test functions v ∈ Ṽ. Since every test function fulfills v = 0 on
∂Ω, the boundary integral vanishes and the proof is completed.

Clearly, (3.8) can hold for an arbitrary test function only if the first factor of the
scalar product, ∇uF −∇·∇∇uF , vanishes identically. This assertion is included
in the following well-known theorem. Its proof can be found in, for instance,
(Axelsson & Barker, 1984). Here, we present a variant for d-dimensional
functions.

Theorem 3.7 (Fundamental Lemma of Variation). Let θ : Ω → R
d be a con-

tinuous function. Then
∫
Ω

(
θ , v

)
dx = 0 holds for all test functions v ∈ V if and

only if θ is identically zero on Ω.

Proof. First, we assume
∫
Ω

(
θ , v

)
dx = 0 to hold for all test functions and

establish by contradiction that θ ≡ 0.

Suppose that θn(x̂) 6= 0 for some x̂ ∈ Ω and n ∈ {1, 2, . . . , d}. Then, since θn is
continuous at x̂, there exists a neighbourhood Bε(x̂) ⊂ Ω with ε > 0, such that
θn(x) > 0 or θn(x) < 0 everywhere in Bε(x̂). Choosing a v ∈ V such that vn(x)

4See, e.g. (Forster, 1999).
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is positive within Bε(x̂) and zero outside and such that vm(x) is identically
zero for m 6= n, we can conclude

∫
Ω

(
θ , v

)
dx 6= 0 for the chosen v. This is a

contradiction to the assumption.
Setting θ ≡ 0, it follows immediately that

∫
Ω

(
θ , v

)
dx = 0 for all test functions.

In summary, u ∈ Ũ is a stationary point of the Gâteaux-differentiable functional
J from (3.5) if

∇uF −∇ · ∇∇uF = 0 on Ω . (3.11)

By applying Theorem 3.5 we end up with (3.11) as a necessary condition for a
(local) minimiser of (3.1).5 Typically, d > 1 and (3.11) constitutes a system of
(partial) differential equations, called the Euler-Lagrange equations. Together
with boundary conditions, e.g. described by Ũ , we are faced with a boundary
value problem with the minimisation problem in (3.1) called its variational
formulation (Axelsson & Barker, 1984). Before we investigate the role of
boundary conditions in the definition of the solution space, we conclude this
section with an example of a two-point boundary value problem.

Example 3.8. Let d = 1, Ω = (a, b), F = ru + 1
2(u′)2 with r ∈ C([a, b], R) and

Ũ as in Lemma 3.6. Then, the variational formulation takes the form

∫ b

a

r(x)u(x) + 1
2 (u′(x))2dx

u
−→ min

and is, by employing Lemma 3.6 and Theorem 3.7, equivalent to the two-point
boundary value problem

u′′(x) = r(x) , x ∈ (a, b) ,

u(x) = c , x ∈ {a, b} .

From the theory of ordinary differential equations it follows that this problem
has a unique solution in C2([a, b]), see (Axelsson & Barker, 1984).

3.2 Boundary Conditions

In the definition of the solution space in (3.2) we have included some ‘suitable’
boundary conditions which are to be met by every admissible function u ∈ U .
This implies that in particular every stationary point of the general functional
J satisfies these conditions.
In this section we recall explicitly given conditions and address the use of es-
sential vs. natural boundary conditions.

Two types of boundary conditions are introduced in Section 2.4, a Dirichlet
type condition and a Neumann one. Based on the two types, further conditions
such as sliding or bending ones are described in the literature (Modersitzki,
2004). These are designed for special applications and not addressed here.

5In (Oberle, 1998) a different way is proposed to achieve a necessary condition. Here,
requiring u to be once continuously differentiable is sufficient.
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If the boundary conditions are imposed explicitly on a solution space U , they are
called essential conditions. These serve as boundary conditions of the boundary
value problem and must be satisfied by an admissible function u ∈ U .
If, in contrast, boundary conditions are not given explicitly in the definition
of U , we are dealing with natural conditions. These conditions are problem-
dependent, they depend on the general functional J or, to be exact, on its
integrand F . For an illustration we recall (3.10). In its context we discussed
the circumstances under which

∫

∂Ω

d∑

n=1

(
∇∇unF , n

)
vndx = 0 (3.12)

holds when using the restricted spaces Ũ and Ṽ . However, the same equality
can be achieved when using the spaces U and V as defined in (3.2) and (3.3),
for instance with a boundary condition on a part of the boundary only or even
without any boundary condition. Following Axelsson & Barker (1984) we
extend Lemma 3.6 and formulate a necessary condition for a minimiser of J .

Lemma 3.9 (Necessary Condition). Every solution u∗ ∈ C2(Ω̄, Rd) of the gen-
eral minimisation problem (3.1) with a Gâteaux-differentiable functional J as
in (3.5) is a solution of the boundary value problem consisting of the system of
Euler-Lagrange equations

∇uF −∇ · ∇∇uF = 0 on Ω (3.13)

and boundary conditions which can be either of essential type (when incorporated
in the definition of the solution space U) or of natural type,

(
∇∇unF , n

)
= 0 on ∂Ω , n = 1, . . . , d . (3.14)

Proof. Let solution spaces

U := {u | u ∈ C2(Ω̄, Rd)} , Ũ := {u | u ∈ C2(Ω̄, Rd), u = c on ∂Ω}

and corresponding test spaces

V := {v | v ∈ C2(Ω̄, Rd)} , Ṽ := {v | v ∈ C2(Ω̄, Rd), v = 0 on ∂Ω}

be given. Let u∗ ∈ U be a solution of (3.1), thus, following Theorem 3.5, u∗ is
a stationary point of J . Let v ∈ V. Then, from the proof of Lemma 3.6 the
condition for a stationary point of J is given by

∫

Ω

(
∇uF −∇ · ∇∇uF , v

)
dx +

∫

∂Ω

d∑

n=1

(
∇∇unF , n

)
vndx = 0, (3.15)

now holding for all v ∈ V. In particular, (3.15) holds for a subspace of V,
e.g. for all v ∈ Ṽ. For this subset, however, Theorem 3.7 implies the Euler-
Lagrange equations (3.13). Inserting them into (3.15) yields (3.12) to hold for
all test functions from V. Since v ∈ V can be arbitrarily chosen, (3.14) must be
satisfied.
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The condition (3.14) is called the corresponding natural boundary condition to
the minimisation problem6 in (3.1) with J as in (3.5) and must be satisfied by
a solution of the resulting boundary value problem.

Example 3.10. We consider again Example 3.8, now with modified boundary
conditions.
Let the admissible functions fulfil an essential condition only on the left bound-
ary of Ω̄ = [a, b], i.e. Ũ := {u | u ∈ C2([a, b], Rd), u(a) = c}. Then, by
construction, Ṽ := {v | v ∈ C2([a, b], Rd), v(a) = 0}.
An inspection of the boundary term (3.12) reveals [u′(x)v(x)]ba = 0 to hold for
all v ∈ Ṽ, which is equivalent to u′(b)v(b) = 0, v ∈ Ṽ, since u′(a)v(a) = 0 follows
from the essential boundary property of Ṽ already. Lemma 3.9 gives u′(b) = 0
as the natural condition and the following boundary value problem results

u′′(x) = r(x) , x ∈ (a, b) ,

u(a) = c ,

u′(b) = 0 .

3.3 Image Registration as Variational Problem

When introducing in Section 2.3.2 the image registration problem in the context
of a non-parametric approach, a similarity measure alone yielded an ill-posed
formulation. As a consequence, a smoothness constraint (or regulariser) has
been added whose choice depends on the application specific physical properties.
Then, the minimum configuration is a joint functional consisting of two building
blocks,

J [u] = DT,R[u] + αS[u]
u

−→ min , (3.16)

with α ∈ R
+ as a positive weighting factor, recall Problem 2.7. The similar-

ity measure as the first building block depends on the images T , R and the
displacement whereas the regulariser as the second block depends on the dis-
placement only. Due to the linearity of the Gâteaux derivative, each building
block in (3.16) can be investigated independently. With the integrand F follow-
ing from the definition of D and S (cf. the following sections), Lemma 3.9 can
be applied to each building block separately. The Euler-Lagrange equations,
resulting from each application, will then be combined and finally linked to an
initial boundary value problem.

3.3.1 Similarity Measures

The most popular measure is the so-called sum of squared differences (SSD).
It compares images of the same modality pointwise. As the major drawback
it cannot be applied to images from different modalities. More powerful mea-
sures such as those based on the normalised gradient (Haber & Modersitzki,
2005), the (local) cross-correlation (Weese et al., 1999) or the mutual infor-
mation (Collignon et al., 1995; Viola & Wells, 1995) are suitable for

6The term ‘natural’ indicates that the conditions are naturally satisfied by the problem
definition.
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images from different modalities. In general, D can be chosen as any measure
provided its Gâteaux derivative exists. Here, we will employ the SSD measure
because we only deal with monomodal images.

By comparing grey-values of the reference and the transformed template image
pointwise, a measure of similarity for monomodal images is achieved.

Definition 3.11 (Sum of Squared Differences (SSD) Measure). Given two im-
ages T,R ∈ Img(Ω) and a displacement field u ∈ U , the sum of squared differ-
ences is defined as

DSSD
T,R [u] :=

1

2

∫

Ω
[R(x) − Tu(x)]2dx , (3.17)

where Tu is an abbreviation for the transformed image T (x + u(x)).

From the following lemma it can be concluded that, in the context of Defini-
tion 2.2, for the SSD measure the images are required to be once continuously
differentiable only.

Lemma 3.12 (Euler-Lagrange Equation for the SSD Measure). The system of
Euler-Lagrange equations for the SSD measure is given by

−[R(x) − Tu(x)]∇Tu(x) = 0 , x ∈ Ω . (3.18)

Proof. By straightforward application of Lemma 3.9.

Interpreting (3.18) we observe that the left-hand side shows large values when-
ever the difference between the considered image pair is large and, at the same
time, the gradient of the transformed template image is large in its modulus,
that is, if the transformed edge image possesses large values. Note that the sign
in (3.18) has not been suppressed since we are interested in the Euler-Lagrange
equations for the joint functional with (3.18) as just one building block.

3.3.2 Regularisation

The regularisation term can be understood as a penaliser of the displacement
yielding a displacement field which is, generally speaking, smooth.

We start with the simplest choice, the so-called diffusive regulariser, and con-
tinue with an approach suitable for different material properties, the so-called
elastic regulariser. For other regularisers, including fluidal- or curvature-based
approaches, we refer to, e.g. (Modersitzki, 2004).

Note that the choice of the solution space U determines the boundary condi-
tions – either explicitly (when incorporating conditions of essential type) or
implicitly (when conditions of natural type arise automatically). In this sec-
tion, no boundary conditions are included in the solution space, therefore U is
equivalent to the space C2(Ω̄, Rd).
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Diffusive Regularisation

The diffusive regulariser penalises the gradient of the displacement in order
to obtain a displacement field which is smoothed in each coordinate. It was
introduced by Fischer & Modersitzki (2002).

Definition 3.13 (Diffusive Regularisation). Given a displacement field u ∈ U ,
the diffusive regulariser is defined as

Sdiff [u] :=
1

2

∫

Ω

d∑

n=1

‖∇un(x)‖2
2dx . (3.19)

Lemma 3.14 (Euler-Lagrange Equation for the Diffusive Regulariser). The
system of Euler-Lagrange equations for the diffusive regulariser is given by

−∆u(x) = 0 , x ∈ Ω . (3.20)

Proof. Let F := 1
2

∑d
n=1 ‖∇un‖

2
2. Then we have ∇uF = 0 and ∇∇uF is equal

to the Jacobian of u. An application of Lemma 3.9 completes the proof.

The Euler-Lagrange equations (3.20) can be seen as an isotropic smoothing
of the displacement field. Assuming for a moment, u to describe a physical
property (like the particle density for instance), we are faced with the station-
ary case of the physical diffusion equation which motivates the naming of this
regulariser.

Since ∇∇unF = ∇un, the natural boundary condition to the diffusive regulariser
is given by the zero Neumann condition

(
∇u(x) , n(x)

)
= 0 , x ∈ ∂Ω . (3.21)

Clearly, the diffusive regulariser can be also equipped with essential boundary
conditions.

Elastic Regularisation

The elastic regulariser dates back to the early eighties when Broit (1981)
suggested the following definition.

Definition 3.15 (Elastic Regularisation). Given a displacement field u ∈ U
and non-negative scalars λ ∈ R

+
0 , µ ∈ R

+, the elastic regulariser is defined as

Selas
λ,µ [u] =

∫

Ω

µ

4

d∑

i,j=1

(∂xj
ui(x) + ∂xi

uj(x))2 +
λ

2
(∇ · u(x))2dx . (3.22)

This formulation is based on the linear elastic potential. It assumes an isotropic
behaviour and accounts for material properties by means of the Lamé param-
eters λ and µ. These parameters can be related to the possibly more familiar
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Young’s modulus E ∈ R
+
0 and Poisson’s ratio ν ∈ [0, 1/2[ by the relations (cf.,

e.g. (Malvern, 1969)),

E =
µ(2µ + 3λ)

µ + λ
, ν =

λ

2(µ + λ)
,

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

(3.23)

The quantity 1/E describes the relative stretch of an object in its longitudinal
direction in dependence of applied forces. It is proportional to 1/µ provided
λ = 0. The quantity ν relates the relative transversal contraction of an object
to its relative longitudinal dilation. A small value of ν corresponds to λ ≪ µ
and indicates compressibility (i.e. no volume preservation). In contrast, a value
near to 0.5 corresponds to volume preservation. In this case an object is incom-
pressible and gets thinner when being stretched. Note that the argumentation
is based on Hooke’s Law and, thus, is only valid for small displacements. For
a reflection on when a displacement can be considered as being small, we refer
to (Peckar, 1998).
A differentiation of (3.22) with respect to u leads to the widely known Navier-
Lamé equations.

Lemma 3.16 (Euler-Lagrange Equation for the Elastic Regulariser). The sys-
tem of Euler-Lagrange equations for the elastic regulariser is given by

−µ∆u(x) − (λ + µ)∇ · ∇u(x) = 0 , x ∈ Ω . (3.24)

Proof. Let F1 := µ
4

∑d
i,j=1(∂xj

ui + ∂xi
uj)

2 and let F2 := λ
2 (∇ · u)2. Then

∇∇uF1/µ is equal to the sum of the Jacobian of u and its transpose. Thus
∇ ·∇∇uF1 = µ∆u + µ∇ ·∇u. Furthermore, we have ∇ ·∇∇uF2 = λ∇ ·∇u. By
Lemma 3.9 the proposition follows.

Setting, without any physical meaning (and disregarding the assumption in
Definition 3.15), λ = −1 and µ = 1, (3.24) simplifies to the system of Euler-
Lagrange equations for the diffusive regulariser, (3.20).
The natural boundary condition is – in contrast to the diffusive regulariser –
different from the Neumann condition. A straightforward calculation yields for
n = 1, . . . , d

∇∇unF1 = µ(∇un + ∂xnu) and ∇∇unF2 = λ(∇ · u)en ,

and the natural boundary condition reads
(
µ(∇u(x) + (∇u(x))T) + λdiag(∇ · u(x)) , n(x)

)
= 0 , x ∈ ∂Ω . (3.25)

Remark. For a registration problem with Ω = (0, 1)2, (3.25) is equivalent to

(λ + 2µ)∂x1u1(x) = −λ∂x2u2(x) and ∂x2u1(x) = −∂x1u2(x)

in the case of a horizontal boundary (i.e. n1 = 1, n2 = 0) and to

(λ + 2µ)∂x2u2(x) = −λ∂x1u1(x) and ∂x2u1(x) = −∂x1u2(x)

in the case of a vertical boundary (i.e. n1 = 0, n2 = 1).
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3.3.3 Link to Boundary Value Problems

Having determined the Euler-Lagrange equations for different similarity and
regularisation terms, we collect these results and build up a joint (system of)
Euler-Lagrange equation(s). For the general functional J as in (3.16) we obtain

αLu(x) = f(u(x)) , x ∈ Ω , (3.26)

with,

1) following from the similarity measure,

f(u) : = [R − Tu]∇Tu , (3.27)

and, dependent on the choice of the regulariser,

2a) for the diffusive case

L : = −∆ , (3.28)

2b) and for the elastic case

L : = −µ∆ − (λ + µ)∇ · ∇ . (3.29)

Note that the Euler-Lagrange equation can be interpreted as an equation de-
scribing the balance between inner forces, given by the regularising term on the
left-hand side of (3.26), and outer forces, given by the similarity measure on
the right-hand side.
Adding a boundary condition

Bu(x) = 0 , x ∈ ∂Ω , (3.30)

such as

B := id (3.31)

for a Dirichlet type condition or

B := ∂/∂n (3.32)

for a Neumann type condition, (3.26) and (3.30) together form a boundary
value problem. Observing the non-linearity of (3.26) in u, we recall the argu-
mentation in Section 2.4 and end up with an initial boundary value problem
with u(0) : Ω̄ → R

d as a smooth initial function,

∂u(x, t)

∂t
= −[αLu(x, t) − f(u(x, t))] , x ∈ Ω , t ∈ R

+
0 ,

u(x, 0) = u(0)(x) , x ∈ Ω̄ ,

Bu(x, t) = 0 , x ∈ ∂Ω , t ∈ R
+
0 .

(3.33)
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The following interpretation of the differential equation is obvious when we
recall the functional J , whose Gâteaux derivative is given by

δJ [u; v] =
(
αLu − f(u) , v

)
L2(Ω)

.

Then, the differential equation can be interpreted as a gradient descent ap-
proach in order to solve the general minimisation problem (3.1).

The discretisation of the initial boundary value problem is subject of the next
section.

3.4 Discretisation

To keep the issue of interest clear we restrict the discretisation of (3.33) to the
two-dimensional case and assume the unit square (0, 1)2 as domain Ω. Nonethe-
less, the discretisation of the initial boundary value problem for any dimension
is straightforward.

For the discretisation we employ the finite difference method. As introduced
in Section 2.5, two different types of discretisation, each with grid spacing

h = (h1, h2), are considered: Firstly, an edge-point variant yielding Ωedge
h as

the discretised domain and ∂Ω
edge
h as its discretised boundary and, secondly,

a mid-point variant yielding Ωmid
h and ∂Ωmid

h . Note that the notation Ωh and
∂Ωh is used whenever a statement is valid for both types of discretisation. In
addition to the spatial grid points xi,j the time axis is discretised by grid points
{tl}l∈N0 with grid spacing k. Finally, we recall U = (U1, U2)

T as a pointwise
function with U i,j,l approximating u(xi,j , tl).

In analogy to Tu we denote the discretised transformed template image by TU

where an interpolation scheme has been employed. Depending on the type
of discretisation, discrete image values T i,j,l

U = TU (xi,j, tl) and Ri,j = R(xi,j)
can be obtained. Note that the employed backward Lagrangian approach is
preferable as pointed out in the following remark.

Remark. Following the backward Lagrangian approach involves two advan-
tages. Firstly, the backward approach assigns a unique grey-value to each po-
sition in the new image whereas by the forward approach grey-values from
different positions from the template image may be mapped onto the same po-
sition in the new image or, alternatively, no position from the template image
is mapped onto a specific position in the new image. Secondly, the backward
approach requires interpolation with respect to the grey-values from the tem-
plate image. Since the grey-values are distributed on an equidistant grid, the
interpolation is a simple task. The forward approach, however, requires inter-
polation in the new image (where the grey-values are arbitrarily distributed),
to obtain a discrete image on an equidistant grid.

To discretise (3.33), we replace its derivatives by difference quotients. Here, we
make use of discrete operators idh, Lh, and Bh referring to the identity mapping
and the operators L and B, respectively. Similarly, by fhU i,j,l a discretisation
of f(u(xi,j, tl)) is described.
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The resulting system of discrete equations can be assembled into a linear system
of equations, see Section 2.5. As a more intuitive alternative to the complex
description of the entries of the system matrix we present the stencil of Lh from
which the matrix can be easily deduced. Note that essential properties of this
system are its consistency with the initial boundary value problem and – with
regard to numerical solving – the symmetry of its matrix.
We start with the description of the discrete equations.

