
Institut für Signalverarbeitung und Prozessrechentechnik
Universität zu Lübeck

Direktor: Prof. Dr.-Ing. Alfred Mertins

Cardiovascular Biomedical Image Analysis:
Methods and Applications

Inauguraldissertation
zur Erlangung der Doktorwürde (Dr.-Ing.)

der Universität zu Lübeck
– Technisch-Naturwissenschaftliche Fakultät –

vorgelegt von

Diplom-Ingenieur
Alexandru Paul Condurache

aus Lübeck

Lübeck, im November 2006



Referent: Priv.-Doz. Dr.-Ing. Erhardt Barth
Koreferent: Prof. Dr.-Ing. Til Aach
Vorsitz des Prüfungsausschusses: Prof. Dr.-Ing. Erik Maehle
Tag der mündlichen Prüfung: 23. Februar 2007

gezeichnet: Prof. Dr.rer.nat. Enno Hartmann
– Dekan der Technisch-Naturwissenschaftlichen Fakultät der Universität zu Lübeck –



Cardiovascular Biomedical Image Analysis: Methods
and Applications

Alexandru Paul Condurache





Preface

My interest in seeing and thinking machines was ignited mainly during my high school years
by novels such as those written by Isaac Asimov and Arthur C. Clark, which however, found
the ground already prepared by Jules Verne. My study at the “Electronica” Faculty of the
“Polithenica” University of Bucharest was then the consequence. The passage from science-
fiction to something more “earthly” happened during the last years as a student, while I was
specializing in “Imagini, Forme si Inteligenta Artificiala (IFIA)”1 under the guidance of my
professor Vasile Buzuloiu and the group he lead at the “Laboratorul de Analiza si Prelucrarea
Imaginilor (LAPI)”2. From this group – to whom my gratitude is directed as a whole – I would
like to mention Dr. Mihai Ciuc and Dr. Constantin Vertan, which found the best way to make us
students the acquaintance with Image Processing and other related fields in a clear and enjoyable
way.

During my activity at LAPI I met Dr. Erhardt Barth, who gave me the possibility to pre-
pare my diploma thesis at the Institute for Signal Processing of the then Medical University of
Lübeck, within a project related to vision-based quality control. He has my gratitude and full
appreciation for being not only a teacher but also a very good friend.

During my time in Lübeck – an excellence center in medical technologies – I was first ac-
quainted with medical image processing, an acquaintance which shaped my career from then on
trough the additional specialization year in medical imagery, again at the “Politehnica” Univer-
sity and then during my later stay as a research associate at the Institute for Signal Processing
(ISIP) of the University of Lübeck. This doctoral thesis has grown in a natural way from my in-
terest in the field. It benefited largely from the physical proximity between ISIP and the Lübeck
campus of the University Clinic of Schleswig-Holstein (UKSH), as well as from the innovative
and open spirit of its medical staff, from which I would like to mention those with whom I
collaborated more closely during the last years: Dr. Stephan Grzybowsky, Dr. Peter Radke, Dr.
Axel Kaiser, Dr. Martin Misfeld and especially Dr. Hans-Günther Machens.

My special gratitude goes to Professor Til Aach, head of ISIP until 2004 and the main
“guiding-light” during my time spent researching for this thesis. The numerous discussions
we had as well as his critical, well-balanced points have been a constant source of scientific
inspiration just as much as his basketball skills, proven during the many games we’ve played
together, have helped establishing a relaxed, friendly and therefore – in my opinion – optimal
working atmosphere.

Towards my colleagues and friends at ISIP: Andre Folkers, Uli Hofmann, Christian Kier,
Kerstin Menne, Volker Metzler, Ingo Stuke and Daniel Toth goes my thanks not only for the
scientific debates we held together, but also for teaching me german and then enduring my

1Images Patterns and Artificial Intelligence
2The Image Processing and Analysis Laboratory (IPAL)



endless speeches with stoicism. I also thank them for making me feel very well during my
entire stay in Germany until now.

For their support and understanding I thank my family: my parents Anca and Serban Con-
durache who were there for me whenever I needed them and most specially to my wife Andreea
whose beautiful smile was always near to provide me with the emotional support I looked for.

I would like to end this Preface with my personal conclusion for these last five years:“Small
opportunities are often the beginning of great enterprises”– Demosthenes

To my Family
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Abstract

The medical field as a whole benefited largely during the past decades from the introduction
and large-scale availability of various non-invasive imaging methods. The introduction of com-
puters provided the ground on which seeing machines appeared to assist the medical staff at
various tasks. The realization of such machines is characterized by a strong interdisciplinarity
and algorithmic complexity and therefore their true potential surfaced only recently, together
with the appearance of more powerful hardware.

Cardiovascular medicine was one of the first areas of application for non-invasive imag-
ing methods: X-ray angiograms were used to enhance diagnostic and evaluation capabilities.
Therefore the rate of acceptance for a machine-vision-enhanced routine is relatively high among
physicians in the field.

This work profits from such synergies and brings together machine-vision algorithms and
research with cardiovascular applications, and can be therefore considered an attempt to estab-
lish or – following a more conservative rhetoric – to cement a new branch of medical image
analysis: that of cardiovascular biomedical image analysis. This work is not however a plea for
replacing the human specialist by a machine, but rather a prove that machine-vision support can
enhance the abilities of physicians to the benefit of the patient.

We concentrate on non-invasive 2D imaging methods, which are largely used in cardio-
vascular medicine. Starting from a specific application, machine-vision-based solutions are
searched and novel methods are developed – when needed – to solve the problem at hand.

We describe how to improve the navigation abilities of an operating physician during Percu-
taneous Transluminal Coronary Angioplasty (PTCA) by presenting him a dynamic roadmap of
the coronary vessel tree instead of the static one used until now. The dynamic roadmap moves
synchronous with the heart and the surgical tools, like e.g., guidewire tip and balloon are su-
perimposed. We also show how to measure automatically the Myocardial Blush Grade (MBG)
which is used to estimate revascularization of the cardiac muscle. The MBG helps evaluate the
success of a PTCA which was performed previously as treatment to a heart attack.

We develop novel automatic and semiautomatic vessel segmentation algorithms. The main
purpose of segmentation is here the quantification of measures of the investigated vasculature,
like e.g., the area and length. Such measures applied, e.g., to the retina vessel-tree, help pre-
vent blindness by facilitating a timely diagnostic of the diabetic retinopathy. In the case of
transplanted skin tissue, they are used, e.g., in medical research to facilitate the investigation
of the effects of different angiogenesis-inducing drugs. In the case of peripheral angiography
vessel segmentation is useful during the diagnosis phase where it provides the grounds for, e.g.,
enhanced blood-flow analysis.

We describe also how to compute automatically new quality measures mainly for tricuspid
xenograft heart-valve implants. The examination of heart-valve implants is done preoperatively
in a dedicated test-bed. The purpose of such quality control is to ensure that only the best

v



possible implants reach the patient.
In this work, we describe machine-vision-based supportive technologies for the cardiovas-

cular medicine. We introduce algorithmic solutions spanning almost the entire spectrum of
domains, starting from research to medical routine and within this routine from the preventive
to the interventional medicine including the diagnostic, preoperative, operative and evaluation
phases.
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Zusammenfassung

In den vergangenen Jahrzehnten hat die gesamte Medizin enorm von der Einführung und breiten
Verfügbarkeit nicht-invasiver Bildgebungsmethoden profitiert. Die Entwicklung von Comput-
ern ermöglichte es, sehende Maschinen zu konstruieren, die das medizinische Personal bei einer
Vielfalt von Aufgaben unterstützen. Systeme dieser Art setzen eine hohe Interdisziplinarität der
Entwicklung voraus und sind im Allgemeinen sowohl algorithmisch als auch in der Rechenzeit
sehr anspruchsvoll. Das wahre Potenzial dieser Methoden kommt deshalb erst in letzter Zeit
unter anderem durch den Fortschritt in der Hardwareentwicklung zum Vorschein.

Im Bereich der kardiovaskulären Medizin kam mit der Röntgen-Angiografie eine der ersten
nicht-invasiven Bildgebungsmethoden zum Einsatz. Die damit arbeitenden Mediziner haben
dieses Verfahren schätzen gelernt und als selbstverständlich akzeptiert, so dass die Akzeptanz
einer maschinengestützten klinischen Routine in diesem Feld relativ hoch ist.

Diese Arbeit nutzt solche Synergieeffekte durch die Vereinigung von Algorithmen des ma-
schinellen Sehens (machine vision) mit kardiovaskulären Anwendungen. Sie kann deshalb als
Ansatz aufgefaßt werden, das neue Feld der kardiovaskulären biomedizinischen Bildanalyse zu
zementieren. Das Ziel dieser Arbeit ist dabei nicht, den meschlichen Spezialisten durch eine
Maschine überflüssig zu machen, sondern zu zeigen, dass die Möglichkeiten des Arztes durch
die Unterstützung mit maschinellem Sehen erweitert werden – zum Vorteil des Patienten.

Der Fokus liegt auf nicht-invasiver 2D Bildgebung, die in der kardiovaskulären Medizin
häufig genutzt wird. Beginnend mit einer spezifischen Anwendung werden machine-vision-
basierte Methoden gefunden und neue Verfahren entwickelt, um das vorliegende Problem zu
lösen.

In der Arbeit wird eine dynamische Karte des koronaren Gefäßsystems vorgestellt, der die
Navigationsmöglichkeiten des operierenden Arztes während einer perkutanen transluminalen
Koronarangioplastie (PTCA) im Vergleich zu dem bisher genutzten statischen Karte erheblich
verbessert. Die dynamische Gefäßkarte bewegt sich synchron zum Herz während die chirurgis-
chen Werkzeuge überlagert werden. Des Weiteren wird eine automatische Bestimmung des My-
ocardial Blush Grade (MBG) erreicht. Der MBG ist ein Maß für die (veränderte) myokardiale
Durchblutung und wird genutzt, um den Erfolg einer PTCA als Behandlung eines Herzinfarkts
zu beurteilen.

Ein weiterer Schwerpunkt der Arbeit liegt auf automatischen und semiautomatischen Ge-
fäßsegmentierungsalgorithmen mit dem Ziel der Quantifizierung verschiedener Gefäßeigen-
schaften, wie z.B. Fläche oder Länge. Ein Anwendungsfall dieser Algorithmen ist z.B. die
Untersuchung des Gefäßbaums der Netzhaut, wo es darum geht die Erblindung eines Diabetes-
Patienten durch eine frühzeitige Diagnostik der Retinopathia diabetica zu verhindern. Für
den Fall des transplantierten Hautgewebes helfen diese Algorithmen z.B. der medizinischen
Forschung, um den Einfluss verschiedener Medikamente auf die Angiogenese zu bestimmen.
Bei der peripheren Angiographie unterstützt die Gefäßsegmentierung die Diagnostik z.B. durch
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verbesserte Blutflussanalyse.
Darüber hinaus wird in dieser Arbeit die automatische Berechnung neuer Qualitätsmerk-

male hauptsächlich für von einem artfremden Spender stammende Herzklappenimplantate vor-
gestellt. Die Untersuchung der Implantate erfolgt präoperativ in einer speziellen Testumgebung
zu dem Zweck, einem Patienten nur die bestmöglichen Implantate einzusetzen.

In dieser Arbeit, werden machine-vision spezifische, algorithmische Lösungen für die Un-
terstützung des Arztes in der kardiovaskulären Medizin vorgestellt. Dabei werden alle An-
wendungsbereiche einbezogen, beginnend von der Forschung bis zur klinischen Routine und
innerhalb der Routine von der präventiven bis zur interventionellen Medizin. Dies schließt die
diagnostische, präoperative, operative sowie die Evaluierungsphase mit ein.
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Chapter 1

Introduction

“Never say »it can’t be done«
but begin with »lets’s see about this«”

– Nicolae Iorga

Humans have invented machines to assist and support them in their work and daily life.
While trying to construct better ones it became quickly clear that they should be given the
possibility to adapt to the task they need to accomplish, i.e., they should be able to receive and
process information. As a large part of the information a human processes comes as a visual
input, the acquiring and interpretation of images – i.e. seeing – is central to a multitude of
human activities and therefore seeing machines are needed. First the introduction of computers
made such machines possible.

Machine vision has since then evolved beyond human vision in some domains, like e.g.,
sensory input. Machine vision systems are able with the help of some dedicated hardware to
extract information about a scene not only by projection from 3D to 2D of items that reflect
or absorb some portions of the visible spectrum of the electromagnetic radiation, but also from
other parts of this spectrum, as well as information transmitted otherwise than by electromag-
netic waves – e.g. ultrasound imaging – and from scenes where items are separated by other
properties than the reflection/absorption of some radiation.

However, irrespective of the way image information about a scene is sensed, the perception
of such information, which is the main goal of vision, is still related to the description and
interpretation of objects and in this respect machine vision still has something to learn from its
human counterpart.

For the purposes of this work, we define a seeing machine as one which is able to emulate
the human vision for certain tasks. Therefore, such a machine can receive images, i.e., 2D-
representations of scenes, and return an analysis of these images.

1.1 Biomedical cardiovascular image analysis

Seeing machines are currently being used to support the human activity in a multitude of do-
mains from quality inspection [187] to medical image analysis [55]. Presently they can suc-
cessfully replace humans in a multitude of tasks usually involving repetitive processes, but they
can only support them at tasks requiring higher adaptability.

1



2 1.2. AN ENHANCED CATHETER INTERVENTION

The medical field in particular requires a highly adaptive and practically infallible approach.
This is why in this case, their main role is to assist the medical staff usually by taking away from
them painstaking repetitive work and therefore allowing them to concentrate on integrating
information and taking decisions. Usually, in this case, the task of such machines is to provide
an analysis of the images and sequences of images acquired, thereby, e.g., enhancing the human
visual perception of digital medical images and improving the human-analysis of medical data.

Since its beginnings some three decades ago, medical image analysis has grown – particu-
larly in the last years – from being a collection of general image-processing algorithms applied
to an interesting data-set to being a discipline in its own right [73] defined over specific imaging
methods [40] and a particular problematic which clearly needs particular solutions.

The cardiovascular medicine, which handles with the cardiovascular system comprising the
heart and the blood vessels, makes no exception from this rule. Computer-based supportive
systems are already encountered in many areas related to the field covering almost all aspects
from research and diagnostic to intervention and postoperative evaluation. Being convinced that
such seeing machines are able to enhance the capabilities of physicians and researcher in the
field to the benefit of the patient, the main purpose of this work is to introduce such systems to
new areas of application. For this purpose, new algorithms have been developed when needed
and already established methods have been adapted to solve the particular problem at hand.

Cardiovascular image analysis represents currently an active research field within the larger
frame of medical image analysis. This is proved by the large number of publications in different
dedicated conferences, workshops and journals [82].

1.2 An enhanced catheter intervention

The coronary artery disease (CAD) is defined as the buildup of plaque on the inner walls of
the arteries supplying blood to the heart-muscle and one of its most serious consequences is
a myocardial infarction. This occurs if the plaque ruptures and suddenly blocks completely
a coronary artery. Treatment of the CAD and of the myocardial infarction is facilitated by a
catheter intervention, i.e., the Percutaneous Transluminal Coronary Angiography (PTCA). The
purpose of PTCA is to relieve the impaired artery.

Our aim is to help the physician during PTCA by making it easier for him to navigate
through the coronary vessel tree so that it proceeds faster and safer. Presently for navigation a
single image showing the entire vessel tree – i.e. a complete coronary angiogram – is displayed
on a screen next to the one showing live images. This vessel roadmap is inherently static
and inaccurate. In this thesis we have developed algorithms to show the physician a dynamic
roadmap based on complete coronary angiograms, and where his tools are superimposed. We
have already published and patented some of the aspects related to the dynamic roadmap in [6],
[48], [50], and [47], [49] respectively. We intent to present an overview of the method in [46].

If PTCA is performed as treatment for myocardial infarction, it is important for the eval-
uation of the postoperative evolution of the patient to establish how much (if any) blood is
reaching the heart muscle after the artery has been reopened. For this purpose a dedicated mea-
sure is used: the Myocardial Blush Grade (MBG). The MBG estimates the darkening – caused
by the presence of blood with contrast agent in the heart tissue – of a target region in X-ray
images acquired in the end-phase of a catheter intervention.

Currently, the MBG is established by a visual analysis of this darkening. Within this work



1. INTRODUCTION 3

we show how to automatize this procedure, thereby improving from a what in clinical routine
is termed a “semi-quantitative” analysis to a “quantitative” analysis with less inter- and intra-
observer variability. We have described some aspects related to the automatic estimation of the
MBG in [54].

1.3 Vessel segmentation and quantification in 2D-projection
images

Vessel imaging and analysis is required in a multitude of medical applications. For the imaging
part, 2D projection imaging such as angiography or retinal photography is often the method of
choice as it returns results of sufficient quality without the overhead required by 3D techniques.
To analyze the vessel images, in many cases they need to be segmented, e.g., as a prerequisite
for the quantification of the observed vessel structures [52] or as integrating part of a more
complex computer-supported analysis of the image data [176].

Here we describe novel general-purpose, automated vessel-segmentation methods, which
typically reach a solution in a two step approach: first the vessels are enhanced and then they
are segmented. We introduce here also the hysteresis classification paradigm with application
to vessel segmentation. This yields several new parametric, unsupervised and supervised clas-
sification methods, some of which we have already published in [53], [43] and [44]. Although
these algorithms are introduced here for vessel segmentation we believe that their applicability
extends over this initial problematic. A detailed approach to hysteresis classification is intended
for publication in [45].

To evaluate the effectiveness of different angiogenesis-inducing substances, the surface and
length of newly grown vessels has to be quantified in microangiograms. Microangiograms are
X-ray images of blood vessels of a diameter less than 20µm of tissue transplanted on the back
of laboratory animals.

In this work we introduce a novel semi-automatic framework, designed specifically to pre-
cisely segment vessels in microangiograms but also in other types of 2D-projection vessel-
images for the purpose of quantifying their surface and length. Within this framework both
human operator and machine are given the roles they can play best: the machine has the tedious
work of segmenting all vessel structures pixel-wise such that no vessel is missed and shows
the human operator a segmentation proposition, which he can then accept or modify at a larger
scale until it fits its expectations. We have published some aspects related to the semi-automatic
vessel segmentation framework in [52], [51].

1.4 Quality control for heart valves

Patients suffering from a heart valve deficiency are often treated by replacing the ill valve with
artificial or biological implants. Particularly in the case of biological implants, their quality is
first evaluated such as to ensure an optimal postoperative evolution of the patient. That implant
which fulfills in an optimal way a set of quality criteria is then chosen for transplant. Currently,
this evaluation is done mainly by visual inspection by trained personnel, using a movie showing
the evolution of the valve over a heart beat in an operatory. Usually, only the most important
quality criterion is estimated using some measures which are computed manually.
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Typically a relatively large number of such biological implants is available and needs to be
inspected. Slow manual quality measurement means that the implant is chosen from a only
small number of candidates and potentially does not represent a real optimum. Also, manual
measurements are hardly reproducible which renders comparisons between current and previ-
ously inspected valves rather difficult. This represents at the same time a brake in the path of
research as, e.g., a comparative study on the postoperative evolution of some patients can be
conducted only if all received implants are of similar quality.

In this work we describe how to measure automatically several quality criteria therefore
supporting an enhanced analysis. We also provide more accurate and reproducible results and
at the same time relieve the human operator of the tedious work of estimating quality measures
thus allowing him to concentrate on choosing among several candidate valves. Automatic qual-
ity measurements in comparison to manual ones, permit the evaluation of a larger number of
xenograft implants in the same period of time, such that the chances increase of discovering the
truly best valve. A few initial aspects related to the automatic measuring of quality criteria for
heart valves have been published in [95]. A more detailed article was published in [57]. A final
contribution is intended for publication in [56].



Chapter 2

Machine vision for cardiovascular
medicine: a tutorial

“Everything should be made
as simple as possible but not simpler.”

– Albert Einstein

Intuitively vision deals with the acquisition and interpretation of images. Therefore, to
construct an artificial – as in not-human – vision, specifically designed for the needs of cardio-
vascular medicine, one needs some dedicated hardware and software. Some of the hardware
deals with the acquisition of images1 and some, together with the software, deals with the inter-
pretation of images.

Here we describe the hardware needed to sense the images such that its limitations and the
distortions which it introduces in the acquired-images are clear making thus in turn clear the
need for specific algorithmic-steps to deal with these problems (Section 2.1 and Section 2.2).

At the same time we introduce and localize the classes of algorithms which make such
cardiovascular machine vision possible (Section 2.3 and Section 2.4) and show how to file a
valid algorithm-performance claim (Section 2.5).

2.1 From human to machine-vision

Human vision. Humans apprehend the surrounding reality by sampling the environment with
the senses and processing the received information. Once aware of the surrounding reality one
can act or react to serve his own purposes. Of the five senses we have at our disposal – i.e.
vision, hearing, smell, taste and touch – vision is by far the most important bringing the largest
amount of information [194].

As visible light can pass largely unattenuated through the Earth’s atmosphere, it is the main
source of energy near the surface of Earth. From an evolutionary point of view it is a very
interesting coincidence that many organisms living in such an environment and mammals in
particular have developed over the time the ability to sense2 and perceive3 it, i.e., vision4.

1Here are discussed only those 2D projection imaging techniques which acquire data from electromagnetic
radiations. For a discussion on other techniques see [75].

2The sensation is a passive process of bringing information into the brain.
3The perception is an active process of interpreting sensed-information.
4In a broader sense vision can be defined as the ability to sense and perceive electromagnetic radiation –

5
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Figure 2.1: Visible light in the electromagnetic spectrum.

Light is one of the principal modalities by which the sun emits energy. Nuclear fusion re-
actions involving hydrogen, which take place in the core of the sun, heat its surface – i.e. the
photosphere – to a temperature of around 6000K (≈ 5700◦C). Assuming the sun is a perfectly
radiating (black) body, most of its energy will be emitted in a very small band of the electromag-
netic spectrum with wavelength between 400 and 700nm. This portion of the electromagnetic
spectrum is called light or more specific visible light (See Figure 2.1). It has been calculated
that 40% of the sun’s energy is emitted as visible light (wavelengths between 400 and 700nm),
50% is emitted on waves of a lower frequency, i.e., infrared (wavelengths of 750nm to 1 mm),
9% is emitted on waves of a higher frequency, i.e., ultraviolet (wavelengths of 10nm to 380nm)
and 1% as X-rays (wavelength of 0.01nm to 10nm5).

The human visual system consists of eye including retina, optic nerve, optic chiasm, optic
tract, lateral geniculate nucleus, optic radiations and the visual cortex (see Figure 2.2).

The information of the 3D scene which is viewed is projected by an optical system – the
eye – on a light-sensitive 2D surface – the retina – so that rays emitted from a point in the scene
are collected into one point in the retina, forming an image. An image can be thus defined as a
2D representation of a scene, and a scene as a collection of items to be viewed. Photons which
travel along these rays are converted in the retina (by a chemical process) in electrical signals
which are sent down the optical nerves, through the optic chiasm and the optic tract into the
lateral geniculate nucleus. From here the visual information travels through the optic radiations
to the visual cortex where is processed and presented in an abstract form to higher centers of
the brain (see Figure 2.2).

The eye including the retina is the light sensing organ and although some processing of the
visual information is done already in the retina, the process of visual perception takes place
mainly in the lateral geniculate nuclei and especially in the layers of the cortex and it is not
yet fully understood. Assuming that the visual reality consists of objects and background, i.e.,
items of high and low concern respectively, one of the main outputs of the visual system is the
description of objects and their interpretation based on this description. Both this interpretation

typically in the band in which the sun radiates. For the purpose of giving an initial definition to machine vision –
a human invention – a restriction to human vision is made which is called simply vision.

5Electromagnetic radiation of wavelength smaller than 0.1nm is called hard X-rays but also Gamma-rays. There
is no physical difference between X-rays and Gamma-rays. Some sources differentiate them by the way they are
produced: X-rays appear as a consequence of matter interaction with high speed electrons and Gamma rays as a
consequence of nuclear transitions.
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Figure 2.2: Schematic representation of the human visual system – after [91].

and the action/reaction that may follow can be both voluntary and involuntary.

Machine vision. In time, humans have invented machines to take away some of the work
they had to do. For more demanding tasks these machines had to have the ability to perceive
the environment in which humans leave in a similar manner as they and thus needed something
like vision.

An uncontroversial definition of machine vision is very difficult if not impossible. For the
purposes of this work, a machine vision system recovers useful information about a scene from
its 2D projections [115], i.e., from images. For this purpose it emulates the human vision and
in doing so it uses methods from other related fields, the most important being:

• Imaging – which deals with the acquisition of images.

• Image processing– used to enhance particular information and suppress noise.

• Pattern recognition – used to classify/recognize data.

Thus, a machine vision system accepts as input images and returns as output an interpretation of
objects present in that images. For this purpose it uses specific hardware to acquire and analyze
images, e.g., a video camera and a computer.

2.2 From photons to discrete signal

In the case of machine vision, processing and analysis of images is usually done in a computer,
which is a discrete system and needs discrete inputs. Between a scene and a discrete represen-
tation the information contained in an image is processed at several intermediary levels. Digital
imaging includes aspects related to these levels: the formation of the image in front of a sensor,
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the transformation of image information into electrical signals by the sensor (see Section 2.2.1
for visible light and Section 2.2.2 for X-rays), and the discretization of the electrical signal for
storage and processing in a computer (see Section 2.2.3). At each level the original information
is modified in a certain way and potentially artefacts are introduced (see Section 2.2.4). The
purpose followed here is to describe these artefacts such that it becomes clear how they appear
and what type of post-processing is necessary to eliminate them or reduce their influence.

Within the frame of this work only data carried by electromagnetic waves and projected
before a 2D discrete-sensor is considered. In such a case intensity images are obtained, which
encode the amount of electromagnetic radiation leaving from a certain point of the scene.

Depending on the frequency of the radiation which should be sensed, the physical param-
eters of the image acquisition system – which play a major role in image formation – vary
strongly. Two cases are described in more detail, i.e., visible light and X-rays. They represent
the main 2D projection imaging modalities encountered in biomedical cardiovascular imaging.

2.2.1 Image formation and detection with visible light

When working with visible light, image formation is the process where rays emitted from scene
items are collected to form an image before a plane. This plane is called the image plane, and
it typically contains a device able to convert photons associated with the rays in an electrical
signal.

Image formation

Image formation with visible light is best approximated by an additive imaging model, where
the influences of different items in the scene are added to obtain the image.

The pinhole camera. Image formation includes in this case,geometric, optic andradiomet-
ric6 aspects. The former relate the position of items in 3D space to their position in the image
plane and the latter analyze how much of the radiation emitted by the scene-items is collected
by the imaging system and received by the sensor.

Humans have always tried to “save” images of scenes in their surroundings. At the begin-
ning these images were simple drawings that lacked “realism” as it was difficult to find the right
perspective. A major improvement in this field, which allowed the drawing of realistic images
with relative ease, was the development of the camera obscura. Initially this was a real room7,
a confined space with walls of wood or dark curtains where no light was allowed in with the
exception of the light coming from a tiny opening in that wall of the room which was facing
the scene to be imaged. On the opposing wall an image of the scene appeared in the right per-
spective. Everything the “artist” should do to achieve a realistic image was to draw over what
he saw on that wall.

Although the image acquisition techniques have evolved dramatically since the camera ob-
scura, a device able to acquire images is still called a camera. The most simple camera is a
pinhole camera (see Figure 2.3). This is a size-reduced model of the camera obscura, the light
producing the image passes through an infinitesimal small hole (aperture) in one of the walls

6Radiometry is the measurement of optical radiation, i.e., electromagnetic radiation with wavelength between
10nm and 1mm thus including infrared, visible and ultraviolet but excluding X-rays.

7Camera is the latin word for a vaulted room.
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and the image is obtained on the opposing wall, i.e., the image plane. Due to the small opening
only one light ray per scene point reaches a point in the image plane.

Figure 2.3: Image formation by a pinhole camera.

The perspective camera model.The geometric model which describes image formation
by a pinhole camera is calledperspective model. It consists of the image planeπ and a pointO
called the center or focus of projection. The coordinate system attached to the pinhole camera
has its origin in the center of projection. The image plane is situated at a distancedi from the
center of projection (See Figure 2.4).

The relation between a 3D scene point[X,Y, Z] and the 2D coordinates in the image plane
[x, y,−di] in camera coordinates is:

x = −diX

Z
, y = −diY

Z
(2.1)

The equations (2.1) are non linear due to the factor1
Z

. The image coordinates contain only
ratios of the world coordinates from which neither true size nor distance between items can
be inferred without additional knowledge. Perspective projection does however map lines into
lines.

Under the approximation thatZ is constant, i.e., theweak-perspective model, which be-
comes valid if the scene’s depth is much smaller than the average distance form the camera to
the scene (typically by a factor of 20), the Equations (2.1) describe a sequence of two transfor-
mations: an orthographic projection in which world points are projected along rays parallel to
the optical axis on the image plane and a scaling by a factor−di

Z
.

Figure 2.4: The perspective camera model – with permission from [2].
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The relations between world and image points can be precisely described in matrix-form to
the point that image-based inferences on distances and size can be made. Further details can be
found in [188].

Particularities of the pinhole camera. The fact that the light enters the pinhole camera
through a tiny aperture has several important effects on the image which is obtained:

• The opening acts as a low-pass filter and attenuates high frequencies.

– Light is both a wave and a particle beam ; as a wave is also subject to specific phe-
nomena like diffraction at the opening. Thus the image is blurred due to diffraction
to a size of at least the order of the wavelength of light. In this case a specific model
can be assumed, known as Fraunhofer diffraction, which allows the computation of
the cut-off frequency of the low-pass filter modeling the blurring. [109].

• Irrespective of the distance between the center of projection and the imaged scene or
between the center of projection and the image plane, the image obtained will always be
“sharp” or “in focus”.

– If the opening of the camera is larger, then several of these rays would go through
the opening to form the image of a point, meaning that each point will be projected
on a small disc in the image plane when this is situated at a certain distance from
the center of projection. This is equivalent to a low-pass filtration of the image.
By varying the position of the scene or that of the image plane from the center of
projection the area of the disc can also vary. Assuming that the image is inherently
band-limited and that the distance to the scene and to the image plane from the
center of projection are fixed, there is a minimal cut-off frequency of this filter or a
maximal size of the disc above which this effect is disturbing, affecting the image
information.

– In the case of the pinhole camera, because the opening is infinitesimal small one and
only one ray of light links each point of the scene with a point in the image plane.
Thus the image will always be correctly formed in the image plane regardless of the
position of the scene along the optical axis. This means that the pinhole camera has
an infinite depth of field. Conversely, the image will be correctly formed irrespective
o the position of the image plane along the optical axis. This means that the pinhole
camera has an infinite depth of focus (see Figure 2.3 and Figure 2.6).

• A light sensitive device placed in the image plane will need to be exposed to the scene for
a long period of time before acquiring all the needed information.

– Assuming that a light-sensitive sensor is placed in the image plane of a pinhole cam-
era and is supposed to use the energy given by the photons traveling along the ray
of light which links scene points to image points to modulate a certain value, e.g.,
electrical load, then, to gather enough energy for a correct modulation, the sensor
should be exposed to the image for a time which is for most applications impracti-
cally long. This exposure time is roughly inversely proportional to the square of the
aperture diameter. The solution to this problem is to enlarge the opening and permit
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more light from a scene-point to reach the image plane, and then use an optical sys-
tem of lenses to focalize the rays of light coming from a scene-point into a single
point on the image plane, so that no blurring appears.

Image optics. Optical systems can be adjusted to work under under a wide range of illumina-
tion conditions and exposure times – the exposure time being controlled by a shutter – and thus
make cameras suitable to practical applications. An optical system is supposed to preserve the
geometrical relations between world and image coordinates. However this is true only for the
simplest optical systems: the thin lens. This model is often encountered in practice and it can be
applied whenever the distance from the viewed object to the lens and from the lens to the image
plane is very large in comparison to the thickness of the lens. A thin lens model is enough for
a discussion on the principles of optical systems which is the purpose followed here. A more
detailed description can be found in [169].

The thin lens model. The optical behavior of a thin lens is characterized by two elements,
i.e., the optical axis and the focal length. Considering that the image trough the lens of a point
P , belonging to an object situated at distanceD from the center of the lensO, is formed atp in
an image plane situated at distanced, the optical axis goes throughO and is perpendicular to
the image plane. The focal lengthf is the distance betweenO and two points situated on each
side of the lens, named rightFr and leftFl focus respectively. This is shown in Figure 2.5. The
formation of an image through a thin lens is subject to two basic rules:

• A ray of light parallel to the optical axis on one side goes through the focus on the other
side.

• A ray of light coming from the focus on one side emerges parallel to the optical axis on
the other side.

In such a setup the relation between the distance measured from the focus on one side to the
imaged item and from the focus on the other side to the image plane can be deduced from pairs
of similar triangles as:

Zz = −f 2 (2.2)

which becomes
1

ẑ
=

1

f
+

1

Ẑ
(2.3)

for ẑ = z + f andẐ = Z + f and considering a coordinate system withO as origin.

Particularities of image optics. The characteristics of the optical system influence strongly
the image which is obtained. Therefore such a system has to be carefully designed. The most
important parameters of an optical system are:

• Thedepth of fieldand thedepth of focus, which are related to the blurring of the image
whenD andd respectively vary.

– If the item viewed is not situated precisely at a distanceẐ from the lens, then the
image of a certain point gets blurred in the image plane and it appears as a disk. The
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Figure 2.5: Imaging by a thin lens.

(a) (b)

Figure 2.6: Illustration of depth of focus (a) and depth of field (b) – after [109].

same thing happens if the image plane is not situated exactly at a distanceẑ from the
lens. This is show in Figure 2.6. Again considering that the viewed scene is band
limited such blurring is not disturbing up to a certain limit. The maximal size of the
disk beyond which the blurring becomes disturbing, i.e., the blur sizeε, gives the
depth of fieldand thedepth of focus. Thedepth of fieldis the distance interval from
the viewed item to the lens so that the diameter of the blur is less than the blur size.
Thedepth of focusis the distance interval from the lens to the image plane so that
the diameter of the blur is less than the blur size.

• The imaging setup:normal, telecentricor hypercentric, which is related to the position
of the aperture stopa in relation to the lens and the right focusFr.

– In a normal imagingsystem the aperture stopa is positioned in the same plane as
the thin lens. Then, the viewed item appears larger if it is positioned closer to the
lens and smaller conversely besides being blurred.

In telecentric imagingthe aperture stop is placed in the same plane with the right
focusFr. In such a case varying the position of the viewed item causes only blurring
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while the size remains constant. The disadvantage oftelecentric imagingis that the
lens should be at least as large as the viewed item.
In the case ofhypercentric imagingthe aperture stop is situated between the right
focus and the image plane, than the viewed item appears larger if it is positioned
further away from the lens and smaller conversely.
A surface parallel to the optical axis will be imaged in a normal and hypercentric
setup but not in a telecentric setup. A normal setup will project the surface-side
facing the optical axis and the hypercentric setup the other surface-side.

• The field of view, which defines which portion of the scene is projected onto the image
plane.

– The aperture allows only a certain part of a potentially infinitely stretching scene
to be imaged. The field of view gives an angular measure of the portion of the
scene actually seen by the camera. The field of view is defined as half of the angle
subtended by the aperture as seen from the left focus [188]:

w = arctan
a

2f
(2.4)

• The radial distortions, which are related to geometrical transformation of the image due
to the lens.

– Real optical systems are not perfect systems. Diffraction effects at the aperture of
the lens, similar to that discussed for the pinhole camera, introduce distortions. Dis-
tortions appear also if we ignore such effects, and thus restrict ourself to geometric
optics. Assuming the position of the item viewed ,as well as that of the image plane,
are fixed and that the item is “in focus”, a point on that item is in most cases im-
aged in a small disk in the image plane – i.e. blurring/distortion. Such aberrations
are a consequence of the diffraction and reflection in the lens. The most important
for B/W imaging are: spherical aberration, coma, astigmatism and field curvature
which cause blurring and radial distortion which affects the shape of the image.
Radial distortion can be modeled as:

~x = ~xd(1 + k1r
2 + k2r

4) (2.5)

with ~x the corrected image coordinates,~xd the distorted image coordinates,k1,2

parameters ndr2 = x2
d + y2

d.

Further details and a good description of all lens aberrations can be found in Jähne [109].

Radiometry. Light coming from light sources or reflected from items in a scene reaches the
image plane through the optic system of a camera and forms an image there. This image is
then acquired by a light sensitive device. To fully describe the entire process one needs also
the relation among the amounts of light energy emitted from light sources, reflected by items
and reaching the image plane. Radiometry is the part of image formation concerned with such
aspects. It is defined as the measurement of optical radiation, i.e., electromagnetic radiation
with wavelength between 10nm and 1mm thus including infrared, visible and ultraviolet but
excluding X-rays [109], [188].
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Radiometric image formation. The main radiometric task is establishing the relation be-
tween the power of light per unit area and at each point of the image plane – i.e. image irradiance
– and the power of light per unit area ideally emitted by each point of a scene –i.e. scene radi-
ance. For this purpose, a model of the way a surface reflects incident light is needed. Typically
the Lambertian model is used. It assumes that each point appears equally bright from all view-
ing directions. Then the relation between image irradianceE(~p) and scene radianceL(~P ) is
given by the fundamental equation of radiometric image formation:

E(~p) = L(~P )
π

4

(
a

f

)2

cos4 α (2.6)

with a aperture,f focal length andα the angle between the ray from the scene point~P to the
image point~p and the optical axis. In practice, the dependency onα is ignored. Then with
respect to the camera, the image irradiance depends on the quantityf

a
which is called the F-

number of the optical system. It influences how much light reaches the sensor and is typically
mentioned on lenses in a scale containing only powers of two. Increasing the F-number by one
unit on this scale, halves the quantity of light reaching the image plane. For further details see
[188].

Image sensing

Once the image has been formed in the image plane, it is acquired for storage and processing by
a light-sensitive device which is able to use the energy of light to modulate some chemical or
electrical process. Here are discussed only imaging sensors able to covert radiative energy into
an electrical signal and specifically quantum detectors – which convert photons into electrons –
as they are commonly used in cardiovascular biomedical imaging.

Quantum detectors. The functioning of quantum detectors is based on the photoelectric ef-
fect.

The photoelectric effect. First discovered by Hertz in 1887, then explained by Einstein
in 1905 and finally confirmed by the experiments of Millikan in 1916, the photoelectric effect
is the extraction of electrons –i.e. photoelectrons from a material as a consequence of shading
light over it or electromagnetically radiating it [169].

Einstein has postulated that a beam of light consists of any small quantities of energy called
light-quanta or photons. Each photon has a certain energy which is proportional to its frequency
ν after the formula:

E = hν =
hc

λ
(2.7)

whereh and c are universal constants.h = 6.63 · 10−34Js is called Planck’s constant and
c = 3 · 108m/s is the speed of light. Whenever a photon hits an electron an “all or nothing”
change of energy takes place, meaning that either the electron takes the entire energy of the
photon or none of it.

As postulated by Bohr, electrons occupy only certain energetic levels in atoms and the value
of this energetic levels is specific for each material. Electrons can leave an atom only if a specific
quantity of energy – related to the energetic level where the electron is situated – is received. If
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a photon gives an electron more than the binding energy of his level, then the electron is set free
with a certain kinetic energyEc:

Ec =
mv2

2
= hν − Φ (2.8)

with Φ the energy needed to leave the atom.

The internal photoelectric effect. Photoelectrons can be generated from any materials,
provided the energy of the incoming photons surpasses a certain threshold which depends on
the particular energetic levels of each atom. However, of interest in this case are only photoelec-
trons generated in semiconductors and which do not leave the semiconductor body. Such pho-
toelectrons are said to be generated by the internal photoelectric effect, as opposed to electrons
which leave the body from which they are generated, in this case by the external photoelectric
effect.

The sensor-element. Photoelectrons generated by the internal photoelectric effect can ei-
ther be captured in potential wells – e.g. in the case of metal-oxide-semiconductor (MOS) ca-
pacitor – or they can contribute to current going through the semiconductor – e.g. in the case of
the photodiode. Such a quantum detector which transform incident light in electrical charge rep-
resents a sensing site and usually constitute the main part of a sensor-element. A sensor-element
is characterized by [109]:

• Detectable wavelength range, which is given by the interval between the minimal and
the maximal detectable photon frequency (or energy according to Equation (2.7)). For
sensors working in visible light, e.g., this between 450nm and 1000nm.

• Quantum efficiency, which is the percentage of photons hitting a photoreactive surface
that will produce an electron-hole pair. This value varies between 10% for a photographic
film and 95% for high-end sensors. As shown in Figure 2.7 it varies as a function of the
wavelength.

• Dark current , which is the signal generated by the detector in the absence of light due to
thermal energy.

• Electron capacity, which is the maximal number of photoelectrons that can be stored in
a sensor element.

• Saturation exposure, which is the image irradiance which generates a number of photo-
electrons equal to the Electron capacity in a time interval equal to the exposure time

• Dynamic range, which is the ration between the maximum output signal when the sensor
is saturated and the signal corresponding to the dark current

• Responsivity, which is the ration between the flux of light incident to the detector area
and the resulting signal. Responsivity depends mostly on the wavelength of thee incident
light, but also on the angle at which the light hits the sensor, temperature, aging, etc.

• Noise-equivalent power, which gives the minimum radiative flux that can be measured
by a detector in a given frequency band
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Figure 2.7: Quantum efficiency as a function of the wavelength for a CCD sensor for different
types of illumination and coating – after [109].

Image sensors. To sample an image, several such sensing sites are gathered in a matrix setup,
to form an image sensor together with other elements, like e.g., storage sites and control cir-
cuitry. Major quality criteria for image-sensors are the fill factor – representing the percentage
of the area of a sensor site which is actually sensible to light – and the frame rate – which repre-
sents the number of complete images acquired in the time interval (usually one second). There
are two main image sensor architectures: the Charge Coupled Device image sensors (CCD) and
the Complementary Metal Oxide Semiconductor image sensors (CMOS).

CCD sensors. In CCD image sensors, when exposure – i.e. the time interval when each
sensing site converts light into charge – is complete, the sensor elements are read row by row
by moving their charge downwards on columns into a shift register. This sends the information
through a processing chain – which is separated from the image sensor (see Figure 2.8 (a)) –
where the charge-signal for each row is transformed into a voltage signal and amplified (e.g.
by a transistor functioning in the same way as a bipolar transistor in common-base connection)
and then converted in digital format by an analog-digital converter.

The electronic devices used to transfer the charge through and from the image sensor are
called Charge Couple Devices and give also the name of the sensor. A typical CCD contains an
array of linked MOS capacitors. By correctly timing the voltage pulses on the grill connectors
Pi, i = i . . . N of the capacitors, potential wells can be sequentially generated which transport
the charge through the device as shown in Figure 2.9. When the data appears at the input of
the CCD, the voltage onI decreases, the voltage onG1 increases so that a channel is formed
under it and the charge can reach the potential wellP1 where the voltage was also increased. To
move the charge into the potential wellP2 the voltage onP1 decreases slowly while the voltage
onP2 is high. It is important that the decrease ofP1 is slow otherwise charge will be lost. The
transfer is repeated betweenP2 andP3 and finally the charge-signal reaches the output with a
delayt = 3to whereto is the time the voltage on the connector of a potential well is constant.

There are also several architectures for CCD image sensors. There areframe transferand
interline transfersensors. As shown in Figure 2.10 (a), for the frame transfer sensor, the sensing
sites function also as shift registers and constitute thus alone a sensor-element. At the end of
the exposure time the entire image is transfered in an optically isolated storage area and from
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(a) (b)

Figure 2.8: Schematics and image acquisition for a CCD sensor (a) and a CMOS sensor (b) –
after [130].

Figure 2.9: The schema of a three phase CCD and the corresponding voltage pulses – after [62].

there is read-out row by row with a horizontally shift register. The interline transfer sensor –
shown in Figure 2.10 (b) – has storage-sites next to the sensing sites. They build together a
sensor-element. At the end of the exposure time the charge is transfered first in the storage sites
and then row by row in the horizontal shift register.

For a certain sensor-size, the frame-transfer architecture provides more sensitive area than
the interline transfer sensor and can achieve thus better fill factors. To the limit – e.g. for large-
area CCD-sensors – one can renounce to the storage area for the frame transfer in which case
the image is directly read. Such a sensor is calledfull-frame transfer sensorand it can exhibit
optimal fill factors. The time needed for this operation is sensibly longer than the time needed
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(a) (b)

Figure 2.10: Schematics of a frame transfer (a) and interline (b) CCD sensor.

to shift the image from the active site into the storage site –which is equal to the time needed to
read one row for a square sensor. This means that such sensors have to pay for their large size
and fill factor by smaller frame rates.

To achieve a correct image, the CCD sensor has to be protected from light during read-out,
otherwise, artefacts from well illuminated sites in the image can appear, like e.g., smearing.
This is a must in particular for full-frame transfer sensors.

The sensor can be protected from light by amechanical shutter. It provides good protection
from light but has an inherent latency which limits the frame rate. If higher frame rates are
desired, than anelectronic shuttercan be used. The electronic shutter functions by draining the
accumulating charges at the beginning of the exposure time. With electronic shutters exposure
times of 64µs can be achieved, but they reduce the fill factor.

CMOS sensors. CMOS sensors have a different architecture than CCD sensors. A CMOS
sensor contains an array of individually -addressable sensing-elements. Thus, the charge ob-
tained at the end of exposure at a sensing site can be gathered directly and it does not have to
travel through the entire sensor.

For a long time such an architecture offered only images of a lower quality in comparison to
the CCD image sensors. This was mainly due to the parasite capacitance of the lines linking a
sensor site to the output amplifier. This was compensated by bringing the first transistor of the
amplifier near the sensing site to build a sensor element called Active Pixel Sensors (APS). APS
technology is at the heart of modern CMOS image sensors, and currently permits the acquisition
of images of a quality close to that obtained by CCDs.

In a CMOS image sensor each sensing site is controlled individually (see Figure 2.8 (b)).
The charge to voltage conversion and amplification takes place near the sensing site and each
such sensor-element builds an APS. The analog to digital conversion and the clocking circuitry
is also integrated on one chip with the sensor. This high integration is achieved by manufactur-
ing the circuits in the CMOS technology, hence the name of the sensor.
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Figure 2.11: Schematic of a CMOS inverter

CMOS technology is actually thought for building large numbers of transistors on a small
area. Transistors can be used to implement logical functions. For this purpose they have to act
as switches and ideally would have to dissipate power only when switching between two states.
With most types of transistors this is very difficult if not impossible to achieve. They usually
dissipate power even if their state is constant. This leads to large power consumption and over-
heating, which is a major hindrance to integrating many transistors on a small chip. However,
two MOS transistors in a complementary setup (CMOS), i.e., one with a p-channel8 and one
with a n-channel9, can switch between two states and practically dissipate power only when
switching (see Figure 2.11). This allows the construction of chips integrating large numbers of
transistors per unit area and gives the name for the entire production technology.

CMOS image sensors pay for the high degree of on-chip integration of imaging functions
by reduced fill factors in comparison to CCD. This problem is at least partially solved by the
introduction ofmicro-lenseswhich gather light over a larger angle than that allowed by the fill
factor.

It is widely accepted that in the near future the image quality will be similar for both image
sensors. Then, considering the advantages a CMOS sensor brings, like e.g., cheap production
costs, high density, individual access to each sensing site, low power dissipation, it is believed
that CMOS image sensors will replace CCD image sensors in most applications.

2.2.2 Digital imaging with X-ray

In the case of X-rays, image formation is the process where rays emitted from a point source
are absorbed by items in the scene and the remaining radiation is collected to form an image
before a plane. This image plane contains devices able to convert photons associated with the
rays in an electrical signal. This is an absorbing type of imaging, and it can be modeled as each
point in the viewed scene is generating a single ray which links it directly to a point in the image
plane. This is then termed direct imaging [109].

Image formation includes mainly geometric aspects which relate the position of items in 3D
space to their position in the image plane. The perspective projection of a pinhole camera can
be used to describe the geometric image formation with X-rays also (see Chapter 2.2.1). This
is shown in Figure 2.12. X-rays are not affected by lenses and although image irradiance can
be defined, scene radiance or an analysis of image formation from a point of view similar to

8Positively doped semiconductor.
9Negatively doped semiconductor.
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Figure 2.12: Image formation with penetrating X-rays

radiometry in the case of visible light, is pointless.
Image formation with X-rays is best approximated by a multiplicative imaging model, where

the influences of different items in the scene are multiplied to obtain the image.

X-ray production and interaction with matter

X-rays were first discovered by the german physicist Wilhelm Röntgen in 1895. Their prop-
erty of “seeing” through solid objects made them from the very beginning interesting for the
medicine as a method of non-intrusive investigation – a role which they still maintain to this
date.

X-ray is an electromagnetic radiation but of higher energy than visible light, as the wave-
length characteristic for the X-rays typically lie in the interval of 0.01nm to 10nm (see Formula
2.7) this being the reason why is not completely absorbed in some solid bodies as opposed to
light.

X-ray production. X-ray are produced by striking a target material with electrons traveling
at a high speed. Such electrons interact with the atoms of the target material. Most high-speed
electrons kick-out other electrons from the external energetic levels of the atoms in the target
material. This type of interaction is most often encountered and accounts for over 99% of the
input energy of the beam of high-speed electrons. It generates new electron radiation called
delta radiation and heat. The rest of the interaction produces X-ray photons by one of three
possible mechanisms:

• Deceleration of high-speed electrons.The high-speed electron travels through the target
material until it encounters the electrical field of a nucleus, by whom it is attracted. Con-
sequently it modifies its trajectory and decreases its speed, thus giving-up energy in the
form of a X-ray photon. This type of electromagnetic radiation is called Bremsstrahlung
10. Its spectrum covers the entire X-ray band as it depends on how close the high-speed
electron goes by the nucleus.

10“Bremse” is the german word for brake.
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Figure 2.13: X-ray spectra – after [103]

• Collision with the nucleus. If the high-speed electron directly collides with the nucleus,
than it gives-up its entire energy as Bremsstrahlung. High-energy X-ray quanta are pro-
duced this way.

• Collision with an electron of the inner layers of the atom. Electrons are allowed to
occupy only certain energetic levels in an atom. If a high-speed electron collides with an
electron from one of the internal energetically stable layers, than it sets that electron free.
The place left behind by the electron is immediately occupied by another electron from an
outer layer. For this, it gives-up a certain amount of energy which is specific to the atom.
X-ray photons which are created like this make the so called characteristic radiation. The
number of X-ray quanta produced by this mechanism is large in comparison with the
other two, and causes distinctive peaks in the X-ray spectra (see Figure 2.13)

Medical X-rays. Typically the energy of X-rays is given in electron-volts(eV ). OneeV is
the amount of kinetic energy an electron receives if it is accelerated across a potential difference
of oneV : 1eV = 1.602 · 10−19J . Using the Formula (2.7), one can calculate that an electron
has to be accelerated across 124V to 124kV to obtain X-rays. As X-rays with wavelength of
0.1nm to 10nm have not enough energy to penetrate thicker bodies, they are called soft X-rays
and are of no use in medical imaging. Therefore hard X-rays are needed with energies from
12.4keV to around 124keV, thus corresponding to a wavelengths of 0.01nm to 0.1nm [103],
which are obtained from electrons accelerated by potential differences of 12.4kV to 124kV. A
typical X-ray spectrum is shown in Figure 2.13.

The X-ray tube. Usually X-rays are produced in an X-ray tube. Such a device contains
a cathode, a filament and a rotating anode in a vacuum envelope. Electrons are produced by
heating the filament (see Figure 2.14). They are then accelerated in vacuum between the cathode
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Figure 2.14: Schematic of a X-ray tube

and the anode and hit the anode to produce X-rays. The material from which the anode is made
can be chosen so that it suits the target application, e.g., molibden is frequently used in anodes
of mammography X-ray tubes because of its 20keV characteristic peaks [27]. The anode is
rotating to prevent the melting of the target material during the bombardment with electrons.
Ideally X-rays are created by a point-source as a larger source will blur the final image. To
model a point source as good as possible, the rotating anode makes a certain angle with the
vertical axis through the X-ray tube. This allows a better heat dissipation and a smaller X-ray
generating spot visible from the image plane. This is shown in Figure 2.14.

X-ray interaction with matter. After the X-rays are produced into the tube, they go through
the imaged scene before reaching the image plane. X-rays may interact with matter in three fun-
damental ways: by thephotoelectric effect, by theCompton effectand byscattering. This types
of interactions may stop, deflect, or generate new X-ray photons —but not necessarily with the
same direction and sense as the original one— thus reducing the intensity of the incident radi-
ation. This attenuation can be expressed by an exponential relationship. For a mono-energetic
X-ray beam and a material of uniform density and atomic number, this is:

I = Ioe
−µL (2.9)

whereµ is an attenuation coefficient and L the length of the path traveled by the X-ray through
the matter. The probability of such interactions and thusµ, depends mostly on the type of
material of which the imaged items are made. Therefore items of different materials will appear
with different contrast in the final image.

Yet another characteristic of X-ray imaging is that if the energy of the incident X-ray radia-
tion is too high, the contrast of the obtained images will be reduced.
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Interaction by the photoelectric effect. When an electron which is situated on one of
the energetic layers of an atom is hit by a photon with sufficient energy to set it free, then it
becomes a free electron. This mechanism is called the photoelectric effect (see Section 2.2.1).
The photon transfers its entire energy to the electron and ceases to exist after this interaction. If
the electron was ejected from one of the internal layers of the atom, an electron situated on one
of the distant layers will occupy the free place and at the same time give up energy to produce a
characteristic photon11. Thus the photoelectric effect typically produces, an ion, a free electron
and a new photon but of less energy than the incident photon. This characteristic photon does
not travel very far before being absorbed in the material.

The photoelectric interaction is most likely to occur if the energy of the incident photon is
just grater than the binding energy of the electron with which interacts. Considering the types
of interactions which appear when a human body is imaged using X-rays, it has been shown
that the majority of photons with energies less than 25keV interact by the photoelectric effect
[103] (see Figure 2.15).

The probability of an interaction is also proportional to the cubic of the atomic number of
characteristic for the material of the imaged body and inversely proportional to the cubic of the
energy of the incoming X-ray photon.

Compton effect. The Compton effect was first observed in 1923 by the american physicist
Arthur Compton. The photoelectric effect occurs most often when the energy of the photon is
comparable with the binding energy of the electron. If the energy of the photon is considerably
larger than that of the electron, than the two interact by the Compton effect. In this case,
the incident photon does not disappear, but is scattered with loss of energy. Thus, after such
an interaction, an ion, a free electron, a scattered photon and a characteristic photon appears.
Similar as in the case of the photoelectric effect, the latter is then quickly absorbed.

The scattered photon may be deflected at any angle from 0 to 180 degrees and it retains
most of its energy after collision. Lower energy photons are backscattered while higher energy
photons are normally forward scattered. The probability of a Compton interaction does not
depend on the atomic number of the material, and thus such interaction does not contribute
directly to the imaging process but is rather a noise factor. The vast majority of high-energy
X-ray photons – energies larger than 50keV – interact with matter by the Compton effect (see
Figure 2.15). However, because the incident photon keeps most of its energy after such an
interaction, the radiation dosage absorbed by the items in the scene – i.e. in our case the body
of the patient – is less than the dosage absorbed by the photoelectric effect.

Rayleigh scattering. The photoelectric effect and the Compton effect describe plastic in-
teractions between atoms and X-ray photons. After such an interaction, the atom is changed to
a positive ion and the photon either gives its entire energy or recoils on another direction but
with less energy. The Rayleigh scattering is an elastic interaction between X-ray photons and
atoms. After the photon hits the electron, this does not leave the atom but enters an excited state
where it vibrates with the same frequency as the incident photon. After a very short time, the
electron relaxes again and sets free/emits the photon without energy loss but on another direc-
tion and/or sense. The scattering occurs mainly in the forward direction, and thus only broadens

11The production of a characteristic photon is one way by which an excited atom relaxes. It can do this also by
emission of Auger electrons. However, the probability of such an event is small.
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Figure 2.15: Percentage of different types of interactions as a function of energy in water – after
Hsieh [103]. Approximately 60% of the human body consists of water.

the X-ray beam, which is equivalent to a low-pass filtration of the image. In comparison to the
photoelectric effect or to the Compton effect, scattering occurs rather rarely (see Figure 2.15).

Contrast reduction for high-energy X-rays. The attenuation of X-rays (Formula (2.9))
takes into consideration all this effects, and thusµ can be computed as

µ = θ + σ + σr

, with θ, σ andσr the attenuation coefficients for the photoelectric effect, the Compton effect
and the Rayleigh scattering respectively. Depending on the energy of the incident radiation,
either the photoelectric or the Compton effects are responsible for most of the interactions, thus
for high energies of the incident radiation there is a reduction in contrast, as most interactions
occur according to the Compton effect.

X-ray detection systems

Similar to visible light imaging, X-ray imaging has evolved from taking simple snapshots, to
movies in an analog format and then to digital signals. We concentrate on discussing digital
imaging techniques which use either a combination of X-ray image intensifier and CCD/CMOS
cameras or flat panel detectors.

In the case of visible light, usually a scene is viewed, through an optical system. The role
of the optical system is to gather information from the viewed scene as carried by the light an
project it on the image plan while keeping point correspondence between the scene and the
image. Thus the optical system makes a transformation from the scene to the image. It contains
lenses which can influence the path of electromagnetic radiation with wavelength in an interval
which includes the near infrared, the visible and the ultraviolet – i.e. the optical spectrum – but
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Detection method Conversion
Direct flat panel detector (Selenium) X-rays to image

Indirect flat panel detector (scintillator + photodiode)X-rays to light to image
Indirect Image Intensifier + camera X-rays to light to image

Table 2.1: Digital X-ray detection methods

excludes X-rays. In the case of X-rays, a system with a similar role can be used to form an image
before a light image-senor, i.e., CCD or CMOS. Such a system is called X-ray image intensifier.
It not only scales the image but it also transforms it so that the information is now carried over
visible-light waves. This is then calledindirect imagingas opposed todirect imagingwhere an
image sensor receives directly X-rays which it then converts to an electrical signal.

Indirect imaging contains a step which transforms the image information carried by X-rays
into image information carried by visible light before obtaining an electrical signal. Direct
imaging can transform directly X-rays to an electrical signal (see Table 2.1)

Intensifier-digital camera combination. In a X-ray image intensifier – as shown in Fig-
ure 2.16 – ascintillator is used to transform X-rays into visible light and animage-intensifier
is used to obtain then a brighter and smaller image– hence the name of the entire system [11],
[161].

The scintillator. A scintillator is a substance – e.g. cesium-iodide (CsI) – which absorbs
high-energy electromagnetic radiation or particle radiation end emits visible light after a very
short time called decay time. This separates it from a phosphor12 whose decay time is very long
and from a fluorescent substance which receives optical high-energy electromagnetic radiation
– i.e. ultraviolet light – and emits visible electromagnetic radiation.

The image-intensifier. Usually the light flux from the scintillator is very low, as in most
cases, the X-ray dosage is reduced to a minimum to avoid damage to the patient’s health. To
obtain a brighter image animage-intensifieris used. The intensifier consists of a photocatode
which is a cathode coated in a photoemissive material able to convert photons into electrons by
the photoelectric effect at a high efficiency. The electrons are then accelerated and at the same
time focused by special grids – called also electron optics – to strike a small scintillation screen
at the other end of the image intensifier such that a light-image is again obtained. The kinetic
energy with which the electrons strike is linked directly to the intensity of this image which is
than viewed by a camera and projected before a CCD or CMOS sensor which transforms it into
an electrical signal. Producing a smaller image is important as it can be handled more efficiently
by the lenses of the camera used to acquire it.

