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Abstract 

 
This thesis is focused on issues relating to the management of the operating systems in 

wireless sensor networks. It deals with the questions like: Why the management 

components are required in operating systems for sensor nodes? What services could be 

managed in the operating system for such platforms? What are the management 

constraints of sensor nodes? 

TinyOS is one of the mostly used operating systems in this area. TinyOS features 

multithreading architecture, a very flexible networking stack, and virtual machine 

implementations. In this thesis, we demonstrate a new scheduling algorithm for TinyOS 

which especially takes routing issues into account. The algorithm increases the sensitivity 

and responsiveness in wireless sensor networks. We have modified the priority 

scheduling algorithm which solves the well-known problem of overloading in simple 

FIFO scheduling. This scheme improves the fairness of the distributed sensing in the 

network particularly when the network is subject to mobility, to higher sensor network 

density and to changes in the topology. 

In this thesis, we also present the design and the implementation of a new management 

tool for wireless sensor network. This tool provides management system framework for 

the operating system components on sensor nodes. It also provides performance 

management by providing easy means to observe parameters whenever it is required to 

test dynamic changes on the nodes. The tool also analyzes the obtained results in human-

understandable and user-friendly way which is highly demanded for WSNs. Moreover, 

configuration management support makes our tool suitable for providing methods to 

interact with the system running on the sensor nodes. 
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Chapter 1  

Introduction 
 

Humans have always tried to increase and extend their awareness capabilities by using 

different remote sensing techniques. Moreover, the need of controlling and automating 

human life tasks are driving towards reducing down the sizes of sensing, actuating, 

computation and communication units so that these units can be integrated into the near 

or the remote environment. Decreasing the power consumption of these units is also 

required with that. In addition, the new life style requires that these units should be 

connected through suitable communication methods that do not restrict their mobility. 

These units need to be ubiquitous and pervasive which means, it is possible to use and 

exploit them every where. Such units should be able to interoperate seamlessly, invisibly 

and autonomously. 

Initially, wired sensor networks were introduced to accomplish the above described 

objective. A wired sensor network is a network of sensor nodes connected through wires. 

Each node has a processor, few sensors and small memory. These nodes collaborate to 

solve assigned tasks. Moreover, they serve as a gateway to the data of the physical world, 

in order to provide users with information about the environment characteristics. Wired 

sensor networks have been used in a wide range of applications such as industrial 

monitoring, medical care, home automation, operating surveillance etc. However, wired 

sensor networks are only realistic for the applications with a small number of nodes. In 

many applications, such as sustainable bridges, gold or coal mining, barrier surveillance 

and habitat monitoring, wiring a large number of nodes is infeasible. Therefore, a new 

area called wireless sensor networks, or in short WSNs, has emerged to replace the wired 

sensor networks to provide better coverage with higher resolution and many other 

advantages. 
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The recent advances in electronics, sensorics and telecommunication have resulted in a 

variety of sensors types, several processors and different communication techniques. 

Therefore, there is a big variance of WSN hardware platforms with different capabilities. 

Moreover, there is a wide range of potential settings of wireless sensing applications in 

different fields. Therefore, it is difficult to characterize WSNs with precise properties and 

characteristics. However, we still can specify the challenges which exist in the major part 

of WSNs applications. These challenges are described in the following points. 

• Small Physical Size, Low Power Consumption and Low Costs: 

The small size of nodes is the first feature in wireless sensor networks. Sometimes, the 

size of a node is the deciding factor for using a particular type of node in the application. 

The single node size varies generally from a small box to a small particle. 

Regarding the power consumption, an earlier definition of wireless sensor network stated 

that sensor nodes are supposed to function for months or even years without re-charging 

their batteries. The nodes stay in sleeping mode most of the time and wake up after a 

certain interval of time, which could be minutes or hours, to take samples and return back 

to the sleeping mode. On the contrary, in wireless sensor network for medical  [3] or 

industrial applications, the nodes survive with their energy budget only for few days and 

at most for weeks due to the high power consumption, which is caused by the high 

sampling rate. 

The low cost of nodes is another key factor because the sensor nodes, in some 

applications, have to be disposable. They are deployed once without recollecting them 

again. Normally, the cost of a single node varies from a few cents, according to the future 

expectations, to hundreds of euros depending on the simplicity of the nodes and the scale 

of the network. 

• Hardware Limitations 

Each node in the wireless sensor network has very limited resources. Memory size can 

be, sometimes, as little as just a few kilobytes depending on the application. The 

communication transmission is very limited in range and power. Furthermore, computing 

is very weak because the processor in the node, normally, is only a few MIPS capable. 

These limitations often limit the use of sophisticated algorithms or schemes. 

• High Variety in the Design and Usage 
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In future support wireless sensor network technology promises solutions in many areas 

such as health monitoring, home intelligence, industry, commercial applications, disaster 

relief, military surveillance etc. A brief overview of the taxonomy of wireless sensor 

network applications is provided in the Appendix A. These different applications are 

based on many processing capabilities, communication methods, sensing methods and 

multiple energy supplying means. This high variety makes general solutions for sensor 

network applications difficult task. 

• Fault Tolerance: 

Robustness in design is a very important issue since nodes in wireless sensor networks 

often operate in rough dynamic environments such as catastrophic areas, toxic zones and 

disasters. Therefore, robust construction must be ensured especially in some applications 

in which some nodes do not survive. For this reason many, features such as self-

maintenance  [5] or self-protection characteristics have been proposed for WSN 

applications. 

Wireless sensor networks, being networks, are similar to MANETs. MANET-

abbreviation of mobile add-hoc networks-is a type of wireless networks in which the 

nodes are mobile and dynamically connected without a prior configuration or equipped 

infrastructure. Some of the similarities between WSNs and MANETs are the ad-hoc 

deployment, multi hop communication nature, the wireless links and the scarce resources. 

However, sensor networks still differentiate from MANETs in many aspects. Differences 

are characterized in the following points  [5]: 

• Number of nodes: MANETs normally have just a small number of nodes, while 

sensor networks may extend to hundreds or even thousand of nodes. 

• Node density: density is low in MANETs. 

• Broadcast communication: it is peer to peer communication in MANETs, but it is 

mostly broadcast communication in WSNs because of the large node density. 

• Power supply: in sensor networks, non-rechargeable batteries are used in most of 

the applications, while in MANETs either direct power source or rechargeable 

batteries are in use. 

• Data rate: in general, it is very low in sensor networks, while in MANETs high 

data rate is in use. 
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• Mobility: it is relatively low in most of WSNs applications, but it can be very high 

in MANETs. 

• Addressing: often, in WSNs, there is no unique ID for each node and most of the 

times, the data-centric naming schemes are used. In MANETs, globally unique ID 

is required. 

In wireless senor networks, although much excellent research has been done to study the 

electronic and networking parts of the nodes, there are still many open questions for the 

researchers. Some of these are for example, finding suitable and generic operating system 

components, QoS, efficient energy conservation paradigms, topology control, mobility 

management and others. 

In the initial phase of our research work, the focus was on the operating system 

components of the sensor nodes in WSNs, especially CPU scheduling and routing issues. 

We have proposed a new CPU-scheduling scheme  [1],  [2], and  [8]. This scheme is an 

improvement of the priority scheduling algorithm  [7], which is an approach known for 

solving the overloading problem of the simple FIFO CPU-scheduling in a sensor node. 

The priority scheduling algorithm  [7] ensures higher packets throughput, but does not 

guarantee that the nodes closer to the base station will get fair chance of sending their 

own packets when the networking operations will be prioritized over the local operations 

in sensor nodes. This is because of the medium congestion around the base station. 

Moreover, these nodes not only have to perform the packets forwarding operations but 

also, in addition, to process their own local packets. The concept of priority switching in 

the priority scheduling approach is introduced, so that such nodes can perform local tasks 

as well. 

In the course of the verification process of our proposed CPU-scheduling algorithm, 

many management applications were required in order to configure some parameters of 

the nodes on the fly and to get debugging results. However, the existing management 

applications were inefficient and insufficient. Some of these tools which we have used 

are Surge  [9], Oscilloscope  [10], Deluge  [11] and Xnp  [10], Listen  [10], Trawler  [12] and 

Nucleus  [14]. 

WSN Management tools should provide control and management of the system 

components such as the network layer, operating system parameters and application 
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settings in real sensor nodes. However, such tools that can provide adequate remote 

interactions of the nodes are really missing. This lack of interaction and management 

capabilities of such tools is the reason which has motivated us to focus on finding 

management solutions for WSNs. Thus, the second and the main objective of this thesis 

is to introduce a new management framework which mainly increases the interactivity 

with sensor nodes, and provides monitoring of the network as a whole as well as for 

every individual node. Moreover, this framework aims at fulfilling and accomplishing the 

issues, to have more setting choices (management) and more elaborative graphical 

interfaces (visualization). The framework is referred to as management tool or as 

management application, in this document. 

The dissertation is organized in nine chapters. The second chapter introduces operating 

systems for wireless sensor networks. As the designed tool is integrated with these 

operating system services, these services are briefly discussed as well. A brief description 

about the mechanisms, parameters and policies, which can be managed and controlled by 

the designed tool, are also dealt in this chapter. In addition, some of the existing WSN 

hardware platforms are listed. 

The third chapter describes the existing CPU scheduling schemes used in WSNs. It also 

discusses our proposal “routing-sensitive priority CPU-scheduling in sensor nodes”. 

As our proposed tool is used as a management tool, the fourth chapter describes the 

management areas in traditional networks and WSNs. Chapter five explains why 

management tools are required for WSNs. Furthermore, it characterizes the existing tools, 

their properties and capabilities. In chapter six, the structure of the designed tool is 

discussed in detail. Communication techniques and some other issues related to the 

memory usage are also mentioned in this chapter. Moreover, it describes the main 

features supported by the management tool. Especially, it is focused on the generality and 

the efficiency of the tool. The Plug-in feature supported by our tool and the designed 

Plug-ins are mentioned here.  

Chapter seven describes the tool implementation, the services that are offered by the tool, 

and the way of designing additional Plug-ins. 
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Chapter eight contains evaluation of the designed tool by presenting a real life scenario of 

the tool. Finally, the last chapter concludes the dissertation. A summary of the 

dissertation and the potential extension of our work are mentioned here. 
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Chapter 2  

Wireless Sensor Network and their Operating 

Systems 
 

Operating systems for wireless sensor networks are illustrated in this chapter in order to 

provide, in the following chapters, a clear picture of how our tool controls the operating 

system and what the managed parameters could be. Moreover, in order to have a good 

understanding, in further discussions, of how the management tool is integrated with the 

operating system. Furthermore, different sensor node hardware platforms are here 

discussed. Information about algorithms and services running on the sensor node are also 

provided here. 

Normally, embedded devices are operated by software programs called operating 

systems. These software programs control and manage the resources. In general, there are 

two categories of operating systems for embedded devices as follows: 

• Firmwares are for custom embedded devices such as digital cameras or home 

appliances controllers. In such devices, few of the operating system services are 

merged with the application code. The application code, including these services, 

runs directly on the hardware. Because of the application simplicity, such 

operating system services are very preliminary. Therefore, it is not preferable to 

use them in WSNs, because WSNs’ applications are more complex than those in 

such systems. 

• On the other hand, on general purpose embedded devices such as PDAs or some 

smart cell phones, small versions of traditional operating systems are used. For 

example, PalmOS, WinCE, Symbian  [15] (Nokia Operating System) or 
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Embedded Linux. These general operating systems have some restrictions to be 

used for sensor nodes. For instance: 

o Heavy weight process is used in such systems, which the sensor node 

can’t afford due to its limited resources. 

o They do not scale down to small devices such as sensor nodes. Currently, 

storage in the average type of sensor node is in the range of 4 kilo Bytes of 

RAM and 64 kilo Bytes of ROM. 

o Such systems have high energy consumption, because most of these 

operating systems are designed to work for a limited time (days, weeks) 

with their dedicated power resources. Sensor nodes are supposed to work 

for months or even years. 

In fact, operating systems for sensor nodes lie between the above two categories and 

require special kind of operating systems for many reasons such as resource management, 

modularity, fault tolerance etc. However, it is still considered that, an extra functionality 

is not desired on these constrained devices because of their several existing limitations. 

For that we can say that sensor network require special kind of operating systems. 

2.1. Design Methodologies of WSN Operating Systems  
Operating systems for wireless sensor networks vary in many aspects. We can classify 

these differences according to the way which is followed in the design: 

2.1.1. Control Loop 

Some of the operating systems (firmware) are based on the simple main control loop. In 

this control loop, the execution is suspended until an event occurs. Then, a response will 

accordingly be signaled. This way of design has a lot of busy waiting but it is the usual 

way of implementing software applications for industrial embedded systems. We can find 

such an example in the ESB sensor node  [16]. In ESB, the simple resource management 

functions (firmware) are statically linked to the application in order to form the main 

executable program. Then, the program is loaded as a whole into the sensor node. 
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2.1.2. Event-based OS 

Another way to build the software for sensor nodes is according to the monolithic events. 

In this way, the software for managing the resources consists of a collection of event 

handlers that respond to the events generated in the platform. An example of this type is 

“PalOS”  [17]. 

2.1.3. Legacy OS 

The way of designing the conventional operating systems could also be used in WSNs. 

Such systems use the TCP/IP protocol and sockets in the network stack. Some designers 

prefer this way, because of the many ubiquitous devices that use the standard TCP/IP and 

sockets. This way of implementation is followed by Adam Dunkels in the Conticki 

Desktop operating system  [18]. This system has native µTCP/IP stack, preemptive 

multithreading options, event-driven kernel and GUI support for locally connected 

terminal or through VNC over telnet. The drawback of using such operating systems in 

WSNs is that, this approach is fairly restricted because WSNs platforms can not afford all 

functionality of the TCP/IP stack. 

2.1.4. TinyOS-type of OS 

The final approach of designing the operating systems for the wireless sensor nodes is to 

provide firmware for concurrency and modularity, which does not block or poll the 

execution. It gives an appropriate abstraction and handles the resources in optimal way. 

This way of implementations is followed at the University of Berkeley in the operating 

system named “TinyOS”  [10]. 

2.2. Design Considerations of Operating Systems for 

WSNs 
Few aspects that must be considered while designing an operating system for sensor 

nodes are described in this section. This description presents properties and requirements 

in the WSN operating systems as they are distinct from the conventional operating 

systems. One should consider the constraints and the limitations of the processing, 
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memory, energy and communication capabilities. These and other considerations are 

described in the following paragraphs. 

2.2.1. Programming Languages 

In this area of the research, the compiler can provide a big support in the design. The 

research is going on to put the compiler in charge of most of operating system duties. 

Choosing a suitable programming language (assembly or high level language) that adopts 

the nature of the hardware is a good step. 

Every microcontroller family has its assembler or has high level compilers like C or Java. 

High level compilers compile either to the assembly code or directly to binary code. For 

example, AVR from Atmel has the compiler avr-gcc; MSP from TI (Texas Instrument) 

has the compiler msp-gcc. 

A comparison between C and nesC is here made; the two most often used programming 

languages for sensor nodes. C language provides multiple low levels for accessing the 

hardware, but it provides less help in writing safe code and structuring applications. On 

the other hand, nesC solves this problem by using components. C compilers are provided 

for most of the microprocessors and they are provided with a tool chain which supports 

the development, while nesC is only ported to few microprocessors. A tool chain 

normally includes cross compiler and bin-utils (assembler, linker, debugger …). nesC 

provides context model for concurrency, reusability and prevention of race conditions 

which C does not provide. Hence, compilers with advanced compiler techniques provide 

a great support for operating systems and applications development of sensor nodes. 

2.2.2. System Resources Management 

Adopting classical schemes for resource management of WSNs would not be the right 

choice as sensor nodes have very limited resources. Therefore, special efficient operating 

system schemes are required in designing the system modules such as file system, 

networking stack and CPU scheduling. 
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2.2.3. Real-Time Requirement 

In some WSNs applications, real time is the most important aspect and no deadline must 

be missed. For example, the controller of an aircraft missing a deadline could lead to a 

crash. However, the focus now is rather on algorithms and flexibility than on real time 

characteristics. After finding efficient algorithms, the system can be further optimized to 

fulfill the real time requirements. 

2.2.4. Application Specificity  

Wireless sensor networks are application-specific networks because of many reasons. 

There is a wide range of applications in which we can employ wireless sensor networks. 

Processors in the sensor nodes are very specific and might have variety of modules such 

as UART, USART, TIMER, and SPI. They might also support many communication 

methods such as RFM, Ultrasound Bluetooth, or IrDA. 

Some researchers propose to have, therefore, higher specific layer in OS as virtual 

machine to provide a generic computing environment for general applications but we are 

still far away of accomplishing generic sensor node platform. 

2.2.5. Algorithms Independency 

Algorithms should be as much independent as possible from the platforms. This will 

provide portability between different types of platforms. 

2.2.6. Process, Threads and Scheduling 

Single process system is the usual case in embedded system applications as well as in the 

WSN nodes. However, the availability of multiple threads makes the system more 

controllable than the single process system. 
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2.3. Sensor Node Hardware 
Today, there are many projects dealing with wireless sensor networks. The oldest project 

was Smart Dust (Autonomous sensing and communication in cubic millimeters)  [19]. It 

was finished in 2001, and most of the largest research groups developed out of the Smart 

Dust project, for example, Nest (Networked Embedded System Technology)  [20], CENS 

(Center for Embedded System and Networking Sensing)  [21], Berkeley WEBS (Wireless 

Embedded System)  [22]. 

Most of these research groups do not design special hardware components or elements 

for their platforms. But instead, they use Commercial or Common off the Shelf 

components (COTS). Moreover, they deal with diverse existing elements such as many 

microcontrollers (AVR, MSP etc.), different types of sensors (humidity, temperature, 

light) and multiple types of communication devices (IrDA, Radio, Bluetooth,… ). 

However, very few groups do not use COTS. Instead, they are developing their hardware 

through the Co-design of hardware and software, such as using FPGA technology for 

getting higher and faster functionality. An example for that is the Tyndall Mote sensor 

node at the Tyndall Institute  [77]. The variation of the hardware components has 

provided multiple types of wireless sensor nodes. Moreover, the quick development in 

these devices resulted in multiple generations of wireless sensor nodes. The following are 

some of the current famous sensor node platforms. 