Lemma 3.17. Given the initial boundary value problem in (3.33) with abbre-
viations (3.27)–(3.29), (3.31), and (3.32), a discretisation with a local order of
accuracy of O(h2 + k) is given by

(idh + kαLh)U i,j,l+1 = U i,j,l + kfhU i,j,l , (i, j) ∈ Ωh , l ∈ N0 ,

U i,j,0 = u(0)(xi, yj) , (i, j) ∈ Ω̄h ,

BhU i,j,l+1 = 0 , (i, j) ∈ ∂Ωh , l ∈ N0 ,

(3.34)

where

1) fh is given by

fhU i,j,l =

(
(Ri,j − T i,j,l

U )∂a
1∂±

1 T i,j,l
U 0

0 (Ri,j − T i,j,l
U )∂a

2∂±
2 T i,j,l

U

)
, (3.35)

2a) for the diffusive case, Lh refers to the discretised operator

Lh = −

(
∂±

11 + ∂±
22 0

0 ∂±
11 + ∂±

22

)
, (3.36)

2b) for the elastic case, Lh refers to the discretised operator

Lh = −

(
(λ + 2µ)∂±

11 + µ∂±
22 (λ + µ)∂a

1∂a
2∂±

12

(λ + µ)∂a
1∂a

2∂±
12 µ∂±

11 + (λ + 2µ)∂±
22

)
(3.37)

3a) for the case of Dirichlet type boundary conditions an edge-point discreti-
sation is employed and Bh refers to

Bh = idh , (3.38)

3b) for the case of Neumann type boundary conditions a mid-point discreti-
sation is employed and Bh refers to

Bh = ∂±
n

. (3.39)

Proof. By using solely second-order difference quotients as introduced in (2.15),
(2.18), and (2.20), (1 )–(3b) can be easily deduced from (3.27)–(3.29), (3.31),
and (3.32).
An application of Lemma 2.12 yields (3.34) as a consistent discretisation of
(3.33) with a LOA of O(h2 + k).
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With the discrete equations in (3.34) a linear system of equations can be as-
sembled as shown for Example 2.22. However, a better illustration is provided
by the stencil notation given below for the discretised operator Lh.

Corollary 3.18. Given the discretised operator idh+kαLh with Lh as in (3.36)
and (3.37), its stencil notation is given by

S =








0 0 0
0 1 0
0 0 0








0 0 0
0 1 0
0 0 0








− kαSLh

with

SLh
=








0 h−2

1 0
h−2

2 −2(h−2
1 + h−2

2 ) h−2
2

0 h−2
1 0








0 h−2

1 0
h−2

2 −2(h−2
1 + h−2

2 ) h−2
2

0 h−2
1 0









for the diffusive case and

SLh
=









0 λ+2µ

h2

1

0

µ

h2

2

−2
(

λ+2µ

h2

1

+ µ

h2

2

)
µ

h2

2

0 λ+2µ

h2

1

0









λ+µ
4h1h2

0 − λ+µ
4h1h2

0 0 0

− λ+µ
4h1h2

0 λ+µ
4h1h2









λ+µ
4h1h2

0 − λ+µ
4h1h2

0 0 0

− λ+µ
4h1h2

0 λ+µ
4h1h2









0 µ

h2

1

0

λ+2µ

h2

2

−2
(

µ

h2

1

+ λ+2µ

h2

2

)
λ+2µ

h2

2

0 µ

h2

1

0









for the elastic case. Furthermore, these block stencils are block-symmetric in
the sense of Definition 2.18.

Proof. Follows immediately from Section 2.5.

Note, that without the use of averaging quotients ∂a
1 and ∂a

2 in the discretisation
of the elastic operator, we would end up with inter-grid positions.

For a numerical solution of the discretised initial boundary value problem we
employ the grid point mapping from (2.28) and assemble a system

AU(l+1) = U(l) + kF(l) , l ∈ N
0 ,

U(0) = 0 ,
(3.40)

where A is constructed from the block stencil S following (2.29) and (2.30) and
thus includes both the discrete operator idh + kαLh and the applicable bound-
ary conditions. By the corollary above we know that S is block-symmetric
and therefore, by Lemma 2.20, the corresponding block matrix A is symmet-
ric. Furthermore, the lemma shows that the symmetry is not affected by the
incorporation of the discrete boundary conditions from (3.38) or (3.39).
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In addition to the symmetry of A, its positive definiteness is ensured by The-
orem 2.21 for the diffusive case. For the elastic case, the positiveness of the
eigenvalues of A depends on the choice of α, λ, µ, and on h and k as well.
Precisely, the eigenvalues are lower bounded by 1 − kα(λ + µ)/(h1h2), thus, for
given h, α, λ, and µ, a choice of

k <
h1h2

α(λ + µ)
(3.41)

is sufficient to ensure positive definiteness for the elastic case.

3.5 Numerical Solution

Following the discretisation in the previous section, the assembled system of
equations (3.40) is to be solved for U(l+1) in each iteration step. For given
digital images Rh, Th and discretisations of the regularisation parameter α, and
– in the case of the elastic regulariser – Lamé parameters λ, µ, an algorithm
can be sketched as follows.

Algorithm 3.19.

choose U(0) and k, assemble A

for l = 0, 1, . . . do

compute force term F

solve AU(l+1) = U(l) + kF
compute transformed template image T

U(l+1)

end

We include a number of remarks which may be helpful to the reader.

• The initial displacement U(0) is usually set to the zero function unless
further a priori knowledge is given. Additional information could be given
by a pre-registration, by point- or surface-based correspondences or by
model- or statistic-based information.

• Independently of (3.41), the choice of the time step size k requires some
care. Looking at the right-hand side of the difference equation in (3.34)
we observe that for the computation of the updated displacement U(l+1),
k specifies the impact of the force term F compared to the previous dis-
placement U(l). Thus, a large value of k favours the force term and may
lead to a faster convergence to the steady state solution. However, a large
k may also lead to oscillations if the update |U(l+1) − U(l)| is too large
with respect to the distance between U(l) and the steady state solution.
In contrast, a small value of k leads to a small update yielding a slow
convergence in general.
A prediction for a suitable value of k can be obtained by estimating the
terms F and U(l). Since the images are normalised to the grey-value inter-
val [0, 1] (cf. Definition 2.3), each component of the force vector is bounded
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by 1/2h. Assuming a voxel width distance as a suitable maximum dis-
placement for the first iteration step, ‖U(1)‖∞ ≈ h is desired. Then, a
value of k = 2h2 leads to a comparable magnitude of F and U(1). Typi-
cally, ‖F‖∞ is much smaller than 1/2h and k can be increased. In some
cases it might be necessary to adjust k after the first iteration step and
to recompute this step. To this end, inspired by Modersitzki (2004),
the maximum ‖U(1)‖∞ is determined. If the maximum is larger than the
voxel width, k will be reduced. Analogously, k will be increased if the
maximum displacement is much smaller than h.
In our experiments, this procedure works well. However, since the opera-
tor id + kαL is not linear in k, an appropriate rescaling cannot be given
explicitly and a few attempts may be required to adjust k.
Having determined a suitable value for k, it will remain unchanged during
the iteration.

• Due to the independence of A of the time level, the assembly of A is needed
only once. The force term, however, depends on l and requires assembling
in each iteration step.
Both the assembly of A and F can be sped up by the use of matrix-vector
routines.

• An important task is the solution of the linear system. The size of the sys-
tem is dN and thus even a moderate two-dimensional medical image reg-
istration problem (with an image size of 2562 voxels) results in a number
of 131,072 unknowns. However, the matrix is sparse, highly structured,
symmetric, and positive definite (provided k is chosen appropriately in the
case of the elastic regulariser, cf. the previous section). If boundary con-
ditions are properly chosen, solution schemes with linear-logarithmic or
even linear complexity as developed by Fischer & Modersitzki (1999,
2002, 2004) can be employed. Nonetheless, these methods require α, λ,
and µ to be constant all over the image domain and do not apply for
variable regularisers as described in the next chapter.

• Another point worth of discussion is convergence of the registration scheme.
As a matter of fact, instead of the minimisation problem (3.16), we dis-
cretised the related initial boundary value problem (3.33). Therefore,
convergence can be evaluated in terms of determing a solution to the
boundary value problem rather than in terms of determing a solution to
the minimisation problem. To this end we discuss the choice of stopping
criteria. Note that the definition of a ‘nice’ registration result is hard to
specify in analytical terms and still a topic of discussion (Modersitzki,
2004). Nonetheless, broadly used indicators are

– the relative reduction of the similarity measure with respect to the
original images or to the previous iteration step,

– the total or the relative change of U, measured in the l2- or the l∞-
norm,

– the size of the remaining forces, measured in the l2- or the l∞-norm,
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and, as developed in this thesis,

– a test on oscillations of the similarity measure. We assume that their
occurrence corresponds to oscillations in U, which may indicate that
the local minimum of the optimisation problem is located within
the displacement fields in two subsequent iteration steps7. Then, an
oscillation in the similarity measure can be detected by evaluating

|DSSD
T,R [U(l−2)] −DSSD

T,R [U(l−1)]|

ε + |DSSD
T,R [U(l−2)] −DSSD

T,R [U(l)]|
,

where, since U(l) is defined on discrete points only, the integral in the
definition of DSSD

T,R is replaced by a sum. While a constant reduction
of the similarity measure results in a quotient of 1/2 and a zero
reduction in the last iteration step is detected by a quotient of 1,
a value much larger than 1 indicates an oscillation. We achieved
satisfactory results with a threshold of 10.

• For the computation of the transformed template image T
U(l+1) an inter-

polation is required. Here, we used a (bi-)linear scheme.

To speed up the numerical treatment, Algorithm 3.19 is embedded into a
multi-resolution approach. By using a downsampling routine with Gaussian
filters (Trottenberg et al., 2001), image pyramids

{{R0, T0}, {R1, T1}, {R2, T2}, . . . }

are generated, where {R0, T0} are equal to the original images and where the
image size in each component is halved on transition to the next (coarser) level.
Starting with Algorithm 3.19 on the coarsest level, a displacement field (on this
level) is obtained. Then, an upsampled field is used as initial displacement U(0)

on the next finer level.

In the literature (see, e.g. (Trottenberg et al., 2001)), down- or upsam-
pling routines are referred to as restriction (when transforming from fine to
coarse) or prolongation (from coarse to fine). Here, the full weighting operator
is used as restriction operator whereas a bilinear interpolation scheme serves as
prolongation operator.

In the final section of this chapter we turn our attention towards the proper
choice of the parameters α, λ, and µ. Their choice has great influence on the
registration result. Unfortunately, they are difficult to determine and their
choice is still an active field of research.

7By choosing the time step k correctly, we can assume that the update in displacement is
less than voxel width. In the case of oscillations, k could be further decreased allowing for
an even better alignment of the images. Nonetheless, the displacement would change only on
subvoxel level which makes, in our view, a further improvement redundant.
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Figure 3.1: An application of a zig-zag type function (dashed line in each of the top
row images) to the identity image results in a transformed image (depicted dashed in
each of the bottom row images) and is considered as a limit case. Different values for
α (5 · 10−5 in the left column, 5 · 10−4 centre and 5 · 10−3 in the right column) in the
registration lead to different approximations (solid lines) to the limit case.

3.6 Choice of Parameters

For both regularisers considered in Section 3.3 we are left with the choice of
the regularisation parameter α. In addition, the elastic regulariser requires the
choice of the Lamé parameters λ and µ. However, λ and µ cannot be chosen
independently of α. The three parameters can be simplified to λ̄ := αλ and
µ̄ := αµ, or, alternatively, α = 1 can be set in the case of the elastic regulariser.

Let us start with a discussion of α in the presence of the diffusive regulariser.

3.6.1 Regularisation Parameter

The regularisation parameter links the building blocks of similarity measure
and regulariser. Choosing it small (large) we expect a larger influence of the
similarity measure (regulariser) and thus a transformation being less smooth
(highly smooth). For a comparison of various choices for the regularisation
parameter, a one-dimensional example is considered.

Example 3.20. Let d = 1 and let the template image T be defined as the
identity function on the interval [0, 1]. The reference image results from the
application of a zig-zag type function on T as depicted with dashed lines in
Figure 3.1, top row. Since the problem is one-dimensional, boundary conditions
are required at the points {0, 1} only. On the left boundary a condition of
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Dirichlet type has been chosen whereas on the right boundary a condition of
Neumann type is presumed,

u(0) = 0 , u′(1) = 0 .

Then, a registration scheme build up from the SSD measure (3.17) and the
diffusive regulariser (3.19) yields an approximation of the reference image whose
smoothness depends on the choice of α. As expected, cf. Figure 3.1, bottom
row, the larger α is chosen the larger is the influence of the regulariser and the
smaller is the resulting displacement.

Remark. The effect of different amounts of regularisation as visible in the ex-
ample above reminds of the two types of linearisation introduced in Section 2.4.
Replacing the linearisation of time-marching type (2.8) by one of fixed-point
type (2.6), the effect of different amounts of regularisation cannot be achieved
in the same way. This becomes obvious by a short reformulation of (2.6); in-
dependently of the choice of the regulariser, the operator L can be written as
L =: αL̃ and (2.6) is equivalent to

L̃u(l+1)(x) = 1
α
f(u(l)(x)) , x ∈ Ω , l ∈ N0 . (3.42)

Then, a choice of α < 1 may result in an update |u(l+1)−u(l)| whose maximum is
much larger than voxel width distance. However, bounding the update to voxel
width distance has the same effect as a larger choice of α and, therefore, small
values of α do not lead to different solutions of (3.42) when using a linearisation
of fixed-point type. Choosing α > 1, however, may cause a very small update
demanding for a much higher number of iterations compared to the linearisation
of time-marching type.

In Example 3.20 the choice of α has been linked to the smoothness of the result-
ing displacement. Alternatively, the regularisation parameter can be considered
as a parameter controlling the capture range of a (peak) force.

Example 3.21. Let a template image be given with two non-zero pixels in
its centre. Let the reference image consist of the same pixels but shifted by
one pixel width in vertical direction. Then, solving this problem with the SSD
measure, the diffusive regulariser and boundary conditions of Dirichlet type, we
observe a peak force. The larger α, the more this peak force is smoothed and
the larger the capture range of the pixel shift, cf. Figure 3.2.

Having discussed the regularisation parameter in the examples above, its effect
seems to be well understood: A large amount of regularisation results in a
displacement which acts on a large region but with small amplitude. In contrast,
a small amount of regularisation returns a displacement which is restricted to
a small region but may show a larger amplitude. However, a proper choice of
α is still a challenging task as the following example reveals.

Example 3.22. Given an image pair (cf. Figure 3.3, top left, for the template
image) we assume a regularisation parameter α∗ to be optimal from the view of
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Figure 3.2: Visualised displacement field determined by solving a registration problem
(see text) resulting in a peak force in the centre of the image. α has been chosen as 0.08,
0.4, and 2 (from left to right). In the upper row the displacement field is visualised by
plotting ‖u(x)‖2 of each displacement vector u(x), in the lower row u is applied to a
Cartesian grid (the original grid is underlayed in light grey).

an application, and a time step size k∗ chosen accordingly to Section 3.5. Note
that, following Definition 2.2, the grey-values of the images are normalised to
the interval [0, 1] before employing the registration algorithm.
Furthermore, we assume the same image pair given again, but now with a
simulated metal artefact in the upper left corner of the template image of, say,
maximum grey-value 2. Normalising this image according to Definition 2.2
results in an image where the grey-values of the non-artefact structures are of
half value than before, cf. Figure 3.3, top right. For the non-artefact structures
both the difference R − Tu and the gradient ∇Tu is halved and, therefore,
when using for instance the SSD measure, their contribution to the force term
f(u(x)) = [R(x) − Tu(x)]∇Tu(x) is reduced to 25%, i.e. fmetal = 0.25forig.
Consequently, when employing the registration algorithm, the resulting dis-
placement field for the image pair including an artefact differs from that for the
original image pair as shown in Figure 3.3, bottom left and centre.
A short inspection of the discretised initial boundary value problem (3.34) re-
veals the difference equation

(idh + k∗α∗Lh)U i,j,l+1 = U i,j,l + k∗forig
h U i,j,l

to be equivalent with

(idh + kmetalαmetalLh)U i,j,l+1 = U i,j,l + kmetalfmetal
h U i,j,l
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Figure 3.3: In the upper row the template image is shown, once original (left), once
with a pseudo metal artefact in its upper left corner (right). Below, the resulting
displacement fields are shown by colour-coding the l2-norm of each displacement vectors
(dark grey corresponds to small vectors, light grey to large ones; for better visualisation
contour lines have been added): On the left for the original image, in the centre for
the image with a metal artefact, and on the right again for the metal artefact image
but now with a corrected value of α. See text for further explanations.

provided αmetal = 0.25α∗ and kmetal = 4k∗. Then, employing the registration
algorithm again for the metal images, we receive a displacement field (cf. Fig-
ure 3.3, bottom right) which is the same as for the original image pair but now
with a regularisation parameter being reduced to one fourth. Note that the
relation linking kmetal to k∗ causes a lower number of iterations only and does
not change the regularity of the displacement field.

Thus, in the presence of image artefacts or noise, different choices of α may
be essential in order to obtain a registration result showing the same degree of
smoothness than for the original image pair.
This observation can be extended to applications where the displacement of a
particular region of an image is of interest. Here, the choice of the regularisation
parameter may be a difficult task since its value may highly depend on the
content of the whole image. This agrees to the observation in the literature
that a fully automatic choice of α is still a challenging problem (Modersitzki,
2004) and may require further a-priori information.

3.6.2 Lamé Parameters

The elastic regulariser includes two additional parameters to discuss, the Lamé
parameters λ and µ. However, as argued at the beginning of Section 3.6, due to
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the dependence of α and the Lamé parameters on each other, the regularisation
weight can be ignored, i.e. α = 1. We investigate the Euler-Lagrange equation
for the elastic case and combine it with that for some similarity measure,

−(µ∆ + (λ + µ)∇ · ∇)u = f(u),

which can be transformed into

−
(
∆ +

(
λ
µ

+ 1
)
∇ · ∇

)
u = 1

µ
f(u).

Recalling Section 3.3.2 we make use of the more intuitive parameters E and ν
describing Young’s modulus and Poisson’s ratio, respectively, and substitute λ
and µ by relations from (3.23),

−
(
∆ + 1

1−2ν
∇ · ∇

)
u = 2(1+ν)

E
f(u) . (3.43)

We observe that E appears on the right-hand side only. Moreover, E may be
seen as a scaling of the force term f . This scaling coefficient is little domi-
nated by ν, since its physically meaningful value is within the interval [0, 0.5[
and, therefore, the scaling coefficient is in the range [2/E, 3/E[. In contrast,
ν takes a dominant role on the left-hand side of (3.43). Here, it controls the
weighting of the Laplacian term vs. the divergence term. While the Laplacian
acts separately on each component, the divergence term causes the coupling of
components due to its mixed derivative terms. This coupling effect is the more
dominant, the larger ν is chosen and ranges from being equal to the Lapla-
cian influence in the case of ν = 0 to its exclusive preference if ν is close to
0.5. Consequently, ν ∈ [0, 0.5[ controls the coupling of the components of the
displacement field. In terms of the Lamé parameters, this range corresponds
to λ chosen from the interval [0,∞[. We illustrate this effect in the following
example.

Example 3.23. We consider an image with a square in its centre. Instead of
the force term resulting from a similarity measure we employ again artificial
forces. They are located on the right and on the left of the square in order
to pull it apart. Then, solving (3.40) with A originating from the elastic reg-
ulariser and boundary conditions of Neumann type, we model the expansion
of an elastic bar with different material properties, cf. Figure 3.4. For all runs
µ = 1 is chosen fixed whereas λ varies.
Employing a value λ = 0 (corresponding to ν = 0), a displacement field results
which shows a small amount of transversal movement (relatively to the longi-
tudinal movement) caused by coupling effects, cf. Figure 3.4, centre column.
Increasing λ enlarges this effect: When applying the same stretching forces to
the bar, it gets more thinned the larger λ is chosen, cf. the right column for a
value λ = 103 (corresponding to ν = 0.4995). For comparison we disregard the
assumption λ ≥ 0 from Definition 3.15 for the last case and choose λ = −µ (cor-
responding to ν = −∞), cf. the left column of Figure 3.4. Here, the coupling
effect has been switched off and the bar does not get thinned at all when being
stretched. This case displays the reaction of the diffusive regulariser (since the
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Figure 3.4: Results for the stretching of an elastic square with different material prop-
erties are depicted in the upper row. Below, the same displacement field is applied to
a Cartesian grid. For better comparison, the original non-deformed grid is underlayed
in light grey. In all cases µ = 1 is chosen. The centre and the right column refer to
values of λ = 0 and λ = 103 (corresponding to ν = 0 and ν = 0.4995), respectively,
whereas the left column originates from the not physically meaningful choice of λ = −µ
(corresponding to ν = −∞).

Euler-Lagrange equation for the elastic regulariser reduces to the one for the
diffusive regulariser if λ = −µ).
Summarising, a horizontal stretching of an elastic bar leads to a relative transver-
sal movement whose amount becomes larger the larger λ (or ν) is chosen. For
the different cases, this transversal movement appears in Figure 3.4, bottom
row, as displacement of the horizontal lines in the Cartesian grid with regard
to the original grid. In the (non-physical) case of λ = −µ (or ν = −∞) the
transversal movement has vanished at all.

Remark. In Chapter 6, a large value of λ compared to µ will be used to achieve
results which show volume preservation. This is motivated by the physical inter-
pretation of incompressibility corresponding to a large value of λ/µ. However,
in the example above, the volume is not preserved even in the case of λ = 103,
moreover, the deformed square object is by 19% larger than the original square.
The reason of this behaviour can be traced back to the underlying Hooke’s Law
which is valid only for small displacements. Clearly, an enlargement to a size
more than double cannot be interpreted as a ‘small’ displacement (cf. (Peckar,
1998)) and the assumption of Hooke’s Law is violated.
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As a consequence of using λ (resp. ν) as the control parameter of the relative
transversal movement we do not agree with authors (e.g. (Bajcsy & Kovačič,
1989; Modersitzki, 2004)) who suggested to set λ = 0 in all cases for prac-
tical reasons. Such a choice cannot distinguish between different amounts of
transversal movement as they occur with different types of soft tissues.

