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Abstract

Learning theory focuses almost entirely on the learner and its efficient realization, but
neglects other parts of the learning process, most importantly the teacher, which is
merely modeled as a passive data source. In this thesis, however, we study models
in which the teacher plays the central, active role and which allow us to investigate
teaching algorithms. In practice, teaching algorithms occur in the shape of intelligent
tutoring systems, computer based interactive systems for teaching students or at least
aiding their learning process. But in learning theory so far all teaching models fail to
properly describe the intelligent tutoring system scenario. We develop and analyze new
teaching models that improve the current ones with respect to this scenario.

The most common teaching model at present is based on the notion of teaching
dimension. This dimension specifies the minimum number of argument-value pairs
(“examples”) needed to describe a given Boolean function (“concept”) among a given
class of functions. A set of examples that uniquely describes a concept within a class
is called a teaching set. One assumption in the teaching dimension model is that all
learners are consistent, that is, their hypothesis always matches all known examples.
The teaching dimension of a concept then is the minimal number of examples a teacher
has to give in order to make all consistent learning algorithms hypothesize that concept.
The teaching dimension thus describes the optimal performance of a teacher for a given
target concept and therefore in some sense the teachability of the concept. The average
teaching dimension over all concepts in a concept class is considered a measure for the
teachability of this class, but this value is not known for many natural classes. We
show that the classes of monomials and 1-decision lists over n variables both have an
average teaching dimension of O(n).

As we demonstrate, a straightforward attempt to analyze intelligent tutoring sys-
tems in the teaching dimension model fails, because the model does not capture many
real-life aspects of teaching. Teachers cannot benefit from arranging the subject mat-
ter suitably; the optimal way of teaching is independent of such crucial properties of
the learner as its memory size; and the teacher cannot exploit feedback given by the
students. Moreover, the teaching dimension proves to be a counterintuitive measure of
teachability. For instance, longer 1-decision lists often have a much smaller teaching
dimension than shorter 1-decision lists.

In this thesis we identify two reasons for this lack of realism. First, the underlying
model of the student is too simple. Second, the performance of the teacher is measured
with respect to the worst student, rather than all students.



We present two approaches to tackle these shortcomings of the teaching dimension
model. In the first approach we develop a general, modular framework for algorith-
mic teaching that allows the specification of various student models and various kinds
of students’ feedback. Within this framework, a student is modeled as an algorithm
that maintains a hypothesis and changes it according to the examples received from
the teacher. We then use this general framework to compare concrete student mod-
els. Students differ with regard to the way they change the hypothesis and also what
examples they memorize and for how long.

In the simplest model we investigate, the students can have a preference for certain
hypotheses. We show that if students prefer simple hypotheses over complex ones, 1-
decision lists become easier to teach the shorter they are. We also consider students with
different hypothesis preferences and show that the teachabilities in all such models can
be described by a dimension-like parameter, similar to the teaching dimension. From
this it follows that the teacher does not need to pay attention to the order of examples
or to the feedback.

Next, we investigate a model of students in which they develop their hypothesis in
a more restricted way than in the teaching dimension model. We show that then the
teacher must take care to arrange the material in the right order and that the teacher
can benefit greatly from receiving feedback. We also show that optimal teachers in this
model are harder to find than in the teaching dimension model. The complexity of the
corresponding decision problem increases from polynomial time to NP-complete for
memoryless learners and from NP-complete to PSPACE-complete for learners with
perfect memory.

In the second approach we modify the teaching dimension model so as to analyze the
average student instead of the worst student. This is done by introducing a randomized
learning algorithm that incorporates all allowed behaviors. We show that to optimize
the performance for the average student, the teacher has to pay attention to the order
of the material and also to the students’ feedback. Furthermore, the performance of a
teacher varies with the students’ memory size.

Using the theory of Markov decision processes, we characterize optimal teachers for
several variants of randomized learners. We then focus on the randomized learner that
does not memorize examples and also provides no feedback to the teacher. There is no
known algorithm to compute the performance of the optimal teacher in this case; we
show this problem to be NP-hard and devise an approximation algorithm for it.

The performance of arbitrary teachers for these learners is hard to calculate, and it
is undecidable whether a teacher is successful at all. We identify a class of teachers
that can be handled more easily and whose performance can come arbitrarily close to
optimal. Finally we show that in general the teacher that chooses the next example
greedily does not approximate the optimal performance by a constant factor.
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In addition, however, it is to be
wished that the method of human
education be mechanical.

(Comenius [25])

Chapter 1

Introduction

1.1 Motivation

All higher life forms on earth learn by imitation, observation, or (the smarter ones) by
experimentation. Humans have invented two further mechanisms by which they gain
knowledge and skills: teachers and textbooks. Both methods have a long tradition and
are opposed to one another in many respects. Teachers are expensive to create and
to maintain, books are relatively cheap. Teachers are available only at certain hours
at certain places, books can be read anytime anywhere. Teachers can respond to the
specific needs of their students, books present their content in the same way for every
reader. Teachers can provide their students with hands-on experience in the subject
(indispensable, for example, in language teaching), books place the reader in a more
passive role.

With the technological advance, a third alternative besides teachers and textbooks
becomes imaginable: computers. If nothing else, a computer can present information
much in the same way as a book, with the usual additional features like hyperlinks,
multimedia, or search capabilities. Beyond this, there are systems that interact with
students, monitor their learning progress, and tailor the curriculum to them. Such
intelligent tutoring systems (ITS) present a middle way between teachers and books.
They are more expensive to create than books, but as they are easy to copy, the costs
per student can be low. An intelligent tutoring system is available anytime, but requires
a computer. It can, ideally, adapt to the student, but not as well as a human teacher
can. It can provide hands-on experience in areas like basic arithmetics or learning to
type, but not, for example, in athletics.

As a simple illustration, imagine a hypothetical ITS for teaching the school method
of adding two numbers (cf. [59]). Such a system would present the student addition
problems, such as 127 + 54, and from the answer it would infer the student’s skill and
possible misconceptions. For example, the answer 171 suggests that the student has
trouble with the carry; the answer 182 indicates trouble with adding certain digits.
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The system could then provide the student with specific instruction. The basic idea
of intelligent tutoring systems dates back to the 1970s. For the present state of the
art we refer the reader to the proceedings of the annual Intelligent Tutoring Systems
conference [42] as well as to the relevant AAAI website [43].

Apart from some technical details, the task of an intelligent tutoring system is similar
to that of a human teacher or a book. The subject matter must be presented in such
a way that all students or readers can understand it easily. In a classroom scenario,
questions from the audience must be answered helpfully, and the presentation of the
information should, in general, be guided by the feedback the audience gives. All
teachers, be they human, machines, or books, must be prepared to deal with many
different students of which they have little or no prior knowledge. The development
of effective intelligent tutoring systems therefore requires knowledge of human learning
behavior, or in other words assumptions about how students learn.

Human teachers and authors can draw on results of didactics or psychology. They
can use known didactic principles or rules of thumb with a more or less informal image
of students in their mind. In contrast, the development and verification of an intelligent
tutoring system requires a formal model of the underlying teaching process. Our goal
in this thesis is to design such a model in a rigorous way.

In the remainder of the introduction we first give an overview over the currently
existing formal models for teaching and learning, from which it becomes clear that these
models are insufficient for modeling intelligent tutoring systems (Section 1.2). Based
thereon we then formulate the requirements for our aspired formal ITS model more
precisely (Section 1.3). Afterwards we present our main contributions (Section 1.4)
and finally give an outline of our results (Section 1.5).

1.2 Formal Models for Teaching and Learning

Two of the first steps in designing any model are to identify the parts of reality one
wants to formalize and to find a suitable way of formalizing them. When Turing
modeled a human performing calculations, he decided that writing things down on
paper and reading them later are essential, but the color of the ink and the shape of
the paper are not. The formalization was an infinite tape with cells, each able to hold
a symbol, and a read-write head able to move left or right.

For our teaching model we do not have to start from scratch because teaching and
learning are closely connected processes and we can resort to four decades of research in
algorithmic learning theory. This theory, although primarily concerned with models for
learning instead of teaching, has analyzed the common underlying process and identified
its main components. The following abstract description of the process highlights these
components (see also Figure 1.1).

The main actors are a teacher and a learner. The teacher has something in mind he
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target hypothesis

information

teacher learner

Figure 1.1 The generic teach-
ing/learning process. The figure
visualizes the components of that
process, except for the student’s prior
knowledge and the success criterion.

wants to teach (the target). Note that here “teacher” is a generic term that can refer to
any source of information about the target. The learner initially has some incomplete
prior knowledge about the target. During the teaching process the teacher and the
learner perform some sort of interaction, which results in information about the target
flowing from the teacher to the learner. The learner combines this information with the
prior knowledge in order to form hypotheses. These hypotheses represent the learner’s
guesses about what the target actually is. Roughly speaking, the process is deemed
successful if and when the hypothesis eventually comes close enough to the target. The
formal definition is given by a success criterion.

This description is general enough to span a wide range of real-world scenarios. For
example, in a foreign language course, a teacher has in mind a language, say Spanish.
The students may or may not have some prior knowledge about Spanish or a general
background on languages, but they certainly have some “feeling” as to how languages
work. This would be the prior knowledge. Teacher and learners interact in the usual
classroom fashion, during which the teacher communicates Spanish vocabulary, phrases,
or grammar rules to the students. The hypotheses represent the students’ Spanish
competence. As success criterion a certain Spanish language proficiency is required
that can be assessed by an examination.

Another scenario that fits the description above is that of an autonomous robot
exploring an unknown environment. The environment serves as a teacher. The robot,
while moving around, receives information by observing the environment. The target
could be, for instance, a complete map of the environment. Prior knowledge could be
the ability of the robot to recognize common objects in the environment, like doors,
walls, or trees. A hypothesis would then be a map of the region explored so far. Finally,
the success is measured by the accuracy and the coverage of the hypothesized map.

The general description of the process also captures the scenario in which an author
writes a textbook that is later read by students and the scenario of a scientist doing
research. Imagine, for instance, a volcanologist observing volcanos and collecting lava
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Figure 1.2 In learning models a learner
is sought that works well, regardless of
the teacher’s behavior.

?

target hypothesis

information

teachers learner

in order to learn how to predict eruptions.
The ITS scenario fits in as well. In our hypothetical ITS that teaches basic arith-

metics the ITS plays the role of the teacher, the learner is the student using the system,
and interaction works by the teacher providing addition problems and the learner sup-
plying answers. Success occurs when the student can perform all additions correctly.

Many models have been developed that formalize the components of the abstract
process. The models differ not only in the way they formalize the components but also
in their purpose. The original purpose of models in learning theory was, naturally,
the investigation of learning algorithms. Common to all these learning models is that
their success criterion requires the learner to be successful for all teachers defined by
the model, even for malicious ones. Such models are therefore suitable for scenarios
like the autonomous robot or the volcanologist, who both have to work in whatever
environment they are placed or using whatever lava specimen they get. Figure 1.2 is a
visualization of this success criterion.

Learning models are primarily used to design learning algorithms, whereas our goal
is to design algorithms for teaching. It is nevertheless worthwhile to review these
models briefly because they introduce many concepts that we shall meet again later in
dedicated teaching models. In particular, even learning models have to give some formal
definition of teachers. Mostly, this definition is hidden implicitly in the specification of
the information presentation and in the definition of the success criterion and must be
made explicit.

The first learning model was introduced by Gold in 1967 [33] and is generally referred
to as inductive inference. It is formulated in terms of recursive sets and functions and
therefore the most fundamental model. The targets are recursive languages. There
are two ways of formalizing the teacher. In one variant the teacher is an infinite series
containing, in arbitrary order, every word over the underlying alphabet with a label
stating whether or not the word is in the target language. In the other variant the
teacher is a series containing only, and all, the words present in the target language.
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In any case, the learner is a partial recursive function mapping initial portions of the
teacher series to descriptions of languages. The process consists of the teacher giving
the series element by element to the learner which in turn builds hypotheses accordingly.
There are two fundamentally different definitions of success: learning in the limit and
finite learning. The first variant requires the series of hypotheses to eventually stabilize
on a correct description of the target. In contrast, the second success criterion, finite
learning, requires the learner to output a single hypothesis that must be a correct
description of the target. In both variants the learner must be able to reach a correct
hypothesis no matter in which order the teacher presents the information.

The inductive inference model is not suited for finite languages. For instance, learn-
ing finite languages in the limit is trivial. Consequently, Boolean functions, which can
be seen as characteristic functions of finite languages, have received less attention in
the original inductive inference setting. Even for learning simple functions, like mono-
mials, exponentially many argument-value pairs (called examples) are needed. In the
more recent stochastic finite learning approach [65, 66, 73], however, one is able to
study Boolean functions in a stochastic variant of learning in the limit, which yields
polynomial teachability results for the class of monomials.

In 1984 Valiant [78] introduced a model that is applicable to finite as well as to infinite
languages and focuses on learnability from polynomially many examples. The targets
are regarded as 0-1-valued functions, called concepts , over arbitrary domains; typical
domains are the Boolean domain, all words over an alphabet, or the real numbers.
In this so called PAC learning model the teacher presents the data as a sequence of
examples of the target concept. The examples are chosen according to a probability
distribution that is unknown to the learner. After having received polynomially many
examples, the learner has to stop and output a single hypothesis. In PAC learning
the learner is required to be successful for every probability distribution according to
which the teacher chooses the examples. Because the probability distribution can put
very small probabilities on the interesting examples, the learner’s hypothesis is allowed
to be only approximately correct, and with some small probability the hypothesis may
even be arbitrarily bad. The success criterion is thus probabilistic.

The online learning model, introduced by Littlestone [51], combines non-probabilistic
learning with the possibility of studying finite concepts. In every round the teacher
presents the learner an argument of the target function, but without the value. The
learner guesses this value and is charged one mistake whenever this guess is wrong.
At the end of every round the learner is told the right value. The learner’s quality is
measured by the number of mistakes it makes in the worst case over all teachers, that
is, over all sequences of unlabeled examples for the target. The online learning model
is primarily concerned with the question whether a concept class is learnable with only
polynomially many prediction mistakes. It is thus closely related to the PAC model.

Angluin’s query model [3, 4] changes the way the learner receives its information.
Rather than relying on the teacher selecting examples, the learner can now ask ques-
tions, which the teacher answers truthfully. The quality of the learner is measured
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Figure 1.3 In hybrid models a teacher
and a learner are sought that work well
together, regardless of the adversary’s
behavior.

? ?

target hypothesis

information

teacher learner

adversary

by the number of questions needed to identify the target. The teacher in the query
learning model has the greatest similarity with a real world teacher among all the
learning models. But still that teacher remains passive and does not aid the learner
of its own accord. When, depending on the model variant, the teacher may choose
from several answers, he is assumed to act adversarially. The burden of learning thus
remains completely on the part of the learner.

We finish this review of learning models by remarking that all models differ with
respect to which targets they deem teachable. There is thus no universal model de-
scribing learnability. This contrasts, for example, with the notion of computability, for
which all models have turned out to be equivalent.

The learning models in the previous paragraphs provide plenty of formalism for
the components of the teaching process, but they are all incapable of modeling the
ITS scenario. Their basic assumption is that the teacher may behave badly, which is
plausible in some scenarios like the volcanologist, who cannot expect volcanos to give
particularly helpful examples, but which is not true in the ITS scenario.

In the ITS scenario the teacher chooses information in a helpful manner. In learning
theory several models exist where, in addition to a learner, a teacher selecting helpful
examples can be devised. A major problem in this kind of model is the prevention of
cheating. For example, in an inductive inference setting, if the teacher wants to teach
a recursive language he could outright encode the index of the target language into the
example sequence, and the learner could decode it to hypothesize the target without
doing “real” learning in any sense. A common remedy is to introduce a kind of adver-
sary that disturbs the information flow in order to prevent coding tricks. Figure 1.3
provides a graphical representation of the basic structure of such models.

Collusion between teacher and learner can be prevented in several ways. Variants of
the Gold style learning model, called learning from good examples, have been intro-
duced by Freivalds, Kinber, and Wiehagen [29, 30] and by Lange, Nessel, and Wieha-
gen [48]. Here, the teacher selects a finite set of words of the target language and



1.2 Formal Models for Teaching and Learning 7

gives it to the learner. The main difference to the original inductive inference models
is that the learner is required to find a correct hypothesis not only from this given
set of words, but also from all proper supersets thereof. This can be thought of as an
adversary adding information to the information given by the teacher. This additional
information is truthful, but nevertheless prevents collusion like outright encoding be-
cause the learner cannot distinguish words given by the teacher from those given by the
adversary. Just like in the original inductive inference model, learning can be successful
in the limit or in a finite way.

Similar models have been introduced by Goldman and Mathias [35] and by Math-
ias [53, 54] for learning concepts. Again, the main difference to the traditional models
is an adversary that adds true information to the information given by the teacher.

Yet another model has been devised by Jackson and Tomkins [44]. Here, the teacher
and learner interact in a modified prover-verifier session (see Goldwasser, Micali, and
Rackoff [37]). The teacher can be designed arbitrarily and may even have complete
knowledge about the learner. The learner, on the other hand, may not be designed
arbitrarily, but must be designed in such a way that no adversarial teacher can make
the learner hypothesize a wrong concept. This prevents the learner from exploiting
cheating teachers.

Another way to avoid coding tricks between teacher and learner is to provide them
with incompatible hypothesis spaces. Angluin and Kriķis [6, 7] propose a model for
learning and teaching partial recursive functions in which the learner’s task is to find
an index of the target function in a partial recursive enumeration that can be accessed
by the learner only like a black box.

The models in which a learner benefits from examples carefully selected by a teacher
are closer to the ITS scenario in that they allow the design and analysis of teaching
algorithms. But they do not yet fit exactly because they also still require the design
of a learner. An intelligent tutoring system, however, is supposed to deal with many
different students, not just with a single, specially defined one. The model we are
looking for should provide a definition of learners in a symmetric way as the learning
models define a notion of teacher. Figure 1.4 shows the basic layout of a teaching
model.

In the beginning of the 1990s, several teaching models appeared. Shinohara and
Miyano [76] devised a model in which the teacher is required to give information that,
when combined with the learners’ prior knowledge, uniquely describes the target con-
cept. More precisely, the prior knowledge is modeled as a class of concepts from which
the target is drawn. The teacher’s task is to give a set of examples such that the
target is the only concept in the concept class that matches all examples in the set.
The implicit assumption about the learners’ behavior is that they are consistent and
class-preserving. Consistent means that they choose only hypotheses that match all
received examples; class-preserving means that they choose only hypotheses from the
known concept class. The quality measure for the teacher is the number of examples
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Figure 1.4 In teaching models a
teacher is sought that works well, re-
gardless of the learner’s behavior.

?

target hypothesis

information

teacher learners

he gives. Shinohara and Miyano call the minimum number of examples necessary for a
given target its key size; this value measures the teachability of the target. They show
that computing the key size for a given concept is NP-complete, but that it is possible
to efficiently find minimum sets of examples for threshold functions.

Independently of the previous teaching model Anthony, Brightwell, Cohen, and
Shawe-Taylor [8] introduced a combinatorial parameter, called specification number,
for concepts with respect to concept classes. This parameter is identical to the key
size. They extensively study the specification number of linearly separable Boolean
functions (see also Anthony, Brightwell, and Shawe-Taylor [9]).

The teacher-directed learning model by Goldman, Rivest, and Shapire [36] is based
on the online learning model. The teacher’s goal is to present examples of the target in
such a way that the learners eventually hypothesize the target, making as few mistakes
as possible during the teaching process. Again, “all learners” is interpreted as “all
consistent and class-preserving learners.” Goldman and Kearns [34] show that under
the optimal teacher in the teacher-directed model the worst case number of mistakes
made by a learner equals the key size, or specification number, of the target concept.
They coined the term teaching dimension, which has prevailed over the equivalent terms
key size and specification number. They also propose to use the maximum teaching
dimension over all concepts in a class as a measure for the teachability of that class.

We shall refer to the above three equivalent models as the teaching dimension model
or TD model. The teaching dimensions of many natural concept classes have been
determined [34, 8, 46, 75, 11, 50]. As a measure of teachability the teaching dimension
has been compared with measures for learnability, such as the Vapnik-Chervonenkis
dimension (see [41, 40, 34, 4, 16, 69]). That computing the teaching dimension, or
finding a minimum teaching set, for a given concept is NP-complete has been proved
by all inventors of the TD model [76, 8, 34]. A hardness result for concepts of a specific
class, namely intersections of halfspaces, is given by Servedio [75]. The average teaching
dimension over all concepts in a class has been proposed as a better measure for the
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teachability of a concept class than the worst case teaching dimension (see [9, 46, 50]).
The approximate testing model by Romanik and Smith [72] and Romanik [70, 71] is

similar in spirit to the TD model, but designed specifically for concepts over uncount-
able domains. It is akin to the PAC learning model in that the learner’s hypothesis is
allowed to have some error.

Teaching models and learning models can formalize the components of the process
in the same way, even though their purposes are different, in fact symmetrical, to
each other. Teaching models and learning models can be regarded as lying at opposite
sides of a spectrum, with the hybrid models in between (cf. Figures 1.2, 1.3, 1.4).
The symmetry between learning and teaching models holds only with respect to the
models’ structure, not with respect to the amount of attention they have received. This
imbalance gives an additional, more theoretical motivation for investigating models for
algorithmic teaching.

Both teaching models, the TD model and the approximate testing model, define the
learners as all consistent and class-preserving algorithms. This is a natural definition
because it is symmetric to the definition of the teachers in the learning models. Roughly
speaking, in a learning model a teacher is an entity that has complete knowledge about
the target and that makes this knowledge available completely and truthfully. In the
Gold style learning, for instance, the teacher has to present all words and only the
words in the target language; no information is missing or incorrect. This intuitive
characterization of teachers leads to an intuitive characterization of learners: A learner
is an entity that incorporates all information it has about the target completely and
truthfully into the hypothesis. Incorporating all information means to incorporate the
previous knowledge by choosing a class-preserving hypothesis and to incorporate all
examples by choosing a consistent hypothesis.

Although the definition of learners is natural, the results given by the TD model often
do not match our intuition and are unsatisfactory. A formal version of the following
discussion can be found in Section 3.1.

One unrealistic aspect of the model is that the order of examples is irrelevant; the
teacher simply gives the examples to the learner all at once. In reality, by contrast, the
teacher must present the subject matter in a suitable order. For instance, discussing
the recursion theorem before introducing partial recursive functions is not going to
work well.

The TD model also assumes that the learners memorize every example and never
forget it, which is clearly an unrealistic assumption. Although this assumption could
easily be relaxed by allowing the learners to forget an example after, say, m rounds,
the model would not become more realistic. A target would be teachable to all these
“forgettable” learners if and only if m is at least as large as the teaching dimension of
the target. If m is smaller, the learners can always choose a wrong hypothesis without
violating the consistency requirement. If m is greater, teaching would nevertheless not
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get faster.
In reality, the exact wording of the teacher or the book is hardly ever remembered.

Instead, the examples are gradually integrated into the hypothesis. For instance, during
a foreign language course, vocabulary and grammar rules have to be learned; but sooner
or later the student will use them intuitively without having to recall them whenever
saying a sentence. Therefore it seems natural to require that teaching should also be
possible if the learner has only a small memory that cannot hold enough examples to
describe the target completely.

Another effect that is present in real life teaching, and that should be present in
an intelligent tutoring system as well, is that taking into account the learner’s feed-
back when chosing the examples makes the teaching process more efficient. Recall, for
instance, the ITS that teaches how to add numbers. Inferring the student’s misconcep-
tions from the incorrect answers and accordingly selecting further problems is the main
feature of the system. Without getting the student’s answers as feedback, adaption
to the student would be impossible, and there would not be much tutoring left in the
system. Apart from asking questions to assess the student’s skills, a teacher can also
infer some deficiencies by the questions the student asks. The strongest, most unrealis-
tic, yet easiest formalizable kind of feedback would be the teacher reading the learner’s
mind. In terms of the model, the teacher has access to the learner’s current hypothesis
in every round. But in the TD model, even if the teacher is equipped with mind reading
capabilities, the worst case learner would still require a number of examples equal to
the teaching dimension.

The non-intuitive effects described so far involved the interaction of a teacher and the
environment. But in addition to enable us to study concrete teachers, the TD model
also permits us to measure the abstract property “teachability” of a target concept and
thus to distinguish easily teachable from hard to teach concepts. The teachability of a
concept is defined as the teaching dimension.

The teaching dimension for a class is not always a sensible measure for its teachability.
For instance, the small and simple class of monomials over n variables has a teaching
dimension of 2n, the same as the huge class of all Boolean concepts. Also the teaching
dimension of single concepts can look implausible. For example, Anthony et al. [8,
9] show that linearly separable Boolean functions over n variables have a teaching
dimension of (d+1) · 2(n−d) where d is the number of relevant variables of the function.
Intuitively, however, we would expect that functions with fewer relevant variables are
easier to teach. Since 1-decision lists are special cases of linearly separable Boolean
functions, this result suggests that 1-decision lists are the easier to teach the longer
they are, which seems also implausible.

We conclude that the original TD model is not suitable for the ITS scenario, and
also the straightforward modifications allowing feedback and imperfect memory yield
no improvement.

Finally, we observe that the teaching dimension model does not work well with
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infinite concept classes because in these cases often infinitely many examples are needed
to describe the target, which causes the teaching dimension to be infinite, too. It is
thus often impossible to compare infinite concepts with respect to their teachability in
the teaching dimension model.

1.3 Goal

Our goal is to devise teaching models that remedy the above mentioned flaws. More
precisely, we will judge our models by the following aspects:

1. The order in which the teacher presents the information should have an influence
on the performance of the teacher.

2. Teaching should get harder when the memory size of the learners decreases, but
it should not become impossible for small memory.

3. Teaching should get easier when the learners give feedback to the teacher.

4. Concepts that are more complex should be harder to teach.

5. The teaching model should work for both finite and infinite concepts.

1.4 Main Contributions

As a first step towards our goal we identify two main reasons why the teaching dimen-
sion model lacks the five properties described in the previous section. First, the student
modeling is unrealistic. A realistic student does not pick an arbitrary hypothesis con-
sistent with all examples seen so far in every round. More realistic assumptions are
that a learner chooses hypotheses in a more restricted way and that not all examples
ever seen are taken into account. Second, the quality of the teacher is always measured
with respect to the worst case student. This neglects the vast majority of students
who are not worst case. Often, an action of the teacher helps a reasonable learner, but
not a worst case learner. This kind of actions is thus unaccounted for by the teaching
performance measure.

To remedy the first reason, in Part I we develop a general framework that contains
the TD model as special case. This flexible framework allows us to study various
student models that are more realistic than the one used in the TD model. Moreover,
it provides a formalization of learner’s feedback.

To remedy the second reason, in Part II we modify our framework from Part I to
allow an average case analysis of the teaching process. This is done by introducing a
single randomized learner that acts as an average case learner.
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1.5 Outline of the Results

The analysis of our teaching models parallels the analysis of the TD model in the
literature, but with a greater emphasis on the five aspects in Section 1.3. In particular,
we study the following questions:

1. Which concepts are teachable?

2. What is the complexity of teaching natural concepts?

3. How does this teachability measure compare with other measures of teachability
or learnability?

4. How hard is it to compute the teachability of a concept or to find an optimal
teacher?

In Chapter 3 we focus on one of the least well explored points in the TD model,
namely the average teaching dimension. We show that the Boolean concept classes
of 2-term DNFs as well as of 1-decision lists have a linear average teaching dimen-
sion, although their (worst case) teaching dimension is exponential in the number of
variables.

In the remainder of Part I we use our framework for two approaches to improving
student modeling. In the first approach (Chapter 4), students do not choose arbitrary
consistent hypotheses any more, but they prefer certain hypotheses over others. As one
instantiation of this general idea, in Section 4.2 we consider students that prefer simple
hypotheses over complex ones, a property frequently found in learning algorithms and
known in learning theory as Occam’s Razor. We show that according to this teachability
measure 1-decision lists are the easier to teach the shorter they are. This contrasts with
the counter-intuitive results for 1-decision lists in the TD model. Therefore, this model
improves the TD model with respect to Item 4 of Section 1.3. Moreover, it allows to
investigate the teachability of infinite concepts, again in contrast to the TD model.

The approach of preferring certain hypotheses is flexible enough to model students
that make assumptions about the teacher. In Section 4.3 we introduce learners that
prefer hypotheses for which the teacher’s examples are optimal. A teacher exploiting
this students’ assumption can teach more efficiently than in the TD model. If the
students assume the teacher behaves in this more efficient way, they change their be-
havior. The teacher can again adapt to this new behavior and improve the teaching
efficiency again. Iterating this results in an infinite series of teachers of monotonically
increasing quality. We show that for monomials there is no improvement beyond the
second teacher, but that there are infinite concept classes for which every teacher in
the series is strictly better than the previous one.

Even if learners prefer certain hypotheses, the teacher still cannot benefit from their
giving feedback. This changes when we define the learners such that they memorize an
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example only if it is inconsistent with the current hypothesis. This models in some sense
the observation that surprising things better stick to memory. We show in Section 4.4
that for those learners there is a quadratic speed-up in teaching time when the teacher
receives feedback.

Despite some improvement with respect to feedback and the relationship between
complexity and teachability of concepts, the models in Chapter 4 are still essentially
batch models, in which the order of examples does not matter and where the teach-
ability can be expressed using a combinatorial parameter of the concept class, in a
similar fashion as the teaching dimension in the TD model; no further dependence of
the teachability from the memory occurs. The main reason for these shortcomings is
that learners are allowed to choose their next hypothesis independently of their current
one. It is more realistic to assume that learners change their hypothesis only a little in
each round.

In Chapter 5 we introduce a model in which the hypothesis changes are restricted.
Now, providing the examples in the right order becomes an important aspect of teach-
ing. Unsuitably ordered examples might lead the learner to assume hypotheses from
which it is difficult to reach the target. Moreover, if the learners give no feedback, the
teacher must be very careful to give examples such that no learner, regardless of its
current hypothesis, is led astray. Carefully defining the hypothesis change restriction
can make feedback very advantageous. We show in Section 5.2 that missing feedback
can arbitrarily slow down teaching. Due to the hypothesis restriction the behavior of
the learner is more complex than in the teaching dimension model. Consequently, it
is harder to find good teachers and also to decide whether there is a teacher with a
certain performance guarantee at all. We make this intuition precise and show in Sec-
tion 5.4 that in the new model the question is PSPACE-complete to decide, in contrast
to the TD model, in which that question is NP-complete to decide. The corresponding
question for memoryless learners is decidable in linear time in the TD model, but is
NP-complete in the new model.

In Part II we modify the TD model so as to perform an average case analysis instead
of the usual worst case analysis. More precisely, we consider a randomized learner that
combines the behavior of the learners in the TD model. In particular, no restrictions
as in the Chapters 4 and 5 apply to the learner. This randomized version of the TD
model is superior to the traditional TD model in terms of Items 1.–5. of our goal. The
performance of a teacher now depends on the order in which it presents the examples.
Furthermore, even learners with very small memory can be taught, even though it
takes a long time. If the memory grows, the expected duration of teaching decreases
smoothly. Teaching success happens sooner when feedback is available to the teacher
(see Chapter 6).

We distinguish randomized learners according to their memory size and whether or
not they give feedback. In Chapter 7 we study the randomized learners that have
infinite memory or give feedback. In Section 7.1 we characterize optimal teachers
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for the memoryless learner with feedback and use the characterization to develop an
efficient optimal teaching algorithm for the concept class of monomials. In Section 7.2
we show that for learners with infinite memory and with feedback there is always
an optimal teacher that gives in each round an example that is inconsistent with the
learner’s current hypothesis. We use this result to develop a characterization of optimal
teachers for these kind of learners. Finally, we show that the optimal performance of a
teacher for learners with infinite memory is computable, but hard to even approximate.

Memoryless learners that give no feedback are the hardest to analyze; we dedicate
Chapter 8 to the analysis. No algorithm for finding an optimal teacher or for determin-
ing the performance of the optimal teacher is known. We first derive characterizations
of successful teachers and, using recent results on unobservable stochastic shortest path
problems [61, 62], of optimal teachers (see Sections 8.1 and 8.2). Then we prove the
problem of finding the optimal teacher’s performance to be NP-hard. Moreover, we
show that there is an algorithm for approximating this optimal performance value (see
Chapter 8.3).

In general it is not possible to compute the performance of a teacher or to decide
whether it is successful at all. In Section 8.4 we investigate a kind of teachers that give
the same sequence of examples in an endless loop. These cyclic teachers are much easier
to handle than teachers in general, but are nevertheless powerful enough to come arbi-
trarily close to the optimum. We devise a cyclic teacher for the monomials that needs
twice the time than our optimal algorithm for learners with feedback (Section 7.1), thus
yielding an upper bound for the optimal teaching performance for monomials. Finally,
in Section 8.5 we investigate a natural greedy strategy for teaching algorithms. We
show that this strategy, although optimal for some simple concept classes, yields no
constant factor approximation to the optimal performance in general.

We conclude the thesis with a discussion of the relevance of our models and their
relation to traditional teaching and learning models. We also point towards some future
research.

Some results in the Chapters 3 and 4 have been presented at the COLT 2005 confer-
ence [11]. The contents of Chapter 5, except for Section 5.4, has been presented at the
ALT 2005 conference [12]. Most results of the Chapters 6 and 7 have been presented at
the COLT 2006 conference [14]. Finally, the results in Chapter 8 have been presented
at ALT 2006 [13].



Chapter 2

Preliminaries

2.1 Basic Definitions and Notations

Let N = {0, 1, 2, . . . } be the set of all natural numbers, N+ = N \ {0} the set of all
positive natural numbers, and R the set of all real numbers. The cardinality of a set S
is denoted by |S|, and |S| = ∞ means S is infinite. We use “⊆” to denote the subset
relation and “⊂” for the proper subset relation. A4B is the symmetric difference of
the sets A and B. The symbol “∀∞” means “for all but finitely many.” We set the
minimum of the empty set to infinity, that is, min ∅ = ∞. The power set of a set M is
written as 2M . For a, b ∈ N with a ≤ b the set {a, . . . , b} ⊂ N is abbreviated as [a, b].
For a function f : M → R over an arbitrary set M and a set A ⊆ M we define

argmin
x∈A

f(x) = {x ∈ A f(x) = min{f(x′) x′ ∈ A}}.

If {f(x′) x′ ∈ A} has no minimum, then argminx∈A f(x) = ∅. The definition of
argmaxx∈A f(x) is analogous.

For any set S we denote by S∗ the set of all finite sequences over S and by Sm

and S≤m the set of all sequences of length m and at most length m, respectively. We
use bold lowercase letters as identifiers for sequences. Elements forming a sequence
are enclosed in angle brackets. The empty sequence is denoted by 〈 〉, the length of a
sequence s ∈ S∗ by |s|. For the i-th element of a sequence s (i = 1, . . . , |s|) we write
s[i]. We use the symbol ◦ for concatenation of sequences and, for m ∈ N+, the symbol
◦m for a length-restricted concatenation with a singleton sequence:

〈x1, . . . , xk〉 ◦m 〈y〉 =

{
〈x1, . . . , xk, y〉 if k < m,

〈xk−m+2, . . . , xk, y〉 if k ≥ m.

For notational convenience, we set ◦∞ to be the standard concatenation ◦. For a finite
sequence s and an ` ∈ N+ we write s` for s ◦ · · · ◦ s︸ ︷︷ ︸

` times

. For two sequences s, s′ we write

s v s′ if s is a prefix of s′.
We sometimes identify a sequence and the set of all its elements.
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As strings are only sequences of characters, we use similar notations for strings as for
sequences: For a string σ over an alphabet Σ we denote by |σ| its length and by Σ∗ the
set of all finite strings over Σ including the empty string Λ; σ[i] is the i-th symbol in σ
(i = 1, . . . , |σ|). In addition, we may omit the symbol ◦ in concatenations of strings.

For b ∈ {0, 1} we abbreviate 1 − b with b̄. For k ∈ N and n ∈ N+, the number
r = k mod n is defined as the unique number in [0, n−1] with r ≡ k (mod n). To save
parentheses, we assume that the operator mod has a higher priority than addition.
That means “1 + k mod n” is equivalent to “1 + (k mod n).”

To describe our teaching models we mostly use standard notions from algorithmic
learning theory. We always assume a countable learning domain X whose elements
we call instances. A concept is a function c : X → {0, 1}. A concept class C is a set
of concepts. A pair (x, b) ∈ X × {0, 1} of an instance and a Boolean label is called
example. It is positive if b = 1, otherwise negative. The set of all examples is denoted
by X = X × {0, 1}. A concept c is consistent with an example (x, b) iff c(x) = b
and consistent with a set S ⊆ X of examples iff c(x) = b for all (x, b) ∈ S. A set of
examples is also called a sample. We often implicitly identify a concept c with the set
{x ∈ X c(x) = 1} and vice versa a set Y ⊆ X with the concept c : c(x) = 1 ⇔ x ∈ Y .
For example, the empty concept ∅ is identified with the constant-0 function over X.

For a sample S, let C(S) = {c ∈ C c is consistent with S}. We denote by X (c) =
{(x, c(x)) x ∈ X} the set of all examples for c.

A sample S is called a teaching set [34, 36] (also known as key [76], specifying set [8],
discriminant [57], and witness set [47]) for c with respect to C iff C(S) = {c}. The
teaching dimension of c with respect to C is defined as the cardinality of the smallest
teaching set of c:

TD(c, C) = min{|S| C(S) = {c}}.

We simply write TD(c) if the concept class is clear. The teaching dimension of the
class C is defined as the maximum teaching dimension over all concepts: TD(C) =
max{TD(c, C) c ∈ C}. If the learning domain X is infinite, there might be no finite
teaching set for a given concept. In this case we say the teaching dimension of c is
infinite and write TD(c) = ∞. Similarly, TD(C) = ∞ if there is a concept with infinite
teaching dimension or if the set {TD(c) c ∈ C} is not bounded from above.

Two concepts differing only with respect to one instance are called neighbor concepts.
The number of neighbor concepts of c in the class C is a lower bound for the teaching
dimension of c with respect to C because each neighbor concept must be ruled out by
a separate example.

To investigate the computational complexity of algorithms coping with concepts (as
input or output) it is necessary to use finite descriptions as representations for con-
cepts. Especially for classes over infinite learning domains, defining representations is
unavoidable. Formally, representations are strings over a finite alphabet Σ. A repre-
sentation function is a function % : Σ∗ × X → {0, 1, ↑}. For a string σ ∈ Σ∗ and an
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X 1 2 3 4 5 6 7 8
σ
0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 1
3 1 1 0 1 1 1 1 1
4 1 1 1 0 1 1 1 1
5 1 1 1 1 0 1 1 1
6 1 1 1 1 1 0 1 1
7 1 1 1 1 1 1 0 1
8 1 1 1 1 1 1 1 0

Figure 2.1 The concept class S8 over learning domain [1, 8]. The concept represented by 0 is
the all-concept [1, 8], the concepts represented by i = 1, . . . , 8 are the co-singletons [1, 8]\{i}.

instance x ∈ X, %(σ, x) specifies whether x belongs to the concept represented by σ or
not. The value “↑” signals an invalid input, for example, a σ that should not represent
any concept. By %σ we denote the function %σ : X → {0, 1, ↑} with %σ(x) = %(σ, x) for
all x ∈ X. A string σ ∈ Σ∗ is a representation for a concept c : X → {0, 1} iff for all
x ∈ X, %σ(x) = c(x). The representation size ‖c‖ of a concept with respect to a func-
tion % is the length of its shortest representation: ‖c‖ = min{|σ| %σ = c}. If c is not
represented by any σ, we have ‖c‖ = ∞. The concept class of all concepts represented
by % is denoted C% = {%σ ∀x ∈ X : %σ(x) ∈ {0, 1}} and the set of all representations
for concepts in a set C ⊆ C% is %(C) = {σ ∈ Σ∗ %σ ∈ C}; we abbreviate %({c}) with
%(c). Finally, a represented concept class is a pair 〈%, C〉 of a representation function
% and a concept class C such that C ⊆ C%. Note that X and Σ are implicitly given by
the function % and thus we do not have to mention them explicitly in the represented
class.

For convenience we sometimes identify the representation language Σ∗ with the set N.
This happens only for concept classes for which the “real” representations are not
important. We shall always mention that at the definition of the concept class. Using
this interpretation, the minimum min S and the maximum max S of a set S ⊆ Σ∗ are
well-defined.

Three learning domains will be used throughout this thesis: The set [1, n] to de-
scribe n objects with no particular structure, the set {0, 1}n containing all 2n Boolean
vectors of length n, typically interpreted as assignments to n Boolean variables, and the
infinite set {a, b}∗ of all words over the alphabet {a, b}. To denote subsets of {0, 1}n

we use notations like 1k{0, 1}n−k for the set {1ky y ∈ {0, 1}n−k}.

For the purpose of illustrating the various models introduced later, we use a few
common natural concept classes. The first and simplest one is Sn over [1, n]. This
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class contains all co-singleton concepts ci = [1, n] \ {i} for i = 1, . . . , n and the all-
concept c0 = [1, n]. There is a straightforward representation function with %i = ci for
i = 0, . . . , n (see Figure 2.1). Another concept class over [1, n] is An = 2[1,n], the class
of all concepts over [1, n].

To describe concept classes over the learning domain {0, 1}n of Boolean assignments,
we use Boolean variables v1, . . . , vn. We denote by v0

i or v̄i negative literals, and by v1
i

or vi positive literals. For a literal w = vα
i we write w̄ for v1−α

i . An instance x ∈ {0, 1}n

is interpreted as an assignment to v1, . . . , vn in the canonical way.

1-decision lists are popular concepts in learning theory [68, 39, 77, 24, 38] and have
also been investigated in the context of teaching [34, 35]. A 1-decision list over n
Boolean variables is a list

D = 〈(w1, b1), (w2, b2), . . . , (wm, bm), (∗, bm+1)〉

of nodes (wj, bj) consisting of literals wj ∈ {vα
i i ∈ [1, n], α ∈ {0, 1}} and labels

bj ∈ {0, 1}. A node (w, b) is called positive if b = 1, negative otherwise. The node (∗, b)
is called default node.

The concept cD : {0, 1}n → {0, 1} described by D is defined as cD(x) = bj for the
minimal j ≤ m such that x satisfies wj, and cD(x) = bm+1 if no such j exists. Note
that a default node is present in every decision list. Two decision lists D, E are called
equivalent iff cD = cE. We say a node (wi, bi) absorbs an instance x if wi is the first
literal in D satisfied by x. We say an instance x reaches a node (wi, bi) if x is not
absorbed by any node before (wi, bi). Furthermore, we say an instance x leaves a node
if it reaches the node, but is not absorbed by it. For example, in the decision list (2.1)
below, the instance 01010 is absorbed by node (v̄3, 0); the instance 01101 is absorbed
by the default node.

The set of all concepts represented by 1-decision lists over n variables is denoted by
Dn. We define the length of a decision list as the number of nodes (not counting the
default node), len(D) = m, and the length of a concept c ∈ Dn as the length of its
shortest decision list: len(c) = min{len(D) cD = c}. We denote by Dn

len≤` ⊆ Dn the
set of all 1-decision list concepts of length at most `.

To make 1-decision lists formally fit into our representation framework we need a
representation function %DL for Dn. An informal description of %DL will suffice. A node
(vα

j , b) is represented by a string of length 2 + dlog ne containing one bit for α and b
each, and dlog ne bits for j. The default node is represented by the label alone. We
only need the fact that two decision lists have the same representation length if and
only if they have the same length. For all our purposes we can regard the length of a
1-decision list as their representation size.

As usual, we assume 1-decision lists to be in reduced form, that is, each variable
occurs at most once (either negated or not) and the default node and its predecessor
(if any) have different labels. A 1-decision list can be transformed into an equivalent
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reduced 1-decision list in linear time [35] and reduced decision lists are of minimal
length [77].

Furthermore, we assume that the last two nodes before the default node have the
same label. In the special case of decision lists of length 1 there are two equivalent
reduced lists: 〈(w, b), (∗, b̄)〉 and 〈(w̄, b̄), (∗, b)〉. We then assume that the default label
is negative. We call reduced lists with these properties normal form decision lists
(NFDL). Every reduced 1-decision list either is an NFDL or can be easily transformed
into one by inverting the default label and the last node’s label and literal. For example,
the 1-decision list

〈(v1, 1), (v̄3, 0), (v4, 1), (v3, 1), (v5, 0), (v6, 1), (∗, 1)〉

in reduced form is

〈(v1, 1), (v̄3, 0), (v4, 1), (v5, 0), (∗, 1)〉

and in normal form

〈(v1, 1), (v̄3, 0), (v4, 1), (v̄5, 1), (∗, 0)〉. (2.1)

Every NFDL can be divided into segments (also called levels [35, 77]), that is,
maximum length sequences of consecutive nodes with the same label. For example,
the segments in (2.1) are D1 = 〈(v1, 1)〉, D2 = 〈(v̄3, 0)〉, and D3 = 〈(v4, 1), (v̄5, 1)〉.
The segments of the 1-decision list in Figure 4.2 on Page 68 are D1 = 〈(v1, 1)〉,
D2 = 〈(v2, 0), (v3, 0), (v4, 0)〉, D3 = 〈(v5, 1), (v6, 1)〉. We write D = D1 ◦· · ·◦Dr ◦〈(∗, b)〉
to indicate the segmentation of D into segments D1, D2, . . . , Dn. Note that the default
node is determined by the last node in segment Dr. Thus we can denote the segmen-
tation also simply by D = D1 ◦ · · · ◦Dr, provided the length of D is a least one.

Another concept class over {0, 1}n is the class of monomials. A monomial is a
conjunction of Boolean literals, for example, v1 ∧ v̄3 ∧ v4. It describes a concept over
{0, 1}n in the canonical way if the instances in {0, 1}n are seen as assignments to n
variables. For example, over {0, 1}4, the monomial v1 ∧ v̄3 ∧ v4 describes the concept
{1001, 1101} ⊆ {0, 1}4. Note that the empty concept, described by all monomials
containing a variable and its negation, is not always considered a monomial. We shall
always make clear whether or not we include the empty concept, but always use the
same symbol, M1

n, for the set of all monomials over n variables.
Every monomial, except the contradictory ones, can be represented by a string

M ∈ {0, 1, *}n, where M [i] = 0, 1, * specifies whether the variable vi occurs negated,
unnegated, or not at all. Thus, 1*01 represents v1 ∧ v̄3 ∧ v4. One gets the set of
satisfying assignments by replacing every * with all values from {0, 1}. Sometimes we
abuse notation and identify M with the concept it represents. Note that M1 ⊆ M2

if and only if for all i, M1[i] = M2[i] or M2[i] = *. Moreover, M1 ⊂ M2 if and only
if M1 ⊆ M2 and there is an i with M2[i] = * 6= M1[i]. When we include the empty
concept into the set of monomials we represent it by the empty string Λ.
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The previous paragraph implies a definition of a representation function % : {0, 1, *}∗×
{0, 1}n → {0, 1, ↑} over the alphabet {0, 1, ∗}, according to which all non-contradictory
monomials have a representation size of n and the contradictory monomials one of 0.

A disjunction of at most two monomials is called a 2-term DNF. For two monomials
M1, M2 the 2-term DNF M1 ∨M2 represents the union of the concepts represented by
M1 and M2. For example, 1*01∨00** represents {1001, 1101, 0000, 0001, 0010, 0011} ⊂
{0, 1}4. When two 2-term DNFs M1∨M2 and K1∨K2 represent the same concept, we
write M1 ∨M2 ≡ K1 ∨K2. We denote by M2

n the class of all concepts representable
by 2-term DNFs over n variables. We always assume ∅ ∈ M2

n.
When we consider two monomials M1, M2 we say that they have a strong difference

at i iff M1[i], M2[i] ∈ {0, 1} and M1[i] 6= M2[i]. They have a weak difference at i iff
either M1[i] = * and M2[i] ∈ {0, 1} or M2[i] = * and M1[i] ∈ {0, 1}. Two weak
differences, at positions i and j, are said to be of the same kind iff Mq[i] = Mq[j] = *

for a q ∈ {1, 2}, that is, iff both * occur in the same monomial; they are called of
different kind otherwise.

For a string M ∈ {0, 1, *}n we denote by M [*
0
] and M [*

1
] the string resulting from

substituting all *’s by 0 and 1, respectively. Strings s, s′ ∈ {0, 1}n are called neighbors
iff they differ in only one position and i-neighbors iff they differ only in the i-th position.

2.2 The Formal Teaching Framework

In this section we formally define our teaching framework, which is a generalization
and extension of the classical teaching dimension model. It is more general in that
it specifies only the shape of the learner, but allows for various concrete definitions
of them, whereas in the TD model the learners are fixed to be consistent and class-
preserving. The framework is an extension because it adds different kinds of feedback
to the TD model, which lacked a notion of feedback altogether. Every kind of feedback
requires a different formalization of the teacher and also of the success criterion.

In the following we discuss all components of the teaching process, as introduced on
Page 2. First we present a semi-formal description of the framework. Afterwards we
go into the details of formalizing the learners, the teachers, and the success criteria.
At one point, however, we shall make a rather lengthy and technical digression, com-
paring two kinds of teachers and finally rejecting one of them. This is not essential for
understanding the framework itself, only for understanding one particular design deci-
sion. For the reader who is only interested in the bare framework, we list the relevant
definitions that constitute the framework at the end of this section.

The target is a concept c∗ : X → {0, 1} from a represented concept class 〈%, C〉 over
a learning domain X.

The learner maintains a hypothesis from %(C) and has a memory for storing examples
from X (c∗). We model learners as automata whose state consists of hypothesis and
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memory and that change their state according to the information received by the
teacher. More formally, the state of the learning automaton is a pair (s, σ) ∈ X ∗ ×
(%(C)∪ {init}) consisting of a memory s and a hypothesis σ. Here, init is the name of
a special hypothesis, which denotes the initial hypothesis of the learner. We decided to
introduce a special initial hypothesis in order to avoid to pick an arbitrary hypothesis
from %(C) as initial one or to add the initial hypothesis as another parameter on which
the teaching process depends. Whenever we give precise definitions of a learner we have
to define its behavior for the hypothesis init , too. When defining concrete learners, we
shall always make sure that this hypothesis is not reached at any round after the initial
one.

For generality, the memory is defined as a list of examples rather than as a set. Used
as a queue, for instance, a list gives a simple means to implement the age of an example,
that is, the number of rounds it has already been memorized. Initially the learner’s
memory is empty. Thus the initial state of the learner is (〈 〉, init).

The learner is class-preserving because it chooses hypotheses only from %(C). This
means the learner has as prior knowledge that the target is contained in C.

The teaching proceeds in rounds. The basic form of interaction consists in the teacher
giving an example from X (c∗) to the learner in every round. These examples are thus
the information the learner receives. An optional, additional form of interaction is
the learner revealing parts of its state to the teacher. Such a learner will be said to
give feedback. The only form of feedback we shall consider is the extreme variant in
which the learner reveals the complete state consisting of hypothesis and memory at the
beginning of every round. Without receiving feedback, the teacher is just an infinite
sequence of examples, one for every round of the teaching process. When receiving
feedback, the teacher chooses the next example depending on the received feedback.

The process is considered successful if and when the hypothesis is correct, that is,
from %(c∗). The quality of a given teacher is measured by the number of rounds it
needs in order to be successful.

The framework leaves open the precise properties of the learners. In order to complete
the definition of learners we have to specify two parts of their behavior:

(MEM) The memory of the learners. How many examples can be memorized? Which
examples are memorized and for how long?

(HYP) The way the hypothesis is chosen. Which hypotheses are admissible? Which
are preferred?

The form of the teacher depends on the kind of feedback it receives. We thus have
to specify yet another aspect.

(FB) The feedback given by the learners and observed by the teacher.
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A straightforward attempt to formalize learners is as deterministic automata. And
even though we shall later abandon them in favor of non-deterministic automata, we
nevertheless discuss deterministic ones to some extent, because teaching them yields a
simpler process than teaching non-deterministic learners. Moreover, seeing the prob-
lems caused by using deterministic automata gives some explanation as to why we
finally opted for the non-deterministic variant.

Definition 2.1 Let 〈%, C〉 be a represented concept class with % : Σ∗ × X → {0, 1, ↑}.
A deterministic learner using hypothesis space 〈%, C〉 is a function L : X ∗ × (%(C) ∪
{init})×X → X ∗ × %(C) with component functions

Lmem : X ∗ × (%(C) ∪ {init})×X → X ∗

and

Lhyp : X ∗ × (%(C) ∪ {init})×X → %(C).

We write L = (Lmem, Lhyp) for a learner and L(s, σ, z) instead of L((s, σ), z).

One remark about the term “hypothesis” is in order. Although, strictly speaking,
“hypothesis” refers to a representation σ ∈ %(C) ∪ {init}, we often sloppily say “the
hypothesis is c” and mean “the hypothesis is contained in %(c).” The phrase “target
hypothesis” refers to every hypothesis in %(c∗).

The feedback can be of various forms. Only two forms will be considered in this thesis,
although many others would be sensible, too. The two possible implementations for
(FB) are the extreme ones, namely: (1) no feedback at all, (2) the complete current
state consisting of hypothesis and memory.

Our specifications for the aspect (FB) can be combined with every possible definition
of (MEM) and (HYP). We can thus take a model and vary the (FB) aspect in order to
investigate the influence of feedback, or vary (MEM) to study different memory sizes.

In the first instance we pose no restrictions on the teachers other than that they use
only that information about the learner’s state that is specified by (FB). A teacher
may remember the whole history of the teaching process (all examples given so far,
all feedback received). Throughout the thesis we do not require the teacher to be a
computable or even efficiently computable function. Nevertheless, all concrete teacher
we present are efficiently computable.

Depending on (FB) the formal description of teachers differs greatly. At first we
introduce teachers without feedback as they are the simpler ones. They do not depend
on the learner’s state nor on the history and thus simply output one example in every
round.
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Definition 2.2 Let 〈%, C〉 with % : Σ∗ × X → {0, 1, ↑} be a represented concept class
and c∗ ∈ C a target. A teacher without feedback is a function T : N → X (c∗).

A teacher without feedback and a deterministic learner determine a sequence of
learner’s states. To denote the state of a deterministic learner L = (Lmem, Lhyp) after t
rounds of interaction with a teacher T we use the notation L(T, t) with components
Lmem(T, t) and Lhyp(T, t). Note that after t rounds the teacher has given the examples
T (0), . . . , T (t− 1). Thus the next example is T (t). We have

L(T, 0) = (〈 〉, init),

L(T, t + 1) = L(L(T, t), T (t)).

Example 2.3 Consider the concept class Sn and the target c∗ = [1, n]. Let L1 =
(L1

hyp, L
1
mem) be a learner that memorizes every example and hypothesizes the consistent

hypothesis with least index:

L1
mem(s, σ, z) = s ◦ 〈z〉,
L1

hyp(s, σ, z) = min %(C(Lmem(s, σ, z))).

A teacher T1 : N → X (c∗) with T1(i) = (1+(i mod n), 1) for all i makes L1 hypothesize
[1, n] after one example, because L1

hyp(〈 〉, init , (1, 1)) = 0.
We define the learner L2 like L1 but with max instead of min:

L2
mem(s, σ, z) = s ◦ 〈z〉,
L2

hyp(s, σ, z) = max %(C(Lmem(s, σ, z))).

The teacher T2 with T2(i) = (n − (i mod n), 1) makes L2 hypothesize [1, n] after n
rounds. Memory contents and hypothesis of L2 during the teaching process are as
follows:

round memory hypothesis example
t L2

mem(T, t) L2
hyp(T, t) T (t)

0 〈〉 init (n, 1)
1 〈(n, 1)〉 n− 1 (n− 1, 1)
2 〈(n, 1), (n− 1, 1)〉 n− 2 (n− 2, 1)
...

...
...

...
n− 1 〈(n, 1), . . . , (2, 1)〉 1 (1, 1)
n 〈(n, 1), . . . , (2, 1), (1, 1)〉 0 (n, 1)

�

Rather than teaching only one learner at a time, our ITS scenario requires teaching
many learners simultaneously. A straightforward way to incorporate this is to consider
a set of deterministic learners and require the teacher to teach them all. As we already
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mentioned, we shall, however, use a non-deterministic learner instead, for reasons that
become clear when we consider teaching with feedback, which we do next.

A teacher receiving in every round the complete state as feedback is harder to model
than a feedbackless teacher. In the most general form, such a teacher’s behavior can
depend on the complete history of the teaching process. Formally, a history is a se-
quence

〈(〈 〉, init , z0), (s1, σ1, z1), (s2, σ2, z2) . . . 〉

from the set of all histories

HIST = (X ∗ × (%(C) ∪ {init})×X )∗.

The j-th element in a history is a triple consisting of the learner’s memory and hypoth-
esis and the example given by the teacher in round j. This would yield a definition for
T as a function

T : (X ∗ × (%(C) ∪ {init}))× (X ∗ × (%(C) ∪ {init})×X )∗ → X (c∗)

where the arguments inside the first pair of bold parentheses describe the current state
and the ones in the second pair the history.

Definition 2.4 Let 〈%, C〉 with % : Σ∗ × X → {0, 1, ↑} be a represented concept class
and c∗ ∈ C a target. A history-aware teacher for c∗ is a function

T : (X ∗ × (%(C) ∪ {init}))× (X ∗ × (%(C) ∪ {init})×X )∗ → X (c∗).

This looks very complicated. It also looks unnecessary because if the learner’s be-
havior does not depend on the history, the behavior of the teacher should also be
independent of the history.

For simplicity we would prefer a teacher of the form T : X ∗×(%(C)∪{init}) → X (c∗)
that takes into account only the currently observed state of the learner.

Definition 2.5 Let 〈%, C〉 with % : Σ∗ × X → {0, 1, ↑} be a represented concept class
and c∗ ∈ C a target. A teacher with feedback for c∗ is a function

T : X ∗ × (%(C) ∪ {init}) → X (c∗).

