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ABSTRACT 
 

 

 

This dissertation develops approaches to testing the satisfiability and the con-

tainment of XPath queries in the presence of XML Schema definitions in order 

to speed up XML querying. 

XML provides a simple yet powerful mechanism for information storage, 

processing and delivery, and is a widely used standard data format. XPath is a 

basic language for querying XML data, and is embedded into many W3C stan-

dards, e.g. XQuery, XLink, XML Schema, XForm and Schematron, for ad-

dressing XML data. Therefore, XPath optimization plays a key role in speed-

ing up XML query processing. The satisfiablity test and containment test of 

XPath are two important issues in XPath optimization.  

An unsatisifable XPath query selects every time an empty result. Therefore, 

the application of the satisfiability test can avoid the unnessesary submission 

and the unnecessary evaluation of unsatisfiable queries, and thus can save que-

rying costs. In programming languages, which embed XPath, like XOBE 

[Kempa and Linnemann 2003a], the satisfiability test can enable an efficient 

development of more robust applications by avoiding extensive tests and run-

time failures caused by unsatisfiable queries. The satisfiability test can also 

speed up the execution of codes by the pre-computation of an empty result at 

compile time. Furthermore, the XPath satisfiability test plays an important role 

in other applications, e.g. XML access control [Fan et al. 2004], type-checking 

of transformations [Martens and Neven 2004] and XPath-based index update 

[Hammerschmidt et al. 2005]. 

The containment of XPath is another key factor for XPath evaluation. 

XPath containment can be used to minimize XPath expressions to speed up 

query evaluation. When using views to answer queries, the containment test is 

the underlying technique to decide if a new query can be answered using the 

results of previous queries. Using views to answer queries can significantly 

improve the performance of XPath processing, and reduce the communication 

and query costs by significantly decreasing shipped data, since part of query 



evaluation has bee done when computing the cache, and since the partial or 

even the whole answer to the new query is already available at client side. 

XPath containment can also find its applications in inferring the keys of XML 

Schema and in testing the satisfiability of XPath queries.  

Since the high complexity of XPath queries, it is not trivial to develop effi-

cient approaches to checking XPath satisifiability and to checking XPath con-

tainment when schemas, especially recursive schemas, are in presence. [Choi 

2002] shows that recursive schemas are often used in the real world. The exist-

ing solutions to XPath satisfiability consider only some subsets of XPath axes 

and non recursive schemas. In this thesis, we propose an approach to XPath 

satisfiability in the presence of XML Schema definitions, and support all 

XPath axes, and recursive as well as non-recursive schemas. Since XPath con-

tainment has a high complexity under constraints, there is lack of work on 

practical solutions to this issue. In this work, we develop an approach to check-

ing XPath containment under constraints of XML Schema definitions. 

Furthermore, we develop a data model for XML Schema and an XPath-

XSchema evaluator based on the data model. We as well suggest an approach 

to rewriting and optimization of XPath expressions according to schemas. Our 

XPath-XSchema evluator evaluates XPath queries on an XML Schema defini-

tion, in order to check satisfiability and containment of XPath expressions with 

respect to the schema. We present a complexity analysis of our XPath-

XSchema evalutor, which proves that our approach is efficient at typical cases. 

We present an experimental analysis of our satisfiability tester, which proves 

the optimization potential of avoiding the evaluation of unsatisfiable queries. 

We prove the correctness of our approach to XPath containment, and analyze 

the complexity of our approach. We develop a prototype of our containment 

tester and the experimental results show the efficiency of our approach.  
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Chapter 1   Introduction 
 

 
 

In this chapter, we motivate our proposed approaches, describe our scientific 
contributions and explain the overall organization of the dissertation.  

1.1  Motivation 

As XML becomes increasingly popular as a language for data storage, auto-
matic exchange and processing, larger and larger as well as more and more 
data are stored using XML. Table 1.1 presents several XML datasets with 
large data sizes. Therefore, speeding-up query processing of XML data be-
comes increasingly important. In this work, we focus on the satisfiability test 
and the containment test of XPath queries with respect to XML Schema defini-
tions. 

Table 1.1: Examples of large XML datasets 

XML datasets Data size  Reference 
Computer science bibliography 389 Megabytes [Trier 2007] 
Protein sequence database 683 Megabytes [Washington 2008a] 
SwissProt knowledgebase 419 Megabytes 

(compressed) 
[UniProtKB 2008a] 

Tremble knowledgebase 2.64 Gigabytes 
(compressed) 

[UniProtKB 2008b] 

UniRef50 database 730 Megabytes 
(compressed) 

[UniRef 2008a] 

UniRef90 database 1.09 Gigabytes 
(compressed) 

[UniRef 2008b] 

UniRef100 database 1.34 Gigabytes 
(compressed) 

[UniRef 2008c] 
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1.1.1  XPath 

XPath [W3C XPath1.0 1999][W3C XPath2.0 2003] is a language for address-
ing the information in an XML document by navigating through elements and 
attributes in the XML document. As well as being a standalone XML query 
language, XPath is also embedded in other XML languages, e.g. XSLT, 
XQuery, XLink and XPointer, for specifying node sets in XML documents. 

XQuery [W3C XQuery1.0 2004][W3C XQuery1.0-XPath2.0 2004] is an 
XML query language, which uses XPath expressions to identify and extract 
elements and attributes from XML documents. XQuery 1.0 and XPath 2.0 
share the same data model and support the same functions and operators. 
XPath 2.0 is a subset of XQuery 1.0. 

The XST Transformations language (XSLT) [W3C XSLT1.0 1999][W3C 
XSLT2.0 2003] is used to transform an XML document into another XML 
document, or another type of document, like HTML [W3C HTML4.01 1999] 
or XHTML [W3C XHTML1.0 2002]. XSLT uses XPath expressions to define 
parts of the source document, which should match one or more predefined 
templates.  

The XML Pointer language (XPointer) [W3C XPointer1.0 2001] defines 
how individual parts of an XML document are addressed and is an extension 
and customization of XPath. XPoint uses XPath to build URI references that 
reference parts of XML documents. Based on XPath features, URI references 
can address individual points and elements as well as lists of elements, attrib-
utes or character data. 

The XML Linking Language (XLink) [W3C XLink1.0 2001] is an XML 
markup language used for creating hyperlinks in XML documents. The URI 
references in XLink can contain an XPointer, which in turn contains an XPath 
expression. XPath is also used in other W3C specifications such as XML 
Schema [W3C Schema1 2004] and XForms [W3C XForms1.0 2007]. 

Therefore, XPath is an important construct in these W3C's standards, and 
optimization of XPath is fundamental for speeding up XML querying in all the 
instances of these languages. Automatic optimization techniques have been 
developed and have been used for decades in database management systems 
for the deductive (e.g [Bancilhon et al. 1986], [Levy at el. 1995] and [Behrend 
2003]) and relational (e.g. [Jarke and Koch 1984], [Ioannidis 1996] and 
[Chaudhuri 1998]) worlds. Different from the query languages for relational 
databases, XPath supports complex navigational paths and qualifiers. It is not 
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trivial to develop efficient XPath evaluators and all major XPath engines have 
a high runtime complexity [Gottlob et al. 2002]. Therefore, there is a need to 
logically optimize XPath queries. The satisfiability test and the containment 
test of XPath queries are two important issues in logical XPath optimization. 

1.1.2  Satisfiability of XPath queries 

An XPath query is satisfiable if there is an XML document on which the 
evaluation of the XPath query returns a non-empty result; an XPath query is 
unsatisfiable if the evaluation of the query on any XML document returns 
every time the empty answer. Therefore, using the satisfiability test can avoid 
the submission and unnecessary evaluation of an unsatisfiable query, and thus 
can save processing time and users’ cost. In addition, the XPath satisfiablity 
test is important for consistency problems, e.g. XML access control [Fan et al. 
2004], type-checking of transformations [Martens and Neven 2004], and 
XPath-based index update [Hammerschmidt et al. 2005]. 

The satisfiability test of XPath queries also plays an important role in proc-
essing of programming languages, which embed XML constructors and XML 
query languages, e.g. XOBE [Kempa and Linnemann 2003]. XOBE is a Java-
based programming language to process XML data conforming to a given 
schema, and is developed by the Institute of Information Systems of the Uni-
versity of Lübeck in Germany. XOBE embeds XPath to access and select 
XML data. Application of the XPath satisfiability test to the programming of 
the embedding languages can generate more efficient and more robust pro-
grams. If an XPath expression is detected as unsatisfiable, some computations 
can be already done at compile time, and thus greatly speed up program proc-
essing at run-time. If an unsatisfiable XPath expression is not allowed, then the 
satisfiability test can help to find errors at compile time to avoid run-time fail-
ures and extensive tests. The runtime tests are hard to be exhaustive, so even 
an extensive test can not guarantee the complete correctness. Therefore, the sa-
tifisfability test of XPath queries enables a fast development of reliable XOBE 
applications. 

Therefore, many research efforts focus on the satisfiability test of XPath 
queries with or without respect to schemas, e.g. [Benedikt et al. 2005], 
[Groppe and Groppe 2006a], [Groppe and Groppe 2006b], [Groppe and 
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Groppe 2006c] [Groppe and Groppe 2008], [Groppe and Linnemann 2008], 
[Hidders 2003], [Kwong and Gertz 2002] and [Lakshmanan et al. 2004]. 

1.1.2.1  XPath satisfiability in the presence of schemas 

In the absence of schemas, the satisfiability test can detect two kinds of errors 
in XPath queries:  

• The first kind of errors is that the structural properties of XPath queries are 
inconsistent with the XML data model 

• the second kind of errors is that the constraints from an XPath expression it-
self are inconsistent with each other 

For example, the XPath query Q1=/following-sibling::a is unsatisfiable, be-
cause Q1 contains one of the first kind of errors, i.e. the root node / has no sib-
ling node according to the XML data model. The query Q2=//person/age is 
tested as a satisfiable XPath query without respect to schemas. However, ac-
cording to a given schema, e.g. the schema (see the appendix benchmark.xsd) in 
[Franceschet 2005], the element person does not have a child age. Thus, Q2 is 
unsatisfiable with respect to the schema.  

The XPath query Q3=a[@v>2][@v<1] is unsatisfiable since Q3 contains the 
second kind of errors, i.e. @v>2 is contrary to @v<1. 
Q4=//catgraph/∗[parent::∗[not(edge)]] is satisfiable because Q4 conforms to the 
XML data model, and contains no visible conflicting constraints. However, if 
Q4 is rewritten to /site/catgraph/edge[parent::catgraph[not(edge)] according to a 
given schema, e.g. the one (see the appendix benchmark.xsd) in [Franceschet 
2005], and is further optimized to /site/catgraph[not(edge)]/edge by eliminating 
reverse axes, then Q4 is unsatisfiable with respect to the schema. (We call Q4 is 
a query with hidden conflicting constraints.)  

Therefore, we can detect more errors in XPath queries if we additionally 
consider schema information. We focus on the satisfiability test of XPath que-
ries in the presence of the schemas formulated in the XML Schema language 
[W3C Schema1 2004] [W3C Schema2 2004]. 

Since XPath supports a number of navigational axes and complex qualifi-
ers, it is not trivial to develop efficient satisfiability testers of XPath queries, 
when the constraints from schemas have to be considered. [Benedikt et al. 
2005] theoretically shows that the complexity of XPath satisfiability depends 
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on the considered subsets of XPath queries and schemas, varying from PTIME 
to undecidable when the considered subsets of XPath and schemas increase. 
They also show that for some subsets of XPath, the complexity of the satisfi-
ability problem is much lower without respect to schemas than with respect to 
schemas, and the presence of recursive schemas and negation in XPath queries 
finally lead to the undecidability of XPath satisfiability. 

Existing approaches to XPath satisfiability support only partial features of 
the XPath language and schemas. [Kwong and Gertz 2002] and [Lakshmanan 
2004] support some subsets of XPath axes and allow non-recursive schemas. 
We develop an approach to XPath satisfiability, which supports all the XPath 
axes, recursive as well as non-recursive schemas and negation operation in 
XPath. The satisfiability test for the XPath subset supported by our approach in 
the presence of the schemas supported by our approach is undecidable 
[Benedikt et al. 2005]. Therefore, we present an incomplete, but fast satisfi-
ability tester, i.e. if our tester returns unsatisfiable, then we are sure that the 
XPath query is unsatisfiable, but if our tester returns maybe satisfiable, then 
the XPath query may be satisfiable or may be unsatisfiable. 

1.1.3  Containment of XPath queries 

Given two XPath queries Q1 and Q2, if for any XML document the result of 
applying Q2 is a subset of the result of applying Q1, then Q1 contains Q2, de-
noted as Q1⊇Q2. XPath containment plays an important role in query optimi-
zation and other applications, e.g. 

• in XPath minimization [Amer-Yahia et al. 2001] [Furfaro and Masciari 
2003] [Wood 2001]: An XPath expression can not be minimal unless no 
part is contained by other parts of the XPath expression. Since the size of 
XPath expressions is a determinant of XPath processing performance, 
minimizing XPath expressions can speed up XPath querying. 

• in using views to answer queries [Balmin et al. 2004][Xu and Özsoyoglu 
2005]: Views store the results of previously answered queries in order to 
answer succeeding queries faster by reusing these results. The result of a 
query cannot be used to answer a new query unless the new query is con-
tained by the answered query. Using views to answer queries is important 
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in many applications. In the context of query optimization, it can speed up 
query processing since parts of query evaluation have been done when 
computing views. This has a special benefit for the query languages like 
XPath, which have high complexity of computation. In the context of que-
rying over network and client-server architectures, it can reduce the com-
munication and query cost by significantly decreasing shipped data since 
parts or even all of the answer to the query is already available at the cli-
ent. Using views to answer queries also plays a key role in database design 
and data integration. 

• in inferring the keys of an XML Schema definition: If an XPath expres-
sion Q is defined as a key for an XML Schema definition, then all the 
XPath expressions, which are contained by Q, are also the keys of the 
schema. 

• in testing the satisfiability of XPath: all the XPath expressions, which are 
contained by an unsatisfiable XPath query, are unsatisfiable, too; all the 
XPath expressions, which contain a satisfiable XPath query, are satisfi-
able, too. 

• In database programming languages, which embed XML constructors and 
XML query languages: application of containment tests can improve the 
execution of programs by minimizing the XPath expressions and using the 
results of previous queries to answer new queries. 

Therefore, many contributions deal with the problem of XPath containment 
with or without respect to constraints, e.g. [Deutsch and Tannen 2001], [Mik-
lau and Suciu 2004], [Neven and Schwentick 2003], [Schwentick 2004] and 
[Wood 2003]. 

1.1.3.1  XPath containment under the constraints of schemas 

The XPath containment under schemas has a high computational complexity 
compared with the XPath containment without schemas. For example, Q1=a[b] 
does not contain Q2=a without respect to any constraints. However, if a con-
straint specifies that b must occur if a occurs, then Q1 is equal to a semanti-
cally, denoted as Q1≡a, and thus Q1⊇Q2 under this constraint. If Q3=a/b[c] and 
Q4=a[b/d]/b, then Q3 does not contain Q4 without respect to any constraints. 
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However, if a schema defines that b can occur at most once then Q4≡a/b[d], and 
if the schema also specifies that if d occurs then c must occur, then Q3⊇Q4 
with respect to the schema. The containment of XPath under schema con-
straints, even for XPath queries with only child axis and predicates, denoted as 
XPath{/, []}, is coNP-complete [Neven and Schwentick 2003][Wood 2001]. 
[Wood 2003] identifies that containment of XPath{/, []} is intractable under 
schemas. The intractability of the containment for XPath{/, []} under schemas 
comes from the fact that inferring even some simple constraints from some 
schemas seems to be intractable [Wood 2001].  

Existing works on XPath containment under integrity constraints and DTDs 
mainly theoretically study the complexity and decidability of XPath contain-
ment. Since XPath containment has a high complexity under constraints, there 
is lack of contributions to practical solutions to check XPath containment. 
Therefore, in this thesis, we fill this gap by developing a practical algorithm to 
test XPath containment in the presence of constraints formulated in XML 
Schema definitions. Our approach can support the reverse axes and the axes 
depending on the document order. The complexity and decidability of XPath 
containment, when these axes are allowed, are still unknown. Since the high 
complexity of containment test and the intractability of inferring even some 
simple constraints from a schema, we present a fast but incomplete approach to 
XPath containment in the presence of schemas. Given two XPath queries Q1 
and Q2, our containment tester returns that Q1 contains Q2, or that Q1 maybe 
does not contain Q2. 

1.1.4  XML Schema 

The schema languages for XML define the XML documents by specifying the 
structure, semantics and data types of documents. XML documents are not 
necessarily associated with a schema. However, XML documents together 
with its schema become self-descriptive, and can generate more robust applica-
tions. Therefore, many XML documents are provided with a schema, and 
many applications and tools to process XML data require that all processed 
documents follow a given schema like [Sun 2001], [Microsoft 2001], [Exolab 
2001] and [Oracle 2001]. Therefore, we study the satisfiability test and the 
containment test of XPath queries in the presence of schemas. 
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There is a number of XML schema languages available, like DTDs [W3C 
XML1.0 2004], XML Schema [W3C Schema1 2004] [W3C Schema2 2004], 
RELAX NG [OASIS 2001], Schematron [ISO Schematron 2006], XML-Data 
[W3C XML-data 1998], Examplotron [Vlist 2003] and DSD [Moeller 2002]. 
There is also a number of articles introducing and comparing different XML 
schema languages, e.g. [Lee and Chu 2000], [Vlist 2001] and [Wikipedia 
2007]. 

DTDs, XML Schema and Relax NG are considered as the primary XML 
schema languages, each of which has its own advantages and disadvantages. 
RELAX NG is an OASIS RELAX NG Committee specification, released in 
May 2001. RELAX NG has many advantages of XML Schema and DTDs, and 
it also has some own advantages, e.g. it can define the document element of 
XML documents. However, the use and the support to RELAX NG are not 
widespread compared with the other two. 

W3C’s DTDs [W3C XML1.0 2004] and XML Schema [W3C Schema1 
2004] [W3C Schema2 2004] are two widely used and supported XML schema 
languages. DTD is the earliest schema language for XML, and widely sup-
ported. DTDs are compact and highly readable and can be defined inline. 
However, DTDs are primarily structural in nature. DTDs have limited support 
for defining the type of data, and do not have ability to specify specific and 
precise data types above and beyond character data. Therefore, DTDs can not 
meet the requirement in describing XML structures and contents more pre-
cisely. 

As well as imposing the constraints of structure and semantics on XML 
documents as DTDs do, the XML Schema language provides powerful capa-
bilities for specifying more concrete data types on elements and attributes, 
most of which are not expressible in DTDs. The XML Schema language pro-
vides a large number of built in simple types and allows deriving new types for 
values of elements and attributes, which are only specified to be character data 
in DTDs. Thus, if the type of values of elements or attributes in an XPath 
query does not conform to constraints specified in the XML Schema defini-
tion, the XPath query selects an empty set of nodes for any valid XML docu-
ment. For example, the query meeting[@date=‘01-05-06’] does not retrieve any-
thing if the type of the attribute date is declared to have the format DD-MM-
YYYY. Therefore, the powerful data-typing facilities supported by XML 
Schema provide another dimension for the satisfiability test of XPath queries. 
Since XML Schema can express more restrictions than a DTD, a DTD can be 
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easily transformed into an XML Schema representation, but in general, an 
XML Schema definition cannot be transformed into a DTD without loosing in-
formation.  

Furthermore, the schemas written in the XML Schema language are XML 
documents, but the syntax of DTDs is completely different. Therefore, XML 
Schema can leverage various tools that have been built around XML, but 
DTDs can not. 

1.2  Contributions  

The main contributions of this thesis include: 

• We develop a data model for the XML Schema language, which identifies 
the navigational paths of XPath queries on an XML Schema definition by 
mapping the parent-child, preceding-sibling and following-sibling relations 
in instance XML documents to the corresponding relations in an XML 
Schema definition. This model is the basis of evaluating XPath queries on 
XML Schema definitions 

• We develop an XPath-XSchema evaluator, which evaluates XPath queries 
on an XML Schema definition based on the data model of the XML 
Schema language, and returns a set of schema paths. The schema paths in-
tegrate the constraints imposed by the schema, and thus provide means to 
check the satisfiablity and containment of XPath queries with respect to 
schemas. Our approach supports all XPath axes and recursive as well as 
non-recursive schemas. We define the formal semantics of the XPath-
XSchema evaluator and analyze the complexity of our approach, which 
proves the efficiency of our XPath-XSchema evaluator at the typical cases. 
We develop a prototype of the XPath-XSchema evaluator, which shows the 
efficiency and usability of our evaluator. 

• We develop a satisfiability tester of XPath queries to speed up query proc-
essing. Based on the schema paths of queries, our satifiability tester filters 
the XPath queries, (a) which do not conform to the constraints of seman-
tics, structure, data type and occurrence imposed by an XML Schema defi-
nition, and (b) which contain visible and hidden conflicting constraints. We 
develop a prototype of our XPath satisfiability tester, which demonstrates 
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the potential of XPath optimization by filtering unsatisfiable XPath queries. 
A speedup up to several orders of magnitude for XPath processing is possi-
ble compared with common XPath evaluators. 

• We suggest a practical solution to checking the XPath containment under 
the constraints of schemas. Our approach tests the containment of XPath 
queries in terms of the normalized schema paths of these queries. The nor-
malized schema paths integrate the most constraints of schemas, which im-
pact the containment test. We prove the correctness of our containment 
tester and analyze the complexity of the approach. Our experimental results 
show that our approach has low overhead. 

• We develop an approach to rewriting of XPath expressions in order to op-
timize XPath queries, which eliminates the redundant parts and wildcard 
node-tests, eliminates reverse axes and recursive axes wherever possible. 

1.3  Organization 

This thesis is organized as follows: 

• Chapter 1 presents the motivation, contributions and organization of this 
work. This chapter also describes the test system and data, which are used 
in the experiments in this thesis. 

• Chapter 2 introduces the XML technologies, which are related to our work. 

• In Chapter 3, we develop a data model for the XML Schema language to 
identify the navigational paths of XPath on an XML Schema definition. We 
provide a formal description of XML Schema and the formal semantics of 
the data model. This data model is the basis of our XPath-XSchema evalua-
tor.  

• Chapter 4 presents our XPath-XSchema evaluator, which evaluates XPath 
queries on XML Schema definitions based on the data model of the XML 
Schema language developed in Chapter 3. Our XPath-XSchema evaluator 
checks whether or not an XPath query conforms to the constraints in a 
given schema, and computes a set of schema paths, which integrates the 
constraints from the schema. The satisfiability test, containment test and 



1.4  Test system and data      11 

 

rewriting of XPath queries are built on schema paths. In this chapter, we 
describe the data structure of schema paths, define the formal semantics of 
the XPath-XSchema evaluator, and analyze the complexity of our ap-
proach. 

• The rewriting of XPath queries is presented in Chapter 5, including the 
functions that map schema paths to XPath expressions and the rules to op-
timize the mapped XPath queries. 

• Chapter 6 describes our satisfiability tester of XPath queries, and presents 
the approach to filtering the XPath queries, which contain invisible con-
flicting constraints, by rewriting the given XPath queries according to the 
schema. In this chapter we present a comprehensive performance analysis 
on detecting of the unsatisfiable XPath queries, which do not conform to 
the constraints in an XML Schema definition and which contain invisible 
conflicting constraints. 

• Chapter 7 presents our approach to the containment of XPath queries under 
the constraints of schemas. Our approach checks the XPath containment in 
terms of the normalized schema paths of the queries. Chapter 7 describes 
the mechanisms to normalize schema paths and check the containment of 
schema paths. In Chapter 7, we also prove the correctness of our approach, 
analyze the complexity of our approach, and present the performance 
analysis of our prototype. 

• Chapter 8 describes the related work and Chapter 9 ends up with the con-
clusions and future work. 

1.4  Test system and data 

The test system for all experiments is an Intel Core 2 CPU T5600 processor 
(where we disable one CPU), with 1.83 Gigahertz and 2 Gigabytes RAM, 
Windows XP as operating system and Java VM version 1.6.0. We use two 
popular XML engines, the XQuery evaluators Saxon version 8.0 (see [Kay 
2004]) and Qizx version 0.4pl (see [Franc 2004]), to evaluate the XPath que-
ries on XML data.  
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XPathMark (see [Franceschet 2005]) is a popular benchmark for XPath, and 
contains a set of queries, which covers the main aspects of the language 
XPath 1.0 [W3C XPath1.0 1999]. These queries have been designed for XML 
documents generated under XMark (see [CWI 2003]), which is a popular 
benchmark for XML data management.  

Therefore, we use the XPathMark benchmark (see [Franceschet 2005]) as 
the source of our experimental data, and generate XML data from 0.116 Mega-
bytes to 11.597 Megabytes by using the data generator of [Franceschet 2005]. 
For the experiments, an XML Schema definition benchmark.xsd (see the appen-
dix benchmark.xsd) is manually adapted according to the DTD benchmark.dtd of 
the XPathMark benchmark (see [Franceschet 2005]) and the instance docu-
ments in order to integrate as many constructs of XML Schema as possible and 
in order to specify more specific data types for values of elements and attrib-
utes, which are all declared as #PCDATA in benchmark.dtd. 

 
 



 

 

 

 

 

Chapter 2   XML Technologies 
 

 

 

In this chapter, we introduce the basic technologies related with our work. The 

introduction of the XML technologies does not attempt to be exhaustive. In-

stead, we focus on the basic features of the XML technologies. We refer the 

interested readers to the corresponding specifications for the details of these 

XML technologies. 

2.1  XML  

The eXtensible Markup Language (XML) [W3C XML1.0 2004] is a general-

purpose markup language for the storage of data in order to facilitate sharing 

of structured or semi-structured data across different systems, particularly via 

the internet.  

2.1.1  XML history and virtues 

In the 1970’s, Charles Goldfarb, Ed Mosher and Ray Lorie developed the 

GML language, which is the initials of the tree author names, to enhance tech-

nical documents with structural tags. Later it became the Standard Generalized 

Markup Language (SGML) and was adopted by the ISO in 1986. Since SGML 

is quite complex and thus is difficult to use, in the late 1990 a group of people 

including Jon Boask, Tim Bray, James Clark and others suggested XML, the 

eXtensible Markup Language, as a simplified subset of SGML. On 10 Febru-

ary 1998, XML became a W3C recommendation. Since then, W3C set up 

many important standards around XML such as XML Schema [W3C Schema1 

2004] [W3C Schema2 2004], XSLT [W3C XSLT1.0 1999], XPath [W3C 
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XPath1.0 1999] [W3C XPath2.0 2003], XQuery [W3C XQuery1.0 2004], 

XPointer [W3C XPointer1.0 2001], etc.  

In only several years, XML became widespread accepted: a large number of 

software vendors have adopted the standard, a large number of information 

systems use XML to store data and a large number of applications process 

XML data. Therefore, it is strongly believed that XML will be the most com-

mon technology for all data manipulation and data transmission tasks. 

The success of XML is thanks to its advantages. XML has a large number 

of advantages, including 

• XML can represent almost any kind of information  

• XML is machine-processable and human-readable 

• The XML syntax is very simple and strict, and thus is very easy to learn 

and to use 

• XML is free and extensible: it allows users to define their own tags and 

document structures 

• XML with a schema, e.g. a DTD or an XML Schema definition, is de-

signed to be self-descriptive 

2.1.2  XML documents 

An instance of the XML language is called an XML document. The logical 

component of an XML document is an element. An element can contain ele-

ments and character data, which are the content of the element. The character 

data of the element can be regarded as the value of the element. Elements that 

do not have content are called empty elements. An element can also bear extra 

information attached to it called attributes, which describe properties of the 

element. Attributes are made up of a name and a value. There is a distin-

guished element called document element, which contains all other elements in 

a document.  

XML uses markup to represent the logical structures of a document. An 

XML document consists exclusively of markup and character data. Markup 

has the form of start-tags, end-tags and empty-element tags. XML start-tags 

are made up of the less-than (<) symbol, the name of the element, and a 

greater-than (>) symbol, e.g. <date>. The attributes of an element are included 
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in the start-tag of the element, e.g. <data format=‘DD-MM-YYYY’>, where format is 

an attribute name and DD-MM-YYYY is its value. XML end-tags consist of the 

string “</”, the same name as in the start-tag, and a greater-than (>) symbol, 

e.g. </date>.  

The empty-element tag is used to represent elements without contents, and 

consists of the symbol ‘<’, the name of the element, and the string “/>”, e.g. 

<apple/>. An empty element with attributes is represented as e.g. <apple 

class=‘1’/>. Elements with content are represented by a start-tag, the content, 

and an end-tag. For example, <date format=‘DD-MM-YYYY’> 01-09-2007 </date> 

and <thesis type=‘doctorate’> <title> Speeding Up XML Querying </title> </thesis>. 

 

Example 2.1: Figure 2.1 presents an example XML document article.xml, 

which conforms to the XML Schema definition of Figure 2.2. 

(N1)  <bib> 

(N2)    <article id=‘A’> 

(N3)      <title> My second article </title> 

(N4)      <year> 2007 </year> 

(N5)      <journal> Well-Known Journal (WKJ) </journal> 

(N6)      <reference> 

(N7)        <article id=‘A’> 

(N8)          <title> My first article </title> 

(N9)          <year> 2006 </year> 

(N10)          <journal> Well-Known Journal (WKJ) </journal> 

(N11)          <reference/> 

          </article> 

</reference> 

      </article> 

</bib> 

Figure 2.1: Example XML document article.xml conforming to the XML 

Schema definition of Figure 2.2 
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2.2  XML Schema 

XML documents are not necessarily accompanied by a schema. However, hav-

ing a schema, XML documents become self-descriptive. A number of XML 

schema languages are developed such as DTDs [W3C XML1.0 2004], XML 

Schema [W3C Schema1 2004][W3C Schema2 2004], RELAX NG [OASIS 

2001], Schematron [ISO Schematron 2006], XML-Data [W3C XML-data 

1998], Examplotron [Vlist 2003] and DSD [Moeller 2002], the first two of 

which are widely used and supported XML schema languages.  

The XML 1.0 specification [W3C XML1.0 2004] includes a schema lan-

guage for defining XML document structures, called as Document Type Defi-

nitions (DTDs). While DTDs are widely supported and used, the requirement 

of more precision in describing the structure and content of documents in order 

to generate more robust XML applications outgrows the capabilities of DTDs. 

In order to provide an XML schema language with more capabilities, W3C’s 

XML Schema Working group spent two years developing XML Schema, which 

consists of three parts: XML Schema Part 1: Structure [W3C Schema1 2004], 

XML Schema Part 2: Datatypes [W3C Schema2 2004], and XML Schema Part 

0: Primer [W3C Schema0 2004]. The XML Schema was approved as a W3C 

Recommendation on 2 May 2001 and a second edition was published on 28 

October 2004.          

2.2.1  XML Schema definitions 

XML Schema (see [W3C Schema1 2004] and [W3C Schema2 2004]) is an 

XML schema language for defining a class of XML documents, called in-

stance documents of the schema. A schema, which is formulated in the XML 

Schema language, is referred to as an XML Schema definition (or XSchema  or 

XSD as short name), which is itself an XML document. An XSD defines the 

structure of the instance documents, the vocabulary (e.g. the names of ele-

ments and attributes), and the data types and occurrence constraints of ele-

ments and attributes.  

XSD uses an element element to declare an element; the name of the ele-

ment is given in the name attribute of element; the type of the element is speci-
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fied in the type attribute of element. The attributes minOccurs and maxOccurs 

specify the occurrence constraints of the element in instance XML documents. 

For example, the element declaration <element name=‘title’ maxOccur=1> defines 

an element named title, which can occur at most once. An element is required 

to appear when the value of minOccurs is 1 or greater. XSD uses attribute ele-

ments to declare attributes with the name specified in the name attribute and 

the type specified in the type attribute of attribute, e.g. <attribute name=‘number’ 

type=‘int’/>. Attributes may appear once or not at all. Attributes are declared 

with a use attribute to indicate that the attribute is required, optional, or even pro-

hibited, e.g. <attribute name=‘number’ use=‘optional’/>. The fixed attribute is used in 

both attribute and element declarations to specify the value of an attribute or an 

element to be a particular value, e.g. <attribute name=‘number’ fixed=10/> and 

<element name=‘title’ fixed=“Speeding Up XML Querying”>. 

In XSD, the elements that contain sub-elements and/or attributes have com-

plex types; the elements that contain only text data have simple types and at-

tributes always have simple types. SimpleType elements describe the specific 

types of the elements of simple type. ComplexType elements describe the con-

tents of elements of complex type. 

XSD provides a number of built-in simple types and allows defining new 

simple types. A new simple type is derived from an existing simple type, 

which is the base type of the derived type and which may be either built-in or 

derived. The new simple type is obtained by restricting the values of its base 

type. The simpleType element defines and names the new simple type; the re-

striction element indicates the base type and identifies the facets that restrict the 

range of values of the base type. 

The complexType element declares that the content of an element contains 

sub-elements but does not contain text data when the mixed attribute is not set 

to true; complexType declares that the content of an element contains sub-

elements and text data when the mixed attribute is set to true. The complexCon-

tent element declares the content of an element similar to the complexType ele-

ment. XSD uses the simpleContent element to declare the content of an element 

that contains attributes and only text data. 

XSD defines several model groups: group, choice, sequence and all groups 

for grouping elements; attributeGroup defines groups of attributes. The choice 

group allows only one of its elements to appear in an instance; the sequence 

group stipulates that its elements must appear in an instance according to the 

order they occur in the group; the elements in an all group can appear in any 
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order. The group, choice and sequence model groups can be arbitrarily nested; 

an attributeGroup can contain other attributeGroup groups. The occurrence con-

straints also apply to the model groups. 

XSD also provides mechanisms to declare a new element and a new group 

by referencing an existing definition of the element and the existing group, e.g. 

<element ref=‘title’ minOccurs=‘1’>, which declares an element title defined in e.g. 