We are left with the question of how to choose the Lamé parameters for a
specific application. Hagemann (2001) reported on a literature study compar-
ing values for brain tissue and for skull bone. Although, for the same type of
anatomical structure the values differ a lot, a better correlation was observed
when comparing the quotients λbrain/µbrain and λskull/µskull for brain tissue and
skull bone, respectively. These ratios prescribe the amount of elasticity in a rel-
ative way rather than in an absolute one. This mirrors nicely the fact that the
grey-value scale of the images (and thus the scale of f) can be arbitrarily cho-
sen. Nevertheless, the ratios may serve as orientation only: To reflect different
applications such as brain registration in an inter-subject or intra-subject con-
text, possibly even with a brain shift involved, an adaption of the ratios seems
to be reasonable.

However, different amounts of elasticity cannot be mixed in a single application
since the Lamé parameters are constant in the entire domain. The following
chapter extends the registration scheme described so far and allows to provide
image structures such as bone or soft tissue structures with individual elastic
properties.
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4 Variable Regularisation

This chapter extends the regularisation approach described so far in two di-
rections: It introduces the concept of material variability and prepares for
topological changes. Starting from a motivation, Section 4.2 describes how
to incorporate variability into the regularisation framework. By the use of the
variable diffusive or the variable elastic regulariser from Section 4.3 it is possible
to force a specific material behaviour in specified image regions. Furthermore,
these regions may displace independent of each other but without resulting in
non-physical solutions such as an overlap or swap of regions. Linked to an initial
boundary value problem, discretisation and numerical treatments are presented
in Section 4.4 and 4.5 respectively. The chapter is concluded by a discussion of
the choice of parameters.

4.1 Motivation

The need for variability in the regularisation and the material properties can be
best seen by considering a synthetic example. Let the template image consists
of two objects next to each other as shown in Figure 4.1, left. Both objects
are pulled at their top. For the left one we assume a stretching in the force
direction, simulating the deformation of a soft-tissue object being pulled. The
right object represents a bone structure, thus – under the same pulling force
– it moves slightly in direction of the acting force but preserves its shape. In
addition, the reference image possesses an artefact which is located near to the
top of the right object, cf. Figure 4.1, centre left. This artefact will help us to
study the effect of additional properties in the registration framework.

For a registration of the described image pair we choose the SSD measure and
the elastic regulariser with Lamé parameters λ = 2 and µ = 4. We use Neu-
mann boundary conditions and set the regularisation parameter to α = 1/32.
The result, shown in Figure 4.1, centre right1, reveals a failure of registration.

1For purpose of visualisation, the transformed template image is generated in such a way
that after registration the displacement is applied to a modified template image where both
objects are underlayed with a chequerboard pattern.

61
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Figure 4.1: Template and reference image are shown on the left, two registration results
are shown on the right. Centre right the result for a constant choice of parameters is
depicted, beside µ = 4000 is chosen for the right object. For visualisation purpose,
the template image is underlayed with a chequerboard pattern retrospectively of the
registration.

In particular the right object, representing bone structure, is misaligned and de-
formed. A closer inspection of this object shows the reason: Although its shape
coincides in both given images, the registration tries to optimise the overall
similarity (besides the regularisation). Thus, a straightening of the right ob-
ject similar to that of the left one reduces the distance between reference and
transformed image but does not change the penalisation by the regulariser sig-
nificantly. From the view of the minimiser, an expansion of both objects is
therefore preferred.

By attaching material properties to the objects, further knowledge can be
added. For the Lamé parameters of the right object dedicated values are speci-
fied (here µ = 4000) whereas the other parameters as well as µ in the rest of the
image remain unchanged. Now, the algorithm is not only intensity-based but
knowledge-based as well. A registration results in a displacement being more
intuitively satisfying than before (Figure 4.1, right). Due to the prescribed
rigidity (modelled by µ, cf. Section 3.3.2 for a discussion of the Lamé param-
eters), the regulariser has a greater influence locally compared to the distance
measure and the right object preserves its shape. Furthermore, an upward
movement yielding an improved similarity of the grey-values with respect to
the artefact does not arise, since at the same time this would reduce similarity
of the grey-values in the lower part of the object.

However, in both experiments it is remarkable that the displacements of the two
objects depend on each other: While in the first experiment the right object is
stretched more on its left size, in the second experiment the left object appears
as being clipped to the right one. Consequently, the displacement of one object
depends on that of the other one – regardless of the use of individual material
properties.

To investigate this observation in greater detail, we consider a second illustrative
example. Again, the images consist of two objects, this time identical in shape
but separated from each other by a gap of variable size, cf. Figure 4.2, left
column. The size of the gap is assumed to be small in the template image and
large in the reference image.

For the registration the same setting as for the first experiment is used. The
result indicates two effects, cf. Figure 4.2, second column. Firstly, the size of
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Figure 4.2: For a given image pair (top left for the template image and bottom left for
the reference one) and a regularisation parameter of α = 1/32, α = 1/4, and α = 1/128
(second to last column) various registration results can be obtained. In the bottom
row the transformed template is depicted, for better visualisation in the top row the
displacement field on a coarsed grid is added.

the gap is enlarged, but by far not as much as required by the reference image.
Furthermore, the contours of the objects along the gap get blurred due to the
regularisation of the displacement field. Secondly, both objects get thinned in
the neighbourhood of the gap. This is caused by the use of an elastic model
having no knowledge of the image structure and thus considering the whole
image as a single elastic block which gets thinned when stretching it (cf. the
displacement field in Figure 4.2, top centre left).

For an improved registration result one could choose a larger value for α, for
instance α = 1/4 as in Figure 4.2, third column. Then, the shape of the objects
is better preserved, but the larger α is, the more the gap remains in its template
position. In contrast, one could choose a smaller value, leading to a correct gap
in the reference image, cf. Figure 4.2, right column, for α = 1/128. However,
the regulariser is now weakened over the entire image domain. Deformations
may occur in regions other than wanted and image noise will start to influence
the result.

As a better choice we suggest a combination of both effects. By defining a small
value of α in the gap region and a large one within the objects we expect the
gap to become larger and the objects to displace uniformly.

Therefore, instead of a globally uniform regularisation, a spatially dependent
regularisation is the essential prerequisite for the registration of a material-
dependent problem. In particular, only regions with a gap that is expected
to become larger or smaller, need a local reduction of smoothness whereas all
other regions shall be regularised according to the chosen physical model.
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Figure 4.3: Artificial 1D image T (left) which can be transformed into R (centre left)
using an ideal mapping x + u(x) (centre right) with the displacement u (right).

4.2 Variable Influence of Regularisation

To obtain a spatially dependent regularisation, we replace the constant weight-
ing factor α by a continuously differentiable weighting function α : Ω → R

+.
First of all it is not clear, if a specific choice of the weighting function can en-
force a particular behaviour of the solution as required in a material-dependent
problem. Then, one has to detect the cases where a specific choice shall ap-
ply. Since this decision cannot simply be deduced from the grey-values, further
knowledge is required.
Note that our interest lies in determing a minimiser of the general minimisation
problem introduced in (3.1). Its existence and uniqueness are important issues
and need investigation. However, their proof is outside the scope of this thesis
and we remain with an investigation of the necessary condition for a minimiser.

4.2.1 Choice of the Weighting Function

Having replaced the weighting factor α by a weighting function α(x), we are
concerned with the choice of α(x). Our purpose is twofold.
Firstly, we wish to model a gap becoming larger as seen in the synthetic example
in Figure 4.2. Here, we observed how a pulling force on the upper object yielded
an enlargement of the gap between the objects. The second case is vice versa.
Given two objects with a large gap between them, we wish to model a shrinking
gap by applying a pushing force on the upper object. Therefore the question is,
how to choose α in order to force the displacement field to exhibit a particular
behaviour. To this end, the analytical solution of a one-dimensional variational
model will be inspected. Afterwards, we will construct sequences for α and u
which converge to limit functions showing the desired behaviour.
Let us note, that our aim is not to propose a one-dimensional registration
method based on an analytical solution. Instead we are aiming at bringing
forward insights from the analytical inspection of different weighting functions
towards a generalised variational approach.

Given the one-dimensional registration problem as shown in Figure 4.3, left and
centre left, the material objects from the two-dimensional problem correspond
to the three intervals {(a, γT ), (γT , δT

l ), (δT
r , b)} and {(a, γR

l ), (γR
r , δR), (δR, b)}

in the template and the reference image, respectively. An ideal solution to this
problem is given by the mapping depicted in Figure 4.3, centre right. Applying
this mapping to the template image results in the reference image. Here, the
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constant function value in the interval (γR
l , γR

r ) is responsible for enlarging a gap
and the approximated step in the function values around δR causes a shrinkage
of a gap. By disregarding the trivial part of that mapping we are left with
the displacement function u itself, shown in Figure 4.3, right. Here, the ramp
corresponds to the enlarging gap and the approximated step to the shrinking
gap.

We modify the diffusive regulariser from Section 3.3.2 by incorporating a weight-
ing function2. From a straightforward application of variational calculus (cf. Sec-
tion 3.1) we know that minimising the sum of the SSD measure and the modified
regulariser, ∫ b

a

[R(x) − Tu(x)]2dx +

∫ b

a

α(x)[u′(x)]2dx , (4.1)

supplemented by boundary conditions of, for instance, Dirichlet-type, leads to
the boundary value problem

[
α(x)u′(x)

]′
= −[R(x) − Tu(x)]T ′

u(x) , x ∈ (a, b) ,

u(a) = ua ,

u(b) = ub .

(4.2)

To investigate the relation between α and u, an analytical solution of (4.2) is
of great utility. However, (4.2) is nonlinear in u and in general the solution of
this nonlinear differential equation cannot be given explicitly. Alternatively, we
consider a registration depending on the inner forces only (i.e.

∫
[R − Tu]2dx is

assumed to be constant) and set the right-hand side to zero which corresponds
to the diffusion equation in the stationary case. For this reduced form an
analytical solution is available,

u(x) = ua +
ub − ua∫ b

a
1

α(t)dt

∫ x

a

1

α(t)
dt . (4.3)

Recalling our purpose for the choice of α let us consider the case of an enlarging
gap and that of a shrinking gap. To this end we will construct sequences of
weighting functions whose limit functions represent these cases.
Let (ατ )τ∈N denote a sequence of weighting functions and let (uτ )τ∈N be the
sequence of solutions determined by (4.3) when substituting α by ατ .

We start with the case of a shrinking gap. Here, a weighting function is searched
in order to let two intervals with a gap between them move together (as the
centre and the right interval in Figure 4.3). Placing forces pushing the intervals
together corresponds to boundary conditions with ua < ub . Now, ατ is searched
such that uτ converges to a step function as τ → ∞. Note that the variational
model aims at minimising the integral sum in (4.1). Thus a candidate function
û with a high value of û′ at any position is more penalised than a function
whose gradient is small everywhere. Consequently, û will be less preferred in
terms of a solution to the minimisation of (4.1). A sequence uτ , which exhibits

2Since the value of the weighting function depends on x, it has to be included in the
integrand.
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Figure 4.4: Relation between weighting functions α (top row), displacement functions
u according to (4.3), (centre row), and transformed template images (bottom row) for
the ramp case (left) and the step case (right). For better comparison in the bottom
row the original template image is added in light grey.

a discontinuity at some position in its limit case, shows an increasing gradient
and, therefore, requires a small weighting at the same position in order to
be likely a minimum solution to (4.1). Apart from that position, a differing
weighting is not required. From Figure 4.4, top and centre right, we observe
this property for a Dirac-shaped weighting function,

ατ (x) =
1

1 + c1τ exp(−τx2)
.

Applying uτ to a subset of the template image from Figure 4.3 yields a shrinking
of the gap interval [δT

l , δT
r ] as shown in Figure 4.4, bottom right.

The second case concerns the enlargement of a gap. We assume a pulling force
on the right interval from which we deduce boundary conditions with ua > ub.
Choosing a cup-shaped weighting function as for instance

ατ (x) =
1

1 + c2 exp(−x2τ )
,

we obtain a displacement which is in the limit τ → ∞ linear within the cup
and exhibits a kink at each side. For τ → ∞ the desired ramp function is
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obtained (Figure 4.4, top and centre left). When applied to a subset of the
same template image than before, we receive an enlargement of the gap around
γT , see Figure 4.4, bottom left.

We are thus able to choose a specific weighting function such that u according
to (4.2) displays the desired behaviour. It remains to be determined, in which
cases u shall be forced to display one of these behaviours. Further knowledge
is required and given by a segmentation.

4.2.2 Segmentation

Here, the aim is to compute a meaningful segmentation of an image, that is, a
decomposition of the doimain of the image into regions.
Recalling the motivation of an image in Section 2.1, it is considered as an expo-
sure from a scene. In general, different objects in the exposure can be identified.
These are either obviously separated from each other (like two ferries on the
sea), or appear as side-by-side (like a vertebra and an adjacent intervertebral
disc in a human body). However, in both cases the objects can be clearly sepa-
rated from each other and their positions can be collected in various connected
sets as for instance for the medical example,

Ω1 := {x ∈ Ω | x belongs to the vertebra} ,

Ω2 := {x ∈ Ω | x belongs to the intervertebral disc} .

We assume that these sets are open and, moreover, represent disjoint sets.
When taking their closures they have a non-zero intersection (since we assumed
the vertebra and the intervertebral disc being adjacent to each other) belonging
to neither of them. We include this assumption in the following definition.

Definition 4.1 (Decomposition). A decomposition of a domain Ω is given by
a set

M(Ω) = {Ω0,Ω1, . . . ,Ωm}

such that

1. each region Ωi ⊂ Ω, i = 0, . . . ,m, is an open set,

2. any two regions are disjoint, and

3. the union of the closed regions covers Ω̄, i.e. Ω̄ = ∪m
i=0Ω̄

i.

In addition, for i = 1, . . . ,m, each set Ωi is assumed to be connected.
Furthermore, by Γi,j we denote the common boundary of two regions Ωi, Ωj,

Γi,j := Ω̄i ∩ Ω̄j .

Note that Ω0 is in general not connected and does serve as the background of
an image for our application.
Care has to be taken with respect to a decomposition of the interpolated image.
For instance, in the medical example, the gap between vertebra and interverte-
bral disc may not be visible after the acquisition process, and, therefore, just as
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Figure 4.5: Example for an image showing two distinct regions separated by a gap of
zero grey-value (left). On the right, a sampling routine has been performed, followed
by a linear interpolation of the discrete set of grey-values which results in a vanishing
gap. Note that the gap size is chosen smaller than the spacing of the sampling points.

little can it be recognised in the interpolated image, cf. Figure 4.5. To ensure
its existence at least in the transformed differentiable image, further a-priori
knowledge is required. This topic will be addressed in Chapter 5.

In the remaining part of this section two common approaches for segmentation
are described which will be frequently used in Chapter 6.

Trivial Case

For the case of the one-dimensional problem from Figure 4.3 a segmentation is
trivial and consists of a labelling of the known intervals. Thus, for instance for
the image T with Ω = (a, b) we have

Ω1 = (a, γT ) , Ω2 = (γT , δT
l ) , Ω3 = (δT

r , b) , and Ω0 = (δT
l , δT

r ) .

Active Contour Approach

Following (Xu & Prince, 1998) we implemented an active contour approach
which is also known as ‘snake approach’. Although, the scheme is applicable
to both two- and three-dimensional problems, we describe the two-dimensional
case only.

Starting from an initial contour p0 : [0, 1] → R
2, a displaced contour p is

searched such that it is smooth and aligns with the gradient of the underlying
image. To this end, a minimisation problem is formulated,

∫ 1

0
β1(p

′(x))2 + β2(p
′′(x))2 + Eext(p(x))dx

p
−→ min , (4.4)

where the first two terms of the integral refer to the smoothness (weighted by
coefficients β1, β2 ∈ R

+) of the contour and the last term acts as a driving
force. Similarly to the the minimisation of the joint functional (3.16), a min-
imum solution may be interpreted as a balance between inner forces (i.e., the
smoothness) and outer forces (i.e., the driving force).

Having obtained a minimum of (4.4), the displaced contour is usually well
aligned to an image structure. By applying, for instance, a region growing
scheme afterwards, a region Ωz can be labelled, and, gradually, a decomposition
of Ω (i.e., a segmentation of the image defined on Ω) can be obtained. For
various examples we refer to Chapter 6.
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Note that the approach has its drawback in prescribing the same smoothness
everywhere on the contour. In many applications, for instance the segmentation
of bone structures, parts of the contour are expected to show either a larger
curvature (e.g. around the head of a bone) whereas other parts require a small
curvature (e.g. along the shaft). Then, a constant choice of the coefficients β1

and β2 may turn out to be inappropriate and, consequently, the approach may
benefit from a variable weighting of (p′)2 and (p′′)2 in conjunction with an initial
setting according to the expected curvature. Such an extension requires weight-
ing functions and is described, e.g., by Xu (1999) or Terzopoulos (2003).

4.3 Variable Regularisation

In contrast to a regularisation from Chapter 3, a variable regulariser exerts
a spatially variable influence on the minimisation functional. By a variable
influence in particular the regularisation function α is addressed. Moreover,
spatially varying Lamé parameters are needed to support the registration of
material-dependent problems.
Note that in the previous section the non-linearity of the boundary value prob-
lem (4.2) has been disregarded. Instead, linearity in u has been assumed and u
could be explicitely stated in terms of α. However, in general we are faced with
a non-linear boundary value problem solved by an iterative scheme, cf. Sec-
tion 2.4. Here, each time level may require a dedicated weighting function
which can be easily seen when taking the zero time level and the final time
level: In the first case, α can be deduced from the template image T , in the
latter case from the reference image R. Consequently, for an iterative treatment
of a non-linear problem, α has to evolve along with u and we have to consider
α(x, u) instead of α(x). The same argument applies to the Lamé parameters λ
and µ. In analogy to the notation for the transformed template image we use
the abbreviation αu := α(x + u(x)) for each of the three parameters.

Remark. Since in a backward Lagrangian approach a position x in the coor-
dinate frame of the reference image is mapped to a position x + u(x) in the
template frame, the values αu, λu and µu are to be evaluated with respect to a
segmentation of the template image.
Taking instead the values α, λ, and µ together with a segmentation of the refer-
ence image, may look like an appropriate alternative. However, it fails in cases of
large segmented overlap regions (for an example, see Figure 6.3). Such regions
can be detected by a segmentation of both images, yielding decompositions
Ω0

T ,Ω1
T , . . . ,Ωm

T and Ω0
R,Ω1

R, . . . ,Ωm
R for the template and the reference image,

respectively. Then, an overlap of two different regions is given by Ωi
T ∩Ωj

R with
i 6= j. Nethertheless, in the special case an image pair has no non-zero overlap
regions, a choice of the values α, λ, and µ on the basis of a segmentation of the
reference image can serve as an appropriate alternative. In general, non-zero
overlap regions occur (at least with some background region of an image as Ωi

T

or Ωj
R) and the decomposition {Ωj

R}j in a backward Lagrangian approach leads
to an incorrect description of material properties. Thus, with a general appli-
cability in mind we skip the case of choosing α, λ, and µ from a segmentation
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of the reference image and remain at a segmentation of the template image in
conjunction with transformed values αu, λu, µu.

4.3.1 Variable Diffusive Regularisation

On the basis of the diffusive regulariser from Section 3.3.2 we define the so-called
variable diffusive regulariser .

Definition 4.2 (Variable Diffusive Regularisation). Given a displacement field
u ∈ U and a weighting function α ∈ C1(Ω̄, R+), the variable diffusive regulariser
is defined as

Svardiff
α [u] :=

1

2

∫

Ω
αu(x)

d∑

n=1

‖∇un(x)‖2
2dx .

The differentiability requirement with respect to α is obvious by the following
lemma.

Lemma 4.3 (Euler-Lagrange Equation for the Variable Diffusive Regulariser).

The system of Euler-Lagrange equations of Svardiff
α −→ min is given by

1

2
∇αu(x)

d∑

n=1

‖∇un(x)‖2
2 −∇ · (αu(x)∇u(x)) = 0 , x ∈ Ω . (4.5)

Proof. Let F := 1
2αu

∑d
n=1 ‖∇un‖

2
2. Then we have ∇uF = 1

2∇αu

∑d
n=1 ‖∇un‖

2
2

and ∇·∇∇uF = ∇· (αu∇u). An application of Lemma 3.9 completes the proof.