Note that history-aware teachers, by definition, also receive feedback and should thus
be called “history-aware teachers with feedback.” But we shall stick to the shorter term
“history-aware.”

The next example shows informally that Definition 2.5 is indeed a restriction, because
some classes of learners can only be taught by history-aware teachers and not by plain
teachers with feedback.
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init
〈 〉

σ0

〈 〉

σ1

〈 〉

σ2

〈 〉

σ3

〈 〉

σ∗

〈 〉

σ−
〈 〉

z1, z2, y1, y2

z1 z2
y1

y2z1, z2, y1, y2

z1

z2

y2

y1

Figure 2.2 A learning scenario that requires history-aware teachers. The graph describes a
concept class with representations σ0, σ1, σ2, σ3, σ

∗, σ−. The nodes are the possible states the
two learners L1 and L2 can be in. The solid and dashed lines specify the state transitions
for L1 and L2, respectively. Examples that do not cause a state change are left out. After
reaching σ3, learner L1 needs example y1 and L2 needs y2 to reach the target σ∗. But a teacher
cannot distinguish between L1 and L2 based only on the current state. Which learner the
teacher deals with can only be seen by looking at the history, namely whether the learner
was in σ1 or σ2 before.

Example 2.6 Consider a concept class C over {z1, z2, y1, y2} whose representation set
is %(C) = {σ0, σ1, σ2, σ3, σ

∗, σ−}; σ∗ is the target representation and σ− is a dead end
that signals “failure.” The concepts themselves are irrelevant for the purpose of this
example.

We define two learners L1, L2 that do not memorize examples, that is, L1
mem(s, σ, z) =

L2
mem(s, σ, z) = 〈 〉 and that choose hypotheses according to the following tables (see

also Figure 2.2):

L1
hyp z1 z2 y1 y2

init σ0 σ0 σ0 σ0

σ0 σ1 σ0 σ0 σ0

σ1 σ1 σ3 σ1 σ1

σ2 σ2 σ2 σ2 σ2

σ3 σ3 σ3 σ∗ σ−
σ∗ σ∗ σ∗ σ∗ σ∗

σ− σ− σ− σ− σ−

L2
hyp z1 z2 y1 y2

init σ0 σ0 σ0 σ0

σ0 σ2 σ0 σ0 σ0

σ1 σ1 σ1 σ1 σ1

σ2 σ2 σ3 σ2 σ2

σ3 σ3 σ3 σ− σ∗

σ∗ σ∗ σ∗ σ∗ σ∗

σ− σ− σ− σ− σ−

The learners differ in state (〈 〉, σ0). When the teacher gives the example z1, the
learner L1 chooses (〈 〉, σ1), and L2 chooses (〈 〉, σ2). Afterwards both learners receive
example z2, leave their respective state, and enter the state (〈 〉, σ3). Now L1 needs
example y1 and L2 needs example y2 to reach (〈 〉, σ∗), otherwise the learners enter the
failure state (〈 〉, σ−).
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When a teacher receives as feedback the state (〈 〉, σ3), it cannot distinguish between
L1 and L2. Thus whatever example the teacher gives next, one of the two learners will
fail; for example, if we define T (〈 〉, σ3) = y1 then L2 enters the failure state.

But when a history-aware teacher receives as feedback the state (〈 〉, σ3), it also
knows the teaching history and therefore knows whether the learner was in (〈 〉, σ1) or
(〈 〉, σ2) before. Accordingly the teacher can give y1 or y2. Formally,

T ( 〈 〉, σ3, 〈 (〈 〉, init), (〈 〉, σ0), (〈 〉, σ1) 〉 ) = y1,

T ( 〈 〉, σ3, 〈 (〈 〉, init), (〈 〉, σ0), (〈 〉, σ2) 〉 ) = y2.

This would lead both learners to the target state. Thus only a history-aware teacher
can make both learners reach the target. �

The reason why both learners in Example 2.6 could be taught by a history-aware
teacher is that part of their behavior (in state (〈 〉, σ3)) could be inferred from another
part of their behavior (in state (〈 〉, σ0)) that was observed previously.

Since we, for simplicity, do not want to consider history-aware teachers, we have two
alternatives. First we could simply ignore history-aware teachers even if they might
be superior to plain teachers with feedback. Then we sometimes had to settle for
suboptimal teachers. The second alternative, and the one we choose, is to model the
learners in such a way that “history awareness effects” do not occur. In other words,
in our framework the optimal teacher with feedback and the optimal history-aware
teacher are equally good (with respect to the performance measure defined later).

The advantage of history awareness disappears when learners act in each state inde-
pendently from their actions in the other states. We achieve this by letting the learner
choose non-deterministically in every state from a set of allowed follow-up states. In
other words, the learner is a non-deterministic automaton.

Definition 2.7 Let 〈%, C〉 with % : Σ∗ × X → {0, 1, ↑} be a represented concept class.
A non-deterministic learner using 〈%, C〉 is a function

L : X ∗ × (%(C) ∪ {init})×X → 2X
∗ × 2%(C)∪{init}

with component functions

Lmem : X ∗ × (%(C) ∪ {init})×X → 2X
∗
,

Lhyp : X ∗ × (%(C) ∪ {init})×X → 2%(C)∪{init}.

Our definition of non-deterministic learner is not as general as it could be. A more
general learner could have the codomain 2X

∗×(%(C)∪{init}). With our definition, how-
ever, we can separate the behavior into the two component functions Lmem and Lhyp.
This is purely for convenience as it simplifies the definitions of concrete learners later.
Nevertheless, all results in this section hold for the more general definition of non-
deterministic learner as well.
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Using a non-deterministic learner instead of a set of deterministic learners allows us to
view the teaching process as a game played by the learner and the teacher on a directed
graph. Consider a directed graph whose (possibly infinitely many) nodes are all states
a learner can assume, that is, X ∗ × (%(C) ∪ {init}). An arc labeled with an example
z ∈ X runs from a state (s, σ) to a state (s′, σ′) if and only if (s′, σ′) ∈ L(s, σ, z) (see
Figure 2.2 for an example of such a graph).

The learner starts at the node labeled (〈 〉, init). During the teaching process the
learner walks through the graph and the teacher tries to influence its path by giving
examples. More precisely, the teacher’s moves consist in giving an example z ∈ X
and the learner’s moves consist in choosing the next node by following one of the
arcs labeled with z. The teacher’s goal is to lead the learner to a target state from
X ∗×(%(C)∪{init}). The learner’s goal is to avoid this. The target concept is teachable
if and only if there is a winning strategy for the teacher.

Example 2.8 We consider the non-deterministic learner L that results from “merg-
ing” the two deterministic learners in Example 2.6. The definition of L is based on
the following table which describes the possible follow-up hypotheses f(σ, z) for all
hypotheses σ and examples z.

f z1 z2 y1 y2

init {σ0} {σ0} {σ0} {σ0}
σ0 {σ1, σ2} {σ0} {σ0} {σ0}
σ1 {σ1} {σ1, σ3} {σ1} {σ1}
σ2 {σ2} {σ2, σ3} {σ2} {σ2}
σ3 {σ3} {σ3} {σ−, σ∗} {σ−, σ∗}
σ∗ {σ∗} {σ∗} {σ∗} {σ∗}
σ− {σ−} {σ−} {σ−} {σ−}

Formally, L is then defined by L(s, σ, z) = {〈 〉} × f(σ, z). Figure 2.2 above shows
the possible state transitions of L. The target is not teachable with feedback to L
because in (〈 〉, σ3), no matter what example a teacher would give, there is always an
arc leading to (〈 〉, σ−) or not causing a state change at all. �

Example 2.9 Let us look at a situation in which teaching is possible. Let L be a
learner using hypothesis space 〈%,Sn〉. We define for σ 6= init :

L(s, σ, z) =

{
{s ◦ 〈z〉} × %(Sn(s ◦ 〈z〉)) if z = (σ, 0) or z = (σ, 1),

{s} × %(Sn(s)) otherwise;

and for the initial state: L(〈 〉, init , z) = {〈z〉} × %(Sn({z})). This learner maintains
a consistent hypothesis, but memorizes the new example z only if it in some sense
“matches” the current hypothesis.
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Let the target be c∗ = c0 = [1, n]. A teacher receiving feedback can always choose
a “matching” example and thus make the learner memorize a new example in every
round:

T (s, σ) =

{
(1, 1) if σ = init ,

(σ, 1) otherwise.

The learner L memorizes all examples given by the teacher T . Moreover, if an
example (i, 1) is in the memory, the learner cannot hypothesize ci any more because
the concept ci is inconsistent with the example (i, 1). Therefore every example is
given only once and after n rounds the learner knows all examples for c∗. As the
hypothesis is always consistent with the memory, the learner hypothesizes the target
after n rounds. �

Sometimes it is helpful to think of a non-deterministic learner as many deterministic
learners combined. All these learners act in every state independently from one an-
other and from the other states. In informal explanations we shall often speak of the
non-deterministic learner as if there actually were many deterministic learners. The
fundamental difference to a set of “real” deterministic learners appears when the same
state is reached a second time during the teaching process. A “real” deterministic
learner acts the same way as in the first time, the non-deterministic learner may or
may not act the same way. The following notation is inspired by the interpretation of
L as a set of learners.

Definition 2.10 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class.
Let L be a non-deterministic learner using 〈%, C〉. A deterministic learner for L is a
deterministic learner L such that

L(s, σ, z) ∈ L(s, σ, z)

for all (s, σ, z). We write L ∈ L to denote that L is a deterministic learner for L.

If all computations of a non-deterministic learner reach a certain state, for example,
the target state, then also all deterministic learners reach that state. We shall use the
following contrapositive of this fact implicitly in some proofs.

Lemma 2.11 Let 〈%, C〉 with % : Σ∗×X → {0, 1, ↑} be a represented concept class. Let
L be a non-deterministic learner using 〈%, C〉 and let L ∈ L. Let y ∈ X ∗ be a finite
sequence of examples.

If L, after having received y, is not in state (s′, σ′) then not all computations of L
on y end in state (s′, σ′).

In order to prove that non-deterministic learners can be taught equally fast no matter
whether or not the teacher takes the history into account, we first have to formalize the
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notions of teaching success and the performance measure for both teachers, history-
aware and with feedback. We thus postpone the proof until after the formalization (see
Lemma 2.18).

A teacher T : X ∗ × (%(C) ∪ {init}) → X (c∗) with feedback and a non-deterministic
learner L determine the possible sequences of states assumed by L during teaching.
For generality we introduce notation that allows the learner to start from any state,
not only from the initial state. The set of all possible states of L, starting in state
(s, σ), after t rounds of interaction with T is denoted by L(s, σ; T, t). Initially we have

L(s, σ; T, 0) = {(s, σ)}.

The possible states after t + 1 rounds are all the follow-up states of all the states after
t rounds:

L(s, σ; T, t + 1) =
⋃

(s′,σ′)
∈L(s,σ;T,t)

L(s′, σ′, T (s′, σ′)).

We denote the set of all hypotheses the learner can assume after t rounds by

Lhyp(s, σ; T, t) = {σ′ ∃s′ : (s′, σ′) ∈ L(s, σ; T, t)}.

When history-aware teachers are involved, the state of the teaching process is not
described by the state of the learner alone. Rather we have to add another component,
the history. We call the resulting states history states (s, σ, h) ∈ X ∗× (%(C)∪{init})×
HIST . The initial history is empty, thus teaching starts in history state (〈 〉, init , 〈 〉).
The set of all history states of the teaching process involving T and L and starting in
history state (s, σ, h) is denoted by L(L, s, σ, h; T, t). Then analogous to non-history-
aware teachers (but more complicated) we have:

L(L, s, σ, h; T, 0) = {(s, σ, h)},

L(L, s, σ, h; T, t + 1) =
⋃

(s′,σ′,h′)
∈L(L,s,σ,h;T,t)

L(s′, σ′, T (s′, σ′, h′))× {h ◦ 〈s′, σ′, T (s′, σ′, h′)〉}.

We have now defined the notions of learner and teacher and have formalized the
teaching process. Given a non-deterministic learner L, the first question is whether
there is a teacher that makes L eventually hypothesize the target. For the sake of
precision we now formally define the notions of “teachability” that we consider in this
thesis. However, most of the time an intuitive understanding will suffice.

Definition 2.12 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and let L be a non-deterministic learner using 〈%, C〉. Let c∗ ∈ C be a target concept. We
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say c∗ is teachable with feedback to L iff there is a teacher T : X ∗ × (%(C)∪ {init}) →
X (c∗) and a t ∈ N such that

Lhyp(〈 〉, init ; T, t) ⊆ %(c∗).

Definition 2.13 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and let L be a non-deterministic learner using 〈%, C〉. Let c∗ ∈ C be a target concept.
We say c∗ is teachable by a history-aware teacher to L iff there is a history-aware
teacher T and a t ∈ N such that

L(L, 〈 〉, init , 〈 〉; T, t) ⊆ X ∗ × %(c∗)× HIST .

Note that both previous definitions pose no constraints on rounds after round t. The
idea here is that the teacher stops teaching immediately after realizing that all learners
have reached the target. The state of the learners after round t is thus unimportant.

In general we call a represented concept class teachable if all its concepts are teach-
able. A teacher T satisfying one of the conditions in Definitions 2.12 or 2.13 is called
successful.

The next step after determining that there is a successful teacher is to find the best
one. The performance of the best teacher is a measure for the teachability of the target
concept, in the same way as the complexity of the most efficient algorithm solving a
problem is a measure for that problem’s complexity. It is therefore necessary to be able
to measure the quality of successful teachers. Roughly speaking, we always measure
the teacher’s quality by the maximum number of rounds necessary to lead the learner
to the target. The maximum is taken over all non-deterministic choices of the learner.
We call the minimum number of rounds until one of the above teachability criteria
holds the teaching time.

Definition 2.14 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and c∗ ∈ C a target. Let L be a non-deterministic learner using 〈%, C〉 and let T be a
teacher with feedback. Let (s, σ) be a state. The teaching time of T for c∗ to L starting
in (s, σ) is

τT (s, σ) = min{t ∈ N Lhyp(s, σ; T, t) ⊆ %(c∗)}
and the optimal teaching time for c∗ to L is

τ(s, σ) = min
T

τT (s, σ)

where T ranges over all teachers T : X ∗ × (%(C) ∪ {init}) → X (c∗).

The teaching time τT (s, σ) is infinite if the teacher cannot force all computations
of the non-deterministic learner starting in (s, σ) into a target state. In particular,
τT (〈 〉, init) = ∞means that T is not a successful teacher. Analogously, τ(〈 〉, init) = ∞
means that there is no successful teacher.
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The teaching times are defined individually for every state (s, σ), but there is a
relation between a state’s teaching time and that of its follow-up states. For a learner
L and a teacher with feedback T and a state (s, σ) with τ(s, σ) > 0 we have

τT (s, σ) = 1 + min{t ∀ (s′, σ′) ∈ L(s, σ, T (s, σ)) : Lhyp(s
′, σ′; T, t) ⊆ %(c∗)}

= 1 + max
(s′,σ′)

∈L(s,σ,T (s,σ))

min{t Lhyp(s
′, σ′; T, t) ⊆ %(c∗)}

= 1 + max
(s′,σ′)

∈L(s,σ,T (s,σ))

τT (s′, σ′).

(2.2)

A relation like (2.2) holds also for optimal teaching times, as we prove next.

Lemma 2.15 Let 〈%, C〉 with % : Σ∗×X → {0, 1, ↑} be a represented concept class and
c∗ ∈ C a target. For all states (s, σ) ∈ X ∗ × (%(C) ∪ {init}) with τ(s, σ) > 0:

τ(s, σ) = 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′).

Proof. We introduce for all states (s, σ) the notation η(s, σ) for the set

η(s, σ) = argmin
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′) ⊆ X .

Intuitively, η(s, σ) contains the best examples one can give to a learner in state (s, σ).

Claim. For all r ∈ N:

(a) for all (s, σ) with 1 ≤ τ(s, σ) ≤ r + 1:

τ(s, σ) = 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′).

(b) for all (s, σ) with τ(s, σ) ≤ r: Let T̃ be a teacher with T̃ (s′, σ′) ∈ η(s′, σ′) for all
(s′, σ′) with τ(s′, σ′) < r and for (s′, σ′) = (s, σ). Then τ(s, σ) = τeT (s, σ).

Proof. The proof is by induction on r. For the induction basis let r = 0. The only
states with τ(s, σ) = 0 are the target states, for which σ ∈ %(c∗). Since τT (s, σ) = 0
for every teacher T , Item (b) holds. To show Item (a), let τ(s, σ) = 1. Then there
is a teacher T such that min{t Lhyp(s, σ; T, t) ⊆ %(c∗)} = τT (s, σ) = τ(s, σ) = 1.
Therefore, Lhyp(s, σ; T, 1) ⊆ %(c∗) and thus for all (s′, σ′) ∈ L(s, σ, T (s, σ)) we have
τ(s′, σ′) = 0. It follows that

max
(s′,σ′)

∈L(s,σ,T (s,σ))

τ(s′, σ′) = 0
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and hence
min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′) = 0.

For the induction step, assume that (a) and (b) hold for some r ≥ 0. We first show

(b) for r + 1. Let τ(s, σ) = r + 1 and let T̃ be a teacher with T̃ (s′, σ′) ∈ η(s′, σ′) for
all (s′, σ′) with τ(s′, σ′) < r + 1 and for (s′, σ′) = (s, σ). We have to show τeT (s, σ) =

τ(s, σ) = r + 1. Since T̃ (s, σ) ∈ η(s, σ) we know from Item (a) of the induction
hypothesis that r + 1 = τ(s, σ) = 1 + max(s′,σ′)∈L(s,σ, eT (s,σ)) τ(s′, σ′). Thus all τ(s′, σ′)

in the last expression are at most r and by Item (b) of the induction hypothesis,
τ(s′, σ′) = τeT (s′, σ′). This yields

r + 1 = τ(s, σ) = 1 + max
(s′,σ′)

∈L(s,σ, eT (s,σ))

τ(s′, σ′) = 1 + max
(s′,σ′)

∈L(s,σ, eT (s,σ))

τeT (s′, σ′) = τeT (s, σ).

Now we show the induction step for (a). Let τ(s, σ) = r +2. Then there is a teacher
T such that

r + 2 = τ(s, σ) = τT (s, σ) = 1 + max
(s′,σ′)

∈L(s,σ,T (s,σ))

τT (s′, σ′)

≥ 1 + max
(s′,σ′)

∈L(s,σ,T (s,σ))

τ(s′, σ′) ≥ 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′).

It remains to show the “≤” part, τ(s, σ) ≤ 1+minz∈X max(s′,σ′)∈L(s,σ,z) τ(s′, σ′). For a
contradiction, suppose τ(s, σ) > 1+minz∈X max(s′,σ′)∈L(s,σ,z) τ(s′, σ′). Then there is an
example y ∈ η(s, σ) such that for all (s′, σ′) ∈ L(s, σ, y): 1+τ(s′, σ′) < τ(s, σ) = r+2,
that is, τ(s′, σ′) < r + 1.

Let T̃ be a teacher with T̃ (s′, σ′) ∈ η(s′, σ′) for all (s′, σ′) with τ(s′, σ′) < r + 1 and

T̃ (s, σ) = y. Then

τeT (s, σ) = 1 + max
(s′,σ′)

∈L(s,σ, eT (s,σ))

τeT (s′, σ′) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τeT (s′, σ′). (2.3)

Since τ(s′, σ′) ≤ r for all (s′, σ′) ∈ L(s, σ, y), we can apply Item (b) of the induction
step and get τeT (s′, σ′) = τ(s′, σ′) ≤ r. Continuing Equation (2.3) we obtain

τ(s, σ) ≤ τeT (s, σ) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τeT (s′, σ′) ≤ 1 + r,

a contradiction to τ(s, σ) = r + 2. Thus the assumption is wrong and the “≤” part
proved. � Claim
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The statement of the lemma is just Item (b) of the claim. �

Much in the same way as in Definition 2.14, teaching times can be defined for history-
aware teachers, too.

Definition 2.16 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and c∗ ∈ C a target. Let L be a non-deterministic learner using 〈%, C〉 and let T be a
history-aware teacher. Let (s, σ, h) be a history state. The teaching time of T for c∗ to
L starting in (s, σ, h) is

τT (s, σ, h) = min{t ∈ N L(L, s, σ, h; T, t) ⊆ X ∗ × %(c∗)× HIST}.

and the optimal teaching time for c∗ to L is

τ(s, σ, h) = min
T

τT (s, σ, h)

where T ranges over all history-aware teachers.

The remarks on Page 30 about infinite teaching times apply accordingly for history-
aware teachers. The analog of Lemma 2.15 for history-aware teachers is the following.

Lemma 2.17 Let 〈%, C〉 with % : Σ∗×X → {0, 1, ↑} be a represented concept class and
c∗ ∈ C a target. For all states (s, σ) ∈ X ∗ × (%(C) ∪ {init}) and histories h ∈ HIST
with τ(s, σ, h) > 0:

τ(s, σ, h) = 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′, h ◦ 〈(s, σ, z)〉).

Proof. Let (s, σ, h) be such that τ(s, σ, h) > 0.
We start by showing the “≤” part of the statement. Let y ∈ X be an example such

that
max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′, h ◦ 〈(s, σ, y)〉)

is minimal. We denote the follow-up history by h′ = h ◦ 〈(s, σ, y)〉 and all follow-
up history states in L(s, σ, y) by (s1, σ1, h

′), (s2, σ2, h
′), . . . (there are only countably

many). For each follow-up history state (si, σi, h
′) there is a history-aware teacher

Ti with τTi
(si, σi, h

′) = τ(si, σi, h
′). Every teacher Ti gives in (si, σi, h

′) the example
yi = Ti(si, σi, h

′), which results in new histories h′i = h′ ◦ 〈(si, σi, h
′
i)〉. Now it suffices

to show
τ(s, σ, h) ≤ 1 + max

i
τ(si, σi, h

′).

To show this it suffices to specify a history-aware teacher T such that

τT (s, σ, h) ≤ 1 + max
i

τ(si, σi, h
′).
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We claim that the following teacher satisfies this inequality:

T (ŝ, σ̂, ĥ) =


Ti(ŝ, σ̂, ĥ) if ∃i : ĥ w h′i or (ŝ, σ̂, ĥ) = (si, σi, h

′),

y if (ŝ, σ̂, ĥ) = (s, σ, h),

arbitrary otherwise.

Roughly speaking, T is composed of all optimal teachers for all possible follow-up
history states of (s, σ, h). The teacher T is well-defined as there can never by two
different i’s satisfying the first condition.

To show that T works, let (si, σi, h
′) ∈ L(s, σ, y) = L(s, σ, T (s, σ, h)). Then for all

further history states that learner L reaches under T , T is defined identically to Ti.
Therefore τT (s, σ, h) = 1 + maxi τT (si, σi, h

′) = 1 + maxi τTi
(si, σi, h

′). By definition of
Ti we have τTi

(si, σi, h
′) = τ(si, σi, h

′) and it follows

τ(s, σ, h) ≤ τT (s, σ, h) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′, h′) = 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′, h′),

where the last equality is due to our choice of y. This proves the “≤” part.

It remains to show “≥”. Let T be a teacher such that τT (s, σ, h) = τ(s, σ, h) and let
y = T (s, σ, h). After receiving y the history will be h′ = h ◦ 〈(s, σ, y)〉. Then

τ(s, σ, h) = τT (s, σ, h) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τT (s′, σ′, h′)

≥ 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′, h′) ≥ 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′, h′).

�

At last we are ready to show that non-history-aware teachers with feedback can do
as well as history-aware teachers.

Lemma 2.18 Let 〈%, C〉 be a represented concept class and let L be a non-deterministic
learner using 〈%, C〉. Then a target c∗ ∈ C is teachable by a history-aware teacher to L
if and only if c∗ is teachable by a teacher with feedback. If c∗ is teachable, then

τ(〈 〉, init) = τ(〈 〉, init , 〈 〉).

Proof. Note that τ(s, σ, h) ≤ τ(s, σ) for all states and histories, because a teacher with
feedback is just a special case of a history-aware teacher.

The lemma is implied by the following claim.

Claim. For all r ∈ N, all (s, σ), and all h ∈ HIST :

τ(s, σ) = r ⇔ τ(s, σ, h) = r.



2.2 The Formal Teaching Framework 35

Proof. For the induction basis, let r = 0. Let (s, σ) be a state with τ(s, σ) = 0 and
let h be an arbitrary history. Then σ ∈ %(c∗) and consequently τ(s, σ, h) = 0. On the
other hand, if τ(s, σ, h) = 0 then also σ ∈ %(c∗) and τ(s, σ) = 0.

For the induction step, assume the claim holds for some r ∈ N.
Let (s, σ) be a state with τ(s, σ) = r + 1 and let h ∈ HIST . Then by Lemma 2.17,

r + 1 = τ(s, σ) ≥ τ(s, σ, h) = 1 + min
z∈X

max
(s′,σ′)

∈L(s,σ,z)

τ(s′, σ′, h ◦ 〈(s, σ, z)〉).

Let y ∈ X be such that

τ(s, σ, h) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′, h ◦ 〈(s, σ, y)〉).

Then for all (s′, σ′) ∈ L(s, σ, y) we have τ(s′, σ′, h ◦ 〈(s, σ, y)〉) ≤ r. To all these
(s′, σ′) we can apply the induction hypothesis, which leads to τ(s′, σ′) ≤ r for all
(s′, σ′) ∈ L(s, σ, y). For one of these states (s′, σ′) we have τ(s′, σ′) = r (otherwise by
Lemma 2.15, τ(s, σ) ≤ 1 + max(s′,σ′)∈L(s,σ,y) τ(s′, σ′) < 1 + r, a contradiction). Then
by the induction hypothesis, for this state also τ(s′, σ′, h ◦ 〈(s, σ, y)〉) = r. It follows

τ(s, σ, h) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′, h ◦ 〈(s, σ, y)〉) = 1 + r.

This proves τ(s, σ) = r + 1 =⇒ τ(s, σ, h) = r + 1.

To show the other direction, let τ(s, σ, h) = r + 1. Then by Lemma 2.17 there is a
y ∈ X such that

r + 1 = τ(s, σ, h) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′, h′)

with h′ = h◦〈s, σ, y〉. All τ -values in the maximization are at most r and we can apply
the induction hypothesis to them. It follows

r + 1 = 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s′, σ′). (2.4)

We cannot apply Lemma 2.15 to (2.4) because we have not yet shown that τ(s, σ) is

finite. But we can also directly show that (2.4) equals τ(s, σ). Let T̃ be a teacher with

T̃ (s′, σ′) ∈ η(s′, σ′) for all (s′, σ′) ≤ r and T̃ (s, σ) = y. Then L(s, σ; T̃ , 1) = L(s, σ, y).
Now by the claim in the proof of Lemma 2.15, τeT (s′, σ′) = τ(s′, σ′) for all (s′, σ′) ∈
L(s, σ, y). We then obtain

τeT (s, σ) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τeT (s, σ) = 1 + max
(s′,σ′)

∈L(s,σ,y)

τ(s, σ) = r + 1.
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Therefore τ(s, σ) ≤ r+1. Now if τ(s, σ) < r+1 then τ(s, σ, h) < r+1, a contradiction.
Hence τ(s, σ, h) = r + 1. � Claim

�

Thanks to Lemma 2.18 we do not have to consider history-aware teachers any more.
We can confine the search for optimal teachers to the teachers with feedback. This
concludes the formal framework for teachers with feedback. Now we turn to teaching
without feedback again.

There is an intuition of the teaching process without feedback as a game played on a
graph, similar to the game for teaching with feedback (see Page 27). The graph is the
same in both games. But the new game is a one player game, the one player being the
teacher. At the beginning of the game, only the node belonging to the initial state of
the learner is marked. The teacher’s move then consists in an example z ∈ X (c∗). The
effect of such a move is that all nodes connected with the already marked nodes by an
arc with label z are marked, and the old marks are removed. After round t exactly
those nodes are marked whose corresponding states are in L(〈 〉, init ; T ; t). The teacher
has won when eventually only target nodes are marked.

In the absence of feedback, a teacher does not necessarily know when to stop. There-
fore teaching success can occur either finitely or in the limit. To make the distinction
clearer, we interpret the non-deterministic learner as many single learners. Finite
teaching means that all learners hypothesize the target concept after the teacher has
given a finite sequence of examples. Teaching in the limit means that the teacher gives
an infinite sequence of examples such that every learner eventually hypothesizes the
target; but there need not be a certain round in which all learners have reached the
target.

Recall that a teacher without feedback is a function T : N → X (c∗). To denote the
possible states of the learner during the teaching process we use the same notation as
for teachers with feedback:

L(s, σ; T, 0) = {(s, σ)},

L(s, σ; T, t + 1) =
⋃

(s′,σ′)
∈L(s,σ;T,t)

L(s′, σ′, T (t)),

and

Lhyp(s, σ; T, t) = {σ′ ∃s′ : (s′, σ′) ∈ L(s, σ; T, t)}.

Definition 2.19 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and let L be a non-deterministic learner using 〈%, C〉. Let c∗ ∈ C be a target concept. We
say c∗ is finitely teachable without feedback to L iff there is a teacher T : N → X (c∗)
and a t ∈ N such that

Lhyp(〈 〉, init ; T, t) ⊆ %(c∗).
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Definition 2.20 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and let L be a non-deterministic learner using 〈%, C〉. Let c∗ ∈ C be a target concept. We
say c∗ is teachable in the limit without feedback to L iff there is a teacher T : N → X (c∗)
such that for every series ((st, σt))t∈N with (s0, σ0) = (〈 〉, init) and (st+1, σt+1) ∈
L(st, σt, T (t)):

∀∞t : σt ∈ %(σ).

The performance of a given teacher without feedback, again called its teaching time,
is measured by the number of rounds needed to reach finite teaching success. Con-
sequently, the teaching time may be infinite if the teacher is only successful in the
limit. The teachability of a concept is again given by the optimal teaching time over
all teachers without feedback.

Definition 2.21 Let 〈%, C〉 with % : Σ∗ ×X → {0, 1, ↑} be a represented concept class
and c∗ ∈ C a target. Let L be a non-deterministic learner using 〈%, C〉 and let T : N →
X (c∗) be a teacher without feedback. Let (s, σ) be a state. The teaching time of T for
c∗ to L starting in (s, σ) is

τT (s, σ) = min{t ∈ N Lhyp(s, σ; T, t) ⊆ %(c∗)}

and the optimal teaching time for c∗ to L is

τ(s, σ) = min
T

τT (s, σ)

where T ranges over all functions T : N → X (c∗).

Example 2.22 Again, we want to teach c∗ = [1, n] to a learner using 〈%,Sn〉 as hy-
pothesis space. This time, the learner can in every round choose to perform either a
dumb hypothesis change, in which the hypothesis depends on the size of the memory,
or a smart one, in which the hypothesis is consistent with the memory.

L(s, σ, z) = { (s ◦ 〈z〉, |s ◦ 〈z〉| mod (n + 1)),
(s ◦ 〈z〉, min %(Sn(s ◦ 〈z〉)) ) }

The target c∗ = [1, n] is finitely teachable to L using the teacher T with T (i) =
(1+i mod n, 1) for all i ∈ N. Let sn+1 be the memory of the learner in round n+1, which
is independent of the learner’s hypothesis changes. Consider the possible hypotheses
of the learner in round n + 1: the hypothesis is either |sn+1| mod (n + 1) = (n +
1) mod (n + 1) = 0 or min %(Sn(sn+1)) = min %(c0) = 0. Thus, L is in a target state.
The optimal teaching time is τ(〈 〉, init) = n + 1, because it must be greater than n
since after only n rounds the learner could hypothesize cn if it has always chosen the
dumb hypothesis change.

The target c∗ = [1, n] is not teachable in the limit because in the non-deterministic
computation which always chooses |s◦〈z〉| mod (n+1) as next hypothesis a non-target
hypothesis is reached infinitely often. �
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The previous example reveals an issue we have neglected so far, namely what happens
after a learner has reached the target concept. In the variant with feedback, the teacher
simply stops teaching when the learner arrives in a target state. In the variant without
feedback, however, a learner carries on even after reaching the target and may even
assume a different, wrong hypothesis again later.

One way to deal with that problem is to distinguish two interpretations for teaching
success: “punctual” teaching success and “lasting”, thereby doubling the number of
model variants. Another way is to take care that learners do not “unlearn” the target
once they have reached it. This can be done most easily by forbidding learners to
change their hypothesis after receiving a consistent example. Such learners will never
leave the target hypothesis because it is always consistent with any example for the
target. This property is called conservativeness.

Definition 2.23 Let 〈%, C〉 be a represented concept class. A non-deterministic learner
L = (Lmem,Lhyp) using the hypothesis space 〈%, C〉 is called conservative iff for all states
(s, σ) and examples z:

(HYP) If z ∈ X (%σ) then Lhyp(s, σ, z) = {σ}.

For σ = init the statement “z ∈ X (%σ)” is considered false.

In all teaching models presented in this thesis, all learners are defined as conservative.

Example 2.24 Let us consider the situation of Example 2.22, but with the learner
modified to be conservative:

L(s, σ, z) =


{(s ◦ 〈z〉, σ)} if z ∈ X (%σ),

{ (s ◦ 〈z〉, |s ◦ 〈z〉| mod (n + 1)),

(s ◦ 〈z〉, min %(Sn(s ◦ 〈z〉)) ) } otherwise.

Now [1, n] is teachable in the limit by the teacher T with T (i) = (1 + i mod n, 1) for
all i ∈ N, because in round n + 1 the hypothesis is σ = 0 and afterwards all examples
are consistent with this hypothesis, that is, “z ∈ X (%σ)” is true for all upcoming
examples z. �

We summarize this section by giving a list of all relevant definitions that constitute
our formal teaching framework.

• The teacher:

– with feedback: Definition 2.5,

– without feedback: Definition 2.2.

• The learner: Definitions 2.7 and 2.23.
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• The teaching time:

– with feedback: Definition 2.14,

– without feedback: Definition 2.21.

• The success criteria:

– with feedback: Definition 2.12,

– without feedback, finitely : Definition 2.19,

– without feedback, in the limit: Definition 2.20.

We finally remark that the learners can not only be modeled as non-deterministic
automata, but also as probabilistic automata, in which case the intermediate hypothe-
ses, the memory, and the teaching times become random variables. A model with this
sort of randomized learners is the subject of Part II of this thesis.





Part I

Teaching Models with
Non-Deterministic Learner





Chapter 3

Consistent Learners

The central ingredient to all our teaching models is the concrete definition of the
learner. In this chapter the only condition we put on the learner is that its hypothesis
is always consistent with the memorized examples. There are three reasons why we
start with this learner. First, the resulting teaching model is closely related to the
teaching dimension model: Regardless of the kind of teachability (finitely, in the limit,
or with feedback), the question whether or not a concept can be taught is reducible to
calculating the teaching dimension of this concept (see Lemma 3.3). As the teaching
dimension model is the only relatively well studied model that fits the ITS scenario, it
is a good starting point for the development of our more sophisticated models in later
chapters.

Second, this definition of the learner is natural because it is symmetric to the typical
definition of a teacher in a learning model. Such a teacher makes all its knowledge about
the target available, truthfully and completely. The consistent learner in the teaching
model incorporates all its knowledge about the target truthfully and completely into
its hypothesis.

Third, we argue that a teacher for the consistent learner has a wide range of ap-
plication because the set of consistent learning algorithms is the largest easy-to-define
class of learning algorithms. To make that statement clearer, we now briefly discuss
the relationship between “consistent algorithm” and “learning algorithm.”

From a purely information theoretical point of view, in which computability is no con-
cern, the set of learning algorithms is closely related to the set of algorithms outputting
consistent hypotheses. In inductive inference, learning in the limit and consistent learn-
ing in the limit are equivalent if learning strategies need not be computable [60, 45].
Conversely, every class-preserving, conservative, and consistent strategy is successful,
provided the target is at all learnable. A special instance of these strategies is the
identification-by-enumeration strategy. In the PAC learning model, everything that can
be learned can be learned using a consistent and class-preserving algorithm if efficency
is no concern [22, 27]. Conversely, every PAC algorithm can easily be transformed into
one that is consistent with high probability. In the online learning setting, the standard
optimal algorithm (see Littlestone [51]) also picks only consistent hypotheses.
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On the other hand, as soon as computational resource bounds have to be obeyed,
learning algorithms may have to be inconsistent in order to be successful. This happens
when a consistent hypothesis cannot be found effectively or efficiently (see the articles
by Wiehagen and Zeugmann [79, 80] and the references therein for more on the incon-
sistency phenomenon). In addition, practical algorithms often have some limitations on
the size of the example storage. Finally, noisy data might not even admit a consistent
hypothesis due to contradictions within the data.

We conclude that even if consistency does not precisely describe the property that
makes an algorithm a learning algorithm, there is no more precise description available,
and even if, such a description would very likely be much more complicated than the
consistency property.

In our discussion above we implicitly assume that the algorithms, when searching
for a consistent hypothesis, pay attention to every example they have been given. A
common relaxation is consistency only with respect to some, rather than all, given
examples. In the extreme variant the learner pays attention only to the last example
received. Such incremental learning algorithms have been widely studied in learning
theory (see [49, 23] and the references therein), but not yet in a teaching scenario,
although they are closer to human behavior than algorithms with perfect unlimited
memory. For a generalization of incremental learners, we also consider learners that
pay attention to the last m ≥ 1 examples for some fixed m. The normal consistent
learners are covered by allowing m = ∞.

In Section 3.1 we define the consistent non-deterministic learner formally and show
the connections between the resulting teaching model and the teaching dimension.

Most previous research on the teaching dimension focuses on concept classes as a
whole, rather than on single concepts. But since the teaching dimension of a class is
taken with respect to the worst concept in the class, it is often not suited for judging
the teachability of the class. As a more plausible measure for the teachability of a
concept class, the average teaching dimension over all concepts is sometimes used. In
Section 3.2 we analyze the teaching dimensions of single concepts in the classes of 2-
term DNFs and 1-decision lists and determine the average teaching dimension of both
classes. The latter is Θ(n) in both cases, whereas the (worst case) teaching dimension
is in both cases 2n.

3.1 Description and Properties of the Model

The consistent learner with memory size m is formally defined as follows.

Definition 3.1 Let 〈%, C〉 be a represented concept class. A non-deterministic learner
L = (Lmem,Lhyp) is called consistent iff
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(HYP) ∀s ∈ X ∗ ∀σ ∈ %(C) ∪ {init} ∀z ∈ X ∀(s′, σ′) ∈ L(s, σ, z):

σ′ ∈

{
{σ} if z ∈ X (%σ),

%(C(s′)) otherwise.

Let m ∈ N+ ∪ {∞}. The learner is said to have memory size m (or m-memory) iff

(MEM) Lmem(s, σ, z) = {s ◦m 〈z〉}.

Example 3.2 Let n ∈ N, n ≥ 2 be arbitrarily fixed. Let us look at teaching c∗ =
[1, n] ∈ Sn to the consistent learner with 1-memory. A natural teacher without feedback
would simply teach all examples in an endless loop: T (i) = (1 + i mod n, 1) for i ∈ N.

In round 0 the teacher gives T (0) = (1, 1). Thus, in round 1 the memory is
s1 = 〈(1, 1)〉 and the possible hypotheses Lhyp(〈 〉, init ; T, 1) = [0, n] \ {1}. Then T
gives T (1) = (2, 1) and the memory becomes s2 = 〈(2, 1)〉. The possible hypothe-
ses are Lhyp(〈 〉, init ; T, 1) = [0, n] \ {2} because, for example, from state (s1, 2) ∈
L(〈 〉, init ; T, 1) the learner can switch to state (s2, i) for all i 6= 2. In general, in round
t ≥ 1 the memory is st = 〈(1 + ((t − 1) mod n), 1)〉 and the possible hypotheses are
[0, n] \ {1 + ((t− 1) mod n)}. In no round is the set of possible hypotheses a subset of
%(c∗) = {0}. Therefore, T is not successful.

Now let L be the consistent learner with n-memory and let T be as above. The
memory in round n is sn = 〈(1, 1), . . . , (n, 1)〉. The hypothesis of L at round n − 1
either is already 0 or must be changed into one consistent with sn. But the only
hypothesis consistent with sn is 0. Thus, L(〈 〉, init ; T, n) = {(sn, 0)}, which means
that T is successful and needs at most n rounds. �

A teacher that is supposed to teach a concept c∗ ∈ C to a consistent m-memory
learner must give the learner a teaching set for c∗. Otherwise the learner can always
switch to a hypothesis consistent with the examples but different from c∗. On the other
hand every teaching set is suitable because it leaves the learner no other choice than
to hypothesize the target. Therefore, the quality of an optimal teacher is given by the
size of the smallest teaching set, that is, the teaching dimension of c∗ with respect to
C. In other words, the question of teachability of a concept in this model is reduced to
computing the teaching dimension.

In the following lemma, “teachable” is a placeholder for all three variants: finitely,
in the limit, and with feedback.

Lemma 3.3 Let 〈%, C〉 be a represented concept class and let c∗ ∈ C be a target concept.
Let m ∈ N+ ∪ {∞}. Then c∗ is teachable to the consistent learner with memory size
m if and only if TD(c∗, C) is finite and TD(c∗, C) ≤ m. The optimal teaching time is
TD(c∗, C).
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Proof. Let TD(c∗) ≤ m and let {z1, . . . , zTD(c∗)} be a minimum teaching set. Then the
following teacher is successful for teaching finitely (and therefore in the limit): T (i) =
zi+1 for i = 0, . . . ,TD(c∗) − 1. The same idea also works for teachers with feedback:
T (s, σ) = z|s|+1. In both situations the learner memorizes all examples z1, . . . , zTD(c∗)

and in round TD(c∗) outputs a consistent hypothesis. But by the definition of teaching
set, there is only one such hypothesis, namely c∗. The teaching time is TD(c∗). This
proves the “if” direction.

Let c∗ be teachable to the consistent learner L with memory size m ∈ N+ ∪ {∞}.
Assume L always chooses a hypothesis that is wrong (but consistent with the memory),
as long as such a hypothesis is available.

Case 1: TD(c∗) is infinite.

Then all sets C(s) for finite sequences s contain a concept different from c∗.
We show that L can always choose a wrong hypothesis. In round 0, the learner L

receives one example and can choose a hypothesis from the set %(C(T (0))), which
contains also a wrong one.

Assume in round t the current hypothesis σ is wrong. The current memory s contains
t examples. Let z be the new example given by the teacher. If z is consistent with σ,
then the next hypothesis is still σ and wrong. If z is inconsistent with σ then L can
choose the next hypothesis from the set %(C(s ◦ 〈z〉)), which contains a wrong one. In
both cases the hypothesis in round t + 1 is wrong. � Case 1

Case 2: TD(c∗) is finite but greater than m.

Then m is finite, too. Now for all sequences s of length at most m < TD(c∗) the set
C(s) contains a concept different from c∗, by the definition of the teaching dimension.
A similar argument as in Case 1 shows that L can in every round choose a wrong
hypothesis. � Case 2

The Cases 1 and 2 contradict the assumption that c∗ is teachable. Therefore both
cases cannot occur, and thus TD(c∗) is finite and TD(c∗) ≤ m. This shows the “only
if” direction.

To show that the optimal teaching time is TD(c∗), let c∗ be teachable. It remains
to show that no teacher can be successful in less than TD(c∗) rounds. For TD(c∗) = 1
the statement is clear because a learner needs at least one round to reach the target.
So assume TD(c∗) ≥ 2.

In round 1, the learner L may choose from %(C(T (0))) and pick a wrong hypothesis
(because TD(c∗) ≥ 2). Now consider round 1 ≤ t < TD(c∗) − 1. Let (s, σ) with
σ /∈ %(c∗) be the current state and z the newly arrived example. If z is consistent with
σ then due to conservativeness the hypothesis does not change and is still not in %(c∗).
If z is inconsistent with σ then L may choose from %(C(s ◦ 〈z〉)). But s ◦ 〈z〉 consists
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of t + 1 < TD(c∗) examples. Hence there is a concept in C consistent with s ◦ 〈z〉 but
different from c∗. Therefore in round t + 1 the hypothesis is still wrong.

This shows that before round TD(c∗) a teacher cannot be successful. On the other
hand, the teachers described in the “if” direction are successful after TD(c∗) rounds.
Therefore the optimal teaching time for c∗ is TD(c∗). �

For the TD model, the questions from Section 1.5 have already received attention
in the literature. The teaching dimension has been calculated for many natural con-
cept classes. We can only cite a few, such as (monotone) monomials, monotone k-
term DNFs, k-term µ-DNFs, monotone decision lists and rectangles in {0, 1, . . . , n −
1}d [34]; for linearly separable Boolean functions [8, 9]; for threshold functions [76];
and for k-juntas and sparse GF2 polynomials [50].

The teaching dimension is a measure that is based only on the concept class. It has
therefore been compared to other notions of dimensionality and to parameters occurring
in the query learning model, in the PAC model, or in the online learning model (see
Hegedűs [41, 40], Goldman and Kearns [34], Angluin [4], Ben-David and Eiron [16],
and Rivest and Yin [69]).

Deciding whether a given concept in a given class has a teaching dimension of less
then a given value is NP-complete [76, 34, 8]. This can be shown by a reduction
from the SET-COVER problem. As an optimization problem, SET-COVER has been stud-
ied intensively, and it is relatively easy to translate these results to the problem of
computing optimal teaching sets. For the formal definition of the MIN-TEACHING-SET

problem we assume that X = [1, k] for some k ∈ N+ and that C is represented as a
binary |C| × k matrix. A concept is represented as a binary string of length k. In the
following definitions we use the terminology from Ausiello et al. [10].

Definition 3.4 The problem MIN-TEACHING-SET is the optimization problem with

• instances of the form (C, c∗),

• feasible solutions sol(C, c∗) = {s ∈ X∗ C(s) = {c∗}},

• a measure µ with µ((C, c∗), s) = |s| for all s ∈ sol(C, c∗).

Definition 3.5 The problem SET-COVER is the optimization problem with

• instances of the form (U, V1, . . . , Vk) with a finite set U and sets V1, . . . , Vk ⊆ U ,

• feasible solutions sol(U, V1, . . . , Vk) = {s ∈ [1, k]∗
⋃|s|

i=1 Vs[i] = U},

• a measure µ with µ((U, V1, . . . , Vk), s) = |s| for all s ∈ sol(U, V1, . . . , Vk).

The usual reductions from SET-COVER to MIN-TEACHING-SET [76, 34, 8] map an instance
(U, V1, . . . , Vk) of SET-COVER to the MIN-TEACHING-SET instance ({c1, . . . , c|U |, c

∗}, c∗)
in which all concepts are subsets of [1, k]: cj = {i ∈ [1, k] j ∈ Vi} and c∗ = ∅. Then
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the sets Vx1 , . . . , Vx`
cover U if and only if the examples (x1, 0), . . . , (x`, 0) constitute a

teaching set for c∗.
On the other hand, every MIN-TEACHING-SET instance ({c1, . . . , cn, c

∗}, c∗) over a
domain X = [1, k] can be mapped to the SET-COVER instance (U, V1, . . . , V|X|) with U =
[1, n − 1] and Vi = {j ci(j) 6= c∗(j)}. Now the examples (x1, c

∗(x1)), . . . , (x`, c
∗(x`))

are a teaching set for c∗ if and only if the sets Vx1 , . . . , Vx`
cover U .

Thus, instances of both problems can be transferred into each other, with the rep-
resentation size of the instances changing only slightly. In particular, for two corre-
sponding instances we have |C| − 1 = |U |. This means that the result by Feige [28],
who shows non-approximability for SET-COVER within a factor of (1− ε) ln |U |, can be
formulated as follows.

Theorem 3.6 The problem of computing a minimal teaching set is NP hard. It cannot
be approximated in polynomial time within a factor of (1− ε) ln(|C| − 1) for all ε > 0,
unless NP ⊆ DTime(nlog log n).

In a similar way, other non-approximability results for SET-COVER (for example, Raz
and Safra [64]) can be rephrased for MIN-TEACHING-SET.

Lemma 3.3 can be used to judge the model of teaching the consistent learner with
regard to the aspects described in Section 1.3. An immediate consequence of the lemma
is that the greater the memory size is the more concepts are teachable. For a given
teachable concept, however, the teaching time does not improve with growing memory
size. Thus memory-size dependence is at least rudimentarily present. In contrast, the
feedback is of no use and the order of examples is irrelevant.

The applicability to infinite concepts and classes is limited. Even in rather simple
classes, like the class of all finite languages, all concepts have an infinite teaching
dimension and are therefore unteachable in this model. One notable exception is the
class of pattern languages introduced by Angluin [1]. Every pattern language has a
finite teaching dimension with respect to the class of all pattern languages because there
are only finitely many pattern languages consistent with any positive example (“finite
thickness” [2]). Zeugmann [81] gives the precise values of the teaching dimensions of
pattern languages.

For the remainder of this chapter we focus on the question whether the teaching
dimension is a plausible measure for teachability. That the teaching dimension does
not always capture our intuition about teachability can be seen in Example 3.2. To
successfully teach the all-concept in Sn, a teacher has to rule out all co-singleton con-
cepts. This can only be done by providing all n examples. The teaching dimension
then is the maximum possible, which does not properly reflect the easy teachability
one would expect from this class.

There are two main reasons for this implausible result. First, the teaching dimension
of the class is determined by the worst case teaching dimension over all concepts.
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Easily learnable concepts are not taken into account. Second, the teaching dimension
itself represents the worst case over all learners, among which are also “bad” ones.
We address remedies for the second reason in the next chapters; in this chapter we
consider the average teaching dimension instead of the worst case teaching dimension
as a remedy for the first reason.

3.2 The Average Teaching Dimension

Definition 3.7 Let C be a concept class. The average teaching dimension of C is
defined as TD(C) = 1

|C|
∑

c∈C TD(c, C).

That the average teaching dimension actually might be more plausible than the
normal (worst case) teaching dimension can be illustrated with the help of the class
Sn. Its average teaching dimension is

TD(Sn) =
TD(c0) + n · TD(c1)

|Sn|
=

n + n · 1
n + 1

< 2

and thus much smaller than the worst case teaching dimension TD(Sn) = n.

Naturally, to calculate the average teaching dimension it is necessary to consider
all concepts in a class. Consequently, for classes that are more complex than Sn the
average teaching dimension is often much harder to determine than the (worst case)
teaching dimension, and much less results are known.

We have already mentioned that Anthony, Brightwell, and Shawe-Taylor [9] have
proved that the class of linearly separable Boolean functions over n variables has an
average teaching dimension of O(n2). Furthermore, Kuhlmann [46] has shown that
concept classes with VC dimension 1 have an average teaching dimension of less than
2 and that balls of radius d in {0, 1}n have an average teaching dimension of at most
2d.

Based on our results below, Lee, Servedio, and Wan [50] have shown that the class
of DNFs with at most s ≤ 2Θ(n) terms has an average teaching dimension of O(ns).
Moreover they show that the average teaching dimension of the class of k-juntas is
at most 2k + o(1) and that the average teaching dimension for GF2 polynomials with
s ≤ (1− ε) log2 n monomials is at most ns + 2s.

A more general result is given by Kushilevitz, Linial, Rabinovich, and Saks [47],
who show an upper bound of O(

√
|C|) for the average teaching dimension of any class

C. They also define a family of classes for which the average teaching dimension is
Ω(
√
|C|).

In this section we show that 2-term DNFs as well as 1-decision lists have an aver-
age teaching dimension linear in the number n of variables, although their teaching
dimension is 2n.
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Figure 3.1 Minimum teaching sets for three monomials over four variables. The monomials
are depicted in Karnough diagrams. The positive examples in the teaching set are marked
by •, the negative examples by ◦.

3.2.1 2-Term DNFs

We start by looking at the simpler class of 1-term DNF (monomials). Goldman and
Kearns [34] showed that the class of monomials over n variables (without the empty
concept) has a teaching dimension of n + 1. More precisely, a monomial with k literals
has a teaching dimension of min{k + 2, n + 1}. An intuition as to the shape of a
minimum teaching set for monomials is given in Figure 3.1. The positive examples
cause every consistent hypothesis to be at least as “large” as the target (that is, it
contains at most the literals of the target monomial); the negative examples take care
that the hypothesis does not extend beyond the target (that is, it contains all literals
of the target).

In this section, we assume that M1
n contains the empty concept. Adding the empty

concept to the class of monomials does not change the teaching dimension of the non-
empty concepts since their minimum teaching sets always contain a positive example,
which rules out the empty concept “for free.” The empty concept has a teaching
dimension of 2n since each of the 2n singleton concepts is contained in M1

n and one
example can rule out only one such concept. There are 3n non-empty concepts in M1

n

and therefore

TD(M1
n) ≤ 2n + 3n · (n + 1)

3n + 1
≤
(

2

3

)n

+ n + 1 ≤ n + 2 .

To calculate the average teaching dimension for 2-term DNFs we identify subsets of
M2

n for which we can give bounds on the teaching dimension and on the cardinality.
The first such subset contains only the empty concept, the second subset contains
M1

n \ {∅}, and the third subset contains the remaining concepts from M2
n.

The empty concept has a teaching dimension of 2n with respect to M2
n. Concepts

representable as monomial have a teaching dimension with respect to M2
n at least as

large as the number of negative examples, hence TD(c) ≥ 2n−1 for c ∈M1
n \ {{0, 1}n}.

The all-concept {0, 1}n ∈ M1
n has a teaching dimension of 2 since {(0n, 1), (1n, 1)} is

a minimum teaching set for it. It remains to calculate the teaching dimensions for
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Figure 3.2 Five 2-term DNFs over four variables corresponding to the five cases distinguished
in Lemma 3.8. Positive and negative examples in the teaching set are marked by • and ◦,
respectively.

the concepts in M2
n \M1

n. These teaching dimensions must be small enough and there
must be enough of these concepts in order for the average teaching dimension to become
linear in n. The next lemma shows that their teaching dimensions are in O(n).

Lemma 3.8 For all c ∈M2
n \M1

n, TD(c,M2
n) ≤ 2n + 4.

Proof. In this proof we use some additional shorthand notation. For x1, x2 ∈ {0, 1}n

we denote by x1 ∪ x2 the monomial with

(x1 ∪ x2)[i] =

{
* if x1[i] 6= x2[i],

x1[i] if x1[i] = x2[i],

for all i = 1, . . . , n. Thus, x1 ∪ x2 is the minimal monomial containing x1 and x2. For
two monomials M, P ∈ {0, 1, *}n we write P [i] ⊇ M [i] iff P [i] = * or P [i] = M [i].

Let c ∈ M2
n \ M1

n be represented by the 2-term DNF M1 ∨ M2 with monomials
M1, M2 ∈ {0, 1, ∗}n.

The basic idea for constructing a teaching set for c is similar to the construction
of teaching sets for a single monomial M . We include two complementary positive
examples per monomial. They ensure that a monomial P consistent with both examples
must at least encompass M . All neighbors of an arbitrary positive example that do
not satisfy the monomial are then included into the teaching set as negative examples.
They ensure that P cannot be a proper superset of M (see Figure 3.1).
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Dealing with 2-term DNFs is more complicated because the two monomials need
not be disjoint; moreover, many concepts in M2

n can be represented by more than one
2-term DNF. In the following we distinguish five cases according to the number and
kind of differences between the monomials M1 and M2. Figure 3.2 shows an example
for each of the five cases.

Case 1: M1 and M2 have at least two strong differences.

Without loss of generality, we assume two strong differences at position 1 and 2:
* 6= M1[1] 6= M2[1] 6= * and * 6= M1[2] 6= M2[2] 6= *.

First we define a set S = S+∪S− of cardinality at most 4+2n and then we show that
S is a teaching set for M1 ∨M2. Let x1 = M1[

*
0
], x′1 = M1[

*
1
], x2 = M2[

*
0
], x′2 = M2[

*
1
].

Then S+ = {(x1, 1), (x′1, 1), (x2, 1), (x′2, 1)}. The set S− consists of all examples (x, 0) in
which x is a neighbor of x1 or x2 that neither satisfies M1 nor M2. Since each instance
has n neighbors, it follows that |S| ≤ 4 + 2n.

In order to show that S is a teaching set, let K1 ∨ K2 be 2-term DNF consistent
with S. We have to show that K1 ∨K2 is equivalent to M1 ∨M2. We assume without
loss of generality that x1 satisfies K1, that is, x1 ∈ K1.

Claim 1: x1, x
′
1 ∈ K1 \K2 and x2, x

′
2 ∈ K2 \K1.

Proof. First, we show x2, x
′
2 /∈ K1. Suppose for a contradiction x2 ∈ K1. From

x1, x2 ∈ K1, x1[1] 6= x2[1], and x1[2] 6= x2[2] we get that K1[1] = K2[2] = *. Then
K1 also contains the 1-neighbor x of x1. On the other hand, x /∈ M1 ∨M2 and hence
(x, 0) ∈ S−. Thus K1 is satisfied by a negative example, a contradiction. Analogously
one can show that x′2 /∈ K1. This implies x2, x

′
2 ∈ K2. In a symmetric way one proves

x1, x
′
1 /∈ K2. � Claim 1

Claim 1 implies K1[i] = * for all i with M1[i] = *, and it implies K1[i] ⊇ M1[i] for all
other i. It remains to show that K1[i] = M1[i] for all i with M1[i] 6= * and analogously
for K2 and M2. Suppose there is an i such that K1[i] = * 6= M1[i]. Let x be the
i-neighbor of x1. Then x ∈ K1 \M1. Additionally x /∈ M2 since x certainly differs from
M2 at the first or second position (not necessarily at both, since one of them could
be i). Thus (x, 0) ∈ S−, and since K1 is consistent with S−, x ∈ K1 cannot be true,
a contradiction. By the same arguments, one shows that K2[i] = M2[i] for all i with
M2[i] 6= *. We have now proved K1 = M1 and K2 = M2, hence S is a teaching set
for c. � Case 1

Case 2: M1 and M2 have one strong difference and two weak differences of different
kind.

