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Zusammenfassung

Drahtlose Sensornetzwerke (engl. Wireless Sensor Networks, WSNs) sind hete-
rogene Systeme, die aus kleinen, mit stark begrenzten Ressourcen ausgestat-
teten Sensorknoten sowie Gateways und Backend-Systemen bestehen. In die
Umwelt eingebettet erfassen Sensorknoten physikalische Parameter (wie z.B.
Temperatur, Helligkeit oder Bewegung) und leiten diese an Gateways wei-
ter. Gateways senden die erfassten Daten über herkömmliche Netzwerke zu
Backend-Systemen, wo sie schließlich weiterverarbeitet und visualisiert werden.

Die Realisierung von Anwendungen für drahtlose Sensornetzwerke ist komplex,
da hierbei Herausforderungen verteilter Anwendungen als auch eingebetteter
Systeme zu lösen sind. Erschwert wird dies durch die erwähnten heterogenen
Komponenten, unvorhersehbare Umwelteinflüsse sowie die Größe der Netze.
Um diese Herausforderungen zu meistern verwenden Entwickler typischerweise
Simulationen, um Anwendungen in einer kontrollierbaren Umgebung zu testen
und zu optimieren, sowie Visualisierungen von Daten, die als Displayersatz für
die bildschirmlosen simulierten oder realen Sensorknoten fungieren. Aufbauend
auf diese beiden Schritte wird dann die Anwendung auf Sensorknoten, Gateways
und Backend-Systeme portiert.

Ziel dieser Arbeit ist es, die Simulation, Visualisierung und Implementierung
von heterogenen Sensornetwerkanwendungen durch einen integrierten Entwick-
lungsprozess zu unterstützen. Dieser Entwicklungsprozess besteht aus den vier
Komponenten Shawn, SpyGlass, Fabric und microFibre, die die vormals sepa-
raten Schritte durch neue Techniken verbessern und miteinander verbinden.

Dabei sind im Rahmen des SwarmNet Projektes zwei neue Hilfsmittel zur Si-
mulation (Shawn, [49, 92, 127]) und Visualisierung (SpyGlass, [25, 28, 29]) von
Sensornetzwerken entstanden. Während existierende, herkömmliche Simulato-
ren eine detailgetreue Abbildung von Phänomenen der echten Welt ermöglichen,
zielt Shawn auf eine Abstraktion von dieser Detailtreue ab. Auf diese Weise un-
terstützt Shawn die zielgerichtete, schrittweise Entwicklung von Algorithmen
und Protokollen für WSNs und erlaubt auch die Betrachtung sehr großer Sze-
narien mit mehr als 106 Sensorknoten. SpyGlass ermöglicht die Visualisierung
von Daten, die von einem Sensornetzwerk, einem Simulator oder einer beliebigen
anderen Quelle stammen und bildet somit das Fundament auf dem Entwickler
durch Plug-Ins applikationsspezifische Visualisierungen erstellen.

Durch die Heterogenität von WSNs, die außer den Sensorknoten auch Gate-
ways, Backend-Systeme, Simulatoren und Visualisierungsumgebungen umfas-
sen, verfügen die einzelnen Komponenten über stark unterschiedliche Ressour-
cen und abweichende Programmiersprachen und -konzepte. Mangels verfügbarer
Lösungen, die diese breite Spanne von Systemen abdecken, ist es gängige Pra-
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xis, Anwendungen jeweils inklusive der Netzwerkfunktionalitäten manuell zu
implementieren. Diese Mehrfachimplementierung erschwert die konsistente und
fehlerfreie Integration von Erweiterungen und führt oftmals zu einer vereinfach-
ten Netzwerkimplementierung, die vorhandene Optimierungspotenziale nicht
ausschöpft. Es ist daher erforderlich, diese Komponenten in einen Entwicklungs-
prozess einzubeziehen und sich wiederholende Aufgaben zu automatisieren.

Um dies zu erreichen, schlagen wir in dieser Arbeit eine neuartige Technik
namens Fabric [125,126,128] zur Generierung applikations- und datentypspezi-
fischer Middleware vor. Fabric verbindet Simulation, Visualisierung und Appli-
kationsentwicklung für heterogene WSNs, indem ein nahtloser Nachrichtenaus-
tausch zwischen diesen Plattformen ermöglicht wird. Ein Applikationsentwickler
beschreibt dazu die Datentypen einer Anwendung als XML Schema Dokument
und ergänzt die einzelnen Datentypendefinitionen um Annotationen. Diese be-
stimmen, wie der jeweilige Datentyp von der generierten Middleware behandelt
werden soll; also wie Instanzen eines Datentyps als Nutzlast von Netzwerknach-
richten repräsentiert werden und nach welchen Regeln diese verarbeitet werden.
So könnten Annotationen beispielsweise angeben, dass Instanzen eines speziel-
len Datentyps zunächst komprimiert und dann verlässlich übertragen werden
sollen.

Die generierte Middleware enthält dann Code, der einen Kompressionsschritt
durchführt und das Ergebnis zwischenspeichert, um im Falle einer ausbleiben-
den Empfangsbestätigung eine wiederholte Übertragung zu veranlassen. An-
wendungen, die auf dem generierten Middleware-API basieren, arbeiten dabei
ausschließlich mit gewöhnlichen Programmiersprachenkonstrukten, während die
Middleware sämtliche Netzwerkfunktionalitäten durchführt. Die eigentliche Ge-
nerierung einer Middleware leisten dabei Module, die von so genannten Frame-
workentwicklern implementiert werden. Ein Modul ist ein hoch spezialisierter
Codegenerator und steuert Code für einen bestimmten Aspekt, wie zum Bei-
spiel Kompression oder verlässliche Übertragung, bei. Basierend auf den Ein-
gabedaten des Applikationsentwicklers (den annotierten Datentypen und einer
Zielplattformbeschreibung) liefert ein Modul eine Selbstbeschreibung zurück,
die Fabric nutzt, um die an der Codegenerierung partizipierenden Module aus
den Verfügbaren auszuwählen.

Der Vorteil dieses Ansatzes ist, dass die so generierte Middleware auf die Be-
dürfnisse der Anwendung und die Fähigkeiten der einzelnen Plattformen zu-
geschnitten werden kann. Wird dieser Prozess für verschiedene Zielplattform-
beschreibungen wiederholt, so entstehen kompatible Middleware-Instanzen für
Sensorknoten, Gateways, Backend-Systeme, Simulatoren und Visualisierungs-
umgebungen. Weiterhin können im Zuge der Generierung Optimierungen vor-
genommen werden, die in manuellen Implementierungen meist ausgelassen wer-
den. In dieser Arbeit wird dies exemplarisch an zwei Modulen zur Serialisierung
von Datentypen aufgezeigt. Der von diesen Modulen erzeugte Code bildet dabei
Instanzen von Datentypen auf die Nutzlast von Netzwerknachrichten ab und
umgekehrt. In Sensornetzwerken kommen hierzu gegenwärtig zwei Ansätze zur
Anwendung: Zum einen wird das Speicherabbild einer Datentypinstanz direkt
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als Nutzlast von Netzwerknachrichten verwendet, zum anderen werden die ein-
zelnen Elemente eines Datentyps manuell nach einem festgelegten Verfahren in
die Nutzlast von Netzwerknachrichten kopiert. Der erste Ansatz geht implizit
davon aus, dass Nachrichten nur zwischen baugleichen Geräten ausgetauscht
werden und folglich die Repräsentationen im Speicher identisch sind. Somit ist
ein nahtloser Nachrichtenaustausch mit Gateways und Backend-Systemen nicht
problemlos möglich. Der zweite Ansatz vermag zwar die Grenzen zwischen den
verschiedenen Plattformen zu überwinden, verlangt jedoch eine manuelle Im-
plementierung dieser Abbildung auf allen heterogenen Zielplattformen. Durch
die Verwendung von Fabric ist es möglich, diese Abbildung applikations- und
datentypspezifisch zu automatisieren und gleichzeitig zu optimieren.

Das erste der vorgestellten Module generiert dabei Code, der unser neuartiges
Serialisierungsverfahren namens microFibre [130] einsetzt, während das zwei-
te Code erzeugt, wie er typischerweise von Hand erstellt wird. Dabei sind die
von microFibre erzeugten Nutzlasten von Netwerknachrichten signifikant kürzer
als solche, die von manuell implementiertem Code erzeugt werden. Existieren-
den, automatisierten Ansätzen wie zum Beispiel den Packed Encoding Rules
von ASN.1 und Xenia ist microFibre im Hinblick auf die Kompressionsraten
ebenbürtig oder gar überlegen, wobei der von microFibre erzeugte Code nur
einen geringen Overhead in Form von Codegröße und Laufzeit erzeugt und so
den stark begrenzten Ressourcen von Sensorknoten Rechnung trägt. Aufgrund
der Tatsache, dass die Funkschnittstelle den Energiekonsum eines Sensorkno-
tens dominiert, führt die Verkürzung von Netzwerknachrichten unter anderem
zu einem geringeren Bandbreitenbedarf, einer Energieersparnis und dadurch zu
einer verlängerten Laufzeit des Sensornetzwerks.

Jede der vier vorgestellten Komponenten bietet einen in sich abgeschlossenen
Dienst für den Entwickler von WSN Anwendungen. Kombiniert man diese Kom-
ponenten, so entsteht ein Entwicklungsprozess, der von der Simulation und
Visualisierung bis zur Generierung von Middleware für heterogene Zielplatt-
formen reicht und so die Applikationsentwicklung in jedem Schritt mit leis-
tungsfähigen Werkzeugen unterstützt. Um den vorgestellten Entwicklungspro-
zess auf eine fundierte Basis zu stellen und einem breiten Publikum zugänglich
zu machen, wurde Fabric in die Entwicklungsumgebung Eclipse als Plug-In inte-
griert. Diese nahtlose Integration ermöglicht eine Verwendung aller Werkzeuge
dieses Entwicklungsprozesses aus einer weithin eingesetzten Entwicklungsum-
gebung heraus. Um die Anwendbarkeit des vorgestellten Entwicklungsprozesses
zu untermauern, präsentieren wir sowohl experimentelle Messungen als auch
ein Fallbeispiel, das den Einsatz dieses Entwicklungsprozesses zur Realisierung
des WSN-Projektes MarathonNet im Detail aufzeigt.
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Abstract
Wireless sensor networks (WSNs) are heterogeneous networks that comprise
tiny, resource-constraint sensor nodes, gateways and backend systems. Embed-
ded into the environment, sensor nodes measure ambient parameters such as
temperature, motion, etc. and gateways provide the integration with traditional
networks while backend systems process and visualize received data.

Application development for WSNs is complex as it unites the challenges of
distributed applications and embedded programming. In addition, heterogene-
ity, unpredictable environmental influences and the size of the networks further
complicate this situation. To master these issues, developers typically perform
multiple, distinct steps: simulations support testing and optimizing applications
in a controllable environment and visualizations on remote computers serve as
surrogates for the display-less simulated or real sensor nodes. Finally, develop-
ers port the application to the sensor nodes, gateways and backend systems.

In this work, we propose a novel development framework that integrates and
improves the formerly separate steps of simulation, visualization and applica-
tion development for heterogeneous WSNs. It consists of the four components
Shawn, SpyGlass, Fabric and microFibre. Shawn is a novel simulation tool
for the design and optimization of applications prior to their real-world de-
ployment. The level of detail provided by traditional tools that mimic the real
world as closely as possible comes at a price and it is often not required. Instead,
Shawn uses abstract and exchangeable models allowing users to focus on their
research goal while operating at orders of magnitudes higher speeds. SpyGlass
is a modular, extensible and platform-independent visualization environment.
Unlike existing tools, it provides the infrastructure for arbitrary visualizations
independent from the actual WSN platform. Fabric provides the link between
simulation, visualization and heterogeneous WSN devices. It is a novel system
for the generation of application- and data type-specific middleware for hetero-
geneous target platforms. Developers provide a data type definition augmented
with annotations. Based on this input, multiple modules conjointly generate
optimized middleware instances. microFibre, a new (de-)serialization scheme
implemented as such a module, shows how considerable bandwidth savings are
achieved without requiring manual optimization.

These four components are contained and valuable in themselves. Combined,
they constitute a sound development framework that supports developers at all
stages from an initial idea to a final WSN application. We present experimental
measurements and a case study showing how this framework facilitated the
realization of the real-world WSN project MarathonNet.
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1. Introduction

Embedded systems are constant companions of our daily life. Innumerable of
everyday applications rely on these unimposing helpers. Mostly invisible, they
are the core of nearly every device ranging from washing machines to game
consoles. Advances in technology have fueled the development of a new class
of computing devices, so-called wireless sensor nodes. These tiny, low-power
and low-cost devices comprise sensors, computational hardware and a wireless
communication interface. A – potentially large – number of sensor nodes form
a wireless sensor network (WSN) [45, 84]. This chapter briefly sketches the
developments that have paved the way for these novel appliances, introduces
properties of wireless sensor networks and concludes with a motivation and the
scientific contributions of this thesis.

The development of modern computer hardware started in the 1960s with the
invention of the integrated circuit (IC). This and the following decade were
dominated by huge mainframe computers that filled rooms and were only af-
fordable for a few large companies and data processing centers. The situation
radically changed in the 1980s when the personal computer (PC) was intro-
duced that evolved to the most popular computer platform nowadays. The
continuous decrease in prize and size continued and notebook computers that
made computing non-stationary became widely popular. Since the availability
of personal digital assistants (PDAs) in the 1990s, computers are lightweight,
portable and small enough to fit into a trouser’s pocket.

A similar development could be observed in the networking domain. The first
mainframes and home computers were sole islands of computing power. With
the advent of local and wide area network technologies, they were released from
their isolation and interconnected computers were the enabling technology for
the new era of distributed computing. Due to the rise of the Internet and the
widespread use of notebooks and PDAs, a global demand for wireless access to
the Internet arose. Vastly popular wireless technologies such as GPRS, UMTS
and Wireless LAN [69] make the Internet virtually omnipresent.

These two trends (miniaturization and wireless networking) have lead to cheap,
tiny and low-power chips offering computational circuits as well as efficient
wireless transceivers. Combined, these trends are the enabling technologies for
WSNs where computing devices are no longer investment goods but a bulk
commodity.
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Chapter 1. Introduction

1.1. Wireless Sensor Networks

Wireless sensor networks (WSNs) are heterogeneous networks that comprise
tiny, resource-constraint sensor nodes, gateways and backend systems. Embed-
ded into the environment, sensor nodes measure ambient parameters such as
temperature, motion, etc. Gateways provide the integration with traditional
networks and backend systems process and visualize received data.

Individual sensor nodes are envisioned to be cheap (≈1$), tiny (≈ 1mm3) and
disposable devices with scarce computational, energy and storage resources.
Figure 1.1 depicts a typical research prototype of a sensor node, as it is available
today. Its major components are a CPU, sensors, I/O-interfaces, energy supply
and a wireless transceiver. Form factor and price of the current generation are
still an order of magnitude higher than envisioned, yet it is anticipated that
even future sensor nodes will not have more resources at their disposal [134].

Sensors

Energy supply

Radio

I/O-Interfaces

CPU

Figure 1.1.: Typical wireless sensor node

Their embedded CPU allows a processing of sensor readings, e.g., to detect
and discard outliers in the readings. The wireless interface enables commu-
nication with other neighboring nodes. Thus, beyond the local processing of
sensed data, the wireless interface supports a cooperative behavior of the nodes.
For instance, close by nodes could harmonize their sensor readings before they
are routed towards some destination. On the way to the sink, data from sev-
eral sources can be aggregated to richer information entities (e.g., the average
temperature of an area vs. individual temperature readings).

Figure 1.2 shows a typical WSN tracking application. Sensor nodes are ran-
domly scattered over some area of interest where they detect motion using their
sensors. Since sensors can deliver erroneous readings, multiple nearby nodes use
their wireless interface to determine whether motion was observed by more than
one node. If this is the case, they distribute this information augmented with
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1.2. Motivation

time and position of the motion detection in the network. Upon the recep-
tion of such information from multiple locations and points in time, the sensor
nodes can derive motion vectors of objects that crossed the area covered by the
WSN. Gateway computers, which are connected to both a sensor node and a
traditional network, provide the transition of data from the WSN to backend
systems and vice versa. Backend systems then visualize received data, store it
in a database or convert it for the use with third party systems.

(!) 1

(!) 2

(!) 3

(!) 4

(!) 5

Figure 1.2.: Tracking a moving object with scattered sensor nodes

This in-network processing is one example of the innovative properties of WSNs
that distinguishes them from traditional gauging applications. Those are de-
signed carefully and sensing devices are installed at predetermined locations
with access to infrastructure such as electricity or telecommunication networks.
By contrast, WSNs are randomly scattered over potentially hostile or inacces-
sible terrains (e.g., by dropping them from a plane) and operate for long times
without human intervention or infrastructure. After deployment, issues such
as changing environmental conditions, battery exhaustion or hardware failure
require that WSNs constantly adapt to the prevailing situation.

1.2. Motivation

Application development for WSNs is complex as it unites the challenges of
distributed applications and embedded programming. In addition, heterogene-
ity, unpredictable environmental influences and the size of the networks further
complicate this situation. For that reason, most traditional, generic program-
ming techniques are not directly applicable and novel methodologies are re-
quired for coping with these challenging conditions. A typical procedure to
master these issues is to perform multiple, distinct development steps: Simula-
tions, visualizations and the implementation of the application on sensor nodes,
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gateways and backend systems. Based on the state of the art, this section reveals
shortcomings of existing solutions and identifies potential for improvements.

Once deployed, sensor nodes must operate unattended without human inter-
vention for a long time. Consequently, software for WSNs must be thoroughly
tested prior to real-world deployments. Computer simulations are a promis-
ing means for the development, implementation and optimization of algorithms
and protocols before they are deployed on hardware. Existing simulation tools
mimic the real world as closely as possible within a simulation environment.
This fine-grained simulation is resource demanding and limits simulations to
small scenarios while future scenarios anticipate networks with several thou-
sands of nodes [44,93]. However, this high level of detail is not required as long
as the interest behavior of the system focuses on unaffected properties, e.g.,
when developing high-level algorithms and protocols. For that reason, novel
approaches to the simulation of WSNs that support large-scale scenarios with
an abstract point of view are required.

Furthermore, sensor nodes typically do not offer any kind of user interface. To
reason on a node’s state, a typical means is to connect to its onboard I/O-
interfaces. However, determining the state of a deployed WSN by this means
is virtually impossible. Hence, approaches to display the state of a network
are mandatory and visualizations of a WSN’s state are therefore a key issue to
design and operate these networks. However, visualization is highly application-
specific and existing visualization environments are custom-tailored for specific
scenarios, hardware platforms, programming languages or a fixed set of visual-
ization primitives. To improve this situation, a generic visualization environ-
ment that supports arbitrary visualizations and is independent from the actual
hardware platform, programming language and application is required.

A property of WSNs is that they require the processing of data on heteroge-
neous devices. This requires that all devices are aware of the contents of payload
contained in network messages. Traditional middleware solutions, which shield
developers from this aspect, are not applicable in WSNs due to the inherent
resource constraints and different programming paradigms. This often results
in a manual implementation of networking code for the different devices (e.g.,
sensor nodes, gateways and backend systems) and software components (e.g.,
simulation tools and visualization environments). This is especially unfavorable
because changes are an inherent companion of application development where
data structures and the application’s logic are constantly subject to change.
As a result, an optimization of communication aspects is frequently omitted
because it is time-consuming, laborious and error-prone to keep the implemen-
tations for the different platforms consistent manually.

Consequently, integrating simulation, visualization and middleware that sup-
ports optimized networking into a common development framework has the
potential to improve the development process of WSN applications. However,
until today, no widespread use of such tools can be observed. On the contrary,
handcrafting WSN applications from scratch is still by far the predominant ap-
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proach to WSN application development. This lack of powerful development
tools artificially chokes the research progress in WSNs because developers strug-
gle with low-level issues that are typically not in the focus of their research.

1.3. Contributions and Structure of this Work

The contribution of this work is a novel development framework for WSNs,
which integrates simulation and visualization as well as the generation of appli-
cation-specific, optimized middleware for heterogeneous target platforms. This
framework is comprised of four components that are introduced in this thesis.
On their own merits, these are contained and valuable in themselves. However,
when combined into a common framework, they constitute a sound foundation
to enhance the overall development process of WSN applications. The following
list mentions these components along with their project names and a brief
abstract of their functionality:

1. Shawn, a high-level and high-performance simulation tool

2. SpyGlass, a generic visualization environment

3. Fabric, a middleware synthesis framework

4. microFibre, a scheme for bit-length optimized payload of network mes-
sages

In Chapter 2 the reader is familiarized with essential elements that are used
throughout this thesis. First, Section 2.1 provides a detailed overview on wire-
less sensor networks. Second, Section 2.2 presents concepts, structures and
examples of the two important technologies XML and XML Schema. Third,
Section 2.3 illustrates fundamental information theoretical aspects.

Chapter 3 introduces our development framework for WSNs. It starts with an
overview of the state of the art in WSN application development. Based on an
evaluation of this state, it motivates the need for a new kind of development
support and introduces criteria for such a framework. It then presents the archi-
tecture of our approach and a brief overview of its functionality. Subsequently,
Chapter 4, Chapter 5 and Chapter 6 delve into the details of the individual
components Shawn, SpyGlass, Fabric and microFibre.

Chapter 4 presents Shawn [49, 92, 127], our novel simulation framework for
WSNs with unique features for the development of algorithms, protocols and
applications. Shawn does not compete with traditional simulators in the area
of network stack simulation. Instead, it focuses on an abstract, repeatable and
expressive approach to WSN simulation. By replacing low-level effects with
abstract and exchangeable models, the simulation can be used for huge networks
in reasonable time while keeping the focus on the actual research problem. The
chapter concludes with measurements that compare Shawn’s performance with
Ns-2 and TOSSIM.
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Chapter 5 introduces SpyGlass [25, 28, 29], our approach to a modular and ex-
tensible visualization environment for wireless sensor networks. Unlike existing
tools, SpyGlass supports the visualization of WSNs independent from the ac-
tual hardware platform and programming language of the WSN application.
We show how users can extend the set of visualization tasks in SpyGlass.

In Chapter 6, we propose Fabric [125, 126, 128], a novel middleware-synthesis
system for heterogeneous WSNs. Application developers supply a high-level
data type description, which is complemented with annotations that param-
eterize the synthesis process. So-called framework developers contribute their
domain specific expertise and complement Fabric by implementing modules that
back the annotations with code generating functionality. The key benefit of this
approach is that it results in lean, custom-tailored code that matches the avail-
able resources of the different target devices. While hiding networking aspects
and the complexity of distributed systems, it still offers the required flexibility
because data handling can be differentiated on a per-type basis. This is demon-
strated at the example of two modules that implement different schemes for data
type (de-)serialization. They convert in-memory data structures from/to the
payload of network messages. Based on the data type descriptions, these mod-
ules generate code optimized for either message length or footprint. The first
module employs our novel scheme for bit-length optimized data type serializa-
tion called microFibre [130] while the second one, called macroFibre, generates
code that resembles traditional methods. This chapter concludes with an eval-
uation of microFibre, macroFibre and Fabric.

Chapter 7 complements the description of our proposed development framework
with a case study of how it has been used to realize a WSN project called
MarathonNet [63,103,129]. We show how the use of our development framework
alleviated the design, implementation and maintenance of this project. The
chapter ends with an evaluation of the presented development framework using
the criteria introduced in Chapter 3.

Chapter 8 concludes this thesis with a summary and presents directions for
future research.
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2. Fundamentals

This chapter acquaints the reader with fundamental aspects that are used
throughout this thesis. It is divided into three parts: Section 2.1 provides
an in-depth survey on sensor networks. Section 2.2 introduces XML and XML
Schema technologies. Finally, Section 2.3 subsumes important concepts of in-
formation theory.

2.1. Wireless Sensor Networks

The following sections provide an overview of sensor networks. Section 2.1.1
introduces typical application scenarios, while Section 2.1.2 identifies key chal-
lenges that must be dealt with in order to make these visionary scenarios come
true and to turn sensor networks into a commercial off-the-shelf product. The
remaining subsections revive the topics from Section 2.1.2 and present the state
of the art in important research areas. This includes networking paradigms
(Section 2.1.3), hardware platforms (Section 2.1.4) as well as operating systems
and programming abstractions that address the specific properties of WSNs
(Section 2.1.5).

2.1.1. Application Scenarios

WSNs are beneficial in situations where human observation is hardly possible
or where wired sensing systems are difficult or expensive to use. This section
describes several application scenarios in which wireless sensor networks are in
active use as well as application domains in which their future application is
promising. Nevertheless, this represents only a small fraction of the possible
applications for this new class of networked embedded systems.

Figure 2.1(a) presents a typical application for a sensor network: monitoring
a dike made of sandbags for moisture penetration during a flood. The idea
is to provide disaster relief teams with real-time data on the status of a dike
to avoid breaches due to slowly evolving structural weaknesses. Sensor nodes
are incorporated into individual sandbags where they measure the moisture
penetration.

Once deployed, the nodes begin to communicate and a spontaneous, ad-hoc
network is established. Local sensor readings (e.g., wet or dry) are reconciled
with neighboring sensor nodes to prevent faulty readings from being propagated.
After this local coordination phase, the final sensor reading is routed to one or
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(b) Data forwarding to a gateway

Figure 2.1.: Example WSN application

more gateway nodes (cp. Figure 2.1(b)). On the route to a sink, readings
from multiple sources are further processed. This in-network processing step
merges solitary local readings to a condensed data representation before this
information is distributed in the network. For instance, instead of disseminating
individual, potentially error-prone moisture readings, the presence of a wet area
detected by a group of nearby nodes could be transmitted.

Figure 2.2.: Habitat monitoring on Great Duck Island: (1) Nodes in burrows (2)
Nodes outside of burrows (3) Gateway node (4) Research station
with server and satellite uplink

Another application domain is habitat monitoring. Sensor networks present
a new means for zoologists and biologists to monitor the behavior of animals
in real-time without human disturbance. For instance, in 2002 and 2003 re-
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searchers deployed a number of sensor nodes in burrows on Great Duck Island
where storm petrels were expected to breed [4, 108, 165, 166]. As depicted in
Figure 2.2, one set of nodes measured the microclimate (temperature, humidity,
barometric pressure and infrared radiation) inside the burrows. Another set of
nodes served as weather stations providing information about the conditions
outside of the burrows. A multi-hop network formed by the nodes routed the
measured data to a central database.

A project called ZebraNet [198] tracks the movement and the interaction of
zebras. The animals wear sensor nodes around their neck, which are equipped
with GPS [85] receivers and a low-power wireless transceiver. The GPS receiver
allows sensor nodes to acquire and store the position of a zebra at a certain point
in time. If sensor nodes worn by animals are in the communication range of
each other (e.g., while zebras are drinking water at a lake), they exchange data
so that each animal stores data about all other animals it has met. Mobile base
stations mounted on vehicles receive this information from passing-by animals.
Behavioral scientists use this data to study the social behavior of animals over
a long time without disturbing the animals in their natural surroundings.

Sensor networks have also been successfully applied in medical and health-
care settings. For instance, the MarathonNet project [63, 129] uses a sensor
network to monitor runners during marathon events. The runners wear special
sensor nodes (so called pacemates) that receive heart rate signals from chest
transmitter belts and forward this data – if necessary via other devices – to base
stations that are deployed along the track. The base stations are connected to
a central server (by wide or local area network technologies like WLAN, GPRS
or a wired network) where a database stores the received values. Spectators can
track the race in real-time, organizers can detect critical heart rates of individual
runners and alert rescue personal and runners benefit from a post-facto analysis
of their race.

The decreasing price and form factor of current microelectronic circuits allows
the integration of a broad range of sensors. For instance, vehicles can be de-
tected by monitoring changes in the magnetic field, nearby beings are noticed
by passive infrared receivers and on-board cameras provide a live view of the
vicinity of a node. Against this background, promising applications emerge in
the telematics, security and military domains. A major strength of sensor net-
works is to put individual measurements into the context of time and location.
For instance, instead of manually counting cars, a sensor network deployed at
intersections, roundabouts or highway drives could automatically deduce traffic
flows by correlating readings from multiple sensors. Alternatively, intelligent
traffic lights could optimize their green phases depending on the current traffic
situation. For further application scenarios, please refer to Römer and Mat-
tern’s survey paper [142].
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2.1.2. Challenges

The envisioned application scenarios presented above implicitly contain a num-
ber of challenges that sensor network hardware and software must cope with.
Compared to traditional networks, new techniques in several research and en-
gineering domains are required to tackle these challenges [157].

Resource Constraints Individual sensor nodes could be as small as a few cu-
bic millimeters. This tiny form factor imposes strict constraints on the size of
sensors, memory, processor and energy supply. Furthermore, the nodes might
be located in hostile or inaccessible areas and must operate for a long period,
ranging from a few days to several years. In such settings, a manual replace-
ment of energy supplies is not feasible when the nodes are in their operational
area. Thus, a sensor node either needs to be supplied with energy prior to its
deployment or it must harvest energy after deployment.

Harvesting energy is usually not feasible without massively violating the de-
sired form factor. For instance, solar panels are an order of magnitude larger
that the sensor node. The same holds for most other techniques that draw
energy from the node’s environment (e.g., from moving air or water, temper-
ature fluctuations or vibrations). Storing energy on the node using batteries
also comes with certain limitations since they consume considerable space the
more energy they retain. Battery technologies such as Nickel Metal Hydride
(NiMH), Lithium Ion (LiIon) or Lithium Polymer (LiPo) that are available to-
day dominate the form factor of a sensor node and no change is expected in the
foreseeable future [158,159].

Typical capacities of standard batteries are 1000 − 3000mAh. Given a desired
network lifetime of only one year and a battery capacity of 2000mAh, a sensor
node must use less than 231µA on average to fulfill this requirement. To give an
impression how challenging a long-term operation actually is, imagine a sensor
node that operates in two distinct modes: One normal mode (active CPU and
the radio interface in receive or transmit mode) and one sleep mode (CPU dozes
and radio is turned off). Assume that in normal mode, the node requires 40mA
and in sleep mode only 1µA. Such a node could only be active for 0.57% of the
time while it remains in sleep mode for 99.43% of the time.

Consequently, conserving the scarce energy resources is mandatory for any WSN
application. Besides the meager energy resources of a sensor node, other pa-
rameters such as computational power and storage resources are also subject
to severe limitations. These will be discussed in Section 2.1.4.

Networking and Reliability By definition, the nodes are deployed in-situ where
a phenomenon is to be observed. Thus, a sensor network is not operated under
laboratory conditions but in tough environmental settings. The sensor nodes
are exposed to a variety of changing climatic parameters like air humidity, tem-
perature, sunlight or radiation. A WSN may be partially covered with water
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due to heavy rain, floodwater or high tide. All these unpredictable and poten-
tially rapidly changing conditions influence the nodes in unpredictable ways.

For instance, sensors could deliver erroneous readings when they are operated
outside their specified limits and the radio communication characteristics can
vary due to changes in the ambient conditions. Communication links that have
worked reliably may fail in nondeterministic ways. This might only affect some
links and the network remains connected or it may even become temporarily
partitioned. Besides these environmental influences, the network topology may
also change due to node movement, e.g., when sensor nodes are attached to
animals, cars or humans. Individual nodes may fail due to battery exhaustion
or hardware failures and new nodes may be added to the network during another
deployment phase.

Therefore, the sensor network must continuously adapt to changes, re-organize
itself accordingly and detect erroneous data to ensure a maintenance-free and
reliable operation. For such complex distributed applications to operate prop-
erly, the choice of networking techniques is crucial. Since wireless networking
is the key ingredient of WSNs, Section 2.1.3 discusses this topic in depth.

Context A deployed sensor network must ultimately accomplish its applica-
tion task, which generally includes the acquisition of values from the node’s
sensors. However, a sensor reading (e.g., a temperature value) alone is merely
useful; it must be embedded into the context of time and position to become
meaningful. Consequently, the nodes in a sensor network need to establish a
common understanding of time and location. However, acquiring this important
context information is difficult and demands for new approaches.

As argued by Elson and Römer [43], classical time synchronization techniques
are not applicable in WSNs. Consequently, a variety of different time synchro-
nization protocols such as Post-facto Synchronization [41], Reference-Broadcast
Synchronization [42] or Traffic Induced Control of Time And Communication
(TICTAC, [19,26]) with different optimization goals were proposed. Besides the
aforementioned ones, an assortment of other algorithms (e.g., [148,160,161,176])
has been developed. This accounts for the fact that a single solution is most
likely not able to fulfill all needs.

A similar situation prevails in the area of localization where traditional localiza-
tion technologies that rely on a fixed infrastructure (such as GPS) are typically
not suitable. For this reason, a number of techniques based on infrastructure-
free approaches were developed. For an in-depth discussion on this topic, please
refer to work presented by Reichenbach et al. [137,138], Buschmann et al. [18,27]
or Kröller et al. [48, 91].

Application Development All above-mentioned challenges represent run-time
properties of WSNs that must be considered by an application developer when
designing a reliable and energy efficient sensor network at compile-time. Due
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to the fundamentally different nature of sensor networks, implementing appli-
cations for WSNs demands for new paradigms in software development. One
has to deal with a multitude of difficulties such as the massively distributed
nature of the system, the complexity of embedded programming, the resource
constraints in terms of processing capabilities and memory availability, the lack
of user interfaces for debugging, energy awareness and the size of the networks.

For this reason, a lot of research specifically targets these difficulties and a
number of programming tools with a varying abstraction degree have been
developed. These are further discussed in Section 2.1.5.

2.1.3. Networking Paradigms

Nowadays, networking is the major driving force in computing. Many contem-
porary applications such as e-commerce or e-mail are impossible without the
global Internet. Despite the enormous growth of computer networks, the un-
derlying principles remained mostly the same. Applications and protocols still
strictly adhere to the Open Systems Interconnection Reference Model (OSI) or
the TCP/IP reference model [32,169].

Each layer of the OSI and TCP/IP model is responsible for a specific task
(e.g., end-to-end data transport or physical hardware access), provides a clearly
defined service to the upper layer and uses services of the lower layer to perform
its service. The traditional Internet, which is based on this architecture, has
demonstrated its flexibility for several decades and is the dominating networking
technology nowadays. However, many assumptions of this classic networking
technique cannot be applied to WSNs and issues such as energy consumption
or addressing schemes require novel solutions.

Energy Consumption Before the advent of sensor networks, it was generally
assumed that listening on a network interface is a cheap operation and thus it
was ready-to-receive by default. With the availability of the first sensor network
prototypes, it was obvious that the radio interface is the most energy-hungry
component of a sensor node [95, 152]. Minimizing its energy consumption is
therefore imperative to realize long network lifetimes. To achieve this, the
radio interface should be switched on only for a fraction of time.

The media access control (MAC) layer was identified as the primary research
target to reduce the energy consumption of the radio interface. Many innovative
MAC schemes were proposed [67, 133, 139, 195] that trade energy consumption
against latency and throughput. It was quickly realized that the archetypal,
layered approach to networking makes further energy savings hard to achieve.
Since only the application has the definite knowledge of its functionality, it
needs a fine-grained control over the hardware to optimize its energy consump-
tion. Consequently, it has been suggested to employ cross-layer techniques that
expose the formerly private parameters of the individual layers to the applica-
tion. This allows for a full parameterization of all layers by the application but
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sacrifices the benefits of the layered approach. While this approach only con-
serves the energy resources of each single node, other approaches try to enhance
the lifetime by network-wide means such as clustering or topology control.

Clustering algorithms form groups of sensor nodes, each of which elects a
cluster-head (CH). Non-CH nodes do not transmit data directly to nodes in
neighboring clusters, but only to their cluster-head. The cluster-head is re-
sponsible for the internal organization of the cluster and for the communication
with other clusters. Internally, it arranges the duty-cycle of its group-members
and aggregates the received data. Externally, the CH is in charge of all com-
munication with other clusters via their cluster-heads. Clustering algorithms
have the potential to reduce traffic and to enlarge the sleep-times of individual
nodes in order to reduce the energy consumption of the network [112,178].

Topology control algorithms adapt the transmission power of individual nodes
and thus reduce the energy consumption of sensor nodes while optimizing the
network’s topology. The resulting topology yields less interference with other
nodes and hence a higher capacity of the wireless channel. See [17,101,122,181,
193] for in depth discussions on this topic.

Addressing Schemes Conventional systems assign a network-wide, unique
identifier to each device. This makes perfect sense in systems where a particular
device is responsible to deliver some kind of service (e.g., the web server host-
ing http://www.wikipedia.org). This address-based communication paradigm
is not easily applicable in sensor networks since it is not known where a node
with a specific address will be located and which node will adopt a certain role
prior to their deployment. As a consequence, traditional ID-based addressing
schemes will usually fail and a sensor network must therefore employ alternative
means to identify the destination of network messages [2, 60].

For instance, properties of nodes such as their location, functionality or available
resources may serve as addressing or forwarding criteria. Some protocols and
algorithms also make use of a geographic region to convey the destination of
data packets [83,86,88,111,180,194]. Another approach is to abstain completely
from explicit addressing. Directed Diffusion [73] or Rumor Routing [16] are
examples for data-centric, cross-layered routing protocols where the content of
a message serves as the addressing information.