Flat Panel Detectors. Image intensifiers have some disadvantages: they are bulky, they have
a rather limited life span, they return images with geometrical distortions, as e.g., the Earth’s
magnetic field influences the electrons’ path, they have a rather small dynamic range, they also
show brightness variations and loss of contrast at the edges. All this directly influences the

12The chemic element phosphorus is not a phosphor.
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Figure 2.16: Schematic of a X-ray image-intensifier.

quality of the images which are then acquired by the camera, which in turn distorts also the
image (see Section 2.2.4).

This disadvantages, which in most cases are inherent to the intensifier, led to the develop-
ment of Flat Panel Detectors (FPD). A FPD can acquire X-ray images without an image intensi-
fier. The construction of FPDs was made possible by advances into integrated circuit technology
and more specifically by the development of amorphous-Silicon Thin-Film-Transistor (TFTs)
arrays13 which is a technology that allows the fabrication of large-area arrays of transistors.

As already pointed out, focusing the X-rays to a smaller surface is difficult and leads to
distortions. Alternatively one should build sensors large enough to directly acquire the X-
ray-image. Building a CCD or CMOS image sensor of sufficient size is in this case practically
impossible. However, using TFTs where each transistor is attached to a sensor-element14 allows
the construction of image sensors with large areas. Such a construct – i.e. transistor plus sensor-
element in TFT technology – makes a picture element. Several picture-elements arranged in an
array make a TFT-active-matrix. This is shown in Figure 2.17.

A FPD consists of a sensory part and an electronic part. The sensory part is made of a
sheet of glass covered with a thin layer of silicon in an amorphous state containing a TFT-
active-matrix and a detector-element. The electronic part is needed to read the sensory array
and discretize the information. It is either built on the sides of the sensory part or behind it,
behind a led screen.

FPD-technologies. Currently two types of FPDs can be encountered in practice, one is
used for indirect and one for direct imaging (see Figure 2.18 and Table 2.1):

• Indirect-imaging FPDs. If the sensor-element of the TFT active-matrix is a normal
photodiode, this is sensible only to visible light. Therefore an additional conversion from

13There are also Microchannel Plate Detectors [177], which can be used similar as FPDs but this technology is
just beginning to find its way into the X-ray medical imaging.

14In this case a distinction should be made between a sensor and a detector. A detector only converts X-rays to
visible-light or to charge. A sensor can then gather the light-photons or the charge to yield a signal.
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Figure 2.17: Schematic of a TFT-active-matrix – after [75].

X-ray to light-photons is needed before the image information is obtained as charge at the
output. For this purpose a scintillator is used which constitutes thus the detector-layer of
such FPDs.

• Direct-imaging FPDs. A photoconductor15, as e.g., amorphous Selenium can directly
convert X-ray photons to charge. Such a detector layer can be placed in front of a TFT
active-matrix whose sensor-element is a capacitor to obtain another type of FPD. As in
this case X-ray photons are converted directly to charge, this is called a direct-imaging
FPD.

Comparison between FPD-technologies.Indirect-imaging FPDs differ according to the
type of scintillator used, however, the large majority uses CsI. CsI scintillators have several
advantages, they can be directly deposited on the TFT to give the best possible optical coupling
efficiency in comparison with other scintillator screens which are mechanically forced into close
contact. When CsI is deposited on the TFT it grows in a columnar structure thus reducing the
amount of light scattering and reflection. By comparison, other scintillators induce a larger
dispersion of light which leads to images which are more blurry. This is shown in Figure 2.19 –
indirect imaging. Direct-imaging FPDs have the advantage of returning images of even higher
quality, as there is no spreading of light in this case. This is shown in Figure 2.19.

Comparison to image-intensifiers. In comparison to X-ray image intensifiers, modern
FPDs are small, have longer operational lifetimes and larger dynamic ranges. FPDs have usu-
ally a better SNR than intensifiers and it can be further improved by binning, i.e., connecting

15A photoconductor is a solid-state detector, which electrically is a semiconductor or an insulator. They are used
to obtain localized charge from localized incident X-ray radiation. A metal is not a good photoconductor as the
charge is not localized due to the excess in free carriers.
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(a) (b)

Figure 2.18: The path from X-ray-photons to charge in indirect imaging FPDs (a) and direct
imaging FPDs (b) – after [75].

Figure 2.19: Scattering for different detector-layers used at indirect and direct imaging respec-
tively – after [75].
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e.g. a 2× 2 neighborhood of pixels to a super-pixel. It is expected that they will completely
replace imaging systems using image intensifier and camera in the near future.

2.2.3 Image digitization

After image information is acquired by the sensor the signal is usually converted to voltage and
digitized before being processed. Discretization implies a sampling and a quantization step. For
CCD and CMOS sensors as well as for FPDs, the image is inherently sampled as each sensor-
site acquires one image sample. The quantization can then take place in the imaging device –
even on the same chip as in the case of CMOS sensors – or on a dedicated card in a computer.

Sampling. Ideally, the image is sampled by a train of Dirac pulsesδ which in 1D are defined
as:

f(0) =
∫ +∞

−∞
f(t)δ(t)dt (2.10)

Mathematically this is a functional, also called Dirac’s Delta distribution.
Sampling can be described as the result of a multiplication between the image and the train

of Dirac pulses. The distance between the pulses of the network should be chosen according to
the Nyquist theorem, which requires that the sampling frequency should be at least double the
highest frequency in the image spectrum.

If the Nyquist theorem is not respected, then image information in the high-frequency do-
main is partially lost during sampling and alias appears. The alias is the distortion of the re-
constructed signal, due to incomplete image information. Sampling makes the spectrum of the
original-signal periodic and alias can be observed as an overlap between such periods [110],
[108] .

If the sampling frequency is chosen to be exactly the double of the highest frequency in
the image spectrum, then it is said that the image is critically sampled. However, this is not
advisable, as alias may appear if the image is rotated before being sampled, as a rotation of the
image leads to a rotation of the spectrum.

Influences of sampling on the signal. Dirac’s Delta distribution is a mathematical ab-
straction. Practically, it is approximated by a rect function of a small width and high amplitude:

δ ∼=
1

T0

rect
(

t

T0

)
(2.11)

This corresponds then to modeling a sensor-site as a small surface over which the image in-
formation is integrated. This model is also conform with the reality, as sensors-sites gather
photons over their entire active area which they then transform to an electrical charge. In this
real case, sampling can be described as a multiplication between the image and a network of
pulses obtained by filtering the Dirac pulses with a low-pass filter (a short-time integrator). As
the convolution is associative this is equivalent to first applying a low-pass filter to the image
before ideally sampling it. The cut-off frequency of the low-pass filter depends on the effective
area of the sensor-site and thus on the fill factor. A larger fill factor gives a better sensitivity but
at the same time a more powerful low-pass filtration. The typical size of objects in an image is
such that they are not affected by the sensor-site-area low-pass, thus in most applications, the
quality of a sensor increases with the fill factor.
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Figure 2.20: Example of a quantizer. As soon as the amplitude of the input signal (continuous-
line) leaves the range of a decision-level (between two dotted-lines), the output modifies in
discrete steps (dashed-line).

Quantization. The step subsequent to sampling in digitization is quantization. Quantization
transforms a continuous sample value in a discrete one. For this purpose it maps a intervals
to constant values, i.e., quantization-levels, as shown in Figure 2.20. These quantization levels
are then coded into binary numbers by modulating the length of a series of pulses of constant
amplitude. A typical quantization circuit includes an operational comparator, a D/A converter,
a digital counter (made with JK latches) and an AND circuit. The D/A converter can be made,
e.g., with an operational amplifier and several resistors [61].

Uniform and non-uniform quantization. If the distance between two quantization-levels,
i.e., the quantization step, is always equal, than this is calleduniform quantization. Uniform
quantization is best suited if the signal is uniformly distributed (see Figure 2.21). However,
in most cases the signal is rather Gauss distributed as small values appear more often than
large ones. In this case, the overall approximation error will decrease if the quantization step
is small for small values and large everywhere else. This is shown in Figure 2.21 (b). Such a
quantization is callednon-uniform quantization.

Practically a non-uniform quantizer is achieved by first applying a non-linear compression
to the signal followed by uniform quantization. The non-linear compression curve is chosen
depending on the interval where most values of the signal are found. When reconstructing the
signal, the inverse transform is applied, expansing it back to the original range of values. A typ-
ical compression and the corresponding expansion curve – corresponding to Gauss-distributed
sample-values – is given in Figure 2.22.

Influences of quantization on the signal. Quantization means actually signal approxima-
tion. The maximum approximation error for each sample is equal to one quantization step. The



2. MACHINE VISION FOR CARDIOVASCULAR MEDICINE: A TUTORIAL 31

(a) (b)

Figure 2.21: Uniform (a) and non-uniform (b) quantization curves with approximation errorse
at different levelsl – after [61].

Figure 2.22: Compression curve (continuous) and expansion curve (dashed) – after [61].



32 2.2. FROM PHOTONS TO DISCRETE SIGNAL

overall approximation error depends clearly on the number of quantization levels – i.e. the more
quantization-errors the smaller the error. However, it can be improved if one has knowledge on
the distribution of the sample-values. The number of quantization levels is usually expressed in
the binary base and gives the number of bits per sample.

Besides quantization noise, an image can also be distorted during quantization due to the
fact that the dynamic range of the input signal is larger than that of the quantizer. There are
also additional noise factors linked to the quality of the electronic devices which implement the
quantization.

2.2.4 Image noise and image distortions

The image which was acquired in a digital format is only a distorted 2D representation of the
viewed scene. The information which is contained in a viewed scene goes through a series
of transformations before being stored in a digital format on a specific storage medium. Each
transformation introduces specific distortions which need to be eliminated, or at least one has
to be aware of their existence, before processing and analyzing the image information.

A distinction is made between two types of distortions: blurring and noise. The former
is usually appears at the level of the image and the latter at the level of an image element.
There are also geometrical distortions due to, e.g., optics and distortions due to the architecture
of the image sensor as well as distortions due to digitization. Digitization errors affect all
images, irrespective of the primary information carrier, i.e., visible light or X-rays. They include
sampling-alias and the sampling low-pass and quantization noise (see Section 2.2.3). Other
errors are specific for the acquisition of visible light and X-ray images respectively, hence the
two classes are discussed separately.

Image acquisition with visible light

Noise and distortions due to the scene.The number of photons which leave a certain point
on an item of the viewed scene and hit the surface of a detector in a specified time interval and
under constant flow of electromagnetic radiation is not constant but a random variable with a
Poisson distribution. This is calledphoton noiseand is linked to the physical processes which
take place when light is reflected, emitted, etc. When the number of photons hitting the sensing
element increases, the Poisson distribution becomes similar to a Gaussian distribution, but with
signal-dependent variance.

Noise and distortions due to the camera. After leaving the scene, to obtain an image, the
light needs to go through the aperture of the camera. At the aperture diffraction phenomena
occur which result in blurring the image. Thiscamera-blurringdepends on the size of the
aperture and on the distance to the image plane. This is shown in Figure 2.23.

Noise and distortions due to the optic. An optical system introduces a series of distortions
in the image (see Section 2.2.1) which include also diffraction phenomena at the opening of the
lenses. The cumulated effect of all this distortions can be analyzed using linear systems theory
as the formation of an image by an optical system is a linear process. Therefore it is sufficient
to know how one point is imaged by the optical system. As the optical system has a low-pass
behavior, it smears the point spreading it over a larger surface, hence the name of Point Spread



2. MACHINE VISION FOR CARDIOVASCULAR MEDICINE: A TUTORIAL 33

Figure 2.23: Blurring induced by different phenomena in a camera for an usual electronic sensor
and for photographic films of different sensibilities.

Function (PSF). What is normally used to describe optical system is the Fourier representation
of the PSF called the Optical Transfer Function (OTF) (see Figure 2.23).

The optical system can also introducegeometrical-distortionsin the image which can be
normally compensated by transforms as described in Section 2.2.1.

Noise and distortions due to the sensor. When a visible-light photon hits the surface of a
sensor, than it will set an electron free with a certain probability. This electron in turn will
contribute to the charge of the detector with a certain probability. The number of detected
electrons for a certain number of incident photons is a random variable which follows also
a Poisson distribution. Together with the photon-noise thisdetection-noisegenerates most of
the noise in an image. Given the typical number of incident photons, this noise is considered
Gaussian distributed. It has a flat power spectral density and it is uncorrelated, therefore is also
called white.

A detector generates a signal even when the light flux is zero, due to thermal agitation, this
is called dark current. The dark current is not constant but it varies also, thus it is different from
sensor-site to sensor-site. As the minimum radiative flux that can be measured at a sensor site
is linked to the variation of the dark current, this contributes clearly to the noise in the image.
This is called thenthermal-noise.

Some CCD sensors in particular, show distortions due to their specific architecture and man-
ufacturing process. If a powerful light source is imaged, than charge can spill from one sensor
site to another causing thus ablooming-effect. Also, while transporting the charge correspond-
ing to the bright spot, it will leave a bright trace in the image, causing thus asmearing-effect.
This happens for both frame-transfer sensors and interline-transfer sensors. In the latter case
this is due to the fact that the storage elements are not perfectly screened from light. CMOS
sensors are normally robust with respect to blooming and smearing. Other problems may appear
if an interlaced scanning pattern is used, than moving objects will show additional distortions
at the borders.

As already pointed out, quantum detectors integrate light over a certain area. In the case
of an image sensor, whose sensitive area can be seen as a collection of quantum detectors in
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Figure 2.24: Depth of field for a camera with a discrete sensor – with permission from [2] .

a matrix setup, this is equivalent to applying a low-pass filter on the image acquired (see Fig-
ure 2.23). If the cut-off frequency of this low-pass filter,fqd, is lower than the cut-off frequency
of the optics-low-pass, the optics-induced attenuation of frequencies abovefqd will not affect
the quality of the recorded image. Nevertheless, the band limitation by the sensitive area is not
sufficient to eliminate alias. The optical system has to be adapted also to the distance between
two quantum detectors, i.e., the sampling frequency. This allows for a certain maneuver room
when choosing or designing an optical system in relation to a certain image sensor.

As shown in Figure 2.24 the sensitive area of a quantum detector gives also the limits of the
depth of field of a digital camera (see also Section 2.2.1).

Image acquisition with X-rays

Noise and distortions due to the scene.X-rays interact with matter by several mechanisms
(see Chapter 2.2.2) and with a certain probability. Scattering produces the most important
image distortions. Compton scattering leads to spurious X-ray photons hitting any position in
the image plane with a certain probability and thus modifying the number of quanta per detector
surface contributing thus to the photon noise. Rayleigh scattering leads to abroadeningof the
X-ray beam which is equivalent to a low-pass filtration of the image.

Noise and distortions due to the intensifier. If an image intensifier plus digital camera com-
bination is used, than the image intensifier introduces some geometrical distortions of the image
which need to be compensated by transformations (see Section 2.2.2).

Noise and distortions due to the sensing element.Similar to visible light, X-ray sensing
elements exhibit also noise. An X-ray quanta will generate a response be it a photon for scintil-
lators or charge for photoconductors only with a certain probability. This probability depends
on the energy of the incident X-ray radiation, as shown in Figure 2.25 for a CsI scintillator and
a Se photoconductor. Even if a response is generated, it will be affected by some physically
motivated fluctuations. All this fluctuations are known as gain-fluctuation noise [75].

Scintillators in particular are also responsible for blurring the image. Depending on the inci-
dence angle of the X-rays, a X-ray photon may be absorbed at different depth. Then, depending
on the absorption and thickness of the detector-layer, the response varies with the absorption
depth. The photon which is generated after an interaction in the scintillator does not follow a
direct path on the way to the detector. Because it goes through several interactions before leav-
ing the sensory-layer, it registers a lateral diffusion. If, e.g., an electron from one of the internal
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Figure 2.25: Quantum detection efficiency for a 1mm thick layer of Se (continuous line) and
CsI (dash-dotted line) – after [75].

layers of an atom is hit, than it becomes free and a characteristic X-ray photon is produced
simultaneously which can again set free another electron and a photon in the vicinity and so on
until a light-photon is produced and it leaves the material. Suchblurring can be analyzed using
linear systems theory as in the case of optics for visible light. To describe it the Modulation
Transfer Function (MTF) is computed, which is actually the absolute value of the Fourier trans-
form of the corresponding PSF. One of the advantages of photoconductors is that their MTF
does not depend on the thickness of the sensory layer, but it does depend on the energy of the
incident variation. This is shown in Figure 2.26.

2.3 Image processing

At the end of the imaging chain, the image exists as an array of numbers in binary format stored
on a digital media. The image information can now be processed by a computer to achieve a
myriad of purposes. The methods used for processing are gathered under the term Digital Image
Processing. Such methods can be applied to any 2D data, like e.g., CT slices and are thus not
restricted to projection-images.

Image processing covers the following basic classes of problems [110]:

1. Image representation and modeling

2. Image enhancement

3. Image restauration

4. Image analysis

5. Image reconstruction
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(a) (b)

Figure 2.26: MTF for a Se photodetector for different thickness (a) and energies (b) at 500µm
thickness – after [75].

6. Image compression

In the context of machine vision, we make a further distinction betweenimage analysis
and image conversionproblems which includes all other categories described above and from
which we are interested only in image enhancement.Image conversionmethods accept as input
an image and return a modified version of the input, so in this case, there are images both at the
input and at the output.Image analysismethods accept as input an image – typically the result
of image enhancement – and return a description of items in the image.

2.3.1 Image enhancement

Thepurpose of image enhancementis to make objects conspicuous so that they can be easily
separated from the rest of the items present in an image. Typically some information on the
representation of the objects in the image is available and should be used to support the choosing
of a method or set of methods for image enhancement. For example in an edge detection
approach, the objects are the edges, which are known to be regions exhibiting sharp transitions.
Then a linear high-pass filter can be used to enhance them.

Image enhancement techniques can be divided into three large classes [110]:

• Point operations, which include methods where each gray level of the image is modified
according to a certain function, like e.g., contrast stretching and histogram equalization.

• Spatial operations, including methods where the value of each element of the image is
recomputed using information from a set of neighbors situated in a certain neighborhood.
Examples are: filtering with linear time invariant systems, median filtering, morphologi-
cal processing, etc.

• Transform operations, which include methods whose typical implementation requires
first the representation of the image in a transformed normally orthonormal space, fol-
lowed by processing and inverse transformation. This category includes, e.g., some non-
linear filtration techniques like homomorphic filtration.
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2.3.2 Image analysis

The purpose of image analysisis to provide a description of objects providing thus the basis
for a consecutive image understanding step, where objects are identified and eventually the
relationship between them is established.

Depending on the application an intermediarysegmentationstep may be necessary where
objects are separated from other items in the image, i.e., object detection. To conduct this step,
one assumes some prior knowledge on the physical-properties of objects which is then related to
certain image attributes. The description of objects is then based on single or on combinations
of image attributes which are calledfeatures.

Therefore, one can conclude that image analysis is usually based on some a priori knowl-
edge with respect to objects and more precisely on specific expectations which arise from this
knowledge.

Image features

Features can be defined as meaningful detectable attributes of the image. In machine vision the
term image feature refers to two possible entities [188]:

• Global or direct features, which are general image related attributes, which could also
be defined for images showing no objects.

• Local or composed features, which typically include a segmentation step to induce a
local behavior and contain particular, object-related attributes. These can not be defined
for images showing no objects.

Composed features which are arguably more often used than global features, can be further
divided into:

• Low-level features, which are computed independently using only information extracted
from the image function, like e.g., edge-points

• Mid-level features, which are defined based on a raw relationships among low-level
features, like e.g., perimeter and area.

• High-level features, which are usually computed starting from mid-level features and
describe object properties, like e.g., its similarity to a circle, its elongation, etc.

Image analysis includes methods to extract and select image features. Feature extraction
can be based, e.g., on the amplitudes of the image signal, on the histogram, it may include a
transformation and/or a segmentation step and in general they may be as different as the objects
they should describe.

Image segmentation

Image segmentation is in many applications an important step of image analysis. The binary
image obtained after separating the objects, can be used to perform different measurements,
which are usually linked to the geometric shape of each object. Depending on the application,
such measurements can be used as such or as features to support a consecutive recognition step.
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There are pixel-based methods, which use only the gray-level of a pixel to decide if it
belongs to an object, region-based methods, which consider gray-levels in a certain neigh-
borhood, edge-based methods, which detect the contours delineating the objects and model-
based/template matching methods, where it is assumed that the geometric shape of the sought
object is known and this is then searched for iteratively in the entire image.

Pixel-based segmentation. A pixel-based segmentation is usually achieved by thresholding
the image such that the object and background pixels are divided into two classes. Each class
contains pixels which are similar in some respect. These similarities, which motivate the thresh-
old, can be associated to some physical properties of objects and background, like e.g., those
related to the way they interact with electromagnetic waves – i.e. how they reflect or emit light.
When background and object differ in this respect, accordingly, their pixel gray-levels in the
image are different and the two can be therefore separated.

For example, knowing that an objects reflects well light leads to the expectation of finding
the object among lighter items in the image. Building upon these expectations a threshold with a
high value should select only pixels of object-like structures. Thus, the knowledge with respect
to the reflectance-properties of objects has been used to obtain a new binary representation of
the imaged scene where only object-like items appear.

Region-based segmentation. Region-based segmentation uses not only the pixel gray-level,
but also the connectivity of objects to achieve a segmentation by, e.g., clustering pixels of similar
gray-level and situated at small distances from one another to detect thus an object or at least
part of its surface. In the latter case in an additional step several surfaces are linked together
to form the object. This entire clustering process is usually controlled by specific similarity
functions.

In principle, region-based segmentation uses additional object information – i.e. objects are
represented by spatially-connected structures – to achieve a segmentation and thus in some
situations represents an improvement over simple pixel-based techniques.

Edge-based segmentation. In machine vision there is often the case that objects can be char-
acterized by borders, which separate them from other items. Borders can be defined in different
ways, usually they are made of points where the image amplitude exhibits a sharp transition,
but they can also be points where, e.g., the orientation of pixel neighborhoods changes. After
detecting such transition points – which is in itself a feature extraction step, where the points
are considered to be the objects – they need to be gathered in border-sets. This is implicitly a
segmentation step, because after the border-sets are established, the objects are defined typically
as image surface enclosed by the border.

Active contours. Boundary extraction is a very important step in image analysis and it may
result in a segmentation of the image. Boundary extraction is about finding a relation among
edge points and it can be seen as consisting from two problems [188]: grouping, i.e., which
points belong to a boundary and model fitting, i.e., which boundary curve best interpolates the
available edge points.

If precise knowledge on the topography of sought border is available, then a set of methods
which try to find instances of the border in the image can be used. Such methods include,
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e.g., template matching [109] and Hough transform [15] , [106], [102]. Conversely, adaptive
methods are needed like the active contour models [119], [136], [171].

Active contours are self-organizing curves able to lock on the borders of objects with differ-
ent shapes. They move on the image under the influence of internal energies, which are defined
within the curve and external energies, which are computed from the image to a position of min-
imum energy, which corresponds to the sought border. Internal energy typically model elasticity
and stiffness and external energies are attraction energies and are defined in relation with the
nature of the borders.

The curve can be open or closed, here we restrict to discussing closed curves, which can be
used for boundary detection. By their energy formulation, they behave like elastic strings with
specific bending and stretching properties. Two types of active contours can be distinguished
[75]: parametric ones, where explicit relations are defined between neighboring curve-model
points [119] and geometric ones, where these relations are implicit allowing for improved flex-
ibility [171]. For example, geometric contours are able to split and merge with relative ease in
comparison with parametric models and can thus be used, e.g., to detect simultaneously several
items in the image.

Model-based segmentation. If enough information about the objects is available to construct
an object-model, then segmentation can be achieved by choosing from the image only those
points which verify the model, e.g., points where the similarity between the model and the
input data is maximal.

2.3.3 Morphological image processing

Morphological image processing can be divided, as function of its input, intobinary morphol-
ogy andgray-level morphology. Usually, the former is used primarily for image analysis and
the latter primarily for image enhancement.

Binary morphology

Binary morphology can be used, e.g., to improve a segmentation by smoothing out object out-
lines, filling small holes and other similar techniques. It facilitates the search and selection
of objects from among several candidates. It can be also used to find borders of objects or
to generate features, as it provides the means for an easy quantification of form-based object
attributes.

After segmentation, only information about the geometrical structure of the object is avail-
able as all other information has been used to achieve the segmentation. Morphological image
processing has been initially developed to analyze the geometrical structure within binary im-
ages. The basic idea being to quantify the manner in which a structuring element-probe fits or
it does not fit within the image [67]. In other words: describe a house – object – starting from
the bricks – structuring elements – that make it.

Gray-level morphology

Gray-level morphology has evolved from binary morphology. To understand gray-level mor-
phology, we must remember that with two adjacent gray levels, the brighter one is considered to



40 2.4. PATTERN RECOGNITION

be the object (the equivalent of ‘1’ in a binary image), and the darker one is the background (the
equivalent of ‘0’). It is usually used to select and preserve particular intensity patterns, while
attenuating others.

Currently morphological image processing represents a collection of methods applicable not
only to binary images but also to gray-level images, to accomplish a multitude of tasks and it
joins traditional image processing in a complementary way, sometimes even replacing it [144].

2.4 Pattern recognition

Image analysis returns afeature-based description of objects. Based on this description, objects
are recognized and relations among them can be established. This is then calledimage under-
standingand it is the final purpose of machine vision. Using such vision-information, decisions
can be made, like e.g., moving a robot arm to a certain position to grasp the object. In the case
of medical machine vision, such information can be used, e.g., to enhance the diagnostic ability
or to improve treatment.

Image understanding includespattern recognition. In this case, the patterns are image ob-
jects in a compact, feature-based representation and the recognition problem is usually being
posed as a classification task. The corresponding classes can either be predefined in the case
of supervised classificationor learned based on the similarity of patterns inunsupervised clas-
sification. In this sense, image understanding is usually a supervised classification problem.
Of course, unsupervised methods can be used as well provided that in an additional step the
correspondences between the learned classes and the sought objects are established.

The five best known approaches to pattern recognition are [111], [29]:

1. the statistical approach [184], [156], [87]

2. the syntactical approach [149], [28]

3. neural networks [97], [21]

4. support vector machines [38], [60], [178]

5. template matching [185]

They can be further divided into:

• Bottom-up methods, which in the case of machine vision start from elementary image
components to return a classification of objects (normally the approaches 1–4), like e.g.,
the detection of certain types of cells in a microscopic image

• Top-down methods, which use a set of predefined prototypes – based on some prior
knowledge or learned – to search for instances of objects in the image (approach 5), like
e.g., atlas-based registration of hand bones.

Segmentation as a pattern recognition problem. If the analyzed image shows only real-
izations of the same object and background, than detection and identification of objects, i.e.,
segmentation and image understanding, become the same thing. Pattern recognition methods
are not used exclusively at image understanding, they can be used also for segmentation as well,
because segmentation can be seen, e.g., as a two-class object-non-object classification of image
pixels.
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2.4.1 Statistical Classification

A pattern recognition algorithm needs to establish a class correspondence for each input fea-
ture vector. In the statistical paradigm, thefeature vectorsare consideredrandom variables
and usually, their class labels are established based on a posteriori probabilities, such that the
probability of error is minimized. The mathematical expression of this fundamental strategy is
theBayes decision rule.

There are alsoother strategiesto design a statistical classifier, then to minimize the total
error. For example, depending on the application, certain errors can be more critical than others
and accordingly one would like to avoid the critical errors, even if this means accepting some
more uncritical errors.

The Bayes decision rule

If a classification algorithm needs to decide on the class label for a certain pattern in a two-class
problem, than the best it can do to minimize the total error, is to decide in favor of the class for
which the a posteriori probability is maximal:

Pr [ω1|~x]

Pr [ω2|~x]

ω1
>
<
ω2

1 (2.12)

As the posterior probabilities are usually difficult to estimate, one can use theBayes theorem:

Pr[A|B] =
Pr[B|A]Pr[A]

Pr[B]
(2.13)

to rewrite (2.12) based on the class-conditional probability density function and prior probabil-
ities:

p (~x|ω1)

p (~x|ω2)

ω1
>
<
ω2

Pr [ω2]

Pr [ω1]
(2.14)

Both the class-conditional probability density functionp (~x|ωi) and prior probabilitiesPr [ωi]
can usually be estimated using some training-data or they may be known a priori.

The large majority of statistical pattern recognition methods – irrespective if they decide
among two or several classes – are based in some sense on the Bayes decision rule, which
minimizes the probability of error. Depending on how much information is available at the
beginning of the design phase of a statistical classifier, the Bayes rule is applied directly or
some additional steps are needed.

Estimating the class-conditional densities. If the class-conditional densities and the priors
are known in advance, then the Bayes decision theory can be applied directly. If they are not
known, then they may be learned, either in a supervised, or in an unsupervised manner. Provided
the mathematical form of the soughtpdf is known, then the specific parameters, like e.g., mean
and variance can be estimated to obtain a parametric estimation of thepdf. If the mathematical
form is not known, then specific estimation methods, like e.g., Parzen estimation and k-nearest
neighbor should be used to obtain thepdf in a nonparametric approach.
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Bayes classifiers. A supervised parametric approach gives so calledplug-in rules, which have
been previously computed and depend on the parameters of the known distribution functions.
The estimated parameters are then directly replaced to obtain the sought classifier, like e.g., for
the linear and quadratic Gaussian classifiers [184].

The supervised nonparametric approach returns classifiers which use Equation (2.14) with
the class-conditionalpdfsestimated nonparamterically, or they use some derivate rules like in
the case of the k-nearest neighbors classifier [87].

The unsupervised parametric approach results in amixture model analysis, like e.g., expectation-
maximization [21], where typically the number of modes is unknown. However, it can be de-
termined from the data by specific methods, like e.g., minimum message length [152].

The unsupervised nonparametric approach yieldscluster analysis methods, like e.g., the
k-means algorithm [112].

Other decision criteria

Sometimes, e.g., for errors with different relevance degrees or when one does not know the class
conditionalpdfs, the Bayes decision rule can not be applied to design a statistical classifier. In
such cases criteria other than the minimization of the total error should be used. We discuss
here shortly a few such examples, which are relevant for this work.

Bayes risk minimization. The decision rule in Equation 2.14 is formulated in terms of the
class prior probabilities. To account for a different degree of relevance among errors of different
classes, one can establish a decision rule to minimize the Bayes risk. This risk is defined in
relation to a cost value previously assigned to each type of decision. The costCij will be larger
for wrong decisions (i 6= j) than for correct decisions (i = j ) and one can assign a larger cost for
that type of error which is more critical. The two-class decision rule to minimize the Bayes risk
will be [184]:

p (~x|ω1)

p (~x|ω2)

ω1
>
<
ω2

Pr [ω2] · (C12 − C22)

Pr [ω1] · (C21 − C11)
(2.15)

The decision rule in Equation 2.15 is strongly related to the Bayes decision rule, as it still
considers the total error. By imposing certain cost values and experimenting with them, one
can compute decision rules such that certain desired error probabilities for certain classes are
achieved.

Neyman-Pearson theory. If from the beginning a certain error probability is desired for a
certain class and the class conditionalpdfsare known, then the Neyman-Pearson decision rule
can be used. For a decision among two classes, this rule is computed – by fixing one class error
probability, sayε2, and seeking to minimize the other (ε1) – as [184]:

p (~x|ω1)

p (~x|ω2)

ω1
>
<
ω2

λ (2.16)

whereλ is a constant, characteristic for the decision rule. One can show that by varyingλ,
a curve in the space of class error probabilitiesε1ε2 is computed, i.e., thereceiver operating
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characteristic(ROC)16 of the decision rule. Using the ROC, one can also formulate a decision
in terms of the desired class error probabilities, rather than in terms of class prior probabilities.

Significance test. If two mutually excluding classes need to be separated and only the con-
ditional pdf of a single classωk is known, then one can use for classification a significance
test. The null hypothesisH0 of this test is that the investigated sample belongs toωk. Over the
significanceα one can set the probability of error givenH0 and thus establish a decision rule.

Separability analysis. If the class-conditional densities are not known, then one can find the
parameters of a decision rule by optimizing a separability criteria, rather than minimizing class
errors (see also Appendix A.6). The Fisher linear classifier (see Section 4.3.2 at page 143)
represents a well-known example for this classifier-design strategy.

2.5 Issues of algorithm performance

The purpose of vision is to provide an interpretation of a scene. The interpretations given by
machine vision algorithms are subject toperformance claims, which should show that they are
conform with a certain target interpretation17. In the cases of interest here, this target interpre-
tation is normally obtained as the result from an analysis by a trained human observer.

The quality of a machine vision algorithm can be evaluated either by analytical or by empir-
ical methods [35], [202].Analytical methodsexamine the algorithm by analyzing its principles
and properties and thus establish if it can reach the desired interpretation.Empirical methods
examine the algorithm by analyzing its output. They can be further classified into two classes:
goodness methods and discrepancy methods.Goodness methodsuse the algorithm’s response
to a certain input to evaluate some quality measure [127], [128], [166] anddiscrepancy methods
compare the algorithm’s output against a ground truth [18], [200], [203].

Algorithms forcardiovascular biomedical image analysisare usually supposed to take over
some visual analysis tasks from human specialists. For this purpose, they need to perform
similar to a human observer and thus the best way to test them is bydiscrepancy methods.

2.5.1 Performance metrics

In the following, it is assumed that the data sets used for evaluation arelarge enoughto inspire
confidence and different performance claims are made onsimilar data, which isrepresentative
for the clinical problem. We discuss different performance metrics. In this context a distinction
between three different categories of problems, each normally requiring different performance
metrics, can be made [75]: measurement problems, image-classification problems and image-
segmentation problems.

16This is actually an “operating characteristic”, the term “receiver operating characteristic” has been pinned by
the traditional usage of such decision-making strategy in the field of signal detection for telecommunications and
radar.

17Performance claims with respect to the speed at which an interpretation is available are beyond the purpose of
this discussion.
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Measurement problems

A machine vision algorithm designed to solve such problems should return a scalar or vector
quantity, which normally describes an object from the analyzed image. Its performance can be
evaluated by comparing the result against an independent measure of the true value. For this
purpose, the mean relative error (MRE), but also the mean squared error (MSE) can be used.
The MRE is defined as:

MRE = E(
|r − tv|

tv
) (2.17)

and the MSE is defined as:
MSE = E((r − tv)

2) (2.18)

with r the result,tv the true value andE(·) the expectation operator. For vectorial quantities
one obtains an error vector. In this case, the magnitude of this vector can be used as a scalar
measure of the error.

Image classification problems

In this case it should be specified if the analyzed image does or does not belong to a certain
category. Although the number of categories can be large, in essence this is a binary decision,
which has onlytwo outcomes: true if the classification was correct or false conversely. The
performance of algorithms designed to solve such problems can be evaluated based on the
number of correct and incorrect decisions, provided some pre-classified data set, called the test
set, is available.

Multi-class classification. In the case of a multi-class classification problem, the percentage
of correct classifications per class and also the percentage of correct classifications on the entire
test set can be used as performance metrics.

Binary classification. In the case of a binary classification problem, the rates of true and false
positives (TP/FP) and that of true and false negatives (TN/FN) can be used. A true classification
is a correct decision and a false classification is an incorrect decision, either for the positive class
or for the negative class. Usually, the positive class is the object-class and therefore, sometimes
TP are also called correct classifications (CC). It is customary to specify only the TP and FP
rates. Typically in an object no object scenario, a decision in favor of the object is a positive
decision. If the decision was correct, then a TP was registered, otherwise a FP was registered.

Composed metrics. From the TP/FP analysis, several additional performance metrics can be
derived, like the sensitivity, the specificity, the precision, the accuracy or metrics based on the
ROC (see Section 2.4.1).

Thesensitivityis defined as:

Se =
NTP

NTP + NFN

(2.19)

thespecificityis defined as:

Sp =
NTN

NTN + NFP

(2.20)
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theprecisionis defined as:

Pr =
NTP

NTP + NFP

(2.21)

and theaccuracyis defined as:

Ac =
NTP + NTN

NTP + NFN + NTN + NFP

(2.22)

with NTP , NTN , NFP , NFN the number of TPs, TNs, FPs and FNs respectively.
An ideal detection will have: sensitivity, specificity, precision and accuracy equal to one

(or 100%). With respect to sensitivity and specificity, it is pointless to specify only one of the
two, as perfect sensitivity is achieved by an algorithm deciding always for the object class and
perfect specificity can be achieved by an algorithm deciding always against the object class. An
algorithm with perfect precision decides always correctly for the object class, but not necessarily
for all members of this class. An algorithm of perfect accuracy decides always correctly for and
against the object class, for all members of the two classes.

Normally, there is a tradeoff between sensitivity and specificity which is controlled by a
certain parameter in the algorithm. In such a case, the algorithm’s performance can be evaluated
using theROCwhich gives the TP against the FP rate when the parameter varies such that the
FP rate goes from zero to 100%. Using the ROC, performance metrics such as thearea under
the ROC(AROC) can be defined. Clearly, the larger the area, the better the performance, but
sometimes it is better to use only a certainpart of the AROC(pAROC), e.g., when there is a
certain maximum acceptable FP rate or a minimum acceptable FN rate or a combination of the
two.

Image segmentation problems

This type of problems involve dividing the image in a series of distinct regions. In this case,
it is not an entire image, which should receive an interpretation, which can be erroneous or
not, but only some subsets of the image. Thus, for one and the same image one can achieve
both correct and false results. Performance metrics for such cases are more difficult to design,
they are based, e.g., on the number of elementary regions (e.g. pixels) that have to change their
class so that the achieved result is in agreement with the ground truth, or on the mutual overlap
between ground truth and result. Further details can be found in [75] and [35].

In the case of binary segmentation, the image should be divided in only two regions, i.e.,
object and background. Then, for each pixel of the image only two outcomes are possible and
performance metrics based on TP/FP rates can be used as described previously.

2.5.2 Measuring performance in practice

Performance claims are supposed to either permit a reliable comparison between algorithms or a
reliable prediction of performance in clinical practice. There are several factors which influence
the credibility of a performance claim and can thus cast a shadow on the reported success of a
certain machine vision algorithm.
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Optimist bias for a performance claim

If a performance claim is based onsynthetic data, then it typically shows that the algorithm
matches the assumptions made when generating that data. However, it says nothing about how
the algorithm will behave under natural conditions. The natural conditions may be different
enough to make any attempt to precisely model them futile. Thus synthetic data should be used
only to designthe algorithm andnot during testing.

An optimist bias can be obtained also if the data set on which the performance claim is made
is chosen in such a way that itparticularly supportsa certain type of modeling, which in turn
led to the design of the algorithm.

If a machine vision algorithm learns how to interpret some data from a set of examples, the
performance claim should be made on a data set different than that used for learning. Usually
there is only one data set available for designing the algorithm. To make a performance claim,
this set is partitioned so thattraining andtestingthe algorithm is done ondifferent data. There
are several ways to achieve such a partition including, e.g., dividing the set half-half. Further
details on methods such as cross validation and leave one out can be found in [75].

If a performance claim is defined based on some subjectively chosen criteria, then these
criteria should be properly chosen such that neither an optimist nor a pessimist bias appears.

Pessimist bias for a performance claim

Performance claims made onparticularly difficultdata sets are pessimistically biased only pro-
vided that data set is really anexception. Data sets which containoutlierscan lead to pessimisti-
cally biased performance claims. Such outliers may be generated, e.g., due to the imaging
procedure and end up playing a role because the data set was inadvertently cleaned.

Most often a pessimist bias appears due to theincorrect ground truth. For example, it
may lack the detail which is attained by the algorithm or some ground truth is simply wrong.
Normally, the reason for this is the human operator, who is supposed to establish this ground
truth and who may get bored or tired and make mistakes.

2.5.3 Designing a test to sustain a performance claim

Each algorithm contains usually a set of parameters which influence its behavior and make it
thus adaptable to different data. Before making a performance claim, this set of parameters
needs to be defined. For this purpose, a sample of real data is needed together with some
objective performance measuresdefined over it. The performance measure is then computed
for each value of the parameters in a certain variation range, obtaining thus anerror-curve. The
parameter set which yields anextremumof the error curve – minimum or maximum depending
on the performance measure – should then be chosen.

The variation range of the parameters should bediscretizedin steps small enough to properly
sample the behavior of the algorithm and large enough to permit a timely computation of the
error curves. If the performance claim is supposed to be used to compare two algorithms, then
both parameter sets need to be defined during tests usingthe same data.



Chapter 3

Enhanced catheter intervention

A catheter intervention represents currently the state-of-the-art treatment procedure for the
artery disease1. Depending on which part of the body is supplied with blood by the affected
vessel, the artery disease becomes: the coronary artery disease, the cerebral artery disease or
the peripheral artery disease.

We concentrate on machine vision-based improvements for catheter interventions aimed
at treating the coronary artery disease and the myocardial infarction (Section 3.1). Dividing
a catheter intervention into three phases: diagnostic, intervention and evaluation, we describe
methods to support the last two phases. We show how to improve the perception of visual in-
formation during the intervention by presenting the physician a dynamic vessel-roadmap where
his tools are shown superimposed (Section 3.2) and how to extend his evaluation abilities by
automatically and precisely evaluating measures of revascularization of the cardiac muscle (Sec-
tion 3.3) following treatment of a heart attack.

3.1 Introduction

3.1.1 The coronary artery disease

The coronary artery disease occurs when the arteries that supply blood to the heart muscle (see
Figure 3.1) become hardened and narrowed. This is due to the buildup of plaque on the inner
walls or lining of the arteries, which is called atherosclerosis.

There are several pathologically relevant consequences of this disease. For example, the
blood flow to the heart is reduced resulting in cardiac ischemia and therefore in the decrease
of oxygen supply to the heart muscle2. Left untreated over a longer period of time, cardiac
ischemia may contribute to arrhythmias and heart failures.

One of the most dire consequences of the coronary artery disease is a heart attack. This
may happen if a blood clot suddenly cuts off the entire blood supply to a part of the heart
muscle. Cells in the heart muscle that do not receive enough oxygen begin to die. This can
cause permanent damage to the heart muscle and possibly directly lead to death.

Treatment of the coronary artery disease includes a change in habits for the ill person3,

1Sometimes also called the vascular disease.
2One of the early symptoms of cardiac ischemia is angina pectoris.
3The ill person should, e.g., avoid prolonged stress, eat a healthy diet to prevent or reduce high blood pressure

and high blood cholesterol, and maintain a healthy weight.
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Figure 3.1: Human heart with coronary arteries – after [91].

medication4 and surgical procedures. Usually, significant narrowing of the coronary arteries
requires surgical treatment. If multiple blocked coronary arteries are found during a diagnosis
phase, then a coronary artery bypass graft is recommended. If only one or two coronary arteries
are ill, then a Percutaneous Transluminal Coronary Angioplasty (PTCA) is effectuated.

During a coronary artery bypass graft healthy blood vessels taken from elsewhere in the
body are joined to the affected coronary arteries in such a way that the clogged areas are by-
passed.

In PTCA, a balloon is inserted through the skin into a blood vessel and maneuvered to the
site of the narrowing. There it is threaded into the blockage and inflated, compressing thus the
plaque against the arterial walls. Finally, in most cases a stent is placed to keep the artery open.
Such procedures can improve blood flow to the heart, relieve chest pain and possibly prevent a
heart attack.

3.1.2 Percutaneous Transluminal Coronary Angioplasty

Percutaneous means through the skin, transluminal, within the artery, coronary, refers to the
artery being treated and angioplasty means that the artery is remodeled. 657,000 PTCAs were
performed in the US in 2002 and their number has surpassed the 500,000 limit in the last years
in Europe and it still maintains an increasing trend [134].

PTCA has evolved from the catheterization procedure [146]. During such a procedure a
catheter – i.e. hollow flexible tube – is inserted into the body. If the catheter is supposed to reach
the heart than this is called cardiac catheterization. During PTCA, the catheter is advanced only
to the ostium – i.e. entrance – to the coronary vessel tree. After the catheter is positioned, a
guidewire with a easily steerable tip is advanced to the place of the lesion. Then, a balloon is
advanced on the guidewire, through the catheter and then through the coronary arteries, until it
reaches the position of the lesion where it is inflated.

PTCA in its current form was made possible by aseries of developmentsboth in the medi-
cal science but also in the field of non-invasive medical imaging. The modern PTCA depends

4Medication may include drugs that dilate the blood vessels of the heart, drugs which control the high blood
pressure, cholesterol-lowering drugs, anticoagulants to reduce the risk of a blood clot being formed and throm-
bolytics to dissolve the clots that can occur during heart attacks.
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largely onhigh-performance imaging equipmentand although it is a mature procedure, con-
ducted on a daily basis in many hospitals, there is still room for improvements. Particularly the
introduction ofcomputersto optimize standard medical equipment offers new almostlimitless
possibilities for improvements. Medical image analysisis at the heart of many such improve-
ments.

A short history of PTCA

Initially the cardiac catheterization was used to measure the intra-cardiac pressure in animals.
In 1929 the first documented cardiac catheterization on humans was performed with the purpose
of finding a way to efficiently administer drugs to the heart. The procedure was documented
by taking an X-ray picture of the catheter in the body when it reached the heart. In 1941 the
cardiac catheterization began to be used for diagnostic purposes, e.g., to measure the cardiac
output.

In 1958 the coronary angiography was introduced as visualization method for the coronary
arteries. While observing the heart-region under X-Rays during a cardiac catheterization, a
contrasting dye is introduced into the coronary arteries with the help of the catheter and thus
one is able to observe the anatomy of the coronary vessel tree in acoronary angiogram.

The transluminal angioplasty – i.e. the concept of mechanically remodeling an obstructed
vessel – was first proposed in 1964. In 1967 it was elaborated the “femoral approach” to coro-
nary angiography, i.e., introducing the catheter via a groin puncture rather than through the arm.
Then in 1977 it was developed the first balloon catheter whose controlled dilations were able to
eliminate stenosis.

All these developments, together with the introduction of fluoroscopic image intensifiers, led
to physicians performing the first PTCA on an awake patient in 1977. The precise positioning
and guiding of these initial balloons was quite difficult, consequently new guiding catheters are
developed in 1980 and then in 1982 over-the-wire coaxial balloon systems are introduced and
steerable guidewires are developed.

Although the stenosis could be successfully eliminated by inflating the balloon, the physi-
cians were still confronted with two problems. First, there was the collapse of the treated artery
after the intervention, in such cases an additional bypass graft intervention was necessary. Sec-
ond, there was the restenosis, i.e., the vessels close up again short time after the intervention.
To sustain the artery after the intervention and stop the restenosis, a stent – i.e. a metallic mesh
tube – was used for the first time in 1986. The stent is expanded by a balloon at the position of
the blockage and is thus able to sustain the artery and eliminate many complications, but it only
reduces the restenosis rate.

The latest advances in this field have seen the introduction of drug-eluting stents as of 2003.
Such a stent has a drug coating which interferes with the restenosis process.

The PTCA procedure

PTCA is performed either in common cases after the coronary artery disease has been dignosit-
cized or in emergency cases when a heart attack has occurred [120].

Typically, a patient accusing the symptoms of the coronary artery disease, like e.g., chest
pain first goes through a series of non-invasive tests. If these tests cannot rule out the possibility
of a blocked or narrowed artery, an angiographic exam is performed. Such an exam is an
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invasive test and is performed in the catheter laboratory under X-ray supervision. The catheter
laboratory is a special room in the hospital outfitted with X-ray imaging equipment and monitors
to directly see the X-ray images (See Figure 3.2). Next to this room there is an observation room
outfitted with computers where various software tools, aimed at helping the physician during
the operation, are installed and an anteroom where the patients are prepared for the intervention
and brought in for intensive care directly after the intervention. There are also several more
dependencies whose purpose varies from hospital to hospital.

The imaging equipment. PTCA relies on digital X-ray imaging to facilitate a precise posi-
tioning of interventional tools. An imaging chain consist of a X-ray generation unit, a X-ray
detector (either a FPD or an image intensifier-digital camera pair – see Section 2.2.2) and an
image processing unit, i.e., a host computer where dedicated software is installed. The X-ray
generation unit and the X-ray detector are mounted on a C-arm (see Figure 3.2), which can be
easily positioned by the physician. The orientation of the C-arm can be defined by the primary
and the secondary angle. With respect to the patient, the primary angle corresponds to a rotation
in the transversal plane and the secondary angle to a rotation in the sagittal plane. If the pri-
mary angle describes a tilt to the right then it is called the right anterior oblique (RAO) and if it
describes a tilt to the left then it is called the left anterior oblique (LAO). If the secondary angle
describes a tilt towards the head of the patient, then it is called cranial (CRAN), conversely it
is called caudal (CAUD). During image acquisition the irradiation of the patient can be either
continual or frame-rate-gated such as to reduce the time when he is exposed to X-rays. Usually,
the images are discretized on eight to 16 bits on a 512× 512 to 1024× 1024 grid and with a
frame rate of 10 to 60fps.

Depending on the clinical application for which the images are acquired, the X-ray dosage
can be increased, thus achieving images of a better quality, or decreased to reduce irradiation.
To keep the image noise and the image brightness constant the X-ray dosage can be modified
by a feed-back loop. Brightness constancy above the maximum radiation dosage is ensured in
the signal acquisition chain by an automatic gain control unit (AGC). The automatic correction
of image brightness, irrespective of how it is done, is considered by extension to be obtained by
the AGC.

In the beginning, to store the interventional images for later analysis and postoperative stud-
ies, a camera with a rapid film changer was used. The images acquired had a very good spatial
resolution, but since the digital technique has become ubiquitous, its obvious advantages had
led to the disappearance of film-cameras from catheter laboratories.

The diagnostic-phase. In diagnostic imaging film-cameras have resisted a longer time. In
such a case, the X-ray dosage is increased to obtain images of a better quality. At the same time,
a contrast agent – usually an iodine-containing compound with maximum iodine concentration
of 350mg/cm3 [27] – is injected in the coronary vessel and uniformly mixes with blood making
thus the vessels visible under X-ray. Therefore, such a diagnostic-sequence contains mostly
complete coronary angiograms showing the entire vessel tree.

These images are then recorded for some five to 10 seconds at a frame rate of 15 to 30fps.
Such sequences are usually calledcine-runs. Sometimes the word “cine” is used to describe
a coronary angiogram irrespective if it was acquired during the diagnostic phase or during the
intervention proper and a distinction is made between cine images andfluoroscopic– or in short
“fluo” – images, which are recorded with a lower X-ray dosage and mostly without contrast
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agent, therefore only rarely showing vessels. Presently, film cameras are replaced by digital
cameras and thus digital cine runs are obtained.

To set a diagnostic properly, several recordings from different angles – i.e. different geomet-
ric setups of the X-ray imaging system – are needed. However, the sequences recorded at this
stage still cannot cover all position that the C-arm covers during an intervention. Each time a
diagnostic sequence is recorded, contrast agent is injected into the vessels. For children in par-
ticular, the contrast agent can be poisonous in large quantities. To decrease the contrast load of
the patient, biplane systems can be used. Such systems have two orthogonally positioned imag-
ing systems – i.e. X-ray generation unit and X-ray detector – and acquire thus two sequences
of different projections per contrast injection. They are however more difficult to position and
sometimes the two imaging systems interfere generating images of lower quality.

The intervention. During an angiographic exam several images of the vessel tree are acquired
with the imaging system set for optimal image quality, i.e., in the so-calledcine-mode. If a
narrowing or blockage appears during the exam, this is usually transformed on the spot into a
PTCA, after making some small equipment changes.

During PTCA, the X-ray dosage is reduced to protect the patient and the physician, resulting
in a lower image quality. This image acquisition mode is sometimes calledfluo-mode. The
physician chooses one of the previously acquired complete coronary angiograms as roadmap.
This is then displayed on a screen next to the one showing live images. Then the guidewire is
advanced through the catheter and the vessels to the lesion site using its steering tip. Once in
place, the balloon is brought there and inflated to free the artery. Afterwards, in most cases,
the stent is placed. The tip of the guidewire is made of an X-ray absorbing material and can be
seen in the interventional images. The balloon however is transparent under X-ray and therefore
two X-ray absorbing markers – of a circular shape – are placed at each of its ends to define its
position. Of all surgical tools needed during the intervention, the tip of the guidewire together
with the markers are primarily relevant for navigation, therefore we call these “surgical tools”
as long as there is no danger of confusion.

During the intervention, the physician navigates mostly blindly, orienting himself on the
static roadmap. If this is not sufficient, he injects from time to time a small quantity of contrast
agent to find the exact position of the guidewire tip and then proceeds further. Unessential
injections of contrast agent are avoided as a large total-dose of contrast agent can be toxic for
the patient.

Both during the angiographic exam and during the PTCA the imaging system is brought in
different positions with the help of a gantry to better observe the ill vessel. Also the operating
table can be moved such as to image the desired location. To limit the X-ray exposure, special
blocking plates are used to constrain the field of view of the imaging system. Also the X-ray
imaging system is not active during the entire length of the intervention. A PTCA consists of
many single viewing sessions. The physician can start and stop a viewing session by pressing
or releasing a command pedal.

In some cases – i.e. when PTCA is performed as treatment to a heart attack – at the end
of the intervention one or two more injections of contrast agent are given to asses the success
of the intervention and make longer time predictions on the health of the patient by observing
how much blood reaches the myocardium through the capillaries. This investigation is currently
done semi-quantitatively using the Myocardial Blush Grade (MBG) [190]

The entire procedure takes usually between half an hour and an hour.
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Figure 3.2: A modern catheter laboratory – courtesy of Philips.

Machine-vision support for PTCA

The computer has already found his place in the catheter laboratory. His purpose is not to re-
place the physician but to facilitate his work. One of the simplest applications is the digitization
and recording of interventional image sequences. Such sequences can be later analyzed by sev-
eral physicians to improve a diagnostic or they can be used for teaching purposes or as raw data
for certain medical studies.

Once the computer technology was sufficiently developed to allow a time-effective pro-
cessing of images acquired during a PTCA, the first efforts towards a machine vision support
for PTCA were aimed at improving the diagnosis phase by precisely quantifying the projected
stenosis area. The physician had to choose a coronary angiogram where the stenosis could be
clearly seen. On such an image the vessel contours at the lesion site were found and the pro-
jected stenosis surface was measured [183], [122]. It has also been tried to analyze the blood
flow through the coronary arteries by densitometric measures and to describe thus qualitatively
and quantitatively the stenosis in an attempt to provide the physician with more information and
enable him thus to decide on the right treatment method [168].

Recently the attention has shifted towards helping the physician during the intervention
and by the assessment of the intervention’s results. Several factors are responsible for these
developments, the most important being:

1. The continuous advance of computer technology which enables the development of algo-
rithms able to process more data faster.

2. The publication of different medical studies which show how the measuring of specific
quantities, on the images acquired during the intervention can help improve the diagnostic
and assessment phase.

3. The close collaboration between medical doctors and computer vision specialists.
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3.1.3 Improved navigation in PTCA

The physician can see in the interventional images either the steerable tip of his guidewire or
the vessels —provided he injects contrast agent into them. Consequently, during PTCA it takes
a relatively long time until he reaches the lesion spot, because in order to navigate through
the vessels he has to mentally register the diagnostic angiogram used as roadmap with the
interventional images, which mostly show only the guidewire and its steerable tip.

To facilitate the navigation and thus shorten the duration of the intervention, and implicitly
the period over which the patient and the physician are exposed to the noxious X-ray radiation,
it has been proposed to show the physician an improved roadmap, which includes the precise
position of the guidewire tip with respect to the vessels. This enhanced roadmap has to com-
pensate also for the heart and respiration motions.

The enhanced static roadmap

Shechter et al. have proposed a method to correct the motion of a X-ray image of the heart using
a patient-specific 3D+t coronary motion model [176], [174], [23], [175]. The model requires
the cardiac and respiratory phases to correct the motion of a new image with respect to a certain
initial complete coronary angiogram. It also needs a 3D static-model of the coronary arteries,
which is constructed from one biplane angiogram acquired at the end of the diastole. Each and
every image, together with the information it carries – e.g. the position of the guidewire tip – is
motion-corrected and projected to the initial coronary angiogram which would take then also the
role of a roadmap. For a sequence, with respect to the coronary vessel tree, a “freezing” effect
may be achieved using this method. Therefore, the physician gets to see an enhanced static
roadmap, where his tools no longer move abruptly in the image with respect to the contrasted
vessels.

Schrijver [168] has described an elastic-model-based method to compensate the heart mo-
tion and hold the vessels still during angiographic exam. However, it was intended to be used
only during the time the vessels are visible, and thus it cannot be applied directly for the com-
putation of the roadmap.

The usefulness of such “freezing” methods is limited by the quality of the motion model.
For a good 3D+t coronary motion model a correct segmentation of vessels is needed, as well
as a robust method to estimate the cardiac and respiratory phase. The vessel segmentation is
done off-line and it necessitates user interaction. The respiratory phase is computed using a
region of interest manually positioned over the diaphragm at the beginning of the analyzed
sequence. This makes the whole roadmap computation semi-automatic and it also implicitly
requires a certain degree of image processing knowledge for the operator. Also, to achieve
optimal results, the coronary vessels need to be observed for a period of time which is longer
than usual. This implies a change in the intervention routine and rises an acceptance problem
for the physician. The motion model is based on a static 3D reconstruction of (at least) the main
arteries of the coronary vessels tree. The reconstruction uses two coronary angiograms (one in
a LAO and the other in a RAO view) recorded at end-diastole presumably in a ECG-triggered
way. To compute the model properly the vessels used should not overlap. This condition is
enforced but not ensured by recording the images at end-diastole.
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The dynamic roadmap

Alternative to “freezing”, a dynamic roadmap can be used [6], [74], [48], [50]. A dynamic
roadmap does not project interventional images – according to a certain motion-model – to a
single complete coronary angiogram, but chooses for each interventional image the best suited
angiogram from a set and projects the interventional tools – i.e. guidewire tip, balloon, etc. –
on it under an affine transform. The transform should compensate for the patient movement
between the moment when the set of coronary angiograms was acquired and the moment when
the analyzed interventional image was acquired. For each interventional image, a corresponding
coronary angiogram is chosen such that their cardiac and respiratory phases are similar. Only
complete coronary angiograms are suited for roadmap computation and they should cover at
least a heart beat. The complete coronary angiograms are selected from cine runs or from cine-
run-like sequences. Such cine-run-like sequences include complete coronary angiograms, but
are acquired in fluo-mode during PTCA.

Throughout the duration of the intervention, the imaging system is often repositioned to ob-
tain a better view of the coronary vessel tree. Clearly the set of coronary angiograms from which
the instantaneous roadmaps are chosen should correspond to the interventional images under
this aspect. Small variations can be compensated by affine transformations. If the coronary an-
giograms acquired during the diagnosis phase are not sufficient to cover the entire intervention
with regard to the set of positions taken by the imaging system, then during the intervention,
the physician will have to inject contrast agent – a typical bolus of contrast agent is 10 cc over
a period of 5-10 seconds – to generate the required set of angiograms (similar to a cine-run).
These are than stored together with the information with respect to the position and reused if
the imaging system is brought again in a similar position. In a worse case scenario, when none
of the positions taken by the imaging system are similar to one another, the physician should
have to inject a new bolus for each position. The necessary set of coronary angiograms thus
obtained is then used to compute the dynamic roadmap.

