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Abstract 

Interrelated advances in data communication networks, distributed systems and mobile computing are 

rapidly altering the domain of network-based software. Today computing systems are no longer 

confined to conventional mainframe, enterprise and desktop scenarios. Rather, the emergence of 

powerful mobile devices, embedded systems and wireless computer networks enable software to 

operate across a broad range of non-traditional computing environments. Such advances are 

recognized as important foundations for creating mobile distributed systems capable of dynamically 

integrating environmental capabilities and accommodating changing user requirements. Towards this 

end, context-awareness has emerged as an important design approach for mediating the integration of 

algorithmic or structural components at runtime. However, while many everyday environments 

present unprecedented opportunities for adaptive systems, current context-aware approaches remain 

consigned to small-scale deployments and research prototypes; existing primarily within isolated 

islands of niche functionality that are far removed from everyday use. 

Over the last decade, the explosive rise of the Internet and World Wide Web (Web) has resulted in 

a ubiquitous fabric of data communications and distributed computation. Importantly, modern Web 

architecture addresses many of the middleware requirements of large-scale networked systems by 

accommodating multiple trust domains, unanticipated load and independent component deployment. 

Moreover, the Web‘s low entry-barrier and non-proprietary standards have made its communication 

protocols, functional apparatus and device support ubiquitous. Further, the Web‘s underlying 

architectural model proven remarkably capable of accommodating a variety of problem domains, 

including sophisticated cross-domain component interoperation. However, despite the emergence of a 

vast ocean of contextually-relevant Web content and services, conventional Web architecture has 

proven difficult to exploit by existing context-aware systems. 

This dissertation presents a hybrid computing approach, called Ocean, which aims to capture the 

entrepreneurial spirit of modern Web architecture as a means of supporting large-scale context-aware 

systems. Unlike existing approaches, Ocean addresses the key challenges facing real-world networked 

software by emphasizing user participation and community-based computation. Ocean defines a 

conceptual model for augmenting existing Web-based software components (Resources) with 

expressive contextual metadata as a means of facilitating in-situ discovery and integration. Further, 

Ocean defines a complimentary software architecture that provides simple, widely accessible and 

scalable mechanisms for distributed applications to discover and compose contextually-relevant 

Resources at runtime. Towards these ends, Ocean extends emerging community-centric computing 

techniques such as collaborative annotation, open plug-in contribution, volunteer-based computing 

and recommender systems. By leveraging community participation, Ocean aims to support the 

emergence of a new class of hybrid Web applications capable of dynamic context-aware adaptation. 
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Zusammenfassung 

Die Fortschritte in Datennetzen, verteilten Systemen und Mobilkommunikation führen zu rasanten 

Veränderungen im Bereich Netzwerk-basierter Software. Heutige Rechenanlagen sind nicht länger 

auf traditionelle Großrechner-, Server- oder Desktop-Systeme beschränkt. Durch die Entwicklung von 

leistungsstarken Mobilgeräten, eingebetteten Systemen und drahtlosen Datennetzen kann Software 

auf einer großen Bandbreite von nicht-konventionellen Rechnersystemen eingesetzt werden. Diese 

Fortschritte sind die Grundlage für die Entwicklung von mobilen verteilten Systemen mit der 

Möglichkeit der dynamischen Integration von Umgebungsressourcen und der Anpassung an sich 

stetig ändernde Nutzeranforderungen. In diesem Zusammenhang hat sich Kontextsensitivität als ein 

wichtiges Gestaltungskonzept für die Vermittlung der Integration algorithmischer oder struktureller 

Komponenten zur Laufzeit entwickelt. Während jedoch viele alltägliche Umgebungen beispiellose 

Möglichkeiten für adaptive Systeme bieten, bestehen heutige kontextsensitive Ansätze aus relativ 

kleinen Installationen und Forschungsprototypen, die zumeist auf Insellösungen in 

Nischenanwendungen fern der täglichen Nutzung beschränkt sind. 

Innerhalb des letzten Jahrzehnts hat die explosionsartige Entwicklung des Internets und des World 

Wide Web zu einer allgegenwärtigen Struktur von Datenkommunikation und verteilter 

Rechenleistung geführt. Die moderne Web-Architektur adressiert bereits viele der Anforderungen an 

hoch skalierte vernetzte Systeme durch die Anpassung an eine Vielzahl von gesicherten Bereichen, 

nicht vorhersagbarem Lastverhalten und der Verwendung unabhängiger Komponenten. Darüber 

hinaus haben der einfache Web-Zugang und die Verwendung nicht-proprietärer Standards zu einer 

universellen Verbreitung der Kommunikationsprotokolle, Funktionsbausteine und Geräte-

Unterstützung geführt. Zudem hat sich das zugrundeliegende Architekturmodell des Webs als 

bemerkenswert geeignet für die Anpassung an eine Reihe von Herausforderungen erwiesen; 

insbesondere für die domänenübergreifenden Interaktion zwischen Komponenten. Trotz der 

Entstehung einer immensen Vielzahl kontextuell relevanter Inhalte und Dienste, hat sich allerdings 

herausgestellt, dass die konventionelle Webarchitektur nicht systematisch von existierenden 

kontextsensitiven Systemen nutzbar ist. 

In dieser Dissertation wird das Ocean Framework als ein hybrider Ansatz vorgestellt. Ziel ist die 

Nutzung des Unternehmergeists im modernen Web zur Unterstützung von hoch skalierten 

kontextsensitiven Systemen. Im Gegensatz zu existierenden Ansätzen, adressiert Ocean die zentralen 

Herausforderungen von vernetzter Software in realen Umgebungen durch die betonte Einbeziehung 

der Nutzer und gemeinschaftlich bereitgestellter Ressourcen. Das Ocean Framework definiert ein 

konzeptionelles Modell für die Anreicherung existierender Web-basierter Softwarekomponenten mit 

ausdrucksstarken kontextuellen Metadaten zur Ermittlung und Integration von Ressourcen im 

jeweiligen Kontext. Zudem definiert Ocean eine ergänzende Softwarearchitektur, die einfache, 

weithin erreichbare und skalierende Mechanismen für verteilte Anwendungen bereitstellt, um 

während der Laufzeit kontextuell relevante Ressourcen zu entdecken oder zu erzeugen. Zu diesem 

Zweck erweitert Ocean aufkommende Techniken zur Unterstützung von Nutzergemeinschaften, wie 

gemeinschaftliche Kommentierungen, offene Schnittstellen für die Integration von 

Zusatzprogrammen, freiwillig bereitgestellte Rechenressourcen und Empfehlungssysteme. Durch die 

vorteilhafte Nutzung der Partizipation von Nutzergemeinschaften zielt Ocean auf die Unterstützung 

der Entwicklung einer neuen Klasse von hybriden Web-Anwendungen, die sich durch die Fähigkeit 

der dynamischen kontextsensitiven Adaption auszeichnet. 
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Chapter 1 

Introduction 

1.1 Motivation 

Interrelated advances in data communication networks, distributed systems and mobile computing are 

rapidly altering the domain of network-based software. Today computing systems are no longer 

confined to conventional mainframe, desktop and enterprise scenarios. Rather, the emergence of 

powerful mobile devices, embedded systems and wireless computer networks enable software 

applications to operate across a broad range of non-traditional computing environments. These 

advances are recognized as important foundations for devising mobile distributed systems capable of 

dynamically accommodating changing environmental factors and user requirements [73, 290]. 

Towards this end, context-awareness has emerged as an important design approach for mediating the 

integration of algorithmic or structural software components at runtime. Such capabilities are 

increasingly recognized as important for ―dissolving the traditional boundaries for how, when, and 

where humans and computers interact‖ [208] and allowing computing systems to ―weave themselves 

into the fabric of everyday life until they are indistinguishable from it‖ [353]. However, despite 

considerable interest and significant research effort, current context-aware systems remain consigned 

to small-scale deployments and research prototypes; existing primarily within isolated islands of niche 

functionality that are far removed from everyday use. 

The ongoing development of isolated application scenarios remains an artifact of the ambitious 

goals common to many context-aware computing projects. Indeed, many of the first explorations in 

the field were developed before most of the enabling infrastructure was commercially available; 

requiring that researchers create and deploy the sophisticated computer networks, communication 

protocols and computing devices required for a given application scenario [345, 347]. A few early 

examples of context-aware applications included employee locators [2], telephone call routing 

systems [345] and techniques for seamlessly transferring running software applications to the nearest 

compatible terminal [267]. Along with a range of similar efforts, these early context-aware 

applications represented important explorations of computing systems that could autonomously 

change their behavior and functioning based on who or what was around them. Importantly, while 

many of these early projects existed as research prototypes, their intriguing results inspired a number 

of important advances in network engineering, mobile computing and distributed systems [109]. 

Throughout the last decade, many of the technologies anticipated by early context-aware projects 

have become commercial realities. Increasingly capable and inexpensive microprocessors, memory 

systems and secondary storage products have given rise to a vast array of mobile computing devices 

such as laptops, mobile phones and personal data assistants (PDAs). Further, accelerated by the 

explosive growth of the Internet and World Wide Web (Web), high-speed data communication 

networks are becoming increasingly ubiquitous throughout many everyday environments. In addition, 

technical advances such as the Global Positioning System (GPS), two-dimensional bar-codes, radio 

frequency identification (RFID) and a diverse range of sensor types allow commodity devices to 

detect and model a variety of useful contextual information [49]. Together, these interrelated advances 
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are providing researchers unprecedented opportunities for enhancing real-world mobile software with 

widely available context-awareness features. 

For example, the Massachusetts Institute of Technology (MIT) Locale project
1
 explores how 

context information can be used to automatically change mobile phone settings based on user-

definable criteria such as location. Using Google‘s Android Mobile Platform
2
 as a foundation, Locale 

allows users to define situations, which specify the conditions where a phone‘s settings should be 

automatically changed. For example, a user may define geographic locations around her workplace 

and a nearby movie theater where her mobile phone‘s ring mode will be automatically set to vibrate or 

silent respectively. In other locations, Locale can be used to allow incoming calls from specific groups 

of people; forwarding everyone else to voice-mail or another number. Locale users may also specify 

that wireless networking should be deactivated and screen brightness should be reduced when a 

mobile phone‘s battery power reaches 20% of capacity. Although many of these features have been 

previously explored in research prototypes, Locale is uniquely designed for widespread deployment 

on commodity hardware. An overview of MIT‘s Locale application is shown in Figure 1. 

       

Figure 1: An overview of MIT Locale (from [168]) 

While applications such as Locale demonstrate the maturity of mobile computing and the viability 

of existing context-sources, advanced context-aware systems remain elusive outside of research 

laboratories and small-scale deployments [79]. Notably, advanced context-aware scenarios often 

involve compositional adaptation, whereby algorithmic or structural components are discovered and 

integrated into the application at runtime [208]. These types of adaptive approaches often combine 

mobile computing with key aspects of distributed and component-based systems, including techniques 

such as distributed object communications and late-binding. However, conventional distributed 

computing techniques often assume a relatively static execution environment, which are typically 

inappropriate for the rapidly changing environmental characteristic of mobile computing [62]. Unlike 

traditional distributed computing scenarios, where the available networks and distributed components 

are well-known a-priori, context-aware systems face a number of additional challenges that derive 

from the complex interactions often present at the intersection of multiple computing domains. Table 

1 provides an overview of the key challenges facing context-aware computing and identifies related 

focus areas. 

                                                      
1
 http://www.androidlocale.com 

2
 http://code.google.com/android/ 

2
 http://code.google.com/android/ 
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Challenge Focus area Motive 

Heterogeneity Distributed systems  Allowing a variety of services. 

 Supporting different types of devices, networks, 

systems, and environments. 

Scalability Distributed systems  Enabling large-scale deployments 

 Increasing the number of resources and users 

Dependability and 

security 

Mission-critical and 

distributed systems 

 Avoiding failures that are more frequent and more 

severe than acceptable. 

 Providing availability, confidentiality, reliability, 

safety, integrity, and maintainability. 

Privacy and trust Mobile computing  Defining the trustworthiness of interacting 

components. 

Spontaneous component 

interoperation 

Mobile computing  Allowing interaction with a set of components that 

can change both identity and functionality. 

 Permitting association and interaction. 

Mobility Mobile computing  Providing application and data access anywhere, 

anytime. 

 Enabling the user environment to go along with the 

user. 

Context acquisition and 

modeling 

Context-aware 

computing 

 Perceiving the user‘s state and surroundings. 

 Inferring and representing context information. 

Context management Context-aware 

computing 

 Provisioning context information and modifying 

system behavior as a result. 

Table 1: Key context-aware computing challenges (based on [73]) 

As discussed throughout Chapter 2, many of the challenges presented in Table 1 have been 

addressed in isolation by related work from a variety of disciplines. For example, distributed 

computing research has developed various techniques for distributing and coordinating processing 

across multiple autonomous networked computers. In such systems, the heterogeneity concerns listed 

above derive from the often diverse underlying hardware platforms, operating systems, runtime 

software and communication protocols common to networked execution environments. Further, in 

distributed scenarios, where networked components span multiple device types and may be provided 

by different vendors, the dependability and security of components and interactions become 

increasingly problematic [115]. Moreover, the broad scope of many distributed systems often requires 

the development of techniques for overcoming scalability issues (e.g. caching strategies, protocol 
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layering and functionality placement). However, as discussed in section 2.2.1, current distributed 

systems research provides a broad range of codified approaches that address many of these concerns, 

including the development of techniques such as remote communication, fault tolerance, high-

availability, remote information access and security [288]. 

Similarly, mobile computing research investigates software systems designed for portable operation 

and wireless communications [109]. Notably, the portability of many modern devices implies 

effective resolution of several fundamental issues such as power management, interface limitations 

and resource constraints. Moreover, mobile networking places additional demands on issues such as 

network address migration, disconnected operation and proximate resource management. In many 

cases, mobile systems must also overcome network heterogeneity and significant security risks while 

simultaneously imposing fewer demands on users whose attention may be limited. In this regard, 

mobile environments often exacerbate the heterogeneity, scalability and dependability/security issues 

common to conventional distributed computing [109]. However, as discussed in section 2.2.3, current 

mobile computing research addresses many of these issues through wireless networking technologies; 

techniques for mobile information access; support for adaptive applications; and system-level energy 

saving mechanisms. 

Finally, as discussed in section 2.3, issues related to context acquisition, modeling and management 

are being addressed by ongoing efforts in context-aware computing. Context-aware computing refers 

to a generalized approach for building software applications capable of examining and adapting to an 

individual‘s (often changing) context and requirements [293]. Such systems can be understood as an 

evolutionary synthesis of mobile and distributed computing, whereby additional aspects of adaptive 

computing are often involved [208]. However, unlike conventional adaptive computing scenarios, 

where participating applications and distributed components are well-known and relatively static over 

time, context-aware scenarios are often characterized by rapidly changing execution environments, 

where the available computational resources may fluctuate unpredictably as contextual factors change 

(e.g. the user moves). For example, many encountered networked entities may offer some measure of 

remotely accessible information or computation; revealing useful context information or offering 

clients the ability to discover and utilize various functionalities [169, 314, 342]. Additional variations 

include the ―processors available for a task, the devices accessible for user input and display, the 

network capacity, connectivity, and costs may all change over time and place. In short, the hardware 

configuration is continually changing. Similarly, the computer user may move from one location to 

another, joining and leaving groups of people, and frequently interacting with computers while in 

changing social situations‖ [290]. 

As context-aware computing often involves complex aspects of distributed, mobile and adaptive 

computing, supportive middleware is well-recognized as an essential requirement for constructing 

non-trivial systems [147]. Broadly, context-aware systems acquire and model contextual information 

from the user‘s environment as a means of facilitating parameter or compositional adaptation within a 

domain-specific application. Foundationally, most context-aware middleware provides support for 

automated acquisition and modeling of context information from the user‘s physical environment as a 

mechanism of informing adaptation [145]. Moreover, similar to middleware for conventional 

distributed systems, middleware for context-aware systems often provide the necessary infrastructure 
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for coordinating communication between participating distributed components. As such, most 

context-aware approaches extend existing distributed computing models such as those common to 

enterprise scenarios. Examples of such models include Remote Procedure Call, Distributed Object 

Communications and Message-Oriented-Middleware (see section 2.2.1).  

As detailed in Chapter 2, a variety of approaches have been developed to address the requirements 

of context-aware computing. While varying in overall scope, existing systems are typically designed 

with the assumption that the underlying network infrastructure, participating hardware devices, 

application constituents and context mechanisms are contained within a limited administrative domain 

and are well-known a-priori [97]. As such, many mandate expensive and invasive deployment of 

context instrumentation; require domain-specific network configuration; rely on specially outfitted 

mobile devices; adopt domain-centric middleware; and lack support for spontaneous cross-domain 

component interoperation (see section 3.2). Moreover, the considerable expense and effort required to 

devise, implement and deploy such systems promotes a top down development style intended to 

address niche problem domains where the requisite support infrastructure can be readily provided [62, 

97]. While such approaches have been successful in small-scale deployments and research prototypes, 

many are inappropriate for large-scale, real-world environments. Indeed, several recent surveys [22, 

62, 106] indicate that existing systems generally fail to provide ubiquitous accessibility and often 

incur intractable scaling costs that inhibit widespread reuse; resulting in a pronounced lack of 

developer adoption and end-user participation. Hence, current context-aware systems exist within 

isolated islands of niche functionality that are far removed from everyday use [79, 288]. 

1.2 Towards Ubiquity 

While isolation is common in current context-aware systems, a variety of recent advancements are 

providing the foundations for improved ubiquity. For example, as detailed in section 3.2.1, while the 

deployment of dedicated context instrumentation is often infeasible for large-scale scenarios, many 

everyday environments are becoming increasingly saturated with existing sources of useful contextual 

information. Common examples include GPS signals, GSM cell tower identifiers, media access 

control (MAC) addresses, RFID tags, barcodes, accelerometer data, light intensity, etc. Related, 

modern mobile devices such as laptops, mobile phones and PDAs are increasingly capable of 

detecting such ambient information through the use of inbuilt hardware. In this regard, commodity 

devices are increasingly recognized as platforms for performing local context modeling and 

coordinating the actions of complex distributed systems [268]. 

In our previous context-aware computing approach, called Aladin [49], we explored how 

commodity devices can be used to acquire and model a diverse range of context information using 

local hardware and dynamically installed software plug-ins. Based on a select set of architectural 

abstractions, Aladin provides a client-centric foundation for developing context-aware systems 

capable of wide-area operations (i.e. operating across multiple administrative domains). To validate 

our approach, we developed three diverse application models based on the resultant Aladin 

Framework, including a mobile interactive cinema platform [50], a museum tour-guide system [49], 

and a pervasive multiplayer tangible game [148]. Additional related work indicates that such client-

centric approaches can be effectively adapted to large-scale, heterogeneous environments [139, 268]. 
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Given cross-domain context acquisition and modeling, large-scale context-aware systems 

presuppose a foundation of network accessibility encompassing the intended operational area [73]. In 

this regard, current Internet infrastructure represents an increasingly ubiquitous substrate of data 

communications. The success of the Internet‘s architecture is often attributed to several key 

internetworking techniques [341, 358]. First, the Internet is based on a single logical addressing 

scheme that is universal adopted. Second, modularity is promoted through the five-layer TCP/IP 

protocol suite (i.e. the hourglass model), which features ―a generic packet (datagram) delivery 

mechanism as a separate layer at the hourglass' waist‖ [358]. Finally, Internet architecture promotes 

scalability and extensibility by placing ―most ‗intelligence‘ (i.e., information about end-to-end 

communication, control) squarely in the end points‖ [358]. As described in [223], these techniques 

affirm that the Internet‘s ―goal is connectivity, the tool is the Internet Protocol, and the intelligence is 

end to end rather than hidden in the network.‖ In terms of promoting large-scale networked systems, 

the Internet‘s basic design philosophy has proven remarkably effective at supporting ―constant 

innovation and entrepreneurial spirit at the physical substrate of the network as well as at the 

application layer‖ [358]. 

Related, conventional Web architecture addresses many Internet-scale application requirements 

through a distributed middleware model derived from a ―coordinated set of architectural constraints 

that restricts the roles and features of architectural elements, and the allowed relationships among 

those elements‖ [105]. As discussed in section 3.2.6, the Web‘s principle constraints include a 

universal addressing scheme; connector layering; intermediary caching (via metadata and idempotent 

methods); the uniform interface; and stateless component interactions [106]. Importantly, the Web‘s 

architectural model supports key aspects of visibility, reliability, and scalability. As richly described 

in [106], ―visibility is improved because a monitoring system does not have to look beyond a single 

request datum in order to determine the full nature of the request. Reliability is improved because it 

eases the task of recovering from partial failures [176]. Scalability is improved because not having to 

store state between requests allows the server component to quickly free resources, and further 

simplifies implementation because the server doesn‘t have to manage resource usage across requests.‖  

Based on its underlying architectural model, the Web has inarguably achieved its original design 

goal of providing ―a shared information space through which people and machines could 

communicate‖ [33]. However, its popularity has also resulted in a number of ancillary effects that 

have important implications for large-scale context-aware computing. First, the Web‘s design 

addresses scalability beyond geographic dispersion by incorporating techniques to accommodate 

multiple trust domains, unanticipated load and allow independent component deployment. Second, as 

evidenced by the tremendous number of Web-based applications, the Web‘s application model has 

proven remarkably capable of accommodating a variety of application domains. Third, the distributed 

architecture designed to support the Web‘s application model is sufficiently flexible to support a 

variety of non-hypermedia application scenarios [266]. Fourth, the Web‘s low entry barrier and non-

proprietary standards have made its communication protocols, functional apparatus and device 

support ubiquitous. Fifth, the Web‘s increasing ubiquity has resulted in significant developer 

adoption; promoting the emergence of a broad array of development toolkits, application frameworks 

and related knowhow. Sixth, increasing developer adoption has resulted in an explosion of Web-based 
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information and computation. Seventh, the generality of the Web‘s underlying architecture, combined 

with the rise of open data exchange formats (e.g. XML) is rapidly enabling machine-based processing 

of Web-based computation. Finally, the proliferation of machine processable Web-based computation 

is increasingly recognized as often having semantic associations to real-world contexts [179].  

Based on the preceding observations, Internet infrastructure and Web architecture ostensibly 

represent compelling foundations for the development of large-scale, real-world context-aware 

systems; however, these technologies have proven difficult to exploit in traditional context-aware 

scenarios [97]. As described in section 3.2, the current lack of Internet-scale systems highlights the 

fundamental conflicts arising between the scope of current context-aware research and the 

requirements of large-scale network architectures. For example, by emphasizing connectivity and the 

end-to-end principle of system design [279], Internet infrastructure reveals very little of the contextual 

semantics required by context-mediated adaptation strategies. In this regard, potential context 

information – such as information regarding the underlying communications hardware, network 

topologies and the physical location of components – is intentionally hidden from end-systems as a 

means of providing ―the illusion of a single, seamlessly connected network where the fragmented 

nature of the underlying infrastructure and the many layers of protocols remain largely transparent to 

the user‖ [358]. Further, conventional Web architecture provides only limited forms of context-

mediated component discovery (based on its hypermedia application model) [113, 114, 357]. 

Problematically, in current Web architecture, context information such as location, proximate devices 

and inferred activity cannot be effectively used to mediate component discovery, selection and 

interoperation. This is unfortunate, since much of the information and computation on the Web is 

increasingly recognized as having semantic relationships to real-world environments [37, 177, 182]. 

1.3 Thesis Statement 

This dissertation contends that traditional context-aware computing approaches are ill-suited for 

building truly ubiquitous networked systems and generally fail to promote significant developer 

adoption and end-user participation. We posit that the increasingly rich sources of context information 

contained within everyday environments provide a foundation for cross-domain context acquisition 

and modeling. Further, we argue that the ubiquity of Internet infrastructure and Web architecture 

represent compelling foundations for the development of new classes of context-aware Web 

applications capable of in-situ, cross-domain component discovery and interoperation. We suggest 

that extending existing infrastructure will enable developers to employ existing knowhow and tools to 

create large-scale, context-aware systems without the need for prohibitive infrastructure. Finally, we 

argue that increasing developer adoption will lead to significant end-user participation; allowing for 

the application of community-based computation as a means of addressing the key challenges facing 

large-scale network architectures. 

1.4 Research Issues 

Based on the motivating factors presented in section 1.1 and the trends introduced in section 1.2, we 

aim to develop a context-aware computing approach that captures the entrepreneurial spirit of modern 

Web architecture as a means of supporting large-scale context-aware systems. As detailed in section 

4.3.1, distributed components in conventional Web architecture are represented by an architectural 



Chapter 1 

8 

abstraction known as Resource. As described in [105], any information that is important enough to be 

named can be modeled as a Resource (e.g. an image, newsfeed, software release, Web page, search 

result, etc.) Based on the Resource abstraction, Web architecture has been designed primarily to 

support the requirements of an Internet-scale distributed hypermedia application [105, 106, 341]. As 

such, conventional Resources provide very little information regarding their potential associations to 

real-world contexts. Rather, in the current Web model, the selection of components for runtime 

composition is based on two limited forms of context-mediation: Resource-mediated and metadata-

mediated (see section 4.2). Briefly, in the Resource-mediated form, context information such as Web 

page text and associated hyperlinks is delivered to users encoded within a Resource‘s Representation. 

In the metadata-mediated form, machine-processable information such as HTTP headers and HTML 

metadata tags are sent to Web agents alongside requested Representations. Together, these basic 

context-mediation techniques allow the Web‘s hypermedia model to act as an ―engine of application 

state‖ [105] where dynamic Resource composition is based on user-directed hyperlink navigation. 

While Web-based context-mediation supports the requirements of hypermedia applications, its 

transactional nature prevents the component pre-filtering required by compositionally adaptive 

systems [29, 208]. Problematically, the Web‘s hypermedia model mandates that Resource 

Representations are requested and consumed before context information can be extracted from them. 

For example, in a prototypical Web page interaction, embedded hyperlinks are used to trigger 

additional application states. Importantly, transitions to new application states precede the delivery of 

additional context information (e.g. HTTP headers and Web page text); limiting available components 

to those encoded within delivered Representations. In contrast, complex compositional applications 

rely on the pre-filtering of potential application constituents before composition occurs [21, 29, 192, 

231]. Although techniques have been developed to provide some measure of Web-centric component 

pre-filtering [82, 192, 289], existing approaches lack support for expressive component descriptions 

based on arbitrary context types; require significant context domain expertise on the part of 

application developers; and often mandate computationally expensive translation of native context 

data into low-fidelity intermediary formats. Hence, in order to provide a foundation for Web-centric 

context-aware computing, extensible and expressive techniques for Resource contextualization are 

required. 

Large-scale context-aware systems presuppose distributed middleware that is ubiquitous, highly 

scalable and supportive of a wide variety of problem domains [38, 323]. Importantly, real-world 

distributed applications must be capable of operating across multiple administrative domains, and 

―continue operating when subjected to an unanticipated load, or when given malformed or 

maliciously constructed data, since they may be communicating with elements outside their 

organizational control‖ [106]. In this regard, cross-domain operation implies that application 

constituents may be developed, deployed and managed by multiple external organizations. Additional 

considerations include the scalability of component interactions, generality of interfaces, independent 

component deployment, and intermediary components to reduce interaction latency, enforce security, 

and encapsulate legacy systems [105]. Finally, any widely-accessible context-aware application 

model must be capable of accommodating a wide range of developer skill-levels. While conventional 

Web architecture addresses these requirements, its application model does not inherently support the 
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rich contextual semantics required by context-aware applications. Hence, in order to support Web-

scale, real-world context-aware systems, ubiquitous middleware approaches must be developed to 

support scalable component discovery and interoperation based on real-world context information. 

Given a sufficiently ubiquitous middleware approach, cross-domain context-aware systems must be 

able to discover and interoperate with relevant distributed components at runtime without extensive 

prior knowledge [96, 180]. As described in section 2.2.1, traditional distributed component 

architectures rely on process-centric descriptions of a component‘s end-point addresses, available 

methods and associated data-types (using technologies such as Corba IDL or WSDL). However, 

although modern development environments simplify the creation of remotely accessible methods, the 

resultant proliferation of domain-specific interfaces can reduce the probability of component 

interoperation [225, 334, 336]. Several recent surveys [21, 62, 97] indicate that the majority of current 

context-aware systems adopt such process-centric interoperation (PCI) styles. PCI techniques such as 

those epitomized by Corba and SOAP Web Services, make the coupling between callers and 

components clear and unambiguous; however, in large-scale scenarios, interactions between 

distributed components may suffer from architectural mismatch [115], where domain specific method 

syntax, sequencing and semantics prevent widespread reuse due to a lack of widespread 

understanding of a given interface [334]. While dynamic interactions between specialized interfaces 

can be resolved in small-scale distributed systems (e.g. enterprise scenarios) they become problematic 

in larger scenarios where component interfaces cannot be known a-priori [334]. Moreover, PCI 

techniques rely on complex infrastructure, highly skilled developers, platform specific mobile code 

and significant tooling, which are recognized as antithetical to widespread developer adoption [145]. 

Given an effective approach for spontaneous, cross-domain component interoperation, techniques 

must be developed to support wide-area component contextualization and discovery. In this regard, 

two approaches for service-discovery are commonly used. First, proximate interactions between 

networked systems are commonly accomplished using service discovery protocols such as the Service 

Location Protocol (SLP) [135], Zero Configuration Networking (Zeroconf) [314], Universal Plug and 

Play (UPnP) [169] and JINI [342]. While differing in scope and approach, service discovery protocols 

are generally designed to facilitate service advertising (e.g. publishing a service‘s capabilities and 

interfaces via multicast) and service discovery, whereby appropriate components can be located and 

selected based on desirable characteristics. However, as described in section 2.3.5, while some service 

discovery protocols have achieved limited commercial adoption (notably Zeroconf and UPnP), most 

are insufficient for supporting wide-area scenarios due to limitations in service density, network 

accessibility (i.e. local-link constraints) and protocol interoperability. 

In wide-area service integration scenarios, component registries are typically used to mediate 

dynamic binding and interactions between the loosely-coupled elements of a distributed application 

[29, 308]. Within component registries, associative metadata are used to describe important attributes 

of distributed constituents such as addressing information, interface descriptions and supported data 

types. Distributed applications discover potential application constituents by querying the component 

registry using a search protocol. The registry uses incoming queries to perform a component lookup 

using previously created metadata as a filtering mechanism. Although some component registries 

have begun to address context-aware component discovery, a number of inherent problems have 
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prevented their widespread adoption (see section 4.2). Briefly, most approaches adopt the previously 

introduced PCI style, which is recognized as inhibiting cross-domain spontaneous component 

discovery and interoperation [225, 334, 336]. Next, most context-enhanced registries define 

intermediary metadata formats, which may not be known be all participants or capable of expressing 

the fidelity of native context information. Next, most registry architectures provide a restricted set of 

metadata types and do not provide for the contribution of new types by external domain-experts. 

Finally, existing registry architectures do not provide the contribution mechanisms necessary for 

creating and maintaining the vast amounts of semantic metadata required by context-aware Web-

based scenarios. 

In wide-area component interoperation scenarios, context-aware applications may encounter 

situations where constituent discovery result in sub-optimal results due to a lack of sufficient query 

terms. Notably, if the metadata used to contextualize distributed components differs significantly from 

the query terms provided by client applications, search effectiveness is diminished and contextually-

relevant components may remain invisible. In information retrieval (IR), a similar phenomenon, 

known as word mismatch, has been studied with regard to text-based search. Word mismatch refers to 

the situation where ―the users of IR systems use different words to describe the concepts in their 

queries than the authors use to describe the same concepts in their documents‖ [374]. As described by 

Furnas et al., people use the same words to describe a search object less than 20% of the time [113]. 

Section 7.2.2 describes a similar phenomenon, called context mismatch, which refers to the situation 

where context-aware applications may not be capable of generating the context information necessary 

to facilitate effective component discovery. Notably, in real-world scenarios, the context data modeled 

from the user‘s environment may be highly heterogeneous, unsystematically organized and 

unpredictably available. Furthermore, the context data available to a given application is often 

inherently limited to the capabilities of the executing mobile device [49, 268]. In IR research, query 

expansion techniques have been developed to help improve query results by augmenting 

impoverished queries with supplemental search terms [51]; however, query expansion has not been 

effectively applied context-aware component discovery. 

Due to the rapidly increasing number of networked devices and components, information overload 

represents another critical challenge for Web-scale context-aware applications. Similar to Web search 

scenarios, where common query terms may result in an overwhelming number of search results [51, 

205], component discovery may result in an overwhelming number of relevant results; making 

effective selection more difficult. Importantly, information overload can become increasingly 

problematic in information-saturated environments, such as popular tourist locations or dense urban 

environments [51]. Recently, personalization techniques such as recommender systems have emerged 

as a promising approach for reducing information overload in complex filtering and selection 

scenarios [264]. The principle objective of a recommendation system is to help users select relevant 

items from among a large set of similar items by generating suggestions or predicting the utility of a 

specific item for a given user [339]. Recently, context information has been used within recommender 

systems as a means of helping users filter and find useful information such as providing a list of 

nearby restaurants according to a model of the user‘s preferences [207]. Preliminary results have 

shown how context-aware systems can be used to enhance service discovery and provisioning in 
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mobile scenarios [269]; however, recommender algorithms have proven difficult to exploit in context-

aware systems due to their comparatively low end-user participation [207]. 

Based on the research challenges presented above, this dissertation presents a hybrid context-aware 

computing approach, called Ocean, which aims to capture the entrepreneurial spirit of modern Web 

architecture as a means of supporting large-scale, real-world context-aware systems. Unlike existing 

approaches, Ocean addresses the key challenges facing large-scale networked systems by 

emphasizing user participation and community-based computation. Ocean defines a comprehensive 

conceptual approach for augmenting existing Web-based software components (Resources) with 

expressive contextual metadata as a means of facilitating in-situ discovery and integration. Related, 

Ocean defines a complimentary software architecture that provides simple, accessible and scalable 

mechanisms for distributed applications to discover, select and compose contextually-relevant 

Resources at runtime. Towards these ends, Ocean extends several community-centric approaches such 

as collaborative annotation, domain expertise contribution, volunteer-based context modeling and 

recommender systems. By reappropriating existing context sources and leveraging community 

participation, Ocean aims to support the emergence of new classes of hybrid context-aware Web 

application capable of dynamic, cross-domain component discovery and interoperation. 

1.5 Dissertation Structure 

Based on the motivation presented in the preceding sections, Chapter 2 substantiates our approach by 

presenting relevant background material and related. Section 2.2 begins with an overview of relevant 

computing approaches and an introduction into data communication networks. Section 2.2.1 discusses 

several key distributed computing approaches and section 2.2.2 describes the application of these 

approaches in service oriented architectures and Internet-based Web service scenarios. Next, section 

2.2.3 discusses how increasing device mobility has motivated the development of adaptive mobile 

systems that often confound traditional distributed systems techniques. Based on this background, 

section 2.3 begins a discussion of context-aware computing. We begin by introducing a conceptual 

framework intended to guide the discussion of a representative notable state-of-the-art systems. 

Section 2.3.1 explores key notions of context and discusses how context-awareness has become well-

recognized as an important mechanism for guiding software adaptation in complex computing 

environments. Section 2.3.2 describes current approaches for context acquisition. Section 2.3.3 

describes key methods of context modeling and representation. Section 2.3.4 describes major 

techniques for context management and provisioning. Finally, section 2.3.5 describes approaches for 

context-aware component interoperation. 

Based on the background and related work presented in Chapter 2, the foundations of the Ocean 

approach are presented in Chapter 3. The chapter begins with an introduction into the key challenges 

facing large-scale context-aware systems in section 3.2. Importantly, this section also introduces 

several related advances that have begun to address each challenge in isolation. As described in 

section 3.2.1, client-centric context acquisition and modeling approaches have shown how context 

information can be extracted from heterogeneous large-scale environments without the need for 

prohibitive instrumentation or infrastructure. Next, as described in section 3.2.3, the tremendous 

growth and popularity of the Internet has resulted in an increasingly ubiquitous substrate of data 
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communications. Next, as described in section 3.2.5, modern Web architecture provides a ubiquitous, 

Internet-scale middleware architecture whose communication protocols and functional apparatus are 

broadly adopted. Finally, as described in section 3.2.7, the Web‘s underlying architectural style 

(formalized as Representational State Transfer [105]) provides an promising approach for supporting 

cross-domain component interoperation. Based on these advances, section 3.3 describes Ocean‘s 

overall scope and section 3.4.1 introduces the design principles intended to guide the derivation of the 

Ocean architecture. Section 3.4.2 describes the key architectural constraints intended to align Ocean 

with conventional Web architecture. Next, section 3.5 derives the overall Ocean approach by 

describing its principle architectural abstractions, application model, component contextualization and 

discovery techniques, registry architecture and support for community-based computation. The 

chapter concludes with a discussion of Ocean‘s principle stakeholders in section 3.6 and the Ocean 

Reference Implementation in section 3.7, which is intended to validate core aspects of the Ocean 

approach. 

Based on the approach specifications presented in Chapter 3, Ocean‘s core architectural abstraction, 

called the Contextualized Resource, is presented in Chapter 4. Briefly, the Contextualized Resource 

abstraction extends the Web‘s conventional Resource model with an expressive contextual metadata 

model used to facilitate in-situ discovery and integration. The chapter begins by presenting 

background and related work specific to context-mediation in REST-based architectures in section 

4.2. Next, the Contextualized Resource abstraction is presented in section 4.3. Section 4.3.2 presents 

the Context Metadata abstraction, which is intended to encapsulate the syntax and semantics of 

diverse context domains. Related, section 4.3.3 provides a theoretical discussion of similarity 

modeling as pertaining to the wide-area Resource Discovery mechanisms discussed in subsequent 

chapters. The chapter concludes with an illustrative Contextualized Resource example in section 4.4. 

Building on the Contextualized Resource abstraction, Chapter 5 discusses key ideas regarding Web-

scale context-aware computing using the Ocean approach. As discussed throughout this chapter, 

Ocean provides a simple, accessible and scalable mechanism for mobile applications to discover, 

select and compose contextually-relevant Web Resources at runtime. Based on this philosophy, 

section 4.1 provides background and related work related specific to our approach derivation 

presented in section 3.5. Next, section 5.2.2 presents Ocean‘s Web-centric application model as an 

extension of the client-centric mashup style presented in section 5.2.1. Notably, the Ocean application 

model defines a new class of context-aware Web application capable of spontaneous cross-domain 

component discovery and interoperation. Section 5.3 describes the Ocean Contextualized Resource 

Registry (Ocean Registry), which is used to adapt the Ocean application model to the requirements of 

conventional Web architecture. This section introduces the Ocean Registry‘s principle separation of 

concerns, software architecture and notable APIs. In order to promote the contribution of Context 

Metadata implementations within the Ocean Registry, section 5.4 describes an adaptation of the Java 

Community Process intended to facilitate participation by external Context Domain Experts. Finally, 

in order to promote large-scale Resource contextualization, section 5.5 concludes the chapter by 

introducing Ocean‘s open Contextualized Resource contribution model, which allows any 

Contextualizer to contextualize any Resource with any combination of Ocean Metadata. 
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Chapter 6 presents the Ocean Registry‘s Persistence and Discovery Frameworks, which are 

intended to support wide-area Contextualized Resource contextualization and discovery. Briefly, the 

Persistence Framework allows Contextualized Resources to be efficiently stored and indexed for rapid 

retrieval according to domain-specific techniques. Section 6.2 provides background and related work 

regarding database techniques and related similarity search approaches. Next, section 6.3 presents the 

Ocean Registry‘s persistence model by describing Ocean‘s relevant abstractions and illustrating how 

Contextualized Resources can be effectively indexed using an example. Next, section 6.4.1 describes 

Ocean‘s discovery protocol, which allows applications to query the Ocean Registry for contextually-

relevant Resources using native context data (NCD) as query terms. This section describes the 

Resource Discovery API and its associated request/response formats. Ocean‘s Resource Discovery 

approach is presented in section 6.4. This section presents background and related work regarding 

existing similarity search techniques and presents Ocean‘s associated Discovery Framework. This 

section further describes how contextually-relevant Resources are discovered using the search 

protocol previously introduced. Notably, the Discovery Framework operates in conjunction with the 

aforementioned Persistence Framework; allowing the NCD within Discovery Requests to be 

effectively compared with persisted Context Metadata within the Ocean Registry‘s shared data store. 

Chapter 7 discusses how Ocean‘s Web-scale focus introduces two critical challenges for Resource 

discovery and selection. The first challenge relates to context-mismatch, whereby Resource discovery 

performance is degraded due to mismatches between the Context Metadata used to describe a Web 

Resource and incoming NCD-based query terms. Section 7.2 addresses context-mismatch by defining 

a mechanism that automatically expands Discovery Requests with additional, contextually-relevant 

query terms extracted from the shared query information provided by diverse members of the Ocean 

end-user community. The second challenge relates to information overload, whereby Resource 

discovery performance may be degraded due to extremely large numbers of undifferentiated query 

results. Section 7.3 addresses information overload by describing Ocean‘s Resource personalization 

approach, which automatically predicts a user‘s affinity for a given Resource based on previously 

modeled preferences information from similar Ocean end-users. Notably, both query expansion and 

Resource personalization are available as optional, privacy-aware enhancement features that can be 

used either alone or in combination to help improve discovery search results. 

Chapter 8 presents an Ocean application scenario as a method of illustrating how Ocean‘s various 

contributions form an integrated whole. In addition, the example scenario provides further validation 

of Ocean‘s large-scale focus by integrating real-world native context sources, significant 

Contextualized Resource information and more realistic models of Ocean community behavior. First, 

section 8.2 describes our experimental setup, including the development of an Ocean application 

development environment, called Ocean Studio, and an embedded Ocean reference implementation 

(RI) that is designed for rapid prototyping. Next, section 8.3 provides an overview our example 

application, called LinkFlow, which forms the conceptual foundation for the remainder of the chapter. 

Section 8.4 describes our data acquisition methodology and related toolset designed to capture large 

numbers of native context sources and real-world Contextualized Resources. Section 8.5 presents a 

validation of the basic LinkFlow scenario within the Ocean Studio development environment. Section 

8.6 describes the integration of the previously acquired native context sources and Contextualized 
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Resource data into Ocean Studio. Notably this section also describes the resultant query performance 

reduction due to context mismatch and information overload. Section 8.7 discusses how the 

aforementioned query challenges can be addressed by applying Ocean‘s query expansion and 

Resource personalization techniques. 

Chapter 9 concludes the dissertation with a summary of contributions and a discussion of future 

research directions.  
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Chapter 2 

On Context-aware Computing 

2.1 Introduction 

To help motivate the Ocean approach, this chapter presents background material and related work 

regarding context-aware computing. As discussed shortly, context-aware computing represents an 

evolutionary synthesis of several domains of computer science, including data communication 

networks, distributed systems and mobile computing. As such, a comprehensive treatment of each 

sub-domain remains outside of the scope of this dissertation. Rather, this chapter discusses the 

background material directly related to the development of large-scale context-aware systems. First, 

section 2.2 begins by discussing the rise of computer networking and the key techniques that have led 

to the rapid proliferation of network infrastructure. Based on increasingly ubiquitous communication 

networks, section 2.2.1 describes important approaches for distributing computation across multiple 

autonomous networked computers. Related, section 2.2.2 describes techniques for accommodating 

distributed computing in Internet-based scenarios through service-oriented computing and SOAP Web 

services. Finally, section 2.2.3 describes how recent trends in mobile computing and wireless 

networks have motivated in the development of adaptive systems capable of altering their runtime 

behavior and capabilities to better fit the characteristics of a mobile user‘s current situation. 

The aforementioned background material is used to introduce the field of context-aware computing 

in section 2.3. This section describes major techniques and technologies for adapting mobile and 

embedded systems to the characteristics of highly dynamic mobile computing scenarios. Notably, this 

section is structured by the introduction of a unified conceptual framework that allows context-aware 

systems to be decomposed, categorized and analyzed. Based on this conceptual framework, a 

representative sampling of context-aware computing research is presented. First, section 2.3.1 defines 

key notions of context and context-awareness. Next, section 2.3.2 describes important approaches in 

context acquisition. Section 2.3.3 describes techniques for context modeling and representation. 

Section 2.3.4 presents key techniques for context-management and provisioning. Finally, section 2.3.5 

describes major approaches for facilitating context-aware component interoperation. 

2.2 Background 

Over the past several decades, increasingly powerful computational capabilities have been steadily 

diffusing into everyday objects, devices and environments. Today our homes, cars, offices and public 

spaces contain an ever-increasing assortment of embedded systems, mobile devices and computer 

networks. Although such trends appear recent, the dissemination of computation away from 

individual devices has been evident since the beginnings of general purpose computing. Early 

computing systems were designed necessarily with all hardware resources, processing instructions 

and data persistence isolated within a single hardware platform. The rapid proliferation of such stand-

alone computers gave rise to a set of well-understood techniques for sequential computing, where 

computational tasks are solved through the step-by-step serial application of processing instructions 

[13]. Importantly, the development of sequential computing produced a framework for specifying 

algorithms, comparing their performance and understanding their inherent limitations such as lower-
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bound runtime and the notion of NP-completeness. However, although stand-alone computing 

provided a straightforward means of solving common computational problems, most sequential 

algorithms were unable to dynamically exploit additional computing resources and often suffered 

from intrinsic inefficiencies imposed by their inability to work on different parts of a problem 

simultaneously [38]. 

Improvements in computer hardware resulted in the emergence of parallel computing as a 

mechanism to address the inefficiencies of sequential algorithms. In parallel computing, different 

processing instructions are carried out simultaneously within a single computer system by exploiting 

the notion that larger computational problems can often be divided into smaller ones that can be 

solved concurrently. Parallel processing architectures typically coordinate task partitioning, 

scheduling and processing using local intra-process communication (IPC), which occurs within a 

shared memory address space on the same machine using techniques such as pipes, first-in-first-out 

queues or shared memory. In many cases, parallel architectures incur beneficial properties such as 

increased computational performance, improved modularity, and fault isolation [36]. As a 

consequence, advanced parallel computing techniques – such as instruction pipelining, 

multithreading, task scheduling and multiprocessor hardware architectures – have become common 

features of most modern hardware platforms, operating systems, compilers and programming 

languages [132]. 

The advent of parallel computing coincided and often supported related advancements in the field 

of data communication networks throughout the late 1960s and early 1970s. During this time, the 

costs associated with mainframe computing, combined with the increasing availability of micro-

computers, spurred increased interest in designing computer networks capable of interconnecting 

autonomous computers. In this regard, the development of network-based communications was 

motivated by a diverse set of goals, including resource sharing (e.g. sharing a mainframe computer or 

file server); increased reliability (i.e. providing alternative sources of data or computation); increased 

computational performance through parallelization; and improved human communications (e.g. file 

sharing and electronic mail) [323]. Important networking challenges included reliable data exchange; 

selection of appropriate communication paths; congestion control; deadlock control; and security 

[325].  

Resolution of the aforementioned challenges requires a communication model that imposes a high 

degree of cooperation between participating entities. Cooperation is often achieved through the 

specification of network protocols that dictate the rules and conventions of communication [323]. In 

this regard, the complexity of network-based communication is mitigated through the use of protocol 

layering whereby communication sub-tasks are encapsulated by a structured set of interrelated 

protocols commonly referred to as a communications architecture or protocol suite [248]. The 

exploration of such architectures resulted in the development of two broad classes of transmission 

technologies, including broadcast and point-to-point. Briefly, in broadcast networks, a number of 

computers (hosts) communicate using a shared communications medium (or link) by means of 

medium access control (MAC) protocols that help the hosts share the link fairly and efficiently. In 

broadcast networks, short messages (called packets in some contexts) are sent by any machine to all 

other hosts connected to the shared link [323]. In contrast, point-to-point networks support multiple 
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connections between pairs of hosts by way of an unshared serial link and related protocols. In point-

to-point scenarios, transmitted data must pass through (often multiple) intermediaries on the way to a 

given destination. 

The commercial success of both broadcast and point-to-point network designs resulted in the 

development of broad range network types, which are commonly classified according to physical size 

[323]. Common classifications include personal area networks (PANs) that are intended to serve a 

single person at a range up to 1 meter; local area networks (LANs) that often represent privately 

owned networks at the organization scale; metropolitan area networks (MANs) that operate at the 

scale of cities or groups of corporate offices; and wide area networks (WANs) that span large 

geographical areas such as countries or continents. A more detailed illustration of this basic 

classification scheme is shown in Figure 2. 

 

Figure 2: Classification of computer networks based on physical size (from [323]) 

The rapid proliferation of incompatible network infrastructure motivated the exploration of 

internetworking techniques, whereby computer-based communications could span multiple 

heterogeneous physical networks. The dominant communications architecture in this regard is the 

Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite that was first proposed by 

Cerf and Kahn in [56]. Briefly, TCP/IP combines several interrelated advancements into a relatively 

simple, flexible and robust internetworking scheme that has come to form the foundation of the 

modern Internet. At its core, the TCP/IP model aims to optimize available channel capacity, minimize 

transmission latency and improve communication robustness by adopting packet-based statistical 

multiplexing (packet switching) as its principle communications model [248]. Second, the TCP/IP 

approach enhances the basic packet switching model by defining a standardized set of abstractions 

intended to encapsulate the technology-dependent communication functions (primitives) of various 

underlying network types. Accordingly, the TCP/IP architecture encapsulates complex 

communication sub-tasks into multiple self-contained layers; each providing well-defined service 

interfaces to layers above and below. By introducing a platform agnostic virtual network between 

underlying network technologies and higher-level network users, the TCP/IP model provides ―users 

the illusion of a single, seamlessly connected network where the fragmented nature of the underlying 

infrastructure and the many layers of protocols remain largely transparent to the user‖ [358]. 
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While a detailed description of Internet architecture can be found elsewhere [323], a brief 

description of its three fundamental design principles provide insight into its design. First, as 

described above, layering is used to break up complex tasks into relatively simple subtasks that can be 

structured and arranged separately. Subtasks are implemented by modules that can be arranged into a 

vertical stack, where each layer provides a well-defined set of services to its adjoining layers and 

structures communication through a specific convention, or protocol. Secondly, Internet architecture 

has been influenced by the end-to-end argument in system design, which states that ―certain required 

end-to-end functions can only be performed correctly by the end-systems themselves. A specific case 

is that any network, however carefully designed, will be subject to failures of transmission at some 

statistically determined rate. The best way to cope with this is to accept it, and give responsibility for 

the integrity of communication to the end systems‖ [279]. The end-to-end principle positions 

complex, application-specific functionality at the end-systems while retaining relatively simple and 

scalable core network characteristics. The Internet‘s final design principle is the use of a single logical 

addressing scheme that is shared by all participating nodes. As described in [223], these principles 

affirm that the Internet‘s ―goal is connectivity, the tool is the Internet Protocol, and the intelligence is 

end to end rather than hidden in the network.‖ As evidenced by the Internet‘s explosive growth, rapid 

performance increases and proliferation of software services, its basic design philosophy has proven 

remarkably effective at supporting ―constant innovation and entrepreneurial spirit at the physical 

substrate of the network as well as at the application layer‖ [358]. The Ocean approach is strongly 

influenced by these design principles, as described in section 3.4.2. 

2.2.1 Key Aspects of Distributed Computing 

The increasing availability of inexpensive computing hardware combined with emerging computer 

networks and internetworking techniques led to the development of techniques for distributing 

computation across multiple autonomous networked computers. The resultant field of research, 

known as distributed systems or distributed computing, encompasses a wide range of approaches and 

algorithms for distributing and coordinating remote processing. Generally, distributed computing 

refers to any ―computing system in which a number of components cooperate by communicating over 

a network‖ [44]. While such definitions are often vague and contentious, Ghosh [120] presents several 

well-recognized criteria for distributed systems, including having more than one sequential process; 

message-based IPC; disjoint address space; and, collective goals whereby distributed processes 

interact with each other to address a common task. Ghosh also identifies several benefits of 

distributed systems, including geographic distribution; performance improvements beyond parallel 

computing; enhanced resource sharing; and enhanced fault-tolerance. Coulouris et al. identify several 

additional beneficial properties in [74], including system extensibility; location transparency whereby 

local and remote information can be accessed in a unified way; failure transparency whereby system 

failures can be automatically masked; and replication transparency whereby software and data can be 

replicated on multiple machines invisibly. 

A distributed system can be described in terms of software architecture. Broadly, software 

architecture has been defined by Fielding as ―an abstraction of the run-time elements of a software 

system during some phase of its operation. A system may be composed of many levels of abstraction 

and many phases of operation, each with its own software architecture‖ [105]. Fielding further 
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describes that software architectures are used to structure and decompose computational tasks into 

smaller, more manageable parts through encapsulation. Encapsulated elements are selected, arranged 

and configured to achieve a set of system properties that fulfill a system‘s requirements. Properties 

can include functional properties (e.g. system behavior) and quality attributes (e.g. ease of evolution, 

reusability of components, efficiency, and dynamic extensibility). Evaluations of software architecture 

include metrics such as correctness (that the system indeed fulfills the specified requirements) and 

efficiency (that the system fulfils the specified requirements at a low cost – e.g. low computational 

complexity, communication efficiency, etc.) Properties are induced within a system through the 

application of software engineering principles, which represent a style of arranging and configuring 

architectural elements. Accordingly, software engineering principles induce a ―coordinated set of 

architectural constraints that restricts the roles/features of architectural elements and the allowed 

relationships among those elements within any architecture that conforms to that style‖ [105]. Table 2 

provides an overview of the four principle architectural elements of software architecture as defined 

by Fielding in [105]. 

Element Description 

Component An abstract unit of software instructions and internal state that provides a transformation of 

data via its interface. 

Connector An abstract mechanism that mediates communication, coordination, or cooperation among 

components. 

Data Elements of information which are transferred from a component, or received by a 

component, via a connector. 

Configuration The structure of architectural relationships among components, connectors, and data during 

a period of system run-time. 

Table 2: The principle elements of software architecture (from [105]) 

With reference to Table 2, distributed systems differ from stand-alone architectures in several 

notably ways. First, components in a distributed system may reside on (potentially several) 

addressable networked devices that are known as nodes or hosts. Nodes are generally autonomous 

(i.e. maintain their own semi-independent agenda) and heterogeneous (i.e. comprise a diversity of 

hardware platforms, operating systems and runtime software). Hence, units of distributed computation 

provide their own internal stand-alone software architecture that is configured to collaborate with 

other networked entities via network-based messages. Accordingly, a distributed architecture can be 

described as a finite collection of entities that communicate using messages in order to ―achieve a 

common goal; for example, to perform a given task, to compute the solution to a problem, to satisfy a 

request either from the user (i.e., outside the environment) or from other entities‖ [282]. Distributed 

architectures are also characterized by connectors that are often several orders of magnitude slower 

than in-memory IPC techniques and may be subject to significant variations in communications 

quality due of the characteristics of the underlying network (e.g. delay, jitter and loss) [323]. 

Moreover, the capabilities of entities in a distributed architecture may not be uniform. For example, 
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entities may vary in terms of available processing capability, local memory or access to connected 

peripherals such as input and output hardware. Consequently, distributed architectures require 

additional measures to ensure interoperability (e.g. data passed between entities cannot often rely on 

proprietary representation such as language specific data types [334]). Additionally, the design and 

configuration of distributed systems is often significantly more complex than stand-alone 

architectures. Several important factors in this regard are listed below as presented in [325]: 

1. Broadcasting and synchronization: If information must be made available to all 

processes, or all processes must wait until some global condition is satisfied, it is necessary 

to have a message passing scheme that somehow touches all processes. 

2. Election: Some tasks must be carried out by exactly one process of a set, for example, 

generating output or initializing a date structure. If, as is sometimes desirable or necessary, 

no process is assigned this task a priori, a distributed algorithm must be executed to select 

one of the processes to perform the task. 

3. Termination detection: It is not always possible for the processes in a distributed system 

to observe directly that the distributed computation in which they are engaged has 

terminated. Termination detection is then necessary in order to make the computed results 

definitive. 

4. Resource allocation: A node may require access to a resource that is available elsewhere 

in the network, though it does not know in which node this resource is located. Maintaining 

a table that indicates the location of each resource is not always adequate, because the 

number of potential resources may be too large for this, or resources may migrate from one 

node to another. In such a case the requesting node may inquire at all or some other nodes 

about the availability of the resource, for example using broadcasting mechanisms. 

5. Deadlock detection and resolution: If processes must wait for other processes (which is 

the case if they share resources, and also if their computation relies on data provided by 

other processes) a cyclic wait may occur, in which no further computation is possible. 

These deadlock situations must be detected and proper action must be undertaken to restart 

or continue the computation. 

6. Distributed file maintenance: When nodes place read and write quests for a remote file, 

these requests may be processed in an arbitrary order, and hence provision must be made to 

ensure that each node observes a consistent view of the file or files. Usually this is done by 

time stamping requests, as well as the information in files and ordering incoming requests 

on the basis of their time stamps. 

Based on the above challenges, several computational models and infrastructure technologies have 

been developed to aid in creating distributed applications. Early ad-hoc approaches were generally 

based on low-level communication abstractions (e.g. sockets), which were used to manually organize 

communications between distributed entities. Ad-hoc approaches require that developers specifically 

adapt the underlying communication techniques to the requirements of a given application. While 

suitable for some application types, several deficiencies have been identified. According to 

Buschmann et al. [44], the resultant application code is often tightly coupled to the underlying 
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operating system and socket APIs; requiring costly manual programming effort when porting an 

application to different platforms. Related, creating distributed communication frameworks using 

sockets can also result in paradigm mismatches, which derive from fundamental platform differences 

(e.g. object-oriented versus function-oriented socket APIs). In this regard, the reuse of ad-hoc 

techniques is often limited as developers rely on the creation of custom data-structures and 

application-specific method invocation that may not be widely known or applicable across problem 

domains. 

The proliferation of increasingly heterogeneous network infrastructure, combined with the 

increasing need to create platform independent networked applications, led to the development of 

Structured Communication techniques beginning in the mid-1970s. Structured Communications 

decouples the intricacies of network-based IPC from higher-level application logic by providing a 

common communications infrastructure that allows remote applications to interact much like they 

would in shared-memory environments. Structured Communications infrastructure provides common 

abstractions such as procedures and data-types, which shield developers from machine-level data 

representations and encapsulate network-based IPC within a familiar programming model. 

Historically significant Structured Communication approaches include Sun Microsystems‘ Remote 

Procedure Call (RPC) [320] and the Distributed Computing Environment (DCE) [273]. A high-level 

overview of Remote Procedure Call is shown in Figure 3. 

 

Figure 3: Overview of Remote Procedure Call (from [186]) 

As traditional procedure-based programming gave way to object-oriented programming (OOP) in 

the early 1990s, the confluence of RPC-based distributed computing and component-based 

architectures resulted in the development of Distributed Object Communications (DOC) middleware. 

DOC middleware extends Structured Communications‘ notion of platform independence with object-

oriented techniques for distributing reusable services efficiently and robustly over heterogeneous 

nodes [44]. DOC middleware provides network-aware versions of common OOP abstractions (e.g. 

objects, properties, methods and parameters) along with related infrastructure for marshaling, 

transporting and unmarshalling object representations between remote entities [13]. Similar to OOP‘s 

object-based encapsulation model, DOC middleware relies upon precise (and often fine-grained) 

interface descriptions that establish interface contracts between client and server regarding the 

mechanisms and data-types necessary for remote interactions. Notable DOC middleware technologies 
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include the Java-specific Remote Method Invocation (RMI) [319] and the largely language 

independent Common Object Requesting Broker Architecture (CORBA) [235]. In DOC middleware, 

significant infrastructure such as CORBA‘s Object Request Broker (ORB) is used to provide 

transparent IPC between distributed objects through integrated support for naming, object binding, 

communication protocols, exception handling, transaction support, security, etc. A high-level 

overview of ORB-based distributed communications is shown in Figure 4. 