Standardization Standardization of the radio interface in WSNs is becoming
increasingly important as sensor networks are on the verge of commercial suc-
cess. The multiplicity of different hardware platforms – and their incompatible,
proprietary radio interfaces (cp. Section 2.1.4) – prevents a collaboration of
devices from different vendors. As a consequence, the IEEE 802.15 WPAN
Task Group 4 [71] published the IEEE 802.15.4 standard that specifies a phys-
ical (PHY) and a medium access (MAC) layer. The PHY layer operates at
2.4GHz (250kbit/s) or at 868/915MHz (20kbit/s and 40kbit/s). The IEEE
802.15.4 standard is a step towards homogeneous and interoperable WSN hard-
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ware platforms.

Since IEEE 802.15.4 only standardizes the PHY and the MAC layer, the up-
per layers may still use incompatible protocols. The ZigBee Alliance [201]
addresses this by defining standards that build upon IEEE 802.15.4. Similar
to Bluetooth [70], ZigBee specifies application profiles that define how appli-
cations interact with each other. Despite these endeavors to standardize some
application scenarios, the manifold application scenarios for WSNs suggest that
ZigBee will not be the preferred solution in any case. Nevertheless, it seems a
reasonable choice to agree upon IEEE 802.15.4 as the common building ground
for future, interoperable WSN applications. An increasing number of research
institutes and companies have recently switched to an IEEE 802.15.4 compati-
ble radio interface.

2.1.4. Sensor Network Hardware Platforms

This section gives an impression on the features and the resources of current
wireless sensor nodes. It is anticipated that even future sensor nodes will not
have more resources at their disposal than the current generation [134]. Hence,
the here-presented platforms are sound representatives for the current and fu-
ture generation of sensor nodes.

One of the first sensor network platforms was developed by researchers of the
UC Berkeley. The Mica hardware family [33,64,67] was designed as a general-
purpose research node allowing researchers to validate their conjectures in real-
world settings. Table 2.1 summarizes some of the features of this family, which
constitutes today’s most widely used WSN hardware platform.

The Mica node comprises a CPU, a radio interface, volatile and non-volatile
storage as well as an I/O-interface to connect additional sensors. The CPU is an
8-bit processor running at 4MHz and offering 4kBytes of RAM and 128kBytes of
program memory. In addition, general-purpose I/O-pins, hardware timers, se-
rial interfaces and an analog-digital converter are available. The radio interface
operates on a single channel at 916MHz at a data rate of 40kBit/s. While the
Mica is still an order of magnitude larger than envisioned, the Spec mote [66]
has been created as a Mica compatible prototype with a form factor of only
2.5mm x 2.5mm, which demonstrates that the vision of tiny sensor nodes may
turn into reality.

Despite its aptitude for research under laboratory conditions, the first Mica-
series was not appropriate for real-world deployments mostly due to unreliable
hardware components [108]. Hence, the second generation was designed to cor-
rect the shortcomings of the first generation. It comprises the Mica2, Mica2Dot
and MicaZ motes. The Mica2 is the direct successor of the Mica mote and offers
a better radio interface and a generally improved design [165]. The Mica2Dot
is significantly smaller than the Mica2 mote at the price of slightly reduced
functionality and extensibility. The MicaZ [36] replaces the proprietary radio
interface of the other nodes with an IEEE 802.15.4 compatible radio. In 2004,
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Mica Mica2 Mica2Dot Telos
Year 2001 2002 2002 2004

Microcontroller

Program Memory (kB) 128 128 128 48
RAM (kB) 4 4 4 10

Active Power (mW) 8 33 8 3
Sleep Power (µW ) 75 75 75 15

Non-volatile Storage (kB) 512 512 521 1024

Communication

Radio TR1000 CC1000 CC1000 CC2420
Standard Proprietary Proprietary Proprietary IEEE 802.15.4

Data rate (kbit/s) 40 38.4 38.4 250
RX power (mW) 12 29 29 38

TX power @ 0dBm (mW) 36 42 42 35

Platform

Total active power (mW) 27 89 44 41
Extensibility 51-pin 51-pin 19-pin 16-pin

Dimensions (mm x mm) 57 x 31 58 x 32 25 x 6 65 x 31

Table 2.1.: Hardware properties of selected UC Berkeley sensor nodes

the Telos node1 [116,134] was introduced as the successor of the Mica2. It is a
complete redesign based on the experiences of the Mica and the Mica2 series.
The main objectives in the development were ultra-low-power operation, short
wake-up times and the use of a standardized IEEE 802.15.4 radio.

(a) BTnode rev3 (b) Scatternode

(c) pacemate (d) iSense

Figure 2.3.: A selection of WSN hardware platforms

Apart from the UC Berkeley, different other WSN platforms have been devel-

1The Telos node is also known as Tmote Sky, which is equivalent to Telos Revision B.
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oped such as the BTnode [11,12] from the ETH Zurich. It roughly features the
same system core and radio properties as the Mica2. Besides a Mica2 compat-
ible radio, the BTnodes offer Bluetooth [70] communication to interact with
notebooks, PDAs or cell phones. Figure 2.3(a) shows the third revision of the
BTnode attached to a battery pack with two AA cells.

Researchers from the FU Berlin introduced the Embedded Sensor Board (ESB)
research and teaching platform [37,147]. It comprises a variety of sensors (pas-
sive infrared for motion detection, temperature and luminance), a proprietary
radio interface and an extension interface. The ESB has evolved into a com-
mercial version, the Scatternode [146] (cp. Figure 2.3(b)) and the newest in-
carnation called Modular Sensor Board (MSB). Newer platforms such as the
iSense hardware platform [23] depicted in Figure 2.3(d) demonstrate the in-
creasing commercial interest in WSNs and the growing standardization of the
radio interface by supporting the IEEE 802.15.4 standard.

The above-mentioned sensor nodes allow for a wide range of applications and
are extensible to add custom sensor-boards. Apart from these generic hardware
platforms, some custom platforms were developed that optimally match the
requirements of specific applications where generic platforms are not applicable.
For instance, Body Area Networks (BANs) – a variant of WSNs – facilitate
a fine grained monitoring of human physical parameters. Here, specialized
sensors are necessary and ergonomics is an important acceptance factor. The
BAN project MarathonNet project developed the pacemate [63,129] to monitor
runners during competitions. Figure 2.3(c) depicts a pacemate worn on the
back of the hand by a marathon runner. Apart from the standard features of
a sensor node, it also features as display and measures the heart rate using a
chest belt worn by the runner.

To summarize, one fact is common for all WSN hardware platforms: They
have scarce onboard resources in terms of memory, computational resources
and energy. This imposes strict limits on the applications running on single
nodes.

2.1.5. Operating Systems and Programming Abstractions

Software development for traditional embedded systems is already a challeng-
ing task in itself [96]. When developing applications for WSNs, novel appli-
cation scenarios, self-adaptation to ambient conditions, energy awareness and
strict resource-constraints further complicate this situation. Software and pro-
gramming abstractions for WSNs must therefore cope with a variety of novel
requirements:

Energy-, resource- and context-awareness

Reliability, fault-tolerance and self-configuration

Scale to thousands or millions of nodes

Exchange of data with traditional networks
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Heterogeneous device architecture

Apart from these properties, many different application-specific requirements
have influenced the design of existing software tools for WSNs. These require-
ments are often conflictive and applications must trade one property against
the other. Therefore, researchers have proposed tools, architectures and alike
with a varying level of abstraction.

Operating Systems One challenge is the development of operating systems
(OS) that control the sensor network hardware platforms such as the ones men-
tioned in Section 2.1.4. Traditional embedded operating systems such as Vx-
Works [184], µCLinux [39] or Windows Embedded CE [113] typically target
hardware platforms that are equipped with an order of magnitude superior
resources. Furthermore, they offer advanced services such as preemptive multi-
tasking, real-time support, memory protection, TCP/IP and support standards
such as POSIX that manifest themselves in the footprint of the OS. Most of the
offered features are neither feasible nor desired in WSNs while other important
issues such as energy awareness, minimal resource consumption or cross-layer
approaches are not addressed at all.

TinyOS [65, 100, 173] is the most frequently used OS for WSN in current re-
search. It supports a variety of hardware platforms such as the complete Mica
family and the Telos motes. TinyOS is an event-based system that strives to
require only a minimum of resources. To realize these features, the authors
proposed a novel programming language called nesC [56], which is a superset
of the standard C language. Its component-based architecture enables appli-
cation developers to “wire” nesC-interfaces (e.g., the radio or timer interface
with the application). The nesC compiler then assembles concrete implementa-
tions of the interfaces and generates a TinyOS instance for a specific hardware
platform. The application’s logic itself is mostly implemented in plain C. The
architecture of nesC resembles standard C++ inheritance mechanisms where
application developers only know the abstract interface of a class while the ac-
tual implementation is hidden in a subclass of the interface. To realize this
feature, C++ uses late binding techniques that determine the address of a con-
crete method at run-time. nesC performs a static, early binding at compile-time
to avoid the run-time overhead of late binding at the cost of reduced run-time
options.

Contiki [40] is another recognized, portable and adaptable operating system
written in plain C. Comparable to TinyOS, it consists of an event-driven kernel
that provides simple cooperative multitasking as well as dynamic loading and
unloading of applications at runtime. It can be configured to use only a few
kBytes of program and a few tens of bytes of memory. While both above-
mentioned operating systems strive for portability and general applicability
in WSNs, a variety of other operating systems with specialized properties and
hardware affinity have been developed, e.g., Scatterware [37] for the Scatterweb
nodes or BTNut [10] for the BTNodes.
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By hiding most of the intricate details of the underlying hardware platform,
these operating systems allow a programmer to concentrate on the application
development instead of operating with registers, bus timings, etc.

Programming Abstractions Despite the level of abstraction offered by WSN
operating systems, programming a sensor network remains a demanding chal-
lenge [87]. As a result, different programming abstractions have been developed
that intend to ease the implementation of WSN applications. The most promi-
nent amongst them can be classified into one or more of the following categories:

Macro- or swarm-Programming

Virtual Machine

Database-like

Middleware and Code Synthesis

Simulation and Visualization

The key idea behind macro- or swarm-programming is to program the sensor
network as a whole instead of writing code for single sensor nodes. A high-level
behavior description is fed into the network and the single nodes derive their
tasks from this global target specification. Examples for this type of program-
ming abstraction are SWARMS [21,89] and TAG [106]. They relieve program-
mers from dealing with the complicated aspects of node level programming and
support a platform-independent specification of the application’s task. Guided
by biological paradigms, an important research direction in sensor networks is
to mimic the behavior of swarms. The idea is to use local rules that evict a
global behavior of the network. For instance, Generic Role Assignment [52]
uses rules to assign roles to individual sensor nodes (such as leader or gateway).
FACTS [170] provides a rule based language to express the behavior of the
network.

To address the problem of heterogeneity, virtual machine (VM) techniques were
proposed for WSNs. Programs that target a virtual machine are inherently
portable and may run on virtually any kind of hardware – if either hardware
support for the VM or an interpreter is available. A common drawback of tradi-
tional VMs such as the Java Virtual Machine (JVM, [102]), the .NET Common
Language Infrastructure (CLI, [74]) or Sun’s KVM [163] is the footprint of the
VM and the execution overhead compared to native code. Hence, dedicated
virtual machines were proposed that tackle these challenges. Maté [97] real-
izes a simple VM on TinyOS-based nodes that allows programs to be written
with only some 100 bytes in size. Because of its limited functionality, Koshy
and Pandey presented VM? [90], a VM that supersedes Maté by synthesizing
application-specific VMs. Programmers develop their application against a set
of platform-independent interfaces. VM? analyzes the application and assem-
bles a VM?-instance that only contains required functionality. The application
specific virtual machine (ASVM) approach [98] is very similar and also gener-
ates specialized and lean VMs with an optimized instruction set for TinyOS
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operated sensor nodes.

Database-like approaches are similar to the swarm programming techniques as
they also use a high-level language to specify the behavior of the entire network.
In contrast to them, the application’s goal is not directly specified but queries
are formulated that request specific data from the network – the WSN is treated
like a distributed database. A detailed discussion is deferred until Section 6.3.

In traditional networks, middleware technologies have proven to be an excellent
means for hiding the complex details of the underlying hardware and networking
infrastructure from the application. The fundamental goals are essentially the
same in WSNs but traditional middleware solutions do not match the different
requirements of sensor networks. Despite the challenges that render the devel-
opment of comprehensive middleware solutions for WSNs extremely difficult,
middleware techniques are seen as the paramount solution for efficient sensor
network application development [59,143]. Because of their superior significance
for WSNs, middleware techniques are separately discussed in Chapter 6.

Simulation and visualization tools are of equal importance for the development
and operation of WSN applications. Simulation tools support developers in
optimizing and evaluating the application prior to the network’s deployment
on real hardware. Since sensor nodes typically do not offer any kind of user
interface to the user, visualizations serve as surrogates to display the state
of individual nodes or the network as a whole. Simulation frameworks are
presented in Chapter 4 and visualization tools are covered in Chapter 5.

2.2. Extensible Markup Language Technologies

The unparalleled success of the Internet was fueled by the development of the
Hyper-Text Markup Language (HTML) in the 1990s. HTML has paved the
way for a widespread use of text markup languages. The World Wide Web
Consortium (W3C) as the standardizing committee of the HTML language
evolved the fundamental ideas of HTML to a more general framework. Instead
of only targeting web pages, the Extensible Markup Language (XML) and re-
lated technologies have been standardized to support generic text markup. In
the following, XML (Section 2.2.1) and XML Schema (Section 2.2.2) are in-
troduced as far as they are relevant for this thesis. The terminology conforms
to [187,188,191,192].

2.2.1. XML

This section introduces the fundamentals of XML, the successor of the older and
more feature-rich Standard Generalized Markup Language (SGML) which was
frequently considered to be excessively complex. SGML’s and XML’s feature
sets are often compared by using a Pareto distribution: While XML has only
20% of SGML’s complexity, it allows the realization of 80% of the possible ap-
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plication space of SGML. This flexibility has made XML virtually omnipresent
and it is endorsed by huge companies, by many internet protocols as well as
by the Open Source community. It superseded countless binary data storage
formats and a huge number of applications use XML as their foremost data
storage, import and export format. XML’s main purpose is to provide a stan-
dard for exchanging semi-structured data in a human and machine-readable
tree-like form. Semi-structured means that XML does not specify how data is
represented exactly, it leaves this up to the individual application. Hence, XML
defines how documents are structured but also allows unstructured parts inside
the document.

Structure

An XML document consists of two fundamental language constructs: markup
and character data. The markup is the building block that frames the character
data into a tree-like structure. To put it the other way round, character data is
everything that is not markup. Figure 2.4(a) shows a very basic document that
represents an (x, y)-coordinate tuple. It is comprised of character data marked
in bold as well as markup. Figure 2.4(b) provides the semantically equivalent
tree representation of the document shown in Figure 2.4(a).

1 <Location >

2 <x>110.45</x>

3 <y>-37.62</y>

4 </Location >

(a) Textual representation

Location

x y

110.45 -37.62

Element Character data

(b) Tree representation

Figure 2.4.: Simple document representing an (x, y)-coordinate tuple

The fundamental constructs that make up the markup in a document are ele-
ments. In Figure 2.4(b), elements are denoted by rectangles in the tree. Char-
acter data at the leaves of the tree are denoted by ovals. The tree structure
of a document yields a hierarchical relation between individual elements. The
element at the top of this tree is called root element. An element ec that is di-
rectly contained inside another element ep is called the child element of ep and
ep is defined as the parent element of ec. Elements that share the same parent
element are called siblings. The parent and child relationship is also applied
recursively and elements ed that are the recursive children of an element ep are
called descendants. If ed is the descendant of ep, then ep is the ancestor of ed.

In the commonly used textual representation of documents (cp. Figure 2.4(a)),
elements are denoted by an opening and a closing tag, also called start and end
tag. A start tag consists of the element’s name that is surrounded by < and >
as in <Location>. Like the start tag, the end tag is encompassed by < and >
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but with an additional / following the < as in </Location>.

Flanked by the start and end tag, the content of an element may occur. The
content can be empty, include plain character sequences, other elements or
both. If no content is present, the start and end tag may be combined to
a single abbreviated tag that is functionally equivalent. This empty element
is similar to the end tag but the slash follows the element’s name instead of
preceding it (e.g., <Location/>).

Apart from the element, another markup construct called attribute allows struc-
turing the content of a document. These are (name, value)-pairs that are con-
tained between the angle brackets of an opening tag and follow the element’s
name. Attributes cannot contain other attributes or elements but only char-
acter data. An element may contain more than one attribute if their names
are unique within this element. Figure 2.5 shows a document containing one
attribute called unit inside the x element. As a rule of thumb, they are used
for a further description of the element’s character content.

1 <Location >

2 <x unit="km">110.45</x>

3 <y>-37.62</y>

4 </Location >

Figure 2.5.: Using attributes in a document.

Besides elements, attributes and character data, any document may contain an
optional prolog that must – if present – appear before the root element. It carries
data that is needed for processing the following document. The prolog may start
with the XML declaration containing the version number of the XML standard
used and may contain the character encoding of the document. Figure 2.6 shows
a document that has an XML prolog consisting of the XML declaration and a
further processing instruction. Processing instructions are similar to the XML
declaration but they may occur anywhere in a document where a tag may be
used and must not begin with XML or xml. They are used to convey application-
specific parsing instructions and they are neither part of the character data nor
of the tree-like structure.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?appspecific processing="hint" ?>

3 <Location >

4 <x unit="km">110.45</x>

5 <y>-37.62</y>

6 </Location >

Figure 2.6.: Document with the optional XML declaration and a processing
instruction

After the prolog, the actual document content is encoded as markup and char-
acter data. As explained above, some characters (such as <, > and &) have a
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particular connotation as they separate markup from character data. If these
characters should occur as part of the character data, they must be escaped to
void their special meaning. XML allows two distinct possibilities for escaping
them: entity references and CDATA sections. Entity references may be used
as substitutes for other characters. XML offers several predefined entity ref-
erences: &amp; (&), &lt; (<), &gt; (>), &apos; (’) and &quot; (”). Apart
from the predefined ones, numerical entities represent characters by a numerical
value (e.g., &#38; instead of &amp;). CDATA sections begin with <![CDATA[
and end with ]]>. Any special character in between is treated as character
data. Only the > character must be escaped inside a CDATA section using
&gt;.

Namespaces

If these rules are consequently applied, markup and character data are easily
separated. However, it may happen that the same element or attribute name
must be reused with different semantics. The document shown in Figure 2.7
uses the same element name Location twice to express to different things: a
physical and an abstract location.

1 <System>

2 <Location >

3 <x>110.45</x>

4 <y>-37.62</y>

5 </Location >

6 <Location >South of Luebeck </Location >

7 </System>

Figure 2.7.: Document with ambiguous tag names

In order to distinguish these two elements, XML allows the use of name-
spaces [187]. A namespace is identified by a Uniform Resource Identifier (URI,
[168]). Before a namespace can be used in the document, it must be declared
by assigning a short prefix to the (typically long) URI of the namespace. This
declaration may be present in each starting tag and is valid until the corre-
sponding end tag is reached. Hence, declaring a namespace in the root element
of a document makes the namespace’s identifier span the whole document.

A namespace declaration uses standard XML attributes to express the assign-
ment of an identifier to a namespace URI. The attribute’s name is reserved
and starts with xmlns: followed by the namespace identifier. The value of this
attribute is the URI of the namespace, and the complete namespace declaration
is of the form <tagname xmlns:prefix="URI">. Associating a tag or attribute
with a declared namespace is done by prefixing the element’s or attribute’s
name with the namespace identifier separated by a colon. Such a composite of
prefix and name is called Qualified Name (QName).

The use of namespaces is shown in Figure 2.8: the prefix phys is bound
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to the namespace URI http://www.example.com/phys and desc to http:
//www.example.com/desc. Both are used to uniquely identify the previously
ambiguous elements Location, x and y to the respective namespace. Please
note that the URIs simply serve as unique identifiers and they do not necessar-
ily point to any existing document.

1 <phys:System xmlns:phys="http://www.example.com/phys"

2 xmlns:desc="http://www.example.com/desc">

3 <phys:Location >

4 <phys:x>110.45</phys:x>

5 <phys:y>-37.62</phys:y>

6 </phys:Location >

7 <desc:Location >192.168.1.1</desc:Location >

8 </phys:System>

Figure 2.8.: Document from Figure 2.7 augmented with namespaces to avoid
ambiguities

Correctness

As described above, XML defines very strict rules and regulates how a doc-
ument must be structured. A document that adheres to these rules is called
well-formed. This means that a document has only one root element, that the
elements are correctly nested and that it follows all rules of the XML syntax.
Figure 2.9 presents a document that is not well-formed: In line 4, the corre-
sponding end tag for the start tag x is missing. Next, the end tags for the
elements y and Location appear in the wrong order (line 8-9). Finally, the
document has more than one root element (line 1 and 11).

1 <LocationList >

2 <Location >

3 <x>

4 <y>-37.62</y>

5 </Location >

6 <Location >

7 <x>-12.78</x>

8 <y>-97.10</Location>

9 </y>

10 </LocationList >

11 <AnotherRootElement/>

Figure 2.9.: Not well-formed XML document

The attribute well-formed is strictly syntactical and does not give any hints on
the content of the document. Depending on the application, it may be essential
to restrict the structure of the markup and the character data. This allows
machines to process documents easily due to their well-known and structured
content. To achieve this goal, well-formed documents may additionally adhere
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to a specific grammar. If they are complying to such a grammar, they are called
valid.

Quite a few of these grammar languages have been proposed in the past. A com-
monly used grammar language is the Document Type Definition (DTD) that
was specified in conjunction with XML. Due to various limitations (e.g., no sup-
port for namespaces and a crude, non-expressive language) it is mostly obsolete
nowadays. To fill this gap, the W3C standardized the successor of DTDs called
XML Schema2. Roughly at the same time, other XML schema languages such
as Relax NG [76] have been developed. Nevertheless, as a standard published
by the renowned W3C, XML Schema is currently the predominant language.

2.2.2. XML Schema

For many applications XML is too flexible and thus too unspecific to be of any
direct use. It is often handy to constrain the set of elements, tags, attributes
and their contents to help machines understand the meaning of documents.
XML Schema [191, 192] provides a language that allows to create dialects of
XML. Using this language it is possible to define the order of elements, their
relations and the structure of character data.

For example, the Location element depicted in Figure 2.7 may contain arbi-
trary, valid character data or even other markup. Understanding these generic
documents with the help of machines is therefore challenging. If an XML
Schema had limited the contents of the Location element to only numerical
values, this task would have been easily accomplished. A language described by
an XML Schema document is referred to as an XML language or XML dialect.
A document that is well-formed and that conforms to a given XML Schema is
called valid or instance document. Programs that facilitate this verification are
so-called validating parsers.

This section presents the basic structure of XML Schema and introduces the
most important building blocks that are available for developers in order to
specify an XML language. An XML Schema document itself is a well-formed
document that adheres to a specific grammar. The normative documents
XML Schema 1.1 Part 1: Structures [191] and XML Schema 1.1 Part 2:
Datatypes [192] are written in plain text to bootstrap the syntax of XML
Schema. Additionally, an XML Schema that describes the XML Schema lan-
guage is available3 but not normative.

Structure

The root element of XML Schema documents is schema. The XML Schema
standard prescribes the use of namespaces to identify all XML Schema elements

2Note the capital S
3http://www.w3.org/2001/XMLSchema.xsd
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unambiguously. All elements that belong to the XML Schema document must
be associated with the namespace http://www.w3.org/2001/XMLSchema.

Figure 2.10(a) depicts a simple XML Schema document. Line 1 shows the root
element. Here, the prefix xs is assigned to the XML Schema namespace. Hence,
all XML Schema tags are prefixed with xs: in this document.

In line 2, the element tag declares an element of the type long with the name
counter. Element tags declare the names and the types of the elements that
may occur as root elements in valid instance documents. Figure 2.10(b) depicts
a valid instance document that conforms to this XML language. A single root
element named counter contains character data representing an integer value
that complies with the constraints of a type called long.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="counter" type="xs:long"/>

3 </xs:schema>

(a) Element declaration in XML Schema

1 <counter >194</counter>

(b) Valid instance document

Figure 2.10.: Simple XML Schema document and an exemplary instance docu-
ment

As indicated by the existence of two normative documents, the core of XML
Schema is divided into two distinct parts. The first one (“Structures”) speci-
fies how the markup of instance documents can be structured by using XML
Schema. The second one (“Datatypes”) defines how the content of character
data in instance documents may be restricted. A key element of both normative
documents is to provide rules describing how new data types are derived from
a set of pre-defined ones. These data types are either simple types or complex
types. Simple types define the possible contents for character data. Complex
types encompass different simple types and define how the markup frames the
character data in a specific structure.

Simple Types

XML Schema provides a set of pre-defined types, so-called built-in types. These
are readily available in any XML Schema document. Besides the special type
anyType all other built-in types are of simple type. These can be categorized
into integer and real numbers, strings and composed types such as date and
time types. The built-in types and their inheritance relationship is shown in
Figure 2.114.

4By courtesy of the W3C: Copyright © 2006-02-17 World Wide Web Consortium, (Mas-
sachusetts Institute of Technology, European Research Consortium for Informatics and
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The most general data type at the root of the hierarchy embraces the value
space of all its child data types. When moving towards the tree’s leaves, the
data types are further restricted in their value space.

Figure 2.11.: The hierarchy of built-in data types in XML Schema

Figure 2.10(a) represents an example of how these built-in types are utilized. In
this XML Schema document, the integer data type long is used. A document
that conforms to this XML language is depicted in Figure 2.10(b).

As mentioned above, the built-in simple types serve as the basis for user-defined
simple types. A simple type is derived from a built-in or another simple type by
restricting the value space through so called facets. This feature is extremely
useful, as a validating parser can already check if a given document adheres
to the expected grammar. Hence, applications can largely omit error-checking

Mathematics, Keio University). All Rights Reserved. http://www.w3.org/Consortium/
Legal/2002/copyright-documents-20021231
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code when using such a parser.

Table 2.2 lists the available facets and their semantics. An example on how to
define a simple type using facets is given in Figure 2.12. The element smallnum
is defined as a restriction of the base type byte with a value space ranging from
17 to 32 by using the facets minExclusive and maxInclusive.

Facet Description

length Number of units of length (E.g., number of characters for strings)
minLength Minimum number of units of length
maxLength Minimum number of units of length

pattern Constrains the value space to match the given regular expression
enumeration Limits the value space to a fixed set of values
whiteSpace Rules for whitespace treatment (preserve, replace, collapse)

minInclusive Constrains the value space to a minimum value
maxInclusive Constrains the value space to a maximum value
minExclusive Constrains the value space to a minimum (excluded) value
maxExclusive Constrains the value space to a maximum (excluded) value

totalDigits Defines the maximum total number of decimal digits
fractionDigits Defines the maximum number of fractional digits

minScale Limits the arithmetic precision to a minimal power
maxScale Limits the arithmetic precision to a maximal power

Table 2.2.: Constraining XML Schema facets

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="smallnum">

3 <xs:simpleType >

4 <xs:restriction base="xs:byte">

5 <xs:minExclusive value="16"/>

6 <xs:maxInclusive value="32"/>

7 </xs:restriction >

8 </xs:simpleType >

9 </xs:element>

10 </xs:schema>

Figure 2.12.: Simple type definition by restricting the built-in data type byte

Complex Types

Complex types may be composed of several simple and complex types and they
are used to structure the markup of a document. Thus, they define how ele-
ments are nested, which attributes may be present and how their contents may
look like. XML Schema supports three different types for composing the con-
tents of complex types: sequence, choice and all. In the following, these three
compositions are described in detail.

A sequence is a composition where the order of the contained elements is fixed.
Figure 2.13(a) shows how this complex type is expressed in XML Schema.
Figure 2.13(b) shows a valid instance document and Figure 2.13(c) depicts
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an invalid document (wrong order). A choice is similar to a sequence, but only
one of the contained elements may be present in any given instance document.
The all composition is somehow special since the ordering of the contained data
types is arbitrary in instance documents but each element may occur at most
once.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="numlist">

3 <xs:complexType >

4 <xs:sequence >

5 <xs:element name="abc" type="xs:float"/>

6 <xs:element name="xyz" type="xs:byte"/>

7 </xs:sequence >

8 </xs:complexType >

9 </xs:element>

10 </xs:schema>

(a) Complex type with a sequence of two elements

1 <numlist>

2 <abc>3.1415</abc>

3 <xyz>-11</xyz>

4 </numlist>

(b) Valid instance document

1 <numlist>

2 <xyz>-11</xyz>

3 <abc>3.1415</abc>

4 </numlist>

(c) Invalid instance document (wrong order of the elements)

Figure 2.13.: Example using a sequence composition

Each element of a complex type definition may contain a specification for how
often the element may occur in valid instance documents. The attributes
minOccurs and maxOccurs (0 ≤ minOccurs ≤ maxOccurs) are used to specify
the number of possible element occurrences. If not specified, they have a default
value of one. An exception is the special value unbounded for the maxOccurs at-
tribute that permits an infinite number of occurrences. Figure 2.14(a) presents
an XML Schema that makes use of these attributes and Figure 2.14(b) shows
a valid document of this XML language.

In the examples above, the simple and complex types are defined locally inside
the element tags. Another possibility is to define them globally as children
of the schema tag. Figure 2.15 shows the definition of a global complex type
with the name Location and an element named loc of the type Location. In
contrast to the previous examples, global type definitions may be repeatedly
used within the schema document while local complex types are only valid
inside the enclosing element. The same applies to the definition of global simple
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1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="numvalue">

3 <xs:complexType >

4 <xs:choice>

5 <xs:element name="abc" type="xs:float"

6 minOccurs="2" maxOccurs="4"/>

7 <xs:element name="xyz" type="xs:byte"/>

8 </xs:choice>

9 </xs:complexType >

10 </xs:element>

11 </xs:schema>

(a) XML Schema document

1 <numvalue >

2 <abc>1.23</abc>

3 <abc>4.56</abc>

4 <xyz>3</xyz>

5 </numvalue >

(b) Valid instance document

Figure 2.14.: Example on the use of minOccurs and maxOccurs

types. These are declared using the tag simpleType.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="loc" type="Location"/>

3

4 <xs:complexType name="Location">

5 <xs:sequence >

6 <xs:element name="x" type="xs:double"/>

7 <xs:element name="y" type="xs:double"/>

8 </xs:sequence >

9 </xs:complexType >

10 </xs:schema>

Figure 2.15.: XML Schema global type definition

Advanced Features

Apart from element, simple and complex type declarations, XML Schema offers
a variety of advanced features. In the following, two important aspects that are
relevant for this work are introduced: namespace support and annotations.

As discussed in Section 2.2.1, elements and attributes in documents may have
an assigned namespace. Consequently, XML Schema allows specifying the
namespace of the elements described by a specific schema document. The
attribute targetNamespace in the schema tag declares the namespace URI
that valid instance documents belong to. To link an instance document with
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its corresponding XML Schema, the attribute schemaLocation may be used
to point to the physical location of the XML Schema document. This at-
tribute must be assigned to the namespace URI http://www.w3.org/2000/
10/XMLSchema-instance.

Figure 2.16(a) shows an XML Schema document that uses the targetNamespace
attribute to specify that valid instance documents must belong to the names-
pace http://www.test.com/nspace. The instance document presented in Fig-
ure 2.16(b) assigns the prefix nsp to this namespace URI. The tag name nsp:
shortnum is therefore unambiguously identified as a member of this names-
pace. In addition, this instance document points to the physical location of
the XML Schema document by using the schemaLocation attribute. Validat-
ing parsers may use this information for retrieving the XML Schema document
when checking whether a given document is a valid instance document.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

2 targetNamespace="http://www.test.com/nspace">

3 <xs:element name="shortnum" type="xs:short"/>

4 </xs:schema>

(a) Target namespace in XML Schema

1 <nsp:shortnum xmlns:nsp="http://www.test.com/nspace"

2 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema -instance"

3 xsi:schemaLocation="http://www.test.com/test.xsd">

4 -1297

5 </nsp:shortnum >

(b) Valid instance document

Figure 2.16.: Use of namespaces in XML Schema

Finally, XML Schema supports the annotation of nearly all schema tags. Using
this feature, application-specific data are attached directly to the tags of an
XML Schema document. This is commonly used to extend the feature set of
XML Schema. These annotations are divided into a human- and a machine-
readable part. Figure 2.17 shows an example where both human- and machine-
readable annotations are attached to the smallnum element declaration.

XML Schema provides the annotation tag that may be contained as a child
in most other XML Schema tags. This may contain multiple documentation
and/or appinfo tags. The documentation tag is intended to provide informa-
tion for human readers while the appinfo tag serves as the frame for machine
readable information. The content of both elements is arbitrary and may be
comprised of well-formed markup and character data. Hence, the appinfo-tag
may contain even complex documents. While these are ignored by validat-
ing parsers, they could provide important information for application-specific
parsers or other tools that can process XML Schema documents.

30



2.3. Information Theory

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="smallnum" type="xs:byte">

3 <xs:annotation >

4 <xs:appinfo>

5 <Machine>readable </Machine>

6 </xs:appinfo>

7 <xs:documentation xml:lang="en">

8 Human-readable

9 </xs:documentation >

10 </xs:annotation >

11 </xs:element>

12 </xs:schema>

Figure 2.17.: Annotations in XML Schema documents

2.3. Information Theory

A frequent task in computer systems is to find an efficient binary representation
of information entities. Common examples are the compression of files before
they are backed up to tape or the compression of data in general before it is
transmitted over wide area network connections. This is often beneficial to
increase the efficiency of a system, e.g., to require less tapes for backup or
to improve the utilization of expensive communication links. The fundamental
theoretical limits for these optimizations were established by Claude E. Shannon
in 1948 [149].

For this thesis, a special aspect of his theories is of major importance. Shan-
non’s source coding theorem provides the limits of data compression and, as a
result, a lower bound on the number of bits needed to encode a specific piece of
information. Source coding therefore means eliminating redundancy and irrel-
evance in the stream of symbols that is emitted by a data source. It is used by
our (de-)serialization scheme called microFibre that is introduced in Section 6.5.

Imagine a data source that emits a number of discrete symbols X = {x1, . . . , xn}.
This set X is called the alphabet of the source. The probability that the source
emits the symbol xi is denoted by p(xi) (i ∈ {1, . . . , n}). Since the source
always emits one symbol out of its alphabet,

∑n
i=1 p(xi) = 1 must hold. Defi-

nition 1 provides Shannon’s measure of how much information is contained in
each symbol xi ∈ X.

Definition 1 (Entropy of a symbol)

H(xi) = log2
1

p (xi)
= −log2 (p (xi)) (2.1)

denotes the entropy (or information content) of a symbol xi ∈ X. The unit of
H(xi) is “binary digit” or “bit”.

A symbol that occurs with a high probability has therefore lower entropy than
a symbol with a very low occurrence probability. Because the receiver is not
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aware of the next symbol transmitted by the source, the amount of information
contained in a symbol is a measure for the uncertainty eliminated at the receiver
upon the reception of this symbol. For instance, a symbol with a probability
near one only eliminates very little uncertainty because it occurs extremely
frequently. A symbol with a probability near zero eliminates a high degree of
uncertainty because of its rare occurrence.

Beyond the entropy of a single symbol, the entropy of the data source as a
whole can be defined. This Shannon entropy (or the entropy of a data source)
gives the average number of bits that can be used to communicate information
losslessly. Definition 2 provides the formal notation of a data source’s entropy.

Definition 2 (Shannon Entropy)

H(X) =
n

∑

i=1

p (xi) H (xi) (2.2)

= −
n

∑

i=1

p (xi) log2 (p (xi)) (2.3)

denotes the entropy of a data source that emits the symbols xi ∈ {x1, . . . , xn}
with a probability of p(xi) (i ∈ {1, . . . , n},

∑n
i=1 p(xi) = 1). The unit of H(X)

is “bit/symbol”.

In the special case that all symbols emitted by a specific data source are equally
likely, i.e., p(xi) = 1

n
, the entropy of this data source is at its maximum. Defini-

tion 3 uses Definition 2 with p(xi) = 1
n

to derive the entropy of this special data
source. The resulting formula is independent of the individual (equal) proba-
bilities and the number of bits required to represent a symbol only depends
on n. Please note that the values of H(xi), H(X) and Hmax(X) are typically
no integer values. To actually represent a symbol in a computer system, it is
necessary to round up to the next integer value, e.g. n = dH(xi)e.

Definition 3 (Maximal Shannon Entropy)

Hmax(X) = −
n

∑

i=1

1

n
log2

1

n
(2.4)

= −n

(

1

n
log2

1

n

)

(2.5)

= −log2
1

n
(2.6)

= log2 (n) (2.7)

denotes the entropy of a data source that emits the symbols xi ∈ {x1, . . . , xn}
with an constant probability of p(xi) = 1

n
(i ∈ {1, . . . , n}. The unit of Hmax(X)

is “bit/symbol”.

In cases where not all the symbols are equally likely, so-called entropy coding
yields the shortest possible bit-lengths. An entropy encoding assigns short
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replacement symbols to very frequent source symbols and longer replacement
symbols to less frequent ones. The most ubiquitously known entropy encoding
is the Huffman coding [68]. To create such a Huffman coding, a binary tree
is constructed that ultimately contains the information to derive the set of
replacement symbols R = {r1, . . . , rn}. R is provably optimal and no other R′

can yield a lower Shannon Entropy. Algorithm 1 presents the steps in order to
construct this binary tree, the so-called Huffman Tree.