2.3.1. MICA Series 

Many sensor node generations have been designed at the University UC-Berkeley (with 

Crossbow  [9]) for example RF-Mote (1998), WeC (1999), Rene, Rene2, Mica, Mica128 

(2001), Mica2 (2002), Mica2Dot, MicaZ, Telos (2004), Tmote and Invent (2006). 

Changes are mostly in the type of the processor and communication components. Every 

generation has replaced the processor with some other processors. For example, the 

following processors were replaced sequentially AT9080515, AT90LS8535, 

ATMega163, ATMega103, ATMega128l, and MSP430. Similarly, in the radio devices 

the following TR1000, CC1000 and CC2420 came after the other. Figure  2.1 shows a 

representation of a sensor node platform from Berkeley nodes  [23]. One sees in this 
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figure the microcontroller and its main peripherals and the multiple components 

connected to it.  

 
Figure  2.1 Representation of MICA wireless sensor node platform 

2.3.2. BTNodes Series 

In the framework of the Smart-ITs project  [24] at the ETH Zurich, a different and well-

accepted class of sensor nodes has been designed. The designed nodes are BTNode1, 

BTNode2, and BTNode3. The components used in these nodes are: ATMega128l 

processor, an Ericsson ROK 101 007 Bluetooth module, Chipcon CC1000 and Zeevo 

ZV4002. Figure  2.2 shows the nodes from ETH.  

 
Figure  2.2 BTNodes in ETH Zurich 
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2.3.3. ESB Series 

The CST group at FU Berlin has introduced many generations of its platforms ESB 

(Embedded Sensor Board), ESB2, and ECR (Embedded Chip Radio)  [16]. They have 

used in the design MSP430F149 from Texas Instruments. For radio, they use the 

transceivers TR1000 and TR1001. Their new ECR sensor node adds higher scaling 

support for the network. Figure  2.3 shows the ESB and ECR: 

 
Figure  2.3 ECR, ESB nodes at the FU Berlin, CST group 

2.3.4. Sun Sensor Nodes 

Researchers at Sun Labs have developed their own sensor node hardware platforms  [25]. 

Sun nodes, Figure  2.4, use 32 bit ARM-7 CPU and 2.4GHz radio compliant to IEEE 

802.15.4. Sun nodes are relatively strong nodes because of the powerful microcontroller 

which is 180 MHz, and has relatively large memory (512 KB RAM/4M KB Flash ROM). 

However, this restricts Sun nodes from running for longer time, thus limiting their 

suitability to only short term applications. 

The Sun nodes are based on Java technology. To develop applications for Sun nodes, 

developers can use any JAVA Integrated Development Environment (IDE) which 

supports the JAVA compiler and the debugger. By using Java, one can also benefit from 

the portability of Java in order to provide multiple platforms with the same high level 

software applications. 
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Figure  2.4 Sun nodes 

2.3.5. MarathonNet Sensor Nodes (PaceMate) 

Interesting Project, in ITM group  [26] at the University of Lübeck, Germany, has 

introduced a new platform called PaceMate. PaceMate, shown in Figure  2.5, has been 

applied in the project MarathonNet. In MarathonNet, vital signs of athletes are sensed 

and then sent to the surveillance stations during the marathon event. The notable feature 

of this platform is that it has a display instead of having the handy LEDs. This display is 

used to show the user some of the sensed parameters such as the athlete’s position, 

others’ positions and the vital signs values during the race. 

 
Figure  2.5 Pacemate sensor node 

2.3.6. iSense Sensor Nodes 

iSense sensor nodes  [26], Figure  2.6, are market-competitive sensor nodes. Their 

designers have exploited the learnt lessons of the long research process carried out on 

wireless sensor networks at ITM (at the University of Lübeck)  [26]. iSense sensor nodes 

have a general module, to which the user can attach custom sensor modules depending on 

the application requirements. Three types of sensors modules are foreseen. First one is for 
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tracking environmental parameters. The second is for movement detection, and the third 

is for sensing the passing objects. 

 
Figure  2.6 iSence sensor node 
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2.4. nesC 
nesC stands for Component oriented language for Networked Embedded Systems. nesC 

language is explicitly designed to be used for WSNs. nesC provides the model for writing 

both the operating system components and the application components for a sensor node. 

nesC is an extension of C. Furthermore, nesC compiler generates from the nesC source 

code the C source code, which can be finally compiled with a standard C-compiler into 

assembly or directly to binary code. 

In the next subsection, nesC features are briefly discussed. 

2.4.1. Characteristics of nesC 

Figure  2.7 shows the compilation process followed in compiling from nesC to C and then 

to executable files. 

In the compilation, the cross compiler and “binutils” (bin utilities) package are used. 

“binutils” provides the needed utilities in building the object file. Some of these are: 

• avr-as assembler. 

• avr-ld linker. 

• avr-ar librarian. 

• avr-objdump disassembles information from object files. 

• avr-strip strips information from object files. 

• avr-objcopy extracts information form object file. 

 

 
Figure  2.7 Compilation operations from nesC to binary file 
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The five main concepts of nesC language  [42], especially as compared to C, are 

summarized in the following. 

• Independence of Composition and Construction  

nesC provides high abstract modules that are assembled to form the final binary code. 

These modules are of two types: Implementation components (called modules), which 

provide the actual implementation of the functionality, and Configuration components 

used for merging another Configurations or Implementation components. 

• Components Interfaces 

Interfaces represent the standard specifications that each component provides or uses. 

The interfaces can be used or provided. The component which provides an interface must 

provide the implementation of the functionality inside that interface. On the other hand, 

the component which uses an interface can use any of its implemented functionality 

which is offered by the interface’s provider. 

• Interfaces are Bi-directional 

The component that implements an interface can concurrently call a call back functions 

or event. This feature enables non-blocking operations. For example, in lengthy 

operations such as packet sending, the system switches to perform other activities during 

the sending. Sending completion is signaled through an event “sendDone” in the bi-

directional interface. 

• Static Linking 

In nesC, no dynamic linking occurs on the nodes while operating and all components are 

statically linked together via their interfaces. This way, the right behavior of the program 

is guaranteed, as memory requirement is decided while compilation. Moreover, this will 

also increase the runtime efficiency.  

• Concurrency Model 

nesC supports static abstract code units (called tasks) which can be scheduled during the 

run time. These units run till completion in the current compiler and only can be 

preempted by interrupt handlers. To ensure race-condition-free code, the compiler signals 

with all potential races during the compilation and user should fix that before loading the 

program to the sensor node. 
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2.4.2. Code Optimization in Wireless Sensor Nodes  

There are today many small dynamic memory allocators that fit in such small nodes, but 

there are still difficulties that might be caused by the dynamic allocation such as the large 

overhead and memory errors. 

Operating system in the sensor node has one process which has all code segments as in an 

ordinary address space (.heap, .bss, .text, .data). Segments allocation of the process can 

be done by using the linker, which decides about where to place all the segments (.data, 

.bss and .heap). 

To increase the quality of the code and optimize the resource usage, the designer of an 

application for WSNs should follow a number of rules. For example, using in-lining 

functions reduces the overhead of calling these functions. Busy-waiting and spinning 

should be avoided because it decreases the efficiency. It is also very essential to know the 

storage requirements at the compile time. 
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2.5. TinyOS (TinyOS multithreading Operating system) 
TinyOS operating system initiates a new approach for managing the resources in WSN 

nodes. TinyOS is an open source operating system, well-known for its wide usage for 

WSNs. It is designed using nesC. 

Out of the investigated operating system, which are designed for WSNs, such as TinyOS 

 [10], firmware for ESB sensor nodes  [16], Contiki Operating System  [18] and MANTIS 

OS  [27], mainly for our work, we have selected the TinyOS operating system for many 

reasons. Some of them are the following: 

• It has already been ported to function with almost all sensor node hardware types 

(Moteiv  [12] node series, BTNode series  [24], ESB  [16] sensor nodes, iSense 

nodes  [26] and others). 

• TinyOS is supported and developed by a large community, which increases its 

reliability. 

• TinyOS provides flexible management to the limited hardware and software 

resources. This system also provides a stable consistent abstraction to the 

application developers to interact with the hardware without having to know 

about the details of the hardware. 

• TinyOS efficiently works under bursts of concurrency intensive operations which 

are generated either from the sensor duties or from the network duties. 

• Power efficiency is one of the main features supported by TinyOS. 

• TinyOS supports efficient modularity to design complex applications; so that the 

designer can easily compose the operating system and applications without much 

difficulty. 

• There are many existing libraries; one can use them for building the application. 

In this operating system, with support of the nesC compiler, components are the main 

parts. In the following, TinyOS’s structure, components types and their structures are 

briefly explained. 



Operating Systems of Wireless Sensor Networks 

  21 

2.5.1. TinyOS Structure 

Most of the operating systems designed for WSNs have similar hierarchical layered 

structure. They vary, however, in the logic of handling the functionality inside the layers. 

The structure of TinyOS operating system is shown in Figure  2.8 (Round shapes 

represent components). The layers shown in this figure are: 

• Main component: 

This is the top level of the operating system. It holds the code related to the (main ()) 

function body that has to initialize hardware, and then keeps on scheduling tasks. In the 

next illustration, we include a pseudo-code of the main nesC, as following: 

 

    int main() __attribute__ (C, spontaneous){ 

                call hardwareInit(); 

                call Pot.init(10); 

                TOSH_sched_init(); 

                call StdControl.init(); 

                call StdControl.start(); 

                __nesc_enable_interrupt(); 

                while(1) { 

                            TOSH_run_task(); 

    } 

    } 

 

In the above code, hardware components are firstly initialized. Next, the potentiometer 

starts controlling the power. After that, the scheduler is initiated to start scheduling the 

jobs. Later on, in the while loop, threads are being executed. 

• Application components: 

This layer contains components defined by the application designer and it is designed 

according to the application nature. An example for implementation of this layer is Tiny 

DB which is a query processing application for extracting information from a network of 

sensor nodes  [10]. 

• Hardware independent layer: 
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These components implement services offered to the application components. They also 

provide the reusability of the system components for different applications. 

•  Hardware presentation layer (HPL): 

It abstracts all functions from the hardware into the low system components that wrap the 

underlying hardware. These groups of components are the most dependent ones on the 

platform. After taking the abstractions from all the parts in the hardware, designers 

assemble them in optimal way to provide the useful functionality. For example, 

“UART.nc” component is used as a hardware wrapper. After its initialization, it offers all 

commands and events (hardware interrupt) taken from the hardware which deal with 

UART port. The system uses these provided functions and merges them with other 

components. 

 
Figure  2.8 TinyOS structure composed of a scheduler and a graph of components 

2.5.2. Components in TinyOS   

In TinyOS, components are of two types: Modules or Configurations. In the following, an 

example is taken to explain how modules and configurations are generally implemented. 

2.5.2.1. Modules 

Modules are used for implementing the provided interfaces. This implementation can use 

other already implemented interfaces. The following pseudo-code represents an 

implementation for this module. 
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module App { 

            uses interface Comm1, Comm2; // Used Interfaces 

            provides interface Init; // Provided Interfaces 

 } 

implementation { // Here, it comes the actual implementation  

            int sum = 0  

             command void Init.init() {             // Implementing a Command 

                        call Comm1.readSensor(); // Using a Command 

            } 

            event void Comm1.Send(int val) {     // Implementing an Event 

                        sum += val;  

                        call Comm2.readSensor();    // Using a Command of an Interface 

            } 

            event void Comm2.Send(int val) {   // Implementing a Command 

                        sum += val;  

            } 

} 

In this code, first with “module” keyword, the name of the module is defined. Then, 

“implementation” keyword contains implementation of the provided commands and the 

used events supported by this module. 

2.5.2.2. Configuration 

The second type of components is called configuration. Configurations wire modules 

or/and other configurations. Configurations are used to form the top level of the 

application. Every application must have wiring components (Configurations) and 

implementation components (Modules). The following pseudo-code represents a 

configuration. 

 

            configuration AppC { } 

            implementation { 

                         components Main, App, CommC; // Components inside the configuration 
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                         Main.Init -> App.Init;  // Wiring two components 

                         App.Comm1 ->CommC.Temp; // Wiring two components 

                         App.Comm2 -> CommC.Light; // Wiring two components 

            } 

 

“Configuration” keyword is used to define the name of this configuration component, 

while implementation keyword is used to provide its functionality. The symbol “->” is 

used to bind used interfaces (on left side) with provided interfaces (on right side). 

2.5.3. The inner Structure of a Component 

A component, as shown in Figure  2.9  [23], has four interrelated parts: 

• Command handlers: these are commands implemented inside the component. 

• Event handlers: these are events triggered by another component. 

• State frame: this contains the state of a component. 

• Tasks: the tasks represent the pieces of code whose execution can be deferred. 

 
Figure  2.9 Component architecture 
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2.6. Energy Consumption in Wireless Sensor Networks 
Nodes in wireless sensor networks have very limited energy resource. Therefore, all 

system modules should be power-efficient. In the course of the design process of an 

operating system or applications for a sensor node, some rules must be considered for 

conserving the power. For example, the system must never poll. Instead, it must be 

interrupt-driven, because polling draws resources and consumes a significant amount of 

the energy. 

In addition, software efficiency is achieved by the reduction of the CPU clock. Software 

efficiency can be translated into power-saving. Increasing the code efficiency gives 

longer life time to the nodes. 

Today’s hardware architectures of sensor nodes offer many efficient power saving 

mechanisms. For example, old processors typically have two function modes, the sleep 

and the wake-up mode. Recent processors used in WSNs have 6 different modes (Idle, 

ADC noise reduction, power down, power save, standby, extended power save). These 

modes allow the designers to include efficient power consumption in their design. 

Due to the high cost of communication, it is considered as the most important factor in 

this regard. Normally, the energy required for sending one bit over the wireless medium 

is in the range of 1000 to 10,000 times of the energy required for processing that bit  [78]. 

Two of the most commonly used transceivers are the RFM TR 1000 and the Chipcon 

CC1000. Both have multiple energy control modes. The transceiver chip CC2024, from 

Chipcon Corporation, has in its control registers a number of bits to control the reception 

and the transmission power, the frequency synthesizer and the crystal oscillator. This 

control enables the application designer to optimize the system for low power 

consumption. 

In routing schemes for WSNs, the routing algorithm must ensure efficient energy 

consumption while choosing the routes, no matter what the algorithm is a link-state or 

distance-vector based. Also, the system should be capable of short multi-hop routing 

instead of increasing transmission strength, because, in case of high transmission 

strength, the energy consumption for sending data will be very high comparing to short 

mutli-hops  [28]. 



Operating Systems of Wireless Sensor Networks 

  26 

TinyOS is an example of the power-efficient systems. It uses special component 

responsible for power management. This component has an interface that contains a 

command for sending the system to sleep mode and an event for waking the system up. 

This component restores the states of all the microcontroller’s ports and registers, before 

sending the system in the sleep mode, and then it returns the old states of the system 

while waking up. 
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2.7. Networking the Nodes in Wireless Sensor Network 
In WSNs, the nodes coordinate with each other to achieve assigned tasks. Robust, 

efficient and flexible communication schemes should be provided in WSNs due to its 

scarce resources. In this section, it is explained why the classical model of 

communication stacks are not used in WSNs nodes. 

2.7.1. Networking Stack Characteristics 

Sensor nodes do not have a separate network adapter or even a separate network 

processor. The main processor is involved in every single byte to be received or sent. In 

WSNs, there are many restrictions in setting legacy network protocols (TCP/IP). Some of 

them are: 

• Internet protocol suite (TCP/IP) depends on reliable link approaches at the lower 

levels, which leads to more energy consumption. Such legacy communication 

protocols are also optimized for high bandwidth as available in today’s networks. 

However, in communication in sensor nodes, bandwidth is typically limited to the 

range of few Kbps. 

• In Internet protocol suite (TCP/IP), the sender waits until the receiver sends the 

acknowledgment. This guarantees reliable transfer but it is not flexible because a 

large amount of the consumed bandwidth due to delays, acknowledgments and 

retransmissions. However, in case of wireless sensor networks, some level of 

packet drops is allowed. This packet drop depends on the application. 

• Packets in Internet protocol suite (TCP/IP) contain large headers. This causes high 

overhead at the end points. Such high overhead can not be afforded by the 

resource-limited sensor nodes. 

• Sockets in Internet protocol suite (TCP/IP) do not fit in such constrained nodes. 

• In WSNs nodes, there is no support for parallelism which is needed by TCP/IP. 

• TCP/IP provides the best performance with the multithreaded hardware 

architecture, which is not supported by the current sensor nodes. 
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What is used instead? 

Special communication schemes are required in WSNs. In TinyOS, a generic network 

stack is provided. This network stack implements the communication over the serial port 

(UART) and the radio. It also has a special middle layer which is called the “Active 

Message” (AM) layer. This AM layer provides an efficient communication model which 

is suitable for the restricted communication capabilities in WSNs. in the following 

section this model is described. 

2.7.2. Active Message Model (AM) in TinyOS 

AM communication model is originally used in parallel computing. It is used in sensor 

nodes due to the similar event-based nature of the operations in wireless sensor nodes and 

parallel computing. The AM model is an asynchronous communication model, which 

combines the computation and the communication in the node. Under this model, the 

network can be seen as a pipeline operating at a rate determined by communication 

overhead. Therefore, AM reduces the amount of the needed buffering, which cannot be 

tolerated by the physical hardware of the sensor node. This model also provides quick 

and asynchronous handling of messages. Figure  2.10 shows the difference between the 

traditional communication model and the AM model  [29]. In traditional communication 

model, the computation is suspended during data transmission, while it works parallel in 

the AM model. 