<element name=‘title’>. 

Definition 2.1 (XML Schema language supported): we support a significant 

subset of the XML Schema language, defined in the following EBNF rules. 

            XSchema ::= <schema> (simpleTypeD | complexTypeD | groupD | attributeGroupD | 

                     elementD | attributeD)∗ </schema>. 

simpleTypeD ::= <simpleType (name=Name)?> restrictionSimpleTypeD </simpleType>. 

restrictionSimpleTypeD ::= <restriction base=Name> facet∗ </restriction>. 

facet ::=  <minExclusive  value=Value /> | <minInclusive value=Value /> |  

               <maxExlusive value=Value /> | <maxInclusive value=Value /> |  

               <totalDigits value=Value /> | <fractionDigits value=Value /> |                

               <length value=Value /> | <minLength value=Value /> |  

               <maxLength value=Value /> | <enumeration value=Value /> | 

               <whiteSpace value=Value /> | <pattern value=Value />. 

complexTypeD ::= <complexType (mixed=Boolean)? (name=Name)?> (simpleContentD |  

               complexContentD | ((groupD | allD | choiceD | sequenceD)? (attributeD |  

               attributeGroupD)∗)) </complexType>. 

simpleContentD  ::= <simpleContent> (restrictionSimpleContent | extensionSimpleContent) 

               </simpleContent>. 

complexContentD ::= <complexContent (mixed= Boolean)?>  

               (restrictionComplexContent | extensionComplexContent) </complexContent>. 

restrictionSimpleContent ::= <restriction base=Name> facet∗  

(attributeD | attributeGroupD)∗ </restriction>. 

extensionSimpleContent ::= <extension base=Name> (attributeD | attributeGroupD)∗  

</extension> 

restrictionComplexContent ::= <restriction base= ‘anyType’> 

                (attributeD | attributeGroupD)∗ </restriction>. 

extensionComplexContent ::= <extension base=Name> ((groupD | allD | choiceD |  

                sequenceD)? (attributeD | attributeGroupD)∗) </restriction> 

groupD ::= <group (maxOccurs=(nonNegativeInteger | ‘unbounded’))?  

               (minOccurs=nonNegativeInteger)? (name=Name | ref=Name)?>  
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               (allD | choiceD | sequenceD)? </group>. 

attributeGroupD ::= <attributeGroup (name=Name | ref=Name)?>  

              (attributeD | attributeGroupD)∗ </attributeGroup> 

allD ::= <all maxOccurs= ‘1’ minOccurs=(‘0’ | ‘1’)> elementD∗ </all> 

choiceD ::= <choice (maxOccurs=(nonNegativeInteger | ‘unbounded’))?  

              (minOccurs=nonNegativeInteger)?> (elementD | groupD | choiceD | sequenceD)∗ 

</choice>. 

sequenceD ::= <sequence (maxOccurs=(nonNegativeInteger | ‘unbounded’))?  

              (minOccurs=nonNegativeInteger)?> (elementD | groupD | choiceD | sequenceD)∗ 

              </sequence>. 

elementD ::= <element (fixed=string)? (maxOccurs=(nonNegativeInteger | ‘unbounded’))? 

            (minOccurs=nonNegativeInteger)? (Name=Name | ref=Name)?  

(type=Name)?> (simpleTypeD | complexTypeD)? </element> 

attributeD ::= <attribute (fixed=string)? (name=Name | ref=Name)? (type=Name)? 

            (use=(‘optional’ | ‘prohibited’ | ‘required’))?>  simpleTypeD? </attribute> 

where Name is a string, Boolean is a boolean value, i.e. true or false , nonNega-

tiveInteger is a non negative integer, string is a character string, and Value is a 

value, e.g. a number or a string.  

Example 2.2: Figure 2.2 presents an XML Schema definition bib.xsd, which 

defines a class of documents describing the information on articles. This 

schema is designed to contain as much language constructs as possible, and 

meanwhile to be as simple as possible and thus to be easy to read. 

(D1) <schema> 

(D2)  <complexType name='articleType' mixed='true'> 

(D3)   <sequence> 

(D4)        <element name='title' maxOccurs=1 type='string'/> 

(D5)          <element ref='year' maxOccurs=1/> 

(D6)            <choice> 

(D7)             <element name='journal' maxOccurs=1 type='string'/> 

(D8)               <element name='conference' maxOccurs=1 type='string'/> 

            </choice> 

(D9)          <element name='reference' minOccurs=0 maxOccurs=1 type='referenceType'/> 

</sequence> 

(D10)     <attribute name='id' type='string' use=‘required’/> 

        </complexType> 
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(D11) <complexType name='referenceType'> 

(D12)   <sequence> 

(D13)    <element='article' minOccurs=0 maxOccurs='unbounded' type='articleType'/> 

        </sequence> 

</complexType>                    

(D14) <element name='bib'> 

(D15)    <complexType> 

(D16)       <all>        

(D17)          <element name='article' minOccurs=0 maxOccurs='unbounded'  

type='articleType'/> 

(D18)        <element name='name' minOccurs=0 maxOccurs=1 type='string'/> 

</all> 

               </complexType> 

            </element> 

 

(D19) <element name='year'> 

(D20)  <simpleType> 

(D21)       <restriction base='int'> 

(D22)           <length value=4/> 

(D23)    <minExclusive=1900/> 

         </restriction> 

         </simpleType> 

    </element> 

         </schema> 

Figure 2.2: An XML Schema definition bib.xsd 

2.3  XPath language 

W3C developed XPath (see [W3C XPath1.0 1999] and [W3C XPath2.0 2003]) 

as a query language for XML data. XPath models an XML document as a tree 

of nodes and addresses a node-set of an XML tree. XPath gets its name from 

its basic feature, the use of path expressions, which provides the capability to 

navigate through the hierarchical structure of an XML tree. An XPath expres-
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sion is evaluated on an XML tree and yields an unordered collection of nodes 

without duplicates. 

2.3.1  XPath data model 

XPath models an XML document as a tree. XML document trees can be com-

pared to family trees, so XPath uses the genealogical taxonomy to describe the 

hierarchical structure of an XML document tree, referring to children, descen-

dants, parents and ancestors. An XML document tree consists of nodes. There 

are seven types of nodes, where we are primarily interested in the most impor-

tant node types, which are the root, element, attribute and text node types. 

• root nodes 

An XML document tree only has one root node, which is the top of the hierar-

chy that represents the XML document. The root node has a sole child, which 

corresponds to the document element. 

 

• element nodes  

Element nodes correspond to elements in an XML document. Each element 

node has an element node as parent, except the document element that has the 

root node as its parent. The children of an element node are element nodes, 

comment nodes, processing instruction nodes and text nodes. 

 

• attribute nodes 

Attribute nodes correspond to the attributes of an element. If an element node 

bears attribute nodes, the element node is the parent of these attribute nodes, 

but these attribute nodes are not children of the parent element. Elements never 

share attribute nodes. 

 

• text nodes  

Character data is grouped into text nodes. As much character data as possible 

is grouped into each text node, and thus a text node never has an immediately 

following or preceding sibling that is a text node. Text nodes do not have any 

children. 
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Comment nodes and processing instruction nodes correspond to comments 

and processing instructions in the XML document. Namespace nodes keep 

track of the set of namespace prefix/URI pairs. 

Element nodes have an ordered list of child nodes. The nodes are ordered 

according to document order, which corresponds to the order in which the first 

character of the XML representation of each node occurs in the XML docu-

ment representation. 

Example 2.3: Figure 2.3 is a tree representation of the XML document bib.xsd 

in Figure 2.2. In this figure, we only present the attribute nodes of the element 

node D2 and the attribute nodes of other element nodes are left out for simpli-

fication of representation.  
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Figure 2.3: The tree representation of the XML document bib.xsd in Figure 

2.2, where we only present the attribute nodes of the element node D2.  
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2.3.2  XPath expressions 

An instance of the XPath language is called an XPath expression. The syntax 

of XPath expressions is similar to the familiar path expressions used in URLs 

and in Unix and Windows Systems to locate directories and files. The seman-

tics of an XPath expression is defined in terms of the semantics of its sub-

expressions. The smallest expression is called a location step a::n[q1]…[qi], 

which consists of an axis a and a nodetest n with or without predicates q1, …, 

qi. An axis selects a set of nodes by navigating through the tree structure rele-

vant to a context node; a node test filters by node types and labels the nodes 

specified by axis; the nodes selected by a node test are further filtered by the 

predicates. Table 2.1 presents the axes defined in XPath and demonstrates the 

nodes selected by these axes. In Table 2.1, the column Example uses bib.xsd in 

Figure 2.2 as the considered XML document and Figure 2.3 is the tree repre-

sentation of Figure 2.2; the column C indicates the context node and the col-

umn Result indicates that the result node set of applying the considered axis to 

the context node.  

Table 2.2 lists the node tests of XPath.  

Table 2.1: Axes of XPath 

Example Axis Node-set selected 

C Result 

self  context node D1 {D1} 

child  child nodes  D1 {D2, D11, D14, D19} 

descendant descendant nodes: the transitive 

closure of the child axis 

D19 {D20, D21, D22, D23} 

descen-

dant-or-self 

context node and descendant 

nodes 

D19 {D19, D20, D21, D22,  

  D23} 

parent  parent node D13 {D12} 

ancestor ancestor nodes: the transitive 

closure of the parent axis 

D13 {D12, D11, D1, /} 

ancestor-

or-self 

context node and ancestor 

nodes 

D13 {D13, D12, D11, D1,  

  /} 

following nodes occurring after the con-

text node in document order, 

but excluding the descendants 

D15 {D19, D20, D21, D22,  

  D23} 
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of the context node 

preceding nodes occurring before the con-

text node in document order, 

but excluding the ancestors of 

the context node. 

D6 {D5, D4, D10} 

following-

sibling 

children of the context node’s 

parent, occurring after the con-

text node in document order 

D5 {D6, D9} 

preceding-

sibling 

children of the context node’s 

parent, occurring before the 

context node in document order 

D6 {D5, D4} 

Attribute the attribute nodes of the con-

text node 

D2 {name, mixed} 

 

Table 2.2: Node tests of XPath 

Node test Nodes selected 

label element or attribute nodes with the given label 

∗ element or attribute nodes 

text() text nodes 

node() any nodes 

 

A predicate is a Boolean expression, which can be an XPath expression or 

another expression, e.g. a logical expression or a relational expression. The 

Boolean expressions are applied to each node selected by the node test. If they 

are evaluated to true, the tested node is selected, otherwise filtered out. When 

an XPath expression is used as a predicate, it evaluates to true if it selects any 

nodes at all; it is false if it does not select any nodes. 

Location steps in XPath expressions are separated by the token ‘/’, and the 

nodes selected by a location step are the context nodes of the next location 

step. If an XPath expression starts with the slash (/), the XPath expression 

navigates from the root node of the document and is called an absolute XPath 

expression. Otherwise, the XPath expression navigates from a given context 

node, and is a relative XPath expression.  

The XPath language also defines several abbreviations, which is more com-

pact and allows XPath expressions to be written and read more easily than the 
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full syntax. In the abbreviated syntax of the XPath language, the axis child is 

left out, e.g. child::a = a; the symbol @ represents the axis attribute, e.g. attrib-

ute::b = @b; the symbol // represents /descendant-or-self::node()/, e.g. 

//c=/descendant-or-self::node()/c; the symbol ⋅ selects the context node, e.g. a[⋅/b]. 

Example 2.4: Figure 2.4 presents an example of an XPath query Q. Q selects 

the parent nodes reference of the nodes article, which are some descendant 

nodes of the document node bib. The location step descendant::article has two 

predicates. The first predicate qualifies that the nodes article must have children 

year. The second predicate qualifies that the nodes article cannot have children 

editor, or the nodes article may have children editor, but the nodes article cannot 

have bib nodes as ancestor nodes. 

/bib/descendant::article[year][not(self::node()[editor]/ancestor::bib)]/parent::reference 

Figure 2.4: An XPath Query Q 

Definition 2.2 (XPath subset supported): The syntax of the supported XPath 

subset in this work is defined in EBNF as follows:  

expression e ::=  e|e | /e | e/e | e[q] | a::n. 

predicate  q ::=  e | e o C | e=e | q and q | q or q | not(q) | (q). 

axis     a::=  child | attribute | descendant | self | following | preceding |  

                parent | ancestor | DoS | AoS | FS | PS. 

nodetest  n ::=  label | ∗ | node() | text(). 

operator  o ::= = | < | > | ≥ | ≤ | ≠. 

where label is an element or attribute name and C is a literal, i.e. a string or a 

number. Furthermore, we write DoS for descendant-or-self, AoS for ancestor-or-

self, FS for following-sibling and PS for preceding-sibling. � 

2.4  XOBE: An XML-embedding language 

There is a number of programming languages, which embed XML documents 

and XML query languages, such as XOBE [Kempa and Linnemann 

2003a][Kempa and Linnemann 2003b], XOBEDBPL [Schuhart et al. 

2006][Schuhart 2006], XDuce [Hosoya et al. 2000], HaXML [Wallace und 
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Runciman 1999] und XMLambda [Shields und Meijer 2001]. In this section, 

we demonstrate using XOBE how our work can optimize the programming of 

XML-embedding languages. 

XOBE is programming language for XML-based applications, developed 

by the institute of information system of the University of Lübeck in Germany. 

XOBE extends the object-oriented programming language Java to process 

XML fragments, which conforms to a given schema. XML fragments are rep-

resented as XML objects in XOBE. Every element declaration and every type 

definition in the schema correspond to an implicit XML object class, and in-

stances of an element declaration or a type definition of the schema are XML 

objects. 

In order to access data and sub-fragments in XML objects in XOBE pro-

grams, XOBE incorporates XPath. In XOBE, the context node of an XPath ex-

pression is denoted by an XML object variable; the list of nodes returned by an 

XPath expression is regarded as an XML object. Example 2.5 demonstrates the 

concept of XML objects and the usage of XPath expressions in an XOBE 

method update. This example also illustrates how the application of satisfiab-

lity tests of XPath queries can speed up XOBE programming.  

Example 2.5: The XOBE method update declares XML objects, e.g. bib and ar-

ticle, which correspond to the declarations of elements bib and article in the 

XML Schema definition bib.xsd of Figure 2.2. The method updates the element 

bib by deleting certain selected elements. 

bib update(bib c) { 

  bib.article ba; 

    article sc; 

    ba = c//article[parent::reference][@id] ; 

  for (int i=0; i<ba.getLength(); i++) { 

   sc = ba.get(i); 

   if sc[year<1900]  remove(sc/year); 

   } 

   return c; 

} 

The XOBE method update generates an updated bib-object. The XPath ex-

pression c//article[parent::reference][@id] in update returns a list of nodes article, 

which are the descendants of the node bib and fulfills the constraints of two 
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predicates. The size of the list is determined by the method getLength. The 

method update removes a child year of an article, if the child year has a value 

less than 1900. According to the schema in Figure 2.2, the value of the element 

year must be greater than 1900. Therefore, if we apply the satisfiability test at 

compile time, we can already know that the result of the method update is the 

input c. Furthermore, we can rewrite the query c//article[parent::reference][@id] to 

c/article//reference/article[parent::reference][@id] and then eliminate the reverse 

axis parent and the redundant part @id (since the attribute id is required) ac-

cording to the schema bib.xsd in Figure 2.2. Therefore, our approach can opti-

mize the query c//article[parent::reference][@id] to c/article//reference/article to 

speed up querying XML data, and thus speed up program execution if the up-

date of bib does take place. 
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Chapter 3   Data Model for XML Schema 
 

 

 

Based-on the data model for the XML language given by [Wadler 2000], we 

develop a data model for XML Schema for mapping the parent-child, preced-

ing-sibling and following-sibling relations in instance XML documents to the 

corresponding relations in an XML Schema definition in order to identify the 

navigational paths of XPath queries on an XML Schema definition. Based on 

the data model, we suggest an approach to evaluating XPath queries on an 

XML Schema definition in order to check if an XPath query conforms to the 

constraints in the schema and to integrate the constraints in the schema into 

XPath queries, which is presented in Chapter 4. 

3.1  Motivation 

In order to test the satisfiability and containment of XPath queries in the pres-

ence of a schema, we check whether or not the XPath queries conform to the 

constraints imposed in the schema, and integrate the constraints from the 

schema into XPath queries.  

XPath queries select information by navigating through the hierarchical 

structure of an XML tree, e.g. from a parent element to its child elements. We 

call the paths identified by XPath queries the navigational paths of XPath que-

ries on instance XML documents. The navigational paths are visited by a com-

mon XPath evaluator, when it evaluates XPath queries on instance XML 

documents in order to retrieve the nodes specified by the XPath queries. 

A schema defines a class of XML documents by specifying the hierarchical 

structure of the XML tree. Therefore, checking if an XPath query conforms to 

the constraints in a schema is to navigate through the schema tree to find a cor-

responding part, which describes the hierarchical structure of the XML tree 

specified by the XPath query. We call the paths identified by the XPath query 

the navigational paths of the XPath query on the XML Schema definition. The 

navigational paths are visited by our XPath-XSchema evaluator (see Chapater 

4), when it evaluates the XPath query on the XML Schema definition in order 

to check if the XPath query conforms to the constraints in the schema. 
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However, in an XML Schema definition, the node D1 that declares the ele-

ment N1 and the node D2 that declares the element N2 have typically not the 

same relation as N1 and N2 have in an instance XML document. For example, 

the node (N6) is the parent of the node (N7) in the instance XML document arti-

cle.xml in Figure 2.1; in the XML Schema definition bib.xsd in Figure 2.2 the 

node (D9) that declares (N6) is not a parent of the node (D13) that declares (N7). 

Therefore, the navigational paths of an XPath query on instance XML docu-

ments are different from its navigational paths on an XML Schema definition. 

(root node)
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N3 N5 N6

N7

N8N9N11

id

element node

attribute node

parent-child relation

/

My… 2007
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5
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navigational path for predicates
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Well-… 2006

Well-..
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text node
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5

6

1

navigational path for predicates
 

Figure 3.1: The navigational paths of the query 

/bib/article[year]/reference/article/title/text() on the tree representation of the in-

stance XML document article.xml in Figure 2.1 

Figure 3.1 and Figure 3.2 present the navigational paths of the XPath query 

/bib/article[year]/reference/article/title/text() on the tree representation of the in-
stance document article.xml in Figure 2.1 and the XML Schema definition 

bib.xsd in Figure 2.2. The two figures show that the navigational paths of 
XPath queries on an XML Schema definition are more complicated than the 

navigational paths of XPath queries on the instance XML document. In this 
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chapter, we develop a data model for the XML Schema language to identify 

the navigational paths of XPath queries on an XML Schema definition. 
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Figure 3.2: The navigational paths of the query 

/bib/article[year]/reference/article/title/text() on the tree representation of the XML 

Schema definition bib.xsd in Figure 2.2, where not all the attribute nodes are 
presented for simplification of presentation  

3.2  Notations 

The following notations on sets, relationships and sequences are used to model 

the XML Schema language, and are also used to model the schema path (see 

Chapter 4). Set(T) (or Sequence(T) respectively) indicates the type of a set (or of 

a sequence respectively) the entries of which are of type T. We write ∅ for the 

empty set, ∈ for membership and ж!for the union of sets. We express the sig-

nature of a function f  by f:T1→T2, where T1 is the type of the domain and T2 is 
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the type of the co-domain. Note that a type T can be a simple type, e.g. an 

XML node (Node), an XPath expression (XPath) or a node test (NodeTest). Fur-
thermore, T can be a type of a set the entries of which are of a type T1, i.e. 
Set(T1), a type of a sequence the entries of which are of a type T1, i.e. Se-
quence(T1), or the cross-product of two or more types, e.g. T1xT2. The transitive 

closure f 
+ and reflexive transitive closure f* of a function f:T→Set(T) are de-

fined as follows: 

f n(x)  =  { z | y∈f n-1(x) ∧ z∈f (y) }, where  f 0(x) = {x} and f 1(x) = f (x) and n≥1 

f 
+(x)  =  ∪∞

n=1 f 
n(x)  

    f 
*(x)   =  ∪∞

n=0 f 
n(x) 

We write (x1, …, xm) (where m≥1) for a sequence of entries x1, …, xm. We use 

the operator + to concatenate two sequences, e.g. (x1, …, xm) + (y1, …, yn) = (x1, …, 

xm, y1, …, yn). Let s be a sequence, then we write |s| for the length of s, i.e. the 

number of entries in s, and write s[k] for the k-th entry of the sequence s (where 

k∈{1,…, |s|}). Thus, s[1] (if s is not empty) indicates the first entry of s and s[|s|] 

indicates the last entry of s, s[|s|-1] (where |s|≥2) indicates the pre-last entry of 

s, and so on. We use the following notations to describe an attribute node of an 

element node, e.g. we write D4@<type> or D4@<type=‘string’> for the attribute 

node type=‘string’ of the node D4=<element name='title' maxOccurs='1' 

type='string'/> in Figure 2.2. Furthermore, we also call a node in an XML 

Schema definition an XSchema node. 

3.3  Concepts 

An XML Schema definition is a set of nodes of type Node. There are four spe-

cific Node types iElement, iAttribute, iText and iRoot in an XML Schema definition, 

which are associated with instance element, instance attribute, instance text 

and instance root nodes of the XML Schema definition. An instance element 

node declares an element of XML documents; an instance attribute node de-

clares an attribute; an instance text node indicates a text node; an instance root 

node indicates the root of an XML document. Accordingly, we define four 

functions with signature Node→Boolean to test the type of a node: isiElement, isiAt-

tribute, isiText and isiRoot, which return true if the type of the given node is of 

type iElement, iAttribute, iText or iRoot respectively, otherwise false. 

Definition 3.1 (instance nodes): The instance nodes of an XML Schema defi-

nition are 
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• <schema…> (which is the instance root node of type iRoot) 
• <element name=N…> (which is an instance element node of type iElement), 
• <attribute name=N…> (which is an instance attribute node of type iAttrib-
ute), 

• attribute node type=T of nodes <element type=T…>,  which we denote as 
@<type=T> (which is an instance text node of type iText, if T is a built-in 
simple type), 

• <simpleType…> (which is an instance text node of type iText), 
• <complexType mixed=‘true’…> (which is an instance text node of type iText),  
• <simpleContent…> (which is an instance text node of type iText), and 
• <complexContent mixed=‘true’…> (which is an instance text node of type 
iText). 

Definition 3.2 (instance child nodes): Let N1 and N2 be two XSchema nodes 

of type iElement. If the element defined in N2 can appear in an instance XML 

document as a child of the element defined in N1, then N2 is an instance child 
node of N1. 

Taking the XML Schema definition bib.xsd in Figure 2.2 as an example, D17 

is an instance child node of D14; D19 is an instance child of D17 and D13; D8 is 

an instance child of D13 and D17; D13 is an instance child node of D9. 

Definition 3.3 (instance text nodes): Let N1 be an XSchema node of type 

iElement, and N2 be an XSchema node of type iText. If N2 is an attribute node 
of N1 or a node that is used to define the type of the element declared in N1, 
then N2 is an instance text node of N1. 

In Figure 2.2, the attribute node @<type=‘string’> of D4 is an instance text 

node of D4; D2 is an instance text node of D17 and D13; D20 is an instance text 

node of D19. 

Definition 3.4 (instance attribute nodes): Let N1 be an XSchema node of type 

iElement, and N2 be an XSchema node of type iAttribute. If the attribute de-

fined in N2 can appear in an instance XML document as an attribute of the 

element defined in N1, then N2 is an instance attribute node of N1. 

In Figure 2.2, D10 is an instance attribute node of D17 and D13. 

Definition 3.5 (instance parent nodes): Let N1 be an XSchema node of type 

iElement, and N2 be either an instance child node or an instance text node or an 
instance attribute node of N1, then N1 is the instance parent node of N2. 

Definition 3.6 (instance sibling, instance preceding sibling and instance fol-

lowing sibling nodes) : Let N1 be an XSchema node of type iElement or iText, 

and N2 be an XSchema node of type iElement or iText. If the element that is 
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defined in N1 or the text whose data type is defined in N1 can appear in valid 

XML documents as a preceding sibling or a following sibling respectively of 

the element that is defined in N2 or the text whose data-type is defined in N2, 

then N1 is an instance preceding sibling node or an instance following sibling 

node respectively of N2. If N1 is an instance preceding sibling node or an in-

stance following sibling node of N2, then N1 is an instance sibling of N2. 

In Figure 2.2, D2 is an instance preceding sibling node of D4; D8 is an in-

stance following sibling node of D4; D19 is an instance proceeding sibling node 

of D7, D8 and D9. 

Definition 3.7 (succeeding nodes): A node N2 in an XML Schema definition 
is a succeeding node of a node N1 in the XML Schema definition if 

• N2 is a child node of N1, or  
• N1=<element type=N…> and N2=<simpleType name=N…> with the same N, 

or 
• N1=<attribute type=N…> and N2=<simpleType name=N…> with the same N, 

or 
• N1=<element type=N…> and N2=<complexType name=N…> with the same 
N, or 

• N1=<element ref=N…> and N2=<element name=N…> with the same N, or 
• N1=<attribute ref=N…> and N2=<attribute name=N…> with the same N, or 
• N1=<group ref=N…> and N2=<group name=N…> with the same N, or 
• N1=<attributeGroup ref=N> and N2=<attributeGroup name=N> with the same 
N, or 

• N1=<restriction base=N> and N2=<simpleType name=N…> with the same N, 
or 

• N1=<extension base=N> and N2=<simpleType name=N…> with the same N, 
or 

• N1=<extension base=N> and N2=<complexType name=N…> with the same N. 

Definition 3.8 (preceding nodes): Node N1 in an XML Schema definition is a 
preceding node of a node N2 in the XML Schema definition if N2 is a succeed-
ing node of N1. 

Figure 3.3 presents the succeeding nodes for each node on the tree presentation 
of the XML Schema definition bib.xsd in Figure 2.2, where the attribute nodes 
are left out. 



3.4  Functions      35 

 

(root node)

D11

/

D1

D2 D14 D19

D10 D3

D4 D5 D6 D9

D7 D8

D12

D13

D15

D16

D17

D20

D21

D22 D23

element node

parent-child & preceding-succeeding

preceding-succeeding

D18

(root node)

D11

/

D1

D2 D14 D19

D10 D3

D4 D5 D6 D9

D7 D8

D12

D13

D15

D16

D17

D20

D21

D22 D23

element node

parent-child & preceding-succeeding

preceding-succeeding

D18

 

Figure 3.3: The succeeding nodes of each node in the tree of the XML 

Schema definition bib.xsd in Figure 2.2, where attribute nodes are left out 

3.4  Functions 

Figure 3.4 defines the data model of the XML Schema language, which con-

sists of a group of functions. These functions relate an XSchema node to a set 

of XSchema nodes or to a set of sequences of XSchema nodes, or relate a se-

quence of XSchema nodes to a set of sequences of XSchema nodes, repre-

sented in comprehension notation (see [Wadler 1999]).  

• child(N) = {N1 | N1 is a child node of N} 

• succeeding(N) = {N1 | N1 is a succeeding node of N} 

• iChild-helper(N) = ∪i=0
∞ Si, where S0 = {(N)}, 



36     Chapter 3   Data Model for XML Schema 

 

 

Si = { y+(N1) | y∈Si-1 ∧ N1∈succeeding(y[|y|]) ∧  

¬isiElement(N1) ∧ ¬isiAttribute(N1)} 

• iChild(N)={ y+(N1) | (y=(N) ∧ isiRoot(N) ∧ N1∈child(N) ∧ isiElement(N1)) ∨ 

(y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧ isiElement(N1)) } 

• iAttributeChild(N) = { y+(N1) | y∈iChild-helper(N) ∧  

N1∈succeeding(y[|y|]) ∧ isiAttribute(N1) } 

• iText-helper(N) = ∪i=0
∞ Ri, where R0 = {(N)},  

Ri = { y+(N1) | y∈Ri-1 ∧ N1∈succeeding(N’) ∧  ¬isiText(N’) ∧ 

¬isiAttribute(N’) ∧ N’= y[|y|] ∧ N’≠<complexType> ∧ ( 

N’≠<element type=T> ∨ 

(N’=<element type=T> ∧ ¬built-in(T) )) } 

• iTextChild(N) = { y | (y∈iText-helper(N) ∧ isiText(y[|y|])) ∨ ( 

(y=z+(N1) ∧ z∈iText-helper(N) ∧ isiText(N1) ∧ N’= z[|z|] ∧ ¬isiText(N’) ∧  

( (N’=<element type=T…> ∧ N1=N’@<type>) ∨  

        (N’=<complexType> ∧ N1∈succeding(N’)))) } 

• iPS(x) = { y | (y∈iChild(x[1]) ∨ y∈iTextChild(x[1])) ∧  

y[|y|]≠@<type=T> ∧ y[y]≠<simpleType> ∧ y[y]≠ <simpleContent> ∧ ( 

( y[|y|]=<complexType mixed=‘true’> ∨  

  y[|y|]=<complexContent mixed=‘true’> ∨  

     x[|x|]=<complexType mixed=‘true’> ∨  
 x[|x|]=<complexContent mixed=‘true’>)  

∨   

( x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1 )  

∨ 

( ∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ ( 

x[k]=<all>  

∨  

∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1  

∨ 

( y[k+1]<<x[k+1] ∧ ∀i∈{2, 3, ..., k}: ( 

x[i]=<sequence maxOccurs=1> ∨  

x[i]=<choice maxOccurs=1> ∨ 

x[i]=<group maxOccurs=1> ∨  

(x[i]≠<sequence> ∧ x[i]≠<choice> ∧ x[i]≠<group> ∧ x[i]≠<all>)) ∧   

        x[k]≠<choice>))))} 

• iFS(x) = { y | ( y∈iChild(x[1]) ∨ y∈iTextChild(x[1]) ) ∧  
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y[|y|]≠@<type=T> ∧ y[y]≠<simpleType> ∧ y[y]≠ <simpleContent> ∧ ( 

( y[|y|]=<complexType mixed=‘true’> ∨  

  y[|y|]=<complexContent mixed=‘true’> ∨  

  x[|x|]=<complexType mixed=‘true’> ∨  

  x[|x|]=<complexContent mixed=‘true’> )  

∨ 

( x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1 )  

∨ 

( ∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ (  

x[k]=<all> 

∨  

∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1  

∨ 

( x[k+1]<<y[k+1] ∧ ∀i∈{2, 3, ..., k}: ( 

x[i]=<sequence maxOccurs=1> ∨  

x[i]=<choice maxOccurs=1> ∨ 

x[i]=<group maxOccurs=1> ∨  

(x[i]≠<sequence> ∧ x[i]≠<choice> ∧  

x[i]≠<group> ∧ x[i]≠<all>)) ∧  

  x[k]≠<choice>))))} 

 

Figure 3.4: A data model of XML Schema for identifying the navigational 

paths of XPath queries on XML Schema definitions 

The function child: Node → Set(Node) relates an XSchema node to all its 

child nodes; the function succeeding: Node → Set(Node) relates an XSchema 

node to all its succeeding nodes; the function preceding: Node → Set(Node) re-
lates an XSchema node to all its preceding nodes. Let us take the XML 

Schema definition bib.xsd in Figure 2.2 as an example. child(D1)={D2, D11, D14, 

D19}; child(D18)=∅. succeeding(D2)={D3, D10}; succeeding(D5)={D19}; succeed-
ing(D17)={D2}. preceding(D18)={D16}; preceding(D2)={D1, D17, D13}; preced-
ing(D11)={D1, D9}. 

iChild: Node → Set(Sequence(Node)), which is defined to find the instance 

child nodes with type iElement of an XScheme node N, relates the XSchema 

node N to a set of XSchema node sequences, i.e. if y∈iChild(N), then y[1]=N and 

y[|y|] is an instance child node of N. Other nodes in y are the intermediate nodes 

visited when searching for y[|y|] of y[1], i.e. ones that belong to both succeed-

ing+(y[1]) and preceding+(y[|y|]). Some of them may be the declaration nodes of 

model groups, which control the occurrence number of y[|y|], and the occur-

rence order of y[|y|] with respect to its instance sibling nodes in an instance 
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XML document. In Figure 2.2, iChild(D14)={(D14, D15, D16, D17), (D14, D15, 

D16, D18)}; iChild(D9)={(D9, D11, D12, D13)}; iChild(D7)=∅. 

 iAttributeChild: Node → Set(Sequence(Node)), which is defined to find the in-

stance attribute nodes of an XSchema node N, relates the node N to a set of 

node sequences, i.e. if y∈iAttribueChild(N), then y[1]=N and y[|y|] is an instance at-

tribute node of N. Other nodes in y are the intermediate nodes visited when 

searching for y[|y|] of y[1], i.e. ones that belong to both succeeding+(y[1]) and pre-

ceding+(y[|y|]). In Figure 2.2, iAttributeChild(D13)={(D13, D2, D10)}; iAttribute-

Child(D17)={(D17, D2, D10)}. 

The auxiliary function iChild-helper: Node → Set(Sequence(Node)) helps 

iChild(N) and iAttributeChild(N) to find the corresponding nodes, and returns all 

the node sequences visited before the instance child nodes and instance attrib-

ute nodes of the XSchema node N. In Figure 2.2, iChild-helper(D17)={(D17), (D17, 

D2), (D17, D2, D3), (D17, D2, D3, D5), (D17, D2, D3, D6)}; iChild-helper(D9)={(D9), 

(D9, D11), (D9, D11, D12)}; iChild-helper(D19)={(D19), (D19, D20), (D19, D20, D21), 

(D19, D20, D21, 22), (D19, D20, D21, D23)}. 

iTextChild: Node → Set(Sequence(Node)) is defined to find the instance text 

nodes of an XSchema node N, and relates the node N to a set of node se-

quences. Let y∈iTextChild(N), then y[1]=N and y[|y|] is an instance text node of N. 