Algorithm 1 Construction of a Huffman Tree

Require: X {Set of symbols xi ∈ {x1, . . . , xn}}
Require: P {Set of probabilities p(xi) (i1, . . . , xn,

∑

n

i=1
p(xi) = 1}

1: vertices := Create a vertex for each symbol xi with the probability pi

2: while |vertices| > 1 do
3: n1 := Vertex from X with the lowest probability, remove n1 from vertices
4: n2 := Vertex from X with the lowest probability, remove n2 from vertices
5: t := Create temporary vertex
6: t.probability = n1.probability + n2.probability
7: Set n1 and n2 as children of t, label one edge with 0 and one with 1
8: Insert t into vertices
9: end while

10: return first(vertices) {The remaining node is the root of the Huffman tree}

Provided with the set of source symbols X and the corresponding set of proba-
bilities P , the algorithm starts by creating a set of vertices (denoted by vertices)
using X and P . Each vertex is hereby labeled with a symbol xi ∈ X and its
matching probability pi ∈ P (line 1). The remainder of the algorithm runs
repeatedly until only one vertex is left in vertices (line 3-8). In every itera-
tion, two nodes n1 and n2 with the lowest probabilities in vertices are removed
from the set. A temporary vertex t is created and added to vertices. It is
labeled with a temporary name and the sum of the probabilities of n1 and n2.
Furthermore, n1 and n2 are attached as child vertices to this temporary node.
The edges are labeled with 0 and 1 respectively. Finally, the remaining node
in vertices is the root node of the Huffman Tree (line 10). The individual re-
placement symbols r(xi) for an xi are derived by concatenating the edge labels
starting from the root of the tree until the symbol xi is found.

In the following, the process of constructing a Huffman Tree is illustrated using
a simple example. Table 2.3 depicts a set of source symbols along with their
assigned probabilities. It also provides the entropy of each symbol (calculated by
using Definition 1). The entropy of the data source as a whole can be calculated
by applying Definition 2. This gives a Shannon Entropy for this data source
of H(X) ≈ 1.79bit/symbol. Looking at the entropy of the individual symbols,
it is clearly visible that less frequent symbols have a higher value than more
frequent ones.

Figure 2.18 shows the resulting Huffman Tree that is produced by running
Algorithm 1. At the beginning, the nodes representing symbols D and C are
removed from vertices because the have the lowest probabilities. They are
attached as children of a newly created temporary node t0. This process is
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i 1 2 3 4

Symbol xi A B C D

Probability pi

5

11

3

11

2

11

1

11
H(xi)[bit](approx.) 1.14 1.87 2.46 3.46

Table 2.3.: Exemplary data source

repeated until only node t2 remains. By looking at the example, it can be seen
that the tree is built bottom-up, i.e., from the leaves to the root node, since the
least probable symbols have the longest path to the root.

t2 :    
11

11

A :    
11

5
t1 :    

11

6

B :    
11

3
t0 :    

11

3

D :    
11

1
C :    

11

2

1 0

1 0

1 0

Figure 2.18.: Huffman Tree for the example shown in Table 2.3

Table 2.4 presents the resulting Huffman code that is derived from the Huffman
Tree. The table contains the assigned replacement symbols ri for each symbol
xi. These are obtained by concatenating the edge labels starting from the root
of the tree until xi is encountered. A property of Huffman codes is that they
are prefix-free and uniquely decodable. This means that no ri is the beginning
of another rj .

Symbol xi A B C D

Replacement Symbol ri 1 01 000 001

Table 2.4.: Resulting Huffman Code for the example shown in Table 2.3

Imagine that our exemplary data source emits the symbol stream S1 = “A
B C D A A A A A” (9 symbols). The resulting replacement code would be
C1 = “1 01 000 001 1 1 1 1 1” (14 bit)5. This gives an average code length
l = 14bit/9symbols ≈ 1.56bit/symbol per symbol which is less than the above-
calculated H(X) = 1.79bit/symbol. This is because S1 does not exactly match

5The spaces are inserted for the sake of clarity, they are not part of the data
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the symbol probabilities assumed in Table 2.3, for instance the symbol “A”
occurs too often.

To decode the message, the exact knowledge of the Huffman Tree shown in
Figure 2.18 is mandatory at the receiver. This is because the Huffman Tree
itself is not unique, e.g., changing the edge labels from zero to one and vice
versa yields an equally efficient, yet different Huffman Code. A frequently used
technique is to prefix the replacement code with the used Huffman Tree. On the
one hand, this technique allows an optimal adaptation of the Huffman Tree to
the actual symbol probabilities of the data. On the other hand, it increases the
length of the transmitted data. While this approach is well suited for lengthy
symbol streams (e.g., when compressing files on a computer), it deteriorates
the achieved compression ratio for short symbol streams (e.g., the payload of
individual wireless data packets).
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3. Comprehensive Development
Support for WSNs

Software development for traditional embedded systems is already a challeng-
ing task in itself [96]. The unique characteristics and requirements of WSNs,
which are in essence networked embedded systems, further aggravate this situa-
tion. Therefore, developing applications for these massively distributed systems
with only very scarce resources requires new paradigms and development tools
to counter the arising challenges. When analyzing typical real-world WSN
projects, such as the ones presented in Section 2.1.1, three aspects are common
to them [58,99,132]:

Simulation and visualization are an integral part of WSN development

Deployments comprise different, heterogeneous devices

Software matures over time and changes must be anticipated

Application development for WSNs comprises a multi-stage approach and de-
velopers perform a number of sequential steps to arrive at a working application.
Prior to any deployment on real sensor network hardware, simulations are con-
ducted to ensure a correct application behavior under laboratory conditions.
The outcome of the simulations is used for an evaluation of the application’s
performance and an optimization of the underlying algorithms and protocols.
Once a satisfactory state is reached, the application is ported to the target hard-
ware platforms including sensor nodes, gateways and backend systems. There-
fore, device heterogeneity is an integral part of WSN application development.
In addition, since neither simulation tools nor sensor nodes offer any user in-
terface, application data originating from these components must be visualized
by dedicated visualization code.

Apart from the challenges imposed by the implementation of simulation, vi-
sualization and applications, another issue complicates the development pro-
cess. Since project specifications are subject to modification and applications
evolve over time, changes are an inherent companion of the development pro-
cess. Therefore, most of the above-mentioned phases are at least partially
repeated multiple times. However, a common rule in project management is
that changes are expensive, time consuming and error-prone the later they are
introduced into the project.

For this reason, an optimized development process that supports simulation,
visualization and heterogeneous, distributed application development is vital.
Consequently, this chapter presents the architecture of such a development
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framework for heterogeneous WSN applications.

The remainder of this chapter is structured as follows. Section 3.1 classifies stan-
dard development approaches and discusses how they are typically applied in
WSN application development. Subsequently, Section 3.2 derives design criteria
for a comprehensive development framework and introduces the architecture of
our approach presented in this thesis.

3.1. State of the Art

Depending on the project’s nature, the available resources and the experience
of the development team, the chosen approach to software development varies.
Figure 3.1 illustrates possible approaches as a continuum with the two opposi-
tional approaches manual, handcrafted code and model-driven engineering. In
this continuum, code synthesis based on models represents a compromise be-
tween both extremes.

Manual, handcrafted
code

Code synthesis
based on models

Model-driven
engineering

Figure 3.1.: Continuum of development approaches

In the case of manual, handcrafted code, the system is realized by using a
high-level programming language such as Java, C, C++ or nesC. There is no
intermediate modeling or abstraction phase but developers implement the ap-
plication logic directly in the programming language of the target device. This
process has proven advantageous for small projects with only a few developers.
Being a dominant and prevailing approach to application development, a high
degree of developer expertise is available in both, industry and research. In
the meantime, a variety of Integrated Development Environments (IDEs) such
as the Eclipse [172] framework are widely available and ease the development
process.

However, it has been realized that the use of code synthesis based on models can
improve the development process of complex projects. Users create graphical
models that are utilized by a software tool to generate source code for different
programming languages. The visual representation enables developers to gain
a better understanding of complex data structures and the interdependencies
of a project’s components. The generated code provides method stubs that
are filled with the application’s logic by developers. A widespread, well-known
technology in this context is the Unified Modeling Language (UML, [120]) and
its class and use case diagrams.

While the above-mentioned approach still requires developers to implement the
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application logic manually, model driven engineering strives for a fully auto-
matic synthesis of the application from models. Hereby, models contain all
details of the application and transform the abstract models into source code
for a specific hardware platform. In contrast to model based code synthesis,
developers (ideally) only modify the model without ever changing the gener-
ated source code. Probably the most commonly known representatives of this
approach are the Model Driven Architecture (MDA, [121]) specified by the Ob-
ject Management Group (OMG, [119]) and the Eclipse Modeling Framework
(EMF, [171]) available as a plug-in for the Eclipse development environment.

In WSN application development, today’s prevailing development methodol-
ogy is the use of manual, handcrafted code. Despite the available programming
abstractions (cp. Section 2.1.5 and Section 6.3), it is common practice that de-
velopers implement the application’s logic directly in the programming language
of the targeted sensor network hardware, transfer the compiled program onto
the sensor nodes and test the deployed application. To improve this situation,
developers use simulations prior to actual deployments in order to verify their
protocols and algorithms. Depending on the simulation framework, this can
result in a reimplementation of the application, e.g., when using Ns-2 for the
simulations (implemented in C++) and TinyOS as the WSN operating system
(implemented in nesC). This situation is only slightly improved by frameworks
that support using the same implementation for both the WSN application and
the simulation. For instance, TOSSIM [99] runs programs targeted at TinyOS
hardware inside a simulated environment on standard PC equipment. While
this approach combines simulation and application development, it is bound
to specific sensor node hardware and therefore unable to address device het-
erogeneity or generic visualizations. A similar situation prevails in the area of
visualization. Because the visualization of a network’s state is highly specific
to the individual applications, the visualization code is often implemented for
one single application.

3.2. Design Goals and Architecture

Even though an ample selection of traditional model based code generation
frameworks exist, writing code for sensor nodes, gateways, backend systems,
simulators and visualization tools manually is still the predominant technique
in WSN development. Providing tool support for the aforementioned tasks has
the potential to ease and to accelerate WSN application development. However,
the limited use of existing high-level frameworks motivates the need for a novel
type of development support. We strongly believe that there is a demand
for development tools that provide a sufficient layer of abstraction from the
underlying heterogeneous hardware infrastructure in WSNs while leaving the
developer in control of the overall process.

Such tools should ideally support the full span of development tasks leading
ultimately to a deployable WSN application. To promote a widespread use,
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they should support different WSN hardware platforms such as the ones pre-
sented in Section 2.1.4. Furthermore, this support must include infrastructure
components such as gateways and backend systems while avoiding manual code
duplication. We have identified five key features that a comprehensive develop-
ment framework for WSNs must offer:

Scale from resource-constraint WSN devices to more powerful gateways
and high-performance backend systems

Integrate simulation tools and visualization environments

Encourage application evolution over its lifetime

Support the integration with traditional networks

Offering support for all classes of WSN applications

Consequently, we propose a development framework for WSN applications that
follows these guidelines. It is comprised of the four components Shawn, Spy-
Glass, Fabric and microFibre that were briefly introduced in Section 1.3. While
these components are contained and valuable in themselves, they unleash their
full potential when they are embedded into a common development framework.
Figure 3.2 presents the high-level architecture of our proposed approach. The
central idea is to use Fabric as the integrating glue that amalgamates WSN ap-
plication development, simulation and visualization into a common framework.

SpyGlass

Ns-2

TOSSIM
+

Data types

Gateway BackendHardware

Visualization

Simulation

WSN components

Annotations

Middleware synthesis

Seamless 

message 
exchange

Figure 3.2.: Architecture to support a comprehensive development of WSN ap-
plications

The development process is started by defining the application’s data types
in a high-level language and augmenting this specification with aspects that
define how the data type will be treated by the generated middleware (e.g., se-
cure transmission or compact serialization). The specification is fed into Fabric
along with a so-called target specification that defines properties of the gener-
ated code (such as target platform, programming language and device specific
peculiarities). Invoking Fabric multiple times with the same annotated data
types and different target specifications (e.g., for a specific WSN hardware
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platform, Shawn and SpyGlass) yields compatible middleware instances that
can seamlessly exchange messages.

The application developer uses the generated API to implement his application
logic on top of the generated middleware instances. Compared to traditional
WSN development, there is no need to propagate changes manually to the dif-
ferent implementations because modifications of the annotated data types man-
ifest themselves in newly generated middleware instances automatically. This
enables the application developer to concentrate entirely on the implementation
of the application’s logic and eases the integration of changes.

In the continuum depicted in Figure 3.1, this approach is located between code
synthesis based on models and model-driven engineering. Fabric’s powerful
type-specific annotation concept provides more services to the application de-
veloper that only method stubs. In contrast to model-driven engineering, Fab-
ric does not generate the complete application from models. We are convinced
that strict resource-constraints, device heterogeneity and fundamentally differ-
ent programming paradigms such as cross-layer approaches still require manual
optimizations by the application developer.

The remainder of this thesis is structured as follows. Chapter 4 introduces the
WSN simulation tool Shawn and describes how the development of algorithms,
protocols and applications for WSNs is supported by Shawn. Then, Chap-
ter 5 presents the generic visualization framework SpyGlass and introduces the
process of visualizing the output of simulations as well as that of real-world
deployments. Next, Chapter 6 describes Fabric and microFibre in detail. Fi-
nally, Chapter 7 presents a case study and gives details on the application of
these three components in a real-world project and Chapter 8 concludes with
a summary and directions for future work.
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4. Shawn: A Customizable Sensor
Network Simulator

Software for WSNs must be thoroughly tested prior to real-world deployments
since sensor nodes do not offer convenient debugging interfaces and are typi-
cally inaccessible after deployment. Furthermore, successfully designing algo-
rithms and protocols for WSNs requires a deep understanding of these complex
distributed networks. To achieve these goals, three different approaches are
commonly used:

Analytical methods

Real-world experiments

Computer simulations

Analytical methods are typically not well-suited to support the development of
complete WSN applications. Despite their expressiveness and generality, it is
difficult to grasp all details of such complex, distributed applications in a purely
formal manner.

Real-world experiments are an attractive option as they are a convincing means
to demonstrate that an application is able to accomplish a specific task in prac-
tice – if the technology is already available. However, due to the unpredictable
environmental influences it is hard to reproduce results or to isolate sources of
errors. Furthermore, real-world deployments are laborious and involve manage-
ment tasks that are not directly related to the problem [63]. For this reason,
they are typically limited to a few dozens of devices [165, 185], while future
scenarios anticipate networks of several thousands to millions of nodes [44,93].

Computer simulations are a promising means to tackle the task of algorithm
and protocol engineering for WSNs. A number of simulation tools are avail-
able. They reproduce real-world effects inside a simulation environment includ-
ing radio propagation properties and environmental influences. This mitigates
required efforts for real-world deployments and may therefore help to increase
their size. However, the high level of detail provided by these tools obfuscates
and misses another, much more crucial issue: The large number of factors that
influence the behavior of the whole network renders it nearly impossible to
isolate a specific parameter of interest.

For example, consider the development of a novel routing protocol. In the case
of a very low throughput, the cause of the problem is not clear at first sight, as
the sources for the error are manifold: the MAC layer might be faulty; cross-
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traffic from other senders could limit the available bandwidth; radio propagation
properties might have changed or the routing protocol’s algorithm is not yet
optimal. Therefore, it is not only sufficient to simulate a high number of nodes
with a high level of detail. Instead, developers require the ability to focus
on the actual research problem. When designing algorithms and protocols for
WSN it is important to understand the underlying structure of the network – a
task that is often one level above the technical details of individual nodes and
low-level effects.

There is certainly some influence of communication characteristics, e.g., because
they affect transmission times, communication paths and packet loss. From the
algorithm’s point of view, there is no difference between a complete simulation of
the physical environment (or low-level networking protocols) and the alternative
approach of using well-chosen random distributions on message delay and loss.
Thus, using a detailed simulation may lead to the situation where the simulator
spends much processing time on producing results that are of no interest at all.
By contrast, they actually hinder productive research on the algorithm.

To improve this situation, we propose a novel simulation tool called Shawn [49,
92,127]. The central idea of Shawn is to replace low-level effects with abstract
and exchangeable models so that simulations can be used for huge networks
in reasonable time while keeping the focus on the actual research problem. In
the following, Section 4.1 summarizes related work. Then, Section 4.2 discusses
fundamental design goals of Shawn while Section 4.3 shows how these goals re-
flect themselves in Shawn’s architecture. Finally, Section 4.4 compares Shawn’s
performance with two other prominent simulation tools (Ns-2 and TOSSIM).

4.1. Related Work

The range of applications for simulations is rather broad. Consequently, many
different simulation tools have been developed. Each of them targets a specific
application domain where it delivers best results. In the following, simulation
tools frequently used in WSN research are presented. Figure 4.1 provides an
overview of these tools and classifies their application area along two axes: ab-
straction level and the typical network sizes. Note that this does not express the
maximal feasible network sizes, but rather reflects typical application domains.

Ns-2 The Network Simulator-2 (Ns-2, [175]) is a discrete event simulator tar-
geted at network research. Nowadays, Ns-2 is the most prominent network
simulator used in WSN research [94]. It focuses on the simulation of ISO/OSI
layers including energy consumption and phenomena on the physical layer. Ns-
2 includes a vast repository of protocols, traffic generators and tools to simulate
TCP, routing and multicast protocols over wired and wireless networks. It fea-
tures detailed simulation tracing and includes the visualization tool network
animator (nam) for later playback of the observed traffic. Support for sensor
network simulations has also been integrated [117,123], including sensor models,
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Shawn

OmNeT++
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SENSE

TOSSIM
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Low-level protocols

Hardware

103 104 105 106

Figure 4.1.: Intended application area of Simulators

battery models, lightweight protocol stacks and scenario generation tools.

The highly detailed packet level simulations lead to a runtime behavior closely
coupled with the number of packets being exchanged, making it nearly impos-
sible to simulate large networks. Ns-2 is capable of handling up to 16,000 nodes
but the detail level of its simulations render working with more than 1,000
nodes virtually impossible in terms of runtime and memory consumption.

OMNeT++ The Objective Modular Network Testbed in C++ (OMNeT++,
[177]) is an object-oriented, modular discrete event simulator. It is very similar
to Ns-2 and also targets the ISO/OSI model. It can handle a few thousands
of nodes and features a graphical network editor as well as a visualizer for the
network and the data flow. The simulator is written in C++ and comes with a
homegrown configuration language called NED. OMNeT’s main objective is to
provide a component architecture through which simulations can be composed
very flexible. Components are programmed in C++ and then assembled into
larger components using NED. It is free for academic use only and a commercial
license is available.

SENSE The Sensor Network Simulator and Emulator (SENSE, [167]) is a
simulator specifically developed for the simulation of sensor networks. The au-
thors mention extensibility and reusability as the key factors they address with
SENSE. Extensibility is tackled by avoiding a tight coupling of objects through
a component-port model, which removes the interdependency of objects that is
often found in object-oriented architectures. This is achieved by their proposed
simulation component classifications, which are essentially interfaces, enabling
the exchange of implementations without the need to change the actual code.
SENSE offers different battery models, simple network and application layers
and an IEEE 802.11 [69] implementation. In its current version, it provides a
sequential simulation engine that can cope with around 5,000 nodes. Depend-
ing on the communication pattern of the network, this number may drop to
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500. The authors plan to support parallelization of the simulations to increase
the overall performance.

TOSSIM The TinyOS mote simulator (TOSSIM, [99]) emulates TinyOS [65,
100,173] motes down to the bit level and is hence a platform specific simulator.
It compiles code written for TinyOS to an executable file that can be run on
standard PC equipment. It ships with a GUI (TinyViz), which can visualize
and interact with running simulations. Recently, PowerTOSSIM [152], a power
modeling extension has been integrated into TOSSIM. PowerTOSSIM models
the power consumed by TinyOS applications and includes a detailed model of
the power consumption of the Mica2 [33] motes. Using this technique, develop-
ers can test TinyOS applications without deploying them on real sensor network
hardware. TOSSIM can handle scenarios with a few thousand virtual TinyOS
nodes.

The crucial point of the above presented simulation tools is that each of them
has its area of expertise in which it excels. Unfortunately, none of these areas
happens to be high-level protocols and abstract algorithms in combination with
the speed to handle large networks. This gap is filled by Shawn.

4.2. Design Goals

Shawn differs in various ways from the above-mentioned simulation tools, while
the most notable difference is its focus. It does not compete with these simula-
tors in the area of network stack simulation. Instead, Shawn emerged from an
algorithmic background. Its primary design goals are:

Simulate the effect caused by a phenomenon, not the phenomenon itself.

Scalability and support for extremely large networks.

Free choice of the implementation model.

Simulate the effects As discussed in Section 4.1, most simulation tools per-
form a complete simulation of the MAC layer including radio propagation prop-
erties such as attenuation, collision, fading and multi-path propagation. A cen-
tral design guideline of Shawn is to simulate the effect caused by a phenomenon,
and not the phenomenon itself. Shawn therefore only models the effects of a
MAC layer for the application (e.g., packet loss, corruption and delay).

This has several implications on the simulations performed with Shawn. On the
one hand, they are more predictable and there is a performance gain since such a
model can be implemented very efficiently. On the other hand, this means that
Shawn is unable to provide the same detail level that, for example, Ns-2 provides
with regard to physical layer or packet level phenomena. However, if the model
is chosen well, the effects for the application are virtually the same. Imagine
two implementations of a MAC layer: One abstract implementation that yields
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an increased packet loss on high local traffic and one that calculates interference
for single packets using radio propagation models. Both will produce similar
effects on the application layer.

It must be mentioned though that the interpretation of obtained results must
take the properties of the individual models into account. If, for instance, a sim-
plified communication model is used to benchmark the results of a localization
algorithm, the quality of the obtained solution remains unaffected. However,
the actual running time of the algorithm is not representative for real-world
environments since no delay or loss occurs.

Scalability One central goal of Shawn is to support orders of magnitudes
higher numbers of nodes than the currently existing simulators. By simplifying
the structure of several low-level parameters, their time-consuming computa-
tion can be replaced by fast substitutes as long as the interest in the large-scale
behavior of the system focuses on unaffected properties. A direct benefit of this
paradigm is that Shawn can simulate vast networks.

To enable a fast simulation of these scenarios, Shawn can be custom-tailored
to the problem at hand by selecting appropriate configuration options. This
enables developers to optimize the performance of Shawn specifically for each
single scenario. For example, a scenario without any mobility can be treated
differently than a scenario where sensor nodes are moving.

Free model choice Shawn supports a multi-stage development cycle where de-
velopers can freely choose the implementation model as depicted in Figure 4.2.
Using Shawn, they are not limited to the implementation of distributed proto-
cols. The rationale behind this approach is that – given a first idea for a novel
algorithm – the next natural step is not the design of a fully distributed pro-
tocol. In fact, it is more likely to perform a structural analysis of the problem
at hand. To get a better understanding of the problem in this phase, it may be
helpful to look at some exemplary networks to analyze their structure and the
underlying graph representation.

The next step may be to implement a centralized version of the algorithm in
order to achieve a rapid prototype version. A centralized algorithm has full
access to all nodes and has a global, flat view of the network. This provides
a simple means to obtain results and get a first impression of the overall per-
formance of the algorithm in question. The results emerging from this process
can provide optimization feedback for the algorithm design.

Once a satisfactory state of the centralized version has been achieved, the fea-
sibility of its distributed implementation can be investigated. Since the aim of
this step is to prove that the algorithm can be transformed to a distributed
implementation, a simplified communication model between individual sensor
nodes can be utilized. This allows for an efficient and fast implementation, yet
with meaningful results.
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Figure 4.2.: Development cycle encouraged by Shawn

This simplified version can be transformed gradually into a protocol that actu-
ally exchanges network messages containing protocol payload. With the pro-
tocol and data structures in place, the performance of the distributed imple-
mentation can be evaluated. Interesting questions that can be explored are
for instance the number of messages, energy consumption, run-time, resilience
to message loss and effects of the environment. This development cycle helps
the developer to start from an initial idea and gradually leads to a fully dis-
tributed protocol. However, each step of the cycle is optional and it is up to
the developer to pick only the necessary ones.

4.3. Architecture

Shawn’s architecture comprises three major parts (cp. Figure 4.3):

Models

Sequencer

Simulation Environment

Every aspect of Shawn is influenced by one or more Models, which are the key to
its flexibility and scalability. The Sequencer is the central coordinating unit in
Shawn as it configures the simulation, executes tasks sequentially and controls
the simulation. The Simulation Environment is the home for the virtual world
in which the simulated sensor nodes reside. In the following, the functionality
of these core components is described in detail.

4.3.1. Models

Shawn distinguishes between models and their respective implementations. A
model is the interface used by Shawn to control the simulation without any
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Figure 4.3.: High-level architecture of Shawn and overview of its core compo-
nents

knowledge on how a specific implementation may look like. Shawn maintains
a repository of model implementations that can be used to compose simulation
setups by selecting the desired behaviors. The implementation of a model may
be simplified and fast, or it could provide close approximations to reality. This
enables the user to select the most appropriate implementation of each model
to fine-tune Shawn’s behavior for a particular simulation task.

As depicted in Figure 4.3, three models form the foundation of Shawn:

Communication Model

Edge Model

Transmission Model

In the following, these models and their already included implementations are
explained in detail. Other models of minor importance are briefly introduced
at the end of this section.

Communication Model

Whenever a simulated sensor node in Shawn transmits a message, the potential
receivers of this message must be identified by the simulator. Please note that
this does not determine the properties of individual transmissions but defines
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whether two nodes can communicate as a matter of principle. This question is
answered by implementations of the Communication Model. Figure 4.4 presents
the C++ interface of the Communication Model. A single method is invoked
to determine whether the node b is in reach of the node a.

1 class CommunicationModel

2 {

3 ...

4 bool can_communicate_uni (Node& a, Node& b);

5 ...

6 };

Figure 4.4.: Application programming interface of the communication model in
Shawn (excerpt)

By implementing this interface with user-defined code, arbitrary communication
patterns can be realized. Shawn ships with a set of different Communication
Model implementations that are shown in Figure 4.5.

Unit 
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Radio 

Irregularity 

(RIM)

Chained

Any

User-Defined 

Model

Permanent
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Stochastic

Communication

Model

Figure 4.5.: Overview of Shawn’s communication models

Three of these five implementations resemble communication patterns that are
often used in WSN research. Figure 4.6 shows examples of how these models
work. In the figure, the shared neighbors (filled black circles) of two nodes n1

and n2 (filled black circle with an extra black ring) are highlighted.

The Unit Disk Graph (UDG, cp. Figure 4.6(a)) radio model is based on the
observation that the signal strength fades with the square of the distance from
the sender. Given a minimum signal strength required for reception, two nodes
can communicate bidirectional if the Euclidean distance d between the nodes is
less than rmax. Regardless of its substantial abstractions from the real world,
the model is widely utilized in WSN research because of its simplicity.

The Quasi-Unit Disk Graph (Q-UDG) radio model is a variant of the model
introduced in [8]. It defines two new distances r1 and r2 with r1 < r2. For
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(a) Unit Disk Graph (b) Q-UDG (c) Radio Irregularity Model

Figure 4.6.: Characteristics of different radio models

0 < d < r1 and d > r2, the behavior is equivalent to the UDG Model. For
r1 6 d 6 r2, the packet reception probability decreases linearly from 1 to
0. It therefore honors the fact that the probability of a successful reception
diminishes with increasing distance. Figure 4.6(b) shows an example with r1 =
0.75 ∗ rmax and r2 = 1.25 ∗ rmax.

Based on real-world experiments, the Radio Irregularity Model (RIM, [55, 199,
200]) proposes an angle dependant range between a minimum and a maximum
communication range (rmin and rmax). A factor determines the maximum
change in transmission range per degree and thus controls the irregularity of
the shape (cp. Figure 4.6(c)). In contrast to UDG and Q-UDG, the RIM model
also yields unidirectional links.

In addition to the real-world models, the Permanent Link model allows the
specification of static links to pre-define communication relations such as wired
connections to gateway nodes. The Chained Communication Model supports
combining multiple communication models to a single communication model.
For instance, while most of the sensor nodes in a network could use the Unit Disk
Graph model, some gateway nodes have wired connections that are modeled by
a Permanent Link model.

Edge Model

The Edge Model provides a graph representation of the network. The simulated
nodes are the vertices of the graph and an edge between two nodes is added
whenever the Communication Model returns true. To assemble this graph rep-
resentation, the Edge Model repeatedly queries the Communication Model. It
is therefore possible to access the direct neighbors of a node, the neighbors of
the neighbors, and so on. This is used by Shawn to determine the potential
recipients of a message by iterating over the neighbors of the sending node. Sim-
ple centralized algorithms that need information on the communication graph
can be implemented very efficiently as in contrast to other simulation tools, no
messages must be exchanged that serve as probes for neighboring nodes.

Figure 4.7 depicts the C++ interface that must be extended by implementations
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of the Edge Model. In essence, two methods provide the ability to iterate over
the neighbors of a node for a specific communication direction. The communi-
cation direction parameter defines how the property “neighbor” is interpreted
and can be one of the following: in, out, bidirectional or any. If not specified,
the communication direction defaults to “bidi”.

1 class EdgeModel

2 {

3 ...

4 adjacency_iterator begin_adjacent_nodes (Node &,

5 CommunicationDirection d = bidi);

6

7 adjacency_iterator end_adjacent_nodes (Node &);

8 ...

9 };

Figure 4.7.: Application programming interface of the edge model in Shawn
(excerpt)

The communication direction property is defined as follows: u and v are neigh-
bors if for the communication direction

“in” holds: can communicate uni(v, u),

“out” holds: can communicate uni(u, v),

“bidi” holds: can communicate uni(u, v) ∧ can communicate uni(v, u),

“any” holds: can communicate uni(u, v) ∨ can communicate uni(v, u).

Depending on the application’s requirements and its properties, different stor-
age models for these graphs are needed. For instance, mobile scenarios require
different storage models than static scenarios. In addition, simulations of rel-
atively small networks may allow storing the complete neighborhood of each
node in memory. Conversely, huge networks will impose impractical demands
for memory and hence supplementary edge models trade memory for runtime,
e.g., by recalculating the neighborhood on each request or by caching a certain
amount of neighborhoods. Accordingly, Shawn provides different EdgeModel
implementations as shown in Figure 4.8.

The Lazy edge model is intended for simulations with only a small amount
of nodes, hardly any communication or high node mobility. It does not store
any information but recalculates the graph on the fly by querying the current
Communication Model. The Grid edge model uses a two-dimensional grid for
arranging nodes according to their geometric position. Therefore, the search for
neighboring nodes is restricted to nearby ones, thus effectively improving the
lookup speed while still fully supporting mobility. The List edge model stores
the complete graph of the network in memory. This allows for a faster iteration
over the neighboring nodes at the cost of a time-consuming initial construction
and non-negligible memory demands. Since the list is only built once at the
beginning of the simulation, this edge model does not support node mobility but
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Figure 4.8.: Overview of Shawn’s edge models

only static scenarios. The Fast List edge model combines the functionality of
the Grid and List edge models into a single model implementation. Internally,
it uses a Grid edge model for the initial construction of a contained List edge
model. As a result, it provides the features of the List edge model plus a fast
construction at the cost of a higher initial memory footprint.

Transmission Model

Whenever a node transmits a message, the behavior of the transmission channel
may be completely different than for any other message transmitted earlier (cp.
Section 2.1.3). For instance, cross traffic from other nodes may block the wire-
less channel or interference may degrade the channel’s quality. To model these
transient characteristics inside Shawn, the Transmission Model determines the
properties of an individual message transmission. It can arbitrarily delay, drop
or alter messages.

This means that a message may not reach its destination even if the Commu-
nication Model states that two nodes can communicate as a matter of princi-
ple and the Edge Model lists these two nodes as neighbors. Figure 4.9 shows
the C++ interface for transmission model implementations in Shawn. The
send message()-method accepts a MessageInfo data structure containing the
message itself, the time of transmission and the position of the sender.

Again, the choice of an implementation strongly depends on the simulation goal.
In case that the runtime of an algorithm is not of interest but only its quality,
a simple transmission model without delay, loss or message corruption is suffi-
cient. Models that are more sophisticated could take contention, transmission
time and errors into account at the cost of performance.

Figure 4.10 lists the built-in transmission models of Shawn, covering both ab-
stract and close-to-reality implementations. The Reliable transmission model
delivers all messages immediately, without loss or corruption to all neighboring
nodes. Random drop is a slight variation in that it discards messages with a
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1 class TransmissionModel

2 {

3 struct MessageInfo

4 {

5 Node* src_;

6 Vec src_pos_;

7 double time_;

8 MessageHandle msg_;

9 };

10 ...

11 void send_message (MessageInfo&);

12 ...

13 };

Figure 4.9.: Application programming interface of the transmission model in
Shawn (excerpt)
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Figure 4.10.: Overview of Shawn’s transmission models

given probability but it neither delays nor alters messages. The Statistics im-
plementation does not deliver any message but instead records informational
data such as the overall message count, different message types, etc. To make
use of such a non-functional transmission model, the Chainable Transmission
Model allows a series of transmission models to process a message sequentially.
Like that, a message could first be counted, then delayed and may then be
dropped by combining several simple transmission models.

Two additional implementations are closer to the real world than the above-
mentioned ones. They simulate the effects of the well-known CSMA/CA and
(slotted) Aloha [1, 32, 169] medium access schemes. Please note that not the
MAC protocol itself is simulated but only the delay and loss characteristics are
modeled for performance reasons.
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Miscellaneous models

Besides these core models that shape the fundamental behavior of Shawn, a
number of more specialized models provide data for the simulations. Currently,
Shawn contains models for random variables, distance estimations and mobility.

Random variables are often needed in simulations to mimic uncertainty and
randomness present in the real world. The Random Variable model introduces
a layer of abstraction between the actual sources of random data and the appli-
cation. As a result, algorithms can be tested with different underlying random
variables without changes to the implementation. Sensor nodes often need dis-
tance estimations to other nodes to acquire context information such as their
position (cp. Section 2.1). In Shawn, the Node Distance Estimate model pro-
vides these distance estimations, e.g. to support the evaluation of localization
algorithms. Modeling arbitrary mobility is supported by so-called Node Move-
ments. Implementations of this model provide the current position of a node
when queried, e.g. by the communication model or an application. In order to
allow an observation of the movement of nodes, listeners can register with the
movements for location updates. Whenever a node is about to leave a previ-
ously supplied area given by a bounding box, it notifies the listener and obtains
a new bounding box. This mechanism is used e.g. by the Grid edge model to
adapt its internal status.

4.3.2. Sequencer

The sequencer is the control center of the simulation: it prepares the world in
which the simulated nodes live, instantiates and parameterizes the implemen-
tations of the models as designated by the configuration input and controls the
simulation. It consists of

Simulation Tasks, the

Simulation Controller and the

Event Scheduler.

Simulation Tasks

Simulation Tasks are pieces of code that are invoked from the configuration of
the simulation supplied by the user. They are not directly related to the sim-
ulated application but they have access to the whole simulation environment
and are thus able to perform a wide range of tasks. Example uses are man-
aging simulations, gathering data from individual nodes or running centralized
algorithms.

Shawn exclusively uses tasks to expose its internal features to the user. A variety
of tasks is included in Shawn that supports the creation and parameterization of
new simulation worlds, nodes, routing protocols, random variables, etc. Even
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the actual simulation is triggered using a task and the user can specify the
amount of time that should be simulated upon the execution of this simulation
task.

1 class SimulationTask

2 {

3 ...

4 void run (SimulationController&);

5 string name ();

6 string description ();

7 ...

8 };

Figure 4.11.: Application programming interface of a Simulation Task in Shawn
(excerpt)

Simulation Tasks are configured and invoked by the Simulation Controller as
discussed later on. They are identified and invoked using a unique name and
parameters are passed as simple (name, value)-pairs. Figure 4.11 presents the
C++ interface that a simulation task implementation must extend: One method
that returns the unique identifying name, one that returns a human readable
description and one that performs the actual task.

Simulation Controller

The Simulation Controller acts as the central repository for all available model
implementations and runs the simulation by transforming the configuration in-
put into parameterized invocations of Simulation Tasks. In doing so, it mediates
between Shawn’s simulation kernel and the user. In line with most other com-
ponents of Shawn, the Simulation Controller can be customized by a developer
to realize an arbitrary control over the simulation. The default implementation
reads the configuration commands from a text file or the standard input stream.
Figure 4.12 shows how commands are structured.

Two different line formats can occur: one that defines global variables and one
that invokes and parameterizes Simulation Tasks. Line 1 shows how a global
(name, value)-pair is specified which is valid from the point of its definition until
the simulation run completes. Line 3 shows how a task is invoked by specifying
its name (as returned by the task’s name()-method, cp. Figure 4.11) separated
with a trailing blank character. Following the tasks name, (name, value)-pairs
may occur that are valid for the invocation of the task (local values temporarily
overwrite global ones if their names are identical).