In practice, after the physician has brought the imaging system in a new position, it is
first investigated if there already exists set of coronary angiograms acquired with a similar
geometry. If this is the case, the dynamic roadmap is displayed immediately, conversely no
roadmap or a static one is shown, as an indication for the physician that he needs to inject
contract bolus to see the roadmap. The moment when the contrast bolus becomes observable
is detected and then images are recorded for a few heart-beats. Once a proper set of coronary
angiograms is available, they are matched with respect to cardiac and respiratory phase to the
live-images. The cardiac phase is computed from the ECG signal recorded simultaneously with
the X-ray images. The respiration phase is determined automatically by tracking the diaphragm.
Table and patient displacements are compensated by affine transformations using points from
the tracked diaphragm as landmarks. If the diaphragm is not visible in the images which are
analyzed, a set of X-ray-absorbing marks can be stitched to the operating table to provide the
set of landmarks needed for table-motion correction. In such a case the respiration phase is
deduced by investigating the similarity between different images in certain ROIs.

After choosing the corresponding instantaneous roadmap for an interventional image, the
surgical tools are segmented and overlayed. In the case of the guidewire tip a final correction
may be needed to compensate for potential morphological deformations which may be induced
by the guidewire tip on vessels with a comparable diameter.

If the physician is not satisfied with the results presented by the roadmap, or if he wants



3. ENHANCED CATHETER INTERVENTION 55

to asses the position of the guidewire on the interventional images directly, he simply gives a
burst of contrast agent. Once the beginning of such contrast burst is detected, the computation
of the roadmap is stopped. To show again the roadmap the physician has to start a new viewing
session.

The computation of the dynamic roadmap is fully automatic, and it does neither require any
change in the medical routine from the part of the physician nor additional knowledge from the
part of the medical staff in the catheter laboratory.

3.1.4 Quantification of the Myocardial Blush

The PTCA is also used to treat a myocardial infarction. The purpose of the treatment is to
reestablish a normal blood-supply of the heart muscle (or myocardium). Consequently, not
only the coronary blood flow needs to be restored, but also the myocardial micro-circulation.
Reopening of a blocked coronary artery does not necessarily imply integrity of the correspond-
ing myocardial micro-circulation (or perfusion). Both for precise diagnostics and to assess the
success of PTCA it has been proposed to investigate the myocardial perfusion by means of a
dedicated measure: the MBG. The presence of blood with contrast agent in heart tissue can be
observed during an angiographic exam as a darkening of the target region – i.e. angiographic
myocardial blush (MB) – and the MBG can be established by an analysis of this darkening.
Presently the MBG is assessed “semi-quantitatively” (grades 0-3) by the angiographer during a
visual inspection and thus the procedure is afflicted by inter-observer variability.

Automated estimation of the MBG

To overcome these limitations it has been proposed to compute the MBG in an automated man-
ner by a semi-interactive procedure [54]. The physician has to define by hand the region where
he expects the MB to appear, this region is then automatically tracked, i.e., motion corrected
with respect to the heart and respiration phases, to allow the observation of the same region
during the entire analyzed sequence despite the heart motion. A subsequent robust analysis of
the gray-level variations within the tracked region allows the characterization of the MB and
establishes then the basis for the sought “quantitative” MBG.

In a clinical setup, the physician should have to record two sequences typically at the end
of the intervention. These sequences are then analyzed after the procedure was concluded. One
sequence is needed to estimate the MB for one of the patient’s healthy arteries and the other
sequence, should allow the estimation of the MB for an artery that has just been treated. The
first sequence sets a ground truth and the MBG is then computed in a patient-specific way by
reporting the results obtained for the second sequence to the ground truth.

3.2 A dynamic roadmap for enhanced navigation in PTCA

To build the dynamic roadmap, one needs to detect the vessel-frames and to differentiate be-
tween images showing only a part of the coronary vessel tree and those showing the entire vessel
tree (Section 3.2.1). Then, after selecting those images showing the complete vessel-tree, they
need to be matched to the live-images (Section 3.2.2) such that the surgical tools can be placed
on the roadmap (Section 3.2.3).
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Analysis of contrasted images. The analysis of contrasted images – i.e. images acquired
when contrast-agent was present in the blood and therefore parts or even the entire coronary
vessel-tree is observable – should result in the detection of coronary angiograms and segmen-
tation of images showing the complete vessel-tree. Such images can then be used as static
individual roadmaps for each live-image.

Sequence matching. To find a match between a live image and a static roadmap, their similar-
ity needs to be measured by, e.g., correlation between the image-backgrounds and/or correlation
between the corresponding heart and respiration phases.

Registration of surgical-tools. To segment the surgical tools in the live images, first they are
enhanced and then separated from the background by thresholding. Finally small discrepancies
between their positions in the live images and in the dynamic roadmap are compensated.

3.2.1 Analysis of contrasted images

The analysis of contrasted images starts with anenhancementstep – where the contrast of
the vessels is increased – followed byfeature extraction. For enhancement, the vessels are
defined as dark, elongated structures of a certain size. For every image, we compute then one
feature related to the vessel area, i.e., a vessel-feature. The curve of feature value over frame
index, which we call the feature curve, is analyzed using statistical methods. The purpose of
this analysis is to detect cine-run-like sequences during the intervention and to find complete
coronary angiograms both there and in genuine cine-runs.

Clearly, the analysis of interventional-images with the purpose ofdetecting coronary an-
giogrmasrequires strictly causal processing. To find out when vessels become observable in
these images, we compare the vessel-feature with a threshold, which is set by a significance test
[156].

Usually a sequence of coronary angiograms contains three phases:

• Inflow , when the contrast agent first enters the vessels.

• Complete-state, when the contrast agent can be found throughout the entire vessel-tree.

• Washout, when the contrast-agent leaves the coronary arteries.

Only complete-state coronary angiograms are useful for the computation of the dynamic
roadmap. To the best of our knowledge, there is no prior art on how tosegment the the complete
stateof a sequence of coronary angiograms. Thus, we present here two different approaches to
accomplish this:

1. The first models the observations in each phase of a coronary angiograms sequence by a
polynomial and seeks the segmentation which allows the best fit of three polynomials as
measured by a Maximum Likelihood (ML) criterion [104], [156].

2. The secondmodels the process which generates the corresponding feature curve by a two
state (filled /non-filled) Hidden Markov model [162], [184], which we estimate using the
Maximum a Posteriori (MAP) criterion.

These are then evaluated and compared on a number of sequences recorded in clinical routine
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Vessel enhancement and feature extraction

To detect vessel images in sequences of X-ray projections of the heart, a feature related to
the vessel area is extracted for each image. We start by computing avessel mapsuch that
its histogram can be assumed to consist of two distinct distributions, one from background
and one from potentially occurring contrasted vessels. The vessel map is the result of several
enhancement steps. First we seek to equalize non-vessel background information, thus reducing
its standard deviation. The additional absorption of contrasted vessels is then transformed such
that its mean is considerably larger than the background mean. Since enhanced contrasted
vessels show up with high intensities in the vessel maps (see Figure 3.5 (b)), we analyze their
histograms and use ahigh percentileas ameasure of presenceof contrast agent and therefore
alsoof vessels.

The feature curveobtained by observing the vessel feature over time is segmented by dif-
ferent statistical methods. In the case of fluoroscopic images the principle of strict causality is
respected.

As we seek to detect the presence of vessels from the vessel map histograms rather than
accurate segmentation or enhancement geared toward the human observer, issues like border
accuracy and preservation of a certain “harmony” in the processed images are of less concern
[9],[83].

Background attenuation by morphological processing. The first step towards enhancing
vessel contrast exploits the property that, being filled by contrast agent, vessels are locally
darker than their immediate surroundings [9]. The varying background is equalized by a Bothat
operator [67]. This operator is defined as the result of subtracting the original image from
its closing. If the window size of the dilation filter is chosen slightly larger than the largest
vessel diameter, the (dark) vessels will be suppressed after image opening, leaving only the
background (see also Appendix A.1). The Bothat filter equalizes background information, while
preserving the gray-level difference between background and vessels. A processing example is
shown in Figure 3.3.

Motion-based vessel enhancement.An additional clue to vessels is their mostly strong and
jerky motion, which shifts them quickly over a distance of several vessel diameters and is caused
by the beating heart [9]. When the vessel moves to a new position, absorption at this position
will increase due to the contrast agent within the vessel. Therefore, when calculating the pixel-
wise difference image between any given frame and its predecessor, pixels with the new vessel
positions will tend to exhibit negative differences, while the vessel positions in the previous
frame will tend to show positive differences. This effect is even more pronounced in Bothat-
filtered angiograms, since the Bothat filter reduces background structures which would cause
clutter in the difference images when moving themselves. We therefore clip positive values in
the difference images to zero, and add the thus clipped difference image to the current Bothat-
filtered frame. Consequently, the moved vessel tree regions will become darker than before.
Local minima of small extent, which are unlikely to be caused by moving vessels, can option-
ally be removed by a morphological closing with a3× 3 structuring element. A block diagram
of the processing chain and a processing result are shown in Figure 3.4.
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(a) (b)

Figure 3.3: Coronary angiogram (a) and result of morphological processing (b)

(a) (b)

Figure 3.4: Block diagram of spatiotemporal filtering (a) and filtration result (b).
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(a) (b)

Figure 3.5: Block diagram of derivative-based enhancement (a) and final vessel map (b).

Computation of the vessel map. The Bothat operator selects all dark background structures
comparable in size with the vessels, including some which are not genuine vessels but vessel-
like artefacts, i.e., vessel noise. As the motion based enhancement step is effective only for
moved vessels, such noise still affects motionless vessels. These noise structures have a small
surface, are dark but less contrasted than vessels, have diffuse edges and their shape is mostly
patch-like, although some of them can be elongated and thin. The patch-like noise is due to the
soft tissue which the X-rays encounter on their way through the body and is thus ubiquitous.
The surface it covers varies from image to image as a consequence of the motion induced by
the heart and by the respiration. The elongated noise is mainly due to bone tissue, it does not
cover such a large area and its surface is approximately constant.

To attenuate the patch-like noise, we use a two steps approach. Starting from the result
of the Bothat filtration, we compute first the gradient norm and add it to the second derivative
[139, 186] using empirically determined weights (0.55 for the gradient norm and 0.45 for the
second derivative). Then, we multiply this result pixelwise with the result of the motion-based
enhancement to obtain the vessel map. The first step is equivalent to a logical OR between the
results of the gradient norm which responds to contrasted structures with sharp edges but does
not respond to vessel-like ridge profiles and the second derivative which does. The second step
is the equivalent of a logical AND between the result of the derivatives-based enhancement and
that of the motion-based enhancement as each procedure is based on different vessel properties.

To be able to correctly apply the AND, the result of the motion-based enhancement is
rescaled before multiplication so that vessels are brighter than background. A block diagram of
the processing chain and a vessel map result are shown in Figure 3.5.

A percentile-based feature of vessel surface.As on the vessel map vessels appear brighter
than background, the frequency of occurrence of bright pixels – and thus the bright tail of the
histogram of the vessel map – varies with the vessel area as shown in Figure 3.6. We use this
relationship to compute a feature related to the vessel surface – i.e. a vessel-feature – by means
of a properly chosen percentile of the histogram of the vessel map:
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(a)

(b)

Figure 3.6: Angiogram and vessel map log-histogram for an inflow frame (a) and a complete-
state frame (b). The 95-percentile is given by the arrows. Observe also the modification of the
tail of the histogram.
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(a) (b)

Figure 3.7: 95-percentile (a) and 98-percentile (b) feature over frame index for a pre-
interventional and an interventional sequence respectively.

1. To detect themoment when contrast agent is observablein the interventional frames –
i.e. the beginning of a contrast burst – we desire a feature which reaches its peak once the
slightest trace of contrast agent appears. As the area covered by vessel-noise in an an-
giogram is around one percent, we choose the98-percentileas feature. Then, for images
where contrast agent is present – i.e. more than two percents of all pixels in the analyzed
image have high intensities – the feature will exhibit higher values than for images which
show no vessels.

2. To segment only the complete-statefrom a sequence of coronary angiograms, we would
like to have a feature which exhibits a maximum value over frames showing the com-
plete vessel tree. As the vessel surface covers typically around six percents of the entire
angiogram area, we choose the95-percentileas feature. For images showing the entire
vessel tree, i.e., when more than five percents of all pixels in the analyzed image have
high intensities, the feature will exhibit higher values than for images showing only a part
of the vessel tree.

The feature curve. The evolution of such vessel-features over frame index generates a fea-
ture curve where the complete-state and the contrast burst frames respectively may already be
identified as shown in Figure 3.7. Such feature curves have to be segmented in two classes, i.e.,
valid and invalid, where the valid class should contain complete-state and contrast burst frames
respectively, depending on the target application.

A typical feature curve will inherently exhibit a certain variance related to the heart and
respiration movement. The feature curve is also influenced by the AGC, which modifies the
intensity of the X-ray radiation in each frame to ensure constant brightness [27].
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Signaling of contrast-agent injections

The purpose of vessel enhancement was to obtain a vessel map such that its histogram can be
assumed to consist of two distributions: that from the background pixels and that from poten-
tially occurring vessel pixels. Thus, the vessel feature – in this case, the 98-percentile – ideally
builds a separablefeature curvewith only two classes, because an interventional image either
shows some vessel structures or shows only background. Considering also that the processing
of interventional images is subject tostrict causality, we propose to detect the beginning of a
contrast burst by asignificance test.

Particularities of the 98-percentile feature curve. When contrast agent is injected into the
vessels, it first travels trough the catheter. Once into the vessels, it uniformly mixes with blood
and renders the vessels through which it travels visible under X-rays. These vessels remain
visible as long as contrast agent is injected. After that, they slowly become invisible again
as the blood with contrast agent is replaced with fresh blood. However, this washout does not
affect the contrast agent within the catheter, and thus the catheter remains visible in the analyzed
images.

A viewing session may begin right after a new catheter has been introduced, or after a
previous injection of contrast agent. In the former case, depending on how much of the catheter
is visible, it may happen that the 98-percentile responds to the catheter and not to the vessels.
This makes difficult the segmentation of a sequence of interventional images showing contrast
agent and justifies the heuristic rule proposed for this purpose, i.e., record images for eight heart
beats after the contrast agent was detected.

The 98-percentile is linked to the vessel area. When contrast agent is injected into the
vessels, the 98-percentile increases rapidly as it is computed from gray levels characteristic for
pixels belonging to the large well contrasted vessels. From the large vessels the blood carrying
the contrast agent travels to the mid and small vessels, than to the capillaries and finally reaches
the myocardium. As the large vessels will be free of blood carrying contrast agent sooner
than the small ones, the 98-percentile reaches its maximal value very fast when the vessels
become visible but it decreases slower when the contrast agent leaves the vessel tree as then it is
influenced mainly by gray levels characteristic for pixels belonging to the small less contrasted
vessels.

Detection of the first frame of contrast burst by significance test. To find the ideal per-
centile thresholdT which separates the the two classes, we need to estimate the corresponding
class conditionalpdfs. However, in this case the thresholding procedure is constrained by the
following observations:

1. The strong patient variability requires each case to be treated independently and thus it is
pointless to gather data from several patients to estimate thepdfsand use the computed
threshold on other patients.

2. The analysis of interventional images clearly requires a strictly causal processing and thus
one cannot wait until the end of the sequence to analyze it.

We proceed using the observation that the images acquired during the first seconds of an
intervention are most probably free of contrast agent. Thepdf of the vessel-feature given class
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(a) (b)

Figure 3.8: Feature curves of 98-percentile over frame-index computed before (a) and after (b)
low-pass filtration for the same interventional sequence.

show-background-only may then be estimated using these images. As an interventional image
can belong to only one of the two mutually excluding possible classes, we propose to detect the
contrast burst frames by a significance test [156] whose null hypothesisH0 is that the investi-
gated frame shows no vessels.

From the learning phase, over the first seconds of the intervention, which are free of con-
trast agent, we can estimate non-parametrically [184] (see also Section 4.3.2 at page 140) the
distributionp(y(n)|H0) of the featurey(n) given the null hypothesis. The thresholdT is then
determined such that the probability ofy(n) exceedingT givenH0 is α, which is the so-called
significance level, equivalent to the false positive rate (a typical value forα is α = 5 · 10−4).
T is thus given by inverting Pr(y(n) > T |H0) = α based onp(y(n)|H0). Whenever the
98-percentiley(n) exceeds this threshold, the corresponding frame is classified as containing
contrast agent.

To improve detection, before hypothesis testing we attenuate the inherent variation of the
feature curve by filtering with a causal recursive first-order low-pass filter. A feature curve
before and after filtration is shown in Figure 3.8. The difference equation characterizing this
filter is:

y(n) = ax(n) + (1− a)y(n− 1) (3.1)

where:

{
0 < a < 1 if x(n)− x(n− 1) ≤ 4σ0(x)
a = 1 else

whereσ0(x) is the standard deviation estimated for the null hypothesis from the first frames
of the sequence. The filter thus smoothes within stationary time intervals, but preserves what it
assumes to be a transition.

For the learning phase we take 72 images, which are acquired over a period of six seconds,
with a frame rate of 12fps. This is justified by the need to sample at least one complete
respiration cycle, considering that under normal circumstances, a human breathes between 15
to 20 times per minute.



64 3.2. A DYNAMIC ROADMAP FOR ENHANCED NAVIGATION IN PTCA

Signaling of contrast agent injections. Results. We have analyzed a total of six sequences
from different patients.

The signaling of arbitrary contrast injections is a binary classification problem, as for each
sequence there can be just one contrast-bolus which is either correctly or falsely detected. We
evaluate our methods by discrepancy methods, using a gold standard. The gold standard was
achieved after detecting by expert visual-analysis the first frame which shows vessels. Taking
into consideration the variability of such a visual segmentation, we consider that the automatic
detection was successful if it falls in an interval of plus-minus two frames from the expert
reference.

In all six cases the detection was successful.

Signaling of contrast agent injections. Discussion. For the signaling of a contrast injection
we have used the 98-percentile. A higher percentile will in most cases be insensitive to the
presence of vessels as it will respond to noise. A lower percentile will detect vessels too late,
i.e., when the image area which they cover is already large.

For the signaling of contrast agent injections a training set is needed. This training set is
acquired during the first few seconds of the intervention which must be free of contrast agent.
For these images the 98-percentile is computed from gray levels belonging to the background.

During respiration, for projection angles which permit also the visualization of the di-
aphragm, the 98-percentile follows the variation of the projected diaphragm area. We believe
that this is a consequence of the AGC trying to compensate the variation of the image brightness
caused by the moving diaphragm. This is why the training set is acquired over a period long
enough to cover a respiration cycle.

Depending on the projection angle more or less of the catheter is visible. When filled by
contrast agent, the catheter appears as an additional vessel. Because the washout does not affect
the contrast agent from within the catheter, this “vessel” stays visible once contrast agent has
been introduced. This makes the detection of all images acquired during a control injection
difficult, as in such circumstances the training images will not show the catheter. Depending on
the projection angle the image area occupied by the catheter varies.

The expected value of the 98’th percentile when no vessels are present is affected by noise,
which is linked to artefacts in the feature map generated by respiration or by the movement
of the heart. Consequently, the percentile value given the null hypothesis is considered to be
Gaussian distributed and it is parametrically estimated using the percentiles recorded for the first
frames of the intervention. For a new image, the null hypothesis is that its corresponding 98’th
percentile lies somewhere in a region around the expected value whose borders are determined
by the significance level. If the percentile varies from the expected value more than it is allowed
through the significance level, then this can be caused only by the fact that vessels are present.
To improve the segmentation the feature curve is filtered by a causal recursive filter. We have
tested our algorithm on several appropriate sequences with very good results.

Selecting images showing the complete vessel tree

We describe two different methods to segment the complete state in a sequence of coronary
angiograms. The first method uses aML and the second aMAPapproach.

The segmentation is based on the assumption that there are three andonly three statesob-
servable on an analyzed feature curve: inflow, complete state and outflow. Clearly, these states
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arecoherent– i.e. there are no inflow/washout images in the complete state and no complete
state images in the inflow/washout.

The result of segmentation can be judged based on several quality criteria. The first is that
the complete state should be coherent. As this is a binary segmentation, other criteria are linked
to the number of CC and FP. Specifically, when segmenting the complete state a FP is more
critical than a FN. A FP is an image showing only parts of the vessel tree, and is thus obviously
unsuited as roadmap. A FN means only that there are fewer frames available when building the
dynamic roadmap. This has negative consequences only when there are too few images – i.e.
not enough to cover a heart beat.

Consequently, a good segmentation method should yield a coherent complete-state with a
very smallfp rate – we mean here the FPs that appear before the beginning and after the end
of a coherent complete-state – and acc rate to cover at least one heart beat. We show that the
fp rate can be reduced by usingECG-based informationwhich is recorded synchronously with
the interventional-images.

Particularities of the 95-percentile feature curve. Assuming that the contrast agent is uni-
formly mixed with the blood and all vessels are visible, the vessel contrast in an angiogram
depends on the speed at which the blood flows through the arteries. This happens because the
more contrast agent passes in front of a sensor element in the time interval between two frames,
the less X-ray quanta reach the sensor as they are better absorbed. The contrast of individual
vessels however, depends on their size, i.e., the large vessels have a good contrast and the small
vessels a weaker contrast as they contain more respectively less contrast agent.

The vessel surface observable in X-ray projections, as well as the speed at which the blood
flows, vary within a heart beat between two extreme values, as a consequence of the heart
motion. The vessel surface reaches a minimum towards the end of the ventricular systole, i.e.,
when the ventricles contract to push the blood in the vascular system. The flow of blood reaches
a peak at around the same time, more precisely during the ejection phase. The vessel surface
reaches a maximum before the ventricular systole, i.e., when the ventricles are filled with blood.
The flow of blood reaches a minimum at around the same time, more precisely at diastasis and
during the atrial systole.

During inflow and washout, the 95-percentile varies mainly with the projected area of the
vessels. However, during the complete state – i.e. when the contrast agent is uniformly mixed
with blood and the area of the vessels is around six percents and therefore the 95-percentile is
certainly computed from gray levels which belong to vessels – the 95 percentile of the vessel
map follows mainly the variation of the vessel contrast and thus it varies with the blood flow,
i.e., somewhat inversely to the vessel area. This actually means that the contrast of small vessels
during rapid-ejection is larger than the contrast of slightly larger vessels at diastasis. We believe
that this is due to the higher speed at which the blood flows during the rapid-ejection and which
influences the contrast as described above5. When the flow is maximum, the contrast and the
percentile reach also a maximum. Conversely, when the flow is minimal, the contrast and the
percentile reach also a minimum. This is shown in Figure 3.9.

5One can argument that the AGC could be another reason for this. It increases the X-ray dosage to compensate
for the darkening of the image when the vessel area is maximum and it therefore decreases the contrast of vessels.
Conversely it decreases the X-ray dosage when the vessel area is minimal. However in this case the X-ray system
should work near the saturation limit – such that an increase in intensity leads to a decrease in contrast – and the
AGC should have an almost zero latency.
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Figure 3.9: The curve of vessel features over frame index recorded during two heart beats of
the complete state.

Consequently, the 95-percentile feature curve has two important characteristics:

1. The features extracted for images of the complete state have a rather large variance due to
the modification of the contrast of the vessels. We call this the heart beat-induced variance
to differentiate it from the inherent variance.

2. There is a certain amount of ambiguity with respect to the values of the feature curve
recorded at the beginning and at the end of the complete state. It is uncertain if they are
true complete-state images or are just inflow/washout images recorded at a maximum of
the percentile feature, i.e., during the ventricular systole (see Figure 3.10).

Maximum Likelihood segmentation. To segment the complete state we propose to least
squares fit three polynomials of a given degree to the feature curve. This approach makes
implicit use of the a priori knowledge with respect to the coherency of the three states of the
feature curve, which it also enforces. There are:

M =

(
N
2

)
≈ N2

2
(3.2)

possibilities to segment a curve withN points into three coherent regions. As the typical stan-
dard length of an analyzed angiogram sequence isN = 87, this means that we haveM = 3741
segmentation candidates. The correct segmentation is then found by using the Maximum Like-
lihood (ML) criterion as:

Q̂ = arg max
Q

p(S|Q) = arg max
Q

3∏
j=1

p(sj|mj, σ
2
j ) (3.3)
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(a) (b)

Figure 3.10: Images of a sequence of angiograms showing a partially filled coronary vessel tree
(a) – frame 24: rapid ejection – and a completely filled coronary vessel tree (b) – frame 32:
atrial systole. The value of the 95’th percentile feature is similar in both cases.

with Q = {q1, . . . , qN} one of the M successions of states whereqi is the state label – i.e.
complete state or not-complete-state – for theith frame of the sequence of angiograms and
S = {s1, . . . , sN}, the sequence of percentiles withsi being the percentile observed for the
ith angiogram frame,j = 1, 2, 3 is the index of regionRj, andsj is a vector with ordered
observations in each region such that

⋃3
j=1 sj = S. Modeling the observations as Gaussian

distributed,mj andσ2
j are the region-specific parameters of the distribution. Also, we have

made the assumption that the observations are region-wise independent [184]. We furthermore
assume that the observations within each region are conditionally independent, i.e., that their
dependencies are fully captured by the coherency of the region [184], [7], [199]. We then obtain
for the region likelihood:

p(sj|mj, σ
2
j ) =

∏
n∈Rj

p(sn|mj, σ
2
j ) =

 1√
2πσ2

j

Nj

exp{− 1

2σ2
j

∑
n∈Rj

(sn −mj)
2} (3.4)

with Nj the number of frames in regionRj andmj andσ2
j estimated by:

m̂j =
1

Nj

∑
n∈Rj

sn , σ̂2
j =

1

Nj

∑
n∈Rj

(sn − m̂j)
2 (3.5)

Then, replacing the true parameters in equation (3.4) with their estimates from (3.5) and intro-
ducing (3.4) in (3.3) we seek:

Q̂ = arg max
Q

 3∏
j=1

√
σ̂2

j

−Nj

 = arg min
Q

3∑
j=1

Nj · log
(
σ̂2

j

)
(3.6)

where we have dropped all factors and constants not influencing the extreme problem and have
taken into consideration that:N1 + N2 + N3 = N . Thus, for all practical purposes, the sought
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succession of stateŝQ should be chosen such thatσ̂2
j is minimized for each regionRj with

j = 1, 2, 3. This is equivalent to seeking the segmentation which permits fitting a polynomial
of degree zero – i.e.lj(snj

) = m̂j – optimally to each region. The quality of the fit is measured
by the minimum mean square error as defined by equation (3.5).

The specificity and sensitivity of this segmentation method clearly depend on the quality
of the polynomial model, i.e., how well can the three polynomials fit to the feature-curve. To
allow a better fit we have used polynomials of higher degrees. In such a case we need to solve
a typical ordinary least squares problem [105].

For regionRj, the fitting error term obtained for a polynomial of degreek and expressed in
matrix-vector notation is:

ej = sj −Ajbj (3.7)

where

ej =


e1

e2
...

eNj

 , Aj =


nk

1 nk−1
1 . . . 1

nk
2 nk−1

2 . . . 1
...

...
...

...
nk

Nj
nk−1

Nj
. . . 1

 , bj =


bj
k

bj
k−1
...
bj
0

 (3.8)

The variance estimate is then

σ̂2
j =

1

Nj

eT
j ej (3.9)

and, minimizingσ̂2
j by the estimatêbj of the parameter vector, we find

∂σ̂2
j

∂b̂j

= 0 ⇒ b̂j = (AT
j Aj)

(−1)AT
j sj =


b̂j
k

b̂j
k−1
...
b̂j
0

 (3.10)

Introducing (3.10) in (3.9) we can computeσ̂2
j for each regionRj and the sought segmentation

is given by:

Q̂ = arg min
Q

3∑
j=1

Nj · log
(
σ̂2

j

)
(3.11)

For each segmentation candidate, the optimal polynomial-fit can thus be determined. The
sought ML-segmentation, is the one with minimum optimal fitting error. Since the number of
segmentation candidates is limited by the coherency constraint (equation (3.2)), full search is
practically feasible. The degree of the polynomials can be varied depending on the state which
they should model. For optimal results, the degrees of the polynomials should be readjusted
for each analyzed sequence, making this method unsuited for automatic usage. However good
results are obtained using polynomials of degree two for the inflow and washout and one for the
complete state.

Maximum a Posteriori segmentation. A straightforward modality to automatically segment
the complete state is by a fixed threshold. However, such a simple approach is generally ill
suited, particularly due to the large heart-beat-induced variance of the complete state. A fixed
threshold will either break the coherency constraint or return too many false positives.
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To improve the segmentation we propose a variable threshold, which adapts by taking into
account prior information with respect to the coherency within the three states on the feature
curve.

For this purpose we use a Hidden Markov Model (HMM), which is a combination between
a number of stochastic processes and a Markov chain [162], [184]. A first-order Markov chain
is a random process of states in which the transition probability to the next state depends only
on the previous one. In a HMM the states sequence can be observed only through the stochastic
processes which produce a sequence of observations. A HMM is parameterized by:

i The state transition probability matrix.

ii The observations’pdf conditioned on the states.

iii The initial states probability vector.

As a coronary angiogram can either belong to the complete state or not, we use a two states
(complete/non-complete) HMM for our segmentation purpose. The observations sequenceS is
then the 95-percentile feature curve and it was obtained by combining the observations from
two stochastic processes: one corresponding to the complete state and one to the non-complete-
state (i.e. inflow and washout). We seek then the optimal sequence of statesQ such thatP (Q|S)
is maximum (i.e. subject to the MAP criterion).

The state transition probability matrix is chosen as:

A =

{
0.9 0.1
0.1 0.9

}
(3.12)

thus enforcing the coherency constraint as the probability of keeping the current state is always
larger than that of leaving the state.

We approximate the two state conditional observations’pdfswith normal distributions and
use the segmentation results obtained by a fixed threshold (see Appendix A.6.2) to estimate
their respective means and variances. We impose by means of the initial probability vector that
the initial state of our model is not a complete state.

We obtain thus anadaptation of the initial fixed threshold by means of prior information, as
it is the fixed threshold which initially separates the observations of the two states thus allowing
the computation of the state conditionalpdfs.

An adaptive threshold copes better with the large complete state variance than the fixed
threshold. To further improve the segmentation we propose to explicitly enforce the coherency
constraint by comparing the result achieved with the adaptive threshold with all possible coher-
ent segmentations (Equation (3.2)) and choose the most similar. As distance measure we use
the Hamming distance.

ECG enhanced complete state segmentation.If only image information is used to segment
the complete state, then the result will probably contain many false positives, e.g., images show-
ing only a partially filled coronary vessel tree, acquired during the ejection phase of the ven-
tricular systole. For such images, the corresponding percentile feature is similar with that of a
genuine complete state frame acquired during the atrial systole. To reduce the false positives
rate we use ECG information.
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Figure 3.11: ECG signal with detected peaks marked by stars.

To make sure that neither inflow nor washout image are included in the complete state, we
propose to constrain the complete state so that in may begin and end only at minima of the
feature curve – i.e. before the ventricular systole. To detect such moments we use the ECG
signal which is typically recorded synchronous with the analyzed sequence. The ECG records
the electrical activity of the heart. The actual heart phase lags behind its electrical counterpart,
as there is a small delay between the moment a command is issued and the moment when the
system responds. Thus, the R peaks which represent the peak of the electrical ventricular systole
are recorded right after the actual atrial systole – i.e. before the ventricular systole – and mark
thus the moment when the projected surface of the vessels is maximal and the flow of blood and
the contrast of vessels is minimal – i.e. minima of the feature curve.

To detect the R peaks we use a fixed percentile threshold. We choose the 90 percentile of the
ECG values. With this threshold we select the ECG samples recorded right before and immedi-
ately after the peak. To precisely find the peak, we analyze the zero crossings of the derivative
of the signal composed from the samples selected at the previous step. Results obtained for a
sequence from our data base are shown in Figure 3.11. The final segmentation of the complete
state is obtained by choosing from the initial result only images acquired between two R-peaks
of the ECG signal. If only one R-peak was detected, then the final segmentation begins there
and ends together with the initial result.

Selecting images showing the complete vessel tree. Results.We have tested the algorithms
on 31 sequences from our data-base. These sequences have been segmented by hand two times,
obtaining thus two ground truths. The first one (A) was computed using the following rule: the
complete state begins with the first frame when all vessels are visible – including the vessels
with the smallest diameter – and ends before the first image where at least one vessel is poorly
visible. The second one (B) was computed using a more permissive rule: the complete state
begins when no new vessels are observed for several frames in a row and ends before the first
image where at least one vessel is invisible. Using each rule, segmentations were conducted
independently by the author and by a student help, images were selected into the ground truth
only if both persons agreed. The mean number of frames in a sequences was 87. The mean
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cc(%) fp(%) R
SetB 99.5 14.1 0.28
ML 76.1 16.2 0.37

ML+ECG 59.3 8.3 0.28
MAP 93.1 25.1 0.43

MAP+C 99.5 26.2 0.42
MAP+C+ECG 87.4 13.5 0.30

T 96.5 28.6 0.45

Table 3.1: Results for the complete state, using set A as ground truth.

cc(%) fp(%) R
ML 73.3 9.3 0.19

ML+ECG 57.1 2.9 0.08
MAP 91.9 14.8 0.23

MAP+C 98.9 15.1 0.22
MAP+C+ECG 81.6 4.3 0.08

T 95.5 18.3 0.26

Table 3.2: Results for the complete state using set B as ground truth.

length of the complete state by the first ground truth wasncc = 23 and by the second ground
truth wasncc = 31 and the mean length of the inflow/washout wasnfp = 64 andnfp = 56
respectively.

In Table 3.1 are shown the results achieved on the more restrictive ground truth (A) by
the maximum likelihood approach without the ECG-based constraint (ML) and with the con-
straint (ML+ECG), by the maximum a posteriori approach (MAP), with the coherency con-
straint (MAP+C) and additional with the ECG-based constraint (MAP+C+ECG) as well as the
results achieved when segmenting according to the second ground truth (SetB). In Table 3.2 the
results achieved on the more permissive ground truth (B) are shown. As reference we give also
the results achieved by a fixed threshold (T). The results are mean percentages of correct classi-
fications (cc) and false positives (fp) over all sequences. Using these values and the mean length
of the complete state and of the inflow/washout, we have computed also the relative fraction of
incomplete roadmaps in a sequence asR = nfp

nfp+ncc
with nfp = nfp · fp andncc = ncc · cc.

For the ML method the degrees of the polynomials used to approximate the three phases
were: two for the inflow and washout and one for the complete state. This combination was
chosen after testing all possible combinations up to polynomials of degree five with respect to
the fraction between the rate of correct classifications and that of false positives.

Selecting images showing the complete vessel tree. Discussion.It is considered that the
feature curve has only three states who are practically always present. Consequently, cases
when the analyzed sequence of coronary angiograms shows more than one injection, are not
supported and the results obtained may be erroneous. If the entire washout or only a part of
it was not recorded, correct results may still be achieved provided the complete state is long
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enough.
The performance of the methods we have described is measured by computing correct clas-

sifications and false positives rates for each method, using a manually labeled test set. To
evaluate each method – i.e. find out how appropriate it is for the automatic segmentation of the
complete state – we have imposed empirical-bounds on these rates. These bounds are computed
from the minimal number of true roadmaps and the maximal number of fake roadmaps which
are acceptable. As already pointed out before, a successful segmentation of the complete state
should yield very few if none at all false positives and enough correct classifications to cover
a heart beat. We consider that the maximum allowed number of incomplete (fake) roadmaps –
i.e. false positives – is three and the minimal number of complete (true) roadmaps – i.e. correct
classifications – is 14. The minimal number of true roadmaps was computed such that it fully
covers a heart beat: as the frame rate is 12fps and anormal heart beats around 70 times a
minute there are approximately ten images per heart beat. Considering the coherency constraint
– which is embedded in the ML approach and can be enforced in the MAP approach – we can
be sure that we have selected a succession of images and not only images showing the heart at
the same position, e.g., right before the ventricular systole. At the same time this implies that in
a worst case scenario, all three allowed false positives will be displayed one after the other, but
no more than once every heart beat, meaning that they will cover less than one third of a heart
beat which is considered acceptable.

The mean length of a sequence of angiograms is 87 frames and the mean length of the
complete state according to the restrictive ground truth (A) is 23 frames, thus there are 64
frames in the inflow and washout states – i.e. potential false positives. A maximum of three false
positives implies a false positives rate of 5% and 14 correct classifications implies a minimal
correct classifications rate of 60%.Together they make a relative fraction of false positives of
0.18. As shown in Table 3.1, no classification method verifies these bounds when (A) is used as
ground truth. However, taking the results achieved by (B) as reference, then the ML approach
with the ECG-based constraint and the MAP approach with the coherency and ECG-based
constraints are close if one considers the relative fraction of false positives as measure.

If (B) is used as ground truth, than there are in mean 31 images in the complete state and 56
images in the inflow and washout. This means that the maximum rate of false positives is also
5% and the minimal rate of correct classifications is 45%. Clearly, the fraction of false positives
remains 0.18. As shown in Table 3.2 both the ML approach with the ECG-based constraint and
the MAP approach with the coherency and ECG-based constraints are successful.

The results show that the ML approach yields less correct classifications and less false pos-
itives as well. The reason for this is that the ML approach is less adaptive than the MAP
approach. This is due to the rigid way the assumption about the typical form of a feature curve
is implemented. The ML approach provides a good solution for the segmentation of the com-
plete state only if the analyzed sequence fulfills all implicit assumptions on which the method
is based. If this is not the case, than it will fail and if it fails, then there is a high chance that it
will fail completely, meaning that the correct classifications rate will be zero, for a false posi-
tives rate higher than zero. This is shown in Figure 3.12 using (A) as ground truth. From eight
cases when it was considered that the ML segmentation failed (cc <60%), in four cases it failed
completely (cc =0%). Most of the feature curves of the sequences where the ML approach
failed were somewhat ”unusual“ (see Figure 3.13). The reasons for this varied from particular
anatomies of the vessel tree to the way the physician injected the contrast-agent – i.e. the in-
stantaneous flow of contrast agent – and length of the sequence – i.e. how much of the washout
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(a) (b)

Figure 3.12: False positives (a) and correct classification rates (b) for each of the tested se-
quences achieved by the ML approach (dotted line + bullets) and by the MAP approach (con-
tinuous line + squares).

was recorded. The ML approach takes longer to compute than the MAP.
We use the ECG to select into the complete state only images acquired between local min-

ima of the feature curve. However there are case when the excluded images do belong to the
complete state. Thus the mean correct classifications rate will decrease when the ECG-based
constraint is applied, irrespective of what method was used for the initial segmentation.

One could enforce a stricter ECG-based constraint by selecting only those images recorded
between local maxima of the feature curve. For this purpose, we consider that the complete state
begins not before a ventricular systole , but during the ejection phase of the next one. Conversely
it ends during the ejection phase of the last but one complete-state-ventricular systole. In such a
case, using set A as ground truth, the ML approach yields a correct classification rate of 37.2%
and a false positives rate of 3%, while the MAP approach yields a correct classification rate of
63.4% and a false positives rate of 5%. Thus the MAP approach verifies both bounds and the
ML approach does not verify the bound on the correct classifications rate. The relative fraction
of false positives in both cases 0.18.

We consider that the MAP approach, using the coherency and the ECG-based constraints,
is the recommended method for the segmentation of the complete state. In comparison to the
ML approach, the MAP approach never fails completely and if properly constrained it can
verify both quality bounds on the most exigent ground truth. For the ML-based segmentation
of the complete state, improved results can be achieved if the degrees of the three polynomials
are determined for each analyzed sequence individually. However, in such a case, the method
would be unsuited for automatic processing of sequences of coronary angiograms.

3.2.2 Sequence matching

Once a set of static roadmaps – i.e. complete-state coronary angiograms – is available, we
need to choose from here the best match for each interventional image to compute the dynamic
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(a) (b)

Figure 3.13: Feature curves where the ML approach fails. The complete state as detected by
the ML approach is marked with triangles. The manually segmented complete state is marked
by bullets.

roadmap.
To find the best match between an interventional image and a roadmap, one needs to measure

the similarity between the two of them. We describetwo methodsto accomplish this. The first
methodcompares directly the two images. The second method implies the computation of a
feature vectorwhich includes information on the corresponding heart and respiration phases.
The similarity is then measured in the feature space.

Image-based matching

We would like to compare two images in spite of the fact that one shows vessel and the other
does not. The straightforward solution is to proceed with the comparison aftereliminating the
vesselsin the static roadmaps. Alternatively, one can design comparison methods whichignore
the vessels.

Vessel-sensitive methods.Assuming that only image information is available, the most sim-
ple way is to computing the sum of squared differences – i.e. the mean square error. Alterna-
tively, as the two images are 2D signals, one can also compute their cross-correlation [143].
Such methods however are vessel-sensitive, thus first the vessels need to be eliminated from the
roadmaps such that only backgrounds are compared.

A closing operation – i.e. maximum filtration to eliminate the vessels followed by minimum
filtration to repair damaged background structures – will suppress the vessels leaving only the
background. The size of the filtration windows need to be chosen such that is at least comparable
with the size of the largest vessels – which are 19–21 pixels at a resolution of 512×512 pixels.
Due to the relatively large size of the filtration windows, the closing will significantly alter
the background eliminating potentially useful information and thus negatively influencing the
computation of the similarity.
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(a) (b) (c)

Figure 3.14: Original coronary angiogram (a), result of motion-based vessel suppression (b)
and final result, after closing (c).

The strong and jerky motion of the coronary vessels can be used to enhance vessels but
also to suppress them. If instead of adding to the current frame the clipped difference image
between two consecutive roadmaps we subtract it, then the effect will be that the moved vessels
will disappear, leaving an intact background. Although still and overlapping vessels will remain
unaffected, most of the largest vessels – which usually exhibit the strong motion – will be sup-
pressed. This effect is even more pronounced when not consecutive frames but frames further
apart on the time axis are used. Thus, if in a second processing step one applies the closing oper-
ation, smaller filtration windows are now necessary and better results can be achieved. A result
of such vessel suppression is shown in Figure 3.14. For optimal results, the angiograms are
processed in a similar way – i.e. by applying a closing operation – before the two backgrounds
now are compared. The most similar angiogram-roadmap pair is then chosen.

Vessel-insensitive methods. Such measures can be computed based on the histogram of the
image obtained by subtracting the roadmap from the interventional image [31], [32]. If the two
images are similar, then a “peaky” histogram is expected. By peaky, we mean a histogram with
two prominent peaks, one corresponding to the vessels and another one centered at zero and
corresponding to the background. Conversely, a “flat” histogram is expected. Peaky and flat
histograms can be differentiated by measures such as entropy [180] orhistogram energy[32]:

HE =
N∑

k=1

p2
k (3.13)

which is simply the sum of the squares of the histogram valuespk.
The plot of histogram-energy criteria over frame index for an interventional image and a

sequence of coronary angiograms is shown in Figure 3.15, together with the corresponding best
match.

Image-based matching. Discussion. The quality of such vessel-sensitive criteria is afflicted
by the loss of information associated with the closing operation. Thus, it is expected that a
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(a) (b) (c)

Figure 3.15: Curve of histogram energy criteria (HE) over frame index (a) for an interventional
image (b) and the corresponding most similar complete angiogram (c).

vessel-insensitive criteria, which process unaltered image-information will yield better results.

Vector-based matching

An interventional image and its corresponding static roadmap should correspond also with re-
spect to the position of the heart at the respective time instances. The position of the heart is
influenced by the heart and the respiration phases. Therefore, two images correspond if they
show the same heart and respiration phase.

Considering that theECGof the patient is usually recorded synchronous with the images, it
can be used to provide information with respect to the instantaneousheart phaseat each image.

Therespiration phasecan be computed with the help of image-based similarity measures, by
analyzing the correlation between the backgrounds of interventional images and roadmaps. Al-
ternatively, it can be computed by analyzing – with similar means – the correlation between the
current image and an image of known respiration state [74], [140]. However, if the diaphragm
is visible, and provided that some assumptions are met – e.g. table and patient movements are
compensated beforehand – the respiration phase can be more robustly estimated bytracking the
diaphragmwhose motion is directly linked to respiration [50]. Alternatively to such image-
processing-based methods, a sensor can be placed on the patient, but again similar to the case
of contrast agent injections such hardware solutions are unwanted.

Then, for each image a heart-position feature-vector is computed describing the heart and
the respiration phases and the similarity between an interventional image and a roadmap can
be computed as, e.g., the Euclidean distance between the corresponding feature vectors [74]. If
the diaphragm is not visible, and e.g., the histogram energy is used as image-based similarity
measure to provide respiration information, then its normalized inverse enters the computation
of the distance function directly. Conversely, if a reference image is used and also when the
diaphragm is visible, the information about the respiration phase is included along the heart
phase in the heart-position vector.
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Figure 3.16: Diaphragm-position encoded in a 2D-vector: angle and Y-axis-position of the
middle point. The system of reference is placed in the upper left corner.

Computation of the heart phase. The heart phase can be easily computed from the ECG
signal which is recorded synchronous with the analyzed sequences. If one cardiac cycle is
defined as the time interval between two R-peaks of the ECG signal, then the heart phase can
be computed as the portion of this interval which has passed before the analyzed image was
acquired. Thus, the cardiac phase isΦ = 0 at the first R-peak andΦ = 1 at the last one.
According to [176] absolute variations of this interval can be normalized as described in [195].

Computation of the respiration phase by diaphragm tracking. We describe the position of
the diaphragm in an image starting from the boundary of its projection. The position is encoded
in a 2D vector which can then be used to describe the respiration phase. When computing this
vector, we assume that the diaphragm boundary meets the image border always in two points
only and we establish an image coordinate system whose origin lies in the upper left corner.
One component of this vector is the angle which the line underlining the diaphragm (from one
point where it meets the image border to the other one) makes with theY axis and the second
component is they coordinate of the middle point of the diaphragm border. This is shown in
Figure 3.16.

To find the boundary of the diaphragm – which we assume to be of a circular shape – we use
the Hough transform for circles (see Appendix A.4), applied on the edges of the image [34]. To
avoid that the detection algorithm is mislead by spurious edges we remove structures smaller
than a certain size (i.e. potential vessels) by morphological closing. At the same time we also
eliminate X-ray shutter edges. To restrict the search in the Hough parameter space and thus
provide real time capabilities to our algorithm, prior anatomical knowledge about position and
size of the diaphragm is considered. In subsequent frames, approximative diaphragm position
and size are predicted from previous results.

There are also cases when the computed Hough circle does not correctly approximate the
boundary, e.g., when the circularity assumption fails. To deal with such difficulties, for each
detection result a confidence measure is computed. If the confidence measure indicates a poor
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(a) (b)

Figure 3.17: Original cardiac X-ray image (a) and result of morphological closing (b).

fit, the result is refined by an active contour algorithm (see Appendix A.3).

Preprocessing. To improve the performance with respect to speed, the input images are
first down-sampled by a factor of 16, thus we work on 128x128 pixels large images down from
the original resolution of 512x512 pixels. Before applying the Hough-transform every image is
preprocessed to eliminate spurious edges given by, e.g., vessels or the X-ray shutter.

A gray level morphological closing operator is applied to the analyzed image prior to edge
points selection, to eliminate vessels while retaining the diaphragm. The results are shown in
Figure 3.17.

To eliminate the influence of shutter edge points we have applied two methods. The first
most straightforward method is to simply ignore all the edges at a certain distance away from
the image borders. However, it is difficult to properly establish this distance as there is no
universally valid shutter setup. Alternatively, by analyzing the edge maps obtained for a number
of images one can identify the shutter edge points as those belonging to objects which remain
static. The edges of static objects are obtained in the the minimum-intensity projection of the
edge maps of a number ofN previously acquired images. The value of a pixel in the projection-
frame is computed as the minimum over all values recorded at that site in theN images. To
attenuate still edges, the minimum-intensity projection is subtracted from the edge maps of each
analyzed image before computing the circular diaphragm fit (see Figure 3.18). Due to image
noise and other external influences, as e.g., the AGC, the edge strength of the static edges varies
lightly from image to image. Therefore, after subtracting the projection-frame the static edges
are not completely eliminated but rather strongly attenuated (see Figure 3.18 (c)).

Tracking. Tracking is done with the help of the Hough transform for circles. To speed up
the computation in the case of diaphragm tracking, we make use of prior knowledge on where
the diaphragm can be expected and how large it is and search only in a certain ROI in the Hough-
space. Typically, we start with a large ROI to detect the diaphragm in the first frame. The ROI is
then reduced and kept constant as the diaphragm cannot travel far between consecutive frames.
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(a) (b) (c)

Figure 3.18: Projection-image (a), edge map for one image (b) and result of still-edges-
attenuation (c).

In the first image the ROI is defined expecting the diaphragm to be situated in the lower part of
the image.

During tracking, the ROI is centered always at Hough-point corresponding to the best fit
found in the previous image. Figure 3.19 shows the results of Hough based diaphragm detection
for a high-dose sequence.

Confidence measure. The Hough transform may fail to correctly capture the diaphragm
in two cases:

• ROI too small. This case is encountered when the diaphragm does have a circular form,
but this cannot be found with the Hough transform because the ROI is too small.

• Diaphragm not-circular. This case appears if the diaphragm does not have a circular
form.

To detect such cases we define a measure of confidence in the Hough result, which is evaluated
for each frame.

We propose two confidence measures: one is based on the Hough accumulator, while the
other one is image-based. The accumulator-based confidence measure is simply the number
of votes obtained in the ROI by the best circular fit (i.e. the ROI maximum). Assuming that
the observable diaphragm border-length remains approximately constant during the entire an-
alyzed sequence, the accumulator maximum should vary only within a small interval over the
frame index. A large decrease indicates then that the corresponding Hough circle does not cor-
rectly approximate the diaphragm. Under such circumstances, the quality of the peak may be
additionally characterized by relative confidence measures which show how well the peak is
expressed in the accumulator, like e.g., the entropy6. In Figure 3.20 (a) the accumulator-based
confidence measure is plotted against the frame index for a sequence where the observable
diaphragm border length remains approximately constant.

6It is assumed that in this case that the Hough space is appropriately sampled. We observe that a very dense
sampling of the accumulator will always produced well expressed peaks.
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(a) (b)

Figure 3.19: Original image (a) and result of diaphragm detection by Hough-based circular
approximation (b).

(a) (b)

Figure 3.20: Accumulator based confidence measure (a) and image-based confidence measure
(b) for a sequence where the visible diaphragm border remains constant in length.
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We propose also another confidence measure, which is not based on the Hough accumulator
but on the image itself. This confidence measure is computed as the coefficient of variation (CV)
of the pixels along the detected circular approximation of the diaphragm in the corresponding
edge map. A high CV signals a poor fit irrespective of the visible diaphragm perimeter. The
CV is defined as:

CV =
sx

x
(3.14)

wheresx is the standard deviation of the samplesxi andx is their mean. An example is shown
in Figure 3.20 (b).

Evaluating the confidence measure.The confidence measure is compared to a certain
threshold to decide if the corresponding result is correct. Conversely, an active contour is used
to refine it. Since the image-based confidence measure is a decreasing function of the quality of
the fit, a value above the threshold indicates a poor result. The accumulator-based confidence
measure being an increasing function of the quality of the fit behaves in the opposite way. A
threshold is computed for each available sequence of roadmaps during an intervention and then
used also for all interventional images of similar projection.

The algorithm is based on the assumption that for a large majority of images the Hough
circle is sufficient to correctly approximate the diaphragm. Thus, we cannot say beforehand
that in the sequences of roadmaps available before the intervention, there are enough (if any)
poor Hough fit results to allow setting the threshold using standard unsupervised classification
algorithms. On the other hand we cannot be sure that no poor Hough fit appears. At the
same time, we have no access to a labeled training set of confidence-measures. Therefore, the
threshold is established in a heuristic manner.

We propose two methods for establishing the threshold. In the first case, the threshold is
based on the mean confidence measure over the entire analyzed sequence. For the accumulator-
based confidence measure we consider (on empirical basis) a value which is 15% less than the
mean value while for the image-based confidence measure we consider a value which is 10%
above the mean value. Alternatively, instead of basing the threshold on the mean, we consider
the extremum of the confidence measure corresponding to the best possible fit – i.e. the max-
imum for the accumulator-based measure and the minimum for the image-based measure. In
this case, for the accumulator-based confidence measure we consider (also on empirical basis)
a value which is 40% less than the maximum while in the case of the image-based confidence
measure we consider a value which is 25% above the minimum. In our experiments both thresh-
olds proved successful, however the one based on the extremum is more robust.

Active contours-based refinement.If the confidence measure indicates a poor fit, an active
contour is initialized using the Hough circular-approximation. The snake evolves then to the
correct diaphragm boundary. The result obtained with this approach for an image where the
Hough-based tracking has failed is shown in Figure 3.21. To speedup the procedure, the outline
of the diaphragm, as found by the Hough transform, is first sampled obtaining thus a reduced
number of snakels. The positions of the converged snakels are linearly interpolated to obtain
the snake-refined diaphragm outline.
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(a) (b)

Figure 3.21: X-ray image with erroneous circular approximation of the diaphragm (a) and the
result of the active contours based refinement (b).

Diaphragm tracking. Experiments and discussion.For testing we have used six sequence-
pairs from four different interventions. A sequence pair consists of a set of coronary angiograms
and a set of fluo images showing no vessels.

– Circular approximation. We assume that in general a circular approximation is well
suited for the diaphragm border. To verify this assumption, we compared the hand segmented
diaphragm border to an optimal circular approximation7. We have observed the approximation
error (i.e. minimum mean distance) at a resolution of 512×512 pixels. The mean error was 0.24
pixels (standard deviation 8.05).

To show that the Hough transform is able to correctly find the diaphragm, using the same
experimental setup as above we have compared the hand segmented diaphragm border to the
circular fit found by the Hough transform. The mean error was 2.37 pixels (standard deviation
9.35) in this case.

To show that the snake-based refinement improves the Hough-based diaphragm-detection,
we have compared the manual ground-truth also to the detection-results obtained using snakes
to refine the Hough-fit when the confidence in that result was poor. In this case the mean error
was 1.20 pixels (standard deviation 8.43).

– ROI-size. A parameter of major importance for the speed of the tracking is the size of
the accumulator-ROI. A large accumulator ensures that the optimal Hough-fit is always found
and thus the snake is used only when the diaphragm does not have a circular outline. However,
the larger the ROI, the slower the tracking and therefore, a balance has to be found between the
size of the ROI and the tracking-time.

In this case of major concern for the optimization of the ROI-size are the intervals where

7The optimal circular approximation was taken as the one having the minimum mean distance to the hand
segmented diaphragm border.
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Figure 3.22: Normalized mean CV for ROIs of different sizes (in pixels).

the coordinates of the center of the circular-fit should be sought. The radius should be searched
for in a very small interval – i.e. a few (e.g. seven) pixels – or even be kept constant after being
found in the first tracked image. The reason for this is that in the analyzed images the variation
of the size/radius of the diaphragm is very small in comparison to the variation of its position.
In the following, the optimization of the ROI-size is done mainly with respect to the center-
coordinates. The projection of the ROI on the center-coordinates plane of the Hough-space is a
square and therefore when we talk about size we refer to the side of this square. The ROI-size
on the radius-axis of the Hough space is in the following calculations constant and equal to
seven.

To optimize speed, one has to consider both the largest ROI-size for which the search for the
Hough-optimum still takes less time than the snake needs to converge and the smallest ROI-size
for which the diaphragm is practically always correctly found, if it is circular. Thus, the snake
is used only when the diaphragm does not have a circular form.

Empirically we found that the largest ROI-size, such that a Hough-search is faster than the
snake, is larger than 90 pixels. To find the smallest ROI-size such that the snake is used for a
minimal number of times, we have computed the mean CV along the Hough-diaphragm-outline
over all available sequences for ROIs of different sizes. The smallest size that we seek will
be found at the beginning of the interval of values for which the CV is constant. This curve of
mean CV values over the ROI-size is shown in Figure 3.22 and it was computed for images with
a reduced resolution of 128×128 pixels. Starting from a ROI with a side of 80 pixels, the CV
remains largely constant and therefore staring there, the discrepancies between the Hough-fit
and the true outline of the diaphragm appear only as a consequence of the latter not being a true
circle. Thus, to use the snake only when the diaphragm is not circular and thus for a minimal
number of times, the size of the ROI should be larger than 80.

Therefore, the optimal size of the center-coordinates ROI should be between 80 and 90
pixels. We have used in our experiments a ROI of size 81 for the center coordinates and seven
for the radius.
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(a) (b)

Figure 3.23: Two images where the accumulator-based confidence measure has signaled a poor
circular approximation of the diaphragm. Such a conclusion is false for image (a) and correct
for image (b).

– Confidence measures. The accumulator-based confidence measure will fail, if the as-
sumption with respect to the constancy of the observable diaphragm border length is not ful-
filled. Such a case occurs for certain X-ray projections. Then, the accumulator-based measure
will exhibit low values both in the case of a poor fit in an image where the visible diaphragm
border length is large and in the case of a good fit in an image where the visible perimeter is
small (see Figure 3.23).

In Figure 3.24 the image-based confidence measure is plotted against the frame index for a
sequence where the visible diaphragm border length varies. For comparison, the accumulator-
based confidence measure is also plotted. Unlike in the previous case (See Figure 3.20), the
two measures are now less correlated – correlation coefficientq = −0.3140 compared toq =
−0.6907. The image-based measure reflects better the ground-truth.

In our experiments we have primarily used the image-based confidence measure as it has a
better generalization performance, although it has a smaller dynamic range.

We illustrate the respiration information extraction by diaphragm tracking on two represen-
tative cases. In the first case, the length of the visible diaphragm border remains constant in
the analyzed sequences. Figure 3.25 (a) and (b) shows the image-based confidence measure
for both high-dose and low-dose images plotted against the frame index. The threshold for
the image-based confidence measure was computed using the extreme value over a high-dose
sequence. The value of the threshold was 46.42. Using this threshold, for a number of 24 high-
dose images out of a total of 60 and for a number of five low-dose images out of a total of 126
it was necessary to improve the Hough circle fit by active contours.

In the second case, the length of the visible diaphragm border varies in the analyzed se-
quences. The confidence measure plots for both high-dose and low-dose sequences are shown
in Figure 3.25 (c) and (d). In such a case, the accumulator-based confidence measure is not
able to provide reasonable results (see also Figure 3.23). The threshold for the image-based
confidence measure was in this case 54.30. With this threshold, for a number of 18 high-dose
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(a) (b)

Figure 3.24: Accumulator-based confidence measure (a) and image-based confidence measure
(b) for a sequence where the visible diaphragm border is no longer constant in length. The
results obtained with the image-based confidence measure correspond better to reality.

images out of a total of 66 and for a number of 18 low-dose images out of a total of 111 it was
necessary to improve the Hough circle fit by active contours.

– Diaphragm description vector. In Figure 3.26 the similarity – measured by the Euclidean
distance between the corresponding 2D description-vectors and therefore the brighter the gray
level the lower the similarity – between the tracked diaphragm positions in a low-dose and a
high-dose sequence of the same patient for both example-cases is shown. The repetitive pattern
which may be observed, is linked to the respiration frequency and to how many respiration
cycles were recorded in the analyzed sequences. In the first case (Figure 3.26 (a)), the high-
dose sequence showed one and a half respiration cycles while the low-dose sequence showed
four and a half respiration cycles. In this case, the patient was allowed to breath freely. In the
second case (Figure 3.26 (b)), the patient was allowed to breath freely during the acquisition
of a high-dose sequence and he was told to hold breath for a while during the acquisition of a
low-dose sequence.