In this model there are three aspects provided: 

• best effort transmission  

• addressing  

• dispatching to other layers  

Messages are propagated to the application layer from and into AM layer through 

temporary buffers, which hold the messages until the applications are ready to deal with 

them. These messages contain the payload and the name of the interrupt handler at the 

user and the application level. 
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Figure  2.10 AM active message model (left), traditional communication model (right) 

Although the AM layer represents the communication model, it only provides the main 

functions for communication. If the application needs specific functionality, then that is 

the responsibility of the application to provide their specific functionality. This reduces 

the size of the operating system and enables the application developers to define more 

custom levels for detecting the errors and correcting them through the horizontal 

communication between the layers. 
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2.7.3. Efficient MAC Layers for Sensor Nodes 

MAC layer in WSNs varies in many aspects from the traditional MAC layer of the voice 

and data wireless networks. In traditional networks, which are based on the standards 

such as WI-FI (IEEE 802.11), cellular systems (GSM), Bluetooth (IEEE 802.15.1), the 

main focus is on Qos rather than the energy consumption, which is of secondary 

importance. 

In WSNs, both contention-based media access protocols such as Carrier Sense Multiple 

Access with Collision Avoidance (CSMA/CA), and contention-free media access 

protocols such as Time Division Multiple Access (TDMA) and Frequency Division 

Multiple Access (FDMA) are used for the MAC layer. Moreover, contention-free 

protocols conserve more energy because the chance of collisions and idle listening is 

lesser  [31]. However, in TDMA (Time Division Multiple Access), it is difficult to change 

the frame length in case of frequent changes in the topology. Furthermore, TDMA suffers 

from the interference issues. FDMA (Frequency Division Multiple Access) is another 

method that avoids the interference by adjusting each two nodes to different frequencies. 

The MAC layer algorithm plays a main role of the lifetime of the sensor node. Therefore, 

main issues should be considered while designing MAC: 

• Avoiding idle listening. 

• Avoiding collisions. 

• Avoiding overhearing 

• Minimum control packets overhead. 

While designing MAC layer for WSNs, one should also consider the fact that such 

networks are mostly large scale networks. Collision avoidance should also be optimized 

to have energy-efficient MAC. Although fairness, latency and throughput are in the 

secondary level of consideration, they should not be ignored. 

There are different MAC layers which are explicitly for WSNs, for example, S_MAC 

 [31]. In S_MAC nodes are in sleep mode most of time. If they detect a change in the 

environment that should be monitored, they wake up and initiate the suitable event 

handler, which is responsible for serving the sensing and monitoring. Nodes stay awake 

till the completion of the handling, and go back to sleep mode. The procedure that is 
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followed for serving nodes in S_MAC is to assign slots. Within these slots the nodes 

wake up and listen to the medium and go back to the sleep mode (as shown in Figure 

 2.11)  [31]. Maintaining the synchronization is required to let the neighbor nodes listen 

and sleep in dictated periods. 

 
Figure  2.11 Periodic listen and sleep 

B-MAC  [74] is a carrier sense media access protocol for WSNs. It enhances a flexible 

interface to get low power operations, collision avoidance and high channel utilization. 

B-MAC supports an adaptive preamble sampling scheme to reduce duty cycle and have 

less idle listening. 

B-MAC has been investigated on real sensor network used for surveillance application. 

The verification process was done by varying many parameters to see the optimal values 

for that protocol and also to compare these values with other MAC protocols such as S-

MAC. The following variations have been compared: (normal B−MAC), (B−MAC with 

ACK), (B−MAC with RTS−CTS), (S−MAC Uni-cast and S−MAC broadcast). The 

verification processes were based on either log files, which can be read offline after the 

experiment, or monolithic programs on the base stations to observe the monitored 

parameters. However, by using our designed management application, the verification 

process would be much easier, faster and more efficient. 
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Chapter 3  

CPU-Scheduling in WSNs’ Operating Systems 
 

CPU Scheduling controls the CPU utilization by speeding up, down or suspending the 

flow of the execution and prioritizing some execution units over others. 

In WSN area, the researchers encounter many difficulties in setting advanced CPU-

scheduling algorithms due to the hardware limitation. However, research is progressing 

in parallel with the hardware development. This implies that future designs will surely 

support all kinds of scheduling methods. In WSN, it is been looked for mechanisms that 

are adaptive to the limited resources and are supporting less energy consumption. 

As we have mentioned in the chapter two, most of the operating systems or firmwares for 

WSNs do not use any kind of CPU-scheduling and a few do use a simple CPU scheduling 

schemes such as TinyOS. 

In this chapter, proposed CPU-scheduling schemes of TinyOS are presented. Then, a new 

CPU-scheduling scheme, which we have designed for TinyOS, is demonstrated. Finally, 

the results obtained from it are discussed. 

3.1. Scheduling Model in TinyOS 
In TinyOS, a cyclic array buffer is used for listing the CPU tasks, which are scheduled by 

the operating system. The scheduler runs these tasks one by one in a FIFO fashion. Every 

CPU task is run until its completion and then the next task is initiated. Therefore, a task 

should not spin or block for a long period of time; otherwise the system performance 

slows down. These tasks can only be preempted by hardware event handlers. 

The following is few rules must be considered in concurrency model of TinyOS. These 

rules are represented in Figure  3.1, and these rules are:  
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• Events are asynchronous code. They can signal other events, call commands, or 

post tasks. They have also the higher priority than tasks but there is not priority 

among events. 

• Commands are similar to simple functions except that they can be called from 

other components outside that component where they are implemented. 

Commands can not signal other events to avoid cycles in the code (that is shown 

Figure  3.1)  [32]. Commands call other commands and post tasks. If commands 

are (async), then they can only be called from an event handler. 

• Tasks have less priority than events. Tasks must not run for a long time. They can 

also signal events or call commands. Tasks can not be preempted by themselves 

but they can be preempted by other events. 

 
Figure  3.1 The CPU-Scheduling priority model in TinyOS 

3.2. Priority Scheduling in TinyOS  
In “Priority Scheduling in TinyOS”  [7], a further improvement on the simple CPU-

scheduling is proposed. This case study illustrates the advantages of setting a priority 

CPU-scheduling scheme in TinyOS. Consider a high rate, dense and ad-hoc WSN 

application for aggregating the sensing information and sending them to the base station. 

In the nodes, the types of tasks (threads) in every node depend on whether to send the raw 

data or to process it (encrypting, compressing …) before sending. In the later case, these 

tasks (threads) can be classified into three types: 

• Receiving and forwarding packets to other nodes just for routing purposes. 

• Sending local packets that are carrying sensing information. 
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• Processing local data before sending them. The processing here includes 

encrypting, en-coding and compressing or any other local activities. 

All these tasks can also be either local tasks that are generated from local activities, or 

network tasks that are generated from network activities. 

In this described WSN, if the system in a sensor node reaches a point at which the rate of 

interrupts is higher than the rate of system tasks. Accordingly, the system will not be able 

to handle additional tasks. This condition leads to overload the system. Therefore, it is 

required to give the most critical tasks a higher priority. So, if tasks are dropped under the 

overloading, the system will not be significantly affected. 

In the case study  [7], it is proven that prioritizing the tasks coming from the network over 

the other tasks partially solves the system overloading and provides additional advantages 

that are: 

• In need of a heavy local traffic and routing, this prioritizing enables the nodes to 

run at higher rate and hence it protects the system from overloading and blocking. 

• Energy conserving: the highest cost of the energy in the sensor nodes is at the 

radio. Here, sending one bit consumes 1000 to 10.000 times more energy than 

processing it  [78]; therefore dropping packets means more energy consumption. 

As this scheme prioritizes the network tasks over the local tasks, this would 

decrease the chance of dropping the tasks related to the network activities. Hence, 

it reduces the chance of dropping the packets. 

• The tasks that are bound to send and receive acknowledgments are the most 

critical ones. If the tasks, generated from split-phase operations such as 

“SendDone” or “receiveDone”, are dropped due to the engaged scheduler, then 

the whole packet is considered as a dropped one and is retransmitted; this 

generates more overhead on the network and on the system. Therefore, 

prioritizing these tasks of network stack over other tasks reduces this problem. 
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3.3. The Deadline Scheduler 
Deadline scheduler was implemented by Pankaj G. Sodagam; extending the simple FIFO 

scheduler of TinyOS with another paradigm of execution depending on the deadline  [33]. 

Threads are executed here according to their deadlines. In this study, the original 

scheduler was not modified for avoiding disruption of the operating system. The 

procedure followed here, is to create another component responsible of queuing threads. 

This component uses deadline scheduling paradigm. Application can be directly wired to 

this scheduler through its interface “DTask” implemented in nesC, which has a command 

and an event as follows:  

 

            interface{  

                         async command result_t deposit(int t);   

                         event void dexec();  

            } 

 

Components need to use the command “deposit()” to send their tasks (threads) to the 

scheduler. Whenever a task (thread) gets executed, components receive the signaling 

event “dexec()” informing that the task has been accomplished. First, the scheduler 

receives the threads and knows their deadlines through receiving deadlines as arguments. 

It then compares these deadlines with the deadlines of already queued tasks in order to 

put this thread in the suitable place in the scheduler. After signaling the execution of 

every task, the deadlines of all the other tasks existing in the scheduler are decremented 

by (1). This is very important to prevent starvation of some threads that have a long 

deadline. 

The components that provide the interface “DTask” are “Dscheduler.nc” and 

“DschedulerM.nc”. “Dscheduler.nc” component is the configuration file. It provides 

parameterized interface of “DTask” and “StdControl”, so that every application can wire 

to a unique interface and can parameterize its threads separately from another application. 

Queuing tasks occurs among the applications separately. The next code represents 

configuration of “Dscheduler.nc”: 
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Configuration{ 

             provides interface DTask[uint8_t id]; 

             provides interface StdControl ; 

} 

implementation{  

             component DSchedulerM; 

             StdControl=DSchedulerM; 

             DTask=DSchedulerM; 

} 
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3.4. Topology-Sensitive Priority Scheduling 
We have proposed a scheme named “Topology-Sensitive Priority Scheduling”. This 

scheme has been evaluated through our specially designed simulator  [8]. This CPU-

scheduling algorithm  [1],  [2],  [8] takes routing issues into account to solve overloading in 

nodes near the base station. In high rate WSN applications, such as medical or industrial 

applications, the nodes near the base station do not only have to perform forwarding 

operations, but also to transmit their own local packets. In the priority scheduling 

algorithm, which is an approach known for solving the overloading problem of simple 

FIFO CPU-scheduling, it is not guaranteed that such nodes will get fair chance to send 

their own local packets if network tasks (threads) are prioritized over the local tasks 

(threads). We have introduced the concept of priority switching out of the priority 

scheduling approach, so that such nodes can perform local tasks as well. Our proposal 

increases the fairness of the distributed sensing. Distributed sensing is defined as the 

number of collected samples per node, distributed over the unit area (1). 

 

                                              S = (C / N)/A  …. (1) 

                                 S: Distributed sensing 

                                 C: Collected samples  

                                 N: Number of nodes that take part in the sensing 

                                 A: Area where the sensor is deployed 

 

The aim, here, is to increase the distributed sensing (S) by increasing the number of the 

nodes that are able to complete processing and then sending their local packets. 

In the designed scheme, CPU-scheduler behaves according to the information gathered 

from routing components. Priorities of threads (Tasks in TinyOS) are changed for a 

limited time based on the knowledge about the topology and then set back to the original 

values. 

In our proposal, the priority of CPU-scheduling is dynamically handled for solving unfair 

distributed sensing, in which sensor nodes in the topology do not issue packets fairly. 

Here, the priority of tasks is switched between the sensing and network activities 
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depending on the values in the routing table. In other words, switching of priority will be 

based on the changes in the depth in the network. By depth it is meant, that how many 

hops a node requires to reach the base station in the network. It means that base station 

itself will be in depth zero, its immediate neighbors will be in depth one and so on. The 

idea is to give those nodes, which are closer to base station, more chance to periodically 

perform local activities because it is more likely that they have more routing activities 

than others. 

In the CPU-scheduling scheme, every node monitors its depth in the network. If it moves 

closer to the base station, closer than a certain depth level depending on the network size 

(two or less in our example scenario), then it switches its local (sensing) tasks to higher 

priority for a certain part of its duty cycle, named switchingThreshold. 

switchingThreshold is a part of the duty cycle time whose duration depends on the 

amount of local activities in each node and the size of the network. Within this 

switchingThreshold (Figure  3.2), nodes can complete their local computation and transfer 

required information in the area where they are located to the base station. Then, priority 

is switched back to the priority of the critical tasks which are in the network stack. The 

following pseudo code describes the logical steps of the scheme: 

 

   If (depthInRoutingTable == 1 || depthInRoutingTable == 2) {// Perform the Scheme 

                               If (( time  %  dutyCycle ) > switchingThreshold ) {      

                                     networkTasksPriority = 2; // Network tasks have higher priority 

                                     localTasksPriority = 1; // Local  tasks have lesser priority 

                               } else { 

                                     networkTasksPriority = 1; // Network tasks have lesser priority 

                                     localTasksPriority = 2; // Local tasks have higher priority 

                                  } 

   } else {             // Otherwise do nothing                     

   NOOP (); // Nodes are not overloaded, as they are far away from the base node 

   } 
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For the nodes which are higher in depth than 2, priorities will not be switched as we have 

implemented that. The scheduler gets the depth by checking the routing tables in the 

node. As these nodes are not overloaded, switching will never occur unless they change 

their places in network or the topology is changed. If any of these nodes becomes in the 

depth one or two, the priority will be switched. 

In the nodes, which are in the depth one or two and are not parents of other nodes, they 

do not have many tasks coming from routing or network stack. Therefore, switching in 

scheduling will occur, but it will not affect their ability to transfer information to the base 

station because they are not overloaded. 

3.4.1. Results 

To demonstrate our protocol, we take an example of a wireless sensor network. This 

network is used for collecting node samples to a central node “base station”. The base 

station receives these sensor samples from nodes and also sends commands to nodes to 

interact with them. 

Initially, we have used the simulator “TOSSIM” and its graphical interface “Tinyviz” 

 [34] for simulating our scheme. “TOSSIM” provides simulation option for the TinyOS 

system components and for most of its available libraries. “TOSSIM” simulates the Mica 

sensor nodes its networking stack and ADC (Analog to digital converter). It also models 

the EEPROM at the line level (16-byte block). Furthermore, it can also be customized 

according to the required parameters of sensor nodes in order to have very fast, scaleable, 

efficient simulation. 
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Figure  3.2 The duty cycle for switching priority 
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Figure  3.3 Tinyviz simulator 
 

By using “TOSSIM”, shown in Figure  3.3, we have deployed 50 sensor nodes. Each node 

sends a sample every second. We have noticed that local (sensing) tasks were prioritized 

over the networking and the routing tasks during the switchingThreshold in the nodes that 

are near the base station. This shows the correct implementation of our scheme. 

Although, “TOSSIM” simulator can be used to check the exact behavior of the execution 

flow and the correctness of the implementation, it is imperfect in simulating the CPU-

scheduling schemes because of the following reason. “TOSSIM” schedules the threads in 

FIFO paradigm just like the scheduler in real sensor nodes. However, there is a critical 

difference between scheduling in the simulator and in a real sensor node. In real sensor 

node, the tasks (threads) are pre-empted by interrupts while in “TOSSIM” simulator the 

tasks are not pre-empted. Instead, interrupts in “TOSSIM” are en-queued in the scheduler 

in FIFO fashion as tasks. Inside TOSSIM simulator, system will not be overloaded 

because of that; hence, tasks will not be dropped from the scheduler, which does not 

correspond the behavior in real a sensor node. 

Figure  3.4 shows a simulation in “TOSSIM” of the scheduler in a sensor node following 

the FIFO CPU-scheduling scheme. We have increased the number of sub nodes that 

forward through that particular sensor node. The sample rate of all the nodes in the 
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topology is 1 sample per second. This figure shows the Throughput (local and forwarded 

packets) vs. the number of the increasing sub nodes. In this figure, it can be seen that the 

throughput of this node is not dropping even when the number of sub nodes is increasing, 

which does not perfectly represent the behavior of a real sensor node, as the node can not 

send more than 50 packets/second  [74]. This proves that TOSSIM does not perfectly 

simulate the real sensor nodes. This imperfection of “TOSSIM” was the main reason of 

shifting to our own designed simulator to prove our scheme as it does not en-queue tasks 

and events in sequential queues; rather, it makes the tasks preemptive. 
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Figure  3.4 Results conducted from TOSSIM simulator for a sensor node that increasingly 

forwards samples from its sub nodes.  
 

In our experiments on real hardware (Telosb from MoteIV), if nodes run at low sampling 

rate (less number of forwarded packets), we have observed that the number of packets, 

forwarded via the nodes closer to the base station, is not affecting the sending of local 

packets. However, in case the nodes are working at very high sampling rate, the nodes 

responsible for forwarding are susceptible to system crashes caused by intensive 

processing operations. These system crashes have prevented from analyzing our scheme 
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on the real sensor nodes. Due to this problem, we had to limit our analysis just to the 

simulations performed on our designed simulator. 

Our simulator models the execution units as three types:  

• Events: they are the interrupts executed by the CPU immediately and they always 

have the highest priority. 

• Network tasks (high priority tasks): they have the second highest priority. 

• Local tasks (low priority tasks): they have the lowest priority. 

Low and high tasks represent the normal processing tasks whose execution can pre-

empted by the events. These also represent the tasks, whose priority will be switched 

depending on the position in the topology. 

Figure  3.5 shows the simulation of event and task queues of a node before and after 

applying our CPU-Scheduling scheme. This node is running at sample rate of 0.5 

sample/second and it has seven sub nodes which are also running at the same sampling 

rate. Additionally, this node is at either the level one or two of routing tree, which means 

it is one or two hops far away from the base station. The simulated queues are: 

• EQueue is the event queue 

• HPQueue is the network task queue 

• LPQueue is the local task queue 

Figure  3.5-A shows the task queues performance under normal priority scheduling 

(without switching). It is observed that there is a high overload at the low priority task 

queue of the simulated node which causes severe reduction in the local sampling rate. 

Therefore, the local packets are delayed or dropped by high priority queue. On the other 

hand, by switching the priority of the scheduled tasks after every 75% of the duty cycle to 

the low priority queue, we see in Figure  3.5-B that low priority queue is less overloaded. 

