

ISNM International School of New Media,

an affiliated institute of the University of Lübeck

Academic Director: Prof. Dr.-Ing. Andreas Schrader

Ocean: Towards Web-scale Context-aware Computing

A community-centric, wide-area approach for in-situ, context-mediated

component discovery and composition

DISSERTATION

For fulfillment of requirements for the Doctoral Degree of the University of Lübeck

from the Faculty of Technology and Natural Sciences

Submitted by

Darren Vaughn Carlson, M.Sc.

From Coon Rapids, Minnesota, United States of America

Lübeck, May 2009

ii

Erstberichterstatter: Prof. Dr.-Ing. Andreas Schrader

Zweitberichterstatter: Prof. Dr. rer. nat. Stefan Fischer

Vorsitz des Prüfungsausschusses: Prof. Dr.-Ing. Alfred Mertins

Tag der mündlichen Prüfung: 15.07.2009

iii

Author’s Declaration

I hereby declare that the work presented in this dissertation, except as acknowledged in the text and

references, is my own original work and that it has not been submitted for academic recognition or

credit at this or any other university.

Darren Vaughn Carlson

Luebeck, May 2009

iv

Abstract

Interrelated advances in data communication networks, distributed systems and mobile computing are

rapidly altering the domain of network-based software. Today computing systems are no longer

confined to conventional mainframe, enterprise and desktop scenarios. Rather, the emergence of

powerful mobile devices, embedded systems and wireless computer networks enable software to

operate across a broad range of non-traditional computing environments. Such advances are

recognized as important foundations for creating mobile distributed systems capable of dynamically

integrating environmental capabilities and accommodating changing user requirements. Towards this

end, context-awareness has emerged as an important design approach for mediating the integration of

algorithmic or structural components at runtime. However, while many everyday environments

present unprecedented opportunities for adaptive systems, current context-aware approaches remain

consigned to small-scale deployments and research prototypes; existing primarily within isolated

islands of niche functionality that are far removed from everyday use.

Over the last decade, the explosive rise of the Internet and World Wide Web (Web) has resulted in

a ubiquitous fabric of data communications and distributed computation. Importantly, modern Web

architecture addresses many of the middleware requirements of large-scale networked systems by

accommodating multiple trust domains, unanticipated load and independent component deployment.

Moreover, the Web‘s low entry-barrier and non-proprietary standards have made its communication

protocols, functional apparatus and device support ubiquitous. Further, the Web‘s underlying

architectural model proven remarkably capable of accommodating a variety of problem domains,

including sophisticated cross-domain component interoperation. However, despite the emergence of a

vast ocean of contextually-relevant Web content and services, conventional Web architecture has

proven difficult to exploit by existing context-aware systems.

This dissertation presents a hybrid computing approach, called Ocean, which aims to capture the

entrepreneurial spirit of modern Web architecture as a means of supporting large-scale context-aware

systems. Unlike existing approaches, Ocean addresses the key challenges facing real-world networked

software by emphasizing user participation and community-based computation. Ocean defines a

conceptual model for augmenting existing Web-based software components (Resources) with

expressive contextual metadata as a means of facilitating in-situ discovery and integration. Further,

Ocean defines a complimentary software architecture that provides simple, widely accessible and

scalable mechanisms for distributed applications to discover and compose contextually-relevant

Resources at runtime. Towards these ends, Ocean extends emerging community-centric computing

techniques such as collaborative annotation, open plug-in contribution, volunteer-based computing

and recommender systems. By leveraging community participation, Ocean aims to support the

emergence of a new class of hybrid Web applications capable of dynamic context-aware adaptation.

v

Zusammenfassung

Die Fortschritte in Datennetzen, verteilten Systemen und Mobilkommunikation führen zu rasanten

Veränderungen im Bereich Netzwerk-basierter Software. Heutige Rechenanlagen sind nicht länger

auf traditionelle Großrechner-, Server- oder Desktop-Systeme beschränkt. Durch die Entwicklung von

leistungsstarken Mobilgeräten, eingebetteten Systemen und drahtlosen Datennetzen kann Software

auf einer großen Bandbreite von nicht-konventionellen Rechnersystemen eingesetzt werden. Diese

Fortschritte sind die Grundlage für die Entwicklung von mobilen verteilten Systemen mit der

Möglichkeit der dynamischen Integration von Umgebungsressourcen und der Anpassung an sich

stetig ändernde Nutzeranforderungen. In diesem Zusammenhang hat sich Kontextsensitivität als ein

wichtiges Gestaltungskonzept für die Vermittlung der Integration algorithmischer oder struktureller

Komponenten zur Laufzeit entwickelt. Während jedoch viele alltägliche Umgebungen beispiellose

Möglichkeiten für adaptive Systeme bieten, bestehen heutige kontextsensitive Ansätze aus relativ

kleinen Installationen und Forschungsprototypen, die zumeist auf Insellösungen in

Nischenanwendungen fern der täglichen Nutzung beschränkt sind.

Innerhalb des letzten Jahrzehnts hat die explosionsartige Entwicklung des Internets und des World

Wide Web zu einer allgegenwärtigen Struktur von Datenkommunikation und verteilter

Rechenleistung geführt. Die moderne Web-Architektur adressiert bereits viele der Anforderungen an

hoch skalierte vernetzte Systeme durch die Anpassung an eine Vielzahl von gesicherten Bereichen,

nicht vorhersagbarem Lastverhalten und der Verwendung unabhängiger Komponenten. Darüber

hinaus haben der einfache Web-Zugang und die Verwendung nicht-proprietärer Standards zu einer

universellen Verbreitung der Kommunikationsprotokolle, Funktionsbausteine und Geräte-

Unterstützung geführt. Zudem hat sich das zugrundeliegende Architekturmodell des Webs als

bemerkenswert geeignet für die Anpassung an eine Reihe von Herausforderungen erwiesen;

insbesondere für die domänenübergreifenden Interaktion zwischen Komponenten. Trotz der

Entstehung einer immensen Vielzahl kontextuell relevanter Inhalte und Dienste, hat sich allerdings

herausgestellt, dass die konventionelle Webarchitektur nicht systematisch von existierenden

kontextsensitiven Systemen nutzbar ist.