Without loss of generality, let M1 = b1*b3y1 and let M2 = b̄1b2*y2 with y1, y2 ∈
{0, 1, *}n−3 and b1, b2, b3 ∈ {0, 1}. Let S+ contain the four positive examples with
instances x1 = b1b̄2b3y1[

*
0
], x′1 = b1b2b3y1[

*
1
], x2 = b̄1b2b̄3y2[

*
0
], and x′2 = b̄1b2b3y2[

*
1
]. Let
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S− contain the negative examples whose instances are again all neighbors of x1 or x2

that do not satisfy M1 ∨M2.
To prove that S = S+∪S− is a teaching set, let K1∨K2 be a 2-term DNF consistent

with S. We assume without loss of generality x1 ∈ K1.

Claim 2: x1, x
′
1 ∈ K1 \K2 and x2, x

′
2 ∈ K2 \K1.

Proof. First we show x2, x
′
2 /∈ K1. Suppose for a contradiction that x2 ∈ K1. Then

K1[1] = K1[2] = K2[3] = ∗. Now let x be the 3-neighbor of x1. Then x ∈ K1 (since
K1[3] = ∗), but x /∈ M1 (since x[3] 6= M1[3]) and x /∈ M2 (since x[1] 6= M2[1]). Thus
(x, 0) ∈ S−, and x cannot satisfy K1, a contradiction. Therefore x2 /∈ K1.

Now suppose x′2 ∈ K1. Then K1[1] = K2[2] = ∗. Let x be the 1-neighbor of x1. Then
x ∈ K1, but x /∈ M1 and x /∈ M2 (since x[2] = x1[2] = M2[2]), hence (x, 0) ∈ S−, a
contradiction. Therefore x′2 /∈ K1. It follows that x2, x

′
2 ∈ K2 and analogous arguments

show x1, x
′
1 /∈ K2. � Claim 2

From Claim 2 it follows K1 ⊇ x1 ∪ x′1 and K2 ⊇ x2 ∪ x′2.

Claim 3: K1 6⊃ x1 ∪ x′1 and K2 6⊃ x2 ∪ x′2.

Proof. Suppose for a contradiction K1 ⊃ x1 ∪ x′1. Then there is an i with K1[i] =
x[i] 6= (x1 ∪ x′1)[i]. For this i we have M1[i] 6= * (otherwise (x1 ∪ x′1)[i] = *). Let x
be the i-neighbor of x1. Then x ∈ K1, but x /∈ M1 (since x[i] 6= M1[i]) and x /∈ M2.
The latter holds because in case of i = 1 we have x[2] = x1[2] 6= M2[2] and in case
i > 1 we have x[1] = x1[1] 6= M2[1]. But then K1 is satisfied by x and (x, 0) ∈ S−, a
contradiction. Similarly one disproves the assumption K2 ⊃ x2 ∪ x′2. � Claim 3

From Claim 2 and 3 it follows that K1 = M1 and K2 = M2. Therefore, S is a
teaching set for M1 ∨M2. � Case 2

Case 3: M1 and M2 have one strong difference, at least two weak differences of the
same kind, and no weak differences of different kind.

Without loss of generality, let M1 = b1b2b3y1 and M2 = b̄1**y2 with y1 ⊆ y2.
Note that there is a different but equivalent 2-term DNF: M1 ∨M2 ≡ M̂1 ∨M2 with
M̂1 = *b2b3y1. Let S+ contain the positive examples with instances x1 = b1b2b3y1[

*
0
],

x′1 = b1b2b3y1[
*
1
], x2 = b̄1b̄2b3y2[

*
0
], and x′2 = b̄1b2b̄3y2[

*
1
]. Let S− contain the negative

examples whose instances are again those neighbors of x1 or x2 that do not satisfy
M1 ∨M2.

To prove that S = S+∪S− is a teaching set for M1∨M2, let K1∨K2 be a 2-term DNF
consistent with S.

Claim 4: x1, x
′
1 ∈ K1 \K2 and x2, x

′
2 ∈ K2 \K1.

Proof: First we show x2, x
′
2 /∈ K1. Suppose for a contradiction x2 ∈ K1. Then

K1 ⊇ **b3(y1[
*
0
]∪ y2[

*
0
]). Let x be the 2-neighbor of x1. Then x ∈ K1, but x /∈ M1 and
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x /∈ M2. Thus (x, 0) ∈ S−, a contradiction. The statement x′2 ∈ K1 can be disproved
analogously using the 3-neighbor of x1. Therefore K2 ⊇ M2.

Suppose for a contradiction x′1 ∈ K2. Then K2 ⊇ ***(y1[
*
1
] ∪ y2[

*
1
]). For the 2-

neighbor x of x1 we then have x ∈ K2, but (x, 0) ∈ S−, a contradiction. � Claim 4

From Claim 4 it follows K1 ⊇ M1 and K2 ⊇ M2. Note that K1 = M1 need not hold,
as K1 = M̂1 is also “allowed” since M1 ∨M2 ≡ M̂1 ∨M2.

Claim 5: K1 6⊃ M̂1 and K2 6⊃ M2.

Proof. Suppose for a contradiction K1 ⊃ M̂1. Then there is an i with K1[i] = * 6=
M̂1[i] and thus i > 1. Moreover, the i-neighbor x of x1 satisfies K1. But because x
is neither in M1 (since x[i] 6= M1[i]) nor in M2 (since x[1] 6= M2[1]), we have x ∈ S−,
a contradiction. The assumption K2 ⊃ M2 can be disproved similarly using the i-
neighbor of x2. � Claim 5

Altogether we have now shown that M1 ⊆ K1 ⊆ M̂1 and K2 = M2. It follows
M1 ∨M2 ≡ K1 ∨K2, and thus S is a teaching set for M1 ∨M2. � Case 3

Case 4: M1 and M2 have exactly one strong difference and exactly one weak differ-
ence.

Without loss of generality, let M1 = b1b2y and M2 = b̄1*y with y ∈ {0, 1, *}n−2. Note

that the concept has three equivalent representations. With M̂1 = *b2y and M̂2 = b̄1b̄2y
we have M1 ∨M2 ≡ M1 ∨ M̂2 ≡ M̂1 ∨M2.

Let S+ contain the five positive examples with instances x1 = b1b2y[*
0
], x′1 = b1b2y[*

1
],

x2 = b̄1b̄2y[*
0
], x′2 = b̄1b̄2y[*

1
], x3 = b̄1b2y[*

0
]. Let S− contain all negative examples (x, 0)

such that x is a neighbor of x1 or x2 not satisfying M1 ∨M2. Note that the 1-neighbor
of x1 does satisfy M1 ∨M2, hence |S−| ≤ 2n− 1 and therefore |S+ ∪ S−| ≤ 4 + 2n.

To show that S = S+ ∪ S− is a teaching set for M1 ∨M2, let K1 ∨K2 be consistent
with S. Without loss of generality, we assume x1 ∈ K1.

Claim 6: x1, x
′
1 ∈ K1 \K2 and x2, x

′
2 ∈ K2 \K1.

Proof: Suppose for a contradiction that x2 ∈ K1. Then K1 ⊇ **y[*
0
] and it follows

x4 ∈ K1, a contradiction. Suppose for a contradiction that x′2 ∈ K1. Then K1 ⊇ **y,
thus K1 is satisfied by x4, a contradiction. Therefore we have x2, x

′
2 /∈ K1. But since

x2 and x′2 satisfy K1 ∨K2, they must satisfy K2.
Now suppose x′1 ∈ K2. Then x′1, x2 ∈ K2 and hence K2 ⊇ **y. But then also

x4 ∈ K2, a contradiction. � Claim 6

Claim 7: K1 6⊃ *b2y and K2 6⊃ b̄1*y.

Proof: Suppose for a contradiction that K1 ⊃ *b2y. Now K1 cannot equal **y
because in this case the 2-neighbor b1b̄2y[*

0
] of x1, which does not satisfy M1∨M2, would

satisfy K1, a contradiction. But since we suppose K1 ⊃ *b2y, there is an i ≥ 3 with
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K1[i] = * 6= y[i−2]. Let x be the i-neighbor of x1. Then x[i] = y[i− 2] = M1[i] = M2[i],
hence (x, 0) ∈ S−. But since K1[i] = *, we have x ∈ K1, a contradiction.

Similarly one shows K2 6⊃ b̄1*y. � Claim 7

It follows from the Claims 6 and 7 that M̂1 = *b2y ⊇ K1 ⊇ (x1 ∪ x′1) = M1 and

M2 = b̄1*y ⊇ K2 ⊇ (x2∪x′2) = M̂2. Thus for both K1 and K2 there are two possibilities.

The combination K1 = M1 and K2 = M̂2 is not consistent with S because it is not
satisfied by x3. The other three combinations are, as we have already mentioned above,
equivalent to M1 ∨M2. We conclude K1 ∨K2 ≡ M1 ∨M2. � Case 4

So far all cases with at least one strong difference have been covered. The cases
without strong difference still remain. Since the target concept M1 ∨M2 represents no
concept in M1

n, we have neither M1 ⊆ M2 nor M2 ⊆ M1. Therefore we only need to
consider situations with at least two weak differences of different kind. Some of these
cases have already been covered. Case 4 treats the case of exactly two differences of
different kind (and otherwise identical terms). Case 3 treats the case of exactly two
differences of different kind plus exactly one more weak difference. Thus, only the
following case remains.

Case 5: M1 and M2 have at least two disjoint pairs of weak differences of different
kind.

Without loss of generality, let M1 = b1b2**y1 and M2 = **b3b4y2.
Let the set S+ contain the positive examples with the instances x1 = b1b2b̄3b4y1[

*
0
],

x′1 = b1b2b3b̄4y1[
*
1
], x2 = b̄1b2b3b4y2[

*
0
], and x′2 = b1b̄2b3b4y2[

*
1
]. Let S− contain the

negative examples whose instances are all neighbors of x1 or x2 that do not satisfy
M1 ∨M2.

Let K1 ∨ K2 be consistent with S = S+ ∪ S−, and let without loss of generality
x1 ∈ K1.

Claim 8: x1, x
′
1 ∈ K1 \K2 and x2, x

′
2 ∈ K2 \K1.

Proof. Suppose for a contradiction x2 ∈ K1. Then K1 ⊇ *b2*b4(y1[
*
0
] ∪ y2[

*
1
]). Using

the 1-neighbor b̄1b2b̄3b4y1[
*
0
] of x1, we can get a contradiction. Analogously we disprove

x′2 ∈ K1 using the 2-neighbor of x1. Therefore x2, x
′
2 /∈ K1.

A symmetrical reasoning shows x′1 /∈ K2. � Claim 8

Claim 8 shows K1 ⊇ (x1 ∪ x′1) = M1 and K2 ⊇ (x2 ∪ x′2) = M2.

Claim 9: K1 6⊃ M1 and K2 6⊃ M2.

Proof. Suppose for a contradiction K1 ⊃ M1. Then there is an i with K1[i] = * 6=
M1[i]. Let x be the i-neighbor of x1. Then x ∈ K1, but x /∈ M1 since x[i] = x1[i] =
M1[i]. Because of M1[i] 6= * the index i cannot be 3, hence x differs from M2 on the
third position, that is, x /∈ M2. Therefore (x, 0) ∈ S−, a contradiction. Analogously
we disprove K2 ⊃ M2. � Claim 9
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We conclude that K1 ∨K2 ≡ M1 ∨M2 and that S is a teaching set. � Case 5
�

Lemma 3.8 presents a complete distinction of cases for the concepts in the class
M2

n \M1
n and in each case the teaching dimension is bounded by 2n+4. We therefore

get the following corollary.

Corollary 3.9 TD(M2
n \M1

n) ≤ 2n + 4.

To complete the calculation of the average teaching dimension of M2
n we have to

count the concepts in M2
n \M1

n. The next lemma provides bounds for the number of
these concepts.

Lemma 3.10 1
3
· 9n ≤ |M2

n \M1
n| ≤ 2

3
· 9n for all n ≥ 10.

Proof. All 2-term DNFs of the form considered in Case 1 of Lemma 3.8 represent
pairwise different concepts (modulo permutation of the monomials). Each such 2-
term DNF can be described by the number k of strong differences (2 ≤ k ≤ n), their
kind (two possibilities: 0/1 or 1/0), and the kind of the positions without strong
differences (n− k positions with seven possibilities each: 0/0, 1/1, 0/*, 1/*, */*, */0,
*/1). The number of concepts represented by such 2-term DNFs is thus

1

2
·

n∑
k=2

(
n

k

)
· 2k · 7n−k =

1

2
· (9n − 7n − 2n · 7n−1),

which is greater than 1
3
· 9n for n ≥ 10 and therefore proves the lower bound.

There are (3n +1)2 syntactically different 2-term DNFs of which the 3n +1 ones with
two identical monomials do not represent true 2-term DNFs. The remaining 3n(3n +1)
2-term DNFs represent 1

2
· 3n(3n + 1) = 1

2
(9n + 3n) concepts. This number is therefore

an upper bound for |M2
n \M1

n|. �

The above proof actually shows the number of true 2-term DNF concepts to be
asymptotically equal to 1

2
· 9n. We are now ready to calculate the average teaching

dimension of M2
n.

Theorem 3.11 TD(M2
n) ≤ 4n + 10 for all n ≥ 10.

Proof. The teaching dimension of each of the 3n + 1 concepts in M1
n can be upper

bounded by 2n and that of the concepts inM2
n\M1

n by 2n+4. Therefore by Lemma 3.10
for all n ≥ 10

TD(M2
n) ≤

(3n + 1) · 2n + 2
3
· 9n · (4 + 2n)

(3n + 1) + 1
3
· 9n

≤ 9n + 9n · (4 + 2n)
1
2
· 9n

= 4n + 10 .

�
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3.2.2 1-Decision Lists

The class of 1-decision lists has a teaching dimension of 2n (cf. [44]). We use a result
from Anthony, Brightwell, and Shawe-Taylor [9], which states the teaching dimension
of linearly separable functions in dependence of the number of relevant variables. Since
1-decision lists are linearly separable and their number of relevant variables equals their
length, we get the following lemma.

Lemma 3.12 Let n ∈ N and c ∈ Dn. Then TD(c,Dn) ≤ (len(c) + 1) · 2n−len(c).

For concepts attaining this bound, see Lemma 4.20.
The teaching dimension of the concepts grows roughly exponentially as their length

decreases. However, as we show in this section, the number of concepts of a certain
length grows faster, thus leading to a small average teaching dimension. We denote the
number of length-m concepts in Dn by An

m.
In order to determine An

m it suffices to count the number of inequivalent NFDLs of
length m. To do so, we derive a criterion for the equivalence of two NFDLs.

One half of the criterion can be seen easily: If consecutive nodes with the same label
are permuted, the represented concept remains the same. However, the converse is not
true, even when only reduced decision lists are considered. For example, the reduced
decision lists 〈(v1, 0), (v2, 1), (∗, 0)〉 and 〈(v̄2, 0), (v̄1, 1), (∗, 0)〉 are equivalent, but cannot
be transformed into one another by permuting consecutive nodes with the same label.
On the other hand, if only NFDLs are considered, a converse does hold.

Definition 3.13 Two segments G = 〈(wα1
1 , b), . . . , (wα`

` , b)〉 and H = 〈(yβ1

1 , b′), . . . ,
(yβ`

r , b′)〉 are called similar (denoted G ∼ H) iff they contain the same nodes, that is,

{(wα1
1 , b), . . . , (wα`

` , b)} = {(yβ1

1 , b′), . . . , (yβ`
r , b′)} .

The next lemma presents the equivalence criterion for NFDLs.

Lemma 3.14 Two decision lists D and E in normal form are equivalent, that is, cD =
cE, if and only if they have the same sequence of node labels and for their segmentations
D = D1 ◦ · · · ◦Dr and E = E1 ◦ · · · ◦ Er it holds Di ∼ Ei for all i.

Proof. For the “if” part, let D = D1 ◦ · · · ◦Dr and E = E1 ◦ · · · ◦ Er be two NFDLs
with equal label sequences and equivalent segments. Let 1 ≤ i ≤ r and let x ∈ {0, 1}n

be an instance.
Assume x is absorbed by a node (w, b) in segment Di. Then it is not absorbed in

D1 ◦ · · · ◦Di−1 and neither in E1 ◦ · · · ◦Ei−1. Instead it is absorbed by the node (w, b)
which also occurs in segment Ei. Since x was arbitrary, it follows cD(x) = cE(x) for all
x ∈ {0, 1}n.

For the “only if” part, let D and E be two equivalent NFDLs.
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Case 1: len(D) = 0.

Then D consists only of a default node (∗, b). This is obviously a unique NFDL
representation. Therefore D and E are the same 1-decision list. � Case 1

Case 2: len(D) = 1.

Then D = 〈(w, 1), (∗, 0)〉 for some literal w (recall the special definition of NFDL
for length-1 lists). Again, this is a unique NFDL representation and D and E are
identical. � Case 2

Case 3: len(D) ≥ 2.

Let b1, . . . , bm be the label sequence of D (with default label bm+1). The default
node and the node before both absorb 2n−m instances. Since one of the nodes is
labeled positive, both nodes together classify 2n−m instances as positive. The number
of instances positively classified by the other nodes in D is

∑m−1
i=1 bi2

n−i.
Since E is equivalent to D, it must have the same number of positive instances

and therefore the same label sequence b1, . . . , bm−1. Moreover, the definition of NFDL
requires bm = bm−1 and therefore the last node in D and in E are both labeled bm.
Overall, D and E have the same label sequence. Hence both lists are divided into the
same number of segments, D = D1 ◦ · · · ◦Dr and E = E1 ◦ · · · ◦Er, and corresponding
segments are of equal length and have the same label.

It remains to prove Di ∼ Ei for all i ≤ r. We show:

Claim: If the instances reaching Di are the same as those reaching Ei, then Ei ∼ Di

and the instances leaving Di are the same as those leaving Ei.

Proof. Let Z ⊆ {0, 1}n be the set of instances reaching both Di and Ei. Let Di =
〈(wα1

1 , b), . . . , (wαs
s , b)〉 and Ei = 〈(yβ1

1 , b), . . . , (yβs
s , b)〉 with b ∈ {0, 1}. Let 〈(yβ, b̄)〉 be

the first node after Ei in E (or (∗, b̄) if Di is the last segment).
Suppose that there is a literal wαk

k in Di that is missing in Ei. Since none of the
variables w1, . . . , ws, y1, . . . , ys, y appears in any of the first i−1 segments (since D and
E are NFDLs), for every truth assignment to these variables there must be an instance
in Z. Let x ∈ Z be an assignment satisfying yβ (or the default node if Di is the last

segment) and wαk
k , but none of the y

βj

j . This x is then classified as b by D and as b̄ by
E, a contradiction. It follows that every literal in Di is also contained in Ei and vice
versa by an analogous argument. Therefore both segments are permutations of each
other, that is, Di ∼ Ei. This means that Di and Ei absorb the same instances, hence
the same instances leave Di and Ei. � Claim

Since all instances in {0, 1}n reach D1 and E1, the claim can be used to prove by
induction that Di ∼ Ei for all i. � Case 3

�
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Now that we can use Lemma 3.14 to recognize inequivalent NFDLs, we can analyze
An

m more closely.

Lemma 3.15 For all n and 2 ≤ m ≤ n, An
m ≥ 2(n−m + 1) · An

m−1.

Proof. Let n ≥ 2.
There are 2n NFDLs of length 1, namely 〈(vα

i , 1), (∗, 0)〉 for i ∈ {1, . . . , n} and
α ∈ {0, 1}. Hence An

1 = 2n.
We now consider the case m = 2. A normal form decision list of length 2 has the

shape 〈(w1, 1), (w2, 1)(∗, 0)〉 or 〈(w1, 0), (w2, 0)(∗, 1)〉. There are 2 ·
(

n
2

)
ways to choose

two different literals over n variables. Every selection of two literals yields one decision
list of each shape. All these lists are mutually inequivalent because they have pairwise
non-similar segments. Therefore An

2 = 2 · 2 ·
(

n
2

)
= 2(n− 1) · An

1 .
Now let m > 2. We show that each of the An

m−1 pairwise inequivalent NFDLs of
length m− 1 can be extended to an NFDL of length m in 2(n−m + 1) ways such that
all extended lists are mutually inequivalent.

Let D be an NFDL of length m− 1 and let b1 be the label of the first node. The list
D contains exactly m− 1 different variables, hence there are n−m + 1 variables left.
By prepending each of these variables (negated or not) as nodes with label b̄1 we get
2(n−m + 1) new NFDLs of length m. The prepended node certainly forms a segment
of its own, because its label is different from that of the second node.

In this way we get 2(n−m + 1) ·An
m−1 NFDLs of length m. These are all mutually

inequivalent since they either differ in their first segment, or if their first nodes are
equal they are extension of two already inequivalent NFDLs. �

We need the lemma in the following form in which the number of NFDLs of a certain
length is related to the total number

∑n
m′=1 An

m′ of NFDLs.

Corollary 3.16 For n ≥ 2 and 1 ≤ m ≤ n:
∑n

m′=1 An
m′ ≥ 2n−m · (n−m)! · An

m.

Theorem 3.17 The average teaching dimension of Dn is linear in n, TD(Dn) ≤ O(n).

Proof. We first prove the statement for the concept class of NFDLs of length at least 1.
Then we argue that the inclusion of the missing concepts, ∅ and {0, 1}n, does not
matter.

Using Lemma 3.12 we bound the average teaching dimension from above by∑n
m=1(m + 1)2n−m · An

m∑n
m=1 An

m

=
n∑

m=1

(m + 1)2n−m · An
m∑n

m′=1 An
m′

.

Now we apply Corollary 3.16 to the fraction and get a new upper bound of

n∑
m=1

(m + 1)2n−m · 1

2n−m · (n−m)!
=

n∑
m=1

m + 1

(n−m)!
=

n−1∑
m=0

n + 1−m

m!
.
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To see that this value grows linearly in n, we divide by n and obtain

1

n

n−1∑
m=0

n + 1−m

m!
≤ n + 1

n

n−1∑
m=0

1

m!

which converges to Euler’s number as n →∞.
Since |Dn| grows faster than 2n, the two missing concepts amount only to a fraction

of less than 21−n of all concepts. Their teaching dimension of 2n increases the average
teaching dimension therefore by less than 2. �

3.3 Discussion

The average teaching dimension is a more plausible measure for the teachability of
concept classes as a whole than the (worst case) teaching dimension. To support
this claim we showed that 2-term DNFs and 1-decision lists have an average teaching
dimension only linear in the number of variables. This seems more plausible than their
exponential worst case teaching dimension.

The teaching dimension is not only used to measure the teachability for classes, but
also for the teachability of individual concepts inside a class. Of course these individual
teaching dimensions can be implausible, too. For example, Lemma 3.12 suggests that
longer decision lists are easier to teach than shorter ones, which is clearly not realistic.
But the average teaching dimension does not affect the teachabilities of individual
concepts inside a class.

In the next chapter we therefore tackle the question of individual teaching dimensions
and investigate ways to judge the teachability of single concepts more plausibly.



Chapter 4

Learners With Restricted
Admissible Hypothesis Spaces

The learners discussed in the last chapter are not all particularly clever. They only
satisfy some minimum requirements for learners: “Remember what you are taught”
and “think of a consistent hypothesis.” Typically, there are many consistent hypotheses
available and most of them are just unreasonable. The TD model measures the difficulty
of teaching the most unreasonable learners. Teaching those, however, is often hard,
which is one reason for the teaching dimension sometimes being implausibly high.

In this chapter we consider learners that choose their hypotheses among other (and
typically smaller) spaces than the space of all consistent hypotheses. For every sample
S of memorized examples we specify a space H(S) ⊆ C of admissible hypotheses from
which the learner must choose. This includes the TD model as a special case in which
H(S) = C(S) for all samples S.

The generalization of Definition 3.1 to arbitrary admissible hypothesis spaces is sim-
ple, but the generalization of Lemma 3.3 is straightforward, too. Therefore, the only
improvement in realism we can expect from the new model is an improvement with
respect to the plausibility of the induced teachability measure. Thus, our goal is to
define the admissible hypothesis spaces such as to simulate smarter learners.

In this chapter we consider two natural ways to define the admissible hypothesis
spaces. In the first one, only consistent hypotheses of least complexity are allowed. This
remedies unrealistic relations between the complexity and the teachability of concepts.
The optimal teaching time for 1-decision lists is now upper bounded by their length,
whereas the teaching dimension may decrease for lists of increasing length (compare
Lemma 3.12 and Lemma 4.20). A similar result holds for monomials (see Section 4.2).
However, this teachability measure depends on the way the complexity of concepts is
measured, rather than only on the concept class itself.

The second variant defines the admissible hypothesis space so as to simulate learners
that assume their teacher to be optimal. Theses learners disregard hypotheses for
which the received examples would not be optimal. This yields a teachability measure
that depends only on the concept class again, but whose values are much harder to
calculate. For monomials the optimal teaching time equals their teaching dimension,
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except that the empty concept can be taught in n + 2 rounds, instead of 2n rounds in
the TD model. For certain 1-decision lists teaching can take as long as

√
n ·2n/2 rounds

(see Section 4.3).

In the final Section 4.4 we introduce a new specification of (MEM), called selective
memory . This can be combined with every definition of admissible hypothesis spaces.
It yields our first teaching model in which the teacher benefits from feedback. The
optimal teaching time without feedback is always quadratic in the optimal teaching
time with feedback.

4.1 Description and Properties of the Model

The definition of the learners is based on the notion of admissible hypothesis space.
Given a sample S, the set H(S) ⊆ C specifies among which hypotheses a learner
knowing the examples in S may choose. Since we want a specification for all samples
S ⊆ X , we regard H as a function H : 2X → 2C. We call H a hypothesis restriction. The
following is a generalization of Definition 3.1 in which C(·) is replaced by H(·).

Definition 4.1 Let 〈%, C〉 be a represented concept class. Let H : 2X → 2C be a hypoth-
esis restriction. A non-deterministic learner L = (Lmem,Lhyp) using hypothesis space
〈%, C〉 is called H-restricted iff

(HYP) ∀s ∈ X ∗ ∀σ ∈ %(C) ∪ {init} ∀z ∈ X ∀(s′, σ′) ∈ L(s, σ, z):

σ′ ∈

{
{σ} if z ∈ X (%σ),

%(H(s′)) otherwise.

Let m ∈ N+ ∪ {∞}. The learner is said to have memory size m iff

(MEM) Lmem(s, σ, z) = {s ◦m 〈z〉}.

Example 4.2 Let us again consider teaching concepts from the class Sn. We set
H(S) = C(S ∩ ([1, n]× {1})) for all S ⊆ X , that is, the learner considers only positive
examples when choosing the hypothesis. Now for every target c∗ ∈ Sn the teacher
has to give all positive examples since the most discriminative negative examples are
without effect. The optimal teaching time is thus n for the all-concept and n − 1 for
the other concepts. �

Every hypothesis restriction H induces a dimensionality notion similar to the teaching
dimension. As mentioned above, the teaching dimension is the special case in which
H(S) = C(S) for all S.
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Definition 4.3 Let C be a concept class, and let H : 2X → 2C be a hypothesis restric-
tion. We define the H-dimension of c with respect to C as

HD(c, C) = min{|S| S ⊆ X and H(S) = {c}} .

The characterization Lemma 3.3 can be generalized to arbitrary H-restricted learners:

Lemma 4.4 Let 〈%, C〉 be a represented concept class and let c∗ ∈ C be a target concept.
Let H : 2X → 2C be a hypothesis restriction, and let m ∈ N+∪{∞}. Then c∗ is teachable
to the H-restricted learner with memory size m if and only if HD(c∗, C) is finite and
HD(c∗, C) ≤ m. The optimal teaching time is HD(c∗, C).

Lemma 4.4 has the same consequences for H-restricted learners as Lemma 3.3 for
non-restricted learners (see Page 45): feedback is of no use, there is a weak form of
memory-size dependence, and the order of examples is irrelevant. These consequences
are independent of the hypothesis restriction. But still we can try to define the hypoth-
esis restriction H so as to get a more plausible teachability measure. Indeed we show
in the following sections that for suitable hypothesis restrictions the teaching times for
concepts can become more meaningful.

Before we define our first concrete hypothesis restriction we present some general
considerations about the properties of such a restriction. After all, Definition 4.1
allows arbitrary functions H, but not all choices are natural. A natural hypothesis
restriction should allow the learner to choose among consistent hypotheses only (just
not necessarily from all of them). Another natural constraint is that the set of all
examples for a concept leaves no choice to the learner but to hypothesize this very
concept. These conditions on H can be expressed as

(H 1) For all S ⊆ X : H(S) ⊆ C(S).

(H 2) For all c ∈ C: H(X (c)) = {c}.

As the only operation on the learner’s memory is to add an example to it, the relation
of H(S) to H(S∪{z}), or more generally of H(S) and H(S ′) to H(S∪S ′), is particularly
important. The most straightforward condition is that the samples S and S ′ combine
their power to eliminate hypotheses:

(H 3) For all S, S ′ ⊆ X : H(S ∪ S ′) = H(S) ∩ H(S ′).

This condition is satisfied by H(S) = C(S). In fact, (H 3) gives us, together with (H 1)
and (H 2), a topological characterization for C, regarded as a function C : S 7→ C(S),
and thus indirectly for the teaching dimension.

Fact 4.5 A hypothesis restriction H : 2X → 2C satisfies (H 1), (H 2), (H 3) if and only
if for all S ⊆ X : H(S) = C(S).
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Proof. The “if” direction is easily checked using the definition of C(S).

For the “only if” direction, let H satisfy (H 1), (H 2), and (H 3). Since H(S) ⊆ C(S)
holds by (H 1), it remains to show C(S) ⊆ H(S) for all S ⊆ X . Let S ⊆ X be an
arbitrary sample and let c ∈ C(S). Then

{c} = H(X (c)) = H(S) ∩ H(X (c) \ S),

where the first equality holds by (H 1) and the second one by (H 3). It follows that
c ∈ H(S), which shows the “only if” direction. �

In order to get H-dimensions different from the teaching dimension, we have to relax
one of the conditions (H 1), (H 2), or (H 3). Relaxing (H 1) would mean to allow also
inconsistent hypotheses. But as we do not want to allow all inconsistent hypotheses,
we would have to define the admissible inconsistent hypotheses; and there seems to be
no natural and universally agreed way to do this. Therefore, we leave (H 1) untouched.
Relaxing (H 2) would allow the learner, even if it knew everything about the target, to
hypothesize a non-target concept. This also seems undesirable.

It thus remains to consider relaxations of (H 3). Two obvious variants are to replace
the “=” by “⊆” or by “⊇”. The former variant means that the unified sample S ∪ S ′

can be more powerful than the sum of its parts S and S ′. The latter variant means that
two samples might be unable to fully combine their power. Indeed, there are natural
hypothesis restrictions satisfying either of these relaxations. In Section 4.2 we consider
a natural hypothesis restriction H satisfying H(S∪S ′) ⊇ H(S)∩H(S ′) instead of (H 3).
A natural choice of H satisfying H(S ∪S ′) ⊆ H(S)∩H(S ′) instead of (H 3) is discussed
in Section 4.3.

4.2 Learners Preferring Simple Hypotheses

Imagine a learner being taught a 2-term DNF and having received some examples
for which there is a consistent monomial. Then, as discussed before, there are also
exponentially many consistent 2-term DNFs and the learner could hypothesize any one
of them until they are all eliminated. This elimination requires exponentially many
further examples. A more reasonable learner, however, would rather hypothesize that
consistent monomial because it is the simplest consistent hypothesis available.

Under the name Occam’s Razor, the strategy of choosing the simplest consistent hy-
pothesis is a common principle in learning theory, in particular in the PAC setting (see,
for example, Blumer et. al. [21] and Natarajan [56]). The similar Minimum Description
Length Principle by Rissanen [67] has been used to develop learning algorithms (see,
for example, [31, 58]).

In this section we study learners that output hypotheses that are not only consistent,
but also of minimum complexity. We call such a learner complexity based. A natural
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choice for the complexity measure is the representation size ‖c‖ of a concept c in a
represented concept class. The admissible hypothesis spaces are defined as

Hcompl(S) = {h ∈ C(S) ‖h‖ = min{‖h′‖ h′ ∈ C(S)}}
= argmin

h∈C(S)

‖h‖ .

This definition gives rise to the Hcompl-dimension which we call the complexity teaching
dimension and abbreviate by CTD instead of the canonical name HcomplD. A com-
plexity teaching set (or CT-set for short) for c is a sample S with Hcompl(S) = {c} and
CTD(c, C) is defined as CTD(c, C) = min{|S| Hcompl(S) = {c}}.

In order to teach a complexity based learner a concept c, a teacher has to provide
enough examples to rule out all concepts with complexity less or equal to ‖c‖; concepts
with higher complexity need not be ruled out. The complexity teaching dimension
can therefore be calculated as the teaching dimension with respect to the subclasses of
concepts with bounded complexity:

Lemma 4.6 Let 〈%, C〉 be a represented concept class and let Ck = {c ∈ C ‖c‖ ≤ k}.
Then for all c ∈ C: CTD(c, C) = TD(c, C‖c‖).

It follows from the previous lemma that the complexity teaching dimension of a
concept c ∈ C with maximum complexity equals its teaching dimension with respect to
C. A more interesting consequence is that CTD(c) is always finite, even for concepts
over an infinite domain, because C‖c‖ is always finite. In this respect TD and CTD
differ.

Corollary 4.7 Let 〈%, C〉 be a represented concept class. Then we have CTD(c, C) < ∞
for all c ∈ C.

Note that the complexity teaching dimension CTD(C) of a class can still be infinite.
Before we go on with some examples of the CT -dimension, we remark that Hcompl

satisfies not only (H 1) and (H 2), but also the following relaxation of (H 3) in which
“=” is replaced by “⊇”.

Fact 4.8 Let 〈%, C〉 be a represented concept class. Then Hcompl(S ∪ S ′) ⊇ Hcompl(S) ∩
Hcompl(S

′) for all S, S ′ ⊆ X .

Proof. Let S, S ′ ⊆ X , and let ` = min{‖h‖ h ∈ C(S)}, `′ = min{‖h‖ h ∈ C(S ′)},
and k = min{‖h‖ h ∈ C(S∪S ′)}. These values can be infinite, but certainly `, `′ ≤ k.
We distinguish four cases which can all be solved easily.

Case 1: k = ∞.

Then C(S) ∩ C(S ′) = ∅ and therefore Hcompl(S) ∩ Hcompl(S
′) ⊆ C(S) ∩ C(S ′) = ∅ ⊆

Hcompl(S ∪ S ′). � Case 1
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Case 2: k < ∞ and ` 6= `′.

Then C(S)∩C(S ′) = ∅ and thus Hcompl(S)∩Hcompl(S
′) = ∅ ⊆ Hcompl(S∪S ′). � Case 2

Case 3: k < ∞ and ` = `′ = k.

Then Hcompl(S ∪ S ′) = {h ∈ C(S) ∩ C(S ′) ‖h‖ = k} = {h ∈ C(S) ‖h‖ = `} ∩ {h ∈
C(S ′) ‖h‖ = `′} = Hcompl(S) ∩ Hcompl(S

′). � Case 3

Case 4: k < ∞ and ` = `′ 6= k.

Then Hcompl(S)∩Hcompl(S
′) = {h ∈ C(S) ‖h‖ = `}∩{h ∈ C(S ′) ‖h‖ = `′} = {h ∈

C(S) ∩ C(S ′) ‖h‖ = `} = {h ∈ C(S ∪ S ′) ‖h‖ = `} = ∅. The last equality holds
because k > `. � Case 4

�

4.2.1 2-Term DNFs

The complexity of a concept inM2
n is essentially the minimal number of terms necessary

to represent the concept. Formally,

‖c‖ =


0 if c = ∅,
n if c ∈M1

n \ {∅},
2n if c ∈M2

n \M1
n.

We calculate the CT -dimensions for all concepts in M2
n using Lemma 4.6. The

empty concept has a CT -dimension of 1. The CT -dimension of non-empty concepts
representable as monomial is at most n + 1. To complete the results for M2

n, we still
have to determine the CT -dimension for the concepts in M2

n \M1
n. Since they have

maximum complexity, their CT -dimension equals their teaching dimension.

Theorem 4.9 CTD(M2
n) ≤ 2n + 4.

Proof. Let c ∈M2
n. Lemma 3.8 and the discussion above show that

• if ‖c‖ = 0 then TD(c) = 1 with respect to {c ∈M2
n ‖c‖ = 0},

• if ‖c‖ = n then TD(c) ≤ n + 1 with respect to {c ∈M2
n ‖c‖ ≤ n},

• if ‖c‖ = 2n then TD(c) ≤ 2n + 4 with respect to {c ∈M2
n ‖c‖ ≤ 2n}.

From Lemma 4.6 it follows that the CT -dimensions are 0, at most n + 1, and at most
2n + 4 for c with ‖c‖ = 0, n, and 2n, respectively. �

The last theorem illustrates that teaching concepts to the complexity based learner
can be much faster than teaching them to the plain consistent learner.
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v1 v2 v3 v4

0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 0

v1 v2 v3 v4 v5

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Figure 4.1 On the left, a (4, 2)-universal set of strings. On the right, a (5, 3)-universal set.
Both sets are of minimum size since f(4, 2) = 5 and f(5, 3) = 10.

The CT -dimension also gives a more plausible relation between teachability and
complexity of a 2-term DNF than the teaching dimension does. For all c, c′ ∈ M2

n \
{{0, 1}n} we have ‖c‖ < ‖c′‖ =⇒ TD(c) > TD(c′), that is, the teaching dimension
decreases as the concepts become more complex.

In contrast there are many concepts c, c′ ∈ M2
n with ‖c‖ < ‖c′‖ and CTD(c) <

CTD(c′), that is, the CT -dimensions and the complexities have the same relation.

4.2.2 1-Decision Lists

In this section we show that the complexity teaching dimension for 1-decision lists is
linear in the number of variables. This will be a corollary of a more general theo-
rem (Theorem 4.12) which we prove first and which we will also use again later (see
Fact 5.10).

Definition 4.10 ([74, 15]) Let 0 ≤ k ≤ m. A set B of truth assignments to vari-
ables v1, . . . , vm is said to be (m, k)-universal iff for every set {w1, . . . , wk} of literals
over v1, . . . , vm there is an assignment in B that satisfies all literals w1, . . . , wk. The
minimum size of a (m, k)-universal set is denoted by f(m, k). We set f(m, 0) = 1.

An equivalent definition of f(m, k) is the minimum number of binary strings of length
m such that every binary subsequence of length k occurs in one of the strings. This
makes the definition f(m, 0) reasonable because for the empty subsequence to occur
there must be at least one string. See Figure 4.1 for some examples of (m, k)-universal
sets.

Fact 4.11 1. f(m, m) = 2m,
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〈(v1, 1) (v2, 0) (v3, 0) (v4, 0) (v5, 1) (v6, 1) (∗, 0)〉

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 label
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 1

Figure 4.2 A 1-decision list of length 6 over 10 variables and a teaching set for that list with
respect to the class of all 1-decision lists of length 6. Every row represents an example con-
sisting of an instance from {0, 1}10 (interpreted as an assignment to the variables v1, . . . , v10)
and a label. Each node (including the default) absorbs exactly one example of the teaching
set.

2. f(m, k) ≤ k · 2k · log m · ln 2.

Proof.

1. The subsequences of length m are just the binary strings of length m. And the
minimum set that contains all strings of length m has cardinality 2m.

2. This has been proved by Becker and Simon [15]. �

Theorem 4.12 Let 0 ≤ λ ≤ ` ≤ n ≥ 1 and let c ∈ Dn with len(c) = λ. Then
TD(c,Dn

len≤`) ≤ (λ + 1) · f(n− λ, `− λ).

Proof. Let c be represented by the NFDL

D = 〈(v1, b1), . . . , (vλ, bλ), (∗, b̄λ)〉

where we assume without loss of generality that the literals in the nodes are the vari-
ables v1, . . . , vλ. Let the segmentation of D be D1 ◦ · · · ◦Dr ◦ 〈(∗, b̄λ)〉 and let the label
of the nodes in segment Dj be Bj. We call the variables not in D, that is, vλ+1, . . . , vn,
irrelevant.

Now we define a sample S whose cardinality is upper bounded by (λ+1)·f(n−λ, `−λ).
Then we show that S is a teaching set for c with respect to Dn

len≤` (see Figures 4.2 and
4.3 for two such samples).

The sample S contains exactly one example for each node in the segments D1, . . . ,
Dr−1 and f(n−λ, `−λ) examples for each node in the segment Dr and for the default
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〈(v1, 1) (v2, 0) (v3, 0) (v4, 0) (v5, 1) (v6, 1) (∗, 0)〉

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 label

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1 0 1

0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 0 1 1 1 0 1

0 0 0 1 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 1

Figure 4.3 A 1-decision list of length 6 over 10 variables. The examples constitute a teaching
set with respect to all decision lists of length 8 over 10 variables. For the default node and
each node in the last segment, there are five examples in the teaching set. The relevant
variables v1, . . . , v6 are assigned the same values as in Figure 4.2; the irrelevant variables
v7, v8, v9, v10 are assigned values such that all assignments for all sets of two variables occur
(cf. the (4, 2)-universal set in Figure 4.1). For every other node the teaching set contains only
one example, as in Figure 4.2.

node. More precisely, for a node (vi, Bj) in a segment Dj with j < r, the sample S
contains the example (x, Bj) where the instance x (interpreted as an assignment to the
variables v1, . . . , vn) satisfies only the node’s literal vi and all literals in the segments
Dj+1, . . . , Dr; no other literal in Dj is satisfied by x and neither are the literals in
D1, . . . , Dj−1. Which irrelevant variables x satisfies is arbitrary.
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For a node (vi, Br) in segment Dr, the sample S contains examples (x1, Br), . . . ,
(xf(n−λ,`−λ), Br) with the following property: All instances x1, . . . , xf(n−λ,`−λ) are equiv-
alent with respect to the relevant variables: they only satisfy vi. With respect to the
n − λ irrelevant variables vλ+1, . . . , vn the instances form an (n − λ, ` − λ)-universal
set. This means that for every possible assignment to every set of ` − λ irrelevant
variables there is an instance in {x1, . . . , xf(n−λ,`−λ)} that coincides with this assign-
ment on these `− λ variables. For the default node (∗, B̄r) we include f(n− λ, `− λ)
examples in the same way as for the nodes in Dr: The instances satisfy none of the
relevant variables, and with respect to the irrelevant variables the instances form an
(n− λ, `− λ)-universal set.

We call a sample as defined above for an NFDL a canonical sample for this NFDL.
Examples that are defined for a certain node are said to belong to that node. Clearly, to
each node belong at most f(n−λ, `−λ) examples and there are λ+1 nodes (including
the default). This shows the claim about the cardinality of S.

Now we have to show that S is a teaching set for c with respect to Dn
len≤`. To this

end, let E be an NFDL of length at most ` that is consistent with S. We have to show
that E is equivalent to D. The segmentation of E is denoted E1 ◦ · · · ◦ Es. In the
following we show how S determines the nodes in E and that E and D are equal up
to permutation of nodes within a segment.

We treat the special cases λ = 0 and λ = 1 first. The general proof is simplified if
we do not need to pay attention to these cases.

If λ = 0 then D consists of a default node only, namely (∗, B̄r). If moreover ` = λ = 0
then also E only consists of a default node, which must be the same as the default node
of D. If however ` > λ = 0 then S contains for every sequence of ` − λ = ` literals
over v1, . . . , vn an example satisfying all literals. Now suppose for a contradiction that
E consists of more than λ = 0 nodes. Then there is a node (w,Br) labeled Br (if
all nodes were labeled B̄r, the list E would not be in normal form). Consequently,
the negated literals in the nodes before (w,Br) and the literal w are a sequence of at
most ` literals such that every example satisfying theses literals is absorbed by (w,Br).
But by definition, S contains an example that satisfies these at most ` literals and is
labeled B̄r. This example is then classified as Br by the node (w,Br), a contradiction.
It follows that E consists of a default node only.

The case λ = 1 is similar to λ = 0. Without loss of generality, let D = 〈(v1, 1), (∗, 0)〉.
If in addition ` = λ = 1 then E is of length 1 (it cannot contain a default node only,
because there are differently labeled examples in S). Trying all possibilities, shows that
the only length-1 decision lists consistent with S are E = D and E = 〈(v̄1, 0), (∗, 1)〉.
But the latter is not in normal form, hence E = D.

If ` > λ = 1 then the first node of E can be either (v1, 1) or (v̄1, 0). In any case the
node absorbs half the examples in S and the other half is an (n−λ, `−λ)-universal set
with respect to the variables v2, . . . , vn. Now an analogous reasoning as in the case λ = 0
shows that no sequence of ` − 1 literals over v2, . . . , vn can come next. But E cannot



4.2 Learners Preferring Simple Hypotheses 71

be longer than ` and therefore no node at all comes next. The list E thus ends with a
default node and since it is in normal form, it can only be E = 〈(v1, 1), (∗, 0)〉 = D.

For the general proof, we assume that λ ≥ 2 and consequently that the last segment
Dr of D contains at least two nodes.

Claim: (1) For all j = 1, . . . , r: The set Sj of examples from S that reach the first
node of segment Ej is a canonical teaching set for the NFDL Dj ◦ · · · ◦Dr ◦ 〈(∗, b̄λ)〉.
(2) E1 ⊇ D1, . . . , Ej−1 ⊇ Dj−1.

Proof. The proof is by induction on j. As induction basis, let j = 1. Then Sj = S1

is the original sample S which is a canonical sample for D1 ◦ · · · ◦ Dr ◦ 〈(∗, b̄λ)〉 by
definition. Claim (2) holds trivially for j = 1.

Now assume the claim for some j ∈ {1, . . . , s − 1}. We consider segments Dj and
Ej.

Let B be the label common to all nodes in Dj and let (w, b) be the first node in Ej.
By the induction hypothesis, Sj is a canonical sample for Dj ◦ · · · ◦Dr ◦ 〈(∗, b̄λ)〉. The
nodes in segment Ej must not contradict the examples in Sj. Therefore Sj rules out
several possibilities for w and b:

1. w occurs in Dj and b = B̄. Then (w, b̄) is in Dj and the example belonging to
this node contradicts (w, b) as first node in Ej.

2. w̄ occurs in Dk with k ∈ {1, . . . , r}. Then the example belonging to the default
node satisfies w. Since there are at least two nodes in Dr, one example belonging
to Dr satisfies w (if k < r then all examples belonging to Dr satisfy w). But
these two examples are labeled differently, hence one of them would be classified
incorrectly by (w, b).

3. w occurs in Dk with k ≥ j +1. Every example belonging to a node in Dj satisfies
w and has label B. In Dj+1 there is a node whose example satisfies w as well (if
k 6= 2 all examples do) and has label B̄. The node (w, b) is thus inconsistent with
one of these two examples.

4. w does not occur in D and w = v̄ for a variable v. Then the examples belonging
to the default node and the node before satisfy w but are labeled differently.

In the case λ < `, that is, f(n− λ, `− λ) > 1, a stronger form of Item 4 applies:

5. w does not occur in D. Then one of the f(n − λ, ` − λ) examples belonging to
the default node and one example belonging to the node before satisfy v but are
labeled differently. The node (w, b) would thus be inconsistent with one of these
variables.
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We conclude that either (w, b) is a node from Dj or w is a variable not occurring in
D (an irrelevant variable). In the latter case, we can repeat the above argumentation
for the second and the following nodes in Ej until one of them is also in Dj. Only then
does the list E constructed so far absorb one example from Sj, namely the example
belonging to (w, b).

The above arguments can be repeated until all nodes in Dj, and hence all examples
in Sj belonging to them, are used up. At this point Ej consists only of nodes from Dj

and irrelevant nodes. Since only examples from nodes in Dj are absorbed by Ej, the
remaining examples form a canonical sample for Dj+1 ◦ · · · ◦Dr ◦ 〈(∗, b̄λ)〉. � Claim

The claim says that after segment Er−1 all examples not yet absorbed (that is, the
sample Sr) constitute a canonical teaching set for Dr ◦ 〈(∗, b̄λ)〉.

If we reason as above for the last segment of D, we would eventually reach a situation
in which only one example is left. But then the argumentation in Item 2 would fail.
Until this happens, however, Items 1–4 (or 1–3 and 5) apply. Now consider the situation
in which all but one node of Dr, say (w,Br), have been put into Er.

Case 1: λ = `.

Then there are two examples from S not yet absorbed, namely that of (w,Br) and
that of the default node. Moreover, E so far contains at least ` − 1 nodes (all nodes
from D except (w,Br)). On the other hand, E is of length at most `. So at most one
node may be added and at least one node has to be added because the two remaining
examples have different labels. Now there are two ways for the segment Er to end and
be consistent with both examples: First, (w,Br), (∗, B̄r) and second (w̄, B̄r), (∗, Br).
Both endings, however, lead to equivalent 1-decision lists because every instance x ∈
{0, 1}n reaching the last node is classified as B if it satisfies w and as B̄ otherwise.
Therefore, we can assume the first ending, which means that also the last node in Er

is from Dr. � Case 1

Case 2: λ < `.

Then there are the examples for (w,Br) left and those for the default node. Moreover
no irrelevant variable has been introduced into E so far (due to Item 5). There are two
possible next nodes for Er. First (w,Br), second (w̄, B̄r). In both cases the remaining
examples are a (n−λ, `−λ)-universal set with respect to the irrelevant variables. This
prevents any sequence of `− λ nodes with irrelevant variables to be appended. It does
not prevent the appending of more then `− λ irrelevant nodes, but if this happens the
resulting list E would be longer than `, a contradiction. Therefore, no irrelevant nodes
are appended, and since the relevant variables are all used up, the list E ends at this
point with a default node. This means that of the two possible nodes, only (w,Br) is
really possible because in normal form decision lists, like E, the two nodes before the
default node have the same label. � Case 2



4.3 Learners Assuming Optimal Teachers 73

We have shown that D and E differ only by permutations of nodes within corre-
sponding segments, which means cD = cE. �

We can draw conclusions from the previous theorem by setting ` and λ to certain
values. For example, if we set ` = n then we get with Fact 4.11:

TD(c,Dn
len≤`) = TD(c,Dn) ≤ (len(c) + 1) · f(n− len(c), n− len(c))

= (len(c) + 1) · 2n−len(c).

This is just the bound from Lemma 3.12.

Corollary 4.13 CTD(Dn) ≤ n + 1 and for all c ∈ Dn: CTD(c) ≤ len(c) + 1.

Proof. Let c ∈ Dn. Then CTD(c,Dn) = TD(c,Dn
len≤len(c)). From Theorem 4.12 it

follows CTD(c,Dn) ≤ (len(c) + 1) · f(n− len(c), 0) = len(c) + 1. �

Teaching 1-decision lists to the complexity based learner requires much fewer ex-
amples than teaching them to the plain consistent learner (compare Lemma 3.12 and
Corollary 4.13). Moreover, Corollary 4.13 suggests that the difficulty of teaching grows
with the complexity of the concepts. Again, just as for monomials, the CT -dimension
yields more intuitive results than the teaching dimension.

Unlike the teaching dimension the CT -dimension is not a combinatorial parameter
of the concept class C alone, but depends on the complexity measure ‖·‖, that is,
ultimately on the representation function %. Although there are often natural choices
for %, for example, the size of a minimal standard representation for concepts in C, it
would be nice to be able to measure teachability without somewhat arbitrary additional
assumptions.

4.3 Learners Assuming Optimal Teachers

In this section we investigate another reasonable behavior for learners. This will yield
a teachability measure that depends only on the concept class.

Consider the class Sn and assume the teacher has given a positive example. Although
this example eliminates only one hypothesis, it strongly suggests that the target concept
is not a co-singleton one, since an optimal teacher would have used the unique negative
example in this case. Thus, a learner who believes that the teacher is optimal would
immediately hypothesize the all-concept, which would therefore be teachable in only
one round instead of n rounds.

More generally speaking, an optimal teacher does not give superfluous examples. In
other words, in each round the set S of examples given by an optimal teacher so far
can be extended to a minimum teaching set for the target. All hypotheses with the
property that every minimum teaching set is not a superset of S could be ignored by
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the learners. But this requires the learners to know all minimum teaching sets of all
concepts, which seems quite demanding.

It is less demanding to require that the learners know only the teaching dimensions
of all concepts. This knowledge allows the learners to ignore all hypotheses whose
teaching dimensions are smaller than |S|. After all, an optimal teacher would not give
|S| examples if the target had a teaching dimension of less than |S|.

Definition 4.14 Let C be a concept class over X, and let S ⊆ X be a sample. We
define

Hopt(S) = {h ∈ C(S) TD(h, C) ≥ |S|} .

A set S with Hopt(S) = {c} is called an OT-set for c. The optimal teacher teaching
dimension for a concept c ∈ C with respect to C is then defined as the size of the smallest
OT-set for c:

OTD(c, C) = min{|S| Hopt(S) = {c}},
and for the class C as OTD(C) = max{OTD(c, C) c ∈ C}.

The hypothesis restriction Hopt is easily seen to satisfy (H 1) and (H 2). Moreover, it
satisfies the following relaxation of (H 3).

Fact 4.15 Hopt(S ∪ S ′) ⊆ Hopt(S) ∩ Hopt(S
′) for all S, S ′ ⊆ X .

Proof. Let S, S ′ ⊆ X . Then

Hopt(S ∪ S ′) = {h ∈ C(S ∪ S ′) TD(h) ≥ |S ∪ S ′|}
= {h ∈ C(S) TD(h) ≥ |S ∪ S ′|} ∩ {h ∈ C(S ′) TD(h) ≥ |S ′ ∪ S ′|}
⊆ {h ∈ C(S) TD(h) ≥ |S|} ∩ {h ∈ C(S ′) TD(h) ≥ |S ′|}
= Hopt(S) ∩ Hopt(S

′) .

�

Intuitively, the job of an OT -set for a concept c is to eliminate every concept c′ 6= c
either by proving that c′ is inconsistent with the examples or by being larger than
TD(c′). We refer to these two ways as to elimination by inconsistency and elimination
by size, respectively. In contrast, to become a teaching set for c, a sample must eliminate
all concepts by inconsistency alone. It is therefore clear that every teaching set is an
OT -set and that OTD(c, C) ≤ TD(c, C) for all concepts c ∈ C and all classes C.

The class Sn shows that there can be big differences between TD and OTD . A set
of two positive examples eliminates all co-singleton concepts by size as their teaching
dimension is 1. Thus, OTD([1, n],Sn) = 2 < n = TD([1, n],Sn).

The OT -dimension for a class C can be calculated using the teaching dimension of
certain subclasses C≥i := {c ∈ C TD(c) ≥ i} for i = 1, . . . , |X|.

Lemma 4.16 For all concept classes C, OTD(C) = min{j j ≥ TD(C≥j)}.
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Proof. Set J = min{j j ≥ TD(C≥j)}. We first show OTD(c) ≤ J for all c ∈ C. For c
with TD(c) ≤ J we have OTD(c) ≤ J since every teaching set is an OT -set. Now let
c be such that TD(c) > J . Then c ∈ C≥J and TD(C≥J) ≤ J . Thus there is a set S of
size at most J that uniquely describes c with respect to C≥J . This S eliminates by size
all c with TD(c) < J , hence it is an OT -set for c. It follows that OTD(c) ≤ J .

Now we show that there is a concept c with OTD(c) ≥ J . From the definition of J it
follows that J − 1 < TD(C≥J−1). Hence there is a c ∈ C≥J−1 whose teaching dimension
with respect to C≥J−1 is at least J . Let S be an example set of size J − 1. Then S
eliminates no concept in C≥J−1 by size and it is also too small to uniquely describe c
with respect to C≥J−1. Thus S is no OT -set for c and OTD(c) ≥ J . �

Corollary 4.17 Let C be a concept class and let gi, Gi be such that gi ≤ TD(C≥i) ≤ Gi

for all i. Then max{j j < gj} ≤ OTD(C) ≤ min{j j ≥ Gj}.

4.3.1 Teaching Monomials and 1-Decision Lists

For concept classes that have a single concept with a much higher teaching dimension
than the other concepts, the OT -dimension for that concept drops down to one plus
the second largest teaching dimension. This happens for the monomials as well.

Theorem 4.18 Let n ≥ 2. Then for all c ∈M1
n \ {∅}, OTD(c,M1

n) = TD(c,M1
n) =

min{k + 2, n + 1}, but OTD(∅,M1
n) = n + 2.

Proof. For symmetry reasons it suffices to consider the monomials of the form c =
1k*n−k for k ∈ {0, . . . , n} and the monomial ∅.

Case 1: k = 0.

Then TD(c) = 2. A sample S with |S| < 2 cannot eliminate any monomials by size
since the teaching dimension of every monomial is at least two. The sample S cannot
eliminate enough concepts by inconsistency either, otherwise TD(c) would be |S| < 2.
Therefore, there is no OT -set for c of size less than two. � Case 1

Case 2: 1 ≤ k ≤ n− 1.

Then TD(c) = k + 2. Let S be a sample with |S| = k + 1. We show that S is no
OT -set for c.

Case 2.1: S contains no positive example.

Then S does not eliminate ∅ by inconsistency and neither by size, as TD(∅) = 2n.
Therefore, S is no OT -set for c.

Case 2.2: S contains exactly one positive example, say (x, 1).
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Then the monomial whose representation is x has a teaching dimension of n+1 > |S|
and is consistent with S. Thus S eliminates that monomial neither by size nor by
inconsistency. Therefore, S is no OT -set for c.

Case 2.3: S contains at least two positive examples.