Therefore, the node is able to issue more local packets to the base station. We also notice 

that the high priority queue is more overloaded which eventually causes a slight drop of 

network packets on the high priority queues because of the switching. However, it has 

very small effect as it is distributed on all the sub nodes. One can argue at this point that 

our scheme is achieving fair throughput of local packets at the cost of forwarding less 

packets from the sub-nodes. 
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A: EQueue is the event queue      HPQueue is the high priority task queue    LPQueue is the low priority task queue 

 
B: EQueue is the event queue - HPQueue is the high priority task queue - LPQueue is the low priority task queue 

Figure  3.5 CPU-Scheduler queues of a node forwarding packets for 7 sub-nodes, before and after applying the CPU-scheduling scheme 
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To evaluate the fairness of our scheme, we have measured the standard deviation of 

packets received by the base station by increasing the number of sub nodes. In Figure  3.6, 

the standard deviation at multiple switching levels (without switch 0%, 25%, 50% and 

75%) is shown. We can see that the standard deviation in all the variations of switching is 

always less than the case where there is no switch. It means that having any percentage of 

switching in scheduling will provide more fairness in terms of distributed sensing. Also, 

it can be seen that 75% switch is the fairest situation under our assumptions. 
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Figure  3.6 Standard deviation of packets received from nodes on the base station 

 

Another important point to discuss over here is what is the optimal value of 

switchingThreshold? To have an answer for this question, we have compared the size of 

low and high priority queues with different values of switchingThreshold for different 

network sizes. In Figure  3.7, x-axis contains the switching levels (0%, 25%, 50%, 75%, 

and 100% for q1 and q2 which are the high priority tasks and the low priority tasks 

respectively) while y-axis represents the CPU-units left in the queue after 100 seconds. 

Values are taken from a node which has 10, 13 and 15 sub-nodes. It is seen that the load 

balance between high and low priority task queues can be adjusted through a switching 

point which will accordingly increase-decrease the number of packets dropping on one of 
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the queues. The optimal balance value between the two queues requires switching value 

somewhere between 70 – 80%. 
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Figure  3.7 Affect of changing the percentage of switching according to number of sub nodes 

 

In conclusion, we have shown that although the priority scheduling provides high 

throughput and less power consumption in WSNs, it ignores the fairness in the network. 

We also have shown in our scheme that having different scheduling behavior among the 

nodes in the topology is more beneficial than applying the normal priority scheduling in 

all the nodes. 
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Chapter 4  

Wireless Sensor Networks Management 
 

4.1. Definition of Network Management 
“The Network Management refers to the activities, methods, procedures, and tools to 

pertain to operation, administration, maintenance, and provisioning of network systems.” 

 [35]. 

Performing network management is a complex task. To address this complexity, the 

management is partitioned into components or layers. There are many partitioning 

schemes of network management proposed by many international standardization 

organizations. International Telecommunication Union (ITU-T) has recommended (in 

recommendations M.3010  [75]) dividing the management into Logical Layered 

Architecture (LLA) which are: 

1. Business management layer 

2. Service management layer 

3. Network management layer 

4. Element management layer 

5. Network element layer 

From the functionally point of view, network management has five main conceptual 

areas, as defined by the ITU-T (Recommendation M.3400  [74], [75]). These management 

functional areas are configuration, accounting, fault, performance and security 

management. These functional areas are described in the following subsections. 
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4.1.1. Configuration Management 

The configuration management has two main objectives. The first one is monitoring the 

network so that the user can keep track of the hard- and software parameters. The second 

is configuring these parameters of the system components such as operating system 

components, network components and the application components in each node. 

4.1.2. Fault Management 

The goal of this management is to find out the problems and fix them to prevent the 

network from malfunctioning. It ensures three main important factors which are 

reliability, availability and survivability of the system. 

4.1.3. Performance Management 

The main objective of performance management is to maintain the network so that it runs 

at acceptable quality level. It also defines the threshold below which the network 

performance should not drop. 

4.1.4. Accounting Management 

It regulates the network utilization parameters of the individual groups and it provides 

fair access to the users. 

4.1.5. Security Management 

It supports the network with appropriate authorization to the subsystems in the network. 

It also denies access to unauthorized parts and allows access to authorized network or 

system parts. In addition, it provides protection against various types of attacks to 

maintain the overall integrity and the security of the system. 

Ruiz et al.  [38] have proposed in their “Management Architecture of Wireless Sensor 

Network” (MANNA) that another dimension should be added to WSNs due to their 

specific-nature. This additional dimension represents the WSN functionality, as shown in 

Figure  4.1  [38]. This other dimension has the following layers: 

1. Configuration 
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2. Maintenance 

3. Sensing 

4. Processing 

5. Communication 

 
Figure  4.1 MANNA Architecture 

4.2. WSN Management Challenges 
Traditional network management systems can not be used in WSNs, because of the 

existing limitations and the special considerations of WSNs. Therefore, the traditional 

network management solutions should accordingly be adopted. Some of these 

considerations are: 

• WSNs are normally composed of a large number of nodes, which makes 

managing, controlling and interacting with them a nontrivial task. Therefore, every 

management solution should consider the high scalability of the WSN. Also, in 

many applications of WSNs, WSNs are highly dynamic networks because some 

deployed nodes die or some additional nodes are added or moved to join another 

sub network. 

• Since WSNs have limited energy budget, all the operations, including management 

services, are expected to be energy efficient. 



Wireless Sensor Networks Management 

  49 

• Due to the restricted bandwidth, any additional control traffic (management) 

should be dealt with very carefully. 

• In addition, in most of WSNs’ applications, WSNs are data centric networks where 

every node has no unique identification, which is very rare in traditional 

management network solutions. 

• WSN Management protocols are application specific as classified in  [65]. 

4.3. Centralized vs. De-centralized Management in 

WSNs 
In WSN management, normally, there are three potential roles that can be assigned to 

nodes. These roles are: 

• Monitoring nodes: these nodes are responsible for, either periodically or 

reactively, collecting management information and sending them to other central 

nodes. They also can save these samples in log-files, until queries are received 

requesting the collected samples. 

• Sink nodes (or sometimes they are called base stations in hierarchical WSNs): 

such nodes are responsible for managing other nodes, aggregating data, forwarding 

queries or storing data. 

• Gateways: these nodes connect the WSN to the external entities. 

Centralized and de-centralized management can be determined according to the way in 

which the management traffic flows. In centralized management schemes, most of the 

time the management traffic flows between monitoring nodes and sink nodes while in 

decentralized management schemes it flows only among the monitoring nodes. 

Most of the researchers, who develop solutions in the field of WSN management, have 

proposed the existence of either one or more central points (whether it is a base station 

node, a gateway node, or a cluster head) which manages some other nodes in the 

network. Moreover, we can generally divide these proposals into three categories based 

on the way which is followed in implementing the self-management feature. These 

categories are explaind in the following sub sections. 
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4.3.1. Centralized Management in WSN: 

In this management approach, a single or multiple central nodes are responsible for 

managing the rest of the nodes. This management approach has several advantages such 

as: 

• Firstly, it converses node resources by performing their complex management 

tasks and analyzing them on these stronger central nodes. 

• The central nodes can store long-terms log-files and statistics and accordingly 

take advanced decisions on managing the nodes in the network. 

On the contrary, this management technique has some drawbacks such as follows: 

• Close to the central nodes, heavy traffic is resulted in which limits the network 

scalability. 

• Malfunction some of the central nodes might cause failures in several sections of 

the network. 

In  [36], Ramanathan et al. assume that most of the current deployed WSNs and many of 

future WSNs will be based on data collection applications, in which the data is gathered 

to central nodes or sinks for analysis. Based on this assumption, they have proposed that 

the failure diagnoses can be more efficiently analyzed and investigated in the centralized 

management paradigm. SNMS  [14] is an additional example of the centralized 

management. 

4.3.2. De-Centralized Management in WSN: 

In this management paradigm, there is no specific node responsible for performing the 

management of other nodes. In fact, every node can potentially be the manager of its 

neighboring nodes. On one side, this will enhance the scalability of the network and give 

better robustness in case of failure. On the contrary, this scheme is difficult to implement 

and requires a significant part of the nodes resources, especially the memory and energy. 

MANNA  [41] is an example of this de-centralized scheme. 
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4.3.3. Hyper-Centralized Management in WSN: 

In this case, special nodes, such as cluster heads in clustered networks, are responsible for 

the management of sub-nodes. This scheme is a combination of both centralized and de-

centralized schemes. For example, it is used in “Scheduling Nodes in Wireless Sensor 

Network: A Voronoi Approach”  [39] and “A topology discovery algorithm for sensor 

networks with applications to network management”  [40]. In  [39], the authors assumed 

that their algorithm, which is to schedule switching nodes off and on in the topology, 

should run either on the base station or on head clusters. 

From the centralization perspective, the aim of designed tool is to provide two categories 

of management services, which are: 

• Managing and configuring of the WSN externally with minimum human 

intervention: The management services are centralized. This would support the 

hierarchical WSN for data-collection networks as referred in  [36],  [37],  [63] and 

others. 

• Managing and configuring of the WSN internally without human intervention: 

This includes the services among the nodes themselves. The management services 

are thought to be a part of a de-centralized management schemes. 

4.4. Management Models in Wireless Sensor Networks 
Management models provide different information about networks entities, their 

characteristics and their dynamic changes. In  [38], there exists a good classification of the 

potential models (maps) of WSN management. These models are: 

• Sensing coverage map: this model provides an image of the nodes distribution, 

whether there is a sufficient number of nodes at some particular space or whether 

the nodes were sparsely or densely deployed. This model also presents whether 

sufficient reporting rate sampling is made or not. 

• Communication coverage map: it represents the places which are inside the 

communication range of nodes. 

• Behavioral model: it studies the deterministic versus statistical and probability 

models for finding a suitable behavioral models for WSNs. 
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• Network topology model: it models the network structure, for example whether it 

is flat or hierarchal kind of topology. 

• Residual energy map: in wireless sensor network, in case of hierarchical collection 

application, the nodes near central nodes will not only send their packets, but also 

forward their sub-nodes packets. These nodes lose their energy faster than those 

nodes which are far away from the central nodes, as shown in our previous 

scheme. The models which represent differences in energy consumption are also 

essential, for example in order to find weak places in the networks. 

• Usage standard: in WSNs applications, some nodes are more likely to be 

exploited than the others because the often occurrence of some events at particular 

places. These nodes will be more utilized than the others. A model describing such 

a usage map would be beneficial for the management. 

• Cost model: this model is to decide the cost in order to achieve a certain level of 

management. For example, it measures the equipment and the human cost 

involved in the management. 
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Chapter 5  

Challenges and Related Work 
 

So far, a lot of research has been conducted in WSNs. However, less attention has been 

given to the integrated management solutions. WSN management provides many elegant 

services. However, achieving this management is not a trivial task because of two main 

reasons. Firstly, WSNs are mostly large scale networks. Secondly, nodes in WSNs have 

limited resources. 

In this chapter, we first explain what could be the management challenges that are faced 

in WSNs. Then, we elaborate on the motivations and mention the benefits which can be 

obtained from the designed management tool. Finally, we categorize the related work that 

has already been accomplished in this area. 

5.1. Motivations and Challenges 
In WSNs, operations on the sensor nodes are highly concurrent and reactive, making it 

very difficult to run experiments or develop applications without help of external 

management tools.  

Although, most of the management and controlling tools are only targeted for research 

purposes, future designs will also involve users because the development WSNs promises 

users to manage and set up the nodes at their homes, factories or offices through such 

supporting tools. Following are the challenges which have motivated for designing the 

management and interaction application for WSNs. 

In our proposal, we aimed to deal with all these following issues by designing our 

management application. 
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5.1.1. The limited accessibility of WSNs 

Inspecting the internal state of programs on the sensor node is very laborious task. There 

are many existing debugging and inspecting methods in use for WSNs. However, these 

are very restricted and insufficient. Moreover, the lack of the input/output interaction 

methods based on human senses limits the accessibility of the sensor nodes in the field. 

Some of these methods are the following: 

1. Using the LEDs: LEDs are used in sensor nodes to indicate that a specific event 

has occurred such as sending or receiving a packet, triggering a timer, reaching a 

threshold value, taking a sample etc. This method is very restricted and limited in 

the deployment scenarios, as the user has to be near every node to observe these 

LEDs. 

2. JTAG connections: using the JTAG connections is an efficient way for inspecting, 

debugging and monitoring operations on a sensor node. The limitation of this 

method is that the node must be wired via the JTAG connection in the field, 

which is infeasible in real life scenarios. 

3. Emitting audible noise: This approach is similar to the use of LEDs. But, a sound 

is here emitted instead of the light in case of the LEDs. 

4. Offline logging files: in this approach, management data is saved in log file while 

the nodes are functioning. Then, these log files are transferred to a PC or a laptop 

for offline analyzing purposes. 

As these methods are very restricted and not inefficient to provide observations on sensor 

nodes in the field, a new management application is proposed. This application provides 

efficient management solutions for WSNs without the need for physically interacting 

with nodes. In addition, it provides observations on the exchanged effects between 

components. It supports the dynamic remote configurations of the parameters in the 

nodes. It also displays the results in human-understandable and user-friendly way. These 

features make the designed tool very beneficial for dealing with the nodes in WSNs. 

5.1.2. Frequent Node Failures 

Systems of the nodes in WSNs are susceptible to failures like system crash, system 

freezing etc. In such situations, we either need to restart the system many times -some 
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times to even stop some of the nodes on functioning- or have to change some parameters 

on the fly for recovery purposes. This is required especially when we run nodes in critical 

conditions, like high rate applications or intense density of nodes. The designed 

management application enables remote recovery of the nodes. In addition, it provides a 

fault tolerance model to get more accurate sensing values. 

5.1.3. Weak Computation and small available Memory 

Nodes in WSNs do not provide compiling or code linking operations. It is mainly due to 

the weak computation and the small available memory. Thus, dynamic configurations are 

very difficult to be conducted on the nodes. The usual way to perform dynamic 

configurations is to wirelessly connect the nodes with a strong external computing 

machine, which can be a special node, PC, PDA etc. This computing machine can take 

control and process the dynamic reconfiguration, and send the results back to the nodes. 

On such computing machines, a tool such as our designed tool can perform these 

dynamic changes. 

Furthermore, complex tasks can not be conducted by the nodes. It is due to the weak 

computation and small available memory. For example, the nodes increase the sampling 

rate, if the average temperature of the whole monitored area exceeds certain critical 

threshold during a week. Such a decision based on a long time period can not be taken by 

the nodes in network. However, management tools running on strong computing machine 

can take such decisions based on the data collected during the whole week. Afterwards, 

the tool can respond either by increasing or decreasing the sample rate of the nodes, or 

can give any other appropriate response. Such tools are also adaptive to the feedbacks or 

to the collected data from the nodes such as node status or environmental changes. 

5.1.4. General WSNs Interfaces 

Usually, in WSNs the existence of external entities (PC or PDA) to control the nodes is 

inevitable. In WSNs, the relation between these external entities and the nodes in the 

networks can be seen as a Client-Server relationship. Nodes in the network represent the 

server as they receive and process the queries and the requests coming from the external 

entities which represent the client. There are many WSNs projects that follow the concept 
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of having external PCs or base stations, such as MarathonNet  [64], CodeBlue  [37], and 

many more. 

Our tool exploits this concept by performing difficult tasks on the PC side. It also 

provides PC-side interfaces, via which users can access the nodes either directly on local 

PCs or remotely through the external networks such as the internet. 

Having general interfaces is a difficult task in WSNs due to the WSNs’ application 

specificity. Moreover, there are a large number of heterogeneous interfaces which could 

be provided. A proposal that partially addresses or resolves this heterogeneity would be a 

great support for WSNs. Therefore, we have designed our tool in such a way that its 

management schemes provide general interfaces to the user. 
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5.2. Related Work 
In WSN, obtaining credible comparison of research results is complex task due to the 

following reasons: 

1. Research results are based on simulations due to the difficulties in dealing with 

the real sensor nodes during the deployment. 

2. Usually, simulations on WSNs are conducted on traditional network simulators 

such Network Simulator (NS2). 

3. Replicating or adopting research results of others’ research work is a laborious 

task due to the specificity of WSNs. 

4. Real experiments are mostly performed on small-scale laboratory settings. 

W. Louis Lee et al.  [66] have surveyed several WSN management research proposals 

such as MANNA, sNMP, BOSS, MOTE-VIEW etc. These proposals are classified with 

respect to different parameters such as lightweight operations, robustness, adaptability, 

storage usage and scalability. Out of the tools in  [66], MANNA  [38] and Sensor Network 

Management System (SNMS)  [14] are discussed. Furthermore, some of the interaction 

and management tools which we have used during our analysis of WSN operating 

systems are also described. These tools are: Surge  [9], Listen  [10], Oscilloscope  [10], 

Trawler  [12], Xnp & Deluge  [11] and BTnodes tools  [44]. 

5.2.1. MANNA 

MANNA  [38] is a policy-based sensor network management system, in which the 

management is carried out according to pre-defined policies. These policies are executed 

by the central nodes in case of centralized management. In de-centralized management, 

delegated agents or cluster heads are responsible for implementing the management 

policies. MANNA is a collection of recommendations to have an integrated management 

framework. MANNA manages nodes according to different models such as topology 

management, residual energy map, sensing coverage area map, communication coverage 

area map and audit map. Management information is aggregated to central points and 

then mapped to the pre-defined model maps that initially set by the technicians or set by 

the WSN. According to the mapping results, a suitable response could be given to 
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achieve the management. Practically, MANNA has only been set as a management 

framework for fault management in  [43]. Although, MANNA draws the optimal 

management architecture, it provides no clear information about the feasibility of 

applying this framework in real WSNs. It proposes a management protocol profile which 

might be adequate for each WSN applications. However, many missing factors have not 

been clarified. For example, the energy efficiency, robustness, adaptability, memory 

efficiency and scalability are still not addressed in this study. 