In dieser Dissertation wird das Ocean Framework als ein hybrider Ansatz vorgestellt. Ziel ist die

Nutzung des Unternehmergeists im modernen Web zur Unterstützung von hoch skalierten

kontextsensitiven Systemen. Im Gegensatz zu existierenden Ansätzen, adressiert Ocean die zentralen

Herausforderungen von vernetzter Software in realen Umgebungen durch die betonte Einbeziehung

der Nutzer und gemeinschaftlich bereitgestellter Ressourcen. Das Ocean Framework definiert ein

konzeptionelles Modell für die Anreicherung existierender Web-basierter Softwarekomponenten mit

ausdrucksstarken kontextuellen Metadaten zur Ermittlung und Integration von Ressourcen im

jeweiligen Kontext. Zudem definiert Ocean eine ergänzende Softwarearchitektur, die einfache,

weithin erreichbare und skalierende Mechanismen für verteilte Anwendungen bereitstellt, um

während der Laufzeit kontextuell relevante Ressourcen zu entdecken oder zu erzeugen. Zu diesem

Zweck erweitert Ocean aufkommende Techniken zur Unterstützung von Nutzergemeinschaften, wie

gemeinschaftliche Kommentierungen, offene Schnittstellen für die Integration von

Zusatzprogrammen, freiwillig bereitgestellte Rechenressourcen und Empfehlungssysteme. Durch die

vorteilhafte Nutzung der Partizipation von Nutzergemeinschaften zielt Ocean auf die Unterstützung

der Entwicklung einer neuen Klasse von hybriden Web-Anwendungen, die sich durch die Fähigkeit

der dynamischen kontextsensitiven Adaption auszeichnet.

vi

Acknowledgements

This dissertation could not have been possible without the generous support of several people. First, I

would like to thank my primary advisor, Prof. Dr.-Ing. Andreas Schrader, for his encouragement,

tireless support and his uncanny ability to ask the difficult questions that improved this research

immeasurably. Next, I would like to thank my secondary advisor, Prof. Dr. rer. nat. Stefan Fischer, for

his gracious assistance during my candidature. I am also grateful to Hans-Christian Fricke for

assisting with the German translation of the abstract. Finally, I would like to thank my wonderful

family for supporting me along the way.

vii

In memory of my grandmother,

Marie Maude Montgomery.

viii

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Towards Ubiquity ... 5

1.3 Thesis Statement ... 7

1.4 Research Issues ... 7

1.5 Dissertation Structure .. 11

CHAPTER 2 ON CONTEXT-AWARE COMPUTING ... 15

2.1 Introduction .. 15

2.2 Background ... 15

2.2.1 Key Aspects of Distributed Computing ... 18

2.2.2 Service Oriented Computing and SOAP Web Services .. 23

2.2.3 The Influence of Mobility ... 25

2.3 Related Work in Context-aware Computing ... 29

2.3.1 Defining Context and Context-awareness ... 30

2.3.2 Context Acquisition ... 34

2.3.3 Context Modeling and Representation .. 36

2.3.4 Context Management and Provisioning .. 41

2.3.5 Context-aware Component Interoperation .. 44

2.4 Chapter Summary .. 49

CHAPTER 3 FOUNDATIONS OF THE OCEAN APPROACH ... 51

3.1 Introduction .. 51

3.2 Large-scale Context-aware Systems: Challenges and Foundations ... 52

3.2.1 Challenge: Ubiquitous Context Infrastructure ... 52

3.2.2 Foundation: Aladin-based Context Acquisition and Modeling ... 54

3.2.3 Challenge: Widespread Network Accessibility ... 55

3.2.4 Foundation: Public Internet Infrastructure... 56

3.2.5 Challenge: Ubiquitous Middleware ... 57

3.2.6 Foundation: Conventional Web Architecture .. 59

3.2.7 Challenge: Cross-domain Component Interoperation ... 62

3.2.8 Foundation: RESTful Component Interoperation ... 62

3.3 Approach Scope .. 66

3.4 Non-Functional Requirements... 67

3.4.1 Design Principles ... 67

3.4.2 Approach Constraints .. 67

3.5 Approach Derivation .. 68

ix

3.6 Principle Ocean Stakeholders .. 72

3.6.1 Ocean Core Developers ... 73

3.6.2 Context Domain Experts ... 73

3.6.3 Resource Contextualizers .. 74

3.6.4 Ocean Application Developers .. 74

3.6.5 Ocean Application End-users .. 75

3.7 The Ocean Reference Implementation.. 75

3.8 Chapter Summary .. 76

CHAPTER 4 THE CONTEXTUALIZED RESOURCE ... 77

4.1 Introduction .. 77

4.2 Background and Related Work ... 77

4.3 The Contextualized Resource Abstraction ... 84

4.3.1 Extending the Web‘s Resource Model .. 85

4.3.2 The Context Metadata Abstraction .. 87

4.3.3 Modeling Similarity .. 90

4.3.4 Validating the Context Metadata Interface .. 94

4.3.5 The Contextualized Resource XML Schema and Ocean RI Validation .. 96

4.4 A Contextualized Resource Example .. 98

4.4.1 The GEOPointHandler .. 98

4.4.2 The ISO8601DateTimeHandler ... 100

4.4.3 Bringing it All Together .. 103

4.5 Chapter Summary .. 105

CHAPTER 5 TOWARDS WEB-SCALE CONTEXT-AWARE COMPUTING 106

5.1 Introduction .. 106

5.2 The Ocean Application Model ... 106

5.2.1 Introduction to the Client-side Mashup Style .. 107

5.2.2 Contextualizing the Client-side Mashup Style .. 111

5.3 The Contextualized Resource Registry ... 114

5.3.1 Architecture Overview .. 114

5.3.2 The Resource Management API .. 116

5.3.3 Contextualized Resource Instantiation .. 118

5.4 Community-based Context Handler Contribution .. 120

5.4.1 Overview of the Java Community Process .. 120

5.4.2 Towards Community-based Context Handler Contribution .. 121

5.5 Community-based Contextualized Resource Contribution .. 124

5.5.1 Overview of Collaborative Annotation ... 124

5.5.2 Towards Collaborative Contextualized Resource Contribution .. 126

5.6 Chapter Summary .. 127

x

CHAPTER 6 CONTEXTUALIZED RESOURCE PERSISTENCE AND DISCOVERY 128

6.1 Introduction .. 128

6.2 Background and Related Work ... 128

6.3 Contextualized Resource Persistence .. 132

6.3.1 The Index Manager Abstraction .. 132

6.3.2 The Ocean Persistence Architecture .. 133

6.3.3 An Indexing and Persistence Example .. 135

6.4 Contextualized Resource Discovery .. 136

6.4.1 The Contextualized Resource Discovery API ... 137

6.4.2 Query Object Instantiation .. 142

6.4.3 Multi-Feature Search Optimization ... 144

6.4.4 The Ocean Multi-Feature Similarity Search Approach ... 145

6.5 Chapter Summary .. 148

CHAPTER 7 LEVERAGING THE OCEAN COMMUNITY .. 149

7.1 Introduction .. 149

7.2 Context-aware Query Expansion .. 149

7.2.1 Background and Related Work ... 150

7.2.2 The Emergence of Community-centric Context Modeling ... 152

7.2.3 Towards Volunteer-based Context Modeling in Ocean .. 155

7.2.4 Context Association Discovery and Modeling .. 157

7.2.5 Context-aware Query Expansion ... 162

7.3 Discovery Personalization .. 165

7.3.1 Background and Related Work ... 165

7.3.2 The Ocean Recommendation Engine .. 170

7.3.3 Approach Validation Using the Weighted Slope One Algorithm ... 173

7.4 Chapter Summary .. 179

CHAPTER 8 EXAMPLE SCENARIO ... 180

8.1 Introduction .. 180

8.2 Experimental Setup .. 180

8.3 Scenario Overview .. 184

8.4 Data Acquisition ... 185

8.5 Validating the Basic LinkFlow Scenario... 188

8.6 Importing Crawled CR Data and Acquired Context-Sources .. 191

8.7 Validating Community-enhanced LinkView Query Processing ... 194

8.8 Chapter Summary .. 197

CHAPTER 9 CONCLUSION .. 199

9.1 Summary of Contributions .. 199

9.2 Directions for Future Research ... 202

xi

List of Figures

Figure 1: An overview of MIT Locale (from [168]) ... 2

Figure 2: Classification of computer networks based on physical size (from [323]) .. 17