 

Figure 4: Overview of ORB-based distributed communications (from [186]) 

The RPC techniques and DOC middleware approaches previously described are generally based on 

the request/response communications model, where requests flow from client to server and responses 

flow back from the server to the calling client. However, such approaches are often ill-suited for 

scenarios where a distributed application must respond to external stimuli and events [44]. 

Problematic issues in this regard include designated communication whereby clients must know the 

identity of a suitable server (resulting in tight coupling between sender and recipient); point-to-point 

communication, whereby client are restricted to communications with one server at a time; and brittle 

interface semantics, whereby slight changes in interface definitions may break dependant 

applications. As discussed in section 3.2, these issues are important limiting factors with regards to 

large-scale, cross domain context-aware systems. 

To address some of the aforementioned challenges, Message-Oriented Middleware (MOM) has 

been proposed as an alternative method of structuring distributed applications. Although variations 

exist (e.g. UDP multicast-based systems), most MOM approaches are based on asynchronous message 

queuing, whereby senders transmit data to receivers without blocking to wait for a response [44]. 

Asynchronous message services are typically provided by an abstraction known as a message queue, 

which allows messages to be published and persisted until picked up by a receiver (or group of 

receivers). Notable MOM implementations include IBM‘s MQSeries [154] and BEA‘s MessageQ 

[239]. Unlike many interface-centric approaches, MOM‘s often rely on payload semantics, whereby a 

relatively simple messaging interface (e.g. sendMessage() and receiveMessage()) is used to 

manage flows of self-describing messages (e.g. based on XML-based headers). In the basic message 
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queuing model, point-to-point communications are used to asynchronously deliver messages from a 

single sender to a single receiver. More sophisticated implementations are organized using a publish-

and-subscribe model that introduces a topic abstraction, which is used to provide anonymous 

publication of messages to any number of receivers who have registered interest in a given topic. As 

described in section 3.5, the concept of payload semantics plays an important role in the Ocean 

application model. An overview of the two example MOM approaches is provided below in Figure 5. 

 

Figure 5: Overview of two example message-oriented-middleware approaches (from [186]) 

2.2.2 Service Oriented Computing and SOAP Web Services 

The widespread adoption of DOC middleware and rapid rise of the Internet as an important global 

communications infrastructure have motivated two related (yet often divergent) trends in distributed 

computing [257]. The first trend, known as Enterprise Application Integration (EAI), involves 

devising methods for integrating (often numerous) legacy software systems contained within an 

organization into coherent (and often large) distributed systems. The second trend involves 

developing techniques for cross-organization integration of enterprise data among external customers 

and partners (often via the Internet). Accommodating the autonomy, heterogeneity and complexity 

implied by such requirements has led to the emergence of a distributed computing style, known as 

Service Oriented Computing (SOC), which aims to abstract business functionality away from 

monolithic applications in order to yield distributed systems that are easier to build, maintain and 

extend [335].  

SOC defines a distributed computing model whereby applications are constructed by combining 

pre-existing, self-contained and loosely-coupled units of functionality known as services. In SOC, 

services can be defined as self-describing, modular, atomic pieces of computation that adhere to well-

known (and often self-describing) interfaces. While conceptually similar to objects in OOP, where 

data and methods are encapsulated to promote modularity and reuse, services generally offer a higher 

degree of abstraction and interface granularity. SOC implementations (also known as Service 

Oriented Architectures or SOAs) typically extend related advances in component-based middleware 
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such as Corba‘s Component Model [233] and Enterprise Java Beans
3
. Briefly, component middleware 

provides support for dynamic assemblies of components along with comprehensive deployment and 

lifecycle management in the form of component containers. As described in [44, 234], containers are 

used to provide unified deployment and runtime mechanisms such as data persistence, event 

notification, transaction support, replication, load balancing, security, etc. Further, containers also 

define a collection of runtime policies (e.g. transaction, persistence, security, and event delivery) and 

are responsible for initializing and providing runtime management of components.  

SOAs typically extend component middleware approaches with additional facilities for component 

distribution, discovery and runtime interaction. These mechanisms are introduced by Vinoski in [335] 

as: 

 Service registries, in which services advertise their locations and capabilities, and where 

consuming applications go to find those services; 

 Service repositories, in which developers store metadata, such as contract descriptions and 

policies, for use at both service design and deployment times; 

 Service definition languages, which developers use to define service contracts; and 

 Service platforms, which provide design-time and runtime support for service creation, 

deployment, and execution. 

Based on these foundational concepts, SOAP web services (SOAP-WS) have emerged as a popular 

approach for building SOA using Internet-based infrastructure [369]. Similar to conventional DOC 

middleware, SOAP-WS aim to "provide a standard means of interoperating between different 

software applications, running on a variety of platforms and/or frameworks" [371]. More specifically, 

SOAP-WS define a set of protocols and frameworks for achieving service discovery, interoperation 

and coordination using common Internet protocols and standards such as HTTP and XML. At its 

foundation, SOAP represents "a lightweight protocol for exchange of information in a decentralized, 

distributed environment. It is an XML based protocol that consists of three parts: an envelope that 

defines a framework for describing what is in a message and how to process it, a set of encoding rules 

for expressing instances of application-defined data-types, and a convention for representing remote 

procedure calls and responses" [369]. Accordingly, the SOAP standard is used to provide a distributed 

interoperation approach consisting of: a common type system; a service description language; 

addressing model; bindings to lower-level transports; security or routing frameworks; and 

mechanisms for breaking message into segments like header and body (known as framing). While the 

SOAP model is transport agnostic, bindings have been developed for common protocols such as 

HTTP, SMPT, and others (with HTTP being the most common [266]). Moreover, SOAP is message 

exchange agnostic, allowing applications to utilize a variety of interaction patterns, such as 

request/response, request/multiple response, etc. [266] 

To achieve application-level component discovery and interoperability, SOAP-WS utilize several 

specifications in addition to SOAP. Notably, the Web Services Description Language (WSDL) is used 

to describe the operations a networked component supports (e.g. how messages are used during 
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method invocation) along with the associated type and structure of the messages conveyed. As 

described in [67], WSDL provides an XML grammar that describes network services as sets of 

endpoints that operate on messages that contain either document-oriented or procedure-oriented 

information. Importantly, supported operations and messages are described abstractly and then bound 

to a specific network protocol and message format as a means of defining endpoints. 

Several other standards are commonly used in conjunction with WSDL and SOAP. First, service 

discovery and binding is facilitated through an additional specification called Universal Description, 

Discovery and Integration (UDDI) [231]. The UDDI specifications describe an Internet-based registry 

architecture intended to allow organizations to publish and discover services using SOAP as an 

interrogation protocol and WSDL as service description metadata (see section 4.2). Additional notable 

specifications include WS-Addressing, which provides a ―transport-neutral mechanisms to address 

Web services and messages‖ [370]; WS-Transaction, which provides a set of specifications intending 

to provide ―protocols for coordinating the outcome of distributed application actions‖ [241]; and, WS-

Security, which provides ―security functions such as integrity and confidentiality in messages 

implementing higher-level Web services applications‖ [240]. 

2.2.3 The Influence of Mobility 

The widespread deployment of distributed computing infrastructure such as Java RMI and SOAP-WS, 

has paralleled related advances in mobile computing and wireless networks. Beginning in the early 

1990s, advances in semiconductor electronics, battery technologies and materials science led to the 

emergence of small computing systems that could be easily carried or embedded within physical 

objects. Simultaneously, wireless networking technologies began transitioning from research 

prototypes into commercially available products. The resultant proliferation of wireless networking 

infrastructure and related mobile device support motivated interest in developing software systems 

capable of addressing the unique challenges imposed by mobile scenarios. As described by Forman 

and Zahorjan in [109], these principle challenges included portability, mobile networking, and 

wireless communications. Briefly, portability refers to the development of small, lightweight 

computing systems. Notable portability challenges include resource constraints (e.g. limited storage or 

screen size); power limitations; and increased security risks. Next, mobile networking refers to the 

ability of a device to change locations while maintaining network connectivity. Notable mobility 

challenges include address migration; location-dependent information; and locality migration. Finally, 

wireless communication refers to techniques for connecting mobile devices using wireless networks. 

Notable wireless communication challenges include disconnection; low bandwidth operation; high 

bandwidth variability; network heterogeneity and enhanced security risks. 

Over the last decade, many of the aforementioned challenges have been addressed by significant 

research efforts in the field of mobile computing. As discussed by Satyanarayanan in [288], 

portability has been addressed through the development of a variety of power management 

techniques, including variable-speed processor scheduling [355]; energy-aware adaptation [108]; and 

energy-sensitive memory management [193]. Next mobility has been addressed through the 

development of a variety of address migration techniques, including Mobile IP [252] and the 

widespread adoption of the Dynamic Host Configuration Protocol (DHCP) in wireless networks 
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[323]. Finally, wireless communication has been addressed through the development of a variety of 

networking technologies, including several broadly adopted 802.11 wireless communication standards 

[323]; energy-aware mobile ad-hoc networking technologies and routing protocols [133]; bandwidth-

adaptive file access [215]; selective control of data consistency [326]; and techniques for disconnected 

operation [182]. 

The mobile computing techniques and technologies presented above have motivated increasing 

interest in software systems capable of dynamically adapting their runtime behavior and capabilities 

to fit the characteristics of a mobile user‘s current situation [293]. Two principle approaches for 

runtime adaptation have been explored. First, parameter adaptation relies on a predetermined set of 

program variables that can be ―tuned‖ to help adjust an application‘s runtime behavior. A well-known 

example of parameter adaptation is TCP‘s flow control approach, which responds to detected network 

congestion by dynamically adapting its retransmission strategy using a preconfigured set of control 

window values [323]. Although parameter adaptation is often effective and relatively easy to 

implement, it lacks the ability to incorporate additional algorithms and system components after an 

application has been deployed. In contrast, compositional adaptation allows for algorithmic or 

structural system components to be integrated into a software application during runtime. Broadly, 

compositional adaptation ―enables dynamic recomposition of the software during execution – for 

example, to switch program components in and out of a memory-limited device or to add new 

behavior to deployed systems‖ [208]. 

Adaptive composition is based on three fundamental concepts. First, adaptive systems are derived 

from the separation of concerns principle, which promotes program modularity by breaking an 

application into distinct features with little functional overlap [249]. A separation of concerns is used 

to promote the independent development of application logic and cross-cutting concerns, which 

cannot typically be cleanly decomposed (e.g. quality of service, fault tolerance, security, etc.) Second, 

adaptive systems extend notions of computational reflection, whereby a program can reason about, 

and possibly alter its runtime behavior [204]. Computational reflection generally involves both 

introspection, where an application observes its behavior, and intercession, where an application acts 

on its observations and modifies its behavior in response. For example, an application may use 

computational reflection to discover, select and dynamically load a communication protocol better-

suited to the current network conditions [208]. Finally, adaptive systems typically extend notions of 

component-based design (CBD), which refers to a method decomposing software systems into self-

describing, self-contained executable units of functionality.  

As noted by McKinley et al. in [208], CBD can be delineated into two basic approaches: static and 

dynamic. In static approaches, components are selected and composed at compile time (i.e. early 

binding). In dynamic approaches, components are added, removed and configured at runtime through 

the use of component resolution and late binding (also known as dynamic binding). Generally, 

dynamic binding approaches are supported by specific programming language constructs (e.g. Python 

and various Java derivatives) and related host and middleware infrastructure (e.g. the Java virtual 

machine and Open ORB
4
). Notably, academia and industry have developed a variety of methods and 

                                                      
4
 http://openorb.sourceforge.net/ 
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mechanisms for supporting dynamic compositional adaptation (please see [209] for a detailed 

overview). An overview of static versus dynamic recomposition is presented in Figure 6. 

 

Figure 6: Overview of static (a) versus dynamic (b) recomposition (from [209]) 

Dynamic recomposition, as illustrated above, is often reliant on the principle of loose coupling, 

which refers to architectural strategies for minimizing the dependencies between the functional units 

of a software system [186]. Examples of such dependencies can include hard-coded method calls 

between service implementations or reliance on proprietary messaging formats. Several examples  of 

tight versus loose coupling are provided below in Table 3 as adapted from Krafzig et al. [186]. 

Level Tight coupling Loose coupling 

Physical coupling Direct physical link required Physical intermediary 

Communication style Synchronous Asynchronous 

Type system  Strong type system  

(e.g., interface semantics) 

Weak type system  

(e.g., payload semantics) 

Interaction pattern OOP-style navigation of complex object 

trees 

Data-centric, self-contained messages 

Control of process logic Central control of process logic  Distributed logic components 

Service discovery and 

binding 

Statically bound services Dynamically bound services 

Platform dependencies Strong OS and programming language 

dependencies 

OS- and programming language 

independent 

Table 3: Tight versus loose coupling (adapted from [186]) 

Although widespread adoption of the approaches summarized in this chapter have produced a 

relatively seamless substrate of data communications, portable computing platforms and adaptation 

mechanisms, the development of mobile distributed systems (MDS) has often proven more difficult 

[293]. Unlike conventional distributed systems, where the application scenarios are well-understood 

and distributed components are known a priori, mobile users often encounter rapidly changing and 
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highly diverse execution environments that place unique demands on networked mobile software 

[293]. An overview of the challenges faced by MDS is presented below as adapted from [73]: 

 Heterogeneity: Mobility increases heterogeneity concerns for distributed systems on 

several levels. Mobile users encounter a comparatively diverse set of computational 

resources which may vary widely in terms of capabilities, interaction mechanisms and 

arrangement within a physical or virtual space. Moreover, mobile and pervasive devices 

also vary widely in terms of hardware platform, operating systems and runtime software. In 

addition, sources of environmental computation may be unsystematically organized, 

unpredictably available and not inherently interoperable. 

 Scalability: Mobile scenarios are often characterized by unpredictable numbers of users, 

devices and operational areas [109]. Moreover, components within mobile scenarios may 

pursue autonomous agendas. Consequently, mobile software must address aspects of both 

structural scalability and load scalability. As described by Bondi in [38], structural 

scalability refers to a system‘s ability to expand in a given dimension without major 

modifications – e.g. accommodating flexible routing schemes – whereas load scalability 

refers to a system‘s ability to handle increasing amounts of work without degradation in 

system performance – e.g. additional service interaction or increasing data traffic. 

 Dependability and security: The autonomy of mobile scenarios often introduces 

additional dependability and security concerns. Existing failure-detection and recovery 

strategies, such as check-pointing, compensation, isolation, or reconfiguration must be 

adapted for mobile use. Further, network connectivity and distributed services may be 

provided by unknown parties. Hence, large-scale distributed applications must be capable 

of operating across multiple trust domains, and ―continue operating when subjected to an 

unanticipated load, or when given malformed or maliciously constructed data, since they 

may be communicating with elements outside their organizational control‖ [106].  

 Spontaneous interoperation: The dynamism characteristic of mobile scenarios often 

results in spontaneous encounters with relevant information or computation. As noted by 

Edwards et al., ―Interoperability among a group of devices, applications, and services is 

typically predicated on those entities having some degree of prior knowledge of one 

another‖ [96]. However, given the large operational range characteristic of mobile 

scenarios combined with a proliferation of domain-specific component interfaces and 

related data-types often results in architectural mismatch, where implicit and often 

conflicting assumptions made by component designers inhibit spontaneous cross-domain 

component interoperation [115]. 
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2.3 Related Work in Context-aware Computing 

Based on the issues and challenges presented in the last section, new computing techniques were seen 

as necessary for adapting mobile and embedded systems to the dynamic and complex characteristics 

of the physical world [208, 287]. In this regard, Ubiquitous Computing (Ubicomp) emerged as a novel 

―method of enhancing computer use by making many computers available throughout the physical 

environment, but making them effectively invisible to the user‖ [354]. Attracting interest across a 

broad range of disciplines – including computer science, human computer interaction, engineering, 

the social sciences, philosophy, and anthropology – the Ubicomp model advocates ―an extended form 

of mobile computing in which users employ many different mobile, stationary and embedded 

computers over the course of the day. In this model computation does not occur at a single location in 

a single context, as in desktop computing, but rather spans a multitude of situations and locations 

covering the office, meeting room, home, airport, hotel, classroom, market, bus, etc. Users might 

access their computing resources from wireless portable machines and also through stationary devices 

and computers connected to local area networks‖ [290]. 

An central aspect of the Ubicomp model is context-aware computing, which refers to a generalized 

approach for building software applications capable of examining and adapting to an individual‘s 

(often changing) context and requirements [293]. Context-aware systems represent evolutionary 

syntheses of distributed systems and mobile computing that may involve sophisticated parameter and 

compositional adaptation. However, unlike conventional adaptive computing scenarios, where the 

distributed applications and participating components are well-known and relatively static over time, 

Ubicomp scenarios are characterized by rapidly changing execution environments where the available 

computational resources may fluctuate and may be unknown a priori [145]. In this regard, notable 

variations include the ―processors available for a task, the devices accessible for user input and 

display, the network capacity, connectivity, and costs may all change over time and place. In short, 

the hardware configuration is continually changing. Similarly, the computer user may move from one 

location to another, joining and leaving groups of people, and frequently interacting with computers 

while in changing social situations‖ [290]. 

As context-aware computing involves complex aspects of distributed, mobile and adaptive 

computing, supportive middleware is well-recognized as an essential requirement for non-trivial 

systems [147]. Broadly, context-aware systems acquire and model contextual information from the 

user‘s environment as a means of facilitating adaptation within a domain-specific application. Similar 

to conventional distributed computing middleware, context-aware middleware often provides 

infrastructure for facilitating data communications between participating distributed components. As 

such, most context-aware approaches extend existing distributed computing models such as Remote 

Procedure Call, Distributed Object Communications and Message-Oriented-Middleware (see section 

2.2.1). In addition, most context-aware middleware provides support for automated acquisition and 

modeling of context information from the user‘s physical environment as a means of informing 

application adaptation. However, despite the similarities between systems, a variety of approaches are 

often used to address heterogeneous ―requirements and conditions such as the location of sensors 

(local or remote), the amount of possible users (one user or many), the available resources of the used 
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devices (high-end-PCs or small mobile devices) or the facility of a further extension of the system‖ 

[21].  

Researchers have attempted to derive generalized conceptual frameworks whereby context-aware 

systems can be decomposed, categorized and analyzed. In this regard, layering is often utilized as a 

structuring principle to assure desirable system properties, such as separation of concerns, modularity, 

extensibility and flexibility [117]. As such, the functionality of context-aware systems can often be 

segmented into well-defined layers as a means of decoupling low-level context acquisition and 

modeling tasks from higher-level information management, dissemination and application adaptation 

tasks. For example, low-level sensing and data retrieval can be encapsulated by a specific layer (or 

layers) similar to the physical and link layers of the TCP/IP model [323]. While some discrepancies 

exist, prominent conceptual frameworks differ only by the level of detail. For example the Henricksen 

framework [146] simply suggests that low-level data acquisition details should be placed into the 

lowest layers, whereas the Mäntyjärvi framework [185] specifies separate layers for sensor 

measurement, preprocessing and quantization. Further, each framework suggests a mechanism for 

managing (and potentially storing) context information that can be used by a context-aware 

application or group of applications. Finally, application-level adaptation decisions and behavior are 

uniformly encapsulated into the highest layer or layers (with the Henricksen framework providing a 

separate ―decision support tools‖ layer). Figure 7 provides a layered conceptual framework that is 

intended to guide the discussion of context-aware systems throughout the remainder of this chapter. 

 

Figure 7: Layered conceptual framework for context-aware applications 

2.3.1 Defining Context and Context-awareness 

When discussing the operational details of context-aware systems, definitions of ―context‖ are often 

intuitively understood, yet difficult to apply when engineering practical systems. In this section, we 

summarize findings from Dey and Abowd [89], who provide insight into the various 

conceptualizations of the terms context and context-awareness. One of the first general descriptions of 

context was introduced by Schilit and Theimer [292], who included basic notions such as location, 

proximate users and objects (plus related state changes). Their definition is similar in spirit to the 

definition provided by Brown et al. in [42], where additional aspects such as time, temperature and 

season are considered. Dey [88] includes several user-centric notions of context, such as the user‘s 

orientation, focus of attention and emotional state. Related, Franklin and Flaschbart [103] include the 

user‘s situation whereas Ward et al. [348] view context from the application's standpoint. 
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The early context definitions presented above have been criticized as overly domain-specific and 

difficult to apply [145]. To overcome domain-specificity, researchers have attempted to categorize the 

types of functionality that a context-aware system might provide. The first such categorization was 

provided by Schilit [293] who provided four classifications for context-aware applications based on 

whether the system manually or automatically obtains information and execute commands on behalf 

of the user. Specifically, systems that manually obtain contextually relevant information are classified 

as proximate selection applications. In these systems, available information or services are made 

easier to choose based on contextual information such as location or proximity (e.g. displaying a list 

of nearby printers). Similarly, systems that allow users to manually execute service commands are 

classified as contextual command applications. Next, systems that automatically discover and bind to 

contextually relevant computation are categorized as automatic contextual reconfiguration 

applications. Finally, systems that automatically execute commands based on contextually bound 

services are classified as context-triggered action applications. 

Pascoe [250] provides a more elaborated version of Schilit‘s classification scheme, which includes 

descriptions the fundamental features of a context-aware system. Pascoe‘s taxonomy implies a 

hierarchical application of context-awareness features, whereby contextual sensing (or acquisition) is 

introduced as the foundation of a context-aware system. Contextual sensing refers to an application‘s 

ability to discover relevant information from the environment such as sensor data or user preferences. 

Additionally, an application may undergo contextual adaptation, whereby the application alters its 

state based on the discovery of context information. An important contextual adaptation strategy is 

identified as context-based resource discovery, whereby contextual information leads to the discovery 

of relevant distributed services. Finally, discovered services may prompt an application to undergo 

contextual augmentation, whereby the services are dynamically composed into the application at 

runtime. 

Context-aware feature taxonomies have led to more applicable definitions of context and context-

awareness. Perhaps one of the most widely adopted operational definitions was suggested by Dey and 

Abowd [89], who defined context as ―any information that can be used to characterize the situation of 

entities (i.e. whether a person, place or object) that are considered relevant to the interaction between 

a user and an application, including the user and the application themselves.‖ Importantly, this 

definition highlights the central role of the application as the arbiter of context information 

significance; reducing system-level reliance on considerations such as context detection, 

determination and response. Related, Dey and Abowd further differentiate between primary and 

secondary context. Briefly, a primary context answers questions such as who, what, when, and where 

and may involve information such as location, identity, time, and activity. Primary context 

information may lead to additional sources of derived context information, known as secondary 

context information. For example, understanding a person‘s identity (i.e. primary context information) 

may help a system discover the person‘s address (i.e. secondary context information). 

Dey and Abowd also provide a domain-neutral definition for context-awareness, whereby a system 

is considered context-aware if it ―uses context to provide relevant information and/or services to the 

user, where relevancy depends on the user‘s task‖ [89]. Importantly, this definition helps clarify the 

generality of contextual information and its relevance to many existing software applications. For 
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example, a traditional Web browser might be viewed as context-aware if it exploits user preferences 

to control issues related to default text size and home page. However, user preference information 

arguably represents an impoverished type of contextual information.  

More sophisticated context-aware systems generally utilize techniques for automatically 

discovering and utilizing context information. In this regard, Hendrickson provides several additional 

distinctions between context, context model and context information, which are applicable in more 

complex systems. These definitions are summarized below as presented in [145]: 

 The context of a task is the set of circumstances surrounding it that are potentially relevant 

to its completion. 

 A context model identifies a concrete subset of the context that is realistically attainable 

from sensors, applications and users, and able to be exploited in the execution of the task. 

The context model that is employed by a given context-aware application is usually 

explicitly specified by the application developer, but may evolve over time. 

 Context information is a set of data, gathered from sensors and users, that conforms to a 

context model. This provides a snapshot that approximates the state, at any given point in 

time, of the subset of the context encompassed by the model. 

Based on the above definitions, Hendrickson goes on to describe several important characteristics 

of context information in [146]. In her work, she classifies context information into four principle 

classes, including sensed, static, profile and derived. Briefly, sensed information refers to information 

gleaned from a user‘s environment through the use of physical sensors such as accelerometers, radio 

frequency receivers, etc. Such information is often highly dynamic, rapidly changing and may be 

affected by issues such as faulty connections, sensor drift, mis-calibration, wear and tear and humidity 

[185]. Static information refers to relatively fixed information such as a device‘s local resources or 

available communication channels. Static information is generally provided using domain-specific 

means (e.g. registry settings). Profile information refers to manually created data provided by the 

user. Profile information is often highly accurate for limited time periods, but can be affected by 

staleness if the user fails to continually update the profile. Finally, derived information refers to 

information that is automatically interpreted from other context types such as sensor data, user 

profiles or application-specific mechanisms. Notably, derived information is often error prone because 

of low-level error propagation and brittle heuristics. Table 4 provides an overview of the properties of 

the aforementioned context information types as presented in [146]. 
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Context type Persistence Quality issues Source of inaccuracy 

Sensed Low May be inaccurate, 

unknown or stale 

Sensing errors; sensor failures or network 

disconnections; Delays introduced by distribution or 

the interpretation process 

Static Forever Usually none Human error 

Profile Moderate Prone to staleness Omission of user update in response to changes 

Derived Variable Subject to errors and 

inaccuracies 

Imperfect inputs; use of a crude or oversimplified 

derivation mechanism 

Table 4: Typical properties of context information (from [146]) 

The context information types presented above are subject to a variety of errors and may exhibit 

considerable uncertainty with regard to quality [146]. Hendrickson describes four principle types of 

information quality problems, including unknown, ambiguous, imprecise and erroneous. Briefly, 

unknown refers to information that is not known or not understood. Ambiguous refers to the possible 

variance between distinct information describing the same attribute (e.g. two distinct sensor values for 

a given attribute). Imprecise refers to information that represents correct, yet inexact values for a 

given attribute (e.g. proximity values with relatively high margins of error). Finally, erroneous refers 

to information that does not match the state of the attribute being measured (e.g. a disconnected 

temperature sensor). Related, several measures for specifying the uncertainty of context information 

have been proposed, including quality measure specification [173], confidence metadata [196] and 

semantic quantization [185]. 

The characteristics described above emphasize the domain-specificity and complexity of context 

information. For example, sensors have been developed to detect a wide variety of environmental 

attributes such as acceleration, temperature, light, image data, radio frequency signals, etc. 

Interactions with sensors often involves domain-specific issues such as electrical specifications, 

interaction protocols, data integrity measures and post-processing mechanisms (e.g. sensor fusion) 

[349]. Moreover, interacting with a given sensing system requires a precise understanding of its 

underlying physical organization along with a detailed understanding of the temporal and uncertainty 

constrains of the information in question [216]. For example, sensors may be part of a device‘s local 

capabilities or deployed throughout the target environment as collections of semi-autonomous sensing 

equipment capable of self-organization and adaptation. The raw information obtained from a sensing 

system may require aggregation or other post-processing. For example, relatively high-order context 

information such a device‘s physical position may be derived from a GPS receiver that aggregates 

low-level timing signals and calculates associated time-of-arrival variance using two-dimensional 

trilateration [237]. Notably, the use of sophisticated contextual information often necessitates the 

participation of domain-experts capable of effectively modeling and representing such information 

types [173]. Accordingly, Ocean provides dedicated abstractions in this regard (see section 4.3.2). 
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2.3.2 Context Acquisition 

A primary feature of most context-aware systems is an ability to obtain useful environmental 

information that may be relevant to the interactions between a user and an adaptive application. As 

discussed in the last section, context information can be classified as sensed, static, profile and 

derived. To accommodate the unique requirements of each information type, context-aware 

applications typically employ sensors that are adapted to the characteristics of the information under 

consideration. (It should be noted that ―sensor‖ refers to any element capable of capturing contextual 

information.) Sensors generally encapsulate the domain-expertise required for managing and 

interpreting low-level sensor data. Such encapsulation insulates a software system from the low-level 

considerations inherent to many sensor types. For example, an RFID sensor may produce a stable and 

accurate list of tags currently in its energizing field by handling low-level details such as energy level 

adaptation, response aggregation and collision avoidance [301]. 

Indulska and Sutton [157] have classified sensors into three main types, including physical, logical 

and virtual. Physical sensors refer to devices capable of capturing physical attributes from the 

environment (also known as context atoms [185]). Physical sensors are capable of capturing a wide 

variety of attributes (e.g. light, sound, pressure, temperature, switch position, etc.) using domain-

specific measurement hardware and associated software control systems. Virtual sensors are generally 

pure software systems that capture context atoms from the user‘s local computing environment. 

Virtual sensors have been used to capture user profile information, mouse clicks, keyboard input, 

email addresses and raw scheduling data [21]. Finally, logical sensors use low-level context atoms 

from both physical and virtual sensors to derive higher-order context information that better reflects 

the situation of the user. In this respect, logical sensors are similar to the ―derived‖ context 

information type discussed by Hendrickson [146]. Examples of derived information from logical 

sensors may include contacted email addresses or scheduling conflicts, whereas derived information 

from physical sensors may include physical position estimations based on an analysis of the signal 

strength values from multiple radio sources [188]. 

In order to utilize sensor-derived information within a context-aware system, raw measurement data 

generally require transformation into more meaningful information [333]. Such transformations are 

often sensor-specific and adhere to the following steps, as described by Korpipaa et al. [185]. First, 

measurement refers to the capture of relatively unstructured sensor data flows such as electrical signal 

measurements. Next, preprocessing refers to the construction of more structured data that contain a 

certain number of samples (e.g. time dimension quantization) and generic features for each time 

interval. Next, feature extraction delineates ―interesting‖ segments of the data (provided by the 

preprocessing phase) into distinct sets that can be analyzed together. Finally, quantization is then 

applied to extracted feature sets in order to produce more meaningful context information. Notably, 

the quantization method employed is dependent on the characteristics of the feature data and may 

include approaches such as fuzzy sets or crisp limits [101]. Figure 8 illustrates two example 

quantization approaches applicable to audio sample data. 
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Figure 8: Examples of (a) crisp and (b) fuzzy context quantization (from [185]) 

Once sensor data has been acquired and transformed, it must be integrated within a software system 

in order to drive runtime adaptation. Early context-aware systems such as Xerox Parc‘s PARCTAB 

system [347] relied on dedicated acquisition techniques such as direct sensor access [65], whereby 

client applications are hardcoded to utilize specific sensing equipment, device drivers and specially 

developed instrumentation. For example, PARCTAB represented a Ubicomp infrastructure composed 

of custom-built hardware devices in three form-factors: inch-scale Tabs; foot-scale Pads; and yard-

scale Liveboards. These devices, which were available throughout the Xerox PARC facilities, were 

connected through a dedicated infrared network capable of both data transfer and device position 

estimation. Initially designed with 25 infrared network cells, PARCTAB was eventually extended to 

50 cells and became the foundation for several context-aware applications that allowed researchers to 

study the effects of software services capable of continuous connectivity and contextualized use. 

Similar to PARCTAB, many early context-aware systems utilized direct sensor access as their 

primary context acquisition method. For example, Active Badge [345] utilized direct sensor access 

techniques to provide routing of telephone calls based on the known locations of people within office 

buildings. Developed in the early 1990s by the Olivetti Research Lab in Cambridge England, the 

Active Badge system features a lightweight, power-efficient identity badge design that helps locate 

the wearer by emitting a unique infrared (IR) signal every ten seconds. Additional system 

infrastructure and instrumentation is used to received and identify emitted IR pulses using a custom-

built network of infrared receivers positioned in rooms and hallways. Further refinement of the Active 

Badge system resulted in Active Bat [140], which improved positioning accuracy and speed. 

Additionally, Schilit extended PARCTAB with a service-based application architecture supporting 

management of time-varying resources, dynamic configuration, opportunistic interaction and 

contextual customization [293]. Shortly thereafter, context-aware tour-guide systems began to emerge 

such as Cyberguide [1] and Lancaster GUIDE [78], which provided tourist information to users 

through the wireless delivery of contextualized media to dedicated mobile devices. 

More recently, the prohibitive expense of many positioning systems motivated further research into 

developing more cost-effect solutions. In this regard, MIT‘s Cricket system [258] provides fine-

grained ultrasonic positioning information based on low-cost, off-the shelf components. Similarly, 

Patel et al. [317] proposed a sub-room localization technique that exploits residential power-lines as a 

universally available positioning infrastructure. Further, Rehman et al. [332] developed an indoor 

localization system, called CILoS, which is based on pre-existing code division multiple access 
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(CDMA) mobile-phone infrastructure and is capable of accurately differentiating between floors of a 

multi-floor building. 

While direct sensor access approaches are relatively straightforward to construct and are often 

effective in limited application scenarios, they offer little in terms of extensibility and reuse [21]. For 

example, the Smart Floor [242] is capable of identifying and localizing users based on footstep force 

profiles detected by specially engineered floor tile; however, significant instrumentation requirements 

has limited its widespread use. Accordingly, beginning in the late 1990s several projects began to 

explore the application of software modularization to the task of context acquisition and processing. 

For example, Georgia Tech‘s Cyberdesk project [88] addressed dynamic software integration with a 

Java-based application framework in order to enable context-aware discovery and integration of 

software modules. Cyberdesk‘s supported context types included physical location, nearby objects, 

time, application data, etc. Notably, Cyberdesk represents one of the first Ubicomp projects to provide 

an application programming interface (API) intended for service developers. 

Other projects have explored techniques for abstracting rich contextual data from high-level 

applications. Inspired by Cyberdesk, Salber et al. proposed the Context Toolkit [276], which provides 

a component-based architecture and distributed infrastructure designed to support the aggregation of 

sensor data through several abstractions. First, Widgets provide simplified access to context 

information through reusable and customizable sensor wrappers. Next, Interpreters help transform 

low-level context data into more useful high-order information (e.g. translating raw sensor data into 

location coordinates or room identifiers). Finally, Aggregators combine multiple types of sensor data 

into unified context information. Notably, Widgets incorporate support for context histories, although 

neither user profile information nor uncertainty representation is provided. Related, the Technology 

for Enabled Awareness (TEA) project [294], proposed by Schmidt et al., espouses a simple, yet 

flexible layered architecture designed to encapsulate a heterogeneous set of underlying sensors. TEA 

provides several context information aggregation methods along with a set of mechanisms for 

quantizing acquired low-level data into more meaningful high-order data using rule-based algorithms, 

statistical methods and neural network techniques. 

2.3.3 Context Modeling and Representation 

Sensor measurement, preprocessing, feature extraction and quantization result in structured 

information that requires semantic labeling before it can be used by a context-aware application [185]. 

In context-aware software, semantic labeling is generally known as context modeling. Broadly, a 

context model encapsulates the syntax and semantics of a given context acquisition domain as 

machine-readable and (often) temporally constrained native context data (NCD). The format of NCD 

can range from application-specific data structures that may be only useful for a single application 

type to well-known industry standards that have been developed and ratified by organizations such as 

the International Organization for Standardization (ISO). Importantly, a context model represents a 

mechanism for capturing environmental information such that it ―can be used to characterize the 

situation of entities [in order to] provide relevant information and/or services to the user, where 

relevancy depends on the user‘s task‖ [89]. As such, resultant NCD must be capable of expressing the 

often complex characteristics of an environment or situation, as discussed in section 2.3.1. Additional 
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aspects of context models include partial validation, expressions of incompleteness, ambiguity and 

applicability to existing environments [316].  

The majority of context-aware computing research has focused on developing specific context 

acquisition and management systems rather than widely applicable context modeling techniques 

[145]. Consequently, most current context models are defined for the requirements of a given research 

project. However, recent work in has begun to address more generalized modeling approaches that 

allow domain-experts to express complex context information and provide related mechanisms for 

syntax parsing, feature extraction, interpretation and comparison [146]. While existing context-aware 

systems rarely support externally developed context modeling techniques, they are increasingly 

regarded as important for modeling real-world environments [49]. As such, the following sections 

summarize the findings of Strang and Linnhoff-Popien [316], who investigated several notable 

context modeling approaches and related NCD formats. 

2.3.3.1 Key-Value Models 

A popular context modeling approach is the key-value model, which represents contextual 

information as collections of keys and associated values. Keys are generally text-based entities that 

denote well-understood context designations such as temperature or location. Values refer to the 

quantized context data associated with the keys. Importantly, the key-value approach relies on a 

shared understanding of the key elements along with the syntax and semantics of the value data. Early 

context-aware systems utilized the key-value model because of its relative simplicity (see Schilit et al. 

[290]); however its flexibility has promoted adoption in more recent context-aware frameworks such 

as Capeus [280] and popular service discovery protocols (e.g. SLP [136] and JINI [342]). However, 

while widely used, the key-value model suffers from a lack of expressiveness [145] and a lack of 

sophisticated structuring [316], which limits its use in wide-area context-awareness scenarios. 

2.3.3.2 Markup-Scheme Models 

The Markup scheme context model refer to hierarchically structured contextual attributes and 

associated values; often taking the form of generic XML-based data or more complex representations 

such as the Standard Generic Markup Language
5
. Markup schemes are commonly used for modeling 

static or dynamic profile information (see section 2.3.1). Examples of markup-based profiles include 

the Composite Capabilities/Preferences Profile (CC/PP) [344] and the User Agent Profile
6
. Markup 

models also may integrate contextual attributes with existing semantic models. For example, the 

Comprehensive Structured Context Profiles (CSCP) proposed by Held et al. [142], combines profile 

information with semantic representations based on RDF/S [367]. An example CSCP profile is shown 

below in Figure 9, as presented in [142]. 

                                                      
5
 http://www.w3.org/MarkUp/SGML/ 

6
 http://www.wapforum.org 
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Figure 9: A context representation based on the CSCP profile (from [142]) 

2.3.3.3 Ontology-based Models 

The integration of RDF as a component within markup-based models parallels related efforts in 

ontology-based context models and related reasoning algorithms. Ontology-based models attempt to 

encapsulate a specific domain of knowledge by formalizing and standardizing a set of concepts and 

associated relationships. The concrete encapsulation of semantics and relationships in this way is 

referred to as an ontology, which has been defined as ―a formal explicit description of concepts in a 

domain of discourse (or classes), properties of each class describing various features and attributes of 

the class, and restrictions on properties‖ [65]. The usefulness of an ontology is often evaluated in 

terms of its descriptive power, support of reasoning algorithms, encoding scheme (i.e. NCD format) 

and overall adoption (i.e. shared understanding) [315]. In this regard, ontology-based context models 

generally derive from the requirements of probabilistic reasoning approaches such as Bayesian 

networks [260], fuzzy logic [185], or ad-hoc situation determination [329]. 

Ontology-based models are often used as inputs to reasoning algorithms, which attempt to infer 

contextually-relevant knowledge as a means of mediating system behavior. One of the first uses of 

ontologies in context-aware computing was described by Öztürk and Aamodt [245], who proposed 

normalizing and combining various knowledge domains based on an analysis of psychological studies 

related to recall and recognition. Additional notions of encoding have also been explored by 

approaches that exploit the generalized Web Ontology Language (OWL) as a means of developing 

domain-specific ontologies [344]. Important ontologies specific to context-awareness include the 

Context Ontology Language (COOL) [315], the Standard Ontology for Ubiquitous and Pervasive 

Applications (SOUPA) [65] and the Ontology for Mobile Device Sensor-Based Context Awareness 

[184]. Examples from the Ontology for Mobile Device Sensor-Based Context Awareness are shown 

in Table 5 (from [184]). 

  

<?xml version="1.0" encoding="UTF-8"?> 

  <rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:cscp="context-aware.org/CSCP/CSCPProfileSyntax#" 

    xmlns:dev="context-aware.org/CSCP/DeviceProfileSyntax#" 

    xmlns:net="context-aware.org/CSCP/NetworkProfileSyntax#" 

    xmlns="context-aware.org/CSCP/SessionProfileSyntax#" 

    <SessionProfile rdf:ID="Session"> 

      <cscp:defaults rdf:resource=    

        "http://localContext/CSCPProfile/previous#Session"/> 

      <device><dev:DeviceProfile> 

      <dev:hardware><dev:Hardware> 

      <dev:memory>9216</dev:memory> 

      </dev:Hardware></dev:hardware></dev:DeviceProfile> 

      </device> 

    </SessionProfile> 

  </rdf:RDF> 
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 Context type Context Value Confidence Source Attributes 

1 Environment:Light:Type Natural - 1.0 Device 

Sensor 

Confidence = Fuzzy membership 

2 Environment:Temperature Warm 21 0.8 Device 

Sensor 

Confidence = Fuzzy membership 

Valueunit = Celsius 

3 Device:Activity:Placement Athand - 1.0 Device 

Sensor 

Confidence = Crisp 

Table 5: Examples from the Ontology for Mobile Device Sensor-Based Context Awareness 

2.3.3.4 Logic-based Models 

Logic-based context models attempt to encapsulate domain knowledge into more formalized 

definitions of facts, expressions and rules. Early logic models emerged from artificial intelligence 

research, where context information became increasingly viewed as useful for reducing the number of 

assumptions required by reasoning techniques [185]. Logical-models have also been used to constrain 

reasoning about the intended goals of a human user by modeling a subset of the environmental state 

[119]. Akman and Surav [5] used logic-models in deriving the Extended Situation Theory, which 

investigated the use of context-derived situations as a means for enhancing natural language analysis. 

Such approaches develop ―mathematically-based tools to analyze, in particular, the way context 

facilitates and influences the rise and flow of information‖ [87]. Additionally, Work by Gray and 

Salber [127] investigated the use of  logical-models as inputs to first-order predicate logic, while 

Bacon et al. [16] modeled location as a fact type in a rule-based inference engine used to mediate the 

behavior of a multimedia system. A logic model example from Situational Theory is shown in Figure 

10. 

 

Figure 10: An example of a logical context model based on Situational Theory (from [87]) 

If it freezes, Ovett will be cold. 

This utterance expresses an instance of the constraint that, if a person‘s environment is freezing, 

and that person is scantily clad (such as a runner), then that person will be cold. More precisely, let 

S and T be the situation-types: 

S  =  [e˙ | e˙ |= <<freezing, t˙, 1>> 
 ˄ <<present-in, p˙, e˙, t˙, 1 >> 
 ˄ <<scantily-clad, p˙, t˙, 1>>] 

T  =  [e˙ | e˙ |= <<cold, p˙, t˙, 1>> ] 

where e˙ is a situation parameter, t˙ is a temporal parameter, and p˙ is a parameter for a person. 

Then the described situation for u3 is the world and the propositional content is: 

  w |= (S => T)[f] 

where f anchors p˙ to SO = cu3(Ovett). 



Chapter 2 

40 

2.3.3.5 Graphical Models 

The representation of context semantics and relationships has been further explored by the 

development of graphical context models. Existing graphical modeling techniques such as the Unified 

Modeling Language (UML) [110] are widely used in software engineering as a means of expressing 

relationships between elements in software systems. As the UML is sufficiently general, it has also 

been used to model contextual information. For example, Bauer [25] used UML to model context 

information in air traffic management scenarios. A more complex example is provided by Henricksen 

et al. [145], who proposed the Context Modeling Language (CML) as an extension of Object-Role 

Modeling (ORM). Broadly, ORM defines a methodology and a related graphical means of modeling 

complex contextual relationships as sets of entities constrained by facts [145]. In ORM, facts 

represent informative statements about a relationship between entities in a context situation. Examples 

of fact constraints include ―is of type‖ and ―permitted to use.‖ Importantly, facts can be used to 

represent the various elemental context types (see section 2.3.1) such as sensed, static, profile and 

derived. While ORM is useful for graphical modeling, an XML-based representation of the CML, 

called XCML [270], has been proposed as an approach for transforming graphical ORM diagrams 

into runtime context model representations suitable for dissemination within context-aware 

frameworks. An example context model representation based on ORM is shown in Figure 11. 

 

Figure 11: A graphical context model based on Object Role Modeling (from [146]) 

2.3.3.6 Object-oriented Models 

While graphical context models capture context information visually, object-oriented context models 

attempt to represent context information as machine-processable objects that expose well-known 

interfaces and data-types [316]. Typically, object-oriented models rely on domain-specific 

representation formats that may imply language-specific data types, serialization mechanisms and 

framework support. For example, Bouzy and Cazenave [40] developed an object-oriented model 

which represents characteristics of a 4000 year old game, termed "Go," which is popular in Japan, 

China and Korea. Their approach, termed ―Computer Go,‖ uses objects to model Go-specific context 

information (e.g. temporal, spatial and goal) as a means of reducing the number of assumptions 
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required by game-play reasoning techniques. Related, location based systems utilize a variety of 

location sensing techniques, including triangulation, scene-analysis and proximity (see section 4.3.2). 

In such systems, object-oriented models have been used to represent values such as time-of-flight 

[258] or provide native representations of standard geo-location markup models [237]. Additionally, 

the Technology for Enabled Awareness (TEA) project [294] provides an object-based infrastructure to 

supports mobile devices that interact simultaneously with multiple context sources. TEA addresses the 

often complex requirements of physical and logical sensor types through the definition of an object-

oriented contextual model known as a cue. In TEA, cues encapsulate sensor measurement, 

preprocessing, feature extraction and quantization and may be combined or aggregated in order to 

model more complex situations. As an example, TEA aggregates time-series sensor data as a means of 

constructing higher-order context information using Kohonen's Self-Organizing Maps (see Figure 12). 

 

Figure 12: Time series sensor data (left) and Kohonen Clustering of sensor readings (right) 

(from [294]) 

2.3.4 Context Management and Provisioning 

Provided that contextual information can be acquired, modeled and represented, it is well-recognized 

that additional approaches are necessary for managing and provisioning context information so that it 

can be used by adaptive applications [21, 146]. As previously discussed, early context-aware systems 

were often designed to accommodate a limited set of context instrumentation and associated 

representation formats; hence, such systems were often tightly coupled with the underlying sensing 

technologies [276]. However, as the scope of context-aware systems expanded, the complexity of 

building non-trivial systems increased dramatically [147]. Notably, mobile distributed systems require 

techniques for acquiring reliable sources of context information in uncertain environments, where 

sensor sources may be rapidly changing, noisy, partially true and heterogeneous [185]. In this regard, 

the complexity inherent in managing and provisioning such information is seen as a major obstacle for 

the development of context-aware software [146].  

Over the years, researchers have purposed a variety of context management and provisioning 

approaches. As discussed by Riva [268], several categories of approaches can be identified in this 

regard, as shown in Figure 13. Briefly, internal context provisioning localizes context acquisition and 

related management systems within a single device platform. Next, external centralized context 

provisioning utilizes a federated service infrastructure to aggregate context data from dedicated 

sensors located within the environment; providing additional services such as context processing, 
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reasoning and dissemination. Finally, external distributed context provisioning combines federated 

infrastructure with additional peer-to-peer mechanisms for direct, inter-device context information 

sharing. This section describes a representative sampling of important approaches from each category. 

 

Figure 13: Context management and provisioning categories (from [268]) 

Many early Ubicomp projects such as those discussed in the last section relied upon internal context 

provisioning, where the application software is tightly coupled to local sensing hardware and device 

drivers. Although some early projects involved notions of generalized context management and 

processing [293], the tight coupling common to the underlying instrumentation prevented more 

generalized use. One of the first techniques for separating context management from the underlying 

acquisition approach was provided by Salber and Abowd [275] who suggested the notion of a generic 

context-server. According to Salber and Abowd, a context server ―gathers raw local context data 

through sensors, stores it and provides context data access to local and remote applications. In 

addition, each context server runs services, called context synthesizers, which act on local or remote 

context data to generate context information at a higher level of abstraction.‖ Further, the introduction 

of the context-server mechanism was intended to impart the following system properties: to allow 

networked applications to access local and remote context data in heterogeneous environments; to 

accommodate a variety of applications, sensors, and operations on context data; and to preserve a 

history of sensed contextual data. 

The notion of the generic context server became widely adopted and extended by projects that 

utilized external centralized context provisioning techniques. For example, the Strathclyde Context 

Infrastructure (SCI) [121] provides dynamic composition and representation of contextual information 

through a layered architectural model. Similar to other middleware-based context-server approaches, 

SCI defines a distributed model whereby multiple context-servers are deployed throughout an 

environment to support a network overlay of partially connected nodes. Each context server is 

deployed within a specified operational area (called a ―range‖) and is responsible for providing both 

local and global services to dependent applications (e.g. context event subscription and inter-range 

communications). 

Other notable approaches investigated techniques for external distributed context provisioning. For 

example,  the Hydrogen approach [152] extends the generic context-server to support the needs of 

mobile devices. Hydrogen addresses the increased dynamism of mobile computing environments and 

resource constraints of mobile devices through a three layer architecture that supports extensible 

context types, disconnected operation and peer-to-peer context sharing. Similar to Hydrogen, the 
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Solar project [63] provides a context management approach capable of discerning and delivering 

higher-order context to applications using sensor fusion techniques. Notably, Solar involves aspects of 

both service composition and context transformation. Solar defines a distributed context-server-based 

overlay architecture where each host (called a ―planet‖) is responsible for a given operational area. 

Multiple planets manage access to connected sensing equipment and provide aggregation and fusion 

services (among much else). Notably, Planets may autonomously or cooperatively select sensors and 

aggregate (or fuse) incoming data streams to produce high-order context data for use by subscribing 

context-aware applications. 

While context-server techniques have predominated in Ubicomp research throughout the last 

several years, most suffer from intractable challenges in large-scale deployments (see section 3.2). 

Hence, a variety of additional context management techniques have been proposed. For example, 

Hewlett-Packard‘s Cooltown project [179] takes a more general approach to context management by 

embedding context information directly into physical objects with the intention of bridging the Web 

and the physical world. Cooltown extracts context information using two principle mechanisms. First, 

direct sensing uses a dedicated short range wireless protocol to send URIs between devices using 

wireless technologies such as IR and Bluetooth (called eSquirt). Using direct sensing, objects provide 

Cooltown clients high-order contextual information without the need for context interpretation; 

however, participating objects must be retrofitted with Cooltown technology. Cooltown‘s second 

approach, termed indirect sensing, is based on an external context registry that supports associations 

between Web Resources and specific types of context data; allowing externally stored context 

information to serve as the bridging mechanism. Related, Intel‘s PlaceLab project [291] explored the 

extraction of existing context information by reappropriating common radio signal sources (termed 

beacons) such as 802.11 access points, Bluetooth radios and Global System for Mobile 

Communication (GSM) cell towers. As discussed in detail in section 7.2.2, PlaceLab proposes a 

community-centric acquisition model, whereby volunteers use specially outfitted laptops and 

―stumbler‖ software to war-drive large geographic areas (i.e. search for beacons using vehicles). 

As richly described in [89] and [146], real-world contextual information is often provided by 

heterogeneous sources that may not be foreseen at design time. Accordingly, context management 

approaches have begun exploring mechanism for deploying context acquisition and modeling 

components to mobile devices at runtime. For example, our previous context-aware system, called 

Aladin [49, 50], provides a modular, client-centric approach for cross-domain context acquisition and 

modeling. Operating without the need for dedicated instrumentation, the Aladin Framework provides 

a plug-in-based architecture, whereby context modeling mechanisms are dynamically deployed to 

mobile devices based on the capabilities of the device and characteristics of the environment. Using 

plug-ins, Aladin exploits the computational capabilities and integrated sensing equipment of 

commodity hardware as a means of modeling context information from common environmental 

sources such as GPS, RF signals, imaging data and other sensor types. Other client-centric approaches 

have been proposed. For example Riva developed the CONTextfactORY (Contory) [268] as a 

―middleware specifically designed to accomplish efficient context provisioning on mobile devices.‖ 

While not addressing runtime integration of context acquisition and modeling plug-ins, Contory does 

provide dynamic selection of inbuilt context acquisition strategies and allows for context sharing 
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between mobile devices. Other notable context management platforms for mobile phones include the 

context-aware Blackboard architecture from Korpipää et al. [185] and the ContextPhone [259] rapid 

prototyping platform from Raento et al. 

2.3.5 Context-aware Component Interoperation 

Based on the context management and provisioning techniques described in the previous section, 

many context-aware systems utilize modeled context information to discover, select and interoperate 

with contextually relevant components at runtime. Accordingly, context-aware systems are often 

classified as service composition frameworks, whereby an dependent application‘s structure and 

behavior derive from the integration of component constituents [208]. Accordingly, context-aware 

systems have much in common with the conventional adaptive systems discussed in section 2.2.3. For 

example, context-aware systems may dynamically adapt their runtime behavior and capabilities to fit 

the characteristics of a mobile user‘s current situation. Moreover, context-aware systems may extend 

the architectural principles common to compositionally adaptive systems such as separation of 

concerns, computational reflection and component-based design [73]. In this regard, context-aware 

systems face many of the same challenges as adaptive distributed systems, including automated 

checking of functional and nonfunctional system properties (i.e. assurance), security, interoperability 

and decision making [209]. However, as context-aware systems often operate across multiple 

organizational boundaries and may encounter heterogeneous networks and distributed components, 

additional adaptive approaches have been devised. This section outlines key adaptive techniques in 

this regard and discusses several representative approaches. 

At their foundation, a primary task of many context-aware systems is the advertisement and 

discovery of relevant components for runtime composition [180]. Over the last decade, the number of 

networked services available on the local link (e.g. printers, routers and media systems) and across the 

enterprise and Internet (e.g. through Web services) has increased dramatically [24, 314]. Significant 

interest in developing techniques for advertising and discovering networked services has resulted in 

the development of various service discovery protocols, including the Service Location Protocol 

(SLP) [135]; Zero Configuration Networking (Zeroconf) [314]; Universal Plug and Play (UPnP) 

[169]; and JINI [342]. While differing in approach, service discovery protocols are broadly designed 

to facilitate service advertising (i.e. publishing a service‘s capabilities and interfaces) and service 

discovery, whereby appropriate services can be located and selected based on certain desirable 

characteristics. In terms of scope, UPnP and Zeroconf target home automation applications, whereas 

SLP and JINI are designed primarily for enterprise scenarios. Related, JINI provides support for the 

runtime delivery of executable software and UPnP promotes industry-wide standardization of specific 

service and device types. Notably, approaches such as Zeroconf include automatic network 

configuration mechanisms designed to support ad-hoc or isolated network scenarios. While such 

service discovery protocols are not primarily intended for Internet-based scenarios, the Web Services 

Dynamic Discovery protocol (WS-Discovery) specification [26] has been proposed as a mechanism 

for multicast advertisement and discovery of SOAP Web services; however, as of the time of writing, 

WS-Discovery remains unstandardized. 
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While some service discovery protocols have achieved limited commercial adoption (notably 

Zeroconf and UPnP), most are seen as insufficient for supporting wide-area context-aware scenarios 

due to inherent limitations in service density, network accessibility (i.e. local-link constraints) and 

protocol interoperability [378]. For example, UPnP‘s non-standard UDP message format faces 

interoperability challenges in wide-area scenarios; resulting in low service density [3]. While 

techniques for supporting multi-protocol and multi-network service discovery have been proposed 

(notably MSDA [261] and Haggle [318]), they are not widely deployed or supported. Further, most 

conventional service discovery techniques provide only limited support for contextual information 

and rarely accommodate sophisticated component descriptions [29]. For example, in many approaches 

service descriptions are expressed using simple string-based name/value tuples, which lack high-

fidelity representations, constraint specifications and support for inexact service matching [59]. In 

contrast, context-aware scenarios require context mediation based on complex context information 

such as location, identity, device proximity, temperature and so forth [89]. In this regard, recent 

service discovery approaches for mobile scenarios (e.g. Splendor [378]) have begun introducing 

richer context semantics (e.g. location). 

In addition to service advertisement and discovery, most context-aware systems require 

sophisticated distributed middleware support [145] as a means of supporting hardware abstraction, 

service provisioning, distributed communications and comprehensive context acquisition, 

management and dissemination facilities [228]. Early approaches for addressing such requirements 

took the form of intelligent environments (IEs), whereby specially instrumented physical spaces are 

outfitted with specialized computing infrastructure. For example, Microsoft‘s EasyLiving project [43] 

provides an architecture capable of aggregating diverse devices into a coherent user experience using 

heterogeneous sources of context data. Similar to related approaches such as iRoom [111] and iRos 

[255], EasyLiving adopts an infrastructure-centric architecture, whereby the environment itself 

provides orchestration of distributed components and related context data acquisition and modeling 

abstractions that rely on environmental instrumentation. In this regard, IEs typically utilize 

abstractions that encapsulate participating entities (e.g. sensing, input and output systems) in order to 

provide a unified development environment for the creation of context-aware services. As such, 

distributed communications and component interoperation are often proprietary and domain-specific. 

For example, iRoom and iRos are based on a custom designed distributed communication architecture 

called the EventHeap, which enables multicast-style groupware communication through a 

publish/subscribe model and extensible event system [111]. Similar to EasyLiving‘s utilization of the 

proprietary InConcert middleware (a predecessor of modern SOAP Web services), the EventHeap 

provides support for inter-process communication across heterogeneous middleware platforms. The 

complexity and domain-specificity of the EventHeap architecture is illustrated in Figure 14. 
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Figure 14: Overview of the EventHeap architecture (from [111]) 

Several other projects have extended the IE concept dramatically. For example, projects such as 

iQueue [70] attempt to extend the basic IE model to support more generalized Internet-based data 

sources that can be dynamically selected and composed at runtime. Specifically, iQueue provides 

mechanisms whereby data such as files, databases, newsfeeds, SOAP web services and sensor output 

can be described by a unified functional data specification provided by the project team. When 

described appropriately, iQueue is able to dynamically select data sources that satisfy an application‘s 

requested data types, reselect data sources as appropriate and mediate between incompatible data 

formats by transcoding. Notably, the iQueue approach is contingent on the definition of appropriate 

functional data specifications for each possible data source in combination with related support for 

data source syntax parsing. Next, the Gaia meta-operating system [272] extends conventional 

operating system concepts – e.g. program execution, I/O operations, file-system manipulation, 

communications, error detection, and resource allocation – to support distributed application 

development in ―integrated programmable environments.‖ Gaia is based on the notion of ―Active 

Spaces,‖ which constitute a "physical space coordinated by a responsive context-based software 

infrastructure that enhances mobile users‘ ability to interact with and configure their physical and 

digital environments seamlessly" [272]. Giaia applications are created using a set of predefined 

components that intercommunicate via the Gaia Kernel using a dedicated Corba-based 

communications middleware. An overview of Gaia‘s physical versus active space models is shown in 

Figure 15. 

 

Figure 15: Gaia's (a) physical space versus (b) active space models (from  [272]) 
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Similar in scope to Gaia, the Aura project [116] focuses on minimizing user attention demands 

through a comprehensive middleware architecture that ―spans every system level: from the hardware, 

through the operating system, to applications and end users.‖ Accordingly, Aura monitors user and 

component activity transparently; attempting to anticipate and proactively support user needs – e.g. by 

proactively staging data on servers nearest to the user as a means of reducing network latency. The 

prototype version of Aura is based on a custom-designed Corba communications infrastructure; 

however, Aura also provides a connector abstraction that provides transport independence. (Notably, 

usage of the connector abstraction requires that wrappers be constructed for a given underlying 

communications protocol based on Aura‘s set of well-defined service interfaces.)  

Unlike relatively small-scale deployments such as Gaia and Aura, the ActiveCampus project [129] 

proposes a more scalable context-aware system capable of ―simultaneously supporting extensibility 

and tight integration.‖ ActiveCampus is designed around a centralized, layered client/server 

architecture, whereby loosely-coupled set of interfaces provide ―component contracts that are easy for 

implementers to satisfy (i.e., supporting innovation), yet whose behaviors are rather open (i.e., 

enabling integration)‖ [129]. ActiveCampus‘ interfaces are designed with the intention of providing 

extensibility along several dimensions, including service provisioning, context acquisition, modeled 

physical entities and end-user devices. Although ActiveCampus arguably provides significant benefits 

for larger deployments, the designers noted that its process-centric interface abstractions quickly led 

to increased interoperation complexity, performance problems, tight component coupling and an 

inability to effectively introduce new services. This observation lies at the core of Ocean‘s component 

interoperability approach that is introduced in section 3.2.8. 