If a simulation task with this name is found, its run()-method is invoked and
the current set of (name, value)-pairs is passed. Note that tasks are instantiated
when Shawn starts and using the same task-name again results in invoking the
run()-method on the same instance as for the first call. This can be used to
collect data continuously and to evaluate it at a later point in time.

56



4.3. Architecture

1 global_name1=global_value1

2

3 task_name name1=value1 name2=value2

Figure 4.12.: Plain-text file format used by Shawn’s default Simulation Con-
troller implementation

A second implementation allows the use of Java-language scripts to steer the
simulation. While providing the same functionality, it allows more complex
constructs and evaluations already in the configuration file. A comprehensive
plain text configuration file is presented in Section A.1.1 and the semantically
equivalent Java-language file is shown in Section A.1.2.

Event Scheduler

Shawn uses a discrete event scheduler to model time. The Event Scheduler
is Shawn’s timekeeping instance. Objects that need the notion of time can
register with the Event Scheduler to be notified at an arbitrary point in time.
The simulation always skips to the next event time and notifies the registered
handlers. This process continues until all nodes signal either that they have
powered down or until the maximum configured time has elapsed.

This has some performance advantages compared with traditional approaches
that use fixed time intervals (such as a clock-tick every 1ms): First, handlers are
notified only at the precise time that they have requested avoiding unnecessary
calls to idle or waiting nodes that have no demand for processing. Second,
users are not bound to some artificial granularity but an event may occur at
the full precision that is offered by floating-point numbers. Figure 4.13 sketches
how the Event Scheduler allows simulations to utilize this timing mechanism
by using one of the several interaction possibilities.

t

Round nRound n-1 Round n+1

Pre-Tasks (t=n) Post-Tasks (t=n+1)

work (t=n)

Discrete events

(at arbitrary times n <= t < n+1)

Figure 4.13.: Shawn’s discrete event scheduler

Shawn logically arranges simulations into rounds (r = 0, 1, 2, . . .). The user
may register Simulation Tasks as pre-step and post-step tasks that are exe-
cuted immediately before and after each of these rounds. This is useful to
extract information from the simulation without the need to intermingle simu-
lation code with code that analyzes the performance of the simulated algorithm.
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At the beginning of each round, a node’s work()-method is invoked. Applica-
tions can choose to use this method for an eased implementation when precise
timing is not required. Apart from these fixed points in time, the nodes or
other elements of the simulation may register an event at any point in time.
Using these three distinct possibilities offers applications the required flexibility
to integrate timing aspects into the simulation without degrading the overall
performance.

4.3.3. Simulation Environment

The simulation environment is the home of the virtual world in which the sim-
ulation objects reside. As shown in Figure 4.3, the simulated Nodes reside in
a single World instance. The Nodes themselves serve as a container for so-
called Processors. Developers using Shawn implement their application logic
as instances of these Processors. By decoupling the application inside a Pro-
cessor from the Node, multiple applications can easily be combined in a single
simulation run without changing their implementations. For instance, one pro-
cessor could implement an application specific protocol while another processor
gathers statistics data.

Figure 4.14 shows an excerpt of the Processor’s API. After a processor has
been instantiated, its boot()-method is invoked. A Processor can transmit
messages by a call to send() and whenever a message for the Node is received,
it dispatches this message to all its Processors by calling process message().
As mentioned above, the Processor’s work()-method is invoked whenever the
Event Scheduler starts a new simulation round.

1 class Processor

2 ...

3 void boot( );

4 bool process_message( MessageHandle& );

5 void work( );

6 Node& owner( );

7 void send( MessageHandle& );

8 ...

9 };

Figure 4.14.: Application programming interface of a Processor in Shawn (ex-
cerpt)

A Node offers a number of services to the Processors that ease the implemen-
tation of algorithms and simplify the overall simulation task. As mentioned
above, the Edge Model can be used to identify the neighbors of the current
node. Unlike other simulators, Shawn does not restrict the user to a message-
driven programming model but also allows “shortcuts”, i.e., to execute method
calls directly on other nodes. This is beneficial when implementing a centralized
version of an algorithm or to get things done fast that are only a pre-condition
for the current simulation, but not in the focus of the research.
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It is often the case that an algorithm requires input that is produced by mul-
tiple (potentially very complex) other algorithms. To avoid waiting for the
same results of these previous steps repeatedly in every simulation run, Shawn
offers the ability to attach type-safe information to Nodes, the World and the
Simulation Environment. Two Simulation Tasks (load world and save world)
provide the ability to load Tags from and to save Tags to XML documents. Cur-
rently, three different Tag types exist: Simple Tags, Group Tags and Map Tags.
Simple Tags contain a value of a certain type (e.g., string, int or Boolean),
Group Tags contain other Tags and Map Tags contain pairs of values of a cer-
tain type. Figure 4.15(a) shows such an XML document that contains these
different Tag types and Figure 4.15(b) shows how a Processor would access the
Boolean Tag called base station.

1 <Scenar io>

2 <snapshot id=”0”>

3 <node id=”runner12”>
4 < l o c a t i o n x=”135.0” y=”5.0” z=”0.0”/>

5

6 <!−− Simple Boolean Tag −−>

7 <tag type=”bool” name=”base station” value=”fa lse”/>
8

9 <!−− Tag group conta in ing other Tags −−>

10 <tag type=”group” name=”marathonnet”>
11

12 <!−− Map Tag that maps one f l o a t i n g −point va lue to another −−>

13 <tag type=”map−double−double” name=”split times”>
14 <entry index=”0” value=”0”/>
15 <entry index=”21097.5” value=”3801.0”/>

16 <entry index=”42195” value=”7658.0”/>

17 </tag>

18 </tag>

19 </node>
20 </snapshot>

21 </Scenar io>

(a) Shawn’s XML persistence file

1 //Find the Tag
2 ConstTagHandle th = owner ( ) . f i n d t a g ( ” ba s e s t a t i o n ” ) ;
3 //Cast to the expec ted type ( error check ing omit ted )
4 const BoolTag* bt = dynamic cast<const BoolTag*>( th . get ( ) ) ;
5 // Retr ieve the Tag ’ s va lue
6 bool i s b a s e s t a t i o n = bt−>value ( ) ;

(b) Extract a Boolean value from a Tag

Figure 4.15.: Exemplary use of Tags

A benefit of this concept is that it allows decoupling state variables from mem-
ber variables in the user’s simulation code. By this means, parts of a poten-
tially complicated protocol can be replaced without code modification because
the internal state is stored in tags and not in member variables of a special
implementation.

To model sensors and their corresponding sensor values, a generic framework
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called Readings and Sensors is provided. Readings deliver position-dependent
and time-dependent values that can be arbitrarily typed. Sensors are bound
to a specific sensor node and deliver sensor readings. Readings and sensors
can be configured by the user and are referenced inside the simulation using
unique names. This decoupling allows changing the underlying reading or sen-
sor implementation without changing or recompiling the simulation code. In
its current version, Shawn already provides some simple sensor and reading
implementations, which obtain their values from XML files or Tags.

4.4. Evaluation

This section evaluates the performance and adaptability of Shawn. It first
compares Shawn with Ns-2 and TOSSIM to demonstrate that Shawn can handle
large networks at high speeds. Then Shawn’s adaptability and flexibility is
demonstrated at the example of the available Edge Models.

Comparison with Ns-2 and TOSSIM

Since the exchange of wireless messages is the key ingredient in wireless sensor
networks, a simulator’s ability to dispatch messages to their recipients deter-
mines the speed of simulations. In the following, measurements are presented
that show the amount of memory and CPU time required to simulate a sim-
ple application that broadcasts a message every 250ms of simulated time. The
communication range of the sensor nodes is set to 50 length units and each
simulation runs for 60 simulated time units. The size of the simulated area is
500x500 length units. A number of simulations with increasing node count were
performed. Therefore, the network’s density increases steadily as more nodes
are added to the scenario. This application has been implemented for Ns-2,
TOSSIM and Shawn. All simulation tools were used as supplied by the source
repositories with maximal compiler optimization enabled. The simulations were
run on standard, state of the art i686 PCs.

Figure 4.16 depicts the required CPU time in seconds and Figure 4.17 shows
the maximally used amount of RAM for the three simulation tools at different
node counts. It should be noted that this kind of comparison is biased in
favor of Shawn because the two other simulators perform much more detailed
computations to arrive at the same results. It is more to be seen as an indication
how application developers can benefit from using Shawn when these detailed
results are not in the focus of interest. When interpreting the results, please
note that these figures as well as the following ones use a logarithmic scale on
both axes.

The first thing to notice is that Shawn outperforms both other simulation tools
by orders of magnitude. Ns-2 hits the one-day barrier where Shawn is still
finishing in less than one minute with a considerably smaller memory footprint.
As mentioned above, this is because Ns-2 performs a very detailed simulation
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of lower layers such as the physical and the data link layer while Shawn simply
dispatches the messages using a simplified model. Nearly the same situation
applies to TOSSIM that simulates an underlying TinyOS-supported hardware
platform. This clearly shows that Shawn excels in its area of expertise – the
simulation of large-scale sensor networks with a focus on abstract, algorithmic
considerations and high-level protocol development.

Adaptability of Shawn

As discussed in Section 4.3.1, Shawn’s runtime behavior is heavily influenced by
choosing a distinct implementation of one of the models (e.g., the Edge Model,
Communication Model or the Transmission Model). Depending on the simu-
lated scenario, a different choice may substantially alter the performance and
the resource consumption of the simulation. Since selecting a specific imple-
mentation simply requires changing a value in the configuration file, users can
select the best implementation for each simulation.

To demonstrate the pros and cons of the different edge model implementations,
the above-described simulations were repeated using the same underlying sce-
narios using different edge models. Figure 4.18 shows the required CPU time
for the different implementations and node counts. It is evident, that the List
and the Fast List are faster than Grid and much faster than Simple. However,
considering the memory consumption (cp. Figure 4.19), this performance gain
comes at a certain price.

Because the size of the simulated world is fixed at 500x500 length-units with
a communication range of 50 length-units, the density of the underlying graph
– and therefore the amount of memory required for storing the neighbors of
each node – increases significantly the more nodes are added to the scenario.
A compromise between speed and memory consumption is offered by Grid.

62



4.4. Evaluation

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

1 second

1 minute

1 hour

5 hours

C
P

U
 T

im
e
 [
s
e
c
]

Number of Nodes

CPU requirements, 60s simulated time (Constant size)

fast_list
grid
list

simple

Figure 4.18.: Required CPU time of Shawn’s edge models (Constant size)
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However, this observation does not hold in general. Consider the situation
where the number of nodes increases while the average density of the network
remains constant. Figure 4.20 and Figure 4.21 depict the result of such simula-
tions with a constant density (the density corresponds to the one of a scenario
with 100 nodes in the simulations presented above).
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Figure 4.20.: Required CPU time of Shawn’s edge models (Constant density)

When looking at simulations using Fast List, the runtimes are an order of mag-
nitude lower than in previous case. However, the memory requirements differ
only marginally (maximal difference 108.64 MByte, 9.94 MByte in average).
This is because, in contrast to the previous scenario, the neighborhood sizes
remain constant and the storage space required for keeping them in memory
increases only slowly. As in the previous example, Simple is the slowest one
and Fast List the fastest edge model implementation.

In this example, Grid outperforms List only for node counts larger than 10,000.
This is because of the high initial setup cost of the list edge model. However,
Fast List performs better for all node counts which is because it reduces the
time required for construction of a List edge model by using a Grid internally
to limit the search space for neighboring nodes.
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Figure 4.21.: Memory consumption for Shawn’s edge models (Constant density)

Conclusion

The above-presented measurements show that Shawn’s central design goal (sim-
ulate the effect caused by a phenomenon, and not the phenomenon itself) indeed
leads to a high scalability and performance compared to traditional approaches
to simulation. Furthermore, the results show that Shawn’s runtime behavior
can be custom-tailored simply by changing configuration parameters. This does
not only apply to edge models, but also the other models used in Shawn have a
major impact on the performance and resource consumption. Hence, an opti-
mal selection of model implementations must take the properties of the scenario
into account.

As a result, developers must carefully select the simulation tool depending on
the application area. When detailed simulations of issues such as radio propaga-
tion properties or low-layer issues should be considered, Shawn is obviously not
the perfect choice. This is where Ns-2 and TOSSIM offer the desired granular-
ity. However, when developing algorithms and high-level protocols for WSNs,
this level of detail often limits the expressiveness of simulations and blurs the
view on the actual research problem. This is where Shawn provides the required
abstractions and performance.

Shawn is currently in active development and use by several universities and
companies to simulate wireless (sensor) networks. It was and continues to be an
invaluable tool for over 15 research publications and more than 20 bachelor and
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master theses. Shawn is also the enabling means behind the development of al-
gorithms and protocols for WSNs in the SWARMS [50], the SwarmNet [47] and
the EU-funded FRONTS [155] project. It supports recent versions of Microsoft
Windows and most Unix-like operating systems such as Linux and Mac OS
X. In addition, Shawn is easily portable to other systems with a decent C++-
compiler. It is licensed under the liberal BSD License1 and the full source code
is available for download at http://www.sourceforge.net/projects/shawn.

1http://www.opensource.org/licenses/bsd-license.php
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5. SpyGlass: A Generic Visualization
Environment

Just like most other embedded devices, wireless sensor nodes typically do not
offer any interface that a human could use to interact with these tiny appliances.
As can be seen on Figure 5.1(a), there is no display or any other means to present
information to the user - it is already luxurious if one or two miniature LEDs are
available to convey even a slight amount of information. The user’s possibilities
for feeding data into a sensor node are also severely limited. Maybe one or two
buttons allow the triggering of a diminutive selection of simple actions.

Single sensor node

(a) State of a single node

Deployed sensor network

(b) State of n-nodes plus the network’s state

Figure 5.1.: Situation for developers and end-users when developing and oper-
ating WSNs

However, even if they are available at all, in the majority of cases it will not
be possible to use any of these in- or output possibilities. Once the network
is deployed, it may span a large geographical region. If this region is accessi-
ble by humans at all, keeping track of every blinking diode or connecting to
individual I/O-pins to determine the network’s state is just not feasible (cp.
Figure 5.1(b)). Nearly the same situation applies to simulators for WSN appli-
cations. As discussed in Chapter 4, they focus on a fast and easy simulation of
sensor network applications and typically do not offer any kind of visualization
environment. This is because the evaluation of results is strictly application
specific and simulators are therefore considering this to be a task of the user.

Therefore, it is difficult to grasp the internal state of nodes or to influence this
state from the outside. For that reason, visualization is a key element to develop
and manage these networks: On the one hand, a visualization environment acts
as a single interface to a network that may be comprised of thousands of tiny
sensor nodes. On the other hand, visualization is a perfect means for humans
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to understand complex data because of the brain’s exceedingly sophisticated
image processing capabilities. To support developers and users, many special-
ized toolkits have been proposed for wireless sensor networks that facilitate the
visualization of the network’s state as well as feedback mechanisms. However,
as discussed later in Section 5.1, none of these tools provide the generality or
the flexibility to support heterogeneous WSNs, simulation tools or arbitrary,
user-defined visualization demands.

This chapter presents SpyGlass [25,28,29], a generic visualization environment
for wireless sensor networks. Its modular architecture allows users a visualiza-
tion of the network’s state, the outcome of simulations or arbitrary other data.
Furthermore, SpyGlass enables the user to feed data back into the network to
influence its state. Because of this generic approach, SpyGlass is a flexible and
comprehensive toolkit for the visualization and control of WSNs. To support
this conjecture, the following paragraphs introduce fundamental properties of
visualization environments and Section 5.1 assesses related work with these
criteria in mind.

Most of the following properties are strictly technical, but probably the most
important issue is a non-technical one: a generic visualization tool must ac-
commodate the specific needs of different target audiences. On the one hand,
developers of WSN applications are experts in the domain of protocol design,
embedded programming and have an in-depth knowledge on many networking
aspects. On the other hand, end-users of WSN products are not interested in
technical details of the solution but need a task-oriented way of interacting with
the sensor network.

Consider the development and deployment of an application that helps monitor-
ing a forest fire. When implementing such an application, developers face a mul-
titude of challenges such as erroneous sensor readings, incorrect self-localization
of nodes or issues with the routing algorithm. Here, visualization allows for a
quick localization of errors by visualizing the internal state of single sensor
nodes or the topology of the overall network. However, a fire fighter in a con-
trol room needs a completely different type of visualization. Here, optimally
dispatching the available resources in order to extinguish the fire quickly is the
paramount goal. Therefore, a comprehensive visualization solution should sup-
port the complete lifecycle of a sensor network starting from the development
by researchers up to the final deployment phase at a customer’s location.

On the technical side, the support should not be limited to a single opera-
tion system, hardware platform, architecture or programming language. As
discussed in Section 2.1.4 and Section 2.1.5, the selection of a hardware plat-
form and programming model strongly depends on the specific problem that
a sensor network should solve. Hence, it is not practical to employ a differ-
ent visualization tool for each distinct combination of a hardware platform,
operating system, etc. The goal is to support heterogeneous input sources to
enable a plethora of application scenarios. Hence, it should be of no importance
whether data originates from deployed sensor networks, files on a computer or
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even simulations.

In addition, visualizing the network’s state is usually only a by-product and
therefore not in the centre of interest, since the developer’s focus is to arrive
at a working application. Therefore, the visualization code that is running
inside the sensor network must be as lean as possible and should require only
a minimal amount of the node’s and the network’s resources. For instance,
if the throughput of novel routing algorithm is to be visualized, the traffic
generated by the visualization code is non-negligible and must be considered in
the evaluation.

Another crucial property is its ability to realize application-specific visualiza-
tions. This is especially important as the possible visualization tasks are at
least as diverse as the application scenarios for WSNs (cp. Section 2.1.1). It is
therefore essential that a visualization tool is flexible and can be customized and
extended by a developer in order to visualize arbitrary data in a user-defined
manner.

The remainder of this chapter is organized as follows. Section 5.1 discusses
related work, pinpoints the drawbacks of existing tools and highlights how Spy-
Glass improves the current state of the art. Subsequently, Section 5.2 presents
the architecture of SpyGlass and Section 5.3 demonstrates how custom function-
ality can be implemented. Section 5.4 concludes this chapter with a summary
of the SpyGlass visualization environment.

5.1. Related Work

This section presents visualization tools for wireless sensor networks. In the fol-
lowing the aforementioned properties are used – where applicable – to evaluate
these tools. To bear in mind, the key properties for a generic WSN visualization
tool are the following:

1. Flexible visualization for different audiences (developers, end-users, . . .)

2. Support for heterogeneous input sources (deployments, simulations, . . .)

3. Small resource consumption (computation, communication and storage)

4. Extensibility and customizability

The Surge Network Viewer [35] and the Mote-VIEW Monitoring Software [34]
are commercial products from Crossbow to visualize wireless sensor networks.
The Surge Network Viewer features topology and network statistics visualiza-
tion as well as logging of sensor readings and displaying the logged data. The
statistics function includes the end-to-end data packet yield and the RF link
quality, but is limited to these features. The system is not extensible and as
a result, custom-made visualizations are not feasible. The Mote-VIEW Mon-
itoring Software covers essentially the same topics but presents a cleaner user
interface and more features. It is capable of logging wireless sensor data to
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a database and to analyze and plot sensor readings. It allows querying the
sensor network for collected data in a database-like manner, thus hiding the
distribution of the data in the WSN. Both tools are tightly coupled to the Mica
hardware platform and consequently, they support neither heterogeneous WSNs
nor the visualization of simulations.

The TinyViz visualization tool is an integral part of TOSSIM, the TinyOs [65,
100, 173] simulator. TinyViz has been developed to ease the debugging of ap-
plications by visualizing the state of running TOSSIM simulations as well as to
interact with these simulations. Out of the box, it visualizes sensor readings,
LED states, radio links and message exchanges. TinyViz is easily extensible
through a plug-in mechanism and plug-ins can supply arbitrary visualization
code. They may also react to events that are generated by the simulator. How-
ever, it is also limited to the TinyOS software and the Mica hardware series
and can only visualize the state of running simulations.

The aim of the TosGUI [114] project was to develop a simple graphical front
end for TinyOS simulations similar to TinyViz. It is limited to visualizing
the network’s topology and lacks support for user defined visualizations. As a
result, TosGUI offers only a subset of the features of TinyViz and any further
development of the project seems to have stopped.

iNSpect [94] supports the visualization of trace files that are the result of
Ns-2 [175] simulations. By parsing mobility and trace files of Ns-2 and a pro-
prietary file format, a fixed set of visualization primitives is displayed on a
3D-canvas. This comprises the visualization of the network’s topology, the suc-
cess and failure of message transmissions and the routes of individual packets.
iNSpect offers a number of configuration parameters to adjust the look and
feel of the visualizations but does not offer a generic extension interface to add
user-defined visualization code and is therefore restricted to a few application
scenarios. Similar to TinyViz, iNSspect is primarily intended to visualize the
output of a single, specific simulator.

Initially designed to visualize the state of a single WSN application scenario,
MonSense [132] has been extended gradually whenever the authors realized
a demand for new features in one of their projects. In its current version,
MonSense supports the visualization of exactly these TinyOS applications and
displays technical information such as node position, the communication graph
and sensor readings. However, the authors report that a plug-in system is
planned to allow an extension of the system’s built-in visualizations. At present,
MonSense tightly integrates TinyOS specific code and it is limited to the Mica
hardware platform.

Ringwald et al. [140,141] present an approach to monitor and debug a deployed
WSN. An additional deployment support network sniffs the emitted packets
and uses a second wireless interface to forward the collected data packets to a
central gateway. The benefit of this approach is that it does not require any
changes to the actual application and that it does not use any resources of the
deployed network. Although not strictly a visualization tool, it presents an
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interesting means to collect data passively from a WSN thus avoiding potential
bugs introduced by the visualization code.

By contrast, Sympathy [135] collects various metrics inside the sensor network
application to detect and debug failures. A number of heuristics may be in-
tegrated into a TinyOS application in order to detect critical operating condi-
tions. Problem reports are then forwarded to a sink where developers may use
this information to fix a potential error. A similar tool called Sensor Network
Management System (SNMS, [174]) allows to query the state of TinyOS appli-
cations over the network. Equipped with a separate network stack, SNMS runs
in parallel to the actual sensor network application. The rationale behind this
approach is that SNMS is still functional even when the TinyOS application has
crashed. Each TinyOS module can export a number of parameters and the user
of SNMS can choose which of these parameters will be available at run-time,
thus allowing the user to trim the resource consumption of SNMS to the actual
demands.

To match the above-listed requirements, a comprehensive, generic visualization
environment for wireless sensor networks must comprise three distinct building
blocks: data collection and dissemination inside the WSN, gateways to transit
networks as well as the final visualization. To support heterogeneity, each of
these building blocks must be easily exchangeable and extensible thus allow-
ing users to adapt the visualization environment to the needs of their specific
application.

None of the above-mentioned projects covers all of these requirements: some of
the projects are dedicated to support a specific hardware platform or a single
simulator, or they merely focus on the extraction and dissemination of events
inside the sensor network. Other tools that visualize the state of the network
do not offer enough flexibility for user-defined extensions or customizations.
This is exactly where SpyGlass improves the current state of the art. It pro-
vides an environment that is open for any hardware platform or simulation
tool and provides the required flexibility to implement arbitrary user-defined
visualizations.

5.2. Overview and Architecture

SpyGlass supports developers in visualizing the state of a sensor network and
provides a feedback mechanism to influence this state. The information that is
visualized may originate from an arbitrary data source, e.g., a deployed sensor
network or a simulator such as Ns-2 or Shawn (cp. Chapter 4). Furthermore,
the way in which data is visualized is also entirely up to the user.

SpyGlass is modular, for the most part generic and provides an environment
that allows developers to integrate custom functionality. SpyGlass is therefore
not bound to any specific hardware platform, simulator, programming language
or predefined set of visualization primitives. Figure 5.2 shows the high-level
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architecture and the three primary functional entities: One or multiple (real or
simulated) sensor networks, a transit network and the visualization component.

UMTS

GPRS

WLAN

Spyglass Visualizer

TCP/IP 
network

(e.g., the

Internet)

Deployment area A

Deployment area B

Deployment area C

Simulated sensor network

Ns-2

Shawn

…

Figure 5.2.: Information from the sensor network is forwarded to a gateway and
then transferred to the visualizer

The following subsections present different aspects of the SpyGlass architecture
in detail. Section 5.2.1 introduces how visualization and control data flows from
and to the sensor network. Then, Section 5.2.2 describes the structure of the
core visualization component. Section 5.2.3 explains how so-called plug-ins use
this component to display arbitrary visualizations and Section 5.2.4 presents
instances of these plug-ins that are already contained in SpyGlass.

5.2.1. Data Flow

As indicated on Figure 5.2, data is routed from any TCP/IP-enabled component
towards an instance of the SpyGlass Visualizer and vice versa. This component
may be a computer connected to a sensor node, a simulation tool such as Shawn
or a user-defined one. In the following, the term gateway is used to refer to
such a component. One or more SpyGlass visualization instances that are also
connected to the same TCP/IP backbone network (such as the Internet) can
hence exchange data packets with these gateways. SpyGlass is therefore not
bound to any specific WSN hardware platform and can visualize data from
arbitrary sources given that the gateway is connected to the same TCP/IP
network, e.g., by using a technology such as LAN, WLAN, GPRS or UMTS.

Developers can extend the set of built-in gateways to support arbitrary hard-
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ware platforms, simulation tools, etc. Implementing a custom gateway is strai-
ghtforward: it must accept TCP/IP connections and must conform to a common
data format used in the TCP/IP-stream from and to the SpyGlass visualization
instances. Figure 5.3 depicts the common data format that is used to split the
stream of bytes into individual data packets. Hereby, each data packet is pre-
fixed and suffixed with a special ASCII character sequence. The prefix consists
of the DLE, STX (ASCII characters 0x10 and 0x02), the suffix of the DLE,
ETX (ASCII characters 0x10 and 0x03) character sequence. Because of its spe-
cial meaning, each DLE character that occurs between the prefix and the suffix
is replaced with DLE, DLE to void its special meaning when it occurs inside
the payload. The receiver can then replace every DLE, DLE sequence received
between the prefix and the suffix with a single DLE character. By convention,
the first byte of the payload indicates the type of the packet.

...+------+------+------+-------... ...--+------+------+...

| DLE | STX | Type | ...arbitrary binary payload... | DLE | ETX |

...+------+------+------+------... ...----+------+------+...

Figure 5.3.: Protocol format used in the TCP/IP stream

Currently, SpyGlass already ships with three different gateway implementa-
tions:

Gateway and WSN implementation supporting real-world sensor networks
using the ESB, pacemate and iSense nodes (cp. Section 2.1.4)

Gateway code for the Shawn and Ns-2 simulation tools (cp. Chapter 4)

A replay-gateway that reads data packets from a pre-recorded file

The support for real-world sensor networks consists of two distinct software en-
tities: one that runs on the sensor nodes and one that runs on the gateway PCs.
Inside the sensor network, each individual sensor node collects data using its
sensors, derives new information from calculations or communicates with neigh-
bors. If new information is generated, it is forwarded to one or more gateway
nodes using an arbitrary routing mechanism. The current implementation uses
straightforward flooding to provide reliability by redundant transmissions. An-
other option is to use sophisticated routing protocols to minimize the generated
in-network traffic. Once the data packets have arrived at a gateway node, it
passes the received packets to an embedded PC using a serial connection. The
gateway software running on this PC has a ring buffer that stores a configurable
number of data packets received from the gateway node. Once a SpyGlass vi-
sualization instance connects to this gateway, it delivers the contents of its ring
buffer. This allows to bridge the time of transit network failures or to provide
data to visualization stations that connect at a later point in time.

The gateway implementation for the two simulation tools Shawn and Ns-2 pro-
vides essentially the same service as the gateway component for the embedded
PCs; only the source of data is different. Instead of receiving data packets from
a gateway node via the serial link, this implementation offers an application
programming interface (API) to the simulation code. Developers pass the bi-
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nary payload including the type indicator to this API. The same applies to the
implementation that reads the data packets from a file. This also represents a
different source for the data packets and the following procedure is like with
the implementation for the embedded PC.

All data packets flowing through the sensor network, from the gateway node
to the attached PC, and through the transit networks to the visualization PC
have the same payload format. Independent of the contained information (e.g.,
sensor readings, calculated data, internal sensor state) they consist of a data
type indicator and the actual data. Using this simple format, developers can
easily come up with new data types, which will be immediately supported
by the sensor network and the gateway software. Up to this point, data has
only been forwarded and all processing and display tasks are performed by the
visualization software. Using this architecture and data format makes it possible
to replace each of the three components individually, since the communication
between them follows a well-defined packet format.

5.2.2. The Visualization Component

The graphical user interface of the visualization component (cp. Figure 5.4)
consists of three major components: a graphical display canvas (on the upper
left), a sidebar for tree-structured textual information on the network as a whole
(on the upper right), and a display for line-based output, e.g., for debugging
purposes (at the bottom).

Figure 5.5 shows the architecture of the visualization component of SpyGlass.
It is comprised of a network information dispatcher, several plug-in containers
and the canvas. The network information dispatcher receives data packets from
potentially multiple sources such as gateways, simulators or files and distributes
them to the subscribed plug-ins. These then convert the received binary data
packets into drawing instructions for display on the canvas or into management
information used by other plug-ins. The graphical display canvas consists of
three layers:

Background layer

Relation layer

Node layer

The background layer is used for painting the background of the visualization.
This can for instance be useful to display a map of the environment, a plain
white background or complex data visualizations derived from sensor readings.
The relation layer is used for displaying all kinds of relations between nodes.
The node layer is used for displaying the actual nodes.

The actual visualization is done by user-written plug-ins, one for each visual-
ization demand. When a number of visualization plug-ins independent of each
other shall cooperate, an important issue is to make sure that painting opera-
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Figure 5.4.: The graphical user interface of the visualization component
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Figure 5.5.: The architecture of the visualization component
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tions do not collide. To solve this problem while keeping configuration simple,
SpyGlass features different plug-in types, each type corresponding to one of the
display layers and being only allowed to paint on their layer. The following
plug-in types can be extended by users to integrate custom visualization code:

Background Painter

Node Relation Painter

Node Painter

Global Information

Background Painter plug-ins draw the background of the visualization canvas.
Examples of usage scenarios are drawing a simple white background, sketching a
map of the deployment area, displaying satellite images or showing a coordinate
system. Another interesting use is to illustrate spatial phenomena, which can
be inferred from the received sensor data and positions, such as temperature
maps [24].

Node Relation Painter plug-ins display arbitrary relations between sensor nodes
on the canvas. This plug-in type can be used to display the sensor network’s
topology, e.g., by using lines to indicate existing communication links. Node
relation painters are not limited to communication relations, but they can also
highlight important aspects such as group memberships or routing paths.

Node Painter plug-ins draw the actual nodes and additional information onto
the canvas. The depiction may be dependent on the node type (e.g., gateway
node, cluster head, etc.), and may comprise a symbol representing the node, as
well as additional textual or graphical information arranged around it. Different
plug-ins can augment the visualization of a sensor node for example with the
node’s battery state, current sensor readings or other state information.

Global Information plug-ins display information about the network in a textual
way. This information is displayed in a sidebar and is structured as a tree. This
sidebar is particularly useful for displaying data that is not directly related to a
single node or a specific group of nodes but to the network as a whole. Examples
are the overall number of nodes, average neighborhood degree, etc.

Apart from these plug-ins that paint on the canvas, there are three other types
of plug-ins which are not directly involved in the visualization process:

Node Positioner

Feedback

Director

As indicated on Figure 5.5, the Node Positioner plug-in is used by other plug-
ins to determine the location of individual nodes. This is used for instance to
paint the nodes and relation endpoints on the canvas. The locations provided
by the Node Positioner can be based either on location estimates/measurements
received from the sensor network or on strategies based on graph theoretical
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calculations that optimize the screen representation. Like this, the actual de-
piction of nodes is decoupled from the positioning of the node representation,
so both Node Positioner plug-ins and Node/Relation painters can be replaced
independently. In contrast to the canvas drawing plug-ins, only one plug-in
instance of this type can be active at any given time.

Feedback plug-ins can be invoked by the canvas drawing plug-ins. This type
of plug-in influences the state of the sensor network by sending data packets
back into the sensor network. One usage scenario is to set the verbosity level
of the SpyGlass code that runs inside the sensor network application, offering
the user a control on the resource consumption and visualization granularity
of SpyGlass. Other plug-ins may choose to open a dialog box where users can
enter data that is then sent back into the sensor network.

Director plug-ins automate the process of zooming, panning and rotating the
current view. Unlike SpyGlass, other tools rely on the user’s input to change
the current view, e.g., to zoom and pan into an area of interest. However, imag-
ine a display in a firefighter’s control room. Here, an operator should not be
responsible to survey the whole area manually at any time. Rather, the visual-
ization environment should direct the operator’s attention to a specific area of
interest where abnormal incidents have been observed by the sensor network.
SpyGlass allows these plug-ins to automatically move a virtual camera. Similar
to the Node Positioner plug-in, only one director may be active at any time.

5.2.3. Drawing and Plug-In Architecture

As already indicated above, SpyGlass features a flexible drawing and plug-in
architecture. Most of its inner components can be exchanged or extended easily.
This extensibility has its roots in how plug-ins and drawing instructions are
implemented. Figure 5.6 illustrates how data originating from a sensor network
or some other data source is processed until it is finally visualized. First, data
arrives at the network information dispatcher as binary packets that contain
arbitrarily structured information. Then, these data packets are distributed to
all plug-ins that have subscribed for this type of packet.

The plug-ins do not directly draw on the canvas, but instead they use a set
of drawing primitives available in SpyGlass. Using these primitives results in
the assignment of graphical objects (such as lines, rectangles, text, etc.) with
the layers. The three canvas drawing plug-in types (Node Painter, Relation and
Background plug-ins) have their own layer on the canvas on which their plug-ins
exclusively draw. The user can change the order and visibility of the plug-ins
within each plug-in container to achieve an optimal presentation of the data.
This architecture has several advantages: First, drawing on different layers
avoids conflicts between plug-ins that have different priorities (e.g., drawing
starts with the background, then the relation between the nodes follow and
finally the nodes are visualized). Second, the painting code in the plug-ins is
independent from the actual canvas implementation.
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Figure 5.6.: Conversion of data packets until the final visualization

Because the actual mapping of drawing primitives to the final visualization
is a property of the canvas, it is easy to add new canvas types, and hence
SpyGlass is able to draw on a variety of different canvas types. Other canvas
types may be implemented by providing a mapping from the abstract drawing
instructions to the concrete target canvas. In its current version, SpyGlass
has different built-in canvas types: a standard two-dimensional canvas that is
built on top of the Java-2D API [162], a three-dimensional canvas that uses
the Irrlicht [57] 3D-engine as its backend and an image writing canvas that
stores individual PNG or JPEG images. Like this, it is possible to create new
canvasses like a Postscript-canvas to document the sensor network’s state in a
Postscript document or a canvas that creates a MPEG video for demonstration
purposes. Note that it is possible to operate multiple canvases in parallel, so
that videos could be created while watching the visualization on the regular
Java2D-Canvas on the screen.

SpyGlass cannot only be used for visualizing wireless sensor networks that are
currently in operation. It is also able to record all activities starting from an
arbitrary point in time. This recorded data can be used for later playback for
visualizing it again, watching it at a different speed or changing the type of
visualization. This allows not only a playback of the current visualization at
a later point in time, but also to get an entirely different visualization by ac-
tivating a different set of plug-ins for interpreting and visualizing the recorded
information. This even allows developing special visualization plug-ins to show
interesting details that were not recognizable during the previous visualization
run. Apart from different playback speeds, SpyGlass implements features com-
monly known from video players like fast forward and jumping to certain points
in playback.

5.2.4. Built-in Plug-Ins

Currently, SpyGlass already contains a number of plug-ins that range through
all seven plug-in categories (Background Painter, Node Relation Painter, Node
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Painter, Global Information, Node Positioner, Feedback and Director). These
already allow for a wide range of visualization applications and serve as a start-
ing point for new developments and extensions. The following provides a short
overview on the built-in plug-ins that ship with the standard distribution of
SpyGlass.

The temperature map plug-in belongs to the category of the background painters.
It allows the visualization component to indicate the spatial temperature distri-
bution by coloring the background between the sensor nodes. Each sensor pe-
riodically measures the current temperature; on change, it broadcasts a packet
containing its address, the current time and the corresponding temperature.
The plug-in residing in the visualization component refers to the currently used
node positioning plug-in to assign the temperature value to a position and maps
the temperature to a color. Colors between the node positions are interpolated
from the values belonging to the surrounding nodes

Currently, a simple Node Painter displays a box for each node with the node’s
address written in it. A temperature plug-in indicates the temperature that a
node has measured as a numerical value by using the same incoming messages
as the temperature map plug-in. The battery plug-in uses a bar to indicate
how much energy the nodes have left. To do so, the nodes periodically measure
their battery voltage and forward packets augmented with their address and a
timestamp to the gateway. The topology plug-in is a node relation painter. The
sensor nodes sporadically send out beacon packets that neighboring nodes use
to maintain a list of immediate neighbors. This list is broadcasted periodically
and forwarded to the gateway node. In the visualization component, the plug-
in processes the packet and draws lines from the sender to all its neighbors.
Again, the Node Positioner plug-in is consulted for the nodes’ positions.