5.2.2. Nucleus (SNMS): 

Nucleus is also named Sensor Network Management System (SNMS)  [14]. It is a 

management system that provides several kinds of testing possibilities for managing 

nodes in the field, such as testing network performance, testing of network connectivity 

and verifying nodes’ presence. 

Figure  5.1 shows the essential components of Nucleus and its supporting features. 

Nucleus supports a query system to get information from log files in the memory. This 

query system is not based on querying by name. Instead, it assigns, at compile time, an 

integer key to each name of the attributes. 

Furthermore, In contrast to the old fashion in retrieving attributes, which is sending 

periodic debug messages defined at compile time. Nucleus retrieves the attributes, which 

the user is interested in observing or monitoring, on request from the running nodes. 

In addition, it can be signaled by predefined events occurring on running nodes. Nucleus 

supports sending the node into sleep mode remotely and waking it again. It can also 

check some physical parameters of the nodes such as the battery voltage. 

Instead of using the application network stack, Nucleus uses a light weight networking 

stack. This networking stack is based on two main components which are: 

 

• Collection layer 

• Dissemination layer 
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Figure  5.1 Nucleus structure 

The dissemination layer, which is called “Drip”  [61], is responsible for routing the 

information to the nodes. This layer also sends queries and commands to the nodes. In 

addition, by sending the messages multiple times, this layer ensures that the messages are 

received by the recipients. The dissemination layer has mechanisms to direct commands 

or messages to a particular set of nodes or to a single node. In case of a single node, the 

messages are actually sent to every single node; however, they are discarded on all the 

nodes other than the target one. 

The other layer in Nucleus is the collection layer, also called “Drain”  [61]. It collects the 

required messages and directs them either to a single root or several roots. Drain uses the 

signal strength RSSI to construct the collection tree. The rout update messages are sent 

by the roots whenever the management of nodes is needed. 

In order to ensure the functionality of the management tool, when the original application 

fails, the Nucleus tool uses its own network interface (“Drain” and “Drip”) alongside the 

application network stack. This can be considered as a weak point of Nucleus, because 

the collection and disseminating layers (Drip and Drain) represent redundant routing of 

the traffic as well as they consume more memory. 

Nucleus, as mentioned earlier, encodes attributes name with numbers in order to increase 

the efficiency of querying because it is easier to query by numbers instead of long strings. 

This implies that, the correct decoding information is always required when the query is 

performed. 

5.2.3. Surge Network Viewer: 

Surge  [9], is a java application that runs on the PC which represents the client in wireless 

sensor networks. It comes normally with TinyOS tools distribution. It provides many 
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management services to the developer or the user of the wireless sensor network. Some 

of these services are following: 

• It displays the nodes, the links between these nodes and the rate at which these 

nodes are running, in the form of a graph. 

• It provides control on some of the parameters in the application layer. For 

example, user can set the sampling rates of the nodes. 

• It analyses the network log files and shows statistics accordingly such as, the yield 

(percentage of received packets), link quality yield (link yield to parent) and 

predicted yield. 

• It keeps track of the changes in topology and shows them graphically. 

Although, Surge is a handy research management application but it is still limited to only 

observe the network layer and to interact remotely with only one parameter in the 

application layer (sampling rate). 

5.2.4. Listen Tool: 

Listen  [10] is a java shell-based tool which is used to display packets on the screen. This 

is a completely passive tool because through it the user can not interact with the nodes; it 

is used just for receiving the packets through the PC port and displaying them for 

monitoring purposes. 

5.2.5. Oscilloscope: 

Oscilloscope  [10] is used to graphically display the sensor readings coming from the 

nodes in the network. It simply represents the number of packets on the X axis and the 

reading values on the Y axis. Oscilloscope, shown in Figure  5.2, is also a kind of passive 

tool, because it does not support any kind of control on the sensor nodes which are being 

monitored. 
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Figure  5.2 Oscilloscope 

5.2.6. Trawler: 

Trawler  [12] is practically a combination of Surge and oscilloscope. It is designed by 

MoteIV Corporation  [13]. This tool has three main tabs; the first one displays the 

topology of the network and the link quality between the nodes. It also shows the sent, 

received and dropped packets form every individual node. The other tab shows the sensor 

reading in the form of graphs for all nodes existing in the network topology. Furthermore, 

it provides options to zoom in or out these graphs. The third tab shows the link quality of 

the nodes in the network in graphs form. Figure  5.3 shows the graphical interface of 

Trawler tool. 

Trawler provides options for logging the sensor readings into files. Although Trawler 

includes a multiple features to assist with data collection, but it is also kind of just passive 

monitoring of the nodes in WSNs. 
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Figure  5.3 Trawler 

5.2.7. Xnp & Deluge: 

These tools support the remote reconfigurations of the sensor nodes. In both tools, the 

complete binary image of a new application code is transferred wirelessly to all the nodes 

and then the application code is activated remotely from the base station. 

Xnp  [10] was first designed by Crossbow Incorporation  [9] and then was modified by 

Berkeley University. It consists of three parts: 

1. The network programming modules 

2. Boot loader on the nodes 

3. The host tool on the PC side 

The programmer uses Xnp host tool to send the program code to the nodes. After every 

node receives the program code, it checks the sequence numbers of the program lines to 

verify the validity of the code. If Xnp module figures out some missing lines, it queries to 

send, once again, the missing code lines. After receiving the complete code, the network 
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re-programming module on the node, activates the boot loader that starts copying the 

code to the flash memory. To run the code, the boot loader reboots the system by turning 

on the watchdog timer, which is responsible for resetting the system. Xnp broadcasts the 

complete images in a single hop only and does not support the multi-hop. 

Deluge  [11] is another tool used for on-the-fly reconfiguration of sensor nodes. It uses a 

data dissemination protocol. Deluge addresses many of the drawbacks of Xnp. It supports 

multi-hop networks through epidemic dissemination and redundant data integrity checks. 

Deluge has an improved boot loader called (TOSBoot). 

By using Deluge, the user can have multiple program images simultaneously in the 

nodes. Moreover, it is possible to switch between these images. While using Deluge, a 

piece of code, called Golden Image, is installed permanently in the nodes’ external flash. 

This piece of code is used for recovery and it is also responsible for the switching among 

the different code images. 

If the user wants to modify some parameters using Xnp or Deluge, the user has to 

recompile the original system with the modified parameters on the PC and then re-

program the nodes wirelessly. Still it is not the optimal and the fastest configuration 

management to observe the effects of modifications on the nodes as the user has to re-

compile and re-program for each and every modification. This would effectively increase 

the energy consumption because of exchanged code images. Another drawback of these 

tools is that the different images of the applications have the repeated components that 

can be shared among several applications. This will decrease the size of the available 

memory. For example, all programs have some operating system components such as the 

CPU-Scheduler component. It would be beneficial if they share the same components 

instead of having multiple copies of these components in every application code image. 

5.2.8. BTnode Tools 

Most of the above mentioned tools are only designed for MICA sensor node series and 

tested on it. The Distributed System Group  [76] at ETH Zurich has designed its own tools 

for its BTnode sensor nodes series. Two main tools are implemented by M. Ringwald et 

al. called SNIF  [44]. The other tool for BTnodes is descried in “Interactive In-Field 

Inspection of WSNs”  [45]. 
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SNIF: SNIF management tool has four major components: 

• Description language for the packets 

• A sniffer configured to work with arbitrary radio configurations 

• Data stream framework to analyze the packets after decoding 

• GUI, graphical user interface to visualize the topology of the network 

SNIF, shown in Figure  5.4, assumes that there exists another additional ad-hoc network 

that sniffs the inspected wireless sensor network. Since not all the messages from all the 

nodes might be overheard by the sniffer network, this method will never give the full 

status of the network. Another drawback of this tool is that it is not based on special 

management packets; rather it uses the original traffic received from each node to decide 

on the status of a particular node. But this will not cover the status of the nodes that stop 

sending their messages right from the beginning of running the application. 

The other tool, which is referenced with  [45], supports three main services which are: 

‘Re-tasking’, ‘Attribute query’ and ‘Topology visualization’. Re-tasking, in this tool, 

provides means to program the nodes wirelessly through using external memory of type 

SRAM. After rebooting the system, the image stored in the SRAM will be transferred to 

the flash ROM. Vital attributes, in this tool, can be queried frequently. Finally, 

visualizing the network topology in the tool is not provided by the tool itself, but it is 

taken from the application running on the nodes. 

All these described tools do not provide overall control and management of the system 

components such as the network layer, operating system parameters and application 

settings in real sensor nodes. This lack is addressed by our designed tool that provides 

adequate management of the nodes in the field. Additionally, it introduces a new 

management framework which mainly increases the interactivity with sensor nodes, and 

provides monitoring of the network as a whole as well as for every individual node. 

Moreover, this framework aims at providing more setting choices (performance and 

configuration management) and more elaborative graphical interfaces. 
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Figure  5.4 SNIF, Sensor network inspection framework 
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Chapter 6  

Requirements, Architecture and Features of ITSN 
 

In this chapter, requirements of our designed tool are discussed. Then, its architecture on 

nodes side and the computer side is elaborated, since the tool is based on two main 

collaborative parts, the first exists on the individual nodes and the other exists on the 

computing device. Finally, the features of generality, management efficiency, fault 

tolerance supported by this tool are discussed. 

6.1. Design Requirement 
There are several prerequisites needed for our proposed application to function. The 

proposed application does not demand any additional hardware equipments; rather it 

requires software modules such as information dissemination module, information 

collection module and, dispatching layer between nodes and the PC. These requirements 

are discussed in the following sections. 

6.1.1. Information Dissemination 

In WSN management, the data dissemination is the process of routing the management 

queries and commands to a specific node, to multiple nodes or to all the nodes in the 

network. Data dissemination is a wide research area in ad-hoc networks. Mainly, the 

dissemination protocols can be periodic, on demand or event based. In the following, 

some dissemination protocols are first described. Then, the dissemination scheme 

adopted in our tool is further elaborated. 

• Flooding: In this method, every node re-broadcasts each packet that it receives. 

This broadcast is repeated until the flooded packets reach the network boundaries. 
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Although, this method has many drawbacks such as implosion, overlapping, and 

high energy consumption. Implosion means that a node receives duplicated 

messages. Flooding is used in many WSN applications. The main advantage of 

this method is its simplicity. In directed diffusion which is one of the key schemes 

in WSNs  [46], flooding is used to propagate the interest of tracking objects to 

other nodes. 

• Gossiping protocols (sometimes are called epidemic protocols): These 

protocols follow an approach similar to flooding. However, in gossiping every 

node sends the received packet to one neighboring node in a random manner. 

Gossiping is not a reliable communication method. However, it is still suitable for 

many WSNs applications due to its lower energy consumption and lower channel 

bandwidth. An example of gossiping protocol for WSN can be found in “Adaptive 

Probabilistic Epidemic Protocol for Wireless Sensor Networks in an Urban 

Environment”  [48]. 

• Ideal routing: This approach includes both the uni- and multicast routing. In ideal 

routing, a global knowledge of the network conditions is required by the nodes to 

achieve the best performance as compared to the other data dissemination 

schemes. However, the awareness of the network conditions demands a huge 

amount of the node resources such as memory, channel bandwidth, energy, 

computation etc. Many derivations of ideal routing protocols are suggested for 

WSNs such as “Adaptive Demand-Driven Multicast Routing in Multi-Hop 

Wireless Ad Hoc Networks”  [49]. 

In our scheme, the simple flooding is used due to its simplicity. However, other schemes 

can also be used. The deciding criterion for choosing a dissemination scheme is based on 

the user preferences and the application requirements. For example, very large scale 

networks perform well with gossiping protocols due to its energy and bandwidth 

efficiency, while in moderately dense networks, the flooding schemes perform well due 

to its simplicity. In small scale networks, where the bandwidth can accommodate control 

traffic, the ideal routing would be a good choice. 
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6.1.2. Information Collection 

The information collection, which is the opposite process of the data dissemination, is the 

process of fetching the data from the sensor nodes to the sinks or to the central nodes. In 

Information Collection, spanning trees are first built and rooted to the central node. This 

scheme has been followed in “A Tiny Aggregation Service for Ad-Hoc Sensor 

Networks”  [50] and “Synopsis diffusion for robust aggregation in sensor networks”  [51]. 

In our management application, the Collection Tree Protocol (CTP)  [52] is adopted as an 

information collection scheme. This protocol uses the link quality indicator as a metric to 

select the best parent to establish a routing tree. Every node in the topology maintains its 

routing table where it saves the possible available parents. In addition, many other fields 

are also stored for each parent such as node ID, number of hops to reach the base node, 

the estimation of the link quality etc. CTP should address many inconsistency issues 

while collecting the data such as packet duplication and loops. Figure  6.1 describes an 

example of a collection tree. This collection tree collects information from the WSN and 

forwards it to the base station from where it can be observed by the users. 
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Figure  6.1 A representation of a collection tree 
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6.1.3. On-Client Dispatching Interface Layer 

As mentioned earlier, the nodes represent the server because they are the actual place 

where the data is originated and processed, while the facilities which are on the PC side 

are the clients from which the requests are being sent. 

On the client, there is a need for an interface that can provide a low level communication 

layer between the PC and the node. There are many reasons for having such an interface. 

For example: 

1. It provides a dispatching layer between the nodes to the PC’s programs 

communicating with the nodes and vice versa. Especially, it provides an interface 

to access the nodes remotely from the services on the PC. 

2. It establishes and synchronizes the connection between the nodes and the PC. 

3. It resolves the encoding and framing heterogeneity between the sensor nodes and 

the PC communication stack. 

4. It resolves the heterogeneity caused by the wide variation of hardware 

communication possibilities such as Bluetooth, serial ports, Ethernet etc. 

In our tool, earlier we have designed our interfacing program to establish the 

communication between the base station and the PC. However; later the 

“SerialForwarder” interfacing layer has been adopted. The reason was that it can support 

different types of sensor nodes. “SerialForwarder” is used to connect nodes through PC 

interfaces such as serial port, Ethernet, etc. It uses the „Packetizer” Protocol to transmit 

data, which is inspired by the Point-to-Point Protocol (PPP) reliable transmission protocol 

in (RFC 1663)  [79]. 
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6.2. Architecture of the designed Tool 
The designed framework  [4], shown in Figure  6.2, has two collaborative parts, one is 

running on the PC (the client) and the other is running on each node (the server). These 

two parts on the node side and on the PC side communicate and cooperate to achieve the 

management, visualization and remote controlling tasks. In this section, the architecture 

of the management framework is explored in detail. Firstly, part which is on the PC side 

is discussed. Next, the other part which runs on every individual node is discussed. Then, 

the approach, how the two tool parts collaborate to process the exchanged packets, is 

explained. 

6.2.1. PC-Side Components 

The part of the management framework on the PC consists of several components. As 

depicted in Figure  6.2, these components are associated with corresponding layers that 

exist in every node in the “Thin Layer”. In the same figure, the “Thin Layer” represents 

the tool ends on the sensor nodes. It is responsible for controlling the application and the 

system on the sensor node. 

As this tool resides on a strong computing machine (such as PC), having huge resources 

as compared to the sensor nodes, it can provide more functionalities. For example, it 

provides a repository of data coming from nodes, visualizes the information in graphical 

form, and conducts analysis of the messages exchanged with the node in WSN. 

This part has several independent components to provide multiple and modular features. 

All these components are categorized into two main types, which are:  

1. PC Sensing components: These are responsible for dealing with the sensing data 

on the PC. They receive the sensing data, save it and analyze it. They keep track 

of the packets, received from every node, and of the sensed parameters such as 

temperature, humidity etc. 
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Figure  6.2 General architecture of the management Tool 

 

2. PC Management components: These components deal with the management data 

on the PC. They remotely manage the system parameters inside every node by 

controlling the corresponding layers via the management entities in the “Thin 

Layer”. For example, the MAC layer component of the tool on the PC controls 

and manages the MAC layer of the sensor node via the MAC management entity 

(MAC M E in Figure  6.2) that resides on the node. The MAC layer component 

also analyses the performance, and displays the results in graphs forms. As 

another example of such components are network layer management components, 

physical layer management components, operating system management 

components. 

6.2.2. Nodes-Side Components  

The components of the tool on the node side (management entities) should be of small-

size code and utilize a little amount of the processing power. These components compose 

the “Thin layer” in the node, Figure  6.2. Because of the rapid developments in sensor 
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nodes, the “Thin layer” should not significantly decrease the node efficiency. It is 

observed that the memory size in sensor nodes is getting larger and the processor speed 

with same amount of energy consumption is getting faster day by day. This implies that 

this layer can be embedded easily on the node side without having considerable 

implication on the efficiency of the sensor node. This “Thin layer” can be added as a 

module to the system and is optionally integrated to it on the node. Furthermore, it can be 

remotely disabled or enabled according to the user requirements. 

In the first outline of the interaction tool, we have assumed that it provides a full control 

and management of all the nodes in WSN. Moreover, it controls the functionality inside 

each node separately. The “Thin layer” of the tool on node side has already many ports 

shown in Figure  6.3, which are the parameterized interfaces in the nesC language. In this 

figure, the overall structure of the components inside the managed node is shown. The 

system components are connected with the corresponding management components in 

the thin layer through the ports. 
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Figure  6.3 Architecture of the sensor node including the management 

components 



Requirements, Architecture and Features of ITSN 

 73

6.2.3. Communication between Tools Parts (on PC & Sensor 

Nodes) 

Any additional traffic in WSN should be dealt with very carefully due to the narrow 

bandwidth. Although, the communication between the tool’s ends (the management 

entities on nodes and the tool on the PC) adds additional control traffic and consume 

more energy, but obtaining and managing the parameters is necessary to take important 

decisions, which can help in improving the overall performance of network. 

The communication of the framework has two modes, as seen in Figure  6.4: 

• Passive mode: in which the tool is only a monitoring and visualization tool of the 

nodes without having any kind of interaction with the nodes. This visualization is 

based on the sensing data packets forwarded to the base station node. 

• Active mode in which the tool receives packets and responds accordingly to a 

particular node or to a group of nodes in the network. In this mode, the tool also 

can set or change the settings of the individual nodes. 