Figure 3.26 illustrates that by tracking the diaphragm and specifying its position, as de-
scribed in our algorithm, pairs of images with similar respiration status can be found. Thus, our
approach represents a viable method of extracting image based respiration information.

The evolution of the two components of the 2D-description vector for both high and low-
dosage sequences for the case when the patient was allowed to breath freely are shown in
Figure 3.27.

– Abrupt and sudden motion of the diaphragm. To speed up the algorithm we use a small,
constant Hough accumulator ROI. This strategy however may lead to poor fit results also in the
case of sudden and large diaphragm motion when the center of circular fit jumps out of the ROI.
Such cases are detected using the confidence measure and corrected by the snake which in turn
takes extra time. For further implementations, a variable size ROI could be used. In such a case
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(a) (b)

(c) (d)

Figure 3.25: The image-based confidence measure for the high-dose sequence (a) and for the
low-dose sequence (b) when the length of the visible diaphragm border was constant and the
image-based confidence measure for the high-dose sequence (c) and for the low-dose sequence
(d) when the length of the visible diaphragm border was not constant. The black horizontal bar
marks the value of the threshold for each case.
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(a) (b)

Figure 3.26: Respiration-phase information using diaphragm tracking when the visible di-
aphragm length is constant (a) and when the visible diaphragm length is not constant (b).

(a) (b)

Figure 3.27: The evolution over frame index of the components of the 2D description-vector
for the contrasted sequence (a) and for the interventional sequence (b).
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the ROI size would decrease constantly as long as the confidence measure is ’clearly’ above the
threshold. If this is no longer the case, the ROI is reinitialized to a large size and the tracking
continues. The decision interval within which the confidence measure is no longer assumed to
be ’clearly’ above the threshold, as well as the ROI reinitialization size, may be set empirically
and will directly influence the algorithm’s performance with respect to speed.

3.2.3 Segmentation and registration of surgical tools

After a correspondence has been established between a live-image and a static roadmap, the
guidewire tip – which is the main navigational instrument – and eventually the balloon markers
need to be superimposed.

Introduction

There are two strategies which can be followed to superimpose the surgical tools after a roadmap
has been found for the current interventional image. The first possibility is to segment them and
then to display them in ahighly contrasted manneron the roadmap. The second possibility
is to combinethe two images such that the roadmap is displayed in a weaker contrast over
the interventional image and a well-perceived overlay is achieved [26]. The latter method is
impracticable if the contrast in the interventional images is very low. Also, it can encounter an
acceptance problem by the physicians, as they can be confused by such overlay where vessels
can become similar to other background structures. Therefore, we propose to use the first
method.

To realize the overlay, first we need tosegment the guidewire-tip and the balloon markers.
Second, the roadmap and the interventional image need to begeometrically correlatedsuch that
the guidewire tip will be displayed into the vessel and thus the perceived quality of the overlay
is good.

Compensate table and patient motion. Potential mismatches, between an interventional im-
age and its corresponding roadmap, can appear as a consequence of voluntary or involuntary
patient and table movement. The importance of such mismatches depends on the amplitude of
the motion. Typically, table motion has a large amplitude, while patient motion has a smaller
amplitude. We propose to compensate them by geometric transformations, whose parameters
are computed using landmarks, which are applied on the operating table and on the skin of the
patient respectively.

However, only rigid transformations [189] – i.e. rotation and translations – are allowed, for
two reasons:

• First. The overlay should function in frame-rate and thus the processing should be kept
as simple as possible.

• Second. Affine, projective and elastic models can modify the input image to such an
extent that in some cases the perceived quality of the overlay decreases beneath the ac-
ceptance threshold.
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Register vessels and surgical tools.Usually, a rigid model will do the job, but sometimes,
e.g., in the case of small rotations of the patient, the projective geometry of the acquired image
changes beyond the reach of such model. Then, the guidewire tip typically lies close to the
vessel but nevertheless out of it. In such a case, an additional correction is needed to bring the
guidewire tip into the vessel. This correction needs to be done using only image cues.

Again two strategies can be followed:

• Bring the guidewire tip to the vessel.This strategy implies modifying the interventional
images and displaying the roadmap with the registered guidewire tip into the correspond-
ing vessel.

• Bring the vessel to the guidewire tip.This strategy implies the computation of a set of
parameters of an again linear transform which is supposed to modify the roadmap.

Although tampering with the interventional images is potentially more critical than a modifi-
cation of the roadmap, the first method has the advantage of avoiding the additional computation
of a transformation. Thus, we propose to segment the guidewire tip and register it to the closest
vessel.

Assuming a successful sequence-matching, the balloon markers are practically always cor-
rectly positioned – due to their small size and circular form – and therefore need not be regis-
tered to the vessel.

Segmentation of the guidewire tip

The guidewire tip appears as a thin dark oriented structure in the interventional images. To
achieve a segmentation, a two step approach is proposed. In the first step, guidewire-like struc-
tures are enhanced obtaining thus a guidewire map where the object pixels are lighter than the
rest. The guidewire is then segmented in the guidewire map by a percentile threshold.

The guidewire map. We have conducted experiments with two different methods to obtain
a guidewire map. In the first method, high-frequency structures are enhanced by means of a
high-pass filter. In the second method, oriented structures are enhanced by analyzing the first
(i.e. largest) eigenvalue of the structure tensor which describes local orientation [108], [118]
(see also Appendix A.5).

The high-pass filtration result is obtained by subtracting from the original image the low-
pass filtered image. The low-pass filtration kernel was Gaussian. The optimal cut-off frequency
of the low-pass filter – i.e. the size of theσ parameter of the Gaussian function – was empiri-
cally determined (see Table 3.4). An enhancement result is shown in Figure 3.28 (b). During
processing shutter artefacts are ignored.

The structure tensor can be used to describe only one orientation. As the guidewire tip is
an oriented structure, we propose to use as guidewire map the first eigenvalue image of the
structure tensor. Provided the size of the neighborhood is chosen in relation to the diameter
of the guidewire, then the first eigenvalue will exhibit large values mostly over the guidewire.
An enhancement result is shown in Figure 3.28 (c). Prior to computing the structure tensor,
a Bothat-filter is applied such that only guidewire-like structures are select and the rest are
suppressed.
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(a) (b) (c)

Figure 3.28: Original image (a), result of high-pass filtration (b) and result of tensor-based
enhancement (c).

The segmentation. One can assume that after enhancement, in the guidewire map there are
only two well separated pixel classes viz. background and guidewire. Then, to segment the
guidewire a fixed threshold should suffice. As the image area which is covered by the guidewire
tip can be computed in advance, based on the size of the guidewire tip and the resolution of
the image acquisition system, we propose to use a high-percentile threshold. Precisely which
percentile should be used can be established using the available ground truth by simply trying
different values. The best results were achieved by the 99’th percentile of the histogram of the
guidewire map. However, this threshold does not return perfect results, there are still many
false positives (see Figure 3.29 (b)), which we consider to be a consequence of the poor SNR of
interventional images. To improve the segmentation, we use the observation that the guidewire
tip, being the “most oriented” structure in the image, will contain also the overall maximal
value in the guidewire map. Thus, we select into the segmentation all object pixels connected
to the position of this maximum. A final segmentation result is shown in Figure 3.29 (d). To
make sure that the entire guidewire is selected, we apply a binary closing operator to the initial
segmentation results, before the maximum-based selection. (see Figure 3.29 (c)).

When the orientation-based guidewire map is used, due to the localization-detection trade-
off, the segmentation result contains rather a region where the guidewire can be found with a
high probability. To obtain the final guidewire, the result of segmentation is morphologically
thinned to a line.

Segmentation of the guidewire tip. Experiments and results. To find out which enhance-
ment method is best suited for the computation of the guidewire map, we have computed the
AROC of a percentile threshold used to segment the guidewire tip on each of the enhancement
results obtained by every proposed method. For this purpose, we have used a manually labeled
ground truth, which includes 120 images from four different interventions (30 images per se-
quence). Each sequence has different SNR from high to low. One sequence shows also balloon
markers. The human expert was asked to draw a line (one pixel thick) along the guidewire
tip, at the position where he thinks this is found. To compensate for the poor quality of the
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(a) (b) (c) (d)

Figure 3.29: Original image (a), initial segmentation result (b), result after closing (c) and after
maximum selection and elimination of balloon markers (d).

manual ground-truth [116], these results were dilated and when compared with the automatic
result a successful segmentation was considered only when the mutual overlap between the
manual result and the automatic result was above a certain value [75]. Such a procedure is
justified also by the classical localization-detection tradeoff problem [34], which is encountered
mainly when using the structure tensor-based enhancement method. Therefore, the automatic
results does not contain a precise localization of the guidewire tip but rather a region where the
guidewire is located with a high probability.

The main parameter of the high-pass filter isσ the standard deviation of the Gaussian fil-
tration kernel. The largerσ is the smaller the pass-frequency of the high-pass. The size of the
filtration kernel is chosen in agreement withσ such thatSize = 5 · σ [188]. The main param-
eter of the structure tensor-based enhancement is the size of the neighborhood, which is clearly
identical with the size of the Bothat-window. The size of the derivative kernels is chosen in
agreement with the size of the neighborhood, i.e., slightly smaller [108]. The results are shown
in Table 3.4 and Table 3.3 for the high-pass and tensor-based enhancement respectively. Each
time for differentσ and neighborhood sizes.

As guidewire map we have used the tensor-based enhancement. The segmentation results
obtained on the four test-sequences for different percents of mutual overlap (O) and for neigh-
borhood sizesN = 5, 7, 9 are given in Table 3.5.

Segmentation of the guidewire tip. Discussion. Analyzing this data it appears clear that the
larger the standard deviationσ and the neighborhood sizeN , the better the results achieved.
However, the rate of improvement decreases significantly starting fromσ = 7 andN = 9,
which we consider to be the optimal parameters for each method respectively. It can be also
observed that the tensor-based enhancement returns better results than the high-pass filter. Thus,
we choose the tensor-based enhancement method to compute the guidewire map.

As shown in Table 3.3, starting fromN = 9, the quality of the vessel map improves only
slowly, and thus it seems that for the computation of the guidewire mapN = 9 should be
chosen. However, the results in Table 3.5 show that theN = 7 is actually the best choice.
We consider that although at the scale of the entire image the contrast of the guidewire-tip to
the background improves withN , there are also more small dark background-structures (i.e.
background-noise) from the direct vicinity of the guidewire which are also enhanced. Such
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N 3 5 7 9 11 13
S1 87.92 96.86 98.47 99.05 99.23 99.39
S2 71 79.90 87.06 94.03 95.68 96.47
S3 76.22 85.47 90.69 94.03 95.23 96.27
S4 70.37 78.27 84.68 88.55 90.18 91.57

Table 3.3: AROC for the tensor-based guidewire map for different neighborhoodsN .

σ 3 4 5 6 7 8
S1 73.90 81.99 87.65 90.83 93.02 94.18
S2 56.94 63.31 69.01 72.99 76.41 78.82
S3 54.04 57.95 61.64 64.46 67.38 69.57
S4 50.78 54.00 56.92 59.22 61.18 62.66

Table 3.4: AROC for the filter-based guidewire map for differentσ.

background-noise is then segmented in the initial segmentation where it appears linked to the
guidewire and is thus selected with it in the final segmentation.

From O = 70 the relatively bad precision of the manual segmentation starts having an
influence. Clearly this is also the mutual overlap where the most inferences with respect to the
quality of the automatic segmentation can be made.

The segmentation of the guidewire-tip is based on the assumption that it is the sole and best
oriented X-ray absorbent in the image. This assumption is no longer valid when sewing wires
or balloon markers are present in the image. Such structures need to be segmented in advance
and ignored during the maximum-based selection of the guidewire tip.

Registration of the guidewire tip

After segmenting the guidewire tip in the interventional image, it is projected on the correspond-
ing roadmap. At this stage it is assumed that the guidewire tip is either within the vessel, or
very close to it. To precisely place the guidewire into the vessel, we use an active contour-based
approach. The thinned guidewire (see Figure 3.30 (b)) – i.e. the guidewire centerline – is seen
as an elastic curve – i.e. a snake – which advances on the roadmap from its initial position to the
vessel situated next to it under the influence of internal and external energies. The internal en-
ergies define elasticity and stiffness and constrain the curve such that “unnatural” fitting results

N 5 7 9 5 7 9 5 7 9
S1 100 100 100 100 100 100 85.71 85.71 66.67
S2 100 100 100 100 100 100 66.67 76.19 57.14
S3 100 100 100 100 100 100 80.95 80.95 57.14
S4 95.24 95.24 85.71 76.19 76.19 66.67 33.33 47.62 23.81
O 50 60 70

Table 3.5: Percents of correct classifications for different neighborhood sizeN and overlapO.
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(a) (b) (c) (d) (e)

Figure 3.30: Interventional image (a), result of guidewire-tip segmentation (b), guidewire-tip
projection on the roadmap (c), snakels positions after registration (d) and final result (e).

are excluded. The external energies are defined to attract the curve into the vessel.

To decrease the time needed to find a good fit to a minimum, the guidewire is sampled at
equidistant positions – obtaining thus so-called snakels – and only these points are fitted (see
Figure 3.30 (c)). The continuous guidewire is then interpolated among snakels. If the guidewire
enters relatively small vessels, then it changes their appearance. Therefore, small vessels with
a rather curved appearance will be straighten as soon as the guidewire reaches them. Clearly
this phenomenon cannot be observed in the roadmaps, thus the guidewire tip will be fitted to
the curved vessel and the final result will show a guidewire with an “unnatural” form. Due to
the internal energy terms, the final fitting result shows a “graceful degradation” in such cases,
as it will not follow each bending of the target-vessel. However, the form of the guidewire will
be changed. As it is generally considered bad practice to modify live results, we would like
to make sure that the original form of the guidewire – i.e. the guidewire as segmented from
the interventional images – remains the same. For this purpose, either the internal energies
are defined accordingly, or the guidewire – as originally segmented – is fitted among the final
snakels positions according to the minimum mean square error criteria (see Figure 3.30 (e)).
The latter solution has the advantage that it practically guarantees that the guidewire-pattern
remains the same.

As already pointed out, we propose to use markers to geometrically correct ECG and
respiration-matched roadmaps before overlay and registration of the guidewire tip. As we had
no such sequences available, the proposed algorithm was tested on sequences recorded from
patients which have underwent an open-chest intervention, in which case the sewing wires are
observable and can be used to achieve the geometric correction. Some results are shown in
Figure 3.30.

The segmentation of balloon markers and sewing wires.

The balloon markers are highly absorbing, thin but circular in shape. They appear in the initial
segmentation because in such cases both eigenvalues of the structure tensor exhibit large values.
The can be separated from the guidewires mainly by their circular form. The sewing wires are
also highly absorbing thin oriented structures. They can be separated from guidewires by their
form and by the fact that they are static in the analyzed sequences.
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(a) (b) (c) (d)

Figure 3.31: Intermediary segmentation result (a), maximum-selection result at first iteration
C=0.79 (b), at second iteration C=0.74 (c) and at the third and final iteration C=0.10 (d).

Segmentation of balloon markers. The balloon markers are segmented together with the
guidewire tip by the 99’th percentile of the histogram of the guidewire map. As they absorb X-
rays slightly better than the guidewire tip, often the maximum value in the guidewire map lies
on such markers. To detect if a marker and not the guidewire tip was segmented, we compute
the compactness of the segmentation result. For an object of areaA and perimeterP , the
compactness is defined as:

C =
4πA

P 2
(3.15)

The compactness of a circle is one and the lengthier the analyzed structure, the smaller the
compactness. Empirically, we consider that if the compactness is above 0.5, the result shows
a marker (see Figure 3.31). Then, the corresponding structure is eliminated from the initial
guidewire-segmentation result and the procedure starts again. This repeats until the value of the
compactness falls bellow 0.5. As sometimes, e.g., for sequences with a particularly bad SNR,
despite the closing the guidewire tip is still fragmented, it may happen that we reject the two
balloon markers and then the guidewire chunks and end up segmenting background structures.
Such an error is clearly more critical than segmenting only a part of the guidewire, thus if
after four iterations the compactness does not fall bellow 0.5, the current result is accepted as
guidewire. The structures which have been eliminated from the guidewire segmentation due to
their high compactness are considered the balloon markers.

Segmentation of sewing wires. To segment the sewing wires we record 24 frames – which
correspond approximately to two heart beats – and each time compute the guidewire map and
segment it using the 90’th percentile of its histogram as threshold, such as to make sure that
all sewing-wire pixels are selected. We than add all these binary results – zero for background
and 1 for guidewire/sewing wires – and compare their sum with a threshold. This threshold
has the value 23 such that only the pixels corresponding to the static sewing wires will have
values larger than the threshold. A processing result obtained after eliminating shutter-artefacts
is shown in Figure 3.32. We wait for two heart beats, because we want to make sure that only the
static sewing wires will be segmented and there are no artefacts from guidewire and/or balloon-
marker pixels. 24 frames are equivalent to two seconds of recording. During this period, no
overlap of surgical tools on the roadmap is possible.
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(a) (b) (c)

Figure 3.32: Interventional image showing wires (a), sum of 24 segmentation results (b) and
segmentation result after eliminating the shutter artefacts (c).

3.3 Quantitative analysis of the myocardial-blush

The MBG is an important measure for cardiac revascularization and it is used to make long-
time predictions on the health of patients which have suffered a heart attack and have been
treated by PTCA. Presently, the MBG is assessed “semi-quantitatively” (grades 0-3) by the
angiographer and thus the procedure is afflicted by inter- and intra- observer variability [190].
We describe methods which permit a “quantitative” assessment of the MBG mainly by tracking
a predefined region of interest (ROI) of the moving heart over a sequence of X-ray projections
(Section 3.3.1). Tracking is needed to allow the observation of the same region during the
entire analyzed sequence, despite the heart motion. The MBG is then obtained by analyzing the
gray-level variations within this ROI during the investigated sequence (Section 3.3.2).

The MBG. Myocardial infarction (MI) is the most common cause of morbidity and mortality
in the industrialized world. In most cases, an abrupt occlusion of a coronary artery leads to
MI. Diagnosis and treatment usually takes place under X-ray supervision, the treatment being
performed by PTCA. The PTCA is instrumental in reopening the clotted coronary artery, which
does not necessarily imply integrity of myocardial micro-circulation. The presence of blood
with contrast agent in heart tissue can be observed as a darkening of the target region – i.e.
myocardial blush (MB). For precise diagnostics, to assess the success of such intervention, as
well as for making long-time predictions on the health of the patient, it has been proposed to
investigate the MB by means of a dedicated measure: the MBG [98].

A heart-motion-compensated region of interest. The MB is an artery-related phenomenon.
The position of the region where it can be observed – i.e. the ROI – depends on the position of
artery which is investigated. Therefore, the position of the MB-feature changes during a heart-
beat due to the change in position of the corresponding artery. To measure the MBG we need
thus to track the MB-region. This region is initially defined by hand by the physician in the first
image of the analyzed sequence.
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Robust estimation of the MBG. The MB is a time-dependent phenomenon. It becomes
observable when blood with contrast agent reaches the target region. It then becomes more
salient the more blood is pumped-in and it finally vanishes, when the blood with contrast agent
leaves the target region. After finding the MB-region in the entire analyzed sequence, the MBG
is estimated by a robust analysis of the gray level variations within the tracked-region.

3.3.1 A heart-motion compensated ROI

Typically, the ROI has no dominant cues to support the tracking. As the vessels exhibit bendings
and bifurcations – i.e.junctions– while other structures do not, and the vessel motion is directly
linked to theheart motion, we estimate the latter bytracking junctionsbetween consecutive
images.

To project then the motion of the vessels on the ROI, itsborderis modeled as aclosed elastic
string, which is deformed under the action of certain external forces, defined in relation to the
tracked junctions by attachingvirtual springsbetween each junction and each border point. The
behavior of the springs is regularized by internal forces [119].

Clearly, the ROI can only be tracked in images acquired during the complete state (Fig-
ure 3.33 (a)). The MB appears when the blood reaches the myocardium. This moment varies
from sequence to sequence, depending on the way the contrast agent is injected. In some se-
quences it may appear as early as in the middle of the complete state, and continue until close to
the end of the washout. For images acquired during the washout, the vessels are poorly or not at
all visible, thus the ROI cannot be tracked there. To analyze the MB during its entire duration,
the images showing insufficient contrast are matched, with respect to the heart and respiration
phase, to the contrasted images, which are acquired during the complete state. The ROI is then
projected from the contrasted to the non-contrasted images.

Detection and tracking of junctions

By junctions we mean the bendings and bifurcations which – in this context – can be observed
only on vessels. The junctions are detected by a tensor approach (see Appendix A.5).

We see two possible approaches to junction tracking:

• The rigid approach. In this case the same set of junctions are tracked over the entire
sequence. Clearly the appearance of junctions should not change during tracking.

• The adaptive approach.In this case a set of junctions are tracked only between consec-
utive images. Therefore in an entire sequence the set of junctions can change. This type
of tracking adapts to potential changes in appearance of junctions.

The vessels and together with them the junctions change their appearance when the heart
moves. Therefore, we choose the adaptive approach for tracking as it is practically impossible
to track the same junctions over an entire heart beat. Also, as long as junctions can be found
only on vessels, the motion of vessels – and thus also the motion of the heart – can be obtained
irrespective of what junctions are tracked.

Junction detection. Junctions are points in whose vicinity at least two prominent local ori-
entations can be found, where by local orientation we understand the direction along which the
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gray level profile shows the least variations in a certain neighborhood. Junctions are character-
ized by relatively large values of the smallest eigenvalue(λ2) of a 2 × 2 tensor used to fully
describe a single orientation [12].

To detect junctions, we set a threshold over theλ2-image (see Appendix A.6.2). Threshold-
ing returns junction surfaces and background. The junction surfaces consist of several points
likely to be junctions. We consider as true junctions that points exhibiting the largestλ2 value
in a neighborhood (Figure 3.33 (c)).

(a) (b)

(c) (d)

Figure 3.33: Detection and tracking of junctions: original image (a), Bothat result (b), set of
detected junctions (c) and tracked junctions (d).

The assumption on which the ROI tracking is based is that in a coronary angiogram vessels
and only vessels do show junctions. With the purpose of eliminating potentially spurious junc-
tions, the background of the coronary angiogram is equalized – while preserving the gray-level
difference between background and vessels – by applying a Bothat-operator [50] (Figure 3.33
(b)). On the result obtained after applying the Bothat-operator we compute then the second
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eigenvalue of the structure tensor.

Junction tracking. Once the junctions have been detected in two consecutive angiograms,
they are tracked with the help of a similarity function consisting of three terms: the first term
is based on the Euclidean distance between junctions, the second term uses the correlation
coefficient, and the third term is based on a mixed orientation vector [12].

A junction travels from a past frame to a current frame over a certain distance which –
considering the speed at which a heart moves during a beat, together with the frame rate at
which the images are acquired (12fps) – is usually far smaller than the distance between two
neighboring junctions in the angiogram. Thus, to find the same junction again in the current
frame, one should take the closest one. The similarity between two junctions can be expressed
using the Euclidean distance between their position vectors as:

sp =
1√

2πσ2
e−

d2

2σ2 (3.16)

whereσ weights the relevance of the distanced. In our experimentsσ = 1. Clearly, the smaller
the distance, the larger the position-similarity term andsp ∈

(
0, 1√

2π

]
However, there are cases when distance alone is not enough, e.g., for images acquired dur-

ing a ventricular systole, when the distance the vessels travel between consecutive frames is
large. For a successful tracking we need also junction-specific information which we extract in
two ways: by investigating the correlation between junction neighborhoods and by the mixed
orientation vector. The correlation between junction neighborhoods is given by the correlation
coefficient:

r =
K(Xp, Xc)

σ(Xp)σ(Xc)
(3.17)

with K the covariance andσ the standard deviation for the neighborhoodsXp andXc for the
past and current frames respectively. Theoreticallyr ∈ [−1, 1], but in our caser ∈ [0, 1]. To
fully describe two orientations, an extended3× 3 tensor is needed which involves second order
derivatives. This tensor’s eigenvector corresponding to the smallest eigenvalue is calledthe
mixed orientation vectorand can be used as a juciton descriptor, as it contains a full but implicit
description of the sought orientations [12]. We propose to use the Euclidean distance between
the corresponding mixed orientation vectorsdo to build the orientation-similarity term:

so =
1√

2πσ2
e−

d2
o

2σ2 (3.18)

again withσ = 1.
The similarity function used to track junctions between consecutive frames will then be:

s = w1sp + w2r + w3so (3.19)

The weightswi, i = 1, 2, 3 can be used to force the tracking to rely more heavily on a certain
term. In our experiments however, they were all set to one.



3. ENHANCED CATHETER INTERVENTION 99

Outlier detection. The tracking may fail, e.g., when false junction correspondences are used.
Such outliers are detected end eliminated by comparing their similarity against a certain thresh-
old. This threshold is set using a significance test. For the first two frames at the beginning
of the analyzed sequence, the similarities of all possible junction pairs are computed. For each
past junction, the pair made with a current junction for which the similarity is maximal, is con-
sidered as a true pair only if it is also the pair with the largest similarity from among all pairs
formed between the corresponding current junction and past junctions. The similarities of such
pairs are eliminated from the set. What remains are only similarities between outliers which
are used to estimate the junction pairs’ similarity distribution under the outlier assumptionH0.
The outlier-detection threshold is then computed such that it corresponds to a significance level
α = 10−4. Junction pairs with a similarity below the threshold are eliminated (see Figure 3.33
(d)).

Modeling the ROI

The tracked junctions can be used as landmarks to compute the parameters of an elastic trans-
form [24] which models the heart motion. The ROI image – as observed in the past frame –
should then be modified according to this model and applied to the current frame to achieve the
heart-motion-compensated ROI-tracking. Such a strategy is highly sensitive to the number of
landmarks and the presence of outliers and thus an outlier robust implementation of the elastic
transform is needed [165]. The results obtained with an elastic transform are usually nega-
tively influenced by the fact that the landmarks are not dense around the ROI, due to its typical
positioning (Figure 3.35). Such difficulties can be partially solved if the solution is further
constrained, e.g., by introducing artificial landmarks.

In a more robust approach to tracking, one could use a physically motivated ROI model
which is deformed under the action of forces generated by the junctions’ displacements between
consecutive frames. Such a model can be constructed by sampling the ROI’s surface – or only its
border – by control points whose displacements are internally constrained by mass, damping,
elastic and stiffness terms defined in agreement with the ROI’s physical properties, i.e., the
corresponding properties of the heart-tissue. Such models can be generated, e.g., based on the
finite element method (FEM) [158], or on energy minimization methods [119].

We propose here a physically-based ROI model whose border is properly sampled by con-
trol points. The displacement of these control points is constrained by imposing an energy
minimization condition. As there are typically less tracked junctions than control points, the
junctions are used to build an external attraction energy field where the model evolves to a min-
imum energy position, under the additional influence of internal energy terms, much in the way
active contours are defined. The total energy to be minimized for a modelm is:

E(m) = Eext + Eint = Eext + Eel + Es (3.20)

whereEext is the external attraction energy, andEint is the internal energy consisting of two
terms which control the elasticityEel and the stiffnessEs of the model.

External attraction energy. Provided the number of tracked junctions equals the number of
control points and the same set of junctions is tracked over the entire analyzed sequence, to
find the position of the ROI in a current frame one could establish junction-control-point pairs
and link them by a virtual string so that the motion of the junctions is transmitted to the control
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Figure 3.34: External energy field.

points. The potential elastic energy which appears when a string anchored at a certain point is
stretched over a distancex is:

Ep =
1

2
kx2 (3.21)

wherek is a constant describing the elastic properties of the string. The internal energy defined
between control points would then condition the behavior of the ROI as it travels to a new
position seeking to reach a minimum energy state.

However, the number of junctions is typically less than the number of control points and
the set of tracked junctions can vary from frame to frame. Thus, to track the ROI between two
consecutive frames, we attach a string between each control point and each tracked junction.
The energy of this entire system – which is zero in the past frame – increases in the current
frame due to the tensing of the springs as one of their anchor points (i.e. the junctions) move
over a certain distance. For all possible positions in a certain vicinity of a control point – as it
is positioned in the past frame – the elastic energy obtained by spanning the springs between
each junction in the current frame and each position are computed. The external energy which
would influence that particular control point is then determined by considering at each position
the mean contribution over all junctions. The external attraction energy will then be:

Eext(m, n) = γ
1

N

N∑
i=1

Ei
p(m,n) (3.22)

whereγ is a weight factor,N is the total number of tracked junctions and(m,n) are the Carte-
sian coordinates of a point in the vicinity. An example is shown in Figure 3.34. Clearly, the
vicinity should be large enough to include all possible end-positions of the control point.

Internal energy. To define the internal energy we place rods between each pair of control
points. The elasticity and stiffness of these rods are controlled by special energy terms. The
elasticity is modeled by:

Eel = α

[
M∑
i=1

‖~pi − ~pi−1‖ − L0

]2

(3.23)

with α a weight factor,~pi = [xi, yi] the vector containing the Cartesian coordinates for each of
theM +1 control points andL0 the average distance between them. This energy term increases
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(a) (b)

Figure 3.35: First (a) and last (b) image of an analyzed sequence with markers and ROI.

if the model is stretched or compressed. The stiffness is modeled as:

Es = β
M−1∑
i=1

‖~pi−1 − 2~pi + ~pi+1‖2 (3.24)

with β a weight factor. This energy term increases if the model is bended. As we model a closed
curve,~p−1 = ~pM and~pM+1 = ~p0, thus the sum in equations (3.23) and (3.24) runs from0 to M .
Adjusting the parametersα, β andγ controls the relative importance of the respective energy
terms inducing thus a specific model behavior.

A heart-motion compensated ROI. Results

We have tested our algorithms on a number of seven sequences of 15 to 28 images each, show-
ing only the complete state. The angiograms had a resolution of512 × 512 pixels and were
acquired at a frame rate of 15fps. To increase the processing speed during experiments, the
resolution was reduced to256 × 256. The size of the Bothat-window was chosen to be nine
pixels. The size of the derivative kernels used to compute the orientation tensor was chosen
to be seven pixels and that of the pixel-neighborhood where the orientation tensor is computed
was again nine pixels. The energy weights were chosen:α = 15, β = 3, γ = 5. The sequences
had neither table nor patient movement and were acquired in clinical routine with different pro-
jection angles. We have computed several measures to show that the result is conform with
an expert opinion, and that it follows the variation of the heart surface. As reference we have
artificially built a failed tracking result for each sequence by defining a static rectangular ROI in
the lower left corner of each image. We have then computed all measures again for this tracking
result. The results are given in Table 3.6 and an example is shown in Figure 3.35.

To verify if a tracking result is in agreement with an expert opinion, we have defined by hand
the ROI in each frame of the analyzed sequences and defined correct and incorrect tracking
results in relation to this ground truth. A result was considered correct if the mutual overlap
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cc std Av Pv
Results 94.19 3.02 7.87 4.06

Reference 0 5.56 7.23 3.28

Table 3.6: The results obtained on the test data.

between the tracked ROI and the manual ground-truth was larger than 50%. We have computed
the mean percentage of correct classifications over all sequences (cc).

To verify whether the tracked ROI keeps its position relative to the projected heart surface,
we have marked three vessel-points distributed over the entire vessel tree such that they are
situated around the tracked ROI. We have typically chosen bifurcations and bendings of the
main vessels (see Figure 3.35). Then, we have determined the center of mass of these three
points and the center of mass of the ROI and computed the Euclidean distance between them in
each frame of the sequence. We have then computed the standard deviation in each sequence
and the mean of standard deviations over all sequences (std).

To verify whether the tracked ROI changes its surface in agreement with the changes of
surface of the heart, we have computed the area and perimeter of the triangle defined by the
three marked points and then we have computed their variation in percents between consecu-
tive frames. We have compared this with the same variation computed for the ROI’s area and
perimeter by taking the difference between the ROI and the triangle variation and then comput-
ing the mean of absolute differences over the entire sequence. We have then taken the mean
over all sequences: Av and Pv for area and perimeter respectively.

A heart-motion compensated ROI. Discussion

The results show that the ROI tracking method is able to follow the movement of the heart and
that the tracking results are in agreement with human intuition. However, although the ROI as a
whole follows the heart, it seems that its area and perimeter do not follow the local variations of
the heart tissue but they remain approximatively constant. One possible reason is that a majority
of the tracked junctions are typically situated on the same vessel or on vessels that were very
close and thus they are representative for the motion of the heart, but they are not representative
for the local variations of the heart tissue in and around the ROI. We believe that a 50% overlap
between the tracked ROI and the real MB region suffices for an automatic estimation of the
MBG by a robust feature. Experience shows that it is practically impossible to define the ROI
to include all and only the blush region. Thus, the ROI will normally include also regions where
no blush has been observed.

The surface of the heart which is observable in an angiogram varies as a consequence of the
heart changing its volume. The coronary vessels follow this variation by bending and stretching,
thus many of the junctions change their appearance sometimes drastically over a heart beat.
Instead of tracking a set of particular junctions over an entire sequence, we track different sets
of junctions only between consecutive images, as only in such a case the change in appearance
of most junctions is small enough – considering the speed of the heart beat in relation with the
frame rate – to permit tracking. It is very important for the tracking that the junctions do not
change their appearance drastically between consecutive frames. This may happen, e.g., during
the ventricular systole when the speed at which the heart moves reaches a maximum. Thus it is
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expected that the tracking improves with the frame rate.
By its energetic formulation and by its adaptive approach to junction tracking, the ROI-

tracking is also marginally robust against slow, small-amplitude table and patient movement.
However, to analyze the MB in those cases when it extents over the washout, and generally
for a precise tracking, motion-compensation clearly is needed. Ideally the table should not be
moved during image acquisition and the patient should remain still. Depending on the angle
under which the the X-ray imaging system looks at the patient, the coronary vessels can be
imaged under different projections. Only those projections where the vessels show a minimal
overlap – ideally none whatsoever – are suited for processing. Otherwise, e.g., as the heart has
also a rotation motion this may result in some vessels traveling upwards and some downwards
in the projection images, then in a worst case scenario, the algorithm will track alternatively
junctions on vessels traveling in opposite directions, resulting in a stationary ROI.

3.3.2 Robust analysis of the myocardial blush

After the physician has defined the ROI by hand in a first image, this is tracked throughout the
sequence. The MB appears as a persistent dark staining of the target region. Usually, the target
region and the ROI do not correspond 100% – because practically, the ROI cannot be defined to
include all and only the MB region – but they do overlap strongly. Thus, there will be also other
items present in the ROI besides the blush and to measure it, we need a robustblush feature
which responds to blush only. From theblush curve, computed using the blush feature, the
MBG is estimated.

The blush feature, the blush feature-curve and the blush curve

The simplest way to obtain information related to the blush is to compute the mean of the gray
levels from the ROI. However, the mutual overlap between the tracked and the target region –
although is usually above 50% from the ROI – varies from frame to frame. Consequently, the
mean is a rather unreliable blush feature. A feature is needed which is insensible to the varia-
tions of the overlap. Such a feature must be computed only from gray levels which correspond
always to the blush region, irrespective of the variations of the overlap. We propose to use as
blush-featurea low percentileof the histogram of the gray levels found in the ROI.

The blush feature measures blush in each frame of the analyzed sequence. Similar to the
analysis of contrasted images (Section 3.2.1), we call the curve of MB feature over frame index
the blush feature-curve. From the blush feature curve, theblush curveis computed, which is
then used to estimate the MBG.

A percentile-based MB-feature. The percentile selects a certain gray level and at the same
time defines a certain area within the ROI which we call percentile-area. The percentile-area is
represented by the pixels with gray levels below that corresponding to the percentile and is not
necessarily connected. The value of the percentile defines also how much of the area of the ROI
– expressed in percentages – is the percentile-area. Then, e.g., if the dark target region and the
ROI overlap such that the former occupies some 50% of the latter, a percentile lower than 50
will select gray levels corresponding in a large majority to pixels over which the blush appears.
Clearly this observation holds only as long as the overlap between the target and the tracked
regions is larger than the value of the percentile.
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A good blush-feature should respond to blush alone. Thus, the choosing of the specific
percentile of the ROI histogram to be used as blush-feature involves several aspects:

• The first is that of the minimal mutual overlap between the target region and the ROI,
achieved during tracking. The value of the percentile should be smaller than the percent-
age of the ROI-area corresponding to this minimum overlap.

• The secondis related to the type of structures – other than the blush region – which can
be found in the ROI. Assuming that such structures are likely to be comparable or lighter
than the blush, the value of the percentile should be chosen such that its corresponding
gray level is smaller than the gray levels of these structures, i.e., they are excluded from
the percentile area. Assuming that the structures are darker than the blush, the value of the
percentile should be chosen such that its corresponding gray level is larger than the gray
levels of these structures, i.e., they are included in the percentile area. These conditions
form a balance which should be kept even, when choosing the percentile.

Thus, assuming that the mutual overlap between the target and the tracked regions is around
50%, we choose the 25’th percentile as blush feature.

Particularities of the blush feature-curve. The values of gray levels corresponding to the
target region will vary with the heart beat by a mechanism similar to that described at the seg-
mentation of the complete state (see “Particularities of the 95-percentile feature curve” at page
65). It will reach a minimum during the ventricular systole, i.e., when blood with contrast agent
flows at relatively high speeds and thus the absorption and the contrast of tissue containing blood
mixed with contrast agent is maximum. Because a darkening of the tissue means increased con-
trast, minima of the blush-feature observed during the complete-sate can be correlated with
maxima of the complete-state feature. Such a behavior is shown in Figure 3.36.

The blush feature-curve will also exhibit some variance due to the AGC, or due to other
dark structures which may appear in the ROI at a certain moment and whose gray levels are bel-
low the percentile gray level. It is important to observe that such dark structures will influence
the MB feature only if it appears in regions which previously had gray levels above the per-
centile gray level. Examples of dark structures afflicting the curve are the patch-like noise (see
“Computation of the vessel map” at page 57, in Section 3.2.1) and “passenger” vessel chunks.
Passenger vessel chunks appear shortly in the ROI and then disappear again. Such a situation
occurs, e.g., if the ROI-tracking fails.

Consequently, the blush-information exists already in the blush feature-curve but it is af-
fected by noise.

The blush curve. In contrast to a blush feature-curve, a blush curve should reflect only the
influences of the MB on the ROI. We describe two methods to compute a blush-curve: a “direct”
and a “relative” method. The MBG can then be estimated from blush curves directly.

The “direct” blush curve. The variations of the blush-feature induced by the heart are
short in comparison with the time-length of the blush, thus a blush curve can be interpolated
from the values of the blush feature. This is equivalent to a low-pass filtration of the blush
feature-curve to eliminate the noise. An example is shown in Figure 3.37.
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Figure 3.36: The curves of blush feature (continuous-line) and complete state feature (dashed-
line) over frame index for the complete state of a sequence showing a MBG=3.

The “relative” blush curve. One can imagine an alternative “relative” blush curve. In this
case in each image of the sequence where the MBG should be estimated, a reference gray level
is chosen such that this reference reflects all angiogram influences other than the MB. Such a
reference can be, e.g., a percentile from the gray levels of the vessels, assuming that the vessels
have been segmented (see Chapter 4) and are visible throughout the entire duration of the blush.
Then the relative variation of the blush feature between consecutive images is compared to the
relative variation of the reference gray level by subtracting them.

If the reference gray level increases by, e.g., seven percents from one image to the other and
the blush-feature increases only by three it is clear that the blush region becomes darker, i.e.,
blush appears. By plotting such differences against the frame index another type of blush-curve
is obtained – eventually after interpolation/filtration. This is somewhat equivalent to observing
the first derivative of the blush curve from the “direct” method.

Influences of respiration. Due to the influence of the AGC, the blush feature will also
vary with the observable surface of the diaphragm8 and therefore with the respiration cycle.
Depending on how much of the diaphragm is visible, this variation can be more or less impor-
tant. As the period of respiration is comparable with the time-length of the blush, the estimation
of the MBG will be disturbed by the moving diaphragm, thus we recommend that the patient
halts his breath during the time the sequence of angiograms containing the blush is recorded.

Estimating the MBG

To estimate the MBG, two blush curves are needed from the same patient: one from a healthy
coronary artery and one from an ill coronary artery that has just been treated. The blush curves
need to be then synchronized (see Section 3.2.2) and compared. We propose to compare them
by evaluating the difference area between the two blush curves (see Figure 3.38).

8For those projections where the diaphragm is observable.
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Figure 3.37: Blush feature-curve (dashed-line) and “direct” blush curve (continuous-line).

Particularities of the MBG estimation. First one has to eliminate from each curve the influ-
ences foreign from the myocardial blush. Assuming that such influences can be modeled by a
shift of the blush curve, we propose to subtract for each of the blush curves the the initial values
so that both start with the value zero and then to compute the area between the two of them.

In the example shown in Figure 3.38 (a), the two curves were obtained for the same sequence
of coronary angiograms by linear interpolation from the values of the blush-feature and are
therefore “direct” blush curves. The sequence shows only the beginning of the blush, i.e., it
contains only the complete state of a larger sequence. The sequence exhibits a strong blush,
which receive a MBG of three in an expert evaluation. One curve was obtained by choosing
the ROI over the target blush region and the other one was obtained by choosing the ROI in the
vicinity of a vessel where no blush could be observed, i.e., MBG= 0.

To validate this results, we have computed a third blush curve, also from the same sequence
and by choosing the ROI in another region with no blush. The result is shown in Figure 3.38 (b).
The area between the two curves is here approximately four times less than the area computed
in the first case.

3.4 Conclusions and discussion

PTCA is an intervention commonly used in the treatment of the CAD and of MI. We have
described machine vision-based methods to support the physician during this important inter-
vention.

We show how to construct a coronary angiograms-based moving – and therefore dynamic
– roadmap with superimposed surgical tools for improved navigation during the intervention.
Currently, navigation is done with the help of one, inherently static, complete coronary an-
giogram, the physician needing to mentally register the position of his surgical tools into the
vessels.

We also show how to measure the MBG in an automatic manner. Currently, the MBG is
assessed visually by the physician. An automatic measurement offers the basis for an improved
analysis as it is observer-independent.
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(a) (b)

Figure 3.38: Blush curves for a region where the MB can be observed (continuous line) and for
a region where no blush is present (dashed-line) (a) and blush curves for two regions where no
blush is present (dashed and dash-dotted line respectively) (b). The area between the curves is
shown in light gray.

3.4.1 The dynamic roadmap

The computation of the dynamic roadmap has to be fully automatic, so that is does not need
additional training or work from the part of the medical staff. The computation of the dynamic
roadmap should only-marginally/if-at-all modify the interventional routine. No changes in the
interventional hardware are permitted.

In praxis the computation of the dynamic roadmap would proceed as follows: assuming
that no roadmaps are available for the current projection, the physician would inject a stan-
dard contrast bolus. The moment when the contrast bolus appears in the interventional images
is detected. Starting then, images are recorded for a few heart beats. These images are ana-
lyzed to find complete-state frames. If roadmaps are available, the complete-state frames are
extracted from a data base. Then, they are matched to the live images using the heart and res-
piration phases. Potential sewing wires are first detected and eliminated, then for each image
the balloon markers and the guidewire tip are segmented in the live images. The guidewire-tip
is then registered with the closest vessel from the corresponding roadmap and is displayed in a
contrasted manner together with the balloon markers.

Due to patient variability, the presented methods are unsupervised. To segment the complete-
state and detect the contrast-burst we use a feature related to the vessel-area shown in the ana-
lyzed images. This feature is computed as a high-percentile of the histogram of a vessel map
obtained after enhancing vessel-like structures in the images. As the detection of the contrast
burst has to be done during the intervention, the proposed processing is subject to strict causal-
ity.
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Vessel enhancement and feature extraction

To directly estimate the vessel area in angiograms we need vessel segmentation, which is diffi-
cult especially on images with a small SNR – as it typically happens in the case of angiograms
and particularly in the case of fluoroscopic images. Thus, instead of computing the vessel area,
we use avessel-area-related feature, i.e., a percentile of the histogram of avessel map. A ves-
sel map is obtained afterenhancing the contrast of vessels to the background. As in the vessel
map the vessels appear with high intensities, higher percentiles are used. Depending on the
application, different percentiles are chosen in relation to the total possible vessel-covered area
in the images – for the segmentation of the complete state – or in relation to the are covered
by vessel-like structures (i.e. noise and catheter) – for the signaling of arbitrary contrast agent
injections.

Signaling of arbitrary contrast injections

For signaling of arbitrary contrast-agent injections a threshold is set on the vessel area-related
feature by means of asignificance testwhose null hypothesis is that the frame under consid-
eration shows no vessels. To estimate the null hypothesispdf , the frames recorded in the first
few seconds of the intervention are used, under the assumption that they show no vessels. The
results show that the method is successful in detecting the first frame of a burst of contrast agent.

Segmentation of the complete-state

A successful segmentation of the complete state has to return sufficient images to cover a heart
beat and very few false segmentations. To evaluate our algorithms we have accordingly imposed
bounds on the rates of correct classifications and false positives. Only theECG-enhanced co-
herent MAP-based segmentationmethod fulfills these constraints. The other methods fail to
achieve the desired false positives rate.

The direct way to segment the complete state on a feature curve is by a fixed threshold.
However, such a threshold cannot compensate the variance of the feature curve – especially the
heart beat-induced variance – and does not achieve satisfactory segmentation results having a
too large false positives rate. The MAP-based adaptive threshold can lower the false positives
rate, but not enough to verify the corresponding bound. By explicitly enforcing the coherency
constraint, we can improve the correct classifications rate, while keeping approximately the
same false positives rate and make sure that we select a succession of images and not only
images showing the heart at the same position. To lower the false positives rate, we choose
from among the already selected images which show the heart at different positions during one
or several beats, only those acquired between ventricular systole. We are thus able to achieve
a segmentation result verifying both the bound on the correct classification rate and that on the
false positives rate. Our experiments show that the bound on the false positives rate is the most
difficult to reach, and this is due to the large heart-beat-induced variance of the feature curve.

For a successful analysis we propose animage acquisition protocol. For filled-state segmen-
tation, a sequence of angiograms should be recorded such that there are sufficient complete-state
images, i.e., at least three hart beats, such that a 60% correct classifications rate returns enough
true roadmaps. In the case of contrast burst detection, the first seven to ten seconds should be
burst-free. In both cases it is desirable that the X-ray dosage remains constant and there are no
table nor patient movements – eventually these should be compensated.
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Sequence matching

Image-based methods have the disadvantage of taking a rather long time to compute even if
special search rules are used, like e.g.: after a match is established, the roadmap for the next
interventional image should be searched only among complete-state angiograms acquired after
the one selected for the initial match. In the context of the dynamic roadmap, which should
function in frame rate, faster methods are required. Speed can be increased at the cost of de-
creasing robustness by using downsampled images, or considering only portions of the images.

Vector-based methods are fast and robust, because they include also ECG-information and
the respiration phase is usually computed by detection and tracking of an anatomical organ: the
diaphragm. Image-based similarity measures are used within the vector-based method, to return
respiration-related information, when the diaphragm is not observable.

Therefore, we propose to achieve the matching of contrasted and non-contrasted images by
using asimilarity feature vector, which contains information related to the heart and respiration
phases and fully describes the position of the heart in the analyzed images.

Diaphragm-based respiration phase. We have described how to compute the respiration
phase from images acquired under projections which permit the visualization of the diaphragm.
For this purpose, we need to track the diaphragm in the analyzed sequences. In doing so we
assume that:

1 The diaphragm is present in all analyzed images.

2 Both contrasted and non-contrasted images are acquired with the same projection geom-
etry.

3 Potential table and patient movements are compensated beforehand.

4 The roadmaps sequence contains at least one respiration cycle.

The diaphragm appears in the observed images as a dark large circular pattern, whose position
we describe by a two dimensional vector starting from its edges. To avoid misleading effects
from vessel and shutter edges, we eliminate them by morphological filtering the image and
minimum intensity projection in the edge map respectively. We then find the diaphragm by a
Hough transform for circles. To allow on-line usage of this algorithm, we use prior knowledge,
both anatomical and about the image acquisition system, to speed up the diaphragm tracking
process. Knowing the typical respiration frequency and the frame rate at which images are
acquired, we assume that the diaphragm cannot travel far between consecutive frames. Thus,
we do not analyze the whole Hough accumulator to find the best fit but only a small region of
interest (ROI) around the previous best fit. The whole procedure is initialized with a large ROI
and continues then with a smaller one. In some cases the Hough based tracking may fail. There
are mainly two reasons for this:

1 A sudden move of the diaphragm which causes an accumulator maximum which is out of
the investigated small ROI.

2 The diaphragm edge has no longer a circular pattern.
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To detect such cases we propose to measure the confidence in the Hough result by a dedicated
measure. This measure is computed as the variation coefficient of the pixel gray-level values
along the detected circular approximation of the diaphragm in the corresponding edge map.
The confidence measure is compared to a threshold to decide on the quality of the investigated
Hough-result. This threshold is established for each available sequence of roadmaps and used
for all interventional images of similar projection. If the confidence measure shows a poor fit,
this is refined using active contours.

We cannot make any prior assumptions on the success of the tracking and thus on the evo-
lution confidence measure in a roadmaps sequence and we have no access to a labeled training
set, therefore the threshold is established heuristically.

Due to the Hough-ROI-based diaphragm tracking, our algorithm is fast enough to allow
on-line implementations and the confidence measure ensures the robustness needed in medical
applications. We have tested our algorithm on several appropriate sequences from our data base
and an initial visual inspection has shown good results.

Segmentation of surgical tools

To segment the guidewire tip, we proceed in two steps: enhancement followed by segmentation.
The result of enhancement is aguidewire map. This is computed by the first eigenvalue of the
structure tensor, using an appropriate – i.e. small – neighborhood. Segmentation is done by a
percentile threshold. This threshold however returns not only theguidewire tipbut also – if
visible – theballoon markersand thesewing wires.

Selection of the sewing wires. The sewing wires are selected and then eliminated from the
segmentation of the guidewire tip by using their property of being static in the analyzed se-
quences. They can then be used as source of additional markers for the correction of table and
patient motion.

Selection of the balloon markers. The balloon markers are considered surgical tools. Due to
their small size they will be practically always found in the corresponding vessels and thus they
need no registration. They are segmented by the percentile threshold together with potential
sewing wires and the guidewire tip. They are then selected using their high compactness.

3.4.2 Automatic estimation of the MBG

As in the case of the dynamic roadmap, the analysis of the MB should not modify the inter-
ventional routine and no changes in the interventional hardware are allowed. It requires only
minimal interaction from the part of the physician that has to define the ROI only once for every
analyzed image sequence. Initial reactions from the part of the medical staff indicate that this
does not constitute an acceptance problem [54].

The quantitative analysis of the MB results in the awarding of the MBG. During this analy-
sis, the blush region has to be identified in each image of the input sequence after being defined
by hand by the physician in the first one. We showed how to accomplish this by tracking the
initial ROI. The tracking is robust to the influences of the motion of the heart on the position of
the MB region. We have described also methods to measure the MB in the tracked region by
means of a blush-curve and use these results to compute the MBG.
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A heart-motion compensated ROI

The behavior of the ROI model is controlled by the energy weights, which gives our approach
adaptability and robustness. Heart-motion information is extracted from complete-state images
by tracking the vessel junctions between consecutive images.

Clearly the ROI can be tracked only as long as the coronary vessels are visible. To measure
the MB also during and after washout, the tracking results obtained for contrasted images are
extended to non-contrasted images after matching the corresponding images (see Section 3.2.2).

Junction tracking. Junction tracking is done using a similarity function which takes into ac-
count: the distance between junctions, correlation between their neighborhoods and similarities
in their orientations. Falsely tracked junctions are detected by comparing the corresponding
values of the similarity function with a threshold and accepting only those above it.

ROI modeling. The tracked junctions are then used to fit a physically-motivated model of the
ROI, which evolves under internal and external constrains – expressed as energy terms – to a
position with minimal energy. Currently, we model only the border of the ROI. In a similar
manner it is possible to model the whole ROI surface by sampling it with control points and
linking the them by elastic rods. Also, an additional energy term can be introduced to model
the mass of the ROI. A more adaptable model can be obtained like this.

Analysis of the MB

To measure the blush in each frame, we propose to use the 25’th percentile of the histogram
of the gray-levels from within the ROI as blush feature. The MBG can then be estimated from
blush curves, which are obtained from the blush-feature curves, i.e., the curves of blush feature
over frame index.

The blush curve. A blush curve shows the blush for the investigated artery. We have de-
scribed two types of blush curves, a “direct” and a “relative” one.

At a first glance, the “relative” blush curve is more robust as it is designed to be independent
to external influences to the analyzed angiogram. Such influences would affect both the blush-
feature and the reference and are eliminated by subtraction. Further experiments are needed to
see which modality is better suited for the estimation of the MBG and to validate these initial
results.

We believe that the “relative” curve shows a better potential.

The MBG. The MB is artery dependent. Therefore, to assess the MBG for a patient, one
has to compare the blush measured for the investigated ill artery with the blush computed for a
reference healthy artery of the same patient. The MBG can be estimated as the difference area
between two blush curves, one for the ill and one for the healthy artery respectively.
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Chapter 4

Vessel segmentation in 2D-projection
images

Vessel segmentation is a key component of many modern, computer-based cardiovascular im-
age analysis tools. Such tools are used in applications, like e.g., diagnosis and intervention
planning for various vascular diseases [121], diagnosis of the diabetic retinopathy [100], [43]
[44], measuring of angiogenesis [52], [51], [151], registration of images [121], [176], densito-
metric measurements of the blood-flow [168] or blood-flow analysis. Yet again, in many such
tools quantification of the target vasculature plays a pivotal role.

We describe a framework for segmenting vessels in 2D-projection images (Section 4.1).
This framework includes an enhancement step (Section 4.2), followed by classification (Sec-
tion 4.3). We also discuss two applications to support our approach (Sections 4.4 and 4.5).

4.1 Introduction

Vessel images are acquired by a multitude of imaging techniques, we concentrate here mainly
on imaging methods which yield 2D-projection images (Section 4.1.1) and approach the prob-
lem of segmentation from a pattern recognition perspective (Section 4.1.2) to obtain a vessel
segmentation framework (Section 4.1.3).

4.1.1 Vascular imaging methods

Currently there are several imaging methods available for vascular investigation. 3D imag-
ing techniques like computed tomography (CT) and magnetic resonance imaging (MRI) return
high-quality data. However, they are rather costly with respect to both money and time and
the necessary hardware is bulky. They are also unaccessible to some categories of patients,
e.g., patients with implants, like mechanical artificial heart valves, can not go through an MRI
exam. 2D-projection imaging techniques, like X-ray angiography and retinal photography, are
in many applications the methods of choice as they return results of sufficient quality without
the overhead required by 3D imaging [44], [82]. Currently, they also have a better performance
with respect to the rate of data acquisition, although this may change in the near future [103]. In
2D-projection imaging, only one image showing the target vasculature is available for analysis.
There are also 2D+t imaging techniques, where a set of consecutive 2D-projection images is
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available. For example, several X-ray projection images are acquired to record a short injection
of contrast agent. This can be then used, among other, for blood-flow measurements, which
are needed for improved diagnosis of the vascular disease. Currently, some research is done to
apply multispectral imaging methods for vascular observation [41]. Finally, there is also ultra-
sound imaging, where a probe is introduced through the vessels to the investigation site similar
to the way a catheter is introduced in PTCA. The focus of this chapter is on vessel segmentation
from 2D-projection and 2D+t imaging modalities.

4.1.2 Vessel segmentation as a pattern recognition problem

The main vessel characteristic, which is instrumental in separating the vessels from their sur-
roundings, is the contrast. The methods discussed here use primarily the contrast of vessels to
achieve a segmentation.

We differentiate between pattern recognition-based vessel segmentation methods and other
methods. When applying a pattern recognition-based method, each pixel is represented by a
point into a feature space of one or several dimensions. This feature space is divided by a de-
cision surface into two regions, one corresponding to the vessels and one to the background.
Based on the positioning of the pixel feature vector with respect to the decision surface, it
is assigned to one of the two classes, i.e., a binary classification is performed. Sometimes,
neighborhood-based information is also used, e.g., by including it in the pixel feature set. In
the other methods, certain connections among vessel pixels are implicitly used to decide for
one pixel, or for a collection of pixels if they belong to the vessel class. These include track-
ing methods, where vessel centerlines are first segmented, e.g., by following valley courses
[77], front-propagation methods where, e.g., the vessel region is segmented from inside-out
by evolving a delineating curve to the vessel-borders [136], [171], as well as methods where
explicit vessel models are used [122], [119].

As opposed to pattern recognition-based methods, the other methods have usually the disad-
vantages of very long computation times and comparatively poor results. The tracking methods
need elaborated initialization steps and they can not handle branchings properly. The front-
propagation methods need good vessel borders to avoid leakage, a condition which is very hard
to fulfill in particular for the small weakly contrasted vessels. Vessel-model methods are inher-
ently limited to specific vasculature or to the main vessels. Consequently, we concentrate here
on pattern recognition-based methods.

Pattern recognition-based methods can besupervisedor unsupervised. Most unsupervised
methods are data-clustering algorithms [112]. In this case the input consists of a single image
where each pixel represents a data-point. The output is a partition of the image-pixels into
two classes, i.e., vessels and background. Conversely, a supervised method needs a training
set of vessel images where in each image both vessel and background pixels have been labeled
previously.

Unsupervised segmentation

Here we differentiate between anunsupervised a prioriclassification method and anunsuper-
vised learningclassification method. In neither case is there any labeled set of examples avail-
able to determine the parameters of the respective method. In the former case, the parameters
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are imposed a priori by the user and in the latter case, the parameters are learned from unlabeled
data.

Usually, for vessel segmentation an unsupervised approach is used, as there is no proper set
of labeled examples available. There areseveral reasonsfor this, the major one being that in
most applications adifferent training setwould be needed not only for each type of vasculature,
but indeed for each patient.

Another reason is the typicalbad qualityof such a training set. Many errors within the
training set are due to the tiredness of the human specialist labeling the data, which at the fourth
angiogram, after at least two hours of work, does not maintain the same level of attention as at
the beginning and omits some vessel pixels or includes in the segmentation some background
pixels. The false omissions affect usually the weakly contrasted small vessels. The false in-
clusions happen usually at the borders of vessels. Errors can also appear as a consequence of
the unfounded expectations of the human operator with respect to the position and form of the
vessel tree.

Yet another reason is theinsufficient number of componentsof the training set. Due to the
complications related to the labeling process, one can realistically expect training sets of 20 to
40 labeled images for supervised algorithms. Although this seems like a lot of pixel-examples,
– assuming a resolution of, e.g., 512× 512 pixels for an analyzed image – considering alone
the variation induced by different types of pathologies, it appears clear that 40 images are not
enough to build a training set to cover the entire variability of the vessel data. Also, it is possible
that the parameters of the image acquisition system change between two recording-sessions.
This represents an additional source of variability which needs to be covered in the training set.

Supervised segmentation

There are some applications, like e.g., segmentation of retinal images, where – under consider-
ation of the points already mentioned – supervised segmentation methods can be successfully
used. Usually, supervised methods are preferred over unsupervised ones if: (i) the number of
images which need to be segmented grows large, (ii) all of them show the vasculature of the
same organ and (iii) they are acquired with a similar setup of the imaging system. Under such
circumstances, we believe that it makes sense to build a training set.