SpyGlass supplies two different Node Positioner implementations. The first one
assumes that the sensor nodes are aware of their positions. Hence, they regu-
larly transmit their coordinates together with their address and a timestamp.
The plug-in subscribes to these packets and maps the coordinates to positions
on the graphical display canvas. The second Node Positioner plug-in is the
spring embedder plug-in. In contrast to the aforementioned one, it assumes
that the sensor nodes do not have any information about where they are. For
this reason, it must calculate positions for each node by other means. To do
so, it subscribes to the neighborhood messages and keeps track of the network’s
topology. Using a spring embedder [144], it then positions nodes that can hear
each other close on the canvas, whereas it places nodes without connectivity far
away from each other.

The average neighborhood size plug-in is a Global Information plug-in. It sub-
scribes to the neighborhood messages used by the topology plug-in, but keeps
track only of the number of neighbors. This allows it to display the average
network-wide connectivity in the global information sidebar. There is another
informational plug-in that counts the overall number of nodes in the network.
Subscribing to the neighborhood list packets (or any other periodical packet
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type), it maintains a list of the nodes in the network. When a node does not
send a packet for a certain time, it is considered not to be part of the network
anymore and hence it is removed from the list.

5.3. Implementing Custom Visualization Functionality

Adding new elements to the visualization is straightforward and two cases can
be distinguished: one where all necessary information is contained in already
available messages and one where additional information is required from the
sensor network.

In the first case, the new visualization element uses messages that are already
emitted by the sensor network. This only requires the implementation of an
additional plug-in. A user must first choose which type of plug-in is needed to
fulfill the desired visualization demand. To implement for instance a General
Information plug-in that counts the number of network partitions, the messages
containing the neighborhood lists could be used. All that is needed is a plug-in
that tracks the connectivity information and constructs a graph representa-
tion from this data. From this graph representation, the number of network
partitions is easily derived and can then be displayed in the sidebar.

In the second case, additional information must be transmitted from the WSN
to the visualization component so that a plug-in can visualize this data. Com-
pared to the first case, two elements need modifications: the sensor network
application must be extended to transmit the new data packets and a new
plug-in must be developed. For example, to implement the visualization of mo-
tion detections, a developer needs to define a new data type, construct it as a
binary array in the sensor and use the common forwarding service to a gateway
node. To visualize the data, a Node Painter plug-in must be implemented which
registers itself as a handler for the new data type, parses it and attaches this
information to the corresponding node.

5.4. Summary

In this chapter, the SpyGlass visualization environment for wireless sensor net-
works has been presented. Its generic architecture enables developers of WSN
applications to visualize the output of real world or simulated sensor networks in
a flexible and straightforward manner. By implementing plug-ins that convert
the binary data from the WSN into abstract drawing instructions, SpyGlass
decouples the plug-ins from the actual canvas implementation. This allows for
an replacement of the output device and format, e.g., a computer screen, a
Postscript file, a series of JPEG images or a movie file. Furthermore, SpyGlass
distinguishes different plug-in types that perform tasks such as drawing on a
specific layer on the canvas, providing node positions or zooming/panning the
camera.
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With regard to the key properties for a generic WSN visualization environment
presented in Section 5.1, SpyGlass complies with these criteria. Its customizable
plug-in architecture allows for an realization of audience specific visualizations
(e.g., supplying developers with technical details and end-users only with do-
main specific information). In addition, it is not bound to a specific WSN
hardware platform or simulation tool. By contrast, it supports arbitrary input
sources and integrating a new platform only requires the ability to send binary
data packets to a TCP/IP connection or to store them into a file. Inside the
sensor network application, SpyGlass blends well with existing WSN applica-
tions because it typically only requires functionality on the nodes that is already
present such as a data forwarding facility to a gateway. Finally, it is extensible
by means of user-defined plug-ins and custom canvas implementations.
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6. Fabric: Data type-Centric
Middleware Synthesis

The massively distributed nature of WSNs and their inherent heterogeneity
challenges application developers with a number of problems. To solve the
application’s task it is generally required to establish communication between
the different devices involved. In traditional distributed systems, this has led
to a widespread use of middleware systems that shield developers from this
complexity. These typically base on the client-server paradigm and rely on a
stable communication infrastructure. With the advent of sensor networks, these
assumptions were no longer appropriate. Strict resource constraints, unreliable
communication links and novel communication and programming paradigms
render the application of traditional approaches in these networks virtually
impossible.

Therefore, a variety of novel programming abstractions and middleware sys-
tems were proposed and implemented for the specific requirements of WSNs.
In the literature, the term middleware is used for a broad variety of techniques
ranging from very simple approaches to far-reaching specifications offering re-
mote method invocations such as CORBA [118]. In the following, we use the
definition by Coulouris et al. [32]:

Definition 4 (Middleware) The term middleware applies to a software layer
that provides a programming abstraction as well as masking the heterogeneity
of the underlying networks, hardware, operating systems and programming lan-
guages.

In traditional distributed systems, middleware systems tend to be very gen-
eral in order to support a broad range of applications. This results in rather
heavyweight systems that do not match the strict resource constraints of sensor
nodes [13, 115]. Since supporting all kinds of applications using a single, static
middleware system is not feasible in WSNs, it is essential to adapt the footprint
and the offered functionality of a middleware to the requirements of individual
applications.

In addition, traditional middleware systems are designed to blend well with the
OSI or TCP/IP reference model and typically reside on top of the transport
layer. However, novel programming and networking paradigms (cp. Section 2.1)
limit the applicability of traditional middleware systems in WSNs. As a result,
middleware for WSNs is typically a thin layer of abstraction between the MAC-
layer and the application. Against this background, we strongly believe that
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the use of custom-tailored middleware solutions for each application can offer
the required features while consuming a minimum of resources.

In this chapter, we propose precisely such a middleware synthesis tool called
Fabric [125, 126, 128]. Fabric alleviates the implementation of heterogeneous
WSN applications by generating application-specific middleware instances for
different target platforms. Application developers supply a high-level data type
description in XML Schema augmented with annotations that parameterize
the synthesis process. So-called framework developers contribute domain spe-
cific expertise by implementing modules that back these annotations with code
generating functionality. This separates application and module development
and thus leads to a clear distinction between middleware code and applica-
tion functionality, which is often intermingled in traditional, handcrafted WSN
applications.

In addition, we present microFibre [130], a novel data type serialization scheme
that we have integrated as a module for Fabric. On its own merits, microFibre
provides a methodology for the bit-length optimized serialization of in-memory
data structures into payload and vice versa. Its integration into Fabric of-
fers code generation functionality for heterogeneous target hardware platforms,
which yields a common, bit-length optimized encoding for various target plat-
forms and programming languages.

The remainder of this chapter is structured as follows. Section 6.1 derives chal-
lenges that developers face in realizing a typical WSN and Section 6.2 then
presents our approach to tackle these challenges. Following, Section 6.3 pro-
vides a survey on related work and Section 6.4 explains Fabric’s architecture.
Subsequently, Section 6.5 describes microFibre in detail and Section 6.6 intro-
duces a traditional data type serialization scheme called macroFibre that has
also been implemented as a module for Fabric. Finally, Section 6.7 and Sec-
tion 6.8 evaluate microFibre, macroFibre and Fabric and present measurements
that quantify how WSN applications can benefit from using Fabric.

6.1. Motivation

Consider the development of a typical sensor network application where sen-
sor nodes monitor some area for motion events and ambient temperature. As
shown in Figure 6.1, the deployed application comprises sensor nodes, gateways
and a number of backend systems. Sensor nodes read values from their sen-
sors and forward them towards the gateways. Intermediate nodes perform an
aggregation of data received from multiple nodes before they forward received
information, e.g., for reducing the amount of network messages or to increase
the reliability of data. Gateways provide services that normal sensor nodes
cannot perform due to their restricted resources. Examples are the integra-
tion with traditional networks or the detection of redundantly received data.
Backend systems finally visualize the application data, store it in a database or
convert it to another format for the use by third-party systems.
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Figure 6.1.: Exemplary WSN application

To implement the applications required for this scenario, an application devel-
oper designs the data types storing the application data. In this case, this com-
prises sensor readings and additional network management information, e.g., to
establish routing trees or to synchronize time. At run-time, data is stored in in-
stances of these data types, called in-memory data structures or data structures
in the following (indicated by the speech bubbles in Figure 6.1). To transmit
data contained in in-memory data structures to other devices, they are con-
verted to a binary representation serving as the payload of wireless network
messages (indicated by “..0101..” in the figure).

Already this simple scenario illustrates challenges that developers face when
designing such a system. One issue is the implementation of the serialization
from in-memory data structures into payload and vice versa. This is required
to provide a processing of the application data in conventional programming
language constructs (e.g., structs in the C programming language). However,
data structures are highly application-specific. Hence, the data types and their
mapping must be implemented from scratch for every application. Moreover,
the devices involved in this scenario are of highly different natures ranging from
resource-constrained sensor nodes to resource-rich backend systems. Typically,
programming languages, implementation concepts and available features vary
between these systems. As a result, the implementation of data types and their
mapping from and to payload is not only application-specific but also specific
to each class of devices.

This is especially unfavorable because changes are an inherent companion of
application development where data structures and the application’s logic are
constantly subject to change. When manually writing code for the different
devices, development teams must keep the implementations consistent manu-
ally. Besides the data types and the implementation of (de-)serialization code,
applications deal with different types of application data that has different se-
mantics. Depending on the type of data, received network messages must be
treated differently by the application. For instance, while the sensor readings
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are forwarded towards a gateway, messages for time synchronization might not
be forwarded at all.

To conclude, WSN developers deal with a number of repeating tasks for every
application. The following list summarizes the above-mentioned aspects that
are relevant in the context of this work:

Serialization from in-memory data structures into payload and vice versa

Device heterogeneity (programming language, resources, etc.)

Type-dependent treatment of in-memory data structures

Consistent integration of changes into the different implementations

6.2. Methodology

Hiding these aspects from the developer by generating application- and device-
specific middleware instances for heterogeneous systems is the central design
goal of Fabric. Application developers exclusively use in-memory data struc-
tures and invoke the generated API of the middleware that contains function-
alities to transmit and receive instances of these data structures. As depicted
in Figure 6.2, the generated middleware implementation converts them to and
from the payload of network messages. When performing this conversion, the
generated middleware can additionally provide services such as security, reliable
transmission or compression.
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Figure 6.2.: A custom-tailored, application-specific middleware family auto-
mates the mapping from in-memory data structures to binary pay-
load and vice versa
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Fabric generates the middleware instances based on an abstract data type def-
inition augmented with annotations. Using these annotations the application
developer specifies how each data type is treated by the generated middleware.
The underlying idea is that data of certain semantics is of a particular, usu-
ally complex data type. As a result, each data type has a certain meaning for
the application and it must therefore be treated accordingly. To assign this
meaning to the individual data types, an application developer annotates data
type definitions with treatment aspects such as optimized serialization, reliable
transport or confidentiality. Hereby, each aspect belongs to a so-called domain
that embraces related aspects. This concept is referred to as type annotation
in the following.

The generic Fabric-generator passes the annotated data types to modules that
provide the actual functionality. These generate source code for the annota-
tions they support. The selection of the modules that participate in the code
generation process is based on the annotations and a target specification. This
defines properties of the target hardware platform such as programming lan-
guage, hardware architecture or peculiarities of the devices such as the lack of
dynamic memory allocation.

Invoking Fabric with the same annotated data type definitions but different tar-
get specifications yields middleware instances for different target devices that
share a common knowledge of the individual data types and their treatment.
This approach has a number of advantages for the development of WSN appli-
cations that are introduced in the following:

Mitigate Effects of Heterogeneity The task of data structure (de-)serializat-
ion from/to the payload of network messages is managed by the generated
middleware. Consequently, issues arising from the different device archi-
tectures, programming languages and alike are hidden from the developer.

Reduced Design Complexity The complexity of realizing heterogeneous WSN
applications is reduced since no network-specific code is implemented
manually and developers maintain a single definition of the application’s
data types and their annotations. This is especially desirable when per-
forming changes to the application’s data types. Using traditional ap-
proaches, development teams keep the different implementations consis-
tent manually, e.g., by sending e-mails describing the changes.

Integrated Networking Optimizations The synthesized middleware can per-
form optimizations and provide services automatically that represent an
optional step in manual implementations. For instance, the generated
middleware may provide encryption, compression or reliable transmission.
This optional step is frequently omitted and data structures are directly
copied from memory into the payload of network messages [140,141].

Data type-Specific Treatment By annotating individual data types with as-
pects, the application developer specifies the treatment of individual data
types by the generated middleware. Hereby, data type-specific treatment
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means how an in-memory data structure is converted to payload and how
payload of a specific type is handled by the generated middleware. For
instance, an in-memory data structure may be stored compressed in the
payload or data could be cached by the generated middleware for later
retransmission when no acknowledgement was received. Consequently,
changes to the annotations automatically manifest themselves in newly
generated middleware instances without requiring manual changes to the
application’s code.

With the above-mentioned functionality and properties of Fabric in mind, the
following section presents related work and shows how Fabric improves the
current state of the art in WSN application development.

6.3. Related Work

With the advent of WSNs, a large amount of research concentrated on the de-
velopment of applications and protocols targeted at specific hardware platforms
or application domains [62,109,197]. However, it has been realized that a more
general approach is required and that middleware is a promising aspirant to
tackle the challenges of WSN application development [61, 143, 186]. This sec-
tion provides an overview of two major types of middleware systems for WSNs:
static middleware solutions and middleware synthesis systems.

Static Middleware Systems The first middleware systems implemented for
WSNs provide an abstraction from the underlying hardware platform and are
typically custom-tailored to provide an application-specific service. The avail-
able solutions can be classified into the following categories:

service-centric

database-like

tuple spaces and publish-subscribe

A number of service-centric middleware systems such as Impala or MiLAN
have been developed that focus on hardware and programming abstractions.
Impala [104], which was created as a part of the ZebraNet project [198], pro-
vides an event-based, lightweight layer on top of operating system functionality.
Developers implement a set of event and data handlers that react to events gen-
erated by the Impala middleware (e.g., timers, new sensor readings or incoming
wireless messages) to realize their application functionality. In addition, Impala
offers services to the application such as dynamic code update and support for
adaptation to changing conditions in the network’s state. MiLAN [61] supports
sensing applications that specify their Quality of Service (QoS) requirements
for different states of the application. MiLAN then monitors the achieved QoS
at run-time and tunes the middleware parameters in order to maximize the
network’s lifetime (e.g., by deactivating unnecessary sensors or hardware com-
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ponents). To monitor theses requirements, MiLAN uses existing service discov-
ery and networking protocols that are integrated as plug-ins. The drawback
of service-centric middleware systems is that they are typically limited to the
WSN. They address neither device heterogeneity, nor the integration with tra-
ditional networks. Furthermore, they target a specific application domain such
as sensing or data fusion applications, which limits their general applicability.

To overcome the limitations of these service-centric middleware systems, a shift
to data-centric approaches has been proposed [2, 60, 136, 154]. Systems like
TinyDB [107], Cougar [54] and SINA [82, 150] treat the sensor network as a
distributed database. Data is requested from outside the WSN by formulat-
ing abstract, SQL-like queries. Using special gateway software, these abstract
queries are converted into network messages that are then distributed in the
WSN. For instance, TinyDB uses controlled flooding to distribute the query
and the results in the network. While this database-inspired approach allows
for an easy extraction of sensor data from a WSN, it is also limited to this
application.

Striving for a more general solution, the publish-subscribe paradigm has been
suggested to support data-centric application development [38, 196]. Systems
such as the well-known tuple-space system Linda were adapted to WSNs [31,
131]. The basic idea of Linda is that devices publish information on a virtual
black board or information space. Interested devices subscribe to types of
information. The management of subscription, the actual data delivery, etc. is
then done by the middleware. To the developer the board appears local and
non-distributed. Linda hides the distribution of data from the developer, which
is beneficial to alleviate intricate networking aspects. However, Linda also limits
the developer’s ability to integrate application specific optimizations.

MIRES [154] presents a publish-subscribe API to application developers that is
similar to tuple-spaces. Applications publish types of provided data (“topics”)
which are routed to a sink. A user connected to a sink then subscribes to a
number of topics and the MIRES middleware only transmits data belonging
to subscribed topics and takes care of the routing towards the sink. It was
designed to be deployable on resource-constrained devices and features an im-
plementation on top of TinyOS. MIRES is therefore limited to a single hardware
platform and application scenario.

GREEN (Generic & Re-configurable EvEnt Notification service, [153]) explic-
itly tackles these deficiencies by offering a configurable and run-time adaptable
component-based framework. An instance of GREEN is created by connect-
ing the interfaces of a number of predefined components that provide either
publish-subscribe services to the application or encapsulate networking aspects.
Depending on the target platform and application scenario, a specific instance
of GREEN is created by assembling the corresponding components. GREEN
is therefore applicable on a broad range of network- and device-types ranging
from PDAs to high-power computers. Despite this range of supported device
types, GREEN has not yet been ported to resource-constrained WSN devices.
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Middleware Synthesis There is a growing interest in techniques synthesiz-
ing middleware systems, virtual machines as well as complete applications. In
contrast to the aforementioned approaches, these are able to customize the
generated code to the targeted hardware environments and application-specific
requirements. Graphical or textual specifications enable application develop-
ers to construct middleware instances without requiring knowledge of low-level
networking aspects [5, 6, 110].

For instance, Lysecky and Vahid propose eBlocks [105], a system that gener-
ates an implementation from a graphical model, which can be created even by
non-technicians. Although easily usable, this tool is limited to a certain class of
applications. Bencomo et al. [9] propose the use of model driven software design
techniques to generate configurable “middleware families” based on the GREEN
framework mentioned above. Developers supply configuration input that com-
prises application domain, target environment, QoS requirements and UML
models. Based on this input, a middleware instance is generated. However,
since their approach is based on GREEN, the same limitations apply. ATaG [7]
models an application as a set of abstract tasks (information processing entities
backed with user-supplied code) and abstract data items from which an ATaG
instance is synthesized. Tasks can be instantiated at compile-time or run-time
in order to match the actual hardware and software environment. However,
the proposed framework remains an abstract proposal that has not yet been
implemented on actual WSN hardware.

The application specific virtual machine (ASVM) approach [98] generates spe-
cialized virtual machines (VMs) for TinyOS operated sensor nodes. Users
specify requirements of their application by connecting application handlers
to ASVM templates. By exploiting this application-specific knowledge, the
generated ASVM instance is a lean VM with an optimized instruction set. This
allows for bandwidth-saving dynamic reprogramming of sensor nodes since only
the byte code executed by the VM is replaced. However, this approach is lim-
ited to the TinyOS operating system and it does not address heterogeneity or
networking issues.

The SWARMS project [21,89] uses a concept called dVSIS (Distributed Virtual
Shared Information Space) offering a programming abstraction. The underly-
ing idea is that the result calculated by the WSN is contained in a virtual
document. An application uses local rules to contribute to this virtual doc-
ument using so-called IN, OUT and LOC filters. At design time, an XML
Schema document models the structure and content of the virtual document.
A component called STAX (Simple Typed API for XML) generates a middle-
ware instance and an API for different heterogeneous device types. Application
developers implement their filters on top of this API, which invokes callbacks
for each opening, or closing tag, attribute or character data in the received
data. This approach allows programming the devices using a custom-tailored,
application-specific middleware that hides networking aspects from the devel-
oper. Applications written for the generated middleware resemble the parsing
of XML documents and therefore developers typically require state machines
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to track the current position in the received data. While this is an interesting
programming abstraction, developers are restricted to this programming model.

Conclusion Compared to static middleware solutions, the use of middleware
synthesis systems is a promising means to reduce the complexity of implemen-
tations and to mitigate challenges of WSN application development such as
resource constraints, heterogeneity and optimization of networking issues. A
key advantage of these approaches is that lean, custom-tailored code can be
generated that contains only the required functionalities thus avoiding unused
code in the program memory. By exploiting application knowledge, they can
avoid the overhead that would be imposed by traditional, static middleware sys-
tems. Furthermore, developers are able to create sensor network applications
without the need for special low-level device expertise.

However, to the best of our knowledge, none of the existing frameworks provides
the unique features of our proposed middleware synthesis tool Fabric. They fo-
cus either on a special class of applications (eBlocks, ASVM), specific hardware
(TinyDB, Impala), novel programming methodologies (SWARMS, ATaG) or
have not been implemented on resource-constraint WSN devices (ATaG and
the approach proposed by Bencomo et al.). Furthermore, none of the above-
mentioned frameworks explicitly addresses networking issues (such as optimized
data type serialization and security) or can adapt the synthesized code on a data
type level. As stated above, we strongly believe that this kind of support is a
key requirement for future WSN middleware frameworks.

6.4. Architecture

This section presents the architecture of Fabric, demonstrates how custom-
tailored middleware instances are generated and how this functionality is actu-
ally implemented using so-called modules. Hereby, Fabric distinguishes between
two roles: an application developer and a framework developer. An application
developer’s primary interest is an easy to use, flexible system. The framework
developer customizes the generic Fabric system and implements the functional-
ity available to the application developer. These two roles are clearly separated
in Fabric’s architecture that is shown in Figure 6.3. It comprises

input from the application developer (annotated data types, target spec-
ification),

a generic component called Fabric-generator and

input from the framework developer (framework specification, modules).

In the following, these three building blocks are described in detail: Section 6.4.1
presents the application developer’s view of Fabric. Then, Section 6.4.2 explains
the internal mode of operation of Fabric and Section 6.4.3 outlines the frame-
work developer’s role.
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Figure 6.3.: The Fabric architecture

6.4.1. Application Developer’s View

As shown on the left hand side of Figure 6.3, the application developer provides
the

annotated data types and a

target specification.

The annotated data types define the data structures of the application data
as well as their desired treatment by the generated middleware. The target
specification defines properties of the concrete hardware platform such as the
programming language and platform-specific peculiarities by using a list of so-
called natures.

Using this input, Fabric synthesizes the middleware instance that offers a num-
ber of API functions to the application developer. The application developer
then uses the API of the generated middleware to implement his application
functionality. The generated middleware is then compiled together with the
user’s application and linked against an operating system (e.g., TinyOS or a
device firmware, cp. Section 2.1.5), a simulation tool (such as Shawn, cp. Chap-
ter 4) or a visualization tool (such as SpyGlass, cp. Chapter 5). In the following,
the input sources prepared by the application developer are described in detail.
Then, we show how this input is used to synthesize a middleware instance.

Imagine an application that helps optimizing the heating of a building similar
to the one described in Section 6.1. Here, the sensor nodes measure the ambient
temperature and augment this sensor reading with a position. The first step is
to describe the application’s data types. Figure 6.4 depicts the data types Temp
and Location that are required for this application. Temp only holds a single
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floating-point value while Location comprises a sequence of two floating-point
values named x and y. Let us further imagine that the application developer
likes to select security and reliability annotations for both data types, e.g.,
encrypting the Temp data type and transmitting it reliably.

Figure 6.4.: Application data types Temp and Location

Annotated Data types

This type annotation concept requires a language for the data type definition
and the ability to annotate each data type. Fabric coherently uses XML and
XML Schema technologies (cp. Section 2.2) for the input supplied by the ap-
plication developer. The data type definitions are expressed as XML Schema
documents while the annotations are represented as XML documents.

Element declarations of an XML Schema document represent the data types
that are available in the generated middleware, which is consistent with the
intended use of element declarations. These define the elements that may
occur as the root element of valid XML instance documents. Accordingly, each
element declaration manifests itself as a data type in the generated middleware.
Fabric supports the entire XML Schema standard and hence the data structures
may be arbitrarily complex. Figure 6.5 shows an XML Schema document that
represents the data types from Figure 6.4. Two element declarations define the
structure of both data types.

Both element declarations incorporate an XML document containing the an-
notations for each data type. This is possible because XML Schema supports a
machine-readable annotation of nearly all XML Schema tags with user-defined
XML documents. As discussed in Section 2.2.2, these machine-readable anno-
tations are contained as children of the appinfo tag, which is in turn a child
of the annotation tag. The tags related to XML Schema and Fabric are sepa-
rated using different namespaces (indicated by the prefixes xs: and fabric: in
this example). The root element of the annotation document (called fabric) is
contained as a child of the appinfo tag. The actual structure of the contained
XML document is defined by the framework specification as discussed later on.

In this example, the annotated aspects are confidential and public from
the domain security and (un)reliable from tx. This annotation example is
representative for two distinct cases:

1. Temp has one annotation per domain (security: public, tx: reliable)
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<xs:element name="Location">

<xs:annotation>

<xs:appinfo>

<fabric:fabric>

<fabric:Domain name="security">

<fabric:Aspect name="confidential" />

<fabric:Aspect name="public" />

</fabric:Domain>

<fabric:Domain name="tx">

<fabric:Aspect name="unreliable" />

</fabric:Domain>

</fabric:fabric>

</xs:appinfo>

</xs:annotation>

<xs:complexType><xsd:sequence>

<xs:element name="x" type="xsd:double"/>

<xs:element name="y" type="xsd:double"/>

</xsd:sequence></xs:complexType>

</xs:element>

•••

<xs:element name="Temp" type="xs:double">

<xs:annotation>

<xs:appinfo>

<fabric:fabric>

<fabric:Domain name="security">

<fabric:Aspect name="public" />

</fabric:Domain>

<fabric:Domain name="tx">

<fabric:Aspect name="reliable" />

</fabric:Domain>

</fabric:fabric>

</xs:appinfo>

</xs:annotation>

</xs:element>
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Figure 6.5.: XML-Schema annotation

2. Location has more than one annotation per domain (security: confiden-
tial and public).

The first case specifies unambiguously how this data type must be treated by
the generated middleware and no run-time decisions are necessary. Yet, in
the second case, run-time decisions on data treatment exist and the generated
middleware contains code for both aspects and options for selecting the active
one. The user can therefore choose at run-time whether to activate confidential
or unsecured transmission depending on the context.

Target Specification

The annotated data types describe the application’s data types and their de-
sired treatment by the generated middleware in a platform- and programming
language-independent manner. To convert this abstract specification into a
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middleware for a specific device, programming language, etc., the application
developer supplies a target specification (cp. Figure 6.3).

It expresses properties of the target platform such that Fabric can select an
optimal set of code generating modules for the code generation process. The
target specification is comprised of so-called natures. Conceptually, natures are
a classification along several orthogonal axes such as programming language,
target platform and device type. Details on this process follow in Section 6.4.3.

Middleware Synthesis

To support the process of middleware synthesis, Fabric is available as a plug-in
for the well-known Eclipse [172] development environment. Instead of dealing
with command line parameterizations, this plug-in facilitates the use of Fabric
by providing the integration into a widely used IDE.

Fabric’s Eclipse plug-in supports the application developer in all steps neces-
sary for generating middleware instances for different heterogeneous devices. In
addition, the application developer is assisted in preparing all required inputs
directly in the graphical IDE including the target specification and the anno-
tated data types. This is achieved by providing features specific to Fabric and
by using existing development tools for Eclipse.

To compose the target specification, the plug-in offers a configuration wizard.
Figure 6.6 depicts a page from the wizard’s graphical user interface. It shows
the available natures that are given by the framework specification, which al-
lows for a graphical composition of the target specification. This wizard can be
completed multiple times to create a number of target specifications for differ-
ent target devices, platforms and programming languages (e.g., sensor nodes,
gateways and backend computers).

Using the wizard, the user also specifies how the generated middleware source
code will be integrated into the source tree of his application. Figure 6.7 shows
how this integration is configured. It is either possible to choose a target path
of an existing Eclipse project or to select an arbitrary other folder in the case
that Eclipse is not the primary IDE for a certain project. As a result, the
middleware is an integral part of the application and not some third-party
library that requires additional linking steps.

To edit the data types and their attached annotations, Eclipse offers graphical
editors for XML Schema and XML documents. Since XML Schema documents
are valid XML documents, the annotated data types can be edited using any
of both editors. The XML Schema editor is used to define the application’s
data types while the XML editor is used to edit the annotations. Figure 6.8
shows the overview screen of Eclipse’s XML Schema editor. On the left, the
element declarations of Location and Temp are shown. Using this editor, the
application developer can use a graphical editor to design the application’s data
structures.
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Figure 6.6.: Composing the target description using Fabric’s Eclipse plug-in

Figure 6.7.: Configuring project and language specific settings using Fabric’s
Eclipse plug-in

Figure 6.9 shows a detail of the same XML Schema document, this time opened
with Eclipse’s graphical XML editor. The figure shows the element declaration
of the Temp data type. Below the element declaration, the annotation of this
data type can be seen. Using this graphical XML editor, the application devel-
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Figure 6.8.: Graphical editing of the XML Schema file in Eclipse

oper can attach and modify the annotations without dealing with syntactical
issues of XML.

Figure 6.9.: Using Eclipse’s XML editor for attaching the data type annotations

From the user’s perspective, using Fabric boils down to editing the annotated
data type definitions in the graphical user interface of Eclipse and saving the
changes to disk. Then, Fabric’s Eclipse plug-in uses the target specifications
generated by the graphical wizard as well as the annotated data type definitions
and invokes the Fabric-generator. Following, it updates Eclipse’s resource view
to reflect the newly created or changed files in the GUI (such as C, C++ or
nesC source and header files or Java classes). This whole process is transparent
to the user and thus promotes the use of source code generation through a
seamless integration into an IDE.
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6.4.2. Generation Process

The code generation now transforms the annotated data types into middleware
source code such that the resulting code complies with the target specification.
When synthesizing a middleware instance, annotated aspects from multiple do-
mains influence the handling of a data type in the generated code. Hereby, each
aspect is handled by a particular module. This means that for each annotated
aspect one module is invoked that generates source code for this aspect.

As a result, the code generated by the modules participating in the synthesis
process must be compatible since the output of code generated by modules
from one domain is the input for the code generated by modules from the next
domain. Consequently, the Fabric-generator must select a set of compatible
modules for the annotations of each data type and the target specification.

For each annotated aspect of each data type, it passes the aspect, the data type
and the target specification to each module. Modules reply with a descrip-
tion containing whether and how they are capable of performing the requested
operation. This handler description comprises a

set of pins to the previous and next domains and a

priority (one of Unable, Default, Low, Normal, High)

The pins specify which data types are accepted as input and which are produced
as the output of the generated code. The priority determines how well the code
generated by a module fits a given aspect and the target specification (e.g.,
a module that generates standard C code may return a lower priority than a
module generating custom-tailored C code for a particular device).

Based on the obtained handler descriptions, the Fabric-generator gradually de-
selects modules until exactly one module remains for each annotated aspect.
The selection process results in a synthesis-graph for each data type describ-
ing which modules are invoked and which of their pins interact. Deselecting
modules is performed by a number of checks. First, all modules are removed
that do not comply with the target specification (indicated by the priority
Unable). Then, all consecutive de-selection decisions are based on two pin-
interoperability checks (intra-domain check and inter-domain check) and mod-
ule priorities. Algorithm 2 gives the formal description of the selection process.

In the following, this process is illustrated at the example of the data type
Location. Let us assume that Figure 6.10 depicts the available modules. Let
us further assume that the framework specification contains four domains: the
two from the annotation example as well as two additional domains, Interface
and Serialize.

At the beginning, the handler descriptions are collected from all available mod-
ules (lines 2-10 in Algorithm 2). During this process, m9 is deselected because it
returned the priority Unable. This is because its supported aspect (reliable)
is not annotated but other aspects from the domain are chosen (line 6).
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Figure 6.10.: Synthesis graph for the Location data type

The first pin-based de-selection step is the intra-domain check (lines 11-23): It
results in two sets of pins for each domain, one containing pins interfacing to
the previous domain (left hand side of a domain), and the other for the next
domain (right). Both contain all those pins from modules so that one module
for each aspect can be found. Modules that do not have at least one pin in
both sets respectively are deselected. This ensures that it is possible to find a
module for each aspect of a domain using a single pin. In this example, for the
domain security, both sets contain only pin A. Since m5 offers only C on the
left hand side, it is deselected. For tx, the sets contain A, B, X and A, X, Y,
Z (note that m9 was deselected earlier).

The second de-selection step is the inter-domain check (lines 24-37): Now the
next and previous sets of two neighboring domains are intersected. Again,
modules that do not have at least one pin in both sets of a domain are deselected.
In this example, for the domains security and tx only pin A remains. As a
result, m7 is deselected.

Now only compatible modules remain. If more than one module remains for an
aspect, the one with the highest priority is chosen (line 35). Like this, m8 is
deselected. If two modules feature the same priority, an arbitrary one is cho-
sen. Now, the selection process has completed and the remaining modules and
their chosen pins are indicated in black. Finally, handlerd,a holds the handler
description for the domain d and aspect a. The synthesis-graphs for each data
type contain the entire information on how to synthesize the middleware code.
Finally, the Fabric-generator executes the modules specified by the synthesis-
graphs and merges the individual source code contributions into the resulting

99



Chapter 6. Fabric: Data type-Centric Middleware Synthesis

Algorithm 2 Synthesis-graph construction

Require: t {Annotated data-type}
Require: modules {List of available modules}
Require: domains {Ordered list of domains}
Require: natures {List of required natures}
1: for all d ∈ domains do

2: aspects := Aspects(d, t) {All annotated aspects for this data-type and domain}
3: for all a ∈ aspects do

4: for all m ∈ modules do

5: 〈prio, prevP ins, nextP ins〉 := m.canHandle(t, d, a)
6: if prio != Unable then

7: handlersd := handlersd ∪ {〈a, m, prio, prevP ins, nextP ins〉}
8: end if

9: end for

10: end for

11: {Intra-domain pin check}
12: for all a ∈ aspects do

13: {Create a union of previous/next pins for each aspect of this domain}
14: Pprev,a :=

⋃
{prevP ins(h)|h ∈ handlersd ∧ aspect(h) = a}

15: Pnext,a :=
⋃

{nextP ins(h)|h ∈ handlersd ∧ aspect(h) = a}
16: end for

17: {Calculate common previous/next pins between all aspects of this domain}
18: domainPinsprev,d :=

⋂

λ∈aspects

Pprev,λ

19: domainPinsnext,d :=
⋂

λ∈aspects

Pnext,λ

20: {Remove handler descriptions with no common pins}
21: handlersd := handlersd \ {h ∈ handlersd|prevP ins(h) ∩ domainPinsprev,d = ∅}
22: handlersd := handlersd \ {h ∈ handlersd|nextP ins(h) ∩ domainPinsnext,d = ∅}
23: end for

24: {Inter-domain pin check}
25: for all d ∈ domains do

26: if exists(nd := nextDomain(d)) then

27: {Calculate common previous/next pins between neighboring domains}
28: interDomainPins := domainPinsnext,d ∩ domainPinsprev,nd

29: {Remove handler descriptions with no common pins}
30: handlersd := handlersd \ {h|nextP ins(h) ∩ interDomainPins = ∅}
31: end if

32: aspects := aspects(d, t) {All aspects for this data-type and domain}
33: for all a ∈ aspects do

34: {Select the handler description with the highest priority}
35: handlerd,a := h ∈ handlersd|aspect(h) = a ∧ Priority(h) = MAX

36: end for

37: end for

38: return {Inter-domain pin check}

middleware-instance as described in the following section.

6.4.3. Framework Developer’s View

While the application developer uses high-level annotations for defining the
treatment of individual data types, the framework developer uses his domain
expertise to back these annotations with actual functionality. To offer this
functionality, the framework developer provides a
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framework specification and a

set of modules.

In conjunction with the generic Fabric-generator, they form a custom-tailored
instance of Fabric. This section describes the contents of the framework specifi-
cation and shows how a framework developer implements modules that provide
the actual code generation functionality.

Framework Specification

The framework specification defines the functionality that is provided by a
specific instance of Fabric and comprises the

available natures (and domains) and an

annotation grammar defining the structure of annotations.

Natures are unique string values that represent a classification along orthogonal
axes like programming language, target platform and domain. On the one
hand, they allow application developers to express the required features of the
generated middleware in the target specification. On the other hand, modules
use natures to check whether they conform to a target specification. Table 6.1
provides an exemplary list of natures (grouped by related natures) how they
could occur in a particular instance of Fabric.

Programming language Domain Hardware plattform

Java Interface Generic
C++ Serialize Mica

C Security Mica2
nesC Tx Telos
. . . . . . iSense

. . .

Table 6.1.: Exemplary list of natures grouped by similarity

The target specification may contain any combination of the available natures
with the exception of natures that represent domains. As discussed in Sec-
tion 6.4.2, the Fabric-generator uses the order of the domains for determining
neighboring domains. For instance, the domains shown in Table 6.1 resemble
the ones from Figure 6.10.

The second ingredient of the framework specification, the annotation grammar,
defines structure and contents of valid annotation documents. Since the anno-
tations are expressed as XML documents, the framework specification contains
an XML Schema document that defines the rules for valid instance documents.
Using a validating XML parser, the Fabric-generator checks whether embedded
annotations are valid data type annotations.
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Module Implementation

Apart from the preparation of the framework description, a framework devel-
oper’s main task is to implement or to assemble a set of modules. A module’s
tasks are twofold: on the one hand, the module must interact with the Fab-
ric-generator and on the other hand, the actual code generation logic must
be implemented. To develop a module, a framework developer creates a Java
class that implements Fabric’s Module API that is shown in Figure 6.11. The
Module API is used by Fabric to

obtain the handler description from each module and to

trigger the code generation process.