Figure 3: Overview of Remote Procedure Call (from [186]) .. 21

Figure 4: Overview of ORB-based distributed communications (from [186]) ... 22

Figure 5: Overview of two example message-oriented-middleware approaches (from [186]) 23

Figure 6: Overview of static (a) versus dynamic (b) recomposition (from [209]) .. 27

Figure 7: Layered conceptual framework for context-aware applications .. 30

Figure 8: Examples of (a) crisp and (b) fuzzy context quantization (from [185]) .. 35

Figure 9: A context representation based on the CSCP profile (from [142]) ... 38

Figure 10: An example of a logical context model based on Situational Theory (from [87]) 39

Figure 11: A graphical context model based on Object Role Modeling (from [146]) .. 40

Figure 12: Time series sensor data (left) and Kohonen Clustering of sensor readings (right) (from [294]) 41

Figure 13: Context management and provisioning categories (from [268]) ... 42

Figure 14: Overview of the EventHeap architecture (from [111]) ... 46

Figure 15: Gaia's (a) physical space versus (b) active space models (from [272]) .. 46

Figure 16: Dedicated context instrumentation: a) MediaCup and b) the Smart Floor .. 53

Figure 17: Overview of the Aladin Framework architecture .. 55

Figure 18: Overview of the REST architectural style (from [262]) .. 60

Figure 19: Implementing the procurement scenario using PCI principles (from [330]) 64

Figure 20: Re-implementing the procurement scenario using RESTful principles (from [330]) 65

Figure 21: Ocean's extension of the Aladin architecture .. 69

Figure 22: High-level overview of the Ocean approach ... 72

Figure 23: An example of Dublin Core metadata (from [83]) .. 81

Figure 24: The HyCon abstract data model (from [139]) ... 84

Figure 25: The Web‘s conventional Resource model ... 85

Figure 26: The Contextualized Resource model ... 86

Figure 27: The Context Metadata interface .. 89

Figure 28: Implemented Context Handlers, the IContextMetadata interface and the ContextHandlerBase class

within the Ocean RI ... 94

Figure 29: The Contextualized Resource XML schema ... 96

Figure 30: The ContextualizedResource and IContextMetadata classes from the Ocean RI................................ 97

Figure 31: Visualization of two GEOPointHandler similarity comparison functions .. 99

Figure 32: Example GEOPointHandler XML configuration .. 100

Figure 33: ISO8601 format examples (from [324]) .. 101

Figure 34: Example ISO8601DateTimeHandler XML configuration snippet .. 102

Figure 35: Diagram of the example Contextualized Resource ... 104

Figure 36: Example Contextualized Resource configuration XML ... 104

Figure 37: Key mashup technologies (from [128]) ... 109

Figure 38: Overview of the client-side mashup style (adapted from [243]) .. 109

Figure 39: Overview of the Ocean application model .. 112

Figure 40: Overview of the Ocean Registry ... 115

Figure 41: Overview of key Ocean Registry classes from the Ocean RI .. 116

Figure 42: Web Service handler classes within the Ocean RI .. 117

Figure 43: The Contextualized Resource instantiation process .. 119

xii

Figure 44: Timeline of the Java Community Process (from [166]) .. 120

Figure 45: Preliminary community-based Context Handler contribution process .. 122

Figure 46: Overview of the PluginManager and related classes from the Ocean RI .. 123

Figure 47: The IndexManager interface ... 132

Figure 48: Overview of the Ocean Metadata persistence architecture.. 133

Figure 49: Example iDistance Index Manager and related persistence model ... 135

Figure 50: The simplified Ocean application model ... 137

Figure 51: The Discovery Request XML schema ... 138

Figure 52: An example Discovery Request .. 139

Figure 53: The Discovery Response XML schema .. 140

Figure 54: An example Ocean Discovery Response ... 142

Figure 55: Overview of the Query Object instantiation process ... 143

Figure 56: The RequestFactory and related classes within the Ocean RI ... 143

Figure 57: Example search space reduction for a single Context Metadata index type 146

Figure 58: Overview of Ocean‘s multi-feature similarity search process ... 147

Figure 59: Example PlaceLab GSM trace collection for Seattle (from [66]) ... 153

Figure 60: A PlaceLab war-driving laptop outfitted with specialized radio equipment (including one WiFi card,

two GPS units, and three Sony Ericsson GM28 GSM modems) ... 155

Figure 61: The AssociationDiscoverer interface and ContextAssociation object ... 158

Figure 62: Association discovery support within the Ocean RI ... 159

Figure 63: Overview of the Association Discovery Framework .. 160

Figure 64: A sample Discovery Request with context sharing enabled .. 161

Figure 65: Overview of context-aware query expansion .. 163

Figure 66: An example Discovery Request with personalization credentials ... 171

Figure 67: Overview of the Ocean Recommendation Engine .. 171

Figure 68: The Resource rating XML schema .. 172

Figure 69: The Resource resolution XML schema ... 173

Figure 70: Integrating Slope One into the Ocean Recommender Engine ... 176

Figure 71: Example personalized Discovery Response .. 178

Figure 72: Integration of the Taste recommender within the Ocean RI.. 178

Figure 73: Overview of Ocean Studio .. 181

Figure 74: Example context sources and the active emulator rendered within the scenario designer 182

Figure 75: Native context data as modeled by the active emulator .. 183

Figure 76: Ocean preference settings as shown in the active emulator‘s user profile .. 184

Figure 77: Overview of the Contextualized Resource crawler framework interface .. 186

Figure 78: Example Contextualized Resource rendered within Ocean Studio‘s scenario designer 189

Figure 79: The Discover View showing locally modeled NCD and several search constraints 190

Figure 80: Overview of the basic LinkFlow application scenario .. 191

Figure 81: Ocean Studio rendering crawled CRs and provisioning PlaceLab beacon data 192

Figure 82: A discovered Contextualized Resource rendered within the active emulator 194

Figure 83: Resource discovery results obtained using context-aware query expansion 196

xiii

List of Tables

Table 1: Key context-aware computing challenges (based on [73]) ... 3

Table 2: The principle elements of software architecture (from [105]) .. 19

Table 3: Tight versus loose coupling (adapted from [186]) .. 27

Table 4: Typical properties of context information (from [146]) ... 33

Table 5: Examples from the Ontology for Mobile Device Sensor-Based Context Awareness 39

Table 6: Requirements for context-aware middleware (from [147]) .. 58

Table 7: Overview of the HTTP uniform interface (adapted from [262]) .. 61

Table 8: Overview of Context Handlers implemented within the Ocean RI .. 95

Table 9: The GEOPointHandler Context Metadata interface implementation ... 99

Table 10: The ISO8601DateTimeHandler Context Metadata interface implementation 101

Table 11: Example General Metadata .. 103

Table 12: Example Context Metadata configuration specifications ... 103

Table 13: Selected approximate nearest neighbor performance characteristics (from [160]) 130

Table 14: Overview of available Resource Discovery search parameters .. 139

Table 15: A simple rating profile and popularity differential calculation for Slope One 174

Table 16: Differential table calculations for Slope One ... 177

Table 17: Overview of notable Contextualized Resource crawling sessions .. 188

1

Chapter 1

Introduction

1.1 Motivation

Interrelated advances in data communication networks, distributed systems and mobile computing are

rapidly altering the domain of network-based software. Today computing systems are no longer

confined to conventional mainframe, desktop and enterprise scenarios. Rather, the emergence of

powerful mobile devices, embedded systems and wireless computer networks enable software

applications to operate across a broad range of non-traditional computing environments. These

advances are recognized as important foundations for devising mobile distributed systems capable of

dynamically accommodating changing environmental factors and user requirements [73, 290].