The nodes between y[1] and y[|y|] are the intermediate nodes visited when 

searching for y[|y|] of y[1], i.e. the nodes that belong to both succeeding+(y[1]) and 

preceding+(y[|y|]). In Figure 2.2, iTextChild(D13)={(D13, D2)}; iTextChild(D17)={(D17, 

D2)}; iTextChild(D4)={(D4, D4@<type=‘string’>)}; iTextChild(D19)={(D19, D20)}; iTex-

tChild(D9)=∅. 

The XML data model defines that an element of simple type must have and 

only has a text node, and that an element of complex type can either have one 

or more text nodes or have no text node at all. XML Schema specifies whether 

or not an element of complex type has text nodes, but does not specify the 

number of the text nodes. Therefore, we only need to take care whether or not 

an XSchema node has instance text nodes, and we only need to find one in-

stance text node but not all the instance text nodes of an XSchema node. We 

achieve these goals by using the auxiliary function iText-helper: Node → 

Set(Sequence(Node)).  

If N of iText-helper(N) declares an element of simple type, then N must have 

instance text nodes, which are either the attribute node type=T of N if T is a 

built-in simple type, or the nodes <simpleType…> in succedding+(N). In Figure 

2.2, the attribute node type=‘string’ of D4 is the instance text node of D4; D20 is 

an instance text node of D19. 
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If N declares an element e of complex type, then there must exist a node of a 

complex type declaration, i.e. D=<complexType…>, which is used to define the 

type of the element e, i.e. D is a node in succeeding+(N). If D contains the con-

struct mixed=‘true’, then D is an instance text node of N. If D is not an instance 

text node of N, but D has a child node of <simpleContent…> or <complexContent 

mixed=‘true’…>, then the child node of D is the instance text node of N. If D does 

not have such a child, then N does not have instance text nodes. In Figure 2.2, 

each of D14 and D17 defines an element of complex type. D14 does not have 

instance text nodes; D17 has an instance text node D2. 

Let y∈iText-helper(N), then y[1]=N, and y[|y|] is either an instance text node or 

a node visited before the instance text node, or the node <complexType…> or a 

node visited before <complexType…>, or a node visited before an instance at-

tribute node. The auxiliary function built-in(T) in iText-helper(N) tests whether or 

not the type T is a built-in simple type. In Figure 2.2, iText-helper(D4)={(D4)}; 

iText-helper(D13)={(D13), (D13, D2)}; iText-Helper(D17)={(D17), (D17, D2)}; iText-

helper(19)={(D19), (D19, D20)}; iText-helper(D14)={(D14), (D14, D15)}. 

Different from the XML data model, where a node has only a parent node, 

in XML Schema definitions, a node may have several instance parent nodes, 

e.g. in Figure 2.2, D4 has two instance parent nodes D13 and D17. Thus, the 

function iPS: Sequence(Node) → Set(Sequence(Node)) for finding the instance 

preceding sibling nodes and the function iFS: Sequence(Node) → 

Set(Sequence(Node)) for finding the instance following sibling nodes relate a 

sequence x of nodes to a set of sequences of nodes. The first node in x is the in-

stance parent node of the last node of x. Let y be a node sequence in iPS(x), 

then y[1]=x[1], and y[|y|] is both an instance child node or an instance text node 

of y[1] and an instance preceding sibling node of x[|x|]. In Figure 2.2, iPS(D14, 

D15, D16, D18)={(D14, D15, D16, D17)}; iPS(D17, D2, D3, D5, D19)={(D17, D2), ( 

D17, D2, D3, D4)}; iFS(D13, D2, D3, D6, D7)={(D13, D2), (D13, D2, D3, D9)}; iFS(D13, 

D2, D3, D5, D19)={(D13, D2), (D13, D2, D3, D6, D7), (D13, D2, D3, D6, D8), (D13, D2, 

D3, D9)}. 

In order to help understand the functions iPS(x) and iFS(x), we first look at 

the relation between an instance text node and its instance sibling nodes. Since 

XML Schema does not specify the position of the instance text nodes of a node 

N that defines an element e of complex type, we assume that a text child of the 

element e may appear before or after other children of the element e in any in-

stance XML document. If y[|y|]=<complexType mixed=‘true’…> or 

y[|y|]=<complexContent mixed=‘true’…>, then y[|y|] is an instance text node of y[1] 

that defines an element of complex type. Thus, the instance text node is an in-

stance following-sibling and an instance preceding-sibling of its instance sib-

lings and itself.  
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However, if an element e of complex type has attributes and the text child 

but has no element children, then the text child is the only child of e. If 

y[|y|]=<simpleContent…>, then y[|y|] is an instance text node of y[1] that defines 

such elements as e. Therefore, the instance text node <simpleContent…> does 

not have any instance sibling. Similarly, the text child of an element of simple 

type is the only child of the element, so the instance text node of a node that 

defines an element of simple type has no instance sibling nodes. If 

y[|y|]=@<type=T> or y[y]=<simpleType…>, then y[|y|] is an instance text node of 

y[1] that defines an element of simple type,  and thus y[|y|] has no instance pre-

ceding and following sibling nodes. 

Furthermore, XML Schema specifies the following rules on the occurrence 

order of sibling elements in instance XML documents: 

• The elements defined in an all model group can occur in any order in an 

instance XML document 

• The elements defined in a sequence model group can occur in the order 

in an instance XML document as the order they are defined in the XML 

Schema definition 

• The elements defined in a choice model group cannot occur simultane-

ously in an instance XML document 

• However, if a sequence group or an choice group can occur more than 

one time, then the elements in these groups can occur in any order in an 

instance XML document 

According to the XML Schema language, we identify that a node N2=y[|y|] is 

an instance preceding sibling node of the instance node N1=x[|x|], i.e. y is a 

node sequence in iPS(x), if one of the following conditions holds: 

• N2 is an instance text node of x[1], and x[1] defines an element that con-

tains also sub-elements. 

• N2 is an instance child node of x[1] if N1 and N2 are contained in an all 

model group (e.g. D18 is an instance preceding sibling of D17), or 

• N2 is an instance child node of x[1] if there is at least a model group, 

which either directly or recursively contains both N1 and N2, is declared 

with maxOccurs>1, or 

• N2 is an instance child node of x[1], and N2 is visited before N1 in the 

XML Schema definition, if all the model groups, which either directly or 

recursively contain both x and y, consist of only sequence and choice 

groups, which are declared with maxOccurs=1 explicitly or implicitly 

(e.g. D4 is an instance preceding sibling of D9 since D4 is visited before 
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D9, but D9 is not an instance preceding sibling of D4).  However, N2 is 

not an instance sibling node of N1, if N1 and N2 are contained in a com-

mon choice group, and either N1 or N2 must be directly contained in the 

choice group (e.g. D7 is not an instance sibling of D8).  

We now give some comments on the details in the functions iPS(x) and 

iFS(x). x[|x|] and y[|y|] have some common ancestor nodes, some of which may 

be the model groups that either directly or recursively contain x[|x|] and y[|y|], 

e.g. D13, D2 and D3 are the common ancestor nodes of D4 and D19. The com-

mon ancestor nodes are the nodes from x[1] to x[k] if ∀i∈{1, …, k}: x[i]=y[i] ∧ 

x[k+1]≠y[k+1] ∧ k<min(|x|, |y|), where the function min(|x|, |y|) returns the mini-

mum of |x| and |y|. Among these common ancestor nodes, x[1] is the instance 

parent node of x[|x|] and y[|y|], and thus the possible model group nodes in these 

common ancestor nodes are the nodes from x[2] to x[k]. If x[|x|]=y[|y|] , then x=y. 

In this case, whether or not x[|x|] is a sibling node of itself relies on the occur-

rence constraints of x[|x|]. If x[|x|] can occur more than one time, i.e. ∃i∈{2, 3, ..., 

|x|}: attribute(x[i], ‘maxOccurs’)>1, then x[|x|] is either a preceding sibling node or a 

following sibling node of itself (e.g. D13 is both a preceding sibling and fol-

lowing sibling of itself).  

XML Schema stipulates that an all group must appear as the sole child at 

the top of a content model (e.g. D16), and the content model of an all group 

consists of element declarations, i.e. <all…> elementD∗ </all> (e.g. D17 and D18). 

Therefore, if x[k]=<all>, then x[|x|] and y[|y|] are contained in an all group, and 

thus the element declared in x[|x|] may appear before or after the element de-

clared in y[|y|] in any valid XML document (e.g. D17 is both a preceding sibling 

and following sibling of D18). If there is at least one node in (x[2], …, x[k]) de-

fined with maxOccurs>1, i.e. ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1, then the 

element declared in x[|x|] may appear before or after the element declared in 

y[|y|] in any valid XML document. If (x[2], …, x[k]) does not contain an all group 

and each model group in the sequence is defined with maxOccurs=1, then the 

element declared in x[|x|] and the element declared in y[|y|] appear in an XML 

instance document in the same order as the visited order of the node x[|x|] and 

the node y[|y|]. The visited order is defined by the order in which y[k+1] and 

x[k+1] appear in the XML Schema definition (e.g. y[|y|]=D19 is an preceding sib-

ling of x[|x|]=D7 since y[k+1]=D5 occurs before x[k+1]=D6). Let N1 and N2 be two 

nodes in an XML Schema definition, then N1<<N2 indicates that N1 appears 

before N2 in the XML Schema definition. However, if x[k] is the node <choice>, 

then the element defined in x[|x|] and the element defined in y[|y|] cannot appear 

simultaneously in any XML instance document (e.g. D7 and D8 are not in-

stance siblings). Therefore, y[|y|] is not an instance sibling node of x[|x|], and 
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thus y is not a node sequence of iPS(x). The auxiliary function attribute(N, attribu-

teName) returns the value of the attribute attributeName in node N,  e.g. attrib-

ute(N, ‘maxOccurs’) retrieves the value of the attribute with the name maxOccurs 

in node N. 

Figure 3.5 defines the function NT: Node × NodeTest → Boolean, which 
checks whether or not an instance XSchema node N conforms to a node test of 

XPath to filter the schema node according to the node test of XPath. 

• NT(N, ∗∗∗∗) = isiElement(N) ∨ isiAttribute(N)                   
• NT(N, label) = ( isiElement(N) ∧ attribute(N, ‘name’)=label )   ∨  
                              ( isiAttribute(N) ∧ attribute(N, ‘name’)=label )       
• NT(N, text()) = isiText(N)                                        
• NT(N, node()) = true 

Figure 3.5: Functions that test an instance XSchema node against a node test 
of XPath 
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A common XPath evaluator is typically constructed to evaluate XPath queries 

on instance XML documents. Our approach evaluates XPath queries on an 

XML Schema definition based on the XML Schema data model developed in 

Chapter 3 in order to   

• check whether or not XPath queries conform the constraints given in the 

schema for testing the XPath satisfiability with respect to schemas, and 

• integrate the constraints in the schema into XPath queries for checking the 

XPath containment and rewriting XPath queries under schemas, and for fur-

ther testing the XPath satisifiability. 

Therefore, we name our XPath evaluator XPath-XSchema evaluator.  

A schema S defines a class of XML documents by specifying constraints, 

e.g. the relation between elements-elements and between elements-attributes. 

An XPath query Q describes a part of an XML document by specifying some 

of the constraints. If a constraint described by Q can not be mapped to a corre-

sponding one in S, then XML documents described by Q do not exist, and thus 

Q is unsatisfiable. Therefore, evaluating Q on S is to check whether or not 

there is a corresponding constraint in S for each constraint in Q. For example, 

Q=/a/b[c] describe three constraints: (1) the element a is a child of the root 

node, (2) the element b is a child of a, and (3) b should have a child c. For (1), 

we search for the nodes N1 in S, which declare an element a, and also declare 

that the element a is a child of the root node in an XML document. If N1 is 

found, we proceed to the constraint (2) and search for the nodes N2 in S, which 

declare an element b, and also declare that the element b occurs as a child of 

the element a declared by N1. After N2 is found, we check the constraint (3) in 

a similar way. If a constraint is not resolved, the evaluation aborts and Q is un-

satisfiable with respect to S. 
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4.1  Schema paths 

Instead of computing the node set of XML documents specified by an XPath 

query, our XPath-XSchema evaluator computes a set of schema paths to the 

possible resultant nodes, when the XPath query is evaluated by a common 

XPath evaluator on instance XML documents. If an XPath query cannot be 

evaluated completely, the schema paths for the XPath query are computed to 

the empty set of schema paths.  

4.1.1  Definition 

The schema paths are actually a log of the process of searching for the relevant 

nodes described by the XPath query from a given XML Schema definition, i.e. 

the navigational paths of the XPath query on the XML Schema definition. 

Therefore, the major construct of the schema paths is the navigational paths.  

In order to better understand the definition of schema paths in Definition 

4.1, we first outline how the XSchema-XPath evaluator searches for relevant 

nodes in an XML Schema definition based on the XML Schema data model to 

construct the schema paths. Similar to a common XPath evaluator, our ap-

proach starts the search at the root node of the XML Schema definition. The 

search continues from an XML Schema node N1 typically to a succeeding 

node N2 of the node N1 in the case of a forward axis, or to a preceding node N2 

of the node N1 in the case of a reverse axis. The search passes the nodes in the 

XML Schema definition, which are not instance nodes. The search continues 

until an instance node specified by the current location step is retrieved, which 

is a relevant schema node logged in the schema paths.  

A schema is a recursive schema, if this schema defines one element as its 

own child or descendant. For example, in the XML Schema definition bib.xsd 

in Figure 2.2, the element article defined in the node D13 has one child element 

reference defined in the node D9, which has one child element article defined in 

D13. Therefore, the element article defined in D13 is one descendant of its own. 

 In the presence of recursive schemas, it may occur that the XSchema-

XPath evaluator revisits a node of the schema without any progress in the 

processing of the query. We call this a loop. For the purpose of detecting a 

loop, the schema path needs to log the information of the part of the XPath ex-
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pression, which has been processed. The schema paths of the XPath expres-

sions in a predicate, which are computed in the same way, are attached to the 

context node of the predicates. We also need a parameter in the schema path to 

indicate the relation between expressions in a predicate. In an XML Schema 

definition, an instance node might have several instance parent nodes in that 

multiple elements might contain some identical sub-elements and each element 

is declared only one time. Since we cannot retrieve the parent nodes unambi-

guously from only the XML Schema definition, we need to log the information 

of the parent nodes in the schema path. 

Definition 4.1 (Schema paths): A schema path the type of which we denote 

by schema_path is a sequence of pointers to either the schema path records <XP, 

S, a, z, lp, f>, or the schema path records <o, f>, or schema path records <e> 

where 

• XP is an XPath expression, 
• S is a set of sequences of XSchema nodes, 
• a is a label and a ∈ {child, parent, FS, PS, self, attribute}, 
• z is a set of pointers to schema path records, 
• lp is a set of schema paths, 
• f is a set of sets of schema paths,  
• e is a predicate expression self::node() op C,  where C is a literal, i.e. a num-

ber or a string, and op is a operator and op∈{=, <, > , ≥ , ≤ , ≠}, and 
• o is a keyword and o ∈ {=, or, and, not}. �  

Let Q be an XPath query, which is the input of our XPath-XSchema evalua-

tor, and Q=XPe/XPc/XPr, where XPe is the part, which has been evaluated; XPc is 

the part, which is being evaluated; XPr is the part, which has not been evaluated 

so far by the XPath-XSchema evaluator. In a schema path record, XP is de-

pendent on XPe. XP is needed for the detection of loop schema paths. S is a set 

of sequences of XSchema nodes and is computed according to the data model 

of XML Schema described in Chapter 3. The last node Nl in each sequence s of 

S is an instance node, which is visited by the XPath-XSchema evaluator when 

evaluating XPc, and which is also a context node to compute the following 

nodes. The first node Nf of s is an instance parent node of Nl, and other nodes in 

s are ones that are visited when searching for Nl of Nf, some of which may be 

the nodes of model groups and are useful for consistency checking of occur-

rence constraints. a is a label associated with the schema node Nl, indicating an 
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XPath axis, i.e. child, parent, FS, PS, self or attribute, from which the node Nl is 

generated. a is needed for rewriting.  

The field z in a schema record R is a set of pointers to the schema path re-

cords in which the last schema node of the node sequences is the instance par-

ent node of the last schema node of the node sequences of the record R. Note 

whenever an instance XSchema node is the first node of a loop, the node has 

more than one possible instance parent node, and thus there are several se-

quences of nodes and pointers in a schema path record. lp represents loop 

schema paths; f represents the sets of schema paths computed from one or 

more predicates that test the last node of S, which is the context node of the 

predicates. The schema paths can consist of predicate expressions, e.g. 

{(<self::node()=100>)}. o represents operators like =, or, and and not to indicate 

the operation on the schema paths of predicates.  

A point that should be emphasized is that a schema path consists of a se-

quence of pointers to the records rather than a sequence of the records, and this 

is important for the form of loop schema paths. As we will describe later on, 

often more than one schema path will be computed from an XPath query. 

When a schema path is computed, a loop that is involved in the path might not 

be detected until other schema paths are computed. Using pointers, we only 

need to modify the records to include the loop paths without any modification 

of the schema paths.  

4.1.2  Example 

Example 4.1: Our XPath-XSchema evaluator evaluates the XPath query Q in 

Figure 2.4 in Chapter 2, i.e. Q = /bib/descendant::article[year][not(self::node()[editor] 

/ancestor::bib)]/parent::reference (which is also repeated in Figure 4.1 in this 

chapter for the convenience of readers) on the XML Schema definition bib.xsd 

of Figure 2.2, and computes the schema paths presented in Figure 4.2. Figure 

4.3 is the navigational paths of Q on tree representation of bib.xsd, where we 

only present the nodes in bib.xsd, which consist of the navigational paths. The 

navigational paths are visited by our XPath-XSchema evaluator, when it 

evaluates Q on bib.xsd. Figure 4.4 is the graphical representation of Figure 4.2, 

in which we only present the last node of the node sequences in a schema path 



4.1  Schema paths      47 

 

record rather than the entire record for simplicity of presentation and readabil-

ity.  

/bib/descendant::article[year][not(self::node()[editor]/ancestor::bib)]/parent::reference 

Figure 4.1: The query Q of Figure 2.4 is repeated here for the convenience of 

readers 

R1→ {(</,  {(D1)},   -,    -,    -,   ->, 

R2→  </bib, {(D1, D14)}, child, {R1},  -,  ->,         

R3→   </bib/article, {(D14, D15, D16, D17)}, child, {R2}, -, ->, 

R4→  </bib/article, {(D17, D2, D3, D9), (D13, D2, D3, D9)}, child, {R3, R5},  

R6→  {(</bib/article, {(D13, D2, D3, D9)}, child, {R5}, -, ->, 

R5→   </bib/article, {(D9, D11, D12, D13)}, child, {R4}, -, ->)}, -> 

R5→  </bib/article, {(D9, D11, D12, D13)}, child, {R4}, -,  

R7→      {{(<-, {(D9, D11, D12, D13)}, self, {R4}, -, ->, 

R8→          <year, {(D13, D2, D3, D5, D19)}, child, {R7}, -, ->)},     

R9→     {(<not,  

R10→                ∅>)}} >, 

R11→  <Q, {(D17, D2, D3, D9), (D13, D2, D3, D9)}, parent, {R3, R5}, -, ->}  

Figure 4.2: Schema paths of query Q in Figure 4.1 computed on the schema 

bib.xsd in Figure 2.2 

In order to help readers understand this example, we first outline how the 

XPath-XSchema evaluator searches for relevant nodes from bib.xsd to con-

struct the schema paths of Q. Our evaluator first searches for the instance root 

node from bib.xsd. D1 is defined as the instance root node, and is the first rele-

vant schema node logged in the schema paths of Q.  

Since the first location step bib of Q selects the child elements bib of the root 

node of an XML document, our evaluator searches among child nodes of the 

instance root node D1 in bib.xsd for the instance child nodes, which define the 

elements with name bib, i.e. <element name=‘bib’…>. The child nodes of D1 are 

D2, D11, D14 and D19. D14 is the specified node and the corresponding node 

sequence visited is (D1, D14). 
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Figure 4.3: The navigational paths of Q of Figure 4.1 on the tree representa-

tion of bib.xsd of Figure 2.2, where we only present the nodes in bib.xsd, which 

consist of the navigational paths. 

Afterwards, the search continues from an XSchema node to its succeeding 

nodes when processing forward axes. The search passes the non-instance 

nodes in the XML Schema definition, and continues until finding an instance 

node relevant to the current location step. The node sequence visited is logged.  

The next location step descendant::article of Q selects all the descendant 

nodes article of the context nodes, and thus we search from D14 for all instance 

descendant element nodes <element name=‘article’…> of D14, i.e. we search the 

instance child nodes of D14, and the instance child nodes of the instance child 

nodes of D14, and so on. 
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Figure 4.4: Graphical representation of the schema paths in Figure 4.2, 

where we only present the last node of the node sequences of the records of the 

schema paths  

We first search the succeeding nodes of D14, which are D15. D15 is not an 

instance node, and thus we proceed to search for the succeeding nodes of D15. 
D15 has a succeeding node D16. Since D16 is not an instance node either, we 

continue the search from D16. D17 and D18 are two succeeding nodes of D16, 

and are also two instance element nodes. Among them D17 is a specified in-

stance child node. Since D18 is not a specified instance node, neither it has any 

descendant nodes, the search along D18 is aborted. The search continues from 

D17.  

The succeeding nodes of D17 are D2. D2 is not a specified instance node, 

neither it is an instance element node (while it is an instance text node) (see 
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iChild(N) in Figure 3.1), and thus we continue from D2. D2 has two succeeding 

nodes D3 and D10. D10 is an instance attribute node and thus the search along 

D10 aborts. The succeeding nodes of D3 are D4, D5, D6 and D9. Since D4 is not 

a specified instance node, nor it has any descendant nodes, the search along D4 

aborts. The descendant nodes of D5 are D19, D20, D21, D22 and D23, none of 

which is a specified instance node by descendant::article, so D5 will not contrib-

ute to the search of resultant nodes.  

Similarly, the search along D6 will be aborted too, since the succeeding 

nodes D7 and D8 of D6 are not the specified instance nodes, nor they have any 

descendant nodes. Although D9 is not a specified instance node, D9 has de-

scendant nodes, and thus we continue from D9.  

The search along D9 has the result that the instance child nodes of D9 are 

D13 (and the corresponding node sequence is (D9, D11, D12, D13)). An instance 

child node of D13 is D9 (and the corresponding node sequence is (D13, D2, D3, 

D9)), which has D13 as the instance child node. Thus, we are stuck in a loop! 

We do not continue the search along D9, when a loop is detected, i.e. our 

evaluator revisits an XSchema node (D9 in this example) when evaluating a lo-

cation step (descendant::article in this example). The resultant nodes selected by 

descendant::article are D17 and an infinite number of D13, because D13 is in a 

loop. 

descendant::article has two predicates [year] and [not(self::node()[editor]/ancestor 
::bib], the context nodes of which are D17 and D13. The schema paths of predi-

cates are computed in the same way, and are attached to the context node of 

the predicates. Furthermore, D17 is logged with the instance parent D14; D13 is 

logged with the instance parent D9. Therefore, when we evaluate the last loca-

tion step parent::reference, we only check the information of parent nodes in the 

context record to find the resultant instance parent node, e.g. D9 is the speci-

fied instance parent node in this example. 

Figure 4.5 describes the call graph of evaluating the query Q in Figure 4.1 

over the XML Schema definition bib.xsd in Figure 2.2 in order to compute the 

schema paths (see Figure 4.2) of Q. In this figure, we write Q[i] to indicate the 

i-th location step in Q, e.g. Q[2] indicates the second location step descen-

dant::article[year][not(self::node()[editor]/ancestor::bib)]. In the following we give a 

step-wise description on the computation of the schema paths of Q, and the 

general approach to computation of schema paths is presented in Section 4.2. 
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L(Q, -, -)

p1∈L(bib, p, /) L(descendant::article…, p1, /bib)

p2∈L(Q[2], p1, /bib) L(parent::reference, p2, Q[1]/Q[2])

L(bib/…, p, /)

L(not(…), fp, -) L(year, fp, -)

L(self::node()[editor]/ancestor::bib, fp, -)

p4∈L(self::node()[editor], fp, -) L(ancestor::bib, p4, self::node()[editor])

p3∈L(descendant::article, p1, /bib)

L(editor, fp1, -)p5∈L(self::node(), fp, -)

p=( </, {(<schema>)}, -, -, -, - > )

fp1=(<-, e.S, self, e.z, -, ->) ∧ e=p5[|p5|]

fp=(<-, e.S, self, e.z, -, ->) ∧ e=p3[|p3|]

L(Q, -, -)

p1∈L(bib, p, /) L(descendant::article…, p1, /bib)

p2∈L(Q[2], p1, /bib) L(parent::reference, p2, Q[1]/Q[2])

L(bib/…, p, /)

L(not(…), fp, -) L(year, fp, -)

L(self::node()[editor]/ancestor::bib, fp, -)

p4∈L(self::node()[editor], fp, -) L(ancestor::bib, p4, self::node()[editor])

p3∈L(descendant::article, p1, /bib)

L(editor, fp1, -)p5∈L(self::node(), fp, -)

p=( </, {(<schema>)}, -, -, -, - > )

fp1=(<-, e.S, self, e.z, -, ->) ∧ e=p5[|p5|]

fp=(<-, e.S, self, e.z, -, ->) ∧ e=p3[|p3|]

 

Figure 4.5: The call graph of the XPath-XSchema evaluator when evaluat-

ing Q, where Q[i] indicates the i-th location step in Q  

Our XPath-XSchema evaluator first evaluates the very first part / of Q, and 

computes the first schema path record R1→ </, {(D1)}, -, -, -, -> (see line 1 of 

Figure 4.6 in Section 4.2.1). The schema paths computed so far are L={(R1)}. In 

order to evaluate the first location step bib, our evaluator uses L(child::bib, (R1), /) 

(see L(child::n, p, xp) of Figure 4.7), where child::bib is the XPath expression that 

is evaluated on bib.xsd in this function; / is the XPath expression that has been 

evaluated so far when the function is called. bib selects the instance child node 

D14 of the instance root node D1, and the node sequences visited are {(D1, D14)} 

computed from iChild(D1) (see Figure 3.1). Thus, the second schema path re-

cord is computed R2→ </bib, {(D1, D14)}, child, {R1}, -, ->. The schema paths 

computed so far are L={(R1, R2)}. 

Afterwards, our evaluator uses L(descendant::article, (R1, R2), /bib) (see 

L(descendant::n, p, xp) of Figure 4.7) to evaluate the next location step descen-

dant::article. L(descendant::article, (R1, R2), /bib) first calls L(child::node(), (R1, R2), 
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/bib). The selected instance child nodes of D14 from the record R2 are D17 and 

D18, and the corresponding node sequences are (D14, D15, D16, D17) and (D14, 

D15, D16, D18). Now the following schema paths L are computed so far. 

L = {p1, p2}, where 

p1 = (R1, R2, </bib/article, {(D14, D15, D16, D18)}, child, {R2}, -, ->) 

p2 = (R1, R2, </bib/article, {(D14, D15, D16, D17)}, child, {R2}, -, ->) 

     = (R1, R2, R3) 

Since D18 is not a resultant node of the location step descendant::article, p1 is 

not a resultant schema path of the current location step (filtered out by using 

Lr(self::article, p1, /bib)). D18 does not have any descendant nodes either, so the 

schema paths of the branch is computed to empty (by using L(child::node(), p1, 

/bib)). D17 is a resultant node of descendant::article, and thus we have the first 

resultant schema path of descendant::article, i.e. G={p2}={(R1, R2, R3)}, by using 

Lr(self::article, p2, /bib). Since D17 has descendant nodes, we now continue from 

p2. L(child::node(), p2, /bib) is called again, and the instance element and text 

nodes selected by child::node() are D2, D4, D19, D7, D8 and D9. Since we can not 

find any resultant nodes along D2, D4, D19, D7 and D8, the schema paths along 

these branches will be computed to empty. Although D9 is not a resultant node 

of descendant::article, D9 has an instance child node D13. Therefore, we can 

construct a new schema path record from D9, i.e. R4→ </bib/article, {(D17, D2, 

D3, D9)}, child, {R3}, -, ->, and thus the new schema paths are L={(R1, R2, R3, R4)}. 

From D9, we proceed to its instance child nodes D13, and get the new schema 

paths L={(R1, R2, R3, R4, R5)}, where R5→ </bib/article, {(D9, D11, D12, D13)}, 

child, {R4}, -, ->. Since D13 is a resultant node of descendant::article, we now have 

two resultant schema paths, i.e. G = {(R1, R2, R3), (R1, R2, R3, R4, R5)}. 

The search continues from D13 by recursively calling L(child::node(), p, xp) 

and other functions. We get the following schema paths 

R1→   {(</,  {(D1)},   -,    -,   -,   ->, 

R2→   </bib, {(D1, D14)}, child, {R1},  -,  ->,         

R3→     </bib/article, {(D14, D15, D16, D17)}, child, {R2}, -, ->, 

R4→    </bib/article, {(D17, D2, D3, D9)}, child, {R3}, -, -> 

R5→    </bib/article, {(D9, D11, D12, D13)}, child, {R4}, -, -> 

R6→    </bib/article, {(D13, D2, D3, D9)}, child, {R5}, -, -> 

R7→    </bib/article, {(D9, D11, D12, D13)}, child, {R6}, -, -> 

R8→    </bib/article, {(D13, D2, D3, D9)}, child, {R7}, -, -> 

…)} 
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A loop occurs when evaluating descendant::article, i.e. D13 is an instance 

child node of D9 and D9 is an instance child node of D13. The loop is already 

detected when we determine the record R6, because we detect that the record 

R6 and a previous record R4 have the same last node D9 in the node sequence 

field S and the same XPath expression in the XP field. We do not continue the 

computation from R6, and the records after R6 are presented here for the pur-

pose of demonstration. When a loop is detected, the loop part is integrated into 

the field of loop schema paths in the record, where the last schema node of the 

node sequences is the initial node of the loop, i.e. R4 is modified as follows: 

R4→  </bib/article, {(D17, D2, D3, D9), (D13, D2, D3, D9)}, child, {R3, R5},  

R6→  {(</bib/article, {(D13, D2, D3, D9)}, child, {R5}, -, ->, 

R5→   </bib/article, {(D9, D11, D12, D13)}, child, {R4}, -, ->)}, -> 

Note since the node D9 in the record R6 is the initial node of the loop, the 

record R6 becomes the first record in the loop schema path. Thus, the resultant 

schema paths of descendant::article are: 

L=G={P1, P2}, where 

P1= (R1, R2, R3) 

P2 = (R1, R2, R3, R4, R5) 

R1→   </,  {(D1)},   -,    -, -,   -> 

R2→  </bib, {(D1, D14)}, child, {R1},  -,  ->   

S3→   </bib/article, {(D14, D15, D16, D17)}, child, {R2}, -, -> 

R4→   </bib/article, {(D17, D2, D3, D9), (D13, D2, D3, D9)}, child, {R3, R5} 

R6→   {(</bib/article, {(D13, D2, D3, D9)}, child, {R5}, -, -> 

R5→      </bib/article, {(D9, D11, D12, D13)}, child, {R4}, -, ->)}, -> 

R5→    </bib/article, {(D9, D11, D12, D13)}, child, {R4}, -, ->)} 

We present the detection of loops and the construction of loop schema paths 

in Section 4.2.2. 

The location step descendant::article has two predicates, and thus two sets of 

schema paths are computed, and added to the field of predicate schema paths 

in the context records (see L(e[q1]…[qn], fp, xp) in Figure 4.8). So far we have 

two schema paths, and thus the predicates have two context records R3 (in p1) 

and R5 (in p2). From p2, two sets (see {(R7, R8)} and {(R9)} of Figure 4.2) of 

schema paths are computed, and added to the field of predicate schema paths 

in R5. The first record of the schema paths of the predicate expression [year] is 
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the record, the last schema node of which is the context node of [year]. The pur-

pose of the record is setting the context node of the predicate expression. 

L(year, (R5’), -) is used to compute [year]. R5’=<-, {(D9, D11, D12, D13)}, child, {R4}, 
-, -> is derived from the record R5, and R5’ logs the context node of [year] such 

that we compute the schema paths of the predicate from the schema path (R5’). 
L(not(self::node()[editor]/ancestor::bib)]), (R5’), -) is used to evaluate another predi-

cate [not(self::node()[editor]/ancestor::bib)])]. Since D13 selected by self::node() does 

not have instance child nodes declaring element editor, the schema paths of [edi-

tor] is computed to ∅, and thus the evaluation of 

(self::node()[editor]/ancestor::bib]) is aborted after the evaluation of [editor]. There-

fore, the schema paths of this part are computed to empty (see R10 of Figure 

4.2). We present the method to evaluate predicates in Section 4.2.3.  

We use L(parent::reference, p1, xp) and L(parent::reference, p2, xp) (where 

xp=/bib/descendant::article[year][not(self::node()[editor]/ancestor::bib)] to evaluate the 

last location step parent::reference of Q from p1 and p2 respectively. From p1, 

the parent record of R3 is R2. Since D14 in R2 declares elements with name bib, 

the node D14 does not conform to the node test reference of the current location 

step, i.e. NT(D14, reference)=false (see Figure 3.6), and thus the schema path p1 

is computed to empty. From p2, the parent record of R5 is R4. Since D13 in R4 

declares elements with name reference, NT(D9, reference)=true, and thus a new 

schema path record R11 is generated: R11→ <Q, {(D17, D2, D3, D9), (D13, D2, D3, 

D9)}, child, {R3, R5}, -, ->. Therefore, the resultant schema paths of Q are L = {(R1, 

R2, R3, R4, R5, R11}. 