Recognizing the deployment limitations of conventional IE approaches, more recent efforts have 

focused on utilizing the capabilities of existing mobile devices and reducing reliance on 

infrastructure-centric architectures. For example, the Cortex middleware [310] utilizes computational 

reflection and related component based techniques to accommodate mobile and ad-hoc scenarios. 

Cortex extends the notion of autonomous sentient objects, which encapsulate service discovery and 

provide context acquisition, modeling and inferencing (i.e. high-order context quantization). Cortex 

also provides an event model called STEAM that allows context events to be published and 

disseminated without a centralized infrastructure. In contrast to IE approaches, Cortex provides 

architectural support for mobile devices through the adoption and extension of OpenCOM, which is a 

lightweight component model based on Microsoft‘s COM. Related approaches such as the Reflective 

Middleware for Mobile Computing (ReMMoC) [126] address issues related to heterogeneous mobile 

service platforms through the adoption of a lightweight middleware model that accommodates 

multiple service discovery protocols (e.g. SLP and JINI) and provides additional binding and 

interaction techniques intended to support the independent evolution of context-aware applications. 

In terms of more generalized frameworks, several approaches have emerged. For example, the Java 

Context-Awareness Framework (JCAF) [23] provides a general-purpose, event-based runtime and 

related Java programming framework focused on the development of context-aware applications. 

Similar to peer-to-peer context management architectures such as Solar (see section 2.3.4), JCAF 

defines a set of extensible Context Services that are dedicated to modeling and managing particular 

types of context information. Context Services communicate via a related Entity Environment, which 



Chapter 2 

48 

handles context aggregation and transformation. The JCAF approach is based on the Java J2EE 

specifications
7
 and relies on a long-lived component container for handling shared resources such as 

database connections and RMI stubs. A related Java-centric approach, called the Java ADhoc 

Application BootStrap (Jadabs) [112], extends the Java container model to include support for ad-hoc 

service composition on small, resource-constrained devices. Notably, Jadabs adapts conventional 

service-oriented computing techniques (see section 2.2.2) to the requirements of mobile devices 

utilizing the Java micro and standard edition runtimes. 

To promote wide-area component interoperation, several context-aware projects have adopted the 

SOAP Web services infrastructure introduced in section 2.2.2. As a prototypical example, Keidl and 

Kemper [175] describe a framework for context-aware adaptable SOAP Web services. In their 

approach, automated Web service discovery is performed by first acquiring context information from 

the user‘s environment using extensible context modules capable of including context information 

within UDDI component Discovery Requests. Related, a specially designed UDDI registry is used to 

select appropriate Web services based on mappings between well-known context information and the 

associated WSDL documents describing registered Web service components. As noted by Belotti et 

al. [29], an important challenge for context-aware selection of Web service components is the 

application of descriptive semantics describing the contextual relevancy of a given component. 

Towards this end, context-aware Web-service registries such as SOPHIE [29] have been devised to 

facilitate discovery and binding of application constituents based on a semantic data model that 

integrates object-oriented and entity-relationship concepts. Other approaches address Web service 

component annotation through semantic description. For example, Manners [11] exploits notions 

introduced by grammar-oriented object design and Cobra [64] extends the Web Ontology Language 

(OWL)
8
 as proposed within the Semantic Web initiative [368]. 

Although SOAP Web services have improved syntactical interoperability though open interface and 

the use of well-known Internet protocols, they rarely accommodate spontaneous, cross-domain 

discovery and interoperation without involving significant prior interface knowledge [336]. As noted 

by Edwards et al. in  [96], ―Interoperability among a group of devices, applications, and services is 

typically predicated on those entities having some degree of prior knowledge of one another.‖ Thus, 

several context-aware projects have explored techniques for reducing the reliance on domain-specific 

interface definitions as a means of promoting widespread reuse. For example, the SpeakEasy project 

[96] from Xerox PARC described a new computing paradigm, called recombinant computing, that 

aims to allow arbitrary component interaction through the use of a fixed set of compact interface 

definitions and mobile code to allow dynamic extension of functionality at runtime. In this regard, 

SpeakEasy leverages conventional Web architecture techniques as a means of supporting 

―serendipitous interoperability – the ability for devices and services to use one another with only very 

restricted prior knowledge‖ [96]. Related projects such as SA-REST [192] have similarly 

demonstrated how conventional Web architecture can be used to promote cross-domain component 

interoperation through the Representational State Transfer (REST) architectural style (see section 

3.2.8). 

                                                      
7
 http://java.sun.com/javaee/ 

8
 http://www.w3.org/2004/OWL/ 
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2.4 Chapter Summary 

This chapter presented background and related work regarding context-aware computing. It began by 

discussing how the rise of data communication networks led to the emergence of distributed 

computing. Next it described key aspects of distributed computing, including the characteristics of 

distributed software architectures and their associated challenges. Based on these challenges, it 

described several key distributed computational approaches, including ad-hoc, Structured 

Communication, Distributed Object Communications Middleware and Message-Oriented 

Middleware. Next, it described Service Oriented Computing as a generalized approach for combing 

self-contained, loosely coupled units of functionality (called services) and SOAP Web services as a 

popular mechanism for providing SOC across Internet-based infrastructure. We noted that SOAP Web 

services often rely on process-centric descriptions of a component‘s end-point addresses, supported 

methods and associated data types using technologies such as Corba IDL or WSDL. The background 

section concluded by describing the influence of mobile computing and wireless networks. Notably, it 

discussed how parameter and compositional adaptation are increasingly used to dynamically adapt 

software systems to better fit the characteristics of a mobile user‘s current situation. 

The remainder of the chapter described context-aware computing as an approach for adapting 

mobile and embedded computing approaches to the complex dynamics of the physical world. The first 

section discussed the complexity of distributed mobile systems and how supportive middleware is 

well-recognized as an essential requirement for constructing non-trivial systems. Next, we introduced 

a conceptual framework intended to guide the discussion of context-aware computing techniques, 

middleware and projects. Using the conceptual framework as a guide, the next section began by 

defining key terms related to context and context-aware computing; noting the various important 

properties of context information. The next section described techniques for acquiring context 

information and noted that conventional acquisition approaches are often reliant on the widespread 

deployment of sensing instrumentation and infrastructure. The next section described context 

modeling and representation techniques. Importantly, this section discussed how effective context 

modeling often requires the participation of domain-experts to help capture the syntax and semantics 

of a given context domain. The next section introduced common mechanisms for context management 

and provisioning. Notably, this section described how existing context management approaches (e.g. 

context servers) often encounter scaling challenges that prevent large-scale deployments. Moreover, it 

noted how recent advances have begun exploring cross-domain context acquisition and modeling in 

real-world scenarios. The final section presented techniques for context-aware component 

interoperation, whereby context-aware systems utilize resultant context information to discover, select 

and interoperate with contextually relevant components at runtime. This section presented several 

service discovery protocols and related distributed communications infrastructures. Importantly, it 

noted how existing architectures require significant prior interface knowledge in order to support 

spontaneous component interoperation. The chapter concluded by mentioning several promising 

component integration techniques that closely resemble conventional Web architecture. 

Based on the related work presented in this chapter, we note that current context-aware systems are 

typically devised with the assumption that the underlying network infrastructure, hardware devices, 

application components and context mechanisms are well-known a-priori and contained within a 
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limited and controlled administrative domain. Hence, many approaches mandate expensive and 

invasive deployment of context instrumentation; require domain-specific network configurations; rely 

on specially outfitted mobile devices; adopt enterprise-specific distributed middleware; and generally 

lack support for spontaneous cross-domain component interoperation. Further, the considerable 

expense and effort required to devise, implement and deploy such systems often promotes a top down 

development approach intended to address niche problem domains where the requisite support 

infrastructure can be readily provided, administrative access is available and return on investment is 

assured. Indeed, several recent surveys [22, 62, 106] indicate that existing systems generally fail to 

provide ubiquitous accessibility; resulting in a pronounced lack of developer adoption and end-user 

participation. The next chapter addresses these issues by introducing the foundations of the Ocean 

approach. 
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Chapter 3 

Foundations of the Ocean Approach 

3.1 Introduction 

Throughout the last chapter, it was discussed how interrelated contributions from the domains of 

network engineering, distributed systems and mobile computing are rapidly converging to produce 

everyday environments comprised of powerful mobile and embedded devices, ubiquitous network 

connectivity and rich sources of networked computation. These advances are recognized as important 

foundations for the development of mobile distributed systems capable of supporting human-centric 

tasks and modes of interaction [353]. However, while many everyday environments provide ample 

opportunities for adaptive computing, mobility often introduces significant challenges related to 

heterogeneity, scalability, security, privacy, spontaneous interoperation, and so-forth [73]. 

Accordingly, context-aware computing has emerged to address these challenges through an 

evolutionary synthesis of distributed systems and mobile computing. As discussed in section 2.3, 

context-aware systems model environmental and situational information – e.g. location, identity or the 

proximity of nearby devices – as a means of orchestrating parameter and compositional adaptation. In 

this way, a context-aware system aims to dynamically optimize its runtime behavior and capabilities 

to fit the characteristics of a user‘s current situation and computing environment. While applicable to 

many application domains, context-awareness is recognized as particularly compelling for mobile 

computing, where users often encounter rapidly changing execution environments and sources of 

information and computation potentially not known a-priori [293]. However, despite decades of 

research effort, context-aware systems remain consigned to small-scale deployments and research 

prototypes [79, 346]. 

Based on the background and related work presented in the last chapter, this chapter begins a 

discussion of our novel context-aware computing approach, called Ocean, which aims to capture the 

entrepreneurial spirit of modern Web architecture as a means of supporting large-scale, real-world 

context-aware systems. The structure of this chapter is based on an abbreviated version of the IEEE 

Recommended Practice for Software Requirements Specifications (SRS) [156], which provides a 

approach for deriving software specification requirements based on the recommended practices of the 

IEEE. The structure of this chapter is as follows: Section 3.2 begins by introducing the key challenges 

facing large-scale context-aware systems and discusses related advances in cross-domain context 

modeling, network engineering, scalable middleware and component interoperability. Next, section 

3.3 introduces the overall scope of the Ocean approach, which aims to address the challenges 

discussed in section 3.2. Section 3.4 introduces Ocean‘s non-functional requirements by presenting 

Ocean‘s major design principles in section 3.4.1 and related design constraints in section 3.4.2. Based 

on these non-functional requirements, section 3.5 derives the overall Ocean approach by describing its 

principle architectural abstractions, application model, component contextualization and discovery 

techniques, registry architecture and integrated support for community-based processes (e.g. open 

contribution, collaborative annotation, volunteer-based computing and recommender systems). 

Related, section 3.6 describes Ocean‘s principle stakeholders. The chapter concludes with a 

discussion of the Ocean Reference Implementation as a validation methodology in section 3.7. 
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3.2 Large-scale Context-aware Systems: Challenges and Foundations 

Despite decades of research effort, current context-aware systems remain consigned to small-scale 

deployments and research prototypes; existing primarily within isolated islands of niche functionality 

that are far removed from everyday use [79, 288]. Indeed, several recent surveys [21, 62, 97] indicate 

that existing systems generally fail to provide ubiquitous accessibility and often incur intractable 

scaling costs that inhibit widespread reuse; resulting in a pronounced lack of developer adoption and 

end-user participation. As previously discussed, current context-aware systems are often designed 

with the assumption that the underlying network infrastructure, hardware devices, application 

components and context mechanisms are contained within a limited and controlled administrative 

domain and are well-known a-priori [97]. As such, many mandate expensive and invasive deployment 

of context instrumentation; require domain-specific network configuration; rely on specially outfitted 

mobile devices; adopt enterprise-specific distributed middleware; and lack support for spontaneous 

cross-domain component interoperation. Further, the considerable expense and effort required to 

devise, implement and deploy such systems often promotes a top-down development style intended to 

address niche problem domains where the requisite support infrastructure can be readily provided [62, 

97]. However, while existing techniques have been moderately successful in supporting enterprise 

scale systems, they are often inappropriate for large-scale, real-world environments due to a number 

of interrelated challenges. In this section, we discuss these challenges and present related advances 

that provide the foundations for the Ocean approach. 

3.2.1 Challenge: Ubiquitous Context Infrastructure 

As previously discussed, context aware systems are founded upon mechanisms for acquiring, 

modeling and provisioning context information. Most systems utilize modeled context information to 

orchestrate parameter and compositional adaptation (see section 2.2.3). In sophisticated approaches, 

compositional adaptation techniques are used to discover, select and interoperate with relevant 

networked components at runtime. Notably, such systems often aim to provide adaptive features to 

nomadic users operating within heterogeneous, real-world environments. In this regard, most non-

trivial context-aware systems are organized hierarchically; with context acquisition, context modeling 

and representation and context management and provisioning forming a generalized layered model 

(see section 2.3). Hence, at their foundation, large-scale context-aware systems presume the 

availability of ubiquitous context infrastructure; however, as discussed shortly, existing approaches 

often suffer from significant scalability issues in larger scenarios. 

Context-aware systems presume a level of physical integration and network accessibility beyond 

that of conventional distributed and mobile systems [180]. Physical integration is most apparent at the 

boundary between the physical and virtual domains, where sensors are used to capture contextual 

attributes from the environment. In many context-aware systems, expensive and invasive context 

instrumentation is deployed throughout the system‘s operational area in order to support the context 

acquisition and modeling process. For example, the University of Karlsruhe‘s MediaCup project [28] 

explores techniques for augmenting physical objects with digital presence while preserving an 

object‘s original appearance and purpose. In this regard, the MediaCup project team outfitted 

conventional coffee cups with dedicated sensing equipment, wireless technologies and low-power 
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microcontrollers that broadcast the cups‘ physical state to interested applications (see Figure 16a). 

Similarly, the Smart Floor [242] from the Georgia Institute of Technology transparently identifies and 

localizes users based on footstep force profiles detected by specially engineered floor tile with 

integrated load sensors (see Figure 16b). Related, MIT‘s Cricket system [258] provides fine-grained 

position estimation by way of custom designed ultrasonic hardware that must be deployed throughout 

the intended operational environment. Although such infrastructure-centric projects are inarguably 

capable of providing high resolution contextual data, the augmentation of existing physical 

environments with custom-designed instrumentation and related infrastructure is often prohibitively 

costly outside of small-scale deployments [79]. Indeed, even with significant industry backing, the 

development and standardization of the UPnP service discovery protocols required almost a decade of 

effort [162]. 

 

Figure 16: Dedicated context instrumentation: a) MediaCup and b) the Smart Floor 

Aside from the costs associated with context instrumentation, other factors have inhibited the 

widespread deployment of context infrastructure. For example, many context-aware projects require 

dedicated context servers that impose significant scalability issues. Notably, systems such as Solar 

[63], SCI [121] and Hydrogen [152] require the widespread deployment and maintenance of multiple 

context servers; resulting in increased hardware costs, increased development time and necessitating 

administrative access across the operational area. Related, many context-aware systems rely on the 

related deployment of ―heavyweight‖ middleware components such as Corba ORBs or Java RMI 

stubs, which imposes limitations on the devices, programming languages and communication 

protocols available for a given project. For example, the JINI architecture mandates use of the Java 

programming language, requires a device-compatible Java virtual machine, requires pre-deployment 

of runtime software components and constrains distributed communications to Java RMI [342]. 

Further, the adoption of complex distributed computing middleware often limits application 

development to experts [145]. As such, current context-aware systems are generally based on niche 

application models that lack adequate toolkits and programming models [147]. Moreover, niche 

context-aware infrastructures are often designed to accommodate preconceived application domains 

and may only support a limited set of context information types [73]. Notably, such systems rarely 
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support the dynamic integration of new context mechanisms at runtime or allow service provisioning 

by external developers; further limiting their use in heterogeneous, large scale scenarios [97]. 

3.2.2 Foundation: Aladin-based Context Acquisition and Modeling 

Although the deployment of dedicated context infrastructure has proven to be infeasible for large-

scale scenarios, many everyday environments are becoming increasingly saturated with preexisting 

sources of potential contextual information (e.g. GPS signals, GSM cell tower identifiers, MAC 

addresses, RFID tags, barcodes, accelerometer data, light intensity, etc.) As noted by Edwards and 

Grinter [95], suitable environments for context-awareness arise more or less ―accidentally‖ from an 

―accretion of technological components embedded in an environment that has not benefited from a 

holistic, ground-up approach to design and integration.‖ Based on such observation, we developed a 

context-aware computing approach, called Aladin [49], which explores how commodity devices can 

be dynamically adapted to acquire and model a diverse range of context information using local 

available hardware and software. Aladin is specifically designed to automatically acquire and model 

context information in large-scale, cross domain scenarios without requiring significant context 

instrumentation or related infrastructure. Aladin provides a domain-neutral, client-centric approach 

that dynamically extends the context modeling capabilities of commodity mobile devices through the 

use of runtime deployed plug-ins. Client-side Aladin software enables devices to adapt their context 

acquisition and modeling capabilities by performing ongoing capability analyses and integrating 

platform-specific context acquisition and modeling plug-ins on-the-fly. Related, we also developed an 

Internet-based plug-in repository whereby external parties can develop and integrate context plug-ins 

for use by the Aladin community. 

The Aladin approach is based on the extensible, client-centric software architecture shown in 

Figure 17. In the Aladin approach, domain-specific software running on a commodity device hosts the 

Aladin Framework. Based on the Façade pattern [114], the Aladin Framework provides a context 

management API and related set of context events. During runtime, the Aladin Framework 

automatically analyses the capabilities of its host device and environment by way of dynamically 

installed capability analysis plug-ins. Based on the detected capabilities the host device and 

environment, Aladin then dynamically downloads and installs context acquisition and modeling plug-

ins that are capable of rendering high-fidelity native context data (NCD). During runtime, low-level 

context preprocessing and quantization are provided by the installed context plug-ins; resulting in the 

generation of context events (containing NCD) that are received by the hosting application. The 

hosting application may react to incoming context events as needed, according to their local 

application logic; however, Aladin provides an additional context interpretation abstraction that can 

be implemented as a means of customizing Aladin with support for a particular application model. 

Aladin has been validated through the construction of three diverse application models, including a 

mobile interactive cinema platform [50]; a museum tour-guide system [49]; and a pervasive 

multiplayer tangible game [148]. Related work indicates that client-centric approaches, such as 

Aladin, can be effectively adapted to large-scale heterogeneous environments [139, 268]. 

Accordingly, the Aladin Framework is used to provide a foundation for the Ocean approach (see 

section 3.4.2). 
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Figure 17: Overview of the Aladin Framework architecture 

3.2.3 Challenge: Widespread Network Accessibility 

Given effective cross-domain context acquisition and modeling, large-scale scenarios presuppose a 

foundation of network accessibility encompassing the intended operational area [73]. As discussed in 

sections 2.3.4 and 2.3.5, most existing context-aware infrastructures adopt conventional distributed 

object communication (DOC) infrastructure (e.g. Corba, Java RMI and SOAP Web services) to 

facilitate context provisioning and component interoperation. For example, the Gaia meta-operating 

system [272] adopts Corba as its principle communications middleware. As a result, the Gaia 

infrastructure inherits Corba‘s mechanisms for "object registration, location, and activation; request 

demultiplexing; framing and error-handling; parameter marshalling and demarshalling; and operation 

dispatching" [122]. Similarly, the design of many context-aware systems is significantly influenced by 

the underlying service discovery and distributed communications models. 

As discussed in section 2.3.5, context-aware approaches that utilize ad-hoc, local-link service 

discovery protocols (e.g. SLP, UPnP and Zeroconf) are inherently limited to short-range operations 

with relatively homogenous peers. While ad-hoc integration techniques are inarguably important for 

context-aware computing, existing approaches provide impoverished mechanism for wide-area 

service discovery and lack protocol interoperability [194]. For example, in order for an UPnP AV 

MediaServer to discover and interoperate with an UPnP MediaRenderer, compatible devices must be 

capable of communicating via multicast. Although, the UPnP standards allow for service discovery 
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beyond the local link, most firewalls block multicast traffic beyond the local administrative scope; 

effectively constraining UPnP to a single administrative boundary. While some service discovery 

protocols provide external service registries and related network address translation (NAT) traversal, 

current registries have only achieved limited adoption [283] and many NAT traversal techniques 

remain unstandardized or poorly supported [323] (e.g. the Internet Gateway Device Protocol). Finally, 

although service discovery protocols share similar functionality, most are not interoperable [3]; hence, 

inter-protocol discovery and interoperation scenarios are generally precluded. While hybrid protocols 

have attempted to address wide-area service discovery and advertisement [194], such techniques have 

not yet gained traction. 

In addition to service discovery limitations, the adoption of conventional DOC infrastructure 

imposes network accessibility challenges for many context-aware systems. For example, current DOC 

middleware often imply considerable implications regarding firewall traversal in cross-domain 

deployments [72]. Specifically, wide-area use of conventional DOC techniques may pose security 

risks (due to unencrypted protocols) and often requires the opening of specific network ports in an 

organization‘s firewall [233]. While some corporate network policies allow for the transport of DOC 

protocols, many organizations have proven reluctant to allow intercommunication between local 

services and distributed components outside their administrative control [144]. Further, additional 

cross-domain issues related to NAT also arise in situations where isolated IP address spaces conflict 

with a DOC middleware‘s object registration, location, and activation techniques (e.g. Corba‘s 

Interoperable Object Reference). In such cases, published private IP addresses may not be reachable 

by external entities, even with appropriate firewall security policies. In this regard, approaches such as 

Java RMI and Corba have attempted to accommodate firewall traversal through the use of HTTP 

tunneling techniques and dedicated firewall hardware; however, such techniques often result in 

performance limitations, increases security risks and are currently poorly supported due to technical 

shortcomings and lack of interest from firewall vendors [144]. 

3.2.4 Foundation: Public Internet Infrastructure 

The development of large-scale context-aware systems will require support for ubiquitous network 

accessibility. In this regard, we suggest that public Internet infrastructure represents a compelling 

foundation for context-aware systems capable of cross-domain context modeling. In terms of 

adoption, the Internet remains unparalleled as an open data communications infrastructure. Recently, 

innovative census techniques [141] have been used to survey the Internet‘s ubiquity and global scope. 

As of the time of writing, the most recent census of Internet edge hosts describes an rapid and 

increasing allocation of IP addresses; ranging from 315 in 1982 [306] to over 2.7 billion in 2006. 

Other recent surveys [227] estimate global Internet usage at approximately 20.3% of the world‘s 

population (1.36 billion people) according to the following geographic distributions: North America 

(72.2%); Oceania/Australia (56.4%); Europe (46.8%); Latin America/Caribbean (22.1%); Middle East 

(17.1%); Asia (13.6 %); and Africa (4.1%). Related, recent Web server response surveys [222] and 

search engine indexes [189] estimate the total number of Web servers at 187 million and the total 

number of indexed Web pages at over 25.81 billion. While an accurate assessment of the Internet‘s 

growth dynamics remain challenging, modern Internet infrastructure inarguably represents an 

increasingly ubiquitous global phenomenon that spans continents and cultures. 
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Although the Internet provides ubiquitous network accessibility, its design has proven difficult to 

exploit by traditional context-aware systems [97]. As previously described, Internet architecture is 

often hostile to the service discovery and distributed communication techniques common to many 

context-aware systems. Moreover, by emphasizing connectivity and the end-to-end principle (see 

section 2.2), Internet infrastructure reveals very little of the rich contextual semantics often required 

by context-mediated adaptation strategies. As previously stated, aside from basic addressing and 

routing information, potential context information – such as underlying communications hardware, 

network topologies and physical location of components – is intentionally hidden from end-systems as 

a means of providing ―the illusion of a single, seamlessly connected network where the fragmented 

nature of the underlying infrastructure and the many layers of protocols remain largely transparent to 

the user‖ [358]. As such, the Internet‘s architectural model often confounds traditional context-aware 

approaches that rely on domain-specific network configuration and well-known context sources. 

Indeed, the conspicuous lack of Internet-scale context-aware systems highlights the fundamental 

conflicts that arise between the scope of context-aware systems and the requirements of large-scale 

network architectures. 

Although Internet-scale context-aware systems have yet to be devised, several interrelated advances 

are providing the foundations for larger deployments. First, as described in section 3.2.1, adaptive 

context-aware frameworks such as Aladin [49] and Contory [268] demonstrate techniques for cross-

domain context acquisition and modeling that are well-adapted to conventional Internet infrastructure. 

Next, the widespread adoption of the Internet is providing an increasingly ubiquitous foundation of 

network communications across a broad range of environments. Importantly, the widespread adoption 

of the TCP/IP model has led to ―constant innovation and entrepreneurial spirit at the physical 

substrate of the network as well as at the application layer‖ [358]. The resultant explosion of Internet-

based services such as email and the Web have resulted in the development of broadly supported 

application-layer communication protocols such as HTTP [104]. Related, the pairing of open data-

exchange mechanisms (e.g. XML) with Internet-friendly communication protocols has resulted in the 

emergence of SOAP Web services as a mechanism for constructing distributed computing systems 

using Internet technologies. While SOAP Web services face significant challenges in wide-area 

context-aware scenarios (see section 3.2.7), their current market dominance has promoted the 

widespread adoption of software support across a broad range of devices (e.g. XML parsing). 

3.2.5 Challenge: Ubiquitous Middleware 

Although Internet infrastructure provides widespread accessibility and architectural flexibility, cross-

domain context-aware systems presuppose distributed middleware that is similarly accessible, highly 

scalable [38] and supportive of a wide variety of problem domains [323]. While definitions vary, 

middleware has been described as a ―software layer between the operating system – including the 

basic communication protocols – and the distributed applications that interact via the network. This 

software infrastructure facilitates the interaction among distributed software modules‖ [117]. In 

contrast to enterprise-scale distributed systems, which are generally highly complex and contained 

within a limited administrative boundary, large-scale distributed architectures must address several 

additional requirements such as a low entry-barrier, extensibility, independent deployment of 

components and rapid evolution [105]. Importantly, large-scale distributed applications must be 
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capable of operating across multiple trust domains, and ―continue operating when subjected to an 

unanticipated load, or when given malformed or maliciously constructed data, since they may be 

communicating with elements outside their organizational control‖ [106]. Table 6 presents an 

overview of the key requirement for context-aware middleware as identified by Henricksen et al. 

[147].  

Middleware requirement Description 

Support for heterogeneity Hardware components ranging from resource-poor sensors, actuators and 

mobile client devices to high-performance servers must be supported, as must 

a variety of networking interfaces and programming languages. Legacy 

components may be present. 

Support for mobility All components (especially sensors and applications) can be mobile, and the 

communication protocols that underpin the system must therefore support 

appropriately flexible forms of routing. Context information may need to 

migrate with context-aware components. Flexible component discovery 

mechanisms are required. 

Scalability Context processing components and communication protocols must perform 

adequately in systems ranging from few to many sensors, actuators and 

application components. Similarly, they must scale to many administrative 

domains. 

Support for privacy 

 

Flows of context information between the distributed components of a context-

aware system must be controlled according to users‘ privacy needs and 

expectations. 

Traceability and control The state of the system components and information flows between 

components should be open to inspection - and, where relevant, manipulation - 

in order to provide adequate understanding and control of the system to users, 

and to facilitate debugging. 

Tolerance for failures Sensors and other components are likely to fail in the ordinary operation of a 

context-aware system. Disconnections may also component occur. The system 

must continue operation, without requiring excessive resources to detect and 

handle failures. 

Ease of deployment and 

configuration 

The distributed hardware and software components of a context-aware system 

must be easily deployed and configured to meet user and environmental 

requirements, potentially by non-experts (for example, in ―smart home‖ 

environments). 

Table 6: Requirements for context-aware middleware (from [147]) 

To accommodate the requirements presented above, current context-aware systems typically utilize 

―heavyweight‖ middleware infrastructure (see section 3.2.1) that impose significant restrictions on the 
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types of devices and computing environments that can be supported. Notably, Java RMI, Microsoft 

.NET and Corba all require specific local runtimes that may not be widely available across all device 

types. For example, Java RMI requires a Java virtual machine, mandates use of the Java programming 

language and is available only as an optional package for mobile devices running the Java 2 Mobile 

Edition (J2ME ) [321]. Similarly, Corba requires the deployment of a compatible Object Request 

Broker across participating entities [233] and .NET remoting presumes widespread availability of a 

compatible .NET runtime library. Furthermore, even distributed applications based on SOAP Web 

services require a local SOAP stack to provide marshaling, serialization, transport and demarshaling 

of XML-encoded SOAP data. As noted by Garlan et al. [115], such techniques often result in tight-

coupling between middleware components and dependant distributed applications; potentially limiting 

reuse or inhibiting a system‘s ability to accommodate new application scenarios without retooling. 

3.2.6 Foundation: Conventional Web Architecture 

Although rarely directly exploited by context-aware systems, conventional Web architecture is 

increasingly recognized as an Internet-scale middleware platform that fulfils many of the context-

aware computing requirements presented in the last section [106, 139]. Modern Web architecture 

emerged from experiments at CERN by Tim Berners Lee between 1982 and 1988 [31]. During this 

period, Berner‘s Lee envisioned a novel application scenario whereby conventional Internet 

infrastructure could be used to support ―a shared information space through which people and 

machines could communicate‖ [33]. Communication within this information space was seen as a way 

for participating users to independently structure and publish a variety of information such as research 

notes and contact details. The intended users of the original system were physics researchers who 

were broadly categorized as geographically dispersed, connected via the Internet and utilizing a 

heterogeneous collection of computing devices. Consequently, the ―challenge was to build a system 

that would provide a universally consistent interface to this structured information, available on as 

many platforms as possible, and incrementally deployable as new people and organizations joined the 

project‖ [106]. The resultant architecture, called the World Wide Web (Web), was designed to extend 

existing hypertext techniques [31] with a data-centric distributed computing approach that emphasized 

non-centralization, remote access across multiple networks and heterogeneity of devices [105].  

An idealized model of the interactions within a Web application has been formalized as the 

Representational State Transfer (REST) architectural style by Fielding in 2000 [105]. Although not 

specifically tied to Web architecture, REST was derived from the standardization of its first 

application-layer protocol, known as the Hypertext Transport Protocol (HTTP) [104]. REST was 

designed to provide ―caching and reuse of interactions, dynamic substitutability of components, and 

processing of actions by intermediaries, in order to meet the needs of an Internet-scale distributed 

hypermedia system‖ [106]. The foundational architectural styles underlying REST include replicated 

repository, cache, client-server, layered system, stateless, virtual machine, code on demand, and 

uniform interface (for details see [105]). The constraints of these underlying styles differ from 

traditional distributed computing approaches that hide underlying components, network entities and 

data. In contrast, REST intentionally exposes the nature and state of the network and data elements 

that comprise a system [105]. On overview of the REST architectural style is shown in Figure 18. 
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Figure 18: Overview of the REST architectural style (from [262]) 

REST is based on a key information abstraction known as a Resource, which represents ―any 

concept that might be the target of an author‘s hypertext reference‖ [106]. As described in [105], any 

information that is important enough to be named can be modeled as a Resource (e.g. an image, 

newsfeed, software release, Web page, etc.) Resources comprise identity, state and behavior. Further, 

Resource naming is accomplished through the use of a globally adopted addressing scheme known as 

the Unified Resource Identifier (URI) [34], which provides a standardized mechanism for acting upon 

or obtaining information about Resources. As described in [341], ―A resource should have an 

associated URI if another party might reasonably want to create a hypertext link to it, make or refute 

assertions about it, retrieve or cache a representation of it, include all or part of it by reference into 

another representation, annotate it, or perform other operations on it. Software developers should 

expect that sharing URIs across applications will be useful, even if that utility is not initially evident.‖ 

In this regard, the use of URIs allows applications to independently expose ―interesting‖ aspects of 

their internal data or functionality. Likewise, URIs allow clients to decide which parts of an 

application‘s data are important; allowing for component integration in ways perhaps not originally 

envisioned by the designer of the Resource [266]. 

On the Web, distributed entities called Web Agents observe and change Resource state by sending 

and receiving Representations. A Representation can be understood as a sequence of bits (generally in 

a standardized data format) that represents the current (or desired) state of a Resource. Web agents 

include software systems acting directly on behalf of a user (i.e. user agents) or intermediary entities 

such as proxies, browsers, spiders and multimedia players (i.e. software agents). As Representations 

are exchanged between Web agents, Resource state is managed by its hosting origin server, whereas 

the application state is managed by the clients. State transitions between application states are 

facilitated through the use of hypermedia, which enable clients change transition from one state to the 

next by examining and dereferencing hyperlinks embedded within received Representations [105]. In 

the REST model, interactions between Web agents are stateless; meaning that each request for a 

Representation occurs in isolation. Stateless interactions help improve a systems scalability because 
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servers do not need to cache state information between requests; allowing for improved resource 

allocation and simplified load balancing that does not require server affinity or state passing [266]. 

Perhaps most distinguishing feature of the REST model is its establishment of a uniform interface 

between distributed components, which helps improve interoperability across multiple organizational 

boundaries [336]. Rather than allowing components to expose unrestricted method vocabularies (i.e. 

process-centric distributed computing), all RESTful components implement the same minimal set of 

generic interface methods. By requiring that Resources to provide suitable implementations of the 

same generalized interface, requesting clients need only understand the semantics of a single 

interaction vocabulary. Further, the uniform interface is complimented by the use of self-describing 

message payloads, whereby the data passed between entities are well-known. On the Web, message 

payloads typically adhere to globally standardized formats (e.g. MIME content types [327]) and the 

uniform interface is provided by the set of HTTP methods shown in Table 7. As noted by Ray et al. 

[262], ―It is precisely because HTTP has few methods that HTTP clients and servers can grow and be 

extended independently without confusing each other.‖ 

Method Description 

GET Retrieve a representation of a Resource addressed by a URI. 

POST Creates a new Resource when directed to an existing URI. 

PUT Modifies an existing Resource when directed to an existing URI. Creates a new Resource if 

directed to a new URI. 

DELETE Deletes an existing Resource when directed to an existing URI. 

HEAD Retrieve a metadata-only representation of a Resource. 

OPTIONS Check which HTTP methods a particular Resource supports. 

Table 7: Overview of the HTTP uniform interface (adapted from [262]) 

Based on characteristics of the REST architectural style, conventional Web architecture provides a 

promising middleware foundation for context-aware systems. The Web‘s design addresses scalability 

beyond geographic dispersion by incorporating techniques that accommodate multiple trust domains, 

unanticipated load and allow for independent component deployment [341]. Next, as evidenced by the 

tremendous number of Web-based applications, the hypermedia application model has proven 

remarkably capable of accommodating a variety of application domains. Moreover, the distributed 

architecture designed to support the Web‘s hypermedia model is sufficiently flexible to accommodate 

a variety of non-hypermedia application scenarios [266]. Additionally, the Web‘ low entry-barrier and 

non-proprietary standards have made its communication protocols, functional apparatus and device 

support ubiquitous. Related, the Web‘s increasing ubiquity has resulted in significant developer 

adoption that has resulted in the emergence of a broad array of development toolkits, application 

frameworks and related knowhow. Consequently, increasing developer adoption has resulted in an 

explosion of Web-based information and computation. 
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3.2.7 Challenge: Cross-domain Component Interoperation 

Given a sufficiently ubiquitous middleware approach, cross-domain context-aware systems must be 

able to discover and interoperate with relevant distributed components at runtime without extensive 

prior knowledge [96, 180]. As described in section 2.2.1, traditional distributed component 

architectures rely on process-centric descriptions of a software component‘s end-point addresses, 

methods and associated data-types provided by technologies such as Corba IDL or WSDL. However, 

although modern development environments simplify the creation of remotely accessible methods, the 

resultant proliferation of domain-specific interfaces can reduce the probability of component 

interoperation [225, 334, 336]. Notably, several recent surveys [21, 62, 97] indicate that the majority 

of current context-aware systems adopt process-centric interoperation (PCI) styles. PCI techniques 

such as those epitomized by Corba and SOAP Web Services make the coupling between callers and 

components clear and unambiguous; however, in large-scale scenarios, interactions between 

distributed components may suffer from architectural mismatch [115], where domain specific method 

syntax, sequencing and semantics prevent widespread reuse due to a lack of widespread 

understanding of a given interface [334]. While dynamic interactions between specialized interfaces 

can be resolved in small-scale distributed systems (e.g. enterprise scenarios) they become problematic 

in larger scenarios where component interfaces cannot be known a-priori [334]. Moreover, PCI 

techniques rely on complex infrastructure, highly skilled developers, platform specific mobile code 

and significant tooling, which are all recognized as antithetical to widespread developer adoption 

[145]. 

3.2.8 Foundation: RESTful Component Interoperation 

The Web‘s underlying REST architectural style, as described in section 3.2.6, provides several 

advantages for component interoperation in scenarios where a-priori interface knowledge is 

impossible or difficult to achieve [336]. Unlike conventional PCI approaches, which generally rely on 

domain-specific interface definitions, proprietary component addressing and opaque communication 

endpoints, REST employs a lightweight middleware model that has been rapidly gaining in popularity 

across a wide variety of cross-domain composition scenarios, including component architectures (see 

section 5.2.1), enterprise Web services [170, 262] and context-aware systems [96, 192]. As previously 

discussed, REST exploits a standardized endpoint addressing scheme that allows for the flexible 

organization of exposed component functionality through the use of URIs. Further, RESTful 

Resources are interconnected through hyperlinks that are embedded within their associated 

Representations; providing clients a set of available application states that can be provisioned at 

runtime. Finally, RESTful Web Resources adhere to the HTTP uniform interface, whose syntax and 

semantics are well-known by all participating entities [106]. In contrast to the specialized interfaces 

common to PCI techniques, the standardization of a limited set of generalized interface methods 

―enables entities to use new devices and services that appear in their environment without explicit 

rewriting, updates, or installation of drivers. In addition, it reduces the number of agreements that 

must be made among communicating entities, and allows for dynamic, runtime interoperation of 

devices and services on a network‖ [247]. Vinoski [336] describes the following beneficial data-

coupling characteristic common to RESTful architectures: 
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 System resources adhere to the same semantics for each operation in the Uniform Interface, 

thus simplifying client applications by eliminating the need for custom code to support 

specialized interface semantics. 

 Developing Resources means designing an implementation to fulfill the Uniform Interface and 

its expected semantics, essentially eliminating the development phase required for designing 

separate interfaces for each Resource, with their specialized semantics and implied workflow. 

 Error handling is typically a source of significant variance between interfaces as interface 

designers individually cook up their own data structures and exceptions for reporting problems. 

Under the Uniform Interface constraint, however, error handling also gains uniformity. 

 Intermediation becomes highly practical because intermediaries can understand the Uniform 

Interface semantics just as well as Resources and clients can. For example, a Uniform Interface 

can specify which calls are idempotent (that is, can be called repeatedly without side effects) 

and which aren't. Resources can include cache control information in responses to idempotent 

operations, so that developers can easily insert caches between a client and the resources it uses 

without breaking the client or needing to specialize the caches for the invoked resources. 

 Without the presence of numerous specialized interfaces, overall system simplicity increases, 

which typically decreases the number of defects. Notably, interface versioning issues are 

significantly reduced, though not entirely eliminated. Moreover, the overall system becomes 

much more extensible. 

In the traditional hypermedia model, user agents (e.g. Web browsers) discover, select and compose 

components (i.e. Resources such as Web pages or newsfeeds) at runtime using three basic steps: 

identification, interaction and message payload interpretation [341]. Briefly, in the identification 

phase, a discovered URI is used to address an abstract Resource in a standardized way. Next, in the 

interaction phase, the user agent interacts with a Resource using HTTP‘s uniform interface, which 

supports the exchange of messages according to a well-defined set of semantics (see [104]). During a 

typical interaction, a Web browser may provide supplemental information (e.g. the HTTP Accept 

request-header field) to help the server provide a suitable Resource Representation. Importantly, the 

well-known semantics of HTTP‘s uniform interface allows developers to predictably weigh the 

impact a give method call may have on a Resource‘s state (for example, the side effects of a single 

GET, HEAD, PUT or DELETE request are the same as N > 0 identical requests [104]). As an interaction 

completes, a server may return a Representation to the client that represents the current state of the 

Resource involved in the interaction (or an appropriate status code). Finally, during message payload 

interpretation, Representations are handled by the user agent according to the Representation‘s data 

type and the original method semantics. For example, after performing a GET request, Web browsers 

may render the resultant HTML document for the user. As per the hypermedia model, embedded 

hyperlinks within Representations allow Resources to suggest potential next application states to the 

user, who may continue the interaction cycle by dereferencing additional hyperlinks. 

The basic hypermedia model described above provides insight as to how complex, machine-based 

interactions can be accomplished using REST. In this regard, an illustrative example proposed by 

Tilkov [330] is now summarized as a means of comparing typical REST versus SOAP Web service 
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implementations. Tilkov‘s example considers a simple procurement scenario where a Web-based 

application is designed to handle common tasks related to customer registration and order 

management. In typical service-oriented approaches (i.e. those common to SOAP Web services) 

distributed components are designed to represent high-level coordination entities (e.g. an 

OrderManagementService) and related domain-specific interfaces are defined to provide the requisite 

functionality. An example of the resultant PCI-based interface methods are shown in Figure 19. 

 

Figure 19: Implementing the procurement scenario using PCI principles (from [330]) 

With reference to Figure 19, the interface specifications are designed according to the processes a 

particular component supports (e.g. getOrders(), addCustomer() and cancelOrder()). In this case, 

the problem domain has been decomposed into two basic components, each with a specialized 

interface (i.e. OrderManagementService and CustomerManagementService). To utilize such 

components in a distributed application scenario, a client application would need to be specifically 

engineered to understand the syntax and semantics of each component‘s interface. In SOAP Web 

services, WSDL is used to provide these types of interface contracts (see section 2.2.2). However, 

although WSDL describes how a given method can be used, it does not inherently capture the 

meaning of each method [67]. As a result, process-centric interfaces such those shown in Figure 19 

require significant prior domain knowledge to achieve component integration and reuse. As noted by 

Vinoski [336], ―To invoke a service, a caller must incorporate details of each specific operation 

defined in the service's contract. In other words, the specialized interface forces each calling 

application to include custom code specific to the operations it wants to call. Calling applications 

must also be cognizant of each contract's ‗implied workflow,‘ which is the order in which the service's 

operations were designed to be invoked.‖  

In contrast to PCI-based interoperation techniques, recasting the aforementioned procurement 

example in terms of the Web‘s RESTful implementation yields dramatically different results. In terms 

of object oriented design, REST‘s Resource abstraction can be understood as an interface that all 

exposed component classes must implement. On the Web, this interface is provided by the HTTP 

specification, which defines the syntax and semantics of methods such as GET, PUT, POST, DELETE, etc. 

To model the previous example using REST, the domain-specific requirements of the procurement 

scenario are mapped to the HTTP uniform interface by defining an appropriate set of Resources (each 

providing a mapping between the example‘s functional requirements and a set of appropriate HTTP 

methods). For example, rather than defining an OrderManagementService component that exposes a 

specialized getOrders()method and cancelOrder() method, a single /orders Resource is created 

to provide domain-specific functionality through generalized HTTP methods. For example, 
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functionality provided by getOrders()can be encapsulated within the /orders Resource‘s HTTP GET 

method, whereas the functionality provided by cancelOrder()can be encapsulated within the 

/orders Resource‘s HTTP DELETE method. In this way, the functionality of the procurement scenario 

can be fully expressed using the HTTP‘s uniform interface as shown in Figure 20. 

 

Figure 20: Re-implementing the procurement scenario using RESTful principles (from [330]) 

Once a problem domain is mapped to the HTTP uniform interface, the Web‘s RESTful architecture 

helps support wide-area integration and reuse. First, the use of URIs and standardized interface 

methods allows additional network entities, such as proxies and caches, to provide intermediary 

services that can help facilitate accessibility and scalability. Further, exposed URIs allow Web clients 

to selectively compose Resources in application-specific ways (perhaps not originally envisioned by 

the service developers). Importantly, Resource Representations are often connected to other related 

Resources through the use of embedded hyperlinks. This inherent connectedness [266] allows 

hypermedia to become the ―engine of application state‖ [105] whereby the Resource‘s themselves 

provide descriptions of relevant components that are available for runtime composition. As noted by 

Prescod [257], ―It is the client that knows what mission it needs to complete for the end-user. It is the 

client's responsibility to navigate from resource to resource, collecting the information it needs or 

triggering the state changes that it needs to trigger.‖ 

While modern Web architecture arguably supports several context-aware computing requirements, 

two important limitations have prevented its widespread use in this regard. First, while the human-

based Web is highly interconnected through the use of embedded hyperlinks, REST-based Web 
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services often lack such connectedness as their Representation formats often consist of serialized data 

structures that lack embedded hyperlinks [266]. While some Resource representation formats support 

connectedness (e.g. the Atom Syndication Format [328]) many require external mechanisms for 

component discovery, which can inhibit ad-hoc integration [266]. Second, the current REST model 

provides no inherent support for component discovery and selection based on complex, real-world 

context information [105]. Recall that context-aware applications require pre-filtering of relevant 

application constituents based on domain-specific requirements [21, 29, 192, 231]. As such, additional 

wide-area discovery and selection mechanisms are required in order to support the spontaneous, 

cross-domain component integration capabilities required by large-scale context-aware systems. 

3.3 Approach Scope 

Based on the challenges and advances presented in the last section, we aim to develop a context-aware 

computing approach that captures the entrepreneurial spirit of modern Web architecture as a means of 

supporting the emergence of large-scale, real-world context-aware systems. Importantly, we suggest 

that much of the information and computation available on the Web has semantic associations to real-

world contexts. This fundamental observation follows in the tradition of an increasing number of 

researchers who suggest that ubiquitous Web-based computation has much to offer context-aware 

computing [37, 174, 179]. As richly described in [179], ―much of the information on the Web 

describes the world we physically inhabit, [however], there are few systematic linkages to real-world 

entities. This is unfortunate, because most of our activities concern physical objects other than 

computers.‖ To provide a few familiar examples, digital images are often associated with physical 

locations [302]; real-world products may be related to Web-based reviews [200]; an organization may 

publish online calendar data [81] or news feeds [99] describing upcoming events; a person may be 

linked with digital business card data or specific Web pages [80]; and streaming media may be 

preferred in certain locations [339]. However, while examples of contextually-relevant Resources 

abound on the Web, most remain hidden from context-aware systems due to an inherent lack of 

Resource contextualization and discovery mechanisms within conventional Web architecture (see 

section 4.2). 

The scope of our hybrid context-aware computing approach, called Ocean, addresses the large-scale 

computing challenges outlined in section 3.2. Unlike existing approaches, Ocean addresses these 

challenges by emphasizing user participation and community-based computation. Accordingly, Ocean 

defines a comprehensive conceptual model for augmenting existing Web-based software components 

(Resources) with expressive contextual metadata as a means of facilitating in-situ discovery and 

integration. Related, Ocean provides a complimentary software architecture that provides simple, 

accessible and scalable mechanisms for distributed applications to discover and compose 

contextually-relevant Resources at runtime. Towards these ends, Ocean extends emerging 

community-centric computing techniques such as collaborative annotation, open contribution, 

volunteer-based computing and recommender systems. By leveraging community participation, 

Ocean aims to support the emergence of a new class of hybrid context-aware Web applications 

capable of in-situ, context-mediated component discovery and composition. 
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3.4 Non-Functional Requirements 

To guide Ocean‘s development, we now present several non-functional requirements that are intended 

to align our approach with the requirements of conventional Web architecture. The following sections 

include a presentation of Ocean‘s design principles and related approach constraints. 

3.4.1 Design Principles 

Based on the design principles underlying conventional Web architecture [105], the following design 

principles are proposed for the Ocean approach: 

 Widespread accessibility: The Ocean approach should be widely accessible across a broad 

range of context situations, network infrastructure and device types. Deployment of 

supplemental context instrumentation and related infrastructure should be minimized or 

avoided. Related, Ocean should be directly supported on commodity end-user devices without 

requiring prohibitive runtime software such as complex distributed computing middleware. 

 Low entry-barrier: The Ocean approach should be conceptually simple and amenable to a 

wide variety of developer skill-levels. The approach should be designed to accommodate 

developers who may not be expert in context-aware computing. Finally, Ocean should co-opt 

well-known application models in order to leverage existing knowhow and infrastructure. 

 Application independence: The Ocean approach should accommodate a broad range of 

application types without modification of its underlying architecture. Ocean should limit 

domain preconceptions by relying on the end-to-end principle of system design as described 

in [279]. 

 Extensibility: The Ocean approach should support an extensible application model and a 

broad range of context data. In particular, context acquisition and modeling should be 

facilitated by external experts who understand the intricacies of a given context domain. 

Moreover, the Ocean application model should accommodate emerging data types and 

application scenarios without requiring changes to its underlying architecture. 

 Scalability: The Ocean approach should be highly scalable in terms of application model, 

context mechanisms and component interoperation. Further, the Ocean application model 

should accommodate cross-domain component scalability and independent deployment. 

3.4.2 Approach Constraints 

Based on the scope and design principles previously discussed, Ocean‘s key approach constraints are 

now presented. This somewhat unconventional presentation is motivated by the significant challenges 

facing large-scale context-aware systems, which impose important practical considerations. Recall 

that section 3.2 identified these key challenges as ubiquitous context infrastructure; ubiquitous 

network infrastructure; ubiquitous middleware; and effective cross-domain component interoperation. 

Below we defined our primary approach constraints, which derive directly from the foundations of 

large-scale context-aware systems identified throughout section 3.2. 

 Constraint 1: Aladin-based context acquisition and modeling: In order to accommodate 

cross-domain context-aware scenarios, Ocean directly subsumes Aladin‘s extensible, client-

centric context modeling style. Accordingly, Ocean adopts the Aladin architecture as the 
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foundation of its application model. In this regard, Ocean applications inherit Aladin‘s client-

centricity and overall approach; however, we impose no further constraints regarding how 

Aladin capabilities might be realized for a given platform. 

 Constraint 2: Internet-based network infrastructure: Despite its inherent lack of rich 

contextual semantics, we suggest that the Internet‘s ubiquity, flexibility and core design 

principles can serve as a foundation for specific classes of context-aware systems. Hence, our 

second constraint limits Ocean‘s data communications to those that can be directly 

accommodated by the public Internet, without requiring adoption of domain-specific security 

configurations, supplemental infrastructure or requiring changes to the existing TCP/IP 

communications model. 

 Constraint 3: Web-based middleware: Based on constraint 2, Ocean‘s subsumes 

conventional Web architecture as the foundation of its middleware approach. Hence, 

distributed communications within Ocean applications are bound to the Web‘s architectural 

styles as described in [104, 341]. By adopting the Web‘s architectural model, Ocean inherits 

its scalability, communication protocols, widely deployed functional apparatus and developer 

knowhow; however, Ocean must provide additional mechanisms for context-mediated 

Resource discovery and selection. 

 Constraint 4: REST-based component interoperation: Based on our adoption of 

conventional Web-based middleware, Ocean constrains component interoperation to the 

REST architectural style as described in [105]. As such, participating distributed components 

must be addressed using standard URIs and resolved using conventional DNS mechanisms. 

Second, participating components must provide domain-specific implementations of the 

HTTP uniform interface as described in [104]. Third, message payloads exchanged between 

distributed components must adhere to self-describing, standardized data types (e.g. MIME 

types). Fourth, interoperation between components must adhere to the REST style as 

described [105]. 

3.5 Approach Derivation 

Based on the nonfunctional requirements presented in the last section, this section derives the overall 

Ocean approach by describing its conceptual underpinnings and highlighting its key architectural 

aspects that are discussed in detail throughout the remainder of this dissertation. We note that by 

imposing the constraints presented in section 3.4.2, Ocean is strongly influenced by conventional Web 

architecture and, thus, inherits many of its capabilities and limitations. In this regard, the aim of 

Ocean is to provide a simple, accessible and scalable mechanism for mobile applications to discover, 

select and compose contextually-relevant Web Resources at runtime. To address this foundational 

aim, we first address the challenge of cross-domain operation by applying the Aladin-based context 

acquisition and modeling constraint described in section 3.4.2. According to this constraint, the Ocean 

approach directly subsumes the Aladin architecture as described in [49]. The extension of Aladin 

provides Ocean applications a means of operating in large-scale, cross domain scenarios. Notably, by 

subsuming the Aladin approach, the Ocean application model becomes architecturally client-centric, 

as shown in Figure 21. 
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Figure 21: Ocean's extension of the Aladin architecture 

With reference to Figure 21, Ocean extends the Aladin architecture in the following way: 

1. Domain-specific software utilize Aladin‘s Façade to control high-level framework features 

such as context event subscription, resource allocation (e.g. thread priority), preference 

policies (e.g. privacy requirements), communications, etc. (If needed, context acquisition 

and modeling may be performed locally without Aladin using any appropriate means.) 

2. The client-side Aladin Framework dynamically analyzes the capabilities of the end-user‘s 

device; downloading and integrating appropriate context acquisition and modeling plug-ins 

at runtime. 

3. Using its installed plug-ins, Aladin continually acquires and models native context data 

(NCD) from the user‘s environment using local hardware and related device drivers. 

4. Aladin notifies its host application of changes to the user‘s context situation through events 

that include NCD. Applications may react to context events as needed by parsing and 

interpreting extracted NCD internally. 

5. Finally, the Aladin architecture is extended with Ocean-based context interpretation, which 

translates locally modeled NCD into a ranked list of contextually relevant Web Resources 

(described shortly). 

To address the scalability and heterogeneity issues related to Ocean‘s Internet infrastructure 

constraint (see section 3.4.2), Ocean subsumes existing Web architecture by casting applications as 

conventional Web agents that ―communicate using standardized protocols that enable interaction 
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through the exchange of messages which adhere to a defined syntax and semantics‖ [341]. 

Specifically, Ocean applications are defined as user agents that act on behalf of the user according to 

the interaction model elaborated throughout this chapter. As in conventional Web architecture, the 

Ocean application model makes no assumptions regarding the type of component interactions that 

might be implemented; requiring only that interoperation between distributed components adheres to 

the principles underlying Web architecture [32]. Hence, Ocean‘s application constituents (i.e. 

Resources) are addressed using standard URIs, resolved using DNS, adhere to the HTTP uniform 

interface, exchange standards-based message formats and provide suitable Representation formats. As 

in conventional Web architecture, Resource state management is governed by origin servers, which 

represent the ―definitive source for representations of its resources and must be the ultimate recipient 

of any request that intends to modify the value of its resources‖ [106]. Accordingly, any RESTful 

Web Resource may become part of a dynamically assembled or adapted Ocean application; even 

those Resources not specifically designed for context-aware scenarios. 

Next, Ocean extends the Web‘s hypermedia application model with additional aspects of dynamic, 

context-mediated Resource discovery and composition. Recall that in traditional hypermedia 

applications, Resource content and structure (e.g. Web page text) are used to provide the context 

mediation necessary for users to discover, select and compose Resources on-demand (e.g. dereference 

a link using a Web browser) [106]. Notably, conventional Web architecture defines URIs as having 

global scope; meaning that ―the resource identified by a URI does not depend on the context in which 

the URI appears‖ [341]. However, while global scope supports the hypermedia application model, it 

does not inherently support Resource pre-filtering based on environmental context information such 

as location, proximate devices or activity (see section 4.1).  

To overcome the Web‘s context-mediation limitations, Ocean defines a foundational architectural 

abstraction in section 4.3, called a Contextualized Resource, which provides an extensible semantic 

metadata model designed to constrain the Discoverability Context of conventional Web Resources. 

Extending the definition proposed by Dey and Abowd in [89], we define a Resource‘s Discoverability 

Context as: 

 

 

Further, as described in section 4.3.2, the Contextualized Resource is based on an extensible 

Context Metadata abstraction, which encapsulates the syntax and semantics of a given context 

domain; allowing domain-neutral processing by Ocean infrastructure and enabling non-experts to 

describe the Discoverability Context of Resources without domain expertise (see section 5.3.2). In 

this regard, a conventional Resource is contextualized (i.e. provided a Discoverability Context) by 

associating it with a specifically configured set of General and Context Metadata using the 

Contextualized Resource data model described in section 4.3.1.  

Definition 1: Discoverability Context 

Discoverability Context: The set of contextual criteria that must be fulfilled before a 

Resource is considered relevant to the interaction between a user and an Ocean 

application, including the user and application themselves. 
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Using the Contextualized Resource as a foundation, Ocean defines a Web-centric application model 

in section 5.2 that is based on the client-centric mashup (CS mashup) style. Briefly, in standard CS 

mashups, Resources are manually composed to create (relatively static) hybrid Web applications that 

combine data or computation from multiple sources. In the Ocean approach, we extend the 

conventional CS mashup style with support for dynamic, context-mediated component discovery and 

selection. Accordingly, Ocean allows mashups to be dynamically created and adapted in-situ using 

discovered contextually-relevant components (i.e. Resources). To promote wide-area Resource 

integration, we apply the REST-based component interoperation constraint described in section 3.4.2. 

Hence, Contextualized Resources in Ocean refer to Web Resources that adhere to the REST 

architectural style as defined in [105]. 

To maintain backwards compatibility with existing Web architecture, Contextualized Resource 

metadata are persisted within a context-aware component registry, called the Ocean Registry, which 

facilitates Resource contextualization and discovery (see section 5.3). To perform Resource 

discovery, Ocean applications aggregate NCD locally using the Aladin context modeling style and 

then query the Ocean Registry using a flexible search protocol that allows NCD to be included as 

query terms (see section 6.4.1.1). Notably, Ocean application developers may formulate Discovery 

Requests without detailed knowledge of the underlying context domains. In response, the Ocean 

Registry returns a ranked list of Descriptive Metadata regarding the relevant Contextualized 

Resources for a given Discovery Request (see section 6.4.1.2). Ocean applications can then select and 

compose appropriate Resources dynamically according to the extended CS mashup style described in 

section 5.2.2.  

To support Contextualized Resource storage and lookup, the Ocean Registry provides integrated 

Persistence and Discovery Frameworks, which are described in Chapter 6. Briefly, the Persistence 

Framework allows Contextualized Resources to be efficiently stored and indexed for rapid retrieval. 

In real-world scenarios, Context Metadata are often represented by complex object types that resist 

classical database indexing techniques [29, 61]. As described in section 6.4, Ocean‘s Persistence 

Framework extends several similarity search techniques to address this issue. Further, the Persistence 

Framework accommodates a variety of domain-specific indexing techniques to support rapid query 

processing. Query processing is provided by Ocean‘s Discovery Framework, which operates in 

conjunction with the Persistence Framework; allowing NCD to be compared to persisted metadata 

contained within the Ocean Registry (see section 6.4). Related, domain-specific implementations of 

the aforementioned Context Metadata abstraction, called Context Handlers, are provided by external 

context domain experts who extend the functionality of the Ocean Registry using the open 

contribution process described in section 5.4. Further, in order to promote large-scale Resource 

contextualization, the Ocean Registry provides an additional open contribution process that allows 

community-based Resource contextualization using arbitrary combinations of Context Metadata (see 

section 5.5). For reference, a high-level overview of the Ocean approach is presented in Figure 22 (see 

section 5.2 for a complete description). 
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Figure 22: High-level overview of the Ocean approach 

Ocean‘s Web-scale focus introduces two critical challenges for effective Resource discovery and 

selection, which are addressed in Chapter 7. The first challenge relates to context-mismatch, whereby 

Resource discovery performance is degraded due to mismatches between the Context Metadata used 

to describe a Web Resource and incoming query terms. Section 7.2 addresses context-mismatch by 

defining a query expansion mechanism that automatically supplements Discovery Requests with 

additional, contextually-relevant query terms extracted from query information shared by members of 

the Ocean end-user community. The second challenge relates to information overload, whereby 

Resource discovery performance is degraded due to extremely large numbers of undifferentiated 

query results. Section 7.3 addresses information overload by describing Ocean‘s Resource 

personalization approach that automatically predicts a user‘s affinity for a given Resource based on 

modeled preference information from similar Ocean end-users. Notably, both query expansion and 

Resource personalization are available as optional, privacy-aware enhancement features that can be 

used either alone or in combination to help improve discovery results. 