Towards this end, context-awareness has emerged as an important design approach for mediating the

integration of algorithmic or structural software components at runtime. Such capabilities are

increasingly recognized as important for ―dissolving the traditional boundaries for how, when, and

where humans and computers interact‖ [208] and allowing computing systems to ―weave themselves

into the fabric of everyday life until they are indistinguishable from it‖ [353]. However, despite

considerable interest and significant research effort, current context-aware systems remain consigned

to small-scale deployments and research prototypes; existing primarily within isolated islands of niche

functionality that are far removed from everyday use.

The ongoing development of isolated application scenarios remains an artifact of the ambitious

goals common to many context-aware computing projects. Indeed, many of the first explorations in

the field were developed before most of the enabling infrastructure was commercially available;

requiring that researchers create and deploy the sophisticated computer networks, communication

protocols and computing devices required for a given application scenario [345, 347]. A few early

examples of context-aware applications included employee locators [2], telephone call routing

systems [345] and techniques for seamlessly transferring running software applications to the nearest

compatible terminal [267]. Along with a range of similar efforts, these early context-aware

applications represented important explorations of computing systems that could autonomously

change their behavior and functioning based on who or what was around them. Importantly, while

many of these early projects existed as research prototypes, their intriguing results inspired a number

of important advances in network engineering, mobile computing and distributed systems [109].

Throughout the last decade, many of the technologies anticipated by early context-aware projects

have become commercial realities. Increasingly capable and inexpensive microprocessors, memory

systems and secondary storage products have given rise to a vast array of mobile computing devices

such as laptops, mobile phones and personal data assistants (PDAs). Further, accelerated by the

explosive growth of the Internet and World Wide Web (Web), high-speed data communication

networks are becoming increasingly ubiquitous throughout many everyday environments. In addition,

technical advances such as the Global Positioning System (GPS), two-dimensional bar-codes, radio

frequency identification (RFID) and a diverse range of sensor types allow commodity devices to

detect and model a variety of useful contextual information [49]. Together, these interrelated advances

Chapter 1

2

are providing researchers unprecedented opportunities for enhancing real-world mobile software with

widely available context-awareness features.

For example, the Massachusetts Institute of Technology (MIT) Locale project
1
 explores how

context information can be used to automatically change mobile phone settings based on user-

definable criteria such as location. Using Google‘s Android Mobile Platform
2
 as a foundation, Locale

allows users to define situations, which specify the conditions where a phone‘s settings should be

automatically changed. For example, a user may define geographic locations around her workplace

and a nearby movie theater where her mobile phone‘s ring mode will be automatically set to vibrate or

silent respectively. In other locations, Locale can be used to allow incoming calls from specific groups

of people; forwarding everyone else to voice-mail or another number. Locale users may also specify

that wireless networking should be deactivated and screen brightness should be reduced when a

mobile phone‘s battery power reaches 20% of capacity. Although many of these features have been

previously explored in research prototypes, Locale is uniquely designed for widespread deployment

on commodity hardware. An overview of MIT‘s Locale application is shown in Figure 1.

Figure 1: An overview of MIT Locale (from [168])

While applications such as Locale demonstrate the maturity of mobile computing and the viability

of existing context-sources, advanced context-aware systems remain elusive outside of research

laboratories and small-scale deployments [79]. Notably, advanced context-aware scenarios often

involve compositional adaptation, whereby algorithmic or structural components are discovered and

integrated into the application at runtime [208]. These types of adaptive approaches often combine

mobile computing with key aspects of distributed and component-based systems, including techniques

such as distributed object communications and late-binding. However, conventional distributed

computing techniques often assume a relatively static execution environment, which are typically

inappropriate for the rapidly changing environmental characteristic of mobile computing [62]. Unlike

traditional distributed computing scenarios, where the available networks and distributed components

are well-known a-priori, context-aware systems face a number of additional challenges that derive

from the complex interactions often present at the intersection of multiple computing domains. Table

1 provides an overview of the key challenges facing context-aware computing and identifies related

focus areas.

1
 http://www.androidlocale.com

2
 http://code.google.com/android/

2
 http://code.google.com/android/

1.1 Motivation

3

Challenge Focus area Motive

Heterogeneity Distributed systems Allowing a variety of services.

 Supporting different types of devices, networks,

systems, and environments.

Scalability Distributed systems Enabling large-scale deployments

 Increasing the number of resources and users

Dependability and

security

Mission-critical and

distributed systems

 Avoiding failures that are more frequent and more

severe than acceptable.

 Providing availability, confidentiality, reliability,

safety, integrity, and maintainability.

Privacy and trust Mobile computing Defining the trustworthiness of interacting

components.

Spontaneous component

interoperation

Mobile computing Allowing interaction with a set of components that

can change both identity and functionality.

 Permitting association and interaction.

Mobility Mobile computing Providing application and data access anywhere,

anytime.

 Enabling the user environment to go along with the

user.

Context acquisition and

modeling

Context-aware

computing

 Perceiving the user‘s state and surroundings.

 Inferring and representing context information.

Context management Context-aware

computing

 Provisioning context information and modifying

system behavior as a result.

Table 1: Key context-aware computing challenges (based on [73])

As discussed throughout Chapter 2, many of the challenges presented in Table 1 have been

addressed in isolation by related work from a variety of disciplines. For example, distributed

computing research has developed various techniques for distributing and coordinating processing

across multiple autonomous networked computers. In such systems, the heterogeneity concerns listed

above derive from the often diverse underlying hardware platforms, operating systems, runtime

software and communication protocols common to networked execution environments. Further, in

distributed scenarios, where networked components span multiple device types and may be provided

by different vendors, the dependability and security of components and interactions become

increasingly problematic [115]. Moreover, the broad scope of many distributed systems often requires

the development of techniques for overcoming scalability issues (e.g. caching strategies, protocol

Chapter 1

4

layering and functionality placement). However, as discussed in section 2.2.1, current distributed

systems research provides a broad range of codified approaches that address many of these concerns,

including the development of techniques such as remote communication, fault tolerance, high-

availability, remote information access and security [288].