Then S contains at most k − 1 negative examples and there is an i ∈ {1, . . . , k}
such that for all µ ∈ {0, 1}n−k the negative example (1i−101k−iµ, 0) ∈ X (c) is not in S.
The monomial c′ = 1i−1*1k−i*n−k has a teaching dimension of k + 1 and is thus not
eliminated by S by size. It is also not eliminated by inconsistency as it is consistent
with S: First, c′ ⊃ c, hence c′ is consistent with all positive examples in S. Second, all
instances in c′ \ c are of the form 1i−101k−iµ with µ ∈ {0, 1}n−k, but no such instance
occurs in a negative example in S (by choice of i); therefore all negative examples in
S are also negative examples for c′. Since S does not eliminate c′, it is no OT -set
for c. � Case 2

Case 3: k = n.

Then (1n, 1) is the only positive example for c and TD(c) = n+1. Let S be a sample
with |S| = n. We show that S is no OT -set for c.

Case 3.1: S contains no positive example.

Then S does not eliminate ∅ by inconsistency and neither by size, as TD(∅) = 2n.

Case 3.2: S contains the positive example.

Then S contains n−1 negative examples and there is an i ∈ {1, . . . , n} such that the
negative example (1i−101n−i, 0) is not in S. But then the monomial c′ = 1i−1*1n−i is
not eliminated by S: First, TD(c′) = n + 1 as c′ has n− 1 literals; thus no elimination
by size occurs. Second, c′ is consistent with S because c′ = {1n, 1i−101n−i} and by
choice of i the example (1i−101n−i, 0) is not in S. � Case 3

Case 4: c = ∅.
Every sample containing n+2 negative examples is an OT -set for ∅ because all other

concepts have a teaching dimension of at most n+1 and are thus eliminated by size. On
the other hand, let S contain only n + 1 negative examples. Then there is an instance
x ∈ {0, 1, }n that does not occur in any example in S (for n ≥ 2 we have 2n > n + 1).
The monomial with representation x has a teaching dimension of n + 1, is consistent
with S, and thus not eliminated by S. This shows OTD(∅) = n + 2. � Case 4

�

For the class of monomials, the OT -dimension, the CT -dimension, and the average
teaching dimension are all linear in n. This appears to be more reasonable than the
teaching dimension, which is exponential in n.

The class of 1-decision lists has quite a different distribution of teaching dimensions
than the class of monomials. Instead of a single high-dimensional concept, Dn contains
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many concepts with high, medium, and low teaching dimensions. Nevertheless, the
average teaching dimension and the CT -dimension are only linear in n. The OT -
dimension, however, is much larger, as we want to show next.

To analyze the OT -dimension of 1-decision lists we need some notations, in which
we omit the subscript n for readability. We define

Dlen≤i = {c ∈ Dn len(c) ≤ i},
D≥j = {c ∈ Dn TD(c) ≥ j}.

By D+ we denote the set of all concepts representable by NFDLs whose only positive
node is the default node, for example, 〈(v4, 0), (v̄2, 0), (v1, 0), (v3, 0), (∗, 1)〉. Finally, we
set as shortcut

`j = max{` (` + 1) · 2n−` ≥ j}
= min{` (` + 1) · 2n−` < j} − 1

for j = 0, . . . , 2n. In other words, `j is the minimal length such that all longer 1-decision
lists have a teaching dimension of less than j (compare Lemma 3.12).

To apply Corollary 4.17 we derive bounds for the teaching dimension of D≥i. We
start with an upper bound.

Lemma 4.19 TD(D≥j) ≤ `j · 2`j · log n · ln 2.

Proof. First we prove D≥j ⊆ Dlen≤`j
. Let c ∈ D≥j and suppose that len(c) ≥ `j + 1.

Then TD(c) ≤ (`j + 2) · 2n−(`j+1) and TD(c) ≥ j, hence j ≤ (`j + 2) · 2n−(`j+1), a
contradiction to the definition of `j.

To prove the lemma, it suffices to show TD(Dlen≤`) ≤ ` · 2` · log n ln 2 for all `, in
particular for ` = `j. Let c ∈ Dlen≤` with len(c) = λ. Then it follows from Theorem 4.12
and Fact 4.11 that

TD(c,Dlen≤λ) ≤ (λ + 1) · f(n− λ, `− λ) ≤ (λ + 1) · (`− λ) · 2`−λ · log(n− λ) · ln 2.

The expression on the right is upper bounded by ` · 2` · log n · ln 2 because (λ + 1) · 2`−λ

is upper bounded by 2` for 0 ≤ λ ≤ `. Putting it all together and setting ` = `j, we
get

TD(c,Dlen≤λ) ≤ `j · 2`j · log n · ln 2

for all c ∈ Dlen≤`j
. It follows that TD(D≥j) ≤ `j · 2`j · log n · ln 2. �

The next lemma is needed for our lower bound on TD(D≥i) and moreover presents
concepts whose teaching dimensions attain the upper bound stated in Lemma 3.12.

Lemma 4.20 Let c ∈ D+. Then TD(c,Dn) = (len(c) + 1) · 2n−len(c).
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Proof. Because of Lemma 3.12 we only need to show TD(c) ≥ (len(c) + 1) · 2n−len(c).
Without loss of generality, let c ∈ D+ be represented using the variables v1, . . . , v` only,
that is, by 〈(v1, 0), . . . , (v`−1, 0), (v`, 0), (∗, 1)〉.

We prove that there are at least (` + 1) · 2n−` neighbor concepts of c in the class of
all 1-decision lists. Of these neighbor concepts ` · 2n−` are represented by lists of the
form

〈(vi1 , 0), . . . , (vi`−1
, 0), (v̄i` , 1), (v

α`+1

`+1 , 0), . . . , (vαn
n , 0), (∗, 1)〉

where vi` ranges over all ` variables v1, . . . , v` and {i1, . . . , i`} = {1, . . . , `}. Each of the
2n−` combinations of the α’s yields a 1-decision list representing a concept containing
exactly one instance more than c. There are ` · 2n−` such lists, which represent just as
many pairwise different concepts.

There are another 2n−` neighbor concepts of c represented by decision lists of the
form

〈(v1, 0), . . . , (v`−1, 0), (v`, 0), (v
α`+1

`+1 , 1), . . . , (vαn
n , 1), (∗, 0)〉.

All these lists represent pairwise different concepts each of which contains exactly one
instance less than c.

Overall there are (` + 1) · 2n−` neighbor concepts of c. �

Lemma 4.21 TD(D≥j) ≥ 2`j−1 for all j = 1, . . . , 2n.

Proof. All concepts in c ∈ D+ with len(c) ≤ `j − 1 are also in D≥j. This follows from
Lemma 4.20 because TD(c) ≥ (len(c)+1) · 2n−len(c) = `j · 2n−`j+1 ≥ (`j +1) · 2n−`j ≥ j.
The last inequality holds by definition of `j.

In particular, all concepts representable by decision lists of the form

〈(vα1
1 , 0), . . . , (v

α`j−2

`j−2 , 0), (v
α`j−1

`j−1 , 0), (∗, 1)〉

are in D≤j. Since all α’s can be either 0 or 1, there are 2`j−1 such concepts. Moreover,
all these concepts, regarded as subsets of X = {0, 1}n, are mutually disjoint.

A teaching set for ∅ ∈ D≥j contains only negative examples and must rule out all
these 2`j−1 concepts. But as these concepts are mutually disjoint, every example can
rule out at most one of them. Therefore a teaching set for ∅ contains at least 2`j−1

examples. This number is then a lower bound for TD(D≥j). �

Now we have all the bounds for TD(D≥j) needed in order to bound OTD(Dn).

Theorem 4.22 Ω(
√

n · 2n/2) ≤ OTD(Dn) ≤ O(n ·
√

log n · 2n/2).

Proof. For easier calculation we consider teaching dimensions of the form j = (λ + 1) ·
2n−λ for λ = 0, . . . , n. Thus we have `j = λ.
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Lower bound : From Corollary 4.17 we know that a j with j < TD(D≥j) is a lower
bound for OTD(Dn). From Lemma 4.21 we know that TD(D≥j) ≥ 2`j−1. Hence we
are seeking a j with j < 2`j−1.

Claim 1: j < 2`j−1 holds for λ > 1
2
(n + 1 + log(n + 1)).

Proof. Let λ > 1
2
(n + 1 + log(n + 1)). Using log(n + 1) ≥ log(λ + 1) it follows that

λ > 1
2
(n + 1 + log(λ + 1)) and log(λ + 1) + n− λ < λ− 1. This is equivalent to

(λ + 1) · 2n−λ < 2λ−1.

Therefore j = (λ + 1) · 2n−λ < 2λ−1 = 2`j−1. � Claim 1

By Claim 1 we can conclude that j < 2`j−1 holds for λ = 1
2
(n + 2 + log(n + 1)).

Calculating j using this λ yields a lower bound for OTD(Dn):

j = (λ + 1) · 2n−λ ≥ 1
2
(n + 4 + log(n + 1)) · 2n/2−(log(n+1)−2)/2

≥
1
2
(n + 4) · 2n/2√

1
4
(n + 1)

≥ Ω(
√

n · 2n/2).

Upper bound : We are seeking a j with j ≥ TD(D≥j) to apply Corollary 4.17.

Claim 2: j ≥ TD(D≥j) holds for λ ≤ 1
2
(n− log log n).

Proof. λ ≤ 1
2
(n− log log n) is equivalent to 2n−2λ ≥ log n which in turn is equivalent

to (λ+1) · 2n−λ ≥ (λ+1) · 2λ · log n where the right hand side is greater than TD(D≥j)
by Lemma 4.19 and the left hand side equals j, hence j ≥ TD(D≥j). � Claim 2

Calculating j for λ = 1
2
(n− log log n) yields

j = (1
2
(n− log log n) + 1) · 2n−(n−log log n)/2 = (1

2
(n− log log n) + 1) · 2(n+log log n)/2

≤ O(n ·
√

log n · 2n/2)

as an upper bound for OTD(Dn). �

The teachability of 1-decision lists is judged quite differently by our various mea-
sures. While the average teaching dimension and the CT -dimension are linear, the
OT -dimension is exponential in n. Whether linear or exponential is more “realistic”
is not clear. On the one hand, OTD(Dn) should be greater than linear because the
class of 1-decision lists is bigger and more complex than the class of monomials and
should therefore be harder to teach. On the other hand, exponential OT -dimensions
should be reserved for the most complex classes. For example, the class of all Boolean
functions over n variables has an OT -dimension of 2n.

More results seem necessary for deciding whether the OT -dimension matches our
intuition about teachability. In particular, knowing OT -dimensions for other classes,
as well as for individual concepts, would be helpful.
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4.3.2 Iterated Optimal Teacher Teaching Dimensions

The optimal teacher teaching dimension is defined in terms of TD (see Definition 4.14).
Using TD to define Hopt reflects the assumption of the learners that the teacher will not
give more examples than necessary, that is, no more than TD(c∗). But for a teacher
knowing this assumption of the learner, less than TD(c∗) examples would suffice for
teaching c∗; more precisely, OTD(c∗) examples are enough. If the learners in turn are
aware of this fact they might then assume that the teacher does not give more than
OTD(c∗) examples (instead of no more than TD(c∗) as before).

The number of examples needed to teach those learners is measured by another
dimension, which we get after substituting TD by OTD in Definition 4.14. This sub-
stitution can occur iteratively, leading to an infinite number of iterated optimal teacher
teaching dimensions:

Definition 4.23 Let C be a concept class and let c ∈ C. We define

OTD0(c, C) = TD(c, C)

and for j ≥ 1:

Hj
opt(S) = {h ∈ C(S) OTD j−1(h, C) ≥ |S|},

OTD j(c, C) = min{|S| Hj
opt(S) = {c}}.

A sample S with Hj
opt(S) = {c} is called an OT j-set for c. As usual we may write

OTD j(c) for OTD(c, C), and we define OTD j(C) = max{OTD j(c, C) c ∈ C}.

We already know the first two iterated OT -dimensions: OTD0 is the teaching di-
mension, and OTD1 is the plain OT -dimension.

Intuitively speaking, OTD2 measures the number of examples needed for learners
that know that the teacher knows that they assume the teacher to be optimal. OTD3

measures the number of examples needed for learners that know that the teacher knows
that they know that the teacher knows that they assume the teacher to be optimal,
and so on.

Calculating OTD j(c) for a fixed c and growing j results in a monotonically decreasing
sequence of values.

Lemma 4.24 Let C be a concept class. Then for all c ∈ C and all j ∈ N, OTD j(c)
≥ OTD j+1(c).

Proof. We use induction on j. It follows immediately from the definitions that for all
c ∈ C, OTD0(c) ≥ OTD1(c). Assume the statement for some j. From the induction
hypothesis ∀c : OTD j−1(c) ≥ OTD j(c) we conclude



4.3 Learners Assuming Optimal Teachers 81

Hj
opt(S) = {c c ∈ Hopt(S) ∧OTD j−1(c) ≥ |S|}

⊇ {c c ∈ Hopt(S) ∧OTD j(c) ≥ |S|} = Hj+1
opt (S) .

Therefore every OT j-set for a given concept c is also an OT j+1-set for this concept,
hence OTD j+1(c) ≤ OTD j(c). �

As a simple example, consider the class Sn. Here, for all j ≥ 1, OTD j([1, n]) = 2
and OTD j(c) = 1 for c 6= [1, n]. For this class the iterated OT -dimension is of little
interest. A similar result holds for the monomials.

Fact 4.25 For all j ≥ 1 and all c ∈M1
n, OTD j(c) = OTD1(c).

Proof. It suffices to show OTD2(c) = OTD1(c) for all c ∈M1
n. Since TD(c) = OTD(c)

for all c 6= ∅, we can use almost the same reasoning as in the proof of Theorem 4.18, with
TD substituted by OTD . Only Case 1 uses the concept ∅, whose TD and OTD differ.
But a set S of size k + 1 with no positive example is not an OT 2-set for a monomial
with k variables because it is consistent with ∅ and smaller than OTD1(∅) = n + 2. �

Since the series (OTD j(c))∞j=0 is monotonicalls decreasing and lower bounded by 0,
it converges. And if there are only finitely many concepts in a class, there is a j such
that for all concepts c the limit limi→∞ OTD i(c) = OTD j(c). Intuitively speaking,
at this point the teacher and the learners cannot benefit any more from knowing the
other’s behavior. How many iteration it takes until this fixed point is reached is a
natural question. We have already seen that Sn and M1

n reach this fixed point after
one iteration only. In contrast to these two classes, we next show that the fixed point
can occur arbitrarily late.

Theorem 4.26 For all k ≥ 1 there is a class C over a learning domain X such that
min{j ∀c ∈ C : OTD j(c) = OTD j+1(c)} ≥ k.

Proof. The idea of the proof is to construct a class C containing (among others) k + 1
special concepts c0, . . . , ck. In the first iteration, that is, from OTD0 to OTD1 only
the dimension of c0 is reduced. This reduction makes c1 easier to teach because c0 can
be ruled out by less examples. Consequently in the second iteration, the dimension of
c1 is reduced (and none else). This causes the dimension of c2 to be reduced in the
third iteration, and so on until finally in the transition from OTDk to OTDk+1 the
dimension of ck changes.

See Figure 4.4 for the class C for k = 2. For arbitrary k the class C is constructed
as follows. The learning domain X is the union of k + 1 disjoint sets X0, . . . , Xk with
|X0| = 3 and |Xj| = j + 2 for all j ≥ 1. The concept class C is a union of k + 1 disjoint
classes C0, . . . , Ck over X. C0 contains the empty concept c0 = ∅ and the singleton
concepts for all instances in X0. Let c1 be an arbitrary such singleton concept. All
c ∈ C1 ∪ · · · ∪ Ck coincide with c1 on X0, that is, ∀c ∈ C1 ∪ · · · ∪ Ck : c ∩X0 = c1 ∩X0.
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X0︷ ︸︸ ︷ X1︷ ︸︸ ︷ X2︷ ︸︸ ︷ OTD0 OTD1 OTD2 OTD3

c0 0 0 0 0 0 0 0 0 0 0 3 2 2 2
c1 1 0 0 0 0 0 0 0 0 0 4 4 3 3

0 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1 1 1 1

c2 1 0 0 1 0 0 0 0 0 0 7 5 5 4
1 0 0 0 1 0 0 0 0 0 3 3 3 3
1 0 0 0 0 1 0 0 0 0 3 3 3 3
1 0 0 1 0 1 0 0 0 0 3 3 3 3
1 0 0 0 1 1 0 0 0 0 3 3 3 3
1 0 0 1 1 0 0 0 0 0 3 3 3 3
1 0 0 1 1 1 0 0 0 0 3 3 3 3

c3 1 0 0 1 0 0 1 0 0 0 9 6 6 6
1 0 0 1 0 0 0 1 0 0 4 4 4 4
1 0 0 1 0 0 0 0 1 0 4 4 4 4
1 0 0 1 0 0 0 0 0 1 4 4 4 4
1 0 0 1 0 0 1 0 0 1 4 4 4 4
1 0 0 1 0 0 0 1 1 0 4 4 4 4
1 0 0 1 0 0 0 1 0 1 4 4 4 4
1 0 0 1 0 0 1 0 1 0 4 4 4 4
1 0 0 1 0 0 1 1 0 0 4 4 4 4
1 0 0 1 0 0 0 0 1 1 4 4 4 4
1 0 0 1 0 0 1 1 1 0 4 4 4 4
1 0 0 1 0 0 1 1 0 1 4 4 4 4
1 0 0 1 0 0 1 0 1 1 4 4 4 4
1 0 0 1 0 0 0 1 1 1 4 4 4 4
1 0 0 1 0 0 1 1 1 1 4 4 4 4

 C0


C1



C2

Figure 4.4 The concept class C0 ∪ C1 ∪ C2 over X0 ∪X1 ∪X2 is constructed in the proof of
Theorem 4.26 for k = 2. The dimensions of concept c2 stabilize only at OTD3.

As a shortcut we define qj = |Xj| for all j ≤ k.

The concepts in C1∪· · ·∪Ck on X1∪· · ·∪Xk as well as the special concepts c2, . . . , ck+1

are defined inductively as follows. For j = 1, . . . , k the concepts in Cj are identical to
cj on X0, . . . , Xj−1 and for all 2qj − 1 non-empty subsets Z ⊆ Xj there is a concept in
Cj containing exactly the elements in Z. Then there are |Xj| neighbors of cj in Cj and
we call an arbitrary one of them cj+1.

To prove the theorem we make use of the following claims:

Claim 1: ∀j ∀` ≥ 1 ∀c ∈ C` ∪ {c`} : OTD j(c) ≥ q`.
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Proof. Let ` ≥ 1. The proof is by induction on j. Let j = 0 and c ∈ C` ∪ {c`}. Then
c has q` neighbor concepts in C` ∪ {c`} (all with respect to X`). Since each neighbor
concept must be eliminated by a separate example, we have OTD0(c) ≥ q`.

Now assume that the claim holds for some j. Again c has q` neighbor concepts in
C` ∪ {c`}, all having an OT j-dimension of at least q`. An example set of size less than
q` does not eliminate any such neighbor concept by size and is also unable to eliminate
all neighbor concepts by inconsistency. Hence OTD j+1(c) ≥ q`. � Claim 1

Claim 2: ∀j ∀` ∀c ∈ C` \ {c`, c`+1} : OTD j(c) = OTD0(c).

Proof. The claim trivially holds for ` = 0, since OTD0(c) = 1 for all c ∈ C0 \ {c0, c1}.
Let ` ≥ 1 and let c ∈ C` with c 6= c`+1. By Lemma 4.24 we know that OTD j(c) ≤
OTD0(c) = q`. On the other hand, Claim 1 yields OTD j(c) ≥ q`, and therefore we
have OTD j(c) = q`. � Claim 2

Claim 3: ∀j ∀` ≥ 1: If ∀c ∈ C0 ∪ · · · ∪ C`−1 \ {c`} : OTD j(c) < q` then OTD j+1(c`)
= q`.

Proof. Let ` ≥ 1 and j such that ∀c ∈ C0 ∪ · · · ∪ C`−1 \ {c`} : OTD j(c) < q`. Now
every example set of size q` excludes all concepts in C`−1 \ {c`} by size. Moreover, all
c /∈ C`−1 are inconsistent with c` on X`. Thus, {(x, c`(x)) x ∈ X`} is an OT j+1-set
for c` of size |X`| = q`. � Claim 3

Claim 4: ∀j ∀` ∈ {1, . . . , k}: If OTD j(c`−1) ≥ q` then OTD j+1(c`) > q`.

Proof. Let ` ≥ 1 and j with OTD j(c`−1) ≥ q`. First we have that c`−1 is a neighbor
concept of c` and that OTD j(c`−1) ≥ q` according to the assumption. Second, c` has
q` neighbor concepts c′ in C`, all of them having OTD j(c′) ≥ q` (by Claim 1).

Then c` has q` + 1 neighbor concepts c′ with OTD j(c′) ≥ q`. Therefore it follows
that OTD j+1(c`) > q`. � Claim 4

The next claim shows that with each iteration of the OT -dimension the dimension
of one of the special concepts c1, . . . , ck decreases.

Claim 5: For j = 1, . . . , k: OTD j(cj) > OTD j+1(cj) = qj.

Proof. By counting the neighbor concepts one can see that OTD0(c0) = 3 and
OTD1(c0) = 2. It is also easy to check that OTD0(c1)=OTD1(c1) = 4 and OTD2(c1)=
3 = q1. This proves the claim for j = 1.

We proceed by induction on j. Let the claim be true for 1, . . . , j < k. We show that
it holds for j + 1. For the OT j-dimensions of the concepts we have: OTD j(c) ≥ qj for
c ∈ Cj ∪ · · · ∪ Ck (by Claim 1); OTD j(c0), . . . ,OTD j(cj−1) ≤ qj − 1 (by the induction
hypothesis); for the other c ∈ C0 ∪ · · · ∪ Cj−1: OTD j(c) ≤ qj−1 (by Claim 2).

Applying Claim 3 with ` = j + 1 yields OTD j+1(cj+1) = qj+1. Applying Claim 4
with ` = j + 1 yields OTD j+2(cj+1) > qj+1. This proves the claim for j + 1. � Claim 5
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From Claim 5 it follows OTDk(ck) > OTDk+1(ck), which proves the theorem. �

If we continue the construction described in the previous proof, we get an infinite
concept class such that the iterated OT -dimensions have no fixed point.

Corollary 4.27 There is an infinite concept class C such that for all j ∈ N there is a
c ∈ C with OTD j(c, C) < OTD j+1(c, C).

When it exists, the fixed point of the iterated OT -dimensions appears to be a natural
teachability measure whose values are typically less than those of the original OT -
dimension. It would be interesting to know whether the fixed point values of the 1-
decision lists are subexponential. However, calculating even OTD2(Dn) looks daunting
because to do so we need to know OTD(c,Dn) for all c ∈ Dn, and it was already
difficult to derive only a bound for one OTD-value in Section 4.3.1.

The next section is less technical. It describes a teaching model in which we, for the
first time, observe feedback effects.

4.4 Learners with Selective Memory

So far, the teacher always had full knowledge about the learner’s memory content, even
if the learner gave no feedback. The memory of a learner with memory size m simply
contained the last m examples (or all examples if m = ∞) in the order they were given.
This enabled a feedbackless teacher to follow the simple strategy of teaching an H-set
of the target. Such a strategy is optimal for teachers without feedback and cannot be
improved when the teacher receives feedback (see Lemma 4.4).

In this section we let the memory behavior depend on the current hypothesis. As
the latter is typically not known to a feedbackless teacher, this measure should make
feedback more valuable. More precisely, now the learners only memorize an example
if it is inconsistent with the current hypothesis at the round it is taught; consistent
examples are ignored. We call such a memory selective.

Selective memory bears some resemblance with the human phenomenon that sur-
prising or previously unknown observations better stick in memory than those that are
already well-known. Granted, this is a very coarse resemblance, but within our general
framework this is probably the closest we get to a formalization of this phenomenon.

Definition 4.28 Let 〈%, C〉 be a represented concept class and m ∈ N+ ∪ {∞}. A
non-deterministic learner L = (Lmem,Lhyp) is said to have selective memory of size m
iff

(MEM) Lmem(〈 〉, init , z) = {〈z〉},

Lmem(s, σ, z) =

{
{s ◦m 〈z〉} if z /∈ X (%σ),

{s} otherwise.
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The previous definition can be combined with the H-restriction (see Definition 4.1).
This yields H-restricted learners with selective memory of size m. For the rest of the
section we study only these learners.

When receiving feedback, the teacher can always give an example that is inconsistent
with the current hypothesis and that will thus be added to the memory. Moreover, no
matter whether or not feedback is present, the learner must be able to memorize an
H-set. Therefore, teaching the selective memory learner with feedback is just as easy
as teaching the non-selective memory learner (compare with Lemmas 3.3 and 4.4).

In the situation without feedback, the learner still must be able to memorize an
H-set for c∗. But nevertheless, teaching c∗ may take longer than HD(c∗) rounds. The
following lemma is similar to the Lemmas 3.3 and 4.4 for non-selective memory, except
that it does not state the optimal teaching time for teaching without feedback.

Lemma 4.29 Let 〈%, C〉 be a represented concept class and c∗ ∈ C be a target. Let
H : 2X → 2C and m ∈ N+ ∪ {∞}.

For teaching with or without feedback, the target c∗ is teachable to the H-restricted
learner with selective m-memory if and only if HD(c∗, C) is finite and at most m.

For teaching with feedback, the optimal teaching time is HD(c∗, C).

Proof. Suppose HD(c∗, C) is finite and at most m. Then there is a sample S =
{z1, . . . , zk} with k = HD(c∗, C) ≤ m and H(S) = {c∗}. First, consider teaching with
feedback. We define a teacher T1 by

T1(s, σ) =


z1 if σ = init ,

zj with j = min{i zi /∈ X (%σ)} if ∃i : zi /∈ X (%σ),

z1 otherwise.

In other words, T1 teaches an inconsistent example from S as long as the learner has
not reached the target. In this way, one example from S is given in each round and
in particular memorized by the learner. Therefore after k rounds the learner knows an
H-set for c∗ and has to hypothesize c∗ due to the H-restriction.

Now consider teaching without feedback. Let T2 be the teacher that first teaches z1

and then z2, . . . , zk in an endless loop: T2(0) = z1, T2(i) = z1+i mod (k−1) for all i ≥ 1.
The first example, z1, automatically memorized, and during each iteration through
z2, . . . , zk the learner, unless it already hypothesizes c∗, encounters an example that is
inconsistent with the current hypothesis. This example is then memorized according to
the definition of selective memory. Therefore after at most k− 1 iterations the learner
knows the H-set {z1, . . . , zk}. Then, since the learner is H-restricted, it hypothesizes
c∗. This shows that c∗ can be taught finitely.

Now suppose c∗ is teachable. Then by the same arguments as in the non-selective
memory situation, L eventually memorizes an H-set for c∗. Therefore the memory of
L must at least have size HD(c∗, C).
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Moreover HD(c∗, C) is finite. Memorizing an H-set can only occur after at least
HD(c∗, C) rounds. This number of rounds is achieved by the teacher T1 with feed-
back defined above. Therefore the optimal teaching time for teaching with feedback is
HD(c∗, C). �

In the case without feedback, it can happen that the teacher gives an example that
the learner cannot memorize. Teaching without feedback is thus harder than teaching
with feedback. But, just as in the non-selective memory models, there is no difference
in teaching time between teaching finitely and in the limit. To see this, consider teacher
T2 in the proof of Lemma 4.29. This teacher works for all targets that are teachable
without feedback.

The previous lemma only characterizes teachability without feedback, it does not give
the optimal teaching time. We denote the optimal teaching times for the H-restricted
∞-memory learner by Sel-HD(c∗, C). So far, Lemma 4.29 provides us only with a trivial
lower bound of HD(c∗) and with an quadratic upper bound for Sel-HD(c∗, C):

Corollary 4.30 Let 〈%, C〉 be a represented concept class, H : 2X → 2C a hypothesis
restriction, and c∗ ∈ C a target concept with HD(c∗, C) < ∞. Then Sel-HD(c∗, C) ≤
(HD(c∗, C)− 1)2 + 1.

Proof. The teacher that works like T2 in the proof of Lemma 4.29 has the claimed
teaching time. �

Next we give a lower bound for Sel-HD, which matches the upper bound up to a
factor of at most two. This shows that lack of feedback always handicaps teaching
learners with selective memory.

Theorem 4.31 Let 〈%, C〉 be a represented concept class, H : 2X → 2C a hypothesis
restriction, and c∗ ∈ C a target concept with HD(c∗C) < ∞. Then Sel-HD(c∗, C) ≥
1 + 1

2
· HD(c∗, C) · (HD(c∗, C)− 1).

Proof. In this proof we abbreviate HD(c∗, C) with k. Let T : N → X (c∗) be a feed-
backless teacher for c∗ and let L be the non-deterministic learner with infinite selective
memory. We construct a computation of L that assumes the hypothesis c∗ only after
at least 1

2
·k · (k−1)+1 rounds. The idea behind that computation is to always assume

a hypothesis that maximizes the number of rounds until T gives the next inconsistent
example. A computation of L is represented by a series ((si, σi))i∈N of states such that
(s0, σ0) = (〈 〉, init) and

(si+1, σi+1) ∈ L(si, σi, T (i))

for all i ∈ N. The behavior of the memory is already specified by the definition
of selective memory. We define the hypotheses by σi+1 = σi if T (i) ∈ X (%σi

); if
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T (i) /∈ X (%σi
) we define

σi+1 ∈ argmax
h∈H(si◦〈T (i)〉)

min{t t > i, and s ◦ 〈T (i + 1), . . . , T (t− 1)〉 is consistent with h,

and T (t) is not consistent with h}.

Since in the latter case si ◦ 〈T (i)〉 = si+1 and σi+1 is chosen from the set H(si ◦ 〈T (i)〉),
the hypothesis σi+1 satisfies the conditions of the H-restricted learner L.

By t0, t1, . . . we denote the rounds in which the memory grows, that is, j + 1 =
|stj | > |stj−1| = j. We have t0 = 1 since the first example is automatically memorized.
The values tj also describe exactly the rounds before which an inconsistent example
has arrived, that is, T (tj − 1) /∈ X (%σtj−1), and thus they describe the rounds in which
the hypothesis might change. By definition, σi can be a target hypothesis only when
si contains a teaching set. Therefore the series tj is defined at least until j = k − 1.

Claim: tj+1 − tj ≥ k − (j + 1) for all j = 0, . . . , k − 2.

Proof. Let 0 ≤ j ≤ k − 2. Then |stj | = j + 1 < k, and the hypothesis σtj is
chosen to maximize the number of rounds during which examples consistent with σtj

arrive. There is a hypothesis such that this number is at least k−(j +1). Otherwise all
hypotheses in H(stj◦〈T (tj+1)〉) were inconsistent with one of the following k−(j+1)−1
examples and we could build an H-set for c∗ using these k − (j + 1)− 1 examples plus
the examples in stj . This would yield a sample of size k− (j +1)− 1+ j +1 = k− 1, a
contradiction to k = HD(c∗). It follows that the next inconsistent example can arrive
only after at least k − (j + 1) rounds. � Claim

Using the claim we conclude that the number of rounds until the hypothesis of our
computation reaches the target is at least

tk−1 ≥ 1 +
k−2∑
j=0

k − (j + 1) = 1 +
k−1∑
j=1

j = 1 +
1

2
· k · (k − 1).

�

Selective memory is the first model in which the absence of feedback actually increases
the optimal teaching time. But this feedback effect is roughly the same for all concepts
and classes. Consequently, the model does not help to distinguish classes for which
feedback is more useful from those for which it is less useful.

4.5 Discussion

Our goal in this section was to improve the TD model with respect to plausibility.
However, we have not provided a clear definition of what plausibility actually means.
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Is the empty concept in the class of monomials easy to teach because it is so simple?
Is it hard to teach because there are so many similar looking concepts from which it
must be distinguished?

The CT -dimension was designed with the implicit understanding that simpler con-
cepts are easier to teach. It is not surprising that it resulted in a model that shows
just that. If we had assumed, for instance, that larger concepts are easier to teach and
had defined H accordingly, we had gotten a model in which larger concepts were indeed
easier to teach. Thus the H-approach allows us to encode our interpretation of plausi-
bility into the teaching model. The use of this is, however, rather limited because then
we have to know what targets are easy to teach and what are hard before we devise
the model. But the hardness of teaching is just what we want to measure.

On the other hand, we are not forced to use hypothesis restrictions this way. The
OT -dimension shows that we can use H to encode plausible learning behaviors into
the model, rather than plausible teachabilities. But the one problems persists, that we
cannot judge whether the model yields realistic teaching times. After all there is no
real-life data on teaching Boolean functions to humans.

As a consequence in the remainder of this thesis we shall focus less on plausible
teaching times. Rather we concentrate on the other aspects described in Section 1.3:
the influence of memory size, feedback, and the order of examples.



Chapter 5

Learners with Restricted
Hypothesis Changes

In the H-restricted model the learner can choose its follow-up hypothesis independently
of its current one. The current hypothesis therefore reveals no information about the
next hypothesis. As a consequence, we have seen that feedback is of no use for the
teacher in this model. In contrast, it is a common feature of real-world learners (both
humans and machines) to change the hypothesis only a little in each step. But then a
hypothesis does give some information about the next hypothesis, which implies that
feedback is often helpful in the real world.

In this chapter we introduce a model that allows to formalize the idea of small
hypothesis changes. But since there is no universal definition of a small hypothesis
change, we define the model general enough to allow for any restriction of hypothesis
changes. At the core of the model, a relation over all hypotheses, called neighborhood
relation, specifies which hypothesis transitions are allowed.

Consider, for example, teaching the target [1, n] ∈ Sn in the teaching dimension
model. This takes n rounds because the learner, even after receiving n − 1 positive
examples, may still assume a co-singleton hypothesis. If we now modify the rules and
forbid transitions between co-singleton concepts (see Figure 5.1), then teaching with
feedback is much faster than without: The teacher first gives one positive example and
then observes the resulting hypothesis. If it is a co-singleton concept, the teacher can
identify the “missing” instance and give it as positive example. Now, according to our
hypothesis change restriction the learner can switch to the target [1, n], but not to any
co-singleton concept. Therefore teaching takes only two rounds. On the other hand, if
the teacher gets no feedback, still all n examples must be given.

In the new model there is one subtle point concerning the consistency of the hypothe-
sis with the memorized examples. Whereas in the H-restricted model the learner always
outputs a consistent hypothesis, in the new model all admissible follow-up hypotheses
might be inconsistent. We thus have to relax the consistency requirement. Now we
demand that the learner chooses only among those admissible hypotheses that have
least error with respect to the memorized examples. In Section 5.1 we give a formal
definition of the learner in the model.
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init 1111

0111 1011 1101 1110

Figure 5.1 A neighborhood relation for the concept class S4. The nodes represent the
hypotheses, the arcs describe the allowed hypothesis changes. From the initial hypothesis all
other hypotheses are accessible. Within the other hypotheses, transitions are allowed only
between concepts that differ in exactly one instance.

The neighborhood relation adds a lot of freedom, and different relations can cause
different teachability results for the same concept class. We demonstrate this in Sec-
tion 5.2 using the class of all finite languages. For a certain neighborhood relation,
concepts can be taught much faster with feedback than without; for another neigh-
borhood relation, concepts cannot be taught finitely unless feedback is available; and
using yet another neighborhood relation, concepts cannot be taught in the limit unless
feedback is available.

For the natural concept classes of monomials and 1-decision lists, together with
natural neighborhood relations, feedback effects do not seem to occur. However, we
show in Section 5.3 that the order of examples is crucial and that for monomials teaching
becomes faster if the learners have a bigger memory.

Finding an optimal teacher or at least computing the optimal teaching time for a
given concept class and neighborhood relation is a fundamental task. From a compu-
tational complexity perspective, the difficulty of solving this task varies. For learners
with limited memory an optimal teacher with feedback can be found in polynomial
time by a dynamic programming approach using Lemma 2.15. Finding the optimal
teaching time for teaching without feedback is NP-hard. The same is true for teach-
ing without feedback to learners with infinite memory. Teaching learners with infinite
memory with feedback is even PSPACE-hard. The details are given in Section 5.4.

5.1 Description of the Model

A neighborhood relation over all hypotheses is formally defined as follows.

Definition 5.1 Let 〈%, C〉 with % : Σ∗ × X → {0, 1, ↑} be a represented concept class.
A neighborhood relation B is a relation B ⊆ (%(C) ∪ {init})× (%(C) ∪ {init}).
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A neighborhood relation specifies the allowed hypothesis changes: “σ B ζ” means
that a learner currently hypothesizing σ may assume ζ next; “σ 6B ζ” means that ζ
is no allowed follow-up hypothesis. The learner’s behavior with respect to memory is
not affected by the neighborhood relation. It can thus be combined with m-memory
as well as with selective memory. We confine ourselves to the former.

To formally define our relaxed consistency requirement, we have to introduce some
notation for the number of errors a sequence of examples has with respect to some
hypothesis. We define for σ ∈ %(C) and s = 〈(x1, b1), . . . , (x`, b`)〉 ∈ X ∗:

err(σ, s) =
∑̀
i=1

%σ(xi) ⊕ bi

where ⊕ is the XOR-function. The definition of err is such that multiple occurrences
of the same example in s count multiple times. We define the hypothesis init to have
infinitely many errors: err(init , s) = ∞. This ensures that init is left in the first round
and never reached again.

Similar to the H-restricted model, the model here is really a family of models with
the neighborhood relation as parameter.

Definition 5.2 Let 〈%, C〉 with % : Σ∗ × X → {0, 1, ↑} be a represented concept class
and let B be a neighborhood relation. A non-deterministic learner L = (Lmem,Lhyp) is
called B-restricted using hypothesis space 〈%, C〉 iff it satisfies:

(HYP) ∀s ∈ X ∗ ∀σ ∈ %(C) ∪ {init} ∀z ∈ X ∀(s′, σ′) ∈ L(s, σ, z):

σ′ ∈

{σ} if z ∈ X (%σ) or min
ζ : σBζ

err(ζ, s′) ≥ err(σ, s′),

argmin
ζ : σBζ

err(ζ, s′) otherwise.

Let m ∈ N+ ∪ {∞}. The learner L is said to have memory size m iff

(MEM) ∀s ∈ X ∗ ∀σ ∈ Σ∗ ∀z ∈ X : Lmem(s, σ, z) = {s ◦m 〈z〉}.

Note that the B-restricted learner is conservative by definition.

5.2 Teaching the Class of All Finite Languages

In this section we apply the B-restricted learner model to the class Cfin of all finite lan-
guages over the alphabet {a, b}. Using different B-restrictions we demonstrate various
effects.

As representation alphabet we use Σ = {a, b, #}. A string σ ∈ {a, b, #}∗ repre-
sents the set of all words separated by #. For example, σ = ab##baab#bb#ab rep-
resents the concept {ab, Λ, baab, bb}. Therefore the representation size of a concept
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c = {w1, . . . , wk} ⊆ {a, b}∗ is ‖c‖ = k − 1 +
∑k

i=1|wi|. We denote the representation
function just defined by %fin .

Small changes among finite sets consist in the addition or removal of a word. Formally
we define the neighborhood relation Bfin by

σ Bfin ζ :⇔ |%σ4%ζ | ≤ 1

for σ 6= init . For the initial hypothesis we allow only a transition to the empty language,
which is represented by the empty string Λ, that is, init Bfin ζ :⇔ ζ = Λ.

The following results were originally obtained for a model in which all learners start
with the hypothesis Λ. For that reason, teachers often start by giving an arbitrary
negative example which leads all learners from init to Λ where the “real teaching”
begins. In this section all learners have infinite memory.

Fact 5.3 The represented concept class 〈%fin , Cfin〉 is finitely teachable to the Bfin-
restricted learner.

Proof. For a target language {w1, . . . , wk} ∈ Cfin a teacher first gives an arbitrary
negative example and then presents all positive examples (w1, 1), . . . , (wk, 1). In the
first round, the learner switches to Λ and then in every round the learner may either
add or remove a word from the hypothesis. But there is only one possible way to stay
consistent with the examples, namely by adding them to the hypothesis. Therefore,
after k + 1 rounds the Bfin-restricted learner has arrived at a target hypothesis. �

For the Bfin-restricted learner feedback is of no use. But a modification of Bfin makes
feedback very valuable. We define

σ B′
fin ζ :⇔

(
%ζ = %σ ∪ {w1, w2} or %ζ = %σ \ {w1}

)
and ‖%ζ‖ ≤ 2‖%σ‖.

In other words, the learner may either add two words or remove one word from the
hypothesis. In both cases the size of the hypothesis may at most double in each round.
In the special case σ = init we allow every singleton concept as neighbor: init B′

fin ζ for
all ζ with |%ζ | = 1. For the B′

fin-restricted learner there is a big difference in teaching
time between teaching with and without feedback.

Fact 5.4 The represented concept class 〈%fin , Cfin〉 is teachable to the B′
fin-restricted

learner with feedback such that for all c ∈ C the teaching time is in O(|c|) ≤ O(‖c‖).

Proof. The B′
fin-restricted learner may either add two words to the hypothesis or

remove one. As a consequence, whenever the B′
fin-restricted learner receives a positive

example, it can add it to the hypothesis and “invent” another word and add it to the
hypothesis as well. Due to the size restriction there are always only finitely many words
that can be invented.
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Let c∗ = {w1, . . . , wk} be a target concept. A teacher with feedback first teaches
a negative example and then all words wi as positive examples. After wk the hy-
pothesis contains all words from c∗ plus ` ≤ k invented words u1, . . . , u`. From the
feedback, the teacher gets to know these words and teaches them as negative examples
(u1, 0), . . . , (u`, 0). Since at most one word can be removed per round, the learner has
to remove the negative example it is taught and thus arrives at the correct hypothesis
after ` rounds. Overall, teaching takes at most 2k + 1 = 2|c∗|+ 1 rounds. �

The teaching time for a teacher without feedback is exponentially larger.

Fact 5.5 The represented concept class 〈%fin , Cfin〉 is finitely teachable to the B′
fin-

restricted learner. Every such teacher needs Ω(2‖c‖) rounds for some c ∈ C and there
is no upper bound for the teaching time that depends only on |c|.

Proof. A successful teacher can be defined as follows. Let c∗ ∈ Cfin . First of all,
the teacher gives all words of length at most 2‖c∗‖ that are not in c∗ as negative
examples. Afterwards, all words in c∗, starting with a longest one, are taught as
positive examples. The hypothesis Λ is consistent with all negative examples, hence no
hypothesis change happens after the transition from init to Λ in the first round. While
the positive examples are taught, the learner cannot include any words outside of c∗

into the hypothesis since all these words either have been ruled out by the negative
examples or are too long to be included. Also, since a longest word is taught first, the
hypothesis growth limitation cannot be violated by positive examples included later.
Therefore, the B′

fin-restricted learner must reach the target hypothesis after the positive
examples are taught.

For the lower bound, let T be a teacher that teaches Cfin finitely to the B′
fin-restricted

learner L. Let c∗ = {ak, b} be the target concept of size k + 2 for an arbitrary k > 3.
Let M be the teaching time of T for the target c∗.

Both words, ak and b, must occur as positive examples, otherwise the deterministic
learner L0 ∈ L that never “invents” a word could not be taught. Moreover, ak must
occur before b, since otherwise L0 would at some point have {b} as hypothesis. But
because of the growth restriction, {b} cannot be changed to {ak, b} later, thus L0

cannot learn c∗. Let T (j1) = (ak, 1) be the first occurrence of ak and let T (j2) = (b, 1)
be the first occurrence of b in the example sequence.

It suffices to show that Z(0), . . . , T (M) contains all words of length at most k − 3.
This implies M ≥ 2k−2 − 1 = Ω(2‖c

∗‖). Assume that there was a word ŵ /∈ c∗ with
|ŵ| ≤ k− 3 that is not taught. We define a B′

fin-restricted learner L ∈ L that does not
arrive at c∗ during teaching. On T (j1), L switches to hypothesis ak and does not change
it until T (j2) arrives. Then L chooses the hypothesis ak#b#ŵ, which is incorrect, but
consistent with the examples so far. The length restriction is obeyed, since ‖ak‖ =
k ≤ 2k ≤ ‖ak#b#ŵ‖. From then on, L will never change the hypothesis, since the only
inconsistent example, (ŵ, 0), is never taught, according to the assumption.
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As k can be chosen arbitrarily large, there is no bound on the number of rounds
needed that depends on the cardinality |c∗| only. �

If we remove the size restriction from B′
fin , we get B′′

fin . Using this neighborhood
relation, we observe a difference between finite teaching and teaching in the limit. This
is the first time we witness such an effect in any of our models.

Fact 5.6 The represented concept class 〈%fin , Cfin〉 is not finitely teachable to the B′′
fin-

restricted learner, but it is teachable with feedback as well as in the limit.

Proof. Suppose that there is teacher that finitely teaches {a, b} ∈ Cfin to the B′′
fin-

restricted learner with a teaching time of M . If the learner, when the second pos-
itive example arrives, “invents” a word not occurring in the finitely many examples
T (0), . . . , T (M) given by the teacher, then it does not arrive at a correct hypothesis, a
contradiction.

Next, we describe a teacher that teaches Cfin with feedback. For a target c∗ ∈ Cfin ,
the teacher first gives an arbitrary negative example and then all positive examples.
This may lead to at most |c| superfluous words in the hypothesis of the B′′

fin-restricted
learner. The teacher observes these words and gives them as negative examples, thus
forcing the learner to remove the excessive words and to reach a target hypothesis.

A teacher for teaching Cfin in the limit without feedback first teaches an arbitrary
negative example and then all positive examples. Again, the B′′

fin-restricted learner’s
hypothesis may contain finitely many excessive words. By teaching all infinitely many
words not in the target concept as negative examples, the superfluous words can be
removed in the limit. �

Finally we define B′′′
fin . It differs from B′′

fin in that a word may only be removed from
the hypothesis if neither its predecessor nor its successor (we order the words in {a, b}∗
first by length and then lexicographically) is contained in the hypothesis. For instance,
aa#aab B′′′

fin aa, but aa#ab 6B′′′
fin aa.

Fact 5.7 The represented concept class 〈%fin , Cfin〉 is not teachable to the B′′′
fin-restricted

learner in the limit, but it is teachable with feedback.

Proof. Let c∗ = {w1, w2, w3} ∈ Cfin be a target concept. Suppose that there is a
teacher T : N → X (c∗) that teaches c∗ to the B′′′

fin-restricted learner in the limit. All
three examples (w1, 1), (w2, 1), (w3, 1) must occur in the example sequence, otherwise
the learner that does not “invent” words could not be taught. Let T (ji) = (wi, 1) be
the first occurrence of wi for i = 1, 2, 3. Without loss of generality, we assume that
j1 < j2 < j3.

Now we construct a B′′′
fin-restricted deterministic learner L that fails under teacher

T . After T (j1) the hypothesis of L is w1 (this is consistent because prior to round j1

only negative examples can occur). When taught T (j2), the learner L adds w2 to the
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hypothesis, as well as a word u1 /∈ c∗ such that (1) neither u1 nor its successor u2 occurs
in T (0), . . . , T (j3), and (2) u2 /∈ c∗. When taught T (j3), the learner L adds w3 and u2

to the hypothesis. Adding u2 is possible, because it has not yet occurred as negative
example. At this point the hypothesis of L contains the words u1 and u2, neither of
which can be deleted any more due to the definition of B′′′

fin . Thus, L cannot end up
with a correct hypothesis, a contradiction.

Teaching Cfin to the B′′′
fin-restricted learner with feedback can be done as follows. Let

c∗ ∈ Cfin be the target concept. The teacher first teaches all negative examples that are
predecessors or successors of a word in c∗. Then all positive examples are taught and
as soon as the teacher discovers that a learner has introduced a wrong word u /∈ c∗ into
the hypothesis, the negative example (u, 0) is given immediately. The word u cannot be
predecessor or successor of any other word in the hypothesis and is thus deleted from
the hypothesis. After at most (2 + 1 + 1) · |c| = O(‖c‖) examples the B′′′

fin-restricted
learner has reached the target. �

5.3 Teaching Finite Natural Concept Classes

After considering somewhat artificial situations, we have seen that the B-restricted
model allows for various feedback and finite vs. in the limit effects and is sensitive to
the order of examples. Now we investigate whether these effects can be observed for
more natural concept classes and B-restrictions, too.

5.3.1 Monomials

We consider the class of all monomials over n variables excluding the contradictory
ones. Then all representations are strings from {0, 1, *}n. We define the neighborhood
relation

σ BMon ζ :⇔ there is exactly one i with σ[i] 6= ζ[i].

For the initial hypothesis we set init BMon ∗n and init 6BMon ζ for all ζ 6= ∗n. For
example, 1*01 B **01, 000* B 100*, 1010 6B **10.

Fact 5.8 Let 1 ≤ k ≤ n. A monomial c∗ ∈ M1
n with k literals is finitely teachable

without feedback to the BMon-restricted learner with memory size m ≥ 2. The optimal
teaching time is at most k + d k

m−1
e. For k = 0 the optimal teaching time is 1.

Proof. For k = 0 the teacher only gives one arbitrary example and the learner must
switch from init to ∗n.

Let k ≥ 1 and let without loss of generality σ∗ = 1k*n−k be the target. We denote by
z+ = (1k0n−k, 1) a positive example and, for j = 1, . . . , k, by z−j = (1j−101k−j0n−k, 0)
negative examples for the target. The teacher T first gives the example z+. Then it
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Hypothesis Memory Example

0 init 〈 〉 (11100, 1)
1 ***** 〈(11100, 1)〉 (01100, 0)
2 1**** 〈(11100, 1), (11100, 1)

(01100, 0)〉
3 1**** 〈(01100, 0), (10100, 0)

(11100, 1)〉
4 11*** 〈(11100, 1), (11100, 1)

(10100, 0)〉
5 11*** 〈(10100, 0), (11000, 0)

(11100, 1)〉
6 111** 〈(11100, 1), — — —

(11000, 0)〉

Hypothesis Memory Example

0 init 〈 〉 (11100, 1)
1 ***** 〈(11100, 1)〉 (01100, 0)
2 1**** 〈(11100, 1), (10100, 0)

(01100, 0)〉
3 11*** 〈(11100, 1), (11100, 1)

(01100, 0),
(10100, 0)〉

4 11*** 〈(01100, 0), (11000, 0)
(10100, 0),
(11100, 1)〉

5 111** 〈(10100, 0), — — —
(11100, 1),
(11000, 0)〉

Figure 5.2 Teaching the monomial 111** finitely to the BMon -restricted learner with memory
size 2 (left) and 3 (right). Note how the positive example (11100, 1) is taught less often to
the learner with bigger memory.

basically goes on with z−1 , . . . , z−k , but whenever the learner is about to forget z+, that
is, every m-th round, the teacher provides z+ again (see Figure 5.2). Formally, for all
i < k + d k

m−1
e:

T (i) =

{
z+ if i ≡ 0 (mod m),

z−j with j = i− di/me otherwise.

Let L be the BMon-restricted learner with memory size m, and let its hypothesis
after the i-th round be hi. Then h0 = init and h1 = *n. Next, the teacher T gives
z−1 and L has to find a hypothesis consistent with z+ and z−1 differing from *n in only
one position. The only such hypothesis is h1 = 1*n−1 because a “0” among the first
k positions would contradict z+, a “1” in a position other than the first one would
contradict z−1 . A “0” within the last n − k positions would also contradict z−1 , and a
“1” within the last n− k positions would contradict z+. Therefore the only consistent
hypothesis in the neighborhood of *n has a “1” in the first position.

Similarly one shows that the examples z−2 , . . . , z−m−1 enforce the hypotheses h2 =
11*n−2, . . . , hm−1 = 1m−1*n−m+1. Then the teacher gives z+ again. This ensures that
for the next m−1 negative examples the memory contains z+ and the above reasoning
can be applied when z−m, z−m+1 . . . are given. This shows that when finally z−k is taught,
the learner must reach the target hypothesis.

Overall, there are k negative examples given plus d k
m−1

e positive examples. �
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We conjecture that the teacher in the last fact is optimal. This would give us a
natural situation in which the teaching time decreases with growing memory; although
the effect is not very strong. It certainly gives us a natural situation in which the order
of examples matters.

The monomials cannot be taught if the memory gets smaller than 2, even if the
teacher receives feedback.

Fact 5.9 Let n ≥ 2 and 1 ≤ k ≤ n. A monomial c∗ ∈ M1
n with k literals is not

teachable with feedback to the BMon-restricted learner with memory size 1.

Proof. We describe a deterministic learner L that cannot be forced to reach the target
hypothesis σ∗ = 1k*n−k. It suffices to show that when L assumes a hypothesis σ with
σ BMon σ∗ it never switches to σ∗.

Let L assume a hypothesis σ with σ BMon σ∗, and let z = (x, b) be the newly
received example. As a learner with 1-memory, the behavior of L does not depend
on the memory, only on σ and z. Moreover we assume that z is inconsistent with
the current hypothesis σ (otherwise L would not change the hypothesis anyway). We
denote the follow-up hypothesis of L by σ′.

Case 1: σ and σ∗ differ weakly at one of the first k positions.

Without loss of generality, let σ = *1k−1*n−k. Then z must be a negative example,
and x must start with 01k−1. We define σ′ = 01k−1*n−k. � Case 1

Case 2: σ and σ∗ differ strongly at one of the first k positions.

Without loss of generality, let σ = 01k−1*n−k.

Case 2.1: z is a negative example.

Then x must start with 01k−1. If k ≥ 2 we set σ′ = 001k−2*n−k. If k = 1 then
n− k ≥ 1 and we set σ′ = 01k−1x[2]*n−k−1.

Case 2.2: z is a positive example.

Then x starts with 1k. We set σ′ = *1k−1*n−k. � Case 2

Case 3: σ and σ∗ differ at one of the last n− k positions.

Without loss of generality, let σ = 1k*n−k−10. Then z must be positive, and x must
end with 1. We set σ′ = 1k*n−k−11. � Case 3

In all cases we have σ BMon σ′, and σ′ is consistent with the example z. But all σ′

are different from σ∗. Therefore, the learner L never reaches σ∗. �
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5.3.2 1-Decision Lists

There are several natural ways to define a neighborhood relation over the 1-decision
lists. In the following we allow the insertion, removal, or replacement of exactly one
node in the list at an arbitrary position. The default node may not be removed. For
the hypothesis init the neighbors are the two decision lists containing only a default
node. We denote the neighborhood relation so defined by BDL.

Fact 5.10 The class Dn of 1-decision lists over n variables can be finitely taught to the
BDL-restricted learner with (n+1)-memory. The optimal teaching time for a 1-decision
list concept c ∈ Dn is len(c) + 1.

Proof. The idea of the proof is that a teacher for 1-decision lists can use a canonical
sample, as defined in the proof of Theorem 4.12 (for ` = λ), but must take care of
the correct order. Teaching is successful if the examples are given from back to front,
that is, starting with the example belonging to the default node and ending with the
example belonging to the first node. In the course of teaching, the learner is forced
to reconstruct the target NFDL node by node, beginning with the default. This takes
len(c) + 1 rounds, which is no more than the memory size n + 1, hence no example is
ever forgotten.

Let c∗ ∈ Dn be a target concept. Without loss of generality, we assume that c is
represented by an NFDL D∗ containing only the variables v1, . . . , v` in that order:

D∗ = 〈(v1, b1), (v2, b2), . . . , (v`, b`), (∗, b̄`)〉 .

The example belonging to node (vi, bi) is denoted by zi = (xi, bi); the default node’s
example by z`+1 = (x`+1, b̄`). Thus, the examples are taught in the order z`+1, . . . , z1.

Claim: For all i = `+1, . . . , 1: After the teacher has given example zi, the hypothesis
is equivalent to the decision list

D = 〈(vi, bi), . . . , (v`, b`), (∗, b̄`)〉.

Proof. We proof the claim by induction on i starting with i = ` + 1. After z`+1 the
hypothesis is 〈(∗, b̄`)〉 and the claim holds.

Now assume that the claim holds for some i > 1. We show it for i − 1. Before
receiving zi the hypothesis is of length ` + 1− i and the learner memorizes z`+1, . . . , zi.
After receiving zi−1 the learner memorizes z`+1, . . . , zi−1. We know from the proof of
Theorem 4.12 that there is only one concept in Dn of length `+2− i that is consistent
with these examples. This concept is represented by the 1-decision list

D′ = 〈(vi−1, bi−1), (vi, bi), . . . , (v`, b`), (∗, b̄`)〉.

Moreover, no shorter 1-decision list is consistent with the examples z`+1, . . . , zi−1.
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In order to maintain a consistent hypothesis, the learner has to switch from the
current hypothesis, which is equivalent to D, to a hypothesis that is equivalent to
D′. This is possible by inserting the node (vi−1, bi−1) into the first segment of D.
Therefore all learners switch to a hypothesis equivalent to D′. This proves the claim
for i− 1. � Claim

For i = 1 the claim implies that after all examples have been given, the hypothesis
is equivalent to the target D∗. The claim also shows that D∗ can be taught within
` + 1 rounds. On the other hand, ` + 1 rounds is also a lower bound for the teaching
time since in each round the hypothesized 1-decision list can only grow by one node.
Therefore, ` + 1 = len(D∗) + 1 is the optimal teaching time. �

Fact 5.11 The class of 1-decision lists over n variables cannot be taught to the BDL-
restricted learner with (n− 1)-memory, not even with feedback.

Proof. We call a 1-decision list positive iff all nodes except the default node and its
predecessor consist of a positive literal and a positive label. To simplify notation we
denote the representation function for 1-decision lists by %.

To show that the class cannot be taught to the learner with (n − 1)-memory, it
suffices to define a BDL-restricted deterministic learner that cannot reach the target
concept c∗ = {0, 1}n \ {0n} ∈ Dn. This target concept is represented by the positive
NFDL 〈(v1, 1), . . . , (vn, 1), (∗, 0)〉.