Segmentation of the retinal vasculature in images of the ocular fundus – i.e. retina photogra-
phies – helps physicians in the field to infer on retinal, ophthalmic and even systemic diseases
like diabetes, hypertension and atherosclerosis. A central feature in such diagnosis is angiogen-
esis, therefore one needs to measure the area of the retinal vasculature and compare it against
measurements taken at a previous time. Assuming that the area of the vasculature is measured
from a segmentation result, then a fast, accurate and automated vessel-segmentation algorithm
is needed. Such an approach will allow then ophthalmologists to screen larger populations for
abnormalities and achieve thus an improved health care [181], [101], [129].

Segmentation of the retinal vasculature can be also instrumental in biometric recognition
[113]. According to reference [99], the pattern of the retinal vessel-tree is stable and unique in
each individual. A vessel segmentation result can be used to add the vessel length and surface
to the biometric feature-set but also to capture the constellation of branching points which can
be used to compute additional biometric features. It remains to be investigated how does an-
giogenesis in the case of people suffering from diabetic retinopathy influence the permanence
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characteristic1 of such a biometric system.

4.1.3 A framework for vessel segmentation

To this date there is no universal solution to the problem of vessel segmentation in 2D-projection
images – apart from manual segmentation which is a tedious, prone to errors endeavor and con-
stitutes a motivation for the development of computer-based supportive methods2. Being con-
vinced that an algorithmic universal solution for this problem does not exist, we would like to
introduce a set of rules – i.e. a framework – to guide a practitioner while devising the best algo-
rithm for a special vessel-segmentation problem. We describe then practical implementations
of these rules. Our approach is supported by examples spanning different projection imaging
techniques and types of vasculature.

We believe that vessel segmentation should proceed in two steps: first vessel enhancement
and then segmentation. Enhancement should modify and improve the description of vessels
such that they are afterwards easier to segment. The enhancement of vessel structures in 2D-
projection images is discussed in Section 4.2. During segmentation, one should make use of
all available information about vessels, to decide for each pixel of the analyzed image if it is a
vessel pixel or not.

Segmentation methods which return a result without any user help are called automatic
[53], [44], [33], [101], [39], [117]. Automatic methods are discussed in Section 4.3. For some
applications, better results can be achieved by semi-automatic methods such that the user is
allowed to interact with the algorithm [170], [52], [51]. Such an application is described in
Section 4.4. Finally vessel segmentation for 2D+t imaging methods is discussed in Section 4.5.

During enhancement, we eliminate or reduce also the influences of the imaging method,
which permits in turn to approach segmentation in a more general manner. We introduce hys-
teresis segmentation as such a general approach (Section 4.3.2).

The segmentation methods presented here have as ultimate goal the analysis of vasculature
based on measurements of, e.g., vessel length and surface, or on the description of the vascula-
ture including, e.g., the number of vessel branches and branching points.

Usually, gray-level images are sufficient to conduct such an analysis and additional color
information is useless. Most of the vascular 2D-projection and 2D+t imaging techniques return
gray-level images and the algorithms described here use only such images.

4.2 Vessel enhancement

Vessel enhancement should accomplish two tasks. First, it needs to act as a buffer between the
raw image data and the segmentation algorithm, such that similar segmentation algorithms can
be applied on different data. Second, it has to improve the separability [87] between vessel and
background pixels by decreasing the intra-class variance – i.e. a more homogeneous gray-level
representation for background and vessels – and increasing the inter-class variance – i.e. better
contrast.

To achieve such purposes, we proceed in two steps: (i) first we make use of prior informa-
tion about the imaging system and about vessels to attenuate the background and decouple the

1Permanence is related to the invariance of the biometric feature-set over time [113].
2Manual segmentation of an angiogram takes at least half an hour.
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(a) (b) (c)

Figure 4.1: Examples of vessel images: a coronary angiogram (a), the transplant region of a
microangiogram (b) and a retina fundus photography (c).

segmentation problem from the imaging system (see Section 4.2.1) and (ii) we use mainly prior
information about vessels to improve their contrast and the homogeneity of their gray-level rep-
resentation (see Section 4.2.2). The result obtained after any of these two enhancement steps is
called here avessel map.

For an optimal description of vessels and background, several vessel maps can be combined
to obtain multidimensional pixel feature-vectors, as described in Section 4.2.3. In Section 4.2.4
we discuss the results of several experiments conducted with the purpose of validating the vessel
enhancement methods described here. Section 4.2.5 contains concluding remarks.

4.2.1 Background attenuation

For vessel segmentation, an ideal background should be homogeneous, such that its correspond-
ing pixel-class has a small variance. Therefore, all non-vessel image items should be attenuated
or eliminated.

Depending on the application, vessels of different diameters are imaged against different
backgrounds, with different resolutions and they can be lighter or darker than the background.
This is shown in Figure 4.1. The coronary angiogram in Figure 4.1 (a), has a rather heteroge-
neous background showing besides vessels different items like the dark circular diaphragm in
the lower part, or the bright lung-tissue in the upper right part. The background of the skin-
transplant microangiogram in Figure 4.1 (b) is also heterogeneous. One can clearly see the
circular transplanted skin-flap and its irregular borders. There are also variations within the flap
as some regions are better irrigated by contrast-agent-carrying blood than others. The retina
photography in Figure 4.1 (c) shows besides vessels, the fovea with its high concentration of
cones and the blind spot where the optical nerve leaves the retina.

By convention we impose thatvessels are darker than the background[9], thus images
where the vessels appear lighter should first be rescaled. Color images, like e.g., fundus photog-
raphy are first transformed to gray-level images, usually by ignoring the blue and red channels
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(a) (b)

Figure 4.2: Examples of convention-conform vessel images, with dark vessels on a lighter
background.

and using only the green one, which contains the most contrast3. Suited input images are shown
in Figure 4.2.

For 2D+t imaging, background attenuation is simply the subtraction of the mask image from
the contrast images. If necessary, the two images need to be first registered [31] to avoid the
appearance of artefacts.

Usually, background structures are larger than vessels, thus the background will be atten-
uated by ahigh-pass filteringapproach. We describe two methods to implement such an ap-
proach: (i) bylinear shift-invariant processing[90] and (ii) by nonlinearmorphological pro-
cessing[67], [90].

LSI processing

Thehigh-pass filteris a linear shift-invariant system, which is designed in the frequency domain.
Special care has to be taken to adapt the filter to theimaging model of the input image, which
in this case can beadditive or multiplicative.

LSI high-pass filter for background attenuation. A LSI high-pass filter can be implemented
by a kernel, or by the difference between the original image and a low-pass filtered version
[90]. For vessel enhancement, the pass frequency of the filter has to be chosen in relation to the
diameter of the largest vessel. Theoretically, this frequency can be precisely computed, if one
knows the vessel diameter. Practically – assuming an appropriate ground truth is available – it
is better to choose it by analyzing some quality measure of the filtering result for an interval
of frequencies. As a heuristic rule, if the high-pass is implemented as the difference between
the original image and a low pass filtering result obtained with a Gaussian-kernel, then the size
S of this kernel should be at least two times larger than the diameter of the largest vessel. Its
standard deviation should beS

5
[188]. The result of a high-pass filter is shown in Figure 4.3.

3Assuming images acquired with visible light.
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(a) (b)

Figure 4.3: Vessel image (a), result of background attenuation by high-pass filtering (b).

The homomorphic filter. Suppressing the background and selecting the vessels by high-pass
filtering takes into consideration an additive composition of objects and background. Such a
composition should be expected in the case of an additive imaging model, which is based only
on the reflective properties of the imaged tissue. This approximation is sufficient for vessel
images acquired with light, under uniform illumination conditions, but is not correct for X-ray
vessel images. By the absorption integral (see Equation 2.9) such images are better described by
a multiplicative imaging model. Under such circumstances it is to be expected that the compo-
sition of objects and background is also multiplicative. Thus, for X-ray images, the background
should be attenuated by a homomorphic filter [153], [90]. In a fist step, the logarithm of the im-
age is computed, thus obtaining again an additive combination of background and object. Then,
the background is eliminated by high-pass filtering and finally the contrast in the result image
is restored by exponentiation. The result of such a homomorphic filter is shown in Figure 4.4.

Morphological processing

The background can be suppressed also by morphological processing. We propose to use the
Bothat transformfor this purpose. The Bothat transform assumes an additive imaging model
and thereforespecial carehas to be taken inthe case of X-ray angiograms.

The Bothat transform for background attenuation. Taking into consideration the size of
the vessels and the fact that they are darker than the background, dilating the original image
with a structuring element slightly larger than the largest vessel diameter will suppress the dark
vessels but it will also affect some dark structures larger than the vessels. Such structures
are then “repaired” by a subsequent erosion step. The final result of the closing operation
will show only the background. A vessel-only image can be then obtained by subtracting the
original image from the image obtained after closing. This chain of operations is called a Bothat
transform or an inverted Tophat transform [90] (see also Appendix A.1).

The main parameter of the Bothat transform is the size and form of the structuring element.
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(a) (b)

Figure 4.4: Vessel image (a), result of background attenuation by homomorphic filtering (b).

The size of the structuring element has to be chosen such that is slightly larger than the diameter
of the largest vessel. Again, assuming an appropriate ground truth is available, it can be chosen
as the value optimizing a measure of the quality of the result. The form of the structuring
element has to be isotropic such that vessels are selected irrespective of their orientation. Thus
the optimal structuring element is a disk. Sometimes, a square approximation of the disk is used
for efficient implementations. A result of the Bothat transform is shown in Figure 4.5.

Adaptation to a multiplicative imaging model. Similar to the LSI high-pass filtering, the
Bothat transform assumes an additive imaging model. To accommodate a multiplicative model,
a logarithmation should be effectuated before the transformation4.

Such an approach is also instrumental in reducing the intra-class variance. Before loga-
rithmation, the intensity representation of a vessel of a given size depends not only on its own
absorption, but varies with the absorption of different background structures situated beneath
the vessel. Background equalization after logarithmation removes this influence on the vessel
representation so that only the variability of the vessel thickness remains.

In a last processing step, the logarithmation is reversed by exponentiation. Such a processing
result is shown in Figure 4.6.

4.2.2 Vessel augmentation

There are two objectives to be followed while increasing the separability of the vessel pixel-
class, i.e., improve the contrast of vessels to non-vessel structures and reduce the vessel vari-
ance.

Improving the vessel contrast. Clearly, the attenuation of background, which is primarily
based on the vessel size, returns a result including many non-vessel structures of similar size

4Alternatively, one could replace subtraction by division.
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(a) (b)

Figure 4.5: Vessel image (a), result of background attenuation by morphological processing (b).

(a) (b)

Figure 4.6: Vessel image (a), result of background attenuation by morphological processing
adapted to a multiplicative imaging model (b).
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and sometimes even artefacts from larger structures. Also, the background attenuation does not
affect the usual high-pass image noise, like e.g., the sensor noise (see Section 2.2.4). Thus,
vessels need first to beselectedfrom among other items in the background-attenuated images,
to increase then the inter-class variance in a targeted manner.

Reducing the vessel variance. The relation between contrast and vessel size.Vessel con-
trast in 2D-projection images is a consequence of the interactions between the primary infor-
mation carrier – be it light or X-ray – and compounds found in the blood, either natural ones or
ones that have been mixed with it on purpose. Assuming that such compounds are uniformly
distributed in blood, the larger the vessel size – i.e. the more blood passes through – the bet-
ter the contrast. Thus, smaller vessels have a poorer contrast than larger ones and hence the
variance of the vessel pixel-class is rather large. We propose toreduce this vessel intra-class
variancein amultiscale approachto vessel augmentation.

Vessel selection

Assuming that after attenuating the background, artefactslarger than vessels andhigh-frequency
noise are still present, one can select the vessels by their size, e.g., by a LSIband-pass filter.

Until now we have used extensively the vessel size both to attenuate the background and
select the vessels. However, the vessels have also other properties, like e.g., their tubular form,
which causes them to appear as ridges in angiograms. Therefore, the vessels can be also ob-
tained at the output of a ridge-detector. Such a detector can be obtained using theHessian
matrix.

Band-pass filter. In the case of a real band-pass filter, the transition between the stop and the
pass-band in the range of lower frequencies is not infinitely abrupt and thus some low frequen-
cies are rather attenuated than eliminated. This characteristic is instrumental in reducing the
variance of the vessel pixel-class, as low frequency and high contrast large vessels are more
attenuated, while higher frequency and small contrast small vessels are less or even not attenu-
ated.

A band-pass filter can be defined as a combination of two low-pass filters whose transfer
functions are subtracted one from the other. These define the low and high cutoff bands respec-
tively. The impulse response can then be computed by inverse Fourier transform.

Practical implementations of a band-pass filter include, e.g., the Difference of Gaussians
(DoG) and the Laplacian of Gaussian (LoG) filters. Such filters approximate also the second
derivative of the image function and have therefore a strong response over ridge-like structures
such as the vessels [108].

To obtain the band-pass vessel map we use the DoG, because it is easy to parameterize and
it is more isotropic – i.e. direction insensible – than the LoG [108]. To implement the DoG, one
needs to define only the standard deviations of the two Gaussian filtering-kernels. To achieve
the desired improvement of the inter-class variance the result is multiplied by a weight. The
parameters of the optimal filter can be chosen in a target-oriented manner, with the help of
some training data for which the ground truth is known. Usually, they correlate with the vessel-
size, i.e., the size of one filter should be larger than the largest vessel-diameter, while the size
of the other filter should be smaller than the smallest vessel-diameter. A result obtained when
applying the DoG on a vessel image is shown in Figure 4.7 (b).
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λ1 λ2

L L noise, no ridge
H(+) L dark ridge
H(-) L bright ridge
H(+) H(+) dark blob
H(-) H(-) bright blob

Table 4.1: Classification of eigenvalues. H/L high/low modulus and (+)/(-) positive/negative

Hessian-based analysis. Ridges are important image features and ridge enhancement and
detection algorithms have been extensively studied in low-level image processing [107].

A ridge contains points of maximal curvature and thus they can be detected at extrema of
the second-order derivative. The second order structure of an image can be investigated at each
pixel by means of the Hessian matrix:

H =
[
fxx fxy

fyx fyy

]
(4.1)

This is a symmetric matrix which has thus orthogonal eigenvectors and real eigenvalues. The
size of the eigenvalues is related to the amplitude of the variation along the eigenvectors. The
eigenvector corresponding to the largest eigenvalue is oriented along the direction of maximal
variation in a neighborhood of an investigated pixel. The sign of the eigenvalues differentiates
between positive and negative second-order derivatives. An analysis of the eigenvalues of the
Hessian matrix gives a rich insight in the second-order structure of the image [17] as shown in
Table 4.1.

Consequently, the first eigenvalueλ1 of the Hessian matrix can be used as ridge – i.e. vessel
– detector, while the second eigenvalueλ2 can be used to differentiate between blobs and ridges.
Alternative methods for vessel enhancement include steerable filters [85], and other equivalent
matched filter approaches [84], [159], but it can be demonstrated that ridge-estimation by eigen-
decomposition of the Hessian matrix can be interpreted in terms of steerable filters [107].

In the background-suppressed images vessels are dark ridges. Therefore, we propose to
construct a vessel map by subtracting at each pixel the second eigenvalue of the Hessian from
the first eigenvalue. Clearly vessels will appear brighter than other structures in this vessel map.
To be conform with our convention the vessel map is rescaled such that vessels are darker than
background (see Figure 4.7 (c)).

It can be shown that an improved ridge detector can be obtained at only minimal additional
computational complexity from the eigen-analysis of a modified Hessian matrix [107]:

Hm = H
1

3
(P T HP ) (4.2)

with

P =
[

0 1
−1 0

]
(4.3)

In the practical implementation of a Hessian-based vessel map we useHm. The derivative
kernels are optimized, they are computed as the derivative of a Gaussian low-pass filtering
kernel to avoid noise-boosting. The size of the derivatives and that of the Gaussian kernel
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(a) (b) (c)

Figure 4.7: Original vessel image (a), result of band-pass-based enhancement (b) and of
Hessian-based-enhancement (c). The Bothat eliminated during background attenuation that
part of the vessel where contrast-spill was observable.

represent the parameters of this vessel map. Similar to the band-pass vessel map, they can be
adapted to the analyzed data in a calibration step and they correlate with the vessel size. An
example is shown in Figure 4.7 (c).

Reduction of the variance of the vessel-class. Extension to multiple scales

A multiscale approach to vessel enhancement is motivated by the variance of the contrast with
the vessel-size. It offers individual access to each category of vessels – i.e. small-, mid- and
large-size – such that they can be then enhanced independently by multiplication with differ-
ent weights, reducing thus their original contrast-difference and increasing the overall vessel
contrast.

We show how to compute a vessel map using theLaplacian pyramid, which can be seen
as a multiscale extension of the band-pass filter vessel map. We also show how to extend the
Hessian-based analysis atmultiple scalesand how to compute then a vessel map.

Laplacian pyramid. A band-pass decomposition of the image can be obtained by represent-
ing the image in a differential scale-space [108], where the change of the image with scale is
emphasized in the difference between consecutive scales. In practice one encounters mainly
discrete implementations of a differential scale-space, which use, e.g., a DoG filter bank. A
wavelet transform could be also used [39] but it can be shown that the results achieved are
comparable or even worse [3], [4], [66].

An image representation based on DoG has the disadvantage of large data-size and computa-
tional cost, considering that the latter increases with the size of the filtering kernels. Therefore,
it is more efficient to use a Laplacian pyramid [30]. The Laplacian pyramid however has two
small disadvantages: (i) it decomposes the image in octaves – as it is a discrete version of a dif-
ferential scale-space – and it may happen that such a decomposition is not optimal to select each
category of vessels, although usually this is a very good approximation and (ii) downsampling



4. VESSEL SEGMENTATION IN 2D-PROJECTION IMAGES 125

usually introduces alias, which can not be ignored if the subbands are processed to increase
the contrast of vessels. Alias needs thus to be kept very low by an appropriate design of the
decomposition and (implicitly) reconstruction filters.

For vessel enhancement we use a Laplacian pyramid with five levels, to model: noise, small,
mid and large vessels and the rest-background. For enhancement, we multiply each subband
by a weight, before reconstructing the image. To both increase contrast and achieve a reduction
of the variance of the vessel class, the weights should be chosen according to a positive Gauss-
like function of the subband index (see “The relation between contrast and vessel size”, at page
122). Therefore, the noise subband will have a small, subunitary weight, the small vessels a
large supraunitary weight, the mid vessels a smaller supraunitary weight, the large vessels a
weight only slightly larger than the unit and the rest-background a weight very close to zero.
The rest-background receives a weight larger than zero as this enhancement step is usually
applied on the background-suppressed images and thus the rest-background may still contain
some vessel information. The parameters of the pyramid, i.e., the frequency characteristics
of the decomposition/reconstruction filters5 and the enhancement weights can again be chosen
with the help of some hand-labeled test data or using some labeled training data, if this is
available. A processing result is shown in Figure 4.8 (b).

Hessian multiscale decomposition. The computation of the Hessian matrix includes sev-
eral filtering operations, like e.g., high-pass filtering to compute the derivatives and low-pass
filtering to avoid noise boosting. Clearly the scale of these filters defines the size of the ridges–
vessels to which the Hessian responds. Scale mismatch results in information loss in the en-
hancement result.

Working at a single scale, the size of the filters should be chosen in agreement with the
diameter of the largest vessel. However, considering the typical size-induced variation of the
vessels’ contrast, a multiscale approach to Hessian eigen-analysis is better suited for vessel
enhancement [83].

To obtain a scale-space representation of the image, a Gaussian pyramid [108] can be used
with three levels to model each of the three main vessel categories, i.e., large, mid and small.
Now – due to downsampling – one can select vessels at each level by Hessian eigen-analysis
using filters of similar size, which is good practice, considering the goal of reducing the inter-
nal variance of the vessel pixel-class. At the same time, the successive low-pass filters, used
to compute the pyramid-levels, have as secondary effect a reduction of the contrast of larger
vessels. This contributes additionally to the reduction of the variance of the vessel class.

To obtain the vessel map we proceed the following way: first the results of the eigen-analysis
at different pyramid levels are interpolated back to the original resolution and weighted such
that this compensates for the size-dependent contrast-loss and therefore reduce the variance
of vessels. Finally the results are combined across scales by always choosing the maximum
gray-level value at each pixel position:

V (i, j) = max
k

(wk · vk(i, j)) (4.4)

with V the vessel map at pixel(i, j), k the index of the levels of the pyramid andwk the weight
of the pyramid levelvk. The weightswk should be chosen in agreement with the vessel-size

5The ’a’ parameter [30] controls the amount of low-pass filtering in the subbands, the higher ’a’ the closer to a
band-pass rather than a low-pass are the filters.
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(a) (b) (c)

Figure 4.8: Original vessel image (a), enhancement using the Laplacian-pyramid (b) and en-
hancement using the Hessian multiscale decomposition (c).

such that small vessels are stronger enhanced than larger ones.
The optimal parameters for this enhancement method can also be computed in a calibration-

step using, e.g., hand-labeled data. Such an enhancement result is shown in Figure 4.8 (c).

4.2.3 Pixel-based multidimensional description of vessel and background

A multidimensional description of vessels and background is obtained by combining the results
of several different vessel enhancement methods. For each pixel we build a feature vector by
ordering its scalar features in each vessel map into a vector [52], [51].

Within each vessel map we seek to increase the separability between the background and
vessel pixel-classes. Our strategy is in this case to combine the results of several different
enhancement methods, in the hope that together they constitute a more separable representation
of vessels and background than any of them taken alone. We believe that a multidimensional
pixel feature-space is better than a single vessel map, as it includes more information about
vessel, acquired from different perspectives. A schematic representation of the way a pixel-
based feature vector space is computed is shown in Figure 4.9.

Which vessel maps should be used to compute the multidimensional pixel feature-vector,
can be decided with the help of a feature selection procedure [160], [80]. In Section 4.3.2 we
describe also a feature selection procedures dedicated to computing the optimal set of such
pixel-features for a special type of classifier: the hysteresis classifier.

4.2.4 Vessel enhancement: Experiments and discussion

To assess the value of the vessel enhancement methods introduced here, hand-labeled coronary
angiograms, skin-transplant microangiograms and retina photographies were used to compute
several measures of separability on each vessel map. These measures are: theJa

1 , J b
1 andJ c

1

criteria (see Appendix A.6) as well as the area under the ROC of a percentile threshold (AROC).
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Figure 4.9: Schematic representation of the method to achieve a pixel-based multidimensional
description of vessel and background.

It is considered that the AROC is a better indicator of the quality of a vessel map, with
respect to the segmentation results that can be achieved there. This is mainly due to the target-
oriented manner by which this criterion is computed, i.e., by observing how the most simple
segmentation procedure would behave. TheJ1 criterion correlates with the AROC only under
the assumption of Gaussian distributed classes. For class-conditional distributions of different
skew and kurtosis the results obtained by theJ1 criterion, analyzed together with that of the
AROC, can be seen as an indication of how close are they to the Gaussian hypothesis. Such
information can be useful in choosing a specific classification algorithm. TheJa

1 criterion con-
siders both the inter- and the intra-class variances, i.e., both contrast and homogeneity within
each class. TheJ b

1 criterion is more related to the contrast and theJ c
1 criterion to the homogene-

ity of the classes.
For experimenting we have used 11 coronary angiograms and 11 skin-transplant microan-

giograms, from our own data-base [43], [52] as well as 20 retina images from a publicly avail-
able data-base [181]. The results we have computed are mean values over all images of the
corresponding data-set.

In this section we discuss only the background attenuation and the vessel augmentation
methods, the pixel-based multidimensional description of vessel and background has been
tested in Section 4.3.3, together with the hysteresis classifier.

Background attenuation

Results. In Table 4.2 we show the separability measured on a vessel map obtained after back-
ground attenuation with: the High-Pass filter (HP), the homomorphic filter (log-HP), the Bothat
transform (B) and the logarithmic Bothat transform (log-B). For comparison we have measured
also the separability in the original images for each analyzed category. The results are mean
values over all components of each image set.

Discussion. Suppressing the background by the Bothat transform returns better results than if
a high-pass is used. The main reason for this is that the practical implementation of the high-
pass can eliminate only the zero-frequency component, while all other frequencies in the stop
band are more or less attenuated and produce disturbing artefacts. In other words, the Bothat
transform – seen as a high-pass filtering operation – can achieve a steeper transition between
the cut and the pass bands. Another disadvantage of the high-pass filtering is that the relation
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Skin Coronary Retina
Ja

1 J b
1 J c

1 AROC Ja
1 J b

1 J c
1 AROC Ja

1 J b
1 J c

1 AROC
HP 0.18 0.15 0.85 76.86 0.10 0.09 0.91 82.34 0.40 0.28 0.72 87.29

log-HP 0.17 0.14 0.86 77.21 0.09 0.09 0.91 82.33 0.39 0.28 0.72 87.08
B 0.33 0.23 0.76 81.75 0.27 0.20 0.80 87.06 1.03 0.50 0.50 94.88

log-B 0.39 0.28 0.72 83.96 0.15 0.13 0.87 87.77 1.15 0.53 0.47 88.98
Org. 0.15 0.12 0.88 80.21 0.002 0.002 0.10 66.55 0.05 0.05 0.95 59.98

Table 4.2: Separability after background attenuation, measured as mean value on different im-
age sets by different methods.

Skin Coronary Retina
Ja

1 J b
1 J c

1 AROC Ja
1 J b

1 J c
1 AROC Ja

1 J b
1 J c

1 AROC
BP 0.28 0.22 0.78 84.23 0.16 0.13 0.87 84.79 0.51 0.34 0.66 90.31

LapP 0.51 0.33 0.67 91.32 0.33 0.24 0.76 92.25 0.97 0.49 0.51 95.60
Hss 0.32 0.23 0.77 84.71 0.04 0.04 0.96 88.23 0.88 0.47 0.54 94.07
Hms 0.46 0.31 0.69 90.11 0.44 0.30 0.70 90.46 0.86 0.46 0.54 95.01

(log-)B 0.39 0.28 0.72 83.96 0.27 0.20 0.80 87.77 1.03 0.50 0.50 94.88

Table 4.3: Separability after vessel augmentation, measured as mean value on different image
sets by different methods.

between the vessel size and the pass-frequency is rather difficult to grasp.

Taking into consideration a multiplicative imaging model and working with the logarithm,
returns better results for the skin-transplant microangiograms. However, only limited improve-
ments can be seen for the coronary angiograms. For retina images, which are acquired with
light, a logarithm operation is not necessary.

As the J1 criteria and the AROC correlate for skin transplant microangiograms, it can
be concluded that the two class-conditionalpdfs obtained after background suppression are
Gaussian-like. This is also the case for coronary angiograms, but not for retina images.

Vessel augmentation

Results. Table 4.3 contains the separability measured on a vessel map obtained after vessel
augmentation by the methods that have been proposed: band-pass filtering (BP), Laplacian
pyramid (LapP), Hessian single-scale (Hss) and Hessian multi-scale (Hms). The parameters for
each method and each data set were optimized using hand-labeled examples. For comparison
we have computed also the separability on the background attenuation result that was used as in-
put ((log-)B). For the microangiograms this was the log-Bothat and for the coronary angiograms
and for the retina images it was the Bothat. The results are mean values over all components of
each image set. We judge the results mainly by the AROC criterion and give also theJ1 criteria,
to investigate the Gaussianity of class conditionalpdfsin the computed vessel maps.
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(a) (b)

Figure 4.10: Input noise image (a) and result of Heesian single-scale vessel enhancement (b).
Observe the thin vessel-like artefacts in the vessel map.

Discussion. The results clearly show that the multiscale methods are better than the single-
scale ones. They achieve both a contrast enhancement – i.e. increasing the inter-class variance –
and an increase in the homogeneity of the vessel representation – i.e. decreasing the intra-class
variance.

It appears also that the vessel map obtained by decomposition and enhancement on a Lapla-
cian pyramid, is better than that obtained by the multiscale analysis of the eigenvalues of the
Hessian matrix. However the differences are quite minor and could be also due to the imperfect
ground truth.

The band-pass vessel map achieves an improvement over the result of the background atten-
uation step only for skin microangiograms. The Hessian single-scale does not further improve
the separability measured after background attenuation for retina images. This shows again
that single-scale enhancement methods are only of limited use. However, such enhancement
methods may prove useful if used in multidimensional pixel feature-spaces (see Section 4.4).

One can dichotomize the methods proposed here in LSI-methods, including the band-pass
filtering and the decomposition on the Laplacian-pyramid and Hessian methods, including the
single-scale and the multiscale approach. Generally the Hessian approach returns smoother
more connected vessels than the LSI approach, but it also has the potential of returning many
false positives, as it has the characteristic of “gathering” vessels even where none are present.
This is illustrated in Figure 4.10. The image in Figure 4.10 (b) is the Hessian single-scale vessel
map obtained for the input shown in Figure 4.10 (a), containing only uniformly distributed
noise. We believe that choosing between LSI- and Hessian-methods should be done in an
application-dependent way.

4.2.5 Vessel enhancement: Conclusions

The purpose of vessel enhancement is to obtain a vessel map by transforming the original vessel-
image such that better segmentation results are achieved. This implies improving vessel contrast
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and the homogeneity of the gray-level representation of vessels. To compute the vessel map, we
make use of prior knowledge about the form, contrast and – in connection with the parameters of
the imaging system – size of the vessels, to improve the separability of vessels and background.
During enhancement, the vessels are brought to a “standardized form” – i.e. they are dark,
surrounded by a brighter and homogeneous background – thus allowing the same segmentation
algorithm to be also used for images acquired by different imaging modalities.

The vessel map. To obtain a separable representation of vessels and background, we seek
to increase the inter-class variance and to decrease the intra-class variance, i.e., increase the
contrast between vessels and background and improve the homogeneity of the gray-level repre-
sentation of vessels and background. Enhancement proceeds in two steps:

• In the first step, the background is attenuated thus improving the homogeneity of its
gray-level representation. The best way to attenuate the background is by using the Bothat
transform. Depending mainly on the imaging system, a logarithmation may be necessary
to ensure an additive imaging model.

• In the second step, the contrast of vessels relative to the background is improved together
with the homogeneity of the gray-level representation of the vessels. For this purpose, we
found that a multiscale approach yields the best results, because it provides individual
access to each category of vessels, i.e., small-sized, mid-sized and large. They can be
then enhanced, such that both contrast and homogeneity are improved. With respect to
the last point, one should remember the fact that vessel contrast usually varies with size
in 2D-projection images. We have described two novel multiscale vessel-augmentation
methods. Which method should be chosen in practice, depends on the application.

The result of an enhancement step is called a vessel map.

The set of parameters. The optimal set of parameters for a vessel map can be established in a
calibration step using images with known ground truth. If such a calibration step is not feasible,
than:

• For background attenuation, the size of the Bothat structuring element should be cor-
related with the diameter of the largest vessels. The structuring element should be a disk.

• For vessel augmentation, the weights of the Laplacian pyramid should be chosen such
that the noise and background are suppressed and the smaller vessels are better enhanced
than the larger ones, i.e., as if they were a chosen from a Gauss-like function of the
subband index. The same observation is valid for the Hessian multiscale vessel map.
However, as noise is not modeled separately in this case, the processing at the first level
of the Gaussian pyramid should obtain a weight larger than one, comparable with that of
the third level, but smaller than that of the second level.

We have assessed the quality of the methods proposed here by measuring the separability of
the obtained vessel maps by general separability criteria – i.e. theJ1 criteria – and by the AROC
of a percentile threshold. Together they can give a deeper insight into the data structure within
a vessel map. If the two criteria correlate, than this usually means that the class-conditional
probability densities are Gaussian-like. Such information can then be used to choose a specific
classification algorithm.
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Multidimensional description of vessels and background. A pixel-based multidimensional
description of vessels and background can be achieved by combining several different vessel
maps. In this case, a pixel is characterized by a vector composed from all scalars representing
the values assigned to the pixel in each vessel map. We believe that such a feature space is more
separable than any of the vessel maps used to compute it taken alone (see also in Section 4.3.4,
the “Comparison between supervised and unsupervised hysteresis methods” at page 160).

4.3 Automatic vessel segmentation in 2D-projection images

Semi-automatic vessel segmentation algorithms rely on additional information provided by the
user to achieve a result. Such a strategy is clearly optimized for quality, as the human operator
can guide the algorithm to extract the vessels he is interested in. However, this strategy fails if
the number of images which need to be segmented is very large, e.g., for the analysis of vessel
images acquired during screening of a larger population. Also, automatic algorithms are usually
used if a segmentation is needed only as an intermediary step in a more elaborated analysis tool.

The following presentation of vessel segmentation starts with the introduction of some
novel threshold-based methods in Section 4.3.1 and culminates with the hysteresis classification
paradigm and its practical implementation as a hysteresis threshold and a hysteresis classifier,
described in Section 4.3.2. All segmentation methods are tested as described in Section 4.3.3
and their results are discussed in Section 4.3.4. The conclusions are presented in Section 4.3.5.

Thresholds and classifiers. Assuming the segmentation result is computed on a single vessel
map, the simplest way to do this is by using a threshold. Thresholding is a scalar (1D) procedure,
meaning that each pixel is described only by one value, which is used to separate only two
classes. A classifier on the other hand can handle also vectorial (multidimensional) inputs
and indeed more than two classes. We consider the threshold to be the most simple classifier.
However, on some occasions within this section a distinction is made between thresholds, which
work only on scalar inputs and classifiers, which work on vectorial inputs. Where this is not
clear from the context we will highlight this difference when it is made.

4.3.1 Segmentation by thresholding

The result of vessel enhancement is a vessel map with improved separability between vessels
and background. The simplest modality to segment the vessels is by setting a threshold. This
threshold is said to be fixed – i.e. afixed threshold– if it is compared against the gray-level
values of all pixels within the image. A fixed threshold can change from image to image but not
within the same image. If different thresholds are used for different pixels, e.g., by refining the
result of the fixed threshold in an additional step, then this is calledadaptive thresholding.

The results obtained by thresholding – be it fixed or adaptive – can be further improved
by making use of the connectivity of vessels. Vessels are connected structures which appear
always in a tree-like pattern, because the blood flows from larger vessels into smaller-vessels
up to the level of capillaries such that cells from different tissues can exchange food and waste
products with the blood-cells to complete their life-cycle. Therefore, if one can find some high-
confidence vessel pixels, then suchvessel markerscan be used toselect the remaining vessel
pixelsfrom the thresholding result.
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Fixed thresholds

A fixed threshold is obtained here either as a percentile on the histogram of the input image, or
as the scalar expression of a general purpose unsupervised classification algorithm. We discuss
several such thresholding algorithms.

The percentile threshold. In the case of vessels segmentation, the histogram of the input
image can be successfully used to establish a fixed threshold. The simplest such threshold is a
percentile threshold, which is usually chosen such that it reflects some prior expectations on the
number of vessel pixels, i.e., the surface of the vessel map covered by vessels.

Thresholds obtained from statistical unsupervised classification algorithms. A percentile
threshold is rather rigid and in some way it imposes compliance of the input data with the prior
expectations, which motivated the threshold. However, such prior expectations express general
rules and the data complies with them only within certain limits.

The Otsu threshold. A more flexible approach is obtained if instead of keeping the surface
of segmented vessel pixels constant, one seeks a threshold such that the separability measured
between the two class conditionalpdfsobtained after thresholding is optimal. Such a method
was proposed by Otsu [155] (see also Appendix A.6.2). It measures the separability between
two class conditionalpdfs as computed from the results of several potential thresholds and
chooses finally the threshold corresponding to optimal separability.

Other thresholds. The disadvantage of the Otsu-method is that the separability measures
which it uses are appropriate only for Gaussian-likepdfs. If the Gaussianity assumption does not
hold, then the threshold which is returned is not the optimum. Assuming the parametric form
of the class-conditionalpdfs is known a priori, one could use the Expectation-Maximization
(EM) algorithm [65], [21], [20] for a mixture with two components to estimate thepdfsand
then find the threshold by a likelihood-ratio test [184]. However, usually one can only guess
the parametric form of thepdfs. If the distributions are assumed Gaussian – which is often the
default guess – one obtains results similar to the Otsu-method.

Thresholds obtained from non-statistical unsupervised classification algorithms. Many
unsupervised classification algorithms return a fixed threshold, when applied to scalar data. If
the analyzed vessel map is seen as the training set of such an algorithm, then a segmentation
can be achieved by reading the output of the algorithm when the training phase ends. Such a
process takes often a long time to return a result. A typical vessel image has 512× 512 or more
pixels which means that the training space has some 262144 components.

One could also train for several images and then compute the result directly for later images.
However, such an approach is likely to decrease the quality of the segmentation considering the
typical variability of vessel images (see the discussion about “Unsupervised segmentation” at
page 114).

Yet another difficulty is represented by the large class-skew – i.e. strong unbalance between
the number of components in each class – typical for pixel-based vessel segmentation and which
represents a challenge for most unsupervised learning algorithms.
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The Kohonen-map. In the case of an unsupervised neural network, like e.g., a Kohonen-
map (or the Self Organizing Map - SOM) [123], [149], the architecture of the network has to be
chosen such that a binary segmentation is achieved, i.e., there are only two output neurons. This
is rather counterintuitive, particularly in the case of the SOM. Similar to other unsupervised
algorithms, the training time is in this case long, because it depends both on the number of
components of the training-space and on the number of training-epochs. After the weights
of the two output neurons are found, a pixel is assigned to a class depending on the distance
between its corresponding feature vector and the nearest neuron/class-prototype. Assuming
that the feature vector has just one component, i.e., the gray-level in the vessel map and that
the distance function is the usual Euclidean distance, this is equivalent to comparing the gray-
level of each pixel to a threshold situated at the middle of the distance between the two class
prototypes.

Adaptive thresholds

Adaptive thresholds can achieve better results than fixed thresholds, mainly by making use of
prior knowledge about the vessels. An example in this sense is given by thesliding window-
based adaptive threshold. We introduce also anovel adaptive thresholdbased on aMarkov
Random Field(MRF) model.

The sliding window approach. The large overlap of the two pixel gray-level classes suggests
that the vessels are onlylocally darker than the background. An adaptive threshold, which
makes use of such knowledge is obtained by deciding for the class of each pixel individually
in a sliding window, which is centered at the investigated position [173], [100]. The size of the
window defines the pixel-neighborhood which is considered when taking the decision. Within
each window where the variation of contrast is large-enough, a fixed threshold is computed
– e.g. the Otsu threshold – otherwise the default label (background) is applied. Clearly the
window should be larger than the largest vessel.

Such an approach has the disadvantage of being extremely time-intensive and sensible to
parameterization. We will introduce next an improved adaptive threshold which is: fast, less
sensible to initialization and more accurate, as it is able to make use of a larger amount of prior
information

A MRF-based adaptive threshold for vessel segmentation.An adaptive threshold does not
need to decide on the class of a pixel solely on the basis of the gray-levels and the local dis-
tribution of contrast. For improved results, it should take into consideration also other vessel
characteristics. Such vessel characteristics can be, e.g., context-related, like the connectivity of
vessels and their compactness.

An angiogram contains both contrast information and context information. A gray-level
threshold – be it fixed or adaptive – uses usually the contrast information to return a segmenta-
tion. Context information can be used to further improve such an initial segmentation.

From a statistical perspective a decision can be achieved for each pixel by a likelihood ratio
test. For this purpose, one needs to know the class-conditionalpdfsfor background and vessels.
Context information can then be introduced through the class priors. We describe here such a
statistically motivated adaptive threshold which we have also published in [53].
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The algorithm. Starting from an initial over-segmentation result several refinement steps
are required to obtain a set of vessel candidate pixels. During these refinement steps every
pixel is reclassified according to a decision rule which takes into consideration: (i) the class
conditional pixel gray level probability and (ii) the influence of the classification results obtained
for a certain set of neighboring pixels. Thus, if for a certain pixel a majority of his neighbors
have been labeled as vessels, the chances are high that the pixel is itself a vessel, because
vessels are compact. Accordingly, the prior-probability for class vessel should be in this case
large. Such a behavior is modeled by a first-order MRF [184], [88].

A first-order MRF is the extension to images (2D) of a first-order Markov random chain
(see also the “MAP segmentation” at page 68). For a MRF, the dependency condition appears
now in the form of a certain neighborhood which influences the state of the current pixel. The
states are assimilated to classes and the over-segmentation result serves to initialize the MRF.
Let Y = {yj} denote the gray level image with a gray levelyj at each pixelj, andS = {sj} the
segmentation result, with a binary labelsj indicating whether pixelj belongs to background or
vessels. Starting from the maximum a posteriori criterion and invoking the Bayes theorem, we
seekS such thatp(Y |S)P (S) is maximized. Here,p(Y |S) is the likelihood linking the dataY
and the segmentation resultS, while P (S) denotes the a priori probability ofS. Since the gray
level distribution of a pixelj depends only on its classsj, theyj areconditionallyindependent,
implying p(Y |S) =

∏
j p(yj|sj) [184]. The conditional marginal probabilityp(yj|sj) is for each

class estimated within the Otsu thresholding method described above.
The Markovian property implies that the conditional probability ofsj given all other labels

depends only on the labels in a small neighborhoodNj around the investigated pixelj, i.e.,
P (sj|S\sj) = P (sj|si, i ∈ Nj). For a first-order cross-shaped neighborhood, considering all
cliques, we computeP (sj|si, i ∈ Nj) as in [88] by:

P (sj|si, i ∈ Nj) =
e
−sj(α+β

∑
i∈Nj

si)

1 + e
−(α+β

∑
i∈Nj

si)
(4.5)

whereα andβ are parameters to be determined experimentally.
The decision rule is then: chose the class with the largest posterior probability which we

express using the Bayes rule in terms of prior probabilities and class conditional probability
density functions. This decision rule is used to iteratively reclassify each pixel until the clas-
sification result remains unchanged between two consecutive iteration steps or until a certain
number of iterations have passed.

The over-segmentation result is obtained by thresholding the vessel map with a percentile-
based threshold. After establishing empirically that the vessels always cover less than 50% of
the image area, we chose the 50’th percentile as threshold. The class conditional pixel proba-
bilities are presumed Gaussian and parametrically estimated using the Otsu threshold.

Junction-based selection of true vessels. Vessel markers

In the case of vessel segmentation, both fixed and adaptive thresholds select besides vessels,
more or less background structures. To eliminate such false positives, we use again prior knowl-
edge about the vessels. We use the fact that vessels are the only items in the analyzed images
that usually show bendings and bifurcations, i.e., points with more than one orientation: junc-
tions. Thus, if such junction seed-points are detected, than there is a good chance that they
belong to the vessels. We use also the fact that vessels are connected structures.
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Figure 4.11: Flow chart of a vessel segmentation algorithm using thresholding and junction-
based vessel selection.

We therefore segment vessels the following way: first we use any segmentation algorithm –
e.g. an adaptive threshold – to select vessel-candidates, then we detect junctions and use these
junctions to choose only vessel candidates connected to such a vessel marker, because vessels
are connected structures. The connectivity can be both direct and it can extend also over other
vessel-candidates. In the case of direct connectivity, the junction and the vessel-candidate pixel
are neighbors in, e.g., a standard square-neighborhood. In the case of extended connectivity the
junction and the vessel-candidate pixel are related over a chain of direct neighbors. We then
consider the selection result to be the true vessels. To detect junctions, a junction map is first
built by computing the second eigenvalue of the structure tensor on the input vessel map (see
“Detection and tracking of junctions” at page 96). Junctions are then found by segmentation on
the junction map, using, e.g., the Otsu threshold. A flow-chart of the algorithm is shown in Fig-
ure 4.11. We have published this algorithm, together with the MRF-based adaptive threshold,
in [53].

The strategy used to achieve the final segmentation can be summarized like this:

1 Find a first set of points such that at least a majority of them are true vessels, even if there
is a large number of false vessels.

2 Find a second set of points such that all of them are true vessels even if not all vessel
points are selected.

3 Choose – based on the connectivity of vessels – from among the points in the first set
only those connected to a point in the second set.

4 Return the result of this selection as the final segmentation result.

For such a procedure to work, one has to take extra care that true vessels are not connected to
false vessels. To achieve a perfect segmentation one has to ensure that all vessels are selected
into the first set and that at least one point on each vessel chunk is selected into the second set.
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Using the connectivity, one can decide correctly even in the case of a vessel-pixel for which
the probability of its gray-level given class background is larger than the probability given class
vessel.

This type of reasoning constitutes the foundation on which the hysteresis classification
paradigm is introduced in the next section.

4.3.2 Hysteresis segmentation

A hysteresis classifier represents a pair of classifiers which arecoupledby a relation which
permits to use the results of one classifier to condition the results of the other, such that a
better classification performance is obtained. Each of the classifiers of the pair is called a base-
classifier. If the two base-classifiers are linear then a linear hysteresis classifier is obtained.

The simplest form of a hysteresis classifier working in a scalar feature space is a bi-threshold
procedure called hysteresis thresholding [34], [151], [43]. The hysteresis threshold gained
recognition through the seminal work of Canny [34] on edge detection. The problematic of
segmenting edges and vessels is relatively similar: both weak edges and small, weak-contrast-
vessels are difficult to segment, both edges and vessels are coupled through their connectivity.
Therefore, the hysteresis threshold has been used also for vessel segmentation, as proposed
almost simultaneously in [43] and also in [151].

Currently, irrespective of the application, the two thresholds are established rather heuristi-
cally. Canny [34] recommends that their ratio should be between two and three. In [151] they
are chosen in an application-dependent way. We introduce here a set of rules which, in our
opinion, permit the computation of thehysteresis thresholdon any data from any application
– as long as thehysteresis paradigmcan be applied – both in an unsupervised [43] and in a
supervised manner. We show also how to apply the hysteresis paradigm to multidimensional
inputs in a supervised manner, obtaining thus thesupervised hysteresis classifier[44].

Within the frame of this work we give only examples from one application: vessel segmen-
tation. For such an application we show also how to choose the parameters of avessel mapsuch
that it is optimallysuited for hysteresis classification.

From vessel markers to hysteresis classification

The hysteresis segmentation of vessels and then the concept of hysteresis classification which
we will introduce here, evolved from our research on automatic vessel segmentation, in partic-
ular from the junction-based selection of vessels. For clarity of presentation we summarize this
path here.

In the case of vessel segmentation the two class-conditional gray-levelpdfscorresponding
to vessels and background, usually exhibit a large overlap and consequently correct results are
difficult to achieve. Prior knowledge can be successfully used to improve the classification
performance. For example, it is known that vessels are connected structures, then, if one finds
some points which belong to vessels with a high probability – i.e.vessel markers– one can
safely assume that all other potential vessel-points in their vicinity – as selected by an imperfect
segmentation algorithm – are also true vessels and so on until the vicinity is empty and all vessel
points chained to the vessel marker have been selected. Clearly this selection makes sense only
if the imperfect segmentation is actually an over-segmentation, with all vessels but also many
false-positives which are not connected to vessels.
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Therefore, in hysteresis segmentation we usetwo classifiersto correctly segment vessels:
(i) one to find vessel markers and (ii) one to find all vessels. They are thencoupled over the
vessel connectivitysuch that together they return an improved vessel segmentation.

The search for vessel markers is based again on prior knowledge. In Section 4.3.1 we have
used the fact thatvessels show junctions, but one can also use the fact thatthe largest connected
structuresin an imperfect segmentation result are vessels or that thepoints of highest contrast
in the analyzed images belong to vessels.

Junction-based selection of vessels.It is known that vessels build junctions, while other
structures present in the analyzed images usually do not. Hence, one can use junctions as vessel
markers. However, junction-detection in vessel images is a rather complicated procedure due to
the particular multiscale structure of vessels.

Junction detection by segmentation on the tensor-eigenvalue-based junction map does not
function correctly for dark blob-like structures appearing in the input image. The value of the
second eigenvalue of the structure tensor for blobs is similar to that computed for junctions.
However, an enhanced orientation analysis [10] can potentially solve such problems at the ex-
pense of a longer computation time. We have achieved also good results by dividing the second
eigenvalue of the structure tensor by the the first one to compute the junction map.

Size-based selection of vessels.In the vessel map all other structures, with the exception of
vessels, are attenuated. Therefore, one could assume that an over-segmentation will show only
vessels and noise and therefore the largest connected structures will be vessels. Then, one can
use as vessel markers some points belonging to the largest vessels and find the true vessels
by morphologically processing the over-segmentation result. In this case we apply opening by
reconstruction [179] with an isotropic structuring element.

During opening by reconstruction, the binary result is eroded until all structures other than
vessels are eliminated and then the remaining points – i.e. vessel markers – are used to choose
from the initial result, again over the vessel connectivity, the true vessels. Such an approach
functions only as long as after erosion only vessels remain, which means – assuming an isotropic
structuring element – that the non-vessel structures should all be smaller than the largest vessel.

Because the over-segmentation should select all vessels – i.e. including the small ones with
gray-levels similar to that of the background – there are usually also falsely segmented back-
ground structures present comparable in size or even larger than the vessels and thus the mor-
phological processing may fail.

Contrast-based selection of vessels.The contrast of vessels depends on their size (see Sec-
tion 4.2.2, page 122), and the vessel map is computed such that only two homogeneous pixel-
classes are present: the dark vessels and the brighter background. Therefore, one can use as
vessel-markers the points with the smallest gray-levels. In comparison to opening by recon-
struction, it is the vessel contrast – enhanced in the vessel map – which is used to segment
vessels and not the vessel size. Thus we eliminate the influence of large falsely segmented
background structures on the computation of vessel markers.

Consequently, one needs two thresholds together with the connectivity constraint and the
requirement that falsely-segmented background and vessels are not connected to one another to
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achieve a successful segmentation of vessels. Also, part of the vessel tree should appear with a
higher contrast, such that vessel markers can be segmented with a virtually zerofp rate.

We consider that the contrast-based selection of vessels is the optimal selection modality.
The hysteresis threshold used later in this chapters is of this type.

The hysteresis classification paradigm.

We can now state the hysteresis classification paradigm. In a binary classification problem, if
the two classes are not linearly separable in the feature space and under the assumption that
no new features can be added, nonlinear techniques need to be used to obtain satisfactory re-
sults. Such nonlinear techniques are typically expensive in training time and can easily overfit.
However, if the components of one of the classes (object class) exhibit certain connectivity in
some additional space different from the feature space, while at the same time vectors of the
two classes which are close in this space are different enough in the feature space, then two
linear classifiers working in the original feature space suffice to achieve a good classification.
One of these classifiers, the “pessimist” should select only object points, having thus a zero
false positives rate and the other one, the “optimist” should select all object points irrespective
of the number of false positives. We make here the realistic assumption that neither class has an
infinite support. Then, based on the connectivity property from the additional space, the points
which with a high confidence belong to the object class and which were selected by the “pes-
simist” can be used to choose true object points from among those selected by the “optimist” as
long as they are linked with one another over a vicinity [34], [131]. A flow chart of a hysteresis
classification algorithm is shown in Figure 4.12.

The pair of linear classifiers coupled over the connectivity constraint builds then a linear
hysteresis classifier. Here we concentrate on linear classifiers, but other classifiers can be used
also as long as they are trained to fit the role of a “pessimist” and an “optimist”, for example
by training on specially chosen sets. Of course if the connectivity can be described by a feature
or set of features, these can then be added to the original feature space and a standard classifier
can be used.

If the parameters of the hysteresis classifier are computed from a labeled training set, then
the classifier is called supervised, otherwise it is called unsupervised. In the former case, it
is different from a classifier committee [72], [71], [86], [133] as the two classifiers are cou-
pled over the connectivity of the analyzed data rather than over a certain combining rule and
the training takes place over the entire data-set for both classifiers. In the form in which it is
introduced here it can be used mainly to segmentation or to two-class classification. One sim-
ple modality to extend it to multiple-class classification is to train disjunct classifiers for each
class. Application of the hysteresis classification paradigm to scalar inputs yields a hysteresis
threshold, while for vectorial inputs a bi-class hysteresis classifier is obtained.

Hysteresis thresholding

The practical implementation of the hysteresis paradigm for scalar inputs yields a set of para-
metric rules used to compute two thresholds, which taken together constitute the hysteresis
threshold. As vessels are darker than background, one threshold with a small value – the “pes-
simistic” – will select vessel markers and the second, with a larger value – the “optimistic” –
will return an over-segmentation containing all vessels. Thus, pixels whose feature value is
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Figure 4.12: Flow chart of a hysteresis classification algorithm.

below the low threshold are most probably vessels and are kept and pixels with a feature value
above the high threshold are most probably non-vessels and are eliminated. Those in between
the thresholds are vessels only if they are connected to a certain vessel point.

The parameters of the hysteresis threshold are either specified by the user, based on the
prior information usually available about the analyzed data, or learned from examples. In the
case of theunsupervised hysteresis threshold, the parameters are specified by the user. For the
supervised hysteresis threshold, we show how to compute these parameters by learning from a
set of labeled examples.

Unsupervised hysteresis threshold. We proposehypothesis testingas a general procedure to
compute the two thresholds and show how this can be translated to a simple andfast percentile-
based threshold-selection rule[43]. This is then an unsupervised a priori procedure as the
parameters of the hysteresis threshold are not learned from a set of examples but are specified a
priori by the user.

Hypothesis testing. The “pessimistic” threshold can be set using the background’s class
conditionalpdfby means of a significance test. The null hypothesis is that the pixel under inves-
tigation belongs to the background class. To obtain the threshold we choose a small significance
level. We have then: ∫ tp

−∞
p(x|ωb) = α (4.6)

with tp the threshold,ωb the background pixel-class,x the pixel-gray-level andα the signifi-
cance.

If the gray level of an investigated pixel is below this threshold, then the probability of it
belonging to the class background is very small (i.e. less than the significance), which means
that the available data does not sustain the null hypothesis in that case. As on the vessel map we
have either background or vessel pixels, then the pixel under consideration must belong to the
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vessel class. The error probability of this decision (i.e. the type I error probability) equals the
significance level. The “pessimist” threshold separates thus high confidence vessel pixels from
the rest.

The “optimistic” threshold can be set using the vessel class conditionalpdf. This time we
hypothesize that the pixel under consideration is a vessel pixel. To compute the threshold, we
impose that the error probability for a decision in agreement with our hypothesis – i.e. the
probability for a decision against our hypothesis, allthough it is true and we should agree – is
very small: ∫ ∞

to
p(x|ωv) = β (4.7)

with to the threshold,ωv the vessel pixel-class,x the pixel-gray-level andβ the probability of
error.

If the gray level of the investigated pixel is above this threshold, this means that the prob-
ability of it being a vessel is very small and again, as there are only two classes on the vessel
map, it must belong to the background class. Thus, the “optimistic” threshold separates high
confidence background pixels from the rest.

The two parameters of the unsupervised hysteresis threshold are then the two error proba-
bilities α andβ. They should be chosen empirically and have a small value – e.g. in the interval
(10−4, 10−2).

– Estimation of the class conditionalpdfs. If some samples from each density are known,
then the class conditionalpdfs, needed for the thresholds’ computation, can be estimated. We
find these samples by means of the Otsu threshold. However, any other similar algorithm or
even a percentile threshold could be used. Of concern here is that only a majority of samples
do belong to the respective class and not all of them.

If we assume some generic form of the distribution, its parameters can be determined using
the ML or the MAP estimation. Such a parametric estimation has some disadvantages: (i) it
is considered that the random variable can take values in an infinite interval and then the com-
puted thresholds may fall outside the vessel map’s range, (ii) assuming a generic distribution
form limits the flexibility of our approach providing thus an additional source for errors if the
assumption is incorrect or if the samples used at estimation were not uniformly extracted. If no
assumptions are made with respect to the distribution’s generic form, then it can be found, e.g.,
using Parzen estimation [184]. Thepdfat positionŷ is then computed as:

p̃(ŷ|ω) =
1

N

Nω∑
i=1

γ(ŷ − yi) (4.8)

with Nω the number of available samplesyi for classω andγ the kernel potential function or
Parzen window. A function should satisfy certain conditions to be a kernel. Two kernels are
usually used for estimation: (i) the Gaussian kernel:

γg(z) =
1√
2πh

e

(
− z2

2h2

)
(4.9)

or (ii) the exponential kernel:

γe(z) =
1

2h
e(−

|z|
h ) (4.10)
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whereh is the size of an interval witĥy as midpoint.
This nonparametric estimation procedure is more flexible than the parametric one and the

thresholds remain practically always in the vessel map range, if the parameterh is properly
chosen (empiricallyh < 5). However, the better performance is balanced by a severe increase
in the time needed to compute the thresholds.

Percentile-based selection of thresholds.When the thresholds are set by hypothesis test-
ing, they are chosen such that the probability of a certain event is very small, i.e., at most equal
to the significance.

For the “pessimistic” threshold we have :P (x < tp) = α. Previously we have considered
x to be a continuous variable, but actually with respect to a vessel mapx is a discrete variable
and then Equation 4.6 can be approximated as:

tp∑
i=vbmin

nbi

Nb

= α (4.11)

with vbmin the minimum gray-level on the histogram of the background gray-levels,nbi the
number of background pixels with gray-leveli andNb the total number of background pixels in
the image.tp is then theα’th percentile of the histogram of the background gray-levels.

The histogram of the vessel map is the approximation of the mixture of vessel and back-
ground class conditionalpdfs. Therefore,tp is also a percentile of the histogram of the vessel
map and can be found using:

tp∑
i=vmin

ni

N
= αvm (4.12)

with vmin the minimum gray-level on the histogram of the vessel map,ni the number of pixels
with gray-leveli andN the total number of pixels in the image.tp is then theαvm’th percentile
of the histogram of the vessel map and it should be chosen such that it selectsonlyvessel pixels.

Proceeding similarly, one can show that the probability of errorβ from Equation 4.7 is
related to theβvm’th percentile of the histogram of the vessel map – i.e.to – which selectsall
vessel pixels.

Consequently, one can use prior information about the approximate surface covered by ves-
sels in the analyzed angiograms to define the two thresholds by means of percentiles of the
vessel-map histogram. This procedure is illustrated in Figure 4.13.

As vessels are always darker than background, the percentile defining the “pessimistic”
thresholdtp is rather small and is related to the minimal image area which iscertainlyoccupied
by vessels – this is the black area under the curve in Figure 4.13. Theoretically this should be
the largest percentile selectingonlyvessels.

The percentile defining the “optimistic” thresholdto should be choose asβvm = 100 − V
whereV defines the largest percentage of the vessel-map surface which can be covered by
vessels and is thus related to the minimal image area which iscertainlyoccupied by background
– this is the dashed area under the curve in Figure 4.13. Theoretically this should be the smallest
percentile selectingall vessels.

The two parameters of the unsupervised hysteresis threshold are then the minimal image
area certainly occupied by vessels, which yieldsαvm and the minimal image area certainly
occupied by background, which yieldsβvm. Practically, it is sufficient thatαvm is chosen such
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Figure 4.13: Schematic representation of the vessel-map histogram with the “pessimistic” and
“optimistic” thresholds,tp andto respectively.

thatonly vessels are selected andβvm such thatall vessels – but without including more than
half of the background – are selected.

Supervised hysteresis threshold. The parameters of the practical percentile-based hysteresis
threshold are the percentages of images surface covered only by vessels and background respec-
tively, which can then be directly converted to percentiles of the histogram of each image. If a
set of labeled vessel-images is available, one can then determine these parameters rather than
impose them – i.e. train the hysteresis threshold. We introduce two main training modalities:
sequential training, where each image in the training-set is introduced separately andbatch
training, where all images in the training-set are introduced together. Both use ROC-based
analysis [25], [76].