 

 

 
Figure  6.4 Communication modes in the management tool 
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The communication between the tool ends on PC and on the sensor nodes, depicted in 

Figure  6.5, takes place as follows. After the deployment of the nodes, the aggregation 

protocol establishes a collective tree. The aggregation protocol uses hierarchical routing 

scheme based on the link quality estimation. It first establishes gradients, which are set up 

upon the announcement of the base station that it is in depth zero. Then, its immediate 

sub-nodes will be in the depth one in the routing and so on. After establishing the routing 

tree, every node starts sending the sample packets to its parent in the tree. Eventually, all 

packets are forwarded to the base station node and then to the PC, where the information 

is analyzed and displayed to the user. To send a packet reversely from the base station to 

the nodes, flooding is used in our scheme. 

Let us take an example to explain how to query the nodes and how the response is sent 

back to the base station. In this example, few parameters in the MAC layer are queried. 

First, the whole network is flooded with the query or the command. The nodes are 

signaled from the base node which is initially signaled by tool on the PC side to broadcast 

the query. After each node receives the query or the command on the corresponding 

MAC port via the management entities, it responds to it by answering the query. It also 

responds by re-broadcasting the query to all of its neighboring nodes. This messaging 

process is very simple because of its broadcast nature. It also takes a short time 

comparing to uni-cast communication which needs to forward packets through already 

specific reserved paths. Finally, each queried MAC layer starts issuing the particular 

query answer. The query response will be returned to the base node in a uni-cast fashion, 

so that every node sends to its parent node. These messages are forwarded via the 

intermediate nodes until they reach the base station and then they are stored in a data 

repository for later analyses. These messages are also used to generate different 

informative graphs inside the framework (tool). 
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Figure  6.5 Communication between the tool’s parts 
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6.3. The Main Features of the Designed Tool 
The management tool has many features that make it a strong framework in managing 

and controlling sensor nodes in WSNs. In this section, we have classified the generic 

management solutions of WSNs. Next, the generic nature and the efficiency of the tool 

are discussed. Then, the supported fault tolerance model is described. Finally, the plug-in 

feature provided by the tool is elaborated. 

6.3.1. Generic Management Applications in WSNs 

Ignoring the generality of WSN applications during the design phase limits their benefits. 

Furthermore, this would restrict the possibilities of future extension and adaptation. 

Several methods to enhance the generic nature of applications in WSNs are explained 

later on. We have further evaluated the suitability of these methods in centralized and de-

centralized management scenarios  [80]. 

Providing generic platform- and hardware-independent applications for WSNs is very 

important in order to ease the use of the big diversity of WSN applications. Moreover, in 

WSNs, finding this generic management architecture that can be reusable for multiple 

sensor node platforms is a challenge being posed and emphasized by the WSNs 

community for long time. 

Initially, this question should be mapped into the current traditional network management 

problems, because the learned lessons of the traditional networks in this regard should be 

exploited. Therefore, we have classified the similarities and distinctions between the 

traditional and wireless sensor networks from the management perspective. 

In traditional networks, the generic nature of the application provides several important 

benefits such as: 

• Compatibility: this enables the users to benefit from different components for the 

same platforms. 

• Interchangeability of the same components among different platforms while 

providing the same functionality. 

• Commonality: it is to have the similar way of dealing with the components. 
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One of the main challenges of WSN applications is the specific nature. Therefore, it is 

very difficult to find generic solutions. This specific nature is due to many reasons which 

are as follows: 

• The limited resources in nodes such as small size, small memory, weak processor, 

narrow bandwidth … etc. 

• The wide range of applications in which we can use WSNs: In WSNs, there are 

many categories of applications such as, environmental tracking applications, 

medical and industrial applications, home automation application, surveillance 

systems … etc (See Appendix A). 

• The diversity in hardware component choices: many hardware technologies are in 

use in WSNs applications such as: several types of microcontrollers, several types 

of transceivers and many other diverse hardware elements. This diversity requires 

a specific way of designing and setting. 

• Over the last few years of WSNs evolvement, a lot of software solutions have 

been introduced which has increased the software diversity, and hence 

complicated finding general software solutions. 

In the following, we provide a survey of the methods employed to enhance the generality 

of the management in WSNs. 

Middleware: 

In WSNs, Middleware can be used to overcome and address the limitations of the 

application-specific nature. It also supports the commonness of the systems, deployment, 

development and maintenance. Many middleware solutions for WSNs have been 

proposed. Hadim et al. [59] have covered in their survey a large number of the WSN 

middleware proposals such as: Mate  [68], TinyDB  [69], SINA  [70], Agilla  [71] and many 

others. All these middleware systems support three main objectives: 

1. Ease the use of the applications 

2. Resolve the heterogeneity between different platforms 

3. Openness 

Dynamic and Mobile Agents: 
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Mobile agents, in this context, are small pieces of code which can be exchanged between 

the nodes in order to provide the generic nature to the application. Each manufacturer of a 

sensor node type provides an agent which comprises the node specifications. These 

specifications are later used to enhance the compatibility and to resolve the heterogeneity 

with other node types. In this paradigm, the sensor node can be seen as any computer 

device which has multiple software drivers in order to be compatible with other hardware 

platforms. 

 Semantics Methods: 

This method is based on an agreement of the functional meanings of the data structures 

and the functionality of the WSN specific components. Here, the exchanged management 

messages among heterogeneous application can semantically be interpreted in order to 

produce a general messaging structure. This general message format can be later used to 

provide general management. This method is used in Abstract Syntax Notation one 

(ASN.1) which is used in Simple Network Management Protocol (SNMP) in TCP/IP 

model. 

Standardization 

Standardization is a way to have compatibility, interchangeability or commonality among 

multiple systems based on different technical and operational fields. In WSNs field, there 

are few standards (technical agreements) that have been adopted such as ISO-18000-7 

 [54], 6lowpan  [55], WirelessHART  [56], ZigBee  [57] and Wibree  [58]. These standards 

are not developed explicitly for WSNs; rather they are mainly proposed for supporting 

general low power and low rate networks, and hence they can be adopted by WNS 

technology. 

SP  [30] (Sensor net Protocol) is, so far, the only standard-alike that has been specially 

proposed for WSNs. SP is further explained in the following subsection. 
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6.3.2. The Generic Management Nature in the Management 

Framework 

From the very start, we have designed our management framework in such a way that it 

should provide certain degree of generality for distinct wireless sensor nodes. On the first 

design stages, we have classified the node components into two categories: First, node-

dependent management components. These components can not be shared by different 

sensor node types. Second, node-independent management components which can be 

shared between different sensor nodes types. This classification helps in finding the 

components whose heterogeneity should be addressed. 

An example of the node-dependent management components is the interfacing layer, 

which connects between the tool on the PC side and the external nodes and vice versa. In 

our tool, in order to enhance the generality, we have adopted one of the widely used 

schemes, although we have designed our own as well. This adopted interface is called 

“SerialForwarder”  [60]. “SerialForwarder” uses the “Packetizer protocol” which sends 

the packets through different busses between the base node and the PC. The “Packetizer 

protocol” supports acknowledgements at the link layer. 

In order to increase the degree of generality and to deal with arbitrary kind of messages 

inside the tool, the tool also provides a standard messages interface that is compatible 

with the messages format generated by the Message Interface Generator (MIG)  [53]. 

MIG is a tool used to generate unified data structure format from multiple languages that 

corresponds to the original message structure of the nodes. Figure  6.6 shows a 

representation of how MIG is used to resolve the heterogeneity of different messages 

structure of multiple kinds of WSNs (SN(1), SN(2), …. SN (n)). The generated messages 

are compatible with the tool that we have implemented in JAVA. 

Moreover, the tool further enhances the generality by saving the sensing data and the 

management data in the XML format. The XML files can be used later by the tool to 

execute actions or to deduce inferences as well as they can be simultaneously accessed by 

external programs. The user of the tool can select whether to save these XML file to 

temporary or to permanent files. 
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Figure  6.6  Message generation for the tool using MIG 

  

Finally, our tool supports the Sensor net Protocol (SP)  [30] functionality which is a step 

forward towards generalization in WSNs. SP is a unifying abstraction layer that bridges 

different network protocols with different underlying data link layers and physical layers. 

SP is not at the network layer but instead it sits between the network and the data-link 

layer (because in sensor nodes data-processing normally occurs at each hop, not just at 

the end points). SP can also be used to identify an individual node, a set of nodes, or a 

communication structure such as a tree. This is an important feature supported by SP, as 

in most of the WSN applications, addressing a single node is not required; instead 

addressing a group or a tree of nodes is required. 

6.3.3. Management Efficiency of the Framework 

Resource efficiency is very critical in WSNs. On the one hand, high number of 

management parameters would increase the energy consumption. On the other hand, 

these management parameters are too necessary to take important decisions. These 

decisions can help in improving the performance of the network. The mechanisms 

followed to observe and track the system parameters do not significantly affect the data 

channel throughput or the system workload. 

From the packet overhead perspective, a low sampling rate to monitor the nodes should 

be set so that it should not significantly affect the original traffic. For example, if the user 
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is interested in monitoring few parameters at the routing layer, the rate of the 

management packets, which are delivered between the parts of tool-on the PC side and on 

the node side-should be lower than the original sensing sample rate. 

To ensure the scalability, it is assumed that for each certain number of nodes another base 

node (connected to a PC) should carry out the monitoring and the interaction with its tree 

nodes. This will reduce the overload on the individual base node connected to the PCs in 

large scale or dense WSNs. 

Flooding is used to disseminate queries to the nodes. Epidemic protocols can also be 

used, if less energy consumption and low traffic communication are desired. 

Uni-casting is used here to retrieve information from nodes because of its reliability. In 

case of data aggregation applications, data fusion and filtering schemes can be combined 

to the uni-cast routing to decrease the number of retrieved packets in the collection tree. 

6.3.4. Fault Tolerance Model of the Framework 

As mentioned in chapter 4, fault tolerance is one of the five dimensions of network 

management. The framework can be integrated with different fault-tolerant schemes. To 

present this feature, we have derived a simplified version of a general fault tolerance 

model provided in “Tolerating Failures of Continuous-Valued Sensors”  [72]. This 

derived version is very close to the fault tolerance model proposed in “A Geometric-

Based Approach to Fault-Tolerance in Distributed Detection Using Wireless Sensor 

Network”  [72],  [73]. The derived model is simply based on analyzing the geometric 

topology of the nodes and also based on the overlapping of the output values of the 

sensor nodes. In other words, if part of the nodes is faulty, the combined output with 

others is more reliable. The fault-tolerant model assumes a continuous event region 

which means that the events of the measured parameters are not centralized in specific 

points; rather, they are distributed evenly over the field. Moreover, this model is not 

based on the probability schemes. 

The first step in this fault-tolerant model is specifying the sensing map. The sensing map 

is based on the nature of the sensed parameter and on the environment specifications. For 

example, if some sensor nodes are deployed in forest, part of the nodes will be deployed 

in the shadow or in dark places while their neighbors will be in sunny areas. This leads 
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that sensor reading values of the illumination vary highly. In contrast, the temperature 

sensing map would not have that large variation of the sensor reading values. Table  6.1 

contains temperature and illumination sensor reading values of eight sensors of type 

(Tmote). Part of them is deployed in the shadow, while the others are exposed directly to 

the sun, which would be realistic in a forest deployment. In this particular case, (1, 2, 3, 

4) are deployed in the shadow and (5, 6, 7, 8) are exposed to the sun. 

Figure  6.7 represents the illumination and the temperature sensing maps of the sensor 

reading values which are in the Table  6.1. Group (A) represents the nodes 1,2,3,4, and the 

group (B) represents the nodes 5,6,7,8. These figures demonstrate the distinction between 

the different sensing maps of the different parameters. In other words, the temperature 

varies slightly over the filed for both groups (A and B), while illumination can have a big 

deviation over the filed. This factor is very essential to be considered in the fault 

tolerance model of WSN to specify the degree of fault. 
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Group Node_ID Temperature Illumination 

  Sunny Shadow Sunny Shadow 

ID_1  24.4  C  77 Lux 

ID_2  25.7  C  42 Lux 

ID_3  25.5  C  52 Lux 
A 

ID_4  26.0  C  38 Lux 

ID_5 27.0  C  900 Lux  

ID_6 26 .0 C  950 Lux  

ID_7 28.5  C  873 Lux  
B 

ID_8 26.5  C  843 Lux  

Table  6.1 Sensing values of sensor nodes deployed in a forest field 
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Figure  6.7  Sensing maps of temperature and illumination of a forest deployment 
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The deviation degree of the sensing map should initially be decided by the user to be later 

considered by the fault tolerance scheme. In the management framework, the user 

specifies via a dialog box the highest deviation of the sensed parameter. This deviation is 

dependent on the environment and on the nature of the parameter. Based on the specified 

sensing deviation, the framework correctly references the fault degree in the continuous 

event region as follows. Every node announces its Geo-position (Longitude and the 

Latitude) and its sensor reading values. Then, the framework decides which other nodes 

are in the communication range of the node. Next, the mean value of all sensing values is 

measured within that range. According to mean value, the tool can estimate the degree of 

fault of the sensor at that particular region where the node is deployed. 

Let us take an example a network of three nodes (N1, N2, and N2) that are in each others 

communication range as shown in Figure  6.8. Their sensor readings are 23, 37, and 30 

respectively. The mean value is 30, which means that node N1 has +7 margins of faults. If 

the allowed deviation would be ten, it means +7,-7 are still realistic and still in the 

tolerance limit of the sensing map. 

R
R

R

N 2
Longitude: V_Lo2
Latitude:V_La2N 3

Longitude: V_Lo3
Latitude:V_La3

N 1
Longitude: V_Lo1
Latitude:V_La1

L1

L3
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Figure  6.8 Node topology of three nodes are performing the fault tolerance scheme 
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6.3.5. Plug-ins 

An important feature of the management framework is the provision for additional plug-

ins. The purpose of these plug-ins is to provide third-party developers an option to extend 

the tool capabilities. In our tool, a simple public interface is provided to the external users 

or designers. Through this interface, different tool services can be accessed and modified. 

Furthermore, the interface provides back signaling with all the potential events that might 

occur either externally at the nodes or internally inside the tool. As a demonstration of the 

Plug-ins feature, we have already implemented some plug-ins for the tool. They are 

explored in the following. 

6.3.5.1. MAP Plug-in: 

Inside this Plug-in, the user specifies the map parameters (name of the place, address, 

latitude, longitude, or zip) according to the terrain, in which the user plans to deploy and 

then monitor the sensor nodes. The Plug-in then makes a request to MAP web services 

provider. It, then, fetches the corresponding map and displays it in the nodes’ panel. This 

Plug-in provides many options such as: adjusting, zooming in or zooming out the map. 

Currently, Yahoo Map Web Services are used in this Plug-in. 

For positioning or locating the sensor nodes, there are already many proposed schemes 

such as in  [63] and  [65]. The user can show nodes in their absolute or relevant positions 

by using this plug-in if an absolute or relevant positioning algorithm is already running 

on the nodes. 

6.3.5.2. Sensing Information Visualization Plug-in: 

When a data packet arrives to the tool, an event will be signaled to the plug-ins which 

receives this event. This event contains the fields: 

• node’ ID 

• sensing information type 

• timestamp of the event 

• sensing value 

This information will be stored in an XML file. 
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To display this sensing information, the user has to click on a node in the nodes panel. 

Then an event will be generated. As a response of that, the XML file will be parsed and a 

chart representing the sensing information of the chosen node will be generated and 

displayed on the plug-in panel. 

6.3.5.3. Network Information Plug-in: 

This plug-in is responsible for obtaining information about the network in the sensor 

nodes. The user has to enable this Plug-in to monitor the network parameters such as 

neighbor routing table, signal strength indicator, signal quality and other parameters. 

Whenever a network information packet is received, an event of type “NetworkEvent” is 

signaled. This event is sent to the plug-in. The content of the received packets is saved to 

XML files. These XML files are parsed and then the information is displayed on the 

plug-in panel. 

6.3.5.4. Scheduler Performance Plug-in: 

In this Plug-in, the information on CPU scheduler performance of each node is collected 

and accordingly graphs are displayed. First, an event of type (SchedValueEvent) is 

signaled to the plug-ins. This event contains: 

• node’s ID 

• the value of the CPU tasks left on the scheduler 

• timestamp of the event 

These values with their associated time and IDs will be saved into XML files. Whenever 

the user clicks on a particular node in the nodes panel, the XML file will be parsed and 

then a chart will be generated describing how much this particular clicked node is being 

utilized during time. Figure  6.9 shows a snapshot taken from the tool and it shows the 

CPU-scheduler utilization of a node. It is shown in the first portion of this graph, the CPU 

utilization of a node while forwarding packets from other sub-nodes in addition to its own 

packets while in the later portion it just sending its local packets. 
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Figure  6.9 CPU utilization of a node 

 

In the following Table  6.2, we summarize the main features supported by the tool. 

 

Feature Description 

Architecture Hierarchical 

Reactivity Both Proactive and Reactive can be set by the 

management tool 

Generic Nature Supported via SP, XML, Plug-ins  

Robustness Supported through the fault tolerance scheme 

Energy Efficiency Supported partially by controlling the sample rate of the 

management packets 

Scalability Supported through adding additional base nodes 

Table  6.2, Features supported by the management tool 
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Chapter 7  

Implementation 
 

The implementation of the tool is explored in this chapter. The first part discusses the two 

main component groups of the framework which include both the components on the PC 

and the component on every sensor node (management entities). This exposes the 

implementation of these components and the techniques they perform to achieve the 

management and to achieve the remote controlling. 

The second part of this chapter discusses the plug-ins implementation. It explains the 

advantages of this feature. It also explains the Application Programming Interface (API) 

of the Plug-in for adding additional plug-ins. 

The tool module on the PC is based on JAVA technology, while nesC is the 

programming language used for the modules in the sensor nodes. nesC is used for the 

implementation of the operating system “TinyOS” that runs on the sensor nodes in our 

used development kit. 

7.1. Main Classes of the PC-Side Components  
Figure  7.1 shows a UML diagram of the main classes of the tool. In this figure, the class 

“InterTool” is the main class which launches the functionality of the tool utilities classes 

such as the “Nodes”, “ToolFrame”, “Eventholder” and “MessageInterface”. The “Nodes” 

class holds the information of the nodes found in the topology and their status. 