4.2  Computation of schema paths 

We use the semantics technique to describe our XPath-XSchema evaluator, 

and define the following notations. Let z be a pointer in a schema path and d is 

a field of a schema path record, we write z.d to refer to the field d of the record 

to which the pointer z points. Let p be a schema path and |p| be the size of the 

schema path p, i.e. the number of pointers (or schema path records) in p, then 

p[k] indicates the k-th pointer (or the record to which the k-th pointer points) of 

the schema path p, and thus p[|p|].XP refers to the field XP of the last schema re-

cord of p. For readability, we often write that p[k] is the k-th schema path re-

cord of schema path p, instead of that p[k] is the k-th pointer of p, which points 

to a schema path record. Let S be a set of sequences of XSchema nodes, then 
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S(1) indicates an arbitrary sequence of nodes in S. We use the operator / to ex-

press the concatenation of two XPath expressions, e.g. XP1/XP2. If XP1=/, then 

XP1/XP2=/XP2; if XP1 is empty, then XP1/XP2=XP2; if XP2 is empty, then 

XP1/XP2=XP1. 

4.2.1  Evaluating XPath expressions 

The semantics of the XPath-XSchema evaluator is specified by a function L 

(see Figure 4.6). The function L: XPath x schema_path x XPath → 

Set(schema_path) takes two XPath expressions and a schema path as the argu-

ments and yields a set of schema paths. The first XPath expression is one that 

is evaluated on a given XML Schema definition in this function, and the sec-

ond XPath expression is the part XP2 of the given XPath query Q, which has 

been evaluated so far when the function is called. XP2 is bound to the XP field 

of a schema path record, and this field is needed for the detection of loop 

schema paths. The schema path in this function signature is one of the schema 

paths of the part XP2 of the given XPath query Q, which has been evaluated 

when calling this function. L(XPath, schema_path, XPath) is defined recursively 

on the structure of XPath expressions (see Figure 4.6). 

• L(/e, -, -) = L(e, p, /), where p=( </, {(<schema>)}, -, -, -, - > ) 

• L(e1|e2, p, -) = L(e1, p, -) ∪ L(e2, p, -) 

• L(e1/e2, p, xp) = {p2 | p2∈L(e2, p1, xp/e1) ∧ p1∈L(e1, p, xp)} 

Figure 4.6: The function L: XPath x schema_path x XPath → Set(schema_path) is 

defined recursively on the structure of XPath expressions 

4.2.2  Evaluating axes and node-tests 

For evaluating each location step of an XPath expression, our XPath-XSchema 

evaluator first computes the axis a and the node-test n of the location step a::n 

by iteratively taking the last schema node from a node sequence of the last 

schema path record (note that the last node of all the node sequences in a 

schema path record are the same) from each schema path p in the path set as 
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the context node (see Figure 4.7). The path set is computed from the part of the 

XPath query, which has been evaluated by the XPath-XSchema evaluator. For 

each resultant node r selected by a::n, L first computes a node sequence s 

based-on the data model of XML Schema. s[1] is the instance parent node of r, 

s[|s|]=r and other nodes in s are intermediate ones visited when searching for r 

of s[1]. The function L then constructs a pointer e to a new schema path record, 

i.e. e→ <xp, {s}, a, z, -, -> and extends p to p’ by adding the pointer e at the end 

of the given schema path p, denoted by p’=p+e. In Figure 4.2, the new schema 

path record R11→ <Q, {(D17, D2, D3, D9), (D13, D2, D3, D9)}, parent, {R3, R5}, -, -

>} is generated when evaluating the part parent::reference of the query Q, and is 

added at the end of p by L(parent::reference, p, parent::reference). If no node is se-

lected by the current location step, the function L computes an empty set of 

schema paths. For example, since no node is selected by the current location 

step editor, the part [editor] of Q in Example 4.1 is computed to empty by 

L(child::editor, p, -), and this causes that the corresponding main schema paths 

are computed to empty (see (R10) in Figure 4.2). 

In the case of recursive schemas, a loop is identified whenever the XPath-

XSchema evaluator revisits an instance XSchema node N without any progress 

in the processing of the query. In order to avoid an infinite evaluation, we do 

not continue the evaluation along the node N, once a loop has been detected. 

We detect loops in the following way: let e=<xp, {s}, a, z, -, -> be a new schema 

path record generated when computing L(a::n, p, xp). If there exists a record p[k] 

in p such that S(1)[|S(1)|]=s[|s|] ∧ S=p[k].S ∧ p[k].XP=xp, a loop is detected and the 

loop path segment is lp = (e, p[k+1], …, p[|p|]). lp is added to the field of loop 

schema paths in the schema path record p[k], where the loop occurs (e.g. (R6) 

and (R5) in Figure 4.2). A loop might occur when an XPath query contains the 

axis descendant, ancestor, preceding or following, which are boiled down to the 

recursive evaluation of the axis child or parent respectively. For computing 

L(descendant::n, p, xp), we first compute pi, where pi∈L(child::node(), pi-1, xp) ∧ pi-

1∈L(child::node(), pi-2, xp) ∧…∧ p1=L(child::node(), p, xp). If no loop is detected in 

the path pi, i.e. ∀k∈{1, …, |pi|-1}: pi[k].XP≠pi[|pi|].XP ∨ (S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ 

S1=pi[k].S ∧ S2=pi[|pi|].S), then let pi’=pi  and Lr(self::n, pi’, xp) is computed in order 

to construct a possible new path from pi. If a loop path segment (pi[|pi|], pi[k+1], 

…, pi[|pi|-1]) is detected in the path pi, i.e. ∃k∈{1, …, |pi|-1}: pi[k].XP=pi[|pi|].XP ∧ 

S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S, then the schema path record 

pi[k], from which the loop starts, is modified by integrating the new detected 

loop schema path, the new sequence of nodes and the new parent pointer, i.e. 
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pi[k] → <pi[k].XP, pi[k].S∪pi[|pi|].S, a, pi[k].z∪pi[|pi|].z, pi[k].lp∪{( pi[|pi|], pi[k+1], …, 

pi[|pi|-1])}, pi[k].f>. Note that all the schema paths, which contain the pointers to 

the schema path record, are also aware of this modification. When a loop is de-

tected, instead of setting pi’=pi, pi’ is set to empty, i.e. if a loop is detected in pi, pi 

will not contribute to the further computation of schema paths anymore.  

• L(self::n, p, xp) = { p+<xp/self::n, S, ‘self’, p[|p|].z, -, -> |  

S=p[|p|].S ∧ NT(S(1)[|S(1)|], n) } 

• L(child::n, p, xp) = { p+<xp/n, {s}, ‘child’, p[|p|], -, -> | 

NT(s[|s|], n) ∧ S=p[|p|].S ∧ isiElement(S(1)[S(1)]) ∧ ( 

 (s∈iChild(S(1)[|S(1)|]) ∧ n≠text()) ∨  

(s∈iTextChild(S(1)[|S(1)|] ∧ (n=text() ∨ n=node()))) } 

• Lr(self::n, p, xp) = { p | NT(S(1)[|S(1)|], n) ∧ S=p[|p|].S } 

• L(descendant::n, p, xp) = { p’ |  p’∈∪i=1
∞Lr(self::n, p’i, xp) ∧ (  

( pi’=pi ∧ pi∈L(child::node(), pi-1, xp) ∧  

∀k∈{1, …, |pi|-1}: ( pi[k].XP≠pi[|pi|].XP ∨  

(S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S) ) ∧ 

pi-1∈L(child::node(), pi-2, xp) ∧ … ∧ p1∈L(child::node(), p, xp) )  

∨ 

( p’i=⊥ ∧  

(pi[k]→<pi[k].XP, pi[k].S∪ pi[|pi|].S, pi[k].a, pi[k].z∪pi[|pi|].z,  

pi[k].lp∪{(pi[|pi|], pi[k+1], ..., pi[|pi|-1])}, pi[k].f>) ∧ 

   ∃k∈{1, ..., |pi|-1}: ( pi[k].XP=pi[|pi|].XP ∧ 

S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S) ∧  

pi∈L(child::node(), pi-1, xp) ∧ pi-1∈L(child::node(), pi-2, xp) ∧ … ∧  

p1∈L(child::node(), p, xp) )) } 

• L(parent::n, p, xp) = { p + <xp/parent::n, S, ‘parent’, Z1.z, -, -> |  

S=Z1.S ∧ Z1∈p[|p|].z ∧ NT(S(1)[|S(1)|], n) } 

• L(ancestor::n, p, xp) =  { p’ | p’∈∪i=1
∞Lr(self::n, p’i, xp) ∧ ( 

( pi’=pi ∧ pi∈L(parent::node(), pi-1, xp)  ∧  

   ∀k∈{1, …, |pi|-1}: ( pi[k].XP≠pi[|pi|].XP ∨ 

(S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S)) ∧  

  pi-1∈L(parent::node(), pi-2, xp) ∧ … ∧ p1∈L(parent::node(), p, xp) ) 

∨ 

( p’i=⊥ ∧  
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    (pi[k]→<pi[k].XP, pi[k].S∪ pi[|pi|].S, pi[k].a, pi[k].z∪pi[|pi|].z,  

pi[k].lp∪{(pi[|pi|], pi[k+1], ..., pi[|pi|-1])}, pi[k].f> ) ∧  

   ∃k∈{1, ..., |pi|-1}: ( pi[k].XP=pi[|pi|].XP∧ 

S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S ) ∧  

   pi∈L(parent::node(), pi-1, xp)  ∧ pi-1∈L(parent::node(), pi-2, xp) ∧ … ∧  

   p1∈L(parent::node(), p, xp) )) } 

• L(DoS::n, p, xp) = L(self::n, p, xp) ∪ L(descendant::n, p, xp) 

• L(AoS::n, p, xp) =  L(self::n, p, xp) ∪ L(ancestor::n, p, xp) 

• L(FS::n, p, xp) = { p+<xp/FS::n, {s}, ‘FS’, p[|p|].z, -, -> |  

s∈iFS(s1) ∧ NT(s[|s|], n) ∧ s1∈p[|p|].S } 

• L(following::n, p, xp) = L(AoS::node()/FS::node()/Dos::n, p, xp) 

• L(PS::n, p, xp) = { p+<xp/PS::n, {s}, ‘PS’, p[|p|].z, -, -> |  

s∈iPS(s1) ∧ NT(s[|s|], n) ∧ s1∈p[|p|].S } 

• L(preceding::n, p, xp) = L(AoS::node()/PS::node()/DoS::n, p, xp) 

• L(attribute::n, p, xp) = { p+<xp/attribute::n, {s}, ‘attribute’, p[|p|], -, -> |  

s∈iAttribute(S(1)[|S(1)|]) ∧ NT(s[|s|], n) ∧ S=p[|p|].S } 

Figure 4.7: The function L: XPath x schema_path x XPath → Set(schema_path) 
for evaluating axes and node tests 

4.2.3  Evaluating predicates 

The schema paths L(q, fp, -) of a predicate q are added into the field of predicate 

schema paths in the record, where the last node of the field of the node se-

quences is the context node of the predicate, e.g. L(e[q], p, xp) = {(p’[1], p’[2], …, 

p’[|p’|-1]) + <p’[|p’|].XP, p’[|p’|].S, p’[|p’|].a, p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q, fp, -)> | 

p’∈L(e, p, xp) ∧ L(q, fp, -)≠∅ ∧ fp=(<-, p’[|p’|].S, ‘self’, p’[|p’|].z, -, ->)} (see Figure 

4.8). fp logs the context node of the predicate such that we compute the schema 

paths of the predicate from fp. When L(q, fp, -) is computed to empty, the main 

schema paths are computed to an empty set of schema paths, i.e. L(e[q], p, 

xp)=∅ if L(q, fp, -) =∅. When [q] = [q1 or q2], L(q1 or q2, fp, -) computes a schema 
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path with only one record for the predicate expression q1 or q2, i.e. {(<‘or’, L(q1, 

fp, -)∪L(q2, fp, -)>)} that consists of a keyword or and two sets of schema paths 

computed from q1 and q2. The schema path is added into the field of predicate 

schema paths of the record, where the last node in the field of the node 

sequences is the context node of [q1 or q2]. If both L(q1, fp, -) and L(q2, fp, -) are 

computed to empty, the schema paths of the predicate q1 or q2 are computed to 

the empty set, i.e. L(q1 or q2, fp, -)=∅ if L(q1, fp, -)=∅ ∧ L(q2, fp, -)=∅. 

• L(e[q], p, xp) = { (p’[1], p’[2], …, p’[|p’|-1]) +  

<p’[|p’|].XP, p’[|p’|].S, p’[|p’|].a, p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q, fp, -)> |  

p’∈L(e, p, xp) ∧ L(q, fp, -)≠∅ ∧  fp=(<-, p’[|p’|].S, ‘self’, p’[|p’|].z, -, ->)} 

• L(e[q1]…[qn], p, xp) = { (p’[1], p’[2], …, p’[|p’|-1]) +  

<p’[|p’|].XP, p’[|p’|].S, p’[|p’|].a, p’[|p’|].z, p’[|p’|].lp,  

p’[|p’|].f∪L(q1, fp, -)∪…∪L(qn, fp, -)> | 

p’=L(e, p, xp) ∧ L(q1, fp, -)≠∅ ∧ … ∧ L(qn, fp, -)≠∅ ∧  

fp=(<-, p’[|p’|].S, ‘self’, p’[|p’|].z, -, ->) } 

• L(q1 and q2, fp, -) = { (<‘and’, L(q1, fp, -)∪L(q2, fp, -)>) |  

L(q1, fp, -)≠∅ ∧ L(q2, fp, -)≠∅ } 

• L(q1 or q2, fp, -) = { (<‘or’, L(q1, fp, -)∪L(q2, fp, -)>) |  

L(q1, fp, -)≠∅ ∨ L(q2, fp, -)≠∅ } 

• L(q1 = q2, fp, -) = { (<‘=’, L(q1, fp, -)∪L(q2, fp, -)>) |  

L(q1, fp, -)≠∅ ∧ L(q2, fp, -)≠∅ }  

• L(not(q), fp, -) = { (<‘not’, L(q, fp, -)>) } 

• L(q op C, fp, -) = L(q[self::node() op C], fp, -),  where q≠self::node() 

• L(self::node() op C, fp, -) = { (<self::node() op C>) } 

Figure 4.8: The function L: XPath x schema_path x XPath → 
Set(schema_path) for evaluating predicates  
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4.2.4  Integrating data type checking 

The XML Schema language [W3C Schema2 2004] defines 44 built in simple 

types, and allows users to define new simple types. If values of an element or 

an attribute in an XPath query do not conform to the value type of the element 

or the attribute specified in the given XML Schema definition, the XPath query 

selects an empty set of nodes for any XML document, which is valid according 

to the XML Schema definition. Therefore, integration of data type checking, 

when evaluating XPath queries on an XML Schema definition, can detect 

more unsatisfiable queries. 

The data type checking is involved in the computation of the schema paths 

of the predicate expression self::node() op C, and thus we modify the function 

L(self::node() op C, p, -)  of Figure 4.8 in order to integrate type-checking (see 

Figure 4.9). In the XPath language, the value of an element is the text node of 

the element, and thus e.g. two predicate expressions child::mark=1.0 and 

child::mark/child::text()=1.0 are semantically equal. Therefore, if the node selected 

by self::node() is an element node, we evaluate child::text()/self::node()=C rather 

than self::node()=C in order to make the node selected by self::node() be a text 

node. If the constant C of the predicate expression self::node()=C conforms to 

the value type of the node specified by self::node(), the predicate expression it-

self as the schema paths is added to the field of the predicate schema paths of 

the record, the last node of the node sequences of which is the context node of 

the predicate expression. If C does not conform to the type constraints, the 

predicate expression self::node()=C is computed to the empty set of schema 

paths, i.e. L(self::node()=C, p, -)=∅, and thus the corresponding main schema 

paths are computed to the empty set of schema paths. The auxiliary function 

typeChecking(type, C) validates whether or not the constant C conforms to the 

given type; the auxiliary function valueType(N) returns the type of values of the 

element or the attribute declared in the node N and the restricting facets of the 

values.  

• L(self::node() op C, p, -) =  { p1 | ( 

( p1∈L(child::text()/self::node() op C, p, -) ∧  

  ¬isiText(N) ∧ ¬isiAttribute(N) ∧ N=S(1)[|S(1)|] ∧ S=p[|p|].S ) 

∨ 

( p1=(<self::node() op C>) ∧ typeChecking(valueType(N), C) ∧ 

N=S(1)[|S(1)|] ∧ S=p[|p|].S ∧ ( 
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(valueType(N)=(T, -) ∧ ( 

N=@<type=T> ∨ N=<attribute type=T…> ∧ built-in(T) ) 

∨  

   ( valueType(N)=computeType(N1, facets) ∧ ( 

( N1=<simpleType name=T...> ∧ N1∈succeeding(N) ∧ 

      N=<attribute type=T…> ∧ ¬built-in(T) )  

     ∨  

        ( N1=<simpleType…> ∧ N1∈child(N)  ∧  

N=<attribute…> ∧ N@<type>=⊥ )) ∧  

                |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null )  

∨ 

             (valueType(N)=(‘string’, -) ∧ ( 

N=<complexType mixed= ‘true’…> ∨ 

N=<complexContent mixed= ‘true’…> ) 

∨  

             ( valueType(N)=computeType(N, facets) ∧ ( 

N=<simpleType…> ∨ N=<simpleContent…> ) ∧ 

                 |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null ))))}  

Figure 4.9: The function L(self::node() op C, p, -)  is modified for integrating 

data type checking 

XML Schema specifies a specific data-type for values of an element if the 

element is of a simple type, i.e. the element consists of only a text node with-

out attributes and sub-elements. The attributes are always of simple types. The 

type of values of an element of simple type and an attribute can be either the 

built-in simple types of the XML Schema language or user-defined simple 

types. New simple types are derived from existing simple types, which are 

called the base types of the derived types, by restricting the range of base 

types. XML Schema applies one or more facets to restrict the legal values of 

base types. Thus, a new simple type is a particular combination of a base type 

and the facets. Base types can be built-in or derived, and thus in order to know 

what a new simple type is, one must find the source of the derivation, i.e. the 

built-in simple type, and all the restrictions imposed by the sequence of the 

derivations. The function computeType(N, facets) (see Algorithm 4.1) computes 

the type of values of an element or an attribute, if the element or the attribute is 

not of a built-in simple type, where N is the instance text node of the node that 



62      Chapter 4   XPath-XSchema Evaluator 

 

declares the element or N is the succeeding node <simpleType…> of the instance 

attribute node that declares the attribute.  

Whenever an instance text node N is the attribute node type=T of an element 

declaration node, then T must be a built-in simple type. In this case, the value 

type of the element is T without restricting facets, i.e. valueType(N)=(T, -). Let N 

be the attribute node type=‘string’ in D4=<element name=‘title’ maxOccurs=‘1’ 

type=‘string’/> of Figure 2.2, then valueType(N)=(‘string’, -). When an XSchema 

node declares an element with a derived simple type, it has a succeeding node 

N=<simpleType…> as its instance text node. The derived simple type is com-

puted by the function computeType(N, facets). For example, D19 in Figure 2.2 

defines an element year without the attribute node type=T. D19 has a succeeding 

node D20=<simpleType>, which indicates that elements year are of a derived 

simple type. D20 defines a new simple type by specifying a base type and by 

restricting the range of values of the base type. The base type is specified in 

the child node D21=<restriction base=‘int’> of D20, and the restricting facets are 

described in the child nodes D22 and D23 of D21.  

Since an attribute is always of simple type, the attribute node can be de-

clared with a built-in simple type, or with a user-defined simple type, or with 

an anonymously new simple type. Therefore, if N=<attribute type=T…> and built-

in(T), i.e. T is a built-in simple type, the value type of the attribute is the built-in 

simple type without restricting facets, i.e. valueType(N)= (T, -). If N=<attribute 

type=T…> and ¬built-in(T), then T is defined by a node N1=<simpleType 

name=T…> that is a succeeding node of N, and the value type of the attribute 

defined in N is computed by the function computeType(N1, facets). If an instance 

attribute node N does not contain a named type, i.e. N@<type>=⊥, the instance 

attribute node has an anonymous type that is defined in a child node 

N1=<simpleType…> of N, the value type of the attribute declared in the node N 

is computed by the function computeType(N1, facets).  

When a schema node declares an element with only text data and attributes, 

it has an instance text node N=<simpleContent…>. XML Schema also specifies a 

specific data type for the text data of the element, and the type of values of the 

element is computed by computeType(N, facets). The function computeType(N, 

facets) is further explained later on.  

Whenever an element contains elements and text nodes for its value, i.e. de-

clared as <complexType mixed=‘true’…> or <complexContent mixed=‘true’…>, XML 

Schema does not impose any specific data type for values of the element. 

Therefore, the value is considered as character string, and there is no restrict-
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ing facet either, i.e. we do not check the data type in this case. For example, 

D2=<complexType name=‘articleType’ mixed=‘true’> in Figure 2.2 is an instance 

text node of D17 and D13, which declare an element article of complex type. 

Therefore, valueType(D2) = (‘string’, -) and typeChecking(valueType(D2), C) = true, 

and thus L(self::node()=C, p, -) = {(<self::node()=C>)}. 

Algorithm 4.1 computeType(N, facets) describes how to retrieve the type of 

values of an attribute and an element according to the syntax for simpleTypeD 

and simpleContentD (see Definition 2.1 in Chapter 2). XML Schema identifies 

12 restricting facets, and thus the argument facets is an array containing 12 

string data. We use the name of facets specified in [W3C Schema2 2004] as 

the index of the array to which the value of the facet is bound. Figure 4.10 pre-

sents an example, which demonstrates Algorithm 4.1. Note that in this work 

we consider only the XML Schema definitions, which are syntactically and 

semantically correct. 

Algorithm 4.1: computeType (N, facets) 

input: node N, string[12] facets; 

output: (string base, string[12] facets); 

N1∈child(N); 

If (N1=<extension…>) { 

base=attribute(N1, ‘base’); 

    if (built-in(base)) return (base, facets); 

else { 

N2∈succeeding(N1), where N2=<simpleType…>; 

return computeType(N2, facets); 

} 

} 

If (N1=<restriction…>) {  

base=attribute(N1, ‘base’); 

if (∃N2∈succeeding(N1): N2=<simpleType…>)  

(base, facets)=computeType(N2, facets); 

∀N2∈succeeding(N1) { 

if (N2=<length value=V />)  facets[length]=V;  

if (N2=<minLength value=V />) facets[minLength]=V;  

if (N2=<maxLength value=V />) facets[maxLength]=V;  

if (N2=<pattern value=V />) facets[pattern]=V;  



64      Chapter 4   XPath-XSchema Evaluator 

 

if (N2=<enumeration value=V />) facets[enumeration]=V;  

if (N2=<whiteSpace value=V />) facets[whiteSpace]=V;  

if (N2=<maxInclusive value=V />) facets[maxInclusive]=V;  

if (N2=<maxExclusive value=V />) facets[maxExclusive]=V;  

if (N2=<minInclusive value=V />) facets[minInclusive]=V;  

if (N2=<minExclusive value=V />) facets[minExclusive]=V;  

if (N2=<totalDigits value=V />) facets[totalDigits]=V; 

if (N2=<fractionDigits value=V />) facets[fractionDigits]=V;  

           } 

          return (base, facets); 

      } 

In Algorithm 4.1, node N1=<extension base=Name> is a child node of <sim-
pleContent…>; node N2=<restriction base=Name> is a child node of <simple-
Type…>. Both nodes indicate the base type of the derivation, which may be ei-

ther a built-in or a derived simple type. If the base type is not a built-in simple 

type, there is a node <simpleType name=Name> with the same Name, which de-

fines the base type of the derived type, and which is a succeeding node of N1 
or N2. Thus, a new simple type might be derived recursively from a sequence 

of existing simple types, until the base is a built-in simple type. The facets that 

restrict the range of values of the base type are identified by several child 

nodes of <restriction…>. Furthermore, the restrictions imposed by a derived type 

override the restrictions from its base type. If <restriction…> does not have a 

succeeding node <simpleType…>, the attribute base of the node <restriction…> 

must be a built-in simple type. This means that we find the source of derivation 

and all restricting facets, i.e. we compute the type of values of the element or 

the attribute. 

4.2.5  Integrating occurrence constraints checking 

XML Schema specifies some constraints that control the occurrence of ele-

ments and attributes and their values. When an element is declared with 

maxOccurs=0 (and minOccurs=0, because it is an error if minOccurs≠0) or a 

model group of the element is declared with maxOccurs=0, or when an attribute 

is declared with use=‘prohibited’, the element and the attribute must not appear 

in any instance document. When an element or an attribute is declared to have  
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(E1) <element name=‘year'>

(E2) <simpleType>

(E3)      <restriction base=‘yearT2'>

(E4)         <length value=4/>

<maxInclusive=2005/>

</restriction>

</simpleType>

</element>

(E5) <simpleType name = ‘yearT2>

(E6)      <restriction base=‘yearT1'>

(E7) <minExclusive=1900/>

</restriction>

</simpleType>

(E8) <simpleType name = ‘yearT1>

(E9)      <restriction base=‘int’> 

(E10) <maxInclusive=2007/> 

</restriction>

</simpleType>

computeType (E2, null)

output: base = “int”, 

facets[maxIncusive]=2005, facets[length]=4, facets[minExclusive]=1900

base = int

facets[maxInclusive] = 2007

facets[minExclusive] = 1900

facets[length] = 4

facets[maxInclusive] = 2005

(E1) <element name=‘year'>

(E2) <simpleType>

(E3)      <restriction base=‘yearT2'>

(E4)         <length value=4/>

<maxInclusive=2005/>

</restriction>

</simpleType>

</element>

(E5) <simpleType name = ‘yearT2>

(E6)      <restriction base=‘yearT1'>

(E7) <minExclusive=1900/>

</restriction>

</simpleType>

(E8) <simpleType name = ‘yearT1>

(E9)      <restriction base=‘int’> 

(E10) <maxInclusive=2007/> 

</restriction>

</simpleType>

computeType (E2, null)

output: base = “int”, 

facets[maxIncusive]=2005, facets[length]=4, facets[minExclusive]=1900

base = int

facets[maxInclusive] = 2007

facets[minExclusive] = 1900

facets[length] = 4

facets[maxInclusive] = 2005

(E1) <element name=‘year'>

(E2) <simpleType>

(E3)      <restriction base=‘yearT2'>

(E4)         <length value=4/>

<maxInclusive=2005/>

</restriction>

</simpleType>

</element>

(E5) <simpleType name = ‘yearT2>

(E6)      <restriction base=‘yearT1'>

(E7) <minExclusive=1900/>

</restriction>

</simpleType>

(E8) <simpleType name = ‘yearT1>

(E9)      <restriction base=‘int’> 

(E10) <maxInclusive=2007/> 

</restriction>

</simpleType>

computeType (E2, null)

output: base = “int”, 

facets[maxIncusive]=2005, facets[length]=4, facets[minExclusive]=1900

base = int

facets[maxInclusive] = 2007

facets[minExclusive] = 1900

facets[length] = 4

facets[maxInclusive] = 2005

 

Figure 4.10: An example demonstrating Algorithm 4.1  

a fixed value, e.g. fixed=‘100’, values of the element or the attribute in all in-

stance documents must be 100. 

In order to integrate the occurrence constraints checking, we modify the 

data model of XML Schema, especially the functions iChild(x) and iAttribute(x) in 

Figure 3.1, as follows (see Figure 4.11): 

• iChild(N) = { y+(N1) | (y=(N) ∧ isiRoot(N) ∧ N1∈child(N) ∧ isiElement(N1))  

∨ 

y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧ isiElement(N1) ∧ 

      ∀i∈{2, 3, …, |y|}:  ( 

        ( ( y[i]=<group maxOccurs=D…> ∨ 

                 y[i]=<sequence maxOccurs=D…> ∨  

                 y[i]=<choice maxOccurs=D…> ∨ 
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                  y[i]=<all maxOccurs=D….> ) ∧ D>0 )  

              ∨ 

              ( y[i]≠<group…> ∧ y[i]≠<sequence…> ∧  

y[i]≠<choice…> ∧ y[i]≠<all…> )) ∧ 

     (y[|y|]=<element ref=E maxOccurs=D…> ∧ D>0) ∨  

    [|y|]≠<element ref=E…> ) ∧ 

     attribute(N1, maxOccurs)>0 }   

                   

• iAttribute(N) = { y+(N1) | y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧ 

isiAttribute(N1) ∧ ( 

( y[|y|]=<attribute ref=A> ∧ attribute(y[|y|], ‘use’)≠‘prohibited’ )  

∨ 

( y[|y|]≠<attribute ref=A> ∧ attribute(N1, ‘use’)≠‘prohibited’ ))} 

Figure 4.11: Functions iChild(x) and iAttribute(x) in the XML Schema data 

model in Figure 3.1 is modified for integrating occurrence constraints checking 

The function iChild(N) first computes a set S of node sequences using the 

auxiliary function iChild-helper(N). Each sequence y∈S consists of N and the 

nodes visited after N but before an instance child node of N. If the succeeding 

nodes N1 of y[|y|] are not the instance element nodes, then no node sequence is 

computed from y. In the case of a succeeding node N1 of y[|y|] being an in-

stance element node, iChild(N) returns the node sequence y+(N1), only when 

each model group of N1 is declared with maxOccurs>0, i.e. if u is a node in y, 

then u is either a node of a model group with maxOccurs>0, or is a node rather 

than the node of a model group. If y[|y|]=<element ref=E maxOccurs=D…>, then  

y[|y|] has a succeeding node N1=<element name=E…>. N1 is an instance child 

node of N only when D>0. Note that we do not check the attribute maxOccurs of 

the instance parent node y[1] of N1, because the elements defined in instance 

ancestor nodes of N1 have been checked for the occurrence constraints. 

The constraints on fixed values are closely related with type-checking, and 

thus the function L(self::node() op C, p, -) is further modified as follows (see 

Figure 4.12): 

• L(self::node() op C, p, -) =  { p1 | ( 

( p1∈L(child::text()/self::node() op C, p, -) ∧  

  ¬isiText(N) ∧ ¬isiAttribute(N) ∧ N=S(1)[|S(1)|] ∧ S=p[|p|].S ) 

∨ 
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( p1=(<self::node() op C>) ∧ C=V ∧ N=<attribute fixed=V…> ∧  

isiAttribute(N) ∧ N=S(1)[|S(1)|] ∧ S=p[|p|].S ) 

∨ 

( p1=(<self::node() op C>) ∧ C=V ∧ N1=<element fixed=V…> ∧  

N1=s[1]  ∧ s∈p[|p|].S ∧ isiText(N) ∧ N=S(1)[|S(1)|] ∧ S=p[|p|].S )      

∨ 

( p1=(<self::node() op C>) ∧ typeChecking(valueType(N), C) ∧ 

          N=S(1)[|S(1)|] ∧ S=p[|p|].S ∧ ( 

( valueType(N)=(T, -) ∧ N=@<type=T> ∧  

  N1@<fixed>=⊥ ∧ N1=s[1] ∧ s∈p[|p|].S )  

∨  

( valueType(N)=(T, -) ∧ N=<attribute type=T…> ∧  

built-in(T) ∧ N@<fixed>=⊥ )  

     ∨ 

( valueType(N)=computeType(N1, facets) ∧ ( 

( N1=<simpleType name=T...> ∧ N1∈succeeding(N) ∧ 

N@<fixed>=⊥ ∧ N=<attribute type=T…> ∧ ¬built-in(T) ) 

∨ 

          ( N1=<simpleType…> ∧ N1=child(N) ∧ N@<fixed>=⊥ ∧ 

N@<type>=⊥ ∧ N=<attribute…> )) ∧  

|facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null ) 

∨  

( valueType(N)=(‘string’, -) ∧ N1@<fixed>=⊥ ∧ N1=s[1] ∧  

s∈p[|p|].S   ∧ ( 

          N=<complexType mixed=‘true’…>  ∨   

            N=<complexContent mixed=‘true’…> ))  

∨                          

               ( valueType(N)=computeType(N, facets) ∧ N1@<fixed>=⊥ ∧ 

N1=s[1] ∧ s∈p[|p|].S ∧ ( 

          N=<simpleType…> ∨ N=<simplexContent…> ) ∧ 

                        |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null ))))} 

Figure 4.12: The function L(self::node() op C, p, -) is further modified for inte-

grating fixed value checking 

      Let self::node()=C be a predicate, then we use L(self::node()=C, p, -) to com-

pute the schema paths of the predicate. In L(self::node()=C, p, -), if 

N=<attribute…> is the node selected by self::node(), N can carry the attribute 
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fixed. If N contains the attribute fixed, i.e. N=<attribute fixed=V…>, the schema 

paths of the predicate self::node()=C is {(<self::node()=C>)} if and only if C=V; the 

schema paths of the predicate self::node()=C is computed to the empty set if 

C≠V, and thus the corresponding main paths are computed to the empty set. If 

N  does not contain the attribute fixed, i.e. N@<fixed>=⊥, C must conform to the 

type of values of the attribute defined in N, in order to compute 

{(<self::node()=C>)} from the predicate self::node()=C; if C does not conform to 

the constraint of type, then L(self::node()=C, p, -)=∅. When the node selected by 

self::node() is an attribute node @<type=T> or a node <simpleType…> or a node 

<simpleContent…> or a node <complexType…> or a node <complexContent…>, 

these nodes do not contain the attribute fixed, which can be contained by the in-

stance parent node of these nodes, i.e. N1=<element…>, which is the first node 

in the corresponding node sequence. 

4.2.6  Filtering redundant schema paths 

Let Q1 and Q2 be two XPath queries, and let Q1=a[b] and Q2=a[not(b)]. If a 

schema specifies that b must occur whenever a occurs, then the predicate [b] in 

Q1 is always evaluated to true and the predicate [not(b)] in Q2 is always be 

evaluated to false. Therefore, Q1 is equal to a semantically (denoted as Q1≡a) 

and Q2 is unsatisfiable with respect to this schema. Let Q3=a[@b] and 

Q4=a[not(@b)]. If a schema declares that the attribute b is required, then the 

predicate [@b] in Q3 is always evaluated to true and the predicate [not(@b)] in 

Q4 is always be evaluated to false. Therefore, Q3 is equal to a semantically and 

Q4 is unsatisfiable with respect to this schema. We call b (and @b) a redundant 

part. The corresponding schema paths of b (and @b) are the redundant schema 

paths, and can be eliminated. Therefore, eliminating redundant schema paths 

can not only reduce the size of an XPath query, but also discover more unsatis-

fiable queries. We first study the basic concepts and properties of schema paths 

in order to filter the redundant schema paths. 