Investigating (4.5) we recognise the divergence term from the Euler-Lagrange
equation in the diffusive case, (3.20). The action of the first term in (4.5) is,
however, less obvious.
To better understand its contribution we combine the SSD measure (3.17) firstly
with the diffusive regulariser (3.19), and secondly with the variable diffusive
regulariser. In both cases the resulting initial boundary value problem in its
one-dimensional form can be formulated as

∂u(x, t)

∂t
= −[−(αuu′(x, t))′ + [R − Tu]T ′

u︸ ︷︷ ︸
−f(u(x,t))

− 1
2α′

u(u′(x, t))2
︸ ︷︷ ︸

g(u(x,t))

]

= (αuu′(x, t))′ + f(u(x, t)) + g(u(x, t)) , x ∈ Ω , t ∈ R
+
0 ,

(4.6)

where g = 0 in the first case.
For purpose of illustration, we consider an image pair as depicted in Figure 4.6,
left. In the first case α is chosen constant, in the second case the weighting
function α has been chosen in accordance to Section 4.2: In the interval [−1, 1],
α(x) is chosen small compared to the rest of the image. From a registration of
the template onto the reference image we expect a shift of the position 1 to the
right leading to an enlargement of the centre interval [−1, 1].
We start with the first case, i.e. g = 0. If u is constant or even zero, the
dominating term in (4.6) is f which is depicted in Figure 4.6, top right, for



4.3. VARIABLE REGULARISATION 71

−1 1
0

1

2

−1 1
0

1

2

−1 1

−1 1

Figure 4.6: For an image pair consisting of template (top left) and reference image
(bottom left) the force term resulting from the SSD measure is depicted (top right)
together with the spatial derivative of an appropriate weighting function α (bottom
right), see text for further details.

u = 0. The peak force results from the grey-value difference in the image
pair and from the gradient in the template image. Note that the sign of this
force depends on the signs of R − Tu and T ′

u. Then, a positive f leads to
an increment in u and – due to the backward Lagrangian approach – to a
transformed template image showing the expected shift to the right.
Now, we investigate the second case with a variable diffusive regulariser. In
analogy to f we will interpret g as an additional force acting on u. First of all,
we notice that in contrast to f , g is non-zero only if u′ 6= 0 (i.e. a displacement
has to taken place already). Consequently, in Figure 4.6, bottom right, α′ is
depicted instead of g. However, g differs from α′ only in magnitude since its
sign depends only on α′ and not on u′. Assuming u′ 6= 0, the action of the
additional force can be described as follows, cf. (4.6): A positive value of α′,
and thus of g, yields a local increase in u whereas a negative value yields a
local decrease in u. With respect to the considered image pair we conclude an
increased shift to the right around the position x = 1 and a possible shift to
the left close to the position x = −1.
This agrees well with the view of the minimiser: An enlargement of a region
with a decreased α offers a better adaption in terms of the similarity measure,
with no significant penalisation by the regularising term at the same time, and
is therefore preferred.

Remark. For the interested reader we note a connection of g to a similar
term arising in the context of level-set problems. Aubert & Kornprobst

(2002) investigated an initial boundary value problem ∂u/∂t = α′(x)u′(x) with
a so-called transport term on its right-hand side. For an evolution in time a
behaviour as described above can be observed.
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We conclude the investigation of the variable diffusive regulariser with the nat-
ural boundary condition which is similar to the one for the diffusive regulariser,

αu(x)
(
∇u(x) , n(x)

)
= 0 , x ∈ ∂Ω .

By setting α constant, the condition simplifies to (3.21).

4.3.2 Variable Elastic Regularisation

The elastic regulariser from Section 3.3.2 equipped with spatially varying pa-
rameters yields the so-called variable elastic regulariser . Likewise to α in the
variable diffusive regulariser, to determine the Euler-Lagrange equation we need
the Lamé parameters to be continuously differentiable.

Definition 4.4 (Variable Elastic Regularisation). Given a displacement field
u ∈ U , a weighting function α ∈ C1(Ω̄, R+) as well as material functions
λ ∈ C1(Ω̄, R+

0 ), µ ∈ C1(Ω̄, R+), the variable elastic regulariser is defined as

Svarelas
α,λ,µ [u] =

∫

Ω
αu(x)

(
µu(x)

4

d∑

i,j=1

(∂xj
ui(x) + ∂xi

uj(x))2 + λu(x)
2 (∇ · u(x))2

)
dx .

Lemma 4.5 (Euler-Lagrange Equation for the Variable Elastic Regulariser).
The system of Euler-Lagrange equations of Svarelas

α,λ,µ −→ min is given by

1
4∇[αuµu](x)

d∑

i,j=1

(∂xj
ui(x) + ∂xi

uj(x))2 + 1
2∇[αuλu](x)(∇ · u(x))2

−∇ · [αuµu(∇u + (∇u)T)](x) −∇[αuλu∇ · u](x) = 0 , x ∈ Ω . (4.7)

Proof. Let F1 := αuµu

4

∑d
i,j=1(∂xj

ui + ∂xi
uj)

2 and let F2 := αuλu

2 (∇ · u)2. Then

∇uF1 = 1
4∇[αuµu]

d∑

i,j=1

(∂xj
ui + ∂xi

uj)
2

and

∇ · ∇∇uF1 = ∇ · [αuµu(∇u + (∇u)T)] .

Furthermore, we have

∇uF2 = 1
2∇[αuλu](∇ · u)2

and

∇∇uF2 = αuλudiag(∇ · u) ,
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where diag(∇ · u) denotes a diagonal matrix with entries ∇ · u. Then, for the
i-th component of ∇ · ∇∇uF2 it follows

(∇ · ∇∇uF2)i =

d∑

j=1

∂xj

[
αuλu (diag(∇ · u))i,j

]

= ∂xi
[αuλu∇ · u]

since diag(∇ · u) has zero entries for i 6= j. Together with Lemma 3.9 the
proposition follows.

Likewise to the case of the variable diffusive regulariser, the derived differential
equation (4.7) includes terms we are already familiar with: the last two terms
correspond to the Euler-Lagrange equation in the elastic case, cf. (3.24). For
the first two terms the same argumentation as for the variable diffusive reg-
ulariser applies – a positive value of α′ will cause these terms to be positive
and, therefore, u will be locally increased, provided that λ and µ are constant.
However, for non-constant λ or µ an additional local increase or decrease in u
depends on the gradients of αλ and αµ.

Remark. In order to get some insight in the influence of λ and µ, we present
an estimation for the two-dimensional case. Taking the first two terms out of
(4.7), a simple calculation yields

1

4

2∑

i,j=1

(∂xj
ui + ∂xi

uj)
2 ≥ (∂x1u1)

2 + (∂x2u2)
2

∗
≥

1

2
((∂x1u1)

2 + (∂x2u2)
2) + ∂x1u1∂x2u2

=
1

2
(∇ · u)2 ,

where in (∗) Cauchy’s inequality is used. Thus, for the direction of the addi-
tional force, the influence of µ (as a factor of the first term) is larger or equal
compared to the one of λ (which is a factor of the second term).

Again, the natural boundary condition,

(
αu(x)µu(x)(∇u(x) + (∇u(x))T) + αu(x)λu(x) diag(∇ · u(x)) , n(x)

)
= 0 ,

where x ∈ ∂Ω, simplifies to the one for the elastic regulariser (3.25) in the case
of constant parameters.

4.3.3 Link to Boundary Value Problems

Similar to the procedure in the case of constant parameters, a joint Euler-
Lagrange equation can be constructed. Note that we collect the terms in (4.5)
and (4.7) with a linear dependency on u or on its derivatives in Lu and those
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with a non-linear dependency in g(u). This allocation will become handy in the
numerical treatment. Then we obtain

Lu(x) = f(u(x)) + g(u(x)) , x ∈ Ω , (4.8)

with,

1) following from the similarity measure,

f(u) := [R − Tu]∇Tu , (4.9)

and, dependent on the choice of the regulariser,

2a) for the variable diffusive case

Lu := −∇ · (αu∇u) , (4.10)

g(u) :=
1

2
∇αu

d∑

n=1

‖∇un‖
2
2 , (4.11)

2b) and for the variable elastic case

Lu := −∇ · [αuµu(∇u + (∇u)T)] −∇[αuλu∇ · u] , (4.12)

g(u) :=
1

4
∇[αuµu]

d∑

i,j=1

(∂xj
ui + ∂xi

uj)
2 +

1

2
∇[αuλu](∇ · u)2 . (4.13)

Likewise to the case of constant parameters, the Euler-Lagrange equation can
be interpreted as an equation describing the balance between inner and outer
forces. Here, the regularising term contributes both to the inner forces on the
left-hand side of the equation and to the outer ones, included in the right-hand
side.
Adding a boundary condition

Bu(x) = 0 , x ∈ ∂Ω , (4.14)

such as

B := id (4.15)

for a Dirichlet type condition or

B := ∂/∂n (4.16)

for a Neumann type condition, (4.8) and (4.14) together form a boundary value
problem.
In line of Section 3.3.3 an initial boundary value problem results,

∂u(x, t)

∂t
= −[Lu(x, t) − f(u(x, t)) − g(u(x, t))] , x ∈ Ω , t ∈ R

+
0 ,

u(x, 0) = u(0)(x) , x ∈ Ω ,

Bu(x, t) = q(x, t) , x ∈ ∂Ω , t ∈ R
+
0

(4.17)

with u(0) : Ω̄ → R
d as a smooth initial function.

In order to discretise this system, various difference formulas can be derived.
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Example 4.6 (Discretisation of (4.10)). As an example we consider the term
∇ · (αu∇u) from the variable diffusive case which can be discretised either as

(
∂±

1 [αU∂±
1 U1] + ∂±

2 [αU∂±
2 U1]

∂±
1 [αU∂±

1 U2] + ∂±
2 [αU∂±

2 U2]

)
(4.18)

or, after applying the chain rule, as

(
∂±

1 αU∂a
1∂±

1 U1 + αU∂±
11U1 + ∂±

2 αU∂a
2∂±

2 U1 + αU∂±
22U1

∂±
1 αU∂a

1∂±
1 U2 + αU∂±

11U2 + ∂±
2 αU∂a

2∂±
2 U2 + αU∂±

22U2

)
. (4.19)

With a computationally efficient numerical treatment of (4.17) in mind, the
symmetry of the matrix of the resulting system of equations is a property which
is highly desirable.
In the following section this example will be revisited to discuss advantages as
well as disadvantages of the discretisations above.

As before, we will follow the scheme

discretised operator ⇒ stencil notation ⇒ system matrix

and deduce the symmetry from the stencil instead from the discretised operator.
However, the stencil notation used so far does not include a dependency on the
spatial position. Since in (4.10) or (4.12) the operator L depends itself on u,
the stencil is not constant any more and we introduce the notation of a variable
stencil.

4.3.4 Variable Stencil Notation

In analogy to Section 2.5 we define a variable stencil, i.e., a stencil whose entries
depend on the spatial position. To this end let (i, j) denote a grid point of the

discretised domain Ωh. We recall the matrix G(U i,j,l
n ) of discrete values around

a centre U i,j,l
n and define a variable stencil as follows.

Definition 4.7 (Variable Stencil). A variable stencil (of size 1) around the
centre (i, j) ∈ Ωh is given by a matrix S with entries sκ1,κ2(i, j) and indices
κ1, κ2 ∈ {−1, 0, 1}, such that

S :=




s−1,−1(i, j) s−1,0(i, j) s−1,1(i, j)
s0,−1(i, j) s0,0(i, j) s0,1(i, j)
s1,−1(i, j) s1,0(i, j) s1,1(i, j)



 .

Then the convolution of G(U i,j,l
n ) with a variable stencil is given by

S ∗ G(U i,j,l
n ) =

1∑

κ1,κ2=−1

sκ1,κ2(i, j)gκ1 ,κ2 . (4.20)

Example 4.8 (Discretisation of (4.10) Revisited). We return to the discretisa-
tions from (4.18) and (4.19) and investigate their notation in stencil form. For
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ease of presentation we assume an isotropic grid spacing, i.e. h1 = h2 =: h, and
comment on the first component only. Then we have

∂±
1 [αi,j,l

U ∂±
1 U i,j,l

1 ] + ∂±
2 [αi,j,l

U ∂±
2 U i,j,l

1 ] = S ∗ G(U i,j,l
1 )

with

S :=
1

h2





0 α
i− 1

2
,j,l

U 0

α
i,j− 1

2
,l

U −
∑1

κ1,κ2=0 α
i− 1

2
+κ1,j− 1

2
+κ2,l

U α
i,j+ 1

2
,l

U

0 α
i+ 1

2
,j,l

U 0



 , (4.21)

and

∂±
1 αi,j,l

U ∂a
1∂±

1 U1 + αi,j,l
U ∂±

11U1 + ∂±
2 αi,j,l

U ∂a
2∂±

2 U1 + αi,j,l
U ∂±

22U1 = S ∗ G(U i,j,l
1 )

with

S :=
1

h2





0
−α

i− 1
2 ,j,l

U
+2α

i,j,l
U

+α
i+ 1

2 ,j,l

U

2 0

−α
i,j− 1

2 ,l

U
+2α

i,j,l
U

+α
i,j+ 1

2 ,l

U

2 −4αi,j,l
U

α
i,j− 1

2 ,l

U
+2α

i,j,l
U

−α
i,j+ 1

2 ,l

U

2

0
α

i− 1
2 ,j,l

U
+2α

i,j,l
U

−α
i+ 1

2 ,j,l

U

2 0




,

(4.22)
respectively. From a closer look at the stencil entries, we may suspect the latter
stencil to be non-symmetric. However, the symmetry property for variable
stencils needs to be established first.

In extension of Definition 2.17 we define the transpose of a variable stencil.

Definition 4.9 (Transpose of a Variable Stencil). Given variable stencils S1

and S2 with entries sκ1,κ2
1 (i, j) and sκ1,κ2

2 (i, j), κ1, κ2 ∈ {−1, 0, 1}, S2 is trans-
posed to S1 if

sκ1,κ2
1 (i − κ1

2 , j − κ2
2 ) = s−κ1,−κ2

2 (i + κ1
2 , j + κ2

2 ) , κ1, κ2 ∈ {−1, 0, 1} .

Again, the transpose of a stencil is denoted by T.

In the following definition we make use of a block stencil. It has been already
introduced in Definition 2.16 for non-variable stencils. Its application to variable
stencils is straightforward.

Definition 4.10 ((Block-)Symmetric Variable (Block) Stencil). Given a vari-
able stencil S with entries sκ1,κ2(i, j), κ1, κ2 ∈ {−1, 0, 1}, S is called symmetric
if it is equal to its transpose, i.e. if S = ST.
Furthermore, a variable block stencil S = (Sω1,ω2)ω1,ω2 is called block-symmetric
if Sω1,ω2 = ST

ω2,ω1
holds for all ω1, ω2 ∈ {1, 2}.

Returning to Example 4.8 we observe that the variable stencil (4.21) is sym-
metric whereas the one in (4.22) is not. For the discretisation of the remaining
terms of the initial boundary value problem (4.17) we keep this observation in
mind to ensure the symmetry of all occurring stencils. After the assembly of the
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system of equations to be solved, the last step will be to prove the equivalence
of stencil symmetry and matrix symmetry.

Before, we note that for the variable stencils boundary conditions have been
disregarded so far. As a matter of fact, boundary conditions apply if the con-
volution in (4.20) is applied to a grid point for which a neighbouring grid point
belongs to ∂Ωh. However, the argumentation from Section 2.5 can be applied
equally to the present case and it can be concluded that the (block-)symmetry
condition is not affected by boundary conditions of either Dirichlet or Neumann
type.

4.4 Discretisation

For a discretisation of (4.17) we use the framework developed in Section 3.4,
now with g(u) handled in the same way as f(u). The ‘transformed’ parameter
functions αU , λU , and µU are defined in analogy to TU .
As in Section 3.4 we have Ω = (0, 1)2. The section starts with the description
of the discrete equations and proceeds by presenting the corresponding stencils.

Lemma 4.11. Given the IBVP 4.17 with abbreviations as in (4.9)–(4.16), a
discretisation with a local order of accuracy of O(h2 + k) is given by

(idh + kLl+1
h,k )U i,j,l+1 = U i,j,l + kfhU i,j,l + kgh,kU

i,j,l , (i, j) ∈ Ωh , l ∈ N0 ,

U i,j,0 = u(0)(xi, yj) , (i, j) ∈ Ω̄h ,

BhU i,j,l+1 = 0 , (i, j) ∈ ∂Ωh , l ∈ N0 ,
(4.23)

where (note that due to space limitations the terms U i,j,l, U i,j,l
1 , U i,j,l

2 , αi,j,l
U ,

λi,j,l
U , and µi,j,l

U are abbreviated by U , U1, U2, α, λ, and µ, respectively)

1) fh refers to the discretised similarity measure as in Lemma 3.17,

2a) for the variable diffusive case, Ll+1
h,k refers to the discretised operator

Ll+1
h,k = −

(
∂±

1 [α∂±
1 ] + ∂±

2 [α∂±
2 ] 0

0 ∂±
1 [α∂±

1 ] + ∂±
2 [α∂±

2 ]

)
(4.24)

and gh,k is given by

gh,kU = −
1

2

(
∂±

1 α{(∂±
1 U1)

2 + (∂±
2 U1)

2 + (∂±
1 U2)

2 + (∂±
2 U2)

2}
∂±

2 α{(∂±
1 U1)

2 + (∂±
2 U1)

2 + (∂±
1 U2)

2 + (∂±
2 U2)

2}

)
,

(4.25)

2b) for the variable elastic case, Ll+1
h,k refers to the discretised operator

Ll+1
h,k =−

(
∂±

1 [α(λ + 2µ)∂±

1 ] + ∂±

2 [αµ∂±

2 ] ∂a
2∂±

2 [αµ∂a
1 ∂±

1 ] + ∂a
1∂±

1 [αλ∂a
2∂±

2 ]
∂a
1∂±

1 [αµ∂a
2 ∂±

2 ] + ∂a
2∂±

2 [αλ∂a
1∂±

1 ] ∂±

1 [αµ∂±

1 ] + ∂±

2 [α(λ + 2µ)∂±

2 ]

)

(4.26)
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and gh,k is given by

gh,kU = −
1

4

(
∂±

1 [αµ]{4(∂±
1 U1)

2 + 2(∂±
1 U2+∂±

2 U1)
2 + 4(∂±

2 U2)
2}

∂±
2 [αµ]{4(∂±

1 U1)
2 + 2(∂±

1 U2+∂±
2 U1)

2 + 4(∂±
2 U2)

2}

)

(4.27)

−
1

2

(
∂±

1 [αλ](∂±
1 U1 + ∂±

2 U2)
2

∂±
2 [αλ](∂±

1 U1 + ∂±
2 U2)

2

)
, (4.28)

3) Bh refers to the boundary operators as in Lemma 3.17,

respectively.

Proof. The derivation of (2a) and (2b) is straightforward from (4.10)–(4.13) by
using solely second-order difference quotients as introduced in (2.15).

Then, in analogy to Lemma 3.17, an application of Lemma 2.12 (here with
fhU i,j,l +gh,kU

i,j,l instead of fhU i,j,l) yields (4.23) as a consistent discretisation
of (4.17) with a LOA of O(h2 + k) which completes the proof.

The following corollary states the discretised operator Lh,k in stencil notation.
Due to space limitations, the transformed parameter functions αU , λU , and µU

are abbreviated by α, λ, and µ, respectively. Moreover, in each superindex the
time level l is omitted.

Corollary 4.12. Given the discretised operator idh + kLh,k with Lh,k as in
(4.24) and (4.26), its stencil notation is given by

S =








0 0 0
0 1 0
0 0 0








0 0 0
0 1 0
0 0 0








− k

(
S1,1 S1,2

S2,1 S2,2

)

with, in the variable diffusive case,

S1,1 =




0 h−2

1 [α]i−
1
2
,j 0

h−2
2 [α]i,j−

1
2 Σ h−2

2 [α]i,j+
1
2

0 h−2
1 [α]i+

1
2
,j 0



 ,

S2,2 = S1,1 ,

S1,2 = S2,1 = 0 ,

(4.29)

and

Σ := −
[α]i−

1
2
,j + [α]i+

1
2
,j

h2
1

−
[α]i,j−

1
2 + [α]i,j+

1
2

h2
2

,
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and with, in the variable elastic case,

S1,1 =




0 h−2

1 [α(λ + 2µ)]i−
1
2
,j 0

h−2
2 [αµ]i,j−

1
2 Σ1 h−2

2 [αµ]i,j+
1
2

0 h−2
1 [α(λ + 2µ)]i+

1
2
,j 0



 ,

S2,2 =




0 h−2

1 [αµ]i−
1
2
,j 0

h−2
2 [α(λ + 2µ)]i,j−

1
2 Σ2 h−2

2 [α(λ + 2µ)]i,j+
1
2

0 h−2
1 [αµ]i+

1
2
,j 0



 ,

S1,2 =
1

4h1h2




[αλ]i−1,j + [αµ]i,j−1 0 −[αλ]i−1,j − [αµ]i,j+1

0 0 0
−[αλ]i+1,j − [αµ]i,j−1 0 [αλ]i+1,j + [αµ]i,j+1



 ,

S2,1 =
1

4h1h2




[αλ]i,j−1 + [αµ]i−1,j 0 −[αλ]i,j+1 − [αµ]i−1,j

0 0 0
−[αλ]i,j−1 − [αµ]i+1,j 0 [αλ]i,j+1 + [αµ]i+1,j



 ,

(4.30)

and

Σ1 := −
[α(λ + 2µ)]i−

1
2
,j + [α(λ + 2µ)]i+

1
2
,j

h2
1

−
[αµ]i,j−

1
2 + [αµ]i,j+

1
2

h2
2

,

Σ2 := −
[αµ]i−

1
2
,j + [αµ]i+

1
2
,j

h2
1

−
[α(λ + 2µ)]i,j−

1
2 + [α(λ + 2µ)]i,j+

1
2

h2
2

.