Sequential training. We describe two types of sequential training which we call:indirect
anddirect. In the case ofindirect sequential trainingwe proceed the following way:

• For each possible “pessimist” try all possible “optimists” and each time build the ROC.
Each point on the curve represents the mean percentage of true and false positives over
all images in the training set. Proceeding e.g. in unit steps, this yields 100 classifiers and
accordingly 100 ROCs.

• Choose as “pessimist” the one which yields the largest AROC.

• Choose the “optimist” on the ROC from the previous step as the percentile which gives
the point on the ROC closest to 0%fp and 100%cc.

Choosing the “optimist” as the one which gives the closest point on the ROC to 0%fp and
100%cc may return an unacceptably high false positives rate, thus it is better to define it over
a maximum false positives rate. Good results have been achieved withTo = arg max(cc|fp <
α%) with α as close as possible to 0%.

As the two classifiers are actually percentiles, they can also be computed from a percentile-
ROC. We call thisdirect sequential training. In this case we proceed the following way:
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• For each percentile threshold, record in unit steps the mean rates ofcc andfp over all
images of the data set.

• Determine the two components of a supervised hysteresis threshold by choosing the val-
ues for whichmax(cc|fp = αp) andmin(fp|cc = αo) for the “pessimist” and “optimist”
respectively.

These could then be used to define the image areas covered only by vessels and background.
αp has to be chosen as close as reasonably possible to 0%, andαo as close as reasonably possible
to 100%.

The training methods described until now can be applied to compute the parameters of
an unsupervised hysteresis threshold. Such a training procedure will clearly take a long time
to compute, as each image is introduced separately and for many times, first to compute the
“pessimist” and then to compute the “optimist”.

Batch training. One can use also faster training procedures. In this case, first a training
matrix has to be computed. The first row of this matrix contains the class labels for each pixel
from each image in the training set and the second row contains the corresponding gray-levels
from the vessel maps. Using these gray levels, a global histogram for the entire training set can
be computed. The training algorithm will have the following steps:

• Use the training matrix to build the ROC of a global percentile-threshold for the entire
training space.

• Choose the “pessimist” thresholdTp such thatTp = arg max(cc|fp = αp) and the op-
timist thresholdTo such thatTo = arg min(fp|cc = αo) with αp as close as reasonably
possible to 0%, andαo as close as reasonably possible to 100%.

Such a segmentation strategy has to be carefully used. It implicitly assumes that the gray-
levels characteristic to vessels are very similar in each image of the data-set – i.e. vessels are
homogeneously represented not only within each image but also between images – but it does
nothing to enforce this assumption. Thus, it may happen, e.g., that the same gray-level that
in a certain well-contrasted image selects some vessel-points, selects none in another image.
Conversely, to obtain also vessel markers in the latter image, one should choose a value which
will include also background among vessels in the former one. This represents a justification
for choosingαp as close as reasonably possible to 0%. Such a training procedure is very fast.

The supervised hysteresis classifier

In the case of vessel segmentation, a multidimensional feature space can be obtained by de-
scribing each pixel with a vector whose components are the corresponding gray-levels in several
different vessel maps (see Section 4.2.3).

To build a hysteresis classifier [44] we propose to use as “optimist” and “pessimist” two
Fisher linear classifiers[184] respectively. In terms of the parameters of each Fisher base-
classifier – i.e. theparameters of the hysteresis classifier– the set of weights is the same for
both, but the two thresholds differ and they are established by training. We show also how to
select the optimal set of featuresfor such a hysteresis classifier.
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The Fisher classifier. The parameters of the Fisher classifier are a set of weights~w, defining
a transformation from the original input feature space to a 1D space where the two classes
are optimally separated and a thresholdT , to discriminate between the two classes. In the
transformed space the homogeneity of the representation of the two classes is improved over all
images in the training-set. The separability criterion is:

F =
(µ1 − µ2)

2

σ2
1 + σ2

2

(4.13)

whereµ1,2 andσ1,2 are the means and variances in the transformed space respectively. Then the
weights vector is:

~w = (~m1 − ~m2)
T
[1
2
(K1 + K2)

]−1
(4.14)

where~m1,2 andK1,2 are the means and covariance matrices in the input feature space respec-
tively. Thus the classifier has the form:

~wT~y

ω1
>
<
ω2

T (4.15)

with ~y the input feature vector.T can then be determined in terms of the statistical decision
theory. If the left side is larger than the threshold we decide for the classω1, conversely forω2.

The parameters of the hysteresis classifier. For supervised classification with hysteresis,
the weights~w are the same for both “pessimist” and “optimist” but the thresholds are different.
They are computed by training, using the ROC of the decision rule (Equation 4.15).

Establishing the thresholds by batch-training.In this case the training matrix is built
having at the first row the class labels and on the next rows the gray-level values in different
vessel maps for each pixel from each image in the training-set.

The thresholds represent values in the transformed space and not percentages of image area
covered only by vessels or background. The training algorithm will have the following steps:

• Use the training matrix to build the ROC of the decision rule for the entire training space.

• Choose the “pessimist” thresholdTp such thatTp = arg max(cc|fp = αp) and the op-
timist thresholdTo such thatTo = arg min(fp|cc = αo) with αp as close as reasonably
possible to 0%, andαo as close as reasonably possible to 100%.

Sometimes in practice, e.g., for a sub-optimal feature space, the rule by whichTo is selected
leads to over-segmentation due to the largefp rate associated with highcc percentages. In
such cases it is better to define the “optimistic” classifier over a maximumfp rate. Good
experimental results were obtained by choosingTo = arg max(cc|fp < 15%). For a higherfp
rate, misclassified points connected to the object points appear and the overall results worsen.
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Establishing the thresholds by iterative trainingThe parametersαp andαo and implicitely
the thresholds can be imposed by the user, based on some prior-knowledge, or they can be
trained the following way: starting from a standard Fisher classifier – withT corresponding to
the ROC-point most distant to the base-line linking the ROC-points withfp = 0% andfp =
100% – used as “optimist”, try all “pessimists” – building thus a hysteresis-ROC – and choose
again the one corresponding to the point most distant to the base-line. Repeat, this time keeping
the “pessimist” constant and continue then for a predetermined number of steps or until the
thresholds do not change anymore.

Feature selection. We use the ROC to characterize the feature space. Clearly, the larger
AROC, the more separable the feature space. To the limit, the two classes are linearly separable
when AROC is one, i.e., 100%cc for 0%fp. If several features have been computed, then those
which build the best feature space will also yield the largest AROC. In the case of hysteresis
classification we are interested also in the derivative of the ROC curve, especially in the region
where thefp rate is small. A hysteresis classifier trained on a ROC curve with a large integral
but a comparatively mild increase over the region with smallfp rate, will yield rather poor
results because the “pessimist” classifier will select too few true vessels. Thus, it is better to
consider only a partial AROC, i.e., the pAROC. In our experiments we have computed only the
AROC bounded by a 30%fp rate.

Two strategies can then be followed: a full search strategy when all possible combinations
of features are investigated and a sequential search strategy [160] when first the single best
feature is selected then the best combination between that feature and another one and so on
until the optimal feature set is found.

Practical estimation of the parameters of the vessel map for hysteresis segmentation

In Section 4.2 it has been pointed out that the optimal parameters of each enhancement method
can be established in a target-oriented manner during a calibration step. We have already given
practical rules to set the parameters without any calibration, however, if some hand-labeled
examples are available, the optimal parameters can be established with their help.

We have used such data to compute the AROC of a percentile threshold, toshow the quality
of a vessel map(see Section 4.2.4). At a first glance, the same measure could be used to
establish the parameters of a vessel map as those for which the mean AROC6 over all test
images is the largest. However, this will yield optimal vessel map parameters with respect to a
linear separation between classes and may not be the best solution when hysteresis classification
methods are used.

At the heart of the hysteresis classifier is the connectivity which object-points exhibit in
some additional space. This information is used to achieve a correct segmentation in the feature
space despite the fact that the data is not linearly separable. At the same time, it is important
that in the feature space, object points situated on the border and non-object-points are well
separable, otherwise the connectivity constraint will bring false object-points in the segmenta-
tion. This should be enforced particularly during feature extraction – i.e. the computation of
the vessel map – but also during feature selection in the case of vectorial inputs. Here we de-

6Most of these quality criteria are based on the AROC of a percentile threshold, which we call simply AROC.
When the AROC of another segmentation method is discussed we will make this clear in the text.
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scribequality criteria which permit the computation of avessel map well suited for hysteresis
segmentationof the vessels.

The AROC as quality criterion. The AROC will favor blurry vessel maps, where only the
large vessels are well observable and the background is well suppressed. There are two reasons
for this: (i) the background suppression does not eliminate properly small vessel-like artefacts
and (ii) the ground truth is usually flawed. The main reason why the ground truth is flawed, is
that the human expert usually goes a little over the actual vessel-border during the segmentation.
He either sees the vessel thicker than it really is or he deviates slightly to the left or right from
the path of the vessel (observe Figure 4.14 (b) and (d)).

The vessel-like artefacts will count as false positives and therefore, to obtain a smallfp rate,
one would favor vessel maps where they are suppressed. At the same time, if only the true ves-
sel is segmented, the pixels of the difference-area between the segmented vessel and the flawed
ground truth will count as misclassified true vessels and therefore decrease the measurablecc
rate. To improve this rate, one would favor vessel maps yielding results where these pixels
are also vessels. In both cases, i.e., small vessel-like artefacts and flawed ground truth, such
vessel maps as those favored, are achieved after stronger low-pass filtering, and they are there-
fore “blurry”. Strong low-pass filtering eliminates background artefacts but at the same time
eliminates also weak-contrasted vessels and “spreads” vessels of larger diameter and higher
contrast.

The AROC can be successfully used to show the enhancement potential of a vessel map.
Because it favors an enhancement result where background is strongly suppressed, the AROC
can be also used to compute the parameters of a vessel map where a linear segmentation algo-
rithm, like e.g., a fixed threshold, will be applied. However, the AROC is unsuited to choose
the optimal parameter-set for a vessel map used with a hysteresis classification algorithm. This
happens because a hysteresis algorithm can segment weak vessels despite background artefacts
and in a “blurry” vessel map the weak vessels are attenuated.

This is shown by the example in Figure 4.14. The vessel maps are computed using the
Laplacian pyramid. For the “blurry” vessel map in Figure 4.14 (c) the AROC = 93.90 and
for the “sharp” vessel map in Figure 4.14 (d), the AROC = 81.65. The two segmentations in
Figure 4.14 (e) and (f) respectively are computed using the 12-percentile of the corresponding
vessel map, which empirically proved to be the best choice of a fixed threshold in this case. The
correct classification and false-positives rates are [68.57, 3.71] and [59.9, 4.98] respectively.
Comparing (e) with the ground truth (b) it is clear that many weak vessels have not been seg-
mented and larger vessels are “spread”. Conversely, comparing (e) with (f) there is less falsely
segmented background.

To show the link between the imperfect ground truth and the “blurry” vessel map obtained
with the AROC, we added the result achieved on this vessel map with the ground truth. This
is shown in Figure 4.14 (g). For comparison, we show also the sum between the ground truth
and the segmentation result achieved on the “sharp” vessel map in Figure 4.14 (h). One can
clearly see how the white areas, which signify, according to the ground truth, correct decisions,
increase for the “blurry” result, particularly in the vicinity of large vessels.

Quality measures to compute vessel maps for hysteresis segmentation.For hysteresis clas-
sification, a “good” vessel map means a vessel map where all vessels can be segmented by a
fixed threshold – irrespective of how many vessel-artefacts are selected together with the vessels
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(a) Original image (b) Ground truth

(c) ‘Blurry’ vessel map (d) Vessel map

(e) ‘Blurry’ vessel map
segmentation

(f) Vessel map segmen-
tation

(g) ‘Blurry’ segmenta-
tion & ground-truth

(h) Segmentation &
ground-truth

Figure 4.14: Comparison between a ‘blurry’ vessel map computed using the AROC quality
criteria and a “sharp” vessel map, computed with quality criteria designed specifically for hys-
teresis vessel segmentation.
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(a) (b) (c)

Figure 4.15: Computation of the background-less AROC by the mask method: dilated manual
ground truth mask (a) background-less segmentation on the “blurry” vessel map (b) and on the
“sharp” vessel map (c) after pixelwise multiplication with the mask.

– and vessels are well separated at the margins from non-vessels. Thus, a measure is needed
that “ignores” the background and weights more the errors in the vicinity of vessels.

The background-less AROC.One possible solution is to compute another type of AROC –
we call this the background-less AROC. This time the correct classifications and false positives
are no longer estimated over the entire vessel map but only in the direct vicinity of the vessels.

We propose two methods to achieve this: the mask method and the vessel marker method.
The first one selects the vessels and a small vicinity around them by multiplying pixelwise each
percentile result by a dilated ground-truth mask. Then, estimates the AROC using as input this
modified segmentation result. This is shown in Figure 4.15. The second one uses the ground
truth vessel pixels as vessel markers to select from the percentile result only vessel-class pixels.
Then, estimates the AROC using as input this modified segmentation result. This is shown in
Figure 4.16.

Thus, most background structures are ignored when computing the AROC. Background
structures linked to the vessel pixels, which may appear in the segmentation, have a stronger
influence on the vessel marker method than on the mask method. Theoretically, such a measure
– particularly when computed by the vessel marker method – should favor that parameter set
which defines a vessel map such that as many vessels as possible are selected, irrespective of
the background, as long as miss-segmented background is not linked to the vessels. Therefore,
it returns vessel maps well suited for hysteresis segmentation.

The background-less pAROC.Still we have the problem of the flawed ground truth.
Therefore we propose to use as measure the area under the background-less percentile-AROC
bounded by a reasonably small false-positives rate, assuming that for “good” vessel maps the
corresponding ROC has a sharper increase in the region of small false-positive rates. We have
obtained good results by setting this bound at2%. One could also use the mean false-positives
rate over all percentile results used to compute the ROC, but this measure is less sensible. Us-
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(a) (b)

Figure 4.16: Computation of the background-less AROC by the vessel marker method:
Background-less segmentation on the “blurry” vessel map (a) and on the “sharp” vessel map
(b) after selection using the manual ground truth.

ing the2% bound, the value of the measure is pAROC = 1.02 for the “blurry” vessel map and
pAROC = 1.11 for the “sharp” vessel map in Figure 4.14 (c) and (d) respectively.

Vesselness measures.Alternatively, one can use acombined vesselness measureto find
the optimal parameter-set.

The vesselness is measured by the length of the segmented vessels in the background-less
percentile segmentation. Such a measure will favor vessel maps where the small vessels are well
segmented. To ensure that the large vessels – with a large surface and comparably small length
– are also well segmented, we combine vesselness withcc andfp rates, to obtain a combined
vesselness measure.

We propose to compute the combined vesselness measure as the difference between the cor-
rect classification rate and the false positives rate for that percentile result where the vesselness
is similar to that of the ground truth.

Establishing the set of parameters. Using such measures, the parameter-set can be sought:
exhaustively, sequentially or iteratively.

An exhaustive search would try all combinations of parameters between certain limits and
with appropriate increment-steps and then choose the one for which the quality measure reaches
an optimum.

A sequential search will start from a certain initial parameter set and improve it. This is
done by searching the best value – as indicated by the quality measure – of the first parameter,
while keeping the others constant. This is then repeated for the next parameter starting from the
same initial set and so on until the set is exhausted.

In the case of the iterative search, the parameters are established similar to the sequential
search, but this time, instead of starting the search for a new parameter from the same initial set,
one starts from the set including the already found optima. The procedure is then repeated with
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the intermediary optimal set as initialization, until the parameter set remains unchanged for two
iterations.

We have obtain good results using the pAROC of the background-less percentile-ROC and
a sequential search. The optimization of the parameter-set using the combined vesselness mea-
sure is time intensive.

Outlook

Starting from the hysteresis paradigm, we have introduced several classification algorithms. We
have described an unsupervised a priori hysteresis threshold, a supervised hysteresis threshold
and a supervised hysteresis classifier.

All these algorithms have been introduced for binary classification problems. We believe
however that in particular the hysteresis classifier can be used to separatemultiple classesas
well.

The MRF-based adaptive threshold together with the junction-based selection of vessels
represents actually a type of unsupervised learning hysteresis threshold. However, as opposed
to all other hysteresis classification methods introduced until now, this one is heterogeneous, as
the two classifiers differ with respect to the input feature space: one segments vessels and the
other one junctions. We believe that ahomogeneous unsupervised learning hysteresis threshold
where both thresholds have the same application domain can be developed as well.

Extension to multiple classes. The hysteresis classifier was introduced here for binary clas-
sification. A direct extension to multiple classes is rather difficult. Although it is tempting to
train several disjunct hysteresis classifiers – i.e. one for each class – such a scheme would then
reach its limitation when more than one of the classifiers responds to an input. In this case, one
needs to develop modalities to establish which classifier is more correct.

The main idea of the hysteresis classifier is to use some sort of connectivity between mem-
bers of a certain class to extract little by little the class-components – even if they are rather
different from the class-prototype – as long as they are connected to one-another and connected
also to at least one component of a sub-set of the class, which is this time very similar to the
class-prototype or which is known a priori to belong to the class.

An analogy can be made with the k-NN classifier. There, labeled-samples belonging to the
training set are used to decide on a new sample. The connectivity is defined by the number
of class-components found in hypersphere of radiusR centered at the new sample. Usually
R is defined such that it includes an odd number of labeled-neighbors. In this case it can be
considered that the training labeled samples are the results returned by the “pessimist” and the
new sample is one of the results returned by the “optimist”. If the new sample is connected to
a classωi – i.e. a majority of labeled-neighbors belongs toωi– then the decision on the new
sample is taken in favor of classωi even if the prototype of classωi is more distant than that
of say classωj. At this point the analogy ceases as for a hysteresis classifier, the now-labeled
sample should be received into the training-set to help decide for other samples falling in that
region of the feature-space. Different pruning schemes can however by devised to eliminate,
e.g., training-set samples which had no contribution for the classification of the lastk new
samples, such that the number of components of the training set does not grow indefinitely. The
eliminated samples of the original training-set can be reclassified at a later moment if one does
not want the classes to start moving around the feature-space.
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A homogeneous unsupervised learning hysteresis classifier.To develop a homogeneous7

unsupervised learning hysteresis classifier for vessel segmentation, we propose to use the EM
algorithm to find the parameters of a mixture with four modes on the histogram of a vessel map.
We use one mixture component per vessel category and one component for the background.
Then, the “pessimist” threshold can be chosen to minimize the probability of error between
the mixture component with the smallest mean – corresponding to the class of the largest ves-
sels – and the rest of the mixture and the “optimist” threshold can be chosen to minimize the
probability of error between mixture component with the largest mean – corresponding to the
background – and the rest of the mixture.

4.3.3 Automatic vessel segmentation: Experiments and results

The automatic segmentation methods proposed here have been tested using three different types
of vessel images for which the hand-labeled ground truth was available: 12 skin-transplant mi-
croangiograms, 11 coronary angiograms recorded from different patients and under different
projections and 40 retina fundus photographies. To establish the ground truth, the microan-
giograms and the coronary angiograms have been labeled manually by the author with expert
help. The retina images belong to a publicly available data-base [181]. In this case, according
to the authors, the ground truth has been established by experts. If needed, these data sets have
been divided into a train and a test-set respectively.

We have dichotomized the methods proposed insupervisedandunsupervisedand experi-
mented with them separately.

Unsupervised segmentation

The unsupervised methods proposed here for vessel-segmentation are: the MRF-based adaptive
threshold with junction-based selection of true vessels and the unsupervised hysteresis thresh-
old.

Input. The algorithms have been all tested on the vessel map obtained by multiscale Hessian
analysis, after attenuating the background by the Bothat transform.

Usually, if an unsupervised method is used, there is no prelabeled data set available to permit
the optimal choosing of the parameters set of the vessel map. However, here we have used the
available hand-labeled images to compute the parameters (see “The practical estimation of the
parameters of a vessel map”, at page 145 in Section 4.3.2) as a confirmation of the empirical
rules proposed in Section 4.2.

For background attenuation, for the microangiograms a multiplicative imaging model was
considered. The size of the transformation window was: 13 for microangiograms, 21 for coro-
nary angiograms and nine for retina images.

For vessel augmentation by multiscale Hessian analysis, for the coronary angiograms the
weights are: 0.7 for the highest level of the pyramid – containing small vessels and noise, 2.1
for the mid-level – containing mid and small vessels and 0.8 for the lowest level containing large
and mid-vessels. For the skin microangiograms the weights are: 1.3 for the highest level of the
pyramid, 1.7 for the mid-level and 0.8 for the lowest level. For the retina images the weights are:

7See also “Connection to the hysteresis threshold” at page 162
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(a) (b) (c)

Figure 4.17: Estimation of the vessel map parameters using hand-labeled images. Quality
criteria (Q) – the background-less pAROC – for different parameter values (p) for the Hessian-
multiscale vessel map. We show results for the first pyramid level (a), second pyramid level (b)
and third pyramid level (c) – all normalized to 100.

Skin Coronary Retina
cc fp cc fp cc fp

otsu 48.26 2.35 44.56 1.86 52.49 0.65
adaM 63.21 3.92 60.32 3.30 69.91 2.25
hyst 77.66 5.10 68.52 4.90 83.42 5.50

Table 4.4: Results obtained with unsupervised segmentation methods on different image sets.

2.7, 2.1 and 0.1. The parameters have been found during a sequential search. The parameter
range was always between zero and six. The quality criterion was the background-less pAROC.
The corresponding curves for coronary angiograms are shown in Figure 4.17.

Results. We have computed the mean percentages ofcc andfp on all images from the coro-
nary and skin data-set and on the test images from the retina data-set for the MRF-based adap-
tive threshold with junction-based selection (adaM) and the hysteresis threshold (hyst). These
results are shown in Table 4.4. A flow chart for each of the two algorithms used to achieve
the results is shown in Figure 4.18. As reference we show also the results obtained by the
Otsu-threshold (otsu).

Some results are shown in Figure 4.19. The first line shows the original angiogram, the sec-
ond line the ground truth and the third line the segmentation result achieved by the MRF-based
adaptive threshold with junction-based vessel selection and the fourth line the result achieved by
the hysteresis threshold for a coronary angiogram, a microangiogram and a retina photography.

Methodology. The parameters used for the MRF-based adaptive threshold were:α = 2 and
β = −0.65, mildly encouraging thus a decision in favor of the vessel pixel-class. These pa-
rameters remained unchanged irrespective of the type of analyzed angiogram. The algorithm
was allowed to iterate until the classification result remained unchanged between two consecu-
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(a) (b)

Figure 4.18: Flow charts for: the MRF-based adaptive threshold with junction-based selection
(a) and the unsupervised hysteresis threshold (b). Compare these with those in Figure 4.11 and
4.12 respectively.

tive iterations. The junctions were detected by thresholding with the Otsu threshold the second
eigenvalue of the structure tensor computed on the vessel map.

The parameters for the hysteresis threshold have been (in percentages of image surface cer-
tainly covered by vessels and background respectively): three and 85 for the skin-microangiograms,
0.1 and 84 for the coronary angiograms and six and 82 for the retina images.

Supervised segmentation

The supervised segmentation methods proposed here are: the supervised hysteresis threshold
and the supervised hysteresis classifier.

Input. The available vessel images were divided into two sets for training and testing re-
spectively. The training set used for the segmentation of coronary angiograms contained four
images, that used for the segmentation of microangiograms contained five images and that for
retina photographies contained 20 images. The remaining images in each set have been used
for testing.

With respect to the size of the input feature space there are both scalar and vectorial seg-
mentation methods. The scalar hysteresis threshold used again the Hessian multiscale vessel
map. For the multidimensional hysteresis classifier and Fisher classifier we have used vectorial
inputs. Multidimensional pixel-descriptions were obtained by combining in a vector the gray
levels that a certain pixel receives in several different vessel maps (see Section 4.2.3). The
initial set has been obtained by combining all vessel enhancement methods (see Section 4.2).
The optimal features can be selected from an initial set by feature-selection as discussed in
Section 4.3.2 page 145.

For the retina images, after feature selection, the optimal set was based on the following ves-
sel maps: the Laplacian-multiscale, the Hessian-multiscale and the Hessian single-scale. The
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(a) original

(b) ground truth

(c) adaM

(d) hyst

Figure 4.19: Examples of unsupervised segmentation: Original image (a), manual ground truth
(b), segmentation results of the MRF-based adaptive threshold with junction-based vessel se-
lection – adaM (c) and for the hysteresis threshold – hyst (d) for a coronary angiogram a skin-
transplant microangiogram and a retina-image.
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Skin Coronary Retina
cc fp cc fp cc fp

histT 75.79 6.73 69.45 4.25 88.80 9.54
hystC 72.83 5.59 68.92 3.89 84.87 4

FisherC 74.93 10.35 70.1 5.4 87.61 10.94

Table 4.5: Results obtained with supervised segmentation methods on different image sets.

Figure 4.20: Flow chart of the hysteresis classifier. Compare it with Figure 4.12.

parameters for each map were: 0.8, 3, 2.3, 1.2 and 0.7 for the levels and 0.6 for the parametera
of the Laplacian-multiscale, 2.7, 2.1 and 0.1 for the Hessian multiscale and 15 and three for the
Hessian single-scale.

For the skin-transplant microangiograms and for the coronary angiograms the optimal fea-
ture set contained: the Laplacian-multiscale and the Hessian-multiscale. For microangiograms,
the parameters for each map were: 0.5, 2, 2.5, 1.1 and 0.7 for the levels and 0.5 for the parameter
a of the Laplacian-multiscale and 1.3, 1.7 and 0.8 for the Hessian-multiscale.

For the coronary angiograms the parameters for each map were: 0.1, 2.5, 2, 1 and 0.3 for
the levels and 0.3 for the parametera of the Laplacian-multiscale and 0.7, 2.1 and 0.8 for the
Hessian-multiscale.

Results. The results for supervised segmentation are shown in Table 4.5. The flow chart of
the hysteresis classifier used to compute the results is shown in Figure 4.20. They represent the
mean percentages ofcc andfp over all images in each test data set for the supervised hysteresis
threshold (histT) and the supervised hysteresis classifier (hystC). As reference we computed
also the segmentation results achieved by a linear Fisher classifier (FisherC). The threshold of
the Fisher linear-classifier was determined such that it corresponds to the ROC point situated at
the largest distance from the line linking the ROC-points withfp = 0% andfp = 100%.

Some segmentation results are shown in Figure 4.21. The corresponding original images
and ground truth are shown in Figure 4.19 (a) and (b) respectively.
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(a) (b) (c)

Figure 4.21: Examples of supervised segmentation using the hysteresis classifier. We show
segmentation results obtained for a coronary angiogram (a), a microangiogram (b) and a retina
photography (c). The original images and the corresponding ground truth are shown in Fig-
ure 4.19 (a) and (b) respectively

Methodology. We show only the segmentation results achieved by the supervised hysteresis
threshold trained by indirect sequential training. To compute the “optimist” a maximum of 7%
fp was allowed. Then the parameters are (in percents of image surface certainly covered by
vessels and background respectively): four and 86 for the skin-microangiograms, 0.1 and 82 for
the coronary angiograms and nine and 76 for the retina images. In the case of direct sequential
training one can achieve similar results by imposing a maximumfp rate of 0.6% to compute
the “pessimist” and 12% to compute the “optimist”.

In the case of the multidimensional hysteresis classifier, the two threshold for each data-set
were obtained as:Tp = arg max(cc|fp < 0.5%) andTo = arg max(cc|fp < 15%). We have
obtained similar results when establishingαo andαp by iterative training rather than imposing
them.

Experiments. We have trained the supervised hysteresis threshold by batch training also.
Then, we obtained worse results mainly due to the lack of homogeneity of the gray-level rep-
resentation of the vessels among different images from a data-set. For example in the case of
microangiograms the results obtained after sequential training had 75.79%cc for 6.73%fp and
for the batch training 64.29%cc for 7.85%fp.

We have conducted several experiments to obtain a better comparison between a linear clas-
sifier and the hysteresis classifier. As input data we have used the retina images. First we have
computed the static functioning point of the hysteresis classifier. Then we have computed the
ROC curve of a Fisher classifier using the same weights-vector~w on the test-set.

The static functioning point. The static functioning point of a hysteresis classifier repre-
sents the performance of the classifier on the training-set. For the retina-images, the training-
ROC curve used to find the thresholds of the “pessimistic” and “optimistic” classifiers is shown
in Figure 4.22 (a). The points corresponding to the two thresholds are marked by squares. Using
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(a) (b)

Figure 4.22: ROC curve used for training the hysteresis classifier (a). The squares mark the
points corresponding to the pessimist and optimist respectively. The bullet marks the static
functioning point. ROC curve obtained while testing a Fisher classifier with the same parameter-
set ~w as the trained hysteresis classifier (b). The bullet marks the performance of the hysteresis
classifier.

these thresholds, the static functioning point of the hysteresis classifier is 79.98%cc and 6%fp.
This point is marked by a bullet in the graphic.

4.3.4 Automatic vessel segmentation: Discussion

We have described and investigated the performance of several methods designed to achieve a
fast and reliable automatic segmentation of vascular structures in 2D-projection images. Among
these methods we differentiate between standard methods, like statistically motivatedthresh-
olding and a new class of classification methods, with application to vessel segmentation: the
hysteresis classification.

Thresholding

To segment vessels we have used off the shelffixed thresholdsand designed a newMRF-based
adaptive threshold. All thresholding methods used here are statistically motivated. We believe
that there is no difference in the quality of the results returned by non-statistical (e.g. the SOM)
and statistical (e.g. Otsu) fixed thresholds.

To improve thresholding results, we have developed a junction-based selection mechanism
and used it together with the MRF-based adaptive threshold. Together they represent a hetero-
geneous type of hysteresis threshold (see the “Outlook” at page 150, in Section 4.3.2).

Fixed thresholds. Fixed thresholds like the percentile threshold and the Otsu threshold, are in
general unsuited for vessel segmentation. The main reason for this is the strong overlap between
vessels and background. This is shown for one typical example in Figure 4.23. In Figure 4.23
(a) it is shown the histogram of a skin-transplant microangiogram and in Figure 4.23 (b) the
histogram of the corresponding vessel map computed by multiscale Hessian analysis. The
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(a) (b)

Figure 4.23: Vessel (continuous line) and background (dashed line) class conditionalpdfs– ap-
proximated by histograms – for a skin transplant microangiogram (a) and for its corresponding
vessel map (b). The interval of gray-level values has been normalized to the unit.

vessel enhancement improves the separability of the two classes, but the overlap between them
is still strong. A fixed threshold can not successfully separate such an input space.

Yet another difficulty for fixed threshold is the dependency between vessel size and contrast,
which is usually attenuated but not eliminated during vessel enhancement (see also Figure 4.23).
Consequently, the vessel class includes actually several sub-classes corresponding to the differ-
ent vessel categories. Also, the background has a lot more pixel than the vessels, which can
constitute a problem for some unsupervised classifiers [14].

An unsupervised classification algorithm uses certain separability criteria, like theJ1, or
the distance to a class prototype, to decide where to classify a certain vector. Yet again, many
statistical unsupervised classification algorithms implicitly assume a Gaussian model of the
analyzed data. If such methods are used to obtain a fixed threshold, than one must keep in mind
that the Gaussian-assumption is not always correct for vessel segmentation and therefore the
results achieved may be suboptimal. Usually the Gaussian-guess can be assumed to be correct
for the background of the vessel map but it is less appropriate for the entire vessel class.

The MRF-based adaptive threshold with junction-based vessel selection.The MRF-based
adaptive threshold can be also seen as an improvement over the classical fixed Otsu threshold.
Vessel-like artefacts, like e.g., ribs in the case of coronary angiograms – will appear in the
final segmentation because they do look like vessels – i.e. they have a contrast mostly similar
to that of small vessels and are also compact connected, elongated structures. Such artefacts
are eliminated by the junction selection mechanism. On the other hand, the junction selection
mechanism is likely to miss single straight vessels.

The results in Table 4.4 show that the proposed algorithm represents a genuine improvement
over simple general-procedures as the Otsu threshold. This is mainly due to the introduction of
prior-knowledge – specific to the problem of segmenting vessels – while taking the decision at
pixel-level.
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Hysteresis classification.

The hysteresis classification paradigm can be successfully applied to vessel segmentation be-
cause they are spatially connected structures. A hysteresis classifier for vessel segmentation
uses the vessel contrast to separate potential vessel pixels from the background pixels and the
vessel connectivityto select only the true vessels.

We have introduced and experimented with several practical implementations of the hys-
teresis classification paradigm which includeunsupervisedandsupervised methods. To demon-
strate the potential of the hysteresis classification for vessel segmentation, we havecompared
the unsupervisedhysteresisthreshold and the hysteresis classifierwith other state of the art
algorithmson the same data set.

Vessel connectivity. The hysteresis classifier can be used only if object points exhibit a certain
connectivity in some additional space. In the case of vessel-segmentation, vessel object-points
are connected spatially over a vicinity in the analyzed images. This connectivity needs to be
conserved in the result returned by the “optimistic” classifier. Therefore, it should be enforced
particularly during the computation of the vessel map. For this purpose we use specific qual-
ity criteria to establish the parameters of the vessel map, the best being the background-less
percentile pAROC. However, for this purpose one needs to have access to labeled data.

Unsupervised methods. The hysteresis threshold is based on principles that have been im-
plicitly used for the MRF-based adaptive threshold with junction-based selection: use high-
confidence vessel points to select low-confidence vessel points over the connectivity of vessels.
However in this case the high-confidence vessel points are chosen based on their gray level –
as they are the image items with the largest interaction with the primary information carrier –
and not on the local orientation. This makes possible the selection of straight vessels but at the
same time tends to ignore single weak-contrasted vessels. Such aspects have to be considered
while establishing the “pessimistic” and “optimistic” thresholds.

Supervised methods. We have compared the hysteresis classifier with state of the art general-
purpose classification algorithms in the case of vessel segmentation. By comparison to a simple
linear classifier, the linear hysteresis classifier can achieve results of a higher quality virtually
as fast in training and computation time. By comparison to a SVM, the hysteresis classifier is
faster and manages to segment a lot more vessel area with similar precision.

Comparison between a supervised hysteresis classifier and a linear classifier.The re-
sults on the test set (see Table 4.5) show that the supervised hysteresis threshold returns results
comparable with the Fisher’s linear classifier with regard to thefp rate for slightly improved
cc rates. This also indicates that a multidimensional description of pixels leads to a more sep-
arable feature-space. In comparison with Fisher’s linear classifier, the hysteresis classifier can
significantly reduce thefp rate while keeping a similarcc rate.

As shown in Figure 4.22 (a) the static functioning point of the hysteresis classifier lies above
the ROC-curve of the Fisher classifier which suggests a better performance with respect to the
rate ofcc for the same rate offp.

Using the weights vector~w, a ROC curve for the test set can be computed, describing the
performance of a linear classifier. In the case of retina images, for the samefp rate as the
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hysteresis classifier – i.e. 4% – such a procedure will yield only 81.31%cc. This suggests an
improvement of 3.56 percentage points for the hysteresis classifier over a linear classification.
This ROC curve is shown in Figure 4.22 (b). The performance point of the hysteresis classifier
is marked by a bullet.

Comparison between a supervised hysteresis classifier and a SVM.We have also exper-
imented with a SVM for supervised pixel-based vessel segmentation. The results achieved on
the retina test-images were: 64.02%cc and 1.24 %fp. The poor results of the SVM can be
explained by the large overlap and unbalance between the vessels and background classes and
also by the poor choice of parameters. The parameters of the SVM, which should be set prior
to the actual training, are the length C of the bounding box, the kernel type, and for Gaussian
kernels the size of the dome. Training a SVM on a space with 4,296,431 components takes
more than 48 hours under Matlab on a Pentium IV 2.4 GHz machine with 1024 MB of RAM,
consequently finding the best C and the best dome-size is a tedious work. Training the linear
hysteresis classifier on the same machine takes only 20 minutes. Segmenting an image means
in this case classifying 262,144 vectors, which for the SVM takes around half an hour due to the
large number of support vectors (a consequence of the strong overlap between the two classes).
For the hysteresis classifier the segmentation of an image takes around two seconds.

Comparison between supervised and unsupervised hysteresis methods.The supervised
and the unsupervised hysteresis thresholds reach the same results for the same parameters set –
the difference being that in one case they are imposed and in the other case they are trained. In
practice, the results are comparable (see Table 4.4 and Table 4.5), which shows the quality of the
proposed training method, as the parameters of the a priori unsupervised hysteresis threshold
have been optimized manually.

Comparing the results obtained by the unsupervised hysteresis threshold and the hysteresis
classifier, it can be concluded that the hysteresis classifier is better as it shows morecc for less
fp. This is due mainly to the additional information contained in the 3D pixel-feature space.

Comparison with other dedicated segmentation methods on the retina data set.Segmen-
tation methods for retina fundus photographies have been also proposed in [181], [117] and
[101].

In [181] it is reported on comparative results on the same data set. The quality criteria
chosen there is the AROC of the decision algorithm. To allow a comparison, we have computed
also the AROC for the both the unsupervised hysteresis threshold and the hysteresis classifier.

In the case of the threshold, we have hold the “pessimist” constant at six percents of the
images surface covered only by vessels and varied the “optimist” between one and 100 percents
of the image covered only by background. In the case of the hysteresis classifier, we have hold
the “pessimist” constant at afp rate of 0.5 and varied the “optimist” over the entire range offp
rates from 0 to 100%. Each time we have used as input data the test-set from the data-base from
[181].

The AROC values obtained were: 0.9681 for the hysteresis threshold and 0.9723 for the
hysteresis classifier. For comparison the best value reported in [181] is: 0.9520. For both
hysteresis methods, the segmentation results have been achieved as described in Section 4.3.3.
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4.3.5 Automatic vessel segmentation: Conclusions

We have introduced several automatic vessel segmentation methods. Most of them are thresh-
olds which accept as input only a scalar feature-space, while the supervised hysteresis classifier
can handle also vectorial inputs. All segmentation methods described here start from the as-
sumption that some vessels are always visible in the analyzed images. They are likely to find
some even when there are none, thus the analyzed data sets should not include any blank vessel
images – i.e. images showing no vessels at all. Also, most of them use the assumption of vessel
connectivity, therefore connectivity of vessels and separation from background at the borders
has to be enforced particularly during the computation of the vessel map. We have introduced
supervised and unsupervised segmentation methods.

To achieve a correct supervised segmentation, a properly labeled training set is needed. For
any binary classification there are two types of possible errors: omissions and false inclusions.
For vessel segmentation in particular, with respect to the vessel class, omissions are typically
encountered for some small vessels and false inclusions for background points at the border
of vessels. The training set was affected by such errors, mainly due to the tedious prelabeling
process as manually segmenting an angiogram can take up to two hours. Therefore the accuracy
of any vessel segmentation algorithm using such a “bronze” ground truth is negatively affected.

Vessel segmentation: from fixed thresholds to hysteresis classification. A timeline.We set
forth to accomplish the task of vessel segmentation. For this purpose initially we have investi-
gated several state of the art algorithms [121] and found out that pattern recognition approaches
represent the best choice. From among the pattern recognition approaches we consider the sta-
tistically motivated ones, like the Otsu threshold, to be the most promising with respect to the
quality of the achieved results and the speed.

However, the quality of these initial results was considered unsatisfactory. Therefore, we
have improved the Otsu threshold to the point of devising a new algorithm: theMRF-based
adaptive threshold. The improvements have been achieved mainly by incorporating prior in-
formation about vessels into the algorithm. For even better results, we have continued to in-
corporate prior knowledge in the decision-making process by introducing thejunction-based
mechanism forselection of true vessels.

The junction-based selection makes use of the vessel connectivity to improve an existing
over-segmentation. This constitutes the basis on which we have introduced thehysteresis clas-
sificationas an almost optimal solution to vessel segmentation.

The MRF-based adaptive threshold with junction-based selection

The MRF-based adaptive threshold represents an improvement over the classical Otsu threshold
[53]. For each pixel it is decided by the MAP criterion if it is a vessel or a background. The
decision is supported both by the class-conditionalpdfs– computed with the Otsu threshold –
and by the prior-probabilities for each class computed from the MRF. The final result is achieved
after junction-based selection, where additional information with respect to vessel connectivity
and their appearance is used to select from the segmentation result only points linked to one
another and linked to a junction.
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Connection to the hysteresis threshold.We consider the MRF-based adaptive threshold, to-
gether with the junction-based selection of true vessels, to represent a heterogeneous type of
unsupervised learning hysteresis threshold. The MRF-based adaptive threshold which segments
vessels represent the “optimistic” classifier and the Otsu threshold which returns junctions rep-
resents the “pessimistic” classifier. We call this method heterogeneous, as the “optimist” and
the “pessimist” have different input feature spaces. In the case of the homogeneous hysteresis
threshold, both “optimist” and “pessimist” have the same input feature space.

Hysteresis classification

The hysteresis threshold. The MRF-based adaptive threshold with junction-based selection
prompted the development of the hysteresis threshold for vessel segmentation [43]. The hys-
teresis threshold has been used before for edge segmentation [34], however in the case of edge
segmentation the selection of the two thresholds was rather ad hoc. We have introduced better
threshold selection methods and adapted them to the problem of vessel segmentation.

The unsupervised a priori hysteresis threshold needs two parameters which define the “opti-
mistic” and “pessimistic” thresholds. In machine-vision terminology these two parameters are
percentiles which actually should define the limits within which a large majority of the vessel-
pixels can be found. These limits translate into the percentages of image area certainly covered
by vessels and background. They need to be established by the user in advance for the entire
set of analyzed images. This can be done, e.g., by trying several combinations, until the results
which are obtained fulfill the expectations of the human operator.

If a labeled set of vessel images is available, these parameters can also be trained, obtaining
thus a supervised hysteresis threshold. Training is based on an extended ROC analysis.

The supervised hysteresis classifier.We have shown how to extend the hysteresis classifica-
tion paradigm to multidimensional feature-spaces in a supervised manner [44].

The segmentation result can be improved if a better pixel description is available. This can
be achieved by characterizing the pixels not by a single value but by a vector. We have shown
how to extend the supervised hysteresis threshold to handle also multidimensional inputs. For
this purpose we have used the Fisher classifier as base-classifier. First the input feature space
is transformed to improve the homogeneity of the vessel and background representation over
the entire training set. Then the “optimistic” and the “pessimistic” classifiers are defined such
that the first selects all vessel pixels and the last only vessel pixels. Then the feature space
transformation ensures that the training is valid for all images in the analyzed data set.

A supervised hysteresis classifier can also be conceived starting from other base-classifiers,
as long as they are trained to fit the roles of “pessimist” and “optimist” and a connectivity
between feature-vectors does exist. For example, perceptrons could be used: the first one is
forced to completely exclude one class, e.g., the background class, and the second the other
one, i.e. then, the vessel class. This can be achieved by appropriately weighting the errors
of each class during training. However, one has to pay attention that background and vessel
feature vectors appear in comparable numbers in the training space. This can be achieved
by appropriately pruning the background class. The two results are then combined over the
connectivity of vessels as in the case of the Fisher classifier.
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Feature extraction for hysteresis classification. At the heart of hysteresis classification stays
the connectivity which object points exhibit in some space other than their feature space. In the
case of vessel segmentation, it is their spatial connectivity which justifies the application of a
hysteresis classifier. We have described here also quality criteria for estimating the parameters
of a vessel map, such that it fulfills to the best possible extent the connectivity and contrast
conditions needed for a successful hysteresis-based segmentation.

4.4 A semi-automatic system for the analysis of angiogenesis
in skin-transplant microangiograms

Angiogenesis is the process by which new vessels are formed from older ones. Both the process
of inducing and that of inhibiting vessel growth can be amplified by certain substances. Clearly
the potential of such substances for the purpose of healing different disease is enormous and
therefore subject to active research [132].

Here we describe a semi-automatic vessel segmentation tool aimed at quantifying angiogen-
esis in treated fasciocutaneous skin-flaps transplanted on the back of laboratory mice. For this
purpose the input images are first processed such that vessels are enhanced (see Section 4.2),
then they are segmented. We describe two segmentation methods (Section 4.4.2). The first
uses a fuzzy clustering algorithm and the second, the hysteresis threshold. Both methods re-
turn automatically a result which can then be manually improved by the human operator. The
segmentation result is then used to compute some measures which should describe vascular-
ization in the target tissue (Section 4.4.3). The results obtained on our data base are shown in
Section 4.4.4. Section 4.4.5 contains the discussion and conclusions.

Although it was first applied to microangiograms, the tool we describe here can be used for
all types of 2D-projection vessel images. We believe that the same framework can be also used
to segment as well other types of vessel-like objects in 2D-projection images, like e.g., nerve
fibers.

4.4.1 A tool for the analysis of angiogenesis: Introduction

Angiogenesis plays a major role in a number of situations, for example if specific environmental
conditions impose the acceleration of the metabolic reactions at the level of an organ, new
vessels are formed over a relatively short period of time to permit the organ to fulfill its purpose.
Also the process by which a wound heals involves the construction of new tissue which has
to be supported for which purpose vessels need to grow into it. In the case of transplanted
skin sustained angiogenesis is needed to avoid necrosis of the transplanted tissue and other
complications [132]. However, there are also cases when angiogenesis is not desired, e.g., in
the case of a tumor, when one would like to cut the nutrients-supply to kill thus the tumor cells
[151], [164].

The search for substances to improveangiogenesisrepresent currently anactive research
field in the pharmaceutical domain [132]. For this purpose, often, a specific X-ray imaging
technique is used which returns images of the micro-vessels build during angiogenesis, these
images are calledmicroangiograms. During experiments one seeks toquantify angiogenesisin
microangiograms to investigate the effectiveness of different substances.
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Figure 4.24: Imaging system (a) dermal matrices (b) and microangiogram (c).

Laboratory research for improved angiogenesis. The success of a skin transplantation de-
pends on a proper revascularization of the transplanted tissue. To evaluate the effectiveness
of different pharmacological substances designed for this purpose, experiments are conducted.
During such an experimental run, drug-treated dermal matrices [94] are transplanted to cover
two disk-shaped full-thickness skin defects (diameter: 15mm) on the backs of laboratory an-
imals (nude mice, body weight about 30g) [93] (see Figure 4.24 (b)). The animals live then
another three to 14 days with the transplants such that there is enough time to build new ves-
sels. During this time it may happen that the transplants fall from their places, this represents
one of the reason why there are two transplanted dermal matrices. A typical experimental run
includes 12 animals. Two to three of them are used for control purposes and receive untreated
transplants.

Microangiograms and other vessel images. For vessel imaging after a given time interval,
blood is withdrawn via the left carotid artery using micro-surgical instruments, and slowly re-
placed by a contrast medium. The transplant samples (see Figure 4.24 (b)) are then harvested
together with some surrounding tissue and imaged using an X-ray mammography system (typi-
cal settings: 9mAs at 24kV) shown in Figure 4.24 (a). As a result a microangiogram is obtained,
shown in Figure 4.24 (c). This shows the vessels, potentially down to a size of about20µm [93].

Currently, research is done to replace the microangiograms by by photographies of the tissue
when this is placed on a transilluminator. The advantage is that the tissue can be reused after
imaging, as it does not need chemical additives. This saves animals and allows to perform
comparisons among a larger number of samples.

Quantification of angiogenesis. In such images we seek to quantify the angiogenesis in the
dermal matrices, e.g., by measures such as the percentage of area covered by the blood vessels in
the target sample (see Figure 4.28), the vessel length, or the micro-vascular index, which relates
the total vessel length to the area involved (see [93] and the references in there). Yet another
type of measurement returns the area and length of the newly built vessels in percentages with
respect to a reference sample. This sample is selected on the microangiogram to cover an area
comparable to that of the transplant, in a region where the natural vasculature can be observed.
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4.4.2 A tool for the analysis of angiogenesis: The segmentation of vessels

For our quantification purposes, the vessels need to be segmented in the imaged transplant [52],
[51]. Since the field of application of this system is an experimental laboratory setting for drug
evaluation, rather than clinical routine, time constraints are of less concern and also a certain
degree of interaction is feasible, with the purpose of improving the results.

Our system returns automatically a segmentation proposition which can be – if needed –
improved in a semiautomatic manner. For automatic vessel segmentation, we need unsupervised
methods as one would like to keep the generality of the method and does not have access to
an expert-labeled training set. We propose two algorithms: (i) afuzzy clustering algorithm,
which can work also on vectorial inputs (see Section 4.2.3) and which has better classification
performance in comparison to other standard techniques [14] and (ii) an unsupervised a priori
hysteresis threshold. We show also how to improve the segmentation results by interacting
manually with the two algorithms.

Vessel segmentation by fuzzy clustering

The clustering algorithm iteratively improves a performance measure computed on a fuzzy set
decomposition, starting from an initial partition. To allow easy and comfortable interactive
processing this partition is an over-segmentation. Furthermore, since thus practically every
vessel is visible at a certain stage during the iterations, this permits to achieve better results at
the end of the processing chain. After the iteration stops, we automatically choose the desired
vessel segments by junction analysis (see “Junction-based selection of true vessels” at page
134, in Section 4.3.1). In case the user is not quite satisfied with the automatically provided
result, he may then manually refine the segmentation by leafing through the different stages of
the algorithm, and select the vessel segments.

The clustering is initialized with a vessel over-segmentation result computed by thresholding
the Top-hat vessel map. Empirically, the vessel covered area is always less than 50% of the
image area, thus we choose the 50th percentile as threshold. A result is shown in Figure 4.25
(b).

The fuzzy class memberships are computed by a function (i.e. affinity) which measures how
closely related the investigated vector is to a certain class. Let~x be one from a set ofN feature
vectors, andωi be one from a set of M classes. The affinity of~x to ωi is defined as:

r(~x, ωi) = 1− 1

N

∑
~y∈ωi

hβ(‖ ~x− ~y ‖) (4.16)

with hβ : [0,∞) → [0, 1] and:

hβ(ν) =

{
ν2

β
if ν ≤

√
β

1 if ν >
√

β
(4.17)

Then the class belonging coefficient for~x andωi is: ui(~x) = Pi
r(~x,ωi)
r(~x,U)

, with Pi the prior onωi.
The parameterβ is actually a bound on the cluster/class spread. Feature vectors further apart
than

√
β are ignored in the affinity computation. Choosingβ such thatmax ‖ ~x − ~y ‖=

√
βm

for ~x, ~y ∈ U permits the consideration of all feature space points. Then, representing each class
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Figure 4.25: Original-image (a), clustering initialization (b) and clustering result (c).

by its mean vector alone, the fuzzy class membership coefficients will be:

ui(~x) =
β− ‖ ~x− µi ‖2

βM −∑M
j=1 ‖ ~x− µj ‖2

(4.18)

and
∑M

i ui(~x) = 1. Although heuristic methods for determiningβ are available in [14], for
vessel segmentation we propose on an empirical basis choosingβ such that

√
β = 0.8

√
βm.

For vectors beyond the allowed spreadui = 0. To measure the quality of a certain fuzzy
partition – i.e. the amount of incertitude (fuzziness) present – the following function is used:

Ψ =
1

N(M − 1)

M−1∑
i=1

M∑
j=i+1

∑
~x∈U

(ui(~x)− uj(~x))2 (4.19)

with Ψ ∈ [0, 1] andΨ = 0 indicating the highest possible degree of fuzziness.
Then during an iteration a vector will change its class only if it leads to an increase in the

quality of the fuzzy partition. The iterations stop whenΨ can not be increased anymore.
Vessel segmentation is characterized by strongly unbalanced class sizes – i.e. class skew

– and inner-class variances. Under such conditions the fuzziness measure inherently favors
good accuracy (see Section 2.5.1), implying high correct classification rates for the larger
background-class, which in this case also has a smaller spread in the feature space. Clearly
this leads to under-segmentation of the vessels and in extreme cases to results with a 0%cc rate.

To successfully meet the challenge of a correct vessel segmentation in microangiograms we
have extended the fuzzy clustering algorithm to use an additional statistically motivated stop-
ping criterion based on the same separability measure which guided also the feature extraction
process. Then the algorithm will stop as soon as the separability measured on the current vessel
class fuzzy coefficients set decreases. As ground truth the segmentation result obtained at the
end of the previous iteration is used. A result is shown in Figure 4.25 (c).

Vessel segmentation by hysteresis thresholding

The fuzzy clustering-based segmentation of microangiograms is achieved by reclassifying some
feature-vectors at each iteration. As it starts from an initial percentile-based over segmentation,
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at each iteration the larger majority of reclassified pixels are miss-classified vessels. Thus it
can be said that the background is “eroded” stepwise until only vessels remain. Finally, only
true vessels are selected using the junction-mechanism. Experience shows that some weak
contrasted vessels are also eliminated and straight vessels are not selected which makes then
necessary the subsequent user-supported selection of true vessels, to achieve an optimal seg-
mentation. This is then based on the assumption that the steps are fine enough such that at a
certain step each vessel – irrespective of its contrast – will be visible and it can be selected into
the final segmentation. However, sometimes the steps are larger than optimal. It happens that
between two steps, a vessel, which at stept is still immersed in background noise, disappears
completely at stept + 1. More often, a small vessel is visible at stept but is still linked to
some background and at stept+1 a large part of it has already been reclassified as background,
thus the user has to additionally separate the vessel chunk from the background at stept before
selecting it.

However, if the hysteresis threshold is used, the size of the “erosion-steps” and also the
number of segmented vessel chunks can be controlled by the way the “pessimistic” and the
“optimistic” classifiers are specified. One can use a default parameters-set – as the ones sug-
gested in Section 4.3.3 – and achieve with them an automatic segmentation. Starting from this
proposition the user can then either select or deselect some vessel-chunks. If he is not satisfied
with the automatic proposition, than is offered the possibility to modify the two thresholds in
steps as fine as he needs and until he can reach the desired segmentation. As the hysteresis
threshold is very fast, the processing is time-efficient. Such a procedure provides an almost
total control to the user.

4.4.3 A tool for the analysis of angiogenesis: Description of vessels

The area and length of the newly built vessels can be computed easily on the segmentation re-
sults. The area is related to the total number of object-pixels and the length can be computed
as the total number of object-pixels left after selecting only the centerlines in the segmentation
result, e.g., by morphological thinning (see Appendix A.1). Thinning directly the segmenta-
tion result may lead to poor results as the sometimes – particularly for small vessels – some
artefacts hang on the vessel border giving it an irregular appearance. These artefacts influence
the thinning-result and thus fake branchings appear on the analyzed vessel. This is shown in
Figure 4.26 (b). A quick and efficient solution is to compute the thinning not on the original seg-
mentation result but on a slightly dilated segmentation result. This is shown in Figure 4.26 (c).
The structuring element used during dilation was a disk with a diameter of nine pixels. Such in-
exactitudes are less important if relative measurements of the target vasculature are effectuated,
as they affect both the results for the transplant sample and for the reference.

Assuming knowledge on the parameters of the imaging system, precise measurements in the
metric system can also be achieved. In some cases it is sufficient if a scale marking is imaged
together with the transplant.

4.4.4 A tool for the analysis of angiogenesis: Results

For the purpose of building a feature vector space one can use any combination of vessel maps.
If hand-labeled examples are available then an optimal combination of vessel maps can found
during feature selection, based on the AROC of a Fisher classifier as described in Section 4.3.2
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Figure 4.26: Original segmentation (a), vessel-centerline before (b) and after (c) dilation.

automatic semi-automatic
cc fp cc fp

clustering 62.64 2.17 84.69 4.05
hysteresis 77.66 5.10 86.20 4.11

Table 4.6: Results obtained with and without user support for fuzzy-clustering and hysteresis-
based segmentation.

or using other quality criteria, as e.g., theJ1 separability measure. Starting from the vessel
maps described in Section 4.2 and based on 12 hand-labeled microangiograms, we found that
the optimal set of vessel maps contained: the Laplacian-multiscale and the Hessian-multiscale
vessel maps (see also Section 4.3.3).

The segmentation results achieved on the microangiograms from our data set, when apply-
ing each of the two methods described, i.e., the fuzzy clustering and the hysteresis threshold
are shown in Table 4.6 both for automatic and semi-automatic usage. The flow chart of the al-
gorithm is shown in Figure 4.27. A segmentation result achieved using the hysteresis threshold
with user support, is shown in Figure 4.28.

Figure 4.27: Flow chart of the semiautomatic segmentation of skin-transplant microangiograms.
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(a) (b)

Figure 4.28: Original-image (a) and result of semiautomatic segmentation using the hysteresis
threshold (b).

4.4.5 A tool for the analysis of angiogenesis: Discussion and conclusions

We have presented a novel framework for the analysis of micro-vessels in skin transplants in
laboratory environments for drug testing. The analysis is supported by a micro-vessel segmen-
tation algorithm. The segmentation-results are used for vessel area and vessel length measure-
ments in skin transplant microangiograms. As we usually do not have access to a training set,
but also to ensure the adaptability and thus the generality required for a successful segmentation
of vessels, each microangiogram is individually analyzed.

Experience shows that the result may still contain some false positives and false negatives.
Since our system’s field of application is an experimental laboratory setting for drug evaluation
rather than clinical routine, time-constraints are of less concern and a certain degree of inter-
action is feasible. Thus, the experimenter is allowed to manually refine the segmentation by
browsing through the results of the iteration steps, and select or deselect vessel structures by
placing “positive” and “negative” seed points respectively.

We discussed two segmentation algorithms: thefuzzy-clustering[14] and thehysteresis
threshold[43] which return automatically a segmentation-proposition.Comparing the two
methods, they both methods return good results but the one based on the hysteresis thresh-
old is faster and allows a larger degree of interaction from the part of the user and therefore
potentially better results.

Fuzzy clustering. The fuzzy-clustering, starts from an initial over-segmentation which it
erodes step-wise. It has as input a multidimensional pixel feature space is build by gathering
the results of several vessel enhancement methods so that together they constitute a separa-
ble description of vessels and background. On the final result true vessels are selected using
seed-points computed automatically. As a key vessel feature, we use the fact that they typically
exhibit branchings, i.e., local structures with junctions, which may be detected by a structure
tensor approach. The detected branching points (junctions) are then used as vessel markers. A
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structure which appears in the final segmentation result is automatically identified as vessel only
if it is connected to such a seed point. If the user is not satisfied with the automatic segmenta-
tion, he can then edit the intermediary segmentation results obtained at each iteration-step and
select the desired vessels from the results where they are optimally segmented.

Hysteresis threshold. The hysteresis threshold requires from the user the specification of the
image surface which in all analyzed angiograms will be covered only by vessels and background
respectively. With these values it returns an automatic segmentation. If the user is not satisfied
with this segmentation, he may then select or deselect vessel chunks in this result or modify the
two parameters and compute a new segmentation until the desired vessel is good visible and
can then be selected it in the final segmentation.

Comparison between the two segmentation methods.The hysteresis threshold accepts only
1D inputs, however in semi-automatic usage, it returns results comparable or even better than
the fuzzy clustering. This is due mainly to the fact that the step size – between intermediary
results – can be also controlled and adapted to the targeted vessels.

The hysteresis threshold needs only a few seconds to achieve a segmentation and allows
a larger amount of interaction from the part of the user than the fuzzy clustering which needs
a few minutes minutes to segment an image. However, once the image is segmented, leafing
through the intermediary results is than clearly very fast.