3.6 Principle Ocean Stakeholders 

The Ocean approach introduced in the last section implies participation by a diverse set of developers 

and end-users. In this section, we identify Ocean‘s principle stakeholders; providing a description of 

each along with an overview of related technical and business constraints. It should be noted that, 

while each stakeholder is presented in isolation, some roles may overlap to form hybrids. In addition, 

Ocean‘s adoption of existing architecture may involve ancillary or unintentional stakeholders; 

however, these are not investigated within this dissertation. Notably, the following stakeholder 

descriptions are not intended to be rigorous or complete. Rather, they are presented as a means of 

clarifying the principle users of Ocean as related to subsequent chapters of this dissertation. 
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3.6.1 Ocean Core Developers 

Description: Ocean core developers (Core Developers) are responsible for the development and 

maintenance of the Ocean Registry, its software architecture and its Contextualized Resource data 

store. Key development aspects include: conceptualization of Ocean‘s application model; definition of 

related external APIs; development of associated communication protocols; definition of the Ocean 

Registry architecture and its related interface abstractions; development of Context Metadata and 

Contextualized Resource contribution mechanisms; development of the Contextualized Resource 

Persistence Framework; development of the Contextualized Resource Discovery Framework, 

including integration of appropriate similarity search algorithms; and development and maintenance 

of a suitable technical infrastructure. Key aspects of the Core Developer stakeholder are elaborated in 

section 5.3. 

Key technical and business constraints: Core Developers are experts in the Ocean Registry 

software infrastructure and its related context-aware computing approach. Primary technical skills 

include: development and maintenance of large-scale software systems; knowledge of multi-feature 

similarity search algorithms; knowledge of domain-neutral indexing abstractions and associated data 

modeling; database development and optimization; and setup and maintenance of supportive technical 

infrastructure. Core Developers are not necessarily experts in any specific context or application 

domain. Core Developers devise and implement business models supporting the following key 

aspects: Ocean Registry design; technical infrastructure operations and maintenance; acquisition of 

required support software, tooling and training; and related costs associated with development and 

support staff. 

3.6.2 Context Domain Experts 

Description: In Ocean, we suggest that context modeling is best accommodated by external experts 

who understand the inherent complexities of a given context domain. In this regard, context domain 

experts (Context Experts) develop, test and contribute Context Handlers for use within the Ocean 

Registry. As Context Handlers encapsulate the syntax and semantics of a given context domain, 

Context Experts must be well versed in any associated native context data formats and related 

semantics. Context Experts also devise Context Metadata configuration options and related 

documentation intended to allow non-experts to sufficiently describe the Discoverability Context of 

conventional Resources. Finally, Context Experts participate in the Ocean Registry‘s Context Handler 

contribution process and manage contributed handlers throughout their lifecycle. Key aspects of the 

Context Expert stakeholder are further elaborated in section 4.3.2. 

Key technical and business constraints: Context Experts are technically proficient within their 

given context domain. As such, Context Experts have technical knowledge related to developing 

Context Model implementations (i.e. Context Handlers) along with any associated configuration 

options and related documentation. Context Experts must be technically proficient in deriving, testing 

and optimizing the algorithms underlying a given context domain. Context Experts are not necessarily 

experts in the Ocean Registry architecture or any specific application domain. Context Experts devise 

and implement business models supporting the following key aspects: Context Handler design; 
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development and testing; acquisition of required support software, tooling and training; and related 

costs associated with any required development and support staff. 

3.6.3 Resource Contextualizers 

Description: Resource contextualizers (Contextualizers) create and maintain Contextualized 

Resources using the Ocean Registry‘s Resource Management API (see section 5.3.2). Contextualizers 

describe the Discoverability Context of Resources using the Context Handlers contributed by Context 

Experts. Contextualizers devise application scenarios that motivate and guide their contextualization 

efforts. Such application scenarios are domain-specific and may not be related to the semantic content 

of the Resources under consideration. Contextualizers may utilize the Resource Management API 

directly using its XML-based protocol; however, we envision the emergence of an ecosystem of 

stand-alone and Web-based tools designed to provide simplified contextualization services. In this 

regard, we suggest that many Web site developers may be motivated to provide integrated Ocean 

support; enabling end-users to transparently contextualize Resources using Ocean (e.g. a photo 

sharing Website that utilizes Ocean to automatically contextualizes shared digital photos on behalf of 

users). Finally, the Contextualizer stakeholder may be provided by software agents that automatically 

create Contextualized Resources based on specific semantic rules and strategies (e.g. context-aware 

Web crawlers – see section 8.4). Key aspects of the Contextualizer stakeholder are further elaborated 

in sections 5.3.2 and 5.5. 

Key technical and business constraints: Contextualizers may vary widely in technical skill; 

however, most will have at least modest technical skills within a given contextualization domain. As 

such, Contextualizers may have technical knowledge related to the configuration of Context Metadata 

and an understanding of the basic Ocean application model. Some contextualization scenarios may 

require domain-specific technical skills, including Website design, web service interaction or stand-

alone application development. Contextualizers devise and implement business models supporting the 

following key aspects: Contextualized Resource creation and maintenance; design, development and 

testing; acquisition of required support software, tooling and training; and associated costs associated 

with any required development and support staff. 

3.6.4 Ocean Application Developers 

Description: Ocean application developers (Ocean Developers) develop, deploy and maintain 

software applications that leverage Ocean functionality. In the Ocean approach, software applications 

created by Ocean Developers are known as Ocean applications. Broadly, Ocean Developers use the 

Ocean Registry‘s Discovery API to discover, select and compose contextually-relevant Web 

Resources at runtime (see section 6.4.1). As such, Ocean Developers are responsible for developing 

suitable application scenarios, providing domain-specific application logic and providing suitable 

technical infrastructure. Moreover, Ocean Developers are responsible for responding to Discovery 

Responses by appropriately selecting Resources based on Ocean‘s Descriptive Metadata. Once 

contextually-relevant Resources have been selected, Ocean Developers are responsible for 

orchestrating component composition and interoperation according to the REST architectural style. 

Key aspects of the Ocean Developer stakeholder are elaborated in section 5.2. 



3.7 The Ocean Reference Implementation 

75 

Key technical and business constraints: Ocean Developers are typically experts in a specific 

application domain. Accordingly, primary technical skills often include: mobile application 

development; Web application development; XML parsing and validation; REST-based component 

interoperation; human-computer interaction; and maintenance of supportive technical infrastructure. 

As previously described, Ocean context acquisition and modeling is accomplished using Aladin‘s 

client-centric approach. Accordingly, Ocean Developers are responsible for developing (or 

integrating) a suitable Aladin style context modeling mechanism (possibly through integration of 

third-party libraries). Ocean Developers are not necessarily experts in any specific context or 

contextualization domain. Ocean Developers devise and implement business models supporting the 

following key aspects: Application scenario development; software engineering and deployment; 

context modeling libraries; technical infrastructure operations; acquisition of required support 

software, tooling and training; and associated costs associated with any required development and 

support staff. 

3.6.5 Ocean Application End-users 

Description: Ocean application end-users (Ocean Users) utilize domain-specific Ocean software to 

accomplish tasks according to a specific set of user-specific needs, goals and modes of interaction. 

Typically, an Ocean User owns and manages the computing device executing Ocean software; 

however, software deployment and hardware maintenance may be handled by the user‘s organization. 

Ocean Users may be differentiated in terms of security and privacy considerations. Finally, Ocean 

Users may operate Ocean software in a variety of real-world computing environments. 

Key technical and business constraints: Ocean Users vary widely in terms of technical 

capabilities; however, they typically have expertise in a given Ocean application domain. As such, 

Ocean Users may have no knowledge of Ocean infrastructure, context modeling, Resource 

contextualization or component interoperation techniques. Ocean Users are capable of operating and 

maintaining the hardware device upon which an Ocean application executes. Further, Ocean Users 

may rely on technical support provided by their organizations, hardware manufacturers or Ocean 

Developers. Ocean Users typically consider business models directly addressed by Ocean 

applications. 

3.7 The Ocean Reference Implementation  

Each aspect of the Ocean approach introduced in this chapter is described in detail throughout the 

remainder of this dissertation. Throughout this dissertation, Ocean is presented hierarchically by 

providing focused discussions of related work, formulating related theoretical contributions, and then 

validating each contribution with an ongoing discussion of the Ocean Reference Implementation (RI). 

The Ocean RI is a software-based implementation of core Ocean theoretical concepts and is used to 

validate that Ocean‘s various contributions are indeed realizable using existing techniques, 

technologies and infrastructure. Notably, the Ocean RI is intended to validate our contributions in 

terms of the design principles and approach constraints described in sections 3.4.1 and 3.4.2 

respectively. Rather than presenting the Ocean RI within a dedicated chapter, we describe its 

implementation in conjunction with Ocean‘s theoretical development as a mechanism for clarifying 

core Ocean concepts. As such, our presentation of the Ocean RI is distributed over the next several 
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chapters. In addition, Chapter 8 presents an example Ocean application (based on the Ocean RI) that 

aims to draw together the theoretical and practical aspects discussed throughout the dissertation as a 

means of validating the Ocean approach in large-scale scenarios. 

3.8 Chapter Summary 

This chapter presented the foundations of the Ocean approach based on an adapted version of the 

IEEE Recommended Practice for Software Requirements Specifications. The chapter began with a 

description of the key challenges facing large-scale context-aware systems and described several 

related advances that address each challenge in isolation. Next, it described how Ocean aims to 

capture the entrepreneurial spirit of modern Web architecture as a means of supporting large-scale, 

real-world context-aware systems. Next, nonfunctional requirements were presented, including key 

design principles and approach constraints. Notably, in order to align Ocean with the requirements of 

conventional Web architecture, Ocean‘s key constraints include: Aladin-based context acquisition and 

modeling; Internet-based network infrastructure; Web-centric middleware; and REST-based 

component interoperation. Based on these constraints, the Ocean approach was then derived. Notably, 

the Ocean approach extends Aladin‘s client-centric context modeling style with an accessible and 

scalable mechanism for mobile applications to discover, select and compose contextually-relevant 

Web Resources at runtime. In order to facilitate wide-area component contextualization and 

discovery, several core Ocean concepts were introduced, including the Contextualized Resource 

abstraction; the Context Metadata abstraction; the Ocean Registry; community-based contribution 

models; mechanisms for Contextualized Resource storage and indexing; and community-based 

methods for overcoming context mismatch and information overload. Next, Ocean‘s principle 

stakeholders were described, including Core Developers, Ocean Developers, Contextualizers and 

Ocean Users. The chapter concluded with a discussion of the Ocean RI as an approach validation 

methodology.  
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Chapter 4 

The Contextualized Resource 

4.1 Introduction 

The last chapter presented the foundations of the Ocean Web-centric context-aware computing 

approach. As previously introduced, Ocean investigates techniques for promoting the emergence of 

large-scale context-aware computing systems based on the integration of existing context sources, 

network infrastructure, application models and component interoperation styles. It was discussed how 

many of the adaptive techniques uncovered by isolated context-aware systems are increasingly 

relevant for everyday computing environments, which are rapidly becoming saturated with network 

connectivity and contextually-relevant distributed computation. Towards this end, the last chapter 

presented Ocean‘s scope, design principles, approach constraints, approach derivation, principle 

stakeholders and validation methodology. Unlike traditional context-aware systems, which are 

generally intended to address niche application scenarios, Ocean represents a generalized conceptual 

approach and complimentary technical infrastructure that intends to enable context-aware applications 

to arise in an ―evolutionary fashion from modest beginnings, rather than from a Grand Plan‖ [223]. 

Towards this end, this chapter presents the Contextualized Resource as a mechanism for extending 

conventional Web architecture with extensible context-awareness features. 

The structure of this chapter is as follows: Based on the Ocean approach derivation presented in the 

last chapter, relevant background and related work are discussed in section 4.2. Next, section 4.3 

introduces the Contextualized Resource abstraction, which provides a mechanism for constraining the 

Discoverability Context of conventional Web Resources. Section 4.3.1 details Ocean‘s extension of 

the conventional Resource model with extensible semantic metadata indented to facilitate 

contextualization and wide-area component discovery. Next, section 4.3.2 details the Context 

Metadata abstraction underlying the Contextualized Resource by describing its architectural lineage 

and defining its data model. Section 4.3.3 provides a theoretical discussion of similarity modeling 

with regard to the syntax and semantics of a given context domain. Section 4.3.4 discusses validation 

of the Context Metadata interface. Ocean RI validation of the Contextualized Resource model and 

related XML schema are presented in section 4.3.5. The chapter concludes with a Contextualized 

Resource example in section 4.4. 

4.2 Background and Related Work 

Ocean‘s high-level approach derivation described in the last chapter draws inspiration from a broad 

range of related work. As is evident from the design constraints described in section 3.4.2, Ocean‘s 

foundation is rooted firmly in conventional Web architecture and Internet-based network 

communications. However, as described in section 3.5, the effectiveness of the Ocean approach is 

contingent upon the development of mechanisms for dynamically discovering, selecting and 

interoperating with contextually-relevant Resources in-situ. As previously introduced, Web 

architecture has been designed primarily to support the requirements of an Internet-scale distributed 

hypermedia system [105, 106, 341]. This section discusses the context-mediation approaches common 

to conventional Web architecture with regards to the Ocean approach. 
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In terms of runtime adaptation, conventional Web architecture addresses the late-binding of 

application constituents based on two principle mechanisms: Resource mediation and metadata 

mediation [341]. In the Resource mediation model, context information is delivered to users encoded 

within requested Representations as inline context, which typically takes the form of the informational 

and structural elements within a given Representation‘s data format. For example, Web pages 

typically provide inline information such as text, page layout and graphic elements that serve as 

mediators between users and the embedded hyperlinks within the page. As users navigate between 

application states (i.e. other Web pages) using discovered hyperlinks, additional contextual 

information is delivered progressively as the transaction unfolds. 

During metadata mediation, supplemental descriptive information is provided alongside a 

Resource‘s Representation as a means of supporting services such as caching, content negotiation, 

cataloging, information retrieval, etc. Broadly, metadata has been defined as ―machine understandable 

information about web resources or other things‖ [30]. Typically, metadata ―consists of assertions 

about data, and such assertions typically, when represented in computer systems, take the form of a 

name or type of assertion and a set of parameters, just as in the natural language a sentence takes the 

form of a verb and a subject, an object and various clauses‖ [30]. In Web architecture, examples of 

metadata may include information regarding a Resource‘s language, owner, content-type and other 

arbitrary information [341]. 

Metadata are used to describe Resources in three principle ways. First, embedded metadata occur 

within the Resource's Representation itself (e.g. HTML metadata tags [365]). Second, accompanying 

metadata are provided separately from the Resource‘s representation during transmission (e.g. HTTP 

entity headers [104]). Third, associative metadata are used to provide semantic descriptions of 

Resources that can be stored externally (e.g. within another Resource or component registry). 

Broadly, embedded and accompanying metadata are used to guide interactions between Web agents 

and origin servers [104]. For example, during an HTTP GET request, HTTP headers are used to specify 

the requirements and preferences of the client (e.g. accepted content types or preferred languages). 

For example, the HTTP Accept header can be used to specify the media types that are acceptable as a 

response to a GET request. As described in [104], an Accept header may include ”Accept: audio/*; 

q=0.2, audio/basic”, which indicates that the client prefers ”audio/basic” but would accept any 

audio type if appropriate. Additional header examples include accepted encoding, charset, language 

and authorization credentials [104]. Notably, embedded and accompanying metadata have been 

classified as transactional context information due to their relevance during the Resource 

request/response phase [266]. 

While inline and transactional contextual information support the requirements of hypermedia 

applications, they are generally poorly suited for supporting the component interoperation 

requirements of many context-aware systems [29]. Problematically, Web-based hypermedia requires 

that Resources are requested and composed before context information can be extracted, which 

prevents component pre-filtering outside of the hypermedia transaction. In contrast, adaptive context-

aware applications generally require pre-filtering of potential constituents based on domain-specific 

requirements [21, 29, 192, 231]. In Web-based context-aware systems, constituent pre-filtering is 

typically accommodated through the use of associative metadata, which are stored within a 



4.2 Background and Related Work 

79 

component registry. Broadly, component registries are used to mediate dynamic binding and 

interaction between loosely-coupled elements of a distributed application [29, 308]. Within 

component registries, associative metadata are used to describe important attributes of distributed 

components such as addressing information, interface descriptions, data types and other semantic 

information [254]. Distributed applications discover suitable constituents by querying the component 

registry using a search protocol. The component registry uses incoming queries to perform a 

component lookup using the associated metadata as a filtering mechanism. Components that match 

the specified search parameters and query terms are returned to the application where they may be 

used for runtime composition. 

Component registries are typified by the Universal Description, Discovery and Integration (UDDI) 

specification central to SOAP Web Services [231]. UDDI provides an XML-based metadata 

specification that provides structured information describing SOAP-based Web-services. UDDI is 

used in combination with the Web Services Description Language (WSDL) [67], which typically 

provides a process-centric description of a Web Service‘s method syntax, supported data types and 

endpoint addresses. UDDI supports Publish and Inquiry APIs that provide clients a means of storing, 

updating, querying and deleting Web Service metadata. As per the SOAP Web Services model, once a 

component has been discovered using UDDI, point-to-point communications between the discovering 

application and the selected distributed component occur without further interaction with the UDDI 

registry (unless initiated by the application). The query facilities of UDDI are based on a SOAP-based 

search protocol that provides basic interface matching and text-based keyword search. However, 

UDDI‘s lack of semantic metadata support has been viewed as serious limitation in more complex 

interaction scenarios such as mobile and context-aware systems [29, 308]. Indeed, while several open-

source and commercial implementations of UDDI exist [155, 238], industry support has been waning. 

Notably, Microsoft, IBM and SAP discontinued public Internet-based UDDI registries in 2006 [283]. 

The lack of semantic metadata within the UDDI specifications has been addressed by more recent 

work. For example, the Electronic Business using eXtensible Markup Language (ebXML) [232] 

defines a registry service that incorporates a more advanced metadata model capable of supporting 

hierarchical classification and association descriptions of registered components. In addition, the 

ebXML registry provides a comprehensive query interface that supports SQL-like search 

constructions. Similarly, Pokraev et al. [254] developed an enhanced UDDI registry that incorporates 

a semantic model built on the Web Ontology Language for Services (OWL-S) [244]. Their approach 

integrates domain-specific metadata for semantic service description such as the Composite 

Capability/Preference Profiles (CC/PP) ontology [364]. Their approach also allows clients to include 

contextual information within a query in order to improve component discovery results for context-

sensitive applications. Similarly, Song, et al. [308] use an ontology-enabled registry to address 

semantic interoperability. More recently, the SOPHIE architecture [29] was developed as a means of 

addressing the needs of context-aware scenarios through the association of semantic metadata with 

conventional WSDL using a hybrid registry approach. Seeing the need for improved semantic 

component mediation, the W3C developed a charter focused on creating Semantic Annotations for 

WSDL and XML Schema (SAWSDL) that intends to define a standards-based mechanism whereby 

semantic annotations can be added to WSDL components [289].  



Chapter 4 

80 

The inclusion of semantic metadata is increasingly recognized as important for supporting context-

aware scenarios [29]. In this regard, the Multi Channel Adaptive Information Systems (MAIS) project 

[14] provides a component registry designed for mobile applications and intelligent environments. 

MAIS aims to improve upon competing registry techniques by accounting for both the context of the 

client and the service during query operations. Similarly, Chakraborty et al. [59] proposed a set of 

semantic extensions, called DReggie, which supplement the JINI lookup service (JLS) [342] with 

supplemental semantic information based on the DARPA Agent Markup Language (DAML)
9
. 

Additional work by Doulkeridis et al. [93] demonstrates the effectiveness of augmenting traditional 

component registries with a multidimensional Object Exchange Model (OEM) graph that models 

services as atomic nodes [313]. Notably, their approach demonstrates how contextual information can 

improve query results in dynamic service scenarios and how the type of context metadata model 

constrains an approach in terms of computational complexity and semantic expressiveness. Related, 

Blackstock, Lea and Krasic [37] suggest a ―shared environment model‖ as a means of bridging 

divergent middleware using enhanced interface specifications. An additional registry approach has 

addressed search-space reduction using context values and semantic parameters [265]. 

While the addition of semantic metadata to component registries has been shown to improve 

constituent discovery in loosely-coupled distributed systems, existing techniques are largely 

incompatible with the Ocean approach. For example, context-enhanced registries define intermediary 

metadata models that may not be known be all participants or capable of expressing the fidelity of 

native context information [254]. Further, existing approaches provide only a restricted set of 

metadata types and do not provide inbuilt mechanisms for promoting contributions by external 

domain-experts [29]. Further, in order to accommodate component interoperation, current registry 

approaches focus on supporting process-centric interoperation (PCI) styles such as those typified by 

SOAP-Web services. As described in section 3.2.7, PCI-based interoperation relies on the definition 

of domain-specific interface methods and related data types using interface description languages 

such as WSDL or Corba IDL. As a result, PCI techniques result in an explosion specialized interfaces; 

each with complex method semantics and related sequencing requirements. Thus, in order for an 

application to effectively utilize a discovered process-centric component, it must possess significant 

prior component knowledge; reducing the chance of interoperation in large-scale, real-world 

environments [334]. 

As detailed in section 3.2.8, by standardizing component addressing schemes, method semantics 

and message payloads, the REST architectural style is increasingly recognized as well-suited for 

supporting cross-domain component interoperation. In this regard, several projects have begun 

exploring the application of semantic metadata to conventional RESTful Resources. One of the first 

approaches in this regard was the Platform for Internet Content Selection (PICS) [366] specification 

proposed by the W3C. Broadly, PICS ―defines a language for describing rating services. Software 

programs will read service descriptions written in this language, in order to interpret content labels 

and assist end-users in configuring selection software‖ [366]. Accordingly, PICS metadata provide a 

set of extensible attribute-value pairs that are used to describe Resources according to name, subject, 

category and content rating. PICS metadata can be embedded within Resources or stored within an 
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external rating registry where they can be used to mediate interactions between User agents and 

Resources. While PICS was integrated within the Microsoft Internet Explorer browser within its 

―approved sites‖ feature, its narrow application scope and lack of a coherent registry design ultimately 

led to the project‘s discontinuance. 

A substantially richer approach for contextualizing Web Resources is the Dublin Core (DC) 

metadata approach [82]. As part of the W3C‘s semantic Web initiative [368], which endeavors to 

extend the Web with machine-based reasoning and processing capabilities, the DC represents an 

international metadata standard for describing the semantics of Web Resources. The DC provides a 

standardized set of metadata elements that are implemented using non-proprietary technologies such 

as XML and RDF [367]. As described in [83], the elements that comprise the DC are separated into 

two principle categories. The first category, termed simple elements, refers to generic metadata that 

are applicable across domains (e.g. title, description, date, language, etc.) The second category, 

termed qualified elements, provides domain-specific extensions of simple elements. Both simple and 

qualified elements incorporate established vocabularies and provide for extensions. For example, the 

simple element ―Date‖ may be refined as ―Date Submitted‖ and encoded as ―W3C-DTF.‖ 

Implementations of simple or qualified elements may be embedded within Resources or linked via 

associative metadata. While the DC and RDF do not define a specific application model that can be 

used directly by context-aware applications, they do provide insight into the benefits of non-

proprietary technologies and community contribution. An example DC metadata element is provided 

below. 

 

Figure 23: An example of Dublin Core metadata (from [83]) 

In terms of RESTful context-mediation in context-aware systems, many current approaches 

associate relatively simple contextual metadata to domain-specific Web URIs (generally under the 

control of the project). For example, Yarin and Ishii‘s TouchCounter project [375] provides Web-

based information describing the usage patterns of physical storage containers and shelving surfaces 

through Resource mediation based on infrared tag identifiers. In their approach, a unique infrared tag 

identifier is used to mediate interactions with related Web content (e.g. updates or consuming). 

Similarly, the Lancaster GUIDE system [78] uses a Web-based infrastructure as a means of providing 

dynamic information within a mobile tour-guide scenario. User‘s of the GUIDE system carry a 

specially outfitted mobile device that runs the GUIDE application and related context acquisition 

mechanisms. As users encounter changing contextual information (e.g. transitioning between 

<rdf:RDF  

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

 xmlns:dc="http://purl.org/dc/elements/1.1/"> 

 

 <rdf:Description rdf:about="http://example.com/audio/guide.ra"> 

 

  <dc:creator>Rose Bush</dc:creator> 

  <dc:title>A Guide to Growing Roses</dc:title> 

  <dc:description>Description text<dc:description>  

  <dc:date>2001-01-20</dc:date> 

 

 </rdf:Description>  

</rdf:RDF> 
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WaveLAN cells) the system automatically applies an integrated filtering algorithm to discover 

relevant URIs from within a set of predetermined Resources. Rendering of selected Resources is 

provided by an integrated Web browser within the GUIDE application. Similar Web-centric tour-

guide systems have been developed to explore the binding of various other context types with Web-

based content [191, 303]. 

Hewlett-Packard‘s Cooltown project [179] takes a more general approach to Resource 

contextualization. In Cooltown, HP researchers developed a software system designed to augment 

people, places and things with Web URIs. Cooltown supports URI context mediation through two 

principle mechanisms. The first mechanism, termed direct sensing, involved the development of a 

short range wireless protocol (called eSquirt) that is intended for sending standard URIs across 

common technologies such as IR and Bluetooth. The second approach, termed indirect sensing, is 

based on an external context registry that supports associations between Web Resources and specific 

types of context data. Cooltown proposes that indirect sensing might be accomplished by linking 

information such as RFID tags or iButtons
10

 to Web URIs using a registry; however, Cooltown‘s 

indirect sensing approach was only preliminarily elaborated and its initial design supports a limited 

set of predefined context information. 

Cooltown can be understood (anachronistically) as an object hyperlinking technique refers to the 

association of physical objects with Web-based Resources using some mechanism for context-

mediation. Similar to Cooltown, object hyperlinking systems may employ either direct or indirect 

sensing techniques to obtain URI information or resolvable identifiers from real-world objects. For 

example, Semapedia
11

 have developed an approach for linking physical objects and locations to 

Wikipedia
12

 articles through a dedicated two dimensional (2D) barcode system and related mobile-

phone reader software. Using a Semapedia reader, images taken of discovered 2D barcodes are 

translated into valid URIs and used to open the associated Wikipedia page in a mobile browser. 

Related barcode techniques include Denso-Wave‘s Quick Response Code (QR Code)
13

 and 

Cambridge University‘s ShotCode
14

 system. 

While object hyperlinking is becoming a commercial success in many markets [343], current 

approaches are generally proprietary and limited to a single application model. For example, 

Semapedia only allow association of 2D barcodes to Web Resources contained within the Wikipedia 

domain. Similarly, the Hardlink
15

 system provides a mobile phone gateway that maps physical 

hyperlinks to Resources within the dedicated .mobi domain. Moreover, sophisticated contexts (e.g. 

profile, temperature and geo-location) are not directly supported by current approaches. Additionally, 

many current object hyperlinking approaches require specific hardware support (e.g. a compatible 

inbuilt camera) and domain-specific software for translating captures images into suitable identifiers. 

For example, QR Codes require a compatible onboard camera and ISO/IEC 18004 compliant 

translation software whereas ShotCode requires entirely different translation software. In this regard, 
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the proprietary nature of these context mechanisms cannot be used to support arbitrary application 

domains or comprehensive pre-filtering and ranking of contextually relevant URIs. In response, the 

recently formed W3C UbiWeb
16

 has been formed to promote more open contextualization 

approaches; however, to the best of our knowledge, no current object hyperlinking technique is 

directly capable of supporting the Ocean application model introduced in section 3.5 and elaborated in 

section 5.2. 

The commercial success of existing object hyperlinking illustrates the effectiveness of RESTful 

component interoperation. In particular, existing approaches demonstrate how the translation of 

contextual information into standard Web URIs can be combined with the Web‘s uniform interface to 

provide cross-domain access to contextually-relevant Resources. Recent efforts for associating 

additional semantic information to REST resources includes OWL-S [244], WSMO [372] and 

WSDL-S [4]. These approaches provide a controlled vocabulary for semantically annotating REST 

Resources; however, they do not address the component mismatch that may occur between Resources 

that provide differently represented data. Towards this end, Lathem, Gomadam and Sheth have 

developed the SA-REST [192], which provides an approach for bridging incompatible component 

representations using ontology-based matching and data transcoding. SA-REST is derived from W3C 

SAWSDL recommendation [289] and provides a means of annotating the inputs and outputs of 

REST-based Resources using RDF descriptions. Using semantic annotations, SA-REST applications 

are able to combine the inputs and outputs of various Resource representations; however, SA-REST 

does not provide a wide-area component discovery approach based on arbitrary context metadata.  

Based on the increasing popularity of REST-based component interoperation, Hansen et al. 

proposed a context-aware hypermedia system called the HyCon framework [139]. HyCon represents a 

―framework for context aware hypermedia‖ that is designed to facilitate context-aware browsing, 

annotation, searching and tour guidance. Of particular interest, HyCon provides integrated support for 

community-driven Resource annotation, whereby users of the systems can ―tag‖ conventional 

Resources with context data such as RFID or Bluetooth identifiers. In this regard, HyCon supports the 

automatic collection of context information that can be used later to facilitate context-aware browsing. 

To overcome challenges related to heterogeneity, HyCon employs open representation formats such 

as XLink and SVG. Finally, the HyCon framework uses a data model intended to capture and 

associate contextually relevant information with Resources. While HyCon‘s dedicated application 

model is incapable of supporting Ocean‘s generalized approach, its abstract data model and 

community-focus provides insight into the benefits of extensible metadata and collaborative 

annotation respectively. An overview of the HyCon abstract data model is shown below in Figure 24. 
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Figure 24: The HyCon abstract data model (from [139]) 

While the approaches presented in this section ostensibly support some features of the Ocean 

approach, several important challenges persist. First, many current techniques rely on intermediary 

context formats; requiring that locally acquired native context data be converted into a predetermined 

intermediary format for use with a given discovery protocol (e.g. mapping native geospatial data into 

a specific data structure using an OWL ontology). Such techniques errantly presuppose significant 

domain-expertise on the part of the application developer and may impose significant processing 

overhead on mobile devices. Second, although recent approaches have explored Resource mediation 

based on context information, existing techniques are limited to a predetermined set of context 

metadata, do not address wide-area scenarios and cannot be extended by external context domain 

experts. Third, existing approaches are generally application specific and cannot easily support a wide 

variety of application domains. Fourth, existing techniques do not address context mismatch scenarios 

whereby the query terms provided within a component Discovery Request do not sufficiently match 

the metadata used to contextualize Web Resources (see section 7.2). Finally, existing techniques are 

not well-suited for overcoming information overload in complex environments; requiring that 

developers (or users) manually filter and select appropriate Resources for runtime composition (see 

section 7.3). 

4.3 The Contextualized Resource Abstraction 

Based on the limitations presented above, this section derives the associative metadata model that 

provides a foundation for flexible Resource contextualization and discovery in Ocean. Notably, this 

model provides a mechanism whereby additional context handling support can be dynamically 

integrated into Ocean by external Context Experts. Further, it supports the development of an open 

contribution model whereby communities of Contextualizers can freely annotate Web Resources with 

arbitrary contextual metadata using an open set of APIs. Further, it provides a foundation for Ocean‘s 

Persistence and Discovery Frameworks, which enable Ocean applications to perform wide-area 

component discovery and selection using locally modeled NCD as query terms. Finally, it imposes a 

separation of concerns between conventional Web Resources and associated contextual metadata; 

providing developers a familiar Web-centric programming approach and enabling the independent 

evolution of both Resources and contextual metadata. 
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4.3.1 Extending the Web’s Resource Model 

Recall from section 3.2.6 that a Resource represents the primary informational abstraction upon which 

the Web‘s architectural style is based. As described in [105], any information that is important enough 

to be named can be modeled as a Resource (e.g. an image, newsfeed, software release, Web page, 

search result, etc.) In conventional Web architecture, Resources are addressed by Unified Resource 

Identifiers (URIs), which provide a globally standardized mechanism for component access. As 

described in [341], ―A resource should have an associated URI if another party might reasonably want 

to create a hypertext link to it, make or refute assertions about it, retrieve or cache a representation of 

it, include all or part of it by reference into another representation, annotate it, or perform other 

operations on it. Software developers should expect that sharing URIs across applications will be 

useful, even if that utility is not initially evident.‖ During Web-centric component interoperation, 

distributed clients observe and change Resource state by sending and receiving Resource 

Representations using HTTP‘s uniform interface methods (i.e. GET, POST, PUT, etc.) Briefly, a 

Representation can be understood as a sequence of bits (generally in a standardized data format) that 

represents the current or desired state of a Resource. As Representations are exchanged between 

client and server, Resource state is managed by the origin server while application state is managed by 

the client. An overview of the Web‘s conventional Resource model is shown in Figure 25. 

 

Figure 25: The Web’s conventional Resource model 

The Web‘s Resource model provides a foundation for many of the key features of modern Web 

architecture. As described in [106], ―First, it provides generality by encompassing many sources of 

information without artificially distinguishing them by type or implementation. Second, it allows late 

binding of the reference to a representation, enabling content negotiation to take place based on 

characteristics of the request. Finally, it allows an author to reference the concept rather than some 

singular representation of that concept, thus removing the need to change all existing links whenever 

the representation changes.‖ In order to retain these features, Ocean adopts the conventional Resource 
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model as the foundation of its contextual metadata approach (described shortly). Accordingly, Ocean 

application constituents are defined as standard Web Resources as described in [341]. 

Recall that in the REST application model, hyperlinks represent the ―engine of application state‖ 

[105] whereby clients navigate between various application states by discovering, selecting and 

composing Resources at runtime. As previously described, inline and transactional context 

information are used to provide contextual mediation during an application‘s interactions with 

distributed Resources (e.g. Web page text, HTML metadata and HTTP headers). However, as 

introduced in section 4.2, the Web‘s hypermedia model precludes component pre-filtering based on 

real-world context data such as location, proximate devices, temperature, etc. Towards this end, we 

propose an extended Resource model, called the Contextualized Resource (CR), which supplements 

the Web‘s conventional Resource model with an extensible set of Ocean Metadata intended to 

constrain a Resource‘s global scope through the establishment of a Discoverability Context. Recall 

from Definition 1 that a Resource‘s Discoverability Context is the set of contextual criteria that must 

be fulfilled before a Resource is considered relevant to the interaction between a user and an Ocean 

application, including the user and applications themselves. An overview of the Contextualized 

Resource model (CR model) is shown in Figure 26. 

 

Figure 26: The Contextualized Resource model 

The CR model extends the Web‘s conventional Resource model in the following ways. First, in 

order to maintain backwards compatibility with existing Web infrastructure, the conventional 

Resource model is retained entirely. Next, we define an associative semantic metadata model, called 

Ocean Metadata, which is used to describe the Discoverability Context of an associated Resource. 

Ocean Metadata consists of a single General Metadata entity and one or more Context Metadata 

entities. General Metadata include Resource-specific information such as the component‘s URI, data-

type, title, description and an optional WADL document that can be used to provide a machine-

processable description of the Resource‘s implementation of the HTTP uniform interface (see [137] 
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for details). Context Metadata abstract the syntax and semantics of a given context domain into an 

interface known as the Context Metadata interface (section 4.3.2). Briefly, the Context Metadata 

interface supports CR configuration (section 4.3.2), similarity modeling (section 4.3.3), persistence 

and indexing (section 6.3), discovery (section 6.4) and association modeling (section 7.2.4). Domain-

specific implementations of the Context Metadata interface are termed Context Handlers. Notably, 

Context Handlers support instantiation from a given set of supported NCD (during query operations) 

and may be specifically configured when establishing a Discoverability Context (during 

contextualization). Finally, Context Metadata can be associated with General Metadata according to 

the three association types described briefly below: 

 Required:  Indicates that a given Contextualized Resource is only discoverable if an Ocean 

application provides NCD that is supported by at least one of the Context Handlers within 

the Ocean Metadata entity. For example, a Context Handler may support NCD based on the 

Geography Markup Language (GML) Encoding Standard [237]. If such a Context Handler 

is associated within Ocean Metadata using the required type, an Ocean application must 

provide compatible NCD in order for the Contextualized Resource to be considered 

discoverable (e.g. by providing NCD in the GML format). 

 Excluded: Indicates that that a given Contextualized Resource is not discoverable if an 

Ocean application provides NCD that is supported by a Context Handler within the Ocean 

Metadata entity. For example, a Contextualizer may wish to specify geo-locations where a 

given Contextualized Resource is not discoverable. 

 Optional: Indicates that supported NCD may be used during discovery but are neither 

required nor excluded. 

Importantly, the CR model introduced above is domain neutral regarding which Resources should 

be contextualized; the types of Ocean Metadata that may be included; and how Ocean applications 

might select and compose discovered Resources in-situ. Its use of the associative metadata approach 

(see section 4.2) allows for the contextualization of existing Web Resources without requiring 

changes to conventional Web architecture. In this regard, Ocean Metadata are persisted in a context-

aware component registry, called the Ocean Registry, which is used to facilitate Resource 

contextualization and lookup (see section 5.3). Further, Contextualized Resources do not require 

domain control over a given Resource in order for Discoverability Contexts to be established. As 

such, multiple Ocean Metadata entities may exist for any given URI; providing the foundation for 

Ocean‘s community-based contextualization process, which is described in section 5.5. 

4.3.2 The Context Metadata Abstraction 

To address Ocean‘s Web-scale focus (see section 3.3), the CR model must support expressive 

contextualization across a diverse range of context domains. As detailed in section 2.3.3, native 

context data (NCD) represent the complex and often subtle semantics of a given context domain. 

Further, NCD are typically rendered using high-fidelity data formats that are specifically designed to 

express the specific details of a given context modeling technique. Recall that prominent context 

modeling techniques include key-value models, markup-scheme models, graphical models, object-

oriented models and logic-based models. Hence, a key challenge for the CR model is to provide an 
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extensible means of encapsulating a variety of context modeling techniques for use within the Ocean 

approach. Towards this end, this section elaborates upon the Context Metadata abstraction introduced 

in the last section. 

To illustrate the domain-centricity inherent to many context modeling techniques, we briefly 

consider a few aspects of the location context domain. As detailed by Hightower and Borriello [149], 

a variety of location sensing techniques have been devised, including several prominent triangulation 

approaches. Briefly, triangulation leverages the geometric properties of triangles to compute object 

locations by calculating distance (i.e. lateration) or by calculating angle or bearing measurements (i.e. 

angulation). Prominent lateration techniques include direct (e.g. physical action impediment), time-of-

flight (e.g. ultrasonic pulse timing) and attenuation (e.g. radio signal power decrease). While similar 

to lateration, angulation techniques measure angles rather than distance (e.g. exploiting phased 

antenna arrays and receivers with a known geometry). Various approaches are used to represent such 

data. For example, the physical or symbolic location of a radio may be inferred from a set of received 

radio signals and associated signal characteristics (e.g. signal strength or time-of-flight) [19]. To 

express the details of a given context domain, native context data formats are generally devised. For 

example, one system may represent such signal values according to a proprietary key-value data 

structure where the keys represent signal source identifiers and the values represent associated signal 

strength values (according to a specific decibel normalization scheme [352]). Another system may 

provide additional quantization of low-level signal values into a higher-order context representation 

such as a geo-location encoded using a markup model [237]. While we do not elaborate further, we 

note that many context domains are similarity complex and domain-specific (see section 2.3.3). 

In traditional context-aware systems, the effective use of complex NCD such as the triangulation 

examples described above requires that a system be capable of parsing and understanding the 

underlying context domain. While such domain knowledge can be safely assumed in small-scale or 

prototype systems, large-scale context-aware scenarios become quickly intractable as the 

heterogeneity of context data increases [79, 145]. To accommodate context heterogeneity, Ocean 

provides the Contextualized Resource abstraction (see section 4.3.1), which supports the 

contextualization and discovery of conventional Web Resources using Ocean Metadata. As previously 

described, the principle architectural abstraction of the CR model is the Context Metadata interface, 

which allows for the development of a broad range of Context Handler implementations. In the Ocean 

approach, the Context Handlers are used to support effective and efficient CR persistence and 

discovery (see sections 6.3 and 6.4 respectively). Relevant details of the Context Metadata interface 

are shown in Figure 27. 
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Figure 27: The Context Metadata interface 

With regard to Figure 27, the Context Metadata interface methods are defined as follows: 

 setConfiguration(Object configurationData): void - As Context Handlers 

encapsulate domain-specific context information, their configuration is provided by a 

similarly domain-specific configuration data object. Notable, the configurationData 

object is designed by Context Experts to provide configuration of the instance‘s internal 

state and comparison semantics by non-experts. 

 refineMetadata(List<Context Metadata> colleagues): void - Provides a 

mechanism whereby Context Handlers may provide additional configuration refinement in 

response to the presence of other Context Metadata contained within a Contextualized 

Resource (termed colleagues). During instantiation, each Context Handler receives all of its 

colleagues via the refinemetadata method and may adapt its internal configuration as 

needed. For example, a Context Handler encapsulating physical positioning based on radio 

frequency signal strength values may alter its comparison semantics if it determines that the 

receiver‘s antenna is located indoors (i.e. potentially affected by physical obstructions such 

as walls and floors). In this example, an indoor location might be inferred from the 

presence of a colleague providing a well-known ontological description of an indoor state 

(e.g. Environment:Location:Building=”indoors” as described in [185]). 

 compareTo(ContextMetadata candidate): ComparisonRepresentation - Supports 

domain-specific comparison of instantiated Context Metadata as required for indexing via 

the Ocean Persistence Framework (see section 6.3). Implementations of compareTo provide 

domain-specific comparisons, which are represented by an extension of the 

ComparisonRepresentation class. The compareTo method is used to encapsulate various 

comparison models, such as geometric models, feature models, alignment-based models 

and transformational models [125]. Common implementations may include Quadratic Form 

Distance, Levenshtein distance (also known as edit distance) and Jaccard‘s Coefficient 

[376]. Additional details regarding Context Metadata similarity modeling are provided in 

section 4.3.3. 
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 getNormalizedSimilarity (ContextMetadata candidate): NormalizedSimilarity 

- As ComparisonRepresentations cannot generally be combined across diverse context 

domains, getNormalizedSimilarity is used to obtain a domain-independent similarity 

score. The output of the getNormalizedSimilarity method is a NormalizedSimilarity 

object whose value is a numerical score constrained to the unit interval ( 0 ≤ 𝑥 ≤ 1 , 

where 𝑥 ∈ R) where 0 equals no similarity and 1 equals perfect similarity. As 

ComparisonRepresentations may be based on the distance between multivariate points in 

vector space, they may need to be converted to an appropriate normalized similarity score 

in order to be combined. A typical example of how such a conversion might be 

accomplished using Euclidian distance is shown below (from [39]): 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
1

1 + 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

4.3.3 Modeling Similarity 

As described in the last section, the Context Metadata abstraction provides a means of encapsulating 

domain specific Contextualized Resource configuration and comparison. As such, Context Metadata 

implementations (i.e. Context Handlers) may be represented by complex objects that are difficult to 

compare, index and retrieve from a data store. In general, information systems that must contend with 

large amounts of complex and heterogeneous data require domain-specific mechanisms for 

differentiating between persisted objects [376]. As database systems have increased in complexity and 

scope, the types of information stored within them has changed dramatically. Moreover, the problem 

domains served by such systems now span a broad range of disciplines [61], including statistics, 

computational geometry, artificial intelligence, databases, pattern recognition, etc. Increasingly, 

application scenarios within these disciplines rely on the storage and retrieval of data types such as 

images, audio, video, unstructured text and object hierarchies. However, the persistence features and 

query mechanisms common to classical databases cannot often differentiate between such data types 

meaningfully [281]. Similarly, Contextualized Resources can be understood as arbitrarily complex 

data structures that may resist classical indexing and search techniques. Hence, this section provides 

background and related work regarding similarity modeling as a foundation for the upcoming 

discussions regarding Context Handler indexing, persistence and discovery within the Ocean 

approach. 

Similarity modeling in common database approaches is often designed to accommodate simple 

structured data that can be easily compared. In many classical techniques, candidate objects are 

retrieved from a data store if a well-defined textual or numerical data entity present within the record 

(i.e. a key) matches a given set of search criteria (e.g. constraints expressed in a query grammar) 

[205]. Searching and indexing operations generally operate on simple fields represented by data-types 

that can be directly compared to related aspects of a posed query (e.g. strings or integers). As 

discussed in [61], classical search techniques include key search, where records are returned if a 

record key precisely matches the query; range search, where records are returned based on full or 

partial matches within specific fields or value ranges; and proximity search, where records are 

returned if they are considered statistically related to the search query.  
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Notably, in proximity search, statistical relevancy is often determined by modeling the search space 

as a hyper-rectangle of k dimensions, where each dimension is related to a specific field of interest 

within the database (numerical or alphabetical). Records are then projected as points within the hyper-

rectangle and queries return records if they are contained within a sub-rectangle specified along a 

dimension of interest. This approach is common to many Web search engines and is exemplified by 

techniques such as grid file [229]. While such techniques may resolve issues related to text retrieval, 

they often lack the sophistication to model similarity between complex data types such as multimedia 

elements or object hierarchies [61]. For example, in many image search scenarios such as fingerprint 

analysis and facial recognition, it is derisible to search through a large image repository in order to 

extract images that are similar in some meaningful way to a query image [351]. 

To illustrate how similarity comparisons might be implemented using the Context Metadata‘s 

compareTo and getNormalizedSimilarity interface methods described in the last section, a brief 

overview of similarity modeling techniques is now presented. Importantly, this section is not intended 

to provide a complete treatment of similarity modeling; rather, it presents a sampling of approaches as 

a means of illustrating how specific Context Handlers might be implemented. Moreover, it also 

illustrates how similarity modeling techniques often imply significant domain-expertise that may be 

prohibitively complex for non-experts. As such, the Context Metadata interface is used to insulate the 

Ocean approach from complex similarity calculations during persistence and discovery operations, 

which are elaborated in sections 6.3 and 6.4 respectively. 

We begin our overview of relevant approaches by introducing geometric models, which have long 

been recognized as an influential notion of similarity [125]. Broadly, geometric approaches represent 

similarity relationships by modeling important aspects of a given object type as a set of points within 

a dimensionally organized metric space. The input to geometric models may consist of any measure 

of pair-wise proximity such as correlation coefficients, joint probabilities, similarity judgments, etc. 

Objects in the dataset are represented as points in an n-dimensional space, where the similarity 

between a pair of objects is inversely related to the distance between the object‘s points in the space. 

For example, as presented in [299, 300], distance metrics within Euclidian space are exemplified by 

non-metric multidimensional scaling (MDS) of the basic form: 

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  𝑖, 𝑗 =   |𝑋𝑖𝑘 −  𝑋𝑗𝑘 |𝑟
𝑛

𝑘=1

 

1
𝑟

 

where n indicates the number of dimensions, 𝑋𝑖𝑘  represents the dimension k for item i, and r is a value 

that allows different metrics to be used. For example, if r=1, the distance between two points is 

computed by a city block metric (also known as the rectilinear distance or Manhattan distance), 

whereby the total distance is found by summing the distance between points for each dimension. As 

another example, when r=2, a standard Euclidian notion of distance is invoked, whereby the distance 

between two points is found by the length of a straight line connecting them. Notably, a Euclidian 

metric has been shown to be an effective model for some perceptually fused dimensions, whereas the 

city block metric has been shown as an effective model for separated similarity notions such as color 

and size. For reference, the Manhattan (or Minkowski 𝐿1 distance) is typically given by: 
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𝑑 𝑥,𝑦 =   𝑥𝑖− 𝑦𝑖 

𝑛

𝑖=1

 

While geometric models utilize a distance metric, other metric space approaches are possible. For 

example, information retrieval systems often model documents as vectors in Euclidian space; 

representing the similarity between documents as the cosine of the angle between the vectors [205]. 

As an illustrative example, we summarize an approach for evaluating the similarity of publications, as 

presented by Bani-Ahmad, Ali Cakmak, and Ozsoyoglu in [22]. In their approach, a vocabulary T of 

atomic terms t is generated from a collection of publication documents. An individual document can 

then be represented as vector of real numbers 𝑣 =  𝑅 𝑇 , where each element is described by a term. 

Accordingly, 𝑣𝑡  is used to denote an element of 𝑣 that corresponds to the term 𝑡, 𝑡 ∈ 𝑇. The value of 

𝑣𝑡  is related to the importance of 𝑡 in the document represented by 𝑣. Using the Term Frequency-

Inverse Document Frequency (TF-IDF) weighting scheme, as described in [277], 𝑣𝑡  is defined as: 

𝑣𝑡 =  𝑙𝑜𝑔(𝑇𝐹𝑣,𝑡  +  1) ×  𝑙𝑜𝑔(𝐼𝐷𝐹𝑡) 

where 𝑇𝐹𝑣,𝑡  represents the number of times the term 𝑡 occurs in the document represented by 𝑣; 

𝐼𝐷𝐹𝑡 =  𝑁 𝑛𝑡 ;  𝑁 is the total number of documents in the database; and 𝑛𝑡  represents the total 

number of documents in the database that contain the term 𝑡. The cosine similarity between two 

documents with vectors 𝑣 and 𝑤 is then computed as: 

cos 𝑣,𝑤 =    𝑓 𝑣𝑖  ∙ 𝑓 𝑤𝑖 
 𝑇 

𝑖=1
   𝑓 𝑣𝑖 

2  ∙  𝑓 𝑤𝑖 
2

 𝑇 

𝑖=1
   

where 𝑓() is a damping function, which is either the square-root or the logarithm function. It should 

be noted that such approaches remove stop-words (e.g. an, the and then) from the document and then 

apply the Porter‘s algorithm [256] to stem the terms. 

While distance and angle similarity operate within domains that can be well-represented as a metric 

space, feature metrics are useful for detecting similarities and differences between sets of events 

[331]. For example, Microsoft‘s SensCam [47] is a multi-sensor camera (worn around the neck) that 

records a continuous stream of images as a means of enabling so-called ―lifelog recording‖. Because 

SensCams take approximately 3,000 images per day, the volume of image data is often a barrier for 

effective image retrieval. To help address this issue, SensCam logs a variety of context information 

along with the collected images. One novel SensCam technique is the detection of Bluetooth 

familiarity as a means of inferring the people present during a particular event. In this technique, 

SensCam identifies nearby Bluetooth devices (by MAC address) logs the duration of the encounter; 

linking the presence of Bluetooth devices to the ongoing image stream. To provide a basic similarity 

score, the set of devices present during an event are compared using a Jaccard coefficient scheme 

[205]. The similarity score is then computed by calculating the intersection of devices co-present 

during two events as: 

𝐽 𝐴,𝐵 =   𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵   

which results in a similarity score in the range [0,1], with values of 0 indicating no similarity  and 

values of 1 indicating strong similarity. Related, the researchers suggest that the longer a device is 
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present, the more significant the device‘s owner may be to the event. Hence, the duration of detected 

Bluetooth signals is used to weight the significance of proximate devices during an event. The 

duration weight is calculated as: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔𝑡 =  
 𝑋 ∩ 𝑌 −  𝐷𝑖𝑓𝑓𝐷𝑢𝑟(𝑋𝑖 − 𝑌𝑖)

|𝑋∪𝑌|
𝑖=0

|𝑋 ∪ 𝑌|
 

where X=Event 1,  Y=Event 2, i = devices present in both events and 𝐷𝑖𝑓𝑓𝐷𝑢𝑟 =  𝐷𝑢𝑟𝑟𝑎𝑡𝑖𝑜𝑛 𝑋𝑖 −

𝐷𝑢𝑟𝑟𝑎𝑡𝑖𝑜𝑛 𝑌𝑖  . Next, using the Jaccard co-efficient and the 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔𝑡 value, events can be 

segmented in several ways. First, devices can be sorted by familiarity, where increased significance is 

given to devices that are present in events relative to devices that are not. Second, devices can be 

weighted by both duration and familiarity, where the 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔𝑡 is used to enhance the 

significance of devices that are present longer during an event. Finally, events can be segmented by 

inverse familiarity, where strangers and outliers can be used to enhance image retrieval in certain 

situations (e.g. during a chance meeting with an unfamiliar person). 

Feature metrics are useful for determining similarity between complex objects that vary along a 

large number of dimensions; however, feature models may not adequately capture the semantics of 

the structured information within a comparison [187]. For example, the feature ―red‖ may be part of 

the description of an automobile; however feature models may not be capable of discerning between 

automobiles with red wheels versus red body paint [125]. Hence, refinements of the feature-based 

model have been proposed. Common approaches include modeling features as fuzzy predicates within 

a contrast model (e.g. in computer vision) [281] and the LogOdds approach, which models the 

probability of set membership based on the presence of an object in related communities [311]. 

Finally, transformational models such Levenshtein distance are used to represent the similarity of 

objects by calculating the number of operations required to transform one object into another (e.g. 

sequences of text in information retrieval scenarios) [205]. 

Notably, in large-scale information retrieval systems, indexing becomes a critical aspect of finding 

similar information in high dimensional space [376]. In a single dimension, naïve search algorithms 

exploiting linear scan strategies exhibit query times of Θ(dn), where d represents the number of 

dimensions and n represents the number of search items. However, as dimensionality increases, naïve 

strategies often encounter the so-called curse of dimensionality, which is characterized by exponential 

increases in storage space or search time requirements [39]. For example, the nearest-neighbor 

problem has a solution of O(d
O(1)

 log n) query time, but requires roughly n
O(d)

 space [296]. Hence, 

while such algorithms can be effective for small datasets, they become quickly intractable when 

applied to larger datasets and are often too slow for many time-sensitive applications. To improve 

indexing operations in multi-feature scenarios, a common optimization approach includes the use of 

approximate nearest neighbor algorithms (ANN), which trade query precision for speed 

improvements or memory savings [69]. Moreover, the speed of ANN algorithms can be further 

improved through the use of efficient index data structures such as R-Trees [134] and M-trees [68]. 

Note that such issues are discussed further during the presentation of Ocean‘s Persistence Framework 

in section 6.3. 
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4.3.4 Validating the Context Metadata Interface 

In order to validate the Context Metadata abstraction described in section 4.3.2, we implemented 

several real-world Context Handlers within the Ocean Reference Implementation (RI). We began by 

identifying ten heterogeneous context information types as a means of exploring the applicability of 

the Context Metadata abstraction to diverse context domains. We selected context domains according 

to the following criteria: (1) the domain used non-proprietary or open data formats; (2) the domain 

was applicable to real-world context-aware scenarios; (3) the domain was amenable to the Aladin 

approach described in section 3.2.2; and, (4) context domain expertise could be extracted from 

existing development efforts. Related, we implemented several customizable comparison functions 

intended to allow non-experts to configure Context Handlers for a specific contextualization use-case. 

To illustrate how such comparison functions might be integrated into development and end-user tools, 

we also created a dedicated contextualization application, known as Ocean Studio, which provides 

forms-based Contextualized Resource creation and Context Handler configuration (see section 8.2).  

To validate the Context Metadata abstraction using the Ocean Reference Implementation (RI), we 

began by creating an IContextMetadata interface that expresses the methods described in section 

4.3.2. Additionally, we created a ContextHandlerBase class as a means of consolidating common 

functionality across multiple Context Handler types (e.g. configuration data). Next, we implemented 

several concrete Context Handler classes using the IContextMetadata interface and 

ContextHandlerBase class as foundations. Further, we designed a complimentary plug-in framework 

that allows the dynamic integration of Context Handlers at runtime as a means of supporting the 

community-based contribution approach described in section 5.4. An overview of the implemented 

Context Handlers, the IContextMetadata interface and the ContextHandlerBase class is shown 

below in Figure 28. (Note that implementation-specific methods may be included in the figure below; 

however, in the interest of clarity, these are not described.) Related, Table 8 below provides a brief 

description of each Context Handler. 

 

Figure 28: Implemented Context Handlers, the IContextMetadata interface and the 

ContextHandlerBase class within the Ocean RI  
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Context Handler Description 

GEOPointHandler Preliminary support for the OpenGIS Geography Markup Language 

(GML) Encoding Standard as presented in [237]. Comparison 

functions include GPSPointDistanceBoolean and 

GPSPointDistanceLinear (see section 4.4 for details). Geographic 

distance calculations are provided by the dinopolis gpstool package
17

. 

WIFIPlaceLabStumblerHandler Preliminary support for the PlaceLab stumbler format as described in 

[66]. Supports the 802.11a/b standards. A supplemental 

RFSignalPropagation comparison function provides handler tuning 

based on a variation of the log-normal shadowing signal propagation 

model as described in [202]. Provides automatic refinement of 

comparison functions based on the VTTOntologyHandler. 

ISO639LanguageHandler Preliminary support of the ISO 639 Language standard
18

. 

ISO8601DateTimeHandler Preliminary support for the ISO 8601 date and time formats as 

described in [324]. Time and data evaluation are provided by the open-

source Joda Time software package
19

. 

RFIDHandler Preliminary support for RFID strings in both Electronic Product Code 

(EPC) [98] and RAW formats. 

SecurityTokenHandler Preliminary support for secure hash tokens per the SHA-1 standard 

described in [219]. 

TextSearchHandler An Ocean-provided Context Handler that supports contextualization of 

Resources based on textual metadata within the title and description 

elements of a Contextualized Resource. Support for textual search is 

provided through the Apache Lucene search engine
20

. 

VTTOntologyHandler Preliminary support of the Ontology for Mobile Device Sensor-Based 

Context Awareness, as described in [184]. 

QRCodeHandler Preliminary support of the Quick Response two-dimensional bar code 

format (QR Code) developed by Denso-Wave Corporation
21

. 

Table 8: Overview of Context Handlers implemented within the Ocean RI 

                                                      
17

 http://gpsmap.sourceforge.net/ 
18

 http://www.loc.gov/standards/iso639-2/ 
19

 http://joda-time.sourceforge.net/ 
20

 http://lucene.apache.org/java/docs/ 
21

 http://www.denso-wave.com/qrcode/index-e.html 
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4.3.5 The Contextualized Resource XML Schema and Ocean RI Validation 

To provide an open mechanism for describing Contextualized Resources, a flexible XML 

representation format is now defined. While the next chapter elaborates in detail on how the following 

XML schema is used within the Ocean approach, we introduce it here to help support the 

Contextualized Resource example presented at the end of this chapter. The Contextualized Resource 

XML schema is shown in Figure 29. 

 

Figure 29: The Contextualized Resource XML schema 

With reference to Figure 29, the Contextualized Resource XML scheme is defined as follows:  

 The contextualized_resource root element provides a version attribute (used for 

finding a suitable parser) that includes a single general_metadata element and single 

context_metadata element. 

 general_metadata provides Resource-specific information, including uri (as per RFC: 

3986 [34]); type (e.g. MIME data types [327]); title (UTF-8 text); description (UTF-8 

text); and an optional WADL document (as described in [137]). 

 The context_metadata element includes one or more context_metadatum elements that 

have an association_type attribute with one of the following strings: required, 

excluded or optional. 

 A context_metadatum element provides a value element that includes the native context 

data of the context_metadatum, plus an optional configuration element that may include 

domain-specific configuration data. Notably, configuration data is generally used to 

customize the comparison semantics of a given context_metadatum. Importantly, the 

information within context_metadatum sub-elements must be enclosed within an XML 

CDATA tag to allow for the inclusion of arbitrary configuration data (e.g. binary data 

structures and XML incompliant configuration strings). 
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With regards to the Contextualized Resource data model, Figure 30 shows the relevant classes and 

interfaces within the Ocean Reference Implementation (RI). For reference, the 

ContextualizedResource class provides an implementation of the Contextualized Resource data 

model described in section 4.3.1. Notably, both General and Context Metadata properties are provided 

by the class. Additionally, the IContextMetadata interface provides an implementation of the 

Context Metadata abstraction described in section 4.3.2. Finally, the Item interface is used to validate 

the Contextualized Resource in terms of the Resource personalization approach described in section 

7.3. (Note that implementation-specific methods may be included in the figure below; however, in the 

interest of clarity, these are not described.) 