Definition 4.2 (defining sequences): Let x=(N1, N2, …, N) be a sequence of 

schema nodes. If x∈iChild(N1) ∨ x∈iTextChild(N1) ∨ x∈iAttributeChild(N1),  then x 

is a defining sequence of N. 
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Definition 4.3 (unconditional nodes): Let ec be an element (or an attribute) 

declared by an instance XSchema node N; let the element ep be the parent of ec. 

If ep occurs in an instance XML document, ec must occur as a child (or an at-

tribute) of ep in the XML document. We call the instance XSchema node N a 

unconditional node. 

Theorem 4.1: Let x be a defining sequence of an instance element node N. If 

∀i∈{2, …, |x|}: x[i]≠<choice…> ∧ (x[i]@<minOccurs>=⊥ ∨ attribute(x[i], minOc-

curs)≥1), then N is an unconditional instance element node. 

Theorem 4.1 describes that the node N is an unconditional node, if no node 

in the defining sequence x of N is a node of <choice…>, and if a node in x car-

ries the attribute minOccurs, the value of minOccurs must be greater than 0.  

Theorem 4.2: Let x be a defining sequence of an instance attribute node N. If 

x[|x|-1]=<attribute use=‘required’ ref=…> ∨ N=<attribute use=‘required’ name=…>, 

then N is an unconditional instance attribute node. 

If an instance attribute node N contains the construct use=‘required’, i.e. N = 

<attribute use=‘required’ name=…>, then N is an unconditional instance attribute 

node. If N is a global attribute declaration (i.e. a child node of <schema…>), N 

is not allowed to contain the attribute use, and the node before N in x must be 

an attribute reference node, i.e. x[|x|-1]=<attribute ref=…>. If x[|x|-1] contains 

use=‘required’, then N is an unconditional instance attribute node. 

Definition 4.4 (redundant set of schema paths): Let L be a set of schema 

paths computed from an XPath expression. If ∃p∈L: p is a redundant schema 

path, then L is a set of redundant schema paths. 

Definition 4.5 (redundant schema paths): Let p be a schema path. p is a re-

dundant schema path, if p=(< ‘true()’>) or if ∀e∈p: e is a redundant schema path 

record. 

Definition 4.6 (redundant schema path records): Let e be a schema path re-

cord. If the last node in the field of the node sequences is unconditional and 

each set of the predicate schema paths is redundant, then e is a redundant 

schema path record. 

Let S be a set, and S’ be a subset of S, we write S-S’ to represent removing 

the subset S’ from S. The following Theorem 4.3 describes the rules to elimi-

nate redundant schema paths and filter unsatisfiable XPath queries. 
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Theorem 4.3: Let e be a schema path record, p be a schema path, and ⊥ indi-

cate an empty schema path or an empty schema path record, then 

• e=<XP, S, a, z, lp, f> = <XP, S, a, z, lp, ->, if ∀L∈f: L is redundant. 

• e=<XP, S, a, z, lp, f1∪f2> = <XP, S, a, z, lp, f1>, if ∀L∈f2: L is redundant. 

• p=(< ‘and’, {p1, p2}>) = p1 if p2 is redundant. 

• p=(< ‘and’, {p1, p2}>) = p2 if p1 is redundant. 

• p=(< ‘or’, {p1, p2}>) = (< ‘true()’>), if p1 or p2 is redundant. 

• p=(p[1], p[2], …, p[k], p[k+1], …, p[|p|]) = (p[1], p[2],.., p[k]) if each of p[k+1], 

…, p[|p|] is redundant, where p∈L ∧ L∈e.f  ∧ (e=<xp, S, a, z, lp, f> ∨ e=< 

‘and’, f> ∨ e=<‘or’ f> ∨ e=<‘not’ f>). 

• p=(< ‘not’ {p1}>) = ⊥ if p1 is redundant. 

• p=(< ‘and’, {p1, p2}>) = ⊥ if p1=⊥ ∨ p2=⊥. 

• p=(< ‘or’, {p1, p2}>) = ⊥ if p1=⊥ ∧ p2=⊥. 

• p={p[1], p[2], …, p[|p|]} = ⊥ if ∃i∈{1, …, |p|}: p[i] = ⊥. 

• e=<XP, S, a, z, lp, f> =⊥, If ∃L∈f: ∀p∈L: p = ⊥. 

We check whether or not a schema path is redundant by only checking the 

last schema path record. If the last schema path record is redundant, we elimi-

nate it and the pre-last schema path record becomes the last one; if the last 

schema path record is not redundant, the schema path is not redundant. If a 

schema path is eliminated completely, then this schema path is redundant, and 

thus the corresponding set of schema paths is redundant. In this way, each 

schema path record is checked at most once, and thus the complexity of elimi-

nating redundant schema paths is linear to the number of the schema path re-

cords of a schema path. 

4.3  Complexity analysis 

We first analyze the complexity of our approach in the worst case. Different 

from instance XML documents the topology of which is a tree, an XML 

Schema definition is a directed graph. In the directed graph, which leads to the 

worst-case complexity, each node has directed edges to all nodes. Therefore, 

we assume that in an XML Schema definition XSD in the worst case, each 

node in XSD is an instance node and each node is a succeeding node of all the 
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nodes. In an XPath query Q in the worst case, each location step in Q selects all 

the instance nodes in XSD.  

Let a be the number of location steps in the query Q. Let N be the number of 

nodes and i be the number of the instance nodes in an XML Schema definition 

XSD, where i≤N. In the worst case, from each schema path p of the result of the 

previous location step, firstly N nodes are visited and selected as the resultant 

nodes and these N nodes are directly reachable from the context node. Let the 

length of the schema path p be s. Therefore, N new schema path records are 

created and N schema paths with the length of s+1 are computed. From each of 

N visited nodes, N succeeding nodes are visited and selected as the resultant 

nodes, one of which is revisited. No new schema paths are computed from the 

revisited nodes, and they do not contribute to the further computation of 

schema paths either, but the revisited nodes indicate the occurrence of a loop. 

Therefore, N-1 new schema path records are created, one existing schema path 

record is modified by integrating the new loop schema path, and N-1 new 

schema paths with length of s+2 are computed. Therefore, there are N+N∗N 

nodes visited and N+N∗(N-1) schema paths with length from s+1 to s+2 com-

puted so far. From each of N∗(N-1) nodes, N succeeding nodes are visited and 

selected as the resultant nodes, two of which are revisited. Therefore, N-2 new 

schema path records are created, two existing schema path records are modi-

fied by integrating the new loop schema path, and N-2 new schema paths with 

length s+3 are computed. N+N∗N+N∗(N-1)∗N nodes are visited and N+N∗(N-

1)+N∗(N-1)∗(N-2) schema paths with length from s+1 to s+3 are computed so far. 

After a location step is evaluated, from each schema path p of the result of the 

previous location step, N+N∗N+N∗(N-1)∗N+…+N∗(N-1)∗(N-2)∗…∗2∗N = N∗∑k=0N-

1N!/(N-k)! nodes are visited and N+N∗(N-1)+N∗(N-1)∗(N-2)+…+N∗(N-1)∗(N-

2)∗…∗2∗1 = ∑k=1N N!/(N-k)! schema paths are computed with length from s+1 to 

s+N. 

Let X = N∗∑k=0N-1N!/(N-k)! and P = ∑k=1NN!/(N-k)!. In the worst case, having 

evaluated the first location step, X nodes are visited and P schema paths are 

created with length from 1 to N; having evaluated the first two location steps, X 

+ P∗X nodes are visited and P2 schema paths are created with length from 2 to 

N+N; having evaluated Q, X+P∗X+ P2∗X+…+Pa-1∗X = X∗∑j=0a-1Pj nodes are visited 

and Pa schema paths are created with length from a to a∗N. Since Σk=1N(N!/(N-k)!) 

< N!∗3 and Σk=0N-1(N!/(N-k)!) < N!∗2, thus X∗∑j=0a-1Pj = N∗∑k=0N-1N!/(N-k)!∗∑j=0a-1 

(∑k=1NN!/(N-k)!)j < N∗N!∗2∗∑j=0a-1(N!∗3)j < N∗N!∗2∗a∗(N!∗3)a-1. Therefore, the 

XPath-XSchema evaluator visits at most O(N∗N!∗a∗(N!∗3)a-1) nodes, and creates 
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at most O((N!∗3)a) different schema paths, each of which contains at most 

O(a∗N) pointers, and thus O((N!∗3)a) schema paths contains at most 

O(a∗N∗(N!∗3)a) pointers to at most O(N∗N!∗a∗(N!∗3)a-1) schema path records, 

when evaluating Q. 

Therefore, the worst case complexity of our approach in terms of runtime 

and space is O(a∗N∗(N!∗3)a). 

The XML Schema definitions of the worst case, where each node has all the 

nodes as succeeding nodes and each node is an instance node, are rare. A 

query that selects all the nodes of an XML instance document is /descendant-or-

self::node(). Other queries with multiple location steps each of which selects up 

to all nodes are typically not used. Therefore, it makes sense to investigate the 

complexity of our approach at typical cases. 

According to the schema and the queries given in the XPath benchmark 

[Franceschet 2005], we assume that the typical cases are characterized as fol-

lows: each node in an XML Schema definition XSD has only a small number of 

succeeding nodes compared with the number N of nodes in XSD; for each loca-

tion step of an XPath query Q, the number of nodes visited is in average less 

than a constant C, and thus less than C schema paths are created for each loca-

tion step. Therefore, after Q is evaluated for the typical case, a∗C nodes are 

visited and C schema paths are created, the length of each of which is at most 

a∗N. 

Therefore, under these assumptions, the complexity of runtime and space of 

our approach is O(a∗N∗C) at the typical cases. When the number of the nodes 

visited is in average less than N for each location step and this is quite typical 

based on the schema and queries given in the XPath benchmark [Franceschet 

2005], the complexity of our approach in terms of runtime and space is 

O(a∗N∗N) for the typical case. 

We develop a prototype of our XPath-XSchema evaluator. Since the XPath-

XSchema evaluator is closely related to the satisfiability test of XPath queries 

presented in Chapter 6, a comprehensive performance analysis of our proto-

type is given in Chapter 6. The experimental results show the efficiency and 

usability of our XPath-XSchema evaluator. 

 



 

 

 

 

 

Chapter 5   XPath Rewriting 
 

 

 

After computing the schema paths of an XPath query, we can construct an 

XPath query, which is equivalent to the original one, but in which redundant 

location steps are eliminated, wildcards are replaced with specific node-tests, 

and reverse axes and recursive axes are eliminated wherever possible. The re-

writing approach of XPath queries includes mapping a set of schema paths to a 

(regular) XPath expression, and optimizing the mapped XPath expression by a 

set of equivalence rules. 

5.1  Mapping schema paths to (regular) XPath Expressions 

We develop a group of functions (see Figure 5.1), which map a set of schema 

paths to a standard or a regular XPath expression. An XPath expression is a 

regular XPath expression if the Kleene star ∗ operation is allowed in the XPath 

expression. Let e be an XPath expression or a part of an XPath expression, 

then e* indicates an arbitrary repetition of e, e.g. a/b*/c = a/(b0 | b1 | b2 | …)/c =  

a/(⊥ | b | b/b |…)/c, where ⊥ represents the empty expression. 

The function M(L) in Figure 5.1 maps a set of schema paths L={p1, …, pm} to 

an XPath query Q’. The function M(p) maps a schema path p=(r1, …, rn) to a sub-

expression e of the query Q’. The function M(r) maps a schema path record r to 

a pattern of the sub-expression e. The patterns are concatenated with ‘/’ in order 

to form the sub-expression e=M(p)=M(r1)+‘/’+…+‘/’+M(rn), where we use ‘+’ to de-

note the concatenation of strings. Disjunctions of the sub-expressions form the 

mapped query Q’=M(L)=M(p1)+‘|’+…+‘|’+M(pn). In order to compute a pattern from 

a schema path record <XP, S, a, z, lp, f>, <o, f> or <e>, we need the following 

functions. The function location(S, a) computes the axis and the node-test of a 

pattern; the function loops(lp) computes the union of loop patterns. Let us as-

sume that B is a pattern, then we define B* as a loop pattern, in which the 
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Kleene star ∗ denotes an arbitrary repetition of the pattern B. As an example, if 

B=b, then B*=(b0 | b | b/b | b/b/b |…), where b0 is the empty expression ⊥. 
Let L be a set of schema paths, p be a schema path and r be a schema path 

record, such that L={p1,…, pm} and p=(r1,..., rn), where p∈L. The semantics of the 
mapping function M, which maps a set of schema paths to a (regular) XPath ex-
pression, is defined in Figure 5.1. Note that in the mapping functions of Figure 
5.1, the two fields XP and z in a schema path record r are left out since they do 
not contribute to the computation of the mapping. 

• M(∅) = ‘false()’ 

• M(L) = M(p1)+‘|’+ …+‘|’+M(pm) 

• M(p) = M(r1)+M(r2)+‘/’+…+‘/’+M(rn), if N=‘/’ ∧ N=S(1)[|S(1)|] ∧ S= r1.S 

• M(p) = M(r1)+‘/’+…+‘/’+M(rn), if N≠‘/’ ∧ N=S(1)[|S(1)|] ∧ S= r1.S 

• M(<S, a, -, ->) = location(S, a) 

• M(<S, a,  -, {f1, ..., fn}>) = M(<S, a, -, ->)+‘[’+M(f1)+‘]’+…+‘[’+M(fn)+‘]’ 

• M (<S, a, lp, ->) = ‘descendant::’+attribute(N,  ‘name’), where  

a=‘child’ ∧ N=S(1)[|S(1)|] 

• M (<S, a, lp, ->) = ‘ancestor::’+attribute(N, ‘name’), where  

a=‘parent’ ∧ N=S(1)[|S(1)|] 

• Mr(<S, a, lp, ->) =loops(lp)+location(S, a) 

• M(<S, a, lp, {f1, ..., fn}>) = M(<S, a, lp, ->)+‘[’+M(f1)+‘]’+…+‘[’+M(fn)+‘]’ 

• Mr(<S, a, lp, {f1, ..., fn}>) = Mr(<S, a, lp, ->)+‘[’+M(f1)+‘]’+…+‘[’+M(fn)+‘]’ 

• M(<‘not’, {f}>) = ‘not’+‘(’+ M(f)+‘)’ 

• M(<‘or’, {f1, f2}>) = M(f1)+‘ or ’+M(f2) 

• M(<‘=’, {f1, f2}>) = M(f1)+‘ = ’+M(f2) 

• M(<self::node() op C>) = ‘self::node() op C’, where op∈{=, <, > , ≥ , ≤ , ≠}   

• location (S, -) = ‘/’, where S(1)[|S(1)|]= ‘/’ 

• location(S, a) = a+‘::’+attribute(N, ‘name’), where  

(isiElement(N) ∨ isiAttribute(N)) ∧ N=S(1)[|S(1)|] 

• location(S, a) = a+‘::text()’, where isiText(N) ∧ N=S(1)[|S(1)|] 

• location(S, a) = a+‘::node()’ where N= ‘/’ ∧ N=S(1)[|S(1)|] 

• loops(lp) = loops({lp1,…,lpk}) = ‘(‘+‘(’+M(lp1)+‘/)*’+‘ | ’…‘ | ’+‘(’+M(lpk)+‘/)*’+‘)’ 

Figure 5.1: Functions mapping schema paths to a (regular) XPath expression  

If we use the function Mr(<S, a, lp, ->), we get a regular XPath expression 

with loop  patterns using the Kleene star ∗, which is not a standard XPath op-
erator; if we use the function M(<S, a, lp, ->), we get a standard XPath expres-
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sion, which conforms to the XPath specification [W3C XPath1.0 1999][W3C 
XPath2.0 2003], without loop patterns.  

Proposition 5.1: Let L be a set of schema paths, let XPr be the regular XPath 
expression mapped from L, and XP be the standard XPath expression mapped 
from L. The evaluation of XP returns the same node set as XPr for any valid 
XML document. 

Proof. According to the semantics of the XPath-Schema evaluator (see Figure 

4.5 in Chapter), a loop occurs only when our XPath-XSchema evaluator proc-

esses the location steps, which contains the axis descendant or ancestor. Proc-

essing of all other recursive axes like following and preceding are boiled down to 

the two axes. All the descendant nodes (or ancestor nodes respectively) of the 

context node of the location step will be visited. The descendant (or ancestor 

respectively) nodes are logged into the corresponding schema path records 

whenever these nodes fulfill the constraints of the current location step and the 

following locations steps. The function M(<S, a, lp, ->) retrieves the nodes NS, 

which we divide into three different kinds of nodes: the first kind of nodes ful-

fills the constraints of the current and following location steps and the con-

straints of the loop patterns, i.e. the nodes retrieved by Mr(<S, a, lp, ->); the sec-

ond kind of nodes fulfills the constraints of the current and following location 

steps, but does not fulfill the constraints of the loop patterns, i.e. these nodes, 

which are contained in the result of the mapped sub-queries of some of the 

other successfully detected schema paths of Q; the third kind of nodes fulfills 

the constraints of the current location step, but does not fulfill the constraints 

of following location steps, i.e. these nodes are not logged into any schema 

path and will be filtered when XP is evaluated on instance XML documents. 

According to the XPath language, the result of an XPath query does not con-

tain any duplicates. Therefore, the total mapped XPath expression using either 

M or Mr returns the same node set for all possible XML documents. 

Example 5.1: The schema paths in Figure 4.2 are mapped to the regular XPath 

expression           Qr  = /bib/article/((reference/article/)*)reference/article[self::article/ 

year][not(false())]/parent::reference, and the standard XPath expression Q’ = 

/bib/article/descendant::reference/article[self::article/year][not(false())]/parent::reference

. Figure 5.2 describes a call graph of applying the functions M, which maps the 

schema paths in Figure 4.2 to the regular XPath expression Qr, where the 

mapped location steps are in abbreviated syntax, e.g. bib rather than child::bib 

for readability and simplification. 
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Figure 5.2: A call graph of applying the functions M to map the schema paths 

in Figure 4.2 to the regular XPath expression Qr = 

/bib/article/((reference/article/)*)reference/article[self::article/year][not(false())]/parent::re

ference, where the mapped location steps are in abbreviated syntax, e.g. bib 

rather than child::bib for readability. 

5.2  Optimizing mapped (regular) XPath Expressions 

The mapped XPath query can be furthered optimized by eliminating redundant 
parts and reverse axes. For this optimization, we develop a set of rewriting 
rules. Different from the rewriting rules presented in [Olteanu et al. 2002], 
which eliminates reverse axes based-on the symmetry of the XPath axes, we 
eliminate reverse axes mainly based-on the symmetry of the schema paths. For 
example, [Olteanu et al. 2002], which offers a rule-based approach to eliminate 
reverse axis without considering schema information, eliminates the parent axis 
by generating a self axis. In comparison, our rules eliminate the parent axis 
without generating the self axis, as we have already considered the schema in-
formation when generating the schema paths. The reverse axes, which are re-
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maining after the elimination of redundant location steps, can be eliminated us-
ing the rule-set in [Olteanu et al. 2002]. 

Let a be an axis, n be a node-test, e be a pattern and q be a qualifier. The re-
writing rules, which eliminate reverse axes and redundant parts in the XPath 
expression mapped from a set of schema paths, are defined in Fig. 7. 

• e/attribute::n1/parent::n2[q] ≡ e[q][attribute::n1] 

• e/child::n1/parent::n2[q] ≡ e[q][child::n1] 

• e1/child::n1/e2/parent::n3[q] ≡ e1[q][child::n1/e2],  

where e2 contains only the axes FS and PS 

• e/attribute::n1[parent::n2[q]] ≡ e1[q]/attribute::n2  

• e1/child::n1[parent::n2[q]] ≡ e1[q]/child::n1 

• e1/child::n1/e2[parent::n3[q]] ≡ e1[q]/child::n1/e2,  

where e2 contains only the axes FS and PS 

• e1[attribute::n1/parent::n2[q]] ≡ e1[q][attribute::n1] 

• e1[child::n1/parent::n2[q]] ≡ e1[q][child::n1] 

• e1[child::n1/e2/parent::n3[q]] ≡ e1[q][child::n1/e2],  

where e2 contains only the axes FS and PS 

• e/self::n[q] ≡ e[q]   

• e[q][q] ≡ e[q]    

• e[q]/q ≡ e/q  

• e[true()] ≡ e    

• [not(false())] ≡ [true()]  

• [q or true()] ≡ [true()]  

• [q or false()] ≡ [q]  

• [q and true()] ≡ [q] 

• e*/parent::n ⊆ ancestor::n 

• e*/child::n ⊆ descendant::n  

Figure 5.3.  Rules for optimizing the queries mapped from schema paths 

Note that in Figure 5.3, e*/child::n is the pattern that is mapped by Mr[<S, a, lp, 
->] and descendant::n is the pattern that is mapped by M[<S, a, lp, ->], when 
a=‘child’. As shown in Proposition 5.1, although descendant::n retrieves a superset 
of the node set retrieved by e*/child::n, the entire XPath query, which is rewritten 
from the mapped XPath expression, returns the same node set for all possible 
XML documents when using either descendant::n or e*/child::n. 
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Example 5.2: The regular XPath expression Qr and the standard XPath expres-

sion Q’ in Example 5.1, which are mapped from the schema paths in Figure 4.2 

in Chapter 4, can be optimized further using the optimizing rules in Figure 5.3. 

Qr = /bib/article/((reference/article/)*)reference/article[self::article/year] 

  [not(false())]/parent::reference 

⇒ is optimized to 

 Qr = /bib/article/((reference/article/)*)reference/article[year] 

  

Q’ = /bib/article/descendant::reference/article[self::article/year] 

   [not(false())]/parent::reference 

⇒ is optimized to 

Q’ = /bib/article/descendant::reference/article[year] 
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Our schema-based XPath satisfiability tester evaluates an XPath query on an 

XML Schema definition, and computes a set of schema paths to the possible 

nodes specified by the XPath query when it is evaluated by a common XPath 

evaluator on instance XML documents of the schema. If an XPath query does 

not conform to the structure, semantics, data type and occurrence constraints 

given in an XML Schema definition, the schema paths for the XPath query are 

computed to the empty set of schema paths, and thus the XPath query is unsat-

isfiable according to the schema. 

If a non-empty set of schema paths is computed for an XPath query Q, we 

rewrite Q to Q’ based on the schema paths of Q, which integrate the structure 

and semantics constraints in the XML Schema definition. Q’ is equivalent to Q 

but contains more information than Q by substituting specific node tests for 

wildcards, by eliminating redundant parts, by eliminating reverse axes and by 

substituting non-recursive axes (e.g. child) for recursive axes (e.g. descendant) 

whenever possible, and thus can reveal more conflicting constraints. Our ap-

proach then checks whether or not the constraints in Q’ are consistent with each 

other, and filters the queries with conflicting constraints.  

If an XPath query is not detected as unsatisfiable, then the query may be 

satisfiable or may be unsatisfiable, since the satisfiability test for the XPath 

subset (see Definition 2.2) supported by our approach in the presence of the 

schemas (see Definition 2.1) supported by our approach is undecidable (see 

[Benedikt et al. 2005]).  

Definition 6.1 (Satisfiability of XPath queries): An XPath query Q is satisfi-

able according to an XML Schema definition XSD, if there exists an XML 

document D that is valid according to XSD, and the evaluation of Q on D re-

turns a non-empty result. Otherwise, Q is unsatisfiable according to XSD. 
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Figure 6.1: The framework of our satisfiability tester 

 

Figure 6.1 describes the framework of our satisfiability tester. One of the in-

puts of the satisfiability tester is an XPath query Q. We first use standard com-

piler techniques to analyze the lexical structure and syntax of the XPath query. 

The Lexical Analysis transforms the given XPath expression to a stream of to-

kens, which is the input of the Syntax Analysis. Based on a given XPath 

grammar, the Syntax Analysis generates the abstract syntax tree of the XPath 

query Q. Another input of our satisfiability tester is an XML Schema definition 

XSD, which is analyzed and transformed to a DOM tree by an XML Parser. 

Our XPath-XSchema evaluator evaluates Q in the terms of its abstract syntax 

tree on the DOM tree of XSD based on the data model of XML Schema, and 

computes a set of schema paths. If the set of schema paths is the empty set, 

then the XPath query is unsatisfiable with respect to the schema. If the set of 
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schema paths is non-empty, then the schema paths are mapped to an XPath ex-

pression using the mapping functions in Figure 5.1 in Chapter 5, and the 

mapped XPath expression is optimized using the equivalence rules in Figure 

5.3 in Chapter 5. Finally, we apply the rules of conflicting constraints given in 

Figure 6.22 in Section 6.3 in this chapter to reduce the mapped and optimized 

XPath expression. If the XPath expression is reduced to the empty expression 

⊥, then the given XPath query Q is unsatisfiable. Otherwise, Q is maybe satis-

fiable. 

6.2  Filtering XPath queries not conforming to schema 

constraints 

Proposition 6.1 (Unsatisfiable XPath queries): If the evaluation of an XPath 

query Q on a given XML Schema definition XSD by the XPath-XSchema 

evaluator generates the empty set of schema paths, then Q is unsatisfiable ac-

cording to XSD.  

Proof. The XPath-XSchema evaluator is constructed in such a way that the 

XPath-XSchema evaluator returns the empty set of schema paths, if the con-

straints given in Q and the constraints given in XSD exclude the constraints of 

the other, i.e. the navigational paths described by Q cannot be mapped to the 

corresponding navigational paths in XSD, or the values of attributes or ele-

ments given in Q do not conform to the type of values of elements or attributes 

specified in XSD, or the attributes and elements prohibited by XSD are specified 

by Q to appear in instance XML documents. Therefore, there does not exist a 

valid XML document according to XSD, where the application of Q returns a 

non-empty result. � 

If an XPath query is computed to a non-empty set of schema paths by our 

XPath-XSchema evaluator on an XML Schema definition, the XPath query is 

only maybe satisfiable, since the satisfiability test of XPath queries formulated 

in the supported subset of XPath is undecidable [Benedikt et al. 2005] and our 

satisfiability tester is incomplete. Our XPath-XSchema evaluator checks 

whether or not each location step in an XPath query Q conforms to the con-

straints given in the XML Schema definition, but our XPath-XSchema evalua-

tor does not check whether or not two or more location steps in Q contradict 
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each other. We present the approach to filtering XPath queries with contradic-

tory constraints from the queries themselves in Section 6.3. 

6.2.1  Performance analysis 

We have implemented a prototype of our approach in order to demonstrate the 

optimization potential for avoiding the evaluation of unsatisfiable XPath que-

ries. The performance analysis focuses on the detection of unsatisfiable XPath 

queries by our approach and the evaluation of these unsatisfiable queries by 

common XPath evaluators. We also study the overhead of evaluating satisfi-

able XPath queries by our approach, where we compare the time of evaluating 

the satisfiable queries by our approach with the time of evaluating unsatisfiable 

queries by our approach and with the time of evaluating these satisfiable que-

ries by common XPath evaluators, in order to prove the usability of our ap-

proach. 

The test system and used XML data sets are presented in Section 1.4 in 

Chapter 1. 

6.2.1.1  XPath queries 

We design three groups of unsatisfiable queries and two groups of satisfiable 

queries. The first group of unsatisfiable queries Q1-Q11 (see Table 6.1) is 

modified from some of the XPathMark benchmark queries (see [Franceschet 

2005]) to contain erroneous semantics and structures according to the schema 

benchmark.xsd (see the corresponding appendix); the second group of unsatisfi-

able queries Q12-Q26 (see Table 6.3) does not conform to value-types or occur-

rence constraints specified in benchmark.xsd. We correct the errors of semantics 

and structures in the first group of unsatisfiable queries Q1-Q11 and get a group 

of satisfiable queries Q1’-Q11’ (see Table 6.2); we modify the second group of 

unsatisfiable queries Q12-Q26 and obtain another group of satisfiable queries 

Q12’-Q26’, which conform to the value-types and occurrence constraints. The 

third group of unsatisfiable queries Q27-Q34 (see Table 6.5) is designed to con-

form to constraints given in benchmark.dtd, but the not functions in these que-

ries contain redundant parts. Although these queries are computed to a non-
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empty set of schema paths, the set of schema paths are reduced to empty after 

eliminating redundant schema paths (see Theorem 4.3 in Chapter 4). Further-

more, the queries in these groups are also designed to contain as many con-

structs of the XPath language as possible in order to test how the different con-

structs of the XPath language influence the processing performance. We 

present the average results of ten evaluations of these queries. 

Table 6.1: Queries with incorrect semantics or structures according to bench-
mark.xsd 

Unsatisfiable queries Reasons for unsatisfiability 

Q1 /site/closed_auctions/closed_auction/ 

 annotation/ description/parlist/text() 

parlist has no text node. 

Q2 /site/regions/∗/item[parent::america] item has no parent america. 

Q3 /site/open_auctions/open_auction 

 [bidder//title] 

bidder has no descendant title. 

Q4 /site/people/person[age or gender] person has neither child age 

nor child gender. 

Q5 //person[age or gender] person has neither child age 

nor child gender. 

Q6 //keyword[italic][bold] keyword has no child italic. 

Q7 /descendant-or-self::persons persons does not exist. 

Q8 //open_auction[bidder//title] bidder has no descendant title. 

Q9 //∗/person[age or gender] person has neither child age 

nor child gender. 

Q10 //keyword/ancestor-or-self::mail[@title] mail has no attribute title. 

Q11 //keyword/ancestor::listitem/type Listitem has no child type. 

 

Table 6.2: Queries with correct semantics and structures according to bench-
mark.xsd 

Satisfiable queries 

Q1’ /site/closed_auctions/closed_auction/annotation/descrition/parlist 

Q2’ /site/regions/∗/item[parent::namerica] 

Q3’ /site/open_auctions/open_auction[bidder] 

Q4’ /site/people/person 

Q5’ //person 
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Q6’ //keyword[bold] 

Q7’ /descendant-or-self::person 

Q8’ //open_auction[bidder] 

Q9’ //∗/person 

Q10’ //keyword/ancestor-or-self::mail 

Q11’ //keyword/ancestor::listitem 

 

Table 6.3: Queries not conforming to data-types or occurrence constraints in 

benchmark.xsd 

Unsatisfiable queries Reasons for unsatisfiability 

Q12 /site/people/person/race race is a prohibited element, i.e. 

maxOccurs = 0. 

Q13 //person/race race is a prohibited element 

Q14 /site[@owner= 'A'] owner is a prohibited attribute, i.e. use 

= ‘prohibited’. 

Q15 //site[@owner='A'] owner is a prohibited attribute 

Q16 /site/people/person/watches 

   /watch/@expression 

expression is a prohibited attribute. 

Q17 //watch/@expression expression is a prohibited attribute. 

Q18 //∗/@expression expression is a prohibited attribute. 

Q19 /site/people/person[creditcard= 

'1234 4567 890a 1234'] 

creditcard is of pattern  

\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}. 

Q20 //creditcard[self::node()= 

     '1234 7890 1234'] 

creditcard is of pattern  

\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}. 

Q21 //∗[creditcard=  

        '1234 456 7890 1234'] 

creditcard is of pattern  

\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}. 

Q22 //happiness[self::node()=11] happiness has maxInclusive = 10. 

Q23 /site/people/person/profile 

   [gender='M'] 

gender has enumeration male, female. 

Q24 //gender[self::node()='f'] gender has enumeration male, female. 

Q25 /site/catgraph/edge 

  [self::node()='s'] 

edge has no value. 

Q26 //edge[self::node=123.45] edge has no value. 
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Table 6.4: Queries conforming to data-types and occurrence constraints in 

benchmark.xsd 

Satisfiable queries 

Q12’ /site/people/person 

Q13’ //person 

Q14’ /site 

Q15’ //site 

Q16’ /site/people/person/watches/watch 

Q17’ //watch 

Q18’ //∗ 

Q19’ /site/people/person[creditcard= '1234 4567 8900 1234'] 

Q20’ //creditcard[self::node()='1234 7890 1234 7890'] 

Q21’ //∗[creditcard='1234 4567 7890 1234'] 

Q22’ //happiness[self::node()= 9] 

Q23’ /site/people/person/profile[gender='male'] 

Q24’ //gender[self::node()='female'] 

Q25’ /site/catgraph/edge 

Q26’ //edge 

 

Table 6.5: Queries with not functions computed to false according to bench-
mark.xsd 

Unsatisfiable queries Reasons for unsatisfiability 

Q27 /site/people/person/watches/watch 

[not(@open_auction)] 

(@open_auction) is redundant 

Q28 /∗/people/person[not(name)] (name) is redundant 

Q29 /site/∗/∗/annotation 

[not(author/@person)] 

(author/@person) is redundant 

Q30 /site[not( 

categories/category/description)] 

(categories/category/description) is re-

dundant 

Q31 //watch[not(@open_auction)] (@open_auction) is redundant 

Q32 //person[not(name)] (name) is redundant 

Q33 /site[not(descendant::description)] (descendant::description) is redundant 

Q34 //profile[(age)][not(business)] (business) is redundant 
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6.2.1.2  Filtering queries with incorrect semantics and structures 

Figure 6.2 presents the time of evaluating the queries Q1-Q11 on benchmark.xsd 

by our XPath-XSchema evaluator, when returning the empty set of schema 

paths. Our evaluator can evaluate XPath queries Q1-Q4 without recursive axes 

very fast, less than 0.003 seconds; evaluating queries with recursive location 

steps, i.e. Q5-Q11, is time-consuming because all descendant nodes of the con-

text node are visited when evaluating recursive location steps. Furthermore, 

the number of schema paths computed from each location step also signifi-

cantly impacts the processing performance of our evaluator. For example, the 

queries Q5-Q8 have a comparable processing time while each of the queries 

Q5-Q7 contains only one recursive location step but the query Q8 contains two 

recursive location steps. Only one schema path is computed when evaluating 

the part //open_auction[bidder of Q8, and the location step bidder has less descen-

dant nodes. The queries Q9-Q11 have a comparable evaluation time while Q9 

contains only one recursive location step but each of Q10 and Q11 contains two 

recursive location steps. The recursive location step //∗ in Q9 selects all the in-

stance element and text nodes, and thus a large number of schema paths are 

generated when evaluating the location step. 