The results achieved by the hysteresis threshold are only slightly better than that of the
fuzzy-clustering method, but they are computed faster – as now the iterative training step can be
avoided – and with less intervention from the part of the human operator. Therefore, we believe
that the hysteresis threshold based segmentation will prevail in practice.

Difficulties with the ground truth. The hand-labeled ground truth usually contains errors –
both ignored true vessel-pixels and additional fake vessel-pixels (see also Section 4.3.2). Most
of these errors are rather uncritical being situated at the vessel-margins, e.g., when a thick vessel
is under-segmented and a thin one over-segmented, but there are also critical errors, like e.g.,
thin vessels which are not captured. Such errors potentially fake the results obtained. Thus,
results computed directly on the hand-labeled images should be rather seen as giving the upper
bound on the rate offp and the lower bound on the rate ofcc.

4.5 Dynamic vessel segmentation

Atherosclerosis is a condition affecting arteries in general. In the case of the coronary arteries,
this is called the coronary artery disease (see Section 2.1). If it affects a carotid artery is called
the carotid artery disease and if it affects one of the arteries supplying blood to the arms, legs,
stomach or kidneys, it is called the peripheral artery disease.

Here we describe vessel segmentation methods for improved X-ray-supported diagnosis
and angioplasty-planning in the case of the peripheral and carotid artery disease. We start by
describing specific X-ray imaging techniques like the Digital Subtraction Angiography (DSA)
and how can vessel segmentation help during diagnosis and planning in Section 4.5.1. We then
describe two segmentation methods in Section 4.5.2 which we compare in Section 4.5.3. Finally
Section 4.5.4 contains the conclusions.
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4.5.1 Dynamic vessel segmentation: Introduction

X-ray angiograms of the ill artery are used mainly for diagnostic purposes but also during treat-
ment which may be done – similar to the case of the coronary artery disease – by an X-ray
supported angioplasty intervention. Lately, ultrasound and MRA have been used as alternative
imaging modalities. Ultrasound has the disadvantage of poor image quality and MRA can not be
applied to all patients, e.g., patients with metallic implants like artificial heart valves, etc. There-
fore, X-rays-based procedures are still the most often encountered in practice. Suchimaging
methods provide high-quality angiograms of still vessels. One of the most often encountered
such procedures is DSA. It implies the recording of a sequence of angiograms showing the
contrast-bolus traveling through the investigated vessel-tree.

We concentrate on vessel-segmentation in DSA sequences, which we calldynamic vessel
segmentation. Such results offers the possibility not only to investigate the morphology of
vessels and to measure their area and length, but also to analyze bycontrast-bolus tracking
the dynamic of blood through the investigated vasculature, offering thus new opportunities for
enhanced data-assessment.

Imaging

Initially, diagnosis angiograms – of high image-quality – were acquired under constant flow of
contrast agent such that the entire ill artery was visible. In some cases, the sheer quantity of
contrast agent which had to be injected, especially when the arteries supplying blood to the legs
were examined, could have risen a health problem. Although modern contrast agent is less toxic
than before, it is good practice to reduce the inject quantity both for reasons of patient health
and contrast-agent-cost. Advances in the computer technology have allowed the reduction of
the quantity of contrast agent needed while keeping or even improving the quality of the images
which were acquired. Currently, two imaging techniques are usually used in practice:DSAand
bolus-chase.

Digital Subtraction Angiography. In DSA [31] several X-ray images of the vessels are ac-
quired. One before the injection and the rest during the injection of short burst of contrast agent.
The contrast-agent-less background is then subtracted from the contrast-agent-images dramat-
ically improving contrast by elimination of still artefacts, like e.g., bones or other tissue. The
DSA-images can then be used to reconstruct vessel-information. As only a short burst of con-
trast agent needs to be recorded, DSA is fast and therefore both patient and physician irradiation
is minimal.

Bolus-chase. Bolus-chase is usually used to obtain angiograms of the arteries of the inferior
limbs. In this case the bed with the patient moves synchronous with the bolus of contrast agent
such that the C-arm containing the imaging system follows the contrast bolus on its way through
the arteries. The obtained images are then registered to reconstruct the arteries. Usually, a set of
non-contrasted images is also recorded to allow for DSA-style background attenuation. Similar
to DSA, bolus-chase reduces both the quantity of contrast agent and the time required to obtain
an angiogram.
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Objectives of vessel segmentation

Vessel-segmentation can be used here to further enhance contrast, or to support the quantifica-
tion of the stenosis. The images acquired for DSA can also be used to measure the blood-flow.
For this purpose one can use densitometric measures [168] as well as the results of a vessel
segmentation.

Vessel segmentation in DSA sequences can be also used to image the blood-flow – e.g. by
a time-based display of newly segmented vessels – such imaging can potentially enhance the
diagnostic capabilities as one obtains thus also a visual indicator of the speed at which the blood
flows.

Blood-flow analysis by contrast bolus tracking. If the vessels are segmented in each an-
giogram of the exam-sequence, then one can show which vessels have appeared in each image,
thus implicitly describing the flow of blood through each vessel. For example, time-coding the
newly found vessels with the index of the analyzed frame, will have as effect that vessel which
are reached by contrast agent later in the exam-sequence will appear brighter than others. De-
tecting bright vessels among darker ones is then a sign that some vessels in a certain region have
been irrigated later than the majority of their neighbors, which may be a pathological sign. One
obtains also an indication about the size of this delay.

4.5.2 Dynamic vessel segmentation: Methods

We describe two approaches to segment the vessels in each image of a DSA-sequences. The
first one useschange-detection-related methods and the second one is based ongeneral-purpose
vessel-segmentationmethods.

Using these segmentation results one can thensegment the entire target vasculatureand also
capture the blood dynamicsthrough the vessels, i.e., segment the blood-flow.

Segmentation by change detection

The straightforward solution to segment still-vessels in a DSA sequence is by change detection
[8], [5]. As in this case special care is taken to properly register the mask image to the contrast
images [31] and the imaging system has no eigen-movement, it can be safely assumed that
most temporal variations in intensity are due to the appearance of contrast into the vessels.
However, some can also be generated by sensor-noise (see Section 2.2.4). Consequently, vessel
segmentation by change detection is still an ill-posed problem – as a pixel can vary its gray level
both when is reached by contrast agent or due to noise – and it is thus afflicted by the tradeoff
between true and false positives.

General-purpose change detection and its application to vessel segmentationChange de-
tection has been thoroughly studied in the context of motion estimation from gray-level changes
in image-sequences [1]. In this case – under the assumption of a still camera – the tempo-
ral high-pass obtained by subtracting consecutive images from one-another ensures that slow
changes in illumination, like e.g., the change from day to night do not influence the motion
estimation problem and ultimately allows the analysis of motion from gray-level changes. At a
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first glance, similar methods can be used for vessel segmentation by change detection in DSA-
sequences.

Adaptive thresholds. The simplest way to detect changes in a difference-image is by
adaptive-thresholding. To improve the robustness of the threshold with respect to noise, the de-
cision for a pixel should be taken while considering also the changes in its neighborhood. Thus,
in a statistical approach one does not use the gray-level as statistic, but rather the variance-
normalized sum of square differences – for Gaussian class-conditional probabilities – or the
standard-deviation-normalized sum of absolute differences – for Laplacian class conditional
probabilities – in a neighborhood [8].

The optimal threshold for each pixel can be determined in a MAP approach (Equation 2.12)
by a likelihood ratio test (Equation 2.14). Such a threshold can adapt by means of the prior
probabilitiesPr [ωi

c] andPr [ωi
u] of the decision changedc or unchangedu at pixeli.

Objects have usually a compact shape with smooth boundaries. Such prior knowledge can
be included in the threshold selection by specifying the priors in terms of a Gibbs/Markov
random field [88]. Again the previous change-mask and the previous detection results are used
to adapt the fix threshold [8]. One obtains a set of thresholds thresholds which are stored in a
table and used depending on the constellation of neighbors around the investigated pixel from
the change-mask. Such an approach encourages compact and isotropic, patch-like objects, and
is thus less suited to model vessels which are rather elongated.

Two-thresholds segmentation.Assuming that compact connected objects move in front of
a camera, one would expect that a pixel once it obtains the label changed will remain changed
and thus it makes sense to adapt the threshold by lowering it for moved pixels and increasing
it for unmoved pixels. Such considerations lead to a two-thresholds segmentation method [5]
where the previous change-mask tells for each pixel which threshold should be used. Such mod-
eling is more appropriate in some cases than in others. For example, if an object is constantly
moving in front of a camera at a speed which is very small in comparison to the frame-rate,
there is a high chance that most object-pixels, which have been marked as changed in the previ-
ous change mask, are still changed and then such modeling is appropriate. This is, e.g., the case
of a person talking in front of a camera. However, if the object passes in front of the camera
at a higher speed, as e.g., in the case of a car, then a a relatively high number of pixels that
have been marked as changed in the previous change-mask are now unchanged – as the object
has traveled away from this position since more than two frames ago – and are being compared
against the smaller change-threshold, therefore potentially generating false-positives.

For bolus tracking, we are in such an unfavorable case, however as our ultimate goal is
vessel segmentation and a vessel remains a vessel even after the contrast has left it, this is less
critical. Also, we are interested in showing the flow of contrast agent, and then only newly
segmented vessel-pixels – which are always selected by the higher threshold – need to be seg-
mented. Therefore, for vessel segmentation, the two-thresholds algorithm results in a single,
fixed-threshold approach.

Morphological processing. Prior expectations in change-detection can be also considered
by means of specific binary morphological image-processing. However, such processing is not
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part from the classification method and it imposes compliance of the solution with the prior
expectations rather than encouraging it [8].

General-purpose vessel segmentation

We propose here that each image in the DSA sequence is treated as an angiogram which needs
to be segmented. Therefore, we follow the approach introduced in the beginning of this section
and firstenhance the vessels(see Section 4.2) and thensegmentthem (see Section 4.3).

Vessel enhancement. The temporal aspect, characteristic to DSA sequences, is used solely for
high-quality background suppression. As usually, after background suppression follows vessel
enhancement. The best enhancement methods use multiscale decomposition, which usually
implies knowledge on the precise size of the analyzed vessels, or even better, a ground truth to
allow the computation of the optimal set of parameters. All these can be achieved in a calibration
step for different vasculature and setups of the imaging system. A good general-solution is to
use the Hessian single-scale vessel map with an integration low-pass size of 15 and a derivative
window-size of seven. (see Section 4.2.2)

Segmentation. Segmentation is then achieved by unsupervised hysteresis-thresholding. The
optimal parameters of the segmentation algorithm can also be determined during the calibration.
Good results were obtained assuming 1% of the image surface definitely covered by vessels and
92% by background.

Here it is implicitly assumed that each analyzed image from the DSA-sequence shows ves-
sels. To ensure compliance with this assumption, before segmenting an image, its variance is
compared to a threshold. DSA-images showing vessels will exhibit a far larger variance than
images showing no vessels. This threshold was empirically set to 0.8.

Segmentation of the target vasculature and of the blood flow

Until now we have shown how to segment vessels in each image of a DSA-sequence. Assum-
ing that in each intermediary result vessel are represented by one and background by zero, to
segment the entire target-vasculature one can simply add all intermediary results together and
choose then only pixels with a gray-level above zero.

To segment the blood flow, one has to keep track of which new vessel are segmented in each
image. Each time new vessel-pixels appear they are displayed alongside already-segmented
vessels but with different gray-levels, e.g., the later the vessel pixel is segmented in the sequence
the the brighter its gray-level in the result (see Figure 4.29). We obtain thus an image reflecting
the evolution of the blood-flow during the sequence, i.e., we segment the blood flow.

4.5.3 Dynamic vessel segmentation: Results and discussion

We have segmented the blood flow both by change detection and by general-purpose vessel
segmentation in three DSA-sequences. The results achieved by are shown in Figure 4.29.

In the case of change-detection, both the bi-threshold and the multi-threshold general change-
detection methods were tested. However, in this case they returned similar results which – as
already pointed out in Section 4.5.2 – makes them equivalent to a fixed-threshold approach.
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(a)

(b)

(c)

Figure 4.29: Dynamic vessel segmentation and blood-flow segmentation results. We show,
one of the frames where vessels can be best observed in each of the analyzed sequences (a),
the result obtained by change-detection (b) and the result achieved by general-purpose vessel-
segmentation (c) for three different sequences.

In comparison to change detection, the general-purpose vessel segmentation approach is
more stable with respect to parameterization. For change detection, no single parameter-set was
found to return good results for all three sequences. The results obtained by general-purpose
vessel segmentation usually yield more true vessels. The quality of the results was estimated by
visual analysis.

The results show vessels crossing each other. This is a consequence of the imaging method,
as vessels separated in depth are projected one on top of the other. A flow chart of the algorithm
is shown in Figure 4.30.

4.5.4 Dynamic vessel segmentation: Conclusions

The best way to segment vessels in a DSA sequence is by general-purpose vessel segmentation.
We believe that this is due to the use of vessel-specific prior knowledge – mainly in the vessel
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Figure 4.30: Flow chart of the dynamic vessel segmentation algorithm. Segmentation of the
blood-flow includes segmentation of the target vasculature.

enhancement step but also during segmentation.
From each contrast image of the sequence the registered mask is subtracted. In the difference

image, vessels are darker than their surroundings. A small median filter is applied to reduce
the quantum noise before enhancement by single-scale Hessian analysis and segmentation by
unsupervised hysteresis thresholding. To capture the flow of contrast agent/blood through the
vessels, each time new vessels are segmented they are added to the segmentation result with
different gray levels. The entire vessel tree can then be obtained from this results as all pixels
with gray-levels above zero.

To achieve meaningful results the gray-level changes should be generated only by the con-
trast bolus passing through the vessels. Thus, before segmentation potential patient-motion
or motion of the inner organs needs to be compensated. This is achieved during registration
between the mask and the contrast images.

We have shown that the blood flow through still vessels can be also segmented from DSA-
sequences. One obtains thus information with respect to the dynamics of blood through the
investigated vasculature, a result which can be used for enhanced diagnosis of the artery disease.



Chapter 5

Quality inspection for xenograft
valve-implants

The valves of the heart play a major role in the cardiovascular system. In many cases, an ill heart
valve needs to be replaced during open-heart surgery by an implant. There are several types of
implants, both mechanical and biological. From among the biological implants the xenograft
ones – i.e., valves received from animals, e.g., pigs – are largely used. (see Section 5.1)

A good implant should exhibit some typical anatomical and functional characteristics, such
that it can successfully replace the native tissue [145]. We describe here machine-vision-based,
automatic methods for the measuring of quality parameters of heart-valve implants – mainly
xenograft implants – including the area of the orifice (see Section 5.2) and the fluttering of the
valve’s leaflets (see Section 5.3). These methods provide a precise and reproducible way to
infer the quality of an implant and can be therefore used for the analysis and automatic quality
control of heart-valve implants. The fluttering analysis of the leaflets offers new opportunities
for an enhanced quality inspection. We concentrate mainly on valves with three leaflets, i.e.,
the aortic, pulmonary and tricuspid valves.

5.1 Introduction

5.1.1 The heart valves and their role in the cardiovascular system

The rhythmic contractions of the heart move the blood through the vessels, such that it delivers
nutrients and other essential materials to cells and removes waste products. In this respect, the
heart is actually a pump containing four pressure cavities grouped by two into the left and right
side of the heart. The two sides of the heart are separated by a septum, such that the blood
cannot flow between them. The two cavities in each heart side are called atrium and ventricle
respectively and are in turn separated by uni-directional valves.

The right side of the heart transports deoxigenated blood to the lungs and the left side trans-
ports oxygenated blood from the lungs. The deoxigenated blood coming through the veins is
collected into the right atria and pushed through the tricuspid valve into the right ventricle and
from there through the pulmonary valve into the pulmonary artery and then into the lungs. From
the lungs, the oxygenated blood flows through the pulmonary veins into the left atria and from
there it is pushed through the mitral valve into the left ventricle. The contraction of the left
ventricle pushes the blood through the aortic valve into the aorta (see Figure 5.1).

177
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Figure 5.1: Representation of the heart showing chambers, valves and vessels.

The mitral and the tricuspid valves, which separate the atria from the ventricles, are called
atrioventricular valves. They are anchored to the ventricular wall by cord-like tendons (chor-
dae tendinae), which prevent them from opening in the reverse direction. The aortic and the
pulmonary valves on the other hand have no such anchor mechanism.

The name tricuspid points out that this atrioventricular valve has three cusps (i.e. leaflets)
and accordingly the mitral valve is sometimes also called the bicuspid valve. Both the aortic and
the pulmonary valves have three leaflets and are thus tricuspid valves, but to avoid ambiguities
only the atrioventricular valve separating the right atria from the right ventricle is called the
tricuspid valve. However, in some individuals the tricuspid valve has two or even four leaflets,
but this is not considered a valve condition, as long as the valve does not exhibit major leakage
and the opening area is large enough.

5.1.2 The heart valve disease and its treatment

Pathology. The pathology of a heart valve includes endocarditis, stenosis and insufficiency.
In the case of stenosis, leaflets are fused together or they stiffen and do not open properly any-
more. In the case of insufficiency, the valve does not close tightly anymore and relatively large
amounts of blood – a small amount of leakage is normal particularly in the case of the atrioven-
tricular valves – can flow in the reverse direction. Consequently, the heart stress increases with
dire consequences, depending on the gravity of the condition. In the case of endocarditis the
valve-tissue inflames.

Operative treatment. If the condition is severe enough, the physician may decide to replace
the diseased valve by an implant. This is then done during a major open-heart intervention,
associated with a relatively high amount of risk. As of 1996, in the US there have been some
60,000 such interventions each year [192].
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(a) Stented xenograft implant (b) Stentless xenograft
implant

(c) Mechanical implant

Figure 5.2: Examples of prosthetic heart valves.

Medical studies show that the implants do not reach by far the reliability of the native valves,
mainly because they do not have the autorepair abilities of the native tissue. Thus in many
cases, after a certain period of time complications reappear and a new intervention is eventually
necessary.

Prosthetic heart valves. Since 1950 there have been developed some 80 types of implants.
There are both mechanical and biological implants.

With respect to their origin, the biological implants are of three types:xenograft implants,
which consist of similar tissue collected from specially raised animals1 most often pigs,ho-
mograft implants, which consist of tissue received by donation from a deceased person and
autograft implantswhere, e.g., the own pulmonary valve is used to replace the aortic valve and
another – usually homograft – implant is used instead for the pulmonary valve. Such an ex-
change is advantageous as the aortic valve is subject to more stress than the pulmonary valve
and at the same time, the native tissue is more robust.

With respect to their construction, the biological implants are of two types:stented implants,
where the valve is placed on a support frame andstentless implants, without the support frame.
Currently it is believed that stentless implants exhibit better characteristics than stented implants
[64], [191], however this remains to be confirmed by long-term clinical studies.

Some implants are shown in Figure 5.2. The valve in Figure 5.2 (b) is one of those analyzed
within the Results-section of this chapter.

5.1.3 Quality control for biological implants

Clearly, there is a major interest in the quality of these implants, as this is directly related to
their life-span and the occurrence of complications for the patient.

From among the biological implants the xenograft implants are the most often used. To
make sure that only optimally suited implants reach the patients, the characteristics of such po-
tential implants are verified before them being accepted. An implant can be intrinsic-deficient,

1Clearly the food-processing industry can also offer such implants. But then the animals are not raised in proper
conditions, e.g., they are administered different drugs, or take different substances through their food, which are
deposited in the body and may be then harmful for the patient which would receive the implant.
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Figure 5.3: Evolution of the orifice area over the frame index in a test sequence.

i.e., if the donor was itself ill or extrinsic-deficient, e.g., if the heart valve was not placed prop-
erly.

Quality criteria

There are two major quality criteria which characterize a heart-valve implant [147], [148],
[167], [78]:

1 The area of the orificesince the moment the valve opens and until it closes (see Fig-
ure 5.3).

2 The fluttering of the leaflets in the blood flow (see Figure 5.4).

Orifice area. During the period when the valve is open, the area of the opening has to reach
a certain maximal value. It has to evolve then in a certain predefined way in a certain interval
of values. The typical evolution of the orifice area over avalve cycle– i.e. the time interval
from the moment the valve starts opening until it is completely closed – may be observed in an
orifice-area curveand can be divided into three parts. In the first part, starting from a closed
position, the valve opens quickly, thus the area of the orifice has a steep increase. After reaching
a maximal value, the area of the orifice decreases slowly over most of the remaining second-
part. Finally, the valve closes during the third part and the orifice area decreases, but with a
smaller slope than during the opening phase. Such a behavior can be observed on the orifice-
curve shown in Figure 5.3. A valve which does not open properly will eventually force the heart
to work harder, with negative consequences for the patient’s health.

Fluttering of the leaflets. Without further physical experiments, we hypothesize from our
data that there are two types of fluttering:eigen-flutteringand jerky-fluttering. Valves may
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(a) (b)

Figure 5.4: Examples of valves without fluttering (a) and with fluttering (b).

exhibit both types of fluttering or any of the two alone. A good implant should not exhibit any
jerky-fluttering.

Assuming the leaflets are elastic, the flow of liquid through the valve is usually turbulent
and can be thus modeled by a wide-band noise-signal which excites them. If the excitement
signal contains also large-enough components of one of the eigen-vibration frequencies of the
leaflets, these will start to vibrate as a whole, i.e., without major changes at the borders of the
leaflets. Sucheigen-flutteringhas arguably a limited impact on the quality of a valve, as in this
case the leaflets move over their virtual base-line, i.e., the line connecting the two end-points of
a leaflet’s border (see Figure 5.12 (a)). There is alsojerky-fluttering, which is generated by the
flow of liquid, the same way as the eigen-fluttering. This time though, the liquid flows through a
valve with poor elastic properties, which has no eigen-vibration modes. In this case, the leaflets
bend also along lines perpendicular to the base-line (see, e.g., the right and the lower leaflet of
the valve-implant shown in Figure 5.4 (b) and the leaflets in Figure 5.11). This type of fluttering
causes major stress on the leaflets – therefore reducing the longtime durability of the implant –
and influences also the flow of blood – with negative consequences for the health of the patient
receiving the transplant – being thus a major issue in heart valve quality control [191].

Fluttering affects valves with poor elastic properties [147], [148]. The elastic properties of
a valve depend both on the valve-material and on the way the valve is anchored, i.e., if it is
spanned. In the case of implants, usually it is not the valve-material which has poor elastic
properties, but the valve is not fixed properly. For some valves, theoretically, the fluttering can
be corrected by positioning better the valve on the implant. Thus, it is also interesting to know
which leaflet flutters besides how much fluttering is there. For example, if two leaflets of a
tricuspid heart valve do not flutter and the third flutters strongly, then it can be assumed that the
valve was not placed properly.
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(a) (b)

Figure 5.5: Experimental setup (a) and its schematics (b).

Imaging

Imaging is done with the help of a special test-setup [167], which is shown in Figure 5.5. From
a reservoir (1) a transparent fluid – usually water – is transported through a disc valve (4) by a
piston pump (2), which is driven by a waveform adapted cam plate (3). After passing an input
compliance (5) the fluid is pressed through the inspected heart valve (11) into a visualization
chamber (7) located in another fluid reservoir (6). Pressure sensors (10) are installed below
and above the heart valve. Passing an aortic compliance (9) the fluid reaches a height variable
column and flows back to the first reservoir. The heart valve is illuminated by light sources (12)
outside the fluid tank (6) made from perspex. A high-speed video camera (13) takes images of
the heart valve. The digitized images are stored on a PC (14).

Images of the heart valve are taken with 500fps and an interlaced resolution of 480x420
gray pixels. Atest sequence(see Figure 5.3), which shows one valve cycle, has a duration
of some half a second leading, to approximatively 250 frames per sequence. Imaging by an
interlaced camera introduces artefacts on moving objects. In this case, such artefacts can be
observed on the margins of the leaflets. Illumination is provided by Neon-lamps. Such an
illumination modality introduces also artefacts, as the 60 Hz flickering of the lamp is observable
in the 500 Hz image sequence.

The sequences analyzed within this chapter have been acquired with the test-bed already
described, therefore they show interlace- and illumination-related artefacts. Interlace-related
artefacts are strongly attenuated by an opening operation with a disk-like structuring element
of small size. To reduce the influence of the flickering, for each image a certain value is added
or subtracted such that the mean gray-level value in a certain region – which under continu-
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ous illumination should have constant gray-levels – remains constant over the entire sequence.
Clearly, such problems can be avoided by improving the test environment, such that it uses a
progressive-scan camera and a continuous light-source for illumination.

Usually, the orifice appears way darker than the rest of image items. However, there are also
cases when it is strongly inhomogeneous, as some bright artefacts are visible (see Figure 5.11).
These artefacts are generated by mechanical parts of the test environment which reflect some
light. They can be easily eliminated, e.g., by painting them black, or by slightly modifying the
test-setup. Therefore, they have been ignored while designing the algorithms.

Data analysis

To this date, usually only the area of the opening is measured manually [167]. To compute the
opening-area, when evaluating, e.g., a tricuspid heart valve, the human operator has to mark
the six points at the connections between leaflets and at the peak of each leaflet. Including also
the midpoint of the opening, one can define like this six triangles, which approximate the area
of the orifice. For each analyzed heart valve, this procedure, which neglects the rather curved
boundary of the leaflets, has to be repeated for some images properly chosen over the test
sequence. From such data, the behavior of the implant in the entire sequence is inferred. Even
for a few images, this is a rather tedious job and it clearly returns imprecise results, because it
does not consider the entire sequence.

During such a test-run, the fluttering is usually analyzed only visually by the operator if
at all. In some special cases – related to medical research rather than medical routine – the
fluttering is also analyzed with the help of a Bending Deformation Index (BDI) [78], which is
again manually computed only for a few images.

We introduce here novel methods for machine-vision-based support of the quality inspection
of xenograft heart-valve implants. We show how to measure the orifice area and the fluttering
of the leaflets automatically. Such measurement will allow for an improved human-based qual-
ity control, as they are precise and offer reproducible results. Also, an analysis of fluttering
becomes now available in medical routine. They may represent also the basis for fully auto-
mated analysis which can be conducted fast and for a large number of valves. This is clearly
interesting for companies producing such implants.

5.2 Analysis of the orifice area of a heart valve

To obtain orifice-area curves, one needs to segment the orifice in each image of a test sequence.
The inspected valve, placed on its supporting frame, is positioned inside a tube through which a
transparent liquid flows. The portion of the tube downwards from the valve with respect to the
camera is protected from light, such that when the valve opens the orifice appears dark, while
the valve itself is light as it receives illumination (see Figure 5.5).

We describe two classes of methods for the segmentation of the orifice: (i)thresholding-
basedmethods (see Section 5.2.1) and (ii)active contour-basedmethods (see Section 5.2.2).
From each analyzed image-sequence we obtain one orifice curve (see Section 5.2.3), which can
then be used to judge the quality of the inspected valve.
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(a) (b) (c)

Figure 5.6: Original image (a), edge detection result (b) and Hough-segmented outline (c)

5.2.1 Segmentation of the orifice area by thresholding

An image of a test sequence shows besides the valve, also parts of the pipe through which the
water flows and some of the area outside this pipe. The pipe appears similar to the valve and the
area outside the pipe similar to the orifice (see Figure 5.6 (a)). To focus our analysis on the valve
alone, we establish avalve-ROIand ignore the rest of the image. Since on each analyzed image
we expect to see only two pixel classes, i.e., orifice and non-orifice/valve, the straightforward
method to segment the orifice is by gray-level thresholding [95]. Thresholding can still be used
if the underlying model is no longerbi-classbutmulti-class. In this case one has to use the prior
information that the orifice gray-levels are the darkest ones in the valve-ROI.

One can either threshold each image individually, or establish one global threshold for an
entire sequence. As we do not expect to see an orifice in each of the analyzed images, a global
threshold is better suited.

Establishing a valve-ROI

The camera observes the valve through a cylindrical tube, using a normal-imaging optical sys-
tem (see Chapter 2). Thus, the inner wall of the tube is also observable and delineates the
contour of the valve. We use this circular outline as a mask and ignore everything outside it.

We segment the circular outline by the Hough transform for circles [102], [106] (see also
Appendix A.4). As the approximate position of the center of this circle and size of its radius
are known a priori, the search in the Hough-space is very fast. We search the coordinates of
the center in a ROI of size 15 pixels centered at the image center and the radius on an interval
of the same size centered at the value 150. The center and radius of the outline circle is then
estimated by taking the mean over several images. This defines a circular ROI where only the
valve is visible. An example is shown in Figure 5.6 .

Thresholding with a bi-class model

Using the global histogram of a sequence, which is computed from the gray-levels of all im-
ages, the threshold can be established eithermanuallyby the user orautomatically. In some
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(a) (b) (c)

Figure 5.7: Valve image (a), thresholding result (b), and final result after center-based selection
(c).

sequences the results achieved by a global threshold include relatively often other image struc-
tures besides the orifice, e.g., parts of a leaflet, as shown in Figure 5.7 (b). These artefacts are
usually unconnected to the orifice and can be eliminated from the segmentation in apostpro-
cessingstep.

Manual threshold. If the threshold is selected by the user, then this is done by trial and error.
He may first observe the global histogram and guess a certain value for the threshold, then
inspect the results and adapt his decision until satisfied with the results obtained. Clearly, in this
case the procedure is tedious and the results not reproducible.

Automatic threshold. An automatic procedure can solve such drawback. Assuming that only
two pixel classes are observable in the analyzed sequences, one can set a global threshold auto-
matically by the Otsu-method [155] (see also Appendix A.6.2).

Postprocessing. We know that the orifice is a connected structure. As the valve is imaged
in a centered position and thus the image center will be practically always contained within
the orifice, we use the center-pixels – i.e. the pixels situated in a circle of radius five pixels
centered at the image center – to select from the initial raw segmentation only those connected
structures containing at least one of them. We use such a circle to account for the variability
in the positioning of the valve. This plays a major role particularly in images where the orifice
is very small, i.e., at the beginning and at the end of a sequence. The rationale behind this
approach are contained within the hysteresis paradigm. This is shown in Figure 5.7. The initial
thresholding result contains also other structures besides the orifice (Figure 5.7 (b)). After
center-based selection, only the orifice remains (Figure 5.7 (c)).
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Thresholding with a multi-class model

Clearly such an approach – i.e. global threshold followed by postprocessing – will fail if the
spurious structures are linked to the orifice. Such an example is shown in Figure 5.8 (b). Such

(a) (b) (c)

Figure 5.8: Original image (a) segmentation result by the Otsu-method (b) and by the FMM-
method (c).

over-segmentations show also that our initial assumption, that there are only two pixel-classes
in the analyzed images, is sometimes incorrect and there are actuallyseveral classes present.
However, one can usually safely assume that the darkest pixels in the valve-ROI will always
be orifice pixels. Therefore, if we use amixture modelof the global-histogram, tosegment the
orificewe have to separate the mode with the darkest mean gray-level from the rest.

Mixture-models. We would like thus to model a multi-modal histogram and select the darkest
mode. We know a priori neither the number of modes nor the type of the mixture. To proceed,
one can assume a certain type of mixture (e.g. Gaussian) and determine its parameters by the
EM algorithm [65], [20], [21]. One needs to determine also the optimal number of modesk.
The maximized likelihood cannot be used directly for this purpose because it is a nondecreasing
function ofk [111]. However, one can proceed by trying several values and choosing then the
best suited one according to coding-theory-based mixture criteria such as: the minimum mes-
sage length (MML) [152], [193], the minimum description length (MDL) [16], [163], Akaike’s
information criterion [13] and others [124]. There are also other criteria to findk, but which are
less popular (see [79] and the references therein).

Such unsupervised classification is called mixture decomposition [111]. One needs to
specify only the type of the mixture components. This separates it from other standard non-
syntactical clustering algorithms, which usually need to know a priori the number of clusters. It
is also readily applicable to a large class of problems, as it does not need any heuristic to form
clusters – as in the case of many syntactical clustering methods.

The key element in mixture decomposition is the estimation of the number of modesk. This
is done according to:

k̂ = arg min
k
{C(θ̂(k), k), k = kmin, ..., kmax} (5.1)
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with θ̂ = θ1, . . . , θk, α1, . . . , αk the vector of parameters withαi the mixing probability andθi

the set of parameters of thei’th mixture component. The criterionC is a function including two
components: (i) the maximized log-likelihood function and (ii) a term to penalize large values
of k [111]:

C(θ̂(k), k) = −log(p(Y|θ̂(k))) + P (k) (5.2)

whereY = y1, ..., yn is a set ofn independent and identically distributed data samples and
log(p(Y|θ(k))) is the log-likelihood function.

The rationale behind coding-theory criteria is that an optimal (i.e. short) code for transmit-
ting some data can be achieved only with a good data-generation model [180]. If the data is
generated according top(Y|θ̂) then the shortest code-length is proportional to the entropy of
the source:−log(pY|θ). However, to establish a communication both parties need to know the
code. One way to do this is for one party, e.g., the transmitter to start the communication by
sending the characteristics of the source (i.e.θ) to the receiver so that it can build the code by
itself. Then the length of the first message is:

L(θ,Y) = L(θ) + L(Y|θ(k)) (5.3)

All coding-theory criteria require to find̂θ such thatL(θ̂,Y) is minimal. So, with respect to
classification theory, one requires the optimal fit to the training data for a minimum of com-
plexity of the fitting function, or the best classification results on a training set for the simplest
classifier. Such principles, among others, lay the foundations for an entire theory on classifier
design, culminating with the introduction of the SVM.

Thus, to segment some data, one has to compute first by the EM algorithm the parameters
for each mixture-model from a set of candidate mixture-models, which differ from one another
by the number of modes and choose the best one according to the model-selection criterion
C(θ̂(k), k). The set of mixtures to be tried should be defined based on some estimation of the
minimal and maximal possible number of classes. Clearly, if the maximal number is very large,
the procedure will take a very long time. Therefore, an optimal balance has to be found and
prior information plays a major role here.

Finite mixture models. With respect to the way the optimal mixture decomposition is
found, this approach has the disadvantage that each candidate mixture has first to be estimated
by the EM algorithm, which is sensible to the initialization and whose convergence is difficult
– in particular if the number of modes is larger than the true one.

Alternatively, it has been proposed to directly implement a mixture-criterion via EM. For
this purpose, a modified MML criterion is used. The algorithm thus obtained is called the Finite
Mixture Model (FMM) and it was first proposed in [79].

For a one dimensional Gaussian-mixture withµ the set of means,σ2 the set of variances,α
the set of mixing probabilities andY the data, the criterion is:

L(µ, σ2, α,Y) =
N

2

∑
i:αi>0

(log(
nαi

12
)) +

knz

2
log

n

12
+

knz(N + 1)

2
− log(p(Y|µ, σ2)) (5.4)

with knz the number of non-zero (i.e.αi > 0) distributions,n the number of data-points andN
the number of parameters specifying each component (i.e. two for 1D Gaussian distributions).
Then, starting fromm initial Gaussian modes, the algorithm fits the mixtures iteratively to the
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data in the global histogram. At each iteration stept, the means and variances are updated for
each distributions according to:
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. α is upgraded also.
The iterations continue until a minimum number of non-zero distributions is reached (usually
two). Then the optimal parameter set is chosen as:

θ̂ = arg min
θ

L(µ, σ2, α,Y) (5.7)

This algorithm is less initialization-dependent and shows a better convergence [79]. We justify
the modeling by a Gaussian mixture with the prior knowledge that the orifice is characterized by
similar gray-levels in each sequence, with some deviations from the expected orifice gray-level
generated by varying illumination conditions. The same is valid for all other objects present in
the analyzed images.

Segmentation of the orifice area. After computing the optimal mixture-model, the threshold
is found by a likelihood ratio test (see Section 2.4.1) using the two mixture components with
the smallest means – thus separating the darkest mode from the rest, as orifice pixels have
the smallest gray-levels in the analyzed circular ROI. This is then practically identical to the
overall optimum, as the conditional probabilities of other mixture models around the threshold
are always close to zero. This is shown for two examples in Figure 5.9.

When using the mixture-decomposition method, the over-segmentation is no longer an issue
in the segmentation of the orifice of a heart-valve (see Figure 5.8 (c)). Consequently, one needs
no center-based selection anymore. However, in some cases under-segmentation becomes now
an issue. Such an example is shown in Figure 5.10.

5.2.2 Snakes for the segmentation of the orifice area

Threshold-based methods may fail because the orifice does not have a homogeneous gray-level
representation, as it is not defined over a certain reflectivity, which can be then translated into
an eigen gray-level distribution, but it is defined by the borders of the leaflets. The orifice is
actually transparent and it will thus take over the gray-level of the structures against which
it is imaged. Practice shows that it is rather difficult to achieve a homogeneous background to
project the orifice against. There are also extreme cases, when some mobile parts of the imaging
setup can be seen through the orifice, as shown in Figure 5.11. However, the imaging-setup can
be easily modified such that these parts are no longer observable.

For a better segmentation one should thus start from the leaflets and select the orifice as
defined by their borders, i.e., as the area enclosed within these borders. The border-shape
curves cannot be described a priori as they have a large variability. Therefore, we use active
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(a) (b)

Figure 5.9: Outline of the normalized global-histogram (continuous line), estimated mixture
(dashed line) and estimated mixture components (dashed-dotted line) for two sequences from
our data-base. The threshold to segment the orifice is set such as to separate the darkest mode
from the next darkest.

(a) (b) (c)

Figure 5.10: Original image (a), FMM-based segmentation (b) and snake-based segmentation
(c).
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(a) (b)

Figure 5.11: Examples of fluttering valves with an inhomogeneous orifice. These types of
inhomogeneities can be easily corrected by slightly modifying the test setup.

contours/snakes [119] (see also Appendix A.3), which are well suited to track them over the
analyzed sequence [142]. As external force we use a Gradient Vector Flow (GVF) [197], [198]
(see also Appendix A.3), which has an improved attraction range in comparison to other external
forces [114].

The snake has to beinitialized automatically and only after the valve has opened enough to
see the orifice. We initialize the snake from the leafletbase-lines, which are the lines connecting
each of the anchor points (see Figure 5.12 (a)).Anchor pointsare the points where two leaflets
meet (see Figure 5.16 (f)). After initialization, the snake willtrack the outline of the leaflets
(see Figure 5.13 (b)) until the valve closes.

Initialization

The active contours need to be initialized after the moment when the valve starts to open, when
enough of the orifice is observable. Initialization can be done automatically, e.g., based on the
border line of the orifice, as segmented by thresholding in an first image, or starting from the
base linesof the leaflets.

The snake can track the outline of the leaflets only in images where this is well observable.
Therefore, for a successful initialization one has to wait for the valve toopen enoughand then
halt the snake at the end of the sequence, when the opening isno longer large enough. To
reduce the time intervalsince the moment when the valve opens until the snake is initialized,
we use a balloon pressure force [42] (see also Appendix A.3) to push the base line towards the
borders of the leaflets.

Initialization from the base line. Clearly, the initialization from the border line of a seg-
mentation result may be erroneous, if the segmentation result is erroneous. The initialization
from the base line has the additional advantage of placing snakels already in regions where
the borders of the leaflets are not well defined, e.g., they are imaged against parts of the tube
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(a) (b)

Figure 5.12: Initialization from the base line and the corresponding snake result.

seen through the orifice (see Figure 5.20 (a)). In our experiments we have used the base line to
initialize the snake. This is shown in Figure 5.12 (a).

Detection of the frames where to start and stop the tracking. To find out when to initialize
the snake, we follow the mean-value of the gray-levels within a circle, defined such that it is
maximally enclosed in the triangle given by the base lines. If this value is beneath a certain
threshold, then we conclude that the valve has opened and initialize the snake. The threshold is
chosen as the median of the center mean-values recorded over the first 25 frames of a sequence.
At the end of the sequence, if the mean value is above the threshold, the snake-based tracking
is halted.

Timely initialization of the snake. The initialization from the base line can be done only
relatively late after the valve has open, such that the base lines fall in the attraction range of
the leaflets. This can be improved by using a balloon snake pointing towards the center of the
image. However, such a balloon has to be carefully parameterized to avoid a collapse of the
snake. After the base line initialization, the position of the snake in the previous image is used
as initialization for the current image.

Snakes-based tracking of the leaflet border

After the snake has converged in the initialization frame, its position in the past image is used
as initialization for the next one and so on. To avoid a collapse of the snake, it tracks the
leaflets until shortly before the valve closes. The GVF is used as external force field, conferring
robustness to the segmentation through its improved attraction range and concavity behavior
[198].

During tracking the snake cannot follow the valve orifice in regions of small contrast, i.e.,
where portions of the pipe behind the valve are visible through the opening. This is shown in
Figure 5.13 (a). Asballoonsare unsuited to solve such problems in this case, we show how to
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(a) (b)

Figure 5.13: Snake segmentation result without (a) and with (b) attractor.

build attractorsfor the snake around theanchor points, such that the snake tracks the borders
of the leaflets correctly, as in the example shown in Figure 5.13 (b).

Balloon-supported tracking. The usual solution for solving such convergence problems, is
to use a balloon, if the GVF is not enough. This time, the balloon should be pointed outwards
from the image center. However, such an approach is problematic when the valve starts closing.
It may happen that due to the balloon in some cases the snake loses the orifice. This will lead to
a complete failure of the analysis, due to the way the snake is initialized, i.e., from the previous
frame. Initializing the snake each time from a small circle centered at the image center has the
potential to solve such problems at least partially, as in this case the tracking will fail only for
single frames. Generally, balloons need to be used very carefully and usually only when the
sought features are strong enough to yield a good attraction basin.

Anchor-points-based attractors for better tracking. Alternatively, we propose to build ar-
tificial attractors around the anchor points. For this purpose we use the circular outline, which
was segmented during initialization. The artificial attractors are actually edges, constructed
from parts of the circular outline in the vicinity of anchor points. These vicinities are circular
in shape and have a radius of 125 pixels.

To begin with, the circular outline is dilated slightly, starting from its initial one pixel width,
to increase its attraction range. Then, parts of the outline around each anchor point are selected.
The selection includes those parts found in a circle of radius 125 pixels around each anchor
point. Finally, they are subtracted from the original image such that their mean gray-level is
equal to the mean gray-level in the dark parts of the orifice. An example is shown in Figure 5.14.

We do not use the entire circular outline as one attractor, because such a strategy may lead
to failure, e.g., if one of the leaflets can no longer be observed as it travels behind the circular-
outline, then the snake will reach and possibly remain there even if the valve starts closing.
Such an example is shown in Figure 5.15.
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(a) (b)

Figure 5.14: Construction of attractors (a) and final result (b).

Automatic determination of the anchor points

The anchor points are needed during initialization to define the base lines, but also during track-
ing to build the attraction basins which constrain it. The anchor points are established auto-
matically. For this purpose, we use the first 11 frames after the valve has opened, i.e., before
the valve is completely opened. For these images we can safely assume that the orifice has a
homogeneous and unique gray-level representation and segment it by thresholding. One such
example is shown in Figure 5.16 (b).

We start by segmenting the circular outline. We then find the center-lines of the orifice by
dilating and then thinning the segmentation result (see Figure 5.16 (c)). The dilation is necessary
to ensure that only the centerline remain after thinning. Then, we use the Hough transform for
lines to detect the three center-line rays and compute the points where these rays intersect the
circular outline (see Figure 5.16 (d)). Then, for each ray and for every point where it intersects
the circular outline, the distances from the intersection point to all center-line points along the
ray are computed. For each intersection point only the minimum is considered. Anchor point is
then the intersection point with the minimum value (see Figure 5.16 (e)). The final positions of
the anchor points are determined by taking the mean position over 11 frames for each anchor
point. This is shown in Figure 5.16 (f).

5.2.3 The orifice curve

The orifice curve is the curve of orifice area over frame index (see Figure 5.21). During one
heart-beat, a valve goes through a complete cycle: from opening to closing. As the analyzed
sequences show the evolution of the valve during one simulated heart beat, the orifice curve
reflects the dynamic evolution of the area of the orifice in onevalve cycle.

There are two quality criteria which can be measured on such curves. First is themaximum-
valueand then thedynamic evolutionof the orifice. For a healthy valve, the maximum value
has to be within a certain predefined interval, such that a proper blood flow is obtained without
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(a) (b)

(c) (d)

Figure 5.15: Snake result for two frames using the entire circular outline as attractor (a) and (b)
and the same images using only the portions of the circular outline around the anchor points as
attractor (c) and (d).
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(a) Original image. (b) Segmented orifice. (c) Result of morphological pro-
cessing.

(d) Intersection of center-line
rays with the outline of the
valve-ROI.

(e) Minimum-distance points. (f) Final result.

Figure 5.16: Automatic anchor points detection.
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additional stress for the heart. With respect to the dynamic evolution, a valve cycle has to show
three phasesand the orifice curve of a healthy valve should accordingly show three regions.
The first phase is the rapid increase phase, when the orifice increases rapidly to its maximum
value as the valve is opening, during the second phase, the area of the orifice should decrease
slowly, the valve being now opened and finally in the third phase, the area decreases sharply
and the valve closes completely. Such a typical behavior is shown Figure 5.21 (a). Also, during
one valve cycle, the values of the orifice area in each phase have to fall in certain predefined
intervals.

The dynamic behavior of the valve during the three phases can be measured by the derivative
of the curve in each region. The three orifice curve regions corresponding to the three phases
of the valve cycle can be segmented as with the methods used to select the complete state in
Section 3.2.1.

5.3 Analysis of the leaflet fluttering

The effects of the fluttering can be observed both in time and space. Leaflets of a fluttering
valve will exhibit a jerky motion somewhat similar to the way a flag moves in the wind. At the
same time, at each time-instance while they move during the second phase of a valve cycle, their
borders will appear with an irregular form, as they bend and wriggle in a plane perpendicular
to that of the image (see Section 5.3.1). Implants which exhibit such leaflet deformation are
shown, e.g., in Figure 5.7 (a), in Figure 5.8 (a) and in Figure 5.4 (b).

The analysis of fluttering includes detection and quantification. We describe how to detect
and quantify the fluttering in the time domain on the orifice curves (see Section 5.3.2) and in the
space domain in each image (see Section 5.3.3). We also describe composed methods, taking
into consideration information from both time and space (see Section 5.3.4).

5.3.1 Fluttering characteristics

To measure the fluttering successfully, one has to understand how does fluttering appear and also
howandwherecan it beseen in the test-sequences. We seek to quantify only jerky fluttering,
which is from now-on called simply fluttering and we seek to measure fluttering for each leaflet.
We measure fluttering only in the second phase of a valve cycle, because otherwise, i.e., during
opening and closing of the valve, the leaflets are tensed and do not flutter.

The motion of the leaflets and its effect on the leaflet projection in the image plane.For
most of the time during a valve cycle, the borders of the leaflets delineate the orifice and thus
their fluttering may be practically observed on the borders of the segmented orifice. However, in
some cases, the leaflets bend over their vertical position and parts of their border can no longer
be seen, as their contrast almost vanishes (see the left leaflet in Figure 5.15 (a)). There are
also cases when the leaflets disappear behind the tube through which the camera observes the
valve (see Figure 5.20 (a) and the discussion in Section 5.2.1). Nevertheless, the fluttering for
an entire sequence can be estimated, as usually the well-conditioned images represent a large
majority.
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Segmentation of the second phase of a valve cycle.While the heart-valve is opening the
leaflets are usually tensed and thus will not flutter. Consequently, fluttering should be analyzed
only when the valve is fully open, i.e., in the phase two of a valve cycle. This phase can be
segmented on the orifice curves using methods similar to those developed to segment the filled
state in a sequence of coronary angiograms (see Section 3.2.1).

5.3.2 Fluttering analysis in time. Orifice curve-based fluttering measures

A time-based analysis of fluttering seeks to quantify the “jerkiness” in the motion of the leaflets.
The motion of the leaflets directly influences the area of the orifice and thereforefluttering can
be also measured on the orifice curves.

Fluttering conform orifice curves. To conduct an analysis of the fluttering based on the
orifice-area curves, one needs to ensure that changes of the area are generated alone by the
opening and closing of the valve. In comparison to threshold-based segmentation, the snake-
based approach is more likely to – and practically does – fulfill this condition.

Threshold-based segmentation is sensible to illumination changes. This is shown in particu-
lar in Figure 5.21 (a). The see-saw appearance of the orifice curve computed by thresholding –
irrespective which method – is due to the varying illumination and have therefore nothing to do
with variation of the orifice area. Also, the spike, at the end of the threshold-based orifice curve
shown in Figure 5.21 (d), is due to a bad segmentation result and not to change in the area of
the orifice. Conversely, snake-based orifice curves reflect the true evolution of the orifice.

Detection of fluttering

The influence of fluttering on the orifice curve. Fluttering causes the area of the orifice
to change abruptly and often over time, as the leaflets move back and forth. Thus, it can be
detected on the orifice curves as a high-frequency signal, modulating the portion of the curve
corresponding to the second phase of a valve cycle (see the snake-based results in Figure 5.21).

Quantification of fluttering.

After segmenting the slow-decrease phase on the orifice curves, the energy in the resulting
1D signal can be used as a measure of fluttering. For this purpose, the DC component and
the low-frequency components introduced by the slowly decreasing orifice area, need to be
first eliminated by high-pass filtration, such that the result is related solely to the fluttering.
Also, frequency components related to low-frequency eigen-fluttering have to be eliminated.
Empirically, we have set the pass-frequency at 6 Hz. We then measure fluttering by the mean
energy in the filtered signal. Practice shows that the more fluttering, the larger the measure.

5.3.3 Fluttering analysis in space. Measuring fluttering by the deforma-
tion of leaflets

The fluttering is a time-property of the valves. Therefore, theoretically, a valve whose leaflets
have a very irregular form, but which is constant in time, is not considered to flutter. However,
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practically,leaflets that have an irregular form do flutter. A space-based analysisof the flutter-
ing seeks tomeasure how irregularis the shape of the border of the leaflets. The border of the
leaflets is obtained directly from the result of the orifice-area segmentation.

Detection of fluttering

The connection between fluttering and the irregular pattern of a leaflet border. Leaflets
of tricuspid heart-valves have a natural form whose outline is low-frequent. Also, the flow of
liquid through a valve is turbulent. Thus, as liquid goes through and if the valve has poor elastic
properties, its natural form will appear modulated by different flow-related higher-frequency
components – i.e. the border of the leaflet has an irregular pattern – and it will also change in
time. Therefore, the irregularity of a leaflet borders is related to flutter.

Theoretically, one can imagine a valve of irregular border but with a pattern which remains
constant in time. Such a valve does not flutter, but nevertheless a space-based analysis as the
one proposed here will still detect a fluttering valve. To differentiate in such a case, one has to
observe also how does the irregular pattern of the border change in time. Practically, we never
encountered such a case.

Quantification of fluttering

An irregular border-curve will contain relatively large amounts of energy in the high-pass part
of its spectrum and it will also have a high curvature. We introduce thereforetwo measuresto
quantify how irregular is the border of the orifice: one is related to theenergyin the high-pass
part of the spectrum and the other one to thecurvature.

The border of the orifice of a tricuspid heart-valve usually exhibits three regions of relatively
high-curvature (one at each anchor point), which are not related to the fluttering. These clearly
decrease the sensibility of our fluttering-analysis. Therefore, we propose to analyze each leaflet
alone. An additional reason for analyzing a leaflet alone is, that we would like to be able to
characterize each leaflet independently. Therefore, we measure the fluttering for each leaflet
and in each frame. For this purpose, we need toseparate the border of each leafletfrom the
border of the entire orifice.

We can measure the fluttering of an entire valve in an image by computing the mean of a
single-leaflet fluttering-measure, over all leaflets. We can observe thus also the dynamics of
fluttering. The mean over an entire sequence gives then the fluttering for the analyzed valve.
Practice shows that the more fluttering, the larger the measure.

Finding the border of each leaflet. The valve orifice is defined by the borders of the leaflets,
which can be segmented on the orifice border. For this purpose we use the anchor points, which
have been already computed. As the fluttering is analyzed only over the second phase of a valve
cycle, these will be situated always on the border of the orifice and will define thus the borders of
each leaflet. For a robust segmentation of the leaflet borders, we use the anchor-points together
with the center of the valve to divide the image in three regions. These regions give then an
implicit partition of the orifice border into curves corresponding to each leaflet. To make sure
that the analysis focuses only on leaflet borders and not on other artefacts, like e.g., the circular
outline, after segmenting the leaflet border, we keep only the two thirds around the center and
ignore the rest (see Figure 5.17 (a) and (b)).
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(a)

(b)

(c)

Figure 5.17: Leaflet selection (a) the corresponding 1D signal (b) and the time-space image (c).



200 5.3. ANALYSIS OF THE LEAFLET FLUTTERING

Energy-based measure. We propose to measure the fluttering by the high-frequency energy-
content of the 1D signal given by the border of the valve orifice. To analyze the fluttering alone,
we first eliminate the DC component, as well as the low-part of the spectrum of a leaflet-border
signal, which contains frequencies linked to the natural shape of the leaflet and other artefacts.
The energy in the remaining components is the fluttering measure for the analyzed leaflet.

The high-pass filtration takes place in the Fourier domain by setting to zero all spectral com-
ponents up to the pass-frequency. In our experiments we choose a pass-frequency of one tenth
of the sampling rate. We justify the filtration in the Fourier domain by observing that we are
primarily interested in the energy in the high-pass band of the signal and not in reconstructing
the signal after filtration. Therefore, we can use an optimal transfer characteristic.

Curvature-based measure. Theoretically, an irregular valve-border should exhibit large cur-
vature values and thus we propose to use the curvature of the valve-border as an alternative
fluttering measure. We approximate the curvature by the second term of the internal energy of
a snake (see Appendix A.3).

5.3.4 Quantification of fluttering by spatio-temporal processing

The fluttering is a time-property of leaflets, which however, is also related to the appearance of
the leaflets borders in each image, i.e., to space. We propose therefore, tomeasure flutteringby
combining information from both domains.

Detection of fluttering

Leaflet evolution in time-space images. The border of a leaflet is obtained by sampling over
the base line and we keep only the two thirds around the center, ignoring the rest (see Figure 5.17
(a)). These are then used to compute a time-space image. For this purpose each leaflet-border-
curve is first sampled over the base line linking the two corresponding anchor points, obtaining
thus for each image a 1D signal of standard length( see Figure 5.17 (b)). We then gather all these
signals as columns of a time-space image. An example is shown in Figure 5.17 (c). Clearly,
fluttering is related to the energy content in the higher-frequencies of such images.

Such images capture both the time evolution of the leaflets and the form of the leaflet border
at each time-instance. Therefore, a fluttering measure using these images has the potential to
return correct results even for the theoretical case we have constructed previously, i.e., about a
leaflet with irregular border, but with a pattern of irregularity which is constant in time.

Quantification of fluttering.

We propose to use as measure of fluttering for each leaflet, the mean high-pass energy in such
time-space images. The mean over leaflets gives then a fluttering-measure for an entire se-
quence. By high-pass filtration we eliminate the influences given by the natural tendency of
the valve to close slowly during the second phase of a valve cycle, as well as the low-frequent
eigen-vibration, which we do not want to measure. This is shown in Figure 5.18. Practice shows
that the more fluttering, the larger the measure.
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(a) (b)

(c) (d)

Figure 5.18: Time-space images before (left column: (a) and (c)) and after (right column: (b)
and (d)) elimination of the influences given by the natural tendency of the valve to close for a
non-fluttering (first line: (a) and (b)) and a fluttering (second line: (c) and (d)) valve.
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Sequence Fluttering Observations
A no eigen-vibration of low amplitude and high frequency
B strong no eigen-fluttering observable
C low eigen-fluttering of high frequency; strong fluttering

for one leaflet
D strong no eigen-fluttering observable
E low eigen-fluttering of high amplitude and low frequency

Table 5.1: Sequences in the data base.

5.4 Experiments and discussion

We have tested the algorithms proposed here on five valve sequences chosen such that they
cover – to the best of our knowledge to date – the entire spectrum of problems encountered
while analyzing valves. All sequences show valves with three leaflets. They are described in
Table 5.1.

Segmentation of the orifice area

To determine the orifice area of the valve and to find its edges, whose shapes are needed for the
fluttering analysis, we have followed two approaches. The first approach is threshold-based and
the other is snake-based.

Within the first approach, to find the orifice area we compare each image to an adaptively
determined threshold. We have investigated two automatic thresholds: the first one assumes
a bi-class model of the global histogram and sets the threshold by the Otsu-method and the
second, assumes a multi-class model and finds the threshold by likelihood ratio test between
the two darkest components of a mixture whose parameters are found using the FMM. (see
Figure 5.19). The edges are obtained from the segmentation result by morphological processing.

The second approach is based on an appropriately designed snake. The orifice area is ob-
tained as the area enclosed by the snake and its edge is directly obtained from the snake. We
have improved the external energy term such that the snake follows the leaflet everywhere.

In Figure 5.21 are shown orifice-area curves plotted over time-index for each of the se-
quences in the data-base and by each method. The results for the Otsu-threshold have been
achieved with center-selection, while the results for the mixture decomposition without.

The Otsu-threshold. The Otsu-threshold is usually larger than the mixture-threshold. This
has the disadvantage of returning over-segmentations (see the spikes in Figure 5.21 (d)), but at
the same time it makes it less sensible to illumination variations (see the ripples in figure 5.21
(a)). In many cases the oversegmentation problem of the Otsu-threshold can be solved by
center-based selection and it usually affects only some images in a sequence.

The FMM-based threshold. The FMM-threshold returnsbetter resultsfrom the point of
view of a classification algorithm, since it separates better the darkest cluster on the global-
histogram for each sequence. This is shown in Figure 5.19.
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(a) Sequence A (b) Sequence B

(c) Sequence C

(d) Sequence D (e) Sequence E

Figure 5.19: Global histogram and thresholds for five different sequences.
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(a) (b) (c)

Figure 5.20: Examples from sequences where the valves show an inhomogeneous orifice.

It appears however, that the mixture-threshold is actually too conservative for some se-
quences. The reason for this is that the orifice gray-levels do not cluster well, or in other words
the orifice surface does not contain a single type of dark pixels. This is due, e.g., to the light
coming sideways to the valve and making thus some orifice parts lighter than others (see Fig-
ure 5.20 (b) and (c)), but also to the fact that reflections appear or even small parts from the
test-setup-tube downwards from the position where the frame with the valve is placed. This
happens particularly when the valve is fully-opened (see Figure 5.20 (a)). If the FMM-method
fails, then it will be likely to fail for an entire sequence (see Figure 5.21 (e)).

Snake-based tracking of the orifice border. The assumption about an orifice darker than its
background holds practically always. It did so in all analyzed images. However, the orifice
and background are in many cases not perfectly homogeneous (see Figure 5.20). Also, all
sequences used here to test the proposed algorithms and which have been acquired with the
currently available test setup are affected by illumination changes.

Snakes are robust against illumination changes and offer good orifice segmentation results,
as long as the edges they follow are still distinguishable. They are also able to follow the leaflet
border even in regions where the contrast between the leaflet and the background is weak and
are thus superior to threshold-based approaches, as shown also in Figures 5.10 (c) and 5.21.
The orifice curves computed by snakes usually show neither ripples nor spikes and return results
in good agreement with the expectations of a human expert.

The result of the segmentation depends on the attraction range of the external energy and
also on the way the energy is defined around the anchor points. A GVF offers a large attraction
range and good convergence in regions of high border-curvature [198]. The attractors make
sure that the external-energy field converges properly around anchor points.

Because the images are acquired at high frame-rate, the distance traveled by the leaflets be-
tween two consecutive images is small enough such that the converged snake from the previous
image is practically always in the attraction sink of the leaflet borders in the current image.