Furthermore, these variable block stencils are block-symmetric in the sense of
Definition 4.10.

Proof. Follows from Sections 2.5 and 4.3.4.

The following remark provides an interpretation of the spatial dependencies in
the stencils above.

Remark. For a better understanding of the stencils from (4.29) and (4.30),
Figure 4.7 provides a visualisation of the dependence schemes.
For the stencil entries in the variable diffusive case, a symmetric dependence
on the spatial positions of αU , λU , and µU can be observed, cf. Figure 4.7,
left. Here, αU is discretised on semi-inter-grid positions (i.e., in one component
the position coincides with the grid, in the other component the position is in
between the grid) and each of its discretised values serves as coefficient of U1

and U2 on the two nearest grid points (indicated by dashed ellipses).

For the variable elastic case, the same situation holds for αU and µU included
in the stencils S1,1 and S2,2. In contrast, the dependence scheme for λU is
asymmetric and in S1,1 (S2,2) λU is a coefficient of U1 (U2) only (depicted in
Figure 4.7, center left). Turning our attention towards the stencils S1,2 and S2,1

we observe discretised values on grid positions only. Here, αU is independent of
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Figure 4.7: Dependence schemes for stencils in the variable diffusive or elastic case.
Positions of U are marked by squares, positions of the parameters by filled circles. See
text for further details.

the component and each of its discretised values serves as coefficient of U1 and
U2 on the adjacent edge positions (shown in Figure 4.7, center right). For λU

in S1,2 and for µU in S2,1 the dependence scheme is restricted to the top and
the bottom edge positions as is apparent from Figure 4.7, right. Similarly, the
dependence scheme for µU in S1,2 and the one for λU in S2,1 show their action
on the left and right edge positions (not shown).

With a numerical solution of the discretised initial boundary value problem in
mind we employ the grid point mapping ξ from (2.28) and assemble a system

A(l+1)U(l+1) = U(l) + kF(l) + kG(l) , l ∈ N
0 ,

U(0) = 0 .
(4.31)

Here, F(l) and G(l) result from (3.35), (4.25), and (4.28) using the grid point
mapping. For the block matrix

A(l+1) =

(
A1,1 A1,2

A2,1 A2,2

)

we assume the discretised domain Ωh to consist of N1 × N2 grid points such
that each matrix3 Aω1,ω2 = (ai,j

ω1,ω2)i,j∈N≤N1N2
, ω1, ω2 ∈ N≤2, can be constructed

from the variable block stencil

S =

(
S1,1 S1,2

S2,1 S2,2

)

by the mapping

aξ(i,j),ξ(i+κ1,j+κ2)
ω1,ω2

:= sκ1,κ2
ω1,ω2

(i, j) (4.32)

with i ∈ N≤n1, j ∈ N≤n2, and κ1, κ2 ∈ {−1, 0, 1} provided that i + κ1 ∈ N≤n1

and j + κ2 ∈ N≤n2. Here, the variable block stencil corresponds either to the
variable diffusive regulariser or to the variable elastic regulariser.

Boundary conditions of Dirichlet type are automatically incorporated (see Sec-
tion 2.5 for further details), those of Neumann type require an update of the

3Note that, as for the stencils from Corollary 4.12, the time level is omitted due to space
limitations.
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diagonal elements of Aω1,ω2 for which i ∈ {1,N1} or j ∈ {1,N2},

aξ(i,j),ξ(i,j)
ω1,ω2

:=






∑
κ1+κ2≤0 sκ1,κ2

ω1,ω2(i, j) , (i, j) ∈ {(1, 1), (N1 ,N2)}∑1
κ2=−1 s1,κ2

ω1,ω2(i, j) + s0,0
ω1,ω2(i, j) , i ∈ {1,N1}, j /∈ {1,N2}∑

κ2≥κ1
sκ1,κ2
ω1,ω2(i, j) , (i, j) ∈ {(1,N2), (N1, 1)}∑1

κ1=−1 sκ1,1
ω1,ω2(i, j) + s0,0

ω1,ω2(i, j) , i /∈ {1,N1}, j ∈ {1,N2}

.

(4.33)

Then, A(l+1) includes both the discrete operator idh + kL
(l+1)
h,k and the appli-

cable boundary conditions. By the corollary above we know that S is block-
symmetric. The following lemma generalises Lemma 2.20 and will close the gap
between the symmetry of A(l+1) and the block-symmetry of S.

Lemma 4.13 (Symmetry of the System Matrix A). Let ω1, ω2 ∈ N≤2, let
S = (Sω1,ω2)ω1,ω2 denote a variable block stencil of size 2, and let A denote
a block matrix with matrices Aω1,ω2 defined via (4.32) in the case of Dirichlet
boundary conditions and additionally via (4.33) in the case of Neumann bound-
ary conditions.
Then A is symmetric if and only if S is block-symmetric.

Proof. First, we assume that S is block-symmetric and establish the symmetry
of A.
Due to the block-symmetry, the equalities S1,1 = (S1,1)

T, S2,2 = (S2,2)
T, and

S1,2 = (S2,1)
T follow from Definition 4.10. We start by showing the symmetry

of A1,1 and A2,2, and disregard, in the first instance, the boundary stencils.
Let i ∈ N≤N1, j ∈ N≤N2 . In addition, let κ1, κ2 ∈ {−1, 0, 1} provided that
i + κ1 ∈ N≤N1 and j + κ2 ∈ N≤N2. Then we can express any non-zero entry of
A1,1 by

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,1 = sκ1,κ2

1,1 (i, j)

which is equal to s−κ1,−κ2
1,1 (i + κ1, j + κ2) due to S1,1 = (S1,1)

T. We choose ı̂, ̂

such that ı̂, ı̂−κ1 ∈ N≤N1 and ̂, ̂−κ2 ∈ N≤N2. Then the entry a
ξ(̂ı,̂),ξ(̂ı−κ1,̂−κ2)
1,1

exists and, moreover, is given by s−κ1,−κ2
1,1 (̂ı, ̂). Finally we choose a coordinate

transformation

ı̂ = i + κ1 , ̂ = j + κ2

and end up with the equality

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,1 = sκ1,κ2

1,1 (i, j)
∗
= s−κ1,−κ2

1,1 (i + κ1, j + κ2)

= s−κ1,−κ2
1,1 (̂ı, ̂)

= a
ξ(̂ı,̂),ξ(̂ı−κ1,̂−κ2)
1,1

= a
ξ(i+κ1,j+κ2),ξ(i,j)
1,1

(4.34)

showing the symmetry of A1,1. Note that the use of the stencil symmetry is
marked by ∗. Coming back to the boundary stencils, these do not change the
conclusion: In the Dirichlet case the argumentation above fits as well, in the
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Neumann case for κ1 = κ2 = 0 the stencil terms in (4.34) are replaced by an
appropriate term from (4.33) which does not change the overall equality. The
symmetry of A2,2 can be proven analogously.
We are left with the symmetry of any non-zero entry in A1,2 and the correspond-
ing entry in A2,1. Let i, j, κ1, κ2 be as above. It remains to show that

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,2

!
= a

ξ(i+κ1,j+κ2),ξ(i,j)
2,1 .

Here, the argumentation from the case A1,1 can be reused and we end up,
disregarding any boundary stencils in the first instance, with

a
ξ(i,j),ξ(i+κ1,j+κ2)
1,2 = sκ1,κ2

1,2 (i, j)
∗
= s−κ1,−κ2

2,1 (i + κ1, j + κ2)

= s−κ1,−κ2
2,1 (̂ı, ̂)

= a
ξ(̂ı,̂),ξ(̂ı−κ1,̂−κ2)
2,1

= a
ξ(i+κ1,j+κ2),ξ(i,j)
2,1

(4.35)

where in ∗ the block-symmetry of S has been employed. Likewise to the case
A1,1, boundary stencils from a Dirichlet condition do not change the conclusion.
In the Neumann case for κ1 = κ2 = 0, any stencil entry in (4.35) is replaced
by appropriate terms from (4.33) which does not change the overall equality.
Thus, A is symmetric.

We proceed by assuming that A is symmetric and establish the symmetry of the
block stencil.
From the construction of A we know that each non-zero entry is given by (4.32)
and additionally by (4.33) for Neumann boundary conditions.
Let i ∈ N≤N1, j ∈ N≤N2. In addition, let κ1, κ2 ∈ {−1, 0, 1} provided that
i + κ1 ∈ N≤N1 and j + κ2 ∈ N≤N2 . From the symmetry of A and thus from the

one of A1,1 we know a
ξ(i,j),ξ(i+κ1,j+κ2)
1,1 = a

ξ(i+κ1,j+κ2),ξ(i,j)
1,1 . Then, (4.34) and in

particular the equality marked by ∗ holds. Since Neumann boundary conditions
only affect matrix entries on the diagonal (i.e., κ1 = κ2 = 0), (4.34) still holds.
From ∗, it is straightforward to establish that the stencil S1,1 is symmetric. The
symmetry of the stencil S2,2 can be obtained analogously.
The final task is to show the equivalence S1,2 = (S2,1)

T. Since A is symmetric,

the entries a
ξ(i,j),ξ(i+κ1,j+κ2)
1,2 and a

ξ(i+κ1,j+κ2),ξ(i,j)
2,1 are equal. Then, (4.35) and

in particular the equality marked by ∗ follow. As before, the conclusion holds
for Neumann boundary conditions as well. Thus S1,2 = (S2,1)

T and the block
stencil S is block-symmetric.

Returning to the assembled system (4.31) we can conclude that the block matrix
A(l+1) is symmetric. Furthermore, the lemma shows that the symmetry is not
affected by the incorporation of the discrete boundary conditions from (3.38)
or (3.39).
A last time we recall the introductory discretisation example and make use of
Lemma 4.13.
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Example 4.14 (Discretisation of (4.10) Revisited). Having discretised the term
∇ · (αu∇u) by (4.18) and (4.19), the latter discretisation turned out to be non-
symmetric in stencil notation. Lemma 4.13 shows that this stencil yields a
system of equations whose matrix is non-symmetric. Summarizing, an applica-
tion of the chain rule for the divergence term is not preferable.

In addition to the symmetry property of the matrix A(l+1), the matrix is posi-
tive definite for the variable diffusive case which can be directly deduced from
Theorem 2.21. For the variable elastic case, the positive definiteness depends
on the choice of α, λ, µ, h, and k. However, for given h, α, λ, µ, an upper
bound similar to (3.41) can be achieved. For

k <
h1h2

‖α‖∞(‖λ‖∞ + ‖µ‖∞)
(4.36)

the positive definiteness of A(l+1) is ensured for the variable elastic case, too.

4.5 Numerical Solution

With the discretisation from the previous section we are faced with the numer-
ical solution of the assembled system (4.31). For given digital images Rh, Th

and discretisations of a regularisation function αu(0) , and – in the case of the
elastic regulariser – Lamé parameter functions λu(0) and µu(0) , the system can
be treated by the following algorithm.

Algorithm 4.15.

choose U(0) and k
for l = 0, 1, . . . do

compute force terms F and G

assemble A

solve AU(l+1) = U(l) + kF + kG
compute transformed template image T

U(l+1)

compute α
U(l+1), λ

U(l+1), µ
U(l+1)

end

In addition to the remarks from Section 3.5 we present some notes and obser-
vations concerning implementation issues.

• When deriving the joint Euler-Lagrange equation (4.8) we suggested an
allocation of the terms originating from the regulariser: Those terms with
a linear dependeny on u were collected in the operator L, those with
a non-linear dependency in the function g. Then, the assembly (4.31)
resulted in a linear system of equations.
Note that L is discretised at time level l + 1 whereas the time level of the
discretisation of g is changed to l. However, this additional discretisation
error is of the same order as the one for f and, following Lemma 4.11, is
bounded by O(k).
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• Recalling the size of the images to be N1 × N2 voxels, the assembled
system consists of 2N1N2 equations. However, only a small percentage of
the 4N2

1 N2
2 matrix entries is non-zero. In order to estimate this percentage

we observe from the stencils given in Corollary 4.12 the number of non-
zero diagonals to be 5 for the variable diffusive regulariser and 13 for
the variable elastic regulariser. Since the matrix is symmetric, only 3
(7) of them need to be stored which results in an upper bound for the
number of non-zero matrix entries of 6N1N2 for the variable diffusive
regulariser and 14N1N2 for the variable elastic regulariser. For a typical
two-dimensional image of size 256× 256 this corresponds to a percentage
of 0.002% (0.005%) non-zero entries in the system matrix. However, the
storage amount is equivalent to 6 (14) additional images of the same
resolution. Consequently, an explicit representation of the system matrix
can only be recommended for images of moderate size.

• When using variable parameters, these are typically designed such that
their gradient takes locally high values. This may cause a displacement
field with a large gradient at the same positions, cf. the motivating exam-
ple in Figure 4.4. Since the function g is built up from products of dif-
ferentiated parameter functions and the differentiated displacement field,
a large gradient in each factor results in a large value of g. As a conse-
quence, stability problems are likely to be observed and a largely decreased
temporal step size is required.

A stabilized solution is provided by the minmod slope technique as de-
scribed by LeVeque (1992). For some function s : R → R and equidis-
tantly distributed nodes (xi)i, the derivative of s at xi is approximated
by

1
xi+1−xi minmod(s(xi+1) − s(xi), s(xi) − s(xi−1))

where

minmod(a, b) := 1
2(sgn(a) + sgn(b))min(|a|, |b|) .

Here, the naming results from the construction of the minmod term: From
the left-hand and the right-hand derivative at xi, the one with smaller
modulus is chosen. By employing the minmod technique for derivatives
in g, a stabilised scheme can be observed.

• If the given images are of moderate size, a direct solution scheme for the
assembled system can be employed. For a positive definite system matrix
as occurring here (in case of the variable elastic regulariser, provided k
is chosen appropriately, cf. (4.36) for an upper bound), a Cholesky fac-
torisation is used. If the matrix is indefinite, a Gaussian elimination with
partial pivoting is employed as supplied by the Matlab \ -operator. For
a practical treatment of larger images, multigrid techniques are advisable
but not discussed in this thesis.

• The multi-resolution scheme from Section 3.5 is extended by pyramids for
the parameter functions α, λ, and µ.
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4.6 Choice of Parameters

The choice of parameters for the variable regularisers differs from that for the
standard regularisers from Chapter 3. In the presence of variable regularisers,
the regularisation parameter α takes the ‘gap role’ by allowing gaps to change
their size, i.e., by decreasing α locally, a gap between different image structures
is allowed to either enlarge or shrink. In contrast, the Lamé parameters take the
‘elastic role’ and focus on modelling different elastic properties which include
the approximated preservation of volume or shape.

Note that for any choice of parameters in the following, the parameters are
assumed to be differentiable, i.e., when prescribing different values in adjacent
regions Ωi, Ωj, a smooth transition is assumed.

4.6.1 Regularisation Parameter

By a variable regularisation, image regions can be regularised individually. For
illustration we revisit Example 3.20 and modify it in two ways. In both examples
the variable diffusive regulariser is used and we are faced with the regularisation
parameter α only. Therefore, α takes both the gap role and the elastic role.

Example 4.16. In this example we take template and reference image as in Ex-
ample 3.20 but modify the reference image (cf. the dashed line in each plot from
the bottom row in Figure 4.8) by adding white noise with a standard deviation
of 10% of the previous grey-value scale in the interval where the zig-zag type
function is constant. The removal of noise (or of metal artefacts as discussed
in Example 3.22) is still an active field of research in image reconstruction. In
this context we are interested in how well the registration scheme copes with
the presence of noise in a certain image region.

As before, at position x = 0 a boundary condition of Dirichlet type is presumed,
at position x = 1 one of Neumann type. For the registration three different
settings are employed.

The first setting is the same as the first one in Example 3.20 (cf. the first column
in Figure 3.1), i.e. α ≡ 5 · 10−5. For the remaining settings we do not change
α in the entire interval [0, 1] but within the centre interval where the zig-zag
type function is constant. Here, α is increased by a factor of 10 for the second
setting and by a factor 100 for the last setting.

An investigation of the resulting displacement function (depicted solid in each of
the top row images in Figure 4.8) reveals an influence of the added noise which
is the smaller the larger α is locally chosen. In particular, the displacement
function from the third setting differs hardly from the result obtained without
any added noise. This is also visible from the transformed identity image shown
in the bottom row of Figure 4.8 (solid lines): The larger α is locally chosen, the
less the transformed template is influenced by the noise in the reference image.

Example 4.17. Let the template and the reference image be given as in Exam-
ple 3.20. Boundary conditions are again of mixed type. For the regularisation,
three different settings are considered.
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Figure 4.8: An application of a zig-zag type function (dashed line in each of the top row
images) to the identity image results in a transformed image (depicted dashed in each
of the bottom row images) to which in the centre interval white noise has been added.
The regularisation is chosen as α(x) = 5 ·10−5 in all the three columns except from the
centre interval where α is multiplicated by 10 (centre column) and 100 (right column).
The registration result is depicted solid with respect to the displacement function (top
row) and the transformed identity image (bottom row).

The first setting with α ≡ 5 · 10−5 is the same as the first one in Example 3.20,
cf. the first column in Figure 3.1, and serves as reference setting. For the
remaining settings, we increase α in the entire interval [0, 1] to 5 · 10−4 and
5 · 10−3 in the second and the third setting, respectively, except from a certain
position within that interval where the reference image is close to constant.
At this position the regularisation remains the value of α(x) = 5 · 10−5 in all
the three settings. Therefore, α takes – similarly to the step case depicted in
Figure 4.4 – the form of a Dirac-shaped weighting function (Figure 4.9, top left)
and allows for the enlargement of a gap.

For the result of the registration our observation is twofold. Globally, the dis-
placement function (cf. Figure 4.9, top centre and right) and the transformed
template image (bottom centre and right) show the same behaviour as in Fig-
ure 4.4: the larger α is, the smoother are both u and Tu. Locally, however, the
result is less regularised and fits nicely with the zig-zag type function. More-
over, due to the dependence of α on u, the formerly peak-shaped region of
reduced regularisation is automatically extended to the entire region where the
reference image is close to constant (αu is shown in Figure 4.9, bottom left).
Such a result demonstrates the capability of a locally reduced regularisation
while preserving the overall smoothness.
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Figure 4.9: An application of a zig-zag type function (dashed line in top centre and top
right) to the identity image results in a transformed image (depicted dashed in bottom
centre and bottom right). Various regularisation functions (shown schematically in the
left column before and after registration, see text for further details) result in globally
smooth but locally less smooth displacement functions (solid line in top centre and
right). Below, their application to the identity image is depicted in solid lines.

Summarizing, the regularisation parameter can be used to regularise various
image regions individually as well as to let a gap enlarge or shrink. While in
the first case α was increased in a region to reduce the influence of noise, in the
latter case α was decreased at a position where a gap was likely to enlarge.

By the variable diffusive regulariser both the elastic and the gap role are sup-
ported. In the following section we will investigate the variable elastic regu-
lariser. Here, the elastic role is taken by the Lamé parameters.

4.6.2 Lamé Parameters

By a variable elastic regulariser, individual elastic properties can be assigned
to various regions of the same image. To illustrate this property we modify
Example 3.23.

Example 4.18. Let the setting be as in Example 3.23 except for λ which is
chosen spatially variant. Within the square located in the centre of the template
image (not shown), λ = 1000 is chosen, whereas in the remaining part of the
image, λ = 0 is set. This setting corresponds to the deformation of a composite
consisting of an (almost) incompressible object which is embedded in a highly
compressible one. By the artifical forces acting on the left- and the right-hand
side of the square it can be observed, on the one hand, how the incompressible
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Figure 4.10: Visualized displacement field resulting from the stretching of a composite
object (centre), see text for further details. For comparison, the stretching of a single
object is displayed on the left (with λ ≡ 0) and on the right (with λ ≡ 1000).

square is stretched and, on the other hand, how the deformation induced by
the stretch is damped within the compressible object.
For comparison we added results from Example 3.23 with λ being constant in
the entire domain (see Figure 4.10 for λ ≡ 0 (left) and λ ≡ 1000 (right), these
are the same as in Figure 3.4, second and third column).
From the displacement field in the composite case (cf. Figure 4.10, centre) we
observe within the inner object a stretching similar to the one in the incom-
pressible case (note in particular the shrinkage in the component transversal
to the acting forces). In the outer object the deformation is damped as in the
compressible case (note the stretch in the longitudinal component as well as the
nearly vanished shrinkage in the transversal component).