Let L be a deterministic BDL-restricted learner with (n− 1)-memory that, whenever
possible, hypothesizes a positive decision list of minimum length consistent with all
memorized examples. The behavior of L in case there is no such hypothesis available
is irrelevant for this proof.

Let T be a teacher with feedback and let (st)t∈N, (σt)t∈N, and (zt)t∈N be the series
of memory contents, hypotheses, and examples resulting from T teaching c∗ to L. The
instance in example zt is denoted xt for all t ∈ N.

The first example, z0 = T (〈 〉, init), can either be positive or negative. We first
assume that it is negative, that is, z0 = (0n, 0) and consider the positive case after the
next claim.

Claim: For all t ≥ 1:

(1) σt is a positive decision list,

(2) %σt ⊂ c∗,

(3) σt is consistent with st.

Proof. Since the first example is negative, the learner switches from init to σ1 =
〈(∗, 0)〉, and st = 〈z0〉. Therefore %σt = ∅ and (1), (2), (3) hold for the induction basis.
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Now assume (1), (2), (3) hold for some t ≥ 1. Then st+1 = st ◦n−1 zi. We distinguish
three cases depending on zt.

Case 1: zt is consistent with σt.

Then, by definition of BDL-restricted learner, σt+1 = σt and (1), (2), (3) for t + 1
follow immediately from the induction hypothesis. � Case 1

Case 2: zt is inconsistent with σt and len(σt) ≤ n− 2.

Whatever σt+1 will be, its length is less then n, hence (2) holds for t + 1. Now we
show that there is a positive and consistent hypothesis in the neighborhood of σt.

The example zt is a positive example, otherwise it would be consistent with σt (due
to Item (2)). Then there must be an i ∈ {1, . . . , n} such that xt[i] = 1. Moreover, the
node (vi, 1) is not contained in σt. We define σ′ by prepending the node (vi, 1) to σt.
This hypothesis is in the neighborhood of σt and positive. It is also consistent with all
examples in st+1 as we shall show next.

All instances classified as positive by σt are also classified as positive by σ′, hence
%σ′ ⊇ %σt . Therefore all positive examples in st are consistent with σ′. The only
negative example, (0n, 0), is consistent with σ′ as well. The only positive example in
st+1 not already in st is zt. This example is consistent with σ′ since σ′ contains the
node (vi, 1) and xt[i] = 1.

As σ′ is a positive 1-decision list of length less than n, the concept %σ′ is a proper
subset of c∗, which is represented by a positive 1-decision list of length n.

We have now shown that there is a hypothesis satisfying (1), (2), (3) and reachable
from σt. Therefore the learner L will switch to such a hypothesis, for which (1), (2), (3)
hold. � Case 2

Case 3: zt is inconsistent with σt and len(σt) = n− 1.

Then σt contains all nodes with positive label except for one, say (vk, 1). Then
xt = 0k−110n−k since zt is a positive example classified as negative by σt. There are at
most n− 1 examples in st+1, hence there is a j ∈ {1, . . . , n} such that 0j−110n−j is not
contained in st+1. Since zt is contained in st+1, we have j 6= k. It follows that the node
(vj, 1) is in σt. Let σ′ be the 1-decision list resulting from replacing (vj, 1) by (vk, 1).
This is a positive decision list in the neighborhood of σt and %σ′ ⊂ c∗.

Now we show that σ′ is consistent with st+1. Node (vj, 1) absorbs zt and classifies it
correctly. The instance 0n is also classified correctly (as negative) by σ′.

It remains to prove consistency for the other positive examples z = (x, 1) in st. If
x[j] = 1 then there is another j′ 6= j with x[j′] = 1 since 0j−110n−j is not contained in
st+1. The node (vj′ , 1) is in σ′ because it was in σt and has not been replaced. Hence
z is classified as positive by σ′. If x[j] = 0 then there is another j′ 6= j with x[j′] = 1
since z is a positive example. Again (vj′ , 1) is in σ′, hence σ′ classifies z positive.
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We have now shown that there is a hypothesis satisfying (1), (2), (3) and reachable
from σt. Therefore the learner L will switch to such a hypothesis, for which (1), (2), (3)
hold. � Case 3

� Claim

The claim shows that L never hypothesizes c∗.

It remains to consider the case of a positive first example z0. Then the learner
assumes the hypothesis σ1 = 〈(∗, 1)〉. As long as the teacher continues giving positive
examples, the hypothesis does not change due to the learner L being conservative.
When the first negative example has arrived, the memory contains a positive and a
negative example and thus the hypothesis changes to 〈(v̄, 0), (∗, 1)〉 for some variable
v, because removal of the default node is forbidden and replacing the default node
would result in a decision list that misclassifies the positive examples; a node (v, 0)
with a variable v would not absorb the negative example (0n, 0). This new hypothesis
is equivalent to the positive 1-decision list 〈(v, 1), (∗, 0)〉. This 1-decision list satisfies
the conditions (1), (2), (3) in the claim above. Using the same arguments as in the
claim, one can show that L does not reach the target c∗. �

We have shown that for monomials and 1-decision lists there is an m∗ such that for
m < m∗ they are unteachable even with feedback and for m ≥ m∗ they are teachable
even without feedback. We know of no finite, natural concept class and hypothesis
restriction where teaching to restricted learners without feedback is more difficult than
with feedback.

In general, a teacher without feedback knows the learner’s hypothesis in the begin-
ning, but can quickly lose track of it during teaching. However, the teachers presented
in the Facts 5.8 and 5.10 for monomials and 1-decision lists do not have this prob-
lem. The examples they give force the learner to perform certain hypothesis changes
without being able to choose from several alternative hypotheses. Our results about
monomials and 1-decision lists suggest that natural concept classes, together with nat-
ural B-restrictions, are susceptible to this kind of “enforcement strategy.”

5.4 Computing the Optimal Teaching Time

In this section we investigate the computational complexity of finding the optimal
teaching time for B-restricted learners. We define several decision problems according
to various combinations of feedback and memory size.

Before we begin we have to give some thoughts to the representation of the teaching
problem instances. Depending on whether the set of valid representations %(C) is finite
or infinite (the latter can happen also for finite concept classes) we have to specify the
problem in different ways. If %(C) is finite then (%(C) ∪ {init}, B) is a finite directed
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graph whose nodes are all representations and whose arcs specify the allowed transitions
between the representations.

Definition 5.12 Let 〈%, C〉 be a represented concept class and B a neighborhood rela-
tion. The B-restriction graph is then the directed graph (%(C) ∪ {init}, B) where each
node σ ∈ %(C) is labeled with the function %σ.

If X and %(C) are finite then the B-restriction graph is finite and all node labels
%σ : X → {0, 1} can be represented finitely. As an example, Figure 5.1 shows the
graph for the concept class Sn with B-restriction defined so as to allow only transitions
between concepts with Hamming distance 1.

A finitely representable restriction graph allows a finite description of a teaching
problem. More precisely, we use a representation of size (|%(C)|+1)2 bits for the graph
plus |%(C)| · |X| bits for the labels. We assume this representation for the definition of
our teaching problems. As usual, we distinguish problems of teaching with and without
feedback and with varying memory sizes.

Definition 5.13 Let m ∈ N+ ∪ {∞}. The decision problem m-FB-TEACHINGTIME is
defined as follows:

Instance: A restriction graph (%(C)∪{init}, B), a target representation σ∗, a number
` ∈ N.

Question: Is %σ∗ teachable with feedback to the B-restricted learner with memory size
m in at most ` rounds?

Definition 5.14 The decision problem FB-TEACHINGTIME is defined as follows:
Instance: A restriction graph (%(C), B), a target representation σ∗, a number m ∈

N+, a number ` ∈ N.
Question: Is %σ∗ finitely teachable with feedback to the B-restricted learner with mem-

ory size m in at most ` rounds?

Definition 5.15 Let m ∈ N+ ∪ {∞}. The decision problem m-NOFB-TEACHINGTIME

is defined as follows:
Instance: A restriction graph (%(C)∪{init}, B), a target representation σ∗, a number

` ∈ N.
Question: Is %σ∗ finitely teachable without feedback to the B-restricted learner with

memory size m in at most ` rounds?

As we will see later, it makes sense to consider the problems in which the number `
of rounds is represented unary.

Definition 5.16 Let m ∈ N+ ∪ {∞}. The decision problem UNARY-m-FB-TEACHING-
TIME is defined as follows:

Instance: A restriction graph (%(C)∪{init}, B), a target representation σ∗, the string
1` for an ` ∈ N.
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Question: Is %σ∗ teachable with feedback to the B-restricted learner with memory size
m in at most ` rounds?

Definition 5.17 Let m ∈ N+ ∪ {∞}. The problem UNARY-m-NOFB-TEACHINGTIME is
defined as follows:

Instance: A restriction graph (%(C)∪{init}, B), a target representation σ∗, the string
1` for an ` ∈ N.

Question: Is %σ∗ finitely teachable without feedback to the B-restricted learner with
memory size m in at most ` rounds?

The unary and non-unary versions differ with respect to their computational com-
plexity only if the optimal teaching time can be superpolynomially large in the repre-
sentation of the graph. It is open whether this can occur.

In the H-restricted model (and therefore also in the TD model) the optimal teaching
time cannot be greater than the representation of the teaching problem (that, is the
class C) because it is bounded from above by |X|. Thus, in the H-restricted model the
unary and non-unary versions are equivalent.

Theorem 5.18 For every m ≥ 1, m 6= ∞ the problem m-FB-TEACHINGTIME can be
solved in time (|X|m · |%(C)|)O(1):

Proof. The learner can be in any state from the set State = Xm × (%(C) ∪ {init}).
The idea of the algorithm is to compute the τ -values for all states using the formula in
Lemma 2.15. This lemma also implies that all τ -values are upper bounded by |State|
because for every occurring τ -value, say r, there must be a state with τ -value r − 1.

For a convenient description of the algorithm, let L be the m-memory learner with
B-restriction.

Input: Restriction graph (%(C) ∪ {init}, B); a number `.

1 if ` > |State| then reject

2 for all (s, σ) ∈ State : u(s, σ) := ↑
3 for all (s, σ) ∈ State with %σ = %σ∗ : u(s, σ) := 0

4 for i = 1 to ` :

5 for all (s, σ) ∈ State with u(s, σ) = ↑:
6 if ∃z ∈ X ∀(s′, σ′) ∈ L(s, σ, z) : u(s, σ′) 6= ↑ then u(s, σ) := i

7 if u(〈 〉, init) ≤ ` then accept

8 else reject

To show correctness, it suffices to show that at the end of every iteration i ≤ ` of the
outmost for-loop, τ(s, σ) = i ⇔ u(s, σ). This is clearly true for i = 0 (that is, before
iteration i = 1). Assume the equivalence holds for all iterations up to an i < `. For
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the one implication, let τ(s, σ) = i + 1. Then u(s, σ) = ↑ at the beginning of iteration
i + 1, and by the formula in Lemma 2.15 there is an example z such that all states in
L(s, σ, z) have an τ -value of at most i. By the induction hypothesis the corresponding
u-values have already been set to something different than “↑”. Thus the condition in
line 6 is satisfied and u(s, σ) is set to i + 1. This value will never be changed because
the for-loop in line 5 will never consider (s, σ) again.

For the other implication, let u(s, σ) = i + 1 at the end of iteration i + 1. Then the
u-value has been “↑” at the beginning of the iteration, and by the induction hypothesis
τ(s, σ) 6≤ i. Moreover, since the condition in line 6 has been satisfied, there is an
example z such that all states in L(s, σ, z) have an u-value of at most i. By the
induction hypothesis, their τ -values are at most i, too. Then applying the formula in
Lemma 2.15 yields τ(s, σ) = i + 1.

The runtime is O(|State|) for the first three lines plus O(` · |State| · |X| · |State|) ≤
O(|State| · |State| · |X| · |State|) for the rest. This proves the claimed runtime, since
|State| ≤ O(|X|m · |%(C)|). �

If the memory size m is part of the input, the above theorem shows that the teacha-
bility problem is fixed-parameter tractable with parameter m. We do not expect that
there is an efficient algorithm for the problem when m is part of the input, since we
show later (Corollary 5.22) that this problem is PSPACE-hard.

For our PSPACE-hardness proofs we use the SEQUENTIAL-TRUTH-ASSIGNMENT prob-
lem, which is known to be PSPACE-complete (see Stockmeyer and Meyer [55] and also
Garey and Johnson [32]). We use the variant in which the formula is in 3-CNF.

Definition 5.19 The following problem is called SEQUENTIAL-TRUTH-ASSIGNMENT:
Instance: Set V = {v1, . . . , vn} of variables, clauses K1, . . . , Kr with three literals.
Question: Is the formula ∃v1 ∀v2 ∃v3 . . . : K1 ∧ . . . ∧Kr true?

We can assume that the number n of variables is even by adding a dummy variable
if necessary.

A sequential truth assignment can be seen as a two player game. Player 1 assigns a
truth value to variable v1, then Player 2 assigns a truth value to v2 and so on until after n
rounds all variables have been assigned a value. Player 1 wins if this variable assignment
satisfies the formula K1 ∧ . . . ∧Kr. The problem SEQUENTIAL-TRUTH-ASSIGNMENT can
then be interpreted as the question whether Player 1 has a winning strategy for this
game. In the following proofs we exploit that the teaching process can be seen as a two
player game, too (see Page 27).

Theorem 5.20 The problem ∞-FB-TEACHINGTIME is PSPACE-hard.

Proof. We prove the PSPACE-hardness via a polynomial time reduction from the
SEQUENTIAL-TRUTH-ASSIGNMENT problem.
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∞-FB-TEACHINGTIME

SEQUENTIAL-TRUTH-ASSIGNMENT

Node Format

00 00 00 00 0

11 00 00 00 0

11 00 00 00 0

11 11 00 00 0

11 11 11 00 0

11 11 11 00 0

11 11 11 11 0

01 10 01 11 1

01 01 11 01 1

10 11 01 10 1

11 11 11 11 1

init

σ2

σ′
2

c3

σ4

σ′
4

c5

00 11 11 11 1

11 01 11 11 1

11 10 11 11 1

11 11 00 11 1

11 11 11 01 1

11 11 11 10 1

d1

d2

d′2

d3

d4

d′4

a1

a2

a3

c∗

x1x′1 x2x′2 x3x′3 x4x′4 yc

V = {v1, v2, v3, v4}
K1 = v1 ∨ v̄2 ∨ v3

K2 = v1 ∨ v2 ∨ v4

K3 = v̄1 ∨ v3 ∨ v̄4

Figure 5.3 Example for the reduction from the SEQUENTIAL-TRUTH-ASSIGNMENT problem
to ∞-FB-TEACHINGTIME used in the proof of Theorem 5.20. The instance in the lower left
corner is mapped to the restriction graph displayed. Each node is labeled with a concept over
{x1, x

′
1, . . . , x4, x

′
4, y}. The bold nodes and arcs describe paths that a learner is supposed to

take. The non-bold arcs lead to dead ends in the graph; a successful teacher must prevent the
learners from going there. The nodes between init and c5 force the teacher to give examples
that can be interpreted as a truth assignment to the variables in V . The hypotheses a1, a2, a3

correspond to the clauses K1,K2.K3.

Let V = {v1, . . . , vn} be a set of Boolean variables and {K1, . . . , Kr} a set of clauses
over V with each clause containing three literals: Ki = v

αi1
i1
∨v

αi2
i2
∨v

αi3
i3

for i = 1, . . . , r.
We assume that n is even. The idea of the reduction is to build a restriction graph that
consists of two parts. The first part ensures that a successful teacher gives a sequence
of examples that can be interpreted as alternating assignments of truth values to the
variables in V . The other part checks whether this truth assignment satisfies all clauses.

Now we describe the instance of ∞-FB-TEACHINGTIME in detail for the sake of pre-
cision. The construction can most likely be understood much better from the example
shown in Figure 5.3. Let X = {x1, x

′
1, . . . , xn, x

′
n} ∪ {y} be the learning domain. The
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concept class C contains the following concepts: cj = {x1, x
′
1, . . . , xj−1, x

′
j−1} for all

j = 2, . . . , n + 1 and the target c∗ = X. For odd numbers j = 1, 3, 5, . . . , n − 1 there
are concepts dj = X \ {xj, x

′
j}. For even numbers j = 2, 4, 6, . . . , n there are concepts

dj = X \ {xj} and d′j = X \ {x′j}. Finally, there is a concept ai for every clause Ki:
ai = X \ ({xj vj is in Ki} ∪ {x′j v̄j is in Ki}). For example, if Ki = v1 ∨ v̄2 ∨ v3

then ai = X \ {x1, x
′
2, x3}. Note that “officially” there is no concept called c1. Ac-

cording to the above definition, we have c1 = ∅, which means that c1 behaves just like
the hypothesis init . So, whenever we refer to “c1” for convenience, we actually mean
“init”.

The nodes in the restriction graph are representations, but we do not need to intro-
duce an identifier for all representations. It suffices to say that there is one represen-
tation for every concept defined, but for every concept cj with j even there are two
representations, denoted σj and σ′j. To the other concepts we need not refer with their
representations, as they are unique. The arcs of the restriction graph are as follows.
There is an arc from init to d1, to σ2, and to σ′2. There is an arc from each concept
ci with i > 1 odd to di, and for i even: from σi to di and from σ′i to d′i. There is also
an arc from ci to ci+1 for i = 3, 5, . . . , n− 1 and from σi to ci+1 and from σ′i to ci+1 for
i = 2, 4, . . . , n− 2. Finally there is an arc from cn+1 to each node ai (i = 1, . . . , r) and
to c∗. To complete the ∞-FB-TEACHINGTIME instance we set ` = n + 1.

There are 3n + 2 + r representations. Each represented concept can be written
using |X| = n + 1 bits. The total size of the restriction graph and all concepts is
thus polynomial in the total size of the clauses. Moreover the restriction graph can be
computed straightforwardly given the clauses. Therefore the reduction described above
is polynomial time.

Intuitively, the teaching scenario built by the reduction works as follows. In an
even round i the learner hypothesizes ci+1 and the teacher can either give the example
(xi+1, 1) or (x′i+1, 1). This choice corresponds to an assignment to the variable vi+1 by
Player 1. In the following odd round i+1 the learner can choose to either go to σi+2 or
to σ′i+2. This choice cannot be influenced by the teacher because both representations
belong to the same concept. If the learner chooses σi+2, the teacher is forced to give
the example (xi+2, 1). If the learner chooses σ′i+2, the teacher is forced to give (x′i+2, 1).
This corresponds to an assignment to the variable vi+2 by Player 2.

In round n, for each i ∈ {1, . . . , n} either (xi, 1) or (x′i, 1) has been given. This
corresponds to an assignment to all variables in V . In the final step the teacher gives
the example (y, 1), which enforces on the learner a transition from cn+1 to c∗ if and only
if the variable assignment satisfies all clauses K1, . . . , Kr. If one clause Kj is unsatisfied
then the learner could as well switch to the dead-end hypothesis aj, and the teacher
would fail.

Now we show more formally that the reduction maps positive instances to positive
instances and negative ones to negative ones.
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Assume that the SEQUENTIAL-TRUTH-ASSIGNMENT instance is positive, that is, the
formula ∃v1 ∀v2 . . . ∃vn−1 ∀vn : K1 ∧ K2 ∧ . . . ∧ Kr is true. As shortcut we set F :=
K1 ∧ . . . ∧ Kr, and for a partial variable assignment β : V → {true, false, undefined}
we let Fβ be the formula that results by substituting all literals in F with true or false
as specified by β. For a partial assignment β and a value b ∈ {true, false} we write
β ∪ {vi 7→ b} to denote the assignment that assigns b to vi and otherwise works as β.

For non-empty memory s ∈ X (c∗)∗ we define the partial assignment βs : V → {true,
false, undefined} encoded in s by

βs(vi) =


true if (xi, 1) ∈ s,

false if (xi, 1) /∈ s and (x′i, 1) ∈ s,

undefined otherwise.

If both (xi, 1) and (x′i, 1) are present in s then vi is, by definition of βs, assigned true.
However, this case will not occur.

Now the idea for the successful teacher is to follow the winning strategy for Player 1
in the rounds 0, 2, . . . , n − 2. This strategy ensures that there is always a suitable
example, no matter what examples have to be given in the rounds 1, 3, . . . , n−1. More
formally, we define the following teacher T . At first

T (〈 〉, init) =

{
(x1, 1) if ∀v2∃v3 . . . ∀vn : F{v1 7→true} is true,

(x′1, 1) otherwise.

Note that the “otherwise” case is equivalent to “∀v2∃v3 . . . ∀vn : F{v1 7→false} is true.”
Thus the teacher starts according to the first move of the winning strategy of Player 1.
In general, for i = 3, 5, . . . , n− 1,

T (s, ci) =

{
(xi, 1) if ∀vi+1∃vi+2 . . . ∀vn : Fβs∪{vi 7→true} is true,

(x′i, 1) otherwise.
(5.1)

Furthermore, for i = 2, 4, . . . , n,

T (s, σi) = (xi, 1),

T (s, σ′i) = (x′i, 1).
(5.2)

And finally for the hypothesis cn+1:

T (s, cn+1) = (y, 1).

Now we show that T teaches c∗ within n + 1 rounds to the non-deterministic B-
restricted learner L with ∞-memory, where B is defined by the restriction graph de-
scribed above. The proof is based on the following claim.

Claim 1: At the even rounds t = 0, 2, 4, . . . , n of the teaching process:
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1. L hypothesizes ct+1,

2. the memory of L contains t examples, namely for all i = 1, . . . , t exactly one
example from {(xi, 1), (x′i, 1)},

3. the formula ∃vt+1 . . . ∀vn : Fβs is true.

Proof. We proceed by induction on the number of rounds.
As induction basis we prove the claim for t = 0. Item 1 holds because init has the

same behavior as c1 had. Item 2 holds because initially the memory is empty. Item 3
holds because ∃v1 . . . ∀vn : F is true by assumption.

Now, let us assume the claim for some round t ∈ {0, 2, 4, . . . , n − 2}. We show it
for t + 2. Let s be the memory of L at round t, and let b ∈ {true, false} be such
that ∀vt+2∃vt+3 . . . ∀vn : Fβs∪{vt+1 7→b} is true. Such a b exists due to the induction
hypothesis. Now the definition (5.1) of T implies that the example (xt+1, 1) is taught
if b = true and example (x′t+1, 1) if b = false. Then the memory of L in round t + 1 is
s′ = s ◦ 〈T (s, ct+1)〉. Thus the assignment βs′ , which corresponds to the new memory
of L, equals the assignment β′ = β ∪ {vt+1 7→ b}, which makes ∀vt+2∃vt+3 . . . ∀vn : Fβ′

true.
The example given by T causes the current hypothesis ct+1 and the hypothesis dt+1

to have exactly one error, namely with respect to the instance xt+1. The remaining
neighborhood hypotheses, σt+2 and σ′t+2, have no errors (here we need Item 2 of the
induction hypothesis). The learner’s next hypothesis is therefore one of these two. If
it is σt+1 then T gives the example (xt+2, 1) next; if it is σ′t+1 then T gives the example

(x′t+2, 1), according to (5.2). The new memory s′′ = s′ ◦ 〈T (s′, σ
(′)
t+2)〉 corresponds to an

assignment β′′ = βs′′ that is like β′ but assigns to vt+2 either true or false. In any case
this assignment β′′ makes ∃vt+3 . . . ∀vn : Fβ′′ true. This proves Item 3 of the claim.

Item 2 is also satisfied because T has first given an example from {(xt+1, 1), (x′t+1, 1)}
and then one from {(xt+2, 1), (x′t+2, 1)}. As for Item 1, giving (xt+2, 1) to a learner in
σt+2 causes σt+2 and dt+2 to have one error (with respect to xt+2) whereas ct+3 has no
errors. Hence, the learner switches to ct+3. Symmetrically, a learner in σ′t+2 switches
to ct+3 after receiving (x′t+2, 1). Therefore the hypothesis of L at the next round, t+2,
is ct+3. This shows Item 1 and finishes the induction step. � Claim 1

By Claim 1 it follows that at round n the learner hypothesizes cn+1 and that its
memory corresponds to an assignment that makes the formula F = K1 ∧ . . . ∧ Kr

true. In this round, the teacher gives the example (y, 1) causing cn+1 to have one error
whereas the target c∗ has no errors. It remains to show that all hypotheses a1, . . . , ar

have at least one error with respect to the memory of L.
Let i ∈ {1, . . . , r}, and let the memory of the learner at round n be s. Then the

memory at round n+1 is s◦〈(y, 1)〉. Since βs satisfies Ki = v
αi1
i1
∨v

αi2
i2
∨v

αi3
i3

, it satisfies

at least one literal, say v
αi1
i1

. If this is a positive literal (αi1 = 1) then βs satisfies vi1
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and thus the example (xi1 , 1) is in s. On the other hand, by definition of ai, xi1 /∈ ai

and therefore ai has one error with respect to s. If the literal is negative, the argument
works symmetrically. As i was arbitrary, we have shown that the memory of the learner
causes all hypotheses a1, . . . ar to have an error. Thus the learner has no choice but
to switch to the zero-error hypothesis c∗. This means, the teacher T finishes teaching
successfully after n + 1 rounds.

For the converse, we now assume that there is a teacher T successfully teaching c∗

to L after n + 1 rounds. We have to show that ∃v1∀v2 . . . ∃vn−1∀vn : F is true.
Since the distance from the initial hypothesis to the target is n + 1, the learner,

when taught by T , must switch its hypothesis in every round. In other words, in round
t = 0, . . . , n the learner must hypothesize ct+1 (if t even) or σt+1 or σ′t+1 (if t odd).
Therefore, in round t the learner memorizes exactly one example from {(xi, 1), (x′i, 1)}
for all i = 1, . . . , t. In particular, in round n the memory corresponds to a complete
variable assignment V → {true, false}.

Claim 2: For all even rounds t ∈ {n, n− 2, . . . , 2, 0}: the learner L memorizes s such
that the formula ∃vt+1 . . . ∀vn : Fβs is true.

Proof. We begin the inductive proof at t = n. At this round the learner hypothesizes
cn+1. As a successful teacher, T has to give the example (y, 1) now. With the same
reasoning as in the proof of Claim 1, the learner switches to c∗ if and only if its memory
corresponds to an assignment that satisfies F = K1 ∧ · · · ∧Kr. Thus the claim holds
for t = n.

Now assume the claim for some even t ∈ {n, n − 2, . . . , 2}. We show it for round
t − 2. Let L memorize s. In round t − 2, L hypothesizes ct−1. The teacher must
give an example from {(xt−1, 1), (x′t−1, 1)}, otherwise L would either not change the
hypothesis or switch to the dead-end dt−1. This adds one example to L’s memory and
thereby assigns a value bt−1 ∈ {true, false} to the variable vt−1. Now one computation
of the non-deterministic learner L switches to σt, another switches to σ′t. In the first
case, the teacher must give the example (xt, 1) and in the second case the example
(x′t, 1). In both cases L moves on to ct+1, but there are two possible memories: s2 =
s ◦ 〈T (s, ct−1), (xt, 1)〉 and s′2 = s ◦ 〈T (s, ct−1), (x

′
t, 1)〉. The respective assignments are

β2 = βs ∪ {vt−1 7→ bt−1, vt 7→ true} and β′2 = βs ∪ {vt−1 7→ bt−1, vt 7→ false}. By the
induction hypothesis, the learner’s memory at round t is such that ∃vt+1 . . . ∀vn : Fβ2

and ∃vt+1 . . . ∀vn : Fβ′2
are true. In other words, there is an assignment to vt−1, namely

bt−1, such that for all assignments to vt the formula ∃vt+1 . . . ∀vn : Fβs is true. But this
means ∃vt−1 ∀vt ∃vt+1 . . . ∀vn : Fβs is true, which proves the induction step. � Claim 2

For round t = 0, Claim 2 says that the learner’s memory s is such that ∃v1 . . . ∀vn :
Fβs is true. But as the initial memory is empty, the assignment βs actually does not
assign a value to any variable. This means ∃v1 . . . ∀vn : F is true. This completes the
proof of the reduction and shows that ∞-FB-TEACHINGTIME is PSPACE-hard. �
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The ∞-FB-TEACHINGTIME problem can be solved by the algorithm we have pre-
sented for m-FB-TEACHINGTIME by setting m = `. Therefore ∞-FB-TEACHINGTIME

can be solved in double exponential time. For the unary version of the problem we can
specify the computational complexity more precisely. In the next theorem we show it
to be PSPACE-complete. This also implies that ∞-FB-TEACHINGTIME is solvable in
exponential space, a slight improvement over double exponential time.

Theorem 5.21 The problem UNARY-∞-FB-TEACHINGTIME is PSPACE-complete.

Proof. The PSPACE-hardness can be shown via essentially the same reduction as in
the proof of Theorem 5.20. The reduction is still polynomial time even if the number
` = n + 1 has to be encoded unary.

The size of an instance of UNARY-∞-FB-TEACHINGTIME is in Θ(|%(C)|2 ·|X|+`), where
the first summand is for the restriction graph and the second for the unary encoding of
the number of rounds. To show UNARY-∞-FB-TEACHINGTIME ∈ PSPACE we present
a non-deterministic algorithm that uses polynomial space. The idea of the algorithm
is to guess a teacher and to check whether it is successful after ` rounds. Since such a
teacher has to be defined for O(|X|` · |%(C)|) states, storing a teacher completely would
exceed the space bound. To circumvent that problem, our algorithm only teaches one
learner at a time for ` rounds and runs through all learners in a backtracking manner.
Teaching only one learner for ` rounds requires to store only O(`) examples, which is
within the polynomial space bound. More formally, the algorithm is as follows.

Input: Restriction graph (%(C) ∪ {init}, B), target c∗ ∈ C, string 1`.

1 if teachable(〈 〉, init) = 1 then accept

2 else reject

The function teachable() takes as arguments a list s of examples and a hypothesis σ:

function teachable(s, σ):

1 if |s| = ` and σ ∈ %(c∗) then return 1

2 if |s| = ` and σ /∈ %(c∗) then return 0

3 guess z ∈ X (c∗)

4 hyps := Lhyp(s, σ, z)

5 if ∀ζ ∈ hyps : teachable(s ◦ 〈z〉, ζ) = 1 then return 1

6 else return 0

The function teachable() calls itself recursively. At any given time the call stack
contains at most ` instantiations of the function because the length of s increases by
one with every recursive call and the recursion ends as soon as |s| = ` (see lines 1 and
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2). Every instantiation of teachable() stores s, σ, z, and hyps . The space requirements
for σ and z are O(log |%(C)|) and O(log |X|); the list s contains at most ` examples,
which overall requires O(`·log |X|) bits; the set hyps contains at most |%(C)| hypotheses,
which amounts to O(|%(C)| · log |%(C)|) bits. Storing all this for at most ` instantiations
requires space polynomial in the input size because ` is represented unary in the input.

For the correctness we have to show that there is a teacher successful after ` rounds if
and only if there is an accepting computation of the algorithm. First, suppose there is
a teacher T : X ∗×(%(C)∪{init}) → X (c∗) such that the non-deterministic B-restricted
learner, when taught by T , hypothesizes c∗ in round `. Now consider the computation
of the algorithm in which the guesses always conform to the teacher, that is, z = T (s, σ)
in all calls of teachable(s, σ). One can show by induction over the calls of teachable()
that teachable(s, σ) is called with parameters s, σ if and only if the state (s, σ) can be
reached by a learner under teacher T . The main reason for this is that in line 5, the
function teachable() is called for all possible follow-up hypotheses ζ and the follow-up
memory contents s ◦ 〈z〉.

By assumption about T , as soon as |s| = ` all learners hypothesize c∗. Therefore,
on the `-th level of the recursion teachable() always returns 1. Then on the (` − 1)-st
level the condition in line 5 is satisfied and 1 is returned. By induction on the recursion
level one can show that teachable(〈 〉, init) also returns 1. This means that we have an
accepting computation of the algorithm.

Now assume that the algorithm has an accepting computation. This computation
yields guesses for “many” states (s, σ). However, there can be several different guesses
for the same state since teachable() could have been called several times with the same
parameters. Thus we cannot extract a unique teacher T : X ∗× (%(C)∪{init}) → X (c∗)
from the guess.

But we can extract a history-aware teacher from the guesses. Two calls of the
function teachable(s, σ) with the same parameters differ in the call stack, that is, in
the sequence of recursive calls that have led to teachable(s, σ). A call stack is described
by a sequence (s0, σ0), (s1, σ1), . . . , (st, σt) with t ∈ {0, . . . , `}, (s0, σ0) = (〈 〉, init),
and (st, σt) = (s, σ). The example z that is guessed in the call teachable(si, σi) for
i ∈ {0, . . . , t − 1} can be reconstructed from the call stack because it is just the last
element of si+1. We denote this example by zi. We define a history-aware teacher

T : (X ∗ × (%(C) ∪ {init}))× (X ∗ × (%(C) ∪ {init})×X )∗ → X (c∗)

as follows. Let teachable(s, σ) be a call occurring in the accepting computation and let
its call stack be (s0, σ0), (s1, σ1), . . . , (st, σt) with t ∈ {0, . . . , `}, (s0, σ0) = (〈 〉, init),
and (st, σt) = (s, σ). The corresponding history is then

hist = 〈 (s0, σ0, z0), (s1, σ1, z1), . . . , (st−1, σt−1, zt−1) 〉

and we define T (s, σ, hist) = zt+1.
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By induction on the recursive calls one can show that a call to teachable(s, σ) with
a certain call stack occurs if and only if there is a learner that reaches (s, σ) with a
history that corresponds to that call stack. Again the reason is that the recursive calls
in line 5 simulate exactly the possible behavior of all learners.

As we consider an accepting computation of the algorithm, all calls to teachable(s, σ)
with |s| = ` return 1. Therefore all learners must hypothesize c∗ as soon as their
memory contains ` examples, that is, in round `. Consequently, T is a teacher that is
successful after ` rounds.

Finally according to Lemma 2.18, there is also a teacher without history that teaches
within the same number of rounds as T . �

Corollary 5.22 The problem FB-TEACHINGTIME is fixed-parameter tractable (with pa-
rameter m) and PSPACE-hard.

Proof. The fixed-parameter tractability follows from Theorem 5.18.
The problem is PSPACE-hard because we can reduce ∞-FB-TEACHINGTIME to it.

Given an instance for the latter problem involving some `, we construct an instance for
FB-TEACHINGTIME by setting m = ` and leaving the rest unchanged. Now the result
follows because during the first ` rounds, an `-memory learner and an ∞-memory
learner behave the same. �

In the teaching dimension model it is easy to decide whether a given target can be
taught to a learner with 1-memory. This is equivalent to deciding whether the teaching
dimension of the target concept is one, which can be done by checking every singleton
sample for already being a teaching set. In the B-restricted model the analog question
in the presence of feedback is just the 1-FB-TEACHINGTIME problem and thus remains
easy to decide. In contrast, the same problem in the absence of feedback is NP-hard.

Theorem 5.23 The problem 1-NOFB-TEACHINGTIME is NP-hard and in PSPACE.

Proof. For the NP-hardness we present a reduction from 3-SAT. Let K1 ∧K2 ∧ . . . ∧
Kr be a formula in 3-CNF over variables v1, . . . , vn. The literals in Ki are denoted
v

αij

ij
for j = 1, 2, 3. Then the instance of 1-NOFB-TEACHINGTIME looks as follows (see

also Figure 5.4). The learning domain is X = {x1, x
′
1, . . . , xn, x

′
n} ∪ {y}. There are

r + 1 representations σ0, . . . , σr for the concept ∅. All other concepts have only one
representation. These concepts are

• ci = {xi}, c′i = {x′i} for i = 1, . . . , n;

• ai = {xk vk is a literal in Ki} ∪ {x′k v̄k is a literal in Ki} for i = 1, . . . , r;

• di = {x1, x
′
1, . . . , xi−1, x

′
i−1, xi+1, x

′
i+1, . . . , xn, x

′
n} for i = 0, . . . , n;

• the target concept c∗ = X.



5.4 Computing the Optimal Teaching Time 113

1-NOFB-TEACHINGTIME

3-SAT

Node Format

init

00 00 00 00 0

10 00 00 00 0 01 00 00 00 0

00 10 00 00 0 00 01 00 00 0

00 00 10 00 0 00 00 01 00 0

00 00 00 10 0 00 00 00 01 0

00 00 00 00 0 00 00 00 00 0 00 00 00 00 0

10 01 10 00 0 00 10 10 01 0 01 01 00 10 0

11 11 11 11 1

σ0 σ1 σ2 σ3

c1 c′
1

c2 c′
2

c3 c′
3

c4 c′
4

c∗

a1 a2 a3

00 11 11 11 1

11 00 11 11 1

11 11 00 11 1

11 11 11 00 1

11 11 11 11 0

d0

d1

d2

d3

d4

x1x′1 x2x′2 x3x′3 x4x′4 y

c

K1 = v1 ∨ v̄2 ∨ v3

K2 = v2 ∨ v3 ∨ v̄4

K3 = v̄1 ∨ v̄2 ∨ v4

Figure 5.4 The reduction from 3-SAT to 1-NOFB-TEACHINGTIME applied to the formula
(v1∨ v̄2∨ v3)∧ (v2∨ v3∨ v̄4)∧ (v̄1∨ v̄2∨ v4) yields this B-restriction graph. The nodes contain
concepts over X = {x1, x

′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4, y}. See the proof of Theorem 5.23 for details.
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There are arcs from init to σ0, . . . , σr and from σi to ai for all i ∈ {1, . . . , r}. Moreover
we have arcs from ci and c′i to di for i = 1, . . . , n and from σ0 to d0. Finally the concepts
ai, cn, and c′n have an arc to the target c∗. The number ` of rounds is set to n + 2.

The concepts and arcs can be computed easily from the clauses K1, . . . , Kr. There
are 3n+2r+4 nodes in the restriction graph, each of which is labeled with |X| = n+1
bits. The instance of 1-NOFB-TEACHINGTIME can thus be computed in polynomial time.

Let L be the non-deterministic B-restricted learner with 1-memory, where B is de-
fined by the restriction graph described above.

Intuitively, the 1-NOFB-TEACHINGTIME instance produced by the reduction works as
follows. The examples (xi, 1), (x′i, 1) correspond to the assignments true or false to the
variable vi. After the first example, one computation of the non-deterministic learner
move to each hypothesis σ0, . . . , σr. The computation moving to σ0 forces the teacher to
give an example from {(x1, 1), (x′1, 1)} in the next round, then one from {(x2, 1), (x′2, 1)}
and so on. This eventually defines a complete assignment to all variables v1, . . . , vn.
The computations of L in σi for i = 1, . . . , r can only switch to ai if they get an example
that “matches” a literal in Ki. If that never happens, the computation remains in σi

and does not reach the target, which causes the teacher to fail. If, on the other hand,
all computations of L in all σi’s switch to ai they will then reach the target when the
teacher finally gives the example (y, 1).

Now we prove the above intuition more formally. Let K1 ∧ . . . ∧ Kr be satisfied
by an assignment β : {v1, . . . , vn} → {true, false}. We define a feedbackless teacher
T : N → X (c∗) by T (0) = (x1, 1), T (n + 1) = (y, 1), and

T (i) =

{
(x1, 1) if β(vi) = true,

(x′1, 1) if β(vi) = false

for i = 1, . . . , n. The values T (i) for i > n + 1 do not matter. We have to show that T
is successful and needs at most n + 2 rounds.

Claim 1: At round n + 2 the learner L hypothesizes c∗.

Proof. We have to distinguish two kinds of computations of L, depending on the
behavior after the first example T (0). We show that the computations of both kinds
reach c∗ at the latest in round n+2. Recall that L has 1-memory and thus the follow-up
hypothesis is determined only by the current hypothesis and the example just received.

Case 1: L hypothesizes σ0 in round 1.

Then T (1) causes one error among the instances x1, x
′
1. The neighbor hypothesis

d0 has the same error. The same is true for one of the hypotheses c1, c
′
1. The other

hypothesis, however, has no error and thus L moves to this one. Similarly, receiving
T (2) causes an error at the new hypothesis and the only error-free neighbor is c2 or
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c′2 depending on whether T (2) = (x2, 1) or T (2) = (x′2, 1). Applying this argument n
times, one can see that L hypothesizes cn or c′n at round n+1. The next example then
is (y, 1) and the only consistent neighbor is the target. Therefore, at round n + 2, the
learner L hypothesizes c∗.

Case 2: L hypothesizes σi in round 1 for some i ∈ {1, . . . , r}.
Since β satisfies Ki there is a minimum ij ∈ {1, . . . , n} such that β satisfies the literal

v
αij

ij
in Ki. Until round ij − 1 all examples given by the teacher cause one error at σi

and all neighbor hypotheses have the same error. Thus no hypothesis change takes
place. When the example T (ij) arrives, it causes an error, but now the neighbor ai

is error-free. Consequently, L moves to ai. The hypothesis ai has only one neighbor,
the target. A hypothesis change to the target is triggered at the latest by the example
T (n + 1) = (y, 1) and therefore L is in c∗ at round n + 2. � Claim 1

For the converse, assume that T is a teacher successful within n + 2 rounds. We
have to show that K1 ∧ . . . ∧Kr is satisfiable. The first step is to show that in rounds
t = 1, . . . , n the teacher must give an example from {(xt, 1), (x′t, 1)}.

After example T (0) one computation of L is in σ0 since all hypotheses σ0, . . . , σr are
equivalent and the init hypothesis must be left. To reach the target within the next
n + 1 rounds, L must hypothesize ct or c′t at round t + 1 for all t = 1, . . . , n. From
ct or c′t the neighbor ct+1 is only entered on example (xt+1, 1); all other examples are
either consistent with ct or c′t, or with the dead end dt. But an example consistent
with dt would cause L to switch to dt and teaching would fail. Similarly, c′t+1 is
only entered on example (x′t+1, 1). Therefore the teacher T must give an example
from {(xt+1, 1), (x′t+1, 1)} at round t = 1, . . . , n. The examples T (1), . . . , T (n) then
correspond to the following assignment β to all variables v1, . . . , vn:

β(vi) =

{
true if T (i) = (x1, 1),

false if T (i) = (x′1, 1).

We say the example (xi, 1) matches the literal vi and the example (x′i, 1) matches v̄i.
It remains to show that the assignment β satisfies Ki for all i = 1, . . . , r. Let i ∈

{1, . . . , r}. After T (0) there is a computation of L hypothesizing σi. This computation
will eventually reach the target (by assumption about T ). The only path is via the
hypothesis ai. By construction of ai a transition to it from σi is only possible on an
example that matches a literal in Ki. Therefore at least one example that matches
one of the literals of Ki will be given by the teacher. That example makes β satisfy
this literal and thus the whole clause. Since i was arbitrary we have just shown that β
satisfies all clauses.

To show 1-NOFB-TEACHINGTIME ∈ PSPACE we present a non-deterministic algo-
rithm that uses polynomial space. The idea of the algorithm is to guess ` examples
and to keep an account of all hypotheses the learner could be in after every guess.
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Input: Restriction graph (%(C) ∪ {init}, B), target c∗ ∈ C, number ` ∈ N.

1 hyps := {init}

2 for t = 0 to `− 1 :

3 newhyps := ∅

4 guess z ∈ X (c∗)

5 for all σ ∈ hyps :

6 newhyps := newhyps ∪ L(〈 〉, σ, z)

7 hyps := newhyps

8 if hyps ⊆ %(c∗) then accept

9 else reject

Throughout the execution of the algorithm, both hyps and newhyps can contain
at most |%(C)| elements, each of which can be written in log |%(C)| bits. The space
requirement of the algorithm is thus polynomial.

Whenever the algorithm accepts the input, there is a sequence of ` guessed examples
such that all computations of L, after having receiving all these examples, hypothesize
c∗. Thus there is a teacher successful after ` rounds.

On the other hand, whenever there is a teacher successful after ` rounds there is
also an accepting computation of the algorithm. Guessing z = T (t) in all rounds
t = 0, . . . , `− 1 is such a computation. �

For the unary variant we can again determine the computational complexity more
precisely.

Theorem 5.24 The problem UNARY-1-NOFB-TEACHINGTIME is NP-complete.

Proof. The NP-hardness can be shown using the same reduction as in the proof of
Theorem 5.23, except that ` = n + 2 is encoded unary.

To show containment in NP we use the non-deterministic algorithm from the proof
of Theorem 5.23. This algorithm runs for ` iterations of the outer loop. The inner
loop has |hyps| ≤ |%(C)| iterations and there are at most |%(C)| hypotheses to add to
newhyps. Thus the inner loop takes time O(|%(C)|2). So overall the running time is
O(` · |%(C)|2), which is polynomial in the input size since ` is represented unary. �

For the complexity of ∞-NOFB-TEACHINGTIME we confine ourselves to a simple ob-
servation.

Fact 5.25 The problem ∞-NOFB-TEACHINGTIME is NP-hard.
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Proof. The problem of finding an optimal teacher without feedback for B-restricted
learners is NP-hard, since it is a generalization of finding an optimal teaching set,
namely if B= (Σ∗ ∪ {init})× (Σ∗ ∪ {init}) (see [76, 34, 8]). �

Broadly speaking, the results in this section indicate that computing the optimal
teaching time in the B-restricted model is more difficult than in the TD model. Only
in the case of teaching 1-memory learners with feedback, both problems are provably
solvable in polynomial time. In the case of teaching ∞-memory learners with feedback
we have NP-completeness vs. PSPACE-completeness. For teaching 1-memory learners
without feedback we have containment in P vs. NP-completeness.

The decision problems we studied in this section are decision versions of the optimiza-
tion problem of finding the minimum teaching time over all successful teachers. Another
important question, which we have neglected so far, is the teachability problem. This
is the problem whether or not a successful teacher exists at all. In the H-restricted
model this teachability problem can be decided by comparing the H-dimension of the
target with the memory size of the learner (see Lemmas 3.3 and 4.29).

In the B-restricted model, the teachability can sometimes be decided by algorithms
we introduced in this section. In the case of teaching 1-memory learners with feedback
Theorem 5.18 also yields a decision algorithm for teachability. In the case of teaching 1-
memory learners without feedback a similar algorithm can be devised. The hypotheses
have to be replaced by “meta hypotheses” in 2%(C). Each meta hypothesis describes the
set of possible hypotheses the learner can assume. Target meta hypotheses are then all
subsets of %(c∗). The running time of the algorithm would then be polynomial in the
number of meta states 2%(C) · |X|, that is, exponential in the representation size.

Learners with infinite memory can assume infinitely many states. The algorithm in
Theorem 5.21 cannot be used to decide the teachability in this situation. Moreover, the
PSPACE-hardness result for ∞-FB-TEACHINGTIME does not imply PSPACE-hardness
of the teachability problem. The reason is that for the ∞-FB-TEACHINGTIME instances
generated by the reduction (see, for example, Figure 5.3) the teachability of the target
can be decided easily: The target is always teachable. A teacher can make the learner
reach cn+1 and then, by giving all examples (x1, 1), (x′1, 1), . . . , (xn, 1), (x′n, 1), (y, 1),
force it into the target state.

We thus pose as an open problem to determine the computational complexity of the
teachability problem for the ∞-memory learner (with or without feedback).

5.5 Discussion

The B-restricted model offers the possibility for all kinds of realistic effects. Regarding
feedback, we observed that it can be useless, helpful, or even indispensable for teaching.
In addition, natural infinite concept classes can be taught in this model, as well as finite
concept classes. The order of examples is also crucial, and the learner’s memory size



118 Chapter 5 Learners with Restricted Hypothesis Changes

influences the teaching time and also whether or not a concept is teachable at all. These
effects can be achieved thanks to the great freedom in defining the relation B.

On the other hand, that freedom can also be a burden because it allows us to define
the neighborhood relation in unnatural ways. We have used, or rather abused, the
freedom for defining the relation B in our complexity results in Section 5.4. For exam-
ple, having dead-end hypotheses available is very helpful, but not exactly realistic. It
would be interesting to impose some natural restrictions on the neighborhood relation
so as to prevent too artificial and abusive definitions. However, it is not quite clear
how such natural restrictions look like. One idea for an additional condition is that the
B-restriction graph should consist of only one strongly connected component, which
would at least prevent dead-end hypotheses. Another way to prevent such hypotheses
is to require the neighborhood relation to be symmetric. An entirely different approach
is to stipulate some relation between the syntactic closeness and the semantic close-
ness of hypotheses. For example, one could require that hypotheses that are close in
the B-restriction graph are also semantically close, that is, equal with respect to most
instances, or vice versa.

To obtain meaningful results in the B-restricted model, the neighborhood relation
has to be defined in a natural way. This definition has to be done individually for every
natural concept class we want to investigate. Even though it is impossible to give a
general “recipe” how to do that, our definitions of BMon and BDL for monomials and
1-decision lists suggest a usable, general approach, which is based on the representation
function. Using this function one can define two hypotheses as neighbors of each other
if the two representations differ only a little. Since representations are strings, the
difference between two of them can naturally be measured by the Hamming distance
or the edit distance. For instance, our relation BMon is defined via the Hamming
distance, and BDL via the edit distance; in both cases two hypotheses are neighbors of
each other if and only if their distance is 1. This approach to defining B can be used
for all represented concept classes, but still leaves some details to be specified, such as
the maximal allowed distance.

Besides adding further restrictions on the neighborhood relation B there are other
natural ways the learner can be modified. One idea is to combine the B-restriction with
selective memory (see Definition 4.28). Another idea is to remove the conservativeness
requirement and to allow the learner to switch to a hypothesis with less errors than the
current one, even if the newly received example is consistent. But also these variations
on the learner do not absolve us from defining the neighborhood relation appropriately.
Therefore, in our opinion, future work should concentrate on the definition of B rather
than on new model variants.
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Chapter 6

The Randomized Framework

6.1 Introduction

In Part I we were able to enhance the basic teaching dimension model to get feed-
back and memory effects. These enhancements, however, mostly came at the price
of arbitrary, hard-to-justify additional assumptions, such as hypothesis restrictions H

or neighborhood relations B. In contrast, Part II is devoted to a new, randomized
teaching model, which uses no additional assumptions, but which does give us memory
and feedback effects. It is introduced in this chapter.

The new model remedies a fundamental flaw in the teaching dimension model, namely
that it measures teachability always with respect to the worst learner. The teaching
dimension model lacks feedback effects because there is always a bad learner that
chooses follow-up hypotheses independently from the current one. The teaching di-
mension model lacks memory size effects because there is always a bad learner that
avoids the target hypothesis if its memory is smaller than the target’s teaching dimen-
sion. Until now we always tried to prohibit such bad behavior, for example, by forcing
the follow-up hypothesis to depend on the current one or by disallowing implausible hy-
potheses. In our new approach we accept that there are good learners and bad learners
and again allow all of them, as long as they are consistent and conservative.

Rather than changing the learners that are taught, we change the measurement of
how well they are taught. Instead of measuring the number of rounds needed by the
worst learner, we measure the number of rounds needed by the average learner. At first,
however, it may seem unclear what such an average learner is supposed to be. Of course
it would be useless to pick out one of the deterministic learners and call it “average.”
Rather, we have to devise a new learner that somehow combines all learners into one.
Perhaps the most straightforward way to do so is to take a randomized learner for the
task. Whenever there are several alternatives from which the non-deterministic learner
in the basic model can choose, the randomized learner would choose each alternative
with the same probability. In this way all possible behaviors, good ones and bad ones,
are incorporated with equal rights. The performance of a teacher interacting with such
a randomized learner is then measured by the expected teaching time.
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In more formal terms, the new approach causes only small changes to our teaching
framework described in Section 2.2. Essentially, the non-deterministic automaton is
replaced by a probabilistic automaton and the teaching time becomes a random vari-
able. Also the notions of teaching success have to be reinterpreted a bit in light of the
randomization. But in any case, no additional assumptions like H or B are introduced.
The formalities can be found in the following Section 6.2.

That the randomized model actually works, can be demonstrated already with quite
simple concept classes such as Sn. After a few rounds of teaching the target [1, n] ∈ Sn,
with some probability the current hypothesis of the randomized learner is the target.
The remaining probability mass is distributed among the co-singleton hypotheses. Now
every example for [1, n] is consistent with the current hypothesis with some probability.
Therefore a feedbackless teacher cannot cause a hypothesis change with probability 1
in every round. The teacher with feedback, however, can do so and thus achieves teach-
ing success faster. Likewise, the more examples the learner memorizes, the higher the
probability that a hypothesis change leads to the target because there are fewer con-
sistent non-target concepts. Thus the teaching speed increases with growing memory
size. In Section 6.3 we give more details and demonstrate how varying the order of
examples and the frequency of examples influences the teaching time of monomials.

From a more general point of view, the randomized teaching process can be regarded
as a special case of Markov decision processes. These probabilistic processes have been
subject of research for decades and we shall benefit from some results of their theory
in subsequent chapters. Section 6.4 provides a short introduction into the necessary
terminology.

6.2 Formal Description

The basic scenario is the same as in the non-deterministic case (see Section 2.2). The
teaching process is divided into rounds. In each round the teacher gives the learner an
example of a target concept. The learner memorizes this example and computes a new
hypothesis based on the last hypothesis and the memorized examples. The target and
the hypotheses are taken from a concept class known to both teacher and learner.

The learner is again modeled as an automaton, but with randomized state transitions.
Its behavior can be described using specifications for (HYP) and (MEM) just as in the
non-deterministic models. Whenever the specifications allow a set of alternatives, the
learner is supposed to pick one alternative uniformly at random. We assume that
there is always a finite number of alternatives, since otherwise the uniform distribution
would not be defined. The teacher’s goal consists in making the learner hypothesize
the target as quickly as possible. But now we do not measure the worst case time until
this happens, rather we measure the expected teaching time of the learner.

As the analysis of randomized learners is much more difficult, we investigate only
one specification of (HYP), namely conservative and consistent. We also limit our
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attention to non-selective memory. The learner is thus a randomized version of the
non-deterministic learner from Definition 3.1. We simplify even further and do not
distinguish between representations and concepts any more. We thus use concepts in
places where before we only used representations; for example, hypotheses are now
from C rather than from %(C). One can think of this as having an implicit 1-1-mapping
from representations to concepts. This measure helps reduce notation and will not
cause problems, because throughout Part II we consider only finite classes.

As before, we stipulate a special initial hypothesis called init , with which every ex-
ample is inconsistent. Moreover, the initial memory is empty. The randomized learners
are randomized automata whose every state consists of a list s ∈ X ∗ of memorized ex-
amples and a hypothesis h ∈ C ∪{init}. The state space is thus X ∗× (C ∪{init}). The
learners we consider differ only with respect to their memory size.

Definition 6.1 Let C be a concept class over X and let m ∈ N+ ∪{∞}. The random-
ized m-memory learner using hypothesis space C is the randomized automaton that
performs state changes according to the following randomized algorithm. It is denoted
by Lm,C (or by Lm if C is clear or unimportant).

Current state: Memory s ∈ X ∗, hypothesis h ∈ C ∪ {init}.
Input: Example z ∈ X .

Follow-up state: Memory s′ ∈ X ∗, hypothesis h′ ∈ C.
1 s′ := s ◦m 〈z〉;
2 if z /∈ X (h) then choose h′ uniformly at random from C(s′);

3 else h′ := h;

Definition 6.1 implicitly defines the probabilities p((s, h), z, (s′, h′)) of a state change
from (s, h) to (s′, h′) on input z ∈ X :

p((s, h), z, (s′, h′)) =


1 if z ∈ X (h) ∧ s′ = s ◦m 〈z〉 ∧ h′ = h,

1/|C(s′)| if z /∈ X (h) ∧ s′ = s ◦m 〈z〉 ∧ h′ ∈ C(s′),

0 otherwise.

The teacher needs to be reformalized only slightly. Wherever necessary we replace
representations with the represented concept. That means that “%(C)” is replaced by
“C.” In the presence of feedback a teacher is thus a function

T : X ∗ × (C ∪ {init}) → X (c∗).

In the absence of feedback the teacher is the same as in the non-deterministic model,
namely a function

T : N → X (c∗).
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A learner Lm,C and a teacher determine a teaching process. The state of the process
in a round t ∈ N is described by the probability distribution over the learner’s state
space that specifies for each state the probability of the learner being in this state in
round t. We denote this probability distribution by

δ
(t)
T : X ∗ × (C ∪ {init}) → [0, 1].

The initial distribution is δ(init) with δ(init)(〈 〉, init) = 1, because initially the learner
hypothesizes init and has an empty memory.

Let us first consider the teaching process involving a teacher T without feedback
and the learner Lm,C. The probability distributions evolve as follows. Let δ

(t)
T be the

distribution in round t and let z = T (t) be the example given in round t. Then for every
state (s, h) the definition of Lm,C implies a distribution over the follow-up states. The

distribution δ
(t+1)
T for the next round is then the weighted sum over all the distributions

for the single states of the learner. Formally, we have δ
(0)
T = δ(init), and for all t ≥ 0,

δ
(t+1)
T (s′, h′) =

∑
(s,h)

∈X ∗×(C∪{init})

δ
(t)
T (s, h) · p((s, h), T (t), (s′, h′)). (6.1)

Let us now consider the teaching process involving a teacher T with feedback and the
learner Lm,C. In this situation we have δ

(0)
T = δ(init), and for all t ≥ 0,

δ
(t+1)
T (s′, h′) =

∑
(s,h)

∈X ∗×(C∪{init})

δ
(t)
T (s, h) · p((s, h), T (s, h), (s′, h′)), (6.2)

which is similar to Equation (6.1) except that T (t) is replaced by T (s, h).

Since we are mostly interested in the probability for certain hypotheses, as opposed
to the memory, we define as shortcut:

δ
(t)
T (c) =

∑
s∈X ∗

δ
(t)
T (s, c).

We distinguish two teaching success variants: finite and in the limit. Finite teaching
success means that after finitely many rounds the probability of having reached the
target is 1. Teaching in the limit means that the probability of reaching the target
converges to 1.