 

Figure 30: The ContextualizedResource and IContextMetadata classes from the Ocean RI 
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4.4 A Contextualized Resource Example 

To clarify the CR model and Context Metadata concepts introduced in this chapter, this section 

presents a simplified Contextualized Resource example. Importantly, the example is not intended to 

provide a complete overview of the Ocean approach; rather, it is intended to illustrate the foundational 

principles upon which Ocean is founded (upcoming chapters present the Ocean approach in detail). 

Hence, this section presents an intentionally simplified scenario whereby a Web-based calendar 

Resource is contextualized using Context Metadata consisting geo-location and time. In order to 

accommodate a broad range of application scenarios, the example CR references a Resource that 

provides a Representation in the well-known iCalendar data format (iCal) [81]. Briefly, iCal supports 

a variety of electronic calendaring functions (e.g. events, to-do and journal entry information) and is 

compatible with a broad range of applications. As per the CR model introduced in section 4.3, 

Resources are managed outside of the Ocean approach (i.e. iCal data may be created using tools such 

as Microsoft Outlook
22

 and hosted on an organization‘s Web server). In this example, contextualized 

calendar data are used to support a simple conference scenario, whereby attendees receive time-

sensitive event scheduling information when near the conference location. To develop this example 

scenario, we describe two related Context Handlers that were developed within the Ocean RI, 

including the GEOPointHandler and the ISO8601DateTimeHandler. Both Context Handler 

description sections provide an general overview of the related context domain, the associated 

comparison semantics and configuration options. The example concludes with a presentation of the 

example CR‘s UML diagram and associated XML configuration. 

4.4.1 The GEOPointHandler 

We now introduce the GEOPointHandler that was developed as a part of the Ocean RI. Briefly, the 

GEOPointHandler encapsulates the domain semantics of geo-location proximity based on key features 

of the OpenGIS Abstract Specification [236] and the OpenGIS Geography Markup Language (GML) 

Encoding Standard [237]. Based on these standards, the handler can be used to constrain the 

Discoverability Context of Resources to a geographic area that is represented by a defined center 

point described by latitude and longitude values. The handler supports instantiation based on native 

context data (NCD) in the Geography Markup Language simple profile format (GML simple) [237]; 

however, it could also be extended to support additional NCD formats such as NMEA 0183 [220] or 

the Microformat Geo standard [55]. (Note that we chose the GML simple specification initially 

because of its broad industry support and its ability to represent ―variety of kinds of objects for 

describing geography including features, coordinate reference systems, geometry, topology, time, 

units of measure and generalized values‖ [237].) 

To support contextualization and discovery within Ocean, the GEOPointHandler provides a 

domain-specific implementation of the Context Metadata interface described in section 4.3.3. In this 

example, we describe its practical implementation and several conceptual enhancements regarding 

persistence (see section 6.3). Accordingly, the GEOPointHandler implements the Context Metadata 

interface as presented in Table 9. 
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Interface method Implementation details 

setConfiguration Accepts XML configuration data based on the GML simple profile [237]. 

Additional configuration options include: GEOPointDistanceLinear and 

GEOPointDistanceBoolean comparison functions (described shortly). 

refineMetadata No implementation. 

compareTo Geo-location data are intended for storage within a 2-dimensional vector 

space model as per [183]. Intra-domain comparisons are represented by a 

Euclidean metric extension of the ComparisonRepresentation object. 

getNormalizedSimilarity Normalized similarity is computed by transforming the distances between 

points in 2-dimensional vector space using following equation: 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
1

1+𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

Table 9: The GEOPointHandler Context Metadata interface implementation 

In its default configuration, the GEOPointHandler requires that two geo-locations represent exactly 

the same latitude and longitude values to provide a similarity of 1 (otherwise the similarity is 

determined to be 0). To improve the flexibility of the handler, we also developed two related 

comparison functions that allow Contextualizers to control how the handler performs similarity 

comparisons. The first comparison function, termed GEOPointDistanceLinear, allows a 

Contextualizer to define a circular area around a given geo-location point, whereby similarity is 

modeled as a linear falloff that is 1 at the center and fades to 0 at the perimeter. This comparison 

function represents a range query of the form R(q,r), where q represents the center of the circle and r 

represents the radius of the search in meters [61]. Within the bounds of the circular area, similarity is 

represented by fractional numbers such as 0.8 or 0.5. The second function, termed 

GEOPointDistanceBoolean, allows a Contextualizer to define a circular area around a particular geo-

location point that accommodates Boolean comparisons; yielding a similarity of 1 within the bounds 

of the circular area and 0 outside it. A visualization of both comparison functions is shown in Figure 

31 (note that similarity values are normalized). 

 

Figure 31: Visualization of two GEOPointHandler similarity comparison functions 
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Finally, based on the XML specification introduced in section 4.3.5, an example snippet of the 

GEOPointHandler configuration XML is provided in Figure 32. 

 

Figure 32: Example GEOPointHandler XML configuration 

With regards to Figure 32, we note the following regarding the GEOPointHandler configuration 

data: 

1. The Context Metadata is associated with the CR model according to the required type. 

2. The value and configuration elements are enclosed with XML CDATA tags; allowing for 

arbitrary data to be passed in during instantiation. 

3. The value element includes native GML Point data that is understood by the handler‘s 

setConfiguration implementation. 

4. The configuration element includes a GEOPointDistanceLinear comparison function that 

is configured for a discoverability range of 500 meters around the handler‘s location. 

4.4.2 The ISO8601DateTimeHandler 

We now introduce the ISO8601DateTimeHandler Context Metadata implementation that was 

developed as a part of the Ocean RI. Briefly, the ISO8601DateTimeHandler encapsulates the 

semantics of date, time and interval information based on key features of the ISO8601 standard, as 

described in [324]. We selected the ISO8601 standard because of its non-proprietary nature and text-

based representation format that is independent of communication medium. Notably, the ISO8601 

standard can be used to express a variety of dates, times, time-zones and durations, intervals, 

repeating intervals, etc. Additionally, several safety and compactness features are built into the 

standard. For example, year representations are constrained to four digit representations to avoid 

millennium confusion (e.g. ―YYYY‖) and time expressions utilize the twenty-four hour clock for 

compactness. Examples of the ISO8601 standard are shown in Figure 33. 

... 

<context_datum association_type=”required”> 

 <value><![CDATA[ 

 <gml:Point> 

  <gml:pos>53.874532,10.684183</gml:pos> 

 </gml:Point>]]> 

 </value> 

 <configuration><![CDATA[ 

 <config> 

  <comparison_function>GEOPointDistanceLinear</comparison_function> 

  <max_meters>500</max_meters> 

 </config>]]> 

 </configuration> 

</context_datum> 

... 
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Figure 33: ISO8601 format examples (from [324]) 

To support contextualization and discovery in Ocean, the ISO8601DateTimeHandler provides a 

domain-specific implementation of the Context Metadata interface described in section 4.3.3. 

Accordingly, its interface methods have been implemented as shown in Table 10: 

Interface method Implementation details 

setConfiguration Accepts XML configuration data based on the ISO8601 format. 

refineMetadata No implementation. 

compareTo The GEOPointHandler is intended for object-based persistence optimized 

for the ISO8601 standard.  

getNormalizedSimilarity Dependent on the configuration of the handler. Please see the description 

below for details. (Note that comparisons are provided for DateTime and 

Intervals only.) 

Table 10: The ISO8601DateTimeHandler Context Metadata interface implementation 

In terms of comparison semantics, the ISO8601DateTimeHandler is designed to encapsulate the 

DateTime and Interval specifications expressed by the ISO8601 standard; hence, comparisons are 

dependent on the configuration of the handler. For example, if an ISO8601DateTimeHandler is 

configured to support the date and time (i.e. DateTime), the comparison function computes the 
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similarity between two Context Metadata instances 𝐷𝑇1 and 𝐷𝑇2 based on the difference between the 

DateTime values (in minutes). The getNormalizedSimilarity value is computed as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
1

1 +  𝐷𝑇1 −𝐷𝑇2 
 

Note that DateTime similarity calculations are always based on the time resolution of the handler 

associated with the Contextualized Resource. For example, if such a handler has been configured to 

represent the year “2008” (without additional expressions for days, hours, etc.) normalized similarity 

comparisons will result in a value of 1 provided that candidates are configured with a “2008” year 

(regardless of day, hour, minute and second configurations). Likewise, an associated handler that has 

been configured using an extended format string (e.g. “2008-08-27T11:15:30”) will result in a 

fractional normalized similarity values depending on the configuration of the candidate Context 

Metadata.  

The ISO8601DateTimeHandler behaves differently if configured as an Interval. To support 

normalized similarity computation, an Interval-based ISO8601DateTimeHandler provides a Boolean 

comparison function that computes whether a given DateTime falls within the handler‘s Interval. If 

it does, getNormalizedSimilarity returns 1 (otherwise it returns 0). Note that Interval-based 

ISO8601DateTimeHandlers are only comparable to standard DateTime values (i.e. Interval to 

Interval comparisons are not currently supported due to time constraints). It should be noted that the 

default comparison semantics could be further enhanced through the use of a supplemental 

comparison functions. 

Based on the XML specification introduced in section 4.3.5, an example snippet of the 

ISO8601DateTimeHandler configuration XML is provided in Figure 34: 

 

Figure 34: Example ISO8601DateTimeHandler XML configuration snippet 

With regards to Figure 34, we note the following regarding the Context Handler‘s configuration: 

1. The context_datum is associated to the CR model with the required association type in 

order to constrain discovery to DateTime NCD that fall within the handler‘s Interval.  

2. The value and configuration elements are enclosed with XML CDATA tags; allowing for 

arbitrary native data to be passed in during instantiation. 

3. The value element includes a native ISO8601 extended format Interval string, which is 

understood by the handler‘s setConfiguration implementation. 

4. The configuration element is not used by this handler, meaning that default comparison 

semantics are used. 

... 

<context_datum association_type=”required”> 

 <value><![CDATA[2008-06-14T10:00:00/2008-06-14T18:00:00]]></value> 

 <configuration/> 

</context_datum> 

... 
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4.4.3 Bringing it All Together 

Using the GEOPointHandler and ISO8601DateTimeHandler Context Metadata implementations 

described in the previous sections, we now present a completed Contextualized Resource (CR). As 

previously introduced, the example CR is used to contextualize calendar data (in the iCal format) as a 

means of supporting a simple conference scenario, whereby attendees receive time-sensitive event 

scheduling information when near the conference location. With reference to the CR model 

introduced in section 4.3, the General Metadata for the example CR are presented in Table 11. 

General Metadata  Value 

Type text/calendar 

URI http://isnm.de/2008/cal 

Title ―ISNM Open House 2008‖ 

Description ―Event calendar for the 2008 ISNM Open House‖ 

WADL None 

Table 11: Example General Metadata 

In addition to the General Metadata presented above, two Context Handlers are used to constrain 

the Discoverability Context of the iCal Resource. The Context Metadata associated with the example 

Resource are represented by the GEOPointHandler and ISO8601DateTimeHandler implementations 

previously introduced. An overview of the associated configuration specifications are shown in Table 

12. 

Context Metadata  Description 

ISO8601DateTimeHandler Configured as an ISO8601 interval encompassing the following time span: 

June 14
th

, 2008 (10:00) until June 14
th

, 2008 (18:00).  

GEOPointHandler Configured with a physical location of the Media Docks facility in Luebeck, 

Germany (Lat: 53.874532/ Lon:10.684183), which is represented using the 

GML simple profile. In addition, the handler is configured with a 

GEOPointDistanceLinear compare function with a maximum discovery 

range of 200 meters. 

Table 12: Example Context Metadata configuration specifications 

To form the completed CR, the General Metadata and Context Metadata presented above are 

constrained in their relationship according to the CR model described in section 4.3. The resultant 

Contextualized Resource data structure is shown in Figure 35. 
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Figure 35: Diagram of the example Contextualized Resource 

To realize the CR model shown above within the Ocean Registry, the Contextualized Resource 

specification is encoded according to the XML schema defined in section 4.3.5, as shown in Figure 

36. 

 

Figure 36: Example Contextualized Resource configuration XML 

  

<?xml version="1.0" encoding="UTF-8"?> 

<contextualized_resource version="1.0"> 

  <general_metadata> 

    <type><![CDATA[text/calendar]]></type> 

    <uri><![CDATA[http://isnm.de/2008/cal]]></uri> 

    <title>2008 ISNM Open House</title> 

    <description>Event calendar for the 2008 ISNM Open House</description> 

    <wadl/> 

  </general_metadata> 

  <context_metadata> 

    <context_metadatum association_type=”required”> 

      <value><![CDATA[2008-06-14T10:00:00/2008-06-14T18:00:00]]></value> 

      <configuration/> 

    </context_metadatum> 

    <context_metadatum association_type=”required”> 

      <value><![CDATA[<gml:Point><gml:pos>53.874532,10.684183</gml:pos> 

        </gml:Point>]]> 

      </value> 

      <configuration><![CDATA[<comparison_function><type>GEOPointDistanceLinear 

                              </type><max_meters>200</max_meters> 

                              </comparison_function]]> 

      </configuration> 

    </context_metadatum> 

  </context_metadata> 

</contextualized_resource> 
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4.5 Chapter Summary 

This chapter presented Ocean‘s Contextualized Resource abstraction. It began by providing 

background and related work specific to context-mediation in RESTful distributed systems. It first 

described context-mediation in conventional Web architecture and then introduced several related 

approaches employed by current context-aware systems. It was noted that while many Web-centric 

component discovery techniques support features of the Ocean approach, several important challenges 

persist. These challenges were identified as: support for native context data; support for multi-feature 

similarity search; context mismatch handling; and techniques for overcoming information overload. 

Based on these limitations, the Contextualized Resource (CR) abstraction was introduced as a 

mechanism for supplementing the Web‘s conventional Resource model with an extensible set of 

Ocean Metadata intended to constrain a Resource‘s global scope through the establishment of a 

Discoverability Context. This section presented the Contextualized Resource data model, which 

included both General and Context Metadata entities. Briefly, General Metadata refers to Resource-

specific information such as URI, title, description and an optional WADL document. In contrast, 

Context Metadata are intended to constrain the Discoverability Context of Web Resources through the 

encapsulation of the syntax and semantics of a given context domain. In this regard, the Context 

Metadata interface was presented as a means supporting Ocean‘s CR persistence and Discovery 

Frameworks described in Chapter 6. This section also included a theoretical discussion of similarity 

modeling techniques and their applicability to the Context Metadata interface. Next, the 

Contextualized Resource XML schema was presented and validation within the Ocean RI was 

discussed. The chapter concluded with a presentation of an example Contextualized Resource. 
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Chapter 5 

Towards Web-scale Context-aware Computing 

5.1 Introduction 

The Contextualized Resource model (CR model) introduced in the last chapter provides an extensible 

and expressive mechanism for constraining the Discoverability Context of conventional Web 

Resources. However, the CR model is not sufficient for realizing the Ocean approach derived in 

section 3.5 as it provides only a means of differentiating between Web Resources based on native 

context data. This chapter builds upon the Contextualized Resource abstraction by defining Ocean‘s 

application model and deriving a complimentary support infrastructure that is further elaborated in 

subsequent chapters. First, section 5.2 details the overall Ocean approach. Related, section 5.2.1 

discusses how the client-centric mashup model aligns well with Ocean‘s design principles and 

approach constraints introduced in sections 3.4.1 and 3.4.2 respectively. Next, section 5.2.2 defines 

the Ocean‘s application model by extending the client-centric mashup style to support in-situ, context-

mediated Resource discovery, selection and composition. Based on the Ocean application model, we 

then define the necessary computing infrastructure required to support wide-area creation and 

discovery of Contextualized Resources. Related, section 5.3 describes Ocean‘s Contextualized 

Resource registry (Ocean Registry) and its related software architecture. Section 5.3.2 introduces the 

Ocean Registry‘s Resource Management API. Next, section 5.3.3 provides details regarding the 

instantiation of Contextualized Resources as a foundation for the CR persistence and discovery 

techniques presented in Chapter 6. The final sections of this chapter describe two preliminary 

community-centric techniques designed to support the overall Ocean approach. First, section 5.4 

describes Ocean‘s Context Handler contribution model, which is based on an adaptation of the Java 

Community Process. Finally, section 5.5 introduces Ocean‘s open contextualization model, which is 

intended to promote the large-scale Resource contextualization through collaborative annotation. 

5.2 The Ocean Application Model 

Based on the large-scale context-aware computing challenges presented in section 3.2, we derived 

Ocean‘s Web-centric context-aware computing approach in section 3.5. As presented in section 3.4.2, 

Ocean adheres to the following design constraints: Aladin-based context acquisition and modeling; 

Internet-based network communications; Web-centric middleware; and REST-based component 

interoperation. Based on these constraints, Ocean inherits many of the capabilities and limitations of 

conventional Web architecture. Recall that in Web-based hypermedia, Resource content (e.g. Web 

page text) and transactional metadata (e.g. HTTP headers) provide the context mediation necessary 

for users to discover, select and compose Resources on-demand (see section 4.2). However, 

conventional Web architecture does not inherently support context-mediation based on real-world 

context information such as location, proximate devices and activity. Hence, Chapter 4 introduced the 

Contextualized Resource as a mechanism for constraining the Discoverability Context of conventional 

Web Resources based on extensible Ocean Metadata. While the Contextualized Resource abstraction 

provides a foundation for Web-centric context-aware computing, Ocean‘s wide-area focus 

presupposes a client-centric application model capable of supporting cross-domain component 
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interoperation using conventional Web technologies. Towards this end, the following section presents 

the client-centric mashup style as a promising application model that is well-aligned with Ocean‘s 

design constraints and approach derivation. Moreover, the following section describes an extension of 

the client-side mashup style as a means of supporting wide-area context-mediated component 

discovery and composition. 

5.2.1 Introduction to the Client-side Mashup Style 

As described in section 3.2.6, modern Web architecture has been increasingly used to support 

complex cross-domain component interoperation scenarios. Notably, hybrid web applications (or 

mashups) have emerged as a popular approach for combining Web-based information and 

computation in ways that add value beyond the individual application constituents [206]. For 

example, the popular mashup HousingMaps.com
23

 combines house sale listings from 

CraigsList.com
24

 with graphical map data from Google Maps
25

 to provide a unique Web application 

that allows users to search for houses according to geographic location, price and number of rooms. 

Based on similar techniques, ―Developers are now using various Web APIs to create a plethora of 

mashups to solve all types of problems, from esoteric mashups that record the location and 

availability of rare gaming consoles to those that create Sudoku games from Flickr photos‖ [206]. 

In contrast to enterprise-centric distributed computing techniques, which often require highly 

skilled developers, significant technical infrastructure and months of development time, mashups can 

be created by a broad range of developers using data-centric Web architecture and lightweight 

development tools such as Yahoo Pipes
26

 and Marmite [361]. Component integration is typically 

coordinated by exploiting a shared surrogate key (e.g. address) as a means of joining disparate 

datasets along a semantically known dimension [170]. Examples include union, join and implicit 

searching along dimensions such as location, time, keyword, UPC/ISBN primary keys, etc. The 

underlying data-sources may involve screen scraping (where a mashup parses non-structured human-

readable content), the inherent semantics of well-known Resource representation formats and 

specialized Web-based APIs, which expose an application‘s information and computation.  

Based on data-centric interoperation, the adoption of mashup techniques and technologies has been 

rapidly increasing. Indeed, ProgrammableWeb.com
27

, a comprehensive online compendium of 

established and emerging mashups, listed more than 3,478 mashups and 1,013 related Web service 

APIs as of November 2008. The popularity of mashups is often attributed to the simplicity and 

flexibility of RESTful Web architecture [170, 334, 336]. Although REST principles are not required 

for creating mashups, they align well with the data-centric, cross-domain interoperation style common 

to many implementations [336]. As a consequence, mashups are often based on a variety of Web-

based information such as news feeds, mapping data and Web-based APIs. Due to the variety of 

available data sources and related application scenarios, several functional categories of mashups have 

emerged. These categories were described in a recent survey by Hong and Wong [362] as: 

                                                      
23
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1. Aggregation: Refers to mashups that aggregate data from several external sources; providing a 

summarized or application-specific view of the data. As a prototypical example, 

EveryBlock.com
28

 uses a shared address key to aggregate geo-tagged images from Flickr
29

, 

reviews of local businesses from Yelp
30

, proximate CraigsList advertisements and civic 

information such as crime statistics. 

2. Alternate UI & In-situ Use: Refers to mashups that provide an alternate user-interface or other 

application-specific adaptation of a Website or set of Web-based data. For example, Leaflets
31

 

provides specially adapted, low-bandwidth versions of popular Websites for use on the Apple 

iPhone
32

. 

3. Personalization: Refers to mashups that personalize the functionality of Websites based on 

user provided information. For example, the YES! mashup
33

 calculates a year-end summary of 

sales and tax liabilities for a person‘s eBay account. 

4. Focused View of Data: Refers to mashups that index and categorizes the content of large 

datasets according to a particular organizational scheme. For example, Youtorials
34

 is a user-

submitted compilation of tutorials that can be found on the YouTube
35

 video service. 

5. Real-time Monitoring: Refers to mashups that provide continually updated aggregations of 

rapidly changing and potentially large data sets. For example, Flickr real-time
36

 dynamically 

updates an evolving term list of recently added tags from the Flickr photo sharing website. 

The technologies underlying the majority of mashup applications can be divided into five main 

categories, as shown in Figure 37. As described in [128], these categories can be briefly summarized 

as follows: First, the foundations of many mashups are browser-based execution environments and 

HTTP-based network communications. As such, the associated presentation technologies leverage 

browser-based HTML/XHTML and CSS engines such as Webkit
37

. To support dynamic interactivity 

within browser-based applications, technologies such as JavaScript and Ajax are used to update user 

interface elements, provide network communications and provide application logic during runtime. 

Dynamic interactivity typically involves interactions with Web service APIs, using interoperation 

approaches such as XMLHTTP request, XML-RPC, SOAP and REST. Finally, dynamic 

interoperation in mashups typically involve the exchange of data between the mashup and Web 

service API using representation formats based on XML, Atom [328], JSON [76] and KML
38

. 
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Figure 37: Key mashup technologies (from [128]) 

Currently, the client-centric mashup style represents one of the most common architectural 

approaches for devising hybrid Web applications [243]. In client-centric mashups (CS mashups), 

client devices serve as platforms for the orchestration and aggregation of distributed data and 

computation. CS mashups generally load presentation artifacts, application logic and related 

JavaScript from a remote server using conventional HTTP. Typically, the client-side application 

exists as a set of conventional Web pages that accommodate user interaction via JavaScript, which is 

deployed to clients using the code-on-demand (COD) style [105]. Briefly, the COD style allows 

clients to be extended with additional functionality through the deployment and execution of remote 

software. Data aggregation and related user interface updates are generally accomplished using 

asynchronous XmlHttpRequests that dynamically update the mashup‘s document object model 

(DOM); allowing Web pages to provide updated information without reloading. An overview of the 

CS mashup style is shown in Figure 38. 

 

Figure 38: Overview of the client-side mashup style (adapted from  [243]) 
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With reference to Figure 38, the CS mashup style is described below: 

1. The user navigates to an origin server using an appropriate Web agent (typically a Web 

browser). The mashup‘s presentation artifacts, application logic and JavaScript are 

downloaded to the client using conventional HTTP mechanisms and then rendered by the 

browser. 

2. A DOM event (e.g. page loaded), user initiated event (e.g. mouse click) or other 

application-specific event triggers a request for Resource composition (e.g. data 

aggregation). Application logic and related JavaScript are typically used to request data or 

computation from a Web-based data source. In Web browser scenarios, the client typically 

uses an XmlHttpRequest to acquire external data. 

3. At the remote server, Resource-level state management is provided and an appropriately 

encoded Resource Representation is sent to the client per HTTP content negotiation [104]. 

A lightweight data interchange format such as JSON [76] may be used to reduce 

communication overhead and interaction latency. 

4. The client-side mashup receives the Resource‘s Representation from the remote server and 

applies data transformation processing as per local application logic. Application state is 

maintained at the client. Interface updates are typically applied dynamically using the 

DOM as to avoid page refresh. 

Importantly, the CS mashup style is increasingly recognized as supporting cross-domain 

component interoperation through the application of RESTful principles [334, 336]. In particular, 

Resource-based problem modeling and extensible Representations help reduce client/server data-

coupling as they are not bound to a specific underlying protocol [334]. Moreover, client-based 

application state and an increased URI surface area makes it easier for clients to extract ―interesting‖ 

data from RESTful applications in ways perhaps not originally envisioned by the Resource‘s 

developer [266]. Indeed, the large number of URI entry points common to RESTful applications 

stands in stark contrast to process centric approaches (e.g. SOAP Web services), which typically 

present only a single service endpoint URI and require a shared understanding of domain-specific 

method semantics, sequencing issues and server-side state management requirements (see section 

3.2.8). Hence, the CS mashup style has been increasingly used to support situational applications, 

where component-based constituents are rapidly assembled to solve an immediate business need 

[206]. Although current situational applications are generally assembled statically in days or weeks, 

we suggest that the addition of context-aware component discovery can provide an effective 

foundation for the dynamic assembly of such application types. 

Based on the above observations, we suggest that the CS mashup style provides a foundation for 

extending the Web‘s conventional hypermedia model to support the Ocean approach. While current 

mashups often leverage Web browsers to support presentation and application logic execution, the CS 

mashup style does not preclude adaptation to other Web agent types or execution platforms. 

Furthermore, the CS mashup style aligns with Ocean‘s Internet-based communications and Web-

centric middleware constrains described in section 3.4.2. Notably, CS mashups are based upon 

common Web technologies and are well supported by existing Internet infrastructure. Finally, the CS 
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mashup style aligns with Ocean‘s REST component interoperation constraint. Indeed, the majority of 

current mashup applications exploit RESTful Web APIs and other Resource types as a means of 

providing data-centric component interoperation. However, as discussed in section 4.2, conventional 

Web architecture does not inherently support context-mediated component discovery and selection. 

To address these issues, the next section describes Ocean‘s extension of the CS mashup style. 

5.2.2 Contextualizing the Client-side Mashup Style 

In this section, we extend the CS mashup style with context-mediation techniques intended to support 

the emergence of context-aware Web applications capable of dynamically composing contextually-

relevant Resources at runtime. As discussed in the last section, current mashups are typically 

developed to address relatively static application scenarios and do not support context-mediated 

component discovery and selection beyond conventional hypermedia techniques (i.e. inline and 

transactional context information). In contrast, context-aware applications must often be rapidly 

adapted with relevant application constituents in-situ and may only exist in a particular configuration 

while a context situation remains valid. To support the development of Web-centric context-aware 

systems, we now define a Resource discovery and selection approach based on the Contextualized 

Resource model described in section 4.3.  

As previously introduced, the Contextualized Resource extends the conventional Web Resource 

model with supplemental General and Context Metadata intended to constrain the Discoverability 

Context of the underlying Web Resource. Recall from Definition 1 that a Discoverability Context is 

defined as the set of contextual criteria that must be fulfilled before a Resource is considered relevant 

to the interaction between a user and an Ocean application, including the user and application 

themselves. In conventional hypermedia applications, inline and transactional context provide the 

necessary semantics for users to discover, select and compose Resources (i.e. dereference a link using 

a browser User agent).  

In Ocean we introduce an extensible context-aware component registry, called the Ocean Registry, 

which maintains a shared data store of Contextualized Resources (described in section 5.3). To 

perform Resource discovery, autonomous Ocean applications acquire and model native context data 

(NCD) locally using the Aladin approach presented in section 3.2.2. Next, Ocean applications query 

the Ocean Registry using their locally modeled NCD as query terms (see section 6.4.1.1). The Ocean 

Registry uses the incoming discovery query to search for similar Contextualized Resources from 

within its shared data store (see section 6.4). Contextually relevant Resources are returned to the 

requesting client as a ranked and sorted list of Descriptive Metadata (see section 6.4.1.2). Notably, 

discovered Resources adhere to the REST architectural style as presented in [105]; hence, subsequent 

component interoperation is performed as per the CS mashup style discussed in the last section. An 

overview of the Ocean application model is shown in Figure 39. 
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Figure 39: Overview of the Ocean application model 

With reference to Figure 39, the Ocean application model is defined as follows: 

1. An end-user device executes domain-specific software that adopts the Ocean approach. In 

the implementation shown above, Ocean extends the basic architectural framework of 

Aladin; hence, interaction between local application logic and the Ocean subsystem is 

provided by Aladin‘s façade API and related event mechanism (see section 3.2.2). 

However, applications may communicate directly with the Ocean Registry if necessary. 

2. Aladin analyses the host device and environment capabilities; dynamically downloading 

and installing appropriate context acquisition and modeling plug-ins as necessary during 

runtime. 

3. Context acquisition and modeling is provided using local device capabilities. Acquired 

low-level contextual information is quantized and formatted into native context data (NCD) 

that express the syntax and semantics of a given context domain. 

4. NCD are passed to the Ocean application where they may be used to guide adaptation 

without the aid of Ocean context interpretation (provided that the local application logic is 

capable of parsing and understanding the incoming NCD). 

5. Local application logic may utilize Ocean Context Interpretation (OCI) to perform a 

Resource Discovery query using the Ocean Registry. To Discovery queries, Ocean 

applications form Discovery Requests using an XML-based search grammar that comprises 

a set of search parameters and includes local NCD as query terms (discussed shortly). 

6. The local OCI passes Discovery Requests to the Ocean Registry, which maintains a shared 

data store of persisted Contextualized Resources. 
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a. The shared data store is supported by the Context Metadata abstraction which 

encapsulates the syntax and semantics of a given context domain (see section 

4.3.2). 

b. The Ocean Registry provides an open contribution process whereby external 

Context Experts develop, contribute and manage Context Metadata 

implementations termed Context Handlers (see section 5.4). 

c. The Ocean Registry provides an open contribution process whereby external 

Contextualizers contextualize conventional Web Resources using arbitrary Ocean 

Metadata (see section 5.5). 

d. The Ocean Registry provides integrated Persistence and Discovery Frameworks 

that allows Contextualized Resources to be efficiently stored, indexed and queried 

(see Chapter 6). 

7. Once contextually-relevant Resources have been discovered by the Ocean Registry, the 

results are marshaled into a Discovery Response, which contains a set of Descriptive 

Metadata (e.g. similarity score, personalization score, title, description, domain, etc.) The 

Discovery Response is returned to the calling client. 

8. The Ocean OCI unmarshals the Discovery Response and passes the results to the Ocean 

application. The Ocean application uses domain-specific application logic and appropriate 

user interaction to select appropriate Resources for runtime composition. 

9. The host application employs the REST architectural style to interoperate with selected 

Web Resources according to the CS mashup style described in section 5.2.1. 

10. As additional contextually-relevant Resources are discovered, the Ocean application adapts 

its runtime configuration and composed constituents dynamically. (Note that arbitrary Web 

Resource may be discovered and integrated in this manner). 

As described above, Ocean applications acquire NCD from their environments and then query the 

Ocean Registry to discover contextually relevant Resources using NCD as query terms. In this way, 

Ocean Developers may formulate Discovery Requests without requiring detailed knowledge of each 

modeled NCD. To support effective Resource Discovery, the Ocean Registry utilizes a multi-feature 

similarity search framework that allows Contextualized Resources to be discovered and ranked based 

on their similarity to the query terms contained within incoming Discovery Requests (see section 6.4). 

Related, the Discovery Framework also provides context-aware information filtering, automatic query 

expansion and Resource personalization to help improve search results for a broad range of device 

types and application scenarios (see Chapter 7). The next section describes the Ocean Registry in 

detail. 
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5.3 The Contextualized Resource Registry 

As previously introduced, component registries and context-aware component registries are common 

approaches for mediating dynamic binding and interaction between the loosely-coupled application 

constituents in a distributed system [29]. However, as discussed in section 4.2, current component 

registries face significant challenges in large-scale context-aware scenarios. First, many current 

techniques rely on intermediary context formats; requiring that locally acquired native context data be 

converted into a predetermined intermediary format for use with a given discovery protocol (e.g. 

mapping native geospatial data into a specific data structure using an OWL ontology). 

Problematically, such techniques errantly presuppose significant domain-expertise on the part of the 

application developer and may impose significant processing overhead on mobile devices. Second, 

although recent approaches have explored Resource mediation based on context information, existing 

techniques are limited to a predetermined set of context metadata, do not address wide-area scenarios 

and cannot be extended by external context domain experts. Third, existing approaches are generally 

highly application specific and do not support a variety of application domains. Fourth, existing 

techniques do not address context mismatch scenarios, whereby the query terms provided within a 

Discovery Request do not sufficiently match the metadata used to contextualize Web Resources (for 

details see section 7.2). Finally, existing techniques are not well-suited for overcoming information 

overload in complex environments; requiring that developers (or users) manually filter and select 

appropriate Resources for runtime composition (for details see section 7.3). Based on these 

limitations, we have developed the Contextualized Resource Registry (Ocean Registry), which is 

introduced next. 

5.3.1 Architecture Overview 

The Ocean Registry is designed to mediate interactions between Ocean Core Developers, Context 

Experts, Contextualizers and Ocean Developers (see section 3.6). Accordingly, the architecture of the 

Ocean Registry is organized around a repository of Contextualized Resources (in the form of Ocean 

Metadata) that are persisted within a shared data store. This shared data store is intended to facilitate 

autonomous interactions in the following ways: First, the Ocean Registry is designed, developed and 

managed by Core Developers who are responsible for its software architecture and its Contextualized 

Resource data store. Second, the Ocean Registry allows Context Experts to contribute and manage 

Context Handlers, which implement the Context Metadata interface described in section 4.3.2 (using 

the Context Handler API). As previously introduced, Context Metadata are used to constrain the 

Discoverability Context of Web Resources according to the CR model presented in section 4.3. Third, 

the Ocean Registry allows Contextualizers to create, update and delete Contextualized Resources 

from the shared data store. Finally, the Ocean Registry allows Ocean Developers to discover, resolve 

and rate Contextualized Resources within their applications using a flexible discovery protocol that 

allows locally modeled NCD to be included as query terms (see section 6.4). In response to Resource 

Discovery Requests, the Ocean Registry discovers and returns contextually-relevant Resources from 

its shared data store. Finally, Ocean applications are then free to select and compose discovered 

Resources in-situ according to the Ocean application model described in section 5.2.2. An overview 

of the Ocean Registry is provided in Figure 40. 
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Figure 40: Overview of the Ocean Registry 

The Ocean Registry is designed according to the blackboard architectural pattern [45]. Briefly, 

Blackboard architectures are useful for distributed systems where several independent entities work 

collectively on a common data structure. According to [45], ―The Blackboard architectural pattern is 

useful for problems for which no deterministic solution strategies are known. In Blackboard several 

specialized subsystems assemble their knowledge to build a [possibly] partial or approximate 

solution.‖ These specialized subsystems (e.g. distributed programs) typically have no explicit 

interdependencies (aside from the blackboard itself) and no predetermined activation sequence. 

Rather, the blackboard itself provides internal state management and coordinates interactions with 

distributed entities. This data-directed control approach makes ―experimentation with different 

algorithms possible, and allows experimentally-derived heuristics to control processing‖ [266]. 

According to [45], the benefits of a blackboard architecture include flexibility through recombination; 

efficiency through parallel processing; and autonomous contribution. 

To support Resource contextualization and discovery, the Ocean Registry provides an integrated 

Persistence Framework and complimentary Discovery Framework (see Chapter 6). Briefly, the 

Persistence Framework allows Contextualized Resources to be efficiently stored and indexed for rapid 

retrieval according to domain-specific indexing and similarity modeling techniques. As Ocean 

applications perform Discovery Requests, the Ocean Registry‘s Discovery Framework is used to 

rapidly discover contextually-relevant Resources based on the similarity of incoming query terms to 

the Ocean Metadata within the shared data store. Ocean similarity search operates in conjunction with 

the previously mentioned Persistence Framework; allowing native context data to be compared to 

persisted Context Metadata using the Context Metadata abstraction introduced in section 4.3.2. 

To validate our approach, the Ocean Registry architecture shown above was implemented within 

the Ocean Reference Implementation (Ocean RI). Notably, the Ocean RI‘s implementation is 

organized around several key classes that provide unified access to request processing, query 

handling, personalization services, context management, plug-in handling and database access. 
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Related classes in the Ocean RI include: the OceanManager, which handles Ocean Registry state 

management; the PluginManager, which handles dynamic integration and instantiation of Context 

Handlers; the PersistanceFramework, which handles storage and indexing of Contextualized 

Resources (see section 6.3); the RequestFactory, which handles incoming Discovery Requests in 

combination with the ContextManager and QueryProcessor (see section 6.4.2); and the 

RecommendationEngine and AssociationDiscoveryFramework, which provide community-based 

discovery query enhancement (see Chapter 7). An overview of these classes is shown in Figure 41. 

(Note that implementation-specific methods may be included in the figure below; however, in the 

interest of clarity, these are not described.) 

 

Figure 41: Overview of key Ocean Registry classes from the Ocean RI 

5.3.2 The Resource Management API 

Contextualizers contribute and manage Contextualized Resources using the Ocean Registry‘s 

Resource Management API (Resource API), which provides methods for creating, retrieving, 

updating and deleting Ocean Metadata from the Ocean Registry‘s shared data store. As described in 

section 4.3, Contextualized Resources are based on the CR model, which is used to constrain the 

Discoverability Context of conventional Web-based Resources. Notably, the CR model is agnostic 

regarding the Resources that might be contextualized and any associated Ocean Metadata; hence, 

Contextualizers are free to describe the Discoverability Context of Resources according to their 

individual requirements using the XML schema presented in section 4.3.5. The Ocean RI provides an 

implementation of the Resource API based on the RESTLet Web Services Framework
39

. Figure 42 

provides an overview of the related classes within the Ocean Registry implementation (Note that 

                                                      
39

 http://www.restlet.org/ 
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implementation-specific methods may be included in the figure below; however, in the interest of 

clarity, these are not described.)  

 

Figure 42: Web Service handler classes within the Ocean RI 

To manage Ocean Metadata, Contextualizers are required to authenticate with the Ocean Registry. 

Notably, identity and authentication are core aspects of the Ocean Registry‘s security approach and 

are used in all access control decisions. Contextualizers are issued private API keys that must be 

included with all method calls made using the Ocean Registry. In the Ocean RI, all interactions with 

the Resource API are mediated by the WebServiceGuard, which throttles incoming connections (if 

needed) and performs authentication in combination with the FrobHander and TokenHandler using 

either HTTP Basic Authentication [104] or signed signature digest as per [7]. Requests arriving at the 

Ocean Registry without authentication receive a 401 Unauthorized HTTP status code in reply. 

Once authenticated, Contextualizers use the Resource API to create Contextualized Resources 

using the CR model XML description presented in section 4.3.5. Importantly, it remains the 

responsibility of the Contextualizer to properly describe the Discoverability Context of a given 

Resource using appropriate Ocean Metadata. Note that the creation of valid Contextualized Resource 

XML descriptions may be facilitated by software such as Web-based and stand-alone applications 

(see section 8.2 for details). Once an XML description has been created, it is sent to the Ocean 

Registry using HTTP POST. The URI for Contextualized Resource creation is 

http://oceanframework.org/create/. In the Ocean RI, create requests are directed to the 

ResourceContextualizationHandler, which provides request unmarshalling and validation. Once 

the request is validated, its data are unmarshaled and sent to the Request Factory, which attempts to 

instantiate a Contextualized Resource object (see section 5.3.3). If the creation process fails – e.g. no 

Context Handler could be found for a given context description – the method returns a 400 Bad 

Request HTTP status code, along with an error message. If the creation process succeeds, the method 

returns a 200 OK HTTP status code along with the globally unique identifier (GUID) assigned to the 

newly created Contextualized Resource. For security purposes, Contextualized Resources are 
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automatically associated to the Contextualizer developer account used to create it (e.g. to prevent 

unauthorized updates or deletions). 

Contextualizers update existing Contextualized Resources by creating a new CR XML description 

and sending it to the Ocean Registry using HTTP PUT. The URI for Contextualized Resource updating 

is: http://oceanframework.org/update/{guid}. In the Ocean RI, update requests are directed to 

the ResourceContextualizationHandler, which provides request unmarshalling and validation. 

Once the request is validated, its data are unmarshaled and sent to the Request Factory, which 

attempts to instantiate a Contextualized Resource object. If a valid CR object can be instantiated, the 

new object overwrites the existing Contextualized Resource; however, its global identity is 

maintained. As in the creation process, updating existing Contextualized Resources may be facilitated 

by software tools. If the update process fails – e.g. no Context Handler could be found for a given 

context description – the method returns a 400 Bad Request HTTP status code along with an error 

message. If the update process succeeds, the method returns a 200 OK HTTP status code. 

Contextualizers delete Contextualized Resources by calling the Resource API using HTTP DELETE 

using the following URI: http://oceanframework.org/delete/{guid}. In the Ocean RI, delete 

requests are directed to the ResourceDeleteHandler, which provides request handling. The deletion 

of a Contextualized Resource permanently removes its reference from the Ocean Registry‘s shared 

data store and makes it unavailable for subsequent Discovery Requests. If the delete process fails – 

e.g. no Contextualized Resources exists for a given GUID – the method returns a 400 Bad Request 

HTTP status code along with an error message. If the delete process succeeds, the method returns a 

200 OK HTTP status code. 

5.3.3 Contextualized Resource Instantiation 

A factory approach [114] is used to instantiate CR objects according to the incoming XML 

descriptions provided by Contextualizers. To begin the instantiation process, a multi-threaded factory 

object is created and assigned to a request by the Ocean Registry. The factory unmarshals the XML 

data contained within the request and selects an appropriate instantiation strategy. The instantiation 

strategy is based on a modified version of the chain-of-responsibility pattern [114], which employs 

generalized command objects to perform a domain-specific actions. Specifically, contributed Context 

Handlers are utilized as command objects by way of a static create method that each Context 

Handler must provide. Similar to the Context Metadata‘s setConfiguration method described in 

section 4.3.2 (which accepts a generic object as an argument and uses domain-specific mechanisms to 

parse native description values), the create method accepts a generic initialization object that is used 

to prepare internal state. A diagram of the Contextualized Resource instantiation process is shown in 

Figure 43. 
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Figure 43: The Contextualized Resource instantiation process 

Regarding Figure 43, the Contextualized Resource instantiation process proceeds as follows: First, 

a Contextualized Resource is described by a Contextualizer using the CR model XML schema 

presented in section 4.3.5 (XML Description). The completed XML Description is sent to the Ocean 

Registry‘s create or update API methods. Second, a multi-threaded factory object is created to handle 

the request (note that thread pooling techniques may be used to manage factory objects). Third, the 

assigned factory attempts to instantiate a compatible Context Handler for each NCD contained within 

the XML Description. Instantiation attempts are handled by calling each registered Context Handler 

within the Ocean Registry using its static create method and passing in the given NCD as the 

instantiation object. During this process, if a particular Context Handler cannot parse the provided 

NCD, it raises an exception; otherwise it returns a preliminarily configured Context Handler object. If 

an exception is raised, the factory recursively selects another Context Handler and repeats the 

instantiation process until suitable Context Handler is instantiated or the process fails (i.e. no 

compatible Context Handler could be found). This command process is repeated for each NCD (plus 

the GMD) contained within the XML Description. (To help improve efficiency, identifiable aspects of 

the request NCD may be cached as a means of providing mappings to compatible Context Handlers 

for future requests). Fourth, once all metadata are instantiated as Context Handler objects, each 

handler is provided all of the other handlers contained within the request using its refineMetadata 

method (see section 4.3.2). During refinement, Context Handlers may adapt their configuration to 

accommodate the presence of specific colleagues. Fifth, once the refinement process is complete, the 

factory creates a Contextualized Resource comprised of Ocean Metadata (i.e. General and Context 

Metadata). 
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5.4 Community-based Context Handler Contribution 

A key challenge facing the Ocean approach is the contribution of a large set of Context Handlers for 

use in creating and discovering Contextualized Resources. As introduced in section 5.2.2, the 

effectiveness of the Contextualized Resource abstraction depends on the availability of diverse 

Context Handlers that encapsulate the syntax and semantics of complex context domains. As 

discussed in section 4.3.3, the development of Context Handlers is often highly complex and domain-

specific. In this regard, the complexity inherent in many context domains requires participation by 

external Context Experts (see section 2.3.3). To support the dynamic extension of the Ocean Registry 

with additional Context Handlers, we introduced the Context Metadata abstraction (see section 4.3.2) 

and the associated Context Handler API (see section 5.3). As described in section 3.6.2, Context 

Experts may contribute Context Handlers based on a variety of motivations. As Context Handlers 

represent critical functional components of the Ocean Registry, implementations must not be allowed 

to adversely affect the performance of the overall registry architecture. Moreover, as Context 

Handlers are utilized by non-experts (i.e. Contextualizers) during CR creation and management, their 

intent, functionality and configuration options must be clearly described. Based on these 

requirements, we now propose a preliminary Context Handler contribution approach based on the 

Java Community Process (JCP) [167]. 

5.4.1 Overview of the Java Community Process 

The JCP was established in 1998 to help guide the development and evolution of Java technologies. 

The JCP defined a formalized process whereby interested parties may propose new specifications and 

technologies for the Java platform [167]. Similar in spirit to the Context Metadata abstraction, the JCP 

suggests that ―the best way to produce a technology specification is to gather a group of industry 

experts who have a deep understanding of the technology in question and then have a strong technical 

lead work with that group to create a first draft‖ [166]. Currently, there are over 300 JCP-developed 

technology specifications, called Java Specification Reviews (JSRs). Examples of notable JSRs 

include the Java API for XML Processing (JSR 5); Java Database Connectivity (JSR 221); and the 

Scalable 2D Vector Graphics API for J2ME (JSR 226). The diversity of current JSRs attest to the 

JCP‘s ability to attract external domain experts, build community consensus and promote the 

widespread adoption of Java technologies. A timeline of the JCP process is shown in Figure 44. 

 

Figure 44: Timeline of the Java Community Process (from [166]) 
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With reference to Figure 44, the contribution of new Java technologies follows the following four-

phase process: In phase 1 (Initiation), any interested party may propose a new JSR specification or a 

revision of an existing specification. Once proposed, the Executive Committee (EC) reviews and 

votes on the JSR proposal. If approved, the JSR enters phase 2 (Early Draft), where an expert group is 

formed to write the initial specification. During this phase, JCP members (plus the general public) are 

allowed to comment on the draft. Next, the draft is revised according to the collected comments; 

resulting in an Early Draft specification. Once the Early Draft specification is produced, the JSR 

enters phase 3 (Complete the Specification, Public Draft/Final Release), where a combination of 

expert-group contribution, public review and EC voting result in the development of a Proposed Final 

Draft. If approved, the Proposed Final Draft is supplemented by the development of a Reference 

Implementation (RI) – intended to demonstrate that the JSR can indeed be implemented – and a 

Technology Compatibility Kit (TCK) – developed to test the impact of the JSR on existing Java 

technology and related public APIs. Once the RI and TCK are complete, a final round of member and 

public reviews culminates in a vote on the Final Release. If the Final Release is adopted, the JSR 

enters phase 4 (Maintenance), where a process of ongoing review and updates keep the specification 

current.  

5.4.2 Towards Community-based Context Handler Contribution 

We suggest that the JCP process introduced above provides a suitable conceptual framework for the 

controlled contribution of Context Handlers within the Ocean Registry. In particular, the JCP‘s 

combination of staged expert-group development, community and public reviews and executive 

committee oversight align well with the requirements of the Ocean Registry. Notably, the JCP‘s 

inclusion of member and public reviews provides a mechanism whereby problematic and structural 

issues can be identified and resolved in an open forum. In addition, broad participation in the review 

process can be used to generate consensus throughout the community. According to the JCP, 

consensus around the form and content of proposed JSRs is built by ―using an iterative review process 

that allows an ever-widening audience to review and comment on the document‖ [167]. We suggest 

that a similar process could be integrated into Ocean, whereby Context Handler specifications are 

reviewed and commented before subsequent revision and executive committee voting. Recall that the 

JSP‘s emphasis on testing and verification are used to ensure that new Java technologies do not 

adversely affect existing Java platform. Similarly, we suggest that Ocean should adopt similar RI and 

TCK requirements as a means of ensuring such compatibility within the Ocean Registry. In particular, 

the Context Handler contribution process must carefully guard existing Context Handlers from 

potentially detrimental effects of new implementations. Furthermore, the contribution process must 

guard against functionality fragmentation such as duplication of Context Handler functionality or 

inconsistent implementations (e.g. support of the same NCD by different handlers). In this regard, 

Executive Committee oversight should be retained during the contribution process at key junctures. 

We have illustrated how the JCP process might be adapted for use in Ocean in Figure 45. 
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Figure 45: Preliminary community-based Context Handler contribution process 

With reference to Figure 45, the preliminary Context Handler contribution process is defined as 

follows:  

1. Context Experts review the Context Metadata interface descriptions, sample code and 

associated documentation. Context Experts prepare a request to develop a new Context 

Handler, which is submitted to the Ocean Registry‘s Executive Committee (EC) for 

approval. 

2. If the request is approved, the Context Experts prepare an early Context Handler prototype 

implementation and related documentation. The prototype encapsulates the syntax and 

semantics of a given context domain as described in section 4.3.2. In addition, Context 

Experts may provide advanced configuration mechanisms (e.g. comparison functions), 

which allow non-experts to control Discoverability Context formation (see section 4.3.3). 

3. The Context Handler prototype and related documentation enter the Ocean Community 

Process, which may include several rounds of development and review. During the process, 

public and member reviewers are able to comment on the Context Handler prototype. 

Oversight from the Executive Committee is integrated into the development process at key 

junctures. The cycle of prototype updates and community reviews continues until the 

prototype reaches a proposed final prototype (as decided by a vote of the EC.) If approved, 

the Context Experts prepare a reference implementation (RI) and related Technology 

Compatibility Kit (TCK), which are used to ensure proper operation of the Context Handler 

within the Ocean Registry. 
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4. Using the Context Handler‘s RI and TCK, the proposed final prototype undergoes a testing 

and verification phase, whereby the prototype is checked for compatibility with the existing 

Ocean infrastructure. If the proposed final prototype passes the testing and verification 

phases, a final Context Handler implementation is produced along with related 

documentation. 

5. Once the final Context Handler implementation and documentation is complete, an 

additional round of public and community comments is allowed. The EC then rejects or 

accepts the final Context Handler release by ballet. 

6. If adopted, the final Context Handler release is registered within the Ocean Registry and 

made available for use by Contextualizers and Ocean applications. Additionally, the 

Context Handler‘s official documentation package is made publically available. 

The contribution process described above is preliminarily supported by the Ocean Reference 

Implementation (RI). Notably, we have developed an integrated plug-in framework that allows 

externally developed Context Handlers to be dynamically loaded into the Ocean Registry at runtime. 

The plug-in framework is managed by a PluginManager, which dynamically loads, caches and 

garbage-collects Context Handler implementations on-demand. Registered Context Handler plug-ins 

are described by PluginInfo objects and managed by PluginHolder objects, which are used to 

dynamically instantiate Context Handlers according to the request handling needs of the Ocean 

Registry. Further, the PluginManager insures that contributed Context Handlers properly implement 

the Context Metadata abstraction (i.e. the IContextMetadata interface) and adhere to appropriate 

security considerations. An overview of the PluginManager and related classes from the Ocean RI is 

shown in Figure 46. (Note that implementation-specific methods may be included in the figure below; 

however, in the interest of clarity, these are not described.) 

 

Figure 46: Overview of the PluginManager and related classes from the Ocean RI 
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5.5 Community-based Contextualized Resource Contribution 

Given a sufficiently large set of contributed Context Handlers, a second key challenge facing the 

Ocean approach is the generation of a pool of Contextualized Resources that is large enough to 

support a broad range of Ocean applications. As described in section 4.3, Contextualized Resources 

express the Discoverability Context of conventional Web Resources by way of supplemental Ocean 

Metadata, which are stored separately from Resources within the Ocean Registry. As described in 

section 4.2, this associative metadata approach allows for the independent evolution of both 

Resources and Context Metadata by providing a separation of concerns between Resource providers, 

Contextualizers and Resource consumers; effectively allowing Ocean to integrate existing Resources 

without requiring changes to existing Web architecture. However, in order to overcome component 

sparsity in real-world environments, the Ocean application model presupposes a vast collection of 

Contextualized Resources. Given the tremendous volume of information and computation present on 

the Web, the creation and maintenance of such a collection represents a significant challenge. 

Recently, several community-based approaches have shown considerable promise in addressing large-

scale contribution and classification tasks. In this regard, this section describes our preliminary 

community-based contribution approach that leverages collaborative annotation as a mechanism for 

promoting large-scale Contextualized Resource contribution. 

5.5.1 Overview of Collaborative Annotation 

The success of modern Web architecture has resulted in an explosion of Web-based information and 

computation; however, the scale, decentralization and dynamics of the Web present serious challenges 

for discovering information and computation that meet the requirements of users [205]. To address 

this issue, Web search and related information retrieval research has produced increasingly effective 

techniques for organizing and searching for Web content [205, 380]. Through the development of 

distributed indexing techniques [253], first generation search engines were capable of indexing large 

portions of the Web; however, the relatively unstructured nature of hypermedia Resources often 

resulted in low search effectiveness [205]. Hence, early contributors in Web search (e.g. Yahoo!) 

augmented full-text search offerings with the creation of Website taxonomies, whereby Resources are 

categorized into browseable classification hierarchies. Problematically, taxonomy-based approaches 

required significant human effort for performing the requisite editorial process. More recently, 

improvements such as large-scale distributed indexing [84], improved search algorithms [205], and 

the development of Resource ranking techniques (e.g. PageRank [246]) have made modern search 

engines invaluable tools for navigating the deluge of relatively unstructured Web content. 

Based on the success of the human-centric Web, the semantic Web movement has endeavored to 

develop technologies that allow machine-based processing of Web-based information and 

computation [373]. Towards this end, Semantic Web techniques are used to augment the diverse and 

relatively unstructured nature of hypermedia with structured machine-readable metadata [367]. A 

primary approach in this regard is the development of formalized ontologies [377] that encapsulate a 

given knowledge domain and support reasoning models based on structured markup schemes such as 

RDF [367] and OWL [91]. As structured data is not an inherent aspect of conventional Web 

architecture, various approaches for annotating conventional Web resources with semantic metadata 
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have been explored. In several recent approaches, annotations are created through the automatic 

analysis of Web page content and structure using a combination of machine-learning algorithms and 

natural language processing (NLP) techniques [165]. However, while automated techniques have been 

gaining in popularity, their relative immaturity often necessitates manual human intervention using 

toolkits such as Protégé [230] and CREAM [138] or semi-automated disambiguation algorithms 

[309]. Notably, it is recognized that manual and semi-automatic classification techniques require 

human users who are familiar (or even expert) with a given knowledge domain and committed to 

annotating significant quantities of Resources [205]. Hence, while semantic Web approaches have 

found success in limited scenarios (e.g. bioinformatics [17] and knowledge management [309]) they 

are largely incapable of accommodating Web-scale environments due to a fundamental lack of 

semantic content [205]. 

Recently, collaborative annotation has emerged as a community-based approach for generating 

semantic annotations (often called tags) in large-scale scenarios. In this approach, tags have been 

defined as "an important subclass of annotations that comprise simple, unstructured labels or 

keywords assigned to digital resources to describe and classify the digital resource" [153]. 

Collaborative annotation systems rely on a community of users that create and freely associate tags 

with Resources such as Web pages, image data, and video content. The resultant tag collection 

provides a semi-structured, community-generated semantic vocabulary that is commonly known as a 

folksonomy [153]. In most cases, collaborative annotation is facilitated by an open contribution model, 

whereby tags can be freely defined and contributed by any member of the community [123].  

Recent studies have shown that users are often willing to manually annotate Resources (such as 

photos) in order to help make them more discoverable [8]. For example, the popular photo sharing 

Website Flickr
40

 uses collaborative annotation to help organize over 52 million publicly available 

images [302]. To achieve massive scalability, Flickr employs an open contribution model that allows 

the Flickr community to categorize photographs according to a multitude of preferences and 

perspectives. As illustrated in an example from [8], ―a Flickr photo of La Sagrada Familia - a massive 

Roman Catholic basilica under construction in Barcelona - is described by its owner using the tags 

Sagrada Familia, and Barcelona. Using the collective knowledge that resides in Flickr community on 

this particular topic one can extend the description of the photo with the tags: Gaudi, Spain, 

Catalunya, architecture, and church. This extension provides a richer semantical description of the 

photo and can be used to retrieve the photo for a larger range of keyword queries.‖ 

Recently, collaborative annotation has become a central aspect of many large-scale Web 

applications, including blogging systems, digital library systems, and a variety of prominent Websites 

(for a detailed overview, see [123]). Within these diverse applications, a variety of techniques have 

been explored to help users create and maintain effective folksonomies. Common quality control 

techniques include image processing and machine-learning [199]; tag clouds to users help visualize 

popular keywords [304]; and various tag recommendation strategies, including co-occurrence 

detection, stability-promotion, descriptiveness-promotion and rank-promotion [302]. However, 

despite the emergence of such quality control techniques, recent studies have shown that a significant 

degree of inconsistency, contradiction and inaccuracy exists within many folksonomy-based systems 
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[94]. Common tagging problems include misspellings, confusing punctuation, non-descriptiveness 

and erroneousness [153]. Proposed solutions to these issues generally include constructing hybrid 

system architectures that combine freeform tagging with structured vocabularies. A common 

approach in this regard is an ontology-directed-folksonomy, where tags from a formalized ontology 

are suggested, but users retain the ability to define freeform tags [153, 337]. 

5.5.2 Towards Collaborative Contextualized Resource Contribution 

In Ocean, we suggest that large-scale Contextualized Resource contribution can be facilitated by the 

application of collaborative annotation techniques. As described in section 4.3.2, the foundation of the 

CR model is a set of configurable Context Metadata which are associated to Web Resources as a 

means of describing their Discoverability Contexts. In this regard, Ocean Context Metadata can be 

understood as a controlled, yet configurable annotation vocabulary that supports machine-based 

processing and configuration options. For example, a Context Handler encapsulating the semantics of 

geo-location can be understood as roughly analogous to semantic metadata elements such as Dublin 

Core‘s DCMI Point scheme [75]; however, unlike Dublin Core metadata, which is itself an 

intermediary format, Ocean‘s metadata model supports component discovery based on native context 

data (NCD) such as raw NMEA sentences [220], GML encoded data [237], microformats [55], etc. 

Moreover, the Ocean Metadata model can be dynamically extended to support additional NCD 

formats as they become available. 

In Ocean we adopt an open Contextualized Resource contribution model based on a modified 

version of the ontology-directed-folksonomy approach previously introduced. Specifically, we extend 

the basic contribution architecture introduced in section 5.3.2 to allow any Contextualizer to 

contextualize any Resource with any combination of Ocean Metadata. The open contribution 

architecture is facilitated by the Ocean Registry‘s Resource API (Resource API) described in section 

5.3.2. Recall that interactions with the Resource API are accomplished using the Ocean Registry‘s 

Web services in combination with the Contextualized Resource XML schema described in section 

4.3.5. Although interaction with the Resource API is straightforward, it is not generally intended for 

direct Contextualizer interaction. Rather, the Resource API is designed to support the emergence of a 

variety of software tools and Web-applications, which handle the underlying Web service interaction 

and provide simplified access to Context Metadata configuration. For example, Ocean‘s Resource 

API could be coupled with a photo sharing Website offering automatic Resource contextualization as 

part of its service offerings; making the user‘s photos discoverable by the community of Ocean 

applications. 