Similarly, mobile computing research investigates software systems designed for portable operation

and wireless communications [109]. Notably, the portability of many modern devices implies

effective resolution of several fundamental issues such as power management, interface limitations

and resource constraints. Moreover, mobile networking places additional demands on issues such as

network address migration, disconnected operation and proximate resource management. In many

cases, mobile systems must also overcome network heterogeneity and significant security risks while

simultaneously imposing fewer demands on users whose attention may be limited. In this regard,

mobile environments often exacerbate the heterogeneity, scalability and dependability/security issues

common to conventional distributed computing [109]. However, as discussed in section 2.2.3, current

mobile computing research addresses many of these issues through wireless networking technologies;

techniques for mobile information access; support for adaptive applications; and system-level energy

saving mechanisms.

Finally, as discussed in section 2.3, issues related to context acquisition, modeling and management

are being addressed by ongoing efforts in context-aware computing. Context-aware computing refers

to a generalized approach for building software applications capable of examining and adapting to an

individual‘s (often changing) context and requirements [293]. Such systems can be understood as an

evolutionary synthesis of mobile and distributed computing, whereby additional aspects of adaptive

computing are often involved [208]. However, unlike conventional adaptive computing scenarios,

where participating applications and distributed components are well-known and relatively static over

time, context-aware scenarios are often characterized by rapidly changing execution environments,

where the available computational resources may fluctuate unpredictably as contextual factors change

(e.g. the user moves). For example, many encountered networked entities may offer some measure of

remotely accessible information or computation; revealing useful context information or offering

clients the ability to discover and utilize various functionalities [169, 314, 342]. Additional variations

include the ―processors available for a task, the devices accessible for user input and display, the

network capacity, connectivity, and costs may all change over time and place. In short, the hardware

configuration is continually changing. Similarly, the computer user may move from one location to

another, joining and leaving groups of people, and frequently interacting with computers while in

changing social situations‖ [290].

As context-aware computing often involves complex aspects of distributed, mobile and adaptive

computing, supportive middleware is well-recognized as an essential requirement for constructing

non-trivial systems [147]. Broadly, context-aware systems acquire and model contextual information

from the user‘s environment as a means of facilitating parameter or compositional adaptation within a

domain-specific application. Foundationally, most context-aware middleware provides support for

automated acquisition and modeling of context information from the user‘s physical environment as a

mechanism of informing adaptation [145]. Moreover, similar to middleware for conventional

distributed systems, middleware for context-aware systems often provide the necessary infrastructure

1.2 Towards Ubiquity

5

for coordinating communication between participating distributed components. As such, most

context-aware approaches extend existing distributed computing models such as those common to

enterprise scenarios. Examples of such models include Remote Procedure Call, Distributed Object

Communications and Message-Oriented-Middleware (see section 2.2.1).

As detailed in Chapter 2, a variety of approaches have been developed to address the requirements

of context-aware computing. While varying in overall scope, existing systems are typically designed

with the assumption that the underlying network infrastructure, participating hardware devices,

application constituents and context mechanisms are contained within a limited administrative domain

and are well-known a-priori [97]. As such, many mandate expensive and invasive deployment of

context instrumentation; require domain-specific network configuration; rely on specially outfitted

mobile devices; adopt domain-centric middleware; and lack support for spontaneous cross-domain

component interoperation (see section 3.2). Moreover, the considerable expense and effort required to

devise, implement and deploy such systems promotes a top down development style intended to

address niche problem domains where the requisite support infrastructure can be readily provided [62,

97]. While such approaches have been successful in small-scale deployments and research prototypes,

many are inappropriate for large-scale, real-world environments. Indeed, several recent surveys [22,

62, 106] indicate that existing systems generally fail to provide ubiquitous accessibility and often

incur intractable scaling costs that inhibit widespread reuse; resulting in a pronounced lack of

developer adoption and end-user participation. Hence, current context-aware systems exist within

isolated islands of niche functionality that are far removed from everyday use [79, 288].

1.2 Towards Ubiquity

While isolation is common in current context-aware systems, a variety of recent advancements are

providing the foundations for improved ubiquity. For example, as detailed in section 3.2.1, while the

deployment of dedicated context instrumentation is often infeasible for large-scale scenarios, many

everyday environments are becoming increasingly saturated with existing sources of useful contextual

information. Common examples include GPS signals, GSM cell tower identifiers, media access

control (MAC) addresses, RFID tags, barcodes, accelerometer data, light intensity, etc. Related,

modern mobile devices such as laptops, mobile phones and PDAs are increasingly capable of

detecting such ambient information through the use of inbuilt hardware. In this regard, commodity

devices are increasingly recognized as platforms for performing local context modeling and

coordinating the actions of complex distributed systems [268].

In our previous context-aware computing approach, called Aladin [49], we explored how

commodity devices can be used to acquire and model a diverse range of context information using

local hardware and dynamically installed software plug-ins. Based on a select set of architectural

abstractions, Aladin provides a client-centric foundation for developing context-aware systems

capable of wide-area operations (i.e. operating across multiple administrative domains). To validate

our approach, we developed three diverse application models based on the resultant Aladin

Framework, including a mobile interactive cinema platform [50], a museum tour-guide system [49],

and a pervasive multiplayer tangible game [148]. Additional related work indicates that such client-

centric approaches can be effectively adapted to large-scale, heterogeneous environments [139, 268].

Chapter 1

6

Given cross-domain context acquisition and modeling, large-scale context-aware systems

presuppose a foundation of network accessibility encompassing the intended operational area [73]. In

this regard, current Internet infrastructure represents an increasingly ubiquitous substrate of data

communications. The success of the Internet‘s architecture is often attributed to several key

internetworking techniques [341, 358]. First, the Internet is based on a single logical addressing

scheme that is universal adopted. Second, modularity is promoted through the five-layer TCP/IP

protocol suite (i.e. the hourglass model), which features ―a generic packet (datagram) delivery

mechanism as a separate layer at the hourglass' waist‖ [358]. Finally, Internet architecture promotes

scalability and extensibility by placing ―most ‗intelligence‘ (i.e., information about end-to-end

communication, control) squarely in the end points‖ [358]. As described in [223], these techniques

affirm that the Internet‘s ―goal is connectivity, the tool is the Internet Protocol, and the intelligence is

end to end rather than hidden in the network.‖ In terms of promoting large-scale networked systems,

the Internet‘s basic design philosophy has proven remarkably effective at supporting ―constant

innovation and entrepreneurial spirit at the physical substrate of the network as well as at the

application layer‖ [358].