1 . . .
2

3 HandlerDescr ipt ion canHandle ( Ta rg e tSpe c i f i c a t i on , DataType , Aspect ) ;
4

5 void i n i t i a l i z e ( Fabric , Schema , Ta rg e tSpe c i f i c a t i on , Workspace ) ;
6

7 void generat ionBeg in ( Fabric , HandlerDescr ipt ion , Workspace ) ;
8

9 void handle ( Fabric , HandlerDescr ipt ion , Workspace ) ;
10

11 void generationEnd ( Fabric , HandlerDescr ipt ion , Workspace ) ;
12

13 void shutdown ( Fabric , Schema , Workspace ) ;
14

15 . . .

Figure 6.11.: Application programming interface (API) of Fabric modules

The obtained handler descriptions serve as the input for the computation of
the synthesis graphs (cp. Section 6.4.2). As soon as the synthesis graphs are
constructed, the set of participating modules is known and the code generation
methods are invoked on these modules. The sequence of invocations of the
Module-API’s methods is executed in six steps until the middleware is gener-
ated:

1. For each data type and annotated aspect, canHandle is invoked. Based
on the supplied target specification, data type and annotated aspect, the
method returns a handler description. The Fabric-generator then com-
putes the synthesis graphs based on the handler descriptions obtained
from all modules.

2. Each module that is listed in one of the synthesis graphs is notified once
about its participation in the following code generation process by in-
voking initialize. The module is parameterized with the instance of
Fabric, the target specification and a Workspace. The following steps 3-5
are repeated for each data type and they are performed only for modules
that are listed in the synthesis graph of this data type.

3. Before the actual code generation, generationBegin is invoked.
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4. A call to handle triggers the actual code generation. The handler de-
scription returned by the module’s canHandle-method is passed back to
the module now serving as the contract to the previous offer. During
the construction of the synthesis graphs, incompatible pins were removed
from the handler description and only a single pin to the previous and
the next domain remains.

5. After the code generation, generationEnd is invoked

6. Finally, a call to shutdown terminates the middleware generation.

To perform step 1, a module assembles a handler description as described in
Section 6.4.2. The description of pins contained in the handler description is
independent from a particular platform or programming-language. Consistent
with the annotated type definitions and the annotation grammar, the pins are
specified using XML Schema documents.

Imagine a module that generates (de-)serialization code converting a data type
to an array of bytes and vice versa. This module would return only one input
and one output pin. The input pin is the data type passed as a parameter
to canHandle (e.g., Temperature or Location) while the output pin is always
a byte array. Figure 6.12(a) depicts an example of how the byte array pin is
represented in XML Schema.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="ByteArray">

3 <xs:complexType >

4 <xs:sequence >

5 <xs:element name="bytes" type="xs:unsignedByte"

6 minOccurs="0" maxOccurs="255"/>

7 </xs:sequence >

8 </xs:complexType >

9 </xs:element>

10 </xs:schema>

(a) XML Schema representation

(b) Tree representation in Fabric

Figure 6.12.: Description of a pin representing an array of bytes

Fabric converts the XML Schema document to a semantically equivalent tree
to obtain a coherent representation of the XML Schema document that is in-
dependent from its large feature set (such as local or global complex and sim-
ple type definitions, inheritance through restriction or extensions, etc.). Fig-
ure 6.12(b) shows the tree representation of the XML Schema document from
Figure 6.12(a). The elliptical shapes denote elements while the rectangles rep-
resent complex or simple types. The root of the tree is the global element
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declaration (ByteArray), the intermediate complex types define the structure
of the data types and the leaves represent simple types and attributes. Using
this tree representation, Fabric can compare two XML Schema documents for
structural equality, which is used to compare pins with each other during the
construction of the synthesis graphs (cp. Section 6.4.2).

During steps 3-5, modules actually generate source code. It is at the mod-
ule’s disposal, at which step it actually adds source code contributions to the
generated middleware. However, after the final call to generationEnd, each
module must have completed the generation phase. The resulting middleware
source code is then contained in an instance of a Workspace class. A special-
ized Workspace is available for each of the supported programming languages
(currently C, nesC, C++ and Java). It allows modules to contribute generated
source code and decouples the phase of source code contribution from the actual
persistence into files. This is crucial as some programming language constructs
require a strict ordering inside the generated files. For instance, the C language
requires that variable declarations must occur at the beginning of a method
and that functions are declared before they are used.

Consequently, simply writing the contributions of several modules sequentially
into files does not yield the desired output. A Workspace allows an arbitrary
order of source code contributions and, depending on the context, arranges the
contributions in the correct order when writing the files to disk. It also ensures
the syntactical correctness of the generated source code. Before committing
any change to the workspace, it verifies whether the change would violate the
syntactical correctness of the already contained source code. A number of
simple checks (e.g., whether a duplicate method or class would be added) are
available for all supported languages. In addition, Fabric uses the ANTLR [124]
framework1 and its programming language grammars to facilitate a complete
syntactical verification. This allows for a quick identification of the module that
provided erroneous code. Finally, the workspace is persisted to disk resulting
in files on the hard drive and an updated resource view in the Eclipse IDE.

6.5. Bit-length Optimized Data type Serialization
(microFibre)

A key feature of WSNs is to solve a problem as a coherent swarm of devices.
Since the devices do not share a common memory, communication between the
individual devices is the enabling means to evolve a collective behavior. When
developing applications for WSNs, energy awareness and harsh resource con-
straints are constant challenges [64,142]. Given that receiving and transmitting
data are the most energy-hungry operations in a WSN [95,152], the overall du-
ration of broadcasting activities should be minimized to conserve the scarce
energy budget of the sensor nodes.

1ANTLR: ANother Tool for Language Recognition
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At the application level, two major options for reducing the amount of energy
consumed by the radio interface exist: reducing the number of transmitted
messages and minimizing the length of individual transmissions. While reducing
the number of messages is highly specific to each protocol, minimizing the length
of messages can be applied to every WSN application. To achieve this goal,
the representation of application data as payload is optimized to require only a
minimum of bits. However, this presents an optional step in the implementation
of WSN applications and is frequently omitted [140,141].

Automating this step by integrating it into Fabric’s middleware generation pro-
cess is the objective of a novel technique called microFibre that is proposed here.
On its own merits, microFibre provides a methodology for the bit-length opti-
mized serialization of in-memory data structures into payload and vice versa.
Integrating microFibre as a module into Fabric is advantageous for two major
reasons:

1. Optimized (de-)serialization code is automatically generated for heteroge-
neous target hardware platforms. This yields a common binary encoding
for various target platforms and programming languages.

2. microFibre exploits the formal and detailed definition of the data types to
optimize the encoding of the payload. Compared to related and frequently
used approaches, microFibre produces remarkably short binary encodings
while the resulting middleware code is lean and custom-tailored to match
the resource constraints present in WSNs.

In the following, Section 6.5.1 introduces related techniques, discusses their pros
and cons and states how microFibre in combination with Fabric improves the
current state of the art. Section 6.5.2 then presents the architecture of microFi-
bre and explains in detail how in-memory data structures are (de-)serialized
from/to payload. Section 6.6 introduces a second (de-)serialization module for
Fabric called macroFibre. While microFibre provides a bit-length optimized
encoding, macroFibre represents a traditional approach to data type serializa-
tion. Section 6.7 evaluates microFibre and macroFibre and compares encoding
length, footprint and CPU requirements with related work. Section 6.8 con-
cludes this chapter with a summary and an evaluation.

6.5.1. Related Work

To implement the conversion from in-memory data structures to payload, two
fundamentally different approaches exist. In the first approach, developers
handcraft data structures and manually implement the mapping from and to
payload. The second approach is to describe the application’s data types in a
platform-independent manner and to transform this specification into platform-
dependent code for multiple target platforms and languages.
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Approaches Based on Handcrafted Code

In the context of WSNs, the application’s data types are in the majority of
cases implemented as nested data structures directly in the target program-
ming language [30,141]. An approach frequently used in WSN software is that
the payload is an exact, bitwise copy of the in-memory representation on the
sensor node. Although widely used due to its simplicity, this approach has
various, severe drawbacks: it relies on the assumption that different compilers
for different devices represent data structures in exactly the same manner so
that data serialized from memory on one device can be de-serialized on an-
other. This assumption often holds inside the sensor network where exactly the
same program is running on identical hardware. However, due to the increasing
standardization of the radio interface (cp. Section 2.1.3), even inside the WSN,
device heterogeneity is a non-negligible issue.

The network types [30] technique addresses this problem by proposing a pro-
gramming language extension to nesC [56] that introduces new keywords to
the language. Instead of using the traditional C-language constructs struct
and union, developers use nx struct and nx union and a number of new data
types (nx int8 t, nx uint8 t, nx int16 t, etc.). A modified version of the nesC
compiler translates these new language features into standard C code before
it is actually compiled. This approach specifically enables the cooperation of
sensor nodes that are programmed using nesC by mitigating the effects of dif-
ferent memory alignments and endiannesses. Yet, the designed data structures
are still confined to the nesC programming language. Hence, this approach is
neither suited for heterogeneous WSNs nor for the integration with traditional
networks. Custom data types that are created using these new keywords are
subject to a number of restrictions. The most important one is that nx struct
and nx union may not contain bit-fields. Bit-fields are commonly used to de-
crease amount of memory required by a data structure. When this in-memory
representation is directly copied into the payload of network messages, this also
reduces the payload length. As a result, this common optimization cannot be
used.

The External Data Representation (XDR, [156]) standard specifies an architec-
ture independent data encoding to ease the data exchange between heteroge-
neous computers. XDR is typically available as a library that is used by pro-
grams to convert data from and to a common encoding. It defines a number of
XDR data types and their mapping to this common encoding. XDR is typically
used by Sun’s Remote Procedure Call (RPC, [164]) framework, which is used
by the well-known Network File System (NFS, [151]). Despite its usefulness for
desktop and server class computers, XDR is not suited for resource-constrained
devices and the resulting encoding is not optimized for size.

A textual specification of the payload format is another alternative. Hereby,
the meaning of each byte is described in a human-readable form. Common
examples for this procedure are Internet protocols, which are defined in so-
called Requests For Comments (RFCs). Figure 6.13 depicts an excerpt from
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RFC 768 [81] that standardizes the User Datagram Protocol (UDP). This is a
typical example of how protocol headers (that are the payload of other protocols
such as IP) are defined. Developers manually implement code that copies the
content of in-memory data structures to the correct positions in the payload
as defined in the specification. In doing so, they must take care of different
memory alignments and endiannesses manually.

0 7 8 15 16 23 24 31

+--------+--------+--------+--------+

| Source | Destination |

| Port | Port |

+--------+--------+--------+--------+

| | |

| Length | Checksum |

+--------+--------+--------+--------+

|

| data octets ...

+---------------- ...

Figure 6.13.: User Datagram Header Format

Code Generation Techniques

The second approach is to describe the application’s data types in a platform-
independent manner and to transform this specification into platform-dependent
code for multiple target platforms and languages automatically. The generated
code comprises the language- and platform-specific data types and routines that
(de-)serialize them to and from a common encoding. A number of techniques
exist that are widely used in various disciplines of computer science.

Walther et al. [179] present an approach that automates the manual imple-
mentation of textual protocol header definitions as shown in Figure 6.13. They
propose a technique to generate data types and (de-)serialization code automat-
ically from protocol headers that are defined using this ASCII-art like syntax.
However, the underlying input format used by this approach only provides a
limited expressiveness for the definition of complex, nested data structures com-
pared to languages such as XML Schema or ASN.1.

The Abstract Syntax Notation One (ASN.1, [77]) provides a language for de-
scribing data structures in a manner very similar to XML Schema. Figure 6.14
shows a very basic ASN.1 document that is semantically equivalent to the
XML Schema document presented earlier in Section 2.2.2 on page 25. Besides
the ASN.1 language, encoding and decoding schemes have been standardized,
among them the XML Encoding Rules (XER, [80]), the Basic Encoding Rules
(BER, [78]) and the Packed Encoding Rules (PER, [79]). The XER encoding
produces human- and machine-readable XML documents from in-memory data
structures. BER defines a self-contained format that augments the actual data
of a document with type and length information such that it can be decoded
by a receiver that has no knowledge of the original ASN.1 document. Since
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XER and BER documents are quite verbose, PER was designed to yield a very
effective and bit-length optimized encoding. Nowadays, ASN.1 has mostly been
superseded by XML Schema technologies and as we show in Section 6.8, it is
does not inherently target resource-constrained devices.

1 Notarget−ns
2 DEFINITIONS AUTOMATIC TAGS : :=
3 BEGIN
4
5 Long : := INTEGER ( −9223372036854775808. .9223372036854775807)
6
7 Counter : := Long
8
9 END

Figure 6.14.: Basic ASN.1 data type definition (equivalent representation of the
XML Schema document shown in Figure 2.10(a))

XML Schema (cp. Section 2.2.2) as the latest and most generally accepted stan-
dard for the definition of data types commonly uses verbose, human-readable
XML as payload format, which is unsuitable for the use in WSNs. Even
so, approaches enabling XML processing on sensor nodes exist. For instance,
Buschmann et al. propose “<<ASTAX” [20] that allows for an event-driven
programming of WSNs that resembles the Simple API for XML (SAX).

An in-depth overview of compact encodings for XML documents is given by
Werner et al. [182, 183]. The authors introduce a novel technique called Xenia
that yields a very effective encoding of XML instance documents that surpasses
previously available XML compressors in terms of encoding efficiency. By con-
structing a pushdown automaton from an XML Schema document, Xenia en-
codes an XML instance document as a path through the automaton, which can
be encoded very efficiently. The key difference between Xenia and microFibre is
that microFibre does not compress XML documents but in-memory data struc-
tures. Xenia optimizes the encoding of the markup of XML instance documents
and does not focus on an optimized encoding of character data. microFibre per-
forms both optimizations, which is beneficial to reduce the payload length of
serialized in-memory data structures.

Conclusion

Using code generation techniques is an appealing means to overcome the in-
herent heterogeneity of WSNs while optimizing networking issues. However, to
the best of our knowledge, none of the existing solutions and techniques pro-
vides sustained support for WSN development. Existing schemes neither offer
the integration in a framework such as Fabric, nor are they optimized for the
extreme resource-constraints present in WSNs.
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6.5.2. Architecture

To enable microFibre to optimize the bit-length of payload, the application de-
veloper’s input needs to be as precise as possible. As described in Section 6.4.1,
XML Schema with its powerful expressions, pre-defined data types, and the
compelling extension mechanisms is used by Fabric to accomplish this task. In
the following, a simple example will illustrate the underlying idea of microFibre,
the steps performed by the system and the resulting output.

Again, imagine an application developer designing a WSN application that
helps optimizing the heating of a building. Sensor nodes that are scattered
across several rooms measure the temperature (in either degrees Celsius or
Fahrenheit) and detect motion. In order to use Fabric, the application devel-
oper prepares an XML Schema document that describes the application’s data
structures. Hereby, he carefully specifies the data types and their required ac-
curacy. Figure 6.15 shows an example of how the application described above
could structure its data.

Figure 6.15.: Visual representation of the exemplary data type for the heating
control application

A single root element contains an all-composition of two other data types
(motiondetection and temperature). While motiondetection only contains
a single Boolean value, temperature is comprised of a choice between two
integer values (celsius ranging from 0-50 and fahrenheit ranging from 32-
122).

Information Theoretical Considerations

microFibre’s goal is to minimize the number of bits that are required to rep-
resent an in-memory data structure as payload such that the receiver is still
able to decode it back to a semantically equivalent data structure. The fun-
damental theoretical background and the limits imposed by them were already
discussed in Section 2.3. These limits apply given that the symbols emitted
by a data source are the result of a stochastic process. However, data in com-
puter programs is typically well-structured and not every element is completely
random.
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The underlying idea of microFibre is to exploit the detailed knowledge about
the structure and the possible content of the application’s data types. By
incorporating this information into the generated middleware, the length of
the transmitted messages can be reduced to a bare minimum. This is because
both, the senders and the receivers share this knowledge and consequently, it
can be omitted in the payload. In order to quantify what is actually meant by
bare minimum, this section revives aspects from Section 2.3 and presents where
optimization potential exists to achieve bit-length optimized encodings.

In the context of Fabric, a detailed structural definition of the application data
is available as an XML Schema document (cp. Section 2.2.2). On this basis, mi-
croFibre integrates information that is not random and may be predetermined
into the generated middleware code. This information is left out in the payload
because is does not reduce any uncertainty at the receiver (these elements are
“certain”). Consequently, only uncertain parts of the in-memory data structure
are encoded. Uncertain parts are for instance structural choices allowed by a
particular data type (e.g., whether celsius or fahrenheit is chosen), variable
length arrays and strings as well as the actual content of the simple types used
or defined by an XML Schema document. These elements can be considered as
individual data sources that emit symbols with a certain probability.

Figure 6.16 summarizes this procedure for the example presented above. On the
left hand side, a simplified version of the XML Schema document is shown as a
tree and the values in brackets denote the possible range of the individual values.
Here, some information is static (or “certain”) and can therefore be integrated
into the middleware at development-time while other elements are only known
at run-time. At run-time, the in-memory data structures are serialized into
payload such that only the uncertain elements are encoded. The receiver uses
the received payload in conjunction with its knowledge on the certain parts and
recreates the in-memory data structure.

Since the possible range for both temperature values is known, only the uncer-
tain value ranging from the minimum to the maximum value must be encoded.
This technique can be applied to all integer values including structural choices,
array and string lengths as well as integer variables. Section 2.3 introduced
two fundamental methods to arrive at the shortest possible representation of
symbols emitted by a data source. When all symbols xi are equally likely
(p(xi) = 1

n
), each symbol can be represented using n = dHmax(X)e = dlog2ne

bits (cp. Definition 3 on page 32). If not all symbols are equally likely but their
probabilities are known a-priori, a Huffman Code achieves an optimal encoding.

(De-)serialization Scheme

In the following, we present how microFibre uses both techniques to realize a bit-
length optimized encoding while producing lean middleware code. This process
is illustrated at the example of the data type shown in Figure 6.15. Figure 6.17
depicts the XML Schema that represents this data type along with its attached
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Development-time

Run-time

nesC C C++ Java

/ microFibre-module

Annotated data types 

(XML Schema + XML)

sensordata

all []

motiondetection

boolean [0-1]

temperature

choice [0-1]

celsius

byte [0-50]

fahrenheit

byte [32-122]

Incorporate certainty into the middleware

x.motiondetection = false
x.temperature.celsius = 28

..01010011..

Add certaintyRemove certainty

x.motiondetection = false
x.temperature.celsius = 28

Only transmit uncertainty

Figure 6.16.: Development- and run-time architecture of microFibre

annotations. The XML Schema elements are prefixed with xs: whereas the
elements containing the type annotation start with the prefix fabric:. To
recall, the root elements of an XML Schema document represent the data types
that are handled by the generated middleware (cp. Section 6.4.1). In this
example, the generated middleware will therefore only contain a single type
called sensordata.

At the core of XML Schema, there are two different kinds of data type defini-
tions: simple and complex types. A variety of built-in simple types are stan-
dardized that can be categorized into integer and real numbers as well as strings.
These built-in types can be further restricted to user-defined simple types (e.g.
by limiting their range) using so-called facets. When dealing with numerical
data types, restrictions may be applied by specifying a minimum and maxi-
mum value. Both the lower and upper boundary can be either defined as inclu-
sive (facets minInclusive and maxInclusive) or exclusive (minExclusive and
maxExclusive) boundaries. Strings, on the other hand, can have a restricted
length. Similar to the numerical values a minimum and a maximum or a fixed
length (facets minLength and maxLength or length) can be set. Complex types
may be composed of several simple and complex types. XML Schema supports
three different types of compositions: sequence, choice and all. A sequence is a
data type where the order of the contained elements is fixed. For each element
the number of minimum and maximum occurrences may be specified (facets
minOccurs and maxOccurs). A choice is similar to a sequence, but contrary
to the sequence, only one of these types may be present in any given instance.
The all composition is somewhat special since the ordering of the contained
elements is arbitrary but each element may occur at most once. In addition to
the definition of simple and complex types, an XML Schema also defines top-
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•••

<xs:element name="sensordata">

<xs:annotation>

<xs:appinfo>

<fabric:fabric>

<fabric:Domain name="serialize">

<fabric:Aspect name="compact" />

</fabric:Domain>

<fabric:Domain name="tx">

<fabric:Aspect name="unreliable" />

<fabric:Aspect name="reliable" />

</fabric:Domain>

</fabric:fabric>

</xs:appinfo>

</xs:annotation>

<xs:complexType>

<xs:all>

<xs:element name="motiondetection" type="xs:boolean">

<xs:annotation><xs:documentation>If true, the presence 

of a human is likely.</xs:documentation></xs:annotation>

</xs:element>

<xs:element name="temperature">

<xs:complexType>

<xs:choice>

<xs:element name="celsius">

<xs:annotation><xs:documentation>0-50

degrees</xs:documentation></xs:annotation>

<xs:simpleType><xs:restriction base="xs:byte">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="50"/>

</xs:restriction></xs:simpleType>

</xs:element>

<xs:element name="fahrenheit">

<xs:annotation><xs:documentation>32-122

degrees</xs:documentation></xs:annotation>

<xs:simpleType><xs:restriction base="xs:byte">

<xs:minInclusive value="32"/>

<xs:maxInclusive value="122"/>

</xs:restriction></xs:simpleType>

</xs:element>

</xs:choice></xs:complexType>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

•••
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Figure 6.17.: XML Schema document for the exemplary heating control appli-
cation and its annotation

level elements to be of a certain type (e.g., element sensordata on Figure 6.17).
For an in-depth discussion of XML Schema and its features, please refer to
Section 2.2.2.

First, each global element is converted to a semantically equivalent tree rep-
resentation (as already discussed in Section 6.4.3 on page 103). The resulting
tree provides a representation of the XML Schema document that is suitable
for an easy code generation. Figure 6.18 shows the tree that is generated from
the XML Schema document depicted in Figure 6.17.

For code generation, a recursive depth-first search through the whole tree is
performed. Depending on the visited vertex of the tree, microFibre generates
code that encodes the value of an element or an attribute (simple type), a
structural choice (complex type) or a local element (more precise, how often
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sensordata

<<all>>

LocalComplexType_sensordata

LocalComplexType_sensordata::

motiondetection

LocalComplexType_sensordata::

temperature

FBoolean[ID:2]
<<choice>>

LocalComplexType[ID:3]

LocalComplexType[ID:3]::

celsius

LocalComplexType[ID:3]::

fahrenheit

FByte[ID:4]

[0, 50]

FByte[ID:5]

[32, 122]

Figure 6.18.: microFibre’s internal tree representation of the XML Schema doc-
ument shown in Figure 6.17

this element occurs).

Simple Types Without any restrictions, all built-in signed and unsigned in-
tegers have a fixed size of 8 bits for byte, 16 bits for short, 32 bits for int and
64 bits for long. If the range of a type is restricted, its serialization can be com-
pacted. According to Shannon, the number of bits n necessary for transmitting
a restricted integer value can be calculated as n = dlog2(max − min + 1)e.
When using exclusive boundaries instead, these are transformed to inclusive
boundaries by adding/subtracting one. When serializing a restricted value it
is normalized by subtracting the lower boundary, which is added again on de-
serialization. In the example, celsius requires ncelsius = dlog2(50−0+1)e = 6
instead of 8 bits saving 25% of the transmitted data. Simple data types such
as date, time or dateTime use a string representation of date and time values
as standardized by ISO 8601:2004 [75]. For example, “23rd of December 1976,
9:00 pm” is represented as ”1976-12-23T21:00” in XML instance documents. To
avoid these lengthy strings in the payload, microFibre treats these data types
as complex types containing multiple simple integer values for the individual
elements such as year, month, day or hour.

Real numbers require 32 bits for single (float) and 64 bits for double precision
(double) as defined by IEEE 754 [72]. Reducing the required bits is difficult
because of the nature of floating point numbers, where small numbers are en-
coded with a higher precision after the decimal point than larger numbers.
Hence, restricting the range does not decrease the required bits for serializa-
tion. Nevertheless, developers can still optimize the serialization of real numbers
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by creating user-defined decimal types using XML Schema’s totalDigits and
fractionDigits facets. These restrict the number of positions before and af-
ter the decimal point. microFibre then encodes them as two restricted integer
values if this representation requires fewer bits than the standard IEEE 754
representation.

Finally, there are string values, which are encoded as one byte per character.
Besides the character data, the string’s length must be encoded as well. For
applications where the string lengths are bounded to a minimum and maximum
value and it is encoded using the same rules as stated above for integers. A
special case is a string with a fixed length where the length may be omitted com-
pletely. Because WSNs usually run only a single application, additional knowl-
edge about the application’s data is available at design time. For instance, the
required alphabet and text samples are available prior to deployment. Hence,
if this data is included into the annotations, it is used to construct a Huffman
tree that is available on all devices and is hence not included in the payload.

Complex Types The encoding of complex types depends on the type of the
composition. For sequence-compositions, the order of the elements is fixed.
Hence, no structural information is required in the payload.

The all-composition (motiondetection and temperature in the example) also
requires no representation in the payload since the order of elements can be pre-
determined at compile time. This is because in contrast to traditional XML
Schema based serialization schemes, microFibre does not (de-)serialize XML
documents, but in-memory data structures. This relieves microFibre from the
need to encode opening and closing tags or attributes explicitly since the se-
quence of data may be chosen by microFibre where the schema does not dictate
a fixed order.

Only the choice-composition (between celsius or fahrenheit in the example)
cannot be determined at compile-time and the payload must therefore include
the actual selection used at run-time. microFibre encodes the selected choice
exactly like a range restricted integer with a minimal value min = 1 and a
maximal value max = numberOfChoices.

Elements An element that is part of a complex type may occur more than
once, exactly once or not at all in instance documents (or, in this case, in
a data structure). The number of possible occurrences is specified using the
attributes minOccurs and maxOccurs. If the number of occurrences is not fixed
(i.e. maxOccurs−minOccurs > 0), then the actual number of elements needs
to be transmitted before the elements themselves. As with choices, a range
restricted integer is used. The minimal value is min = minOccurs and the
maximal value max = maxOccurs.
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Code Generation

Integrated as a module for Fabric, microFibre generates data type definitions
as well as (de-)serialization code based on the information contained in the
generated tree (cp. Figure 6.18). It is an intrinsic property of WSNs that data
is processed on a variety of heterogeneous devices along its way to a destination.
The majority of the devices are extremely resource-constrained sensor nodes
with only a few ten kBytes of memory. Conserving these scarce resources is
therefore essential. Consequently, the generated source code must be lean and
should require only very little program memory for the serialization logic as
well as a minimal amount of RAM for each in-memory data structure. In
the following, generated C code for the above-introduced example is presented,
because this is the most ubiquitously used language in the context of WSNs.
The current implementation of microFibre is additionally capable of nesC, Java
and C++ code generation.

Figure 6.19 shows an excerpt of the C header file generated by the framework
from the schema document shown in Figure 6.17. In lines 1-11 the data type
declaration can be seen, followed by the declarations of the functions which
perform the (de-)serialization of the data type (lines 13-17).

When generating the data types in the C programming language, most sim-
ple types can be directly mapped to their language dependent counterparts.
However, microFibre takes care of the differing sizes of these types for different
device architectures (e.g., long is 64 bits in XML Schema but depending on the
target device only 32 bits in C). Range restricted integers are easily mapped to
bit-fields where the number of necessary bits is specified using a colon and the
number of bits after the data type definition. Other types such as boolean and
special types like dateTime, time and date do not have counterparts in C but
they as are composed of bit-fields too.

1 typedef struct fabric_sensordata {

2 struct {

3 enum { CELSIUS, FAHRENHEIT } use_to_assign_selected;

4 union {

5 char celsius : 6;

6 char fahrenheit : 7;

7 } choice;

8 unsigned int selected : 1;

9 } temperature;

10 unsigned char motiondetection : 1;

11 } fabric_sensordata;

12

13 unsigned int fabric_serialize_sensordata

14 (fabric_sensordata* dtype, void* buffer, int buflen);

15

16 void fabric_deserialize_sensordata

17 (const void* buffer, int buflen, fabric_sensordata* dtype);

Figure 6.19.: Excerpt from the generated source code
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Complex types are converted to corresponding language constructs available
in C. While sequence- and all-compositions are represented by a struct, a
choice is represented by a union in C. For a union, microFibre must encode
which of the union’s elements has actually been set at runtime (celsius or
fahrenheit in the example). For that purpose, an enumeration containing the
choices (see line 3 in Figure 6.19) and a selector variable is generated automat-
ically (line 8).

As mentioned before, elements of complex types can have a specified minimum
and maximum occurrence value. If one of these occurrences does not equal
1, the child elements are represented as an array of the element’s type. If the
minimum and maximum occurrences differ, an additional variable is added that
encodes the actual number of occurrences at run-time.

Imagine that an application developer has written two different code fragments
that fill an in-memory data structure with values. The first one (cp. Fig-
ure 6.20(a)) represents a motion detection and a temperature of 79°F. The
second one (cp. Figure 6.20(b)) represents no detected motion and a temper-
ature of 26�. The resulting encoding for both data structures as payload is
shown in Figure 6.21.

1 fabric_sensordata f;

2 f.motiondetection = 1;

3 f.temperature.choice.fahrenheit = 79;

4 f.temperature.selected = FAHRENHEIT;

(a) Motion, 79°F

1 fabric_sensordata c;

2 c.motiondetection = 0;

3 c.temperature.choice.celsius = 26;

4 c.temperature.selected = CELSIUS;

(b) No motion, 26�

Figure 6.20.: Exemplary use of the generated data types

The first value that is actually contained in the payload is the contents of
motiondetection. This Boolean value requires only 1 bit. Then, the choice
between fahrenheit and celsius is encoded. This requires also nchoice =
dlog2(numberOfChoices)e = dlog2(2)e = 1 bit. Finally, depending on the
selector variable, one of the two integer values is encoded. Note that the value
for celsius is normalized to the minimum value of 0 while the normalized
value of the fahrenheit variable is 47 (= 79− 32) because the minimum value
specified by the XML Schema document is 32.
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7   6   5   4   3   2   1   0bit#

bit#

0   1   0   1   0   1   1   1 1   0   0   0   0   0   0   0

1   0   0   1   1   0   1   0

motion

detection
selector

fahrenheit (7 bits, 79°F normalized to 79 – 32 = 47)

celsius (6 bits, 26°C normalized to 26 – 0 = 26)

7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0

7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0

Figure 6.21.: Encoded example message for two distinct cases using microFibre

6.6. Traditional Data type Serialization (macroFibre)

When developing applications for sensor networks, the scarce resources of the
individual sensor nodes are a constant challenge for application developers.
When more and more functionality is added during the development process,
the footprint of the application may surpass a node’s capabilities and developers
must carefully assess where reductions are feasible. The microFibre serializa-
tion scheme presented in Section 6.5 incorporates additional knowledge on each
device to reduce the payload’s length. However, for applications where the
space constraints outweigh energy considerations, e.g., because communication
only occurs infrequently, alternative schemes could be an appropriate choice.
The leanest approach to data type serialization is to copy the in-memory rep-
resentation of a data type byte per byte into the network message payload.
However, as discussed in Section 6.5.1, this method has severe limitations in
heterogeneous environments.

This section presents macroFibre, a simple serialization scheme that comple-
ments microFibre by focusing on a smaller footprint instead of on a reduced
payload length. Application developers using Fabric can therefore switch the
desired serialization scheme by changing the annotation of the data types. Sim-
ilar to the network types approach discussed in Section 6.5.1, macroFibre also
addresses device heterogeneity by hiding the effects of different memory align-
ments and endiannesses from the developer. However, macroFibre is not lim-
ited to TinyOS and nesC but it is independent from the actual programming
language and target platform. In contrast to microFibre, macroFibre does not
optimize the payload’s length and aligns the individual elements at byte bound-
aries while microFibre crosses byte boundaries for minimal bit-length encodings.
In addition, only simple operations are performed ensuring that heterogeneous
devices can exchange messages seamlessly. This means that multi-byte num-
bers are converted from the in-memory data type representation to a common
network byte order. All other data types are directly copied into the network
message buffer in a predefined order exactly like microFibre.
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7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0bit#

7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0 7   6   5   4   3   2   1   0bit#

0   0   0   0   0   0   0   0 0   0   0   0   0   0   0   1

0   0   0   0   0   0   0   1

motion

detection
selector

fahrenheit (79°F)

0   1   0   0   1   1   1   1

0   0   0   0   0   0   0   0 0   0   0   1   1   0   1   0

celsius (26°C)

Figure 6.22.: Encoded example message for two distinct cases using macroFibre

This process is depicted in Figure 6.22 for the example presented in Sec-
tion 6.5.2. It shows how macroFibre serializes the same data type in a different
manner. Here, both motiondetection and the selector variable require one
byte instead of one bit in the case of microFibre. Similarly, fahrenheit and
celsius require one byte while microFibre only needs seven/six bits. For this
simple data type, macroFibre needs three bytes to encode the data type while
microFibre only requires one byte (8 bits) for celsius and two bytes (9 bits
padded to two bytes) for fahrenheit case.

6.7. Evaluation of microFibre and macroFibre

This section presents measurements that juxtapose encoding quality, footprint
and runtime of different approaches. In order to perform this evaluation, it is vi-
tal to use data types that represent typical usage scenarios. The evaluation per-
formed here uses three different data types, two from real-world WSN projects
and one from a well-known e-commerce application. The WSN projects are used
to compare microFibre and macroFibre with native sensor network implemen-
tations. In addition, the use of a data type from an e-commerce application
shows that microFibre, macroFibre and Fabric are not limited to embedded
WSN devices but can be applied to other application domains as well. The
following list summarizes the applications that are used in this evaluation:

TinyDB (cp. Section 6.3)

MarathonNet (cp. Chapter 7)

Amazon.com Web Service [3]

A representative data type from each application is used to benchmark microFi-
bre and macroFibre against ASN.1’s Packed Encoding Rules (PER), Xenia and
the corresponding native implementation. This allows comparing handcrafted
and automatically generated code with microFibre and macroFibre. The re-
mainder of this section is structured as follows. Next, the applications and data
types that serve as the basis for the evaluation are introduced and it is described
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how instances of these data types used for the evaluation were created. Fol-
lowing, the encoding lengths of microFibre and macroFibre are benchmarked
against ASN.1’s PER, Xenia and handcrafted code. Finally, the footprint and
the memory requirements of microFibre and macroFibre are compared with
generated and handcrafted code.

TinyDB To compare microFibre and macroFibre with a typical WSN appli-
cation, the well-known and widely deployed TinyDB (cp. Section 6.3, [107])
sensor network database was chosen. One of its central data types (called
QueryMessage), which transports queries to sensor nodes is used in the evalu-
ation. It reflects the inherent need of WSN applications to distribute complex
data structures as the payload of network messages in the network.

Figure 6.23 presents an excerpt of the original C source code that defines the
QueryMessage data type. These C-language data structures were converted to
equivalent representations in XML Schema and ASN.1. The XML Schema was
created manually and the ASN.1 representation was generated using an XML
Schema to ASN.1 converter2 available online. The ASN.1 document was then
compiled to C code using the ASN.1 compiler asn1c3. The complete C data
structure is shown in Section A.2.1, the XML Schema in Section A.2.2 and the
ASN.1 representation in Section A.2.3.

1 /** Message type for carrying query messages */

2 typedef struct QueryMessage {

3 uint8_t qid; //8 -- note that this byte must be qid

4 ...

5 char type; //is this a field, expression ,

6 //buffer, or event msg -- 18

7 union {

8 Field field;

9 Expr expr; //40

10 BufInfo buf;

11 char eventName[COMMAND_SIZE];

12 short numEpochs;

13 int8_t ttl; //for delete msg

14 } u; //40

15 } QueryMessage , *QueryMessagePtr;

Figure 6.23.: Excerpt from TinyDB’s definition of the QueryMessage data type

Speaking in terms of XML Schema, QueryMessage comprises a number of simple
types as well as nine complex types (Field, Expr and BufInfo in the figure,
which in turn contain other complex types). The way this data type is specified,
it can be assembled in 78 unique combinations (because of contained choices
and arrays of variable length).

To indicate which of the choices has actually been selected in an instance of this

2xsd2asn1 project: http://asn1.elibel.tm.fr/tools/xsd2asn1
3Open Source ASN.1 Compiler asn1c: http://sf.net/projects/asn1c
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data type, a variable is necessary that contains this choice. One example of such
a variable is shown in Figure 6.23: type specifies whether the content of the
union u contains field, expr, buf, eventName, numEpochs or ttl. However, a
generic serialization scheme can not be aware of this special meaning of type.
Therefore, it needs to generate own selector variables.

The amount of data contained in the different variations of this data type varies
heavily. For instance, if ttl is selected, the union (or choice) u only holds one
byte. However, if the expr-field is chosen, u holds 23 bytes. Yet, TinyDB’s
networking code directly copies the in-memory data structure into the network
buffer and hence always requires the same amount of memory independent of
the actually contained data. Without any compiler optimization, QueryMessage
requires 48 bytes. Using a compiler optimization offered by the GCC compiler
that aligns bit-fields at bytes boundaries instead of 4-byte boundaries, this gives
a payload length of 42 bytes.