Figure 6.3 and Figure 6.4 present the time of evaluating these queries using 

the Saxon and the Qizx evaluator respectively when the empty result is re-

turned. Figure 6.5 and Figure 6.6 present the speed-up factors achieved by our 

approach over the Saxon evaluator when evaluating Q1-Q11 and Q5-Q11 re-

spectively. Figure 6.7 and Figure 6.8 present the speed-up factors achieved by 

our approach over the Qizx evaluator when evaluating Q1-Q11 and Q5-Q11 re-

spectively. The experimental results show that our approach can check the sat-

isfiability of XPath queries effectively. Our approach is about 1400 times (and 

280 times respectively) faster on the average when evaluating the queries with-

out recursive axis, and 35 times (and 8 times respectively) faster on the aver-

age when evaluating the queries with recursive axes at 12 Megabytes in com-

parison with the evaluation of the unsatisfiable queries when using the Saxon 

evaluator (and the Qizx evaluator respectively). 
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Figure 6.2: Filtering Q1-Q11 by our approach 

 

Figure 6.3: Evaluating Q1-Q11 using the Saxon evaluator  
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Figure 6.4: Evaluating Q1-Q11 using Qizx evaluator 

 

Figure 6.5: Speedup by our approach over Saxon when evaluating Q1-Q11 
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Figure 6.6: Speedup by our approach over Saxon when evaluating Q5-Q11 

 

Figure 6.7: Speedup by our approach over Qizx when evaluating Q1-Q11 
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Figure 6.8: Speedup by our approach over Qizx when evaluating Q5-Q11 

6.2.1.3  Filtering queries not conforming to data-type or occurrence 

constraints 

Figure 6.9 presents the time of evaluating the XPath queries Q12-Q26 on bench-

mark.xsd by our XPath-XSchema evaluator, when it returns the empty set of 

schema paths. Figure 6.9 shows similar results for the influence of different 

XPath constructs on the processing performance. Figure 6.10 and Figure 6.11 

present the time of evaluating these queries using the Saxon and the Qizx 

evaluator respectively, when the empty result is returned. Figure 6.12 and 

Figure 6.13 present the speed-up factors achieved by our approach over the 

Saxon evaluator when evaluating Q12-Q26 and the queries with recursive loca-

tion steps among these queries respectively. Figure 6.14 and Figure 6.15 pre-

sent the speed-up factors achieved by our approach over the Qizx evaluator 

when evaluating Q12-Q26 and the ones with recursive location steps of these 

queries respectively. Likewise, the experimental results show that our ap-
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proach can check the satisfiability of XPath queries effectively. Our approach 

is about 1400 times (and 284 times respectively) faster on the average when 

evaluating the queries without recursive axis, and 34 times (and 10 times re-

spectively) faster on the average when evaluating the queries with recursive 

axes than Saxon (and Qizx respectively) at 12 Megabytes in comparison with 

the evaluation of the unsatisfiable queries. 

 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

T
im

e
 i

n
 S

e
c
o

n
d

s

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26

Query

 
Figure 6.9: Filtering Q12-Q26 by our approach 
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Figure 6.10: Evaluating Q12-Q26 using the Saxon evaluator 

 
Figure 6.11: Evaluating Q12-Q26 using the Qizx evaluator 
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Figure 6.12: Speedup by our approach over Saxon when evaluating Q12-Q26 

 

Figure 6.13: Speedup by our approach over Saxon when evaluating the que-

ries with recursive location steps of Q12-Q26 
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Figure 6.14: Speedup by our approach over Qizx when evaluating Q12-Q26 

 

Figure 6.15: Speedup by our approach over Qizx when evaluating the que-

ries with recursive location steps of Q12-Q26 
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6.2.1.4  Filtering queries with redundant schema paths 

Figure 6.16 presents the time of filtering queries Q27-Q34 by our approach. 

The time consists of two parts: the first part is the time of computing schema 

paths; the second part is the time of reducing the schema paths to empty by 

eliminating redundant schema paths. The times used to check redundant 

schema paths are so little that it typically cannot be captured, i.e. are below 1 

millisecond. Figure 6.16 once again shows similar results for the influence of 

different XPath constructs on the processing performance. Therefore, it is easy 

to see that our approach can filter the unsatisfiable queries, from which non-

empty schema paths are computed, more efficiently and can achieve similar 

speedup factors as shown above. 
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Figure 6.16: Filtering Q27-Q34 by our approach 

6.2.1.5  Measuring the overhead of evaluating satisfiable queries 

Figure 6.17 presents the time of evaluating the satisfiable XPath queries Q1’-

Q11’ on benchmark.xsd by our XPath-XSchema evaluator, when it returns an 



96      Chapter 6   XPath Satisfiability Tester 

 

 

non-empty set of schema paths, and the time of evaluating the unsatisfiable 

XPath queries Q1-Q11 by our evaluator for ease of comparison. Figure 6.18 

presents the time of evaluating the satisfiable XPath queries Q12’-Q26’ on 

benchmark.xsd by our XPath-XSchema evaluator, when it returns a non-empty 

set of schema paths, and the time of evaluating the unsatisfiable XPath queries 

Q12-Q26 by our evaluator. The two figures show that the overhead of evaluat-

ing satisfiable XPath queries is very close to the overhead of evaluating unsat-

isfiable XPath queries. Furthermore, the results also show that the overhead of 

evaluating satisfiable queries is generally less than the overhead of the corre-

sponding unsatisfiable queries. Compared with the unsatisfiable queries, the 

corresponding satisfiable queries contain less location steps since the part lead-

ing to unsatisfiability in the unsatisfiable queries is removed. Figure 6.19 and 

Figure 6.20 present the ratio of the time used by our approach over the time 

used by Saxon and Qizx respectively for the evaluation of Q1’-Q11’. The results 

show that the ratio of the time of evaluating Q1’-Q4’ without recursive location 

steps by our approach over the time used by Saxon is on average 0.06% (and 

over the time used by Qizx is 0.3% respectively); that the ratio of the time of 

evaluating Q5’-Q11’ with recursive location steps by our approach over the time 

used by Saxon is on average 2.7% (and over the time used by Qizx is 12% re-

spectively), when the size of data is 12 Megabytes. 

However, when the size of XML documents is very small (<100 Kilobytes), 

the overhead of evaluating satisfiable XPath queries by our approach is quite 

high compared to the time used by the common XPath evaluators. When the 

size of XML data is 100 Kilobytes, the ratio of the time of evaluating the 

XPath queries Q1’-Q4’ without recursive axes by our approach over Saxon (and 

Qizx) is on average 2% (and 18% respectively); the ratio of the time of evalu-

ating XPath queries Q5’-Q11’ with recursive axes by our approach over the time 

by Saxon (and by Qizx respectively) is on average 140% (and 700% respec-

tively); In the worst case, the ratio of the time of evaluating Q1’-Q11’ by our 

approach over the time used by Saxon is 30% when the size of XML data is 1 

Megabytes, 7% when the size of data is 4 Megabytes, and 4% when the size of 

data is 6 Megabytes. In the worst case, the ratio of the time of evaluating Q1’-

Q11’ by our approach over the time used by Qizx is 100% when the size of 

XML data is 1 Megabytes, 33% when the size of data is 4 Megabytes, 22% 

when the size of data is 6.2 Megabytes. Although the ratio of the time of 

evaluating satisfiable XPath queries by our approach over common XPath 

evaluators is high for very small instance XML documents, the absolute time  
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Figure 6.17: Evaluating satisfiable queries Q1’-Q11’ and unsatisfiable queries 

Q1-Q11 by our evaluator 
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Figure 6.18: Evaluating satisfiable queries Q12’-Q26’ and unsatisfiable que-

ries Q12-Q26 by our evaluator 
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Figure 6.19: Ratio of time by our approach over Saxon when evaluating Q1’-
Q11’ 

 

Figure 6.20: Ratio of time by our approach over Qizx when evaluating Q1’-
Q11’ 
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used by our approach is very small, i.e. 0.08 seconds in the worst case when 

evaluating Q1’-Q11’. 

6.3  Filtering XPath queries with conflicting constraints 

If an XPath query is computed to a non-empty set of schema paths by our 

XPath-XSchema evaluator on an XML Schema definition, the XPath query is 

only maybe satisfiable, since the satisfiability test of XPath queries formulated 

in the supported subset of XPath is undecidable [Benedikt et al. 2005] and our 

evaluator does not check whether or not two or more location steps in Q con-

tradict each other. For example, if Q = a[not(b)]/∗ is computed to a non-empty 

set of schema paths on a given schema, then Q is not detected as unsatisfiable. 

However, if the non-empty set of schema paths is mapped to the XPath expres-

sion a[not(b)]/b, Q is unsatisfiable in that not(b) is contrary to b. We say that such 

queries contain hidden conflicting constraints. In this section, we present the 

approach to filtering queries with conflicting constraints.  
If an XPath query is computed to a non-empty set of schema paths, we re-

write the query by mapping the schema paths to an XPath expression using the 
approach presented in Chapter 5. Then we apply the rules in Figure 6.22 to the 
XPath expression rewritten from the schema paths of the query to reduce the 

XPath expression. If an query is reduced to the empty expression ⊥, the query 
contains conflicting constraints and is unstatisfiable. The rewritten queries can 
make hidden conflicting constraints visible by excluding redundant parts and 
wildcards, and by eliminating reverse axes and recursive axes. Therefore, al-
though the rule set in Figure 6.22 can be directly applied to given queries, the 
application of the rules to the rewritten queries can filter more unsatisfiable que-
ries. 

Example 6.1: Figure 6.21 demonstrates the process of filtering an XPath query 

//europe/∗[parent::∗[not(item)]] with hidden conflicting constraints according to 

the schema benchmark.xsd (see the corresponding appendix). 
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//europe/∗[parent::∗[not(item)]]

evaluated over benchmark.xsd

non-empty schema paths

mapped using the functions in Figure 5.5

/site/regions/europe/item[parent::europe[not(item)]

optimized by the rule in Figure 5.3: 

e1/child::n1[parent::n2[q]] ≡ e1[q]/child::n1

/site/regions/europe[not(item)]/item

reduced by the rule in Figure 6.20:

e1[not(e2)]/e2 = ⊥

⊥

/site/regions/⊥

reduced by the rule in Figure 6.20:

e/⊥ = ⊥

//europe/∗[parent::∗[not(item)]]

evaluated over benchmark.xsd

non-empty schema paths

mapped using the functions in Figure 5.5

/site/regions/europe/item[parent::europe[not(item)]

optimized by the rule in Figure 5.3: 

e1/child::n1[parent::n2[q]] ≡ e1[q]/child::n1

/site/regions/europe[not(item)]/item

reduced by the rule in Figure 6.20:

e1[not(e2)]/e2 = ⊥

⊥

/site/regions/⊥

reduced by the rule in Figure 6.20:

e/⊥ = ⊥

 

Figure 6.21: Example of filtering XPath queries with hidden conflicting con-

straints 

Let e (e1, e2… respectively) be an XPath expression. If a sub-expression of 

an XPath query is reduced to the empty expression ⊥, the XPath query is re-

duced to ⊥. 

• ⊥ | ⊥ = ⊥   

• e/⊥ = ⊥   

• ⊥/e = ⊥   

• e[⊥] = ⊥     

• ⊥[e] =  ⊥ 

• ⊥ and e =  ⊥ 

• ⊥ or ⊥ = ⊥  
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• e1[not(e2)]/e2=⊥  

• e1[not(e2)][e2]=⊥  

• e1[not(e2)][e2/e3]=⊥    

• e[@t=c1][@t=c2]=⊥ if c1≠c2 

• e[@t<c1][@t=c2]=⊥ if c1≤c2    

• e[@t<c1][@t>c2]=⊥ if c1≤c2 

• e[@t<c1][@t≥c2]=⊥ if c1≤c2   

• e[@t≤c1][@t=c2]=⊥ if c1<c2 

• e[@t≤c1][@t>c2]=⊥ if c1≤c2   

• e[@t≤c1][@t≥c2]=⊥ if c1<c2 

Figure 6.22: Rules for filtering queries with conflicting constraints 

6.3.1  Performance analysis  

Section 6.1.1 presents a comprehensive performance analysis on detecting the 

unsatisfiable XPath queries that do not conform to the constraints in an XML 

Schema definition, i.e. the schema paths of the queries are computed to the 

empty set, and experimental results show that our approach can achieve a 

speedup up to several orders of magnitude over common XPath evaluators 

when detecting such unsatisfiable XPath queries. The performance analysis in 

this section focuses on the unsatisfiable XPath queries, which conform to the 

constraints imposed by an XML Schema definition, but contain hidden con-

flicting constraints. Our approach first computes the schema paths of the que-

ries by evaluating the queries on a given XML Schema definition (see Chapter 

4), then rewrites these queries based on the schema paths (see Chapter 5) in 

order to make hidden conflicting constraints visible, and finally applies the 

rules in Figure 6.22 on the rewritten queries to filter the queries with conflict-

ing constraints. We study the detection of the unsatisfiable XPath queries by 

our approach and the evaluation of these unsatisfiable queries by common 

XPath evaluators.  

The test system and used XML data sets are presented in Section 1.4 in 

Chapter 1. 
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6.3.1.1  XPath queries 

We design a group of queries Q35-Q49 (see Table 6.6), which conform to the 

semantics, structure, data-type and occurrence constraints given in bench-

mark.xsd (see the corresponding appendix), but contain hidden conflicting con-

straints. Thus, the schema paths of these queries are computed to a non-empty 

set. Queries Q35’-Q49’ in Table 6.6 are the rewriting of queries Q35-Q49 based 

on their schema paths. The rewritten queries disclose the hidden conflicting 

constraints. Furthermore, the queries Q35-Q49 are also designed to contain as 

many constructs of the XPath language as possible in order to test how the dif-

ferent constructs of the XPath language influence the processing performance. 

We present the average results of ten evaluations of these queries. 

Table 6.6: Queries Q35-Q49 and rewritten queries Q35’-Q49’ according to 
benchmark.xsd 

Original and rewritten Queries 

Q35 /site/catgraph[not(edge)]/∗ 

Q35’ /site/catgraph[not(edge)]/edge 

Q36 /site/catgraph[not(edge)]/self::node()/∗ 

Q36’ /site/catgraph[not(edge)]/edge 

Q37 /site/regions/europe[(@area or ∗/name) and not(item)] 

Q37’ /site/regions/europe[item/name][not(item)] 

Q38 /site/regions/europe/∗[parent::∗[not(item)]] 

Q38’ /site/regions/europe[not(item)]/item 

Q39 //europe/∗[parent::∗[not(item)]] 

Q39’ /site/regions/europe[not(item)]/item 

Q40 /site/closed_auctions/closed_auction/buyer[@∗][not(@person)] 

Q40’ /site/closed_auctions/closed_auction/buyer[@person][not(@person)] 

Q41 /site/closed_auctions/closed_auction/buyer[@∗]/self::∗[not(@person)] 

Q41’ /site/closed_auctions/closed_auction/buyer[@person][not(@person)] 

Q42 //buyer[@∗][not(@person)] 

Q42’ /site/closed_auctions/closed_auction/buyer[@person][not(@person)] 

Q43 /site/people/person/profile[@∗>50][@income<10] 

Q43’ /site/people/person/profile[@income>50][@income<10] 

Q44 /site/people/person/profile[@∗>50]/interest/parent::∗[@income<10] 

Q44’ /site/people/person/profile[@income>50][@income<10][interest] 
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Q45 /site/people/person/profile[@∗>50][@∗<99][@income<10] 

Q45’ /site/people/person/profile[@income>50][@income<99][@income<10] 

Q46 /site/people/person/profile[@∗>50][@∗<99][@∗>30][@income<10] 

Q46’ /site/people/person/profile[@income>50][@income<99] 

  [@income>30][@income<10] 

Q47 /site/people/person/profile[@∗>50][@∗<99][@∗>30][@∗>40] 

  [@income<10] 

Q47’ /site/people/person/profile[@income>50][@income<99] 

  [@income>30][@income>40][@income<10] 

Q48 //profile[@∗>50][@income<10] 

Q48’ /site/people/person/profile[@income>50][@income<10] 

Q49 //profile[@∗>50][@∗<99][@∗>30][@income<10] 

Q49’ /site/people/person/profile[@income>50][@income<99] 

  [@income>30][@income<10] 

6.3.1.2  Filtering queries with conflicting constraints 

Figure 6.23 presents the time of filtering the unsatisfiable queries Q35-Q49 by 

our approach, consisting of three times: the time of computation of schema 

paths, i.e. evaluating Q35-Q49 on benchmark.xsd; the time of rewriting of Q35-

Q49 based on the schema paths, i.e. mapping schema paths to an XPath expres-

sion and optimizing the XPath expression by the rules in Figure 5.3; the time 

of filtering XPath expressions with conflicting constraints by the rules in 

Figure 6.22. The overhead of filtering these unsatisfiable queries is mainly 

evaluating them on schema. Among 15 queries, Q39, Q42, Q48 and Q48 are 

queries with recursive axes, which we call recursive queries; others do not con-

tain recursive axes, which we call non-recursive queries. Non-recursive queries 

can be evaluated very fast and is on average 7.2 faster than the recursive que-

ries. The overhead of rewriting and rule application is quite low, and the time 

of rewriting and rule application for some queries even cannot be captured, i.e. 

are less than 1 millisecond. The time of rewriting and rule application is 32.6% 

of the time of computing the schema paths for the non-recursive queries, the 

time ratio is 2.6% for the recursive queries, and the time ratio is 11% for all the 

queries. 

Figure 6.24 and Figure 6.25 present the speedup achieved by our approach 

over Saxon and Qizx when the evaluation of Q45-Q49 returns the empty result. 
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The results show that our approach can detect unsatisfiable queries efficiently. 

At a data size of 6 Megabytes, our approach is 199 times (and 39.6 times) 

faster on average when evaluating the non-recursive queries, and 35.6 times 

(and 10 times) faster on average when evaluating the recursive queries, than 

Saxon (and Qizx). At a data size of 12 Megabytes, our approach is 392 times 

(and 80 times) faster on average when evaluating the non-recursive queries, 

and 69.5 times (and 20 times) faster on average when evaluating the recursive 

queries, than Saxon (and Qizx). 
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Figure 6.23: Filtering queries Q35-Q49 by our approach 
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Figure 6.24: Speedup by our approach over Saxon when evaluating Q35-Q49 

 

Figure 6.25: Speedup by our approach over Qizx when evaluating Q35-Q49 
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Chapter 7   XPath Containment under XML 

Schema Definitions 
 

 

 

The schema paths of an XPath query are a re-representation of the query by in-

tegrating the constraints in the XML Schema definition. Therefore, we can 

study the containment of XPath queries under the constraints of schema in 

terms of the schema paths of XPath queries. 

XPath containment in the presence of schemas has a high complexity. For 

example, the containment of XPath under schema constraints, even for XPath 

queries with only child axis and predicates (denoted as XPath
{/, [ ]}

) is coNP-

complete [Neven and Schwentick 2003][Wood 2001]. The reason for the high 

complexity comes from the fact that inferring even some simple constraints 

from some schemas seems to be intractable [Wood 2001][Wood 2003]. Our 

approach can infer the constraints that impact the containment test from those 

schemas, where each element is declared at most once in a content model. 

However, our approach cannot infer some constraints from those schemas, 

where some elements are declared more than once in a content model. Infer-

ring some simple constraints from such schemas are turned out to be intracta-

ble [Wood 2001]. 

Furthermore, our approach can support the reverse axes and the axes de-

pending on the document order. The complexity and decidability of XPath 

containment, when these axes are allowed, are still unknown. Therefore, we 

present a fast but incomplete containment tester for XPath in the presence of 

XML Schema definitions. Given two queries Q1 and Q2, our tester returns that 

Q1 contains Q2, or Q1 may not contain Q2.  

In order to check if the query Q1 contains the query Q2, we first use the 

rules in [Olteanu et al. 2002] to eliminate the reverse axes in these queries, 

then we evaluate them on the given XML Schema definition and get two sets 

of schema paths. Afterwards, we normalize the schema paths, and study XPath 

containment in terms of the normalized schema paths of XPath queries. 
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7.1  Problem studied 

Let Q be an XPath query. We denote the result of evaluating Q over an XML 

document t and context node k∈t by Q(t, k); we write |Q| for the length of Q and 

Q[i] for the i-th location step in Q. 

Definition 7.1 (Containment of XPath queries): Let Q and Q’ be two XPath 

queries.  For any XML document t and any context node k∈t, if Q’(t, k) is a sub-

set of Q(t, k), i.e. Q(t, k)⊇Q’(t, k), then Q contains Q’, denoted by Q’⊇Q. Other-

wise, Q does not contain Q’, denoted by Q !⊇ Q’. 

According to the semantics of XPath, we have the following Theorem 7.1. 

Theorem 7.1: Let Q and Q’ be two XPath queries, and Q’=Q’1/Q’2/Q’3/…/Q’|Q|.  

Q⊇Q’, if  Q[1](t, k)⊇Q’1(t, k) ∧ Q[2](t, k)⊇Q’2(t, k) ∧ … ∧ Q[|Q|](t, k)⊇Q’|Q|(t, k). 

According to Theorem 7.1, we get the conclusion that Q⊇Q’ if there is a cor-

responding part Q’i in Q’ for the location step Q[i] in Q such that Q[i]⊇Q’i. There-

fore, we have the following Proposition 7.1. 

Proposition 7.1: Let Q and Q’ be XPath expressions, and Q’=Q’1/Q’2/Q’3/…/Q’|Q|.  

Q⊇Q’, if  Q[1]⊇Q’1 ∧ Q[2]⊇Q’2 ∧ … ∧ Q[|Q|]⊇Q’|Q|. 

Example 1.1: Figure 7.1 gives several examples of containment of queries, 

and indicates the corresponding containment part Q’i in Q’ for the location step 

Q[i] in Q marked by the arrow from Q[i] to the last location step of Q’i. Note that 

Q’i represents one or more location steps of Q’. In this figure, XPath queries are 

represented as a graph, where vertices indicate the node test, the vertical single 

lines indicate the axis child, the horizontal single line indicate the following-

sibling (FS) axis, double lines indicate the axis descendant, and dotted lines 

indicate predicates. 
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Figure 7.1: : Queries Qx and Qx’, where Qx ⊇⊇⊇⊇ Qx’. The corresponding contain-
ment part Qx’i in Qx’ for each location step Qx[i] in Qx is marked by an arrow 

from Qx[i] to the last location step of Qx’i.  
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Therefore, the basic step of the approach to checking if an XPath query Q 

contains another XPath query Q’ is to find the corresponding containment part 

of the Q’ for each location step in Q. Furthermore, while a query Q may not 

contain a query Q’ in general, Q may contain Q’ when more constraints are 

given. For example, the query Q=/site/categories/category does not contain the 

query Q’=/site/categories/∗. But Q contains Q’ with respect to the schema bench-

mark.xsd (see the corresponding appendix). The schema paths (see Chapter 4) 

of an XPath query are a re-representation of the XPath query by integrating 

constraints in the schema. Although schema paths can be easily mapped to an 

XPath expression, the mapped XPath expression cannot preserve all the con-

straints integrated in the schema paths. Therefore, we study the containment of 

XPath queries in terms of the schema paths of queries, i.e. we study how to 

find a corresponding schema path segment of the second schema path for each 

schema path record in the first schema path such that there is a certain con-

tainment relation between them. 

7.2  Normalization of schema paths 

Normalization of schema paths includes eliminating redundant schema paths, 

shifting predicate schema paths backwards and factoring out disjunction inside 

a schema path in order to test XPath containment with respect to schemas, 

which we present in Section 7.3. 

7.2.1  Filtering redundant schema paths of predicates 

Filtering redundant schema paths of predicates is already presented in Section 

4.1.1.4. We here want to highlight the role of filtering redundant schema paths 

in XPath containment. As well as eliminating unnecessary parts of a query and 

filtering more unsatisfiable queries, the elimination of redundant schema paths 

can also help to detect more containment cases. For example, let Q1=b[c/d] and 

Q2=b, then Q1 !⊇ Q2 in general. However, if a constraint specifies whenever b 

occurs c must occur and whenever c occurs d must occur, then the part [c/d] in 

Q1 is redundant and can be eliminated. After eliminating the redundant part, 
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Q1 is equal to b semantically, indicated as Q1≡b, and thus it is easy to see 
Q1⊇Q2 under this constraint. Therefore, filtering redundant schema paths is 

also important for the containment test. 

7.2.2  Shifting schema paths of predicates backwards. 

If Q1=a/b[c] and Q2=a[b/c]/b, then Q1 !⊇ Q2. However, if a schema imposes that 

b occurs at most once, then Q2≡a/b[c], and thus it is easy to see that Q1⊇Q2 un-

der the schema. Furthermore, a location step with self axis also needs to be 

eliminated in order to simplify the containment test. For example, let 

Q3=a/b/self::b[c] and Q4=a/b[c]. While Q3≡Q4, deciding Q1⊇Q4 is more easier 

than deciding Q1⊇Q3. Therefore, we need to shift the schema paths of predi-

cates backwards and eliminate self axes wherever possible.  

In order to shift schema paths and eliminate the schema path records with 

self axis, we need to factor out the disjunction relation in a schema path. There 

are two kinds of disjunctions in a schema path. When a predicate is [q1 or q2], 

the two sets of schema paths computed from q1 and q2 respectively have the 

disjunction relation, and the schema paths in a schema path set of a predicate q 

has the disjunction relation.  

In order to factor out disjunctions, we reshape schema path records by using 

the newly introduced binary operators ⋅ and | the operands of which are schema 

paths. These operators ⋅ and | are defined by the following rules: 

• <XP, S, a, z, lp, {L1, L2, …, Ln}> :=  <XP, S, a, z, lp,  (L1⋅L2⋅ … ⋅Ln)> 
• L={(< ‘or’, {L1, L2}>)} := (L1 | L2) 

• L={(< ‘and’, {L1, L2}>)} := (L1 ⋅ L2) 
• L={p1, p2, …, pn} := (p1 | p2 | … | pn), 

 

We use the transformation rule, e.g. (a | b)⋅c = (a⋅c) | (b⋅c), to factor out the 
disjunction operator, and get a new schema path record, i.e. 

<XP, S, a, z, lp,  (p1,1⋅ … ⋅p1,n1) | (p2,1⋅ … ⋅p2,n2) |…| (pm,1⋅ … ⋅pm,nm
)> 

Then we further translate | outside a schema path record, and get 

<XP, S, a, z, lp,  (p1,1⋅ … ⋅p1,n1)> | <XP, S, a, z, lp,  (p2,1⋅ … ⋅p2,n2)> | …| <XP, S, a, z, 

lp,  (p1,m⋅ … ⋅pm,nm
)>  
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After each schema path record is transformed to this form, we get a schema 

path with the form e.g. p=(e1, (e2|e3)). We once again use the transformation 

rule (a | b)⋅c = (a⋅c) | (b⋅c) to factor out the disjunction inside a schema path, e.g. 

L={p}={(e1, (e2|e3))} is transformed to L={p1, p2}={(e1, e2), (e1, e3)}, after factor-

ing out the disjunction inside p. 

After factoring out inner disjunction relations, we get a new set of schema 

paths, where each schema path record consists of such record as e=<XP, S, a, z, 

lp, {{(p1)}, {(p2)},…, {(pm)}}>. In this record, each set in the sets of schema paths 

of predicates contains only one schema path. This record can be mapped to a 

location step with several predicates, each of which is an XPath expression 

without disjunction, e.g. a[b][c/d]…[x/y/z]. We call such schema paths disjunc-

tion-free schema paths. For readability and simplification of representation, we 

now represent a schema path record of disjunction-free schema paths as e=<XP, 

S, a, z, lp, L>=<XP, S, a, z, lp, {p1, p2,…, pm}>. 

When a schema path record e has e.a=‘self’, then the schema path record is 

computed from a location step with self axis. e.S and e.z are the same as the S 

field and z field in the record before it, and e.lp=∅, according to the semantics 

of the XPath-XSchema evaluator. Therefore, we have the following two theo-

rems about eliminating the schema path records with a=‘self’. 

Theorem 7.2: Let p be a disjunction-free schema path. Let p[i]=<XPi, Si, ai, zi, lpi, 
Li> and p[i+1]=<XPi+1, Si+1, ai+1, zi+1, lpi+1, Li+1>. If ai+1 = ‘self’, then p = (p[1], p[2], …, 

p[i-1], p[i], p[i+2], p[i+3], …, p[|p|]) and p[i]=<XPi, Si, ai, Zi, lpi, Li ∪ Li+1>. 

Theorem 7.3: Let p be a disjunction-free schema path. Let p[i]=<XPi, Si, ai, zi, lpi, 

Li>. If ∃q∈Li: q[1].a=‘self’, then p[i]=<XPi, Si, ai, zi, lpi, (Li-{q}) ∪ q[1].L ∪ {(q[2], …, 
q[|q|])}. 

Theorem 7.2 integrates a schema path record e with e.a=‘self’ into the 

schema path record before it. It is comparable to the elimination of location 

steps with self axis, e.g. Q1 = a[b]/self::a[c] = a[b][c]. Figure 7.2 demonstrates the 

use of Theorem 7.2 with Q1. Theorem 7.3 integrates a schema path record e 

with e.a=‘self’ in a schema path of a predicate into the schema path record that 

is qualified by the schema path of the predicate. It is comparable to the elimi-

nation of location steps with self axis in a predicate, e.g. Q2 = a[b][self::a[c]/d] = 

a[b][c][d]. Figure 7.3 demonstrates the use of Theorem 7.3 with Q2. 
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a[b]/self::a[c] = a[b][c]

p[i] p[i+1]

ai+1
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p[i]

a[b]/self::a[c] = a[b][c]

p[i] p[i+1]
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Li+1Li

Li ∪∪∪∪ Li+1

p[i]  
Figure 7.2: Theorem 7.2 is comparable to the elimination of location steps with self 

axis in an XPath query  

a[b][self::a[c]/d] = a[b][c][d]

q[1].a
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Li
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q q[1].L
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Figure 7.3: Theorem 7.3 is comparable to the elimination of location steps with self 

axis in predicates of an XPath query 

In order to shift schema paths of predicates backwards, we need the concept 

of the defining sequence that is given in Definition 4.2 in Chapter 4, and some 

new concepts given in the following definitions. 

Definition 7.2 (nodes of declaring an element that can occur at most once): 

Let x be a defining sequence of an instance schema node N. If the element de-

clared by N can occur at most once as a child of the element declared by x[1], 

then N is a schema node of declaring an element that can occur at most once.  

Definition 7.3 (nodes of declaring an element that can occur more than 

once): Let x be a defining sequence of an instance schema node N. If the ele-
ment declared by N can occur more than once as a child of the element de-

clared by x[1], then N is a schema node of declaring an element that can occur 

more than once. 

Theorem 7.4: Let x be a defining sequence of an instance schema node N of 

type iElement. If ∀i∈{2, …, |x|}: (x[i]@<maxOccurs>=⊥ ∨ attribute(x[i], maxOc-
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curs)=1), then N is a node of declaring an element that can occur at most once, 

denoted by maxOccurs(element(N))=1. If ∃i∈{2, …, |x|}: attribute(x[i], maxOccurs)>1, 
then N is a node of declaring an element that can occur more than once, de-

noted by maxOccurs(element(N))>1. 

In Theorem 7.4, if N declares that an element can occur at most one time, 

then each node M (except the first one) in x does not carry the attribute maxOc-

curs, i.e. M@<maxOccures>=⊥ or carries the attribute maxOccurs with value 1, 

i.e. attribute(M, maxOccurs)=1; if N declares that an element can occur more than 

one time, then at least one node M (except the first one) in x carries the attrib-

ute maxOccurs with value greater than 1, i.e. attribute(M, maxOccurs)>1. 

Theorem 7.5 below describes how to shift predicate schema paths back-

wards. 

Theorem 7.5: Let p be a disjunction-free schema path. Let p[i]=<XPi, Si, ai, Zi, lpi, 

Li> and p[i+1]=<XPi+1, Si+1, ai+1, Zi+1, lpi+1, Li+1>. If ∃q∈Li: S=Si+1 ∧ S=q[1].S ∧ maxOc-

curs(element(S(1)[|S(1)|]))=1, then Li = Li - {q} and Li+1 = Li+1 ∪ q[1].L ∪ {(q[2], …, 
q[|q|])}. 

Theorem 7.5 is comparable to shift a predicate in an XPath expression 

backwards, e.g. Q = a[b[c]/d][e]/b[f] = a[e]/b[c][d][f] if b can occur at most one time. 

Figure 7.4 presents the application of Theorem 7.5 to Q. 

a[b[c]/d][e]/b[f] = a[e]/b[f][c][d]

p[i] p[i+1]

Li

p[i+1]

q
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{(q[2],…,q[|q|])}

a[b[c]/d][e]/b[f] = a[e]/b[f][c][d]

p[i] p[i+1]

Li

p[i+1]

q

p[i]

Li - q
Li+1 Li+1

q[1].L

{(q[2],…,q[|q|])}

 
Figure 7.4: Theorem 7.5 is comparable to shift a predicate backwards in an 

XPath query a[b[c]/d][e]/b[f], where b can occur at most once 

Complexity Analysis: In order to eliminate self axis and shift schema paths 

backwards, each schema path record is checked at most once. Therefore, 

eliminating self axis and shifting predicate schema paths backwards are linear 
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to the number of records of a schema path. However, factoring out disjunction 

is exponential in the number of records of a schema path. 