Definition 6.2 Let C be a concept class, c∗ ∈ C be a target, and m ∈ N+∪{∞}. Let T

be a teacher and
(
δ
(t)
T

)
t∈N be the series of probability distributions over states of Lm,C.

The success probability of T is then

lim
t→∞

δ
(t)
T (c∗).
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A teacher is successful iff its success probability equals 1. A successful teacher is called
finitely successful iff there is a t such that δ(t)(c∗) = 1, otherwise it is called successful
in the limit. For a successful teacher we define the expected teaching time as

E[T,Lm,C, c
∗] =

∑
t≥1

t ·
(
δ
(t)
T (c∗)− δ

(t−1)
T (c∗)

)
.

The expected teaching time need not be finite, even if the teacher is successful. The
limit limt→∞ δ

(t)
T (c∗) exists for every teacher because δ

(t)
T (c∗) is monotonically increasing

due to the learner being conservative. The teachability of a concept is then measured
by the minimal expected teaching time over all teachers.

Definition 6.3 Let C be a concept class, c∗ ∈ C and m ∈ N+ ∪ {init}. The optimal
teaching time for teaching c∗ with feedback to Lm,C is defined as

E+
m(c∗, C) = inf

T
E[T,Lm,C, c

∗]

where T ranges over all teachers T : X ∗× (C ∪ {init}) → X (c∗). The optimal teaching
time for teaching c∗ without feedback to Lm,C is defined as

E−
m(c∗, C) = inf

T
E[T,Lm,C, c

∗]

where T ranges over all teachers T : N → X (c∗). For a class C we set E−
m(C) =

max{E−
m(c, C) c ∈ C} and E+

m(C) = max{E+
m(c, C) c ∈ C}.

If the concept class is clear, we may write E+
m(c) instead of E+

m(c, C) and E−
m(c) for

E−
m(c, C).
For finite concept classes C, the infimum in the definition of E+

m can be replaced by
the minimum since in this case there are only finitely many teachers with feedback.

We conclude this section with some simple facts about the notions of teachability
and the teaching times just defined.

Fact 6.4 Let C be a concept class and let m ∈ N+. A concept c∗ is teachable to LC,m

finitely (with or without feedback) if and only if TD(c∗, C) ≤ m.

Fact 6.5 For all C, all m ∈ N+ ∪ {∞}, all c∗ ∈ C, and all α ∈ {+,−}:

1. E+
m(c∗, C) ≤ E−

m(c∗, C),

2. Eα
∞(c∗, C) ≤ Eα

m+1(c
∗, C) ≤ Eα

m(c∗, C).

Proper inequality holds for the concepts in the class An of all concepts over [1, n].
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6.3 The Influence of Feedback, Memory Size, and

the Order of Examples

In this section we calculate the teaching times for the concept [1, n] ∈ Sn for varying
memory size and feedback. Rather than using a provably optimal teacher, we use a
“reasonable” teacher whose optimality for the special case m = 1 we show later. These
results will nevertheless illustrate that feedback and memory size have a somewhat
realistic influence on the duration of teaching.

Let us first consider a teacher with feedback and the learner L1 using hypothesis
space Sn. Our “reasonable” teacher now gives an example inconsistent with the current
hypothesis in every round until L1 reaches the target [1, n]. The probability of reaching
the target is 1/n in each round. Therefore the expected number of rounds until the
target is reached is n. This teacher is optimal because it is basically the only one. Giving
an example consistent with the current hypothesis would not change the learner’s state
and would therefore be useless. Thus E+

1 ([1, n],Sn) = n.
Our teacher can easily be generalized to 1 < m ≤ n. A small problem for calculating

the expected teaching time is that the learner’s memory needs some rounds to fill.
More precisely, in the first round the probability of reaching the target is 1/n, in the
second round 1/(n − 1) and in round i ≤ m it is 1/(n − i). Beginning with round m
the probability remains constant 1/(n − m). Thus on entering the m-th round, the
expected number of remaining rounds is n−m. Putting it all together and simplifying
the expression, we get the following formula for the expected number of rounds until
Lm (1 ≤ m ≤ n) reaches [1, n]: m(m−1)

2n
+ n−m + 1. For memory sizes greater then n

the teaching time improves no further. Thus we obtain the teaching time for m = ∞
by setting m = n. Again, also for m > 1 this is essentially the only teacher and its
teaching time is therefore optimal:

E+
m([1, n],Sn) =

m(m− 1)

2n
+ n−m + 1 .

Teaching is more difficult without feedback. In this situation the teacher can merely
guess examples hoping that they are inconsistent with the current hypothesis. Recall
that only in this case a hypothesis change is triggered and the learner gets the chance
to reach the target. In particular, giving one example a second time within an interval
of m rounds will certainly not trigger a hypothesis change. Therefore, it seems like a
good strategy to put a maximum length interval between two occurrences of the same
example. This is achieved by the teacher T− which gives all n examples for [1, n] in
the canonical order in an infinite loop, that is, T−(i) = (1 + i mod n, 1) for all i ∈ N.
The analysis of T− is a little more complicated and we summarize it in the following
fact.

Fact 6.6 Let T− be a teacher for c∗ = [1, n] ∈ Sn with T−(i) = (1 + i mod n, 1) for all
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i ∈ N. Then

E[T−,L1,Sn , c∗] = 1 +
n(n− 1)

2

and for m ∈ {2, . . . , n}:

E[T−,Lm,Sn , c∗] =
1

n
+

m∑
i=2

i

(n− i + 1)(n− i + 2)
+

(n−m)(1 + (n−m)2 + 2n)

2(n−m + 1)
.

Proof. We start with the case m = 1. We denote the expectation we seek by F .
First we derive some properties of F that in turn allow us to derive a formula for it.
For a learner L1 with 1-memory the actual memory contents can be neglected since it
does not influence the state change probability. The state is thus represented by the
hypothesis alone.

Assume that the learner hypothesizes ci (1 ≤ i ≤ n) and the teacher T− presents
example (i, 1) next. The resulting probability distribution is the same as after the reg-
ular first example: all hypotheses except ci have a probability of 1/n and the teacher
presents (i, 1) only after all other examples have been presented. Therefore, the ex-
pected number of rounds to reach c0 for this learner is also F .

Now suppose the learner assumes hypothesis ci and the teacher presents example
(i − 1, 1) next. This will not change the learners hypothesis because ci is consistent
with (i−1, 1). Only in the next round, in which T− gives example (i, 1), the hypothesis
changes. Moreover this hypothesis change is the same as before; it only happens one
round later. The expectation for this learner is therefore F + 1.

In general, if it takes ` ∈ {0, . . . , n− 2} rounds before the next inconsistent example
arrives, the expectation is F + `. Of course, starting in the target concept c0 has an
expectation of 0.

Now let us go back to our “real” teaching process in which the learner starts in init .
After the first example, the learner assumes hypothesis c1 with probability 0 and all
other hypotheses c0, c2, . . . , cn with probability 1/n. This means that with probability
1/n the learner is in a state, namely c2, in which the next example triggers a hypothesis
change. More generally, the learner is with probability 1/n in a state in which after
` = 0, . . . , n−2 examples a hypothesis change is triggered (the states are c2, c3, . . . , cn).
The expected number F of rounds is thus composed of n− 1 individual expectations,
each of which is to be weighted by 1/n. This yields

F = 1 +
n−2∑
`=0

1

n
· (F + `) (6.3)

which is a linear equation with one variable and the solution

F = 1 +
n(n− 1)

2
.
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Now we turn to the case m > 1. This is more complicated because it takes m rounds
until the memory is filled. We consider this initial phase later and first focus on the
situation in which the memory already contains m examples.

The arguments are similar as above for the case m = 1. Assume that a learner
hypothesizes ci and memorizes the last m examples 〈(i − m, 1), . . . , (i − 1, 1)〉. This
means that example (i, 1) comes next. We denote the expected number of rounds for
this learner to reach the target by F ′. After the example (i, 1) is given, the learner is
in each hypothesis consistent with the new memory 〈(i −m + 1, 1), . . . , (i, 1)〉 with a
probability of 1/(n−m + 1).

More generally, assume that the learner hypothesizes ci+` for some ` > 0 and the
memory is the same as before. Then it takes 1 + ` rounds until a hypothesis change
happens. The situation reached afterwards is essentially the same as in the special
case ` = 0 just discussed: the learner is in each hypothesis consistent with the new
memory with a probability of 1/(n − m + 1). Of course, the consistent hypotheses
are different for different `. The point, however, is that there is always a hypothesis
that is inconsistent with the next example, one that is consistent with the next but
inconsistent with the example after the next, and so on. In effect the expectation for
a learner starting in ci+` and receiving example (i, 1) next is F ′ + `.

Our observations above allow us to state a formula for F ′ similar as in the case
m = 1:

F ′ = 1 +
n−m−1∑

`=0

1

n−m + 1
(F ′ + `) . (6.4)

Note that for m = 1 we get Equation (6.3). The solution of Equation (6.4) is

F ′ = 1 +
(n−m)(n−m + 1)

2
. (6.5)

Now, if n is large compared to m the initial m rounds can be neglected and Equa-
tion (6.5) gives a good approximation for the true expectation. Now we derive the
exact values.

The probability of reaching the target in the first round is 1/n. Otherwise after i ≤ m
rounds the learner knows the examples (1, 1), . . . , (i, 1) and hypothesizes c0, ci+1, . . . , cn

with equal probability, namely pi = 1/(n − i + 1). It follows that the probability of
reaching the target c0 in round i > 1 is pi − pi−1 = 1

(n−i+1)(n−i+2)
. Calculating the

expectation would therefore begin like this:

1

n
· 1 +

m∑
i=2

1

(n− i + 1)(n− i + 2)
· i . (6.6)

Computing the “in-the-target-probabilities” pi for i ≥ m is more difficult, but we can
use the values for F ′ instead.

After m examples have been given, the learner memorizes (1, 1), . . . , (m, 1) and hy-
pothesizes c0, cm+1, . . . , cn with probability 1/(n − m + 1) each. Then for all ` ∈



6.3 The Influence of Feedback, Memory Size, and the Order of Examples 129
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expected teaching time

Figure 6.1 Teaching the concept [1, 16] ∈ S16 to the randomized learners Lm with and
without feedback. The y-axis is “square-rootish.” The values for m = 1 and those for “with
feedback” are the optimal teaching times. The values for 1 < m ≤ 16 without feedback are
based on a reasonable, supposedly optimal, teacher. In contrast, teaching is impossible in the
TD model unless the memory size is at least 16.

{0, . . . , n −m − 1} there is a hypothesis, namely cm+`, that is inconsistent only with
the example given ` rounds later. Thus, the expected number of rounds to reach the
target from this probability distribution is

n−m−1∑
`=0

1

n−m + 1
· (F ′ + `) .

But this probability distribution is reached after m rounds. Thus the expectations
have to be considered higher by m. Therefore we have to add to Equation (6.6) the
expression:

n−m−1∑
`=0

1

n−m + 1
· (F ′ + ` + m) =

(n−m)(1 + (n−m)2 + 2n)

2(n−m + 1)
,

which will yield the sought expectation, as claimed. �

The teaching times under teacher T− in the previous fact are optimal in the case
m = 1, as we shall show in Fact 8.8. We conjecture that T− is optimal for 1 < m ≤ n,
too.
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Target:
v1

v2

v3

v4
x1

x2

x3

x4**11

Teachers:

T1: 〈x1 x2 x3 x1 x2 x4〉∞

T2: 〈x1 x2 x3 x4〉∞

T3: 〈x3 x4 x1 x2〉∞

Figure 6.2 The learner L1 usingM1
4 is taught the monomial **11 by three teachers T1, T2, T3.

The y-axis shows the probability of the learner for being in the target state in dependence
of the round of the teaching process. All teachers use the same examples, but give them in
different orders. This leads to different success probability curves and to different expected
teaching times (the numbers on the right end of the curves).

As an illustration, all teaching times for n = 16 and m = 1, . . . , 16 are shown in
Figure 6.1. Clearly, teaching becomes faster with growing m. Moreover the teaching
speed increases continuously with m and not abruptly as in the H-restricted models.
In particular, teaching is possible even with the smallest memory size (m = 1).

In addition, regardless of the memory size, the teaching times clearly improve when
feedback is present.

To illustrate the influence of the order of examples in the randomized teaching model,
we have calculated a numerical example. Figure 6.2 shows three teachers teaching the
monomial v3 ∧ v4 without feedback to the learner L1 using hypothesis space M1

4. All
teachers use the same four examples from a minimum teaching set. Every teacher,
however, arranges these examples into a different sequence and teaches this sequence
in an infinite loop.
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We refrain from including all the numerical calculations of the teaching success prob-
abilities in the curves of Figure 6.2. The expected teaching times will be proved in
Fact 8.18.

6.4 Markov Decision Processes

All our randomized teaching model variants can be regarded as special cases of so called
Markov decision processes (MDP). In this section we introduce some basic terminology.

Under a fixed teacher, the behavior of a randomized learner with feedback can be
described as a Markov chain. In each state of the learner the teacher gives an example
and the learner switches to another state with probabilities as described by the function
p (see Page 123). One can then, for example, compute the expected number of rounds
until a target state is reached.

In our teaching model, however, the teacher is not fixed. Rather we want to find a
teacher that minimizes the expected teaching time, or at least we want to find that
minimal teaching time. A generalization of Markov chains to this situation are Markov
decision processes (MDP). These processes have been subject of research for several
decades. For an extensive treatment see the books by Derman [26], by Puterman [63],
and by Bertsekas [18, 17].

An MDP is a probabilistic system whose state transitions can be influenced during
the process by actions which incur costs. Formally, an MDP consists of a finite set
State of states, an initial state s0 ∈ State, a finite set Action of actions, a function
cost : State × Action → R, and a function prob : State × Action × State → [0, 1]. The
value cost(s, a) specifies the cost incurred if action a is performed in state s. The value
prob(s, a, s′) specifies the probability for the MDP to change from state s to s′ under
action a. A policy π : State → Action assigns an action to every state and thus induces
a Markov chain over the state space State.

A special case of Markov decision processes, which is still more general than our
teaching scenario, are stochastic shortest path problems (SSPP). In an SSPP there is
a set State∗ ⊂ State of target states. Once a target state has been reached, it cannot
be left and all actions in a target state incur no costs. In an SSPP the costs are then
interpreted as lengths and a minimum expected cost policy corresponds to a tour with
minimum expected length from the initial state to any of the target states.

The basic analogy between SSPPs and our teaching model is as follows. The set
State contains all states of the learner; State∗ contains all states in which the learner
hypothesizes the target; Action contains all examples for the target; cost is set to 1,
except for the target states, which incur no costs; policies correspond to teachers. The
function prob is identical to the function p defined on Page 123. The teaching time
of a teacher corresponds to the expected length of the path from the initial state to
a target state under the policy corresponding to that teacher. The optimal teaching
time corresponds to the minimal expected path length over all policies.
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A policy π : State → Action defines a Markov chain over State and for all s ∈ State
an expected time Hπ(s) for reaching the target c∗ from s. These expectations, called
hitting times, satisfy the following linear equations for all s ∈ State:

Hπ(s) = cost(s, π(s)) +
∑

s′∈State

prob(s, π(s), s′) ·Hπ(s′). (6.7)

For a given policy π it is therefore possible, by solving a linear equation system of size
|State|, to calculate the hitting times.

Under certain assumptions, optimal policies and their expectations for stochastic
shortest path problems can be characterized (see Bertsekas and Tsitsiklis [19], Bert-
sekas [17, Chapter 2], and Puterman [63, Chapter 7]). The first such assumption is that
all costs, except in the target state, are positive. This assumption is satisfied trivially
in our teaching model, as all these costs are 1. The second assumption requires the
existence of a so called proper policy. A sufficient condition for properness is that in
every state the action is chosen such that there is a positive probability of reaching
the target state in the next round. A straightforward teacher that corresponds to a
proper policy is a teacher that gives for every state an example inconsistent with the
hypothesis. Such an example triggers a hypothesis change that leads to the target with
positive probability. All our randomized teaching scenarios are thus proper in the sense
of MDP theory.

Now we state the optimality condition in terms of SSPPs. Interpretations in terms
of the teaching model are given in Sections 7.1 and 7.2 for learners with 1-memory and
∞-memory, respectively.

Lemma 6.7 All hitting times H(s) simultaneously assume their minimal values if and
only if for all s ∈ State:

H(s) = min
a∈Action

(
cost(s, a) +

∑
s′∈State

prob(s, a, s′) ·H(s′)

)
.

A policy π has minimal hitting times for all states if and only if for all states s ∈ State:

π(s) ∈ argmin
a∈Action

(
cost(s, a) +

∑
s′∈State

prob(s, a, s′) ·H(s′)

)
.

The hitting time for a state s ∈ State∗ is H(s) = 0.
A policy π : State → Action corresponds to a teacher that receives feedback and that

can thus choose an action depending on the current state of the learner. If the teacher
receives no feedback, the results about SSPPs, including Lemma 6.7, do not apply.
The corresponding notion to this teaching scenario is that of an unobservable stochastic
shortest path problem (USSPP). Only recently Patek [61, 62] has analyzed such prob-
lems and derived an optimality characterization for them, analogous to Lemma 6.7. It
requires some additional notations, which we introduce in Chapter 8 where we analyze
teaching the learner L1 without feedback.
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6.5 Discussion

Already the simple examples in this chapter have shown that the randomized model is
sensitive to feedback, memory size, and the order of examples. This sensitivity is also
qualitatively correct, that is, teaching becomes faster with growing memory or with
feedback. Whether or not it is also quantitatively correct is hard to say. In any case
one could add H-restrictions or B-restrictions to influence the teaching times in order
to make them more natural. But there is also another way in which the teaching times
can be influenced and that is not available in the non-deterministic models, namely
changing the uniform distribution into something more “plausible,” like a distribution
that favors simple concepts over complex ones.

Changing the probability distribution is also necessary if we want to consider infinite
concept classes, because in this situation the learner can often choose between countably
infinitely many follow-up hypotheses, for which the uniform distribution is undefined.





Chapter 7

Learners with Feedback or Infinite
Memory

7.1 Memoryless Learners with Feedback

We call teachers with 1-memory memoryless because their memory contents does not
influence the probability for state transitions. Teaching memoryless learners with feed-
back presents the simplest situation. The teacher faces no uncertainty about the current
state of the learner and there are only few states. In this section we apply the general
Lemma 6.7 to the special case of teaching the memoryless randomized learner L1 with
feedback and thus derive a characterization of optimal teachers (Lemma 7.1). We then
use this criterion to develop an optimal teacher for the monomials (Fact 7.2). After-
wards we treat more teaching specific questions and show that the greedy teacher is
not optimal in general (Fact 7.4). Finally we compare the teachability measure E+

1

with other popular measures of teachability and learnability (Fact 7.5).

When L1 receives an example z, the new memory s′ will contain only this example,
s′ = 〈z〉, and the follow-up hypothesis is chosen from C(〈z〉). Thus the behavior of
L1 in a state (s, h) does not depend on s, and in effect the memory is not part of the
state. Therefore the state can be described by the hypothesis alone. More precisely,
the learner L1 looks as follows (cf. Definition 6.1):

Current state: Hypothesis h ∈ C ∪ {init}.
Input: Example z ∈ X .

Follow-up state: Hypothesis h′ ∈ C.

1 if z /∈ X (h) then choose h′ uniformly at random from C(z);

2 else h′ := h;

A teacher for teaching c∗ to L1 with feedback is then a function T : C∪{init} → X (c∗).

A teaching process with feedback involving L1 can be modeled as a stochastic shortest
path problem with State = C ∪ {init}, State∗ = {c∗}, Action = X (c∗), cost(h, z) = 1
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for h 6= c∗ and cost(c∗, z) = 0 for all z ∈ X (c∗). Furthermore,

prob(h, z, h′) =

{
1/|C(z)| if z ∈ X (h′) \ X (h),

0 otherwise,

and prob(c∗, z, c∗) = 1 for all z ∈ X (c∗). The initial state is init .
From the characterization of optimal policies (Lemma 6.7) we can derive a charac-

terization of optimal teachers and of the minimum teaching time. Note that if L1 is in
state h, an example z ∈ X (h) does not change its state and is therefore useless. An
optimal teacher refrains from teaching such examples.

Lemma 7.1 Let C be a finite concept class and c∗ ∈ C be a target. Let H : C∪{init} →
R be such that for all h ∈ C ∪ {init} \ {c∗},

H(h) = min
z∈X (c∗)
z /∈X (h)

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′)

 (7.1)

and H(c∗) = 0. A teacher T : C ∪ {init} → X (c∗) is optimal for teaching c∗ to L1 with
feedback if and only if for all h ∈ C ∪ {init} \ {c∗},

T (h) ∈ argmin
z∈X (c∗)
z /∈X (h)

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′)

 . (7.2)

The minimum teaching time for teaching c∗ to L1 with feedback is H(init).

The characterization in Lemma 7.1 can be used to prove the optimality of teachers
and the optimal teaching time for concepts. We show this for the class of monomials
without the concept ∅.

Fact 7.2 Let n ≥ 2, and let M1
n not contain ∅. Then the concept 1k*n−k has an

optimal teaching time of

E+
1 (1k*n−k,M1

n) =
(3n − 2n)(2n + 2k)− 2n+k−1 + 2n+1 − 3n

3n − 2n + 2k−1

for all k ∈ {1, . . . , n}. The optimal teaching time for the all-concept is

E+
1 (∗n,M1

n) = 2n .

Proof. Let T be the teacher defined in Figure 7.1. We begin with the simpler case
k = 0, that is, c∗ = *n, and claim that H with H(h) = 2n for all h 6= c∗ is optimal. In
this case every teacher that always gives an arbitrary positive example until the learner
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Input: Target c∗ ∈ {0, 1, *}n, hypothesis h ∈ {0, 1, *}n.

Output: Example (x, b) ∈ X (c∗).

1 if h ⊃ c∗ then output (x, 0) with

x[i] =


1− c∗[i] if i = min{j h[j] = ∗ 6= c∗[j]},
c∗[i] if i 6= min{j h[j] = ∗ 6= c∗[j]} and c∗[i] 6= ∗,
0 otherwise.

2 else output (x, 1) with arbitrary x ∈ c∗ \ h.

Figure 7.1 Optimal teacher with feedback for the concept class of monomials (without the
concept ∅) and the learner L1. When the hypothesis encompasses the target, the teacher
gives a negative examples that maximizes the probability that the learner reaches, in the
next round, a hypothesis that does not encompass the target.

is in the target state is optimal. Every such example leads to one of 2n hypotheses
with equal probability of 2−n. Therefore we have for all z ∈ X (c∗) and for all h 6= c∗:

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′) = 1 + 2−n · (2n − 1)2n = 2n = H(h) .

The expectations H thus satisfy Condition (7.1) in Lemma 7.1. The teacher T satisfies
Condition (7.2) in Lemma 7.1.

Now let the target concept c∗ be represented by 1k*n−k with k ≥ 1. The behavior of
the teacher is based on a partition of all hypotheses into two groups. Within a group,
all hypotheses are assigned the example in the same way and have the same expected
teaching time. The first group contains all hypotheses h with h ⊃ c∗; these hypotheses
are called ⊃-hypotheses. The other group contains the remaining hypotheses (including
init), called the 6⊃-hypotheses.

Now we define the expectations H : C ∪ {init} → R by

H(h) = H⊃ :=
(3n − 2n)(2n + 2k)− 2n+k−1

3n − 2n + 2k−1

for all ⊃-hypotheses h and

H(h) = H 6⊃ :=
(3n − 2n)(2n + 2k)− 2n+k−1 + 2n+1 − 3n

3n − 2n + 2k−1

for all 6⊃-hypotheses h. Note that for n ≥ 2 we have H 6⊂ < H⊂.
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We have to prove that H and T satisfy the Conditions (7.1) and (7.2) in Lemma 7.1.
To this end, we shall make use of two claims.

Claim 1: Let (x, 0) be consistent with c∗, that is, x /∈ c∗. Then

(a) there are 3n − 2n hypotheses consistent with (x, 0);

(b) x is of the form y{0, 1}n−k with y containing ` ≥ 1 zeros;

(c) the number of ⊃-hypotheses consistent with (x, 0) is exactly 2k − 2k−` − 1.

Proof. Without loss of generality, let x ∈ 0`1k−`{0, 1}n−k for some ` ≥ 0.
(a) There are 2n concepts containing x, hence there are 3n − 2n concepts consistent

with (x, 0).
(b) If ` = 0, then x would be of the form 1k{0, 1}n−k and therefore in c∗, a contra-

diction.
(c) A concept d ∈M1

n encompasses c∗ if and only if d is of the form {1, *}k*n−k. In
addition, such a concept d is consistent with (x, 0) (that is, x /∈ d) if and only if d is of
the form y{1, *}k−`*n−k with y ∈ {1, *}` containing at least one “1”. There are exactly
(2` − 1) · 2k−` = 2k − 2k−` concepts satisfying the latter condition. Since c∗ does not
count as ⊃-hypothesis the sought number is one less, as claimed. � Claim 1

Claim 2: For every positive example there are 2n consistent hypotheses of which
2k − 1 are ⊃-hypotheses.

Proof. For every instance x ∈ 1k{0, 1}n−k there are exactly 2n concepts containing x.
The concepts that result from substituting 1’s by * in c∗ are the only concepts contain-
ing x and c∗. There are 2k−1 such concepts (c∗ itself is not a ⊃-hypothesis). � Claim 2

Now we prove that H satisfies Condition (7.1).

Case 1: h ⊃ c∗.

Then only negative examples z = (x, 0) are inconsistent with h. Without loss of
generality, let x ∈ 0`1k−`{0, 1}n−k with 1 ≤ ` ≤ k (the case ` = 0 is impossible by
Claim 1 (b)). Then

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′) = 1 +
2k − 2k−` − 1

3n − 2n
·H⊃ +

3n − 2n − 2k + 2k−`

3n − 2n
·H 6⊃.

The sum of the coefficients of H⊃ and H 6⊃ is (3n−2n−1)/(3n−2n) and thus independent
of `. The right hand side of the equation becomes minimal for ` = 1, since the coefficient
of H⊃ becomes minimal for ` = 1 and moreover H⊃ > H 6⊃. After plugging in H⊃ and
H 6⊃, a tedious calculation shows that this minimal value of the right hand side equals
H⊃. Thus in Case 1 the Condition (7.1) holds. � Case 1
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Case 2: h 6⊃ c∗.

If z is a positive example then by Claim 2,

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′) = 1 +
2k − 1

2n
·H⊃ +

2n − 2k

2n
·H 6⊃ = H 6⊃,

where the last equality is again due to a tedious calculation. If z is a negative example
then

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′) = 1 +
2k − 2k−` − 1

3n − 2n
·H⊃ +

3n − 2n − 2k + 2k−`

3n − 2n
·H 6⊃.

Again this expression is minimized for ` = 1 and its minimal value is H⊃. The value
for a positive example is thus smaller. This means that the minimal value of 1 +

1
|C(z)|

∑
h′∈C(z) H(h′) is H 6⊃, and the Condition (7.1) holds also for 6⊃-hypothesis. � Case 2

In the two previous cases we have identified examples z that minimize the value
1+ 1

|C(z)|
∑

h′∈C(z) H(h′). The teacher in Figure 7.1 always teaches such examples. There-

fore, that teacher satisfies Condition (7.2) in Lemma 7.1 and is thus optimal. �

The teacher from Figure 7.1 can be computed in linear time. It outputs a positive
example whenever possible (that is, when h 6⊃ c∗). Since there are 2n hypotheses
consistent with a positive example and 3n − 2n consistent with a negative one, this
means that T follows a greedy strategy minimizing the number of consistent hypotheses
for the learner to choose from, and thereby maximizing the probability for the learner
to reach the target c∗ in the next round.

Definition 7.3 Let C be a class over X and c∗ ∈ C. A teacher T : C ∪ {init} → X for
c∗ is called greedy iff for all h ∈ C: T (h) ∈ argmin

z∈X (c∗)
z /∈C(h)

|C(z)|.

The notion of greedy teacher cannot be generalized to arbitrary stochastic shortest
path problems, because in general the target state cannot be reached from all states
under all actions. The question of how good a greedy teacher can be is thus a teaching-
specific question, which cannot readily be answered by MDP theory. Such a greedy
strategy seems sensible in general and is provably optimal in the case of monomials.
However, there are classes where no greedy teacher is optimal.

Fact 7.4 There is a class C and target c∗ such that no greedy teacher is optimal.

Proof. Figure 7.2 displays such a concept class C and target c∗. The teacher T ∗ with
teaching times H∗ is an optimal teacher and T g with Hg is the only greedy teacher.
The values H∗ and Hg are obtained by solving the system of linear equations (6.7).
That T ∗ is indeed optimal can be checked using Lemma 7.1. �
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h x1 x2 x3 x4 x5 T ∗(h) H∗(h) T g(h) Hg(h)
init – – – – – (x1, 1) 176/35 ≈ 5.0285 (x1, 1) 2536/504 ≈ 5.0317
c∗ 1 1 1 1 1 – 0 – 0
c1 0 0 0 0 1 (x1, 1) 176/35 (x1, 1) 2536/504
c2 0 0 0 1 1 (x1, 1) 176/35 (x1, 1) 2536/504
c3 0 0 1 0 1 (x1, 1) 176/35 (x1, 1) 2536/504
c4 0 0 1 1 1 (x1, 1) 176/35 (x1, 1) 2536/504
c5 0 1 0 1 1 (x1, 1) 176/35 (x1, 1) 2536/504
c6 0 1 1 0 1 (x1, 1) 176/35 (x1, 1) 2536/504
c7 0 1 1 1 1 (x1, 1) 176/35 (x1, 1) 2536/504
c8 1 0 0 1 0 (x2, 1) 186/35 (x2, 1) 2680/504
c9 1 1 1 0 0 (x5, 1) 189/35 (x4, 1) 2725/504
c10 1 1 1 1 0 (x5, 1) 189/35 (x5, 1) 2723/504

Figure 7.2 The concept class C = {c∗, c1, . . . , c10} over X = {x1, . . . , x5} and two teachers,
T ∗ and T g, teaching c∗ to L1 with feedback. Teacher T ∗ is optimal and T g is the only
greedy teacher. The optimal teaching time is 176/35, but that of T g is 2536/504 and thus
suboptimal.

In contrast to the H-dimension and the teaching times in the B-restricted models,
the expected teaching times E+

1 (c, C) do not depend on additional assumptions. It is
therefore possible to compare E+

1 with other dimensions that occur in learning theory.
In particular, the comparison of E+

1 with the number MQ of membership queries (see
Angluin [3]) is interesting because MQ and E+

1 are both lower bounded by the teaching
dimension.

Fact 7.5

1. For all C and c ∈ C: E+
1 (c, C) ≥ TD(c, C).

2. There is no function of TD upper bounding E+
1 .

3. There is no function of E+
1 upper bounding MQ.

4. There is a concept class C with E+
1 (C) > MQ(C).

5. For all concept classes C, E+
1 (C) ≤ 2MQ(C).

Proof.

1. For every example z ∈ X (c) there are at least TD(c, C) consistent hypotheses.
Consequently, in every round the probability of reaching the target is at most
1/TD(c, C). The expected number of rounds is therefore at least TD(c, C).
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2. Let Cn = {c ⊆ [1, n] |c| = 2}. Then TD(Cn) = 2, but E+
1 (Cn) = n − 1 because

the optimal teacher gives positive examples all the time and there are n − 1
hypotheses consistent with such an example.

3. Let Cn = {c ⊆ [1, n] |c| = 1}. Then E+
1 (c, Cn) = 1 for all c ∈ Cn, but

MQ(Cn) = n− 1.

4. MQ(An) = n and E+
1 (An) = 2n−1.

5. It is known (see, for example, Angluin [5]) that log |C| ≤ MQ(C) for all classes
C. Also, E+

1 (C) ≤ |C| because in every step the learner cannot choose from more
than |C| hypotheses. Combining both inequalities yields the fact. �

Roughly speaking, teaching L1 can take arbitrarily longer than teaching in the teach-
ing dimension model, but is still incomparable with membership query learning.

7.2 Learners with Infinite Memory and Feedback

Learners with infinite memory can have infinitely many states (s, h) ∈ X ∗ × {C ∪
{init}). But the behavior of the learner L∞ is not affected by having the same example
in the memory multiple times. This makes it pointless to teach the same example
twice. Thus it suffices to consider the finitely many memories of length at most |X|.
The number of states we have to consider is therefore only finite. From the SSPP
optimality criterion Lemma 6.7 we can then immediately derive a characterization of
optimal teachers for L∞. This characterization is more complicated than in the L1 case
(Lemma 7.1) and difficult to write in closed form. Our first task is thus to simplify this
criterion (Lemma 7.8) by proving that an optimal teacher always gives examples that
are inconsistent with the current hypothesis (see Lemma 7.7).

The optimality criterion also yields an algorithm, called backward induction, for
computing the optimal teaching time. The runtime of this algorithm is, however, not
polynomial in the representation size of the concept class. A straightforward idea to
improve the backward induction is to consider only the first TD(c∗) rounds of the
teaching process, since there is always a teacher successful after that many rounds.
But, as we show in Fact 7.9, this modified algorithm does not always yield the optimal
teaching time. Indeed, that an efficient algorithm for computing E+

∞ is unlikely to
exist is shown afterwards in Theorem 7.11. This theorem is based on a general lemma
(Lemma 7.10) that relates E+

∞ to the teaching dimension.

It is not difficult to formally describe the SSPP corresponding to teaching c∗ ∈ C
to L∞ with feedback. We stipulate that in every state (s, h) only examples z /∈ s can
be given. As we mentioned above, an optimal teacher would not teach other examples
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anyway. This allows us to consider only memories in which no example occurs twice.
The set of states is thus

State = {(s, h) ∈ X (c∗)≤|X| × (C ∪ {init}) h ∈ C(s) and (i 6= j ⇒ s[i] 6= s[j])}.

The initial state is (〈 〉, init), and the set of target states is State∗ = {(s, h) ∈
State h = c∗}. For a state (s, h) and an example z /∈ s the transition probabili-
ties are

prob((s, h), z, (s′, h′))

= p((s, h), z, (s′, h′)) =


1 if z ∈ X (h) ∧ s′ = s ◦ 〈z〉 ∧ h′ = h,

1/|C(s′)| if z /∈ X (h) ∧ s′ = s ◦ 〈z〉 ∧ h′ ∈ C(s′),

0 otherwise.

As usual, the costs are 1 for each example, except for examples given in the target
state, which are costless:

cost((s, h), z) =

{
1 if h 6= c∗,

0 if h = c∗.

Plugging the above into Lemma 6.7 yields an optimality characterization that is
hard to write concisely. This is so because for p we have to distinguish three cases. In
comparison, Lemma 7.1 looks rather simple because we could confine the actions to
those examples that are inconsistent with the current hypothesis. This was possible
because a consistent example would not change the state of L1. Giving a consistent
example to L∞, however, does change the learner’s state. Below we show that it
nevertheless suffices to consider teachers that always give inconsistent examples. This
not only yields a simpler characterization, it is also interesting in its own right. As an
example, some consequences for learners with selective memory are discussed at the
end of this section.

Our first step towards this result is to prove that the order of the examples in an
infinite memory is not important. Therefore, we can regard the memory as a set
rather than a sequence. As a by-product, this reduces the number of states we have to
consider.

Fact 7.6 Let H satisfy the condition in Lemma 6.7 for an SSPP corresponding to
teaching c∗ ∈ C to L∞ with feedback. Let (s, h), (s̃, h) ∈ State be two states with
s, s̃ ∈ X k and {s[1], . . . , s[k]} = {s̃[1], . . . , s̃[k]}. Then H(s, h) = H(s̃, h).

Proof. The proof is by induction on the length k of s and s̃. We start at the maximal
possible length, k = |X|. Let (s, h), (s̃, h) ∈ State with |s| = |X|. Then both s and s̃
contain all examples in X (c∗) and thus h = c∗. Therefore H(s, h) = H(s̃, h) = 0.
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Now assume that the statement holds for all memories of length k > 0. We show
the fact for memories of length k − 1. Let s, s̃ ∈ X (c∗)k−1 be memories with identical
range and h a hypothesis such that (s, h), (s̃, h) ∈ State. If h = c∗ then both H-values
are again 0. We therefore assume that h 6= c∗. Since s and s̃ have the same range, we
have for all h′ and all z by the definition of p:

p((s, h), z, (s ◦ 〈z〉, h′)) = p((s̃, h), z, (s̃ ◦ 〈z〉, h′)).

With this and Lemma 6.7 we obtain:

H(s, h) = min
z∈X (c∗)

z /∈s

1 +
∑

(s′,h′)∈State

p((s, h), z, (s′, h′)) ·H(s′, h′)


= min

z∈X (c∗)
z /∈s

1 +
∑

(s◦〈z〉,h′)∈State

p((s, h), z, (s ◦ 〈z〉, h′)) ·H(s ◦ 〈z〉, h′)


= min

z∈X (c∗)
z /∈s

1 +
∑

(s̃◦〈z〉,h′)∈State

p((s̃, h), z, (s̃ ◦ 〈z〉, h′)) ·H(s̃ ◦ 〈z〉, h′)


= H(s̃, h).

The third equality holds because H(s ◦ 〈z〉, h′) = H(s̃ ◦ 〈z〉, h′) by the induction hy-
pothesis. �

Lemma 7.7 Let C be a class and c∗ be a target. Then there is an optimal teacher T ′

for teaching c∗ to L∞ with feedback that never gives an example consistent with the
current hypothesis, that is,

T ′(s, h) /∈ X (h)

for all (s, h) ∈ State \ State∗.

Proof. Let H satisfy the first condition in Lemma 6.7. Let T be a teacher that gives
a consistent example z1 = T (s, h) ∈ X (h) when the learner is in a state (s, h) ∈
State \ State∗. We assume that s is of maximal length with this property. That means
that in the follow-up state (s ◦ 〈z1〉, h) the teacher T gives an inconsistent example
z2 = T (s ◦ 〈z1〉, h) /∈ X (h).

We show that this teacher does not satisfy the second condition in Lemma 6.7 for
state (s, h). That means we show

z1 /∈ argmin
z∈X (c∗)

z /∈s

cost((s, h), z) +
∑

c∈C(s◦〈z〉)

prob((s, h), z, (s ◦ 〈z〉, c)) ·H(s ◦ 〈z〉, c)

 .
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As a shortcut we denote the expression in the large parentheses by Yz. In general, the
value of Yz is

Yz = 1 +
1

|C(s ◦ 〈z〉)|
·
∑

c∈C(s◦〈z〉)

H(s ◦ 〈z〉, c).

for examples z /∈ X (h) and
Yz = 1 + H(s ◦ 〈z〉, h)

for examples z ∈ X (h). The value of Yz with z set to z1 is

Yz1 = 1 + H(s ◦ 〈z1〉, h) = 2 + q ·
∑

c∈C(s◦〈z1,z2〉)

H(s ◦ 〈z1, z2〉, c) (7.3)

with q = 1/|C(s ◦ 〈z1, z2〉)|.
Now we show that (7.3) is not the minimal value of Yz over all examples z by showing

that Yz2 < Yz1 . At first we have

Yz2 = 1 + q′ ·
∑

c∈C(s◦〈z2〉)

H(s ◦ 〈z2〉, c) (7.4)

with q′ = 1/|C(s ◦ 〈z2〉)|. The values H(s ◦ 〈z2〉, c) in the summation are

H(s ◦ 〈z2〉, c) =

= min
z∈X (c∗)
z /∈s◦〈z2〉

1 +
∑

c′∈C(s◦〈z2,z〉)

prob((s ◦ 〈z2〉, c), z, (s ◦ 〈z2, z〉, c′)) ·H(s ◦ 〈z2, z〉, c′)


< 1 +

∑
c′∈C(s◦〈z2,z1〉)

prob((s ◦ 〈z2〉, c), z1, (s ◦ 〈z2, z1〉, c′)) ·H(s ◦ 〈z2, z1〉, c′)

where the upper bound results from setting z to z1. When substituting the upper
bounds just derived for the H-values in (7.4), we have to distinguish between hypothe-
ses c for which z1 is consistent and those for which z1 is inconsistent and triggers a
hypothesis change. We get as upper bound for (7.4):

Yz2 < 1 + q′


∑

c∈C(s◦〈z2〉)
c/∈C(s◦〈z2,z1〉)

c 6=c∗

1 + q′′
∑

c′∈C(s◦〈z2,z1〉)

H(s ◦ 〈z2, z1〉, c′)



+
∑

c∈C(s◦〈z2,z1〉)
c 6=c∗

(1 + H(s ◦ 〈z2, z1〉, c))





7.2 Learners with Infinite Memory and Feedback 145

with q′′ = 1/|C(s ◦ 〈z2, z1〉)| = q. Now all occurring H-values have s ◦ 〈z2, z1〉 as first
argument. Removing the first summation yields

1 + q′

|C(s ◦ 〈z2〉) \ C(s ◦ 〈z2, z1〉) \ {c∗}| ·

1 + q′′
∑

c′∈C(s◦〈z2,z1〉)

H(s ◦ 〈z2, z1〉, c′)



+
∑

c∈C(s◦〈z2,z1〉)
c 6=c∗

(1 + H(s ◦ 〈z2, z1〉, c))

 .

We set r = |C(s ◦ 〈z2〉) \ C(s ◦ 〈z2, z1〉) \ {c∗}| and r′ = |C(s ◦ 〈z2, z1〉) \ {c∗}|. After
multiplying out we obtain

Yz2 < 1+q′r′+q′r′q′′
∑

c′∈C(s◦〈z2,z1〉)

H(s◦〈z2, z1〉, c′)+q′r+q′r
∑

c′∈C(s◦〈z2,z1〉)

H(s◦〈z2, z1〉, c′)

and after sorting the terms,

Yz2 < 1 + q′r′ + q′r + (q′rq′′ + q′)
∑

c′∈C(s◦〈z2,z1〉)

H(s ◦ 〈z2, z1〉, c′). (7.5)

The first three terms can be upper bounded by 1+q′r′+q′r = 1+q′(r+r′) = 2−q′ < 2.
The coefficient q′rq′′ + q′ of the summation can be upper bounded as follows:

q′rq′′ + q′ = q′′ · |C(s ◦ 〈z2〉) \ C(s ◦ 〈z2, z1〉) \ {c∗}|
|C(s ◦ 〈z2〉)|

+ q′

= q′′ ·
(

1− |C(s ◦ 〈z2, z1〉)|+ 1

|C(s ◦ 〈z2〉)|

)
+ q′

< q′′ ·
(

1− |C(s ◦ 〈z2, z1〉)|
|C(s ◦ 〈z2〉)|

)
+ q′

= q′′ − 1

|C(s ◦ 〈z2〉)|
+ q′

= q′′.

Applying these upper bounds to (7.5), it follows

Yz2 < 2 + q′′ ·
∑

c′∈C(s◦〈z2,z1〉)

H(s ◦ 〈z2, z1〉, c′)

= 2 + q ·
∑

c′∈C(s◦〈z2,z1〉)

H(s ◦ 〈z1, z2〉, c′)

= Yz1
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where the first equality holds because q′′ = q and H(s ◦ 〈z2, z1〉, c′) = H(s ◦ 〈z1, z2〉, c′)
by Fact 7.6. Therefore Yz2 is strictly less than Yz1 , which means that the example z1 is
not in the set argminz∈X (c∗),z /∈s Yz. This shows that the teacher T does not satisfy the
second condition in Lemma 6.7. �

In every state (s, h) ∈ State we have h ∈ C(s), and therefore the condition z /∈ X (h)
implies z /∈ s. Because of this we have omitted the condition z /∈ s in the following
optimality characterization.

Lemma 7.8 Let C be a finite concept class and c∗ ∈ C be a target. Let H : X≤|X| ×
(C ∪ {init}) → R be such that for all (s, h) ∈ State \ State∗:

H(s, h) = min
z∈X (c∗)
z /∈X (h)

1 +
1

|C(s ◦ 〈z〉)|
∑

h′∈C(s◦〈z〉))

H(s ◦ 〈z〉, h′)

 (7.6)

and for all (s, h) ∈ State∗: H(s, h) = 0. A teacher T : X ∗ × (C ∪ {init}) → X (c∗) is
optimal for teaching c∗ to L∞ with feedback if and only if for all (s, h) ∈ State \State∗:

T (s, h) ∈ argmin
z∈X (c∗)
z /∈X (h)

1 +
1

|C(s ◦ 〈z〉)|
∑

h′∈C(s◦〈z〉))

H(s ◦ 〈z〉, h′)

 . (7.7)

The minimum teaching time for teaching c∗ to L∞ with feedback is H(〈 〉, init).

Lemma 7.8 is virtually the same as Lemma 7.1, only with a larger set of states. For
a given state (s, h) the sum in the minimization ranges over the hitting times of all
possible follow-up states. The main difference to the condition in Lemma 7.1 is that in
(7.6) and (7.7) there are no cyclic dependencies within the H-values. Intuitively, the
reason for this is that a learner with infinite memory cannot reach the same state twice
during a teaching process, because in each round the memory grows.

The lack of cyclic dependencies yields a straightforward inductive algorithm for com-
puting all optimal hitting times. A state (s, h) with |s| = |X| has a hitting time of
H(s, h) = 0. The optimal hitting times for states with smaller memories can be com-
puted using formula (7.6) in Lemma 7.8, until finally the states with empty memory
are reached. This algorithm is called backward induction and runs in time polynomial
in the representation size of the MDP, but not polynomial in the representation size of
the teaching problem, that is, in the matrix representation of C.

A tempting idea for improvement is based on the observation that a teacher that
gives a minimum teaching set is always successful after TD(c∗) rounds. Not every such
teacher is optimal, but one could conjecture that there is at least one optimal teacher
among them. This is, however, not always the case.

Fact 7.9 There is a concept class C and a concept c∗ ∈ C such that all teachers teach-
ing c∗ with feedback to the learner L∞ finitely within TD(c∗) rounds are suboptimal.
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Proof. The concept class C and the concept c∗ are defined by Figure 7.3. The teaching
dimension of c∗ is three and the unique minimum teaching set is S = {(x1, 1), (x2, 1),
(x3, 1)}. We first prove that every teacher that teaches finitely within three rounds
needs expected 2.6 rounds.

Let T be such a teacher. In order to be successful after three rounds, T must teach
the examples in S in some order and hence start with (x1, 1), (x2, 1), or (x3, 1). For
symmetry reasons we can assume, without loss of generality, that T starts with (x1, 1).
The probability for the learner to reach c∗ in the first step is 1/9. The remaining
probability mass of 8/9 is equally distributed between the possibility of reaching a
hypothesis containing x2, but not x3, and the possibility of reaching a hypothesis
containing x3, but not x2. As both cases are symmetric, we assume the first one
without loss of generality. The teacher then goes on teaching (x3, 1), which is the only
example in S inconsistent with the current hypothesis. Then the probability of reaching
c∗ is 1/5 since there are five hypotheses consistent with (x1, 1) and (x3, 1), namely
c∗, c2, c5, c8, c11. With probability 4/5 the learner reaches a hypothesis not containing
x2. Finally the teacher gives (x2, 1), which leads to c∗ with certainty. Altogether the
expected number of rounds is

1

9
· 1 +

8

9
· 1

5
· 2 +

8

9
· 4

5
· 3 = 2.6 .

On the other hand, let T ′ be the teacher starting with (x4, 1) and then teaching
in each round an inconsistent example from S. In the first round, the probability
for an immediate transition to c∗ is 1/4. In the second, third, and fourth round the
probabilities are 1/3, 1/2, and 1, respectively, since each example rules out exactly one
hypothesis. Thus the expected number of rounds for T ′ is

1

4
· 1 +

3

4
· 1

3
· 2 +

3

4
· 2

3
· 1

2
· 3 +

3

4
· 2

3
· 1

2
· 4 = 2.5 .

Therefore the teacher T is not optimal. �

We are going to show that most likely there is no polynomial time algorithm to
even approximate E+

∞(c∗, C) up to a constant factor. This result relies on the following
lemma, which shows that E+

∞(c∗, C) differs from TD(c∗, C) by at most a factor of two.

Lemma 7.10 Let C be a class and let c∗ ∈ C be a target. For all m ∈ [1,TD(c∗, C)],

E−
m(c∗, C) ≥ E+

m(c∗, C) ≥ m(m− 1)

2TD(c∗, C)
+ TD(c∗) + 1−m,

and for all m > TD(c∗, C) and for m = ∞,

TD(c∗, C) ≥ E−
m(c∗, C) ≥ E+

m(c∗, C) ≥ TD(c∗, C)

2
.
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x1 x2 x3 x4 x5 x6

init – – – – – –
c∗ 1 1 1 1 1 1
c1 1 1 0 1 1 1
c2 1 0 1 1 1 1
c3 0 1 1 1 1 1
c4 1 1 0 0 1 0
c5 1 0 1 0 1 0
c6 0 1 1 0 1 0
c7 1 1 0 0 0 1
c8 1 0 1 0 0 1
c9 0 1 1 0 0 1
c10 1 1 0 0 0 0
c11 1 0 1 0 0 0
c12 0 1 1 0 0 0

Figure 7.3 Concept class and target for which the optimal L∞-teacher with feedback has
not finished after TD(c∗) = 3 rounds. The optimal teacher starts with (x4, 1) and finishes
after 4 rounds (see Fact 7.9).

Proof. Let k = TD(c∗) and m ∈ [1,TD(c∗)]. It suffices to show the statement for E+
m.

The proof is based on the following observation.

Claim: For i examples z0, . . . , zi−1 ∈ X (c∗): |C({z0, . . . , zi−1})| ≥ k + 1− i.

Proof. Assume |C({z0, . . . , zi−1})| ≤ k − i. Then c∗ can be specified with k − i − 1
examples with respect to C({z0, . . . , zi−1}) (each example rules out at least one concept).
Thus, c∗ can be uniquely specified with z0, . . . , zi−1 plus k− i−1 other examples, which
amounts to k − 1 examples. This contradicts TD(c∗) = k. � Claim

Using the claim we upper bound the probabilities for reaching the target in round
i = 0, . . . ,m− 2. At the end of round i the learner knows i + 1 examples and therefore
can choose between at least k − i consistent hypotheses (see the claim). Thus, the
probability for entering c∗ in round i + 1 is at most pi = 1/(k − i). Beginning with
round m − 1, the learner knows m examples at the end of the round and has in each
following round i ≥ m − 1 a probability of at most pi = pm−1 = 1/(k + 1 − m) of
reaching c∗.

No teaching process can be faster than one with the probabilities pi described above.
The expected teaching time of such a process is

m−2∑
i=0

(i + 1) · pi ·
i−1∏
j=0

(1− pj) +
∞∑

i=m−1

(i + 1) · pi ·
i−1∏
j=0

(1− pj) . (7.8)



7.2 Learners with Infinite Memory and Feedback 149

We first calculate the second sum in (7.8). Since
∏m−2

j=0 (1 − pj) = k−m+1
k

the product∏i−1
j=0(1− pj) in the right sum equals k−m+1

k
· (1− pm−1)

i−m+1 and the whole sum can
be written as

∞∑
i=m−1

(i + 1) · pm−1 · k−m+1
k

· (1− pm−1)
i−m+1

= k−m+1
k

·
∞∑
i=0

(m + i) · pm−1 · (1− pm−1)
i

= k−m+1
k

·

(
m− 1 +

∞∑
i=0

(i + 1) · pm−1 · (1− pm−1)
i

)
.

The sum appearing in the last line is the expectation of the first success in a Bernoulli
experiment with probability pm−1 and thus equals 1/pm−1 = k−m+1. For the second
sum in (7.8) we therefore get

k−m+1
k

· (m− 1 + k −m + 1) = k −m + 1 .

Calculating the first sum in (7.8) yields

m−2∑
i=0

(i + 1) · 1
k−i

·
i−1∏
j=0

k−j−1
k−j

=
m−2∑
i=0

(i + 1) · 1
k−i

· k−i
k

=
m(m− 1)

2k
.

Putting it together we obtain m(m−1)
2k

+ k + 1−m as the value of (7.8).

For m > TD(c∗) the teaching process described above takes at most TD(c∗) rounds.
The lower bound is therefore the same as for m = TD(c∗). Moreover, a teacher giving
the examples of a minimum teaching set is successful after TD(c∗) rounds, from which
it follows that TD(c∗) ≥ E−

m(c∗) ≥ E+
m(c∗). �

Setting m = ∞ we conclude from the previous lemma that

TD(c∗, C) ≥ E+
∞(c∗, C) ≥ TD(c∗, C)

2
, (7.9)

which means that every algorithm computing E+
∞(c∗, C) also computes a factor 2 ap-

proximation of the teaching dimension. Theorem 3.6 shows that the teaching set prob-
lem is a hard approximation problem, and this suggests that a similar result holds for
E+
∞ as well.
The problem corresponding to MIN-TEACHING-SET in the TD model would be the

problem of finding an optimal teacher for L∞ with feedback. Such a teacher has a
representation size of O(|X||X|!·|C|) and is thus not polynomial in the representation
size |C| · |X| of the teaching problem. Finding such an optimal teacher is therefore not
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an NPO optimization problem (see Ausiello et al. [10]), and results about the hardness
of SET-COVER cannot be immediately transferred. But a closer look at the proofs of
these hardness results shows that also approximating this “set cover number” is hard
in some sense. We demonstrate such a reasoning in the next theorem, which shows
that E+

∞ is hard to approximate within a factor of 1
2
(1− ε) ln(|C| − 1) for any ε > 0.

Theorem 7.11 If there is a polynomial time algorithm computing for all finite classes
C and concepts c ∈ C rational number A(c, C) such that

E+
∞(c, C)

1
2

√
(1− ε) ln(|C| − 1)

≤ A(c, C) ≤ 1
2

√
(1− ε) ln(|C| − 1) · E+

∞(c, C)

for some ε > 0, then NP ⊆ DTime(nO(log log n)).

Proof. We suppose for a contradiction that there is such a polynomial time algorithm.
Using (7.9) we get

TD(c, C)√
(1− ε) ln(|C| − 1)

≤ A(c, C) ≤ 1
2

√
(1− ε) ln(|C| − 1) · TD(c, C).

Using the correspondence between SET-COVER and MIN-TEACHING-SET instances (see
Page 48) we conclude that there is also a polynomial time algorithm A′ computing for
every SET-COVER instance (U, V1, . . . , Vk) a value A′(U, V1, . . . , Vk) with

SC (U, V1, . . . , Vk)√
(1− ε) ln |U |

≤ A′(U, V1, . . . , Vk) ≤ 1
2

√
(1− ε) ln |U | · SC (U, V1, . . . , Vk)

where SC (U, V1, . . . , Vk) is the minimal number of sets in V1, . . . , Vk needed to cover U .
Now let Π be an NP decision problem and let Π+ and Π− be the set of positive and

negative instances, respectively. Feige [28, Theorem 4.4] shows that it is possible to
map every instance π ∈ Π in time nO(log log n) to a SET-COVER instance (U, V1, . . . , Vk)
such that for an easily computable value Q:

π ∈ Π+ ⇔ SC (U, V1, . . . , Vk) ≤ Q,

π ∈ Π− ⇔ SC (U, V1, . . . , Vk) > (1− ε) ln |U | ·Q.
(7.10)

By checking the condition “A′(U, V1, . . . , Vk) <
√

(1− ε) ln |U | · Q” one can decide
whether π is a positive or negative instance for Π: Assume the condition holds; then
SC (U, V1, . . . , Vk) < (1 − ε) ln |U | · Q and by (7.10) we have π ∈ Π+. Now let π ∈
Π+; then by (7.10) SC (U, V1, . . . , Vk) ≤ Q and A′(U, V1, . . . , Vk) ≤ 1

2

√
(1− ε) ln |U | ·

SC (U, V1, . . . , Vk) ≤ 1
2

√
(1− ε) ln |U | ·Q <

√
(1− ε) ln |U | ·Q.

It follows that it can be decided in time nO(log log n) whether any given π is a pos-
itive instance for the arbitrarily chosen NP problem Π. This means that NP ⊆
DTime(nO(log log n)). �
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Although Lemma 7.10 is responsible for a negative result about the approximability
of E+

∞, we can also draw a positive conclusion from it: if the TD-value is known, there
is often no need to compute the E+

∞-value. For example, the teachabilities of concepts
or classes for infinite memory learners with feedback can be compared by comparing
the teaching dimensions of these concepts or classes.

We finally mention some implications of Lemma 7.7 to teaching learners with infinite
selective memory (see Definition 4.28). An optimal teacher for infinite selective mem-
ory learners with feedback always teaches an example inconsistent with the current
hypothesis; a consistent example would not change the learner’s state. Such an opti-
mal teacher can be applied to the non-selective memory learner, which then behaves
exactly like the selective memory learner. On the other hand, an optimal teacher that
satisfies Lemma 7.7 makes the selective memory learner behave like the non-selective
memory learner. This means that the optimal teaching times for learners with infinite
selective memory and infinite non-selective memory are equal. The same is true for
learners with memory size one. However, it is open whether it holds for m-memory
learners with 1 < m < ∞, because the proof of Fact 7.6 does not generalize to m < ∞.

7.3 Learners with Infinite Memory and without

Feedback

We limit our discussion to the hardness of approximating E−
∞. From Lemma 7.10 we

know that TD(c∗, C) ≥ E−
∞(c∗, C) ≥ TD(c∗, C)/2. We can thus prove an analog to

Theorem 7.11.

Theorem 7.12 If there is a polynomial time algorithm computing for all c∗, C a ratio-
nal number A(c∗, C) such that

E−
∞(c, C)

1
2

√
(1− ε) ln(|C| − 1)

≤ A(c∗, C) ≤ 1
2

√
(1− ε) ln(|C| − 1) · E−

∞(c∗, C)

for some ε > 0, then NP ⊆ DTime(nO(log log n)).