In summary, the variable regularisers allow for modelling locally varying elastic
properties as well as for the enlargement or shrinkage of dedicated image regions.
However, the displacement function u and the involved parameter functions α,
λ, and µ are required to be differentiable. The drawback of this scheme lies in
the restriction that any gap likely to enlarge has to be already ‘visible’ in the
template image, i.e., a gap of voxel width has to exist. In the context of the
composite this means that the modelling of a composite object whose parts are
not fixed to each other (metaphorically speaking, like forgetting the glue) is not
supported. This case will be discussed in the following chapter.



5 Piecewise Variable Regularisation

Chapter 3 started by describing an image registration scheme where any pa-
rameter function was constant and the displacement field a smooth function.
Then, in Chapter 4, the parameter functions were allowed to depend on the
spatial position but, like the displacement function, they were still required to
be smooth. However, a lowered degree of smoothness – or even a discontinuous
displacement field – may show up in various image registration problems.

As an example towards a lowered differentiability we consider a composite of
different materials. In the mathematical formulation, this leads to a param-
eter function being constant within each material object and showing a step
discontinuity at the interface. We show for a one-dimensional example how
the variational calculus deals with this kind of problems before we extend the
setting to other types of discontinuities.

Example 5.1 (Composite). We choose the SSD measure and the variable diffu-
sive regulariser from Definition 3.11 and Definition 4.2, respectively, and modify
them in two aspects. Firstly, the domain Ω is divided into two subdomains,

Ω = Ω1 ∪ Ω2 , Ω1 = (a, γ) , Ω2 = (γ, b) ,

with a common boundary Γ1,2 = {γ}. Secondly, the regularisation param-
eter α is given the role of the discontinuous parameter function and set as
α(x) = αz > 0 in Ωz for z = 1, 2. Then the minimisation problem reads

1

2

2∑

z=1

∫

Ωz

[R(x) − Tu(x)]2dx +

∫

Ωz

αz [u′(x)]2dx
u

−→ min . (5.1)

Note that u does not belong to a solution space consisting of functions being
differentiable in the entire domain as in (3.2). Instead, the differentiability
requirement for this problem is lowered in such a way that at γ any function
u needs to be continuous only. With a space of test functions V of the same

89
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Figure 5.1: α (left) and u (right) are depicted for a numerical solution of (5.2) with
α1=1 and α2 ∈ {0.25, 1, 4} for the dotted, solid, and dashed line, respectively.

lowered differentiability, the Gâteaux derivative of (5.1) is given by

−
2∑

z=1

∫

Ωz

[R(x) − Tu(x)]T ′
u(x)v(x)dx +

∫

Ωz

αzu′′(x)v(x)dx

+ {α1(u′v)(γ−) − α2(u′v)(γ+)} + {α1(u′v)(b) − α2(u′v)(a)} = 0

to hold for all v ∈ V. Note that at the position γ, v is still continuous, thus
v(γ) = v(γ−) = v(γ+). By employing Dirichlet boundary conditions on a and
b, the second curly bracketed term vanishes. In addition, to apply the Funda-
mental Lemma of Variation 3.7, the first curly bracket has to vanish as well.
We call the resulting additional condition

{α1u′(γ−) − α2u′(γ+)}v(γ) = 0

a natural interface condition which is motivated by the analogy to natural
boundary conditions. By Theorem 3.7 and due to αz being positive, we finally
arrive at the boundary value problem

αzu′′(x) = −[R(x) − Tu(x)]T ′
u(x) , x ∈ Ωz, z = 1, 2 ,

α1u′(γ−) = α2u′(γ+) ,

u(x) = 0 , x ∈ ∂Ω .

(5.2)

The major difference to the variational approach described in Chapter 3 (cf.,
for instance, Example 3.8) is given by the additional interface condition at γ.
Note that, if α1 = α2, the natural interface condition simplifies to u′ being
continuous at γ.
For a numerical solution to (5.2) we choose u(a) = 1 and u(b) = 2. Moreover,
we choose T,R such that [R(x) − Tu(x)]T ′

u(x) ≡ 0 since we are interested in the
effect of a discontinuous regularisation parameter rather than in the effect of the
image content. For fixed α1 and various choices for α2 as depicted in Figure 5.1,
left, a continuous solution u with a discontinuity in its first derivative at γ is
visible (shown in Figure 5.1, right). Approximately the same result can be
achieved when solving (5.2) analytically with α chosen as a function of arctan
type.
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Figure 5.2: Each decomposition consists of three regions – two object regions, Ω1

and Ω2, and a background region Ω0. The left and the centre decomposition are
topologically different but not the left and the right one.

Remark. The boundary value problem 5.2 as the necessary condition to (5.1)
requires u to be twice continuously differentiable within Ω1 and Ω2. However,
by Oberle (1998) it has been shown that a necessary condition for a solution
of (5.1) can be achieved without the use of partial integration and, furthermore,
that a continuous first derivative of u in Ω1 and Ω2 is sufficient. Then, if α is
constant, i.e. α1 = α2, the lowered differentiability at γ is regained and we
conclude that the minimisation problem

1

2

∫

Ω
[R(x) − Tu(x)]2dx +

1

2

∫

Ω
α[u′(x)]2dx

u
−→ min

with α being constant serves as a special case of (5.1).

Alternatively, the composite object may consist of various materials which are
not fixed to each other. To distinguish this setting of a ‘moving composite’
from the former setting of a (fixed) composite, we define a topological change.

Definition 5.2 (Topological Change). Given a domain Ω with decompositions

Ma(Ω) := {Ω0
a,Ω

1
a,Ω

2
a} and Mb(Ω) := {Ω0

b ,Ω
1
b ,Ω

2
b}

such that the common boundary of Ω1
a and Ω2

a is a zero set whereas the one of
Ω1

b and Ω2
b is non-zero with measure larger than zero, then Ma and Mb are said

to be topologically different, or, in other words, when switching from Ma to Mb,
a topological change occurs.

In Figure 5.2, left and centre, an example for a topological change is depicted.
Note that the decomposition depicted on the right is not topologically different
from the left one since the common boundary Γ1,2 is a set of measure zero.
Furthermore, it can be observed that an image according to Definition 2.2
and with a decomposition as depicted in Figure 5.2, left, may be non-smooth
after being transformed according to Figure 5.2, centre. In contrast, given an
image with a decomposition as in Figure 5.2, centre, is smooth by definition
and, moreover, preserves its smoothness during transition to an image with a
decomposition according to Figure 5.2, left. Summarising, in case of a closing
gap, the transformed image is not necessarily smooth which motivates a less
restricted definition of an image.
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Definition 5.3 (Piecewise Smooth Image). Given a domain Ω with a decom-
position M(Ω) = {Ω0,Ω1, . . . ,Ωm}, a piecewise smooth image I is defined as a
mapping I : Ω̄ → [0, 1] such that, for each z = 0, . . . ,m, I is smooth on Ωz.
In addition, let ImgPS(M(Ω)) define the set of piecewise smooth images on a
decomposition M(Ω).

Clearly, a setting with a topological change is more challenging than before,
since now a discontinuity in the displacement field may occur. Determing the
Euler-Lagrange equation for this setting is not obvious and call for a repeated
investigation of variational calculus which is subject of the following section.
Afterwards, Section 5.2 describes how to introduce discontinuities in the regis-
tration scheme whereas the final sections are devoted to its discretisation and
numerical solution.

5.1 Calculus of Variations Revisited

Throughout this section let M(Ω) = {Ω0,Ω1, . . . ,Ωm} be a decomposition of
Ω. Then, with a functional F : Ω̄×R

d ×R
d×d → R a slight modification of the

general minimisation problem from (3.1) and (3.5) yields

J : U → R , J [u] :=
m∑

z=0

∫

Ωz

F [x, u(x),∇u(x)]dx
u

−→ min on Ω̄ . (5.3)

Note that the solution space U for this problem is not properly defined yet.
With Example 5.1 in mind, our aim is to construct an enlarged solution space
such that it includes functions which are at certain positions not necessarily
differentiable or not even continuous.

Definition 5.4 (PCp, PCconst ). Given a domain Ω with decomposition M(Ω),
the space of p-times piecewise continuously differentiable functions is defined as

PCp(M(Ω), Rd) := {u | u|Ωz ∈ Cp(Ωz ∪ (∂Ωz ∩ ∂Ω), Rd), z = 0, 1, ...,m} .

Moreover, the space of piecewise constant functions is given by

PCconst (M(Ω), Rd) := {u | u : Ω̄ → R
d, u|Ωz ≡ const, z = 0, 1, ...,m} .

Note that the differentiability is required in regions whose boundary may be
included in parts. In such a case, a derivative is understood in a one-sided sense.
Furthermore we note that for m = 0 the space PCp(M(Ω), Rd) is equivalent to
the space Cp(Ω̄, Rd).
Based on the definition above, solution and test space can be enlarged. They
consist of functions which are twice continuously differentiable within each re-
gion Ωz but not necessarily continuous at the common boundaries,

UPC := {u | u ∈ PC2(M(Ω), Rd), u fulfills boundary conditions on ∂Ω} ,

VPC := {v | v = u − û, u, û ∈ UPC} .

It is important to note that UPC and VPC are based on the same decomposition
M . Thus, the possible positions of a discontinuity in functions from UPC and
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VPC coincide and the former definitions of a neighbourhood, a local minimiser,
a Gâteaux derivative, and a stationary point (cf. Definitions 3.1–3.4) are valid
in the context of UPC and VPC a well. Also, the necessary condition for a
local minimiser remains the same as stated in Theorem 3.5. Finally we note
that by a Gâteaux-differentiable functional we still assume the functional to be
Gâteaux-differentiable in all directions of the respective test space.

Having constructed an appropriate solution space for the minimisation problem
(5.3) we investigate the condition for a stationary point of J which is, follow-
ing Theorem 3.5, the necessary condition for a solution of (5.3). Before, an
extension of the Fundamental Lemma of Variation is presented.

Lemma 5.5 (Extended Lemma of Variation). Let θ : Ω → R
d be continuous

in each Ωz. Then
∑m

z=0

∫
Ωz

(
θ , v

)
dx = 0 holds for all test functions v ∈ VPC if

and only if θ is identically zero on Ωz for all z = 0, . . . ,m.

Proof. First, we assume
∑m

z=0

∫
Ωz

(
θ , v

)
dx = 0 to hold for all test functions

and establish by contradiction that θ ≡ 0.

Let n ∈ {1, . . . , d}, z ∈ {0, . . . ,m}. Suppose that θn(ζ) 6= 0 for some ζ ∈ Ωz.
Then, since θn is continuous at ζ, there exists a neighbourhood Bε(ζ) ⊂ Ωz

with ε > 0, such that θn(x) > 0 or θn(x) < 0 everywhere in Bε(ζ). Choosing a
v ∈ V such that vn(x) is positive within Bε(ζ) and zero within Ω\Bε(ζ) and such
that vη(x) is identically zero for η 6= n, we can conclude

∑m
z=0

∫
Ωz

(
θ , v

)
dx 6= 0

for the chosen v. This is a contradiction to the assumption.

It turn, from setting θ ≡ 0, it follows immediately that
∑m

z=0

∫
Ωz

(
θ , v

)
dx = 0

for all test functions.

To distinguish the normal vector with respect to the boundary of the domain
from the one with respect to the boundary of a region, we make use of the
notation nz as the unit normal vector pointing outward with respect to the
region Ωz.

Lemma 5.6 (Necessary Condition). Every solution u ∈ PC2(M(Ω), Rd) of the
general minimisation problem (5.3) with a Gâteaux-differentiable functional J
is a solution of the boundary value problem consisting of the system of Euler-
Lagrange equations

∇uF −∇ · ∇∇uF = 0 on Ωz , z = 0, . . . ,m , (5.4)

natural interface conditions

(
∇∇uF , nz

)
= 0 on ∂Ωz\∂Ω , z = 0, . . . ,m , (5.5)

and boundary conditions which can be either of essential type (when given by
the solution space UPC) or of natural type,

(
∇∇uF , n

)
= 0 on ∂Ω . (5.6)
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Proof. Let solution spaces

UPC := {u | u ∈ PC2(M(Ω), Rd)} , ŬPC := {u | u ∈ UPC , u = c on ∂Ω} ,

ŨPC := {u | u ∈ ŬPC , u = c on ∂Ωz, z = 0, . . . ,m}

and corresponding test spaces

VPC := {v | v ∈ PC2(M(Ω), Rd)} , V̆PC := {v | v ∈ VPC , v = 0 on ∂Ω} ,

ṼPC := {v | v ∈ V̆PC , v = 0 on ∂Ωz, z = 0, . . . ,m}

be given. Let u ∈ UPC , v ∈ VPC, τ ∈ R. Then, by setting the Gâteaux derivative
of J for u in the direction of v to zero, in analogy to Lemma 3.6 we arrive at

0 = δJ [u; v] =
dJ [u + τv]

dτ

∣∣∣∣
τ=0

=
m∑

z=0

∫

Ωz

dF [x, u(x) + τv(x),∇u(x) + τ∇v(x)]

dτ

∣∣∣∣
τ=0

dx

=
m∑

z=0

∫

Ωz

d∑

n=1

∂F

∂un
vn +

d∑

n,η=1

∂F

∂un,xη

vn,xηdx

=

m∑

z=0

∫

Ωz

(
∇uF −∇ · ∇∇uF , v

)
dx

+

m∑

z=0

∫

∂Ωz

d∑

n=1

(
∇∇unF , nz

)
vndx ,

(5.7)

holding for all test functions v ∈ VPC , as the condition for a stationary point
of J . In particular, (5.7) holds for a subspace of VPC , e.g. for all v ∈ ṼPC .
Since, for ṼPC, the boundary integral in (5.7) is zero due to the prescribed
boundary and interface conditions, Lemma 5.5 can be applied which implies
the Euler-Lagrange equations (5.4). Inserting them into (5.7) yields

m∑

z=0

∫

∂Ωz

d∑

n=1

(
∇∇unF , nz

)
vn

︸ ︷︷ ︸
=:Ψ

dx = 0

to hold for all test functions from VPC . With the abbreviation Ψ for the inte-
grand, the equation can be rewritten as

0 =
m∑

z=0

∫

∂Ωz

Ψ dx =

∫

∂Ω
Ψ dx +

m∑

z=0

∫

∂Ωz\∂Ω
Ψ dx . (5.8)

Here, on the right-hand side the first term acts on the boundary of Ω and
is the same as in Section 3.1. It vanishes in the case of essential boundary
conditions on ∂Ω (i.e., u ∈ ŬPC). The second term represents the natural
interface condition and acts on the boundary of each single region Ωz.
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However, in both the case of essential and of natural boundary conditions on
∂Ω, (5.8) holds for all V. Since v ∈ V can be arbitrarily chosen, (5.5) and – in
the case of natural conditions on ∂Ω – additionally (5.6) must be satisfied.

Compared to the necessary condition derived in Chapter 3, now on each region
Ωz a system of Euler-Lagrange equations is given which consists of the same
difference equation and is supplemented by additional interface conditions on
each inner boundary ∂Ωz.

We revisit Example 5.1, but now with a displacement function u being not
necessarily continuous at γ.

Example 5.7 (Moving Composite). Let the minimisation problem (5.1) be
given together with the specifications from Example 5.1 except for u ∈ UPC and
v ∈ VPC . By Lemma 5.6, the boundary value problem

αzu′′(x) = −[R(x) − Tu(x)]T ′
u(x) , x ∈ Ωz, z = 1, 2 ,

α1u′(γ−) = 0 ,

α2u′(γ+) = 0 ,

u(x) = 0 , x ∈ ∂Ω

results. As in Example 5.1, the additional assumption α1 = α2 simplifies the
natural interface condition to u′ being continuous (actually, even to u′(γ) = 0).
However, we cannot conclude the continuity of u which can be seen from the
fact that for a general functional F on the common boundary Γz1,z2 of two
regions Ωz1,Ωz2 , the equations

(
∇∇uF , nz1

)
|∂Ωz1 = 0 and

(
∇∇uF , nz2

)
|∂Ωz2 = 0

are not sufficient for u|∂Ωz1 = u|∂Ωz2 to hold on Γz1,z2. As a consequence and
in contrast to Example 5.1, the minimisation problem (5.1) cannot be obtained
as a special case of the moving composite.

5.2 Discontinuities in Image Registration

Coming back to image registration, the functionals J and F in (5.3) are chosen
according to the sum of distance measure and regularising term. Based on a
decomposition M(ΩR), i.e. with respect to the domain of the reference image,
into regions Ωz, Definition 3.11 can be extended as follows.

Definition 5.8 (Piecewise SSD Measure). Given a decomposition M(ΩR), im-
ages T ∈ Img(ΩT ), R ∈ ImgPS(M(ΩR)), and a displacement field u ∈ UPC, the
piecewise SSD measure is defined as

DpSSD
T,R [u] :=

1

2

m∑

z=0

∫

Ωz

[R(x) − Tu(x)]2dx . (5.9)
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Determing the corresponding Euler-Lagrange equation is obvious, in particular
since ∇∇u[R(x) − Tu(x)]2 = 0 and, thus, the natural interface condition (5.5)
vanishes.

Lemma 5.9 (Euler-Lagrange Equation for the Piecewise SSD Measure). The
system of Euler-Lagrange equations for the piecewise SSD measure is given by

−[R(x) − Tu(x)]∇Tu(x) = 0 , x ∈ Ωz , z = 0, . . . ,m . (5.10)

Proof. By straightforward application of Lemma 5.6.

The investigation of appropriate regularisers requires the consideration of the
parameter functions α, λ, and µ. With an application similar to Example 5.1
in mind, the functions are set constant within each region, e.g.,

α(x) = αz , x ∈ Ωz .

In contrast to the variable regularisers Svardiff
α and Svarelas

α,λ,µ , here, the parameter
functions are evaluated with respect to a position x ∈ ΩR, thus according to
a decomposition M(ΩR). Otherwise, i.e., when evaluating with respect to a
position x + u(x) ∈ ΩT , we may obtain a solution u∗ to the Euler-Lagrange
equation where u∗ is not well defined. This happens if, for fixed z ∈ {0, . . . ,m},
u∗ does not map a boundary ∂Ωz

R onto ∂Ωz
T and, thus, a discontinuity in a

parameter function (located on ∂Ωz
T ) is mapped into Ωz

R instead on ∂Ωz
R.

As a consequence from the initialisation of the parameter functions in ΩR, the
additional term g occurring with the variable regularisers will be zero for the
piecewise variable regularisers.

Definition 5.10 (Piecewise Diffusive Regularisation). Given a decomposition
M(ΩR), a weighting function α ∈ PCconst (M(ΩR), R+), and a displacement
field u ∈ UPC, the piecewise diffusive regulariser is defined as

Spdiff
α [u] :=

1

2

m∑

z=0

αz

∫

Ωz

d∑

n=1

‖∇un(x)‖2
2dx . (5.11)

Lemma 5.11 (Euler-Lagrange Equation for the Piecewise Diffusive Regu-
lariser). The system of Euler-Lagrange equations and natural interface con-
ditions for the piecewise diffusive regulariser is given by

−αz∆u(x) = 0 , x ∈ Ωz , z = 0, . . . ,m ,

αz
(
∇u(x) , nz(x)

)
= 0 , x ∈ ∂Ωz\∂Ω , z = 0, . . . ,m .

(5.12)

Proof. Follows from Lemma 3.14 and Lemma 5.6.

Definition 5.12 (Piecewise Elastic Regularisation). Given a decomposition
M(ΩR), a weighting function α ∈ PCconst (M(ΩR), R+) as well as material func-
tions λ, µ ∈ PCconst (M(ΩR), R+

0 ) with λ(x) + µ(x) > 0 for all x ∈ Ω̄R, and a
displacement field u ∈ UPC, the piecewise elastic regulariser is defined as

Spelas
α,λ,µ[u] =

m∑

z=0

αz

∫

Ωz

µz

4

d∑

ζ,η=1

(∂xηuζ(x)+∂xζ
uη(x))2 + λz

2 (∇·u(x))2dx . (5.13)
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Lemma 5.13 (Euler-Lagrange Equation for the Piecewise Elastic Regulariser).
The system of Euler-Lagrange equations and natural interface conditions for the
piecewise elastic regulariser is given by

−αzµz∆u(x) − αz(λz + µz)∇ · ∇u(x) = 0 , x ∈ Ωz ,

αz
(
µz(∇u(x) + (∇u(x))T) + λz diag(∇ · u(x)) , nz(x)

)
= 0 , x ∈ ∂Ωz\∂Ω ,

(5.14)
where z = 0, . . . ,m.

Proof. By straightforward application of Lemma 3.16 and Lemma 5.6.