MarathonNet The MarathonNet application is prototypical for a different
class of applications. While TinyDB uses quite complex data types, Marathon-
Net is a sense-and-forward application that uses comparatively simple data
types to convey its data to a final destination. Before switching to microFibre,
an early version of the MarathonNet application used a simple, human-readable
payload format. Figure 6.24 shows an excerpt of the C-code that converts the
in-memory data into the payload of network messages. The snprintf function
is used to create a textual representation of the individual integer values and to
frame them between a start and end sequence. The corresponding annotated
XML Schema document for the use with Fabric is shown in Figure 7.11 on page
139.

1 memset(tx_buffer , ’\0’, TX_BUFFER_LEN);

2 snprintf((char *) tx_buffer , TX_BUFFER_LEN -1,

3 "%c%c%c%u;%u;%u;%u;%u%c%c",

4 0x10 /* DLE */, 0x02 /* STX */, 0x03 /* Type 3 */,

5 _race_time , _pm_id, _heartrate , _position , _speed,

6 0x10 /* DLE */, 0x03 /* ETX */

7 );

Figure 6.24.: Excerpt from an early prototype of the MarathonNet application

This format can be parsed easily on different devices and programming lan-
guages at the cost of lengthy payloads. Image a runner with the following
properties: id 1, position 21,095m after 7,200s (2h), heart rate 120bpm. The
transmitted character sequence (0x10 0x02 0x03 7 2 0 0 ; 1 ; 1 2 0 ; 2 1 0 9 5 ;
0 0x10 0x03) already requires 23 bytes.

Amazon.com A Web Service [189, 190] is a software component whose API
is defined using XML Schema documents. To invoke a Web Service, an XML
instance document is sent to a software component, which in turn replies with
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another XML instance document. A common problem of exchanging XML as
payload is that they are very bulky. As discussed in Section 6.5.1, approaches
such as Xenia propose alternative, compact representations that compress these
XML documents before they are transmitted.

Web Services are therefore related to Fabric and microFibre: They also use
XML Schema documents to describe the exchanged data structures and ap-
proaches for reducing the length of transmitted data are an important means
to increase the efficiency of the system. The key difference is that microFibre
compresses in-memory data structures while these approaches compress XML
documents. However, the comparison with this research branch demonstrates
that microFibre can compete with approaches intended for larger computing
devices while providing essentially the same functionality in WSNs.

For the following evaluation, the XML Schema document describing the API
of the well-known e-commerce platform Amazon.com is used. It offers a Web
Service providing an automatic access to the services offered by Amazon.com’s
web site [3]. The XML Schema document describing this API comprises more
than 25 complex types and 100 top-level elements.

Generation of Test Data for the Evaluation When comparing the encoding
quality of microFibre and macroFibre with other approaches, it is not sufficient
to use only a few random instances. As mentioned above, the amount of data
contained in the different possible combinations varies heavily. For the compar-
atively simple data types such as the one from TinyDB, the number of unique
combinations is bounded to a few hundreds. However, the data type from the
Amazon Web Service allows an unlimited number of unique combinations. In
order to compare the different approaches with each other, instances of the used
data types are required in different formats:

TinyDB and MarathonNet: Handcrafted data structures

Xenia and the Amazon.com Web Service: XML documents

ASN.1 and microFibre: Generated data structures

Therefore, the generation of test data required two steps:

1. Generate different instances of these data types

2. Convert these instances to different formats

Generating test cases for the 78 unique combinations of the QueryMessage data
type was performed by exploiting a feature of the microFibre and macroFibre
modules. Both optionally generate code that creates test instances automat-
ically, which normally allows for an automatic validation of their implemen-
tation. The generated test code fills these test instances with random values
for the integer and real data types. Strings are filled with data that matches
the character frequencies of the internally generated Huffman-Tree. For this
evaluation, the Huffman-Tree has been parameterized to use the character fre-
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quencies of the English language [51]. The MarathonNet data type contains no
structural choices. Hence, 120 different value sets obtained from a real-world
deployment [63] were used to generate test instances. For the Amazon Web
Service, three different XML instance documents returned by this web service
were used4.

Converting these test instances was performed mostly automatically. This is
possible because in addition to microFibre and macroFibre, we have imple-
mented two modules that perform the conversion from in-memory data struc-
tures to XML and XER and vice versa. Test instances available in data struc-
tures generated by Fabric are therefore immediately available for the use with
ASN.1 and XML compatible tools such as Xenia. The payload length required
by MarathonNet was obtained manually by invoking the methods shown in
Figure 6.24. TinyDB copies the in-memory data structure into the payload
of network messages. As mentioned above, the payload’ length is 42 bytes
independent of the test case.

Payload Length

Figure 6.25 and Table 6.2 show the number of bytes required by TinyDB, ASN.1
(PER), Xenia, macroFibre and microFibre to encode the 78 TinyDB test in-
stances. As mentioned above, this comparison is slightly biased in favor of
TinyDB since some variables are encoded redundantly by the other schemes.
The actual amount of is hard to grasp since the existing variables are not clearly
distinguishable from other variables. Hence, the horizontal line at 42 bytes indi-
cates the length of TinyDB’s payload but it cannot serve as a direct benchmark
for the other approaches.

Payload length Savings achieved
[byte] by microFibre [%]

Min Max Avg Min Max Avg

microFibre 16 40 30
ASN.1 PER 16 54 34 0.0 34.0 10.3

Xenia 17 49 35 5.6 24.4 13.3
macroFibre 20 61 40 14.9 42.6 23.2

TinyDB 42 42 42 4.8 61.9 28.8

Table 6.2.: Summary of the payload lengths and the achieved savings of mi-
croFibre (QueryMessage)

It is clearly visible that microFibre and PER yield nearly identical payload
lengths for the majority of test instances. This is because mostly integers (with
or without any range restriction) are encoded and the schemes achieve an opti-
mal encoding for these values. Xenia produces slightly longer encodings since it
does not optimize the encoding of range-restricted integers. In the cases where
microFibre achieves savings of multiple bytes compared to PER and Xenia, one

4By courtesy of Werner et al. [182,183]
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Figure 6.25.: Payload length of encoded QueryMessage test instances

or three string values are contained in the test instances. While PER encodes
each character using one byte, Xenia uses a custom Huffman-tree that differs
from the one used by microFibre. Hence, Xenia encodes string values more
efficient than PER and very similar to microFibre, only the utilized character
frequencies differ. Encodings produced by macroFibre are on average 23.2%
longer (min. 14.9%, max. 42.6%) than the ones created by microFibre since
macroFibre aligns individual variables at byte boundaries and does not exploit
any optimization potential such as minimum or maximal values of variables or
Huffman-based string encodings. This shows the optimization potential com-
pared to traditional handcrafted networking code.

The evaluation results for the MarathonNet application are depicted in Fig-
ure 6.26 and summarized in Table 6.3. microFibre, macroFibre, PER, and
Xenia always require a constant amount of bytes (7 and 16 for Xenia) to en-
code the 120 test instances while the implementation of MarathonNet requires
on average 23 byte (min. 15, max. 28 byte). In contrast to TinyDB, this
data type contains no choices and only (range restricted) integer values are en-
coded. Hence, only the textual representation used in the early MarathonNet
implementation requires a varying amount of bytes.

It can also be seen the range restrictions of the four integer values does not yet
lead to length savings of microFibre compared to macroFibre. Xenia requires
16 byte instead of 7 byte since it directly translates the data type of the XML
Schema to a required number of bytes while microFibre and macroFibre use
the actual value range of the data type to determine the number of bits/bytes
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Figure 6.26.: Payload length of encoded MarathonNet test instances

required for a data type.

Payload length Savings achieved
[byte] by microFibre [%]

Min Max Avg Min Max Avg

microFibre 7 7 7
ASN.1 PER 7 7 7 0.0 0.0 0.0
macroFibre 7 7 7 0.0 0.0 0.0

Xenia 18 18 18 61.1 61.1 61.1
MarathonNet 15 28 23 53.3 75.0 68.4

Table 6.3.: Summary of the payload lengths and the achieved savings of mi-
croFibre (MarathonNet)

The results for the three test instances of the Amazon.com Web Service are
shown in Figure 6.27. Compared to the TinyDB and the MarathonNet ap-
plication, the corresponding XML Schema document of the Amazon.com Web
Service does not exploit any optimization potential by restricting the value
range of integers, string lengths or arrays. It also uses a large amount of string
values that dominate the size of the three XML test instances. As a result,
the payload lengths are also dominated by the size of the encoded string val-
ues. For this evaluation, microFibre has been parameterized with two different
character frequencies for the Huffman Tree: the frequencies used in the evalua-
tions above and frequencies calculated by evaluating the contents of five random
books written in English that were available on the Internet.
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Figure 6.27.: Payload length of encoded Amazon test instances

For this evaluation, Xenia used a technique called Adaptive Huffman Cod-
ing [145]. Compared to a static Huffman Tree, this technique modifies a
Huffman Tree while encoding a document to adapt to the actual character
frequencies. It can be seen that Xenia, microFibre and macroFibre provide
similar compression results. While microFibre performs slightly better for test
instance 3, Xenia encodes the smaller test instances 1 and 2 more efficiently.
However, the differences are due to different string encodings as demonstrated
by the two different Huffman Trees used by microFibre.

Footprint and CPU Requirements

The downside of compression schemes is that minimizing payload length di-
rectly translates to additional code required on the devices (as indicated in
Figure 6.16). As a result, such schemes are only useful if the footprint of the
compiled code matches the resource constraints of sensor nodes. This section
evaluates the required program memory, RAM and CPU time. We compare
microFibre and macroFibre with PER and, where feasible, with the native im-
plementations. We have not evaluated the code generated by Xenia since it
additionally requires a library to parse XML documents. These libraries are
not readily available on sensor nodes and would dominate Xenia’s footprint.

Figure 6.28 shows the RAM required by instances of the different data types and
the program memory required by compiled (de-)serialization code. The code
was compiled using the standard GCC [53] since this is used by the majority of
WSN hardware platforms. In the case of TinyDB, a direct comparison is not
feasible since the implementation only passes a pointer to TinyOs’ networking
code. The same applies to the MarathonNet implementation, which relies on

125



Chapter 6. Fabric: Data type-Centric Middleware Synthesis

features of C’s standard library.
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microFibre’s and macroFibre’s generated data types are only slightly larger
than the handcrafted TinyDB data structure. As discussed above, this is be-
cause of additionally generated variables. The data structures generated by
the ASN.1 compiler are approximately four (TinyDB) to seven (MarathonNet)
times larger than the TinyDB data structure because it contains various inter-
nal state variables. Looking at the size of the compiled code, the code generated
by the ASN.1 compiler is clearly not optimized for resource constraint environ-
ments. It is already larger then the program memory offered by most WSN
hardware platforms and leaves no room for the actual application. The code
generated by microFibre is 21.4% (TinyDB) and 25.2% (MarathonNet) larger
than the code generated by macroFibre. As a result, the overhead introduced
by microFibre compared to traditional, handcrafted solutions is low and mi-
croFibre is therefore clearly suitable for WSN devices.

Finally, we evaluated the CPU time required by the different approaches. These
tests were conducted on standard PC equipment5 since the code generated by
ASN.1 was too large to fit on WSN devices. Figure 6.29 lists the amount of
CPU time required by the different approaches to serialize an in-memory data
structure to payload and back again. These values shown here are average
values of one million iterations.

In the case of TinyDB’s QueryMessage data type, which represents a complex
data structure with many choices, microFibre requires considerably more time
to encode the test instance than macroFibre and the native implementation.
In the case of MarathonNet, microFibre and macroFibre have similar CPU
requirements and both require even less CPU time than the native implemen-
tations. The code generated by the ASN.1 compiler requires a multiple of the
other approaches in both cases.

5Intel Pentium M processor, 1.86GHz, 1GB RAM
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6.8. Summary

This chapter introduced our novel middleware synthesis framework called Fab-
ric. Fabric supports the generation of custom-tailored, application-specific mid-
dleware for heterogeneous platforms. It enables a seamless exchange of messages
between all target platforms involved in the development of a WSN including
sensor nodes, gateways, backend systems, visualization environments and sim-
ulation tools. This relieves application developers from dealing with low-level
networking aspects and heterogeneity. Instead of handcrafting data types and
networking code repeatedly for each application, hardware platform and pro-
gramming language, Fabric’s approach is based on a platform-independent data
type specification augmented with annotations.

Application developers provide an XML Schema document that is annotated
with an XML document per element declaration. These contain the treatment
aspects for each data type. Aspects define for each data types how it is treated
by the generated middleware. Hereby, the data type-specific treatment defines
how an in-memory data structure is converted to payload and how payload of
a specific type is handled by the generated middleware. For instance, a data
type may be compressed and transmitted reliably. A target description defines
properties of the target platform such as programming language and hardware
device. An optional integration into the Eclipse IDE supports the application
developer at each step of this process by providing graphical editors for data
types, annotations and target specifications.

Framework developers back these annotations with source code generating mod-
ules. This automates the implementation of recurring tasks while leaving ap-
plication developers in full control of the features of the middleware. Unlike
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traditional middleware systems, code generation tools and middleware solutions
for WSNs, Fabric explicitly addresses heterogeneity and resource-constraints.
In addition, the generated middleware can perform optimizations that are an
optional, frequently omitted step in manual implementations. We have demon-
strated this at the example of two modules (microFibre and macroFibre) that
generate (de-)serialization code. microFibre implements our novel scheme for
bit-length optimized payload and macroFibre generates code that resembles
traditional, handcrafted methods.

The presented measurements show that microFibre provides the unique combi-
nation of encoding quality, small footprint and acceptable execution overhead,
which is vital for resource-constraint sensor nodes. Hereby, the achieved com-
pression ratio competes with state-of-the-art techniques such as ASN.1’s PER
and Xenia and yields notably shorter payloads compared to handcrafted im-
plementations. For instance, microFibre requires on average 23% less bytes to
encode the QueryMessage data type than the corresponding manual implemen-
tation represented by macroFibre. This comes at the price of 20% increased
footprint and a runtime increased by the factor of four. However, since the wire-
less interface consumes considerably more energy than local computations, this
is a sustainable tradeoff. It is important to note that the achievable compres-
sion ratio highly depends on the input supplied by the application developer.
As a result, application developers must carefully design their data types to
benefit from microFibre.

Integrated optimizations performed by the middleware are only one example of
how Fabric improves the development process of WSN applications. However,
other aspects such as increased reliability of the WSN application, improved
development speed or an eased integration of changes are hardly quantifiable.

The reliability of WSN applications is supported by microFibre, macroFibre
and the two other XML and XER modules. They optionally generate code that
performs a self-validation by creating test cases for the possible combinations
of a data type. Each test instance is serialized, de-serialized and then compared
with the original test instance to ensure a correct behavior of the generated code.
Application developers can therefore rely on the correctness of code generated
by these modules, which restricts the search space for bugs in the application
and generally makes the application more robust.

Furthermore, Fabric has the potential to speed up the development process of
WSN applications. Imagine an application developer that implements code
generated by microFibre manually. To estimate the required time for the imple-
mentation of this code, the well-known COnstructive COst Model (COCOMO)
proposed by Boehm [14, 15] can be used. COCOMO estimates the time and
the costs required to implement industry-grade software based on the num-
ber of lines of code. For the simple example of the QueryMessage data type,
this already yields 1.62 person-months for one target platform6. Consequently,
automatically generating this code can help to increase the development speed.

6Generated using David A. Wheeler’s SLOCCount, http://www.dwheeler.com/sloccount/
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7. Case Study: Real-world Application
in MarathonNet

To put the development framework presented in Chapter 3 in concrete terms,
this chapter demonstrates how it has been applied to realize a real-world WSN
project called MarathonNet [63, 103, 129]. In the past few years, Marathon
running has evolved from a sport for a small group of fanatics into a sport
for the masses where big city marathons register record numbers of more than
40,000 runners and 1,000,000 spectators.

These observations led to the project MarathonNet, which aims not only at
researching algorithms, software and hardware but also especially at gaining
practical experience with large-scale sensor network deployment and operation.
The project’s vision is to monitor runners in real-time during competitions. As
shown in Figure 7.1, the runners wear special sensor nodes called pacemates
that measure their heart rate. The pacemates forward this data augmented
with time and position information in the WSN to base stations along the
track, which pass the received data to a central database.

Start Finish

Internet

Figure 7.1.: Hardware architecture of the MarathonNet project

This allows spectators to follow the race progress of their friends on the Internet
or to watch a real-time visualization of their race progress. Also the notification
of friends at the track via SMS when a particular runner is approaching is
possible, as well as queries with regard to the location of a runner. Coaches
of the athletes can perform a post-facto analysis of the race using the health-
condition of their protégés augmented with time and position information to
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optimize the strategy for future races. Organizers can direct rescue staff to
individual runners when critical values are observed, cheating (leaving track,
taking short cuts, etc.) can be detected and road closures can be optimized.
Runners can be notified on the current position of competitors or a virtual
runner may be used as a reference for his own target speed.

In the following, Section 7.1 gives details on how the development framework
presented in Chapter 3 helped in realizing the MarathonNet application. Sec-
tion 7.2 presents a discussion and evaluation of this development framework
and concludes with a summary.

7.1. Application of Shawn, SpyGlass and Fabric

The MarathonNet scenario presents an ideal platform for applied WSN research
where the runners form a large, highly mobile sensor network. The architec-
ture of the MarathonNet application (cp. Figure 7.1) consists of three central
components:

Sensor nodes worn by the runners that collect biometrical data and for-
ward it, if necessary via other nodes, to base stations

Base stations positioned along the track that receive data from passing
by sensor nodes

Central backend storing and visualizing data received from the base-
stations

MarathonNet is therefore characteristic of a typical heterogeneous WSN appli-
cation as introduced in Chapter 1. It requires that multiple, highly different
types of devices (sensor nodes, gateways, backend systems) cooperate to solve
the application’s task. As a result, the applications running on these devices
must share a common knowledge on the contents of the payload contained in
exchanged network messages. The project is also typical in that it requires
simulations prior to real-world deployments and visualizations of data received
from the gateways. The remainder of this section presents how Shawn, Spy-
Glass and Fabric were used to prepare the real-world deployments in Flensburg
and Ratzeburg in 2006 and 2007.

7.1.1. Shawn

Due to the special requirements, neither the sensor nodes nor the base stations
were readily available off-the-shelf. Designing these hardware components as
well as novel protocols and applications required a profound understanding of
the underlying structure of the highly dynamic network formed by the runners.
This included the modeling of a Marathon race inside the simulation environ-
ment and an analysis of the underlying network topology and connectivity.

Based on the obtained results, the pacemates and base stations were designed
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and manufactured. After the finalization of the technical specifications, the
time span until the delivery of the first prototypes constituted approximately
half a year. Consequently, developing the software in parallel to the hardware
was mandatory to ensure a continuous progress of the project. The goal was
to finish the implementation before the first devices were available for test-
deployments. Hence, simulations had to replace the real hardware.

The different goals of the simulations resemble exactly the development cycle
encouraged by Shawn (cp. Section 4.2): Starting from an idea for a project,
the scenario is analyzed in detail to develop a deeper understanding of the un-
derlying structure. Following, algorithms and protocols are evolved gradually
from simple centralized implementations to fully distributed implementations.
Because of these features, Shawn was used to model the marathon inside a sim-
ulated environment, to derive connectivity information from the WSN formed
by the runners and to implement and test the application before the pacemates
were available. These three steps are described in the following.

Modeling Marathon Races Modeling a marathon race as a set of mobile
sensor nodes required three steps:

Representation of the marathon track as a polygon shape

Providing split times for each runner

Implementation of a custom Node Movement (cp. Section 4.3.1) that uses
track data and split times to calculate the current positions of nodes

To represent a Marathon track, a custom XML file format has been defined
that holds (x,y)-coordinates of the track. These were obtained from online
maps of the city of Hamburg and Berlin by determining (x,y)-pixel positions
of the track. The resulting polygon shape is then scaled to a specific overall
length. Figure 7.2 shows an excerpt of the XML file representing the Hamburg
Marathon track. The individual (x,y)-coordinates of the polygon shape are
listed sequentially and the length of track is specified as 42195m.

1 <track>

2
3 <header d e s c r i p t i o n=”Hamburg Marathon Track from 2005”
4 length=”42195”
5 t rack data type=”coo rd ina t e s ” />

6
7 <t rack data>

8 <coordinate x=”857” y=”271”/>

9 <coord inate x=”857” y=”196”/>

10 <coord inate x=”802” y=”93”/>

11 . . .
12 <coord inate x=”902” y=”189”/>

13 <coord inate x=”858” y=”235”/>

14 <coordinate x=”857” y=”271”/>

15 </track data>

16
17 </track>

Figure 7.2.: Model of the Hamburg Marathon 2005 track
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To calculate a runner’s position on the track for a specific point in time, realistic
data was required. Most large events provide split times of each runner, which
are publicly available on the Internet after the race. Split times provide the time
at which a runner passed one of the checkpoints that are typically positioned in
intervals of 5km or 10km. By using the split times of popular marathon events
such as the Hamburg and the Berlin Marathon 2005, enough realistic data was
available to model the movement of individual nodes in the simulation.

Because the split-times are a property of individual runners/nodes, they were
attached as Tags (cp. Section 4.3.3) to the nodes in Shawn. Figure 7.3 shows
an excerpt of an input file using Shawn’s persistence format (cp. Section 4.3.3).

1 <scenar io >

2 <snapshot id=”0”>

3 <node id=”Doe, John”>

4 <l o c a t i o n x=”0” y=”0” z=”0”/>

5
6 <tag type=”double ” name=”start o f f set ” value=”0.0” />

7 <tag type=”map−double−double ” name=”split t imes ” >

8 <entry index=”0” value=”0” />
9 <entry index=”10000” value =”1807.0” />

10 <entry index=”20000” value =”3606.0” />

11 <entry index =”21097.5” value =”3801.0” />

12 <entry index=”30000” value =”5408.0” />

13 <entry index=”40000” value =”7243.0” />

14 <entry index=”42195” value=”7658.0” />
15 </tag>

16 </node>

17
18 <node id=”Se lav i e , Rose”> . . . </node>

19 . . .
20 </snapshot>

21 </scenar io >

Figure 7.3.: Runners from the Hamburg Marathon 2005 along with their split
times represented in Shawn’s standard persistence format

It contains nodes and their properties such as name, initial position and at-
tached Tags. Hereby, the Tag named start offset denotes the difference in
seconds between the official start of the race and the point in time when the
runner actually crossed the starting line. The Tag named split times holds
a map that assigns a 1D-position on the track to a time in seconds. This file
is read by Shawn’s load world-task that creates the contained nodes at their
initial position and attaches their corresponding Tags. Figure 7.4 shows a con-
figuration file that creates the Simulation Environment, loads the runners with
their split times as well as the track data and runs the simulation.

1 #Create the Simulat ion Environment
2 prepare wor ld edge model=di sk graph comm model=simple
3 range=150 transm model=r e l i a b l e
4
5 #Load the runners and t h e i r s p l i t t imes
6 load wor ld f i l e=HamburgSplitTimes2005 . xml
7
8 #Load track , c r ea t e NodeMovement and attach i t to the runners
9 mnet race task track=HamburgTrack2005 . xml

10
11 #Run f o r 6 hours (21600 s ) o f s imulated time
12 s imula t i on max i t e ra t i on =21600

Figure 7.4.: Configuration for the simulation of the Hamburg Marathon 2005
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This data is then available in Shawn and MarathonNet’s Node Movement imple-
mentation uses the split times of each node to interpolate its current position.
To calculate the current position from the list of split times, the two split times
immediately before (split1) and after (split2) the current point in time are used.
The current position is then calculated as

pos = pos(split1) +
pos(split2) − pos(split1)

time(split2) − time(split1)
∗ (now() − time(split1))

Figure 7.5 shows the track of the Hamburg Marathon 2005 along with the
positions of a subset of the participants for different points in time.

(a) 00:36:30 (b) 01:35:00

(c) 02:03:00 (d) 02:55:00

Figure 7.5.: Snapshot of the marathon field for different times (500 runners from
the Hamburg Marathon 2005)

Connectivity Analysis The necessity of a real-time data transmission from
the pacemates to the backend database requires that a multi-hop path from
each pacemate to an arbitrary base station exists for the majority of the time
during a race. This connectivity obviously depends on the transmission range
of the sensor nodes and the number of base stations. Hence, simulations with
different realistic values were conducted to determine the best combination of
both parameters.

Since the budget of the project restricted the number of pacemate devices to
a few hundred, a random subset of runners from the Hamburg and Berlin
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marathon was used. During a simulation, custom Simulation Tasks evaluated
the connectivity of the underlying graph representation of the dynamic network
formed by these runners. This allowed an extraction of relevant data without
requiring any message exchanges or distributed protocols.

Figure 7.6 depicts one result of these simulations. It shows for 500 randomly
selected runners the average percentage of time during which a path to an
arbitrary base station exists. It is clearly visible that to achieve connectivity
for more than 80% of the time and a transmission range of 150m, a minimum
of 8 base stations is necessary. Increasing the number of base stations does
not yield a significant increase in connectivity; only increasing the transmission
range is helpful.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16

C
o

n
n

e
c
ti
v
it
y
 [

%
]

# of base stations

Connectivity to at least one basestation

range 300
range 200
range 150
range 100

range 50

Figure 7.6.: Connectivity to a base station with varying transmission range (500
nodes/runners)

The next step was to analyze how the device density develops in such a mobile
scenario. When assuming a fixed upper bound for the communication range
of 150m, the size of the one-hop-neighborhood directly translates to a density
measure of the network. Figure 7.7 charts the results of this analysis. The
boxes show the number of neighbors interval for 50% (25%–75%) of the nodes.
A surprising fact is that throughout the entire race, isolated small clusters of
runners with zero or one neighbor exist. For these runners, the danger of a
decayed overall connectivity prevails. Fortunately, the overall number of these
isolated clusters is low, as the size of the boxes indicates.

From the above-mentioned results, a minimum communication range of 150m
was chosen. This means that on average, the pacemates do not have a multi-
hop connection to a base station for about 20% of the time. Hence, they must
bridge this time gap by storing data for later transmission. As a result, the
memory requirements were dimensioned accordingly. For further details please
refer to a detailed discussion presented in [129].
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Pacemate API As mentioned above, developing the software in parallel to the
hardware was mandatory to ensure a continuous progress of the project. After
the technical specifications were finished, the major software- and hardware-
components and their features were known. Figure 7.8 shows the final pacemate
device along with these components.

DisplayKeyHeartrate

Accu

I2C

RS232

Radio

RTC Timer

Sys

Event

pacemate Firmware

Figure 7.8.: pacemate device and schematic overview of the pacemate-firmware

On this basis, the software API provided by the pacemates was defined. To
reduce the required effort when porting the simulation code to the pacemate
hardware, the goal was to run the same code inside Shawn and on the pace-
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mates. As shown on Figure 7.9, the applications and protocols should not be
aware of the underlying implementation of the API.

Real-worldSimulation

Device API

Applications & Protocols
Location

FriendFinder

VirtualPacemaker
Routing etc.

Figure 7.9.: Common pacemate API for simulation and real-world hardware
deployment

Consequently, the functionality was implemented in Shawn to provide exactly
the same API in the simulator as on the future hardware. Due to the previously
realized simulation of the runners’ movements, implementing the software API
complemented the existing infrastructure to a coherent basis for the simulation
of pacemate applications using Shawn.

7.1.2. SpyGlass

A central element of MarathonNet events is to provide additional information to
the spectators. Similar to the media coverage of sports events in television, the
visualization of available data should display interesting activities such as the
position of the first runner and his immediate persecutors, passing maneuvers,
etc. In contrast to traditional media coverage, the goal was to select the im-
portant scenes automatically without requiring manual intervention. To realize
this goal, additional plug-ins for SpyGlass (cp. Chapter 5) were implemented.
For the basic visualization of the race, the following data is required:

Position of each runner augmented with time and position

Current heart rates of all runners

Polygon representation of the track

The first two data entities are regularly received at the gateways and are thus
easily available. However, the pacemates are not aware of their embedding in
the 3D-space but calculate only a 1D-position on the Marathon track. For this
reason, a virtual base station converted the track data shown in Figure 7.2 to a
data packet that was then transmitted to SpyGlass. A special Node Positioner
plug-in converts the received 1D-positions to 3D-positions using the track data
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received beforehand.

With this data available, the remaining tasks focus on the actual visualization
and the selection of interesting scenes. As described in Section 5.2.3, the plug-
ins do not directly draw on the canvas but transform the received payload to
abstract drawing objects such as lines, rectangles or – in this case – runners
and a track. These abstract objects are then actually drawn by different canvas
implementations. Implementing the visualization therefore required four steps:

Creating abstract drawing objects of a runner and a marathon track in-
cluding their properties such as current position, rank and heart rate as
well as polygon points for the marathon track.

Implementation of plug-ins: a Background Painter for the marathon track
and a Node Painter for the runners that convert the received payload to
abstract drawing objects.

Drawing instructions for each canvas to convert the abstract drawing ob-
jects to actual on-screen representations.

Discovering interesting scenes to zoom and pan the camera. Hereby, a
Director plug-in monitors the incoming data and selects a random scene
from a set of predefined scenes.

Figure 7.10 depicts such an exemplary scene showing selected runners on a
virtual replica of the Hamburg Marathon track.

Figure 7.10.: Automatically selected and rendered scene from the visualization
of a marathon event using the SpyGlass visualization framework
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7.1.3. Fabric

The architecture of MarathonNet exactly reflects that of a typical WSN. It
comprises sensor nodes, gateways and backend systems, which requires the
processing of data at several locations. In our case, each of these components
was implemented by a different team of developers. As discussed in Section 6.2,
this requires a tight synchronization of the teams to avoid differences in the
implementations of the networking code. Consequently, Fabric was used to
generate custom-tailored middleware instances for the different, heterogeneous
devices from a single data type definition. As a result, changes to the data
type definitions immediately reflect themselves in newly generated middleware
instances.

As discussed in Chapter 6, required data structures are represented as annotated
data types in XML Schema serving as the input for Fabric. Figure 7.11 shows
an early version of this document that covers only very basic functionality.
This contains a single top-level element called RunnerData that is comprised
of a sequence of four other local element definitions (id, time, location and
heartrate). Hereby, the local type definitions precisely describe the range of
the individual elements (e.g., location ranges from 0 to 42195, the length of
a marathon in meters) thus allowing for an optimized synthesis of middleware
code (cp. Section 6.5).

Besides the data type definitions, the element RunnerData also contains anno-
tations to select and parameterize the modules that synthesize the final mid-
dleware. As discussed in Section 6.4.1, the annotations are embedded into
the element’s definition as an XML document. In this case, only one anno-
tation (compact) of one domain (serialize) is present. As described in Sec-
tion 6.4.1, the top-level elements of an XML Schema document are mapped
to network messages in the generated firmware. Hence, this results in a mid-
dleware that uses microFibre for data type (de-)serialization of the single data
type RunnerData.

When invoked with different target specifications (i.e., a list of natures) for
the sensor nodes, the gateways and the backend, Fabric synthesizes a family of
compatible middleware instances. Because the annotated data type definition
remain the same for the different target specifications, the generated middleware
instances share a common knowledge on how to transform the in-memory data
structures to network messages and vice versa. This enables all components
to understand the payload of network messages independent of their origin.
Data originating from the pacemates can therefore be processed seamlessly
on the base stations, the backend database or by the SpyGlass visualization
framework.

138



7.2. Evaluation and Summary

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2 <xs : schema targetNamespace=”http ://www. marathonnet . de/v1”
3 xmlns : f a b r i c=”http ://www. c o a l e s e n s e s . com/ f a b r i c /v2”
4 xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”
5 elementFormDefault=” q u a l i f i e d ” attr ibuteFormDefault=” unqua l i f i e d ”>
6 <xs : element name=”RunnerData”>

7 <xs : annotation>

8 <xs : appinfo>

9 < f a b r i c : f ab r i c >

10 < f a b r i c : Domain name=” s e r i a l i z e ”>

11 < f a b r i c : Aspect name=”compact” />

12 </ f a b r i c : Domain>

13 </ f a b r i c : f ab r i c >

14 </xs : appinfo>

15 </xs : annotation>

16 <xs : complexType>
17 <xs : sequence>

18 <xs : element name=” id ”>
19 <xs : simpleType>

20 <xs : r e s t r i c t i o n base=”xs : uns ignedInt ”>
21 <xs : min Inc lus ive value=”0”/>

22 <xs : maxInc lus ive value=”50000”/>

23 </xs : r e s t r i c t i o n >

24 </xs : simpleType>

25 </xs : element>
26 <xs : element name=” r a c e s e c s ”>
27 <xs : simpleType>

28 <xs : r e s t r i c t i o n base=”xs : uns ignedInt ”>
29 <xs : min Inc lus ive value=”0”/>

30 <xs : maxInc lus ive value=”25000”/>

31 </xs : r e s t r i c t i o n >

32 </xs : simpleType>

33 </xs : element>
34 <xs : element name=” l o c a t i o n ”>
35 <xs : simpleType>

36 <xs : r e s t r i c t i o n base=”xs : uns ignedInt ”>
37 <xs : min Inc lus ive value=”0”/>

38 <xs : maxInc lus ive value=”42195”/>

39 </xs : r e s t r i c t i o n >

40 </xs : simpleType>

41 </xs : element>
42 <xs : element name=” hea r t r a t e ”>

43 <xs : simpleType>

44 <xs : r e s t r i c t i o n base=”xs : uns ignedInt ”>
45 <xs : min Inc lus ive value=”30”/>

46 <xs : maxInc lus ive value=”250”/>

47 </xs : r e s t r i c t i o n >

48 </xs : simpleType>

49 </xs : element>
50 </xs : sequence>

51 </xs : complexType>
52 </xs : element>
53 </xs : schema>

Figure 7.11.: Annotated MarathonNet data structures

7.2. Evaluation and Summary

After the conceptual presentation of our development framework for WSN ap-
plications in Chapter 3 and the detailed description of its major components
Shawn, SpyGlass, Fabric and microFibre, the section above introduced its ap-
plication in a real-world setting. This section evaluates this approach to WSN
software development based on the criteria that were introduced in Chapter 3.
To recall, these are:

Scale from resource-constraint WSN devices to more powerful gateways
and high-performance backend systems

Integrate simulation tools and visualization environments

Encourage application evolution over its lifetime

Support the integration with traditional networks
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Offering support for all classes of WSN applications

The following paragraphs discuss for each criterion, how the approach presented
in this work fulfills the criterion and illustrates how this is realized and how
users benefit from the proposed framework.

Platform and Language Independence Fabric intrinsically supports middle-
ware code synthesis for heterogeneous platforms by its generic design. The set
of possible target hardware depends on the available modules and the supported
programming languages. As mentioned in Chapter 6, Fabric currently supports
the most common programming languages in WSNs such as C/C++, nesC and
Java. The design of the Workspace that holds the generated source code is
generic and supporting additional programming languages is straightforward.

The same situation holds for the supported hardware platforms where modules
for a number of targets are already implemented. This includes the majority of
gateways and backend systems because these devices are typically able to run
compile code using Java or standard C/C++. Furthermore, we have success-
fully tested and run the generated middleware code on the pacemate, iSense
and Scatternode sensor nodes. Since the programming techniques between the
most hardware platforms differ only marginally, the currently generated code
may already be suitable for other platforms and integrating the changes to them
is straightforward.

Developers can therefore automatically generate middleware code for a hetero-
geneous WSN deployment that comprises sensor nodes, gateways and backend
systems from a single annotated data type definition by invoking Fabric multi-
ple times with different target specifications.

Integration with Simulation and Visualization Usually, application devel-
opers first use one of the simulation frameworks presented in Chapter 4 for
validating the correct behavior of the application and for benchmarking its per-
formance. Next, the implementation for the simulation framework is ported to
the targeted hardware platform. From Fabric’s point of view, a simulation tool
is simply another target platform that framework developers can support by
implementing corresponding modules.

The same situation applies to visualization environments. Simulation environ-
ments typically visualize data contained in the payload of network messages that
are received at gateways. As a result, a common task is the de-serialization of
the received payload to in-memory data structures, which are then used to visu-
alize the contained data. Using the SpyGlass visualization environment, adding
a new visualization boils down to the mapping of in-memory data structures to
abstract drawing instructions. These are then drawn on selected output devices
such as a computer screen, a Postscript file or a movie file.
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Application Evolution Our development framework supports all steps from
an initial idea for a WSN application to the final implementation and visualiza-
tion. Prior to deployments on real hardware, Shawn is used to evolve an idea
gradually to a fully distributed protocol. Following, Fabric alleviates the step
of implementing the application on the heterogeneous WSN hardware. Fabric
alleviates this task because developers only change the data types and their
annotations using a single document. The changes are automatically reflected
in newly generated middleware code for each target hardware platform. On
the one hand, this reduces the need to synchronize distinct implementations.
On the other hand, this approach supports the willingness of developers to add
new features or to fix bugs because the risk of integrating new errors at the
networking level is considerably reduced.

Interconnection with Traditional Networks Since Fabric generates middle-
ware code for sensor nodes as well as for gateways and backend systems, each
component can (de-)serialize the application’s data types from/to payload.
Gateways that are connected to the sensor network and a traditional network
using wireless LAN, UMTS or GPRS can therefore either forward the pay-
load as received from the sensor nodes or perform additional services based on
the contents of the payload. In the first case, all processing is performed by
the backend system. In the second case, some processing is performed on the
gateways. However, the choice on where to perform this processing does not
increase the required implementation effort, since Fabric provides the necessary
abstractions on every device involved in a WSN deployment.