Another consequence of Lemma 7.10 is that the optimal teaching times E+
∞ and

E−
∞ of teaching with and without feedback differ by a factor of at most two. This

means that feedback is not that much of a help when teaching randomized learners
with infinite memory.





Chapter 8

Memoryless Learners without
Feedback

8.1 A Characterization of Successful Teachers

For convenience we restate some notation introduced in Section 6.2 for the special case
of teaching the learner L1 without feedback. Again, as in Section 7.1, the state of the
learner is only the hypothesis. Given a teacher T : N → X (c∗) the series of probability

distributions during the teaching process is δ
(t)
T : C ∪ {init} → [0, 1] with δ(0) = δ(init)

and

δ
(t+1)
T (h) =


δ
(t)
T (h) +

1

|C(T (t))|
·
∑

c/∈C(T (t))

δ(t)(c) if h ∈ C(T (t)),

0 if h /∈ C(T (t)).

Intuitively speaking, the following happens to the probability distribution during one
round of teaching. At the beginning of round t, let δ(t) be the probability distribution
over all hypotheses. Then an example z = T (t) ∈ X (c∗) for the target is given. This
example activates the probability mass of all hypotheses it is inconsistent with, that is,∑

c/∈C(z) δ(t)(c). This probability mass is then equally distributed among all hypotheses

that are consistent with z. That means, every hypothesis h ∈ C(z) receives a share of
1

|C(z)| ·
∑

c/∈C(z) δ(t)(c) of additional probability. The probability of all other hypotheses
is set to zero.

For illustration, Figures 8.1 and 8.2 show two attempts to teach c0 = [1, 4] ∈ S4.
The teacher in Figure 8.2 is not successful because it fails to activate the probability
mass of hypothesis c4. We observe that activating all hypotheses at least “once in a
while” is necessary to be a successful teacher. The easiest way to achieve this is to
iterate through a teaching set forever. The teacher in Figure 8.1 does just this and is
successful. More general, we have the following fact.

Fact 8.1 Let C be a finite concept class and c∗ ∈ C. Let S = {z1, . . . , zk} be a teaching
set for c∗ with respect to C. The teacher T : N → X (c∗) with T (i) = z1+(i mod k) for all
i ∈ N teaches c∗ successfully to L1 without feedback. The expected teaching time is at
most |S| · |C|.



154 Chapter 8 Memoryless Learners without Feedback

t 0 1 2 3 4 5 6 · · · 31 32

δ
(t)
T (init) 1.000 0.000 0.000 0.000 0.000 0.000 0.000 · · · 0.000 0.000

δ
(t)
T (c0) 0.000 0.250 0.312 0.391 0.488 0.548 0.607 · · · 0.988 0.990

δ
(t)
T (c1) 0.000 0.000 0.062 0.141 0.238 0.000 0.059 · · · 0.004 0.005

δ
(t)
T (c2) 0.000 0.250 0.000 0.078 0.176 0.235 0.000 · · · 0.002 0.003

δ
(t)
T (c3) 0.000 0.250 0.312 0.000 0.098 0.157 0.216 · · · 0.000 0.002

δ
(t)
T (c4) 0.000 0.250 0.312 0.391 0.000 0.060 0.118 · · · 0.006 0.000

T (t) (1, 1) (2, 1) (3, 1) (4, 1) (1, 1) (2, 1) (3, 1) · · · (4, 1) (1, 1)

Figure 8.1 Probability distributions over the hypotheses in S4 ∪ {init} during a teaching
process. The teacher T gives the examples (1, 1), (2, 1), (3, 1), (4, 1) for the target concept c0

in an endless loop. The slanted numbers show the probability mass activated in each round
by the given example. During the teaching process the probability mass aggregates at the
target hypothesis.

t 0 1 2 3 4 5 6 · · · 10 11

δ
(t)
T (init) 1.000 0.000 0.000 0.000 0.000 0.000 0.000 · · · 0.000 0.000

δ
(t)
T (c0) 0.000 0.250 0.312 0.391 0.426 0.454 0.470 · · · 0.495 0.497

δ
(t)
T (c1) 0.000 0.000 0.062 0.141 0.000 0.028 0.044 · · · 0.000 0.002

δ
(t)
T (c2) 0.000 0.250 0.000 0.078 0.113 0.000 0.016 · · · 0.007 0.000

δ
(t)
T (c3) 0.000 0.250 0.312 0.000 0.035 0.063 0.000 · · · 0.003 0.005

δ
(t)
T (c4) 0.000 0.250 0.312 0.391 0.426 0.454 0.470 · · · 0.495 0.497

T (t) (1, 1) (2, 1) (3, 1) (1, 1) (2, 1) (3, 1) (1, 1) · · · (2, 1) (3, 1)

Figure 8.2 Probability distributions over the hypotheses in S4 ∪ {init} during a teaching
process. The teacher T gives the examples (1, 1), (2, 1), (3, 1) for the target concept c0 in an
endless loop. The slanted numbers show the probability mass activated in each round by the
given example. The probability mass belonging to c4 is never activated. Consequently, the
probability mass aggregates not only at the target c∗ but also at c4. This teacher is therefore
not successful.

Proof. Unless the learner hypothesizes c∗, there is at least one example zi inconsistent
with the current hypothesis. Therefore during every iteration through z1, . . . , zk at
least one hypothesis change occurs. This change leads to c∗ with probability at least
1/|C|. The expected number of rounds to reach the target is therefore at most k · |C|. �

The upper bound in the previous fact can be improved because typically much less
than |C| concepts are consistent with any given memory contents and thus the prob-
ability of reaching the target is often much greater than 1/|C|. A more important
consequence of Fact 8.1 is that for all concepts c and all finite concept classes C the
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value E−
1 (c, C) is finite.

We have seen that presenting a teaching set infinitely often always yields a teacher
with a finite teaching time. And in some sense conversely, a teacher must present
teaching sets infinitely often in order to be successful. This is in fact a characterization
of successful teachers.

Fact 8.2 Let C be a finite concept class and c∗ ∈ C with TD(c∗, C) > 1. A teacher
T : N → X (c∗) is a successful teacher for c∗ to L1 if and only if for all t ∈ N there is a
t′ ≥ t such that the set {T (i) t ≤ i ≤ t′} is a teaching set for c∗ with respect to C.

Proof. We begin with the “only if” direction. Suppose there was a minimal t such that
for all t′ ≥ t, {T (i) t ≤ i ≤ t′} is no teaching set for c∗. Then the set S = {T (i) i ≥ t}
is also no teaching set.

Since TD(c∗) > 1 there are always at least two concepts consistent with any example
given by the teacher. Therefore, at every round there are at least two hypotheses with
positive probability. In particular after round t not the whole probability mass is
concentrated in the target. Let h 6= c∗ be a hypothesis with positive probability after
round t. Then there must eventually come an example that is inconsistent with h,
say T (t′) for some t′ > t. In round t′ + 1 all hypotheses in C(T (t′)) have a positive
probability. In particular, since T (t′) ∈ S, all hypotheses in C(S) have a positive
probability. Among these hypotheses there is an h′ 6= c∗ because S is no teaching set
for c∗. This h′ is consistent with S and therefore after round t the teacher gives no
example inconsistent with h′. Consequently the probability for h′ will remain positive
forever and the probability for the target c∗ does not converge to 1.

For the “if” direction assume that for all t ∈ N there is a t′ ≥ t such that the set
{T (i) t ≤ i ≤ t′} is a teaching set for c∗ with respect to C. Recall that for all t ∈ N
and h ∈ C ∪ {init} the value δ

(t)
T (h) is the probability for being in state h at round t,

that is, immediately before example T (t) is given.
By assumption there are rounds 0 = t0 < t1 < t2 < . . . such that for all j the set

{T (i) tj ≤ i < tj+1} is a teaching set for c∗. We show that limj→∞(1− δ
(tj)
T (c∗)) = 0.

As abbreviation for the “non-target probability” we set αj := 1− δ
(tj)
T (c∗).

At round tj the average probability of a non-target hypothesis is least αj/|C|, and
hence there is a hypothesis h whose probability is at least αj/|C|. Before round tj+1

an example is given that is inconsistent with h. At this point the probability for the
target increases by at least αj/|C|2 because the probability mass of h is distributed
among at most |C| hypotheses (including the target). That means that the non-target
probability decreases by at least αj/|C|2. In other words, αj+1 ≤ αj−αj/|C|2. It follows
αj+1 ≤ (1 − 1/|C|2) · αj and therefore (αj)j∈N converges to 0 for j → ∞. This shows

that limj→∞ δ
(tj)
T (c∗) = 1, and thus T is successful. �

Successful teachers are good and well, but of course we would prefer an optimal
teacher. In addition, the optimal teaching time describes the teachability that is as-
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signed to each concept. In the next two sections we shall see that characterizing optimal
teachers or computing optimal teaching times is much more difficult than characterizing
teachers that are merely successful.

8.2 A Characterization of Optimal Teachers

In all situations discussed in Chapter 7 the optimal teaching time could, in principle,
be computed by computing the teaching times of finitely many “reasonable” teachers.
A simpler method was to use characterizations of optimal teachers and their hitting
times. In contrast, in the situation of memoryless learners without feedback there
are uncountably many teachers. Therefore the optimal teaching time cannot be com-
puted, not even in principle, by evaluating all teachers. It remains the approach via a
characterization of optimal teachers.

Patek [61, 62] presents an optimality criterion for policies in the setting of unobserv-
able stochastic shortest path problems (USSPP). The idea of this criterion is to use
the probability distributions δ over the learner’s states as new states. This results in
an observable Markov decision process that, however, has uncountably many states.

In the same way as SSPPs are more general than our randomized teaching models
with feedback, USSPPs are more general than our randomized models without feed-
back. However, we face two problems when trying to adapt Patek’s result to our
teaching model. First, the criterion holds only for USSPPs satisfying certain assump-
tions. The most general such assumption presented by Patek is called “Assumption
C.” Second, policies (that is, teachers) have to be defined over so called information
states, which are slightly different from the probability distributions δ. Our plan to get
the optimal teacher characterization in this section now is as follows:

1. Explain information states and teachers over information states and introduce
other necessary notation.

2. Translate Assumption C into our teaching terminology and show that it holds for
teaching L1 without feedback.

3. Translate Patek’s characterization of optimal policies and teaching times into our
teaching terminology.

Teachers Over Information States

An information state is a probability distribution γ : (C ∪{init})\{c∗} → [0, 1] over all
learner’s states except the target state. Formally, for a distribution δ : C∪{init} → [0, 1]
the information state is γ with

γ(h) =
δ(h)

1− δ(c∗)
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for all h ∈ (C ∪{init})\{c∗}. We abbreviate (C ∪{init})\{c∗} with Ĉ. In other words,
γ describes the conditional probabilities of being in the states h 6= c∗ provided that the
target has not yet been reached. The set of all information states is denoted by

Γ = {γ : Ĉ → [0, 1]
∑
c∈Ĉ

γ(c) = 1} ∪ {0},

where 0 is the constant zero function over Ĉ. We use Ĉ(z) to denote the set C(z) ∩
Ĉ = C(z) \ {c∗} for examples z. Moreover, we write “d /∈ Ĉ(z)” as shorthand for

“d ∈ Ĉ \ Ĉ(z).” The special information state 0, in which all probabilities are zero,
means that the target has been reached with probability 1. This can only happen when
a complete teaching set fits into the learner’s memory, that is, if TD(c∗) = 1. Other
than in this special case there is no target state. The initial information state is γ(init)

with γ(init)(init) = 1.
The behavior of the learner L1 can also be described in terms of information states,

rather than in terms of the probability distribution δ (compare with Page 153). When
L1 in information state γ receives the example z ∈ X (c∗) it switches to an information
state f(γ, z). The function f : Γ×X (c∗) → Γ maps γ and z to an information state γ̂
with

γ̂(c) =


γ(c) + 1

|bC(z)|

∑
d/∈bC(z) γ(d)

1− 1

|bC(z)|

∑
d/∈bC(z) γ(d)

if c ∈ Ĉ(z),

0 if c /∈ Ĉ(z).

(8.1)

Crucial for the optimality criterion is the interpretation of teachers as functions
T̃ : Γ → X (c∗) over information states. Such a teacher T̃ , when applied to an initial
state γ(0) ∈ Γ and subsequently to all emerging states, yields a teacher T : N → X (c∗).

Formally, T (0) = T̃ (γ(0)), γ(i+1) = f(γ(i), T (i)), and T (i + 1) = T̃ (γ(i+1)). We call T

the sequential teacher for T̃ starting in γ(0). Most important are the sequential teachers
starting in γ(init). For generality, Patek considers series of policies and thus we have to
consider series T̃ = (T̃t)t∈N of teachers. Such a series is called stationary if all teachers
in it are identical. We identify a stationary teacher series with the unique teacher it
contains. A sequential teacher for a teacher series can be defined similarly as above for
a single teacher.

Given a teacher series (T̃t)t∈N, the expected time for the learner L1 to reach the target
when starting in γ ∈ Γ is denoted by G eT (γ). This yields a function G eT : Γ → R. We
denote by G the set of all functions G : Γ → R and by GB the subset of G containing
all bounded functions. Intuitively, G contains all functions that map each information
state γ to the expected number of rounds for a learner starting in γ.

We also need two dynamic programming operators D and DeT mapping functions
G : Γ → R to functions with the same domain and codomain. We denote the application
of D or DeT to a function G by DG or DeT G; the value of the resulting function for an
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argument γ ∈ Γ is denoted by [DG](γ) and [DeT G](γ). The operators are now defined
as follows:

[DeT G](γ) = 1 + G(f(γ, T̃ (γ))) ·
∑
c,d∈bC

γ(c) · p(c, T̃ (γ), d) ,

[DG](γ) = min
z∈X (c∗)

(
1 + G(f(γ, z)) ·

∑
c,d∈bC

γ(c) · p(c, z, d)

)
.

The value G(γ) can be thought of as expectation of the number of rounds to reach
the target when the teaching process starts in information state γ. Roughly speaking,
[DeT G](γ) is the expectation for the learner starting in γ under teacher T̃ , assuming
that for all other states the expectations are given by G.

We denote the composition DeT0
◦ (DeT1

◦ (· · · ◦ (DeTt−1
◦ DeTt

) . . . )) of finitely many
operators by DeT0

DeT1
· · ·DeTt

. The expected number of rounds for reaching c∗ when L1

starts in some γ(0) ∈ Γ and is taught by the teacher series (T̃t)t∈N is given by

G eT (γ(0)) = lim inf
t→∞

[DeT0
DeT1

· · ·DeTt
0](γ(0)).

An information state teacher series (T̃t)t∈N is called optimal if and only if

G eT (γ) = infeU GeU(γ)

for all γ ∈ Γ, where Ũ ranges over all teacher series (Ũt)t∈N. This notion of optimality
for information state teachers is compatible with our notion of optimality for sequential
teachers.

Lemma 8.3 Let (T̃t)t∈N be an optimal series of information state teachers and let T be

the sequential teacher for T̃ starting in γ(init). Then T is an optimal sequential teacher
and its teaching time is G eT (γ(init)).

Proof. The behavior of the learner L1 under teacher series T̃ is the same as under
teacher T , from which it follows that the teaching time of T is G eT (γ(init)).

It remains to show that T has the minimal teaching time of all sequential teachers.
Suppose for a contradiction that there is a sequential teacher U whose teaching time
EU is less than that of T . Let (Ũt)t∈N be the information state teacher series with

Ũt(γ) = U(t) for all t ∈ N and all γ ∈ Γ. Then this information state teacher series has
an expectation GeU(γ(init)) = EU , which by assumption about U is less than G eT (γ(init)).

But this is a contradiction because T̃ is optimal. �



8.2 A Characterization of Optimal Teachers 159

Assumption C

The statement of Lemma 8.5 below is Patek’s Assumption C expressed in our termi-
nology. Its proof shows that Assumption C holds in our teaching setting, regardless
of the concept class C and the target c∗ ∈ C. Intuitively it demands that there is a
successful stationary teacher series and that every non-successful series of teachers has
an infinite teaching time. To show that there is a successful stationary teacher series
we can always use a greedy teacher. A teacher is called greedy if in every round it
maximizes the probability for the learner to reach the target in the next round.

Definition 8.4 A teacher T̃ for c∗ ∈ C is called greedy iff for all γ ∈ Γ

T̃ (γ) ∈ argmax
z∈X (c∗)

∑
c∈bC

γ(c) · p(c, z, c∗) .

To formulate Assumption C we need one last notation. We denote by Prk(γ, T̃ ) the
probability of reaching c∗ within k rounds when the learner starting in γ ∈ Γ is taught
by teacher T̃t in round t. More formally, let γ = γ(0) ∈ Γ be an information state
and T̃ = (T̃t)t∈N a series of teachers. Let δ(0) : C ∪ {init} → [0, 1] be the probability
distribution with

δ(0)(h) =

{
0 if h = c∗,

γ(h) if h 6= c∗.

The δ- and γ-distributions during the teaching process under the teacher series T̃ are
then inductively defined as γ(t+1) = f(γ(t), T̃t(γ

(t))) and as

δ(t+1)(h) =


δ(t)(h) + 1

|C( eTt(γ(t)))|
·

∑
c/∈C( eTt(γ(t)))

δ(t)(c) if h ∈ C(T̃t(γ
(t))),

0 otherwise

for all h ∈ C ∪ {init}. Then for all k ∈ N we define Prk(γ, T̃ ) = δ(k)(c∗). Note that
with δ and γ defined as above, we have γ(t)(h) = δ(t)(h)/(1− δ(t)(c∗)) for all h 6= c∗.

Lemma 8.5 Let C be a concept class over X and c∗ ∈ C be a target. Then:

1. There is a stationary teacher series (T̃t)t∈N with lim
k→∞

Prk(γ, T̃ ) = 1 for all γ ∈ Γ.

2. Every teacher series (T̃t)t∈N that does not satisfy Condition 1 is such that a sub-
sequence of (

[DeT0
DeT1

· · ·DeTt
0](γ)

)∞

t=0

tends to infinity for some γ ∈ Γ.
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Proof. 1. We show that the greedy teacher T̃ satisfies this condition. Let γ = γ(0) ∈ Γ
and let δ(t) and γ(t) be defined as above for the definition of Prk(·, ·).

In each round t, the teacher T̃ picks an example z maximizing
∑

c∈bC γ(t)(c)·p(c, z, c∗),

which is the same as maximizing
∑

c∈C∪{init} δ(t)(c) · p(c, z, c∗).

In round t a probability mass of 1 − δ(t)(c∗) is distributed among the non-target
concepts. Therefore there is a concept c′ 6= c∗ with δ(t)(c′) ≥ (1 − δ(t)(c∗))/|C|. Let z′

be an example inconsistent with c′. Then p(c′, z′, c∗) ≥ 1/|C| and therefore

∑
c∈C∪{init}

δ(t)(c) · p(c, z′, c∗) ≥ δ(t)(c′) · p(c′, z′, c∗) ≥ 1− δ(t)(c∗)

|C|2
.

Since T̃ chooses an example that maximizes this sum, we also have for z = T̃ (γ(t)) that

∑
c∈C∪{init}

δ(t)(c) · p(c, z, c∗) ≥ 1− δ(t)(c∗)

|C|2
.

Because p(c, z, c∗) = 1/|C(z)| for c /∈ C(z) this sum also equals δ(t+1)(c∗)− δ(t)(c∗) and
therefore

1− δ(t+1)(c∗) ≤
(
1− 1

|C|2

)
· (1− δ(t)(c∗)).

Hence, 1 − δ(t)(c∗) → 0 as t → ∞ and the probability δ(t)(c∗) tends to one. Since

Prk(γ, T̃ ) = δ(k)(c∗), this means that limk→∞ Prk(γ, T̃ ) = 1.

2. Let T̃ = (T̃t)t be a series that does not satisfy Condition 1. We show that the
sequence ([DeT0

DeT1
· · ·DeTt

0](γ(init)))∞t=0 tends to infinity.

Starting in the state γ(0) = γ(init), the teacher series (T̃t)t∈N generates a sequence of

examples and states: z(t) = T̃t(γ
(t)) and γ(t+1) = f(γ(t), z(t)). Let T : N → X (c∗) be

the sequential teacher with T (i) = z(i) for all i. By assumption, Prt(γ(init), T̃ ) does not
converge to 1 for t → ∞. According to the definition of Prt(·, ·) that means that T is
no successful teacher. Its expected teaching time is thus infinite. Therefore, also the
expected teaching time for (T̃t)t∈N is infinite. But this teaching time is also given by

lim inf
t→∞

[DeT0
DeT1

· · ·DeTt
0](γ(init))

which is therefore infinite, too. �

The Characterization

We can now state a first version of the optimality criterion, which is directly taken
from Patek [61, 62].
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Lemma 8.6 ([61, 62]) Let C be a concept class and c∗ ∈ C a target.

1. The operator D has a unique fixed point in GB, denoted G∗, that is, DG∗ = G∗.

2. For every G ∈ GB we have DkG
pw−→ G∗, where

pw−→ denotes pointwise convergence.

3. A (stationary) teacher T̃ : Γ → X (c∗) is optimal for teaching c∗ to L1 without
feedback if and only if DeT G∗ = G∗.

This criterion, directly adapted from Patek’s criterion, requires us to find a G : Γ → R
and to define a teacher T̃ : Γ → X (c∗). However, most of the states in Γ cannot be
reached from the initial state γ(init) of the learner and it seems unnecessary to specify
behavior of T̃ for the unreachable states, too. As a matter of fact, it suffices to define
G and T̃ for the reachable states in Γ, which we denote by

Γ0 = {γ ∈ Γ ∃t ∃z0, . . . , zt : γ = f(. . . f(f(γ(init), z0), z1) . . . , zt)}.

We can now state the final version of our optimality criterion.

Corollary 8.7 Let C be a concept class and c∗ ∈ C a target. A teacher T̃ : Γ0 → X (c∗)
is optimal if and only if there is a G : Γ0 → R such that DG = G and DeT G = G, where
the operator D has to be restricted suitably to operate on functions G : Γ0 → R.

Proof. For the “if” part, let T̃ be a teacher with expectations G : Γ0 → R. Now, for all
γ ∈ Γ0:

G(γ) = [DeT G](γ) = 1 +
∑
c,d∈bC

p(c, T̃ (γ), d) ·G(γ, f(γ, T̃ (γ)))

= min
z∈X (c∗)

1 +
∑
c,d∈bC

γc · p(c, z, d) ·G(f(γ, z))

 = [DG](γ)

in short: DeT G = DG = G. To see this, suppose that the third equality would not hold.

Then the teacher could be improved by setting T̃ (γ) to the z minimizing the term in
square brackets. The first equality holds because the G(γ) values are the expectations

of T̃ ; the second and last equality are definitions of the respective operators.

For the “only if” part, let G : Γ0 → R, and let T̃ : Γ0 → X (c∗) be a teacher such
that DeT G = G = DG. Let G∗ ∈ GB be the unique fixed point of D from Lemma 8.6,
Item 1. We shall show that G∗ is an extension of G to the domain Γ ⊃ Γ0, from which
we conclude that G describes the optimal expectations for information states in Γ0.

Define G′ as extension of G by G∗:

G′(γ) =

{
G(γ) if γ ∈ Γ0,

G∗(γ) if γ ∈ Γ \ Γ0.
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As G, G∗ ∈ GB, also G′ ∈ GB and by Lemma 8.6, Item 2, the sequence DkG′ converges
pointwise (that is, γ-wise) to G∗.

We then use that [DG′](γ) = G′(γ) = G(γ) for all γ ∈ Γ0. To see this consider

[DG′](γ) = min
z∈X (c∗)

1 +
∑
c,d∈bC

γc · p(c, z, d) ·G′(f(γ, z))

 (8.2)

together with the fact that f(γ, z) ∈ Γ0 for all z and thus G′(γ, f(γ, z)) = G(γ, f(γ, z)).
Therefore, we can substitute G() for G′() in the right hand side of Equation (8.2), hence
[DG′](γ) = [DG](γ) = G(γ).

It follows that we also have for all k ≥ 1 and γ ∈ Γ0, [DkG′](γ) = G(γ) and therefore
G(γ) = limk→∞[DkG′](γ) = G∗(γ). But then G′(γ) = G∗(γ) for all γ ∈ Γ. �

One advantage of using Γ0 instead of Γ is that we have to consider only one state
with γ(init) > 0, namely the initial state γ(init). For illustration we apply Corollary 8.7
to the class Sn.

Fact 8.8 Let c∗ = [1, n] ∈ Sn be the target concept. Then the teacher T : N → X (c∗)
with T (i) = (1 + (i mod n), 1) is an optimal teacher for [1, n] to the learner L1. Its
teaching time is 1 + 1

2
(n− 1)n.

Proof. The proof proceeds in several steps. First we define a teacher T̃ : Γ0 → X (c∗)
and a function G : Γ0 → R. Then we show that DG = G and DeT = D, from which we

conclude that T̃ is optimal. Finally we show that T̃ , when applied to γ(init), generates
the same example sequence as T .

For a γ ∈ Γ and i ∈ [1, n] we set as shortcut γi := γ(c) for c = [1, n] \ {i}. A positive
example (x, 1) is inconsistent only with the concept [1, n] \ {x}. Teaching (x, 1) in a

state γ 6= γ(init) results in a state f(γ, (x, 1)) = γ̂ with γ̂i = γi+γx/n
1−γx/n

for i 6= x, and

γ̂x = 0. For γ = γ(init) we have γ̂i = 1/(n− 1) for all i 6= x and γ̂x = 0.

We define T̃ to be a greedy teacher. If there are several equally “greedy” examples,
T̃ picks the one with least instance. As every example is inconsistent with exactly
one concept, T̃ greedily picks an example that is inconsistent with a most probable
hypothesis.

For defining G, let γ ∈ Γ0 \ {γ(init)} and assume without loss of generality that

γ1 ≥ γ2 ≥ · · · ≥ γn. Let F = (n−1)n
2

. Then we define

G(γ) = F +
∑n

i=1
γi · i and G(γ(init)) = F + 1.

Next we show DG = G. Let γ ∈ Γ0 \ {γ(init)} again with γ1 ≥ · · · ≥ γn. We
have to show that [DG](γ) = G(γ), in other words that 1 + min(x,1)∈X G(f(γ, (x, 1))) ·∑

c,d∈bC p(c, (x, 1), d) = G(γ). Since
∑

c,d∈bC p(c, (x, 1), d) = 1− γx/n this means that

1 + min
(x,1)∈X

G(f(γ, (x, 1))) · (1− γx/n) = G(γ). (8.3)
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Let z = (x, 1) ∈ X and γ̂ = f(γ, z). Then γ̂1 ≥ · · · ≥ γ̂z−1 ≥ γ̂z+1 ≥ · · · ≥ γ̂n ≥ γ̂z = 0.
The expression to be minimized is(

1− γx

n

)
·G(γ̂) =

(
1− γx

n

)
·
(

F +
∑

i≤x−1

i · γ̂i +
∑

i≥x+1

(i− 1) · γ̂i

)
=
(
1− γx

n

)
·
(

F +
∑

i≤x−1

i · γi+γx/n
1−γx/n

+
∑

i≥x+1

(i− 1) · γi+γx/n
1−γx/n

)

= F +
n∑

i=1

iγi −
(

x · γx +
∑

i≥x+1

γi

)
. (∗)

From γ1 ≥ · · · ≥ γn, it follows 1 · γ1 +
∑

i≥2 γi ≥ 2 · γ2 +
∑

i≥3 γi ≥ · · · ≥ n · γn.
This means that the expression (∗) is minimal for x = 1, or γx = γ1. Setting x = 1
yields min(x,1)∈X G(f(γ, (x, 1))) · (1 − γx/n) = F − 1 +

∑n
i=1 iγi = G(γ) − 1 and thus

Equation (8.3) is satisfied.
It remains to show [DG](γ(init)) = G(γ(init)). For all examples (x, 1) ∈ X we have

[DG](γ(init)) = 1 + (1− 1
n
) ·G(f(γ(init), (x, 1)))

= 1 + (1− 1

n
) ·

(
F +

n−1∑
i=1

i
1/n

1− 1/n

)
= 1 +

n− 1

n
·
(

F +
1

n− 1
· n(n− 1)

2

)
= 1 +

n(n− 1)

2
= F + 1 = G(γ(init)).

It follows that [DG](γ) = G(γ) for all γ ∈ Γ0. Moreover, the teacher T̃ always picks

the example (x, 1) minimizing the term in Equation (8.3), thus DeT G = G and T̃ is
optimal according to Corollary 8.7.

The teacher T̃ , when started in γ(init), generates the same sequence of examples as
the sequential teacher T . By the definition of T̃ we have T̃ (γ(init)) = (1, 1) and for

γ 6= γ(init) with γ1 ≥ · · · ≥ γn (without loss of generality) T̃ chooses example (1, 1) and

the next information state is γ̂ with γ̂2 ≥ · · · ≥ γ̂n ≥ γ̂1 = 0. Therefore, T̃ chooses
(2, 1) as next example and so on. �

The previous proof shows how Corollary 8.7 is to be applied in order to prove a
given sequential teacher optimal. First, a information state teacher has to be defined
which is then shown to be optimal by applying Corollary 8.7 directly. Afterwards one
has to show that the information state teacher, when applied initially to γ(init), yields
the same example sequence as the sequential teacher. Finding a suitable information
state teacher to perform such a proof seems to be a difficult task. In Fact 8.8 we could
exploit the fact that the greedy teacher was suitable. But in general, greedy teachers
do not have this property, as we shall show in Section 8.5.
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8.3 Computing the Optimal Teaching Time

From the last section we know that for all targets c∗ and all concept classes C there
is always an optimal sequential teacher, even though we do not know how to find one
effectively. The method we derived for checking whether a given sequential teacher is
optimal requires us to find a suitable information state teacher first. And we do not
know a general method for doing that either. In this section we investigate the problem
of finding the optimal teaching time, rather than finding a teacher that achieves this
optimum. More precisely, we study the complexity of the following decision problem.

Definition 8.9 We call the following problem OPT-TEACHINGTIME.
Input: Concept class C, concept c∗ ∈ C, rational number F .
Question: Is E−

1 (c∗, C) ≤ F?

In the more general setting of USSPPs the analogous problem is undecidable (see
Madani, Hanks, and Condon [52] and Blondel and Canterini [20]). This can be seen
as evidence for the undecidability of OPT-TEACHINGTIME. On the other hand, USSPPs
differ from our model in some aspects related to computational complexity. For ex-
ample, deciding whether there is a teacher with at least a given success probability
is easy (because there is always one), whereas the analogous problem for USSPPs is
undecidable [52, 20].

Although the decidability of OPT-TEACHINGTIME is open, we can at least show that
it is NP-hard. So even if there is an algorithm, it is presumably inefficient. The
NP-hardness proof for OPT-TEACHINGTIME is lengthy, so we proceed in several steps.

1. We give a polynomial time reduction from the EXACT-3-COVERING (X3C) prob-
lem. The instances of OPT-TEACHINGTIME produced by the reduction are such
that all examples for the target are inconsistent with exactly three concepts (see
Figure 8.3).

2. We consider concept classes and targets with the property that all examples for
the target are inconsistent with exactly three concepts and for all sets of three
concepts there is an example that is inconsistent with these three concepts. We
show that these classes have an optimal teaching time of 1 + 3

2
n(n− 1). We also

show that all optimal teachers for these classes are greedy.

3. We show that for a class resulting from the reduction there is a teacher with
teaching time 1 + 3

2
n(n − 1) if and only if the class was built for a positive X3C

instance.

Lemma 8.10 Algorithm 8.1 computes OPT-TEACHINGTIME instances from instances of
X3C in polynomial time.
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X3C

OPT-TEACHINGTIME

B = {1, 2, 3, 4, 5, 6},
A1 = {2, 4, 5},
A2 = {1, 3, 5},
A3 = {1, 3, 6}

x1 x2 x3 y1 y2 y3 y4 y5 y6

c∗ 1 1 1 1 1 1 1 1 1
c1 1 0 0 0 1 1 1 1 1
c2 0 1 1 1 0 1 1 1 1
c3 1 0 0 1 1 0 1 1 1
c4 0 1 1 1 1 1 0 1 1
c5 0 0 1 1 1 1 1 0 1
c6 1 1 0 1 1 1 1 1 0

Figure 8.3 Illustration of the reduction from X3C to OPT-TEACHINGTIME. Every example is
inconsistent with exactly three concepts; y1, . . . , y6 are “dummy” instances making all rows
unique. The examples (x1, 1), (x3, 1) have the X3C property.

Input: Number n ∈ N, sets A1, . . . , Am ⊆ [1, 3n] with |Ai| = 3.

1 X := {x1, . . . , xm} ∪ {y1, . . . , y3n}
2 cj := {xi j /∈ Ai} ∪ {yi i 6= j} for j = 1, . . . , 3n

3 c∗ := X

4 C := {c∗, c1, . . . , c3n}
5 output 〈C, c∗, 1 + 3

2
n(n− 1)〉

Algorithm 8.1. Algorithm computing OPT-TEACHINGTIME instances from X3C instances in
polynomial time. See Figure 8.3 for an example.

Proof. The computation of C is straightforward and C is represented by a (3n + 1) ×
(n + m) matrix which is polynomial in the input size. The value 1 + 3

2
n(n − 1) is

polynomially computable and representable, too. �

We call a concept class C resulting as output of Algorithm 8.1 a positive or negative
X3C class depending on whether the X3C instance was positive or negative.

An X3C class is positive if and only if there are examples z1, . . . , zn ∈ X (c∗) such
that the sets C \C(zj) for j = 1, . . . , n are pairwise disjoint and

⋃
j(C \C(zj)) = C \{c∗}.

If A1, . . . , Am consists of all m =
(
3n
3

)
subsets of B we call the class a full X3C class.

Every full X3C class is a positive X3C class.

Of all X3C classes, the full X3C classes are easiest to analyze because of their in-
trinsic symmetries. Moreover, the optimal teachers are just the greedy teachers, which
simplifies the application of our optimality criterion. In general, for X3C classes a
greedy teacher need not be optimal.
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The proof of the following lemma bears some similarity with the proof of Fact 8.8.
Indeed, co-singleton classes and X3C classes are both special cases of classes in which
all examples for the target are inconsistent with a fixed number of concepts.

Lemma 8.11 Let n ∈ N, n ≥ 2. Let C be a full X3C class containing 3n+1 concepts,
and let c∗ be the concept containing all instances. Then a teacher T̃ : Γ0 → X (c∗) is

optimal if and only if T̃ is greedy. The expected teaching time, when starting in γ(init),
is 1 + 3

2
n(n− 1).

Proof. We first prove that the function G : Γ0 → R defined below states the optimal
teaching times by showing DG = G. Then we show that the only teachers having this
expectation are the greedy ones.

To ease notation we identify each concept in C\{c∗} with a number in [1, 3n]. A state
γ ∈ Γ0 is then a function [1, 3n]∪{init} → [0, 1] with values denoted by γ1, . . . , γ3n, γinit .
As a shortcut we shall also use γz to denote

∑
i/∈X (z) γi for an example z ∈ X (c∗).

Let F = 3
2
n(n− 1), and define G for γ ∈ Γ0 \ {γ(init)} with γ1 ≥ γ2 ≥ γ3n ≥ γinit = 0

by

G(γ) = F +
3n∑
i=1

γi · d i
3
e

and G(γ(init)) = F +1. Intuitively, each γi is multiplied with a factor depending on the
rank of i in the sorted list of probabilities.

We distinguish two kinds of examples: useful examples and dummy examples. An
example z is called useful iff |C \ C(z)| = 3. The other examples z, for which |C \ C(z)| =
1, are called dummy examples (see Figure 8.3). The function f for the follow-up
information states takes two forms depending on whether the example is a useful one
or a dummy. For the former we have f(γ, z) = γ̂ ∈ Γ0 with

γ̂i =

{
(γi + γz/(3n− 2)) / (1− γz/(3n− 2)) if i ∈ C(z),

0 otherwise.

A dummy example is only inconsistent with one concept, thus 3n − 2 is replaced by
3n:

γ̂i =

{
(γi + γz/(3n)) / (1− γz/(3n)) if i ∈ C(z),

0 otherwise.

We are now going to show [DG](γ) = G(γ) for γ ∈ Γ0 \ {γ(init)}. Without loss of
generality, we assume that γ1 ≥ · · · ≥ γ3n. We are required to determine the example(s)
z minimizing

G(f(γ, z)) ·
∑

c,d∈C\{c∗}

p(c, z, d).

We shall first determine the useful examples z minimizing this term and then show
that dummy examples z cannot make that value smaller. For useful examples z we
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have
∑

c,d∈bC p(c, z, d) = 1− γz/(3n− 2). We denote the three hypotheses with which z
is inconsistent by u < v < w ∈ [1, 3n]. Then for γ̂ = f(γ, z) it follows

γ̂1 ≥ · · · ≥ γ̂u−1 ≥ γ̂u+1 ≥ · · · ≥ γ̂v−1 ≥ γ̂v+1 ≥ · · · ≥ γ̂w−1

≥ γ̂w+1 ≥ . . . γ̂3n > γ̂u = γ̂v = γ̂w = 0.

In other words, u, v, and w are put at the end of the “probability list” whereas the
indices between u and v rise one rank, those between v and w rise two ranks, and those
between w and 3n three ranks.

Now, setting g := γz/(3n− 2), we get

G(γ̂) = F +
u−1∑
i=1

γ̂id i
3
e+

v−1∑
i=u+1

γ̂id i−1
3
e+

w−1∑
i=v+1

γ̂id i−2
3
e+

3n∑
i=w+1

γ̂id i−3
3
e

= F +
u−1∑
i=1

g+γi

1−g
d i

3
e+

v−1∑
i=u+1

g+γi

1−g
d i−1

3
e+

w−1∑
i=v+1

g+γi

1−g
d i−2

3
e+

3n∑
i=w+1

g+γi

1−g
d i−3

3
e,

and the term to minimize is (1− g)G(γ̂), that is,

(1− g)F +
u−1∑
i=1

(g + γi)d i
3
e+

v−1∑
i=u+1

(g + γi)d i−1
3
e+

w−1∑
i=v+1

(g + γi)d i−2
3
e+

3n∑
i=w+1

(g + γi)d i−3
3
e.

Multiplying out (g + γi) we get a sum of terms containing g, namely

(1− g)F +
u−1∑
i=1

gd i
3
e+

v−1∑
i=u+1

gd i−1
3
e+

w−1∑
i=v+1

gd i−2
3
e+

3n∑
i=w+1

gd i−3
3
e, (8.4)

and of terms containing no g, namely

u−1∑
i=1

γid i
3
e+

v−1∑
i=u+1

γid i−1
3
e+

w−1∑
i=v+1

γid i−2
3
e+

3n∑
i=w+1

γid i−3
3
e. (8.5)

Claim 1: The term (8.4) has a value of F .

Proof. By shifting the indices in the last three summations, we get for (8.4):

(1− g)F +
u−1∑
i=1

gd i
3
e+

v−2∑
i=u

gd i
3
e+

w−3∑
i=v−1

gd i
3
e+

3n−3∑
i=w−2

gd i
3
e = (1− g)F + g ·

3n−3∑
i=1

d i
3
e

= (1− g)F + g 3
2
n(n− 1) = (1− g)F + gF = F . � Claim
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For a useful example z the value γz is maximal if and only if u, v, w satisfy the
following three greedy conditions:

(G1) u = max
i∈[1,3n]

γi , (G2) v = max
i∈[1,3n]

i6=u

γi , (G3) w = max
i∈[1,3n]
i6=u,v

γi .

The term (8.5) can be rewritten as

3n∑
i=1

γid i
3
e −

 ∑
i∈Iu,v,w

γid i
3
e+ γudu

3
e+ γvdv

3
e+ γwdw

3
e


where

Iu,v,w = {i ∈ [1, 3n] (u < i < v ∧ d i−1
3
e < d i

3
e)

or (v < i < w ∧ d i−2
3
e < d i

3
e)

or (w < i ≤ 3n)}

is the set of all hypotheses that are multiplied with a different factor in γ than in
γ̂. We denote the term in parentheses by Ku,v,w. This value has some monotonicity
properties, as shown in the next claim.

Claim 2:

(a) For all 1 ≤ u < v < w < 3n : Ku,v,w ≥ Ku,v,w+1 and proper inequality holds
if and only if γw > γw+1.

(b) For all 1 ≤ u < v < 3n − 1 : Ku,v,v+1 ≥ Ku,v+1,v+2 and proper inequality
holds if and only if γv > γv+2.

(c) For all 1 ≤ u < 3n − 2 : Ku,u+1,u+2 ≥ Ku+1,u+2,u+3 and proper inequality
holds if and only if γu > γu+3.

Proof. (a) We distinguish two cases:

Case 1: w mod 3 = 1 or w mod 3 = 2.

Then Iu,v,w = Iu,v,w+1 and Ku,v,w−Ku,v,w+1 = dw
3
eγw−dw+1

3
eγw+1 = dw

3
e(γw−γw+1) ≥

0, which proves Part (a) for Case 1.

Case 2: w mod 3 = 3.

Then Iu,v,w = Iu,v,w+1∪{w+1} and Ku,v,w−Ku,v,w+1 = γw+1 +dw
3
eγw−dw+1

3
eγw+1 =

(dw
3
e+ 1)γw − (dw

3
e+ 1)γw+1 = dw

3
e(γw + γw+1) ≥ 0, which proves Part (a) for Case 2.

(b) We distinguish two cases:
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Case 1: v mod 3 = 1.

Then Iu,v,v+1 = Iu,v+1,v+2 and Ku,v,v+1−Ku,v+1,v+2 = dv
3
eγv+dv+1

3
eγv+1−dv+1

3
eγv+1−

dv+2
3
eγv+2 = dv

3
e(γv − γv+2) ≥ 0, which proves Part (b) for Case 1.

Case 2: v mod 3 = 2 or v mod 3 = 3.

Then Iu,v,v+1 = Iu,v+1,v+2 ∪ {v + 2} and Ku,v,v+1 − Ku,v+1,v+2 = γv+2 + dv
3
eγv +

dv+1
3
eγv+1 − dv+1

3
eγv+1 − dv+2

3
eγv+2 = dv

3
e(γv − γv+2) ≥ 0, which proves Part (b) for

Case 2.

(c) We have Iu,u+1,u+2 = Iu+1,u+2,u+3∪{u+3}. Therefore Ku,u+1,u+2−Ku+1,u+2,u+3 =
γu+3 +du

3
eγu +du+1

3
eγu+1 +du+2

3
eγu+2−du+1

3
eγu+1−du+2

3
eγu+2−du+3

3
eγu+3 = du

3
e(γu−

γu+3), which proves Part (c). � Claim 2

It is now possible to characterize the u, v, w that maximize Ku,v,w. The maximum
value of Ku,v,w is K1,2,3, which can be seen as follows. Claim 2(c) yields Ku,v,w ≤
Ku,v,w−1 ≤ · · · ≤ Ku,v,v+1, then Claim 2(b) leads to Ku,v,v+1 ≤ Ku,v−1,v ≤ · · · ≤
Ku,u+1,u+2, and finally Claim 2(a) shows Ku,u+1,u+2 ≤ Ku−1,u,u+1 ≤ · · · ≤ K1,2,3. Thus,
Ku,v,w ≤ K1,2,3 for all u < v < w.

Claim 3: Ku,v,w is maximal if and only if u < v < w satisfy the greedy conditions.

Proof. For the “if” direction, assume u < v < w satisfying (G1), (G2), and (G3).
We distinguish four cases.

Case 1: γ1 > γ2 > γ3.

Then u = 1, v = 2, w ≥ 3 and γ3 = · · · = γw. Applying Claim 2(a) yields Ku,v,w =
K1,2,w = K1,2,w−1 = · · · = K1,2,3.

Case 2: γ1 = γ2 > γ3.

Works exactly like Case 1.

Case 3: γ1 > γ2 = γ3.

Then u = 1, v ≥ 2, w > v and γ2 = · · · = γv = · · · = γw. Applying Claim 2(a) yields
Ku,v,w = K1,v,w = K1,v,v+1. Then using Claim 2(b) we get K1,v,v+1 = K1,v−1,v = · · · =
K1,2,3.

Case 4: γ1 = γ2 = γ3.

Then γ1 = · · · = γw and from Claim 2(a) we get Ku,v,w = Ku,v,v+1. Then Claim 2(b)
yields Ku,v,v+1 = Ku,v−1,v = · · · = Ku,u+1,u+2 and finally Claim 2(a): Ku,u+1,u+2 =
Ku−1,u,u+1 = · · · = K1,2,3.
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For the “only if” direction, let Ku,v,w = K1,2,3 and suppose for a contradiction that
not all greedy conditions hold.

Case 1: ¬(G1).

Then γu < maxi γi and there is an s < u with γs = maxi γi, hence γs > γu. Then
there is also a t with s ≤ t < u such that γs ≥ γt > γt+1 ≥ γu. Using Claim 2(a)
we conclude Ku,v,w ≤ Ku,u+1,u+2 ≤ Kt+1,t+2,t+3 < Kt,t+1,t+2 (the strict inequality holds
because γt > γt+3). Therefore Ku,v,w is not maximal, a contradiction.

Case 2: (G1) ∧ ¬(G2).

Then γu = maxi γi, but γv < maxi6=u γi and there is an s with u < s < v such
that γs > γv. Then there is a t with s ≤ t < v such that γs ≥ γt > γt+1 ≥ γv.
Applying Claim 2(a) yields Ku,v,w ≤ Ku,v,v+1 and from Claim 2(b) it follows Ku,v,v+1 ≤
Ku,t+1,t+2 < Ku,t,t+1 (strict inequality because γt > γt+2). Thus, Ku,v,w is not maximal,
a contradiction.

Case 3: (G1) ∧ (G2) ∧ ¬(G3).

Then γw < maxi6=u,v and there is an s with v < s < w such that γs > γw and
a t with s ≤ t < w such that γs ≥ γt > γt+1 ≥ γw It follows by Claim 2(a) that
Ku,v,w ≤ Ku,v,t+1 < Ku,v,t. Thus Ku,v,w is not maximal, a contradiction. � Claim 3

Claim 3 implies that an optimal teacher has to choose an example z maximizing γz.
On the other hand, every such example minimizes (1− g)G(γ̂). This minimal value is

(1− g)G(γ̂) = F − 1 +
3n∑
i=1

d i
3
eγi = G(γ)− 1.

We still have to show that no dummy example reaches this minimal value. Let z be
an example inconsistent with only one concept, say u ∈ [1, 3n]. Then for γ̂ = f(γ, z):

γ̂1 ≥ · · · ≥ γ̂u−1 ≥ γ̂u+1 ≥ · · · ≥ γ̂3n > γ̂u = 0

and
∑

c,d∈bC p(c, z, d) = 1− γz/(3n) =: g. Therefore

G(f(γ, z)) ·
∑
c,d∈bC

p(c, z, d)

= G(γ̂) · (1− g)

= (1− g)

(
F +

u−1∑
i=1

γ̂i · d i
3
e+

3n∑
i=u+1

γ̂i · d i−1
3
e

)
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= (1− g)F +
u−1∑
i=1

(γi + g)d i
3
e+

3n∑
i=u+1

(γi + g)(d i
3
e − 1)

= (1− g)F +
u−1∑
i=1

γid i
3
e+

3n∑
i=u+1

γi(d i
3
e − 1) + g

∑
i6=u

d i
3
e

= (1− g)F +
3n∑
i=1

d i
3
eγi −

du
3
eγu +

∑
i>u

i mod 3=1

γi

+ g ·
(

3
2
n(n + 1)− n

)

= F +
3n∑
i=1

d i
3
eγi −

du
3
eγu +

∑
i>u

i mod 3=1

γi

+ g ·
(

3
2
n(n + 1)− F − n

)

= F +
3n∑
i=1

d i
3
eγi −

du
3
eγu +

∑
i>u

i mod 3=1

γi

+ g · 2n .

The expression in parentheses is at most uγu +
∑3n

i=u+1 γi ≤
∑3n

i=1 γi ≤ 1. The
expression g · 2n = 2

3
γz is positive. Therefore for all dummy examples z:

G(f(γ, z)) ·
∑
c,d∈bC

p(c, z, d) > F − 1 +
3n∑
i=1

d i
3
eγi

where the right hand side is the minimum attained by useful examples, as proven above.
We conclude that in a state γ 6= γ(init) an optimal teacher chooses the example greedily
and that every greedy choice is optimal.

To finish the proof we have to show a similar result for the initial state γ = γ(init).
Let us first consider useful examples. Without loss of generality, we assume z with
C \ C(z) = {1, 2, 3}. The following state γ̂ satisfies

g := 1
3n−2

= γ̂4 = · · · = γ̂3n > γ̂1 = γ̂2 = γ̂3 = 0 .

It follows with
∑

c,d∈bC p(c, z, d) = (1− g) and γi = 0 for i ∈ [1, 3n]:

G(f(γ, z)) ·
∑
c,d∈bC

p(c, z, d) = G(γ̂) · (1− g)

= (1− g)F +
3n∑
i=4

(γi + g)d i−3
3
e

= (1− g)F + g ·
3n∑
i=4

d i−3
3
e
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= (1− g)F + g · 3
2
n(n− 1) = (1− g)F + gF = F .

For a dummy example z we assume that C\C(z) = {1}. Then we have for γ̂ = f(γ, z):

g := 1
3n

= γ̂2 = · · · = γ̂3n > γ̂1 = 0,

from which it follows that

G(f(γ, z)) ·
∑
c,d∈bC

p(c, z, d) = G(γ̂) · (1− g)

= (1− g)F +
3n∑
i=2

(γi + g)d i−1
3
e

= (1− g)F + g ·
3n∑
i=2

d i−1
3
e

= (1− g)F + g · (3
2
n(n + 1)− n)︸ ︷︷ ︸

>F

> (1− g)F + gF = F.

The minimum value F is therefore attained only if a useful example is given and among
these examples exactly the greedy choices are optimal. �

The next lemma describes the optimal teachers as sequential teachers instead of
information state teachers.

Lemma 8.12 Let n ∈ N with n ≥ 2. Let C be a full X3C class containing 3n + 1
concepts, and let c∗ be the concept containing all instances. A teacher T : N → X (c∗)
is optimal if and only if T (t) = z1+t mod n for all t, where the examples zj are chosen
such that C \ C(zj) for j = 1, . . . , n are pairwise disjoint and

⋃
j(C \ C(zj)) = C \ {c∗}.

Proof. For the “only if” part, let T : N → X (c∗) be an optimal teacher for c∗, that is,
with an expected teaching time of 1 + 3

2
n(n − 1). We denote the information states

reached by learner L1 during teaching by γ(0), γ(1), . . .
From Lemma 8.11 we know that the only teachers with an expectation of 1+ 3

2
n(n−1)

are the greedy teachers. Thus T picks examples greedily in all states γ(t). In state γ(0)

all examples are equally greedy and we assume without loss of generality that T (0) = z1

with C \ C(z1) = {c1, c2, c3}. For the probabilities in γ(1) it follows

γ
(1)
4 = · · · = γ

(1)
3n > γ

(1)
1 = γ

(1)
2 = γ

(1)
3 .

In state γ(1) every example z2 with C \ C(z2) ⊆ {c4, . . . , c3n} is a greedy choice.
Without loss of generality, we assume that C \ C(z1) = {c4, c5, c6}. Then state γ(2)

satisfies
γ

(2)
7 = · · · = γ

(2)
3n > γ

(2)
1 = γ

(2)
2 = γ

(2)
3 > γ

(2)
4 = γ

(2)
5 = γ

(2)
6 .
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The next example of T then satisfies C \ C(z3) ⊆ {7, . . . , 3n} and so on until the
learner reaches the state γ(n−1) with

γ
(n−1)
3n−2 = · · · = γ

(n−1)
3n > γ

(n−1)
1 = γ

(n−1)
2 = γ

(n−1)
3 > · · · > γ

(n−1)
3n−5 = γ

(n−1)
3n−4 = γ

(n−1)
3n−3 .

Therefore T (n− 1) = zn with C \ C(zn) = {c3n−2, c3n−1, c3n} yielding γ(n) with

γ
(n)
1 = γ

(n)
2 = γ

(n)
3 > γ

(n)
4 = γ

(n)
5 = γ

(n)
6 > · · · > γ

(n)
3n−2 = γ

(n)
3n−1 = γ

(n)
3n . (8.6)

At this point, the teacher T must choose z1, z2, z3, . . . , zn again. This results in a
state γ(2n), which satisfies (8.6) with (n) replaced by (2n). It follows that the teacher
T chooses the sequence z1, . . . , zn in an endless loop.

In addition, the sets C \ C(zj) for j = 1, . . . , n are mutually disjoint and their union
is C \ {c∗}, as required.

For the “if” part, note that we have just shown the existence of an optimal teacher iter-
ating through n examples with the property stated in the lemma. Every other teacher
with this property can be mapped to that one by renaming instances or concepts. Thus,
every teacher with this property is optimal. �

Until now we have characterized the optimal teachers for full X3C classes only. We
can use this result to state the optimal teaching time for positive X3C classes.

Lemma 8.13 Let C be an X3C class. Then E−
1 (c∗, C) = 1 + 3

2
n(n − 1) if and only if

C is a positive X3C class.

Proof. For the “if” direction, let without loss of generality z1, . . . , zn ∈ X (c∗) be such
that C \ C(zj) for j = 1, . . . , n are pairwise disjoint and

⋃
j(C \ C(zj)) = C \ {c∗}.

The teacher T with T (t) = z1+t mod n for all t ∈ N has an expected teaching time
of 1 + 3

2
n(n − 1). This follows similar to Lemma 8.12. If there was a better teacher,

this teacher would also have a smaller expectation when used for teaching the target
concept in a full X3C class, a contradiction to Lemma 8.12.

For the “only if” direction, assume that E−
1 (c∗, C) = 1 + 3

2
n(n− 1), and suppose for

a contradiction that C is a negative X3C class. Then there is a teacher T for c∗ with
expectation 1+ 3

2
n(n−1), but not iterating through a set of examples z1, . . . , zn ∈ X (c∗)

with the “positive X3C class property” (because negative X3C classes have no such
examples). The teacher T would then have the same expectation with respect to a full
X3C class, too. Therefore, T would be an optimal teacher for the full X3C class, a
contradiction to Lemma 8.12. �

We can now combine the previous four lemmas into our main result.

Theorem 8.14 The problem OPT-TEACHINGTIME is NP-hard.
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Input: Concept class C, concept c∗ ∈ C, rational number ε > 0.

1 J := TD(c∗) · |C|
2 for ` = 1, 2, . . . :

3 for all α ∈ X (c)`:

// denote by δ(i)(c) (i = 1, . . . , `) the probability of being in hypothesis c

// at round i when taught α.

4 b(α) :=
∑`

i=1 i · (δ(i)(c∗)− δ(i−1)(c∗)) + (` + 1)(1− δ(`)(c∗))

5 B(α) :=
∑`

i=1 i · (δ(i)(c∗)− δ(i−1)(c∗)) + (` + J)(1− δ(`)(c∗))

6 b` := min{b(α) |α| = `}
7 if ∃α ∈ X (c)` : B(α)− b` < ε then output B(α).

Algorithm 8.2. Algorithm computing an ε-approximation of E−
1 (c∗, C).

Proof. Let 〈B, A1, . . . , Am〉 with |B| = 3n be an instance of X3C, and let the instance
of OPT-TEACHINGTIME resulting from the polynomial time reduction Algorithm 8.1 be
〈C, c∗, 1 + 3

2
n(n− 1)〉.

Now, 〈B, A1, . . . , Am〉 is a positive instance of X3C if and only if C is a positive X3C
class (by definition). The latter holds if and only if E−

1 (c∗, C) = 1 + 3
2
n(n − 1) (by

Lemma 8.13). This in turn holds if and only if 〈C, c∗, 1 + 3
2
n(n − 1)〉 is a positive

OPT-TEACHINGTIME instance. �

Although it is open whether the value E−
∞(c∗, C) can be computed for given c∗ and

C, it is at least possible to effectively approximate that value with arbitrary precision.

Fact 8.15 There is an algorithm with:

Input: Concept class C, concept c∗ ∈ C, precision ε > 0.

Output: F ∈ R with |F − E−
1 (c∗)| < ε.

Proof. The idea of Algorithm 8.2 is to approximate the expectations for growing finite
sequences of examples. This is done until for one such sequence the probability of not
being in the target state at the end of the sequence is very small.

We have introduced the value J into Algorithm 8.2 as a crude upper bound for
E−

1 (c∗). The values b(α) and B(α) are a lower and an upper bound for the expected
teaching time of a teacher starting with example sequence α. The values δ(i)(c) can
be calculated according to the state transition function (8.1). Its values are always
rational numbers, which can be calculated and stored exactly.

We have to show that (1) the algorithm always terminates and (2) the output is an
ε-approximation for E−

1 (c∗).
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Claim 1: For all α ∈ X (c∗)∗ : E−
1 (c∗) ≤ B(α).

Proof. A teacher, after giving the examples in α, can be continued such that it takes
at most expected J further examples to make the learner hypothesize the target. Thus,
B(α) is an upper bound for the expected teaching time of all teachers starting with α.
This teaching time cannot be less than the optimal one, E−

1 (c∗). � Claim 1

Claim 2: For all ` ≥ 1 : b` ≤ E−
1 (c∗).

Proof. Let α ∈ X (c∗)`. If the teacher has already finished teaching after presenting
α (which can only happen if TD(c∗) = 1) then b(α) equals its expected teaching
time, namely 1. If the teacher has not yet finished teaching after giving the examples
in α, it needs at least one additional round. Thus, b(α) lower bounds the expected
teaching time for all teachers starting with α. Consequently, b` is a lower bound for the
expected teaching time for all teachers (since every teacher starts with some sequence
α ∈ X (c∗)`). � Claim 2

Claim 3: lim`→∞ b` = E−
1 (c∗).