In the Ocean Registry, the Context Metadata vocabulary is only limited to the available Context 

Handlers that have been previously contributed (see section 5.4). Unlike many semantic Web 

approaches, which require the encoding of metadata within Resource representations, Ocean‘s 

associative metadata model allows Context Metadata to exist independently. This approach allows 

Contextualized Resources to be created without Resource alteration (e.g. updating all Web-page 

headers with Dublin Core metadata). Moreover, the use of the associative model allows anyone (not 

only Resource owners) the ability to contextualize Resources; aligning with the best practices of many 

open contribution models [302].  
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In addition to the basic contribution model, Contextualizers may also establish domain authority 

over a given domain or sub-domain by demonstrating administrative access (e.g. by updating a given 

Web Resource with an Ocean-specified HTML metadata code). Once verified, any Contextualized 

Resources created by the authorized Contextualizer for that domain are marked as authoritative; 

meaning that they are considered to be created by the domain owner. This additional contextualization 

mechanism allows Ocean applications to further restrict Discovery Requests to authoritative 

results. In this way, Ocean applications can be constructed to interact specifically with a known set of 

Resources. For example, Flickr may develop an Ocean-based photo browser that is configured to 

discover digital images from the authoritative Flickr domain. 

Finally, while Ocean‘s collaborative annotation model provides a community-based approach for 

scalable Contextualized Resource contribution, Ocean applications may still encounter constituent 

sparsity issues in less popular or newly established contexts (i.e. contexts without adequate 

Contextualized Resources). To address sparsity issues, we explored augmenting Ocean‘s context-

aware collaborative annotation model with automated methods of Context Metadata extraction and 

annotation. Increasingly, Websites embed machine-readable context information within Resource 

collections such as geo-location [55], calendar data [81] or electronic business cards [80]. Several 

projects have explored automatic extraction of such semantic metadata. For example, Ding et al. [90] 

investigated geo-location extraction using various Websites; the TimesMine system [322] can 

automatically generate timeline-based views of date-tagged Web content; and Newsjunkie [99] mines 

online new sites to extract personally relevant content. As described in section 8.4, we developed a 

context-aware WebCrawler framework capable of automatically extracting Contextualized Resources 

from several popular Web applications. 

5.6 Chapter Summary 

This chapter provided an overview of wide-area context-aware computing techniques based on the 

Ocean approach. It began by describing the client-centric mashup (CS mashup) style, which aligns 

well with Ocean‘s approach presented in section 3.5 but lacks support for context-mediated 

adaptation. Accordingly, we introduced an extension to the CS mashup style that enables dynamic, 

context-aware component discovery and selection based on the Contextualized Resource model 

introduced in section 4.3. Related, we proposed the Ocean Registry, which represents an extensible 

mechanism intended for storing, managing and discovering Ocean Metadata. Notably, the Ocean 

Registry‘s Blackboard architecture provides a separation of concerns between Resource providers, 

Contextualizers and Resource consumers; effectively allowing Ocean to integrate existing Resources 

without requiring changes to conventional Web architecture. Related, several Ocean Registry 

processes were presented including a detailed discussion of Contextualized Resource management 

and an introduction to Context Handler management and Contextualized Resource discovery. The 

chapter concluded with the presentation of two preliminary community-based contribution 

mechanisms intended to promote the controlled contribution of Context Handlers and the open 

contribution of Contextualized Resources. 
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Chapter 6 

Contextualized Resource Persistence and Discovery 

6.1 Introduction 

According to the Ocean application model described in section 5.2.2, the Ocean Registry must 

accommodate very large Contextualized Resource (CR) datasets while simultaneously supporting 

Discovery Requests that include native context data (NCD) as query terms. Importantly, Ocean 

applications make Discovery Requests at runtime (often under strict time constraints); hence, in 

addition to query effectiveness, query efficiency is a major aspect of the Ocean Registry. As 

introduced in section 4.3, Contextualized Resources represent arbitrarily complex data structures that 

cannot often be effectively indexed or queried using classical key, range or proximity techniques. 

Hence, in section 4.3.3, we introduced similarity modeling as a promising approach for discovering 

semantically related objects based on domain-specific features. In this regard, we adopted notions of 

similarity modeling within the Context Metadata interface described in section 4.3.2. Recall that 

implementations of the Context Metadata interface (i.e. Context Handlers) allow Context Experts to 

provide domain-specific configuration and comparison intended to facilitate complex information 

retrieval scenarios. However, as discussed in section 4.3.3, similarity modeling techniques often suffer 

from the ―curse of dimensionality,‖ whereby exponential search time or memory requirements may be 

encountered in high dimensional feature spaces [376]. This chapter discusses the Ocean Registry‘s 

approach for accommodating efficient storage, indexing and discovery of Contextualized Resources. 

This chapter proceeds as follows: First, section 6.2 describes background and related work specific 

to similarity search. Next, section 6.3 discusses Contextualized Resource persistence. First, section 

6.3.1 presents the IndexManager abstraction. Next, section 6.3.2 describes Ocean‘s persistence 

architecture. Finally, section 6.3.3 provides an indexing and persistence example. Next, section 6.4 

discusses Contextualized Resource discovery. First, section 6.4.1 describes the Ocean Registry‘s 

Discovery API and associated query protocol. Next, section 6.4.2 describes Query Object 

instantiation. Next, section 6.4.3 provides an overview of multi-feature similarity search. Finally, 

section 6.4.4 presents Ocean‘s multi-feature similarity search approach, including the adoption of the 

Threshold Algorithm, search space reduction and the Discovery Framework software architecture. 

6.2 Background and Related Work 

The diversity of emerging data types and limitations of existing search techniques have motivated the 

development of similarity search approaches, whereby complex objects are retrieved from a data store 

if they are determined to be similar to a query object according to one or more domain-specific 

features [376]. As previously introduced, complex objects cannot often be meaningfully indexed or 

queried using classical means. Notably, complex objects may provide neither a natural ordering 

scheme nor a means of directly comparing equality. Related, similarity search algorithms model and 

compare search objects according to a comparison function, which analyses important aspects of the 

objects resulting in a domain-specific comparison metric. Common comparison functions include 

geometric models, feature models, alignment-based models and transformational models [125]. 

Common comparison metrics include geometric distance, cosine similarity, Jaccard coefficients, 
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Hamming distance, Levenshtein distance and so forth [281]. Similarity search algorithms are often 

developed to meet the requirements of a given domain. Example domains include computational 

biology, where researchers may be interested in searching for protein sequences that are similar to a 

representative sample (e.g. from slightly different animal species) [350]; unstructured text retrieval, 

where large repositories of information can be searched for objects containing similar ―concepts of 

interest‖ [18]; and video compression, where objects of interest can be identified and described as 

vectors [163]. 

In many similarity search problems, prohibitive computational complexity derives from a proximity 

problem, whereby the distances between several points must be calculated in a metric space according 

to an exact nearest neighbor search algorithm [376]. Efficient solutions to such problems have been 

discovered when these points lie in a constant dimension [160]. For example, if the points in question 

lie within a plane, exact nearest neighbor algorithms achieve a query time of 𝑂 𝑙𝑜𝑔𝑛  and require 

only 𝑂(𝑛) storage [297]. However, as dimensionality increases, many algorithms‘ space or time 

requirements grow exponentially. For example, the exact nearest neighbor problem has a solution of 

𝑂(𝑑𝑂 1 log n) query time and requires 𝑛𝑂(𝑑)storage [210]. Such performance issues may also be 

exacerbated in practical scenarios, where linear or near-linear storage causes exact nearest neighbor 

algorithms to exhibit linear query times for relatively small values of n [351]. Hence, it has been 

conjectured that no efficient solutions for the exact nearest neighbor problem exists when the 

dimensionality is sufficiently large [160]. 

Several approaches have been devised to address the performance challenges associated with exact 

nearest neighbor similarity search techniques. Often, it is possible to eliminate the exponential effect 

of increasing dimensionality by allowing solutions to be approximate rather than exact, using so-

called approximate nearest neighbor (ANN) algorithms. Notably, several ANN approaches have 

shown that approximation can reduce exponential effects to polynomial [160]. In general, most ANN 

techniques allow for the specification of a precision parameter (𝜀), which is used to control the 

distance of neighboring points from the search point. ANN algorithms typically attempt to 

asymptotically approach the exact neighbor as 𝜀 goes to 0, and to increase the query performance (at 

the expense of precision) as 𝜀 becomes larger [61]. While a full treatment of ANN techniques is 

outside the scope of this dissertation, the interested reader may reference [356] for a comprehensive 

treatment. Table 13 presents the performance characteristics of selected ANN algorithms as described 

in [160]. 
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Source Query time Storage Update time 

[190] 

Randomness:  

Monte Carlo 

𝑑 log𝑛 min(𝜀2, 1)  𝑛𝑂 1 𝜀2 +log (1+𝜀)  1+𝜀    𝑛𝑂 1 𝜀2 +log (1+𝜀)  1+𝜀    

[159] 

Randomness:  

Monte Carlo 

𝑛
𝑂 

1+log (1+𝜀)
1+𝜀

 
 𝑑𝑛 𝑑 𝑙𝑜𝑔𝑂(1)𝑛 

[161] 

Randomness:  

Monte Carlo 

𝑑𝑛1 (1+𝜀)  𝑛1+1 (1+𝜀) + 𝑑𝑛 𝑑𝑛1 (1+𝜀)  

[158] 

Randomness:  

Las Vegas 

 𝑑 log𝑛 𝜀  𝑂(1) 𝑛1 𝜀 𝑂(1)
 Static 

[158] 

Randomness:  

Deterministic 

 𝑑 log𝑛 𝜀  𝑂(1) 𝑛1 𝜀 𝑂(1)
 Static 

Table 13: Selected approximate nearest neighbor performance characteristics (from [160]) 

In addition to approximation, dimensionality reduction techniques have also been proposed to 

increase query speed. The central idea of dimensionality reduction is to select the subset of the 

available features that best represents the data and then construct an index data structure for this 

reduced feature space [57]. Additionally, queries are also feature-reduced in order to match the search 

space of the constructed index. To help alleviate the curse of dimensionality with regards to the index 

data structure, datasets can be feature-reduced before indexing [164]. Importantly, results from 

dimensionally reduced queries are lossy in character (e.g. producing false positives); however, the 

amount of loss is dependent on both the dataset and feature-reduction techniques. For example, 

Principal Component Analysis (PCA) [172] is a widely used technique for dimensionality reduction 

that exploits detected variance in data as a means of determining an appropriate feature reduction 

space. However, while PCA results in little or no information loss when the data are globally 

correlated, many data types do not exhibit global correlation in practical scenarios; resulting in 

significant information loss [164]. Other approaches, such as Local Dimensionality Reduction (LDR), 

attempt to overcome these shortcomings by segmenting locally correlated data before performing 

dimension reduction [58]. 

Approximation and dimension reduction are typically combined with indexing techniques to 

facilitate sub-linear query performance. Unlike classical database systems, which often construct 

indexes based on specific table columns (e.g. record keys), similarity search approaches must index 

the complex features of the search objects in question. Towards this end, similarity-based indexing 

extracts domain-specific aspects of the information content into a data-structure supporting fast 
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lookup [376]. Importantly, indexing algorithms attempt to capture aspects of the data considered 

relevant to a user‘s information needs; however, most approaches introduce some measure of 

inexactness, which can be measured according to the approaches effectiveness. As informally defined 

in [380], ―a system is effective if a good proportion of the first r matches returned are relevant. Also, 

different search mechanisms have different computational requirements and so measurement of 

system performance must thus consider both effectiveness and efficiency.‖ Related, precision and 

recall are commonly used to quantify effectiveness [205]. Precision refers to the fraction of the 

retrieved objects that are relevant and recall refers to the fraction of relevant objects that are retrieved 

[380]. 

The determination and representation of important aspects of persisted data means that most 

indexing techniques rely on domain-specific similarity metrics. For example, many image databases 

provide spatial indexing techniques that must consider domain-specific aspects such as space 

partitioning, data partitioning and dynamic adjustment of overlapping image sub-regions within the 

index [217]. In contrast, indexing techniques have also been developed for large scientific datasets 

that are based on the structural aspects of self-describing file formats such as Planetary Data System 

and Hierarchical Data Format (see [218]). Such approaches rely on detailed knowledge of the 

application-specific metadata associated to these file formats. Similar domain-specificity can be 

observed across most similarity search domains, including unstructured text [205], audio data [360], 

fuzzy set values [143], Web service metadata [214] and so forth. 

A variety of index data structures have been developed to address domain-specific similarity 

metrics [46]. Early multidimensional indexing data-structures included R-trees [134] and early 

variants such as the R+-tree [295]. These early approaches formed the basis of many subsequent 

techniques, but have been largely superseded due to inefficiencies in higher dimensional space [164]. 

For example, Weber et al. [351] developed a multidimensional index approach called VA-file, which 

represents index points as an array of compact geometric approximations. The VA-file has been 

shown to improve disk I/O performance in high dimensional space on uniform data, but can suffer 

from higher computational complexity and poor performance for skewed data. These types of 

performance issues have been explored by Ciaccia et al. [68], who proposed a height balanced M-tree 

where metric space point positioning relies only upon positivity, symmetry, and triangle inequality 

postulates. The M-tree demonstrates an ability to perform reasonably well in increasing 

dimensionality, scales well as file size increases and provides dynamic update capability. While M-

trees provide a general approach, Filho et al. [107] proposed Omni-concept  as a performance 

enhancement technique which can be applied when ―the correlation behaviors of database are known 

beforehand and the intrinsic dimensionality 𝑑2 is smaller than the embedded dimensionality 𝑑 of 

database‖ [164]. Omni-concept can be realized using different index structures such as B+-trees and 

R-trees. Additional notable indexing data-structures include: P-Sphere trees [124], Slim-trees [48] and 

iDistance [164]. 
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6.3 Contextualized Resource Persistence 

The aforementioned indexing approaches and data-structures illustrate the domain-specificity of most 

similarity search algorithms. In particular, domain-specificity relates strongly to the underlying search 

objects, the associated comparison semantics and related persistence model of a given search 

technique [376]. As described in section 4.3, Contextualizers constrain the Discoverability Context of 

Resources by creating Contextualized Resources comprised of General Metadata and a set of 

configured Context Metadata (in the form of Context Handlers). As described in section 4.3.2, 

Context Handlers adhere to the Context Metadata interface as a means of encapsulating instantiation, 

configuration, similarity comparison for a given context domain. Using this interface, Contextualized 

Resources can be meaningfully compared to incoming Discovery Requests according to query terms 

containing native context data (NCD). However, significant variation exists regarding the persistence, 

indexing and query models that might be used to store and search for Context Metadata objects. 

Accordingly, this section describes Ocean‘s persistence approach, which supports domain-specific 

indexing and persistence techniques for each contributed Context Handler type. 

6.3.1 The Index Manager Abstraction 

In order to accommodate multiple indexing approaches, Ocean provides an architectural abstraction 

called the IndexManager, which is implemented by Context Experts for a given Context Handler 

using the contribution process described in section 5.4. The IndexManager provides a set of methods 

supporting domain-neutral indexing and query operations while encapsulating underlying data 

structures as required by the similarity mechanisms of a given context domain. We base our 

IndexManager interface definition on related work from Chaudhuri et al. as presented in [60]. The 

IndexManager interface is shown in Figure 47. 

 

Figure 47: The IndexManager interface 

Regarding Figure 47, the IndexManager interface methods are defined as follows: 

 create: Indexes a Context Metadata object (of a specific type) in secondary storage 

according to a domain-specific indexing technique and related data structures. If successful, 

the method returns an integer representing the resultant Context Metadata identifier (CMID), 

which can be used to directly access the persisted Context Metadata object. 

 retrieve: Returns the Context Metadata object referenced by a given CMID. 

 update: Updates the previously persisted Context Metadata object (as identified by its CMID) 

with new values and updates related index data structures.  
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 delete: Permanently removes the previously persisted Context Metadata object identified by 

the given CMID. 

 topSearch: For a given set of QueryConstraints, returns a sorted set of objects 

(ResultSet)from the underlying data store (bounded by count) that are considered most 

similar to the QueryObject. The QueryConstraints object indicates how the search space 

should be reduced according to the data type, URI domain or Contextualizer associated with 

the Context Metadata‘s parent (i.e. its associated Contextualized Resource). The QueryObject 

refers to a template Context Handler constructed from an incoming Discovery Request 

(described in section 6.4.2). 

 probe: Provides random access to the similarity grade (in the interval [0,1]) of  a specified 

Context Metadata entity (according to CMID) from within a given ResultSet. Returns null 

if the CMID is not found. 

6.3.2 The Ocean Persistence Architecture 

The IndexManager abstraction forms the foundation of the Ocean persistence architecture, which 

allows Ocean Metadata to be efficiently stored and indexed for rapid retrieval. As a given Ocean 

Metadata entity is stored within the Persistence Framework it may be referenced by several domain-

specific indexes; each based on a different similarity mechanism and related Index Manager. Within 

the Ocean Registry, complete Ocean Metadata objects are persisted within a shared data store, called 

the Ocean Metadata Store, whereas associated Context Metadata objects are indexed and stored 

according to the associated Context Handler type. The persistence architecture is illustrated in Figure 

48 using an example Ocean Metadata entity (note that other Context Metadata combinations are 

possible). 

 

Figure 48: Overview of the Ocean Metadata persistence architecture 
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Regarding Figure 48, the Ocean Metadata persistence architecture is defined as follows: 

1. At the conclusion of the instantiation process described in section 5.3.3, Contextualized 

Resources exist as complex Ocean Metadata objects comprised of General Metadata and 

appropriately configured Context Metadata (see section 4.3.3 for examples). The Ocean 

Metadata is sent to the Ocean Persistence Framework for indexing and storage. 

2. The Persistence Framework checks the integrity of the Ocean Metadata object and ensures 

that no duplicate objects exist within the Ocean Metadata Store data store. Next, the Ocean 

Metadata object is assigned a globally unique identifier (GUID). Next, the General 

Metadata and associated Context Metadata are sent to their appropriate Index Managers 

(based on data type), where they are indexed and persisted according to the Index Manager 

abstraction described in section 6.3.1. 

3. For large-scale scenarios, an optional scalable distributed file-system may be employed to 

support the storage of large datasets on commodity hardware (discussed shortly). 

4. CM indexes are persisted in secondary storage using an appropriate underlying data model. 

Each Index Manager provides an appropriate file-system representation for its underlying 

index data structure (index store). Additional indexes are also established for each Context 

Metadata entity based on its parent‘s data type, URI domain and Contextualizer (see [380]). 

5. Finally, the indexed Ocean Metadata object is sent to the Primary Data Store Manager 

(Storage Manager) where it is persisted within the Ocean Metadata Store as an object. The 

stored Ocean Metadata in combination with its associated Web Resource is referred to a 

Contextualized Resource.  

While not discussed in this dissertation, recent approaches provide insight into real-world 

persistence mechanisms that might be adopted for large-scale data storage in Ocean. For example, 

Google have developed a distributed file-system called GoogleFS [118], which supports extremely 

large data sets and provides high I/O throughput by exploiting inexpensive commodity hardware. 

GoogleFS was developed to support large-scale distributed computing environments comprised of 

large numbers of commodity machines, vast amounts of very large files (i.e. multi-GB), data 

streaming, append-based file access. Google have demonstrated the feasibility of their approach 

throughout their enterprise using extremely large configurations (e.g. 300TB storage spread across 

1000 notes). While GoogleFS is not available commercially, the Apache Software Foundation has 

developed an open-source implementation of GoogleFS, called the Hadoop File System (HDFS)
41

, 

which provides similar capabilities. Notably, HDFS is designed to scale to petabytes of storage and 

can exploit a variety of underlying hardware architectures. HDFS‘ capabilities include streaming data 

access, large data files and a simple coherency model [178]. Related, a recent object-based database 

system has also demonstrated the ability to accommodate petabyte size datasets [27]. 
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6.3.3 An Indexing and Persistence Example 

Details regarding the Index Manager abstraction and related index storage are now discussed using an 

example based on the iDistance index approach presented in [164]. As described by Jagadish et al., 

iDistance is a modified B+-tree designed to address a class of approximate nearest neighbor search 

algorithms known as K-nearest neighbor query. In their paper, they formalize a K-nearest neighbor 

query as ―Given a set of points DB in a d-dimensional space DS, and a query point 𝑞 ∈ 𝐷𝑆 find a set S 

which contains K points in DB such that, for any 𝑝 ∈ 𝑆 and for any 𝑝′ ∈ 𝐷𝐵 − 𝑆, 𝑑𝑖𝑠𝑡 𝑞,𝑝 <

𝑑𝑖𝑠𝑡(𝑞,𝑝′)‖ [164]. To accommodate efficient queries, iDistance transforms high dimensional points 

into a single dimensional space using m data space partitions and a B+-tree to represent the 

transformed points (see [164] for details). In this regard, the iDistance approach is lossy as it trades 

the possibility of false positives for very fast single-dimensional range queries and the possibility of 

integration into commercial database management systems (which often support B+-tree indexing 

[205]). Given iDistance‘s inherent limitations, it may not be applicable for every type of Context 

Metadata; however, given some tolerance for error, the benefits of the approach may outweigh the 

costs (for details, see the cost benefit analysis in [164]). 

As a real-world example, an Ocean Index Manager could be designed to map the iDistance 

algorithm directly into an underlying DBMS as per Figure 49. In this figure, an incoming Context 

Metadata (CM) object is processed by its associated Index Manager‘s underlying iDistance algorithm. 

During index processing, domain-specific features of the CM object are translated into data points 

within a d-dimensional space appropriate to the context domain. Next, as per the iDistance approach, 

high dimensional points are transformed into a partitioned single dimensional space according to the 

process described in [164]. The resultant partition information (denoted 𝑃𝑖  below) and the related 

single-dimensional points are then stored within a commercial DBMS (configured to support B+-tree 

indexing). An additional database table is used to store iDistance partition data. Additionally, 

conventional approaches are also used to establish additional indexes based on attributes of the CM‘s 

parent Contextualized Resource, including data-type, URI domain and Contextualizer. To reference 

the parent Contextualized Resource, the persisted CM object retains the parent‘s GUID. 

 

Figure 49: Example iDistance Index Manager and related persistence model 
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Similar to the iDistance example, Ocean Index Managers can be constructed for various Context 

Metadata indexing approaches using appropriate file system representations. For completeness we 

note that, while B+-trees are compatible with many commercial DBMSs, other tree structures may not 

be widely supported (e.g. M-trees). However, advanced indexing techniques may be provided by 

custom data store implementations that include specialized performance techniques to help improve 

indexing and query speed. Such techniques are described in [305] and include examples such as 

buffering strategies, which aim to reduce disk I/O using techniques such as LRU replacement [203]; 

dynamic layout rearrangement, which optimizes disk I/O for common access patterns by rearranging 

the physical layout of the data on secondary storage [54]; and physical designs, which exploit physical 

properties of modern disk drives using technique such as adjacent block utilization [305]. 

6.4 Contextualized Resource Discovery 

The Ocean approach presupposes a similarity search mechanism whereby Ocean Metadata can be 

retrieved from the Ocean Registry‘s persistence model and returned to an Ocean application as 

Descriptive Metadata. In order to provide a foundation for discovering contextually-relevant 

Resources, we proposed the Contextualized Resource abstraction in section 4.3, which provides a 

means of constraining the discovery context of conventional Web Resources using Ocean Metadata. 

Notably, the Contextualized Resource abstraction adopts an associative metadata model, whereby 

Ocean Metadata are stored separately from the Resources themselves within the Ocean Registry. As 

described in section 5.5, the Ocean Registry provides an open contribution model whereby any 

Contextualizer can contextualize any Resource with any combination of Ocean Metadata. As 

described in section 6.3, Ocean Metadata are stored and indexed within the Ocean Registry using a 

persistence model that exploits the similarity modeling mechanisms of the Context Metadata 

abstraction. Recall that the Ocean persistence architecture is designed to support efficient Ocean 

Metadata storage and lookup based on multiple domain-specific indexing approaches. This section 

describes Ocean‘s Discovery Framework, which operates in conjunction with the previously 

introduced Persistence Framework to discover relevant Contextualized Resources based on arbitrarily 

complex Query Objects provided by Ocean applications. 

Recall from section 5.2.2 that the Ocean application model is designed to support dynamic, in-situ 

composition of CS mashups. With regards to Figure 50, the Ocean application model can summarized 

as follows: First, domain-specific Ocean applications utilize Aladin techniques to acquire and model 

native context data (NCD) from their local environment (1, 2). Next, NCD are passed to the hosting 

application where they may be handled by local application logic as needed (3). In the Ocean 

approach discussed in this dissertation, the Aladin architecture is extended by an Ocean Context 

Interpreter (OCI), which supports communications with the Ocean Registry using the search protocol 

defined in section 6.4.1. Ocean applications formulate Discovery Requests (using the NCD as query 

terms), which are sent to the Ocean Registry‘s Resource Discovery API (4). The Ocean Registry 

receives the request and uses a set of information filtering techniques (see section 6.4) to discover 

contextually relevant Contextualized Resources (5). Next, discovered Contextualized Resources are 

formulated as a Discovery Response and returned to the Ocean application as Descriptive Metadata, 

termed Uniform Resource Identifier metadata in the figure below (6). The local OCI unmarshals the 

Discovery Response and sends the Descriptive Metadata to the Ocean application (7). Finally, the 
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Ocean application selects appropriate Contextualized Resources from the Discovery Response and 

composes the associated Resources in-situ using the REST interoperation mechanisms described in 

section 3.2.8 (8, 9).  

 

Figure 50: The simplified Ocean application model 

6.4.1 The Contextualized Resource Discovery API 

To support context-aware component discovery, the Ocean Registry provides a Contextualized 

Resource Discovery API (Discovery API), which is intended for use by Ocean applications. 

Interactions between Ocean applications and the Ocean Registry may occur directly or be facilitated 

by an Ocean Context Interpretation plug-in, which provides request marshaling/unmarshalling for 

Aladin-based Ocean applications. Interaction with the Discovery API is accomplished by sending an 

XML-based Discovery Request to the Discovery API‘s URI using HTTP POST. The Ocean Registry‘s 

Discovery URI is http://oceanframework.org/discovery. Importantly, Discovery Requests must 

adhere to the Ocean Discovery Request format XML schema described in section 6.4.1.1. The 

Discovery API responds to Discovery Requests synchronously; returning either a structured 

Discovery Response or an HTTP error code. The Discovery Response XML schema and associated 

error codes are described in section 6.4.1.2. 

6.4.1.1 Discovery Request Format 

Contextualized Resource Discovery Requests (Discovery Requests) consist of specially formulated 

XML requests, which allow Ocean applications to control various aspects of the Resource Discovery 

process. Importantly, before Discovery Requests may be initiated, Ocean application must first 

authenticate with the Ocean Registry using the mechanisms described in section 5.3.2. Once 

authenticated, Ocean applications may query the Discovery API as often as needed, provided that the 

request rate is not deemed excessive (e.g. requests in excess of 1 per second per IP may receive HTTP 
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response code 503 – Service Unavailable as a response). Discovery Requests must adhere to 

the Discovery Request XML schema shown in Figure 51.  

 

Figure 51: The Discovery Request XML schema 

Regarding Figure 51, the Discovery Request schema is defined as follows: 

1. The root ocean_resource_request element contains a single version attribute that is used 

by the Ocean Registry to select a proper request parser. Within the root element, two sub-

elements represent the query‘s search parameters and query terms. 

2. The query_parameters element provides several attributes that are used to control query 

processing: max_results, domain_restrict and contextualizer_restrict (described 

shortly). In addition, two sub-elements are used to describe fundamental aspects of the 

requested Contextualized Resources. The type indicates the data type of requested 

Resources (e.g. standard MIME types [327]) and search_text is used to match textual terms 

against the title and description contained within persisted Contextualized Resources (see 

section 4.3). Note that both type and search_text must be wrapped in XML CDATA tags to 

allow for the inclusion of arbitrary character values within the request. 

3. Finally, the query_terms element includes one or more context_data sub-elements, 

which include native context data wrapped within XML CDATA tags to allow for the inclusion 

of arbitrary values within the request. 
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Regarding Figure 51, the query parameters for Discovery Requests are defined as follows: 

Parameter Description Default 

type Indicates the desired data-type of discovered Resources 

(e.g. standard IANA MIME types). Only one data-type is 

allowed per request. 

text/html 

max_results Specifies the maximum search results requested by the 

Ocean application. 

50 

domain_restrict Indicates that the Query Processor should limit search 

results to a specific domain or sub-domain (as per [34]).  

Unrestricted 

contextualizer_restrict Indicates if Query Processor should limit search results to 

a specific Contextualizer developer account. 

Unrestricted 

Table 14: Overview of available Resource Discovery search parameters 

The Ocean Registry‘s information filtering algorithms perform similarity search according to the 

native context data contained within a Discovery Request‘s query terms. As such, query terms must 

be wrapped within an XML CDATA tag to allow for the inclusion of arbitrary context data. In this way, 

native data formats such as structured text and base64 encoded binary data may be provided. The 

number of query_terms that can be included within a Discovery Request is currently unbounded. An 

example Discovery Request is provided in Figure 52. 

 

Figure 52: An example Discovery Request 

<?xml version="1.0" encoding="UTF-8"?> 

 <ocean_resource_request version="1.0" > 

 <query_parameters max_results="50"  

      domain_restrict="" 

      contextualizer_restrict="dcarlson"> 

  <type><![CDATA[mime:text/calendar]]></type> 

  <search_text><![CDATA[Example search text]]></search_text> 

 </query_parameters> 

 <query_terms> 

  <context_data> 

    <value> 

      <![CDATA[security_token:776958d554c987ae6d0b6f70826edfdaeb8670c8]]> 

    </value> 

  </context_data>  

  <context_data> 

    <value><![CDATA[<gml:Point><gml:pos>53.873488,10.686607</gml:pos>     

    </gml:Point>]]></value> 

  </context_data> 

    <context_data> 

    <value><![CDATA[TYPE=WIFI|TIME=1096470064731|ID=00:09:5b:de:fa:7a  

    |NAME=NETGEAR|RSSI=-88|WEP=true|INFR=false]]></value> 

   </context_data> 

 </query_terms> 

</ocean_resource_request> 
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Several observations can be made regarding Figure 52. First, the example Discovery Request pre-

filters Contextualized Resources that are associated to Web Resources of type text/calendar. Next, 

the request includes query parameters that restrict the maximum search results to 50; place no 

restrictions on the Resource‘s domain; and restrict results to those contextualized by the Ocean 

Contextualizer dcarlson. Finally, the request includes several native context data query_terms, 

including a security token as an SHA-1 hash-code [219], geo-location information in the GML-simple 

format [237] and Wireless LAN access point information in the NetStumbler format [212]. 

6.4.1.2 Discovery Response Format 

Once query processing is complete for a given Discovery Request, the set of Ocean Metadata 

determined to be most similar to the request are returned to the calling Ocean application. Discovery 

Responses provide Ocean applications a set of Descriptive Metadata regarding contextually-relevant 

Resources for use in machine-based or user-based adaptation decision models. Recall that in the 

Ocean approach, applications are free to act upon Discovery Response metadata according to domain-

specific application logic (see section 5.2.2). Note that each discovered Resource provides a 

composite similarity_score (in the interval [0,1]) indicating how similar the given Resource is to 

the Discovery Request (see section 4.3.2). The set of Descriptive Metadata is rank-ordered according 

to the associated score value and formulated according to the Discovery Response XML schema 

shown in Figure 53. 

 

Figure 53: The Discovery Response XML schema 

Regarding Figure 53, the Discovery Response XML schema is defined as follows: 

1. The root ocean_resource_response element contains a single version attribute that can be 

used to select a response parser. 

2. The resources element is the top-level container for all discovered Resource metadata and 

may contain from 0 to max_results sub-elements. 
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3. Each discovered resource element provides the following Descriptive Metadata:  

a. a type element describing the Resource‘s data-type (e.g. to its MIME type) as a 

means of assisting application state management;  

b. a title element providing the title text provided by the Contextualizer;  

c. a description element providing descriptive text provided by the Contextualizer;  

d. a uri_code element providing the URI of the Resource or a hash-code that can be 

used by the Ocean application to resolve the Resource‘s URI (described shortly);  

e. a domain element indicating the domain of the URI (or sub-domain);  

f. a similarity_score element as a numerical score indicating how similar the 

associated Contextualized Resource is to the incoming Discovery Request (see 

section 6.4);  

g. a personalization_score element as a numerical score indicating the user‘s 

predicted affinity for the Resource (see section 7.3); and 

h. an optional wadle element providing an associated WADL document, if provided 

(as per [137]). 

As previously introduced, the uri_code element within the Discovery Response can represent 

either a valid URI or a related hash-code. The presence of a hash-code indicates that the Ocean 

application requested Resource personalization, as described in section 7.3. In this case, the 

Descriptive Metadata are intentionally insufficient for fully resolving discovered Resources. 

Specifically, all URI references are removed from the Response metadata, including the removal of 

URI details from the base attribute of the <resources> element of associated WADL documents (see 

[137] for details). In place of URIs, a generated hash code is used to force Ocean applications to 

contact the Ocean Registry again to resolve true URIs. Notably, uri_codes are used to support the 

implicit rating of Resources as required by Ocean‘s recommender algorithms (see section 7.3). Ocean 

applications resolve true URIs by calling the Ocean Registry using HTTP GET using the following 

URI: http://oceanplatform.org/resolve/{uri_code}. If a given uri_code is found, the Ocean 

Registry returns a HTTP 303 redirection status code, which provides the Resource‘s true URI (or a 400 

Bad Request status code if the uri_code was not found). An example Discovery Response is shown 

in Figure 54.  
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Figure 54: An example Ocean Discovery Response 

6.4.2 Query Object Instantiation 

Based on the results of local application logic and context modeling, Ocean applications attempt to 

discover contextually-relevant Resources using the Discovery API‘s request format (see section 

6.4.1.1). Recall that query parameters allow Ocean application to control discovery results based on 

constraints such as data-type, domain and Contextualizer account. Further, provided query terms 

include native context data (NCD) that are wrapped by XML CDATA tags. As Discovery Requests arrive 

at the Discovery API, the Ocean Registry performs a multi-feature similarity search process based on 

the contents of the request. To begin the discovery process, an incoming Discovery Request is 

transformed into a Query Object by a multi-threaded Query Processor that controls query handling 

and coordinates the required Ocean Registry resources. Once a Query Processor is instantiated for a 

given request, it creates a Request Factory that is responsible for processing the request XML. The 

Request Factory first unmarshals all search parameters and query terms and then instantiates the 

necessary Context Handlers for each included NCD using the adapted chain of responsibility 

technique introduced in section 5.3.3. (Recall that Context Handlers represent implementations of the 

Context Metadata interface presented in section 4.3.2.) Resultant Query Object represents a machine-

processable representation of the client‘s Discovery Request, which forms a central component of the 

Ocean Registry‘s similarity search approach (described shortly). An overview of the Query Object 

instantiation process is shown in Figure 55. 

<?xml version="1.0" encoding="UTF-8"?> 

<ocean_resource_response version="1.0" > 

 <resources> 

  <resource> 

   <type><![CDATA[mime:text/html]]></type> 

   <uri_code>10fb2d66a65335317b54c93b15edefebe62a19c9</uri_code> 

   <domain><![CDATA[www.smugmug.com]]></domain>   

   <title><![CDATA[Example photo website]]></title> 

   <description><![CDATA[Example description]]></description> 

   <similarity_score>.89</similarity_score> 

   <personalization_score/> 

   <wadle/> 

  </resource> 

  <resource> 

   <type><![CDATA[mime:text/html]]></type>    

   <uri_code>a0fc1e77a65235317b54a93c15edefebe45a19c8</uri_code> 

   <domain><![CDATA[subdomain.example.com]]></domain> 

   <title><![CDATA[Another example title]]></title> 

   <description><![CDATA[Another example description]]></description> 

   <similarity_score>.55</similarity_score> 

   <personalization_score/> 

   <wadle/> 

  </resource> 

 </resources>  

</ocean_resource_response> 
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Figure 55: Overview of the Query Object instantiation process 

With reference to Figure 55, the Ocean Reference Implementation (RI) provides the following 

realization of the RequestFactory and related classes as shown in Figure 56. (Note that 

implementation-specific methods may be included in the figure below; however, in the interest of 

clarity, these are not described.) 

 

Figure 56: The RequestFactory and related classes within the Ocean RI 

Once a Query Object has been instantiated for a given Discovery Request, the Query Processor 

dynamically formulates a search strategy based on the included Context Metadata. As persisted Ocean 

Metadata may be described by multiple Context Metadata entities, Ocean Contextualized Resource 

Discovery (Resource Discovery) supports a multi-feature similarity search (MFSS) approach, 

whereby multiple similarity metrics are considered simultaneously. Broadly, MFSS approaches 

employ multiple classifiers for a given Query Object and provide a ranked query model that scores the 

similarity of database object against the Query Object using multiple feature comparisons [376]. 

Resulting similarity scores are typically composed of several atomic similarity approximations (or 

grades) that are aggregated together. As presented in [102], ―Assume that each object in a database 
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has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, 

that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted 

list, which lists each object and its grade under that attribute, sorted by grade (highest grade first). 

Each object is assigned an overall grade that is obtained by combining the attribute grades using a 

fixed monotone aggregation function, or combining rule, such as min or average. To determine the 

top k objects, that is, k objects with the highest overall grades, the naive algorithm must access every 

object in the database, to find its grade under each attribute.‖ Related, the next section presents 

important aspects of multi-feature search optimization. 

6.4.3 Multi-Feature Search Optimization 

At their foundation, most MFSS approaches define an aggregation function t where 𝑡(𝑥1 ,… , 𝑥𝑚 ) is 

the overall score of an object R, where 𝑥1 ,… , 𝑥𝑚  represent the set of R’s grades of m attributes (also 

referred to as features). Common aggregation functions include min, average and sum (where min 

refers to a conjunction in fuzzy logic). As presented in [101], MFSS approaches utilize aggregation 

functions together with a method for modeling the similarity of object features by generating m sorted 

lists (1 per feature), where each list represents a graded set of pairs (x,s), where x is the object and s is 

the real number grade for a given feature (typically in the interval [0,1]). Each list is generated in 

sorted order according to the object‘s feature grades. Most MFSS techniques are designed to discover 

the top k objects, where k is the number of requested query results and ―top‖ refers to the highest 

ranked objects in the dataset as compared to a Query Object 𝑅  (according to score). 

Naïve search approaches exhibit linear efficiency and can become quickly intractable in large-scale 

scenarios [101]. To achieve sub-linear query performance, researchers have explored various 

optimization techniques. The first such optimization algorithm, called ―Fagin‘s Algorithm‖ or FA, 

was proposed by Fagin in 1996 and was subsequently refined in 1999 [100]. Notably, the FA 

approach has been shown to be correct for monotone aggregation functions [100]. In terms of 

algorithmic efficiency, assuming that the items within each sorted list are probabilistically 

independent, FA exhibits a cost of 𝑂(𝑁(𝑚−1) 𝑚 𝑘1 𝑚 ) [100]. While FA can exhibit sub-linear 

performance, in many cases its performance guarantees are dependent on the aggregation function 

being ―strict‖, where 𝑡 𝑥1 ,… , 𝑥𝑚  = 1 when 𝑥𝑖 = 1 for every i. While strict aggregation functions are 

common, they are not always adequate in all search scenarios, resulting in reduced FA performance in 

many cases (e.g. the use of max is common; yet max is not strict). Moreover, even when the 

aggregation function is strict, common database structures have been identified that result in poor FA 

performance and its memory requirements grow arbitrarily large as the database grows [100]. 

Several related MFSS optimization approaches have also been explored. For example, Chaudhuri 

and Gravano [60] suggested methods of extending FA through the use of query constraints  (for 

example compound searches where certain threshold conditions must be met, as per the 

IndexManager query constraints described in section 6.3.1). Additional middleware-based MFSS 

approaches such as IBM‘s GARLIC [274] and visual retrieval systems such as HERON [201] have 

also demonstrated techniques for aggregating search results from multiple underlying data stores. 

However, these techniques encounter performance problems in heterogeneous scenarios [131]. For 
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example, HERON relies on the Quick-Combine algorithm, which often deteriorates to linear scan (or 

worse) when processing heterogeneous data sets [130].  

Based on the limitations of prior MFSS techniques, researchers sought to develop an algorithm that 

performs better than linear scan over arbitrary databases and requires less memory. The result of this 

research effort was the near simultaneous discovery of a new MFSS optimization algorithm, called the 

Threshold Algorithm (TA), by three independent research groups [102, 130, 221]. Unlike FA, which 

is only optimal in limited cases, the TA approach is considered to be optimal in a much stronger sense 

as it does not make any underlying probabilistic model assumptions [102]. Given m sorted lists (1 per 

feature), where each list represents a graded set of pairs (x,s), where x is a database object and s is the 

real number grade for the given feature in the interval [0,1], a top k query under TA can be described 

as follows (as adapted from [100]): 

1. Do sorted access in parallel to each of the m sorted lists 𝐿𝑖 . As an object R is seen under 

sorted access in some list, do random access to the other lists to find the grade 𝑥𝑖  of object 

R in every list 𝐿𝑖 . Then compute the score 𝑡 𝑅 = 𝑡(𝑥1 ,… , 𝑥𝑚 ) of object R. If this score is 

one of the k highest we have seen, remember object R and its score t(R) (ties are broken 

arbitrarily, so that only k objects and their scores need to be remembered at any time). 

2. For each list 𝐿𝑖 , let 𝑥𝑖  be the score of the last object seen under sorted access. Define the 

threshold value 𝜏 to be 𝑡(𝑥1 ,… , 𝑥𝑚 ). As soon as at least k objects have been seen whose 

score is at least equal to 𝜏, then halt. (Note that 𝑥𝑖  refers to the aggregation of individual 

feature grades from the last object seen under sorted access; hence, the last seen feature 

grades from each list do not need to be maintained.) 

3. Let Y be a set containing the k objects that have been seen with the highest scores (ties are 

broken arbitrarily).The output is then the scored set   𝑅, 𝑡(𝑅)|𝑅 ∈ 𝑌  . 

6.4.4 The Ocean Multi-Feature Similarity Search Approach 

This section draws together several threads of related work to derive Ocean‘s multi-feature similarity 

search approach. In order to find the top k most similar Contextualized Resources for a given 

Discovery Request, we propose a feature grade aggregation approach based on the Threshold 

algorithm (TA) introduced in section 6.4.3. We begin with the observation that the Ocean Registry‘s 

IndexManager abstraction described in section 6.3.1 provides domain-optimized, sorted access to 

collections of Context Metadata indexes that reference persisted Ocean Metadata. In response to an 

incoming Query Object, the set installed IndexManagers within the Ocean Registry are used to 

produce m sorted lists (1 per Context Metadata type), where each list represents a graded set of pairs 

(x,s), where x is the object (i.e. a reference to the parent Ocean Metadata entity) and s is the real 

number grade for a given context feature (i.e. Context Metadata entity). List generation is 

accomplished using each IndexManager’s topSearch method. Related, the IndexManager probe 

method is used to provide random access to similarity grades for each of the m sorted lists. 

During list generation, the Query Processor first reduces each IndexManager’s search space by 

introducing a set of QueryConstraints within each topSearch method. In the first stage of search 

space reduction, Context Metadata objects are excluded from an IndexManager’s search space if their 



6.4 Contextualized Resource Discovery 

146 

parent Ocean Metadata entity does not match the specified data-type, domain or Contextualizer values 

contained within the query parameters. Additionally, each IndexManager’s search space is further 

reduced by excluding objects whose parent‘s association types do not match the Context Metadata 

present within the Query Object (see section 4.3.1). For example, all Context Metadata indexes whose 

parent Ocean Metadata require GEOPointHandlers (through the ―required‖ association type) will be 

excluded from the associated IndexManager’s search space if the Query Object does not contain a 

GEOPointHandler. (Note that the ―optional‖ association type has no affect on search space reduction 

but does have an effect on similarity scoring.) A simplified overview of search space reduction is 

shown in Figure 57 (for a single Context Metadata index type). In this example, the 

QueryConstraints specify a data-type ―text/html‖ and a Contextualizer restriction of ―dcarlson‖. 

(Note that only Context Handler indexes shown as dark circles will be included in the search space.) 

 

Figure 57: Example search space reduction for a single Context Metadata index type 

Next, following [92], we introduce an aggregation function t that computes an overall score 𝑡 𝑅  of 

object R as: 

 𝑡 𝑅 =  
1

𝑛
 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖 , 𝑥 𝑖 )

𝑛

𝑖=1

 

where n refers to the total number of Context Handlers associated to a Contextualized Resource, 𝑥𝑖  

refers to the Context Handlers associated with the Contextualized Resource and 𝑥 𝑖  refers to the 

matching Context Handlers within the Query Object. The similarity grade of 𝑥𝑖  and 𝑥 𝑖  is calculated by 

passing the 𝑥 𝑖  Context Handler into the getNormalizedSimilarity method of Context Handler 𝑥𝑖  

(recall getNormalizedSimilarity returns domain-neutral similarity values in the interval [0,1]). 

Using this aggregation function, we adopt the TA algorithm as follows (adapted from [100]): 

1. Do sorted access in parallel to each of the m IndexManagers using their associated 

topSearch methods. Importantly, the search space of each IndexManager should be 

reduced by passing in the set of QueryConstraints derived from the query parameters (i.e. 

data-type, domain and contextualizer restrictions).  

2. As an object R is seen under sorted access in some IndexManager, use the probe method to 

find the grade 𝑥𝑖  of object R in every IndexManager referred to by the Query Object. Then 

compute the score 𝑡 𝑅 = 𝑡(𝑥1 ,… , 𝑥𝑚 ) of object R using the aggregation function defined 

above. If this score is one of the k highest we have seen, remember object R and its score 
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(ties are broken arbitrarily, so that only k objects and their scores need to be remembered at 

any time). 

3. For each IndexManager referred to by the Query Object, let 𝑥𝑖  be the score of the last 

object seen under sorted access. Define the threshold value 𝜏 to be 𝑡(𝑥1 ,… , 𝑥𝑚 ). As soon as 

at least k objects have been seen whose score is at least equal to 𝜏, then halt. (Note that 𝑥𝑖  

refers to the aggregation of individual feature grades from the last object seen under sorted 

access; hence, the last seen feature grades from each list do not need to be maintained.) 

4. Let Y be a set containing the k objects that have been seen with the highest scores (ties are 

broken arbitrarily). The output is then the scored set   𝑅, 𝑡(𝑅)|𝑅 ∈ 𝑌  . 

Using the adaptation of the Threshold Algorithm presented above, the top k Contextualized 

Resources are discovered for a given Query Object using the process shown in Figure 58. 

 

Figure 58: Overview of Ocean’s multi-feature similarity search process 

At the completion of query processing, Descriptive Metadata are generated for each discovered 

Contextualized Resource according to the following process: First, a Discovery Response object is 

created. Second, Descriptive Metadata for each Contextualized Resource are retrieved from the Ocean 

Metadata Store (using random access) and integrated into the response along with either a URI or a 

uri_code (generated using a time-based salted hash function that incorporates the true URI). Next, 

the Descriptive Metadata for each Contextualized Resource are updated with the composite similarity 

score generated during query processing. Next, the Descriptive Metadata are rank sorted according to 
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their associated similarity scores. Finally, the Descriptive Metadata objects are marshaled into a 

Discovery Response XML structure and returned to the Ocean application (see section 6.4.1.2). Once 

the Discovery Response is received by an Ocean application, its local application logic performs 

dynamic, in-situ component selection and composition as per the Ocean application model presented 

in section 5.2. 

6.5 Chapter Summary 

This chapter discussed the Ocean Registry‘s approach for indexing, storing and discovering 

Contextualized Resources. As discussed in section 4.3, Contextualized Resources represent arbitrarily 

complex data structures that cannot be effectively indexed or queried using classical key, range or 

proximity techniques. Towards this end, we leveraged the similarity modeling capabilities of the 

Context Metadata interface described in section 4.3.2. The chapter began with a discussion of 

similarity search algorithms and comparison metrics. Based on the related work discussion, we then 

defined the Index Manager abstraction, which encapsulates the indexing techniques and data models 

required to support efficient queries for a given context domain. Notably, Index Managers are 

provided by Context Experts using the Context Metadata contribution approach introduced in section 

5.4. Next, we defined the Ocean persistence model, which allows Contextualized Resources to be 

efficiently stored and indexed for rapid retrieval. This section included a persistence example based 

on a B+-tree approximate nearest neighbor search approach called iDistance. Next, we developed 

Ocean‘s multi-feature similarity search approach, whereby contextually-relevant Ocean Metadata can 

be retrieved from the Ocean Registry and returned to Ocean applications as Descriptive Metadata. 

Related, this section presented the Ocean Registry‘s Discovery API and Discovery Protocol. The 

section concluded with a discussion of Query Object instantiation; an overview of multi-feature 

similarity search techniques; an Ocean-specific adaptation of the Threshold Algorithm; and a 

description of Ocean‘s multi-feature similarity search process (including Resource scoring and 

Descriptive Metadata generation).  
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Chapter 7 

Leveraging the Ocean Community 

7.1 Introduction 

As described throughout this dissertation, the Ocean approach provides a conceptual and practical 

foundation for the development of Web-centric context-aware systems. By co-opting existing context 

sources, network infrastructure and distributed middleware, Ocean promotes the development of 

wide-area context-awareness techniques through significant developer adoption and user 

participation. However, the complexity and scale of many real-world environments impose additional 

challenges for effective Contextualized Resource discovery and selection. This chapter discusses two 

important challenges in this regard. First it addresses context mismatch, which refers to the situation 

where an Ocean application may not be capable of generating the native context data necessary to 

discover Contextualized Resources in a given environment; reducing query effectiveness. Next, this 

chapter addresses information overload, which refers to the situation where a prohibitively large 

number of similarly scored Discovery Response results become difficult to differentiate based on 

Descriptive Metadata alone; resulting in ineffective Resource selection.  

While context mismatch and information overload are not well-addressed by existing context-aware 

systems, these important topics have been explored in other large-scale networked systems. Notably, 

the emergence of the Internet and Web has given rise to powerful community-based computational 

models that have proven adept at solving large-scale information filtering challenges. To explore the 

application of such approaches in Ocean, this chapter presents two preliminary techniques for 

leveraging the participation of various Ocean stakeholders as a means of addressing the information 

filtering challenges facing large-scale context-aware systems. First, in section 7.2, we introduce a 

preliminary approach for overcoming context mismatch. This approach leverages the Discovery 

Requests provided by Ocean applications to automatically model context information in large-scale 

environments. Community-modeled context information is then used to automatically expand 

subsequent Discovery Requests with supplemental query terms to help improve query effectiveness. 

Next, in section 7.3, we introduce a preliminary approach for overcoming information overload. This 

approach captures both implicit and explicit Resource preference information from large numbers of 

Ocean Users as a means of personalizing discovery results. Resource personalization is facilitated by 

the development of an Ocean-specific Recommender Engine capable of integrating a variety of 

recommender algorithms. 

7.2 Context-aware Query Expansion 

As described in section 5.5, the Ocean Registry provides an open Contextualized Resource 

contribution model whereby any Contextualizer can contextualize any Resource with any combination 

of Ocean Metadata. For example, a Contextualizer may contextualize iCalendar data using Context 

Metadata such as geo-position and a valid time interval (see section 4.4); however, many other 

Contextualizers may contextualize the same Resource using a variety of other Context Metadata (e.g. 

device proximity, temperature or ambient light levels). As previously discussed, this community-

based annotation technique is used to promote the contribution of vast amounts of Contextualized 
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Resources. For example, a context-aware crawler could automatically generate large numbers of 

Contextualized Resources from existing Web-based data sources (see section 8.4). While open 

contribution addresses large-scale Contextualized Resource generation and maintenance (see section 

5.5), the scale of contribution, the diversity of available Context Metadata and the heterogeneity of 

Ocean devices may decrease query performance due to context mismatch. Briefly, context mismatch 

refers to the situation where an Ocean Discovery Request‘s query terms may not sufficiently match 

the Context Metadata used to create Contextualized Resources. In such cases, query effectiveness is 

diminished and contextually-relevant Resources may remain invisible to Ocean applications. 

Recall that as Contextualized Resources are stored within the Ocean Registry, its Persistence 

Framework generates multiple indexes to facilitate fast lookup (using the IndexManager abstraction 

described in section 6.3.1). As described in section 6.4.1, Ocean applications formulate Discovery 

Requests based on application-specified search parameters and query terms that include locally 

derived native context data (NCD). In real-world scenarios, NCD are often complex, domain-specific, 

unsystematically organized and unpredictably available [21]. Further, while Aladin-based context 

modeling is capable of operating across multiple administrative domains (see section 3.2.2), client-

centric context acquisition is inherently limited to the capabilities of a given host device. For example, 

while many devices are capable of position determination based on GPS hardware, this capability is 

far from universal. Further, even if such capabilities are present, the resultant NCD may be inaccurate 

or unavailable under certain conditions (e.g. indoors or in ―urban valleys‖). Given the device 

heterogeneity common to Web-scale scenarios, incoming Discovery Requests may not include the 

NCD necessary to produce effective query results using Ocean‘s multi-feature search approach 

described in section 6.4.4. This section presents our preliminary approach for addressing this issue by 

means of community-participation. 

7.2.1 Background and Related Work 

Important aspects of context mismatch have been studied in traditional information retrieval (IR) 

research in a related form known as word mismatch. Word mismatch ―refers to the phenomenon that 

the users of IR systems often use different words to describe the concepts in their queries than the 

authors use to describe the same concepts in their documents‖ [374]. As Furnas et al. [113] noted in 

1987, people use the same words to describe a search object less than 20% of the time. This so-called 

vocabulary problem gives rise to word mismatch. While the effect can be slightly mitigated through 

the use of longer queries, short queries are becoming increasingly common in Web-based search 

[205]. Moreover, large sets of complex search objects (e.g. long documents) can be difficult to 

meaningfully rank based on limited query terms [374]. Hence, the severity of the vocabulary problem 

has motivated the development of query expansion techniques that augment queries with 

supplemental search terms in order to improve query effectiveness [51]. 

Two general categories of query expansion have been studied. First, in global query expansion, 

various statistical analyses are applied to an entire collection of search objects (e.g. finding the co-

occurrence of all possible pairs of terms). Common examples of global techniques include Boolean 

term decomposition [363], statistical factor analysis [85] and formal concept analysis [53]. Additional 

global techniques have been developed to help users select appropriate search terms by manually or 
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automatically deriving a thesaurus of related words (based on the initial query terms), which is 

presented to the user during an iterative search process [52, 71]. In a related technique, thesauri have 

also been used to supplement user queries with additional terms or to reweight existing terms [338]. 

While the effectiveness of thesauri-based query expansion has been questioned [51], more 

sophisticated query expansion techniques have been developed to exploit the content relationships 

between the various documents of a collection; however, as global techniques operate over the entire 

collection, they are often computationally expensive and have not demonstrated significant 

improvements in query results [51]. 

In contrast to global techniques, local query expansion demonstrates improvements in query 

effectiveness and offers lower computational complexity characteristics [51]. Instead of calculating 

term relevancy for all documents within a collection, local techniques derive supplemental query 

terms from the top ranked documents for a given query [12, 77]. The simplest local technique, called 

local feedback (or pseudo-feedback), assumes that the top ranked documents for a query are relevant 

and applies standard relevance feedback mechanisms to expand the query terms [374]. The relevance 

feedback algorithm simply adds common terms from highly ranked documents and then reweights the 

results based on term frequencies [278]. Work from Croft and Harper suggested a similar approach 

that uses the top-ranked documents to estimate the probabilities of the query terms, but does not add 

additional terms [77]. While local query expansion is often characterized by lower computational 

complexity, some techniques can suffer from erratic performance when the top-ranked documents are 

not relevant [374]. 

Based upon the foundation of local feedback, several recent proposals have been developed that 

demonstrate improved query effectiveness across a variety of problem domains [213]. In many 

approaches, a modified version of Rocchio‘s formula [271] serves as the foundation for term 

reweighting [278]. A common modification is described below, as presented in [51] : 

𝑄𝑛𝑒𝑤 = 𝛼 ∙ 𝑄𝑜𝑟𝑖𝑔 +
𝛽

 𝑅 
 𝑟 −

𝛾

 𝑅  
𝑟∈𝑅

 𝑟 

𝑟 ∈𝑅  

 

where 𝑄𝑛𝑒𝑤  is a weighted term vector for the expanded query; 𝑄𝑜𝑟𝑖𝑔  is a weighted term vector for the 

original unexpanded query; 𝑅 and 𝑅  represent the sets of relevant and non-relevant documents 

(respectively); 𝑟 and 𝑟  are term weighting factors extracted from the relevant and non-relevant 

document sets (respectively); and 𝛼, 𝛽 and 𝛾 are multipliers used to tune the approach. Using this 

formula, the weights in each vector are computed by a weighting scheme applied to the whole 

collection. According to [51], if the query expansion technique is constrained to highly ranked 

documents, the aforementioned formula reduces to: 

𝑄𝑛𝑒𝑤 = 𝛼 ∙ 𝑄𝑜𝑟𝑖𝑔 +
𝛽

 𝑅 
 𝑟

𝑟∈𝑅

 

where 𝑅 refers to the collection of top ranked documents that are considered relevant to the original 

query. While computationally efficient, the above approach has been criticized as being overly 

collection-centric rather than query-centric [51]. 
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While a comprehensive treatment of query expansion is beyond the scope of this dissertation, we 

suggest that the addition and weighting of supplemental query terms can be used to improve query 

effectiveness for Ocean applications. Importantly, Ocean‘s vocabulary problem precludes the direct 

application of existing query expansion techniques as current approaches are designed for text-based 

scenarios, where the search objects (i.e. documents) often share identical terms (i.e. words and 

concepts) across the collection [213]. In contrast, even though a large number of Ocean‘s search 

objects (i.e. Contextualized Resources) may be relevant to a given Discovery Request, they may not 

share any terms with the Context Metadata within the query. Recall that Ocean‘s basic multi-feature 

similarity search approach considers only Ocean Metadata that have at least one element of Context 

Metadata in common with a given Query Object (see section 6.4.4). Without a minimal overlap 

between a given query‘s Context Metadata and the Context Metadata of persisted Ocean Metadata, 

contextually-relevant Resources will remain hidden from Ocean applications and unavailable for in-

situ composition. 

7.2.2 The Emergence of Community-centric Context Modeling 

Recently, a multi-organizational initiative, called PlaceLab, has demonstrated a highly scalable 

approach for modeling context information in large-scale, real-world environments [291]. In contrast 

to many context-aware infrastructures, PlaceLab is designed to: (1) work over a wide area, indoors 

and out; (2) run on commodity devices; (3) observe privacy needs; (4) support standard programming 

interfaces; and (5) make accuracy a secondary goal. Towards these ends, PlaceLab aims to collect and 

model information regarding the geo-location and response-rate histogram patterns of commonly 

occurring radio signals in real-world environments (termed beacons). In PlaceLab, information 

regarding 802.11 access points, Bluetooth devices and GSM cell towers is captured by a community 

of volunteers that use specially developed ―Stumbler‖ software to search for radio signals in large 

geographic areas using vehicles (termed war-driving). During field trials, PlaceLab volunteers 

constructed a database of over 35,000 Wi-Fi and 7,000 GSM beacons by war-driving 4,350 kilometers 

throughout the Seattle metropolitan area [151]. Using these results, application developers are able to 

perform position estimations using a PlaceLab client library and related Web service that provides 

access to the beacon information. Additionally, the PlaceLab client supports access to the wigle.net
42

 

beacon database, which provides an additional six-million beacon mappings worldwide. By using the 

PlaceLab client software, the position of mobile devices can be estimated without the need for GPS 

hardware or in conditions where GPS signal quality is poor or unavailable. 