Support for all Kinds of WSN Applications A number of code synthesis tools
target a specific application domain (cp. Section 6.3) and therefore inherently
support only a subset of the possible applications for WSNs. By contrast, the
approach presented here offers a generic approach. The generated middleware
code supports the user in the process of application development and does not
generate the complete application from some kind of model.

Closing Remarks We have introduced a novel development framework that
integrates simulation, visualization and application development by generating
custom middleware instances for heterogeneous devices. In addition, we pre-
sented two new approaches, one in the field of simulation (Shawn) and one in
the area of visualization (SpyGlass).

We strongly believe that model based development is beneficial and accelerates
WSN development. Hence, the approach presented here uses a hybrid strategy
where the user specifies the application’s data types and their desired treatment
by the generated code by using a single model. However, the user still imple-
ments the application logic manually. We believe that this is necessary for two
reasons: The strict resource constraints of sensor nodes demand for a manual
optimization by the user and the generation of the complete application from
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models restricts the set of possible applications.

Shawn allows for a fast and eased optimization of the application prior to real
world deployments by using simulations. The ability to inspect the underlying
communication graph and other properties of the sensor network enables the
development team to gain an in-depth knowledge of the overall scenario and
provides hints on how to optimize the individual components of the application.
This reduces the amount of tests with the deployed sensor network application.
SpyGlass provides a platform for the visualization of the deployed and simulated
sensor networks. Its flexible plug-in and drawing architecture allows developers
and operators of the WSNs an easy adaptation of the visualization to their
demands. While developers typically enable plug-ins that display a number of
technical parameters, operators can choose plug-ins that visualize only plug-ins
to support their actual task. Finally, Fabric is the key element for a systematic
evolution of the application, for mastering the inherent device heterogeneity of
the scenario and for relieving developers from recurring and error-prone tasks
during the development of the application.
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Wireless sensor networks are an active area of research and currently, they
are at the verge of commercial success. However, application development for
WSNs remains complex as it unites the challenges of distributed applications
and embedded programming. In addition, severe resource-constraints, hetero-
geneity, unpredictable environmental influences and the size of the networks
further complicate this situation. Apart from these challenges, another issue
complicates the development process. Since project specifications are subject to
modification and because applications evolve over time, changes are an inher-
ent companion of the development process. However, a common rule in project
management is that changes are expensive, time consuming and error-prone the
later they are introduced in the project.

Alleviating this situation requires frameworks that shield developers from these
issues. However, until today, no widespread availability and use of such tools
for WSNs can be observed. On the contrary, handcrafting applications from
scratch is still by far the predominant approach to WSN development. This lack
of powerful and easy-to-use development frameworks chokes research progress
as well as a widespread industrial adoption. To improve this situation, we pre-
sented a novel development framework for WSNs that eases the implementation
of WSN applications. The motivation for this work is based on the observation
that WSN developers typically require simulations and visualizations in addi-
tion to the implementation of the application on sensor nodes, gateways and
backend systems.

Consequently, our approach integrates simulation, visualization and heteroge-
neous application development into a coherent framework. This framework is
comprised of the four components

Shawn (a high-level and high-performance simulation tool),

SpyGlass (a generic visualization environment),

Fabric (a middleware synthesis framework) and

microFibre (a scheme for bit-length optimized payload of network mes-
sages).

Shawn is a novel simulation tool for the design and optimization of applications
prior to their real-world deployment that emerged from an algorithmic back-
ground where the design of high-level protocols and algorithms for large WSNs
are the primary research goals. Starting from an initial idea for an application,
Shawn encourages a multi-stage approach to simulation, which supports devel-
opers in evolving this idea to a fully distributed protocol. The central idea of
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Shawn is to replace low-level effects with abstract and exchangeable models so
that simulations can be used for huge networks in reasonable time while keeping
the focus on the actual research problem.

We provide measurements showing that Shawn excels in its area of expertise
where it outperforms existing simulation tools by orders of magnitude in run-
time and resource consumption. In our evaluations, Shawn required a few
seconds to simulate a network of 1,000 nodes where Ns-2 already required more
than one day. Hence, developers must carefully select the simulation tool de-
pending on the application area. When detailed simulations of issues such as
radio propagation properties or low-layer issues should be considered, Shawn
is obviously not the perfect choice. However, when developing algorithms and
high-level protocols for WSNs, this level of detail often limits the expressiveness
of simulations and blurs the view on the actual research problem. This is where
Shawn provides the required abstractions and performance.

SpyGlass provides a visualization environment for wireless sensor networks.
The payload of received network messages is converted to abstract drawing in-
structions by so-called plug-ins. These are visualized by different canvas imple-
mentations. This allows the presentation of data using different output formats
including 2D- and 3D-representations on computer screens, images or movies.
This modular architecture allows users an arbitrary visualization of the net-
work’s state and the outcome of simulations. Furthermore, SpyGlass enables
the user to feed data back into the network to influence its state. Because of
this generic approach, SpyGlass is a flexible and comprehensive toolkit for the
visualization and control of WSNs.

Fabric links simulation, visualization and heterogeneous WSN devices by gen-
erating application- and data type-specific middleware for these heterogeneous
target platforms. Instead of implementing networking code manually for dif-
ferent target platforms, developers provide a data type definition augmented
with annotations. Based on this input, multiple modules conjointly generate
optimized middleware instances. The generated middleware enables a seam-
less exchange of messages independent from their origin. This allows all WSN
components to operate on received data and to emit data using accustomed
programming language constructs while networking issues are handled by the
generated middleware. The outstanding feature of the proposed framework is
that it creates lean, optimized middleware instances for resource-constraint de-
vices and that the treatment of data types is specified individually for each
type.

We have demonstrated this by implementing microFibre, our novel serialization
scheme, as a module for Fabric. Measurements show that microFibre provides
a unique combination of encoding quality, small footprint and adequate exe-
cution overhead, which is vital for resource-constraint sensor nodes. Hereby,
the achieved compression ratio competes with state-of-the-art techniques such
as ASN.1’s PER and Xenia. Compared to a manual implementation of the
TinyDB data base, microFibre yields on average 23% (min. 14%, max. 43%)
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shorter payload lengths. This comes at the price of 20% increased footprint
and a runtime increased by the factor of four. However, since the wireless in-
terface consumes considerably more energy than local computations, this is a
sustainable tradeoff. In the case of the MarathonNet application, the length of
the payload encoded by microFibre is on average 68% (min. 53%, max. 75%)
shorter than the native implementation while even requiring 95% less CPU
time. This clearly shows the advantage of automatically generated networking
code: The synthesized middleware can perform optimizations and provide ser-
vices automatically that represent an optional step in manual implementations.
In this case, considerable bandwidth savings are achieved without requiring
manual optimizations.

Apart from integrated optimizations, Fabric has the potential to increase the
reliability of WSN applications since the generated code can optionally perform
self-validations. Furthermore, Fabric can speed up the development process of
WSN applications. If the generated code was implemented manually, a con-
siderable amount of time is required to produce industry-grade code for the
different target platforms. Already for the single data type of TinyDB, the
COCOMO model gives an estimate of 1.62 person-months for one target plat-
form while the design of this data type in XML Schema and the generation of
a middleware using Fabric required less than half an hour.

The presented development framework is currently in active development and is
used in both academia and industry. To name only a few, it is used for the devel-
opment of applications, algorithms and protocols in the SWARMS [50], Swarm-
Net [47], AutoNomos [46], MarathonNet [22] and the EU-funded FRONTS [155]
project as well as by the coalesenses GmbH. Furthermore, it served as the basis
for more than 25 research publications, over 20 bachelor and master theses and
several lectures.

Future work will concentrate on an extension of this development framework
and an improvement of its individual components. For Shawn, a crucial point
will be to provide more model implementations. Our current plans are to supply
more mobility models and additional communication and transmission models.
We strongly encourage the Open Source community to participate in this pro-
cess and to enhance Shawn by contributing to its growth. We have therefore
released Shawn into the public domain and it is now hosted at SourceForge.net,
currently world’s largest Open Source software development web site. We also
plan to publish the source code of SpyGlass in the near future on Source-
Forge.net. In addition, we are currently working on a variety of enhancements
for Fabric. This includes changes to Fabric’s core, new features for the Eclipse
plug-in and additional modules. While Fabric currently focuses on relieving the
application developer from dealing with networking aspects, we are convinced
that development support should be extended to other areas like storage, ag-
gregation, sensor and actor control, etc. We believe that Fabric’s concept also
proves to be functional for such extensions. Therefore, it might be helpful to
relax the requirements that domains must be sorted and have to interact with
the neighboring ones. Concerning Fabric’s Eclipse plug-in, we will include a
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custom graphical editor for the annotations and we will provide an update site
such that users can use Eclipse’s update mechanism to install newer versions
of Fabric automatically. Current work on additional modules includes security,
packetization and forward error correction modules that will be finished shortly.
Future work will focus on an even tighter integration with traditional networks
where we plan to investigate how Web Services can be implemented directly on
resource-constraint sensor nodes using Fabric.
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A. Source Code Listings

A.1. Shawn Configuration Files

A.1.1. Plain Text

1 # Construct an empty world us ing the ” l i s t ” edge model ,
2 # the communication model ” d i sk graph ” ( nodes can
3 # communicate i f f they are with in range ” range ” , which i s s e t to 10)
4
5 prepare wor ld edge model=l i s t comm model=di sk graph range=10
6
7 # Add 800 nodes in a 25x25−s i z ed box .
8 # Each node ge t s one proces sor , namely ” he l l owor ld ”
9

10 r e c t wor ld width=25 he ight=25 count=800 p ro c e s s o r s=he l l owor l d
11
12 # Run the s imu lat i on un t i l a l l nodes are i n a c t i v e or 10 time un i t s
13 # have e lapsed .
14
15 s imula t i on max i t e ra t i on s=10

A.1.2. Java-language Scripting

1 HashMap worldConfig = new HashMap ( ) ;
2 worldConfig . put ( ” edge model ” , ” l i s t ” ) ;
3 worldConfig . put ( ”comm model” , ” d i sk graph ” ) ;
4 worldConfig . put ( ” range ” , ”10” ) ;
5
6 int w = 25 , h = 25 ;
7 St r ing p ro c e s s o r s = ” he l l owor ld ” ;
8
9 shawn . runCommand( ” prepare wor ld ” , worldConfig ) ;

10
11 shawn . runCommand( ” r e c t wor ld ” ”width=” + w +
12 ” he ight=” + h +
13 ” count=”+ count +
14 ” p ro c e s s o r s=” + pro c e s s o r s ) ;
15
16 shawn . runCommand( ” s imu lat i on ” , ” max i t e ra t i on s=10” ) ;

A.2. TinyDB Data type

A.2.1. Excerpts from the TinyDB Code

1 /*
2 * ” Copyr i gh t ( c ) 2000−2003 The Regents o f t h e Un i v e r s i t y o f C a l i f o r n i a .
3 * A l l r i g h t s r e s e r v e d .
4 *

5 * Permiss ion to use , copy , modify , and d i s t r i b u t e t h i s s o f twa r e and i t s
6 * documentat ion f o r any purpose , w i t hou t f ee , and w i t hou t w r i t t e n
7 * agreement i s hereby granted , p ro v i d ed t h a t t h e above c o p y r i g h t no t i c e ,
8 * t h e f o l l o w i n g two paragraphs and the au thor appear in a l l c o p i e s o f
9 * t h i s s o f twa r e .

10 *

11 * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
12 * DIRECT, INDIRECT, SPECIAL , INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
13 * OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
14 * UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
15 * SUCH DAMAGE.
16 *

17 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
19 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
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20 * ON AN ”AS IS” BASIS , AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
21 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.”
22 *

23 * Copyr i gh t ( c ) 2002−2003 I n t e l Corpora t ion
24 * A l l r i g h t s r e s e r v e d .
25 *

26 * This f i l e i s d i s t r i b u t e d under t h e terms in th e a t t a c h e d INTEL−LICENSE
27 * f i l e . I f you do not f i n d t h e s e f i l e s , c o p i e s can be found by w r i t i n g to
28 * I n t e l Research Berke l ey , 2150 Sha t t u c k Avenue , Su i t e 1300 , Berke l ey , CA,
29 * 94704. A t t en t i on : I n t e l L i cense I n qu i r y .
30 */
31
32 enum {QUERY FIELD SIZE = 8 ,
33 COMMAND SIZE = 8 ,
34 STRING SIZE = 8} ;
35
36 /* F i e l d s are j u s t an 8 cha r a c t e r name ,
37 p l u s a t r an s f o rma t i on ope ra t o r ? */
38 typedef struct {
39 char name [QUERY FIELD SIZE ] ; //8
40 u i n t 8 t op ; //9
41 u i n t 8 t type ; //10
42 // a l i a s i n f o here ?
43 } Field , *Fie ldPtr ;
44
45
46 /* We can ( o p t i o n a l l y ) invoke a command in re sponse to a query .
47 The command may i n c l u d e a s i n g l e , s h o r t parameter .
48 */
49 typedef struct {
50 char name [COMMAND SIZE ] ; //8
51 bool hasParam ; //9
52 short param ; //11
53 } CmdBufInfo ;
54
55 typedef struct {
56 bool hasOutput : 1 ;
57 bool hasInput : 1 ;
58 bool c r e a t e : 1 ;
59 u in t16 t numRows : 1 3 ; //2
60 char outBufName [ STRING SIZE ] ; //10
61 char inBufName [ STRING SIZE ] ; //18
62 Bu f f e rPo l i cy po l i c y ; //19
63 } RamBufInfo ;
64
65 typedef union {
66 CmdBufInfo cmd ; //11
67 RamBufInfo ram ; //19
68 } BufInfo ;
69
70 typedef struct {
71 u in t16 t group ;
72 // u i n t 8 t l e n ;
73 char *data ;
74 } AggResultRef ;
75
76 typedef char Op;
77
78 enum {
79 EQ = 0 ,
80 NEQ = 1 ,
81 GT = 2 ,
82 GE = 3 ,
83 LT = 4 ,
84 LE = 5
85 } ;
86
87 typedef char Agg ;
88
89 // f i e l d ope ra to r s , f o r use in exp r s
90 enum {
91 FOP NOOP = 0 ,
92 FOP TIMES = 1 ,
93 FOP DIVIDE = 2 ,
94 FOP ADD = 3 ,
95 FOP SUBTRACT = 4 ,
96 FOP MOD = 5 ,
97 FOP RSHIFT = 6
98 } ;
99

100 // e x p r e s s i o n s are e i t h e r a g g r e g a t e s or s e l e c t i o n s
101 // f o r now we suppor t t h e s imp l e s t imag in eab l e t y p e s ( e . g .
102 //no ne s t ed e xp r e s s i on s , j o i n s , or mod i f i e r s on f i e l d s )
103 typedef struct {
104 short f i e l d ; //2
105 Op op ; //3
106 short value ; //5
107 } OpValExpr ;
108
109 typedef struct {
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110 short f i e l d ; //2
111 short group ingFie ld ; // f i e l d to group on //4
112 short groupFieldOp ; //6
113 short groupFieldConst ; //8
114
115 Agg op ; //9
116 } AggregateExpress ion ;
117
118 typedef struct {
119 AggregateExpress ion agg ; //9
120 // tempora l agg can have a t most 4 arguments
121 u i n t 8 t args [ 4 ] ; //13
122 } TemporalAggExpr ;
123
124 typedef struct {
125 Op op ; //1
126 short f i e l d ; //3
127 char s [ STRING SIZE ] ; //11
128 } StringExpr ; //11
129
130 enum {
131 kNO GROUPING FIELD = 0xFFFF
132 } ;
133
134 // ope ra t o r s t a t e r e p r e s e n t s t h e per ope ra t o r
135 // query s t a t e s t o r e d in t h e t u p l e r ou t e r and
136 // s en t to t h e op e r a t o r s on i n v o c a t i o n
137 typedef char** OperatorStateHandle ;
138
139 enum {
140 kSEL = 0 ,
141 kAGG = 1 ,
142 kTEMP AGG = 2 ,
143 } ;
144
145 typedef struct {
146 char opType : 6 ;
147 bool i sSt r ingExp : 1 ; // i s t h i s a s t r i n g e x p r e s s i o n or not ?
148 bool suc c e s s : 1 ; // boo l ean i n d i c a t i n g i f t h i s
149 // query was s u c c e s s f u l l y a p p l i e d //1
150 char idx ; // index o f t h i s e x p r e s s i o n in t he query //2
151
152 union {
153 OpValExpr opval ;
154 AggregateExpress ion agg ;
155 TemporalAggExpr tagg ;
156 Str ingExpr sexp ; // f o r comparisons w i th s t r i n g s
157 } ex ; //15
158 short f i e ldOp ; //17 −− from FOP . . . d e f i n e s above
159 short f i e l dCons t ; //19
160
161 OperatorStateHandle opState ; //21
162 } Expr , *ExprPtr ;
163
164
165 enum {
166 kFIRST RESULT = 0xFF ,
167 } ;
168
169 //enums f o r t h e QueryResu l t qrType ( what k ind o f query r e s u l t )
170 enum {
171 kUNDEFINED = 0 ,
172 kIS AGG = 1 ,
173 kNOT AGG = 2 ,
174 kAGG SINGLE FIELD = 3
175 } ;
176
177 /** Message t ype f o r c a r r y i n g query messages */
178 typedef struct QueryMessage {
179 // XXX recompute header s i z e //7
180 u i n t 8 t qid ; // query i d //8 −− note t h a t t h i s b y t e must be q i d
181 u in t16 t fwdNode ; //10 −− node t h a t forwarded the query message
182 char msgType ; // t ype o f message ( e . g . add , modify , d e l e t e q ) //11
183 char numFields ; //12
184 char numExprs ; //13
185 char f romBuffer ; //14
186 u i n t 8 t fromCatalogBuf fer : 1 ; //15
187 u i n t 8 t hasEvent : 1 ; //15
188 u i n t 8 t hasForClause : 1 ; //15
189 u i n t 8 t bufferType : 5 ; //15 −− ou tpu t b u f f e r t ype
190 short epochDuration ; // in m i l l i s e c s −− 17
191 char type ; // i s t h i s a f i e l d , e xp r e s s i on , b u f f e r , or e v en t msg −− 18
192 char idx ; //19
193 u i n t 8 t timeSyncData [ 5 ] ;
194 i n t 1 6 t clockCount ;
195 union {
196 F ie ld f i e l d ;
197 Expr expr ; //40
198 BufInfo buf ;
199 char eventName [COMMAND SIZE ] ;
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200 short numEpochs ;
201 i n t 8 t t t l ; // f o r d e l e t e msg
202 } u ; //40
203
204 } QueryMessage , *QueryMessagePtr ;

A.2.2. XML Schema Representation

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2
3 <xs : schema targetNamespace=”http ://www. tinydb . net / f a b r i c t e s t ”
4 xmlns : t inydb=”http ://www. tinydb . net / f a b r i c t e s t ”
5 xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”
6 xmlns : f a b r i c=”http ://www. c o a l e s e n s e s . com/ f a b r i c /v2”
7 elementFormDefault=” q u a l i f i e d ”
8 attr ibuteFormDefault=” unqua l i f i e d ”>

9
10 <xs : element name=”query” type=” tinydb : QueryMessage” />

11
12 <xs : complexType name=”OpValExpr”>
13 <xs : al l>

14 <xs : element name=” f i e l d ” type=”xs : shor t ”/>

15 <xs : element name=”op” type=”xs : unsignedByte ”/>

16 <xs : element name=”value ” type=”xs : shor t ”/>

17 </xs : al l>

18 </xs : complexType>
19 <xs : complexType name=”AggregateExpress ion ”>

20 <xs : al l>

21 <xs : element name=” f i e l d ” type=”xs : shor t ”/>

22 <xs : element name=” group ingFie ld ” type=”xs : shor t ”/>

23 <xs : element name=”groupFieldOp” type=”xs : shor t ”/>

24 <xs : element name=”groupFieldConst ” type=”xs : shor t ”/>

25 <xs : element name=”op” type=”xs : unsignedByte ”/>

26 </xs : al l>

27 </xs : complexType>
28 <xs : complexType name=”TemporalAggExpr”>

29 <xs : sequence>

30 <xs : element name=”agg” type=” tinydb : AggregateExpress ion ”/>

31 <xs : element name=” args ” type=”xs : unsignedByte ” maxOccurs=”4”/>

32 </xs : sequence>

33 </xs : complexType>
34 <xs : complexType name=”StringExpr ”>
35 <xs : al l>

36 <xs : element name=”op” type=”xs : unsignedByte ”/>

37 <xs : element name=” f i e l d ” type=”xs : shor t ”/>

38 <xs : element name=” s ”>
39 <xs : simpleType>

40 <xs : r e s t r i c t i o n base=”xs : s t r i n g ”>

41 <xs : minLength value=”0”/>

42 <xs : maxLength value=”8”/>

43 </xs : r e s t r i c t i o n >

44 </xs : simpleType>

45 </xs : element>
46 </xs : al l>

47 </xs : complexType>
48 <xs : complexType name=” Fie ld ”>
49 <xs : al l>

50 <xs : element name=”name”>
51 <xs : simpleType>

52 <xs : r e s t r i c t i o n base=”xs : s t r i n g ”>

53 <xs : minLength value=”0”/>

54 <xs : maxLength value=”8”/>

55 </xs : r e s t r i c t i o n >

56 </xs : simpleType>

57 </xs : element>
58 <xs : element name=”op” type=”xs : unsignedByte ”/>

59 <xs : element name=” type” type=”xs : unsignedByte ”/>

60 </xs : al l>

61 </xs : complexType>
62 <xs : complexType name=”Expr”>
63 <xs : sequence>

64 <xs : element name=”opType”>

65 <xs : simpleType>

66 <xs : r e s t r i c t i o n base=”xs : unsignedByte ”>
67 <xs : min Inc lus ive value=”0”/>

68 <xs : maxInc lus ive value=”63”/>

69 </xs : r e s t r i c t i o n >

70 </xs : simpleType>

71 </xs : element>
72 <xs : element name=” isStr ingExp ” type=”xs : boolean ”/>

73 <xs : element name=” succ e s s ” type=”xs : boolean ”/>

74 <xs : element name=” idx ” type=”xs : unsignedByte ”/>

75 <xs : element name=” content ”>

76 <xs : complexType>
77 <xs : choice>

78 <xs : element name=”opval ” type=” tinydb : OpValExpr”/>

79 <xs : element name=”agg” type=” tinydb : AggregateExpress ion ”/>
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80 <xs : element name=” tagg ” type=” tinydb : TemporalAggExpr”/>

81 <xs : element name=”sexp” type=” tinydb : Str ingExpr ”/>

82 </xs : choice>

83 </xs : complexType>
84 </xs : element>
85 <xs : element name=” f i e ldOp ” type=”xs : shor t ”/>

86 <xs : element name=” f i e l dCons t ” type=”xs : shor t ”/>

87 </xs : sequence>

88 </xs : complexType>
89 <xs : complexType name=”CmdBufInfo”>

90 <xs : al l>

91 <xs : element name=”name”>

92 <xs : simpleType>

93 <xs : r e s t r i c t i o n base=”xs : s t r i n g ”>

94 <xs : minLength value=”0”/>

95 <xs : maxLength value=”8”/>

96 </xs : r e s t r i c t i o n >

97 </xs : simpleType>

98 </xs : element>
99 <xs : element name=”hasParam” type=”xs : boolean ”/>

100 <xs : element name=”param” type=”xs : shor t ” minOccurs=”0”/>

101 </xs : al l>

102 </xs : complexType>
103 <xs : complexType name=”RamBufInfo”>

104 <xs : al l>

105 <xs : element name=”hasOutput” type=”xs : boolean ”/>

106 <xs : element name=”hasInput ” type=”xs : boolean ”/>

107 <xs : element name=” c r ea t e ” type=”xs : boolean ”/>

108 <xs : element name=”numRows”>

109 <xs : simpleType>

110 <xs : r e s t r i c t i o n base=”xs : uns ignedShort ”>

111 <xs : min Inc lus ive value=”0”/>

112 <xs : maxInc lus ive value=”8191”/>

113 </xs : r e s t r i c t i o n >

114 </xs : simpleType>

115 </xs : element>
116 <xs : element name=”outBufName”>

117 <xs : simpleType>

118 <xs : r e s t r i c t i o n base=”xs : s t r i n g ”>

119 <xs : minLength value=”0”/>

120 <xs : maxLength value=”8”/>

121 </xs : r e s t r i c t i o n >

122 </xs : simpleType>

123 </xs : element>
124 <xs : element name=”inBufName”>
125 <xs : simpleType>

126 <xs : r e s t r i c t i o n base=”xs : s t r i n g ”>

127 <xs : minLength value=”0”/>

128 <xs : maxLength value=”8”/>

129 </xs : r e s t r i c t i o n >

130 </xs : simpleType>

131 </xs : element>
132 <xs : element name=” po l i c y ” type=”xs : unsignedByte ”/>

133 </xs : al l>

134 </xs : complexType>
135 <xs : complexType name=”BufInfo ”>
136 <xs : al l>

137 <xs : element name=”cmd” type=” tinydb : CmdBufInfo”/>

138 <xs : element name=”ram” type=” tinydb : RamBufInfo”/>

139 </xs : al l>

140 </xs : complexType>
141 <xs : complexType name=”QueryMessage”>
142 <xs : sequence>

143 <xs : element name=”qid ” type=”xs : unsignedByte ”/>

144 <xs : element name=”fwdNode” type=”xs : unsignedShort ”/>

145 <xs : element name=”msgType” type=”xs : unsignedByte ”/>

146 <xs : element name=”numFields” type=”xs : unsignedByte ”/>

147 <xs : element name=”numExprs” type=”xs : unsignedByte ”/>

148 <xs : element name=” fromBuffer ” type=”xs : unsignedByte ”/>

149 <xs : element name=” fromCatalogBuf fer ” type=”xs : boolean ”/>

150 <xs : element name=”hasEvent” type=”xs : boolean ”/>

151 <xs : element name=”hasForClause ” type=”xs : boolean ”/>

152 <xs : element name=”bufferType ”>

153 <xs : simpleType>

154 <xs : r e s t r i c t i o n base=”xs : unsignedByte ”>

155 <xs : min Inc lus ive value=”0”/>

156 <xs : maxInc lus ive value=”31”/>

157 </xs : r e s t r i c t i o n >

158 </xs : simpleType>

159 </xs : element>
160 <xs : element name=”epochDuration” type=”xs : shor t ”/>

161 <xs : element name=” type” type=”xs : unsignedByte ”/>

162 <xs : element name=” idx ” type=”xs : unsignedByte ”/>

163 <xs : element name=”timeSyncData” type=”xs : unsignedByte ”
164 minOccurs=”0” maxOccurs=”5”/>

165 <xs : element name=”clockCount ” type=”xs : shor t ”/>

166 <xs : element name=” content ”>

167 <xs : complexType>
168 <xs : choice>

169 <xs : element name=” f i e l d ” type=” tinydb : F i e ld ”/>
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170 <xs : element name=”expr ” type=” tinydb : Expr”/>

171 <xs : element name=”buf ” type=” tinydb : BufInfo ”/>

172 <xs : element name=”eventName”>

173 <xs : simpleType>

174 <xs : r e s t r i c t i o n base=”xs : s t r i n g ”>

175 <xs : minLength value=”0”/>

176 <xs : maxLength value=”8”/>

177 </xs : r e s t r i c t i o n >

178 </xs : simpleType>

179 </xs : element>
180 <xs : element name=”numEpochs” type=”xs : shor t ”/>

181 <xs : element name=” t t l ” type=”xs : byte ”/>

182 </xs : choice>

183 </xs : complexType>
184 </xs : element>
185 </xs : sequence>

186 </xs : complexType>
187 </xs : schema>

A.2.3. ASN.1. Representation

1 Fabr i c t e s t
2 DEFINITIONS AUTOMATIC TAGS : :=
3 BEGIN
4
5 XMLCompatibleString : := UTF8String (FROM (
6 {0 , 0 , 0 , 9} | {0 , 0 , 0 , 10} | {0 , 0 , 0 , 13} |
7 {0 , 0 , 0 , 32} . . {0 , 0 , 215 , 255} |
8 {0 , 0 , 224 , 0} . . {0 , 0 , 255 , 253} |
9 {0 , 1 , 0 , 0} . . {0 , 16 , 255 , 255}))

10
11 Short : := INTEGER ( −32768. .32767)
12
13 St r ing : := XMLCompatibleString
14
15 UnsignedShort : := INTEGER (0 . . 6 5 5 3 5 )
16
17 Query : := QueryMessage
18
19 OpValExpr : := SEQUENCE {
20 order SEQUENCE OF ENUMERATED {
21 f i e l d ,
22 op ,
23 value
24 } ,
25 f i e l d Short ,
26 op INTEGER ( 0 . . 2 5 5 ) ,
27 value Short
28 } (CONSTRAINED BY
29 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
30
31 AggregateExpress ion : := SEQUENCE {
32 order SEQUENCE OF ENUMERATED {
33 f i e l d ,
34 groupingFie ld ,
35 groupFieldOp ,
36 groupFieldConst ,
37 op
38 } ,
39 f i e l d Short ,
40 group ingFie ld Short ,
41 groupFieldOp Short ,
42 groupFieldConst Short ,
43 op INTEGER ( 0 . . 2 5 5 )
44 } (CONSTRAINED BY
45 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
46
47 TemporalAggExpr : := SEQUENCE {
48 agg AggregateExpress ion ,
49 args− l i s t SEQUENCE (SIZE ( 1 . . 4 ) ) OF args INTEGER ( 0 . . 2 5 5 )
50 }
51
52 StringExpr : := SEQUENCE {
53 order SEQUENCE OF ENUMERATED {
54 op ,
55 f i e l d ,
56 s
57 } ,
58 op INTEGER ( 0 . . 2 5 5 ) ,
59 f i e l d Short ,
60 s St r ing (SIZE ( 0 . . 8 ) )
61 } (CONSTRAINED BY
62 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
63
64 F ie ld : := SEQUENCE {
65 order SEQUENCE OF ENUMERATED {
66 name ,
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67 op ,
68 type
69 } ,
70 name St r ing (SIZE ( 0 . . 8 ) ) ,
71 op INTEGER ( 0 . . 2 5 5 ) ,
72 type INTEGER ( 0 . . 2 5 5 )
73 } (CONSTRAINED BY
74 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
75
76 Expr : := SEQUENCE {
77 opType INTEGER ( 0 . . 6 3 ) ,
78 i sStr ingExp BOOLEAN,
79 suc c e s s BOOLEAN,
80 idx INTEGER ( 0 . . 2 5 5 ) ,
81 content SEQUENCE {
82 cho i c e CHOICE {
83 opval OpValExpr ,
84 agg AggregateExpress ion ,
85 tagg TemporalAggExpr ,
86 sexp StringExpr
87 }
88 } ,
89 f i e ldOp Short ,
90 f i e l dCons t Short
91 }
92
93 CmdBufInfo : := SEQUENCE {
94 order SEQUENCE OF ENUMERATED {
95 name ,
96 hasParam ,
97 param
98 } ,
99 name St r ing (SIZE ( 0 . . 8 ) ) ,

100 hasParam BOOLEAN,
101 param Short OPTIONAL
102 } (CONSTRAINED BY
103 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
104
105 RamBufInfo : := SEQUENCE {
106 order SEQUENCE OF ENUMERATED {
107 hasOutput ,
108 hasInput ,
109 create ,
110 numRows ,
111 outBufName ,
112 inBufName ,
113 po l i c y
114 } ,
115 hasOutput BOOLEAN,
116 hasInput BOOLEAN,
117 c r ea t e BOOLEAN,
118 numRows UnsignedShort ( 0 . . 8 1 9 1 ) ,
119 outBufName St r ing (SIZE ( 0 . . 8 ) ) ,
120 inBufName St r ing (SIZE ( 0 . . 8 ) ) ,
121 po l i c y INTEGER ( 0 . . 2 5 5 )
122 } (CONSTRAINED BY
123 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
124
125 BufInfo : := SEQUENCE {
126 order SEQUENCE OF ENUMERATED {
127 cmd ,
128 ram
129 } ,
130 cmd CmdBufInfo ,
131 ram RamBufInfo
132 } (CONSTRAINED BY
133 {/* Sha l l conform to ITU−T Rec . X.693 | ISO/IEC 8825−4 , c l au s e 35 */})
134
135 QueryMessage : := SEQUENCE {
136 qid INTEGER ( 0 . . 2 5 5 ) ,
137 fwdNode UnsignedShort ,
138 msgType INTEGER ( 0 . . 2 5 5 ) ,
139 numFields INTEGER ( 0 . . 2 5 5 ) ,
140 numExprs INTEGER ( 0 . . 2 5 5 ) ,
141 fromBuffer INTEGER ( 0 . . 2 5 5 ) ,
142 fromCatalogBuf fer BOOLEAN,
143 hasEvent BOOLEAN,
144 hasForClause BOOLEAN,
145 bufferType INTEGER ( 0 . . 3 1 ) ,
146 epochDuration Short ,
147 type INTEGER ( 0 . . 2 5 5 ) ,
148 idx INTEGER ( 0 . . 2 5 5 ) ,
149 timeSyncData− l i s t SEQUENCE (SIZE ( 0 . . 5 ) ) OF timeSyncData INTEGER ( 0 . . 2 5 5 ) ,
150 clockCount Short ,
151 content SEQUENCE {
152 cho i c e CHOICE {
153 f i e l d Fie ld ,
154 expr Expr ,
155 buf BufInfo ,
156 eventName St r ing (SIZE ( 0 . . 8 ) ) ,
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157 numEpochs Short ,
158 t t l INTEGER ( −128. .127)
159 }
160 }
161 }
162
163 END
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Kröller, A. SpyGlass: A wireless sensor network visualizer. ACM

157



Personal Publications

SIGBED Review 2, 1 (Jan. 2005).

[10] Ding, Y., Litz, H., Malaka, R., and Pfisterer, D. On programming
information agent systems - an integrated hotel reservation service as case
study. In Proceedings of the First German Conference on Multiagent Sys-
tem Technologies (MATES’ 03), Lecture Notes in Computer Science 2831
(Sept. 2003), Springer.

[11] Ding, Y., Litz, H., and Pfisterer, D. A graphical single-authoring
framework for building multi-platform user interfaces. In Proceedings of
the 9th International Conference on Intelligent User Interfaces (IUI’ 04)
(Jan. 2004), ACM Press, pp. 235–237. Funchal, Madeira, Portugal.

[12] Ding, Y., Malaka, R., and Pfisterer, D. An open framework for load
balanced multi-agent systems. In Proceedings of the Workshop on Ubiq-
uitous Agents on Embedded, Wearable, and Mobile Devices (AAMAS’02)
(July 2002).

[13] Ding, Y., Pfisterer, D., and Walther, U. Resource-adaptive video-
streaming for mobility. In Artificial Intelligence in Mobile Systems (AIMS’
02) (Aug. 2002), pp. 1–8.
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Kröller, A. SpyGlass: A wireless sensor network visualizer. ACM
SIGBED Review 2, 1 (Jan. 2005).

[30] Chang, K. K., and Gay, D. Language support for interoperable mes-
saging in sensor networks. In SCOPES ’05: Proceedings of the 2005
workshop on Software and compilers for embedded systems (New York,
NY, USA, 2005), ACM Press, pp. 1–9.

[31] Costa, P., Mottola, L., Murphy, A. L., and Picco, G. P.
TeenyLIME: transiently shared tuple space middleware for wireless sen-
sor networks. In MidSens ’06: Proceedings of the international workshop
on Middleware for sensor networks (New York, NY, USA, 2006), ACM
Press, pp. 43–48.

[32] Coulouris, G., Dollimore, J., and Kindberg, T. Distributed Sys-
tems: Concepts and Design (4th Edition). Addison Wesley, 2005.

[33] Crossbow Technology Inc. Mica2Mote. http://www.xbow.com.

173



Bibliography

[34] Crossbow Technology Inc. Mote-VIEW Monitoring Software.
http://www.xbow.com/Products/productsdetails.aspx?sid=88.

[35] Crossbow Technology Inc. Surge Network Viewer.
http://www.xbow.com/Products/productsdetails.aspx?sid=86.

[36] Crossbow Technology Inc. MICAz wireless measurement system.
http://www.xbow.com, June 2004.

[37] CST group, FU Berlin. Website of the Embedded Sensor Board ESB
430/2. http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb net/.

[38] Cugola, G., and Jacobsen, H.-A. Using publish/subscribe middle-
ware for mobile systems. The ACM SIGMOBILE Mobile Computing and
Communications Review 6, 4 (2002), 25–33.

[39] D. Jeff Dionne and Michael Durrant. uClinux – embedded lin-
ux/microcontroller project. http://www.uclinux.org/.

[40] Dunkels, A., Grönvall, B., and Voigt, T. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In Proceedings
of the First IEEE Workshop on Embedded Networked Sensors 2004 (Nov.
2004).

[41] Elson, J., and Estrin, D. Time synchronization for wireless sensor
networks. In IPDPS ’01: Proceedings of the 15th International Parallel
and Distributed Processing Symposium (2001).

[42] Elson, J., Girod, L., and Estrin, D. Fine-grained network time
synchronization using reference broadcasts. SIGOPS Oper. Syst. Rev. 36,
SI (2002), 147–163.
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