Having determined the Euler-Lagrange equations for different similarity and
regularisation terms, we collect these results and build up a joint (system of)
Euler-Lagrange equation(s). For the general functional J as in (3.16) we obtain

Lzu(x) = f(u(x)) , x ∈ Ωz , z = 0, . . . ,m ,

Bzu(x) = 0 , x ∈ ∂Ωz\∂Ω , z = 0, . . . ,m ,
(5.15)

with

1) following from the similarity measure

f(u) : = [R − Tu]∇Tu , (5.16)

and, dependent on the choice of the regulariser,

2a) for the piecewise diffusive case

Lz : = −αz∆ , (5.17)

Bz : = αz
(
∇ , nz

)
, (5.18)

2b) and for the piecewise elastic case

Lz : = −αzµz∆ − αz(λz + µz)∇ · ∇ , (5.19)

Bz : = αz
(
µz(∇ + ∇T) + λzdiag(∇·) , nz

)
. (5.20)

Adding a boundary condition

Bu(x) = 0 , x ∈ ∂Ω , (5.21)

such as

B := id (5.22)

for a Dirichlet type condition or

B := ∂/∂n (5.23)
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for a Neumann type condition, (5.15) and (5.21) form a boundary value prob-
lem. The deduced initial boundary value problem,

∂u(x, t)

∂t
= −[Lzu(x, t) − f(u(x, t))] , x ∈ Ωz , z = 0, . . . ,m , t ∈ R

+
0 ,

Bzu(x, t) = 0 , x ∈ ∂Ωz\∂Ω , z = 0, . . . ,m , t ∈ R
+
0 ,

u(x, 0) = u(0)(x) , x ∈ Ω̄ ,

Bu(x, t) = 0 , x ∈ ∂Ω , t ∈ R
+
0 ,

(5.24)
differs from (3.33) and (4.17) in the additional natural interface condition. Note
that u(0) : Ω̄ → R

d serves as an initial function which is smooth at least on each
region Ωz.
Before we proceed with the discretisation of (5.24) we conclude the section with
an important remark.

Remark. Due to the choice of a solution space consisting of piecewise con-
tinuously differentiable functions, a solution u∗ may describe a non-physically
meaningful transformation resulting in an overlap or in a swap of regions.
Although, in an implementation these cases may not occur or may be circum-
vented by further restrictions, from a mathematical point of view, functions
with these properties are possible solutions of the minimisation problem. To
our best knowledge, a formulation of the minimisation problem which, on the
one hand, allows for topological changes, and, on the other hand, prevents from
a swap of regions or an overlap of non-background regions, is not known yet
and describes a topic for future investigation.

5.3 Discretisation

For a discretisation of the initial boundary value problem (5.24) the framework
developed in Section 3.4 is used. In particular we have Ω = (0, 1)2.

Lemma 5.14. Given the initial boundary value problem in (5.24) with abbre-
viations (5.16)–(5.19), (5.22) and (5.23), a discretisation with a local order of
accuracy of O(h2 + k) is given by

(idh + kLz
h)U i,j,l+1 = U i,j,l + kfhU i,j,l , (i, j) ∈ Ωz

h , l ∈ N0 ,

Bz
hU i,j,l+1 = 0 , (i, j) ∈ (∂Ωz\∂Ω)h , l ∈ N0 ,

U i,j,0 = u(0)(xi, yj) , (i, j) ∈ Ω̄h ,

BhU i,j,l+1 = 0 , (i, j) ∈ ∂Ωh , l ∈ N0 ,
(5.25)

where

1) fh refers to the discretised similarity measure as in Lemma 3.17,
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2a) for the piecewise diffusive case, Lz
h refers to the discretised operator

Lz
h = −αz

(
∂±

11 + ∂±
22 0

0 ∂±
11 + ∂±

22

)
, (5.26)

and Bz
h is given by

Bz
h = αz

(
nz

1∂
±
1 + nz

2∂
±
2 0

0 nz
1∂

±
1 + nz

2∂
±
2

)
, (5.27)

2b) for the piecewise elastic case, Lz
h refers to the discretised operator

Lz
h = −αz

(
(λz + 2µz)∂±

11 + µz∂±
22 (λz + µz)∂a

1∂a
2∂±

12

(λz + µz)∂a
1∂a

2∂±
12 µz∂±

11 + (λz + 2µz)∂±
22

)
(5.28)

and Bz
h is given by

Bz
h = αz

(
(λz + 2µz)nz

1∂
±
1 + µznz

2∂
±
2 λznz

1∂
±
2 + µznz

2∂
±
1

µznz
1∂

±
2 + λznz

2∂
±
1 µznz

1∂
±
1 + (λz + 2µz)nz

2∂
±
2

)

(5.29)

3) Bh refers to the boundary operators as in Lemma 3.17,

respectively.

Proof. The derivation of the discretised operators differs from Lemma 3.34 only
by the additional constant αz which neither complicates the discretisation nor
affects the local oder of accuracy. Furthermore, the discretisation of (5.27) and
(5.29) involve solely second-order difference quotients and Lemma 2.12 can be
applied to conclude the proof.

Since the discretised operators differ from those in Lemma 3.34 only by a factor,
we refer for the stencil notation to Corollary 3.18.
Similarly to Section 3.4, a linear system of equation can be assembled, here
with respect to each region,

AzUz,(l+1) = Uz,(l) + kFz,(l) , l ∈ N
0 , z = 0, . . . ,m ,

Uz,(0) = 0 , z = 0, . . . ,m .

5.4 Numerical Solution

Following the discretisation from the previous section, for each region Ωz an
assembled system is to be solved for Uz,(l+1) in each iteration step. Then, for
given digital images Rh, Th and discretisations of a piecewise constant regu-
larisation function α, and – in the case of the elastic regulariser – piecewise
constant Lamé parameter functions λ and µ, an algorithm reads as follows.
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Algorithm 5.15.

choose U(0) and k
for l = 0, 1, . . . do

for z = 1, . . . ,m do

compute force term Fz

assemble Az

solve AzUz,(l+1) = Uz,(l) + kFz

end

compute transformed template image T
U(l+1)

end

In addition to the remarks given in Sections 3.5 and 4.5 it is worth to notice
that

• Algorithm 5.15 computes the displacement field for the regions Ω1, . . . ,Ωm

only and not for background structures of the image which are included
in Ω0,

• due to the decomposition into regions, instead of one system of large size,
m systems of equations of smaller size have to be solved which require
less effort in terms of computational time and storage,

• due to the constant parameter functions in each region, fast solving rou-
tines as described, for instance, in (Fischer & Modersitzki, 1999, 2002,
2004) can be employed,

• the computation of the transformed template image T
U(l+1) requires par-

ticular care: Assuming the situation of two regions being adjacent in the
template image but separated from each other in the reference image (i.e.,
a topological change occurs), a gap is required to open between the regions
while transition from the template onto the reference image. Since the
interpolation of T

U(l+1) takes place in the domain of the template image,
ΩT , additional knowledge is essential to ensure the opening of a gap in
the reference image.
Motivated by a setting as depicted in Figure 4.2 we introduce a virtual
gap. Here, we are faced with two regions Ω1, Ω2 separated by a gap
(belonging to a region Ω0 collecting all background structures) of small
width in the template and of large width in the reference image. Clearly,
the common boundary Γ1,2 is a zero set as long as there exists a positive
lower bound for the width of the gap. Employing a registration algorithm
with an appropriate grid spacing h, a common interpolation scheme can
be used to assign a grey-value out of the gap in the discretised template
image to the corresponding position within the gap in the discretised ref-
erence image. However, by shrinking the (physical) gap in the template
image such that Γ1,2 6= ∅, a common interpolation scheme fails since the
gap is no longer contained in a discretisation of the template image re-
gardless of the choice of h. At this point, a virtual gap comes into play
and acts in the same way as a (physical) gap.
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Figure 5.3: Results of using a linear interpolation operator I (left) and of using a
combination of I and Ivirt referring to a virtual gap located between the two centre
positions (right). Note that the grey-value of the virtual gap can be arbitrarily chosen.

As a drawback, a decomposition of the template image is required in ad-
dition to the one of the reference image. Moreover, this decomposition
M(ΩT ) is required such that each region Ωz

T corresponds intrinsically to
a region Ωz

R from the decomposition M(ΩR). With domain discretisa-
tions {Ωz

h,R}
m
z=0, {Ω

z
h,T }

m
z=0 the set of positions with nearest neighbouring

points belonging to Ωz
h,T and to a neighbouring discretised region can be

described as

Γz := {x ∈ Ω | B∞,1(x) ∩ Ωz
h 6= ∅ ∧ B∞,1(x) ∩ Ωẑ

h 6= ∅ for all ẑ 6= z}

where B∞,1(x) := {y ∈ Ω | ‖y − x‖∞ < 1} denotes a neighbourhood with
respect to the l∞-norm with radius 1 around x. Then, given a discrete
position xi,j ∈ Ωz

R, the grey-value of T at the transformed position is
determined by

T i,j,l+1
U :=

{
I(Th, xi,j + U i,j,l+1) , xi,j + U i,j,l+1 /∈ Γz

Ivirt(Th, xi,j + U i,j,l+1) , xi,j + U i,j,l+1 ∈ Γz (5.30)

with I as a linear interpolation operator. Ivirt denotes the interpolation
operator acting in the virtual gap region and can be defined, e.g., as
depicted in Figure 5.3.

Summarising, a numerical scheme enabling for topological changes is achievable
but requires additional knowledge given by decompositions into sets of regions
corresponding intrinsically to each other. Furthermore, a solution of the pro-
posed scheme is not guaranteed to show neither a swap of regions nor an overlap
of two non-background regions.
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6 Results

The proposed methods from Chapter 4 and Chapter 5 have been applied to
various image registration problems. In order to investigate the properties of
the methods, we start with the application to synthetic images in one and
two dimensions. Here, a ground truth is available and allows for an objective
evaluation of the resulting displacement field. We proceed with the investigation
of medical applications where a ground truth is not available in general.

6.1 Synthetic Images

We start with the registration of synthetic images, and turn our attention first
towards the weighting function, α. To this end, we revisit the one-dimensional
problem depicted in Figure 4.3. A similar problem, but in two dimensions, has
been introduced in Figure 4.2, which we consider next. Then, by extending the
variability to the Lamé parameters, the introductory registration problem from
Figure 4.1 can be solved successfully. Next, we consider a rotation problem
as an example for the embedding of a rigid object in an elastic surrounding.
Finally, an elastic phantom will be investigated.

These images have been chosen to illustrate the behaviour of the proposed
approaches for different settings as they are likely to occur with clinical appli-
cations.

6.1.1 1D Case

To outline some fundamental properties of the variable regularisation, we be-
gin with a one-dimensional problem. The problem is similar to the one from
Figure 4.3 but now with five objects, cf. Figure 6.1, top row, for the template
image T and the reference image R. For the outer objects, there is no change
in position during transition from T to R. The other objects are designed such
that they indeed change their positions in such a way that gaps between them
either enlarge or shrink, or, when employing a piecewise variable regulariser, in
such a way that gaps show up or disappear.

103
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Figure 6.1: Template T and reference image R are shown in the upper row. Below,
from top to bottom, the left column shows the segmentation of T , the deduced values
for α, and the subtraction image R − T whereas in the right column the resulting
displacement function U , the transformed template image TU , and the subtraction
image R − TU are depicted.

We investigate various settings and consider at first a registration scheme based
on the variable diffusive regulariser.

Variable Regulariser

For a spatially variable regularisation, a segmentation of the template image T
is required. Each object of T (given by an interval with non-zero grey-values)
belongs to a single region Ωz, z = 1, . . . , 5, of the decomposition M(ΩT ) whereas
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the rest of the image is treated as a background region Ω0. The decomposition is
encoded in the segmented template image by assigning an integer value to each
region (cf. Figure 6.1, second row, left). From the segmented template image,
we deduce the values of the weighting function α (shown below). By setting α
to a small value in background regions, we expect a displacement function u
which is constant within each object and exhibits high gradients between them.

An application of the variable diffusive regulariser with α(x) = 10 for x ∈ Ωz,
z = 1, . . . , 5, α(x) = 0.01 for x ∈ Ω0, and equipped with Dirichlet boundary
conditions fulfills our expectations well. As is apparent from the right column
in Figure 6.1, the displacement function U (second row) shows a constant dis-
placement within the objects with abrupt changes between them. In addition,
the transformed template image TU , depicted below, indicates a registration
result that coincides with the reference image. The differences between these
two images are negligible as can be seen from the subtraction image R− TU in
the bottom row.
Note that a similar result may be obtained when applying a constant but very
small α. However, this problem becomes increasingly ill-posed with decreasing
α, and therefore requires a smaller step size.

Variable Regulariser in the Presence of Noise

To test the proposed method in a more realistic setting, we modify the ref-
erence image by adding white noise with a standard deviation of 10% of the
previous grey-value scale (Figure 6.2, top right). The template image and α
remain unchanged. The situation of a reference image with a higher noise level
corresponds to registration problems with a pre-operatively generated image
of high quality and an intra-operatively generated one of lower quality. Since
both the segmentation and interpolation of grey-values are done with respect
to the template image, the noise neither influences the correct installation of
the weighting function nor affects the grey-values of the transformed template
image. The ideal displacement field for this setting remains the same as for the
original reference image.

Now, the variable diffusive regulariser is applied with both a varying and a
constant weighting function. As shown in Figure 6.2, center and bottom right,
a constant choice of α (here α ≡ 0.03) fails. In particular, the gap regions
are penalized such that a large difference in the grey-values is preferred over a
large gradient in the displacement. Consequently, neither the gaps between Ω3

and Ω5 close to the expected extent nor the gaps between Ω1 and Ω3 enlarge
successfully. In contrast, a variable weighting (the same as for the noiseless
setting) is able to cope with the presence of noise in the reference image. It
simultaneously supports a noise-independent smooth displacement within the
objects and allows for a treatment of high gradients in the gap regions as shown
in Figure 6.2, center and bottom left.
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Figure 6.2: Template T and noised reference image R are shown in the upper row. Be-
low, the left column depicts the registration result using a variable weighting function,
whereas the right columns corresponds to the one using a constant weighting function.
In the center row each of the displacement functions is depicted, the bottom row shows
the transformed template image.
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Figure 6.3: Displacement function and transformed template image are depicted using
a segmentation of the template image (left) and one of the reference image (right).
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Figure 6.4: Template T and reference image R, now with gaps of zero size, are shown
in the upper row. Below, the left column refers to the variable diffusive regulariser
whereas the right column to the piecewise diffusive regulariser. From top to bottom
are shown the resulting displacement function U , the transformed template image TU ,
and the subtraction image R − TU .
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Figure 6.5: Template (left) and reference image (center left) are displayed together
with the resulting transformed template image (center right) and a visualization of the
displacement field on a coarsened grid (right).

Variable Regulariser with a Segmentation of the Reference Image

The variable regularisers can be modified in order to employ a segmentation of
the reference rather than one of the template image. This modification causes
the parameter functions to evolve no longer in time, instead they remain fixed
throughout the iterative procedure.

However, as discussed in Section 4.3, a change of the image to be segmented
may lead to a failure in registration if large segmented overlap regions exist. For
the given registration problem, such regions can be detected in the subtraction
image (see Figure 6.1, bottom left) between Ω2 and Ω3 as well as between Ω3

and Ω4.

From Figure 6.3, right, a failure in registration can be observed. For comparison,
the result using a segmentation of the template image is depicted on the left.

Piecewise Variable Regulariser

In a final modification step the gap width in template and reference image is
reduced from two voxel spacings to zero. Now, as can be seen from Figure 6.4,
top row, three regions in each image are no longer separated from each other
by a gap of zero grey-value – the large gap changes are replaced by topological
changes.

An application of the variable diffusive regulariser suffers from the unchanged
weighting function between Ω1 and Ω2 as well as Ω2 and Ω3 and results in a
dissatisfying displacement. In contrast, a piecewise variable diffusive regulariser
additionally equipped with a segmentation of the reference image leads to a
correct displacement (cf. Figure 6.4, right). Note that the use of a virtual gap
as defined in (5.30) has been essential for a successful registration.

6.1.2 2D Case

The investigation of the variable regularisers is continued with several two-
dimensional problems. We begin with a two-dimensional registration problem
of the same type as in the previous section.
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Figure 6.6: Template (left) and reference image (center left) are displayed together
with the resulting transformed template image (center right) and a visualization of the
displaement field on a coarsened grid (right).

Spatially Varying Regularisation

Recalling from Figure 4.2 the two-dimensional problem consisting of two objects
with a gap of variable size between them, we observed in Section 4.1 that a
constant choice of α does not lead to a satisfactory result – either the gap is
enlarged to its expected size but the shape of the objects is changed or the size
of the gap remained small while the shape of the objects is preserved.

In contrast, a variable choice of α achieves the desired result (cf. Figure 6.5).
Here we choose α(x) = 1/4 and α(x) = 1/64 inside and outside the objects,
respectively, λ ≡ 2 and µ ≡ 4, and employ a registration scheme based on
the SSD measure and the variable elastic regulariser equipped with Neumann
boundary conditions. Note that the choice of Neumann conditions is natural.
Choosing Dirichlet conditions would damp the displacement near to the image
boundary which does not reflect the problem setting.

Spatially Varying Regularisation and Material Parameters

In this example, we combine a variable choice of α with a variable choice of
the Lamé parameters and choose the registration problem that served as the
first example in Chapter 4. Here, two objects were considered, the left one
representing a soft-tissue structure, the right one a bone structure. Without any
variable parameters we observed a dependence of the movements of the objects
on each other and, additionally, a corruption of the right object caused by the
noise artefact. Although, by choosing variable material properties the right
object could be correctly registered, the cross-dependency remained existent,
cf. Figure 4.1.

With a setting of α(x) = 1/64 and α(x) = 1/128 inside and outside the objects,
respectively, λ ≡ 2 as well as µ(x) = 4000 and µ(x) = 4 inside and outside
the right object, respectively, a displacement field can be obtained where each
object deforms independently of each other: whereas the left one is stretched,
the right object is neither affected by the left one nor by the noise artefact.
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Figure 6.7: Template (left) and reference image (center left) are displayed together with
visualized displacement fields for a constant µ (center right) and a spatially varying µ
(right).

Ω1

Ω2

Ω3

Ω0

Figure 6.8: From left to right, template, segmented template, and reference image for
the elastic phantom are shown.

Rotation

As an extension to the previous example we investigate the shape-preservation
property1 of the variable elastic regulariser in more detail. To this end, a tem-
plate image with a square is given. A rotation by 30◦ yields the reference image,
cf. Figure 6.7. While in the first experiment all parameters are chosen constant
(α ≡ 0.1, λ ≡ 0.1, and µ ≡ 4), in the second experiment µ is multiplied by
1000 in the square region. Although, after the same number of iterations, both
transformed template images almost match the reference image, the varying
parameter case (cf. Figure 6.7, right) is clearly preferred since it results in a
more realistic displacement field, e.g. for a muscle-bone interface.

Elastic Phantom

The last synthetic example considers a two-dimensional elastic phantom. Here,
our aim is to define a parameter setting which can be used in medical ap-
plications. The template image (Figure 6.8, left) consists of three objects: a
rectangular object representing, for instance, bone structure, a square object
modelling some soft tissue and in its inside a circle object taking the role of,
for instance, a tumor. A decomposition assigns regions Ω1, Ω2, and Ω3 to these
objects. The remaining part of the template image is collected in a background
region Ω0, cf. Figure 6.8, center. For the transition from the template to the

1In fact, we have a penalizing term which does not guarantee for a preservation of shape
and, instead, only approximates a preservation of shape.
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Figure 6.9: The results from four different settings are depicted columnwise with respect
to TU (top row), the overlayed displacement field (center row; data are thinned out
for better recognition), and the volume preservation indicator |1 + ∇u| (bottom row),
cf. text for further details.

reference image (see Figure 6.8, right), we model a shrinkage of the tissue object
without affecting the bone object, which is, as mentioned before, a challenge in
standard registration approaches. The second problem regards the behaviour
of the circle object. Due to its invisibility in the reference image, a standard
registration approach will tend to shrink its size in order to relate it as much
as possible to a circle of zero size.

The variable elastic regulariser is employed with four different parameter set-
tings. For the first setting, all parameters are constant (α ≡ 0.1, λ ≡ 0.1,
µ ≡ 4), cf. the first column of Figure 6.9. For the remaining settings, α is
reduced locally in Ω0 (α = 0.015). In addition, µ (cf. third column) and λ
(cf. fourth column) are multiplied by 1000 for the circle object Ω3.

After the same number of iterations, the resulting deformation fields are com-
pared with respect to the deformed template image (top row in Figure 6.9) and
for a zoomed region around the square object with respect to the displacement
field (center row) and the quantity |1 + ∇u| (bottom row). Here, a volume
preserved region (corresponding to |1 + ∇u| = 1) is depicted by medium grey,
whereas a contracting (expanding) region appears in light grey (dark grey).

Recalling the first problem, the shrinkage of the tissue object Ω2 without affect-
ing the bone object Ω1 works properly whenever the weighting of the regulariser
is small between Ω1 and Ω2 (second to fourth column). For the second prob-
lem, several observations can be made. With no further material knowledge,
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the tumor object Ω3 is shrunk (reduction in volume is 30%), indicated by a
light grey of the circle object in the bottom row. With a large µ or λ, either an
approximated shape (and volume) preservation (third column) or an approxi-
mated volume preservation only (fourth column) can be seen. For both cases
the change in volume is less than 0.3%.