Related, conventional Web architecture addresses many Internet-scale application requirements

through a distributed middleware model derived from a ―coordinated set of architectural constraints

that restricts the roles and features of architectural elements, and the allowed relationships among

those elements‖ [105]. As discussed in section 3.2.6, the Web‘s principle constraints include a

universal addressing scheme; connector layering; intermediary caching (via metadata and idempotent

methods); the uniform interface; and stateless component interactions [106]. Importantly, the Web‘s

architectural model supports key aspects of visibility, reliability, and scalability. As richly described

in [106], ―visibility is improved because a monitoring system does not have to look beyond a single

request datum in order to determine the full nature of the request. Reliability is improved because it

eases the task of recovering from partial failures [176]. Scalability is improved because not having to

store state between requests allows the server component to quickly free resources, and further

simplifies implementation because the server doesn‘t have to manage resource usage across requests.‖

Based on its underlying architectural model, the Web has inarguably achieved its original design

goal of providing ―a shared information space through which people and machines could

communicate‖ [33]. However, its popularity has also resulted in a number of ancillary effects that

have important implications for large-scale context-aware computing. First, the Web‘s design

addresses scalability beyond geographic dispersion by incorporating techniques to accommodate

multiple trust domains, unanticipated load and allow independent component deployment. Second, as

evidenced by the tremendous number of Web-based applications, the Web‘s application model has

proven remarkably capable of accommodating a variety of application domains. Third, the distributed

architecture designed to support the Web‘s application model is sufficiently flexible to support a

variety of non-hypermedia application scenarios [266]. Fourth, the Web‘s low entry barrier and non-

proprietary standards have made its communication protocols, functional apparatus and device

support ubiquitous. Fifth, the Web‘s increasing ubiquity has resulted in significant developer

adoption; promoting the emergence of a broad array of development toolkits, application frameworks

and related knowhow. Sixth, increasing developer adoption has resulted in an explosion of Web-based

1.3 Thesis Statement

7

information and computation. Seventh, the generality of the Web‘s underlying architecture, combined

with the rise of open data exchange formats (e.g. XML) is rapidly enabling machine-based processing

of Web-based computation. Finally, the proliferation of machine processable Web-based computation

is increasingly recognized as often having semantic associations to real-world contexts [179].

Based on the preceding observations, Internet infrastructure and Web architecture ostensibly

represent compelling foundations for the development of large-scale, real-world context-aware

systems; however, these technologies have proven difficult to exploit in traditional context-aware

scenarios [97]. As described in section 3.2, the current lack of Internet-scale systems highlights the

fundamental conflicts arising between the scope of current context-aware research and the

requirements of large-scale network architectures. For example, by emphasizing connectivity and the

end-to-end principle of system design [279], Internet infrastructure reveals very little of the contextual

semantics required by context-mediated adaptation strategies. In this regard, potential context

information – such as information regarding the underlying communications hardware, network

topologies and the physical location of components – is intentionally hidden from end-systems as a

means of providing ―the illusion of a single, seamlessly connected network where the fragmented

nature of the underlying infrastructure and the many layers of protocols remain largely transparent to

the user‖ [358]. Further, conventional Web architecture provides only limited forms of context-

mediated component discovery (based on its hypermedia application model) [113, 114, 357].

Problematically, in current Web architecture, context information such as location, proximate devices

and inferred activity cannot be effectively used to mediate component discovery, selection and

interoperation. This is unfortunate, since much of the information and computation on the Web is

increasingly recognized as having semantic relationships to real-world environments [37, 177, 182].

1.3 Thesis Statement

This dissertation contends that traditional context-aware computing approaches are ill-suited for

building truly ubiquitous networked systems and generally fail to promote significant developer

adoption and end-user participation. We posit that the increasingly rich sources of context information

contained within everyday environments provide a foundation for cross-domain context acquisition

and modeling. Further, we argue that the ubiquity of Internet infrastructure and Web architecture

represent compelling foundations for the development of new classes of context-aware Web

applications capable of in-situ, cross-domain component discovery and interoperation. We suggest

that extending existing infrastructure will enable developers to employ existing knowhow and tools to

create large-scale, context-aware systems without the need for prohibitive infrastructure. Finally, we

argue that increasing developer adoption will lead to significant end-user participation; allowing for

the application of community-based computation as a means of addressing the key challenges facing

large-scale network architectures.

1.4 Research Issues

Based on the motivating factors presented in section 1.1 and the trends introduced in section 1.2, we

aim to develop a context-aware computing approach that captures the entrepreneurial spirit of modern

Web architecture as a means of supporting large-scale context-aware systems. As detailed in section

4.3.1, distributed components in conventional Web architecture are represented by an architectural

Chapter 1

8

abstraction known as Resource. As described in [105], any information that is important enough to be

named can be modeled as a Resource (e.g. an image, newsfeed, software release, Web page, search

result, etc.) Based on the Resource abstraction, Web architecture has been designed primarily to

support the requirements of an Internet-scale distributed hypermedia application [105, 106, 341]. As

such, conventional Resources provide very little information regarding their potential associations to

real-world contexts. Rather, in the current Web model, the selection of components for runtime

composition is based on two limited forms of context-mediation: Resource-mediated and metadata-

mediated (see section 4.2). Briefly, in the Resource-mediated form, context information such as Web

page text and associated hyperlinks is delivered to users encoded within a Resource‘s Representation.

In the metadata-mediated form, machine-processable information such as HTTP headers and HTML

metadata tags are sent to Web agents alongside requested Representations. Together, these basic

context-mediation techniques allow the Web‘s hypermedia model to act as an ―engine of application

state‖ [105] where dynamic Resource composition is based on user-directed hyperlink navigation.

While Web-based context-mediation supports the requirements of hypermedia applications, its

transactional nature prevents the component pre-filtering required by compositionally adaptive

systems [29, 208]. Problematically, the Web‘s hypermedia model mandates that Resource

Representations are requested and consumed before context information can be extracted from them.

For example, in a prototypical Web page interaction, embedded hyperlinks are used to trigger

additional application states. Importantly, transitions to new application states precede the delivery of

additional context information (e.g. HTTP headers and Web page text); limiting available components

to those encoded within delivered Representations. In contrast, complex compositional applications

rely on the pre-filtering of potential application constituents before composition occurs [21, 29, 192,

231]. Although techniques have been developed to provide some measure of Web-centric component

pre-filtering [82, 192, 289], existing approaches lack support for expressive component descriptions

based on arbitrary context types; require significant context domain expertise on the part of

application developers; and often mandate computationally expensive translation of native context

data into low-fidelity intermediary formats. Hence, in order to provide a foundation for Web-centric

context-aware computing, extensible and expressive techniques for Resource contextualization are

required.

Large-scale context-aware systems presuppose distributed middleware that is ubiquitous, highly

scalable and supportive of a wide variety of problem domains [38, 323]. Importantly, real-world

distributed applications must be capable of operating across multiple administrative domains, and

―continue operating when subjected to an unanticipated load, or when given malformed or

maliciously constructed data, since they may be communicating with elements outside their

organizational control‖ [106]. In this regard, cross-domain operation implies that application

constituents may be developed, deployed and managed by multiple external organizations. Additional

considerations include the scalability of component interactions, generality of interfaces, independent

component deployment, and intermediary components to reduce interaction latency, enforce security,

and encapsulate legacy systems [105]. Finally, any widely-accessible context-aware application

model must be capable of accommodating a wide range of developer skill-levels. While conventional

Web architecture addresses these requirements, its application model does not inherently support the

1.4 Research Issues

9

rich contextual semantics required by context-aware applications. Hence, in order to support Web-

scale, real-world context-aware systems, ubiquitous middleware approaches must be developed to

support scalable component discovery and interoperation based on real-world context information.