“ToolFrame” is responsible for rendering the visualization. “MessageInterface” is 

responsible for communicating with the nodes via the base node. “Eventholder” is 

responsible for saving all the internal and external events and then signaling them to the 

other listening classes. 
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Figure  7.1 UML diagram of the main classes inside the management tool 

 

The tool combines several groups of components on the PC-side. Each group of these 

components implements and performs certain functionality and logic. These groups of 

components are classified into the following main categories: 
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• Messaging interface components 

They provide a standard bi-directional interface which dispatches messages to the other 

tool components, after omitting the link layer headings. The received messages are 

switched to the corresponding components where they will be further processed. For 

example, it forwards messages from the nodes headings towards the routing layer 

components, link layer components .etc. This interface also forwards the messages sent to 

the nodes from the components that are on the PC-side. 

• Visualization components 

They receive the messages from messaging interface components. Then, they use these 

messages to store, further process or display different parameters such as the network 

topology information, network traffic status, the link quality indicator (LQI), received 

signal strength indicator (RSSI) etc. Moreover, they deduce inferences and accordingly 

draw charts from the management and the sensing data log files. These components can 

benefit from other external services to extend the visualization features of the tool such as 

requesting WEB-MAP services to display current geographical maps of the deployment 

terrains. Figure  7.2 shows the UML diagram of the visualization components. 

“ToolFrame” is the main container which holds all other visualization components. 

“DisplayPanel” holds all nodes and tracks their movements in the panel. “NodePainter” is 

the actual holder and the visualizer of the nodes information on the “DisplayPanel”. 

“Tabbedplugin” is the container where plug-ins are drawn. 
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Figure  7.2 UML diagram of the visualization classes inside the management tool 



Implementation & Plug-ins 

 92

• Events components 

There are many sources of events in the tool. A java marker interface is used to specify 

that all events derived from this marker interface are of the same type. In this case, all 

events in the tool are of type “ITEvents”. To specify the events more, we have added two 

additional abstract interfaces. The first class is “InEvent” which is base class of all 

internal events generated from the tool. As an example, the events that are generated by 

clicking on a node in the nodes panel “NodeClickedEvent”. The other class is “ExEvent” 

which is the base class of all external events coming from the nodes. An example of this 

class is the event that is generated when a new node is found in the topology “ENode”. 

Some of other events are also:  

• receiving a sensing data packet “SensorValueEvent” 

• receiving a management data packet from the network stacks “NetworkEvent” 

• receiving a management data packet from the CPU scheduler “SchedValueEvent” 

• Clicking on a node “NodeClickedEvent” 

The Figure  7.3 shows an UML class diagram of the events which are signaled inside the 

tool. 

• Nodes data components 

These components are responsible for storing, displaying and processing the nodes 

information and their packets. The information of the nodes is of two types that are the 

sensing data generated by the sensors on the nodes and the management data. The 

framework provides the option that the sensed data and the management data can be 

stored either in user-specified or temporal XML files. 
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Figure  7.3 UML diagram of events classes inside the tool 
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7.2. Plug-ins Implementation 
Figure  7.4 shows a UML class diagram of the plug-ins classes which are provided in the 

current implementation of the tool. 

7.2.1. Plug-in Interface 

The way to add additional plug-ins is the following. Firstly, the user has to extend the 

interface “Plugin” and implement its abstract functionality. This interface contains the 

following methods: 

 

            public abstract void set_Plugins(){ 

             } 

            public abstract void unset_Plugins() { 

             } 

            public abstract void handle_Event(ITEvent event) { 

             } 

            public void draw(Graphics2D graphics) { 

             } 

            public void drawtotabs(Graphics2D graphics) { 

             } 

 

The first method is internally called by the tool to initialize the plug-in, while the second 

method is called by the tool for de-initializing it. 

The third function is periodically called by the tool to signal all plug-ins with all possible 

events. The argument of this function is an instance of a marker interface “ITEvent”, 

which represents all potential events in the tool. As described before, these received 

events are signaled either internally from the tool on the PC or externally from the nodes. 
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Figure  7.4 UML diagram of the plug-ins 
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The tool has two main panels for drawing. The first is for the nodes’ deployment area that 

includes the nodes figures, the geographical map and information on the nodes’ 

parameters such as the number of received management packets. The other panel is for 

the plug-ins. On this panel, the user can display all additional information of interest that 

are related to the plug-ins. The designer of a plug-in receives two “java.awt.Graphics” 

class instances for drawing on both the tool and the plug-ins panels. These are the 

arguments in the following two functions: 

            public void draw(Graphics2D graphics) { 

             } 

            public void drawtotabs(Graphics2D graphics) { 

             } 

These functions are internally invoked by the tool. By implementing these functions, the 

users’ actual drawing is accomplished. 
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7.3. Main Classes of the Nodes-Side Components 
The node-side components consist of the management entities which carry out the actual 

management on the nodes as well as the communication with the PC side components. 

These components can be seen as the management agents in the traditional network 

management such as in Simple Network Management Protocol (SNMP)  [62]. The 

management entities specifications vary between the sensor nodes types depending on the 

applied hardware components and the application nature. The number of these 

management entities depends on the number of the modules which the user intends to 

manage or control. In our designed tool, the management entities are designed as modular 

“nesC” libraries. These libraries can be linked to the original program which is TinyOS 

operating system in our case. The implemented management entities (agents), which we 

have already designed, are following. 

• MAC management agent 

This agent is used to provide management information about the MAC layer. It is 

implemented in nesC and added as a library for TinyOS operating system. It is statically 

compiled and then linked before uploading the final binary file into the sensor node. In 

order to include this agent, the user only has to add this following line of code in the main 

application configuration file: 

 Main.StdControl -> MacC; 

MacC is a configuration module, which is the top level component of this management 

agent. This module configures all the other libraries included by the application. During 

the deployment time, the user can remotely enable or disable the MAC agent via the tool 

on the PC side. For now, this agent collects the LQI and RSSI on each node and then 

sends them back to the tool on the PC, where the information is displayed on the screen 

and stored in XML files. Received Signal Strength Indicator (RSSI) and Link Quality 

Indicator (LQI) are significant parameters for several analyses such as the routing and 

positioning schemes. LQI measures the quality of the received signal, while RSSI 

indicates how strong the signal is. 

There are two message types associated with this agent: control management message 

and data management message. 



Implementation & Plug-ins 

 98

Figure  7.5 shows the structure of the control message (BcastMsg) and the data message 

(MacMsg). The control message is received by the agent on the node to enable or disable 

sending the data messages. This depends on the values of the (start) or (stop) fields. The 

field (seqnu) is used to mark the sequence of the messages for preventing loops and 

avoiding messages duplication. The message structure of the response messages 

(MacMsg) sent back from the agent contains some fields as shown in the figure. 

As mentioned in chapter two, nesC language uses the parameterized interface technique 

which is similar to the ports in TCP/IP network model. The parameterized interface with 

the number (151) is assigned for sending and receiving the control messages. Via this 

interface, the MAC management agent on the nodes is signaled to start or stop on sending 

data on the MAC. The interface numbered with (150) is used here to send the MAC data, 

which contains the RSSI and LQI fields in this case. 

 
Figure  7.5 Messages structure of MAC control and data messages 

//The MAC messages parameters which are sent back from nodes to the base station. 

typedef struct MacMsg { 

// The node for which we are measuring the RSSI and LQI 

uint16_t source; // Source of the message 

 uint16_t org; // Originator of the message 

 uint8_t RSSI; // RSSI value 

 uint8_t LQI; // LQI value 

 uint32_t seqnu; // sequence number 

} MacMsg; 

//The flooding messages which are sent for signaling nodes to start or stop sending data 

about the MAC  

typedef struct BcastMsg { 

 uint8_t start;  // Command Start 

 uint8_t stop; // Command Stop 

 uint16_t seqno; 

} BcastMsg; 
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From the memory perspective, we have measured the size in bytes of one of the 

management entities which is used to manage the MAC layer. The memory size is 802 

bytes in the RAM and 1038 bytes in ROM.  

Without MAC management layer, the required memory size in a node is: 

36024 bytes in ROM -  7659   bytes in RAM. 

With MAC management layer, the required memory size in a node is: 

37062 bytes in ROM -  8461   bytes in RAM. 

• Network management agent 

This agent provides management information about the network. To use this agent, the 

user has only to add the following code line in the main configuration module of the 

application. 

 Main.StdControl -> NetworkC; 

 
Figure  7.6 Network management agent messages structure 

 

// The data management message of the network, which is sent back from nodes to the base station 

via the port “162” 

 typedef struct NTMsg { 

// uint16_t source; // The node for which we are measuring the rssi and lqi 

     uint16_t org; 

 uint16_t nb1; 

 uint16_t nb2; 

 uint16_t nb3; 

 uint32_t seqno; 

} NTMsg; 

// The flood message, which is sent to signal nodes to start or stop sending management 

information about the Network via port “163”. 

typedef struct BNTMsg { 

 uint8_t start;  // Command Start 

 uint8_t stop; // Command Stop 

 uint16_t seqnoo; 

} BNTMsg; 
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The user disables or re-enables this agent using the tool on the PC side. Figure  7.6 shows 

the structure of the control management message (BNTMsg). This control message 

signals the agent to start or to stop sending data management messages. The data 

management message of the network (NTMsg) contains the neighbors IDs in the routing 

table of the node. On the PC-side, this information of the data messages is stored in XML 

files. It is also used to display neighbors of the node and the routing tree on the tool 

display panel. The assigned parameterized interfaces are set as follows. The port (163) is 

set for exchanging the control management messages, while the port (162) is assigned for 

sending and receiving the data management messages from the nodes to the base node. 

• Scheduling management agent: 

This agent is used for monitoring the scheduler performance. The user has to add the 

following line of code in the main configuration file to include this agent: 

 Main.StdControl -> SchedC;  

This agent keeps track of the number of the CPU-scheduling tasks which are left on the 

scheduler in each node. Then, it sends these values to the tool on the PC side, where they 

are displayed in graphs or charts forms on the screen and also restored in XML files. 

Figure  7.7 shows the structure of the control management messages (BcastSchedMsg) 

which are sent from the PC and received by the nodes to signal this agent. After signaling 

the agents, this agent starts issuing the data management messages (SchedMsg), whose 

message structure is also shown in the same figure. Parameterized interfaces are the 

following; port (170) is for the control management messages while (171) is for data 

management messages. 

• Application management agent 

It is used to control the application running on the nodes. To benefit from this agent, the 

user has to add the following line in the configuration component: 
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Figure  7.7 Scheduling agent messages structure 

  

Main.StdControl -> FloodStartStopC; 

From the tool on the PC side, this agent allows the user to on-line enable or disable the 

functioning of the nodes. This can be done by flooding the network with the control 

messages (BcastStartStop) that have the structure shown in Figure  7.8. This message 

contains three fields as shown in the figure. 

 
Figure  7.8 Messages structure of the management agent for stopping and functioning the nodes 

 

// The flood message, which is sent to signal application on the nodes to start or stop 

sending the sensing information about the via port “191”. 

typedef struct BcastStartStop {  

 uint8_t start;  // Command Start 

 uint8_t stop; // Command Stop 

 uint16_t seqno; 

} BcastStartStop; 

// The data management message of the CPU-schedular, which is sent back from nodes to 

the base station via the port “170” 

typedef struct SchedMsg {  

 uint16_t source; // Source 

 uint16_t org; // Originator 

 uint16_t nt; // this stands for the tasks number 

 uint32_t seqnu;// Sequence numbers 

} SchedMsg; 

// The flood message, which is sent to signal nodes to start or stop sending management 

information about the CPU-scheduler via port “171”. 

typedef struct BcastSchedMsg { 

 uint8_t start;  // Command Start 

 uint8_t stop; // Command Stop 

 uint16_t seqnu; 

} BcastSchedMsg; 
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Chapter 8  

Evaluation of the Management Framework 
 

In this chapter, the use of the features supported by the tool is elaborated. A real life 

demonstration of the tool is described. Then, the evaluation of these features is provided. 

This chapter is organized as follows. At first, the specification of the wireless sensor 

network, which we have used in the real life scenario, is described. Afterwards, the 

following issues are discussed: 

• The usage of the tool to get and save the sensor samples 

• CPU scheduling management using the tool  

• Benefits of the geographical map services provided by the tool 

• Network and node management 

• Use of the tool services as a WEB application 

8.1. Experiment Setup 
A network of wireless sensor nodes that consists of ten nodes is set up. These nodes are 

called Tmote Sky from Sentilla Corporation (earlier moteIV  [13]). The key features of 

each node are the following: 

• MSP430 microcontroller 

• Integrated Digital to Analog Converters (DAC), Digital to Analog Converters 

(DAC), and Direct Memory Access (DMA) controller. 

• Programming via USB 

• Support for TinyOS  

• Compliant with IEEE 802.15.4 standard with 250kbps for the data and 2.4GHz 

for the carrier 
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• 16 pins as expansion support for external extensions 

• Onboard integrated antenna 

• Integrated internal and external temperature sensors, humidity sensor, solar 

radiation sensor, and photo synthetically sensor. 

In the scenario, the nodes are deployed on the same floor in our institute building. 

Immediately after the deployment, these nodes initiate a collection tree in which each 

node periodically collects the samples and forwards them to the root node. According to 

our settings, every node sends every four seconds a sample taken from every sensor that 

exists on the board of the node. These readings will then be forwarded via other nodes or 

directly to the base station depending on the topology map. Finally, all samples reach the 

base station which is responsible for collecting all the sensed data. The base station, in 

turn, forwards this data to a computer or to a PDA. The other role of the base station is 

that it receives the command packets from the computer and then it disseminates them to 

the senor nodes via a dissemination protocol. The computing device (personal computer 

or PDA) represents the only access interface to the wireless sensor network through 

which the user can manage and control the nodes in the network. 

8.1.1. Samples Aggregation 

For the sensor network described in the above subsection, the tool displays the nodes 

existing in the topology. Then, the user can choose any node in the topology to visualize 

its samples. 

The tool identifies the existence of a node through its ID sent with the sample messages. 

It can also identify which of the sensing parameters is sent through a type identifier. The 

following identifiers are assigned with each of the sensed parameters: (humidity = 1, 

external temperature = 2, internal temperature = 3, illumination = 4, voltage = 5). 

After the tool receives the packets coming from the deployed nodes, the tool processes 

the received raw data to find the actual sensing values. The user optionally saves the 

sensing data coming from the nodes to either temporal or to specific data files. The 

format of the XML file of the sensing data is shown in Figure  8.1. The elements in this 

XML file are the nodes associated with their attributes. The attributes are the timestamp 
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at which the tool receives the samples, and the sequence of every sample. The sub-

elements of each of the nodes contain the different sample types and their values. 

The tool monitors health of the deployed nodes by keeping track on the rates at which 

each node is working. This would provide a feedback whether the network is running at a 

certain quality of service (QoS). However, the user has to initially specify the sampling 

rate of the nodes. 

Moreover, to generate the graphs representing the sensed data by parsing the XML files, 

the user has only to click on the node in the tool panel to generate its sensing graphs. 

Then, the user chooses the sensed parameters by clicking on the button associated with it. 

By doing this, the samples saved in the XML file are parsed and the data associated with 

this chosen node, with respect to the timestamp, will be displayed on the screen. 

 

 
Figure  8.1 XML file of the stored sensing parameters 
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Figure  8.2 charts of samples of a sensor node generated by the tool 



Evaluation of the Tool 

 106

In Figure  8.2, few generated graphs for the following sensed parameters: illumination, 

external and internal temperature, humidity and volt. All these charts are automatically 

scaled to the screen size by the tool. 

From the tool, we can remotely send the nodes into sleep mode and wake them up again. 

In this case, the nodes will stop on sending their sample data; however, they keep on 

running their management services in the background. 

The framework provides sample rate tracking facility for observing the sampling rate 

values and the nodes status, whether each node is active or inactive. This facility initially 

requires two values to be set up by the user. The first one is the time during which the 

node is considered as inactive. If there are no messages received from a node during this 

reference time, then this node is set as an inactive node. The other reference is the 

number of packets at which the facility re-sets the averaging calculation of the received 

samples and re-starts averaging the sampling rate value. This is important to have always 

recent accurate values. A snapshot of this facility GUI is shown in Figure  8.3. The nodes 

IDs are listed first. Then, the sampling rate and the nodes status are shown for each node. 

 
Figure  8.3 Sampling rate dialog box 
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8.1.2. CPU Scheduling Management and Performance 

Analyses Using the Management Tool 

As mentioned in the second chapter, the communication and the computation are the two 

main consumers of energy in WSNs. The energy consumption by the computation is 

mainly correlated with the CPU utilization. Evaluation of the CPU utilization in WSNs is 

less investigated by the researchers. Some of the works in this regard is what we have 

accomplished in  [1],  [2],  [8]. 

The CPU scheduling performance analyzer is designed as an additional plug-in. Data 

regarding the CPU scheduler performance is collected from each node. Then, it is directly 

displayed as graphs. Additionally, this data is saved in XML format, shown in Figure  8.4, 

so that it can be used by the tool and by other XML-based applications. 

 
Figure  8.4 XML file of CPU utilization data stored by the tool 

Several observations have been demonstrated by this Plug-in. It is figured out that the 

transition in the computational load during the nodes’ deployment is an important 

indicator of the network behaviors. For demonstration, different performance analyses 

have been performed using the tool. 
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Figure  8.5 shows the wireless sensor network which we have deployed to use with our 

tool. This network has the nodes 2, 3, 4, 5, 10, and 0. All these nodes are only one-hop 

away from the base station 0 and, none of these nodes is sending its packets via any other 

node. In this experiment, the number of the active nodes is gradually decreased by two 

every time after every certain time. During that, the scheduler performance of the node 2 

was monitored. The tool has generated the CPU-scheduler performance graph shown in 

Figure  8.6. In this figure, it can be observed that how the number of the neighboring 

nodes affects the CPU-load of the node 2. Initially, the load is 220 Tasks/Second. After 

disabling 3 and 4, it is 190 Tasks/Second. Finally, the load is 160 Tasks/Second after 

disabling the nodes 5 and 10. Such analysis of the CPU-scheduling load provides a good 

measure of the node-positions in the topology and the network density at these positions. 