7.2.3  Combining schema paths of predicates 

Let Q1=a[b[c][d]] and Q2=a[b/c][b/d], then Q1 !⊇ Q2. However, if a schema de-

fines that b can occur at most once, D2 can be rewritten to a[b[c][d]], and thus 

Q1⊇Q2 with respect to the schema. Therefore, we need to integrate predicates 

whenever possible in order to test the containment of queries. 

Theorem 7.6: Let L be the disjunction-free paths of predicates; p, q ∈L and 

p≠q. If p[1].S=q[1].S ∧ maxOccurs(element(S(1)[|S(1)|]))=1, then p[1].L = p[1].L ∪ 

q[1].L ∪ {(q[2], q[3],…, q[|q|])} and L=L - {q}. 

Theorem 7.6 is comparable to the combination of predicates in an XPath 

expression, e.g. Q = a[b[c]/d][b[e]/f] = a[b[c][e][f]/d] if b can occur at most once. 

Figure 7.5 demonstrates the application of Theorem 7.6 to Q. 

a[b[c]/d][b[e]/f] = a[b[c][e][f]/d]

p[1].L

p[i]

p[1].L

L

p[i]

q

{(q[2],…,q[|q|])}

L - {q}

p q[1].L

a[b[c]/d][b[e]/f] = a[b[c][e][f]/d]

p[1].L

p[i]

p[1].L

L

p[i]

q

{(q[2],…,q[|q|])}

L - {q}

p q[1].L

 
Figure 7.5: Theorem 7.6 is comparable to the combination of predicates in an 

XPath query a[b[c]/d][b[e]/f], where b can occur at most once 

Complexity Analysis: In order to combine the schema paths of predicates, 

each schema path record is checked at most once. Therefore, the combination 

of schema paths of predicates is linear to the number of records of a schema 

path. 
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Now, we have a set of normalized disjunction-free schema paths, which are 

formally defined as follows. 

Definition 4 (normalized disjunction-free schema paths): a normalized dis-

junction–free schema path is a sequence of schema path records e=<XP, S, a, z, 
lp, L> or e=<self::node() op C>, where L is a set of normalized disjunction-free 

schema paths, and e.a≠‘self’ ∧ ∀q∈L: q is not redundant ∧ q[|q|] is not redundant 
∧ ∀q1, q2∈L: q1≠q2 ∧ (q1[1].S≠q2[1].S ∨ (q1[1].S=q2[1].S ∧ maxOc-

curs(element(S(1)[|S(1)|]))> 1 ∧  S=q1[1].S)). 

7.3  Containment of schema paths 

The schema paths of an XPath query are a re-representation of the query by in-

tegrating the constraints given in an XML Schema definition, and thus we can 

study the containment of XPath queries under the constraints of the schema in 

terms of the schema paths of XPath queries. Note that from now on all the 

schema paths mentioned are the normalized disjunction-free schema paths. 

7.3.1  Re-presentation of schema paths. 

Since some contents of a schema path record do not contribute the containment 

test and the current representation of schema paths is not efficient for discus-

sion of the containment test either, we re-represent the normalized schema 

paths using a notation similar to the XPath language according to the following 

rules. 

set of schema paths  L := L[1] | L[2] | … | L[|L|] 

schema path     p := p[1]/p[2]/…/p[|p|] 

schema paths of predicates 

[L] = [L[1]⋅L[2]⋅… ⋅L[|L|]] = [L[1]] [L[2]] … [L[|L|]]  

schema path record  

<XP, S, z, a, -, -> := aN  

<XP, S, z, a, lp, -> := aN* 

<XP, S, z, a, -, L> := aN[L] 
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<XP, S, z, a, lp, L> := aN*[L],  

where N = S(1)[|S(1)|]. 

The two fields XP and z in a schema path record do not contribute to the 

containment test, and are left out. N is the most important schema node for the 

containment test of schema paths, so we present only this node here rather than 

the node sequences for simplicity. However, when we say that two schema 

nodes are equal, we also imply that the defining sequences of two nodes are 

equal. The Kleene star ∗ indicates a schema path record with non-empty loop 

schema paths, and this means that N is both the initial and end node of the loop 

paths. Note that we do not present the content of loop schema paths here, as 

the specific content of loop schema paths is not important in checking con-

tainment of schema paths, which will been seen later. Let e be a schema path 

record, we also write e.N for N in e; e.a for a in e; e.L for L in e; and e.lp for lp 

in e. Furthermore, when a=‘child’, a can be left out, e.g. childN=N. 

According to the semantics of XPath, we have the following theorems on 

the schema paths p, p1, p2. 

Theorem 7.7: p1/p2 = p1[p2]/p2. 

Theorem 7.8:  

[p] = [p[1]/p[2]/…/p[|p|]]  

     = [p[1][p[2]/…/p[|p|]]   

     = [(<XP, S, z, a, lp, L∪{(p[2],…, p[|p|])}>)],  

where p[1]= <XP, S, z, a, lp, L>. 

7.3.2  Properties of schema paths 

We now look at the basic properties of schema paths related with the contain-

ment of schema paths.  

Let Q1=a[b] and Q2=a[c], then Q1!⊇Q2. If a constraint specifies that b must 

occur when c occurs, then Q1⊇Q2 with respect to the constraint. In this case, 

we say b is implied by c. Such occurrence implications can be inferred from 

the schema paths.   
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Definition 7.5 (occurrence implications): Let M and N be two instance nodes 
of an XML Schema definition. If the node declared by M occurs in an XML 

document, then the node declared by N must occur in the XML document. We 

say that M implies N, denoted as M=>N. 

We identify the following occurrence implications among instance nodes in 

an XML Schema definition. 

Theorem 7.9: Let M and N be two instance nodes of an XML Schema defini-

tion, and let the defining sequences of M and N be x and y respectively. M=>N, 
if 

• N = M, (which we call the implication of equivalence). 

• N is the instance parent of M, i.e. x[1]=N, (which we call the implica-

tion of child-parent), 

• N is an instance child of M, and N is an unconditional node (see Defi-
nition 4.3 in Chapter 4), (which we call the implication of parent-

child) 

• N is an instance sibling of M, and ∀i∈{1, …, k}: x[k]=y[k] ∧ x[k+1]≠y[k+1] 
∧ x[k]≠<choice…> ∧ ∀j∈{k+1, …, |y|}: (y[j]@<minOccurs>=⊥ ∨ attribute(y[j], 
minOccurs)≥1) ∧ x[j]≠<choice…>), (which we call the implication of sib-

ling). �  

It is easy to see if a node N is implied by its parent, then N must be implied 

by any sibling of it, but the reverse is not true. Since the reverse axes do not 

exist in schema paths, the implication of child-parent is not important. There-

fore, when studying the predicate containment of schema paths, the implica-

tions of equivalence and sibling are the most important occurrence implica-

tions.  

Theorem 7.10: A schema path record with the loop schema paths, i.e. N* (or 
N*[L]) can be transformed to a union of an infinite set of schema paths without 

loop schema paths, the first schema path record of which is N and the last 
schema path record of which is N (or N[L]), and between two Ns is a certain 
combination of the loop schema paths. 

Theorem 7.11: A schema path with loop schema paths can be transformed to a 

union of an infinite set of disjunction-free schema paths without loop schema 

paths. 
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Definition 7.6 (size of schema paths): The number of the schema path records 

in a schema path p is called the size of p, denoted by ||p||. 

Definition 7.7: (Depth of a schema path record and of a schema path): If a 

record e of a schema path p is the i-th record related to the context of p, then 
depth of e according to p is i, denoted by |e|. If no other records in p have 
greater depth than e, then |e| is also the depth of p, denoted by |p|.  

Let p=a/b[c[d]/e]. ||p||=5. |a|=1, |b|=2 and |p|=2 related to the context of p. |c|=1, 

|d|=2, |e|=2 and |c[d]/e|=2 related to the context of the predicate c[d]/e. The con-
cept of the depths is needed for analyzing the run-time complexity of the con-

tainment test. 

7.3.3  Containment test  

The schema paths consist of several features: child axis (/), following-sibling 

axis (FS), attribute axis (A), the loop (*) and predicates [ ]. We indicate the 

schema paths with these features as schema path
{/, FS, A, *, [ ]}

, and the schema 

paths consisting of a subset S of these features as schema path
S
, e.g. schema 

path
{/, *, [ ]}

. 

Unless stated explicitly, we typically use C and D for two sets of schema 

paths, c and d for two schema paths, N and M for two schema nodes, and F and 

H for two sets of predicate schema paths. 

We describe basic concepts and properties of containment of schema paths 

in Section 7.3.3.1. Afterwards, we study the containment test for schema path
{/, 

*, [ ]} 
 in Section 7.3.3.2, for XPath

{/, FS, *, [ ]}
in Section 7.3.3.3. In Section 7.3.3.4, 

we discuss the containment test when the attribute axis and comparison predi-

cates are allowed. 

7.3.3.1  Concepts and properties 

We assume that a schema path can be evaluated over XML documents in the 

same way as an XPath expression. Therefore, we denote by C(t, k) the result of 

applying a schema path C over an XML document t and a context node k∈t.  
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Definition 7.8 (containment of schema paths): Let C and D be two schema 

paths.  For any XML document t and any context node k∈t, if D(t, k) is a subset 

of C(t, k), i.e. C(t, k)⊇D(t, k), then C contains D, denoted by C⊇D. Otherwise C 

does not contain D, denoted by C !⊇ D. 

Definition 7.9 (predicate containment of schema paths): Let C and D be two 

schema paths. We call C predicate-contains D, denoted by [C]⊇[D], if for any 

XML document t and any context node k∈t, that [D] is evaluated to true impli-

cates that [C] is evaluated to true. Otherwise, C does not predicate-contain D, 

denoted by [C] !⊇ [D]. 

Theorem 7.12 (predicate containment of schema paths): Let C and D be two 

schema paths. [C]⊇[D], iff for any XML document t and any context node k∈t, 

D(t, k) is evaluated to a non-empty set of nodes implicates that C(t, k) is evalu-

ated to a non-empty set of nodes, i.e. D(t, k)≠∅ 蛭 C(t, k)≠∅. 

For example, let C=a/b and D=a[b][c]. The application of C selects child 

nodes b of nodes a; the application of D selects nodes a that must have child 

nodes b and c.  This means if D selects a non-empty set of nodes, then C must 

also select a non-empty set of nodes. Therefore, [C]⊇[D]. Let C=a and D=b. If b 

implies a, then [C]⊇[D]. 

Theorem 7.13: Let C and D be two sets of schema paths. C⊇D, iff 

∀d∈D:∃c∈C: c⊇d. 

Theorem 7.14: If C1⊇D1, C2⊇D2, and C2 and D2 are two sets of schema paths 

from two relative XPath expressions, then C1/C2⊇D1/D2. 

Proposition 7.2: If C⊇D, then [C]⊇[D]. 

Proof. If C⊇D, then the application of D returns a non-empty result implies that 

the application of C returns a non-empty result according to Definition 7.8. 

Therefore, [C]⊇[D] according to Theorem 7.12. �  

Proposition 7.3: c=N[F]  and d=M[H]. c⊇d, iff N=M ∧ [F]⊇[H]. 

Proof. If N=M, then N and M select the same node set, i.e. for an arbitrary XML 

document t and an arbitrary context node k∈t, N(t,k)=M(t,k). If [F]⊇[H], then the 
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nodes selected by [H] are also selected by [F], and thus N[F](t,k)⊇M[H](t,k). There-

fore, if (N=M ∧ [F]⊇[H]) then c⊇d.  

If N ≠ M then N and M select different nodes; if [F]!⊇[H], then the nodes se-

lected by [H] may not be selected by [F]. In the two cases, some nodes selected 

by d may not be selected by c, and thus c!⊇d. ���� 

Proposition 7.4: Let c, d1 and d2 be schema paths. [c] ⊇ ([d1] | [d2]), iff [c]⊇[d1] 

∧ [c]⊇[d2]. 

Proof. If [c]⊇[d1] and [c]⊇[d2], then that either of [d1] and [d2] is true implies 

[c]=true. ([d1] | [d2])=true indicates that [d1]=true or [d2]=true. Therefore, if [c]⊇[d1] 

and [c]⊇[d2], then [c]⊇([d1] | [d2]). 

Assume, [c]⊇([d1] | [d2]), but [c]!⊇[d1]. We always can construct an XML 

document such that [d1]=true, [d2]=false and [c]=false. In this case, ([d1] | [d2])=true 

but [c]=false. Therefore, [c]!⊇([d1] | [d2]), which is contrary to the assumption. ���� 

Proposition 7.5: Let c, d1 and d2 be schema paths. [c]⊇[d1][d2], iff [c]⊇[d1] ∨ 
[c]⊇[d2]. 

Proof. [c]⊇[d1] or [c]⊇[d2] implies that we can get the conclusion of [c]=true, 
only when [d1]=true and [d2]=true. [d1][d2]=true indicates that [d1]=true and 

[d2]=true. Therefore, if [c]⊇[d1] or [c]⊇[d2], then [c]⊇[d1][d2]. 

Assume [c]⊇[d1][d2], but [c]!⊇[d1] and [c]!⊇[d2]. We always can construct an 

XML document, where [d1]=true and [d2]=true, but [c]=false. Thus, [d1][d2]=true, 

but [c]=false. Therefore, [c]!⊇[d1][d2], which is contrary to the assumption. ���� 

7.3.3.2  Schema path
{/, *, [ ]}

 
 

We first look at the simple cases of containment, e.g. N⊇N[F]. Proposition 7.6 

describes what is the corresponding schema path d for the schema path c=N or 

c=N[F] such that c⊇d. 

Proposition 7.6: Let c and d be two schema paths in schema path
{/, *, [ ]}

. 

(1) Let c=N. c⊇d, iff (d=M ∨ d=M[H]) ∧ N=M. 
(2) Let c=N[F]. c⊇d, iff d=M[H] ∧ N=M ∧ [F]⊇[H].  

Proof. Let c=N. M[H] selects a subset of M. Since N=M, M[H] selects a subset of 

N, and thus c⊇d. c selects only child nodes of the context nodes. If |d|>1, d se-

lects the child or descendant nodes of the context nodes, and thus c and d may 
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select different nodes. Therefore, c!⊇d if |d|>1. If d.lp≠∅, e.g. d=M*, then d can 

be transformed to a union of an infinite set of schema paths with the length 

from 1 to infinite according to Theorem 7.10, and thus c!⊇d.  

Assume c⊇d. If N≠M, then N and M select different nodes; if |d|>1 or d.lp≠∅, 

then c and d select different nodes either, and thus c!⊇d, which is contrary to 

the assumption.  

The second part (2) can be analogously proved. ���� 

Let Q1=a and Q2=a[b]/c/d. If Q2 returns a non-empty result, then the nodes a 

must exist, and thus Q1 must return a non-empty result. Therefore, [Q1]⊇[Q2]. 

Proposition 7.7 describes how to test the predicate-containment of two schema 

paths. 

Proposition 7.7: Let c and d be two schema paths in schema path
{/, *, [ ]}

. 

(1) Let c=N. [c]⊇[d], iff d[1].N=>N. 

(2) Let c=N[F]. [c]⊇[d], if d[1].N=N ∧ [F]⊇[d[1].L][d[2]/…/d[|d|]] ∧ d[1].lp=∅.  

Proof. Let c=N. If d returns a non-empty set of nodes, then d[1].N must select a 

non-empty result. Since d[1].N=>N, c also returns a non-empty set of nodes ac-

cording to Definition 7.5, and thus [c]⊇[d]. If N is not implied by d[1].N, then we 

always can construct an XML document such that d[1].N exists but N does not 

exist. Therefore, [c]!⊇[d].  

Let c=N[F]. Let d2=d[2]/…/d[|d|] and [d]=[d[1][d2]]=[M[H][d2]], where M=d[1].N 

and H=d[1].L. Since [F]⊇[H][d2], then M[F]⊇M[H][d2] according to Proposition 7.3, 

and thus [M[F]]⊇[M[H][d2]] according to Proposition 7.2. Since M=N, then 

[N[F]]⊇[M[H][d2]]. ���� 

If M=>N but M≠N, the children of M and N are not sibling nodes. Therefore, 
there are no occurrence implications between the children of M and N, and we 

cannot infer whether or not [F]⊇[H][d2]. If d[1].lp≠∅, then [d]=[M*[H][d2]], and 

thus [d]=[M[H][d2]] |…| [M/…/M[H][d2]] according to Theorem 7.10. [c]⊇[M*[H][d2]] 

iff [c] contains each sub schema path, i.e. [c]⊇[M[H][d2]] ∧ … ∧  
[c]⊇[M/…/M[H][d2]] according to Proposition 7.4. If N=M and [F]⊇[H][d2], then 

[c]⊇[M[H][d2]]. For other schema paths with two or more M nodes, between the 

first and last M is a certain combination of the loop schema paths. Let 

di=M/M2…/M[H][d2], and we do not know how to decide whether or not 

[F]⊇[M2…/M[H][d2]]. Therefore, we only present a necessary condition for the 

predicate containment in the second part of this proposition. 
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Now, we study how to check c⊇d when the schema path c contains non-

empty loop schema paths. 

Proposition 7.8: Let c and d be two schema paths in schema path
{/, *, [ ]}

.  

(1) Let c=N*. c⊇d, iff d[1].N=N ∧ d[|d|].N=N. 

(2) Let c=N*[F]. c⊇d, iff d[1].N=N ∧ d[|d|].N=N ∧ [F]⊇[d[|d|].L].  

Proof. According to Theorem 7.10, c can be transformed to a union of an infi-

nite set of schema paths without loop schema paths, the first schema path re-

cord of which is N and the last schema path record of which is N (or N[L]). Be-

tween two Ns is a certain combination of the loop schema paths. We transform 

d to a union of disjunction-free schema paths without loop schema paths ac-

cording to Theorem 7.11. For each disjunction-free schema path d’ of d, if 

there is a disjunction schema path c’ of c such that c’⊇d’, then c⊇d according to 

Theorem 7.13. Therefore, the key point is to prove that each disjunction-free 

schema path of d is a certain combination of the loop schema paths attached to 

N. That an instance schema node N is a head of some loop schema paths means 

that some instance descendant nodes of N are N itself. The last N is a child of 

the node d[|d|-1].N that is a child of d[|d|-2].N that is a child of d[|d|-3].N, and so 

on. If d[|d|-k].N=N, then (d[|d|-k], d[|d|-k+1], …, d[|d|-1], d[|d|]) is a loop schema 

path. This means the path between Ns is one of the loop schema paths, and the 

path between the first N and last N is a certain combination among these loop 

schema paths. If N occurs only once, this means that visiting of nodes does not 

proceed further than the instance descendant nodes with N as a child. There-

fore, iff d[1].N=N and d[|d|].N=N, each disjunction-free schema path of d is a cer-

tain combination of the loop schema paths attached to N. ���� 

Proposition 7.9: Let c and d be two schema paths in schema path
{/, *, [ ]}

. 

(1) Let c=N*. [c]⊇[d], iff d[1].N=>N. 

(2) Let c=N*[F] and d=M[H]. [c]⊇[d], iff N=M and [F]⊇[H], or N=M and there is a 

record Mi[Hi] in H, such that N=Mi and [F]⊇[Hi].  

Proof. Let c=N*. c can be transformed to a union of disjunction-free schema 

paths without loop schema paths according to Theorem 7.10. If a disjunction-

free schema path of c selects a non-empty node set, then [c] is true. If [d]=true, 

then d[1].N selects a non-empty result. Since d[1].N=>N, then N selects a non-
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empty result. Since N is a disjunction-free schema path of c, [c]⊇[d]. If d[1].N 

does not imply N, then we cannot infer [c]=true from [d]=true. 

Let c=N*[F]. If there is a node Mi in [H] somewhere such that N=Mi, we can 

rewrite [d]=[M[H]]=[M[H’]/M1[H1]/…/Mi[Hi]]. If N=M ∧ N=Mi ∧ [F]⊇[Hi], then 

N*[F]⊇M[H’]/M1[H1]/…/Mi[Hi] as proved in Proposition 7.8. Therefore, c⊇d, and 

thus [c]⊇[d]. For example, c=a*[b] and d=a[a/b]. We can rewrite [d]=[a/a[b]], and 

thus a*[b] ⊇ a/a[b] according to Proposition 7.8, and [c] ⊇ [d] according to 

Proposition 7.2. The proof of the rest is trivial, and thus is left out. ���� 

Proposition 7.10: Let c and d be two schema paths in schema_path
{/, *, [ ]}

. 

(1) Let c∈schema path{/, *}. c⊇d, if  

c[1]⊇d1 ∧ c[2]⊇d2 ∧…∧ c[|c|]⊇d|c| ∧ d=d1/d2/d3/…/d|c|. 

(2) Let c∈schema path{/, *, []}. c⊇d, if 

c[1]⊇d1[d2/d3/…/d|c|] ∧ 
c[2]⊇d2[d3/d4/…/d|c|] ∧ 
…. 

c[|c|]⊇d|c| ∧ 
d=d1/d2/d3/…/d|c|. � 

Proof. Let c∈schema path{/, *, []}. According to Theorem 7.7, d = d1/d2/…/d|d| = 

d1[d2/…/d|d|]/d2[d3/d4/…/d|d|]/…/d|d|. By recursively applying Theorem 7.14, we 

conclude c⊇d.  � 

Complexity Analysis. ∀k∈{1, …, |c|}, if c[k] has no loop schema paths, we use 

Proposition 7.6 to find the corresponding part dk from d such that 

c[k]⊇dk[dk+1/…/d|c|]; if c[k] has loop schema paths, we use Proposition 7.8 to find 

the corresponding part dk from d such that c[k]⊇dk[dk+1/…/d|c|].  

When c[1].lp=∅, c[1].N is only checked with d[1].N; When c[1].lp≠∅, c[1].N is 

checked at most once with each of d[1].N, d[2].N, …, d[|d|].N. We assume 

c[1]⊇d[1]/d[2]/…/d[m], where m≥1. When c[2].lp=∅, c[2].N is only checked with 

d[m+1].N; When c[2].lp≠∅, c[2].N is checked at most once with each of d[m+1].N, 

d[m+2].N, …, d[|d|].N. Thus, c[1].N is checked at most |d| times, c[2].N is checked 

at most |d|-1 times, …, and the c[|c|].N is checked at most |d|-|c|+1 times. Note 

that we write |c| for the depth of the schema path c (see Definition 7.7) and ||c|| 

for the number of schema path records in c (see Definition 7.6). Therefore, the 

run-time complexity of Proposition 7.6 is O(|c|) ≤ O(||c||), and of Proposition 7.8 
is O(|d|+|d|-1+…+|d|-|c|+1) = O(∑k=|d||d|-|c|+1 k) ≤ O(|d|∗|c|)≤ O(||c||∗||d||).  
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We use Proposition 7.7 and Proposition 7.9 to check the containment of 

predicate schema paths. Each N in  [c] is compared at most one time with each 

N in [d], which has the same depth; every N* in [c] is compared at most one time 

with each N in [d], which has the same or greater depth.  Let mk denote the 

number of the records in [c] with depth k. Let nk denote the number of the re-

cords in [d] with depth k. Thus, the run-time complexity of Proposition 7.7 is 

O(∑k=1|c| mk∗nk) ≤ O(||c||∗||d||), and of Proposition 7.9 is O(∑k=1|c| (mk∗∑t=k|d| nt)) ≤ 
O(||c||∗||d||). 

Let mik be the number of the records with depth k in the predicates [Fi] of the 

i-th main schema path record in c; let |Fi| be the depth of [Fi]. Let nik be the 

number of the records with depth k in the predicates [Hi] of the i-th main 

schema path record in d; let Di be the part of d after the i-th record and [Di] be-

come a predicate of the i-th location step of d. Let Dik be the number of the re-

cords in [Di] with depth k. Therefore, the runtime-complexity of the predicate 

containment of each main schema path record is O(∑k=1|Fi| mik∗(∑t=k|Hi|nit + 

∑t=k|Di|Dik)) ≤ O(||Fi||∗||Hi+Di||). In Proposition 7.10, each main schema path record 

in c is checked at most one time with each main record in d, which has the 

same or greater depth. Therefore, the run-time complexity of Proposition 7.10 

is O(∑k=|d||d|-|c|+1 k + ∑i=1|c| ∑k=1|Fi| mik∗(∑t=k|Hi|nit + ∑t=k|Di|Dit)) ≤ O(||c||∗||d||). ���� 

7.3.3.3  Schema path
{/, FS, *, [ ]}

  

Let Q1 and Q2 be two XPath queries. Let Q1=w and Q2=u/FS::v/FS::w. Q1 selects 

all children w of the context node. Q2 selects the children w of the context 

node, which are following siblings of the nodes v and v in turn are following 

siblings of the children u of the context node. Therefore, Q2 selects a subset of 

Q1, and thus Q1⊇Q2. The following Proposition 7.11 describes how to decide 

containment of such two queries in terms of the corresponding schema paths. 

Proposition 7.11: Let c and d be two schema paths in schema path
{/, FS, *, [ ]}

. 

(1) Let c=childN. c⊇d, iff  

d[1].a=‘child’ ∧ d[1].lp=∅ ∧ ∀i∈{2, 3, …, |d|}:d[i].axis=‘FS’ ∧ N=d[|d|].N. 

(2) Let c=childN[F]. c⊇d, iff  

d[1].a=‘child’ ∧ d[1].lp=∅ ∧ ∀i∈{2, 3, …, |d|}:d[i].axis=‘FS’ ∧ N=d[|d|].N ∧ 
[F]⊇[d[|d|].L].  
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Proof. If |d|=1, Proposition 7.11 is reduced to Proposition 7.6. In the case of 

|d|>1, c selects all the children N of the context node, and d selects the children 

N of the context node, which must fulfill the constraints specified in d[2], …, 

d[|d|], i.e. which are the following-sibling nodes of some children of the context 

node. Therefore, d selects a subset of the result of c, and thus c⊇d. 

If d[1].a≠‘child’, then the nodes selected by d are not descendant of the con-
text node; if ∃i∈{2, 3, …, |d|}: d[i].axis≠‘FS’, then d may select the children of 

children of the context node, and thus c!⊇d. ���� 

Let Q1=FS::v and Q2=FS::u/FS::v. Q1 selects all the following sibling v of the 

context node. Q2 selects the following sibling v of the context node, which are 

following siblings of u and u is following sibling of the context. Therefore, Q2 

selects a subset of Q1, and thus Q1⊇Q2.  

Proposition 7.12: Let c and d be two schema paths in schema path
{/, FS, *, [ ]}

. 

(1) Let c=FSN. c⊇d, iff ∀i∈{1, …, |d|}: d[i].axis=‘FS’ ∧ N=d[|d|].N. 

(2) Let c=FSN[F]. c⊇d, iff ∀i∈{1, …, |d|}: d[i].axis=‘FS’ ∧ N=d[|d|].N ∧ [F]⊇[d[|d|].L].  

Proof. c selects all the following-sibling N of the context node, and d selects 

the following-sibling N of the context node, which are the following-sibling 

nodes of some following-siblings of the context node. Therefore, d selects a 

subset of the result of c, and thus c⊇d. If ∃i∈{1, …, |d|}: d[i].axis≠‘FS’, then d may 

select certain descendant nodes of the context node. Therefore, c and d may se-

lect different nodes, and thus c!⊇d. ���� 

Proposition 7.13 studies the predicate-containment of schema paths when 

the axis following-sibling (FS) is introduced. 

Proposition 7.13: Let c and d be two schema paths in schema path
{/, FS, *, [ ]}

, 

and d=childM[H].  

(1) Let c=childN. [c]⊇[d], iff M=>N , or 

d can be rewritten to d’=M[H1]/FSM1[H2]/…/FSM’[H’] such that c⊇d’. 

(2) Let c=childN[F]. [c]⊇[d], iff M=N and [F]⊇[H], or 

d can be rewritten to d’=M[H1]/FSM2[H2]/…/FSM’[H’] such that N⊇d’ and  

[F]⊇[H’].  

We use the following example to explain Proposition 7.13. Let Q1=a and 

Q2=b[c][FS::d/FS::a[b]].  We can rewrite Q2 to Q2’= b[c]/FS::d/FS::a[b] and thus 

Q1⊇Q2’ according to Proposition 7.11. Since [Q2]≡[Q2’], if Q2 returns a non-
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empty result, then Q2’ return a non-empty result, and thus Q1 return a non-

empty result. Therefore, [Q1]⊇[Q2]. The proof of Proposition 7.13 is analogous 

to the proofs of Proposition 7.12 and Proposition 7.7. 

When the loop schema paths are present, we need the following lemma in 

order to decide the containment of schema paths in schema path
{/, FS, *, [ ]}

. 

Lemma 7.1: Let c and d be two schema paths in schema path
{/, FS, *, [ ]}

, c=N and 

c⊇d. Furthermore, let M be an XML schema node.  

(1) Let d[i].N be a following-sibling of M, and M is a following-sibling of d[i-

1].N. If we create a new schema path record d[i’]=FSM or d[i’]=FSM[H], and a 

schema path d’=d[1]/d[2]/…/d[i-1]/d[i’]/d[i]/d[i+1]/…/d[|d|], then c⊇d’. 

(2) Let M be a child of the context node and d[1].N is a following-sibling of M. 

If we create a new schema path record d[1’]=M or d[1’]=M[H] and set 

d[1].a=‘FS’, and a schema path d’’=d[1’]/d[1]/d[2]/…/d[|d|], then c⊇d’’. � 

Proof. Since c=N and c⊇d, then d[1].a=‘child’ and ∀i∈{2, …, |d|}: d[i].axis = ‘FS’ 

and N=d[|d|].N according to Proposition 7.11. From the construction of d’, 

d’[1].a=‘child’ and ∀i∈{2, …, |d’|}: d’[i].axis=‘FS’ and N=d[|d’|].N. Therefore, c⊇d’ ac-

cording to Proposition 7.11. Likewise, d’’[1].a=‘child’ and ∀i∈{2, …, |d’’|}: 

d’’[i].axis=‘FS’ and N=d[|d’|’].N. Therefore, c⊇d’’ according to Proposition 7.11. � 

Proposition 7.14: Let c and d be two schema paths in schema path
{/, FS, *, [ ]}

.  

(1) Let c=N*. c⊇d, if d[1].N=N ∧ d[1].a=‘child’ ∧ d[|d|].N=N. 

(2) Let c=N*[F]. c⊇d, if d[1].N=N ∧ d[1].a=‘child’ ∧ d[|d|].N=N ∧ [F]⊇[d[|d|].L].  

Proof. That an instance XML schema node N is a head of some loop schema 

paths means that some instance descendant nodes of N are N itself. Since c=N*, 

d[1].N=N means that d[1].N is the head of some loop schema paths. Furthermore, 

d[1].a=‘child’ means that the path d consists of some descendant nodes of the 

context node. When N occurs once again, N can be visited as a child or a fol-

lowing sibling of the node d[|d|-1].N before it, and d[|d|-1].N can be visited as a 

child or a following sibling of the node d[|d|-2].N before it, and so on. Finally, 

d[2] can be visited as a child or following sibling of d[1].N.  

When N is a child of d[|d|-1].N, d[|d|-1].N and N are two nodes occurring in a 

loop schema path in this order. When N is a following sibling of d[|d|-1].N, d[|d|-

1].N is not in a loop schema path. However, if d[|d|-1].N is a child of d[|d|-2].N, 

then (d[|d|-2].N, N) is a part of a loop schema path, or if each of d[|d|-1].N, d[|d|-



134      Chapter 7   XPath Containment under XML Schema Definitions 

 

 

2].N,…, d[|d|-k].N is a following sibling of the node before it, and d[|d|-k].N is a 

child of d[|d|-k-1].N, then (d[|d|-k-1].N, N) is a part of a loop schema path. There-

fore, when the following sibling axis is allowed, between two Ns is not a direct 

combination of the loop schema paths, rather than a variant of a certain combi-

nation of the loop schema paths. According to Proposition 7.8 and Lemma 7.1, 

this proposition holds. ���� 

When the following-sibling axis is introduced, Proposition 7.10 still holds, 

and the complexity of containment also keeps unchanged. 

7.3.3.4  Attribute axes and comparison predicates 

Now, we study the XPath containment when the attribute axis is allowed.  

 

Proposition 7.15: Let c and d be two schema paths in schema path
{/, FS, *, [ ], A}

. 

(1) Let c=attributeN. c⊇d, iff d= attributeN ∨ d=attributeN[H]. 

(2) Let c=attributeN[F]. c⊇d, iff d=attributeN[H] ∧ [F]⊇[H] .  

Proposition 7.16: Let c and d be two schema paths in schema path
{/, FS, *, [ ], A}

. 

(1) Let c=attributeN. [c]⊇[d], iff d= attributeN ∨ d=attributeN[H]. 

(2) Let c=childN[F]. [c]⊇[d], iff d=attributeN[H] ∧ [F]⊇[H].  

The correctness of Proposition 7.15 and of Proposition 7.16 is easy to see, 

and thus their proofs are left out. 

A location step with the attribute axis can appear only as the last location 

step in an XPath expression or as the last location step in any predicate in the 

absence of reverse axes. For example, Q1=a/b/@c, and Q2=a[b[@c=1]]/d. 

Mapped to the corresponding schema paths, the schema path record with 

a=‘attribute’ should be the last schema path record with or without a predicate 

schema path like (<self::node()=C>), in the main schema path and any predicate 

schema paths. Therefore, the theorems and propositions above still hold in the 

presence of the attribute axis. The introduction of the attribute axis does not 

increase the complexity of containment. 

A special schema path of predicates consists of an expression, e.g. 

(<self::node()=100>). Let c=(<self::node()>1>) and d=(<self::node()>2>), then 
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[d]=true always means [c]=true. Proposition 7.17 studies the predicate contain-

ment of such two schema paths. The correctness of this proposition is easy to 

see, and thus the proof is left out. 