6.2 Medical Images

In this section, the application of the proposed method to data sets from a CT
and an MR image device is described. The first application originates from
an exposure of the knee, the second one shows the abdomen whereas the third
application is based on an exposure of the brain. Since real-life images are three-
dimensional, slices need to be extracted first in order to employ the proposed
algorithm. Then, template and reference image are two-dimensional images
and can be treated by the registration scheme. However, such a procedure
assumes the content of both template and reference image to be the same,
i.e. to each anatomical structure the existence of a corresponding structure in
the other image is assumed or, in other words, the displacement in the third
spatial component is negligibly small.

6.2.1 Kinematic Imaging

As the first real-life example an application concerning the assessment of the
kinematic motion of joints has been investigated. Template and reference image
show sagittal slices (of 256×256 voxels) from an MR exposure of a human knee
at different degrees of flection. Whereas the template image T shows a nearly
straightened knee joint, it is depicted with an angle of about 35◦ in the reference
image R, cf. Figure 6.10, top row.
A series of such images is typically given in kinematic imaging (Bystrov

et al., 2005). Firstly, every pair of subsequent images is registered from which
a mapping between any two images can be deduced. Secondly, in one image a
number of positions is chosen by a physician such that, based on the mappings,
the other images can be automatically aligned according to the one selected.
For instance, when selecting the template image in Figure 6.10 and choosing
three positions in the femur, all images in the series are aligned such that the
femur is always located in the same position, independent of movement of the
patient.

As part of this thesis, we investigate the first step which is the key part and
determine a displacement field for the given image pair. For the transition from
T onto R we expect a displacement field with the largest deformation in the
region corresponding to the knee joint, see the subtraction image R− T shown
bottom right. In contrast, in the regions corresponding to the femur and tibia
bones, a rigid transformation is a reasonable assumption.

The registration is performed using the standard method with constant param-
eters and the proposed method based on a segmentation of the template image.
As depicted in Figure 6.10, bottom left, the segmentation shows four regions
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Ω1

Ω2

Ω0

Ω3

Figure 6.10: Template and reference image for the kinematics application are shown
top left and top right, respectively (the grey-values are inverted for better recognition).
Below, the segmented template and the subtraction image are depicted.

Ω0, . . . ,Ω3 corresponding to articular capsule, femur, tibia, and the remaining
part of the image which are obtained by repeated application of the active
contour approach, cf. Section 4.2.2.

For both experiments, a registration scheme including the SSD measure and
a diffusive regularisation, supplemented by Neumann boundary conditions, is
employed. In the first experiment, a constant regularisation weight (α ≡ 0.025)
is chosen; in the second, α is increased for the bone structures and decreased
for the articular capsule, i.e. α(x) = 25 for x ∈ Ω1 ∪ Ω2 and α(x) = 0.005 for
x ∈ Ω0. In both experiments, a multi-resolution pyramid with four levels and
a coarsest resolution of 32 × 32 voxels is employed to increase robustness and
reduce the computational effort of the scheme.

The results are shown in Figure 6.11. The two columns on the left-hand side
correspond to the constant setting whereas the two columns on the right depict
the results for the varying setting.

A comparison reveals no visible improvement for the deformed template at a
first glance (see first and third image in the top row). Moreover, the subtraction
images (second and fourth) indicate a better fit for the constant setting than for
the variable setting. However, when zooming in the bone area (first and third
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Figure 6.11: Results for the case with constant parameters (first and second column)
and for the case with variable parameters (third and forth column). For each case the
top row depicts deformed template and subtraction image, in the bottom row zooms
into the deformed template are shown. See text for further details.

image in the bottom row) and filling Ω1 and Ω2 (retrospectively the registration)
with a chequerboard pattern, a non-rigid deformation of both femur and tibia
becomes visible (second image in bottom row). Moreover, the shape of the femur
near to the articular capsule is deformed. This is caused by a structure included
in the reference image but not in the template image leading to a downward
movement of the femur. Such a failure of registration does not happen for the
second experiment. Here, the bone structures are rigidly displaced and the
result is not misled in the region of the articular capsule (bottom right).

6.2.2 Radiotherapy Planning

In the second medical example, CT exposures2 of the abdomen are investigated.
They are taken from the same patient but at different times. Such images are
typically acquired in the form of follow-up studies to monitor the progress of
treatment and to adjust a treatment plan to changes caused by different pa-
tient positioning or tumor response during radiation therapy, see, e.g., (Pekar

et al., 2004; Kaus et al., 2004) for examples or (Keall, 2004) for further
explanation.

Often, images from the abdomen differ not only due to a different patient
position but, which is more importantly, due to different colon content as is
apparent from the extracted slices (image size is 256×256 voxels) in Figure 6.12,

2Image courtesy of William Beaumont Hospital, Royal Oak, MI.
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Ω1

Ω2

Figure 6.12: Template T (top left) and reference image R (top right) together with the
subtraction image R − T (bottom right) and the segmented template (bottom left).

top row (for visualization purpose the grey-values are inverted). Although the
colon content is in general not relevant for the planning procedure, it may
influence the registration result. In such a situation, a standard registration of
the template image T onto the reference image R typically shrinks the colon
which causes a shrinkage in the surrounding regions as well.

For the registration, we combine the SSD measure with the variable elastic regu-
lariser supplemented by Neumann boundary conditions. In the first experiment,
the parameters are set constant (α ≡ 0.005, λ ≡ 0, and µ ≡ 4) reflecting the
standard approach. For the second experiment, the colon is segmented in the
template image first. Figure 6.12, bottom left, depicts the segmentation with
Ω1 as the colon region and Ω2 as the remaining part of the image. The same
choice of parameters as in the first experiment is used except from the colon for
which µ = 4000 is set in Ω1. A multi-resolution pyramid with four levels and a
coarsest resolution of 32 × 32 voxels is employed for both experiments.

Figure 6.13 depicts the result for the first experiment in the left column. Al-
though the global alignment is satisfactory (cf. the subtraction image in the
center row), the colon region as well as the surrounding organs are shrunk as
apparent from the displacement field depicted below. The result for the second
experiment (cf. the right column in Figure 6.13) differs from the first one in
the colon region. Due to the increased value of µ in Ω1, this region shows a
displacement field which is not affected by the different image content within
the set Ω1.
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Figure 6.13: Registration results for the standard approach (left) and the proposed
approach (right). From top to bottom each column shows the deformed template TU ,
the subtraction image R − TU , and the deformation field.

6.2.3 Brain Shift

Finally, slices from two MR data sets3 showing a human head are registered.
The template data set has been taken pre-operatively whereas the reference
data set shows the head in an intra-operative state, cf. Figure 6.14 for sagittal
slices (the grey-values are inverted for better perception). In the reference data
set we observe the skin as the darkest structure being partially put aside and
the skull being opened. Furthermore, a shrinkage of the brain is visible. This
phenomenon, known as brain shift, is caused by a loss in pressure after opening
the dura. It leads to a shrinkage of the brain and can reach up to 20 mm at the
surface of the brain and up to 6 mm at the inter-hemispheric fissure (Ganser

et al., 1998). However, the principal direction of displacement does not al-

3Image courtesy of Dr. Hastreiter, Department of Neurosurgery, Friedrich Alexander Uni-
versity of Erlangen-Nuremberg.
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Figure 6.14: Sagittal slices from MR data sets showing a patient in a pre-operative state
(left) and in an intra-operative one (right). The dashed lines indicate the positions of
the transversal images to be extracted for the registration.

ways correspond with the direction of gravity (Hartkens et al., 2003). As
a consequence, a pre-operatively determined position in the template data set
of, for instance, a tumor or a lesion cannot be used in the reference data set
and a further possibly time-consuming analysis is needed. However, the quality
and/or the resolution typically differs between a pre-operatively taken data set
and an intra-operatively generated one. Therefore, the detection of a tumor or
a lesion may be harder in the reference data set, i.e. in the one of lower quality
or resolution. Nevertheless, a registration of the template onto the reference
data set provides both a mapping of the detected position into the reference
domain and a depiction of the intra-operative state at the same quality than
for the pre-operative state.

From the 3D data sets transversal slices of size 256×256 are extracted along the
dashed lines in Figure 6.14. The extracted slice from the pre-operatively gen-
erated data set serves as template image T , the one from the intra-operatively
generated data set as reference image R (depicted in Figure 6.15, upper row).

The challenge arising with the registration task is twofold. Firstly, the skin is
partly missing in the reference image. By a standard registration scheme such
a non-existent region is usually either shrunk or moved to a position which is
incorrect but, due to grey-value correspondences, preferable from the view of
the minimiser. The second difficulty concerns the enlarged region in the right
hemisphere between skull and brain caused by the shrinkage of the brain. Here,
as seen before for synthetic images, a standard registration scheme is usually not
able to successfully treat such an opening unless the regularisation parameter
is decreased in such an amount that other image regions undergo a change in
topology.

Consequently, our purpose for the registration task is twofold. Firstly, a gap
arising in the reference image shall be feasible. This will enable the brain to
deform in a manner which is not affected by the deformation of the skull area.
Secondly, the missing part of the skin in the reference image shall not affect
the deformation field. Since there exists no mapping for this part between the
template and the reference image, the preferable choice is to leave this part
undeformed.

The registration is performed using the standard elastic regulariser with no
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Ω1

Ω2

Ω3

Ω0

Figure 6.15: Template T (top left) and reference image R (top right) together with the
subtraction image R − T (bottom right) and the segmented template (bottom left).

spatially varying parameters and with the variable elastic regulariser based on
a segmentation of the template. As before, a multi-resolution pyramid with
four levels and a coarsest resolution of 32× 32 voxels performs well in terms of
robustness and computational effort. The number of iterations was 70, 70, 30,
5 from the coarsest to the finest level.

For the standard elastic regulariser, a constant setting of the parameters is cho-
sen. Here, a setting with α ≡ 10−3, λ ≡ 0, µ ≡ 4 is used to allow for a shrinkage
of the brain and the cerebrospinal fluid (CSF) regions. However, a small choice
of α yields a local deformation only and is not applicable for a global align-
ment as it is required here (see the subtraction image in Figure 6.15, bottom
right).Therefore, in a pre-processing step a rigid alignment of the template im-
age in accordance to the reference image or, as done here, a pre-registration
(for instance with a regularisation parameter of α ≡ 0.1 and 20 iterations on
the coarsest level) is required.

For the variable elastic regulariser, an active contour-based segmentation of the
template image (cf. Figure 6.15, bottom left) is given by a decomposition into
brain (Ω1), skull (Ω2), and skin area (cf. Section 4.2.2). Since the image re-
gion outside the skin is not of interest, the determination of an outer contour
of the skin is omitted and both the skin and the outer region are collected in
the set Ω3. In addition, the region between skull and brain is included in the
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Table 6.1: Parameter setting for the registration with a variable elastic regulariser.

Ω0 Ω1 Ω2 Ω3

α 10−5 10−3 10−3 10−3

λ 0 0 0 0
µ 4 4 400 4 · 104

set Ω0. Various parameter settings are assigned to each region (summarised
in Table 6.1) to facilitate the displacements enforced by the reference image.
Firstly, α is chosen small to allow the CSF regions in the right hemisphere
to shrink during transition from the template to the reference image (cf. Ta-
ble 6.1). For the gap region, the regularisation is further reduced by a factor
of 100. Then, for the Lamé parameters, a setting corresponding to a highly
compressible material is chosen. In addition, µ has been increased in the skull
area to model a higher Young’s modulus (corresponding to a smaller relative
stretch). Finally, µ has been largely increased in the skin area to prevent it from
a non-rigid deformation (caused by the missing part in the reference image). A
pre-processing as for the standard case is not required since the increased value
of µ in Ω3 leads in conjunction with the multi-resolution approach to a correct
global translation.

The results are shown in Figure 6.16. The left column displays the result from
the first experiment, i.e. using the elastic regulariser, whereas the right column
corresponds to the second experiment, i.e. using the variable elastic regulariser.
Comparing the deformed images and the subtraction images (first and second
row, respectively) an improved registration result is clearly visible.
Although for the first experiment a partial shrinkage of the brain according to
the brain shift can be observed, the shape of skull and skin is not preserved.
Consequently, a gap in the skull-brain area is not opened to the expected extent
and the brain is misaligned near the skull. Moreover, in the region where the
skin is missing in the reference image, the skin is mapped onto the skull.
In contrast, for the second experiment the deformed template image indicates
a shrinkage of the brain. Due to the shape preservation of the skull a gap
between skull and brain is opened. However, in the subtraction image this gap
is still visible since it is filled with a grey-value from the template image which
is different from one of the gap in the reference image. Moreover, we observe the
center line of the brain to be correctly displaced towards the left hemisphere.
Finally, the deformation field is not affected by the grey-value difference in the
region of the missing skin part. Instead, the skin is rigidly deformed and not
mapped onto the skull.
The mapping of the skin area is also visible from the displacement fields (over-
layed in the third row, for better visualization every fifth vector is plotted only).
While in the first experiment the displacement of the skin causes a similar dis-
placement of the outer brain regions, the brain is not affected in the second
experiment.
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Figure 6.16: Registration results for the standard approach (left) and the proposed
approach (right). From top to bottom each column shows the deformed template TU ,
the subtraction image R − TU , the deformation field, and a volume preservation map.
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Figure 6.17: Brain-skull area after deformation with the standard method (left) and
the proposed method (right). The markers from the template, the reference, and the
deformed template image are denoted by red circles, blue circles, and red crosses,
respectively.

Moreover, both experiments show an upward movement in the right hemisphere
which is damped in the medial regions.
More detailed information is provided by the volume preservation map (bottom
row). Here, a blue color indicates an expanded region whereas a red color
corresponds to a shrinkage. The major volume changes can be seen for the
first experiment. In particular, the skull-skin area is largely deformed with less
changes in the brain area. In contrast, the volume of the skull-skin area for the
second experiment is nearly preserved. Compared to the first experiment we
observe larger changes for the sulci regions, which demonstrates the shrinkage
of the brain.

For a more quantitative analysis we manually place markers in the brain-skull
area. Note that these markers are for validation purpose only and not used
during registration. The markers from the template image are depicted by red
circles, the ones from the reference image by blue circles. A red cross denotes
the deformed position from the template image.4 Consequently, a satisfactory
registration result is achieved when a red cross aligns with a blue circle, see
Figure 6.17.
For fourteen markers the standard and the proposed method yield a median
difference of 2.9 mm and 1.3 mm, respectively, compared to the markers in the
reference image. The markers with the largest error are those near to the gap
region (second to fourth marker when numbering counterclockwise and starting
at the front end of the center line of the brain). Here, the median difference
is even higher: 4.6 mm for the standard method compared to 2.0 mm for the
proposed method.

4Since a backward approach is used, the resulting deformation field maps the domain of
the reference image onto the domain of the template image. For the markers in the deformed
template image, the inverse of the resulting displacement field has been approximated using
a fixed-point iteration scheme.
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7 Conclusions and Future Work

This thesis started by an investigation of a non-parametric registration approach
described in the literature. Here, elastic properties can be modelled and are –
like the amount of regularisation – uniformly chosen in the entire image domain.
Although achieving satisfactory results for a large range of applications, this
standard approach shows two major disadvantages when applied to medical
images: Firstly, image regions corresponding to different anatomical structures
such as bones or soft tissue are treated in the same way. Since the registration
scheme has no knowledge of different structures, the resulting transformation
does not necessarily reflect the individual elastic properties. Examples include
non-realistic deformations of bone areas or unwanted enlargement or shrinkage
of tumor regions in follow-up studies. Secondly, an individual treatment of
structures may require a reduced amount of regularisation between them, i.e., in
a so-called gap region. In particular applications from neurosurgery (e.g. brain
shift), orthopaedics or thorax modelling where anatomical structures may move
relative to each other (like in joints or like the liver alongside the ribs), exhibit
large changes in the gap size and require a spatially varying regularisation.

In this work, a scheme for image registration has been derived which allows for
spatial variation of both the amount of regularisation and the elastic properties.
The key observation is to replace the related scalars by parameter functions such
that dedicated values can be assigned to each region of an image. Numerical
schemes are developed to maintain the increased complexity of the registration
task.
The proposed scheme starts by computing a segmentation of the template im-
age (unless already given by an atlas). Having obtained a segmentation, a
priori knowledge can be used to initialise the parameter functions, that is, to
distribute elastic properties to each region and to possibly reduce the regularisa-
tion between certain structures. Finally, the registration approach is employed
with either the variable diffusive or the variable elastic regulariser.
From several synthetic and medical examples we observed displacement fields
being closer to ‘elastic reality’ compared to the standard approach.

However, the proposed scheme may suffer from the parameter functions required
to be continuously differentiable. In particular, a gap is allowed to enlarge or
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shrink in its size but neither to totally close nor open. As a logical extension, a
second approach is considered. Here, the solution space is enlarged and allows
for discontinuities in the parameter functions and in the resulting displacement
field. Together with the introduction of a virtual gap, both a piecewise variable
diffusive and a piecewise variable elastic regulariser are able to cope with a van-
ishing or emerging structure, i.e., with the occurrence of a topological change.
The drawback of this extended scheme lies in the additional requirements: Not
only a segmentation of the template is required but also a segmentation of the
reference image is needed in such a way that each segmented region of one image
corresponds intrinsically to a segmented region of the other image.

This work can be extended in several directions. For future work we suggest
to start with a thorough evaluation of the parameter functions – on one hand
of the regularisation function α and on the other hand of the Lamé functions λ
and µ. This includes a coupling of diffusive and elastic regulariser by choosing
the latter in the entire domain and setting λ = −µ in the regions to be modelled
by a diffusive regulariser.
In our believe, the evaluation will result in various parameter settings depen-
dent on the chosen application. Metaphorically speaking, when taking a picture
with a reflex camera spontaneously, one will not choose aperture, exposure time,
and depth of focus individually but a theme like, e.g., landscape, portrait, night
or sport. In the context of image registration, a theme like ‘vessel detection’,
‘breathing compensation’ or ‘brain shift’ will specify a range of parameter set-
tings included in a model. In a brain shift application, for instance, a better
adaption of the Lamé functions based on further segmentation into white mat-
ter and grey matter regions (which can be achieved by a simple thresholding
routine) is likely to result in a more realistic deformation of gyri and sulci
regions.
From a mathematical point of view, the derivation of fast numerical schemes as
are available for the standard approach is of major importance and, moreover,
is essential for clinical use.
In the case of piecewise variable regularisers, a challenging task is to circumvent
the additional segmentation of the reference image. In addition, the resulting
transformation should be guaranteed to be physically meaningful, i.e. without
swapping any regions or resulting in an overlap of non-background regions.
Furthermore, symmetry with respect to the choice of the image to be segmented
is a desirable property and, finally, a ‘segistration’ as a combined segmentation
and registration promises results being more robust to image artefacts, varying
contrast, or segmentation failures compared to a sequential scheme.



Notation

Cp set of p-times continuously differentiable functions

PCp set of p-times piecewise continuously differentiable functions

PCconst set of piecewise constant functions
(
· , ·
)

Euclidian scalar product

n outward pointing unit normal vector

d dimension

id identity operator

∇ gradient operator

∇u gradient operator w.r.t. a mapping u : R
d → R

d

∇∇u gradient operator w.r.t. the Jacobian of u

∇· divergence operator

∆ Laplace operator

ui,j short notation for partial derivative ∂ui/∂xj

S, S block stencil, stencil

sκ1,κ2 stencil entries

Ω, ΩT , ΩR image (domain)

Ω̄, ∂Ω closure and boundary of domain

Img(Ω) set of images defined on Ω

M(Ω) decomposition of Ω into regions Ω0, . . . ,Ωm

ImgPS(M(Ω)) set of piecewise smooth images defined on M(Ω)

T , R, Tu images

ϕ, u transformation, displacement
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126 NOTATION

U , UPC spaces of admissible functions

V, VPC spaces of test functions

J joint functional

DSSD
T,R , DpSSD

T,R similarity measures

Sdiff , Svardiff
α , Spdiff

α diffusive regularisers

Selas
λ,µ , Svarelas

α,λ,µ , Spelas
α,λ,µ elastic regularisers

α, αu (transformed) regularisation parameter

λ, µ, λu, µu (transformed) Lamé parameters

L, B regularising operator, boundary operator

f , g force terms

∂±
12, ∂+

1 , ∂−
2 difference quotients

∂a
1 averaging quotient

h = (h1, h2), k spatial and temporal grid spacing

i, j, l spatial and temporal indices

xi,j, tl discrete points in space and time

Ωh, Ωedge
h , Ωmid

h discretisations of Ω

∂Ωh, ∂Ω
edge
h , ∂Ωmid

h discretisations of ∂Ω

U discrete transformation, U i,j,l = (U i,j,l
1 , U i,j,l

2 )T

Rh, Th, TU digital images

Ri,j, T i,j discrete image values

Lh, Bh discretised operators

fh, gh discretised force terms

ξ grid point mapping

A matrix

U, F rearrangement of U and fhU in vector form
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