In other words, the congestion of the medium around a node can be indicated by the CPU 

load and we can measure it exactly by tools such as our designed tool. 

 
Figure  8.5 Topology of the network for demonstrating the CPU-scheduler management feature 

 

The second experiment is the measurement of the CPU utilization. In this scenario, it is 

measured how much the CPU load decreases in both active (during messages 

transmission) and idle mode. In Figure  8.7-A, it is observed that the number of tasks is 

around 190 if the node is sending packets while it is 150 if the node is in idle mode. The 

experiment would also provide a measure of how much would be the energy 

consumption in both cases. During idle mode, the number of the tasks, which is 150 here, 
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represents the load caused by the background activities running on the node such as 

managing and maintaining the routes in the topology of the network. 

The third experiment we have performed with the tool is measuring the effect of 

decreasing the number of sub nodes of a particular node. A significant decrease of the 

CPU utilization is observed as shown in the Figure  8.7-B. This figure shows the CPU 

utilization for a node that has four other additional sub-nodes. In this case the load is 

around 600 tasks. After disabling all of the sub-nodes, it is observed that the load drops to 

the value of 270 Tasks/Second. This indicates how much the load decreases while 

decreasing the number of the sub-nodes. 
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Figure  8.6 CPU-Scheduler performance while reducing the number of the neighboring nodes 

 
Figure  8.7 CPU-scheduler performance in two cases:  

A-Left. Performance while functioning and while the node is disabled 
B-Right. Disabling sub-nodes 
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8.1.3. Map Services and Localization 

Localizing or positioning the nodes geographically is required in many WSN applications 

such as geographical routing, geographical attribute-based naming, and navigation 

systems. Localizing the nodes can be either absolute or relative. This depends on the used 

localization schemes and on the applied localization technologies. As mentioned earlier, 

this plug-in fetches the maps of the deployment area according to the parameters 

specified by the user (place name, address, latitude, longitude or zip). Adjusting the map 

on the panel is enabled by the tool, as the tool can shift the map left, right, down and up. 

Zooming in and out is also supported by the tool. Figure  8.8 shows the control panel of 

this plug-in. 

 

 
Figure  8.8 Snapshot of the Map plug-in 
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Unfortunately, the nodes in the development kit that we have used with the management 

tool are not equipped with any kind of localization technologies such as GPS receivers. 

Therefore, the demonstration will only be limited to displaying a place of interest where 

the nodes can be potentially deployed. As an example, we assume a sensor network 

which runs a medical monitoring application at the University of Luebeck. The objective 

of this application is to monitor the vital signs of patients. To localize the patients 

carrying the sensor nodes in their actual positions on the map, our tool is capable of 

visualizing the deployment places. This is demonstrated as screen shot in Figure  8.9. In 

this figure, we can see how a map appears in the tool and how the nodes appear in their 

geographical positions on the map. 

 
Figure  8.9, fetching the map of potential WSN deployment 
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8.1.4. Network Management 

Inspecting the network parameters is required during the research on WSNs and during 

the application development. Our designed tool provides the possibility of exposing 

network parameters to the user of the WSN. In this subsection, it is described how the 

tool helps in monitoring the network activities. 

Our tool is able to provide monitoring of the network activities at the multiple layers of 

the network stack. However, the current implementation supports the monitoring of 

significant parameters at the physical layer and the network layer. 

To inspect the network layer, the user of the tool signals the nodes to start (or stop) 

sending information about their routing table contents. In response, the nodes start (or 

stop) transmitting their routing data to the base node. For demonstration, we have 

deployed a network that consists of four nodes whose IDs are 0, 6, 8, and 10. Then, we 

have signaled them from the PC to send their network information. In response, every 

node sends its current routing table contents. For the nodes which are not direct neighbors 

of the base station, this information will be routed to the base station by intermediate 

nodes. Then it is displayed as a table by the “NetworkPlugin”, snapshot is shown in 

Figure  8.10. In the table, the left most column is the node ID, while the other columns are 

the IDs of neighbors of this node. The first row shows that the node with ID 10 has 0, 8, 

and 5 in its routing table. The second column represents the current parent. The third and 

the forth columns represent the second and third best potential parents of the node 

respectively. The special case in this table is the node 0. Node 0 is the base station node. 

It does not maintain its routing table because the only possible parent of this node is the 

PC connected to it. 

The information is saved in XML data files as the Figure  8.11 shows. The tool saves for 

every received packet, the id of originator node, the timestamp at which the packet was 

received and the index of this packet. These parameters are added as attributes of the 

node. The XML sub-child element of a node element contains one of its neighbors. 



Evaluation of the Tool 

 114

    6         0         10         8

    8         0         10         6

    10         0       6           8

 0

 
Figure  8.10 the routing tables taken from a screen shot from the NetworkPlugin 

  

 
Figure  8.11 An XML file shows the nodes and their parent nodes 
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In the current implementation, the tool fetches two important parameters from the 

physical layer. These parameters are RSSI and LQI. It displays these two parameters in 

the nodes panel near every node. As shown in Figure  8.12, the signal icon on the upper 

left corner of every node represents the strength of the RSSI, while the signal icon on the 

upper right corner of the node shows the LQI. 

ReceivedPckts: 33 Lost: 0
ManagementPckts: 17

ReceivedPckts: 77 Lost: 0
ManagementPckts: 37

ReceivedPckts: 87 Lost: 0
ManagementPckts: 41

ReceivedPckts: 148 Lost: 0
ManagementPckts: 67

ReceivedPckts: 167 Lost: 0
ManagementPckts: 75

ReceivedPckts: 352 Lost: 0
ManagementPckts: 84

10

10 10

10

1010
Position 1 Position 2

Position 3 Position 4

Position 5 Position 6  
Figure  8.12 Snapshot of RSSI and LQI of a node while increasing the distance to the base station 

 

Snapshots of a sensor node at six different positions have been taken while gradually 

increasing the distance between the node and the base station. Figure  8.12 shows how the 

signal strength degrades and becomes weaker when the distance of the node from the 

base station is being increased. In this figure, the position one is the closest and position 

six is the farthest from the base station. 
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8.2. WEB-Based WSN Viewer Application 
The services which are provided by the designed tool can be used in the WWW (World 

Wide Web) applications. As the tool stores and deals with the data of the WSN in XML 

format, many XML-based web applications can exploit and manipulate this data. For 

example, by using web scripting languages such as PHP and JavaScript, this data can be 

provided as web services to the other users on different remote computers.  

To demonstrate this feature, we have hosted the tool on a WEB server based on Apache 

HTTP Server 2.2.3. On this WEB server, we have implemented Web-based WSN viewer 

application based on PHP and JavaScript scripts. This application can dynamically and at 

the runtime parse the XML files which are generated by the tool and they also plot graphs 

that represent the information of the deployed sensor network. The plotted graphs expose 

the following information: the ID of each node existing in the topology and all different 

sensed parameters such as temperature, humidity, illumination and the voltage. They also 

expose all management information such as information about the network and the 

scheduler.  

 
Figure  8.13 Sensor network viewer 
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On the browser side, the services provided to the user appear in an interactive graphical 

interface. This interface is the “Sensor Network Viewer” shown in Figure  8.14. The 

viewer has two main frames. In the left frame, shown in more detail in Figure  8.14, all 

nodes in the topology are automatically discovered and then displayed as a folded tree. 

By clicking on any nodes name in this frame, two main sub menus will be displayed. 

These are “Sample Readings” and “Management Readings”. By choosing the “Sample 

Readings”, different sensed parameters of the chosen node are expanded out as buttons 

such as temperature, illumination .etc. By choosing “Management Readings”, a menu 

contains the management parameters such as CPU utilization appears. If the user clicks 

on a button, the PHP scripts parse the XML files and accordingly generate a graph of that 

parameter for the chosen button. For example, by clicking on Nodes ‘5’ and then clicking 

the button illumination, the figure shown in Figure  8.15 is generated. 

 
Figure  8.14 Sensor network viewer left frame 
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Figure  8.15 Chart produced by the sensor network viewer 
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Chapter 9  

Conclusion 
 

One of the main factors in designing applications or conducting research in wireless 

sensor networks is to have an efficient and integrated management environment. 

Furthermore, Quality of Service (QoS) can not be guaranteed if the applications 

providing the services are not manageable or are not interactive. In this dissertation, we 

presented a tool that comprises a management framework. It provides interaction 

paradigms for managing and monitoring the nodes in wireless sensor networks. To test 

the viability of the tool and its management models, we have designed it and validated it 

via experiments in real life scenarios. In the conclusion, a summary and the key 

contributions of this dissertation and, future work are mentioned. 

9.1. A New CPU Scheduling Scheme 
The initial work described in this dissertation is a new CPU scheduling scheme. This 

scheme enhances the performance in terms of fairness of the CPU-scheduler in a sensor 

node. Analytical proofs are deduced using our own specially designed simulator. 

9.2. New Management Framework 
A centralized management framework is proposed. This framework is for managing the 

nodes and interacting with them during the nodes’ deployment. Furthermore, it provides 

an interface for the users to monitor the different parameters on the nodes. Moreover, it 

fetches the sensing information and it then displays it in auto-scaling graphs. 
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In the management of traditional networks, the management dimensions are: 

configuration, fault, performance, accounting and security. In our proposed management 

tool, we mainly targeted the configuration, performance and fault aspects. 

9.3. Efficiency 
The efficiency of the models supported by this tool to achieve the management is a key 

feature. Efficiency can be further enhanced when combining our management tool with 

other efficient communication schemes for WSNs such as data fusion, positioning 

algorithms and dissemination protocols. 

9.4. Generality 
In this relatively new area of research, having a generic architecture is still a difficult task 

due to the big diversity in wireless sensor network applications. In this dissertation, new 

suggestions for supporting the generality of WSNs are made. Some of the generality 

schemes are embedded into our design, which are the semantic methods, Message 

Interface generator (MIG) and Sensor net Protocol (SP). As another achievement in terms 

of generality, the tool deals with all information as XML data format, which is a step 

forward towards generalization, since many applications, especially WEB applications, 

deal with this format. 

9.5. Architecture and Implementation 
The architecture and the implementation of the management application were presented 

in this dissertation. Descriptions of both collaborative component groups of the tool are 

mentioned. These two groups of components reside on the node and on the computing 

machines. 

9.6. Plug-ins 
Plug-ins feature is another important feature supported by the tool. Using this feature, the 

tool can be extended by users according to their specific desires and their requirements. 
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As demonstration, we have presented the plug-ins which we have already designed. 

These are the following: 

• Sensing values Plug-in 

• CPU scheduler Plug-in 

• Network Layer Plug-in 

• Map Plug-in 

9.7. Real World Evaluation 
In this dissertation, we have discussed the real life scenarios of the tool. These scenarios 

have been conducted to have evaluation of the tool during nodes’ deployment. Different 

capabilities of this tool are shown such as: 

• Displaying the sensing values of the multiple sensors 

• Interacting with the CPU scheduler to fetch information about the CPU 

scheduling 

• Using MAPs by the tool 

• Interacting with nodes to monitor some parameters in the network stack 

• Stopping or starting nodes remotely from the tool 

As an extension of the evaluation, we have proved the generic nature by designing a 

WEB application. This WEB application is based on the XML data files generated by the 

tool at run time. Via this WEB application the tool’s information is provided as HTML 

internet services. 

9.8. Future Potential Work 
Information provided by the tool can be considered as raw information. This raw 

information can further be processed and analyzed to get smart decisions for optimizing 

the WSNs performance. These smart decisions can potentially provide the best QoS 

solutions for WSNs. Our tool can be considered as a base of such solutions. 
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Appendix A 

 

Taxonomy of Wireless Sensor Networks applications: 

 

Following is a brief description of the fields in which WSNs are currently being used or 

can potentially be used in future. 

Environmental applications: 
WSNs can be established for monitoring the environmental conditions whose 

observations are of a significant importance. Examples of such applications are: habitat 

monitoring (region surveillance, flood detection, forest fire detection), toxic zone 

monitoring, comprehensive studies of species behaviors, chemical detection, crops and 

livestock living conditions exploration. Most of the time, such applications of WSNs are 

characterized as low rate sampling WSN. 

Industrial applications:  

There is wide range of industrial applications in which WSN technology is the best 

choice for providing smart and flexible control. Such applications are resource mining, 

automotive (vehicle, aircraft, airspace ...etc.), different industry sectors (textile, metal), 

smart building and home automation. Setting actuators in such WSNs would additionally 

open a new dimension by permitting effective interaction possibilities. Such WSNs are 

characterized as high rate sampling applications. 
Medical applications: 
WSNs can be used in emergency situations, disaster relief, disease tracking (global 

malaria conditions tracking), and individual patient tracking and monitoring. The later 

one has been extensively targeted by researchers in many projects such as Codeblue [37] 

and Advanced Health and Disaster Aid Network (AID-N) [66]. The objective of these 

projects is to provide a WSN platform that can provide remote monitoring of the vital 

signs of patients and elderly people at hospitals as well as at their homes. Potential 

parameters that can be monitored are heart rate, blood pressure, oxygen blood saturation. 
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WSNs can replace many medical appliances which are used for providing 

electrocardiogram, electromyogram and electroencephalograph analyses. For example, in 

the project Codeblue a special sensor node is designed to provide the electromyogram 

which can be used to measure the uncontrolled shaking of Parkinson disease. This sensor 

node can be easily carried by the patient and it can provide a controlled fine-tuned dosage 

to the patient  [37]. These applications run at high rate sampling. 
Military applications:  

WSN technology is very attractive for military scenarios due to its ad hoc nature and less 

cost. Moreover, WSNs can run in extremely hostile conditions. WSN can play a big role 

in the Command, Control, Communications, Computing, Intelligence, Surveillance, 

Reconnaissance, and Targeting (C4ISRT) military systems. There are many studies of 

WSN in this area such as intrusion detection and border protection, shooter localization in 

urban terrain, and radiation monitoring. These applications can be classified as low rate 

WSN applications. 

Commercial application:  

WSN can provide a big aid for warehouse items controlling. If a node is attached to every 

item, controlling the inventory would be very fast and very efficient. Furthermore, the 

user can easily find out the accurate number and the location of the items. Product quality 

can also be tracked by the WSN such as expiry date, environmental conditions around the 

items. WSN can also be used in logistic applications because they can provide intelligent 

tracking transportation of the goods. Commercial applications are low rate WSNs 

applications. 
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Appendix B 

 

Design Details of the CPU Scheduler Simulator  

 

In this appendix, a brief description of the design and the functionality of the “CPU 

Scheduler Simulator” are presented. 

EJS (Easy Java Simulations) framework is used for system modeling and providing a 

flexible component-based GUI design. EJS is a general tool for creating discrete 

computer simulations. It provides high level abstractions for perfectly modeling the 

complicated physical incidents. Simulators created through EJS run as stand-alone 

applications and they are platform independent as well. Moreover, EJS provides drag and 

drop feature to add components, which makes simulator development efficient and 

flexible. One key advantage of EJS is that it separates the logic, the data and the GUI. 

 “CPU Scheduler Simulator” simulates the task queues in a sensor node. Theses queues 

are event queue, high priority queue and low priority queue. In the Figure  9.1, the left 

most chart is the event queue (EQueue), the middle is the high priority queue (HPQueue) 

and the right most figure is the low priority queue (LPQueue). Moreover, “CPU 

Scheduler Simulator” displays the current real time of the simulator. In addition, it has 

two sliders. The first slider is for setting the number of sub nodes which forward their 

packets via the simulated node. The highest value of this slider is 1000 which means the 

simulator can provide the simulation up to 1000 sub-nodes. Mainly, the packets of these 

sub-nodes are utilizing the event and the high priority queues. The second slider 

represents the temporal priority switching ratio between the low and high priority tasks. 

This slider sets the point of each duty cycle at which the priority is switched. The duty 

cycle here is set to 2000 milliseconds. It also displays the exact numeric values of the low 

priority and high priority task queues. This simulator enables stopping, restarting the 

simulation and stepping it. 
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Figure  9.1 CPU Scheduler Simulator 

In Table  9.1, all events, tasks coming from the sub-nodes, and the locally generated tasks 

are presented. These tasks are repeatedly triggered by the simulator at a normal random 

time. Then all these tasks will be accumulated on the corresponding queues. The source 

code of the function, which represents the execution flow of the queues in the simulator, 

is shown in Figure  9.2. 

Events (q1) Forwarding Tasks (q2) Local Tasks (q3) 

eventSend1 taskForward2 taskSense1 

eventSense1 taskReceive2 taskProcess1 

eventReceive1 taskRadio2 taskEncrypt1 

eventTimer1 taskSend2 taskEncode1 

eventRadio1  taskReceive1 

eventForward2  taskSend1 

eventReceive2  taskRadio1 

eventSend2   

eventRadio2   

Table  9.1 Tasks and events modeled in the simulator 
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Figure  9.2 Execution flow of the queues. 

// One execution unit is reduced from the interrupt queue at each simulation step. It 

// returns to check again if there are still interrupt tasks.   

// q1 is the event queue which is served immediately in case it contains tasks. 

if (q1 > 0) {  

q1 = q1 -1; 

return; } 

// In case switching is not enabled: Execute tasks from the q2 which has the highest 

// priority.  After completion of q2, start executing q3 which has lesser priority. 

if(!switch){ 

if(q2>0  ){ 

q2 = q2-1; 

return; } 

if(q3>0){ 

q3 = q3-1; 

return; } 

} 

// In case switching is enabled. Execute tasks according to the enabled bq2 and bq3 

which depend on switching percentage of the duty cycle. 

if(switch){ 

if(     ((bq2==true) || (q3==0)) && q2>0    ){ 

q2 = q2 -1; 

return; } 

if(   (  (bq3==true) || (q2 ==0 )   ) && q3>0    ){ 

q3 = q3 -1; 

return; } 

} 
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