Proposition 7.17:  Let V1 and V2 be a number or a string; o1 and o2 ∈ {=, >, ≥, 
<, ≤}. Let c and d be schema paths, c=(self::node() o1 V1). [c]⊇[d], iff  

d=(self::node() o2 V2) ∧ ( 

(o1=‘=’ ∧ o2=‘=’ ∧ V1=V2) ∨ 
(o1=‘>’ o2=‘>’ ∧ V2≥V1) ∨ (o1=‘>’ o2=‘≥’ ∧ V2>V1) ∨ (o1=‘>’ o2=‘=’ ∧ V2>V1) ∨ 
(o1=‘≥’ o2=‘>’ ∧ V2≥V1) ∨ (o1=‘≥’ o2=‘≥’ ∧ V2≥V1) ∨ (o1=‘≥’ o2=‘=’ ∧ V2≥V1) ∨ 
(o1=‘<’ o2=‘<’ ∧ V2≤V1) ∨ (o1=‘<’ o2=‘≤’ ∧ V2<V1) ∨ (o1=‘<’ o2=‘=’ ∧ V1<V2) ∨ 
(o1=‘≤’ o2=‘<’ ∧ V2≤V1) ∨ (o1=‘≤’ o2=‘≤’ ∧ V2≤V1) ∨ (o1=‘≤’ o2=‘=’ ∧ V2≤V1)  ). 

Complexity Analysis. It is easy to see when all the features are allowed in a 

schema path, Proposition 7.10 and the complexity analysis still hold. Let ||c|| 

and ||d|| be the number of records of the schema paths c and d respectively. The 

complexity of deciding c⊇d is O(||c||∗||d||). 

7.4  Performance analysis 

We develop a prototype of our approach to the containment of XPath queries 

in terms of containment of schema paths of queries. The performance study fo-

cuses on the efficiency of our approach. We measure the time cost of evaluat-

ing XPath queries on an XML Schema definition, normalizing schema paths 

and checking containment of schema paths. The test system and used XML 

data sets are described in Section 1.4 in Chapter 1. 

7.4.1  XPath queries 

We design 12 pairs of queries Q1-Q1’, …, Q12-Q12’. The first one of each of 

first 11 pair of queries contains the second one. The query Q4 contains Q4’ with 

and without respect to constraints; other containment holds only in the con-

straints of the XML Schema definition benchmark.xsd (see the corresponding 
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appendix). Table 7.1 presents the used queries Q1-Q12 and Q1’-Q12’ and the re-

sult of whether or not Qx contains Qx’, where x∈{1, …, 15}. Table 7.1 also gives 

the semantics counterparts of some queries in order to see the containment re-

sults more easily. 

 

Table 7.1: Queries Q1-Q12 and Q1’-Q12’ and the result of containment 

Queries Qx⊇⊇⊇⊇Qx’ 

Q1 /site/categories/category 

Q1’ /site/categories/∗  
≡ /site/categories/category 

√ 

Q2 /site/regions/∗/item 

Q2’ /site/regions[europe]/asia/item  

≡ /site/regions/asia/item 

√ 

Q3 /site/regions[asia]/∗/item  

≡ /site/regions/∗/item 

Q3’ /∗/regions[∗]/namerica/item  

≡ /site/regions/namerica/item 

√ 

Q4 /site/open_auctions/open_auction[bidder[personref/@person='p

erson0']/following-sibling::bidder[personref/@person='person1']] 

Q4’ /site/open_auctions/open_auction[bidder[personref/@person= 

   'person0']/following-sibling::bidder/following-sibling::bidder 

   [personref/@person='person1']] 

√ 

Q5 /site/people/person[profile[interest][age]]/name 

Q5’ //person[profile/age][profile/interest]/name  

≡ /site/people/person[profile[interest][age]]/name 

√ 

Q6 /site/people/person[((address and phone) or profile[age or (gen-

der or sex)]) or (homepage or (address or phone))]  

≡ /site/people/person[((address and phone) or profile 
     [age or gender] or homepage or address or phone] 

Q6’ /site/people/person[(address and phone and homepage) or pro-

file[age and gender]] 

√ 

Q7 /site//increase[. > 20][. <80]  

≡ /site/open_auctions/open_auction/bidder/increase 
     [text()>20][text()<80] 

√ 



7.4  Performance analysis      137 

 

Q7’ //bidder[date][time]/increase[text()<60][self::node()>40]  

≡ /site/open_auctions/open_auction/bidder/increase 
     [text()<60][text()>40] 

 

Q8 //person/profile[business][education]  

≡ /site/people/person/profile[education] 
Q8’ //people/person[profile/education]/profile  

≡ /site/people/person/profile[education] 

√ 

Q9 /site/people/self::∗/person/address  
≡ /site/people/person/address 

Q9’ /∗/categories/following-sibling::catgraph/following-
sibling::people/person/address  

≡ /site/categories/following-sibling::catgraph 
      /following-sibling::people/person/address 

√ 

Q10 //listitem 

Q10’ //listitem//listitem//listitem 

√ 

Q11 //listitem//keyword 

Q11’ /descendant-or-self::listitem/descendant-or-self::keyword  

≡ //listitem//keyword 

√ 

Q12 //listitem//listitem//listitem 

Q12’   //listitem 

× 

7.4.2  Containment test 

We test the containment of the queries in Table 7.1 and get the same contain-

ment result for each pair of queries as given in Table 7.1.  

Figure 7.6 presents the time of containment test, including the time of com-

puting the schema paths of the second query of each pair of queries in Table 

7.1, i.e. evaluating the query over the XML Schema definition benchmark.xsd, 

the time of normalizing the schema paths, and the time of checking contain-

ment of schema paths of the two queries. Figure 7.6 shows that the main cost 

of the containment test is computing the schema paths of a query, and the main 

cost of computing schema paths is the evaluation of recursive location steps. 

Evaluating the query Q10’ with three recursive location steps is about 2 times 

slower than evaluating the queries Q5’, Q7’, Q8’ and Q12’ with one recursive lo-
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cation step. Evaluating the query Q11’ with two recursive location steps is 

about 1.5 times slower than evaluating the queries Q5’, Q7’, Q8’ and Q12’. The 

queries Q1’-Q4’, Q6’ and Q9’ without recursive location steps can be evaluated 

very fast. 

The cost of normalizing schema paths and checking containment is mainly 

dependent on the number of schema paths. For example, since only one 

schema path is computed from the queries Q1’-Q9’, the time of normalizing 

schema paths and checking containment is not significant. 9 schema paths are 

computed from Q10’ and up to 90 schema paths are computed from Q11’, where 

we observe some cost when normalizing schema paths and checking contain-

ment.  

In order to get the conclusion that a query Q1 contains another Q2, we have 

to show that each schema path of Q2 is contained by a schema path of Q1. In 

order to conclude that Q1 does not contain another Q2, we only need to check 

that there is a schema path of Q2, which is not contained by any schema path 

of Q1. Therefore, we can get the conclusion of Q1!⊇Q2 usually faster than get 

the conclusion of Q1⊇Q2. Unless the schema path of Q2, which is not con-

tained by any schema path of Q1, is checked as the last one. For example, the 

query Q12 does not contain Q12’, and the time of checking containment is not 

significant. Overall, the absolute cost for containment test is quite little, about 

0.1 seconds in the worst case in all experiments. 
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Figure 7.6: Time to check containment of the queries in Table 7.1 
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Chapter 8   Related Work 
 

 

 

A large amount of work deals with the optimization of XPath queries in order 

to speed up XML querying. 

8.1  XPath evaluation 

Since all major XPath engines take time exponential in the size of the input 

queries when evaluating XPath queries [Gottlob et al. 2002], there has been 

work on physical optimization of XPath expressions. [Gottlob et al. 2003a] 

studies theoretically the evaluation complexity of XPath queries and obtains 

the combined complexity of XPath evaluation to be P-hard in terms of the data 

complexity and the query complexity of XPath 1.0. [Gottlob et al. 2002] de-

velops bottom-up processing of XPath expressions, which runs in polynomial 

time in terms of the data and the query size. [Gottlob et al. 2003b] improves 

the time and space efficiency of the approach suggested in [Gottlob et al. 

2002]. [Gottlob et al. 2003c] presents the efficient algorithms for processing 

queries in XPath 1.0, including the bottom-up evaluation of XPath and the top-

down evaluation of XPath. 

Furthermore, indexing techniques (see e.g. [Rao and Moon 2004] and 

[Wang et al. 2003]) and structural join algorithms (see e.g. [Bruno et al. 2002] 

and [Jiang et al. 2003]) are also developed to speed up XPath processing. 

8.2  XPath rewriting 

A number of research efforts are dedicated on rewriting of XPath expressions 

to optimize XPath queries and thus speed up XPath evaluation.  
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[Kwong and Gertz 2002] suggests an algorithm for rewriting and satisfiabil-

ity test of XPath expressions in the presence of DTDs. Different from [Kwong 

and Gertz 2002], which enumerates all possible paths from a DTD, we directly 

generate the paths for a given XPath query by evaluating the XPath query on 

the XML Schema definition. Furthermore, we support recursive schemas that 

are not considered by [Kwong and Gertz 2002]. We consider all XPath axes, 

but the axes that depend on the document order are not supported by [Kwong 

and Gertz 2002]. 

[Olteanu et al. 2002], [Benedikt et al. 2003] and [Chan et al. 2004] study 

logical rewriting and optimization of XPath based on the properties of XPath 

expressions: [Olteanu et al. 2002] eliminates reverse axes for efficient evalua-

tion on streaming data, [Benedikt et al. 2003] identifies useful rewriting rules 

and [Chan et al. 2004] minimizes wildcard steps to speed up XPath evaluation. 

[Chan et al. 2004] suggests an approach to minimizing wildcards in the ab-

sence of schemas. In comparison to [Chan et al. 2004], we support to eliminate 

wildcards completely in XPath queries. [Olteanu et al. 2002] eliminates re-

verse axes in XPath expressions according to the axis symmetry of XPath, 

while we eliminate reverse axes based on the symmetry of schema paths as 

well as of XPath axes. Thus, we can eliminate reverse axes without adding ad-

ditional location steps. [Fan et al. 2005] develops an algorithm to rewrite 

XPath queries to regular XPath queries on recursive DTDs, but only forward 

axes are considered and the reverse axes and the axes depending on the docu-

ment order are not allowed. Our approach can rewrite XPath queries to regular 

and standard XPath queries in the case of recursive schemas, and supports all 

XPath axes. Furthermore, similar to [Kwong and Gertz 2002], [Fan et al. 2005] 

enumerates all the paths from a DTD, but we construct only the paths from an 

XML Schema definition for a given XPath query.  

Several research efforts focus on the minimization of XPath expressions 

(see e.g. [Amer-Yahia et al. 2001], [Ramanan 2002] and [Wood 2001]) by 

eliminating redundant steps since the size of XPath expressions significantly 

impacts the processing of queries. The study on the minimization of XPath 

closely relates to the issues of equivalence and containment with respect to two 

XPath queries (see e.g. [Miklau and Suciu 2004] and [Wood 200]). [Amer-

Yahia et al. 2001], [Ramanan 2002] and [Wood 2001] reduce redundant parts 

of tree pattern queries by the equivalence and containment analysis of two sub-

patterns. [Groppe 2005] and [Groppe et al. 2006a] reformulates XPath expres-
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sions according to XSLT stylesheets in order to reduce the amount of data 

transmitted and transformed.  

8.3  XPath satisfiability 

Many research efforts are dedicated to the satisfiability problem of XPath que-

ries.  

[Benedikt et al. 2005] theoretically studies the complexity problem of 

XPath satisfiability in the presence of DTDs, and shows that the complexity of 

XPath satisfiability depends on the considered subsets of XPath queries and 

DTDs. Among other things, [Benedikt et al. 2005] shows that the complexity 

of XPath satisfiability ranges from PTIME to NP-complete without negation 

operation in XPath expressions; ranges from PSPACE-complete to undecid-

able in the case of existence of negation operators and the recursive schemas. 

We present a practical algorithm for testing the satisfiability of XPath queries 

with negation operation and with respect to recursive schemas.  

[Hidders 2003] investigates the problem of XPath satisfiability in the ab-

sence of schemas. Without respect to schemas, an XPath query is unsatisfiable 

if the query does not conform to the XML data model. [Hidders 2003] gives 

the complexity results for different fragments of XPath. [Groppe et al. 2008] 

and [Groppe et al. 2006] thoroughly summarize the structure constraints of 

XPath imposed by the XML data model and the constraints from XPath ex-

pressions themselves to filter unsatisfiable XPath queries without respect to 

schemas. 

[Lakshmanan et al. 2004] examines the satisfiability test of tree pattern que-

ries (i.e. reverse axes are not considered) with respect to non-recursive sche-

mas, and shows that the satisfiability problem of tree pattern queries is NP-

complete under the non-recursive schemas. [Lakshmanan et al. 2004] does not 

deal with the negation operation in XPath. 

[Kwong and Gertz 2002] suggests an algorithm to test the satisfiability of 

XPath queries, but allows only non-recursive DTDs and does not support the 

XPath axes related with document order, e.g. axes following-sibling, preceding-

sibling, following and preceding. We support recursive schemas and all XPath 

axes. Our approach can filter the XPath queries that do not conform to the con-

straints of value types as well as the constraints of structures imposed in an 
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XML Schema definition, and the XPath queries with conflicting constraints. 

Only the XPath queries, which do not conform to the constraints of structures 

given in a DTD, are detected as unsatisfiable by [Kwong and Gertz 2002]. 

[Kempa 2003] presents an approach to checking if XPath expressions con-

form to the structural constraints in a schema. In [Kempa 2003], XML Schema 

definitions are formalized and represented as regular hedge expressions [Brüg-

gemann-Klein et al. 2001]. The hedge expressions cover only the structural 

constraints of a schema. Some constraints, e.g. restrictions on built-in simple 

types, in the schema are not preserved after the formalization. Therefore, 

[Kempa 2003] cannot check the value types of elements and attributes, nor it 

can check fixed value constraints and occurrence constraints. Furthermore, 

[Kempa 2003] can not rewrite and optimize XPath expressions. 

[Geneves et al. 2007] is a most recent work on XPath satisifiability under 

constraints. [Geneves et al. 2007] translates schemas to regular tree languages 

(see [Hosoya et al. 2000]) and provides an algorithm to test XPath satisfiability 

under regular tree type. Similar to [Kempa 2003], [Geneves et al. 2007] cannot 

check the type of values of elements and attributes, nor it can check fixed 

value constraints and occurrence constraints. It cannot rewrite and optimize 

XPath expressions either. 

 [Groppe 2005] discusses how to reduce the containment and intersection 

test of XPath expressions to the satisfiability test, which extends the applica-

tions of the satisfiability test.  

8.4  XPath containment 

 Many research efforts deal with the containment problem of XPath queries in 

the absence of constraints.  

[Miklau and Suciu 2004] shows that containment for XPath queries with the 

child axes /, the descendant axes //, predicates [] and the wildcards ∗ is coNP-

complete, and provides an algorithm of checking if an XPath query C contains 

another query D, with runtime complexity of O(|C|∗|D|∗(w+1)d) where w is the 

length of the maximum continuous ∗ location steps in C and d is the number of 

the descendant location steps in D. The complexity of XPath containment is 

shown to be PTIME if any of ∗, [] and // is absence in the considered XPath 

fragment: without ∗, [Amer-Yahia et al. 2001] describes a PTIME containment 



8.4  XPath containment      145 

 

algorithm based on tree patterns; without predicates, containment is shown to 

be in PTIME by [Milo and Suciu 1999]. In the absence of descendant axes, 

[Wood 2001] shows that XPath containment is in PTIME. 

In 1981 [Yannakakis 1981] has proposed a PTIME containment algorithm 

for acyclic conjunctive queries. Containment of relational conjunctive queries 

is known to be NP-complete in [Chandra and Merlin 1977]. [Florescu et al. 

1998] shows that containment for conjunctive queries with regular path ex-

pressions over semi-structured data is decidable. 

The following contributions focus on XPath containment under integrity 

constraints and DTDs.  

[Neven and Schwentick 2003] uses automata-theory techniques to show 

that the XPath containment is EXPTIME-complete under DTDs, and contain-

ment is PSPACE-complete if variables are included. [Wood 2003] proves the 

decidability of containment for various XPath fragments in the presence of 

DTDs and a certain class of integrity constraints. [Deutsch and Tannen 2001] 

studies the problem of containment of XPath expressions under integrity con-

straints using the technique of first-order translation, and shows that the com-

plexity of containment is NP-hard for XPath expressions with equality testing 

and binding of variables, and is ∏
P

2 if disjunction is additionally considered. 

[Schwentick 2004] presents the complexity results for XPath containment for 

various fragments of XPath with and without respect to DTDs, and describes 

the techniques used to obtain upper bounds of the complexity results. [Cate 

and Lutz 2007] studies the complexity of XPath containment, when path inter-

section, path equality, path complementation, for-loops and transitive closure 

are allowed. [Cate and Lutz 2007] shows that the complexity of containment in 

this XPath fragment ranges from EXPTIME (with path equality) and 2-

EXPTIME (with path intersection) to non-elementary (with path complemen-

tation or for-loops), and adding transitive closure does not increase the com-

plexity.  
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Chapter 9   Conclusions 
 

 

 

In this thesis, we propose a data model for the XML Schema language, which 

identifies the navigation paths of XPath queries on an XML Schema definition. 

We develop an XPath-XSchema evaluator, which evaluates XPath queries on 

an XML Schema definition based on the data model of XML Schema. The 

XPath-XSchema evaluator returns a set of schema paths, which integrate the 

constraints imposed by the schema. We develop a satisfiability tester and a 

containment tester of XPath based on the schema paths. We also suggest an 

approach to rewriting and optimizing XPath expressions in the presence of 

XML Schema definitions. 

Our satisfiability tester can filter the XPath queries, which do not conform 

to the constraints of structures, semantics, data types or occurrences imposed 

by a schema, and the XPath queries, which contain visible and invisible con-

flicting constraints. When an XPath query does not conform to the constraints 

in a given schema, our evaluator computes the empty set of schema paths, and 

thus the XPath query is unsatisfiable. If a non-empty set of schema paths is 

computed for an XPath query, we rewrite the query from the schema paths, 

and apply the rules of conflicting constraints to the rewritten queries to further 

filter the queries with conflicting constraints. 

The experimental results of the prototype of our satisfiability tester show 

that application of our approach can significantly optimize the evaluation of 

XPath queries by filtering unsatisfiable XPath queries. A speed-up factor up to 

several orders of magnitude is possible. Furthermore, our approach has a low 

overhead (<0.08 seconds), and does not significantly increase the total process-

ing time of satisfiable queries when XML documents are not very small (not 

less than 100 Kilobytes).  

Our containment tester checks the containment of XPath queries in terms of 

the normalized schema paths of the queries. The most constraints, which im-

pact the containment test, can be easily inferred using the normalized schema 

paths. We prove the correctness of our approach to XPath containment, and 
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analyze the complexity of the approach. Our experimental results show that 

our approach has a low overhead (less than 0.1 seconds). 

9.1  Future work 

The work described in this thesis can be extended and carried on further to 

• support more features of XPath 2.0 and the XML Schema language to  

o detect more unsatisfiable XPath queries, which are not tested as unsat-

isfiable in this work, and  

o find more containment cases, which cannot be detected in this work, 

 

by extending the XPath-XSchema evaluator and the set of rules of conflict-

ing constraints.   

• investigate the performance benefits in those application scenarios, which 

use the containment test, e.g. caching of XPath query results. 

• investigate more applications of our data model of XML Schema, e.g. our 

data model can be applied to the validation of XML documents. 

• investigate more applications of the schema paths of queries, e.g. the in-

tersection of XPath expressions in the presence of schemas. 

• transfer our results for XPath to XQuery and XSLT by 

o using an XQuery query or XSLT stylesheet instead of the XPath query, 

or 

o investigating application scenarios, which use the satisfiability test or 

containment test applied to the output schemas (see [Groppe and 

Groppe 2006d] and [Groppe et al. 2007a]) of an XQuery query or an 

XSLT stylesheet, e.g. caching the results of an XPath query applied to 

the results of XQuery queries or XSLT stylesheets. 



 

 

 

 

Benchmark.xsd 
 

 

 

In this section, we present the XML Schema definition benchmark.xsd, which 

we use for the performance analysis. This schema is manually adapted accord-

ing to the DTD benchmark.dtd of the XPathMark benchmark (see [Franceschet 

2005]) and the instance documents generated using the data generator of 

[Franceschet 2005] in order to integrate as many constructs of XML Schema 

as possible and specify more specific data types for values of elements and at-

tributes, which are only declared as #PCDATA in benchmark.dtd. 
 

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'> 
  
 <xs:annotation> 
  -- This schema was manually adapted according to -- 
  -- benchmark.dtd and the instance documents in order to  -- 
  -- integrate as many constructs of XML Schema as possible and  -- 
  -- specify more specific data types for values of elements and attributes, -- 
  -- which are only declared as #PCDATA in benchmark.dtd -- 
 </xs:annotation> 
 
 <xs:element name='site' type='siteType'/> 
  
 <xs:complexType name='siteType'> 
   <xs:sequence> 
     <xs:element name='regions' type='regionsType'/> 
     <xs:element name='categories' type='categoriesType'/> 
     <xs:element name='catgraph' type='catgraphType'/> 
     <xs:element name='people' type='peopleType'/> 
     <xs:element name='open_auctions' type='open_auctionsType'/> 
     <xs:element name='closed_auctions' type='closed_auctionsType'/> 
   </xs:sequence> 
   <xs:attribute name='owner' type='xs:string' use='prohibited'/> 
 </xs:complexType> 
   
 <xs:complexType name='regionsType'> 
    <xs:sequence> 
      <xs:element name='africa' type='regionType'/> 
      <xs:element name='asia' type='regionType'/> 
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      <xs:element name='australia' type='regionType'/> 
      <xs:element name='europe' type='regionType'/> 
      <xs:element name='namerica' type='regionType'/> 
      <xs:element name='samerica' type='regionType'/> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='categoriesType'> 
    <xs:sequence> 
      <xs:element name='category' maxOccurs='unbounded'> 
        <xs:complexType> 
   <xs:sequence> 
     <xs:element name='name' type='xs:string'/> 
     <xs:element name='description' type='descriptionType'/> 
   </xs:sequence> 
   <xs:attribute name='id' use='required' type='xs:ID'/> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='catgraphType'> 
    <xs:sequence> 
      <xs:element name='edge' type='edgeType' minOccurs='0'  
                   maxOccurs='unbounded'/> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='peopleType'> 
     <xs:sequence> 
       <xs:element name='person' type='personType' minOccurs='0'  
                  maxOccurs='unbounded'/> 
     </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='open_auctionsType'> 
     <xs:sequence> 
       <xs:element name='open_auction' type='open_auctionType'  
                  minOccurs='0' maxOccurs='unbounded'/> 
     </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='closed_auctionsType'> 
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     <xs:sequence> 
       <xs:element name='closed_auction' type='closed_auctionType'  
                 minOccurs='0' maxOccurs='unbounded'/> 
     </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='regionType'> 
    <xs:sequence> 
      <xs:element name='item' type='itemType' minOccurs='0'  
                maxOccurs='unbounded'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='edgeType'> 
   <xs:attribute name='from' use='required' type='xs:IDREF'/> 
   <xs:attribute name='to' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='personType'> 
    <xs:complexContent> 
      <xs:extension base='personType0'> 
        <xs:sequence> 
          <xs:element name='profile' type='profileType' minOccurs='0'/> 
          <xs:element name='watches' type='watchesType' minOccurs='0'/> 
          <xs:element name='race' type='xs:string' minOccurs='0' maxOccurs='0'/> 
        </xs:sequence> 
     </xs:extension> 
    </xs:complexContent>  
  </xs:complexType> 
   
  <xs:complexType name='personType0'> 
    <xs:sequence> 
      <xs:element name='name' type='xs:string'/> 
      <xs:element name='emailaddress' type='xs:string'/> 
      <xs:element name='phone' type='xs:string' minOccurs='0'/> 
      <xs:element name='address' type='addressType' minOccurs='0'/> 
      <xs:element name='homepage' type='xs:string' minOccurs='0'/> 
      <xs:element name='creditcard' type='creditcardType' minOccurs='0'/> 
    </xs:sequence> 
   <xs:attribute name='id' use='required' type='xs:ID'/> 
  </xs:complexType> 
  
  <xs:complexType name='open_auctionType'> 
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    <xs:sequence> 
      <xs:element name='initial' type='xs:float'/> 
      <xs:element name='reserve' type='reserveType' minOccurs='0'/> 
      <xs:element name='bidder' type='bidderType' minOccurs='0'  
                   maxOccurs='unbounded'/> 
      <xs:element name='current' type='xs:float'/> 
      <xs:element name='privacy' type='privacyType' minOccurs='0'/> 
      <xs:element name='itemref' type='itemrefType'/> 
      <xs:element name='seller' type='sellerType'/> 
      <xs:element name='annotation' type='annotationType'/> 
      <xs:element name='quantity' type='quantityType'/> 
      <xs:element name='type' type='typeType'/> 
      <xs:element name='interval' type='intervalType'/> 
    </xs:sequence> 
    <xs:attribute name='id' use='required' type='xs:ID'/> 
  </xs:complexType> 
   
  <xs:complexType name='closed_auctionType'> 
    <xs:sequence> 
      <xs:element name='seller' type='sellerType'/> 
      <xs:element name='buyer' type='buyerType'/> 
      <xs:element name='itemref' type='itemrefType'/> 
      <xs:element name='price' type='xs:float'/> 
      <xs:element name='date' type='dateType'/> 
      <xs:element name='quantity' type='quantityType'/> 
      <xs:element name='type' type='typeType'/> 
      <xs:element name='annotation' type='annotationType' minOccurs='0'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='itemType'> 
    <xs:sequence> 
      <xs:element name='location' type='xs:string'/> 
      <xs:element name='quantity' type='quantityType'/> 
      <xs:element name='name' type='xs:string'/> 
      <xs:element name='payment' type='xs:string'/> 
      <xs:element name='description' type='descriptionType'/> 
      <xs:element name='shipping' type='xs:string'/> 
      <xs:element name='incategory' type='incategoryType'  

maxOccurs='unbounded'/> 
      <xs:element name='mailbox' type='mailboxType'/> 
    </xs:sequence> 
   <xs:attribute name='id' use='required' type='xs:ID'/> 
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   <xs:attribute name='featured'/> 
  </xs:complexType> 
  
  <xs:complexType name='descriptionType'> 
    <xs:choice> 
      <xs:element name='text' type='textType'/> 
      <xs:element name='parlist' type='parlistType'/> 
    </xs:choice> 
  </xs:complexType> 
  
  <xs:complexType type='addressType'> 
    <xs:sequence> 
      <xs:element name='street' type='xs:string'/> 
      <xs:element name='city' type='xs:string'/> 
      <xs:element name='country' type='xs:string'/> 
      <xs:element name='province' type='xs:string' minOccurs='0'/> 
      <xs:element name='zipcode' type='xs:string'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:simpleType name='creditcardType'> 
    <xs:restriction base='xs:string'> 

      <xs:pattern value='\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}'/> 
    </xs:restriction>   
  </xs:simpleType> 
 
  <xs:complexType name='profileType'> 
    <xs:sequence> 
      <xs:element name='interest' type='interestType' minOccurs='0'  
                 maxOccurs='unbounded'/> 
      <xs:element name='education' type='educationType' minOccurs='0'/> 
      <xs:element name='gender' type='genderType' minOccurs='0'/> 
      <xs:element name='business' type='businessType'/> 
      <xs:element name='age' type='ageType' minOccurs='0'/> 
    </xs:sequence> 
   <xs:attribute name='income' type='xs:flocat'/> 
  </xs:complexType> 
  
  <xs:complexType name='watchesType'> 
    <xs:sequence> 
      <xs:element name='watch' minOccurs='0' maxOccurs='unbounded'> 
        <xs:complexType> 
          <xs:complexContent> 
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            <!-- emptyp content model --> 
            <xs:restriction base='xs:anyType'> 
              <xs:attribute name='open_auction' use='required' type='xs:IDREF'/> 
              <xs:attribute name='expression' use='prohibited' type='xs:string'/> 
            </xs:restriction> 
          </xs:complexContent>   
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='reserveType' mixed='true'> 
  </xs:complexType> 
 
  <xs:complexType name='bidderType'> 
   <xs:sequence> 
     <xs:element name='date' type='dateType'/> 
     <xs:element name='time' type='xs:time'/> 
     <xs:element name='personref' type='personrefType'/> 
     <xs:element name='increase' type='xs:float'/> 
   </xs:sequence> 
 </xs:complexType> 
 
 <xs:simpleType name='privacyType'> 
   <xs:restriction base='xs:string'> 
     <xs:enumeration value='Yes'/> 
     <xs:enumeration value='No'/> 
   </xs:restriction>   
 </xs:simpleType> 
  
  <xs:complexType name='itemrefType'> 
   <xs:attribute name='item' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='sellerType'> 
    <!-- empty content model --> 
    <xs:complexContent> 
      <xs:restriction base='xs:anyType'> 
        <xs:attribute name='person' use='required' type='xs:IDREF'/> 
      </xs:restriction> 
    </xs:complexContent>   
  </xs:complexType> 
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  <xs:complexType name='annotationType'> 
    <xs:sequence> 
      <xs:element name='author'> 
        <!-- anonomously complex type definition --> 
        <xs:complexType> 
          <!-- empty content model --> 
          <xs:complexContent> 
            <xs:restriction base='xs:anyType'> 

<xs:attribute name='person' use='required' type='xs:IDREF'/> 
            </xs:restriction> 
          </xs:complexContent>   
        </xs:complexType> 
      </xs:element> 
      <xs:element name='description' type='descriptionType' minOccurs='0'/> 
      <xs:element name='happiness'> 
        <xs:simpleType> 
          <xs:restriction base='happinessType1'/> 
        </xs:simpleType> 
      </xs:element>   
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:simpleType name='quantityType'> 
    <xs:restriction base='xs:int'> 
      <xs:minInclusive value='0'/> 
    </xs:restriction>   
  </xs:simpleType> 
  
  <xs:simpleType name='typeType'> 
    <xs:restriction base='xs:string'> 
      <xs:enumeration value='Regular'/> 
      <xs:enumeration value='Featured'/> 
    </xs:restriction>   
  </xs:simpleType> 
  
  <xs:complexType name='intervalType'> 
    <xs:sequence> 
      <xs:element name='start' type='dateType'/> 
      <xs:element name='end' type='dateType'/> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='buyerType'> 
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   <xs:attribute name='person' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='incategoryType'> 
   <xs:attribute name='category' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='mailboxType'> 
    <xs:sequence> 
      <xs:element name='mail' type='mailType' minOccurs='0'  

maxOccurs='unbounded'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='textType' mixed='true'> 
    <xs:choice minOccurs='0' maxOccurs='unbounded'> 
     <xs:element name='bold' type='textType'/> 
     <xs:element name='keyword' type='textType'/> 
     <xs:element name='emph' type='textType'/> 
    </xs:choice> 
  </xs:complexType> 
  
  <xs:complexType name='parlistType'> 
    <xs:sequence minOccurs='0' maxOccurs='unbounded'> 
      <xs:element name='listitem' type='listitemType'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='interestType'> 
   <xs:attribute name='category' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='educationType' mixed='true'> 
  </xs:complexType> 
  
  <xs:simpleType name='genderType'> 
    <xs:restriction base='xs:string'> 
      <xs:enumeration value='male'/> 
      <xs:enumeration value='female'/> 
    </xs:restriction>    
  </xs:simpleType> 
  
  <xs:simpleType name='businessType'> 
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    <xs:restriction base='xs:string'> 
      <xs:enumeration value='Yes'/> 
      <xs:enumeration vaule='No'/> 
    </xs:restriction> 
  </xs:simpleType> 
 
  <xs:simpleType name='ageType'> 
    <xs:restriction base='ageType1'> 
      <xs:maxInclusive value='99'/> 
    </xs:restriction> 
  </xs:simpleType> 
  
  <xs:simpleType name='ageType1'> 
      <xs:restriction base='xs:int'> 
        <xs:minInclusive value='18'/> 
      </xs:restriction> 
  </xs:simpleType> 
 
  <xs:complexType name='personrefType'> 
   <xs:attribute name='person' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='authorType'> 
   <xs:attribute name='person' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:simpleType name='happinessType1'> 
    <xs:restriction base='happinessType2'> 
        <xs:maxInclusive value='10'/> 
    </xs:restriction>     
  </xs:simpleType> 
   
  <xs:simpleType name='happinessType2'> 
    <xs:restriction base='xs:int'> 
      <xs:maxInclusive value='100'/> 
      <xs:minInclusive value='0'/> 
    </xs:restriction> 
  </xs:simpleType> 
 
  <xs:complexType name='mailType'> 
    <xs:sequence> 
      <xs:element name='from' type='xs:string'/> 
      <xs:element name='to' type='xs:string'/> 



158      Benchmark.xsd     

 

      <xs:element name='date' type='dateType'/> 
      <xs:element name='text' type='textType'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='listitemType'> 
    <xs:choice minOccurs='0' maxOccurs='unbounded'> 
      <xs:element name='text' type='textType'/> 
      <xs:element name='parlist' type='parlistType'/> 
    </xs:choice> 
  </xs:complexType> 
 
  <xs:simpleType name='dateType'> 
    <xs:restriction base='xs:string'> 
      <xs:pattern value="\d{2}/\d{2}/\d{4}"/> 
    </xs:restriction> 
  </xs:simpleType> 
  
<!-- never used elements 
 
  <xs:element name='amount'> 
    <xs:complexType mixed='true'> 
    </xs:complexType> 
   </xs:element> 
    
   <xs:element name='income' type='xs:float'/> 
  
 <xs:element name='status'> 
  <xs:complexType mixed='true'> 
  </xs:complexType> 
 </xs:element> 
  
-->  
  
</xs:schema> 
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