Given a sufficiently ubiquitous middleware approach, cross-domain context-aware systems must be

able to discover and interoperate with relevant distributed components at runtime without extensive

prior knowledge [96, 180]. As described in section 2.2.1, traditional distributed component

architectures rely on process-centric descriptions of a component‘s end-point addresses, available

methods and associated data-types (using technologies such as Corba IDL or WSDL). However,

although modern development environments simplify the creation of remotely accessible methods, the

resultant proliferation of domain-specific interfaces can reduce the probability of component

interoperation [225, 334, 336]. Several recent surveys [21, 62, 97] indicate that the majority of current

context-aware systems adopt such process-centric interoperation (PCI) styles. PCI techniques such as

those epitomized by Corba and SOAP Web Services, make the coupling between callers and

components clear and unambiguous; however, in large-scale scenarios, interactions between

distributed components may suffer from architectural mismatch [115], where domain specific method

syntax, sequencing and semantics prevent widespread reuse due to a lack of widespread

understanding of a given interface [334]. While dynamic interactions between specialized interfaces

can be resolved in small-scale distributed systems (e.g. enterprise scenarios) they become problematic

in larger scenarios where component interfaces cannot be known a-priori [334]. Moreover, PCI

techniques rely on complex infrastructure, highly skilled developers, platform specific mobile code

and significant tooling, which are recognized as antithetical to widespread developer adoption [145].

Given an effective approach for spontaneous, cross-domain component interoperation, techniques

must be developed to support wide-area component contextualization and discovery. In this regard,

two approaches for service-discovery are commonly used. First, proximate interactions between

networked systems are commonly accomplished using service discovery protocols such as the Service

Location Protocol (SLP) [135], Zero Configuration Networking (Zeroconf) [314], Universal Plug and

Play (UPnP) [169] and JINI [342]. While differing in scope and approach, service discovery protocols

are generally designed to facilitate service advertising (e.g. publishing a service‘s capabilities and

interfaces via multicast) and service discovery, whereby appropriate components can be located and

selected based on desirable characteristics. However, as described in section 2.3.5, while some service

discovery protocols have achieved limited commercial adoption (notably Zeroconf and UPnP), most

are insufficient for supporting wide-area scenarios due to limitations in service density, network

accessibility (i.e. local-link constraints) and protocol interoperability.

In wide-area service integration scenarios, component registries are typically used to mediate

dynamic binding and interactions between the loosely-coupled elements of a distributed application

[29, 308]. Within component registries, associative metadata are used to describe important attributes

of distributed constituents such as addressing information, interface descriptions and supported data

types. Distributed applications discover potential application constituents by querying the component

registry using a search protocol. The registry uses incoming queries to perform a component lookup

using previously created metadata as a filtering mechanism. Although some component registries

have begun to address context-aware component discovery, a number of inherent problems have

Chapter 1

10

prevented their widespread adoption (see section 4.2). Briefly, most approaches adopt the previously

introduced PCI style, which is recognized as inhibiting cross-domain spontaneous component

discovery and interoperation [225, 334, 336]. Next, most context-enhanced registries define

intermediary metadata formats, which may not be known be all participants or capable of expressing

the fidelity of native context information. Next, most registry architectures provide a restricted set of

metadata types and do not provide for the contribution of new types by external domain-experts.

Finally, existing registry architectures do not provide the contribution mechanisms necessary for

creating and maintaining the vast amounts of semantic metadata required by context-aware Web-

based scenarios.

In wide-area component interoperation scenarios, context-aware applications may encounter

situations where constituent discovery result in sub-optimal results due to a lack of sufficient query

terms. Notably, if the metadata used to contextualize distributed components differs significantly from

the query terms provided by client applications, search effectiveness is diminished and contextually-

relevant components may remain invisible. In information retrieval (IR), a similar phenomenon,

known as word mismatch, has been studied with regard to text-based search. Word mismatch refers to

the situation where ―the users of IR systems use different words to describe the concepts in their

queries than the authors use to describe the same concepts in their documents‖ [374]. As described by

Furnas et al., people use the same words to describe a search object less than 20% of the time [113].

Section 7.2.2 describes a similar phenomenon, called context mismatch, which refers to the situation

where context-aware applications may not be capable of generating the context information necessary

to facilitate effective component discovery. Notably, in real-world scenarios, the context data modeled

from the user‘s environment may be highly heterogeneous, unsystematically organized and

unpredictably available. Furthermore, the context data available to a given application is often

inherently limited to the capabilities of the executing mobile device [49, 268]. In IR research, query

expansion techniques have been developed to help improve query results by augmenting

impoverished queries with supplemental search terms [51]; however, query expansion has not been

effectively applied context-aware component discovery.

Due to the rapidly increasing number of networked devices and components, information overload

represents another critical challenge for Web-scale context-aware applications. Similar to Web search

scenarios, where common query terms may result in an overwhelming number of search results [51,

205], component discovery may result in an overwhelming number of relevant results; making

effective selection more difficult. Importantly, information overload can become increasingly

problematic in information-saturated environments, such as popular tourist locations or dense urban

environments [51]. Recently, personalization techniques such as recommender systems have emerged

as a promising approach for reducing information overload in complex filtering and selection

scenarios [264]. The principle objective of a recommendation system is to help users select relevant

items from among a large set of similar items by generating suggestions or predicting the utility of a

specific item for a given user [339]. Recently, context information has been used within recommender

systems as a means of helping users filter and find useful information such as providing a list of

nearby restaurants according to a model of the user‘s preferences [207]. Preliminary results have

shown how context-aware systems can be used to enhance service discovery and provisioning in

1.5 Dissertation Structure

11

mobile scenarios [269]; however, recommender algorithms have proven difficult to exploit in context-

aware systems due to their comparatively low end-user participation [207].

Based on the research challenges presented above, this dissertation presents a hybrid context-aware

computing approach, called Ocean, which aims to capture the entrepreneurial spirit of modern Web

architecture as a means of supporting large-scale, real-world context-aware systems. Unlike existing

approaches, Ocean addresses the key challenges facing large-scale networked systems by

emphasizing user participation and community-based computation. Ocean defines a comprehensive

conceptual approach for augmenting existing Web-based software components (Resources) with

expressive contextual metadata as a means of facilitating in-situ discovery and integration. Related,

Ocean defines a complimentary software architecture that provides simple, accessible and scalable

mechanisms for distributed applications to discover, select and compose contextually-relevant

Resources at runtime. Towards these ends, Ocean extends several community-centric approaches such

as collaborative annotation, domain expertise contribution, volunteer-based context modeling and

recommender systems. By reappropriating existing context sources and leveraging community

participation, Ocean aims to support the emergence of new classes of hybrid context-aware Web

application capable of dynamic, cross-domain component discovery and interoperation.

1.5 Dissertation Structure

Based on the motivation presented in the preceding sections, Chapter 2 substantiates our approach by

presenting relevant background material and related. Section 2.2 begins with an overview of relevant

computing approaches and an introduction into data communication networks. Section 2.2.1 discusses

several key distributed computing approaches and section 2.2.2 describes the application of these

approaches in service oriented architectures and Internet-based Web service scenarios. Next, section

2.2.3 discusses how increasing device mobility has motivated the development of adaptive mobile

systems that often confound traditional distributed systems techniques. Based on this background,

section 2.3 begins a discussion of context-aware computing. We begin by introducing a conceptual

framework intended to guide the discussion of a representative notable state-of-the-art systems.