Proof. Let ζ > 0 and `0 = (J · E−
1 (c∗))/ζ. We show that for all ` ∈ N with ` ≥ `0,

|E−
1 (c∗)− b`| < ζ. Let ` ≥ `0. Then ` ≥ (J · E−

1 (c∗))/ζ.
Let α ∈ X (c)` with b(α) = b`. Then b(α) ≤ E−

1 (c∗) and therefore (` + 1) · (1 −
δ(`)(c∗)) ≤ E−

1 (c∗). It follows 1− δ(`)(c∗) ≤ E−
1 (c∗)/(` + 1).

For B(α) we have

B(α) = b(α) + (1− δ(`)(c∗)) · (J − 1) ≤ b(α) +
E−

1 (c)

` + 1
· (J − 1) < b(α) +

E−
1 (c)

`
· J.

Substituting ` yields
B(α) < b(α) + ζ.

On the other hand, E−
1 (c∗) ≤ B(α) and therefore E−

1 (c∗) < b(α)+ ζ, hence E−
1 (c∗)−

b(α) < ζ. Since ζ was arbitrary, the claim follows. � Claim 3

To prove the termination of the algorithm we have to show that there is an α such
that B(α)− b` < ε. Let T : N → X (c∗) be an optimal teacher and denote by T [0 :`] the
sequence 〈T (0), . . . , T (`)〉. Then lim`→∞ B(T [0 : `]) = E−

1 (c∗). Together with Claim 3
it follows that there is an ` such that B(T [0 :`])−E−

1 (c∗) < ε/2 and E−
1 (c∗)− b` < ε/2.

That means B(T [0 :`])− b` < ε and the algorithm terminates at the latest for this `.

When the algorithm terminates, it outputs B(α) for an α with B(α)− b` < ε. This
is an ε-approximation for E−

1 (c∗) since b` ≤ E−
1 (c∗) ≤ B(α) (see Claims 1 and 2). �

Since the optimal teacher is at least hard and probably impossible to determine, it
is natural to study teaching heuristics instead. We devote the next two sections to this
kind of study.
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8.4 Cyclic Teachers

A natural heuristic, which we already mentioned in Section 6.3, is providing the same
sequence of examples in an endless loop. We call such teachers cyclic teachers. Each
such teacher can be identified with the example sequence it iterates over.

Cyclic teachers are easier to handle than teachers in general. It is simple to decide
whether a given cyclic teacher is successful (see Fact 8.16). Furthermore, their teaching
times can be calculated relatively easily (see Lemma 8.17). At the same time, cyclic
teachers are powerful enough to provide arbitrarily close approximations to an optimal
teacher (see Corollary 8.21).

Fact 8.16 It can be decided efficiently whether a given cyclic teacher is successful.

Proof. Let 〈z1, . . . , z`〉 be the example sequence the teacher iterates over. From Fact 8.2
it follows that the teacher is successful if and only if {z1, . . . , z`} is a teaching set.
Checking whether or not a set of k = |{z1, . . . , z`}| examples is a teaching set, can be
done by checking each of the |C| concepts for consistency with all k examples. The
examples form a teaching set if and only if the only consistent concept is the target.
All consistency checks can be done in time O(|C| · k · |X|), that is, in polynomial time
in the representation size of the concept class and the example sequence. �

Lemma 8.17 The expected teaching time of a cyclic teacher can be computed from the
sequence of examples that the teacher iterates over.

Proof. Let C be a concept class and let c∗ ∈ C. Let T be a cyclic teacher iterating
through z0, . . . , z`−1. If {z0, . . . , z`−1} is not a teaching set for c∗ then the expectation
of T is infinite. We therefore assume {z0, . . . , z`−1} to be a teaching set.

Teaching will be successful no matter at which of the examples zi the loop starts. We
denote by Fi (0 ≤ i < `) the expected teaching time for the teacher Ti : Ti(t) = zi+t mod `

starting with example zi. For h ∈ C we denote by Fi(h) the expectation for teacher Ti

when the learner’s initial state is h.
For notational convenience throughout this proof all subscripts of T, z, and F are to

be taken modulo `.
We can now state a linear equation for Fi involving all Fj with j 6= i. Consider the

teacher Ti and the probability distribution δ over hypotheses after the first example,
zi, has been given. The learner assumes all hypotheses h ∈ C(zi) with equal probability
δh = 1/|C(zi)| and all other hypotheses h /∈ C(zi) with probability δh = 0.

The expectation Fi is one plus the weighted sum of the expectations of teacher Ti+1

starting in the states h, that is,

Fi = 1 +
∑

h∈C\{c∗}

δh · Fi+1(h).
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Now we determine Fi+1(h). Consider a learner in state h 6= c∗ and a teacher giving
zi+1, zi+2, . . . . The learner will change its state only when the first example inconsistent
with h arrives (such an example exists since the zi’s form a teaching set for c∗). Let
zi+k be this example. Beginning with zi+k, teaching proceeds as if teacher Ti+k had
started from the init state. Therefore Fi+1(h) = (k − 1) + Fi+k.

If we denote for i = 0, . . . , `− 1 and for k = 1, . . . , `,

Ci,k = {h ∈ C \ {c∗} h ∈ C(zi), h ∈ C(zi+1), . . . , h ∈ C(zi+k−1), h /∈ C(zi+k)},

then we get the following linear equation for Fi:

Fi = 1 +
∑

1≤k≤`

|Ci,k|
|C(zi)|

· ((k − 1) + Fi+k) .

In this manner we get ` linear equations in the variables F0, . . . , F`−1. Denoting the
solution vector by F we get a linear equation system of the form (1 − C) · F = K,

where 1 is the ` × ` unit matrix, C is a matrix composed of entries of the form
|Ci,k|
|C(zi)|

(and zeros). Therefore C is substochastic and 1 − C is invertible. Hence the values
F0, . . . , F`−1 are uniquely determined by the linear equations derived above. �

The previous lemma allows us to calculate the expectations we had claimed in Fig-
ure 6.2.

Fact 8.18 Let c∗ ∈ M1
4 be the monomial over 4 variables represented by **11. Let

z1 = (0011, 1), z2 = (1111, 1), z3 = (0001, 0), and z4 = (0010, 0) be examples for c∗.

1. The cyclic teacher 〈z1, z2, z3, z4〉 teaches c∗ to the learner L1 without feedback in
expected 580357/17732 ≈ 32.7294 rounds.

2. The cyclic teacher 〈z3, z4, z1, z2〉 teaches c∗ to the learner L1 without feedback in
expected 607109/17732 ≈ 34.2380 rounds.

3. The cyclic teacher 〈z1, z2, z3, z1, z2, z4〉 teaches c∗ to the learner L1 without feedback
in expected 26315/938 ≈ 28.0544 rounds.

Proof. 1. We denote the expectation of the cyclic teacher 〈z1, z2, z3, z4〉 by F0, the
expectation of 〈z2, z3, z4, z1〉 by F1, that of 〈z3, z4, z1, z2〉 by F2, and that of 〈z4, z1, z2, z3〉
by F3.

On receiving z1 the learner can choose between 16 consistent hypotheses. Of these, 4
are consistent with z2 as well (namely **11, **1*, ***1, ****); the other 12 hypotheses
are inconsistent. Of the 4 consistent ones, 2 are consistent even with z3 (namely **11,
**1*). Of these, just one is inconsistent with z4 (namely **1*). For F0 we obtain the
equation

F0 = 1 +
1

16
· (12 · F1 + 2 · (F2 + 1) + 1 · (F3 + 2)).
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If the learner receives z2 as first example it may choose between 16 consistent hy-
potheses again. Of these, only 2 are inconsistent with z3 (namely ***1, ****). Of the
14 consistent ones, only **1* is inconsistent with the next example z4. Finally, z1 is
inconsistent with 12 of the 13 remaining hypotheses (all but the target). Therefore we
get

F1 = 1 +
1

16
· (2 · F2 + 1 · (F3 + 1) + 12 · (F0 + 2)).

If the learner receives z3 first, it can choose between 65 consistent hypotheses. The
example z4 is inconsistent with 12 of them and of the remaining 53 hypotheses, 49 are
inconsistent with z1. Finally, z2 is inconsistent with 3 of the last 4 hypotheses (all but
the target). This yields

F2 = 1 +
1

65
· (12 · F3 + 49 · (F0 + 1) + 3 · (F1 + 2)).

If the learner receives z4 first, it can choose between 65 consistent hypotheses. Only
8 of them are consistent with the next example z1 (namely 0011, 00*1, 0*11, 0**1,
*011, *0*1, **11, ***1). Of these, 6 are inconsistent with z2 (all but **11, ***1).
The hypothesis ***1 is then inconsistent with z3. It follows

F3 = 1 +
1

65
· (57 · F0 + 6 · (F1 + 1) + 1 · (F2 + 2)).

The solution of the equation system is

F0 =
580357

17732
, F1 =

593656

17732
, F2 =

607109

17732
, F3 =

592982

17732
.

The value F0 is the sought expectation.

2. This teacher is the same as in Item 1 shifted by two examples. Thus we have
already derived the necessary equations. The sought expectation is the value F2 above.

3. We spare the reader the tedious derivations of the equations and just present
them:

F0 = 1 +
1

16
· (12 · F1 + 2 · (F2 + 1) + 0 · (F3 + 2) + 0 · (F4 + 3) + 1 · (F5 + 4)),

F1 = 1 +
1

16
· (2 · F2 + 12 · (F3 + 1) + 0 · (F4 + 2) + 1 · (F5 + 3) + 0 · (F0 + 4)),

F2 = 1 +
1

65
· (57 · F3 + 6 · (F4 + 1) + 1 · (F5 + 2) + 0 · (F0 + 3) + 0 · (F1 + 4)),

F3 = 1 +
1

16
· (12 · F4 + 2 · (F5 + 1) + 0 · (F0 + 2) + 0 · (F1 + 3) + 1 · (F2 + 4)),

F4 = 1 +
1

16
· (2 · F5 + 12 · (F0 + 1) + 0 · (F1 + 2) + 1 · (F2 + 3) + 0 · (F3 + 4)),
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111 ** 1111 *

z0 (111 00, 1) z0 (1111 0, 1)
z1 (011 00, 0) z1 (0111 0, 0)
z2 (111 11, 1) z2 (1111 1, 1)
z3 (101 11, 0) z3 (1011 1, 0)
z4 (111 00, 1) z4 (1111 0, 1)
z5 (110 00, 0) z5 (1101 0, 0)
z6 (111 11, 1) z6 (1111 1, 1)
z7 (011 11, 0) z7 (1110 1, 0)
z8 (111 00, 1)
z9 (101 00, 0)
z10 (111 11, 1)
z11 (110 11, 0)

Figure 8.4 The cyclic teacher for monomials as in Fact 8.19. The left column states the
examples for the target 111**, the right column for 1111*.

F5 = 1 +
1

65
· (57 · F0 + 6 · (F1 + 1) + 1 · (F2 + 2) + 0 · (F3 + 3) + 0 · (F4 + 4)).

The solutions are:

F0 =
26315

938
, F1 =

53233

1876
, F2 =

13501

469
, F3 =

26315

938
, F4 =

53233

1876
, F5 =

13501

469
,

and the sought expectation is the value F0. �

Lemma 8.17 also makes it possible to compute upper bounds for the optimal teaching
time of concepts. We only have to devise a successful cyclic teacher and calculate its
teaching time. In the next fact we illustrate just that by calculating an upper bound for
the teaching time of monomials. This will tell us how much slower teaching monomials
without feedback is than with feedback (compare Fact 7.2).

Fact 8.19 Let k ≥ 3 and n ≥ k. Let c∗ ∈ M1
n be a monomial with k variables. The

optimal teaching time E−
1 (c∗,M1

n) is then upper bounded by

−2 + 2k+1 + 7 · 2n − 2n+k+2 + 2k+2 · 3n + 2n+2 · 3n − 2 · 3n+1 − 4n+1 − 2k · (2k − 2n+1 + 2 · 3n)
2 · 3n − 2n+1 + 2k

.

Proof. This expectation is achieved by the following cyclic teacher T (see also Fig-
ure 8.4). Without loss of generality, let the target concept be 1k*n−k. The teacher
provides alternately positive and negative examples. The positive examples alternate
between the two complementary examples (1k0n−k, 1) and (1k1n−k, 1). The first k char-
acters of the instances in the negative examples iterate through 01k−1, 101k−2,. . . ,1k−10;
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the last n− k characters equal the last n− k characters of the immediately preceding
positive example. The number m of examples in this sequence is 2k if k is even, and
4k if k is odd. We denote the examples by z0, . . . , zm−1.

We have to find the linear equations for the expected teaching times of the teachers
T0, T1, . . . , Tm−1 starting the cycle at z0, z1, . . . , zm−1. Normally this would yield m
equations with m variables. Here, however, the examples are chosen in such a way
that all teachers starting with a positive example (z0, z2, . . . ) have the same expecta-
tion. Likewise, all teachers starting with a negative example (z1, z3, . . . ) have the same
expectation.

The reason for many expectations to be equal is the presence of symmetries within
the instances. If we permute the first k bits in all instances in the same way we get
a new example sequence. This new sequence leads to the same expectation as the old
one because the target concept is insensitive to permutations of the first k characters.
Similarly if we flip the n− k last bits in all instances we get a new example sequence.
But this new sequence leads to the same expectation as the old one. Now consider the
teacher T2 starting at z2. By flipping the last n− k bits and cyclically left-shifting the
first k bits in each instance we get a new teacher T ′

2 with the same expectation. But
the teacher T ′

2 is exactly the teacher that starts at z0. Similar arguments apply for the
teachers starting at the other positive examples. Furthermore, analogous arguments
show that also the teachers starting at negative examples all have the same expectation.
We denote the expectation of the teachers starting at positive examples by F+ and the
expectation of the teachers starting at negative examples by F−.

We first derive an equation for F+. Consider the cyclic teacher starting with z0.
After receiving z0 the learner is in a state in which all hypotheses from C(z0) have the
probability 1/|C(z0)| = 2−n. For every following round we have to determine how many
of the initially 2n hypotheses are consistent with all examples up to that round:

• Consistent with z0: the 2n hypotheses {1, *}k{0, *}n−k,

• consistent with z0, z1: the 2n−1 hypotheses 1{1, *}k−1{0, *}n−k,

• consistent with z0, z1, z2: the 2k−1 hypotheses 1{1, *}k−1*n−k.

Among z0, z1, z2 there are two complementary positive examples. This limits the set
of consistent hypotheses in the remaining rounds to subsets of {1, *}k*n−k. Moreover
the upcoming positive examples z4, z6, . . . will not be inconsistent with any hypothesis,
only negative examples will. Each negative example introduces one “1”:

• Consistent with z0, . . . , z3: the 2k−2 hypotheses 11{1, *}k−2*n−k,

• consistent with z0, . . . , z4: the 2k−2 hypotheses 11{1, *}k−2*n−k,

• consistent with z0, . . . , z5: the 2k−3 hypotheses 111{1, *}k−3*n−k.

In general,
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• for j =3, . . . , k: consistent with z0, . . . , z2j−1: the 2k−j hypotheses 1j{1, *}k−j*n−k,

• for j =3, . . . , k: consistent with z0, . . . , z2j: the 2k−j hypotheses 1j{1, *}k−j*n−k.

The only hypothesis consistent with z0, . . . , z2k−1 is the target concept 1k*n−k with
which no example can be inconsistent. The equation for F+ can now be stated:

F+ = 1 + 2−n ·
(

2n−1 · F− + (2n−1 − 2k−1) · (F+ + 1) + 2k−2 · (F− + 2)

+ 2k−3 · (F− + 4) + · · ·+ 21 · (F− + (2k − 4)) + 20 · (F− + (2k − 2))

)
= 1 + 2−n

(
2n−1 · F− + (2n−1 − 2k−1) · (F+ + 1) +

k∑
i=2

2k−i · (F− + 2i− 2)

)
.

For the sum we have

k∑
i=2

2k−i · (F− + 2i− 2) = (2k−1 − 1) · F− + 2k+1 − 2k − 2,

from which follows the equation for F+:

F+ = 1+2−n ·
(

(2n−1 +2k−1−1) ·F−+(2n−1−2k−1) · (F+ +1)+2k+1−2k−2

)
. (8.7)

In a similar manner we now derive the equation for F−. Consider the teacher that
starts with the negative example z1. There are 3n − 2n examples consistent with z1.

• Consistent with z1: all hypotheses except {0, *}{1, *}k−1{0, *}n−k (3n − 2n hy-
potheses),

• consistent with z1, z2: the hypotheses {1, *}n except *{1, *}k−1*n−k (2n − 2k−1

hypotheses),

• consistent with z1, z2, z3: the hypotheses {1, *}1{1, *}n−2 except *1{1, *}k−2*n−k

(2n−1 − 2k−2 hypotheses),

• consistent with z1, z2, z3, z4: the 2k−2 hypotheses 11{1, *}k−2*n−k.

Among the examples z1, z2, z3, z4 there are two complementary positive examples (z2

and z4) which limit the hypotheses to subsets of {1, *}k*n−k. Positive examples will
not make the set of consistent hypotheses smaller. Negative examples introduce one
“1” into the first k characters.

• Consistent with z1, . . . , z5: the 2k−3 hypotheses 111{1, *}k−3*n−k,
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• consistent with z1, . . . , z6: the 2k−3 hypotheses 111{1, *}k−3*n−k.

More general,

• for j =3, . . . , k: consistent with z0, . . . , z2j−1: the 2k−j hypotheses 1j{1, *}k−j*n−k,

• for j =3, . . . , k: consistent with z0, . . . , z2j: the 2k−j hypotheses 1j{1, *}k−j*n−k.

After example z2k−1 only the target hypothesis is left. We obtain the following equation:

F− = 1 +
1

3n − 2n
·
(

(3n − 2n+1 + 2k−1) · F+

+ (2n−1 − 2k−2) · (F− + 1) + (2n−1 − 2k−1) · (F+ + 2)

+ 2k−3 · (F− + 3) + · · ·+ 21 · (F− + (2k − 5)) + 20 · (F− + (2k − 3))

)
= 1 +

1

3n − 2n
·
(

(3n − 2n+1 + 2k−1) · F+ + (2n−1 − 2k−2) · (F− + 1)

+ (2n−1 − 2k−1) · (F+ + 2) +
k∑

i=3

2k−i · (F− + 2i− 3)

)
= 1 +

1

3n − 2n
·
(

(3n − 2n+1 + 2k−1) · F+ + (2n−1 − 2k−2) · (F− + 1)

+ (2n−1 − 2k−1) · (F+ + 2) + (2k−2 − 1) · F− + 5 · 2k−2 − 2k − 1

)
.

(8.8)

Solving the equations (8.7) and (8.8) for F+ yields the desired expectation, and thus
Fact 8.19 is shown. �

Applying the teacher from the previous proof to the target in Figure 6.2 yields an
expectation of 2148/67 ≈ 32.0597.

We can now compare the teachability of monomials without feedback and the teacha-
bility with feedback (see Fact 7.2). Roughly speaking, teaching without feedback takes
at most twice as long as teaching with feedback. Ideally we would like to show that the
quotient of the bound from Fact 8.19 and E+

1 (c∗,M1
n) is upper bounded by two, which is

however not true: For k = n = 13 this quotient is 17309416200/8650679311 ≈ 2.00093.
This is the highest value in the range 1 ≤ k ≤ n ≤ 1000. What we can show in fact is
that the limit of the quotient is 2.

Corollary 8.20 Let n ≥ k ≥ 3 and denote the upper bound from Fact 8.19 by F (k, n).
Let for all k ≤ n, ck ∈M1

n be a monomial with k literals. Then for all k,

lim
n→∞

F (k, n)

E+
1 (ck,M1

n)
= 2.



8.4 Cyclic Teachers 183

Moreover,

lim
n→∞

F (n, n)

E+
1 (cn,M1

n)
= 2.

Proof. Dividing F (k, n) by E+
1 (ck,M1

n) and simplifying yields

2− 21+k − 7 · 2n + 22+k+n − 22+k · 3n − 22+n · 3n + 2 · 31+n + 41+n + 2(2k − 21+n + 2 · 3n)k
−2 · 3n(−1 + 2k + 2n) + 2n(−4 + 3 · 2k + 21+n)

.

For constant k and growing n the dominating term in the numerator is −22+n · 3n and
in the denominator −2 · 3n · 2n, the quotient of which is 2.

Dividing F (n, n) by E+
1 (cn,M1

n) and simplifying yields

−2 + 9 · 2n − 23+2n + 2 · 3n(−3 + 22+n − 2n) + 21+nn

22+n − 2 · 3n + 22+n · 3n − 5 · 4n
.

The dominating terms are 2 · 3n · 22+n and 22+n · 3n. Their quotient is 2. �

Cyclic teachers are not only good for obtaining upper bounds of the optimal teaching
time; sometimes, they are even optimal (see Lemma 8.12 and Fact 8.8). But sometimes,
such as for monomials, we do not know whether there is an optimal, cyclic teacher. In
any case, cyclic teachers can always be used to approximate the optimal one.

Corollary 8.21 Let C be a finite concept class, c∗ ∈ C, and ε > 0. Then there is a
cyclic teacher T with |E−

1 (c∗, C)− E[T,L1,C, c
∗]| < ε.

Proof. Let α be the example sequence constructed during the execution of Algorithm 8.2
(see Page 174) and output in line 7. The proof of Fact 8.15 shows that any teacher
starting with α yields an ε-approximation of the optimal teaching time. In particular
this is true for the cyclic teacher iterating over α. �

Algorithm 8.2 is not an efficient means to find good cyclic teachers. Moreover, finding
the optimal cyclic teacher is NP-hard. This follows from our results about X3C classes
in Section 8.3.

Corollary 8.22 The following problem is NP-hard.
OPT-CYCLIC-TEACHINGTIME

Instance: Concept class C, concept c∗ ∈ C, rational number F .
Question: Is there a cyclic teacher with expected teaching time of at most F?

Proof. We reduce X3C to OPT-CYCLIC-TEACHINGTIME with the same reduction function
as in Theorem 8.14, that is, with Algorithm 8.1. An X3C instance 〈B, A1, . . . , Am〉 is
transformed into an OPT-CYCLIC-TEACHINGTIME instance 〈C, c∗, 1 + 3

2
n(n− 1)〉.

The tuple 〈B, A1, . . . , Am〉 is a positive instance of X3C if and only if C is a positive
X3C class (by definition). The latter holds if and only if the optimal cyclic teacher
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x1 x2 x3 y1 . . . . . . . . . yn

c∗ 1 1 1 1 . . . . . . . . . 1
c1 0 1 1 1 . . . . . . . . . 1
c2 1 0 1 1 . . . . . . . . . 1
c3 1 1 0 1 . . . . . . . . . 1
c4 0 0 1 0 1 . . . 1 1
...

...
...

... 1 0 1 . . . 1
...

...
...

...
... 1

. . .
...

...
...

...
...

...
...

. . . 1
c3+n 0 0 1 1 1 . . . 1 0


n

Figure 8.5 Family of classes for which the greedy teacher is much worse than the optimal
one. The greedy teacher for c∗ has a teaching time of Θ(log n) whereas the optimal teaching
time is in O(1) (see Theorem 8.23).

for c∗ ∈ C has a teaching time of 1 + 3
2
n(n − 1) (by Lemma 8.13 because the optimal

teacher is cyclic). This in turn holds if and only if 〈C, c∗, 1 + 3
2
n(n − 1)〉 is a positive

OPT-CYCLIC-TEACHINGTIME instance. �

8.5 Greedy Teachers

We know from the proof of Lemma 8.5 that a greedy teacher is always successful.
Moreover, a greedy teacher allows a direct application of the optimality criterion Corol-
lary 8.7. Thus we were able to prove the optimality of some greedy teachers (see Fact 8.8
and Lemma 8.11). However, greedy teachers are not always optimal. In fact, they can
be arbitrarily far off the optimal teacher as they, in general, do not approximate the
optimal teacher by a constant factor.

Theorem 8.23 For every d > 1 there is a class C and a target c∗ such that for all
greedy teachers T , E[T,L1,C, c

∗] > d · E−
1 (c∗, C).

Proof. Figure 8.5 describes a family of classes Cn. For n ≥ 1 the class Cn contains n+4
concepts over the learning domain X = {x1, x2, x3} ∪ {y1, . . . , yn}. The target concept
is c∗ = X. For i = 1, 2, 3 there are concepts ci = X \{xi}, and for i = 1, . . . , n there are
concepts c3+i = {x3} ∪ {y1, . . . , yi−1, yi+1, . . . , yn}. The instances y1, . . . , yn are merely
dummy instances which allow us to have n concepts c4, . . . , c3+n that are equal with
respect to x1, x2, x3.

A greedy teacher would never chose any of the examples (y1, 1), . . . , (yn, 1). Such an
example would be inferior to (x1, 1) and to (x2, 1) since both examples activate more
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i 0 1 2 3 4 5 6 7 8

δ
(i)
∗ 0 1/3 4/9 13/27 40/81 41/81 54/81 176/243 542/729

δ
(i)
1 0 0 1/9 0 1/81 2/81 0 14/243 0

δ
(i)
2 0 1/3 0 1/27 0 1/81 14/81 0 14/729

δ
(i)
3 0 1/3 4/9 13/27 40/81 0 13/81 53/243 173/729

δ
(i)
4 0 0 0 0 0 1/81 0 0 0

...
...

...
...

...
...

...
...

...
...

δ
(i)
40 0 0 0 0 0 1/81 0 0 0

δ
(i)
init 1 0 0 0 0 0 0 0 0

T (i) (x1, 1) (x2, 1) (x1, 1) (x2, 1) (x3, 1) (x1, 1) (x2, 1) (x1, 1) (x2, 1)

Figure 8.6 The teaching process of a greedy teacher T for the concept c∗ in the class C37

which is described in Figure 8.5. Each column shows the probability distribution δ(i) over
all hypotheses as well as the example T (i) taught in round i. The teacher iterates through
x1, x2, x1, x2, x3 and corresponds to ` = 2 in Claim 2 in the proof of Theorem 8.23.

probability mass and distribute it among less hypotheses. Hence we need not consider
(y1, 1), . . . , (yn, 1) in the following.

The proof is somewhat lengthy and technical, although the main ideas are simple
enough. The main steps are as follows.

1. The cyclic teacher iterating over 〈(x1, 1), (x2, 1), (x3, 1)〉 has a teaching time of
less than five, regardless of n. Therefore E−

1 (c∗, Cn) < 5 for all n ∈ N.

2. For every ` ≥ 2, setting n = 3
2
(32`−1−3)+1 makes the greedy teacher for c∗ ∈ Cn

be a cyclic teacher that alternates between (x1, 1) and (x2, 1) for 2` rounds and
only then gives (x3, 1). Intuitively speaking, when n grows, the example (x3, 1)
becomes less attractive for the greedy teacher and is given less often.

3. Cyclic teachers as in Step 2 have a teaching time of Θ(`). The longer it takes
until (x3, 1) is taught, the more probability mass accumulates in hypothesis c3.
The remaining probability mass activated alternately by (x1, 1) and (x2, 1) is then
very small. Consequently the target probability increases slowly, which leads to
a high expected teaching time.

On the other hand, giving (x3, 1) might increase the target probability even less
in the very next round. But in the round after the next round, (x1, 1), (x2, 1) are
much more effective.

4. For n as above, the greedy teacher is cyclic with ` = log(7 + 2n)/ log(9) and
according to step 3 its teaching time is in Θ(log n) and can thus be larger than
E−

1 (c∗, Cn) by any factor d.
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Now we prove four claims that correspond to the four steps just outlined.

Claim 1: The cyclic teacher T123 iterating over 〈(x1, 1), (x2, 1), (x3, 1)〉 has a teaching
time of E[T123,L1,Cn , c∗] = (16 + 5n)/(4 + n).

Proof. We apply the idea of the proof of Lemma 8.17. The expectations when the
teacher starts at (x1, 1), (x2, 1), (x3, 1) are denoted by F1, F2, F3, respectively. Then we
have

F1 = 1 +
1

3
F2 +

1

3
(F3 + 1),

F2 = 1 +
1

3
F3 +

1

3
(F1 + 1),

F3 = 1 +
n + 1

n + 3
F2 +

1

n + 3
(F3 + 1).

Solving this system of three linear equations yields F1 = (16+5n)/(4+n) < 5. � Claim 1

Claim 2: Let ` ≥ 2 and set n = 3
2
(32`−1−3)+1. Then the greedy teacher for c∗ ∈ Cn

is a cyclic teacher iterating over 〈(x1, 1), (x2, 1)〉` ◦ 〈(x3, 1)〉 or over 〈(x2, 1), (x1, 1)〉` ◦
〈(x3, 1)〉.

Proof. Let T be a greedy teacher. As usual, we denote by δ(j) the learner’s state
in round j ∈ N. For readability, we abbreviate δ(j)(ci) by δ

(j)
i and δ(j)(c∗) by δ

(j)
∗ and

δ(j)(init) by δ
(j)
init .

By definition, δ
(0)
init = 1. Now T (0) can either be (x1, 1) or (x2, 1). Both examples are

equally greedy. Without loss of generality, we assume that T (0) = (x1, 1). Then we get

δ
(1)
∗ = δ

(1)
2 = δ

(1)
3 = 1/3. Figure 8.6 displays the teaching process for the first rounds in

the case ` = 2 and n = 37.
We want to show that T is cyclic with a period of 2`+1. For technical reasons, we let

the first cycle start at round 1 (rather than 0) and show that from then on T iterates
over 〈(x2, 1), (x1, 1)〉`−1 ◦ 〈(x3, 1), (x1, 1)〉. Generally, we denote by rk = k(2` + 1) the
last round of the k-th cycle for all k ≥ 0.

In order to show the “cyclicity” of T , we shall show

Claim 2.1: For all k ≥ 0:

δ
(rk+1+1)
1 = 0, (8.9)

δ
(rk+1+1)
2 =

3−1−2`((−9 + 4 · 9` + 81`) · δ(rk+1)
2 + 2(9` + 81`) · δ(rk+1)

3 )

2(−1 + 9`)
, (8.10)

δ
(rk+1+1)
3 =

3−1−2`((9− 2 · 9` + 81`) · δ(rk+1)
2 + 2(−5 · 9` + 81`) · δ(rk+1)

3 )

2(−1 + 9`)
, (8.11)
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δ
(rk+1+1)
j = 0 for j = 4, . . . , n + 3, (8.12)

and

T (rk + i) = (x1+i mod 2, 1) for i = 1, . . . , 2`− 1,

T (rk + 2`) = (x3, 1),

T (rk+1) = T (rk + 2` + 1) = (x1, 1).

Proof. We prove the claim by induction on k. First assume that k = 0 and thus
rk = 0. In round 1, the teacher T will choose the example (x2, 1): T (1) = (x2, 1). The

resulting state is δ(2) with δ
(2)
2 = 0, δ

(2)
1 = 1/9, δ

(2)
3 = 1/3 + 1/9 = 4/9. Now T may

either choose (x1, 1) or (x3, 1). It chooses (x1, 1) if δ
(2)
1 /3 > δ

(2)
3 /(n + 3) and chooses

(x3, 1) if δ
(2)
1 /3 < δ

(2)
3 /(n+3). Assume for a moment that (x1, 1) is chosen. Then we get

δ
(3)
1 = 0, δ

(3)
2 = 1/27, δ

(3)
3 = 4/9+1/27 = 13/27. Then either (x1, 1) or (x3, 1) is chosen

next, depending on the relation of δ
(3)
1 /3 to δ

(3)
3 /(n+3). In general (x3, 1) is chosen only

in that round i ∈ {1, 2, . . . } in which the inequality δ
(i)
1+i mod 2/3 < δ

(i)
3 /(n+3) holds for

the first time. Until then the examples (x2, 1) and (x1, 1) are chosen alternately.

As long as either (x1, 1) or (x2, 1) are chosen, the probabilities δ
(i)
1 , δ

(i)
2 , δ

(i)
3 develop

as follows: δ
(i+1)
1+(i+1) mod 2 = δ

(i)
1+i mod 2/3, δ

(i+1)
1+(i+1) mod 2 = 0, and δ

(i+1)
3 = δ

(i)
3 + δ

(i)
1+i mod 2/3.

For all these i either δ
(i)
1 or δ

(i)
2 is greater than zero. We abbreviate this unique positive

value by δ
(i)
12 . Resolving the recurrence, we get for i = 1, 2, . . . :

δ
(i)
12 = δ

(1)
2 /3i−1, (8.13)

δ
(i)
3 = δ

(1)
3 +

i−1∑
ν=1

δ
(1)
2 /3ν = δ

(1)
3 + δ

(1)
2 ·

(
1

2
− 1

2 · 3i−1

)
. (8.14)

These equations trivially hold for round i = 1 and in addition only for rounds i when
in the preceding round

δ
(i−1)
12

3
− δ

(i−1)
3

(n + 3)
> 0, (∗)

because only then (x1, 1) or (x2, 1) is chosen. Now we show that Condition (∗) is
satisfied for i = 2, . . . , 2`− 1. Afterwards we show that it does not hold for i = 2`.

The proof is by induction on i. For the induction basis let i = 2. Then δ
(1)
12 /3 =

δ
(1)
2 /3 = 1/9 and δ

(1)
3 /(n + 3) = (1/3)/(n + 3) < 1/9 since n + 3 > 3. Thus (∗) holds.

Now assume (∗) for some i ∈ {2, . . . , 2` − 2}. Then we have δ
(i+1)
12 /3 = δ

(1)
2 /3i+1 =

1/3i+2 and δ
(i+1)
3 /(n + 3) = 1/3 + 1/3 ·

(
1
2
− 1

2·3i

)
. Subtracting the second term from

the first and plugging in n, yields

δ
(i+1)
12

3
− δ

(i+1)
3

(n + 3)
=

3−2−i · (2− 32+i + 32`)

32` − 1
(8.15)
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which is positive because i ≤ 2`− 2. Therefore (∗) holds for i + 1.
For i = 2`− 1 we can check (∗) using Equation (8.15) again. We obtain

δ
(i+1)
12

3
− δ

(i+1)
3

(n + 3)
=

3−1−2` · (2− 31+2` + 32`)

32` − 1
=

3−1−2` · (2− 2 · 32`)

32` − 1

which is negative. This means (∗) is not satisfied for i = 2`− 1.
So far we have shown that (x1, 1) and (x2, 1) are chosen alternately until round

2` − 1, that is, T (i) = (x1+i mod 2, 1) for i = 1, . . . , 2` − 1. The state at round 2` is

δ
(2`)
1 = 1/32`, δ

(2`)
2 = 0, δ

(2`)
3 = 1/3+1/3 · (1

2
− 1

2·32`−1 ). Then (x3, 1) is the greedy choice:

T (2`) = (x3, 1). The resulting state is δ
(2`+1)
1 = δ

(2`)
1 + δ

(2`)
3 /(n + 3), δ

(2`+1)
2 = δ

(2`+1)
4 =

· · · = δ
(2`+1)
n+3 = δ

(2`)
3 /(n + 3), δ

(2`+1)
3 = 0.

It remains to show that T (2` + 1) = (x1, 1) and the statement about δ(rk+1+1) =
δ(2`+2). In state δ(2`+1) the example (x3, 1) is certainly not the greedy choice because

δ
(2`+1)
3 = 0. From the two remaining examples, (x1, 1) activates more probability mass

and is thus the greedy choice. Therefore T (2` + 1) = (x1, 1). For the state δ(2`+2) it
follows:

δ
(2`+2)
1 = 0,

δ
(2`+2)
2 = δ

(2`+1)
2 + (δ

(2`+1)
1 + n · δ(2`+1)

4 )/3

=
3−1−2`((−9 + 4 · 9` + 81`) · δ(1)

2 + 2(9` + 81`) · δ(1)
3 )

2(−1 + 9`)
,

δ
(2`+2)
3 = (δ

(2`+1)
1 + n · δ(2`+1)

4 )/3

=
3−1−2`((9− 2 · 9` + 81`) · δ(1)

2 + 2(−5 · 9` + 81`) · δ(1)
3 )

2(−1 + 9`)
,

δ
(2`+2)
4 = · · · = δ

(2`+2)
n+3 = 0.

We have now proven the induction basis for Claim 2.1. For the induction step,
assume that the claim holds for some k ≥ 0. We show it for k + 1. In principle, the
proof for k +1 works exactly as the induction basis proof. However, instead of starting
in a state δ(1) with known probabilities (δ

(1)
1 = 0, δ

(1)
2 = δ

(1)
3 = 1/3), we start in a state

δ(rk+1+1) about which we only know Equations (8.9)–(8.12). The whole argument thus
becomes more complicated.

By the induction hypothesis we know that T (rk+1) = T (rk + 2` + 1) = (x1, 1). This
corresponds to T (0) = (x1, 1) in the induction base. Beginning with round rk+1 + 1
the teacher gives the examples (x2, 1), (x1, 1) alternately until (x3, 1) would be more
greedy. At what round this happens can be checked via a condition similar to (∗).
Again we abbreviate the unique positive value of δ1 and δ2 by δ12. Then we get the
following equations for i = 1, 2, . . . (cf. (8.13), (8.14)):

δ
(rk+1+i)
12 = δ

(rk+1+1)
2 /3i−1, (8.16)
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δ
(rk+1+i)
3 = δ

(rk+1+1)
3 +

i−1∑
ν=1

δ
(rk+1+1)
2 /3ν

= δ
(rk+1+1)
3 + δ

(rk+1+1)
2 ·

(
1

2
− 1

2 · 3i−1

)
. (8.17)

These equations hold trivially for round rk+1 + i = rk+1 + 1 and in addition only for
rounds i when in the preceding round

δ
(rk+1+i−1)
12

3
− δ

(rk+1+i−1)
3

n + 3
> 0, (∗∗)

because only then (x1, 1) or (x2, 1) is chosen. Now we show that condition (∗∗) is
satisfied for i = 2, . . . , 2`− 1. Afterwards we show that it does not hold for i = 2`.

Again we use induction on i. For i = 2 the left hand side of condition (∗∗) becomes
(using Equations (8.10) and (8.11)):

3−3−2`

2(−1 + 32`)2
·
(

(−99− 7 · 31+4` − 32` + 36`) · δ(rk+1)
2

+ 2(−8 · 31+4` + 83 · 32` + 36`) · δ(rk+1)
3

)
.

In this expression, the coefficients of δ
(rk+1)
2 and δ

(rk+1)
3 are positive for ` ≥ 2 because

the summand 36` dominates. Therefore the whole expression is positive, which means
that (∗∗) holds for i = 2.

For the induction step, assume that (∗∗) is satisfied for some i ∈ {2, . . . , 2` − 2}.
Then using Equations (8.16) and (8.17) for i, in addition to (8.10) and (8.11), we get
as left hand side of condition (∗∗) for i + 1:

3−2−2`−i

2(−1 + 32`)2
·
(

(−18 + 2 · 31+4` − 33+i − 32+4`+i − 32` + 36`) · δ(rk+1)
2

+ 2(31+4` + 33+2`+i − 32+4`+i + 2 · 32` + 36`) · δ(rk+1)
3

)
.

Again we show that the coefficients of δ
(rk+1)
2 and δ

(rk+1)
3 are positive. The coefficient

of δ
(rk+1)
2 is

−18 + 2 · 31+4` − 33+i − 32+4`+i − 32` + 36` > −18 + 2 · 31+4` − 32`+1 − 36 − 32` + 36`

= −18 + 2 · 31+4` − 4 · 32`

> −18 + 2 · 31+4` − 2 · 31+2`

where the first inequality holds because i ≤ 2` − 2. Thus, the coefficient of δ
(rk+1)
2 is

positive for ` ≥ 2. The coefficient of δ
(rk+1)
3 is (ignoring the factor 2):

31+4` + 33+2`+i − 32+4`+i + 2 · 32` + 36` > 31+4` + 33+2`+i − 36` + 2 · 32` + 36`
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= 31+4` + 33+2`+i + 2 · 32`

> 0.

The first inequality is again due to i ≤ 2` − 2. This shows that (∗∗) is true for i + 1,
too.

Condition (∗∗) is not satisfied any more when i = 2`. In this case the left hand side
of (∗∗) is

3−1−4`

2(−1 + 32`)2
·
(

(−18 + 2 · 31+4` − 31+6` − 10 · 32` + 36`) · δ(rk+1)
2

+ 2(4 · 31+4` − 31+6` + 2 · 32` + 36`) · δ(rk+1)
3

)
.

Similar as above, the coefficients of δ
(rk+1)
2 and δ

(rk+1)
3 can be seen to be negative, as

the summand −31+6` dominates.
We have now shown that the greedy teacher gives example (x2, 1), (x1, 1) alternately

until round rk+1 +2`, that is, T (rk+1 + i) = (x1+i mod 2, 1) for i = 1, . . . , 2`− 1. In state
δ(rk+1+2`) condition (∗∗) is not true and thus T (rk+1 + 2`) = (x3, 1). For the resulting

state we get δ
(rk+1+2`+1)
1 = δ

(rk+1+2`)
1 + δ

(rk+1+2`)
3 /(n + 3), δ

(rk+1+2`+1)
2 = δ

(rk+1+2`)
4 =

· · · = δ
(rk+1+2`+1)
n+3 = δ

(rk+1+2`)
3 /(n + 3), δ

(rk+1+2`+1)
3 = 0. In this state, the greedy

teacher must chose the example (x1, 1), hence T (rk+1 + 2` + 1) = (x1, 1). For the state
δ(rk+1+2`+2) = δ(rk+2+1) it follows:

δ
(rk+2+1)
1 = 0,

δ
(rk+2+1)
2 = δ

(rk+1+2`+1)
2 + (δ

(rk+1+2`+1)
1 + n · δ(rk+1+2`+1)

4 )/3

=
3−1−2`((−9 + 4 · 9` + 81`) · δ(rk+1+1)

2 + 2(9` + 81`) · δ(rk+1+1)
3 )

2(−1 + 9`)
,

δ
(rk+2+1)
3 = (δ

(rk+1+2`+1)
1 + n · δ(rk+1+2`+1)

4 )/3

=
3−1−2`((9− 2 · 9` + 81`) · δ(1)

2 + 2(−5 · 9` + 81`) · δ(rk+1+1)
3 )

2(−1 + 9`)
,

δ
(rk+2+1)
4 = . . . = δ

(rk+2+1)
n+3 = 0.

This finishes the induction step and the proof of Claim 2.1. � Claim 2.1

Now we know that the greedy teacher is a cyclic teacher and iterates through the
example sequence 〈(x1, 1), (x2, 1)〉` ◦ 〈(x3, 1)〉 of length 2` + 1. � Claim 2

Claim 3: For all ` ≥ 1, the cyclic teacher with example sequence 〈(x1, 1), (x2, )〉` ◦
〈(x3, 1)〉 has an expected teaching time of

−n + 9`(16 + 5n) + 4`(1 + 32`+1 + 9`n)

2(−1 + 9`)(4 + n)
.
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Proof. We use the idea of the proof of Lemma 8.17. We denote the 2` + 1 examples
by z0, . . . , z2` and by Fi the expected number of rounds when teaching would start with
example zi (i = 0, . . . , 2`). We then get the following 2` + 1 equations:

F0 = 1 +
1

3
· F1 +

1

3
· (F2` + 2`− 1), (8.18)

F1 = 1 +
1

3
· F2 +

1

3
· (F2` + 2`− 2),

F2 = 1 +
1

3
· F3 +

1

3
· (F2` + 2`− 3),

...
...

F2`−2 = 1 +
1

3
· F2`−1 +

1

3
· (F2` + 1),

F2`−1 = 1 +
1

3
· F2` +

1

3
· (F0 + 1),

F2` = 1 +
n + 1

n + 3
· F0 +

1

n + 3
· (F1 + 1). (8.19)

Now we plug F1 into the first equation, then F2 into the result and so on until F2`−1.
Then we arrive at an equation containing only F0 and F2`:

F0 = 1 +
1

3
+

(
1

3

)2

F2 +

(
1

3

)2

· (F2` + 2`− 2) +
1

3
· (F2` + 2`− 1)

= 1 +
1

3
+

(
1

3

)2

+

(
1

3

)3

F3 +

(
1

3

)3

· (F2` + 2`− 3) +

(
1

3

)2

· (F2` + 2`− 2)

+
1

3
· (F2` + 2`− 1) +

1

3
· (F2` + 2`− 1)

= . . .

=
2`−2∑
i=0

(
1

3

)i

+

(
1

3

)2`−1

· F2`−1 +
2`−1∑
i=1

(
1

3

)i

(F2` + 2`− i)

=
2`−1∑
i=0

(
1

3

)i

+
2∑̀

i=1

(
1

3

)i

(F2` + 2`− i) +

(
1

3

)2`

· (F0 + 1).

Together with (8.18) and (8.19) we thus have a system of three linear equations over
F0, F1, F2`. Solving this system yields

F0 =
−n + 9`(16 + 5n) + 4`(1 + 31+2` + 9`n)

2(−1 + 9`)(4 + n)
,

F1 =
2(1 + `)(5 + 31+2` + n + 9`n)

(−1 + 9`)(4 + n)
,
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F2` =
−4 + 8`− 3n + 9`(20 + 7n + 4`(2 + n))

2(−1 + 9`)(4 + n)
.

The value F0 is the sought expectation. � Claim 3

Claim 4: The greedy teacher has a teaching time of

E[T,L1,Cn , c∗] =
(56 + n(33 + 5n)) log(3) + (22 + n(13 + 2n)) log(7 + 2n)

(3 + n)(4 + n) log(9)
.

Proof. From n = 3
2
(32`−1 − 3) + 1 it follows that ` = log(7 + 2n)/ log 9 and plugging

` into the expression from Claim 3 yields the proof. � Claim 4

The numerator of E[T,L1,Cn , c∗] is in Θ(n2 log n) and the denominator in Θ(n2).
This places the expectation itself in Θ(log n). Since the optimal value is at most five,
this shows that the greedy teacher provides only a factor log n approximation for the
concept c∗ ∈ Cn. �

Since the optimal teachers in a positive X3C class are all greedy, the problem of
finding optimal teaching times for greedy teachers is NP-hard, too. This follows in the
same way as Corollary 8.22 from the results about X3C classes in Section 8.3.

Corollary 8.24 The following problem is NP-hard.
OPT-GREEDY-TEACHINGTIME

Instance: Concept class C, concept c∗ ∈ C, rational number F .
Question: Is there a greedy teacher with expected teaching time of at most F?

This concludes our investigation of teaching the randomized learner L1 without feed-
back. That L1 is memoryless seems to make it a less realistic model for real-world
students. But we expect that most results in this section hold mutatis mutandis for
the case of larger, but finite, memory, provided the teaching dimension of the target
is greater than the memory size. Obtaining such results, however, appears to be even
more complicated than in the memoryless case considered here. After all, even in this
case many questions remain open. We already mentioned the question of the complex-
ity of OPT-TEACHINGTIME. Another open problem is to determine an upper bound of
the approximation quality of greedy teachers. Furthermore, the role of cyclic teachers
should be explored further. For example, experiments indicate that greedy teachers
become cyclic teachers after a finite prefix of examples. For all we know, this limited
class of teachers could always contain an optimal teacher.

The limits of our knowledge about this teaching model are probably best demon-
strated by the fact that we do not even know an optimal teacher for the class of
monomials over 4 variables.

Further research regarding randomized learners and their relation to the non-deter-
ministic learners of Part I is discussed in the following, final chapter.



Chapter 9

Conclusion
In this chapter we summarize our results, discuss some relations to learning theory,
and sketch ideas for further work.

9.1 Summary

Our goal was to create formal models for teaching that resemble the scenario of an
intelligent tutoring system more closely than traditional models, especially the teaching
dimension model. To this end, we pursued two ideas. First, we developed a new
framework of non-deterministic learners, within which we devised new, more realistic
models of the students. Second, we analyzed the performance of the teacher in a novel
way, namely by replacing the worst case learner with a randomized average case learner.

Both approaches improve the realism of the teaching dimension model in that they
make the teaching performance of a teacher depend on the order in which the teacher
presents the examples, on the amount of feedback given by the learners, and on the
memory size of the learners. The two approaches achieve this in different ways and to
a different extent. To highlight the differences we compare both approaches.

The influence of varying memory size is rather weak in the non-deterministic frame-
work. Most often a target is teachable if and only if the learner’s memory has at least
a certain size. The Lemmas 4.4 and 4.29 demonstrate this for the hypothesis space
restriction model. In the hypothesis change restriction model this effect occurs for 1-
decision lists (see Fact 5.10), but not for the monomials with a certain neighborhood
relation, as shown in Fact 5.8. When this effect occurs it is caused by the teacher
having to force all computations of the non-deterministic learner into the target state.
Typically, some transitions on this way can only be enforced by providing sufficiently
many examples to the learner. If the memory size is too small, there is a learner that
can avoid this transition and thus avoid reaching the target. By contrast, in the ran-
domized framework the performance of a teacher varies smoothly with the memory
size of the learner (see Figure 6.1). This is because the more examples the learner
memorizes the higher the probability of reaching the target.

The influence of feedback can be rather strong in the hypothesis change restriction
model (see Section 5.2). The reason is that giving a certain example to learners in
different states can have very different effects on them. In the randomized model
the influence is generally much weaker because a certain example can have only two
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possible effects, namely triggering a hypothesis change or not. Moreover, triggering a
hypothesis change always has the same consequences, regardless of the learner’s current
state. That feedback effects tend to be small in the randomized model is shown by
Lemma 7.10, which states that in the case of infinite memory the absence of feedback
at most doubles the expected teaching time.

For the order of examples similar things can be said as for feedback. The order can
be crucial in the hypothesis change restriction model because one wrong example at
the wrong time can lead the learner into complete failure. In the randomized model
arranging the examples differently often causes the teaching time to change only a little
(see Figure 6.2).

In the non-deterministic model one wrong example can lead a learner into a dead
end, which makes it impossible for the teacher to succeed for all learners. The impact
of unsuited examples can thus be fatal, which is not realistic. In the randomized model
teaching success can be achieved with probability one, regardless of the situation the
learner is in; but the influence of bad examples or a bad order of examples is rather
unrealistically small. In reality it seems that on the one hand teaching should be
possible regardless of the learner’s situation, as in the randomized model, and on the
other hand unsuited examples or a badly laid out curriculum should cause a much
higher teaching time than a well laid out curriculum. Our results strongly suggest that
this kind of behavior can only be achieved if we combine both approaches.

A combined model would allow the learner to switch from every state to every other
state with positive probability. The probability distribution would not be uniformly,
but biased towards the neighborhood hypotheses in the underlying non-deterministic
model. Note that here the randomization has two tasks. First it smoothes out the
worst case behavior (and the best case behavior) of the students; second it smoothes
out the distinction between admissible and non-admissible hypotheses, preventing dead
end situations for the learner.

Our analysis of both single approaches themselves indicates that such a combined
model would indeed combine the advantages of the models and would allow to model
more complex phenomena occurring in real life. On the other hand, our results also
indicate that the resulting model would be much harder to analyze. For instance,
the optimality criteria (Lemmas 7.1 and 7.8, and Corollary 8.7) would become even
more complicated if we allow the probability distributions to be non-uniform and to
be different in every state of the learner. Even in our original randomized model in
Chapter 8 we were unable to find an optimal teacher for the simple class of monomials.
Thus, unsurprisingly, greater realism comes at the price of greater complexity.

9.2 Relations between Teaching and Learning

Comparing concepts and classes with respect to their teachability and learnability sug-
gests itself, but is not as straightforward as it may look. A fundamental difference
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between teachability and learnability is that learnability is typically measured for con-
cept classes, whereas teachability is measured for single concepts. The latter claim
holds even though the teaching dimension and average teaching dimension are defined
for classes, too. But these dimension values are not defined by the model itself, rather
they are calculated afterwards as an “add-on measure.” The pure teaching models
always measure performance for a certain single target concept. The learnability of a
certain concept, on the other hand, cannot be defined as the performance of an op-
timal learner, because for every fixed target concept there is a learner that guesses
this target right from the beginning. Learning makes sense only when a whole class of
possible concepts is involved. Therefore, comparisons of learnability measures, such as
the VC-dimension or the number of membership queries, with teachability measures
are somewhat hard to interpret.

In addition to these intrinsic obstacles, our teachability measures are hard to compare
with classical learnability measures because the former often do not depend on the
concept class alone, but also on additional assumptions such as a complexity measure
or a neighborhood relation over the concepts.

Teaching is connected with another fundamental question in learning theory, namely
the question of the information content of a sample. Since good teachers are supposed
to present informative samples, it seems natural to measure the information content
of a sample by the performance of a teacher using this sample. In particular, teaching
sets can be considered to have a high information content. We did not focus on this
connection and much more research is necessary to explore it, but nevertheless our
results give two suggestions. First, the information content depends on the receiver of
the sample, in this case the learner. We have seen in the case of 1-decision lists that
replacing plain consistent learners with complexity based learners radically changes
the size and the form of the teaching sets (or H-sets, respectively). Second, our results
discourage the use of the randomized models for determining the information content.
This is because the randomized learner is sensitive to the order in which the examples
are given (see Figure 6.2). Moreover, the optimal teaching times of teachers in the
randomized models are very similar to the optimal teaching times of teachers in the
corresponding non-deterministic model (see Lemma 7.10). Thus the randomized models
would not yield very different measures for the information content, but they would be
much more difficult to use.

9.3 Extensions of Our Models and Further Work

As we already mentioned above, a combination of hypothesis change restrictions with
randomization most likely yields a more realistic teaching model at the price of higher
complexity. But there are more ways in which the models can be varied either to
make them match the intelligent tutoring setting more closely or for more theoretical
reasons, similarly to variations occurring in learning models. Sometimes such variations
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require bigger structural changes in the framework than only adjusting the probability
distribution of follow-up hypotheses. In the following we will just mention some ideas.

A classical variation is to require the teacher to present positive examples only. This
is intended for studying language acquisition because languages are learned primarily by
sentences or phrases that are correct and thus belong to the language to be learned. In
another variant the teacher could be allowed to give wrong examples, that is, examples
that are not consistent with the target concept. This is similar to a human teacher who
gives a rough intuition or oversimplified explanation that is, strictly speaking, wrong,
but nevertheless helps the students understand the subject matter.

Besides modifications of the teacher, also the interaction between learner and teacher
could resemble reality more closely. After all, intelligent tutoring systems typically use
other kinds of feedback than mind reading, which is the only kind of feedback in
our models. Information about the current hypothesis can be gathered by asking the
student questions or by “watching” the student solve exercises proposed by the system.
To some extent the student might even be able to ask the system questions. These
would also reveal something about the student’s current hypothesis. These ways of
interacting can be formalized rather easily. For example, the teacher could choose to
give an instance, without label, to the learner that answers with a label according to
the current hypothesis. This would partially reveal the hypothesis to the teacher and
as such be a middle course between no feedback and complete feedback.

The largest room for improvement still lies in the student model. The memory
could be modeled more realistically by separating it into a short term memory and
a long term memory. In addition, its behavior could be randomized similar to the
hypothesis changes. The hypothesis changes are probably the most difficult part of
the learner to get “right.” Determining the probabilities of hypothesis changes in a
human requires a deep psychological analysis of the human learning behavior, which
theoretical computer science, obviously, cannot provide. It can, however, provide a
framework for the analysis of any realistic student model a psychologist may come up
with.

All these modifications to the randomized model can be regarded as special cases of
(unobserved) stochastic shortest path problems, albeit with a larger or more complex
state space than our models in Part II had.

All our models and also all extensions suggested above do not require the teacher
to pay attention to the history of the teaching process. But an intelligent tutoring
system, just as a human teacher, should consider the student’s past behavior when
deciding how to teach the student in the future. This would result in an interesting
intertwining of teaching and learning. The teacher would not only teach the target,
but also learn the learner’s behavior; the learner would not only learn the target, but
also in a sense teach its own behavior to the teacher. When we defined our models, we
took special measures to avoid what we called history awareness. Defining the learners
as non-deterministic or randomized automata effectively makes it impossible to predict
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their future behavior from their past. A remedy could be to define a set of deterministic
learners all of which must be taught. The learners in such a set would have to have
individual behaviors that are worthwhile to be learned by the teacher. Devising a
natural set of such teachers seems difficult. Moreover, the average case analysis via a
single randomized teacher would not work any more. A remedy could be to perform
an average case analysis by averaging over the teacher’s performance over all learners.

Discussing all these possible extensions to our basic framework may give the impres-
sion that our teaching models are far too simplistic for humans. While this is true, we
reply that these models are only the first steps and certainly considerably more realistic
than all previous models. It could also be mentioned that in other fields the models for
human behavior are even more simple, yet they are worthwhile to study and produce
interesting results. For example, in the game theoretic models of auctions, a bidder is
fully characterized by a single number representing the highest bid the bidder would
make for the auctioned object. Even with this simple model of the bidder, meaningful
comparisons of various kinds of auctions are possible.

Regarding models for intelligent tutoring systems, there is a large gap between what
theoretical computer science provides and what is a psychologically realistic and desir-
able model. As it is certainly impossible to bridge this gap between teaching theory
and practice in one big step, continuous efforts are necessary from both sides. With
this thesis we believe to have done one step from the theoretical side of the gap.





Bibliography

[1] D. Angluin. Finding patterns common to a set of strings. J. of Comput. Syst.
Sci., 21(1):46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data. Inform.
Control, 45(2):117–135, May 1980.

[3] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, Apr.
1988.

[4] D. Angluin. Queries revisited. In Algorithmic Learning Theory, 12th International
Conference, ALT 2001, Washington, DC, USA, November 25–28, 2001, Proceed-
ings, volume 2225 of Lecture Notes in Artificial Intelligence, pages 12–31. Springer,
2001.

[5] D. Angluin. Queries revisited. Theoret. Comput. Sci., 313(2):175–194, 2004. Spe-
cial issue for ALT 2001.

[6] D. Angluin and M. Krikis. Teachers, learners and black boxes. In Proc. 10th Annu.
Conf. on Comput. Learning Theory, pages 285–297. ACM Press, New York, NY,
1997.
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