PlaceLab researchers evaluated their infrastructure with nine detailed user studies and several 

empirical evaluations that included the collection of comments from a public developer forum [66]. 

The researchers studied the effects of beacon density within three geographic regions, including 

urban, suburban and residential. Notably, their experiments demonstrated that a median positioning 

error of 15 – 20 meters could be achieved in urban and suburban areas, provided that 3 distinct 

beacons could be detected within 10 seconds (with 100 percent coverage). In more sparsely populated 

residential areas, where beacon density is lower, PlaceLab clients demonstrated a median positioning 

error of approximately 30 meters (with 100 percent coverage). Several additional experiments were 
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conducted using GSM beacons alone. The results from these studies show that PlaceLab could 

achieve a median positioning error of 94 meters in downtown areas and 196 meters in residential 

areas using a single GSM network. Using multiple GSM networks, the median positioning error was 

65-134 meters in downtown areas. The GSM results were characterized using three positioning 

algorithms, including a centroid algorithm that does not model radio propagation; fingerprinting; and 

Monte Carlo localization with a Gaussian Processes signal propagation model. An overview of the 

PlaceLab GSM trace collection for Seattle is shown below in Figure 59. 

 

Figure 59: Example PlaceLab GSM trace collection for Seattle (from [66]) 

In addition to geo-positioning, PlaceLab researchers also studied methods of detecting places by 

means of beacon signatures. Towards this end, the researchers developed an algorithm, called 

BeaconPrint, which identifies previously encountered places (e.g. home or work) using the response-

rate histograms of previously detected beacon patterns [150]. Experiments conducted using 

BeaconPrint demonstrated a 90 percent recognition rate for frequently visited places. For less 

frequently visited places, BeaconPrint achieves a 63 percent recognition rate for places visited once 

and an 80 percent recognition rate for places visited twice. While BeaconPrint does not provide geo-

location information, it does provide relatively accurate symbolic location information and does not 

rely on a connection to the PlaceLab server. 

Perhaps one of the most interesting aspects of the PlaceLab approach is its focus on leveraging 

community participation as a means of solving a computationally and logistically difficult problem. 

Specifically, PlaceLab addresses the daunting challenge of large-scale beacon discovery and 

maintenance by promoting a grass-roots, volunteer-based war-driving community [291]. In this 

regard, the PlaceLab contribution architecture has been characterized as an ―open source approach to 

content generation‖ [181] that distributes context acquisition tasks to geographically dispersed 

volunteers. Individual beacon trace contributions are then aggregated by the centralized PlaceLab 

server and made available to clients via an open API. Mediation between the producers of PlaceLab 

data (i.e. the war-drivers) and the consumers of that data (i.e. the mobile clients) is provided by the 

PlaceLab infrastructure; however, similar to the Ocean application model, clients are free to use 

derived positioning information as needed. 
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The PlaceLab initiative can be understood as a type of volunteer computing system that provides 

collection and processing of beacon data using shared computing resources. Broadly, volunteer 

computing ―allows high-performance parallel computing networks to be formed easily, quickly, and 

inexpensively by enabling ordinary Internet users to share their computers‘ idle processing power 

without needing expert help‖ [284]. A canonical example of volunteer computing is the SETI@home 

project [10], which leverages shared computing resources to analyze radio signals from space. Before 

the SETI@home project, the analysis of the data output from modern radio telescopes required 

specialized, expensive and dedicated computing systems. As a means of improving analysis power 

and decreasing the associated computing costs, Berkley researchers developed the SETI@home 

project as an experimental distributed computing architecture that divides space telescope data into 

fixed work units that can be distributed via the Internet to a related client program running on 

volunteers‘ computers. The distributed clients calculate and return results to the U.C. Berkeley server 

infrastructure, where they are collected and new tasks are assigned. Notably, the general public can 

participate by simply downloading and installing a client program, which exploits unused computing 

cycles by running as a screensaver or continuously in the background. 

The results of the SETI@home project have been remarkable in terms of participation and 

computational performance. Within weeks of the public project announcement in 1998, over 400,000 

volunteers had preregistered to participate [10]. Since its release in May 1999, the project has quickly 

garnered participants; growing from an initial user base of 200,000 to over 3.91 million users in 2002. 

At its peak, the original SETI@home infrastructure was capable of generating an average throughput 

of over 27.36 TeraFLOPS [10]. This success prompted SETI@home researchers to develop a 

generalized architecture for public-resource computing, called the Berkeley Open Infrastructure for 

Network Computing (BOINC) [9]. As of November 2008, BOINC generates an average processing 

throughput of 1,487 TeraFLOPS derived from the shared computing resources of 320,372 volunteers. 

Prominent BOINC projects include Rosetta@home
43

 (biology), Climateprediction.net
44

 (earth 

sciences) and Einstein@Home
45

 (physics). 

While differing in overall approach, PlaceLab shares some similarities with public-resource 

computing approaches such as BOINC. Similar to BOINC, PlaceLab leverages the shared computing 

resources of a community as a means of solving difficult computational problems. In PlaceLab, 

shared resources include mobile devices (i.e. Stumbler-equipped laptops), context detection hardware 

(e.g. GPS receivers), a means of mobility (e.g. cars and fuel) and volunteer time. Moreover, similar to 

SETI@home, PlaceLab provides a centralized computing infrastructure that aggregates results and 

provides a related public API. However, unlike the BOINC contribution model, which places few 

demands on participants beyond the installation of an unobtrusive software client, the PlaceLab 

contribution model required a significant investment of time, effort and money on the part its 

volunteers.  
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Although the PlaceLab architecture demonstrated promising initial results, its contribution model 

has been criticized [181]. In PlaceLab, war-driver volunteers are required to provide a laptop running 

specially developed software along with appropriate radio hardware. Notably, meaningful beacon 

detection often necessitated the purchase of additional equipment such as GPS devices, Bluetooth 

radios and multiple GSM modems (see Figure 60). In addition, volunteers faced considerable time 

requirements and fuel costs when war-driving large geographic areas [66]. The cost and effort 

associated with collecting beacon traces is further exacerbated by issues related to the ownership, 

licensing, and copyright of collected data [181]. For example, the licensing terms of the PlaceLab 

Stumbler software state that ―The access point data you submit becomes the property of Intel 

Corporation for use in this research‖
46

. Licensing restrictions, combined with a general distrust of 

Intel‘s corporate sponsorship of the project, resulted in PlaceLab being ―unable to both attract enough 

users and obtain the quality and breadth of data they desired to make the database widely useful‖ 

[181]. 

 

Figure 60: A PlaceLab war-driving laptop outfitted with specialized radio equipment  

(including one WiFi card, two GPS units, and three Sony Ericsson GM28 GSM modems) 

7.2.3 Towards Volunteer-based Context Modeling in Ocean 

In Ocean, we propose that community-generated context information can be used to expand 

Discovery Requests to help overcoming context mismatch. As discussed in section 7.2.1, various 

query expansion techniques have been developed to generate and ensure the relevancy of 

supplemental search terms; however, existing approaches are designed for text-based information 

retrieval and do not accommodate context-aware query term modeling. In this section, we discuss our 

preliminary approach for using the Ocean User community to acquire and model context information 

for use in automatic query expansion. We base our approach on an extension of the PlaceLab 

infrastructure previously introduced. We suggest that PlaceLab‘s community-based approach 

demonstrates how large amounts of context information can be generated and maintained for real-

world environments. Related, we suggest that volunteer-based computing infrastructures such as 

BOINC illustrate how a low-cost contribution model can result in self-sustaining volunteerism and 

formidable computational capabilities.  

                                                      
46

 http://placelab.org/data/disclaimer.html 



Chapter 7 

156 

As discussed in section 6.4.1, Ocean applications discover contextually-relevant Resources using 

the Ocean Registry‘s Discovery API. In order to form Discovery Requests, Ocean applications first 

acquire and model native context data (NCD) from their local environment using the techniques 

described in section 3.2.2. In Ocean‘s client-centric approach, the type of NCD modeled depends on 

the capabilities of a given host device and the available sources of environmental context information. 

Notably, host devices may provide several context acquisition sensors; hence, multiple NCD may be 

generated during the context modeling process. For example, a given mobile device may 

simultaneously detect multiple types of nearby radio transceivers, an ambient light value, a 

temperature reading and geographic positioning information. In order to improve Resource Discovery 

effectiveness, an Ocean application may provide multiple NCD as query terms within Discovery 

Requests. Importantly, Discovery Requests are performed by all Ocean applications using the Ocean 

Registry; resulting in an incoming stream of heterogeneous contextual data from diverse device types 

and real-world environments. Notably, the query terms within individual Discovery Requests can be 

understood as ―snapshots‖ of the context information encountered by each distributed Ocean 

application. In this regard, each Ocean User behaves similar to a PlaceLab war-driver; proactively 

modeling context information in-situ and then providing resultant NCD to the Ocean Registry in 

Discovery Requests. However, unlike the PlaceLab Stumbler software, which can detect only a few 

well-known context types (e.g. 802.11 beacons and GPS coordinates), heterogeneous Ocean 

applications include a variety of NCD that are transformed into arbitrary Context Handlers during 

Resource Discovery (see section 6.4).  

In PlaceLab, establishing location information for discovered beacons is accomplished by domain-

specific algorithms that take into account the semantics of the underlying context data [66]. For 

example, the PlaceLab Stumbler trace shown in Figure 43 provides the following domain-specific 

information: a beacon of type ―WIFI‖ that is identified by a MAC address (―00:0f:b5:27:2e:a6‖) 

and name (―KVK NETGEAR‖); and location information that includes latitude (―47.67006963632125‖) 

and longitude (―-122.29616917072389‖). In order to provide meaningful associations between the 

discovered beacon and its related geo-coordinates, PlaceLab provides support for parsing the Stumber 

file format [212] and provides domain-specific mechanisms for associating geo-positioning 

information using the radio signal propagation characteristics of a given beacon type (e.g. WIFI or 

GSM) [66]. 

As previously discussed, sophisticated proximity algorithms utilize radio signal strength values to 

infer a distance to the signal‘s source [188]. In the case of common omni-directional antennas (which 

many 802.11 transceivers employ) a single signal strength value may not indicate precisely where an 

associated geo-coordinate should be assigned. In this regard, several recent signal triangulation 

approaches have suggested to help improve localization precision by using multiple radio signal 

Figure 43: An example PlaceLab Stumber trace (from the dataset discussed in [66]) 

TYPE=WIFI|ID=00:0f:b5:27:2e:a6|NAME=KVK NETGEAR| 

LAT=47.67006963632125|LON=-122.29616917072389| 

VCNT=0|ACNT=0|ANCHORED=1|RAD=75.0|GCNT=1 
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sources [19, 188, 195]. However, even with a single 802.11 beacon, its relatively short range (e.g. 70 

to 100 meters outdoors) results in relatively accurate position estimations [151]. In contrast, GSM 

signals exhibit a comparatively stable deployment configuration; however, the propagation range of 

GSM signals exceeds that of 802.11 transceivers by as much as 70 times [66]. Hence, PlaceLab‘s 

association algorithms rely on multiple tower ―sightings,‖ exploit signal strength information and 

involve multiple GSM providers where possible. In the next section, we describe Ocean‘s generalized 

approach for domain-specific context association discovery and modeling. 

7.2.4 Context Association Discovery and Modeling 

The previous section discussed PlaceLab‘s use domain-specific algorithms as a mechanism for 

creating meaningful associations between well-understood context information. To support query 

expansion within the Ocean Registry using arbitrary context information, we have developed several 

extensions to the PlaceLab approach. First, we enhanced the Discovery Request XML schema to 

include a mechanism for controlling context sharing. Next, to support domain-independent discovery 

of context associations, we developed an AssociationDiscoverer interface that Context Handlers 

may implement as a means of encapsulating context association discovery in accordance with the 

similarity model described in section 4.3.3. Next, we extended the Ocean‘s Index Manager interface 

to support the persistence and discovery of ContextAssociation objects, which represent discovered 

associations between incoming native context data (NCD). Finally, we developed a related 

Association Discovery Framework (ADF) that supports the creation, discovery and management of 

ContextAssociation objects within the Ocean Registry. This section describes each of these 

extensions in detail. 

The foundations of Ocean‘s context association approach are the AssociationDiscoverer 

interface and ContextAssociation object shown in Figure 61. In order to support domain-

independent discovery of ContextAssociations, the AssociationDiscoverer interface provides the 

discoverAssociations method, which takes a set of candidate Context Metadata objects and 

(potentially) returns a set of related ContextAssociation objects. The association semantics resulting 

from the discoverAssociation method are encapsulated by the ContextAssociation object, which 

is used to model domain-specific association information that is used during query expansion 

(described shortly). These foundations allow Context Experts to implement arbitrarily complex 

mechanisms for discovering and modeling associations using the Context Handlers contained within a 

given Query Object (see section 6.4.2). 
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Figure 61: The AssociationDiscoverer interface and ContextAssociation object 

Regarding Figure 61, the ContextAssociation object is defined as follows: 

 create: Instantiates a ContextAssociation between the parent ContextMetadata object 

(i.e. the Context Handler whose discoverAssociation was called) and a child 

ContextMetadata object (i.e. a candidate Context Handler determined to be associated to 

the parent in some domain-specific way) using an initial confidence interval and creation 

DateTime. 

 ageAssociation: Ages the ContextAssociation according to the incoming DateTime. 

The ContextAssociation uses the DateTime to calculate a new confidence interval or 

expire the association (expiration indicates that the ContextAssociation is no longer 

valid). If the ContextAssociation expires, the ageAssociation method returns true; 

otherwise it returns false.  

 isExpired: Checks if the ContextAssociation is expired. If so, this method returns true; 

false otherwise. 

 getParentContextMetadata: Returns the parent ContextMetadata object contained 

within the ContextAssociation.  

 getChildContextMetadata: Returns the child ContextMetadata object contained within 

the ContextAssociation. 

 getConfidence: Returns a double representing the confidence interval existing between the 

parent and child Context Metadata objects  (note that confidence intervals are always 

expressed in the unit interval [0,1]). 

 mergeContextMetadata: Merges the incoming ContextMetadata object with the 

ContextAssoication, resulting in a new confidence interval value, a modification of the 

underlying child ContextMetadata entity or expiration (discussed shortly). If the 

association expires during the mergeContextMetadata call the method returns true; 

otherwise it returns false. 
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To validate the above approach, the Ocean Reference Implementation (Ocean RI) provides a 

realization of the AssociationDiscoverer interface and ContextAssociation objects as shown in 

Figure 62. (Note that implementation-specific methods may be included in the figure below; however, 

in the interest of clarity, these are not described.) Notably, the Ocean RI provides a post processing 

framework capable of handling a variety of background processing tasks after Resource Discovery 

has been completed for a given request. Post processing tasks implement the IPostProcessor 

interface, which allows for generic task handling and scheduling. Related, the Ocean RI provides a 

prototype AssociationDiscoveryPostProcessor, which utilizes the IAssociationDiscoverer 

interface implemented by Context Handlers to discover ContextAssociation objects using the Ocean 

Registry‘s Association Discovery Framework (described next). 

 

Figure 62: Association discovery support within the Ocean RI 

As the NCD contained within Discovery Requests may invoke privacy concerns and dissuade 

participation, several privacy mechanisms are employed. First, as described in section 5.2, Ocean 

applications are responsible for modeling context and deciding which NCD to provide during 

Discovery Requests (allowing clients to control which context information is sent). Next, Ocean Users 

are not required to provide any personally identifiable information in order to use the Ocean Registry 

(i.e. anonymous access is allows). Next, Ocean applications may access the Ocean Registry using 

privacy mechanisms such as anonymous proxies, virtual private networks or onion routing
47

. Next, 

Ocean Users must explicitly state they wish share their context information with the Ocean 

community (i.e. context sharing is inactive by default). Finally, following the context obfuscation 

work by Wishar et al. [359], all shared context information is anonymized before association 

discovery is performed. Anonymized information includes the originating IP address, developer 

tokens and user identifiers (if present). While such privacy mechanisms may not be sufficient for all 

users, the benefits of providing detailed context information within Discovery Requests (to help 

improve query effectiveness) may outweigh the privacy costs for some users [171]. 

To support the instantiation, persistence and management of ContextAssociation objects within 

the Ocean Registry, we have developed an Association Discovery Framework (ADF). Broadly, the 

ADF attempts to discover meaningful associations between the native context data (NCD) contained 
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within incoming Discovery Requests using ContextHandlers that implement the previously 

described AssociationDiscoverer interface. For completeness, we note that our preliminary 

approach does not include indexing support; however, we suggest that the IndexManager model 

described in section 6.3.1 can be adapted to provide efficient ContextAssociation indexing and 

discovery using techniques similar to those discussed in section 6.4.4. An overview of the ADF is 

shown in Figure 63.  

 

Figure 63: Overview of the Association Discovery Framework 

Regarding Figure 63, the ADF operates as follows: 

1. Resource Discovery processing occurs using the Discovery Framework described in section 

6.4. Discovery results are returned to the requesting Ocean application as rank-ordered 

Descriptive Metadata. 

2. Once discovery processing is complete, the Query Processor determines if context sharing is 

allowed. If so, the Query Object is anonymized and passed to the ADF for post processing 

(discussed shortly). 

3. During post processing, the ADF performs ―association discovery‖ for each Context Metadata 

present within the Query Object. During association discovery, each associated Context 

Handler implementing the AssociationDiscoverer interface receives all other Context 

Handlers contained within the Query Object through the discoverAssociation method. 

Resultant ContextAssociation objects are returned to the ADF. 
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4. The collection of discovered ContextAssociation objects is passed to the Context 

Association Manager (CAM), which queries its associated data store to determine if the given 

ContextAssociation has been previously persisted. If so, the ContextAssociation’s child 

Context Metadata object is merged with the previously persisted ContextAssociation using 

the mergeContextMetadata method. If not, the newly discovered ContextAssociation is 

persisted within the data store as a new object. 

5. In addition, the CAM continually ages and prunes the ContextAssociation objects persisted 

within the Context Association Data Store. Aging informs each persisted 

ContextAssociation object of the passage of time; possibly resulting in 

ContextAssociation expiration (meaning that the ContextAssociation is no longer valid). 

Pruning refers to the removal of expired ContextAssociations from the data store. 

To illustrate the ADF concepts introduced above, a simple association discovery example is now 

presented. As per the Ocean discovery approach described in section 6.4.1, Discovery Requests are 

converted into Query Objects using instantiation mechanism similar to those described in section 

5.3.3. Recall that instantiated Query Objects include search parameters and a set of Context Metadata 

representing the NCD extracted from the request. For example, the query_term elements in the 

sample Discovery Request show in Figure 64 will be converted into two Context Handlers, including 

a GEOPointHandler representing geographic location; and a WIFIPlaceLabStumblerHandler 

representing an 802.11 radio beacon identified by MAC address, name, RSSI value, etc. 

 

Figure 64: A sample Discovery Request with context sharing enabled 

Once query processing is complete for the sample Discovery Request, it is checked for context 

sharing permission and passed to the ADF. As the Query Object enters the ADF, it is anonymized by 

removing all personally identifiable information such as search parameters, user IDs, security tokens, 

IP addresses, etc. Next, Context Handlers implementing the AssociationDiscoverer interface are 

<?xml version="1.0" encoding="UTF-8"?> 

 <ocean_resource_request version="1.0" > 

 <query_parameters max_results="50"  

      domain_restrict="" 

      annotator_restrict="dcarlson" 

      share_context=”true”> 

  <type><![CDATA[mime:text/calendar]]></type> 

  <search_text><![CDATA[Example search text]]></search_text> 

 </query_parameters> 

 <query_terms> 

  <context_data> 

  <value><![CDATA[ 

   <gml:Point> 

   <gml:pos>53.873488,10.686607</gml:pos> 

   </gml:Point>]]> 

  </value> 

  </context_data> 

   <context_data> 

   <value><![CDATA[ 

    TYPE=WIFI|TIME=1096470064731|ID=00:09:5b:de:fa:7a  

    |NAME=NETGEAR|RSSI=-88|WEP=true|INFR=false]]> 

   </value> 

   </context_data> 

 </query_terms> 

</ocean_resource_request> 
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identified for each ContextMetadata object within the Query Object. Once identified, the 

discoverAssociation method is called for each of the Context Handlers as previously identified. For 

example, the WIFIPlaceLabStumblerHandler will have its discoverAssociation method called 

using the GEOPointHandler as a parameter. Likewise, the GEOPointHandler will have its 

discoverAssociation method called using the WIFIPlaceLabStumblerHandler as a parameter. In 

this example, the WIFIPlaceLabStumblerHandler returns an instantiated ContextAssociation 

object with the WIFIPlaceLabStumblerHandler as the parent and the GEOPointHandler object as the 

child (with an initial confidence interval set by the WIFIPlaceLabStumblerHandler’s domain logic). 

In this example no ContextAssociation is discovered by the GEOPointHandler; however, such 

functionality could be implemented. 

Once a ContextAssociation object is discovered for a given Discovery Request, the Context 

Association Manager (CAM) checks its data store to determine if the ContextAssociation has been 

previously discovered and persisted (based on the parent Context Handler). In this example, no 

preexisting ContextAssociation exists; hence, the newly instantiated ContextAssociation is 

persisted (using its default configuration) within the CAM‘s data store. The initial configuration of a 

given ContextAssociation represents a validity duration and confidence interval appropriate for a 

single sighting. For example, given the relatively low deployment stability characteristics of 802.11 

access points (as compared to a GSM towers) a ContextAssociation generated for a single sighting 

of an 802.11 signal and related geo-position may be configured with a short validity duration (e.g. 2 

days) and a low confidence level (e.g. .25). Additional sightings of the same ContextAssociation 

will be integrated into the CAM‘s data store using the mergeContextMetadata method, whereby the 

ContextAssociation may increase its confidence interval, increase its validity time or improve its 

association accuracy in response. For example, if hundreds of Ocean applications encounter the same 

802.11 access point near the same geographic location over several months, the related 

ContextAssociation will be continually merged with similar Context Handlers using its 

mergeContextMetadata method. In response, the ContextAssociation may determine that its 

confidence level should increase (e.g. .75) and that its validity time should be extended (e.g. 3 weeks). 

Similarly, various domain-specific implementations of the AssociationDiscoverer and 

ContextAssociation interfaces can provide association discovery and management implementations 

suited to the specifics of a given context domain. 

7.2.5 Context-aware Query Expansion 

The ADF described in the last section provides the foundation for Ocean‘s context-aware query 

expansion approach. As communities of autonomous Ocean applications make Discovery Requests 

using the Ocean Registry‘s Discovery API, the ADF maintains a continually evolving data model of 

ContextAssociations that can be used to automatically expand incoming Discovery Requests with 

supplemental query terms. In order to improve the quality of supplemental search terms, the ADF 

exploits the domain knowledge encapsulated within Context Handlers implementing the 

AssociationDiscoverer interface. This section describes an extension to the basic Ocean multi-

feature similarity search (MFSS) approach (see section 6.4.4), which aims to help Ocean applications 

overcome context mismatch by using the ADF to discover supplemental Context Metadata. 
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Recall from section 6.4 that the Ocean MFSS approach is based on an adaptation of the Threshold 

Algorithm [101], which exploits the IndexManager abstraction presented in section 6.3.1. As 

previously discussed, the IndexManager abstraction provides domain-optimized, sorted access to 

collections of Context Handler indexes; each representing a context feature associated with a persisted 

Ocean Metadata entity. To process a given Query Object, set installed IndexManagers within the 

Ocean Registry are used to produce m sorted lists (1 per Context Metadata type), where each list 

represents a graded set of pairs (x,s), where x is the object (i.e. a reference to the parent 

Contextualized Resource) and s is the real number grade for a given context feature (i.e. Context 

Metadata entity). List generation is accomplished using each IndexManager’s topSearch method. 

Related, the IndexManager probe method is used to provide random access to Contextualized 

Resource similarity grades for each of the m sorted lists. (Note that search space reduction is 

performed as per section 6.4.4.) 

To augment Ocean MFSS with context-aware query expansion, we extend the functionality of the 

previously introduced ADF by introducing a QueryExpander object within the Query Processor 

introduced in section 6.4. (Note that query expansion is understood as a pre-processing function; 

requiring only superficial changes to the Query Processor and Query Object.) Next, we posit a 

mechanism whereby the top k ContextAssociation objects for a given Context Metadata object can 

be discovered from the Context Association Manager‘s (CAM‘s) data store. The QueryExpander 

object is integrated within the Query Processor after the Request Factory, which is responsible for 

decomposing XML-based requests into Ocean-compatible objects as described in section 6.4.2. After 

the Query Object is instantiated for a given Discovery Request, the QueryExpander searches the ADF 

to discover the top k ContextAssociation objects for each of the Context Metadata objects that were 

derived from the NCD within the Discovery Request. The resulting Supplemental Metadata (SM) are 

integrated into the Query Object to form an Expanded Query Object as shown in Figure 65. 

 

Figure 65: Overview of context-aware query expansion 
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Using the Expanded Query Object, we then compute the top k most similar Contextualized 

Resources using a modification of the Ocean MFSS approach presented in section 6.4.4. Recall that 

Ocean‘s foundational MFSS technique is based on an aggregation function t that computes an overall 

base score  𝑡 𝑅  of object R as: 

𝑡 𝑅 =  
1

𝑛
 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖 , 𝑥 𝑖 )

𝑛

𝑖=1

 

where n refers to the total number of Context Handlers associated to a Contextualized Resource, 𝑥𝑖  

refers to the Context Handlers associated with the Contextualized Resource and 𝑥 𝑖  refers to the 

matching Context Handlers within the Query Object. The similarity between 𝑥𝑖  and 𝑥 𝑖  is calculated by 

passing the 𝑥 𝑖  Context Handler into the getNormalizedSimilarity method of Context Handler 𝑥𝑖  

(recall getNormalizedSimilarity returns domain-neutral similarity values in the interval [0,1]). 

Next, the foundational MFSS approach is extended through the definition of a second aggregation 

function that is used to combine similarity grades for the Supplemental Metadata present within the 

Expanded Query Object. Hence, we introduce a second aggregation function 𝑡  that computes an 

expansion score 𝑡 (𝑅) of object R as: 

 𝑡  𝑅 =  
1

𝑛
 𝐶𝑖 ×  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑦𝑖 ,𝑦 𝑖 ) 

𝑛

𝑖=1

 

where n refers to the total number of Context Handlers associated to a Contextualized Resource; 𝐶𝑖  

refers to the confidence interval of the ContextAssociation providing the Supplemental Metadata 

(i.e. the Supplemental Context Handler); 𝑦𝑖  refers to the Context Handlers associated with the 

Contextualized Resource and 𝑦 𝑖  refers to the matching Supplemental Context Handler within the 

Expanded Query Object. The similarity between 𝑦𝑖  and 𝑦 𝑖  is calculated by passing the Supplemental 

Context Handler 𝑦 𝑖  into the getNormalizedSimilarity method of Context Handler 𝑦𝑖  (recall 

getNormalizedSimilarity returns domain-neutral similarity values in the interval [0,1]).  

Using the aggregation functions described above, query processing is completed using the adapted 

Threshold Algorithm presented in section 6.4.4. During query processing, the overall score os(R) of 

each object R is calculated by combining the results of the base score (BS) and the expansion score 

(SC) using an algebraic sum as per:  

𝑜𝑠(𝑅) =  𝐵𝑆 + 𝑆𝐶 − (𝐵𝑆 × 𝑆𝐶) 

As previously described, at the completion of the query processing, Descriptive Metadata are 

generated for each discovered Contextualized Resource according to the following process: First, a 

Discovery Response object is created. Second, Descriptive Metadata for each Contextualized 

Resource are retrieved from the Ocean Metadata Store (using random access) and integrated into the 

response along with either a true URI or a uri_code, which is generated using a time-based salted 

hash that incorporates the true URI. Next, the Descriptive Metadata for each Contextualized Resource 

are updated with the overall score os(R) generated during the query process. Next, the Descriptive 

Metadata are rank sorted according to the associated overall scores. Next, the Descriptive Metadata 

objects are marshaled into a Discovery Response XML structure and returned to the Ocean 
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application (see section 6.4.1.2). Once the Discovery Response is received by an Ocean application, 

local application logic performs dynamic, in-situ component selection and composition as per the 

Ocean application model presented in section 5.2. 

7.3 Discovery Personalization 

Information overload represents another critical challenge for Ocean applications operating in 

complex, real-world environments. Similar to Web Search scenarios, where common query terms may 

result in an overwhelming number of search results [51, 205], Ocean Discovery Requests may result 

in an overwhelming number of component discoveries; making effective selection and composition 

difficult or impossible. Although Ocean constrains Resource Discovery results based on the client‘s 

modeled native context data (NCD), many environments may quickly accrue a large numbers of 

similarly contextualized Resources. In such scenarios, search enhancement techniques such context-

aware query expansion (described in the last section), may actually worsen discovery results by 

supplementing queries with commonly encountered context information; increasing the number of 

contextually-relevant results. Hence, resultant Resource Discovery results may be overwhelming in 

quantity and difficult to distinguish based on similarity scores alone. As described in section 6.4, 

similarity scores provide a quantitative measure of the similarity between discovered Contextualized 

Resources and a given Discovery Request. However, such scores do not reflect qualitative measures 

such as the relevancy of the results to a user‘s personal interests and past preferences. Towards this 

end, this section defines Ocean‘s context-aware Resource personalization approach that enhances 

Contextualized Resource Discovery with community-based affinity predictions. 

7.3.1 Background and Related Work 

Due of its architectural lineage, the Ocean approach cannot escape the information overload 

challenges inherent in modern Web architecture. Ironically, the same Web Resource model that help 

Ocean overcome the component sparsity challenges can pose a significant hindrance to effective 

Resource selection and composition. Recently, recommender systems have emerged as promising 

approaches for reducing information overload in complex, information saturated scenarios where 

choice differentiation is difficult or impossible [264]. The principle objective of a recommendation 

system is to help users select relevant items from among a large set of similar items by generating 

suggestions or predicting the utility of specific items [339]. For example, Amazon.com have reported 

significant improvements in click-through and conversion rates for their personalized storefronts as 

compared to untargeted content such as banner advertisements and top-seller lists [200]. In most 

systems, the principle entities include users and items, where a user is a person who utilizes a 

recommender system to provide opinions (or ratings) about items that have been consumed and 

receive recommendations about new items that may be of interest. Importantly, recommender systems 

are based on the underlying assumption that users who have similar preferences in the past will 

probably have similar preferences in the future; allowing for an extrapolation of user history as a 

means of improving item suggestions (such as products) [379]. In this regard, a recommendation 

system can be defined as ―personalized information filtering technology used to either predict whether 

a particular user will like a particular item (prediction problem) or to identify a set of N items that will 

be of interest to a certain user (top-N recommendation problem)‖ [86]. 
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Recommendation systems can be broadly classified into two general approaches, including content-

based filtering and collaborative filtering [379]. In content-based filtering, also known as cognitive 

filtering, algorithms compute the similarity between a user‘s collection of appreciated items and the 

universe of items still unknown to the user [379]. The computation of item similarity is based on a 

selection of domain-specific features such as plain-text terms or machine-readable metadata. Common 

content-based similarity approaches include naïve Bayesian classification of content features (e.g. 

product labels) [307] and nearest-neighbor vector-space queries (e.g. for keyword frequencies) [251]. 

Notably, content-based filtering is only appropriate for domains where feature extraction is feasible 

and attribute information readily available [379]. 

In contrast to content-based approaches, collaborative filtering (CF) does not rely on the availability 

of feature extraction or attribute information [263]. Rather, CF techniques compute similarities 

between users based on each user‘s known preferences; recommending items that are preferred by 

similar users [177]. Among the first systems to integrate CF techniques were Ringo [298] and 

GroupLens [263]. CF approaches compute user similarity based on their past ratings of the same 

items; generating a so-called ―rating profile‖ for each user in order to identify potential advisors 

whose highly rated items are aggregated and used as recommendations. Due to their minimal 

information requirements and high quality recommendations, CF techniques have become dominant 

in commercial recommender systems such as those employed by enterprises such as Amazon.com and 

NetFlix. Notably, advanced recommender systems may employ a combination of both content and 

collaborative filtering in an attempt to mitigate the drawbacks of each [20]. 

To perform item filtering, CF systems first collect user preference information, which may include 

purchased products, click-stream data, demographic data (e.g. the age, gender and education of the 

users), content data (i.e. item features, such as text elements) and dedicated ratings [200]. In this 

regard, the two principle types of ratings are explicit or implicit. In an explicit rating, a user 

intentionally expresses appreciation for a given item using a numerical score such as a 5-point likert 

scale or binary scoring. Numerical rating scores are generally converted into a continuous range 

[−1, +1], where negative numbers indicate dislike and positive numbers indicate fondness. However, 

while explicit ratings are generally considered accurate predictors of appreciation [264], the user-

effort required for generating explicit ratings often dissuades participation and may promote ―free 

riding‖ where users may not actively participate and rely on the results of others [15]. Therefore, 

many systems make use of implicit ratings [226], where preference information is inferred by 

observing key interactions between the user and the system such as purchase data and browsing 

behavior [211]. While implicit ratings have been shown to lower user-effort and increase 

participation, they are often less accurate predictors of affinity than explicit ratings [379]. 

The output of a recommender system is typically in the form of a prediction or recommendation. A 

prediction refers to the anticipated opinion of a user regarding a specific item according to the same 

numerical scale used to collect preference information from the user (e.g. a 5 point likert scale). 

Individually predictive preference values are categorized as Individual Scoring. Using the formalisms 

defined in [339], a recommendation refers to a ranked list of N items that are considered to be the 

most preferable for a given user (𝑁 < 𝑛 where 𝑛 refers to the total number of items 𝐼 = {𝑖1 , 𝑖2 … 𝑖𝑛}). 

Such outputs are typically categorized as a Top-N Recommendation or Ranked Scoring [86]. In most 
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cases, ranked scoring systems only include items for recommendation that have not been previously 

purchased or viewed (i.e. consumed) by the user. 

The mediation between a recommender system‘s input (i.e. user opinions) and output (i.e. 

predictions or recommendations), is now briefly summarize (as presented in [339]). First, filtering 

algorithms consider input collected from m users 𝑈 = {𝑢1 ,𝑢2 ,… ,𝑢𝑚 } regarding a set of n items 

𝐼 = {𝑖1 , 𝑖2 … 𝑖𝑛}. Hence, each user 𝑢𝑖  has a collection of items 𝑖𝑢 𝑖  for which their opinions have been 

expressed and collected (𝑖𝑢 𝑖 ⊆ 𝐼). It should be noted that 𝑖𝑢 𝑖  may include the null set (i.e. users have 

not provided opinions regarding each item). As previously mentioned, user opinions regarding items 

are expressed in the form of a rating score where a given user 𝑢𝑖  expresses a rating score of item 𝑖𝑗  as 

denoted by 𝑟𝑖𝑗  where the rating value is a real number or ―no rating‖ (denoted by the symbol ⊥). To 

facilitate filtering, ratings are collected into a 𝑚 × 𝑛 user-item matrix denoted by R. Filtering 

algorithms operate either on the rows of matrix R (corresponding to the ratings of a single user 

regarding different items) or on the columns of matrix R (corresponding to different users‘ ratings 

about a single item). An important distinction is made between the set of users U and the active user 

(𝑢𝑎 ∈ 𝑈), which refers to the single user for which recommendations or predictions are made. 

Broadly, two main classes of collaborative filtering algorithm can be discerned, including user-based 

and item-based. The next section introduces user-based collaborative filtering (user-based CF); item-

based systems are introduced in section 7.3.1.2. 

7.3.1.1 User-based Collaborative Filtering 

User-based CF algorithms are designed to make item predictions and recommendations based on 

rating similarities that exist between the users in the collection U. User-based CF algorithms compute 

user similarities in a two step process. In the first step, the similarity values for all users in R are 

calculated according to a specific similarity metric. In most cases, rating similarities are computed 

using a Pearson Correlation or a Cosine Similarity Measure. The Pearson Correlation was proposed 

by the GroupLens project [263] as a means of computing the degree of linear relationship which 

exists between two users 𝑢𝑖  and 𝑢𝑘  and is given by: 

𝑠𝑖𝑚𝑖𝑘 = 𝑐𝑜𝑟𝑟𝑖𝑘 =
  𝑟𝑖𝑗 − 𝑟 𝑖  𝑟𝑘𝑗 − 𝑟 𝑘 
𝑙
𝑗=1

   𝑟𝑖𝑗 − 𝑟 𝑖 
2
 𝑟𝑖𝑗 − 𝑟 𝑖 

2𝑙
𝑗=1

 

where n is the total number of items in the user-item matrix and 𝑙 < 𝑛; summations are calculated for 

𝑙 items for which both users 𝑢𝑖  and 𝑢𝑘  have provided ratings; and 𝑟 𝑖  and 𝑟 𝑘  represent the average 

ratings of the respective users. 

Another method for calculating user similarity considers the user-item matrix to be an n-

dimensional item space (or k-dimensional item space if dimensionality reduction has been applied). In 

these approaches, users represent feature vectors, where the vector consists of n feature slots (one for 

each item). The slots are filled with the rating 𝑟𝑖𝑗  provided by a user 𝑢𝑖  for a corresponding item 𝑖𝑗  (or 

filled with zero when ―no rating‖ has been provided). Next, the similarity between users is calculated 

according to the Cosine Similarity Measure, which computes the similarity between each user‘s 

feature vector as the cosine of the angle between them. Cosine Similarity is given by:  
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𝑠𝑖𝑚𝑖𝑘 = 𝑐𝑜𝑠𝑖𝑘 =  
𝑟𝑖𝑗  𝑟𝑗𝑘

  𝑟𝑖𝑗
2

𝑗   𝑟𝑘𝑗
2

𝑗

𝑙

𝑗=1
 

where n is the total number of items in the user-item matrix and 𝑙 < 𝑛 (summations are calculated for 

𝑙 items for which both users 𝑢𝑖  and 𝑢𝑘  have provided ratings). 

Once rating similarities have been computed for each user, the next step is neighborhood formation. 

Using one of the previously described similarity metrics, an 𝑚 × 𝑚 similarity matrix S can be 

generated for all users. A straightforward approach for neighborhood formation is the Center-based 

scheme, which establishes a neighborhood by selecting the users who have the highest similarity 

values in common with the active user based on the row of the similarity matrix S that corresponds to 

the active user. While simple to implement, the center-based scheme introduces significant 

computational complexity as the number of users increases [339].  

To reduce computational complexity, the aggregate neighborhood scheme generates a 

neighborhood by picking users that are closest to the centroid of the current neighborhood. As 

described in [339], the aggregate neighborhood scheme operates as follows: First, the closest user to 

the active user 𝑢𝑎  is selected from the similarity matrix; forming an initial neighborhood. Next, in 

order to select the remaining neighbors, the centroid 𝐶  of the current neighborhood N is computed as: 

𝐶 =
1


 𝑢𝑗



𝑗=1
 

where N consists of h users and  < 𝑙. According to the aggregate neighborhood scheme, a user 𝑢𝑘  

not contained within the current neighborhood 𝑢𝑘 ∉ 𝑁 will only be selected for inclusion if it is 

closest to the centroid 𝐶 . Based on the similarity matrix, a neighborhood of similar users can then be 

generated for the active user. 

Problematically, data within the 𝑚 × 𝑛 user-item are often sparsely populated due to large numbers 

of ―no ratings‖; resulting in significant space requirements and computational complexity during 

operations. To address this issue, several techniques for overcoming rating sparsity have been 

developed, including default voting [41], preprocessing using averages [285] and filterbots [286]. 

Broadly, these techniques attempt to automatically fill ―no rating‖ entries with appropriate values; 

however, their significant complexity and the potential for inappropriate values are recognized as a 

serious challenge [41]. Consequently, other sparsity reduction techniques have also been explored, 

including capturing latent relationships among users through dimensionality reduction techniques 

(e.g. Singular Value Decomposition [35]). 

Based on the computed neighborhood of N users considered most similar to the active user, 

predictions and recommendations can then be generated. A prediction refers to the expected opinion 

of the active user for a specific item (expressed as a numerical value), whereas a recommendation 

refers to a list of the top-N items expected to be most appreciated by the active user (based on 

predictions). The first step in the recommendation process is the formation of a set of predictions for 

all rated items in the active user‘s neighbors that are so-far unknown to the active user. As described 

in [339], a prediction may be expressed as: 
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𝑝𝑟𝑎𝑗 = 𝑟 𝑎 +
 (𝑟𝑖𝑗 − 𝑟 𝑖) × 𝑠𝑖𝑚𝑎𝑖
𝑙
𝑖=1

  𝑠𝑖𝑚𝑎𝑖  
𝑙
𝑖=1

 

where 𝑝𝑟𝑎𝑗  represents a numerical prediction score for item 𝑖𝑗  for the active user 𝑢𝑎 ; 𝑠𝑖𝑚𝑎𝑖  refers to 

the similarity value obtained from the similarity matrix S, for all users 𝑢𝑖  within the active user‘s 

neighborhood 𝑖 = 1,2,… , 𝑙 (for users that have provided ratings).  

As predictions are constructed, several performance enhancement techniques may also be applied to 

help improve prediction accuracy. Examples of such techniques include Inverse User Frequency [41], 

Significance Weighting [286] and Case Amplification [41]. Once a neighborhood of similar users has 

been constructed, a list of N recommended items can be generated for the active user. A common 

approach for generating recommendations is the Most-Frequent Item Recommendations (top-N) 

where a list 𝑅𝑝𝑟 ∶ {1,2,… ,𝑁} → 𝐼 is calculated based on the predictions 𝑝𝑟𝑎𝑗  [86]. The list contains 

the items considered to be most appreciated by the active user in descending rank-order (i.e. highest 

predicted items listed first). 

7.3.1.2 Item-based Collaborative Filtering 

Although user-based algorithms underlie many popular recommender systems, they suffer from some 

serious drawbacks. As noted by Badrul in [285], user-based approaches generally perform poorly 

when rating data are sparse because it is difficult to generate a neighborhood of similar users. Sparsity 

issues are also difficult to overcome in many real-world scenarios where the total number of ratings 

for a given user is very small compared to the collection of available items (e.g. e-commerce). In 

addition, user-based algorithms generally suffer from scalability problems as they calculate 

predictions using the entire database of users and items. As user-based approaches generate user 

neighborhoods based on the entire set of users, their computational complexity grows linearly with the 

number of users and can become quickly intractable in large-scale systems. Hence, while such 

systems demonstrate good predictive characteristics and are relatively simple to implement, they are 

generally not well-suited for fast, online filtering operations.  

Due to the aforementioned challenges, several item-based collaborative filtering approaches have 

been developed (item-based CF) [86]. Item-based CF exploits historical rating (or consumption) 

information to identify useful relationships between the various items under consideration. For 

example, the purchase of a given item (or set of items) is often shown to precede the purchase of 

second item (or set of items) with a high degree of probability [86]. Because the set of items remain 

relatively consistent and stable over time, similarity models can be pre-computed; leading to 

improved computational characteristics when the set of users is significantly larger than the set of 

items (i.e.  𝑈 ≫  𝐼 ) [379]. Similar to user-based approaches, item-based CF approaches are based on 

the ratings 𝑟𝑖𝑗  provided by users 𝑢𝑖 ∈ 𝑈 for items 𝑖𝑗 ∈ 𝐼. However, unlike user-based CF techniques, 

item-based CF similarity values are calculated for items rather than users; where two items are 

considered similar if the users rating one item rate another item similarly. Item-based CF techniques 

analyze the set of items rated by the active user 𝑢𝑎  and compute how similar each is to the target item 

𝑖𝑗 ; selecting the k most similar items {𝑖1 , 𝑖2 ,… , 𝑖𝑘} based on their corresponding similarities 

{𝑠𝑖1, 𝑠𝑖2 ,…𝑠𝑖𝑘 }. Predictions are generated by taking a weighted average of the active user‘s ratings on 

these similar items. 
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Importantly, item-based recommender techniques are probabilistic rather than deterministic; 

typically trading a time-intensive model building process (and often lower quality predictions) for 

improved computational complexity characteristics and faster query speeds [379]. In contrast to user-

based CF techniques that operate over the entire database of users and items, item-based CF 

techniques improve performance by constructing a model of rating information that is initially based 

on the user-item matrix R; however the model becomes less reliant on the full matrix as the system is 

trained. Once training is complete, recommendations can be generated by interactions using the 

compact model; resulting in performance improvements [339]. Indeed, a recent survey of item-based 

recommenders demonstrated techniques that performed up to 28 times faster than user-based methods 

[86]. 

As described in [339], the general item-based CF approach operates as follows: First, the rating data 

are represented in an 𝑚 × 𝑛 user-item matrix R, where each element 𝑟𝑖𝑗  is a rating provided by a user 

𝑢𝑖  (i.e. row i) for item 𝑖𝑗  (i.e. column j). Using matrix R, item similarity is calculated by isolating 

users that have both rated two items 𝑖𝑗  and 𝑖𝑘  and applying a similarity evaluation such as the Pearson 

Correlation Similarity and Cosine Similarity techniques described in the last section (exchanging item 

similarity for user similarity in the calculations). Once the similarities between all items in matrix R 

have been calculated, a neighborhood is created using the 𝑙 most similar items 𝑖𝑘 , with 𝑘 = {1,2… , 𝑙}, 

with regard to a specific item 𝑖𝑗  of the active user 𝑢𝑎 . Computing predictions is often accomplished 

using: 

𝑝𝑟𝑎𝑗 =
 𝑠𝑖𝑚𝑗𝑘 ∙ 𝑟𝑎𝑘
𝑙
𝑘=1

  𝑠𝑖𝑚𝑎𝑘  
𝑙
𝑘=1

 

where ratings are weighted by a corresponding similarity 𝑠𝑖𝑚𝑎𝑘  between the active user‘s item 𝑖𝑗  and 

that of another item 𝑖𝑘 . Given a set of predictions, a top-N list of recommendation items can be 

generated by following the user-based recommendation approach described in the last section. 

7.3.2 The Ocean Recommendation Engine 

To address the information overload that may affect Ocean applications during Resource Discovery, 

we have developed a hybrid recommender approach that supplements Resource Discovery Results 

with personalized affinity predictions based on the captured preferences of the Ocean User 

community. To support the integration of a variety of recommender techniques, we have developed a 

Recommendation Engine that extends the functionality of Ocean‘s Discovery Framework with 

generalized support for various recommendation algorithms. As Resource discovery results are 

intended to be composed into Ocean applications at runtime, query speed is a critical factor for 

application performance. Recall from section 7.3.1.1 that user-based recommender techniques provide 

good predictive quality but are often too slow for online query scenarios [285]. Hence, Ocean adopts 

the item-based class of recommenders as the foundation of its Resource personalization approach.  

Extending the privacy mechanism introduced in section 7.2.5, Ocean does not provide Resource 

personalization by default (meaning that the Ocean Registry may be used anonymously). To enable 

Resource personalization, Ocean Users create an Ocean personalization account and obtain a private 
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key that is used to track preferences and support affinity predictions. To activate Resource 

personalization, Discovery Requests include personalization credentials as shown in Figure 66. 

 

Figure 66: An example Discovery Request with personalization credentials 

When the Ocean Registry receives a Discovery Request with integrated personalization credentials, 

it first generates a subset of contextually-relevant Resources according to the basic Ocean MFSS 

approach described in section 6.4 (computing similarity scores for contextually relevant Resources as 

described in section 6.4.4). If query expansion is requested, supplemental query terms are generated 

and used during query processing as described in section 7.2.5. As the Query Processor completes 

Resource discovery for a given request, it passes its preliminary results to the Ocean Recommendation 

Engine as shown in Figure 67. To compute Resource predictions, a suitable recommendation 

algorithm is used to estimate a user‘s predicted appreciation of each Resource contained within the 

preliminary result set (for en example see section 7.3.3). Resulting personalization scores are added to 

each Resource‘s Descriptive Metadata and returned to the Ocean application at the conclusion of the 

discovery process. Ocean applications may then utilize both similarity scores and personalization 

scores to help select appropriate Resources for in-situ composition. 

 

Figure 67: Overview of the Ocean Recommendation Engine 

Within the Ocean Recommendation Engine, Resource affinity predictions are based on Resource 

ratings provided by the community of Ocean Users who have volunteered to share preference 

<?xml version="1.0" encoding="UTF-8"?> 

<ocean_resource_request version="1.0" > 

 <query_parameters max_results="50"  

     domain_restrict="" 

     contextualizer_restrict="" 

     share_context=”true” 

     personalization_key =”45d20b1d2cc2d52e74b3cbf1750a2e31”> 

 (continued...) 
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information. To capture Resource ratings, the Recommendation Engine relies on two rating 

mechanisms, including explicit and implicit. To capture explicit ratings, the Ocean Registry provides a 

dedicated Resource Rating API, which is managed by a RatingHandler object. To explicitly rate a 

given Resource, an Ocean application constructs a Resource Rating XML document (defined shortly), 

which provides a reference to a given Resource‘s URI and an associated rating value (e.g. using a 5-

point likert scale). To perform ratings, a user provides his or her personalization credentials to an 

Ocean application, which then establishes a unique user session with the Ocean Registry. Once a user-

session is established, the RatingHandler ensures that incoming Resource references are valid and 

that rating limits are enforced (Ocean Users may provide one rating per Resource). As explicit ratings 

are created, the Recommendation Engine mediates interactions with the Resource preference model 

database, which stores rating information for use by recommendation algorithms. The Ocean 

Resource Rating XML schema is shown below in Figure 68. 

 

Figure 68: The Resource rating XML schema 

To capture implicit ratings, the Ocean Registry provides the Resource Resolution API, which is 

managed by a ResourceResolver object. As introduced in section 7.3.1, the user-effort required to 

generate adequate numbers of explicit ratings often dissuades participation and promotes ―free 

riding.‖ To counteract this phenomenon, Ocean employs an implicit rating scheme whereby ratings 

are inferred by observing the Resource selections made by the Ocean Users. To facilitate implicit 

rating capture, the Descriptive Metadata within personalized Discovery Responses do not provide true 

URI information (see section 6.4.1.2). Rather, each Descriptive Metadata entity includes a unique 

uri_code that must be resolved to a valid URI using the Ocean Registry. As previously introduced, a 

uri_code represents a single-use, time-limited hash key that is generated by the Ocean Registry 

Query Processor for each Contextualized Resource referenced by a given Discovery Response. If an 

Ocean application wishes to resolve a particular Resource URI, it calls the Ocean Registry‘s Resource 

Resolution API using HTTP GET as http://oceanplatform.org/resolve/{uri_code}. As a 

resource resolution request arrives at the Ocean Registry, the ResourceResolver extracts the 

uri_code from the request and searches the given user‘s session hashtable using the uri_code as a 

key. If the uri_code is found, the Ocean Registry returns a HTTP 303 redirection to the Ocean 

application, which provides the Contextualized Resource‘s true URI. The Ocean Resource Resolution 

XML schema is shown in Figure 69: 
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Figure 69: The Resource resolution XML schema 

As URI resolution is completed, the ResourceResolver notifies the Recommendation Engine of 

the Resource selection. If Resource personalization is authorized by the user, the Recommendation 

Engine rates the Resource on behalf of the user using an appropriate preference value (if the user has 

not already provided an explicit rating). Depending on the recommendation algorithm employed, 

implicit rating for a given Discovery Response may be deactivated after a specific period of time has 

elapsed. As previously described, implicit ratings have been shown to be less accurate than explicit 

ratings when predicting a user‘s affinity for items [379]; hence, implicit ratings must be weighted 

accordingly. Finally, explicit rating should always override any implicit ratings already inferred for a 

given user. 

7.3.3 Approach Validation Using the Weighted Slope One Algorithm 

Recently, Lemire and Maclachlan [197] proposed a family of item-based recommenders, called Slope 

One, that demonstrate similar predictive accuracy to user-based recommenders yet are ―easy to 

implement, dynamically updateable, efficient at query time, and expect little from first visitors while 

having a comparable accuracy to other commonly reported schemes.‖ They observe that many item-

based approaches rely on predictors that use weighted averages in a regression of the form 𝑓 𝑥 =

𝑎𝑥 + 𝑏 [340]. As presented in [197], the Slope One approach suggests that a simpler regression 

scheme of the form 𝑓 𝑥 = 𝑥 + 𝑏 (where b is a constant and x represents rating values), can produce 

effective predictions while being: 

1. easy to implement and maintain: all aggregated data should be easily interpreted by the 

average engineer and algorithms should be easy to implement and test; 

2. updateable on the fly: the addition of a new rating should change all predictions 

instantaneously; 

3. efficient at query time: queries should be fast, possibly at the expense of storage; 

4. expect little from first visitors: a user with few ratings should receive valid 

recommendations; 

5. accurate within reason: the schemes should be competitive with the most accurate schemes, 

but a minor gain in accuracy is not always worth a major sacrifice in simplicity or 

scalability. 

As described by Lemire and Maclachlan, Slope One operates on an intuitive ―popularity 

differential‖ principle, which indicates in a pair-wise fashion how much better items are liked by the 

various users in the complete set of users U. They suggest that simple way to measure the differential 
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between two given items is to simply subtract the ratings from users that have rated both. The 

resultant differential can then be used to predict a user‘s affinity for an unrated item.  

For example, consider the two users A and B and the two items I and J presented in Table 15. In 

this example, user A rates item I with a value of 1 and item J with a value of 1.5. Next, the popularity 

differential between item I and item J is calculated by subtracting the ratings given for both items. 

Next, user B‘s affinity for the unrated item J can then be estimated by adding the previously 

calculated popularity differential (0.5) to user B‘s rating for the co-rated item J. In this case, the user 

B‘s predicted rating for item J is calculated as 2 +  1.5 − 1 = 2.5. It should be noted that in realistic 

scenarios, the Slope One scheme computes averaged popularity differentials based on co-ratings from 

multiple users (discussed shortly). 

 Rating for item I Rating for item J Popularity differential 

User A 1 1.5 1 − 1.5 = 𝟎.𝟓 

User B 2 Unrated 

Prediction: 2 +  1.5 − 1 = 𝟐.𝟓 

 

Table 15: A simple rating profile and popularity differential calculation for Slope One 

Lemire and Maclachlan use the following notation when describing Slope One schemes: First, all 

ratings of a given user, referred to as an evaluation, are represented as an incomplete array u where 𝑢𝑖  

represents the rating provided by the user for item i. The subset of all rated items for a given user 

array u is denoted 𝑆𝑢  and the values of all evaluations for a given item pair (i.e. the training set) is 

denoted 𝜒. The number of all elements in set S is denoted 𝑐𝑎𝑟𝑑(𝑆) (deferring to the notation provided 

by Lemire and Maclachlan rather than the common notation  𝑆 ). The average ratings in an evaluation 

u is denoted 𝑢 . The set of all evaluations 𝑢 ∈ 𝜒 such that they contain item 𝑖(𝑖 ∈ 𝑆(𝑢)) is denoted 

𝑆𝑖(𝜒). Given two evaluations u and v their scalar product  𝑢, 𝑣  is defined as  𝑢𝑖𝑣𝑖𝑖∈𝑆(𝑢)∩𝑆(𝑣) . Hence 

predictions, which are denoted 𝑃(𝑢), represent a vector where each component is the prediction 

corresponding to one item (depending implicitly on the training set 𝜒). 

Using the above notion, Lemire and Maclachlan describe the baseline Slope One scheme as 

follows: First, given two evaluation arrays 𝑣𝑖  and 𝑤𝑖  (𝑖 = 1,… , 𝑛), the best predictor of 𝑤 with 

respect to 𝑣 (in the form 𝑓 𝑥 = 𝑥 + 𝑏) is searched by minimizing   𝑣𝑖 − 𝑏 −𝑤𝑖 
2𝑛

𝑖=1 . Next, 

deriving with respect to 𝑏 and setting the derivative to 0 results in 𝑏 =
 𝑣𝑖−𝑤 𝑖
𝑛
𝑖=1

𝑛
 (meaning that 𝑏 is 

always chosen to be the average difference between the two evaluation arrays).  

Next, given a training set 𝜒 and any two items j and i with associated ratings 𝑢𝑗  and 𝑢𝑖  from a user 

evaluation 𝑢 (𝑢 ∈ 𝑆𝑗 ,𝑖(𝜒)), the average deviation of item i with respect to j is given by: 

𝑑𝑒𝑣𝑗 ,𝑖 =  
𝑢𝑗 − 𝑢𝑖

𝑐𝑎𝑟𝑑(𝑢 ∈ 𝑆𝑖,𝑗  𝜒 )
𝑢∈𝑆𝑖,𝑗 (𝜒)
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where the summation does not include any evaluation u which does contain ratings for both 𝑢𝑗  and 𝑢𝑖 . 

Using the above formula, a symmetric matrix can be computed once and quickly updated as new 

ratings are provided.  

Given that 𝑑𝑒𝑣𝑗 ,𝑖 + 𝑢𝑖  is a predictor of 𝑢𝑗  when given 𝑢𝑖 , a more meaningful predictor can be 

defined as the average of all such individual predictions as: 

𝑃(𝑢)𝑗 =
1

𝑐𝑎𝑟𝑑(𝑅𝑗 )
 𝑑𝑒𝑣𝑗 ,𝑖 + 𝑢𝑖
𝑖∈𝑅𝑗

 

where 𝑅𝑗 = {𝑖|𝑖 ∈ 𝑆 𝑢 , 𝑖 ≠ 𝑗, 𝑐𝑎𝑟𝑑  𝑆𝑗 ,𝑖  𝜒  > 0} represents the set of all relevant items.  

In dense datasets (i.e. where most item pairs have ratings) 𝑢 ≅  
𝑢𝑗

𝑐𝑎𝑟𝑑  𝑅𝑗  
𝑖∈𝑅𝑗

. Thus, the previous 

predictor can be simplified to: 

𝑃𝑆1(𝑢)𝑗 = 𝑢 +
1

𝑐𝑎𝑟𝑑(𝑅𝑗 )
 𝑑𝑒𝑣𝑗 ,𝑖

𝑖∈𝑅𝑗

 

Lemire and Maclachlan note that the Slope One scheme takes advantage of information from other 

users who have rated the same item as well as the items rated by the active user; emphasizing that the 

strength of the approach is the estimation of data points that are not specified (i.e. data not in the item 

array or user array). However, a drawback of the baseline Slope One scheme is that the total number 

of ratings for an item is not accounted for; meaning that items with a large number of ratings are 

treated the same as items with only a few ratings. Therefore, in order to place additional significance 

on those items with a larger number of ratings, the Weighted Slope One predictor is defined as: 

𝑃𝑤𝑆1(𝑢)𝑗 =
  (𝑑𝑒𝑣𝑗 ,𝑖 + 𝑢𝑖)𝑐𝑗 ,𝑖𝑖∈𝑆 𝑢 −{𝑗 }

  𝑐𝑗 ,𝑖𝑖∈𝑆 𝑢 −{𝑗 }
 

where 𝑐𝑗 ,𝑖 = 𝑐𝑎𝑟𝑑(𝑆𝑗 ,𝑖(𝜒)). 

To validate the Ocean Recommendation Engine previously introduced, we adopted a recommender 

algorithm based on the Slope One predictor presented above. Following the implementation described 

in [198], we devised a Weighted Slope One predictor and integrated it within the Ocean 

Recommendation Engine as shown in Figure 70. Resource predictions are generated as follows: First, 

the rating data for Ocean Users are collected using the explicit and implicit rating schemes described 

in section 7.3.2. These rating data are stored in a Rating table that is part of a Slope One database 

within the Ocean Registry. As ratings are captured by the Ocean Registry, popularity differentials 

between co-rated Contextualized Resources are pre-computed and inserted into a item-to-item matrix 

that is stored within a Differential table (according to the baseline SlopeOne approach). To support 

fast, online updating of the preference matrix, each item in the Differential Table includes both a sum 

value (representing the sum of all rating differentials for the item) and a count value (representing the 

total number of differentials comprising the sum) [198]. From the sum and count values in the 

Differential Table an average differential (AvDif) can be computed for each item pair. 