Comparison between methods. Comparing the two automatic thresholds with respect to how
good they segment the orifice, it seems that the Otsu-threshold functions better for some se-
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(a) Sequence A (b) Sequence B

(c) Sequence C

(d) Sequence D (e) sequence E

Figure 5.21: Orifice curves computed by different methods: using snakes (continuous line), the
Otsu-threshold (dashed-dotted line) and the FMM-threshold (dashed line).
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quences (e.g. the one shown in Figure 5.21 (e)) and the FMM-threshold for others (e.g. the one
shown in Figure 5.21 (d)).

The FMM-threshold returns better results from the point of view of a classification algo-
rithm. It separates better the darkest dome of the global-histogram, which is usually associated
with the orifice (see Figure 5.19). This however is not always enough in practice, due to the
inhomogeneity of the gray-level representation of the orifice. The FMM-threshold is usually
too conservative.

Apart from the fact that they have to be initialized when the valve has already opened,
active contours with GVF for the external-energy term are well suited for the segmentation of
the valve orifice. The extended energy-term, with attractors near the anchor points, ensures a
precise segmentation of the valve border over its entire length. They give better, more robust
results than thresholds. This is particularly true for the sequences from our data-base, which
have been recorded using a flickering illumination source. As shown, e.g., in Figure 5.21 (a)
and Figure 5.21 (d) the threshold-based orifice curves capture also the flickering, which in turn
can be misinterpreted for fluttering of the leaflets. The snake-based orifice curves do not exhibit
flickering artefacts.

Fluttering detection and quantification

We have described three approaches to the detection and quantification of the fluttering: the
time-based, the space-based and the time-space image-based approach respectively. The results
obtained by the fluttering-quantification methods proposed here are shown in Table 5.2.

Sequence
Time-based Space-based Time and space-based

energy energy curvature energy·103

A 153.03 191.11 27.79 60.93
B 271.43 1002.61 26.50 444.99
C 220.21 280.36 31.20 118.34
D 266.70 684.25 29.02 396.28
E 223.01 257.13 33.37 215.31

Table 5.2: Fluttering measured in the sequences from our data base by different methods. The
orifice area was segmented using the snake-based approach.

Time-based measures. The simplest and fastest way to measure fluttering for an entire se-
quence is by a frequency analysis of the orifice curves. As shown in Table 5.2, the results
achieved this way correlate well with the ground-truth. However, there is no possibility to
measure the fluttering of each leaflet of the valve.

Space-based measures.The curvature is only of limited use in fluttering-analysis for valves
with three leaflets, i.e., the aortic, pulmonary and tricuspid valves. The reason for this is the
relatively sharp bend which the border of a leaflet makes in the middle. This bend is usually
visible in many of the images acquired during the second phase of a valve cycle and it keeps
its form for all but the worst valves. As a consequence, the curvature is equally large for both
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(a) F = 68.76·103 (b) F = 213.10·103 (c) F = 73.16·103

Figure 5.22: Time-space images for the three leaflets of sequence C with the corresponding
fluttering measure (F).

fluttering and non-fluttering valves and it becomes smaller for valves showing a very strong
flutter. The curvature-based measure shows, to a certain extent, a negative correlation to the
ground truth given in Table 5.1, i.e., the more fluttering the smaller the curvature, against our
initial expectations.

The energy-based measure returns results which do correlate with the ground truth. This
may be seen also as a confirmation of the fact that in the sequences from our data base, an
irregular pattern of the border of a leaflet implies that the leaflet flutters.

Space-based measures return results for each leaflet. However, one cannot differentiate
between valves which keep the pattern of their borders and those which do not.

Time-space images. We propose to analyze each leaflet independently by means of a high-
pass frequency analysis of time-space images. Such images can be obtained by introducing the
outline of each border for each analyzed image in a matrix. They can then be used to charac-
terize both the time and space evolution of a leaflet and therefore can additionally differentiate
between valves which keep the pattern of their borders and those which do not. An example is
shown in Figure 5.22. These results do correlate very well with the available ground truth.

Comparison between fluttering measures. All methods proposed here, with the exception
of the space-based curvature measure, return results which are in agreement with our ground
truth. Time-based measures are fast to compute, but they cannot return information for each
leaflet alone. Space-based measures on the other hand measure only a consequence of the
fluttering, i.e., the irregular shape of the border of the leaflets.

A time-space image offers the most information on all aspects of fluttering and can be also
computed for each leaflet alone. Therefore, we believe that measuring the fluttering by means
of time-space images is the best way.

5.5 Conclusions and outlook

We have described methods for the automatic computation of quality measure for heart valves.
We expect the automatic measuring of the orifice area to improve on the current methods mainly
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in two ways:

1 More precise, because usually humans are prone to errors during such painstaking jobs
– in this respect similar to the manual segmentation of vessels. Also, during manual
analysis only a few images from the available sequence are actually analyzed and the
sought measures are then computed from data interpolated from these measurements.
Automatic measurements use all images in the sequence.

2 Faster, such that more implants can be inspected and the chances of finding a better one
rise.

Segmenting the orifice in each image of the analyzed sequences leads to the computation of
an orifice curve and of a fluttering measure.

The orifice curve describes the evolution of the area of the orifice during a valve cycle. This
should exhibit a specific form – showing all typical phases: rapid-increase, slow-decrease, fast-
decrease – which permits then the calculation of features linked to the dynamic properties of
the heart valve as, e.g., opening and closing speed. Also, the values of the area of the orifice
during each phase and in particular the maximal value, has to fall in a certain interval.

By fluttering we mean the dynamic deformations of the leaflets during the valve cycle.
We can detect both jerky fluttering and eigen-fluttering. We have shown how to measure the
jerky fluttering, while ignoring the eigen-fluttering, which is considered uncritical. Measuring
the fluttering is a novel approach, which has not yet been proposed. Currently, the fluttering
is assessed only visually – in all but a few special cases related to medical research. By the
additional analysis of fluttering we provide new ways to better assess the heart valve quality.

We have applied these methods to the quantification of the quality of heart valves with three
leaflets. This category includes the aortic, the pulmonary and the tricuspid valves. However, we
believe that such methods can be also successfully used for bicuspid valves, thus constituting a
tool for heart valves analysis in general.

We consider that a test image-sequence is suited for analysis only if it shows one entire
valve cycle, from the moment the valve opens until it closes.

5.5.1 Automatic computation of orifice curves

Orifice curves are obtained from the evolution of the segmented area of the orifice over the frame
index. We consider that the snake-based computation of the orifice area is the most appropriate
method.

Segmentation by thresholding

As the lighter valves are imaged against a darker background, we first tried to segment the
orifice by a gray-level threshold. We do not expect to see the orifice in each analyzed image.
Therefore, we use a single threshold for the entire sequence. This threshold is set on the global
histogram of the test sequence.

The sequences from our data base have been acquired with a neon-lamp and thus illumina-
tion changes appear between different images, which influence the results computed by thresh-
olding the global histogram. To attenuate this flickering, we compute a mean gray-level over
the entire sequence in a region of the image with constant gray-levels and modify then each
image, such that its mean in the same region is the same as the sequence mean.
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Because there are more than two pixel-gray-level classes in the analyzed images, a simple
threshold usually returns many false positives. However, the segmentation can be improved
using the additional prior knowledge that the valves are imaged in a centered-position and thus
the image center will be contained in the orifice. Then, we select from the initial threshold-
results only those pixels connected to a center pixel. A center pixel is defined as any pixel
situated in a small disk around the image center. We consider a small disk rather than the image
center alone to be able to proceed even in the cases when the valve is not perfectly centered.

If falsely segmented background items are linked to the orifice, then the segmentation by
such a bi-class procedure will fail. To reduce the rate of false positives in the initial segmen-
tation, we improved the thresholding procedure by accounting for more than two pixel-classes
in our model of the global sequence-histogram. For this purpose, we have used a mixture-
decomposition algorithm, which can compute the number of mixture modes automatically.
Then, we have selected the orifice as the darkest mode. Although from a classification point
of view the segmentation improves – as the darker dome of the global histogram usually as-
sociated with the orifice is better segmented – the results achieved are sometimes even worse
than before. The reason for this is that the orifice, although dark, does not have a homogeneous
gray-level representation as expected and at least in some cases it cannot be modeled as a single
mixture-mode. Also, sometimes parts of the orifice, in the vicinity of those points where the
leaflets meet, are not imaged against a dark background, but against a lighter one and thus will
certainly not be segmented.

Segmentation by active contours

To improve the segmentation results we propose to use active contours to track the leaflet bor-
der over the entire sequence. They are insensible to illumination variation and to the inhomo-
geneities of the orifice gray-levels. Also, we showed how to make the snake follow the leaflets
even in regions of weak contrast – as long as some leaflet edge is still visible – guided by the
external energy field with additional conditioning around anchor points. Snakes are therefore
best suited to compute the orifice-curves. The disadvantages of the snakes are that practically
they need to be initialized after the valve has opened and can not follow the orifice until the
valve is completley closed.

Practical computation of orifice curves. To analyze an entire sequence, we propose to use
a global-threshold to segment the orifice in those images in the beginning and the end of a
sequence, when the snake cannot be properly defined. One can be reasonably certain that a
gray-level threshold segments the orifice properly in the initial and end phases of the valve
cycle, because then it can be safely assumed that the orifice, due to its small size, is imaged
against an uniform-background . Even if in some rare cases the threshold can fail, most of the
sequence will be correctly segmented nevertheless by the snake, as this is initialized from the
leaflet baseline and not based on the result achieved by the threshold. Using this combination
between gray-level threshold and snake, one can successfully segment the orifice over an entire
valve cycle. We use the multi-class-model threshold.
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5.5.2 Fluttering analysis.

Fluttering appears as a consequence of the poor elastic properties of valves and is best observ-
able during the second phase of a valve cycle, i.e., when the valves are fully open. This phase
can be segmented on the orifice curves as described in Section 3.2.1.

The results show that the fluttering of a valve can be correctly measured by all methods
proposed with the exception of the curvature-based measure. However, we consider the time-
space images-based fluttering quantification to be the most appropriate method, as it offers the
largest amount of information and enables thus an improved analysis in comparison to the other
methods.

Background of fluttering. The natural form of a leaflet acts as a regularizer on its behavior in
the flow and it is maintained during the entire second phase of a valve cycle only if the leaflet has
good elastic properties. If their elastic properties are poor the leaflets cannot hold their natural
form. Consequently, their motion will be jerky and their appearance irregular. In the analyzed
image sequences this can be observed both in time and space on the border of the valve orifice,
i.e., on the borders of the leaflets. In time the leaflets of a fluttering valve have an abrupt and
jerky motion and in space the outline of the leaflets has a highly irregular appearance. These
two conditions are linked to one another. The valve can be seen as a system which is excited
by a broad-band signal given by the flow of liquid – the flow of blood through large vessels
is turbulent and not laminar. This sets the leaflets in motion. If their elastic properties are
good – i.e. the valve material is elastic and it is properly spanned – the leaflets will keep their
natural form while open and act thus mostly as a band-pass filter, resonating only with certain
components of the input signal – the resonance is manifested as a rhythmic motion, which we
call eigen-vibration. In the ideal case, they will act as a stop-filter and show no resonance.

Measuring the fluttering. We have described both time-based and space-based methods to
measure the fluttering, as well as methods in both time and space. Time-based methods are
related to the evolution of the leaflets during the sequence and space-based methods analyze
the appearance of the leaflet border. Time-based methods measure fluttering correctly, but they
cannot be used to measure each leaflet individually. From the space-based methods, only those
which measure the fluttering by the energy in the upper part of the spectrum of a the leaflet
border return good results.

Time-space images in the measuring of fluttering.Good results have been achieved by
the time-space images-based analysis, which considers both time- and space-related aspects.
By segmenting the border of each leaflet and in each analyzed image, we compute time-space
images of leaflet borders. Time-space images of fluttering-valves will have high amounts of
energy in the high-pass part of their spectrum. This way one can measure each leaflet and can
also differentiate between different types of fluttering, providing thus the basis for an improved
analysis. We consider this to be the best fluttering-quantification method from those proposed
here.
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5.5.3 Outlook

We have described automatic methods to measure different quality criteria of heart valves.
These include measurements of the maximal orifice area and of the evolution of the orifice
area as well as quantification of the fluttering of the valve leaflets.

Currently, such measures are used by a human operator to decide on the quality of the heart
valve. Assuming a sufficient number of valves is inspected one can use this data to design
classification algorithm to automatically decide if a heart valve is good or not. For this purpose
we propose to build a feature-vector, containing all the needed information with respect to
the quality of a valve. This valve-quality vector would have the following components: the
maximum orifice area, the slopes of the three regions of the orifice-curve and the value of the
fluttering measure. For maximal safety, the implants considered suitable by the system, together
with their corresponding measures, would then be presented to an expert for the final decision
about their employment.

The fluttering is computed from a Fourier analysis of the time-space images, which is suf-
ficient to differentiate between fluttering and non-fluttering valves. However, the fluttering
analysis could be enhanced if one knows not only what frequency components are present, but
also when and where do they appear. Such informations can be obtained, e.g., by a wavelet
analysis [137], [138], [63] of these images.

We have described how to evaluate the quality of heart valves based only on 2D-projection
images. Clearly, in this case information about the leaflets is lost, as most of the time they are
practically perpendicular to the image plane and therefore they are projected there on a curve.
This forces us to make inferences about their properties based only on their borders. More
informations can be collected and an enhanced analysis made if instead of a 2D-camera one
uses a 3D vision-system [81] to record the valve during a cycle.
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Chapter 6

Summary

“Computers are incredibly fast, accurate and stupid.
Human beings are incredibly slow, inaccurate and brilliant.

Together they are powerful beyond imagination.”
– Albert Einstein

The information technology has already found its way into the hospital where it offers com-
plete solutions for the storage, retrieval and transmission of data. For example, electronic
patient-files are instantly available on the laptops of physicians in a hospital and he can then
confer over an transmission channel with a colleague on the other side of the Atlantic about
the best treatment. However, the major breakthrough takes place currently in the field of pro-
cessing the information, i.e., the introduction of tools to help analyze data and enhance the
decision-taking process.

The field of imaging and machine-vision support has a large contribution to this break-
through as in many diagnostic procedures and indeed all interventions the physician has to
visually-observe the ill tissue, analyze the data and take a decision. This dynamic is reflected
also in the continuous growth that the branch of medical image technology enjoyed in the last
years. This growth is directly related to an enlarging market reflecting in turn the increased in-
terest of the society as a whole in improved healthcare and its confidence that such technology
is the right answer in this case.

Mainstream machine vision has arguably as purpose automatization, i.e., the replacement
of humans by machines, like e.g., for quality inspection or for controlling a robotic arm which
is supposed to solder a circuit board in the place of a human. Medical machine vision however
follows a more synergetic way as it supports the medical staff such as to increase their efficiency
and accuracy and it does not aim at replacing them.

Such supportive technologies are possible only if a bridge is build between the medical and
the computer vision world. We consider this contribution to be a part of this bridge and at the
same time a plea for a senseful division of work between machines and humans such that both
do what they can best do: the former should be used at painstaking repetitive and analytical
work and the latter for creative and decisional work.

This collaboration requires from the part of the computer vision specialist an engineering
approach to solve the practical problems presented by his medical counterpart. From our cur-
rent experience, an optimal solution can be achieved only with the consideration of all prior
information available, which implies again a close collaboration. The accent lies in this case on
the solution of the problem – and each particular problem has its own particular solution – this
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6.1. MACHINE VISION METHODS FOR THE IMPROVEMENT OF THE

CATHETER INTERVENTION

Figure 6.1: Dynamic-roadmap flow-chart. CS stands for complete state.

represents the novelty element, if the solution includes novel approaches or a combination of
old approaches specifically adapted is of secondary importance – although a novel well justified
approach clearly increases the value of the solution.

This contribution is related to cardiovascular medicine and to imaging techniques which
return 2D-projection images. We have described here machine vision methods to enhance the
catheter intervention (Section 6.1), for vessel segmentation (Section 6.2) and for the quality
control of xenograft heart-valve implants (Section 6.3). Although, in some sense the method-
ology used in each case exhibits commonalities given mainly by the imaging and physiological
background, we believe this work to be another proof of the principle that particular problems
need particular solutions. Such particular solutions can be achieved both by new algorithms and
by new parametrizations and/or developments of dedicated algorithms.

6.1 Machine vision methods for the improvement of the
catheter intervention

We have described computer-based supportive technologies for the interventional diagnostic,
PTCA-based-treatment and post-interventional evaluation of the coronary artery disease and of
the myocardial infarction [46].

For PTCA we have described methods to support the computation and synchronous display
of a dynamic-roadmap with the purpose to facilitate navigation during the intervention. These
methods are fully automatic and therefore need no additional knowledge from the medical stuff.
They do not affect the interventional routine and there is no need for additional hardware. Also,
the physician remains in full controll during the entire intervention and can start and stop the
display. A chart-flow of the dynamic roadmap as described here is shown in Figure 6.1.

Some of the algorithms developed here – i.e. the complete-state segmentation and the de-



6. SUMMARY 215

tection of the contrast-agent in live-images – are about to find their way into the clinical-routine
[47], [49]. They are already part of a clinical demonstrator being currently tested under typical
conditions in a hospital.

Selection of complete-state images.For the roadmap one needs a set of coronary angiograms
showing the entire vessel-tree – i.e. complete coronary-angiograms. We have described methods
to segment the complete-state of a sequence of coronary angiograms (also in [6]). For this
purpose, a feature related to the area covered by vessels is computed in each angiogram. The
complete-state is segmented on the curve of feature value over frame-index – i.e. the feature-
curve – by a MAP-approach with an ECG-based coherency constraint.

Signaling of arbitrary contrast-agent injections. If no complete coronary angiograms are
available they need to be recorded on the spot. The physician needs then to inject a contrast
agent to obtain the angiograms. The moment when the contrast agent appears in the live-images
needs to be detected and starting then a sequence of images are recorded from which the needed
complete coronary-angiograms are selected.

When the dynamic roadmap is active, if the physician would like to see live contrasted
images and also halt the roadmap he just needs to introduce a small burst of contrast agent.
Again as soon as contrast agent appears in the live-images the computation of the dynamic-
roadmap is halted.

We have described also methods to detect the first live contrast image after a contrast agent
injection (also in [48]). For this purpose we extract another feature related to the area covered
by vessels. The sought initial contrast image is then found by a significance test, which uses for
training the features computed from the images recorded in the first few seconds of the current
viewing session.

Sequence matching and registration of surgical tools. To compute the roadmap, one needs
also to match the complete coronary-angiograms with the interventional images and to super-
impose the interventional tools. Matching is done using a heart-position vector including in-
formation about the heart and respiration phases. We have shown how to build this vector by
using the diaphragm to compute the respiration phase (also in [50]). If the diaphragm is not
observable, image-based similarity measures should be used for this purpose. The diaphragm
is detected and tracked by the Hough transform. If the diaphragm is not correctly found, this
situation is detected by a confidence measure and a snake is used to refine the fit.

We have described also methods to segment the interventional tools, like e.g., guidewire tip
and balloon markers as well as how to detect potential sewing wires present in the analyzed-
images. The interventional tools are segmented by a percentile threshold on an enhancement-
result. We use the compactness to separate balloon markers from the guidewire tip. To find the
sewing wires we use the fact that they remain static in comparison to other interesting items in
the analyzed images.

Automatic estimation of the MBG. The MBG is used for the diagnostic of the myocardial
infarction, but also to evaluate the success of a PTCA-based treatment. We describe methods for
the “quantitative” assessment of the MBG from sequences of X-ray images of the blush-region.
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METHODS AND APPLICATIONS

As the physician needs to define per hand in an initialization step the target blush-region,
the assessment is semiautomatic. The target region is then tracked automatically during the rest
of the analyzed sequence (also in [54]). Both human and machine then do what they can do
best. The physician uses his vast domain-knowledge and defines a region of interest and then
the painstaking job of following and analyzing it in each image of the investigated sequence is
taken over by the machine.

The purpose of tracking is to compensate the variation in position of the target blush-region.
The variation appears as a consequence of the heart motion. The motion of the heart is es-
timated from complete-state images by tracking vessel junctions between consecutive images.
The junctions are then used to fit a physically-motivated ROI model, which evolves under the in-
fluence of internal and external constraints to an optimal position. The constraints are expressed
as energy-terms and the optimal position has minimal energy.

From the gray-levels of the pixels in the tracked ROI we compute a blush-feature as a the 25-
percentile of their histogram. We then use this feature to obtain a blush curve for each analyzed
sequence. The MBG is computed from two blush curves – one from the ill artery and one from
a reference healthy-artery – as the difference between the areas under the curves.

6.2 Vessel segmentation in 2D-projection images:
methods and applications

How should vessels be segmented in 2D-projection images such that one can quantify their,
e.g., area and length? We believe that there is no single algorithmic answer to this question.
However, there exist a set of principles which can be followed to devise the best suited solution
for each particular segmentation problem.

The key principle is that one should use any available prior knowledge to the largest possible
extent to find particular solutions to particular problems. Yet another principle is that one should
achieve the segmentation by deciding for each pixel individually, as only then acceptable results
can be achieved, particularly when segmenting vessels of a very weak contrast. Then, a solution
should be achieved in two steps: (i) enhancement and (ii) segmentation.

Vessel enhancement

The enhancement step has the purpose to increase the contrast and the homogeneity of the
gray-level representation of vessels and background. After enhancement vessels appear dark on
a light background and in higher contrast. Enhancement decouples the imaging part from the
segmentation. Therefore, similar segmentation algorithms can be developed for the vasculature
of different organs and under different imaging modalities.

Enhancement is also done in two steps: (i) background suppression and (ii) vessel aug-
mentation. Each time with the purpose of increasing both the homogeneity of the gray-level
representation of vessels and background (decreasing their variance) and the contrast separat-
ing them. Usually, prior information about the size of the vessels is used during background
suppression and prior information about the elongated tubular structures of the vessels is used
during vessel augmentation. We showed that the optimal background suppression method is
given by the Bothat-transform. Because the vessel contrast is dependent on the vessel-size, the
best vessel augmentation methods use a multiscale approach. We have experimented with an
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adapted form of the Laplacian pyramid for vessel augmentation and introduced a novel Hessian-
based multiscale method (also in [53], [43], [52]).

Each of the vessel enhancement methods has a set of parameters. These parameters are
usually imposed by the user based again on some prior knowledge and they can be eventually
adapted in a trial and error setup by visualizing some results and modifying the parameters until
they correspond to the expectation of a human operator. However, if a set of labeled vessel-
images is available, they can be used to compute the parameters in an optimal way during a
calibration step.

Vessel segmentation

Depending on the application the segmentation of vessels is done either in a automatic or in
a semiautomatic manner. Semi-automatic segmentation methods are only feasible for applica-
tions where few images had to be segmented, but the results have to be of a higher quality and
there is a human operator which is ready to invest sufficient time for this. If the segmentation
algorithm needs to work automatically – e.g. as part of a medical-image-analysis tool – and/or
if the number of images that had to be segmented is very high, then automatic methods need
to be used. The automatic methods can be either supervised or unsupervised. Unsupervised
segmentation methods have currently a larger applicability than supervised ones. The latter can
be successfully used to analyze many images, which are acquired under very similar conditions,
like e.g., during a screening campaign of a larger population sample.

Semi-automatic segmentation. During semi-automatic segmentation a human operator can
influence and/or support the procedure to achieve better results than that obtained by an auto-
matic algorithm. In this case, one can observe an optimal synergy between human and machine,
each doing the task for which they are best suited. The computer does the painstaking job of
deciding on a label for each pixel and the human can then use such information to extract only
true vessel-structures.

The semi-automatic vessel segmentation algorithms described in Section 4.4 constitute the
basis for a software package currently being used in medical research (see [132]). The Graph-
ical User Interface (GUI) of this software package is shown in Figure 6.2. The user has the
possibility to choose between fuzzy-clustering (also in [52], [51]) and hysteresis-based (also
in [43]) vessel segmentation. He can then edit the results to achieve an optimal segmentation
for the investigated vessel structures. As final results he can obtain the area and length of the
vessels in an image, as well as the vessel density over a certain area – which he selects – in
percents of the defined surface covered by vessels.

Automatic segmentation. Prior information can again be used to achieve a high-quality au-
tomatic segmentation. In this case, we made use of the vessel connectivity and their compact
shape as well as their curly appearance and the fact that usually vessels of different sizes are
connected to one another, as large vessels flow into smaller ones up to the capillaries [53].

Hysteresis classification. Such observations justify the application of the hysteresis clas-
sification paradigm to vessel segmentation (also in [53], [44]). Hysteresis thresholding as a bi-
threshold procedure for edge detection is widely known since the seminal paper by Canny [34].
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Figure 6.2: GUI of the semiautomatic vessel analysis tool (VesSeg).

In Section 4.3.2 we extend the initial hysteresis threshold to a hysteresis-classification method-
ology, including supervised and unsupervised approaches both for uni- and multi-dimensional
data. We exemplify it on vessel segmentation but theoretically it can be used for many other
similar problems as well [45].

We then introduced hysteresis classification as a bi-classifier procedure: one classifier, the
“pessimist”, selects only vessel points which are then used to choose true vessels from the
segmentation result of the other classifier, the “optimist”, which contains all vessel points. This
implicitly assumes that vessels and background-structures are well separated from one another.
If this is not the case, then background structures will also be selected in the segmentation. For
example, in the case of coronary angiograms, for certain projections some background artefacts,
like e.g., ribs, are well visible and as their appearance is similar to that of the vessels, they are
also enhanced together with the vessels and if the vessels are projected against then they appear
connected also to the vessels and will be included in the segmentation.

A hysteresis classification procedure is always used to separate two classes and it includes
two base-classifiers. From this point of view the MRF-based adaptive threshold together with
the junction-based selection of vessels represents also a hysteresis classification procedure. The
MRF-threshold is the “optimist”, while the method to segment the junction-points yields the
“pessimist”. We have also introduced a hysteresis classifier where both the “optimist” and
the “pessimist” work on the same input and shown how to train it using the ROC curve. We
have also used the ROC for classifier-specific feature selection as well as parameter estimation
for various vessel maps. We believe that in the case of vessel segmentation and indeed for
classification in many medical applications as well, the main purpose should be the optimization
of the ROC rather than the optimization of the absolute error rate as in such cases thefp rate
and the dynamic of thecc rate against thefp rate is also of major concern.

Vessel segmentation is characterized by major class-skew, i.e., the number of vessel pixels
is far lower than that of background pixels. Such a skew is difficult to handle by many standard
classification algorithms as they are designed to optimize accuracy [69]. Techniques based
on an ROC-analysis as the supervised hysteresis classification procedures introduced here are
better suited in this case [182], [80].
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Figure 6.3: Flow-chart of the algorithm for the automatic computation of quality measures for
heart valves.

6.3 Machine vision-enhanced quality inspection of
xenograft heart valve implants

If a heart valve is ill, then in certain cases it is replaced by an implant during open-heart surgery.
These implants can be either mechanical or biological. Some biological implants are valves col-
lected from animals – i.e. xenograft valves – and placed on a supporting frame. The assessment
of the quality of such implants is a major issue in heart-related health-care. A quality-conform
valve is needed for a good postoperative evolution of the patient implying smaller treatment
costs and longer periods of time to an eventual consecutive intervention. We have described
automatic methods for the measurement of quality criteria for xenograft-heart-valve-implants
(also in [56]).

For quality controll, an implant is placed in an artificial circulatory system and a valve cycle
is initiated. The valve is observed by a high-speed camera whose image-plane is parallel to the
surface of the closed valve. Image sequences acquired in such a test bed are used to evaluate
the quality of the implant. For this purpose the evolution of the orifice-area over the valve-cycle
and the fluttering of the valve-leaflets need to be measured. We have described here methods
for the automatic measuring of such quality-parameters of heart-valve-implants, using only 2D-
projection images acquired in the test-bed. Such measures provide the basis for a quantitative
analysis of the quality of heart-valve implants with less inter and intra-observer variability.
Although the experiments have been conducted only on tricuspid valves, we believe that these
methods are applicable to bicuspid valves also. A flow-chart of the automatic measuring of
quality parameters for heart valves, as it was described herein is shown in Figure 6.3.
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6.3. MACHINE VISION-ENHANCED QUALITY INSPECTION OF

XENOGRAFT HEART VALVE IMPLANTS

Automatic measurement of the valve orifice. To segment the orifice in a sequence of valve-
images, we have proposed to combine the advantages of two different methods: (i) for a few
images, before the valve is fully open and also before it is fully closed, the orifice is segmented
by a gray-level threshold, then as soon as the orifice is large enough, (ii) a snake is initialized
starting from the base-lines of leaflets, which is then used to find the border of the orifice in the
current image. Then, the converged snake is used as initialization for the next image.

To ensure that the snake follows the leaflets, which delineate the orifice, attraction basins are
defined around the anchor points of a heart-valve, i.e., the points where two leaflets meet. This
attraction basins follow the circular outline of the valve. The outline is detected by a Hough
transform. The anchor points are computed staring from the centerlines of the orifice detected
in some frames at the beginning of the sequence, when the valve opens.

Automatic measurement of the fluttering of leaflets. Besides the computation of the orifice
curve, we have described also methods for an automatic quantification of the fluttering of the
leaflets of the inspected valve providing thus the means for an enhanced analysis.

The fluttering can be observed under optimal conditions during the time when the valve is
fully open, i.e., during the second phase of a valve-cycle. This phase is segmented on the orifice-
curve. To measure the fluttering, we use the outline of each leaflet. The outline of a leaflet is
segmented from the outline of the orifice using the anchor points. Then, for each leaflet, time-
space images of its border are computed by gathering in an image the outline of the leaflet in
each frame of the analyzed sequence. Such time-space images contain information both over
the time and space behavior of the leaflet. The fluttering is measured as the energy-content in
the high-pass part of the spectrum of such images.



Appendix A

Theoretical background

A.1 Morphological image processing

The purpose of this section is to review some well-known notions of morphological image
processing which are used in this book. Details can be found in [70], [67], [68], [90], [179],
[144], [89].

A.1.1 Binary morphology

Morphological image processing is a powerful tool in the analysis of segmentation results, i.e.,
binary images and is thus useful in many practical applications.

Basic definitions

Let A = {a1, a2, ..., aNa} andB = {b1, b2, ..., bNb} be two subsets ofZ2 and∅ the empty set.
Usually B is called the structuring element. The translation of B byx ∈ Z2 is:

Bx = {p|p = b + x, b ∈ B} (A.1)

The reflection of B is:

B̂ = {x|x = −b, b ∈ B} (A.2)

The complement of A is:

A = {x|x /∈ A} (A.3)

The difference of A and B is:

A−B = {x|x ∈ A, x /∈ B} = A ∩B (A.4)

Dilation

The dilation of A by B is:

A⊕B = {x|B̂x ∩ A 6= ∅} (A.5)
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Erosion

The erosion of A by B is:
A	B = {x|Bx ⊆ A} (A.6)

Dilation and erosion are duals, which means that:

A	B = A⊕ B̂ (A.7)

Opening

The opening of a A by B is:
A ◦B = (A	B)⊕B (A.8)

The opening can be used, e.g., to eliminate fromA shapes smaller thanB.

Closing

The closing of A by B is:
A •B = (A⊕B)	B (A.9)

The closing can be used to cover – close – holes smaller thanB in larger objects fromA.

The Hit-or-Miss transform

The Hit-or-Miss is used to detect objects with specific shapes in a segmentation result. The
parameters of the transform are the sought shapeX, its local backgroundG, which is a small
window that enclosesX and the set of object-pixels in the segmentation resultA. Considering
the setS = {B1, B2}, with B1 = X andB2 = (G−X) the transform is computed as:

A� S = (A	X) ∩ [A	 (G−X)] = (A	B1) ∩ (A	B2) (A.10)

Thus, the result contains all points where simultaneouslyX found a match inA and(G − X)
found a match inA.

Thinning

Thinning is one of the basic morphological algorithms. It is an iterative procedure and one
iteration step can be defined in terms of the Hit-or-Miss transform as:

A⊗ S = A− (A� S) (A.11)

The thinning of a setA using a set of shapes̃S = {S1, S2, ..., SNS} is then:

A⊗ S̃ = (...((A⊗ S1)⊗ S2)...⊗ SNS) (A.12)

The thinning can be used to compute the centerline of segmented objects.
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Selection of connected components

Assume that one knows a priori that a pointp belongs to a connected objectY . At the same
time, in the segmentation result several items have been selected, includingY . Then, usingp
and the connectivity ofY , one can selectY in the following way:

Xk = (Xk−1 ⊕B) ∩ A (A.13)

whereX0 = p, Xk, k = {1, 2, ..., N} are subsets ofY such thatXN = Y andB is a suitable
structuring element.

A.1.2 Gray-level morphology

Initial research in the field of morphological image processing was done exclusively on binary
images [141]. However, later research recognized the possibilities which lie in the extension of
such methods to gray-level images and reported on modalities suited for such a task [96].

Basic definitions

Let f(x, y) : Z2 → R andb(k, l) : Z2 → R be two image functions withb being usually called
the structuring element.

Dilation

The dilation off by b is defined as:

f ⊕ b = max{f(x, y) + b(x− k, y − l)|(x, y) ∈ Df , (k, l) ∈ Db} (A.14)

with Df the domain off andDb the domain ofb. This is equivalent to taking the maximum of
f + b in a sliding window whose shape is defined byDb. Consequently, by dilation dark details
smaller thanDb are attenuated.

Erosion

The erosion off by b is defined as:

f 	 b = min{f(x, y)− b(x− k, y − l)|(x, y) ∈ Df , (k, l) ∈ Db} (A.15)

This is equivalent to taking the minimum off − b in a sliding window whose shape is defined
by Db. Consequently, by erosion bright details smaller thanDb are attenuated. Erosion and
dilation are dual operations.

Opening

The opening off by b is defined as:

f ◦ b = (f 	 b)⊕ b (A.16)
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Closing

The closing off by b is defined as:

f • b = (f ⊕ b)	 b (A.17)

Opening and closing are dual operations. They are also idempotent. Thus applying a second
time the opening with the same structuring element upon the result of a first opening returns the
same result.

The Tophat transform and the Bothat transform

The Tophat transform is defined as:

Th = f − (f ◦ b) (A.18)

and it can be used to attenuate a dark background and select bright objects comparable in shape
and size withDb.

The Bothat transform is defined as:

Bh = (f • b)− f (A.19)

and it can be used to attenuate a bright background and to select dark objects comparable in
shape and size withDb. The Tophat and the Bothat are duals.

A.2 Linear shift-invariant systems

The purpose of this section is to review some aspects related to the design and particularities of
filters and of FIR filters in particular. Further details can be found in [154], [90], [110].

The following discussion is for linear time-invariant systems, i.e., for 1D signals. The ex-
tension to 2D-signals and thus to linear shift-invariant systems is straightforward.

A system is called linear if it satisfies the principle of superposition, i.e., is characterized by
the properties of additivity:

T{x1 + x2} = T{x1}+ T{x2} (A.20)

and scaling:
T{ax} = aT{x} (A.21)

with a an arbitrary constant and the outputy computed by modifying the inputx according to
T .

A system is called time-invariant ifT remains constant in time. Thus, if the same input is
applied at the time instanceτ1 and then again later atτ2, the same output is recorded both atτ1

andτ2.
The most important parameter of a filter is its frequency behavior. The filter’s impulse

response can then be directly computed using the Fourier transform. Ideally the filter should
have infinitely steep transitions between its pass and its cut bands which would require an
infinite impulse response in form of a sinc-function. As such a solution is impracticable different
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approximations to of the impulse response can be used. There are two main classes of such
approximations which result in two types of filters: approximating functions of infinite support
and recursive implementation result in Infinite Impulse Response (IIR) filters and approximating
functions of finite support result in Finite Impulse Response (FIR) filters.

IIR filters have in some applications problems with the stability of their answer and with the
linearity of their phase. Such problems are usually a consequence of the recursive implementa-
tion of such filters. However, they are fast to compute and can give very good approximations
of an ideal filter. Examples of IIR filters include the Chebyshev filter and the Butterworth filter.

FIR filters are always stable and have a linear phase, but require more resources to obtain
an approximation of the ideal filter comparable with the IIR filters. They are also easy to
implement by convolution. Practically they are more often used than IIR filters. FIR filters
can be designed by different methods, like e.g., the window method. Knowing the limits of the
filter-pass-band, it is desired to find the optimal form of the filtration window such that there
are as good as no oscillations in the pass and cut bands and the transition between them is
as steep as possible. To avoid disadvantageous phase-shifts – i.e. phase-shifts that can not be
compensated by shifting the signal over an integer number of samples – the number of samples
in the time-domain filtration window – i.e. the size of the window – should be odd.

Based on their frequency-behavior, the filters can be divided in three large classes:

• Low-Pass. Such filters attenuate high-frequency components, letting the low frequent
components pass. They will blur an image. The sum of their coefficients in the spatial
domain is one.

• Band-Pass.Such filters attenuate both low and high-frequency components between cer-
tain limits. They can select, e.g., ridges.

• High-Pass.Such filters are the counterpart of the Low-Pass filters, suppressing the low-
frequency components. They can be used to select, e.g., edges. The sum of their coeffi-
cients in the spatial domain in zero.

Due to the linearity property, e.g., the result of the high-pass filtration can be computed also
as the difference between the original image and a low-pass filtration result with a properly
chosen cut-off frequency.

As practical filters are only approximations to the ideal case, sometimes artefacts from fre-
quency components, which have not been properly attenuated, can be seen.

A.3 Active Contours

There are two large classes of snakes: parametric [119] and geometric [171], [136]. The purpose
of this Section is to review some theoretical aspects related to parametric closed snakes, open
snakes can be modeled in a similar fashion – further details can be found in the bibliographic
references mentioned herein.

Active-contours have been brought to the attention of the computer vision community by the
seminal contribution of Kass, Witkin and Terzopoulos [119]. The following definition of snakes
can be found in there, “a snake is an energy-minimizing curve guided by external constraint
forces and influenced by image forces that pull it towards features such as lines and edges.”
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Since then they have been extended [22], [188], [150], [59], [58], [42], [196], [198], [171] and
applied in a variety of domains including medical machine vision [142], [75], [55].

A snake is a curvev(s) = [x(s), y(s)], s ∈ [0, 1] evolving over the spatial domain of
an image under the influence of forces derived from internal and external energy terms to a
position of minimum energy.

The internal energy term governs the behavior of the snake during its evolution and it is
defined to penalize stretching and bending, encouraging thus smooth solutions:

Eint =
∫ 1

0

1

2
(α(s)|∂v(s)

∂s
|2 + β(s)|∂

2v(s)

∂s2
|2)ds (A.22)

The first-order term controls stretching and the second order bending. The weightsα(s) and
β(s) adjust the importance of the two terms and favor thus a specific snake behavior.

The external energy term is computed from the image such that it reaches a minimum over
the sought image features:

Eext = −
∫ 1

0
P(v(s))ds (A.23)

with e.g.:
P(x, y) = −|∇(Gσ(x, y) ∗ I(x, y)))|2 (A.24)

to attract the snake towards edges. In this case,Gσ(x, y) is a 2D Gaussian kernel used to
extend the attraction range of the sought features. As usual, the detection-localization tradeoff
is controlled by the standard deviationσ. Depending on the application other external energy
terms can be also defined to push the snake to other image features such as lines or terminations
[119].

The snake energy-functional can then be written asE = Eint + Eext. The snake will
evolve such thatE is minimized. One actually searches for a minimum ofEext, but this is
usually a non-convex problem with a lot of local-minima, then the convex energy-termEint can
formally be regarded as regularizing the problem such that a solution is found at a reasonable
local minima. This minimization problem is solved by variational calculus, i.e., by solving the
corresponding Euler-Lagrange equation:

dE

ds
= 0 =⇒ α(s)

∂2v(s)

∂s2
− β(s)

∂4v(s)

∂s4
−∇P (v(s)) = 0 (A.25)

which can be viewed as a force-balance equation:Fint + Fext = 0.
Usuallyα(s) andβ(s) are constant over the snake and the solution is sought in an iterative

manner, i.e., the snake is made dynamic by treating it as a function of time also:v(s, t). Then
the minimization equation becomes:

α
∂2v(s, t)

∂s2
− β

∂4v(s, t)

∂s4
−∇P (v(s)) =

∂v(s, t)

∂t
(A.26)

and a solution is found when the snake stabilizes and the partial derivative ofv with respect to
time vanishes.

Sometimes, additional energy terms are used to further influence the behavior of the snake
in the search of better solutions. Such terms include, e.g., a damping/viscosity term to take into
account energy dissipation during the displacement of the snake:

D =
1

2

∫ 1

0
γ(s)‖∂v(s, t)

∂t
‖2ds (A.27)
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with γ(s) the damping coefficient which again is usually constant over the snake. Practically,
this term constrains the snake to evolve in relatively small steps. Yet another largely used
additional energy term is the pressure or balloon term [42]:

Eb =
∫ 1

0
κ(s)n(s)ds (A.28)

with n(s) the normal unitary vector of the curve, gives the direction of the balloon force. The
sense of the balloon force is practically given by the sign of the weightκ, which again is usually
constant over the curve. This term forces the snake to evolve in a certain direction even if it is
placed outside the attraction range of the sought image features. This term can compensate for
external energy fields with relatively small attraction basins.

Usual external energies have a rather limited capture range and show poor convergence in
regions where the sought feature exhibits a concavity. Balloons on the other hand will simply
role over features characterized by a poor SNR. Gradient vector flow snakes [198] offer a so-
lution to such problems. A GVFg(x, y) = (u(x, y), v(x, y)) is a static external force field. If
f(x, y) = −P (x, y), theng is defined as the vector field that minimizes the energy functional:

E =
∫ ∫

µ(
∂u

∂x

2

+
∂u

∂y

2

+
∂v

∂x

2

+
∂v

∂y

2

) + ‖∇f‖2‖g −∇f‖2dxdy (A.29)

Consequently,g is equal to the gradient of the external energy, when this is large, and is defined
by its own partial derivatives in the rest, thus working against abrupt changes in the external en-
ergy and forcing the field to be slow varying in homogeneous regions, thereby greatly extending
the attraction range.

The solution to this minimization problem is again found iteratively:

dg

dt
= µ∇2g − (g −∇f)‖∇f‖2 (A.30)

Such active contours are also called parametric snakes. Clearly it is rather difficult to force
them to split or merge during their evolution. There are also geometric snakes [171], [172],
[135], [136], [37], [36], [157], which are defined as the level-sets of a multidimensional function
evolving under the guidance of a speed term defined in relation to the sought image features.

A.4 The Hough transform

The standard Hough-transform has been first introduced by Hough in [102]. Later Ballard
showed how to compute a generalized Hough transform [15]. The purpose of this section is to
revisit some theoretical aspects related to the standard Hough transform – further details can be
found in the references mentioned herein.

The Hough transform was originally developed to detect straight lines in black and white
images [102]. Since then, it has become a general accepted tool for detecting parametric and
also arbitrary curves in images [106], [15], [92], [201], [125], [126]. The key idea is to replace
the complicated problem of finding the instances of a certain curve among contour points ob-
tained, e.g., at the output of an edge detector, with the more simple problem of detecting a peak
in a transformed space. The axis of the transformed space (accumulator) are the free parameters
of the curve.
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The transform can be used theoretically with all parameterizable curves but without addi-
tional restrictions, curves with more than two parameters make the accumulator impractically
large, therefore the Hough transform is usually used to find lines and circles.

A.4.1 Hough transform for lines

From line detection to intersection.Any line y = mx + n is identified by a unique parameter
pair (m, n) and therefore, all points on the line are mapped to a point in the parameter space.
Conversely, for each point on the line one can write:n = y−mx and thus a point is mapped into
a line in the parameter space. Then the parameter-space-point of the sought line will be found
at the intersection of the parameter-space-lines corresponding to each of the collinear-points.

From intersection to peak detection. The plane which defines the transformed space is
divided into a finite grid of cells, with a counter – initialized to zero – attached to each cell.
The counter is incremented by a unit each time a parameter-space-line passes trough the cell.
Thus, the counter of the cell containing the intersection of several lines will have a higher count.
To find a line, one has simply to set a threshold over the counters, i.e., in the parameter space.
Clearly, the precision of the transformation depends on the size of the accumulator cells.

Practical computation. Both m andn take values on the real axis, therefore a complete
partition of the parameter space is impossible. One can either limitm andn and/or use cells
of very large size, thus losing interesting parameter-ranges. Also, the(m, n) parameterization
does not capture the bundlex = k with k a constant. To solve at least partially such problems
a polar representation of the line is usually used:d = xcos(α) + y(sin(α)) with d the distance
from the image-origin to the line. In this caseα is finite 0 ≤ α ≤ π andd facilitates a denser
sampling as before:0 ≤ d ≤ dmax With this parameterization, a point is represented by a
parameter-sinusoid.

A.4.2 Hough transform for circles

The parametric representation of a circle is:(x− a)2 + (y− b)2 = r2 where(a, b) are the center
cartesian coordinates andr is the radius.

From circle detection to intersection. The Hough accumulator for detecting circles will
be a 3D space whose axes are the two center coordinates and the radius. To each presumptive
circle point in the original plane, corresponds a cone in the Hough transformed space. The cone
contains the parameters of all possible circles passing through that point.

From intersection to peak detection.Under the simplifying assumptions that the Hough
space is discrete and finite, a point on the circle in the original plane casts a vote on each
accumulator cell which belongs to its cone. Thus, the accumulator cell corresponding to the
parameters of the circle passing through a majority of the investigated points will get the highest
number of votes. The desired circle is represented by the maximum in the accumulator.

A.5 Orientation estimation

The purpose of this Section is to review the basic tools for the estimation of a single local
orientation in images. Further details can be found in [12], [118], [108], [19], [188].
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The 2D differential operator in directionφ with respect to the horizontal axis is defined as:

α(φ) = cos(φ)
∂

∂x
+ sin(φ)

∂

∂x
(A.31)

If the imagef(x, y) is ideally oriented at(x, y) under an angleθ, then its derivative in alongθ
should be zero:

α(θ)f(x, y) = v∇f = 0 (A.32)

with vT = (cos(θ), sin(θ)). When this condition is met forθ is met also forθ+π and forθ−π,
thus by conventionθ ∈ (−π

2
π
2
).

Local orientation is evaluated over a neighborhoodΩ within which it is assumed to be
constant. Minimizing the square error in the case of Equation(A.32) with respect to the angle
yields:

θ = min
φ

Q(φ) = min
φ

[∫
Ω
(vT∇f)2)dΩ

]
(A.33)

with vTv = 1. This can be rewritten as:

Q(φ) = vTTv (A.34)

with T being a 2× 2 tensor computed as:

T =
∫
Ω
∇f(∇f)T dΩ =

∫
Ω

[
f 2

x fxfy

fyfx f 2
y

]
dΩ (A.35)

Minimizing the composite criterion:

L(v) = vTTv + λ(vTv − 1) (A.36)

including the conditionvTv = 1 over the Lagrange multiplierλ, is equivalent to findingv such
that:

Tv = λv (A.37)

i.e. finding the normalized eigenvector ofT corresponding to the lower eigenvalueλ. As Q(φ)
is a measure of variation off(x, y) in the directionφ, then the minimum quantity of variation
in Ω is given byλ:

Q(φ) = vTTv = vT λv = λ (A.38)

T is also known as the structure tensor and its eigenvalues can be used to analyze the local
orientation [108]:

Practically,T is computed as:

[
S(Dx ·Dx) S(Dx ·Dy)
S(Dy ·Dx) S(Dy ·Dy)

]
(A.39)

with S a smoothing operator which defines the size of the neighborhood andDx,y the deriva-
tive operator on directionx respectivelyy. The results obtained by derivation are multiplied
pixelwise.
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λ1 = λ2 = 0 The neighborhood has constant values.
λ1 > 0, λ2 = 0 No variation in the neighborhood in the direction of the eigenvec-

tor corresponding toλ2. The neighborhood is ideally oriented.
λ1 > 0, λ2 > 0 Variations in both directions. Ifλ1 > λ2, there is one dominant

orientation. A largeλ2 is an indicator for a possible corner in the
neighborhood.

Table A.1: Structure-tensor-eigenvalues-based orientation analysis in images.

A.6 Discriminant analysis

The quality of a feature space is defined by its ability to build classes which can then be correctly
separated by a classification algorithm. The simpler the classification algorithm needed for this
task, the better the feature space. Statistical measures of separability in the sense of [87], [184],
[149] use thewithin-classand thebetween-classscatter matrices. Such measures can be used
both for feature selection and for unsupervised segmentation.

A.6.1 Statistical measures of separability between classes

Thewithin-classscatter matrix is defined as:

Sw =
N∑

i=1

PiΣi (A.40)

with N the number of classes,Pi the a priori class-probability andΣi the covariance matrix for
classi.

Thebetween-classscatter matrix is defined as:

Sb =
N∑

i=1

Pi(µi − µ0)(µi − µ0)
T (A.41)

whereµi is the mean of classi andµ0 is the mean of all components of the feature space.
A mixture scatter matrixcan as well be defined as:

Sm = Sw + Sb (A.42)

being actually the covariance of the entire feature space regardless of class-assignments.
Using these matrices – which are invariant under coordinate shifts – several separability

measures can be defined. These measures yield extreme values for feature spaces where the
between-classscatter matrix is large – i.e. well-separated means of the class-conditional distri-
butions – and/or thewithin-classscatter matrix is small – i.e. small variances around the means
of each class. One of the most often used criteria is:

Ja
1 = tr(S−1

w Sb); (A.43)

which is also invariant under non-singular linear transformations. In this caseJa
1 is an increasing

function of the separability of the feature space thus reaching a maximum for the most separable
feature space.
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In some applications it is interesting to assess the two components of separability – i.e.
the within and between-class scatter matrices – independently. For this purpose,J1 should be
defined as:

J b
1 = tr(S−1

m Sb); (A.44)

to investigate only how well-separated are the classes by their means. AgainJ b
1 is a an increas-

ing function of the separability. To investigate how well do the feature space components cluster
around their means theJ1 should be defined as:

J c
1 = tr(S−1

m Sw); (A.45)

in which caseJ c
1 is a decreasing function of the separability, thus reaching a minimum for the

most separable feature space.

A.6.2 Automatic threshold selection for two-class segmentation

The purpose of this section is to revisit a method for automatic threshold selection (two-class
unsupervised segmentation) in images first proposed by Otsu [155]. It uses discriminant analy-
sis to evaluate several candidate-thresholds and chooses then the optimal one.

For an image withN pixels andL gray-levels, the normalized histogram can be regarded as
an approximation of the gray-levelpdf . For each gray-leveli the correspondingpdf value is:

pi =
ni

N
(A.46)

with pi ≥ 0 and
∑L

i=1 pi = 1.
For a certain thresholdT = k, the gray-levels[1, k] belong to classC0 and[k+1, L] to class

C1. Then, the prior probabilities for each class can be computed as:

ω0 =
k∑

i=1

pi = ω(k)ω1 =
L∑

i=k+1

pi = 1− ω(k) (A.47)

the means as:

µ0 =
k∑

i=1

iP (i|C0) =
µ(k)

ω(k)
µ1 =

L∑
i=k+1

iP (i|C1) =
µT − µ(k)

1− ω(k)
(A.48)

and the class-variances as:

σ2
0 =

k∑
i=1

(i− µ0)
2P (i|C0)σ

2
1 =

L∑
i=k+1

(i− µ1)
2P (i|C1) (A.49)

with µ(k) =
∑k

i=1 ipi the first-order moment up to histogram-levelk andµT =
∑L

i=1 ipi the
mean of the image.

The quality of the thresholdT can be established by evaluating how separable are the two
classes which it yields, using thewithin-classσ2

w variance and thebetween-classvarianceσ2
b :

σ2
w = ω0σ

2
0 + ω1σ

2
1σ

2
b = ω0(µ0 − µT )2 + ω1(µ1 − µT )2 (A.50)
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Suitable goodness measures are (see also Appendix):

λ =
σ2

b

σ2
w

κ =
σ2

T

σ2
w

η =
σ2

b

σ2
T

(A.51)

with

σ2
T =

L∑
i=1

(i− µT )2pi (A.52)

being the total-variance. They are equivalent, butη is the simplest with respect tok, as it
contains only first-order statistics andσ2

T is independent ofk.
The optimal threshold is selected by sequential search to maximize the chosen goodness

measure:
T = arg max

1≤k≤L
(η(k)) (A.53)



Appendix B

Glossary of medical terms

A

Angina pectoris - chest-pain
Angiogenesis - the formation of new blood vessels
Angiography - examination of the blood vessels using X-rays following the in-

jection of a radiopaque substance
Angioplasty - the surgical repair of a blood vessel – plastic deformation of a

blood vessel
Aorta - the main trunk of the systemic arteries, carrying blood from the

left side of the heart to the arteries of all limbs and organs except
the lungs

Aortic valve - heart valve situated between the left ventricle and the aorta. It has
three leaflets

Arrhythmia - changes in the normal rhythm of the heartbeats
Arteries - any of the muscular elastic tubes that form a branching system

and that carry blood away from the heart to the cells, tissues, and
organs of the body

Atherosclerosis - the deposition of atheromatous plaques containing cholesterol and
lipids on the innermost layer of the walls of large and medium-
sized arteries

Atria - the chambers of the heart that collect blood and allow it to return
to the heart.

B

Balloon - PTCA - a small balloon, which is advanced on the guidewire to the site of
the blockage and inflated there to reopen the artery

Balloon-markers - small blobs of an X-ray absorbing material placed at the two ends
of a PTCA-balloon

Blood clot - a clump of blood that forms in or around a vessel as a result of
coagulation
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C

Capillaries - the tiny blood vessels throughout the body that connect arteries
and veins. Capillaries form an intricate network around body tis-
sues in order to distribute oxygen and nutrients to the cells and
remove waste substances

Chordae tendinae - cord-like tendons that connect the papillary muscles to the tricus-
pid valve and the mitral valve in the heart

Coronary arteries - the arteries supplying blood to the heart

D

Diaphragm - a muscular membranous partition separating the abdominal and
thoracic cavities

Diabetic retinopathy - damage to the retina caused by complications of diabetes, which
could eventually lead to blindness

Diabetes - a chronic disease characterized by the inability of the body to pro-
duce or respond properly to insulin, a hormone required by the
body to convert glucose to energy

E

Endocarditis - an inflammation of the endocardium. The most common struc-
tures involved are the heart valves

Endocardium - the inner layer of the heart

F

Fascia - specialized connective tissue-layer, which surrounds muscles,
bones, and joints, providing support and protection and giving
structure to the body

Fasciocutaneous flap - flap comprising skin, subcutaneous fat and fascia but no muscles

G

Guidewire - a thin wire threaded into the ill coronary artery and used to guide
the PTCA-balloon and the stent to the ill site

Guidewire tip - the maneuverable tip of the guidewire
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H
Heart - the chambered muscular organ in vertebrates that pumps blood

received from the veins into the arteries, thereby maintaining the
flow of blood through the entire circulatory system. The heart has
four chambers two atria and two ventricles

Heart failure - when the heart is not able to pump blood to the rest of the body
effectively

Heart attack - sudden interruption or insufficiency of the supply of blood to the
heart, typically resulting from occlusion or obstruction of a coro-
nary artery and often characterized by severe angina pectoris

Heart valve - valves in the heart that maintain the unidirectional flow of blood
by opening and closing depending on the difference in pressure
on each side. There are four heart valves: the mitral valve, the
tricuspid valve, the aortic valve and the pulmonic valve

Hypertension - chronic high blood pressure

I
Ischemia - a decrease in the blood supply to a bodily organ, tissue, or part

caused by constriction or obstruction of the blood vessels

L
Leaflet - a flap, which is a constituting part of a heart-valve. All heart-

valves have three leaflets with the exception of the mitral valve
which has only two

M
Metabolism - the chemical processes occurring within a living cell or organism

that are necessary for the maintenance of life
Mitral valve - heart valve situated between the left atrium and the left ventricle.

It has two leaflets
Myocardium - the muscular tissue of the heart
Myocardial infarction - see Heart attack

N
Nutrient - any element or compound necessary for or contributing to an or-

ganism’s metabolism, growth, or other functioning

O

Ostium - a small opening or orifice, as in a body organ or passage
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P

Papillary muscles - serve to limit the movements of the mitral and tricuspid valves
and prevent them from being inverted

Plaque - fatty deposits on the inner wall of a blood vessel
Pathology - the scientific study of the nature of disease and its causes, pro-

cesses, development, and consequences
Percutaneous - passed trough the skin
Peripheral Angiogra-
phy

- angiography of the arteries supplying blood to the arms, legs
stomach, kidneys.

Physiology - the functions of living organisms and their parts
Prosthetic - serving as or relating to a prosthesis
Pulmonary artery - an artery that carries oxygen depleted blood from the right ventri-

cle of the heart to the lungs
Pulmonary veins - vein that carries oxygen rich blood from the lungs to the left

atrium of the heart
Pulmonic valve - heart valve situated between the right ventricle and the pulmonary

artery. It has three leaflets

S

Septum - a partition separating two cavities or two spaces containing a less
dense material

Stenosis - a constriction or narrowing of a vessel
Stent - an expandable wire form or perforated tube that is inserted into a

vessel to prevent or counteract a stenosis

T

Tendon - a tough band of fibrous connective tissue that connects muscle to
bone

Thrombolytic - dissolution or destruction of a thrombus
Thrombus - a blood clot formed in a blood vessel and remaining attached to

its place of origin
Transluminal - passing across a lumen, as of a blood vessel
Tricuspid valve - heart valve situated between the right atrium and the right ventri-

cle. It usually has three leaflets, but it may occur that it has two or
four
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V
Vascular disease - the disease which is mainly caused by atherosclerosis
Veins - any of the membranous tubes that form a branching system and

carry blood to the heart
Vena cava superior - a large but short vein, that carries oxygen depleted blood from the

upper half of the body to the right atrium
Vena cava inferior - a large vein, that carries oxygen depleted blood from the lower

half of the body into the heart
Ventricles - the chambers of the heart, which collect blood from the atria and

pump it out of the heart
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Abbreviations and acronyms

AGC - Automatic Gain Control
APS - Active Pixel Sensor
AROC - Area under the Receiver Operating Characteristic
BDI - Bending Deformation Index
CAD - Coronary Artery Disease
CC - Correct Classifications
CV - Coefficient of Variation
CCD - Charge Coupled Device
CMOS - Complementary Metal Oxide Semiconductor
DoG - Difference of Gaussians
DSA - Digital Subtraction Angiography
ECG - ElectroCardioGram
EM - Expectation Maximization
FEM - Finite Element Method
FMM - Finite Mixture Models
FN - False Negatives
FP - False Positives
fps - Frames Per Second
FPD - Flat Panel Detector
GUI - Graphical User Interface
GVF - Gradient Vector Flow
LoG - Laplacian of Gaussian
MAP - Maximum A Posteriori
MB - Myocardial Blush
MBG - Myocardial Blush Grade
MI - Myocardial Infarction
ML - Maximum Likelihood
MRE - Mean Relative Error
MRF - Markov Random Field
MSE - Mean Square Error
OTF - Optical Transfer Function
pAROC - partial Area under the Receiver Operating Characteristic
PCTA - Percutaneous Transluminal Coronary Angioplasty
pdf - Probability Density Function
PSF - Point Spread Function
ROC - Receiver Operating Characteristic
SVM - Support Vector Machine
TFT - Thin Film Transistor array
TN - True Negatives
TP - True Positives
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