If an Ocean User requests Resource personalization, the Query Processor sends its preliminary 

Discovery results to the Recommendation Engine at the conclusion of the multi-feature similarity 
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search process described in 6.4.4. The Recommendation Engine computes a set of affinity predictions 

for each discovered Contextualized Resource using the Slope One algorithm. After affinity prediction 

is complete, the Query Processor updates the personalization_score property of each Descriptive 

Metadata entity using the predicted affinity scores provided by the Recommendation Engine. Finally, 

the Descriptive Metadata are marshaled into a response XML structure and returned to the Ocean 

application as discussed in section 6.4.2. Once a Discovery Response is received by an Ocean 

application, local application logic performs dynamic, in-situ component selection and interoperation 

as per the Ocean application model presented in section 5.2. Notably, Ocean applications may use 

both similarity_score values and personalization_score values to select appropriate Resources 

for runtime composition. 

 

Figure 70: Integrating Slope One into the Ocean Recommender Engine 

With reference to Figure 70, a Resource personalization example is briefly described (based on 

[357]). First, we posit a collection of Resource ratings that is stored in the Rating table. As per the 

Slope One approach, averaged popularity differentials are computed for each item pair as shown in 

Table 16. 
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Pair Sum Count AvDif 

R1/R2  5 − 3 +  3 − 4 = 1 2 1

2
= 0.5 

R2/R1  3 − 5 +  4 − 3 = −1 2 −1

2
= −0.5 

R1/R3  5 − 2 = 3 1 3

1
= 3 

R3/R1  2 − 5 = −3 1 −3

1
= −3 

R2/R3  3 − 2 +  2 − 5 = −2 2 −2

2
= −1 

R3/R2  2 − 3 +  5 − 2 = 2 2 2

2
= 1 

Table 16: Differential table calculations for Slope One 

Next, we posit a preliminary Discovery result for User C, which includes Resource R1 with a 

similarity_score of 0.89 (note that User C has not yet rated R1 but has rated R2 and R3). Since 

User C requested Resource personalization, the Query Processor passes R1 to the Recommendation 

Engine for affinity prediction. Using the baseline Slope One approach, the average rating differential 

(AvDif) between R1 and R2 has been pre-computed as 
 5−3 + 3−4 

2
= 0.5 (note this value is stored 

within the Differential table for improved prediction speed). Using this average differential, user C‘s 

preference for R1 can be predicted by adding the averaged popularity differential existing between R1 

and R2 to User C‘s rating for R2 as 2 + 0.5 = 2.5. Similarly, affinity prediction for R1 can also be 

predicted for User C based on the average rating differential (AvDif) between R1 and R3, which has 

been pre-computed as  5 − 2 = 3 (note this value is stored within the Differential table for improved 

prediction speed). Using this average differential, user C‘s preference for R1 can be predicted by 

adding the averaged popularity differential existing between R1 and R3 to User C‘s rating for R3 as 

5 + 3 = 8. Since User C has multiple co-ratings, a Weighted Slope One scheme is used to combine 

the predictions as 
2×2.5+1×8

2+1
=

13

3
= 4.33, where the weight is the total number of users contributing 

to the given popularity differentials (i.e. rating both items). Using this final value, the Query Processor 

updates the Descriptive Metadata‘s personalization_score for R1 using the weighted Slope One 

affinity result of 4.33. Finally, the Descriptive Metadata are marshaled into a response XML structure 

and returned to the Ocean application. An example personalized Discovery Response is shown in 

Figure 71. 
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Figure 71: Example personalized Discovery Response 

As a validation of the Resource personalization approach described throughout this section, we 

created a prototype RecommendationEngine as part the Ocean Reference Implementation (Ocean RI). 

As a means of evaluating our approach using real-world algorithms, we adapted the Ocean RI for use 

with the Taste collaborative filtering engine (Taste Engine)
 48

, which provides open-source 

implementations of several popular recommender algorithms, including SlopeOne. Accordingly, we 

devised an Ocean-specific implementation of the Taste DataModel interface, called the 

OceanDataModel, which provides the Taste Engine access to the Ocean Persistence Framework 

described in section 6.3. Further, we enhanced Taste‘s basic SlopeOne approach by providing 

context-aware search-space reduction using the Resource discovery process described in section 6.4. 

Figure 72 illustrates how the Taste Engine was integrated within the Ocean RI. (Note that 

implementation-specific methods may be included in the figure below; however, in the interest of 

clarity, these are not described.) 

 

Figure 72: Integration of the Taste recommender within the Ocean RI 

                                                      
48

 http://taste.sourceforge.net/ 

<?xml version="1.0" encoding="UTF-8"?> 

<ocean_resource_response version="1.0" > 

  <resources> 

    <resource> 

      <type><![CDATA[mime:text/html]]></type> 

        <uri_code><![CDATA[10fb2d66a65335317b54c93b15edefebe62a]]></uri_code> 

        <domain><![CDATA[example_user.smugmug.com]]></domain> 

        <title><![CDATA[Example's photo website]]></title> 

        <description><![CDATA[Example description]]></description> 

        <similarity_score>.89</similarity_score> 

        <personalization_score>4.33</personalization_score> 

        <wadle/> 

     </resource> 

(continued...) 
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7.4 Chapter Summary 

This chapter discussed Ocean‘s use of community-based computation as a means of overcoming two 

key challenges inherent in large-scale networked systems. It began by describing the issue of context-

mismatch, which refers to the situation where an Ocean application may not be capable of generating 

the native context data necessary to discover contextually-relevant Resources in a given environment. 

Notably, it discussed context mismatch with regards to a similar problem from the domain of 

Information Retrieval (IR), known as word mismatch. Briefly, word mismatch refers to the situation 

where the textual information within a IR search query may not adequately match the terms within a 

given document set; resulting in a vocabulary problem that reduces query effectiveness. It was noted 

how word mismatch has been effectively addressed through the use of query expansion techniques 

that augment queries with supplemental search terms in an effort to improve query results. Using 

query expansion as a foundation, we defined our preliminary mechanism for enhancing Ocean 

Discovery Requests with context-aware query expansion based on context information modeled from 

real-world environments. We founded our context modeling approach on a low-effort community 

contribution model (inspired by PlaceLab and BOINC), which exploits incoming Discovery Requests 

provided by large communities of heterogeneous Ocean applications. 

Next, we described our preliminary approach for overcoming information overload in situations 

where Resource Discovery produces an overwhelming number of results; making effective 

component selection difficult or impossible. This section began by presenting background and related 

work regarding recommender systems, which have emerged as a promising technique for reducing 

information overload in information saturated environments. This section highlighted various 

recommender algorithms and discussed their applicability to Ocean‘s Discovery Framework. Based 

on this related work, we proposed the Ocean Recommender Engine as a mechanism for 

supplementing Discovery results with Resource affinity predictions based on captured preference 

information from the Ocean User community. Related, we also suggested techniques for capturing 

explicit and implicit rating information. To validate the Ocean Recommender Engine, an example 

recommender algorithm, called Slope One, was introduced and adapted for use within Ocean. The 

chapter concluded with a Resource personalization example and a discussion regarding the integration 

of the Taste collaborative filtering engine within the Ocean RI.  
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Chapter 8 

Example Scenario 

8.1 Introduction 

The preceding chapters have detailed the theoretical aspects and practical infrastructure necessary to 

realize the Ocean approach for Web-scale context-aware computing. As previously discussed, the 

Ocean approach addresses the challenges facing large-scale context-aware systems presented in 

section 3.2. Notably, each of Ocean‘s related contributions has been detailed within a dedicated 

chapter in order to provide sufficient space for related work presentation, theoretical development and 

approach verification using the Ocean Reference Implementation (RI). As a method of illustrating 

how Ocean‘s various contributions form an integrated whole, this chapter presents a real-world Ocean 

application scenario that integrates various aspects of the Ocean approach. In addition, the example 

scenario provides further validation of Ocean‘s large-scale focus (see section 3.3) by integrating real-

world sources of native context sources, significant amounts of Contextualized Resource information 

and more realistic models of Ocean community behavior. The intentionally simplified example 

scenario developed throughout this chapter aims to clarify core Ocean concepts and serve as a 

foundation for the development of more sophisticated Ocean applications. 

The structure of this chapter is as follows: First, section 8.2 describes the experimental setup, 

including the development of an Ocean application development environment, called Ocean Studio, 

and an embedded version of the Ocean Reference Implementation (Ocean RI) designed for rapid 

prototyping. Next, section 8.3 provides an overview of the LinkFlow application, which forms the 

conceptual foundation for the chapter. Section 8.4 describes our data acquisition methodology and 

related toolset designed to capture and integrate large numbers of native context sources and real-

world Contextualized Resources into Ocean Studio. Section 8.5 validates the basic LinkFlow scenario 

using the Ocean Studio development environment. Section 8.6 describes the integration of the 

previously acquired native context sources and Contextualized Resource information and discusses 

the resultant query performance reduction due to context mismatch and information overload. 

Related, a complimentary agent system is also presented as a means of approximating the behavior of 

a large Ocean application community operating within Ocean Studio. Finally, section 8.7 discusses 

how the aforementioned query challenges can be addressed by applying the context-aware query 

expansion and Resource personalization techniques presented in the last chapter.  

8.2 Experimental Setup 

To devise Ocean application scenarios we created a comprehensive Ocean development environment 

called Ocean Studio, which includes several interrelated components. First, it provides a device 

emulation framework that provides support for modeling, configuring and controlling device 

emulators that are capable of running Ocean-based applications. Device emulators provide a platform-

specific set of context acquisition hardware – such as an onboard camera, language preferences, radio 

transceivers and GPS equipment – which is capable of receiving real-world context information from 

multiple data sources. Context acquisition and modeling within each emulator is based on the client-

centric Aladin approach described in section 3.2.2. Using the Aladin style, emulators gather context 
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information using locally available hardware and provide the resultant native context data (NCD) to 

Ocean applications through events. Emulators are capable of running a single Ocean application, 

which provides its own internal application logic and is presented full screen within the active 

emulator‘s display. Ocean applications receive NCD as events from the emulator framework and 

receive user input from screen-clicks, hardware buttons and a settings profile. Using the emulator 

framework, we modeled two separate devices: (1) a Nokia N95 mobile phone
49

 with inbuilt GPS 

hardware, Bluetooth and 802.11 transceivers and an onboard camera; and (2) a Dell Axim x50v 

PDA
50

 with inbuilt Bluetooth and 802.11 transceivers and an attached camera. Within Ocean Studio, 

the active emulator can be changed at runtime by selecting from a drop-down list of installed 

emulators. An overview of Ocean Studio is shown in Figure 73. 

 

Figure 73: Overview of Ocean Studio 

As shown in Figure 73, Ocean Studio provides an integrated scenario designer whereby context 

sources, emulator representations (i.e. the active emulator‘s icon) and Contextualized Resources can 

be placed, configured and visualized on a graphical map component. The map component is based on 

the Yahoo Mapping API
51

, which provides support for visualizing mapping data, satellite imagery and 

overlay graphics. The mapping component is configured to allow location dragging and zooming and 

                                                      
49

 http://europe.nokia.com/find-products/devices/nokia-n95 
50

 http://www.dell.com/content/topics/segtopic.aspx/brand/axim_x50 
51

 http://developer.yahoo.com/maps/ 
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provides support for drag-and-drop placement of 802.11 and Bluetooth transceivers. Additionally, the 

scenario designer automatically renders available Contextualized Resources that include a 

GeoPointHandler as Context Metadata (described in section 4.4.1). The active emulator appears 

within the scenario designer as a graphical icon that can be moved within the map component by 

dragging and dropping its location pointer, which appears as a green circle connected to the emulator 

by a white line. An overview of two context sources and the active emulator is shown rendered within 

the scenario designer in Figure 74. 

 

Figure 74: Example context sources and the active emulator rendered within the scenario 

designer 

The scenario designer also provides an integrated context framework capable of aggregating and 

provisioning multiple sources of context information. The physical location of the active emulator is 

determined by querying the Yahoo Map API with the coordinates of the emulator‘s location pointer as 

it is moved within the map component. Physical positioning information for the active emulator is 

provisioned using the native NMEA 0183 ASCII sentence format [220] common to most GPS 

hardware. The physical positions of 802.11 and Bluetooth transceivers that have been manually 

created within the scenario designer are automatically managed by the context framework, which 

provisions transceiver data in the native NetStumbler format [212] common to popular ―war-driving‖ 

software libraries [291] and wireless network diagnostic utilities
52

. The radio transmission 

characteristics of several transceiver types (e.g. Bluetooth class 1 and 802.11b) are estimated using 

radio frequency (RF) propagation models [312] that account for common transmission characteristics 

such as free space loss, signal power attenuation and signal scattering (for the example scenario we 

used a propagation model appropriate for outdoor environments with building obstructions). 

Additionally, the context framework is capable of importing bulk transceiver geo-location information 

from external data sources such as the beacon collection results of the PlaceLab project (see section 

7.2.2). Finally, the context framework is capable of provisioning bitmap data to the active emulator‘s 

camera frame-buffer using an imported image that can be set using the Ocean Studio preferences. As 

an overview, Figure 75 shows an emulator acquiring and modeling native context data from the 

                                                      
52

 http://www.stumbler.net/ 
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context framework. Specifically, this figure shows the active emulator modeling GPS positioning 

information in the NMEA data format, several nearby radio sources in the NetStumbler format, a 

language preference string according to RFC 3066 [6] and the raw image data from the emulator‘s 

camera frame-buffer as a device-independent bitmap. 

 

Figure 75: Native context data as modeled by the active emulator 

Finally, Ocean Studio includes an integrated Resource contextualizer tool that allows 

Contextualized Resources to be created and managed using a form-based visual designer. The tool 

allows Contextualizers to create, retrieve (list), update and delete Contextualized Resources using 

both General Metadata and Context Metadata, as described in section 4.3. Notably, the Resource 

contextualizer provides form-based configuration options for each Context Handler installed in the 

embedded Ocean RI. Recall that, Context Experts may provide a set of arbitrarily complex 

configuration options that can be controlled by non-experts through relatively simple external 

interfaces (see section 4.3.2). Related, the Resource contextualizer automatically discovers and 

presents such configuration options using reflection mechanisms of the .NET Framework. 

Based on the server-based Ocean RI presented throughout this dissertation, we developed an 

embedded version of the Ocean RI as a means of supporting Ocean Studio scenarios. The embedded 

Ocean RI includes the same core functionality as the server-based version previously discussed; 

however, the embedded version is designed specifically for rapid prototyping and includes support for 

server-less operation, high-speed integration of preconfigured data-sets, in-memory component 

communication, and rapid integration of test components such as prototype Context Handlers. 

Further, to support Discovery Request/Response debugging, the embedded Ocean RI operates without 

the Web service interfaces and security mechanisms discussed in section 5.3.1. 

Ocean Studio facilitates communication between the active emulator‘s Ocean application and the 

embedded Ocean RI using an implementation of the Ocean discovery protocol described in section 

6.4.1. Hence, Ocean applications running within the emulator construct and pose Discovery Requests 

to the Ocean RI as required by their internal application logic. If deemed advantageous by the 

application, the NCD acquired and modeled by the emulator may be included within Discovery 
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Requests as query terms. As such, Ocean application developers do not need to possess context 

domain expertise in order to utilize the Ocean approach. Figure 76 shows how the active emulator‘s 

profile settings are used to control various aspects of the Resource discovery process. The available 

profile settings include an Ocean username and password; a context sharing Boolean; a discovery 

result personalization Boolean; and a context-aware query expansion Boolean. (Note that each of 

these options is discussed in detail later in this chapter.) 

 

Figure 76: Ocean preference settings as shown in the active emulator’s user profile 

8.3 Scenario Overview 

As a means of demonstrating various aspects of the Ocean approach, we devised a simple context-

aware Web browser application called LinkFlow, which is intended to be executed within the Ocean 

Studio emulator framework. We created LinkFlow based on the results of other well-known context-

aware hypermedia applications such as Guide [78]  and  Cooltown [179]. As discussed in Chapter 2, 

location-aware hyperemia applications often aim to extend the Web‘s conventional model to include 

Resource discovery and selection using context information such as physical or symbolic positioning 

data. Similarly, LinkFlow extends the traditional Web agent model (see [341]) and operates much like 

a conventional Web browser in traditional hypermedia scenarios. However, unlike a conventional 

hypermedia application, LinkFlow‘s set of available URIs flow from Discovery Requests made 

against the Ocean RI. As such, LinkFlow users are provided a continually evolving set of contextually 

relevant Resources in the form of Descriptive Metadata, which include a similarity score, 

personalization score, title, description, etc.  

As detailed later in this chapter, the LinkFlow application involves the following workflow: context 

detection; Discovery Request formation; Discovery Response selection; and context-aware browsing. 

As detailed in section 3.2.8, component interoperation with discovered Resources takes place 

according to the REST architectural style as presented in [105]. However, while the LinkFlow 

scenario involves only simple context-aware browsing, more sophisticated application scenarios 

involving additional Resource types (e.g. structured XML) and various control flow scenarios (e.g. CS 

mashups) are also possible (see section 5.2.2). 

LinkFlow differs from other context-aware browser approaches in that its application model and 

support infrastructure are based on the Ocean approach. With regards to LinkFlow, the Ocean 

approach can be summarized as follows: First, because the Ocean approach extends the Aladin 

context modeling style described in section 3.2.2, the LinkFlow application is capable of modeling 

real-world environments without the need for dedicated context instrumentation and related 

infrastructure. Second, as described in section 5.5, Ocean‘s open APIs for the creation and 
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management of Contextualized Resources can be used to promote the contextualization of large 

numbers of existing Web Resources. Third, based on Ocean‘s Context Handler contribution model 

described in section 5.4, external Context Experts are able to integrate complex domain semantics into 

the Ocean Registry; allowing LinkFlow developers use the Ocean Registry without requiring complex 

context domain knowledge (see section 6.4.1). Fourth, as described in section 6.3, the Ocean RI 

supports Contextualized Resource persistence and indexing and provides a multi-feature similarity 

search approach that generates search results based on incoming query NCD and domain-specific 

similarity features contained within persisted Contextualized Resources. Fifth, as described in section 

7.2, LinkFlow applications running on resource constrained devices (e.g. without GPS hardware) may 

request that Ocean automatically expand Discovery Requests with supplemental context-relevant 

query terms that have been modeled from the shared context information provided by the Ocean User 

community. Finally, as described in section 7.3, LinkFlow applications may request Resource 

personalization, which allows the Ocean Registry to automatically rank Discovery Results based on 

privacy-aware user profiling, community generated preference information, and Ocean‘s integrated 

recommender algorithms. 

8.4 Data Acquisition 

As a means of acquiring significant quantities of real-world context information and Contextualized 

Resources data, we integrated two external datasets into Ocean Studio. First, we obtained the publicly 

available beacon capture datasets provided by the PlaceLab research team [151]. These datasets 

include the results from several large ―war-driving‖ sessions completed using the data acquisition 

process described in section 7.2.2. Notably, the public PlaceLab datasets contain significant quantities 

of real-world beacon information (e.g. over 50,000 trace samples) and include detailed information 

regarding the identification and characteristics of various 802.11, Bluetooth and GSM radio 

transceivers located throughout the Seattle Washington metropolitan area. To support the LinkFlow 

scenario, we utilized a subset of the PlaceLab beacon capture data that was localized to a geographic 

region encompassing the downtown Seattle area (the resulting subset included 7,943 individual 

beacons).  

Next, we obtained real-world Contextualized Resource data by creating a multithreaded 

Contextualized Resource crawler framework (crawler framework) capable of extracting domain-

specific context information from several large, publicly available Web Resource datasets. As shown 

in Figure 77, the crawler framework provides several high-level features, including crawler controls 

(e.g. starting, stopping and crawl interval); crawler management tools (e.g. maximum results, start 

offset, etc.); and database interaction tools (e.g. database management, crawl totals and result 

clearing). 
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Figure 77: Overview of the Contextualized Resource crawler framework interface 

Using the crawler framework, we developed three independent context-aware crawlers. First, a 

crawler was devised to extract image-based Contextualized Resources from the photo sharing Website 

Flickr
53

. The Flickr crawler utilizes Flickr‘s REST-based Web service API
54

 to query for structured 

information related to shared photos that have been geo-coded using latitude and longitude 

information. The Flickr crawler can be customized to allow for additional query constraints based on 

specific geographic coordinates or text-based query terms. The Flickr crawler creates Contextualized 

Resources by parsing the resultant XML result data (in Flickr‘s native format) in order to obtain 

General Metadata information such as a title, description and URI. Additionally, Context Metadata is 

generated from Flickr results by encapsulating positioning data using the GeoPointHandler described 

in section 4.4.1.  

Next, a crawler was devised to extract Contextualized Resources from the micro-blogging Website 

Twitter
55

. The Twitter crawler utilizes Twitter‘s REST-based Web service API
56

 to query for XML-

based feed data that have been geo-coded within a customizable geographic area. The Twitter crawler 

creates Contextualized Resource‘s by parsing the resultant Atom feed data [328] in order to obtain 

General Metadata information such as a title, description and URI. Additionally, Context Metadata is 

generated from Twitter results by encapsulating positioning data using the GeoPointHandler 

mentioned above. If precise positioning data is not present within the resultant Atom feed data, the 

Yahoo geo-coding API
57

 is used to translate address information into geographic coordinates suitable 

for use by the GeoPointHandler. 
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54

 http://www.flickr.com/services/api/ 
55

 http://twitter.com/ 
56

 http://apiwiki.twitter.com/ 
57

 http://developer.yahoo.com/maps/rest/V1/geocode.html 



Chapter 8 

187 

Finally, a crawler was devised to extract Contextualized Resources from the community-based 

online encyclopedia Wikipedia
58

. As not all Wikipedia articles contain geo-coded information, we 

utilized the GeoNames geographical database
59

, which aggregates multiple sources of geographical 

data and provides a unified Web-service query interface. The Wikipedia crawler constraints 

GeoNames query results to Wikipedia articles that have been geo-coded within a specific geographic 

area. The Wikipedia crawler creates Contextualized Resource‘s by parsing the resultant XML result 

data (in the GeoNames native format) in order to obtain General Metadata information such as a title, 

description and URI. Additionally, Context Metadata is generated from GeoName results by 

encapsulating positioning data using the GeoPointHandler mentioned above. Finally, the Wikipedia 

crawler creates an additional ISO639LanguageHandler based a supplemental query of the Wikipedia 

site, which checks for articles in both English and German. 

Using crawler implementations described above, we performed several crawling sessions over a 13 

day period. Crawling session duration ranged from approximately 2.5 minutes to over 17 hours and 

care was taken to adhere to Web service rates limits (e.g. the Flickr API limits Web service calls to 1 

per second per IP). In order to improve crawling performance, each individual crawler operates in 

parallel. The Contextualized Resource results from each crawling session were stored in separate 

database files in order to organize the results for integration into Ocean Studio. We began by 

performing small initial test crawls and continued to perform additional crawls as the LinkFlow 

application was finalized. The longest crawling session took over 17 hours and resulted in the 

generation of 68,438 Contextualized Resources. To align our crawling results with the PlaceLab 

beacon datasets previously described, we configured each crawler to extract Contextualized 

Resources using geographic coordinates and search terms specific to the Seattle metropolitan area. 

Table 17 provides an overview of several Contextualized Resource crawl sessions and provides 

related information, including duration, description and total Contextualized Resources extracted (i.e. 

CR Totals). 
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Date 

Crawl 

Duration 

(minutes) 

Session description CR Totals 

February 22
nd

, 2009 22.5 Initial test crawl session with simultaneous 

crawler start. 

All: 1490 

Flickr: 500 

Twitter: 500 

Wikipedia: 490 

February 22
nd

, 2009 105.9 Stability testing crawl session with a longer 

duration. Staged crawler start to test multithreaded 

operation. 

All: 6990 

Flickr: 5000 

Twitter: 1500 

Wikipedia: 490 

March 4
th

, 2009 1036.9 Large crawl session using simultaneous crawler 

start and supplemental ISO639LanguageHandler 

generation. 

All: 68,438 

Flickr: 66,343 

Twitter: 1497 

Wikipedia: 598 

March 6
th

, 2009 24.1 Sample extraction for Ocean Studio with start 

offset for use in test rendering. 

All: 1594 

Flickr: 500 

Twitter: 497 

Wikipedia: 597 

Table 17: Overview of notable Contextualized Resource crawling sessions 

8.5 Validating the Basic LinkFlow Scenario 

To validate the basic LinkFlow scenario introduced in section 8.3 we used Ocean Studio‘s Resource 

contextualizer to manually create and test an example Contextualized Resource (CR). The example 

CR constrains the Discoverability Context of an HTML-based image slideshow using a specific 

geographic area definition and language preference. Recall from section 4.3 that Ocean Metadata are 

stored separately from the associated Resources within the Ocean Registry in order to impose the 

separation of concerns necessary for supporting context-aware compositional adaptation (see section 

2.2.3). CRs created within Ocean Studio are persisted within the embedded Ocean RI using a version 

of the Ocean persistence model presented in section 6.3.2. The example CR‘s General Metadata 

include a title, description, data-type and URI (the URI references a Resource hosted on the 

SmugMug photo sharing Website
60

). Additionally, the example CR contains two Context Metadata 

entities, including a GeoPointHandler configured with a ―Required‖ association type, a validity 

radius of 100 meters and a linear comparison function (see section 4.4.1); and a 

ISO639LanguageHandler entity configured with an ―Optional‖ association type and a language code 

of ―English.‖ Figure 78 shows the example CR rendered within Ocean Studio‘s scenario designer. 
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Figure 78: Example Contextualized Resource rendered within Ocean Studio’s scenario designer 

To validate the basic LinkFlow scenario, we began by positioning the active emulator within the 

validity radius of the example CR‘s GeoPointHandler (using the emulator‘s location pointer) and 

setting the emulator‘s preferred language to English (using the emulator‘s property controls). As 

described in section 8.2, the active emulator automatically models relevant NCD. In this scenario, the 

emulator models geo-location information (provided by local GPS hardware in the NMEA format), a 

language preference string in the ISO639 format, and a bitmap from the device‘s camera frame-

buffer.  

While methods of configuring and performing Discovery Requests are entirely application-specific 

(see section 6.4.1), the LinkFlow application presents several options as a means of illustrating the 

Ocean approach. As shown in Figure 79, the LinkFlow application provides both an NCD view 

(containing raw context data values) and several query controls that allow the user to constrain 

Discovery Requests by data-type, domain and Contextualizer. While some Ocean application types 

may shield details of the Resource Discovery process from users (e.g. by automatically performing 

Discovery Requests when certain criteria are met), LinkFlow provides an explicit ―Search‖ button that 

allows users to initiate Discovery Requests directly. An overview of LinkFlow‘s Discover View is 

shown in Figure 79. 
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Figure 79: The Discover View showing locally modeled NCD and several search constraints 

Using the Discover View controls shown above, Discovery Requests can be performed by choosing 

appropriate query constraints and clicking the Search button. Recall that when the Search button is 

clicked the LinkFlow application formulates a Discovery Request, which includes the emulator‘s 

modeled NCD as query terms. Discovery Requests arriving at the embedded Ocean RI are processed 

by a naïve implementation of the Ocean multi-feature similarity search (MFSS) approach described in 

chapter 6.4.4. Recall that Ocean‘s full MFSS framework utilizes the Context Metadata interface 

implemented by contributed Context Handlers to provide Contextualized Resource indexing, 

persistence and similarity determination. 

At the completion of Ocean query processing, resultant Descriptive Metadata results are returned to 

the LinkFlow application using the Discovery Response format described in section 6.4.1.2. Recall 

that Descriptive Metadata include a URI (or uri_code), similarity score, personalization score (if 

requested), title, description, domain and an optional WADL document (see [137] for details). Several 

of these metadata are integrated into LinkFlow‘s Results View, which provides a multi-column 

ListBox component capable of rendering ranked results for the user. Next, LinkFlow users survey the 

discovered metadata as a means of making suitable Resource selections (according to similarity score 

(Sim), the personalization score (Pref) and the title).  

As expected, Discovery Requests made within the example CR‘s Discoverability Context resulted 

in proper CR detection and the generation of appropriate similarity scores. Furthermore, double-

clicking the CR‘s metadata entry in the Result View ListBox resulted in runtime composition 

according to the Web-browser model described in [341] (i.e. the CR‘s URI is rendered in the Browse 

View using an embedded Web browser). An overview of the basic LinkFlow application scenario is 

shown in Figure 80. 
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Figure 80: Overview of the basic LinkFlow application scenario 

As described at the beginning of this chapter, LinkFlow is designed to closely mirror the Ocean 

application model as a means of clarifying Ocean concepts; however, other Ocean application types 

may use more sophisticated application logic to address specific problem domains. For example, 

Ocean applications may react in domain-specific ways to well-known NCD types while using Ocean 

to interpret unknown NCD types. As another example, Ocean applications may model Discovery 

Results themselves as NCD; using these data to form new Discovery Requests (e.g. using discovered 

image from Ocean data as NCD). Ocean Developers may also extend prepackaged control flows that 

may not mirror the Ocean application model directly. Briefly, Richardson and Ruby [266] describe 

control flow as ―a set of instructions about what to do when you get certain kinds of requests‖ and 

identify two example types, including database-backed (where applications adapt based on 

information or state contained within a database) and the Atom publishing protocol [224] (which 

defines a set of Resources that capture the process of publishing feed data using the Atom XML 

format [328]). While we do not speculate on the types of applications that might be constructed using 

such techniques, we suggest that many control flow scenarios may be amenable for the integration of 

contextually relevant computation. Notably, as discussed in section 5.2.1, we view the 

contextualization of client-centric mashups styles (e.g. Aggregation, Personalization and Real-time 

Monitoring) as the foundation for new classes of context-aware Web applications capable of 

spontaneous cross-domain component discovery and interoperation. 

8.6 Importing Crawled CR Data and Acquired Context-Sources 

Using the basic scenario described in the previous section, we next validated the LinkFlow application 

using the crawled CR data and real-world context-sources described in section 8.4. First, the CR 

crawling results were imported into the embedded Ocean RI and rendered using the Ocean Studio 

scenario designer. During testing, it was discovered that the Yahoo Map component performs well for 

visualizing small CR datasets (i.e. less than 100); however, rendering larger CR datasets resulted in 

poor visualization quality (due to overcrowding) and map unresponsiveness (due to performance 
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limitations of the Yahoo Map component and API). To compensate for these limitations, three 

strategies were employed. First, unlike manually created CRs, which are rendered with 

Discoverability Contexts, crawled CR data are visualized using only red flags, which are placed on 

the map component according to their geo-coordinates (if available). Second, Ocean Studio is 

configured to utilize a localized subset of the CR crawl data (see section 8.4). Third, the scenario 

designer only renders CRs located within a customizable distance of the active emulator. 

Next, Ocean Studio‘s import tool was used to import the 7,943 beacons from the PlaceLab dataset 

presented in section 8.4. In order to minimize visual overcrowding and maintain map responsiveness, 

imported beacon data are not rendered within the scenario designer; however, the context 

provisioning framework continually provisions imported context information to the active emulator, 

which appears as NCD within the LinkView Discover View. To further improve Ocean Studio 

performance, only beacons located within a theoretically detectable range of the active emulator are 

considered during context provisioning. An overview of Ocean Studio rendering crawled CRs and 

provisioning PlaceLab beacon data is shown in Figure 81. 

 

Figure 81: Ocean Studio rendering crawled CRs and provisioning PlaceLab beacon data 

A Sony VAIO VGN-FZ21Z laptop with 2GB of RAM and a 2.2GHz Centrino Duo processor was 

used to run both the Ocean Studio application and embedded Ocean RI during LinkFlow validation. 

Although Ocean Studio is not performance optimized, it proved capable of consistently provisioning 

PlaceLab context information to the active emulator in less than 500ms. Similarly, although the 

embedded Ocean RI prototype relies on naïve query processing, it proved capable of processing 

Discovery Requests within 1000ms to 3000ms (depending on the amount of NCD provided as query 

terms). Although not discussed further, we note that many real-world applications must be designed to 

accommodate additional query handling delays (e.g. due to variations in network conditions). During 

the evaluations, each active emulator‘s local hardware devices were activated and deactivated to 

check the effect on context acquisition. As expected, when a given hardware device was turned off, 
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the active emulator stopped acquiring the associated NCD type. Moreover, switching between the 

Nokia N95 and Dell x50v emulators resulted in different sets of detected NCD, due to the differences 

in the device‘s capabilities (e.g. the N95 has inbuilt GPS hardware unlike the Dell x50v). 

During the initial evaluations of the advanced LinkFlow scenarios, the active emulator was 

positioned in multiple locations throughout the downtown Seattle area to validate context 

provisioning and modeling. The LinkFlow application acquired and modeled NCD appropriately as 

the emulator was moved within the scenario designer (i.e. reasonable NCD results appeared within the 

emulator‘s NCD list). As the emulator was moved, multiple Discovery Requests were performed 

using a variety of query constraints and modeled NCD as query terms. Discovery Results accurately 

matched the scenario configurations rendered within the scenario designer according to both 

qualitative and quantitative metrics. For example, moving the emulator physically closer to a given 

CR resulted in increasing similarity scores within LinkFlow‘s Results View. Moreover, logging 

output from the Ocean RI provided quantitative validation by outputting expanded similarity score 

metrics that corresponded to the visual results (according to the GeoPointHandler linear similarity 

model described in section 4.4.1).  

Query constrains were also evaluated. For example, selecting the WikipediaCrawler as a 

Contextualizer and changing the emulator‘s preferred language (resulting in a change in modeled 

NCD) correctly constrained Discovery Results to Wikipedia CR data in the specified language (e.g. 

German or English). Similarly, alterations to the Data Type query constraint resulted in appropriate 

changes to subsequent discovery results. For example, changing the Data Type constraint to ―Image‖ 

isolated results from Flickr, whereas changing the Data Type constraint to ―Feed‖ isolated CR data 

from Twitter (note that in realistic Ocean scenarios real-world data types would be used – e.g. MIME 

types as per [327]).  

Discovery Results accurately rendered within the LinkFlow Results View, allowing users to survey 

contextually relevant CR metadata (i.e. similarity score, personalization score and title). Selection of 

CR metadata from the Results View (by double-clicking) resulted in the proper rendering of the 

Descriptive Metadata‘s associated URI within LinkView‘s Results View using the embedded Web 

browser previously described. As the aforementioned context-aware crawlers extracted 

Contextualized Resource data from Flickr, Twitter and Wikipedia, rendered CR URIs reflected real-

world user-generated content. Moreover, as the crawlers formulated mobile content URIs for each 

CR, rendered content appeared well-proportioned within LinkView‘s resource constrained browser. 

As an example, a discovered Contextualized Resource from Flickr
61

 is shown rendered within the 

active emulator in Figure 82. 
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 Photo credit: http://m.flickr.com/photos/a_ninjamonkey/3306601531 (published under the 

Attribution-Noncommercial-No Derivative Works 2.0 Generic license). 
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Figure 82: A discovered Contextualized Resource rendered within the active emulator 

8.7 Validating Community-enhanced LinkView Query Processing 

In the basic LinkFlow scenario described in section 8.5, switching from the Nokia N95 emulator to 

the Dell x50v emulator prevented CR discoveries due to context mismatch arising from the lack of 

GPS hardware within the Dell emulator. As discussed in section 7.2, context mismatch refers to the 

situation where an Ocean Discovery Request‘s query terms do not sufficiently match the Context 

Metadata used to create persisted CRs. In such cases, query effectiveness is diminished and 

contextually-relevant Resources may remain invisible to Ocean application. As per the Ocean 

discovery approach described in section 6.4, persisted CRs from the crawler framework require 

similar geo-positioning NCDs for discovery. To help improve query results for the Dell emulator, we 

activated the context-aware query expansion mechanisms built into the embedded Ocean RI.  

As described in section 7.2.4, the Ocean Registry provides an Association Discovery Framework 

(ADF) that forms the foundation for Ocean‘s context-aware query expansion techniques. Briefly, as 

communities of autonomous Ocean applications make Discovery Requests using the Ocean Registry‘s 

Resource Discovery API, the ADF automatically models and maintains a continually evolving data 

model of ContextAssociation objects, which are used to automatically expand incoming Discovery 

Requests with supplemental search terms (see section 7.2.5). In order to improve the quality of 

supplemental search terms, the Ocean ADF exploits the domain knowledge encapsulated within 

implementations of the AssociationDiscoverer interface provided by Context Experts for a given 

Context Handler (see section 7.2.4). 

To validate context-aware query expansion approach using Ocean Studio, we developed a PlaceLab 

agent system capable of parsing the NetStumbler data contained within the PlaceLab beacon dataset 

and making standard Ocean Discovery Requests using the beacon data as query terms (simulating a 

large number of real-world Ocean requests). The agent‘s Discovery Requests were formulated such 
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that context sharing was enabled; allowing the Ocean RI to anonymize and pass the query NCD to the 

ADF for processing. As PlaceLab agents make Discovery Requests, the ADF automatically extracts, 

models and persists ContextAssociation data using the process described in section 7.2. In our 

evaluation scenario, PlaceLab agent requests consisted of both transceiver information and geo-

location information; hence, the resultant ContextAssociation data were created using an 

RFPositionHandler as the parent and the GeoPointHandler as the child (using an arbitrary initial 

confidence of 0.5). Additional ContextAssociation sightings (e.g. the same 802.11 access point 

sighted by another agent) were merged with the existing ContextAssociation using a simple step-

wise confidence function that increased confidence to a maximum of 0.8. While 

ContextAssociation creation and merging functionality were implemented in both versions of the 

Ocean RI, advanced functionality such as ContextAssociation ageing and pruning were left for 

future work. 

Context-aware query expansion was validated as follows: First, we used the agent system to process 

all 7,943 beacons contained within the PlaceLab dataset described in section 8.4. To help improve 

map rendering performance, agent requests were constrained to within 500 meters of the active 

emulator. Next, the Dell emulator was selected and positioned within the downtown Seattle area. 

Importantly, while the Dell emulator does not have inbuilt GPS hardware, it is capable of acquiring 

and modeling nearby 802.11 and Bluetooth transceivers using local hardware and appropriate Aladin 

plug-ins. Initially we validated that the Dell emulator was incapable of discovering persisted CR data 

using its locally modeled NCD by performing several Discovery Requests with ―Expand Query‖ set 

to ―False‖ in the emulator‘s query preferences. As expected, no CRs were discovered. Next, we set 

―Expand query‖ to ―True‖ and performed several additional Discovery Requests. As expected, in 

locations where the PlaceLab agents had previously shared context information, the Dell emulator 

was capable of discovering previously invisible CRs persisted using GeoPointHandlers. Notably, 

expanded discovery results accurately matched the scenario configurations displayed within the 

scenario designer according to both qualitative and quantitative metrics. For example, moving the 

emulator physically closer to a given CR resulted in increasing similarity scores within LinkView‘s 

Results View (according to the nearby ContextAssociations). Logging output from the embedded 

Ocean RI provided quantitative validation of the visual results by presenting corresponding expanded 

similarity score values.  

An overview of the expanded Resource Discovery results obtained by the Dell emulator is shown in 

Figure 83. In this figure, ContextAssociation data modeled by the ADF (in response to previous 

PlaceLab agent requests) are shown as semi-transparent circles, whose radius values correspond to the 

theoretical maximum range of the parent RFPositionHandler (according to transceiver type). 

Second, as described in section 7.2.5, supplemental query terms added to the Dell‘s Discovery 

Requests are weighted using associated ContextAssociations confidence values when performing 

similarity calculations. Accordingly, the similarity scores presented in the Results View are lower 

than those discovered by the Nokia emulator with inbuilt GPS hardware. Finally, while the embedded 

Ocean RI does not provide an implementation of the Resource personalization approach described in 

section 7.3, the Results View indicates how personalized query results could appear (using preference 

values in the unit interval ( 0 ≤ 𝑥 ≤ 1 ). In this hypothetical example, the emulator‘s user is 
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predicted to have higher affinity for Resources from Wikipedia, which can be used by the LinkFlow 

application logic (or the user) to help improve Resource selection. 

 

Figure 83: Resource discovery results obtained using context-aware query expansion 

As a means of further validating the Ocean ADF, we implemented an additional Context Metadata 

type called the QRCodeHandler, which is capable of parsing the Quick Response two-dimensional bar 

code format (QR Code) developed by Denso-Wave Corporation
62

. Notably, the QR Code format 

supports comparatively large capacity data storage (e.g. 7,089 numerals, 4,296 alphanumeric 

characters or 2,953 bytes) and provides Reed–Solomon error correction for use in decoding low-

quality or partial barcode images. Moreover, the QR Code format is supported by a broad range of 

mobile devices (e.g. the Open Source QR Code Library
63

 supports most Java-based mobile devices). 

Within the embedded Ocean RI, QR Code handling is encapsulated within a QRCodeHandler, which 

utilizes the ThoughtWorks QRCode library
64

 for low-level image processing and data extraction. In 

addition, Ocean Studio‘s Resource contextualizer tool provides form-based support for creating 

Contextualized Resources based on imported QR Code image data. Importantly, the QRCodeHandler 

implements the AssociationDiscoverer interface (see section 7.2.4), which allows the Ocean ADF 

to automatically discover, persist and manage ContextAssociations based on Discovery Requests 

containing both a QR Code data and geo-position data. 

To evaluate the QRCodeHandler, we used Ocean Studio to design a scenario whereby a Wikipedia 

article about the University of Luebeck was contextualized using a single GeoPointHandler. Next, 

we selected the Nokia N95 as the active emulator and positioned it within the Discoverability Context 

of the previously created CR. The Nokia emulator‘s integrated camera was then used to obtain a QR 
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Code image from the device‘s environment (e.g. image data from a stationary sign). The Nokia 

emulator‘s context framework properly acquired and modeled local NCD, which included the QR 

Code image as a raw bitmap and geo-position data in the NMEA format. Next, context sharing was 

activated and a single Ocean Discovery Request was performed using the locally acquired NCD as 

query terms. As context sharing was enabled, the embedded Ocean RI performed association 

discovery after query processing was completed. In this case, the ADF modeled and persisted a single 

ContextAssociation, which included the Discovery Request‘s QRCodeHandler as the parent Context 

Metadata entity and its colleague GeoPositionHandler as the child Context Metadata entity.  

Once the Discovery Request was completed for the Nokia emulator, the Dell emulator was then 

selected (its position was maintained within the Discoverability Context of the manually created CR 

previously introduced). Since the Dell emulator lacks inbuilt GPS hardware, its NCD list did not 

contain geo-positioning data. As expected, Discovery Requests performed by the Dell emulator failed 

to discover the manually created CR due to context mismatch. Next, the Dell emulator‘s attached 

camera was used to obtain the same QR Code image previously encountered by the Nokia emulator. 

The Dell emulator‘s context framework properly acquired and modeled the QR Code image, which 

appeared within its NCD list as a raw bitmap. Next, query expansion was enabled using the Dell 

emulator‘s Ocean preference settings and a single Discovery Request was performed using the 

embedded Ocean RI. Using the Association discovery approach described in section 7.2.5, the 

embedded Ocean RI‘s ADF automatically discovered the ContextAssociation previously created 

from the Nokia emulator‘s request. In this case, the QR Code bitmap within the Dell emulator‘s NCD 

list was used to match the QRCodeHandler parent of the previously persisted ContextAssociation. 

Next, the discovered ContextAssociation’s child Context Metadata entity (i.e. the 

GeoPositionHandler provided by the Nokia emulator) was added to the Dell‘s query as a 

Supplemental Metadata query term. As described in section 7.2.5, supplemental query terms are 

weighted using the ContextAssociation’s confidence value when performing similarity 

calculations. Accordingly, the Dell emulator was capable of discovering the previously invisible CR; 

however, the similarity value within the Discovery Results was lower than the value discovered by the 

Nokia emulator with inbuilt GPS hardware. 

8.8 Chapter Summary 

This chapter presented an example scenario as a means of clarifying core Ocean concepts and 

validating the Ocean approach using significant quantities of real-world data. It began by describing 

the experimental setup, which included the development of an Ocean application development 

environment, called Ocean Studio. Ocean Studio provides an integrated suite of development and 

evaluation tools, including a scenario designer with an integrated context provisioning framework; an 

emulator framework with two implemented emulator devices; a Resource contextualizer tool; and an 

embedded version of the Ocean RI designed for rapid prototyping. The next section introduced the 

example application scenario, called LinkView, which extends conventional context-aware Web 

browsing with core features of the Ocean approach. The next section described the LinkView data 

acquisition methodology and presented two related tools, including Ocean Studio support for 

PlaceLab beacon importing and a context-aware crawler framework, which included three example 

crawlers. The crawling framework was used to extract over 68,000 Contextualized Resources from 
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popular Web-based data sources, including the Flickr photo sharing Website; the Twitter micro-

blogging platform; and the community-based Wikipedia encyclopedia project. 

Next, the LinkFlow application was evaluated using several approaches. First, the basic LinkFlow 

scenario was validated by manually creating Contextualized Resources within Ocean Studio and 

testing the LinkFlow application model using emulator framework and scenario designer. Next, the 

crawled CR data and acquired PlaceLab context-sources were imported into OceanStudio. As 

expected, the addition of significant real-world data led to Resource Discovery challenges in the form 

of context mismatch and information overload. Next, Ocean Studio‘s PlaceLab agent system was 

presented as a mechanism for simulating the behavior of large Ocean application communities. Using 

the agent system, PlaceLab beacon data were used to perform large numbers of Ocean Discovery 

Requests (with context sharing enabled); allowing Ocean‘s Association Discovery Framework to 

automatically model ContextAssociation data for use in context-aware query expansion. Finally, 

Ocean‘s community-enhanced query approaches were validated by performing a series of Discovery 

Requests using a resource constrained emulator. Notably, the resource constrained emulator was 

capable of effectively overcoming context mismatch and information overload by leveraging Ocean‘s 

context-aware expansion and Resource personalization techniques. 
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Chapter 9 

Conclusion 

9.1 Summary of Contributions 

This chapter concludes the dissertation by presenting a summary of contributions and a discussion of 

directions for future research. As discussed in Chapter 1, the central thesis of this dissertation is that 

traditional context-aware computing approaches are ill-suited for building truly ubiquitous, large-scale 

networked systems and generally fail to promote significant developer adoption and end-user 

participation. As a result, the considerable wealth of intriguing and innovating context-aware 

computing techniques remain consigned to small-scale deployments and research prototypes; existing 

as isolated islands of niche functionality that are far removed from everyday use [79, 288]. Given the 

rapidly increasing capabilities and sophistication of many everyday environments, the lack of large-

scale context-aware computing systems was introduced as the key motivation for this research. The 

following paragraphs provide a summary of key contributions in this regard. 

Chapter 2 included a survey of background material and a presentation of related work. Related 

work was presented using a layered conceptual framework that addressed context acquisition; context 

modeling and representation; context management and provisioning; and context-aware component 

interoperation. Based on a representative sampling of state-of-the-art approaches, it was observed that 

current context-aware systems are typically created with the assumption that the underlying network 

infrastructure, hardware devices, application components and context mechanisms are well-known a-

priori and contained within a limited and controlled administrative domain. Hence, many approaches 

mandate expensive and invasive deployment of context instrumentation; require domain-specific 

network configurations; rely on specially outfitted mobile devices; adopt enterprise-specific 

distributed middleware; and generally lack support for spontaneous cross-domain component 

interoperation. Further, the considerable expense and effort required to devise, implement and deploy 

such systems often promotes a top down development approach intended to address niche problem 

domains where the requisite support infrastructure can be readily provided, administrative access is 

available and return on investment is assured. Indeed, several recent surveys [22, 62, 106] indicate 

that existing systems generally fail to provide ubiquitous accessibility; resulting in a pronounced lack 

of developer adoption and end-user participation. 

 Based on the above observations, Chapter 3 began by identifying several key challenges that have 

prevented the emergence of large-scale context-aware systems. These challenges included the 

deployment of ubiquitous context infrastructure; the widespread availability of suitable data 

communication networks; the scalability of underlying middleware; and techniques for spontaneous 

cross-domain component interoperation. Related, this section also identified several ―foundations‖ for 

addressing each of the aforementioned challenges. These foundations included (respectively) Aladin-

based context acquisition and modeling; public Internet infrastructure; conventional Web architecture; 

and RESTful component interoperation. Based on these foundations, Chapter 3 derived our novel 

context-aware computing approach, called Ocean, which aims to capture the entrepreneurial spirit of 

modern Web architecture as a means of supporting large-scale context-aware systems. The derivation 
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of the Ocean approach was based on the application of the aforementioned foundations as a 

coordinated set of design constraints that are intended to restrict the Ocean application model and 

resultant infrastructure. Related, Ocean‘s principle stakeholders were also described, including Ocean 

Developers, Context Experts, Contextualizers and Application Developers. Finally, the Ocean 

Reference Implementation (Ocean RI) was introduced as a means of validating the Ocean approach in 

terms of the design principles and approach constraints described in sections 3.4.1 and 3.4.2 

respectively.  

To overcome the Web‘s inherent context-mediation limitations, Chapter 4 presented Ocean‘s 

foundational architectural abstraction, called the Contextualized Resource (CR). Briefly, the CR 

abstraction extends the conventional Web Resource model with supplemental General and Context 

Metadata intended to constrain the Discoverability Context of an associated Web Resource. Recall 

from Definition 1 that a Discoverability Context is defined as the set of contextual criteria that must 

be fulfilled before a Resource is considered relevant to the interaction between a user and an Ocean 

application, including the user and application themselves. A secondary contribution from Chapter 4 

included the definition of the Context Metadata abstraction, which provides a domain-neutral 

interface whereby the syntax and semantics of a given context domain can be encapsulated by Context 

Experts (concrete implementations of the ContextMetadata interface are termed Context Handlers). 

To clarify the CR model, a detailed interface description was provided along with a survey of relevant 

similarity modeling techniques. The chapter concluded with the presentation of a CR example that 

included two ContextHandler implementations.  

Building on the CR abstraction, the primary contribution from Chapter 5 included the definition of 

key approaches for supporting large-scale context-aware computing using Ocean. First, the basic 

Ocean philosophy was defined as a simple, accessible and scalable mechanism for mobile 

applications to discover, select and compose contextually-relevant Web Resources in-situ at runtime. 

Based on this philosophy, Ocean‘s Web-centric application model was defined as an extension of the 

client-centric mashup style (which aligns well with Ocean‘s approach constraints defined in Chapter 

3). In order to adapt the Ocean application model to the requirements of conventional Web 

architecture, a complimentary Contextualized Resource Registry (Ocean Registry) was presented as a 

means of facilitating wide-area Resource contextualization and discovery. Next, two related 

community-based contribution models were presented. First, a preliminary Context Handler 

contribution approach was proposed as a means of facilitating the extension of the Ocean Registry by 

external Context Experts (based on an adaptation of the Java Community Process). Second, an open 

Contextualization API was proposed as a mechanism for promoting large-scale Resource 

contextualization (allowing any Contextualizer to contextualize any Resource with any combination 

of Ocean Metadata). 

Chapter 6 contributed techniques for persisting, indexing and discovering CRs from within the 

Ocean Registry. As CRs represent complex data structures that cannot be effectively indexed or 

queried using classical database techniques, related work regarding similarity search mechanisms was 

first presented. Using the related work as a foundation, the Ocean Registry‘s Persistence Framework 

was derived. Briefly, the Persistence Framework allows CRs to be efficiently stored and indexed for 

rapid retrieval according to domain-specific indexing and data modeling techniques. Notable 
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contributions in this regard included the IndexManager interface and its related software architecture. 

Another contribution from Chapter 6 included the development of the Ocean Discovery Framework, 

whereby contextually-relevant CRs can be retrieved from the Ocean Registry‘s Persistence 

Framework and returned to requesting applications. Related, the Ocean Registry‘s Discovery API and 

Discovery protocol were defined as a means of allowing applications to discover contextually-

relevant Resources using native context data (NCD) as query terms. The Discovery Framework is 

based on a Query Object abstraction and complimentary multi-feature similarity search (MFSS) 

model. Importantly, Ocean MFSS operates in conjunction with the Persistence Framework and 

Context Metadata interfaces previously described; allowing NCD to be translated into appropriate 

Context Handlers and compared to persisted CRs within the Ocean Registry. 

The primary contributions from Chapter 7 included two community-based computational models 

designed to address the significant challenges arising from Ocean‘s Web-scale focus. First, the 

challenge of context mismatch was introduced, whereby an Ocean application may not be capable of 

generating the requisite native context data necessary to discover contextually-relevant Resources in a 

given environment; reducing query effectiveness. To address this challenge, a context-aware query 

expansion technique was developed. Briefly, context-aware query expansion supplements incoming 

Discovery Requests with additional, contextually-relevant query terms, which have been extracted 

and modeled from previous Discovery Requests made by diverse Ocean applications. Related, 

Ocean‘s Association Discovery Framework (ADF) was defined as the entity responsible for 

automatically extracting domain-specific ContextAssociation data from incoming Discovery 

Requests (using an extension of the Context Metadata interface previously described). Next the 

challenge of information overload was introduced, whereby Discovery Results that include a large 

number of similarly scored Resources may become difficult to differentiate based on the Descriptive 

Metadata alone; resulting in ineffective Resource selection. To address this challenge, Ocean‘s 

Resource personalization approach was described. Briefly, Resource personalization estimates a 

user‘s affinity for discovered contextually-relevant Resources based on the captured preferences of 

the Ocean User community. Related Ocean‘s Recommendation Engine and preference modeling 

techniques were described in detail. Finally, the Recommendation Engine was validated using an 

implementation of the Slope One recommender algorithm. 

Finally, the primary contribution from Chapter 8 was the presentation an example Ocean 

application scenario as a means of clarifying core Ocean concepts and validating the overall Ocean 

approach. Notably, the example scenario utilized real-world context-sources, large-scale CR datasets 

and more realistic models of Ocean community behavior. The chapter began with a description of the 

experimental setup, which included the development of an Ocean application development 

environment, called Ocean Studio, and an embedded Ocean reference implementation (RI) designed 

for rapid prototyping. Next, the example application scenario, called LinkFlow, was introduced as the 

conceptual foundation for the remainder of the chapter. Next, LinkFlow‘s data acquisition 

methodology and related toolset were described. First, Ocean Studio was enhanced with the ability to 

import beacon capture datasets from the PlaceLab project. Next, a context-aware Crawler framework 

was developed to extract large numbers of CRs from popular Web applications such as Flickr, Twitter 

and Wikipedia. The LinkFlow scenario was then validated within the Ocean Studio development 
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environment using both basic and enhanced scenarios. Notably, the advanced scenarios included an 

integration of the previously acquired native context sources and crawled CR data as a means of 

inducing context mismatch and information overload. Based on the community-based computational 

models introduced in Chapter 7, it was demonstrated how discovery query performance could be 

improved in real-world scenarios by applying Ocean‘s context-aware query expansion and Resource 

personalization techniques. Related, qualitative and quantitative query improvements were 

demonstrated using Ocean Studio‘s scenario designer and debugging output from the embedded 

Ocean RI. 

9.2 Directions for Future Research 

As described throughout this dissertation, Ocean represents a preliminary approach for enabling 

Web-scale context-aware computing. Notably, Ocean‘s conceptual foundations and practical 

infrastructure design co-opt existing context-sources, network infrastructure and distributed 

middleware. As such, Ocean‘s intentionally broad focus provides a variety of opportunities for future 

research. First, as described in section 5.3, the Ocean Registry requires a highly scalable software 

architecture to support Ocean‘s Web-scale focus. Although Ocean‘s application model addresses 

distributed component scalability and independent deployment through an extension of conventional 

Web architecture, Resource contextualization and discovery are currently reliant on the federated 

Ocean Registry architecture presented in section 5.3.1. During the presentation of this architecture 

(see section 6.3.2), we identified several promising technical foundations for developing large-scale 

version of the Ocean infrastructure. Examples of these foundations include the Hadoop Map Reduce 

implementation, HDFS, Amazon EC2 architecture, etc. However, aside from the two Ocean reference 

implementations created to validate core aspects of the Ocean approach, large-scale Ocean 

architecture designs have not yet been developed or validated. Towards this end, an exploration of 

high performance and alternative architectures (e.g. those based on peer-to-peer models) represents an 

important area for future investigations. 

Related to the Ocean Registry, effective Resource contextualization and discovery are contingent 

upon the contribution of a broad range of real-world Context Handlers. As discussed in section 4.3.3, 

the development of Context Handlers is often highly complex and domain-specific. Importantly, such 

complexity often necessitates participation by external Context Experts as a means of capturing the 

subtle semantics of a given context domain. Hence, the development and integration of a variety of 

real-world Context Handlers remains an important area of exploration in Ocean. Related, the JCP was 

identified as a suitable conceptual framework for the controlled contribution of Context Handlers 

within the Ocean Registry. Towards this end, a preliminary community-based Context Handler 

contribution approach was presented in section 5.5; however, this contribution model has not been 

fully implemented or evaluated in real-world scenarios. Hence, an important area of future work is the 

elaboration of the Context Handler contribution process and the development of related infrastructure. 

Importantly, developed contribution models must promote Context Expert participation while 

simultaneously shielding the Ocean Registry from poorly engineered Context Handler 

implementations. 
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As described in Chapter 6, Context Handler indexing, persistence and similarity modeling represent 

critical aspects of the Ocean Registry. In our current Ocean RI versions, object-based database 

techniques are used to accommodate CR persistence and indexing based on General Metadata; 

however, complex indexing based on Context Metadata is largely unexplored at present. As such, 

Ocean‘s Persistence and Discovery Frameworks represent important areas for future work. Regarding 

the Persistence Framework, notable focus areas include the development of real-world indexing 

techniques for Context Metadata; investigations into suitable data models; and an exploration of 

efficient means for processing large numbers of resource-intensive indexing tasks. Regarding the 

Discovery Framework, notable focus areas include the identification and extension of additional 

similarity search algorithms; further elaboration of the Context Metadata abstraction with regard to 

MFSS; validation using heterogeneous Context Handler implementations; and the development of 

query optimization techniques.  

As discussed in section 7.2, Ocean‘s context-aware query expansion approach is designed to 

improve Discovery Results using supplemental query terms modeled from incoming Discovery 

Requests provided by the Ocean application community. Ocean‘s Association Discovery Framework 

(ADF) was used to validate techniques for automatic ContextAssociation discovery using domain-

specific mechanisms provided by Context Experts. In both the server-based and embedded Ocean RIs, 

preliminary versions of the ADF included basic support for ContextAssociation extraction, 

persistence, merging and discovery; however, ADF functionality such as ContextAssociation 

pruning and complex merging have not been explored. Further, as the number of 

ContextAssociation objects increases within the Context Association Manager‘s data store, efficient 

ContextAssociation discovery becomes a concern for rapid query processing. In this regard, section 

7.2.4 suggested that ContextAssociation indexing could take advantage of the IndexManager 

interface previously described; however, this approach remains unexplored at present. Related, Ocean 

provides a Recommender Engine designed to support Resource personalization based on a variety of 

recommender algorithms. At present, Ocean‘s Recommender Engine has been validated using the 

SlopeOne algorithm (see section 7.3.3); however, investigations of other recommender algorithms are 

still needed (along with analyses of related performance characteristics and persistence requirements). 

Finally, the development of Ocean application scenarios represents a broad area of future research. 

As described, Ocean is designed to support the emergence of new classes of context-aware Web 

applications capable of in-situ, cross-domain component discovery and interoperation. As with any 

generalized computing approach, forecasting successful application domains is often a futile exercise 

from the perspective of the infrastructure. Indeed, the most innovative applications will likely be 

uncovered by intrepid developers who understand the possibilities of the generalized Ocean approach 

with regard to the subtle details of a specific problem domain. As previously discussed, the challenge 

of addressing such application domains is predicated on interrelated contributions from a wide variety 

of Context Experts, Contextualizers and Application Developers; however, we suggest that Ocean‘s 

community-centric design provides a first step towards Web-scale context-aware computing.  
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