Section 2.3.1 explores key notions of context and discusses how context-awareness has become well-

recognized as an important mechanism for guiding software adaptation in complex computing

environments. Section 2.3.2 describes current approaches for context acquisition. Section 2.3.3

describes key methods of context modeling and representation. Section 2.3.4 describes major

techniques for context management and provisioning. Finally, section 2.3.5 describes approaches for

context-aware component interoperation.

Based on the background and related work presented in Chapter 2, the foundations of the Ocean

approach are presented in Chapter 3. The chapter begins with an introduction into the key challenges

facing large-scale context-aware systems in section 3.2. Importantly, this section also introduces

several related advances that have begun to address each challenge in isolation. As described in

section 3.2.1, client-centric context acquisition and modeling approaches have shown how context

information can be extracted from heterogeneous large-scale environments without the need for

prohibitive instrumentation or infrastructure. Next, as described in section 3.2.3, the tremendous

growth and popularity of the Internet has resulted in an increasingly ubiquitous substrate of data

Chapter 1

12

communications. Next, as described in section 3.2.5, modern Web architecture provides a ubiquitous,

Internet-scale middleware architecture whose communication protocols and functional apparatus are

broadly adopted. Finally, as described in section 3.2.7, the Web‘s underlying architectural style

(formalized as Representational State Transfer [105]) provides an promising approach for supporting

cross-domain component interoperation. Based on these advances, section 3.3 describes Ocean‘s

overall scope and section 3.4.1 introduces the design principles intended to guide the derivation of the

Ocean architecture. Section 3.4.2 describes the key architectural constraints intended to align Ocean

with conventional Web architecture. Next, section 3.5 derives the overall Ocean approach by

describing its principle architectural abstractions, application model, component contextualization and

discovery techniques, registry architecture and support for community-based computation. The

chapter concludes with a discussion of Ocean‘s principle stakeholders in section 3.6 and the Ocean

Reference Implementation in section 3.7, which is intended to validate core aspects of the Ocean

approach.

Based on the approach specifications presented in Chapter 3, Ocean‘s core architectural abstraction,

called the Contextualized Resource, is presented in Chapter 4. Briefly, the Contextualized Resource

abstraction extends the Web‘s conventional Resource model with an expressive contextual metadata

model used to facilitate in-situ discovery and integration. The chapter begins by presenting

background and related work specific to context-mediation in REST-based architectures in section

4.2. Next, the Contextualized Resource abstraction is presented in section 4.3. Section 4.3.2 presents

the Context Metadata abstraction, which is intended to encapsulate the syntax and semantics of

diverse context domains. Related, section 4.3.3 provides a theoretical discussion of similarity

modeling as pertaining to the wide-area Resource Discovery mechanisms discussed in subsequent

chapters. The chapter concludes with an illustrative Contextualized Resource example in section 4.4.

Building on the Contextualized Resource abstraction, Chapter 5 discusses key ideas regarding Web-

scale context-aware computing using the Ocean approach. As discussed throughout this chapter,

Ocean provides a simple, accessible and scalable mechanism for mobile applications to discover,

select and compose contextually-relevant Web Resources at runtime. Based on this philosophy,

section 4.1 provides background and related work related specific to our approach derivation

presented in section 3.5. Next, section 5.2.2 presents Ocean‘s Web-centric application model as an

extension of the client-centric mashup style presented in section 5.2.1. Notably, the Ocean application

model defines a new class of context-aware Web application capable of spontaneous cross-domain

component discovery and interoperation. Section 5.3 describes the Ocean Contextualized Resource

Registry (Ocean Registry), which is used to adapt the Ocean application model to the requirements of

conventional Web architecture. This section introduces the Ocean Registry‘s principle separation of

concerns, software architecture and notable APIs. In order to promote the contribution of Context

Metadata implementations within the Ocean Registry, section 5.4 describes an adaptation of the Java

Community Process intended to facilitate participation by external Context Domain Experts. Finally,

in order to promote large-scale Resource contextualization, section 5.5 concludes the chapter by

introducing Ocean‘s open Contextualized Resource contribution model, which allows any

Contextualizer to contextualize any Resource with any combination of Ocean Metadata.

1.5 Dissertation Structure

13

Chapter 6 presents the Ocean Registry‘s Persistence and Discovery Frameworks, which are

intended to support wide-area Contextualized Resource contextualization and discovery. Briefly, the

Persistence Framework allows Contextualized Resources to be efficiently stored and indexed for rapid

retrieval according to domain-specific techniques. Section 6.2 provides background and related work

regarding database techniques and related similarity search approaches. Next, section 6.3 presents the

Ocean Registry‘s persistence model by describing Ocean‘s relevant abstractions and illustrating how

Contextualized Resources can be effectively indexed using an example. Next, section 6.4.1 describes

Ocean‘s discovery protocol, which allows applications to query the Ocean Registry for contextually-

relevant Resources using native context data (NCD) as query terms. This section describes the

Resource Discovery API and its associated request/response formats. Ocean‘s Resource Discovery

approach is presented in section 6.4. This section presents background and related work regarding

existing similarity search techniques and presents Ocean‘s associated Discovery Framework. This

section further describes how contextually-relevant Resources are discovered using the search

protocol previously introduced. Notably, the Discovery Framework operates in conjunction with the

aforementioned Persistence Framework; allowing the NCD within Discovery Requests to be

effectively compared with persisted Context Metadata within the Ocean Registry‘s shared data store.

Chapter 7 discusses how Ocean‘s Web-scale focus introduces two critical challenges for Resource

discovery and selection. The first challenge relates to context-mismatch, whereby Resource discovery

performance is degraded due to mismatches between the Context Metadata used to describe a Web

Resource and incoming NCD-based query terms. Section 7.2 addresses context-mismatch by defining

a mechanism that automatically expands Discovery Requests with additional, contextually-relevant

query terms extracted from the shared query information provided by diverse members of the Ocean

end-user community. The second challenge relates to information overload, whereby Resource

discovery performance may be degraded due to extremely large numbers of undifferentiated query

results. Section 7.3 addresses information overload by describing Ocean‘s Resource personalization

approach, which automatically predicts a user‘s affinity for a given Resource based on previously

modeled preferences information from similar Ocean end-users. Notably, both query expansion and

Resource personalization are available as optional, privacy-aware enhancement features that can be

used either alone or in combination to help improve discovery search results.

Chapter 8 presents an Ocean application scenario as a method of illustrating how Ocean‘s various

contributions form an integrated whole. In addition, the example scenario provides further validation

of Ocean‘s large-scale focus by integrating real-world native context sources, significant

Contextualized Resource information and more realistic models of Ocean community behavior. First,

section 8.2 describes our experimental setup, including the development of an Ocean application

development environment, called Ocean Studio, and an embedded Ocean reference implementation

(RI) that is designed for rapid prototyping. Next, section 8.3 provides an overview our example

application, called LinkFlow, which forms the conceptual foundation for the remainder of the chapter.

Section 8.4 describes our data acquisition methodology and related toolset designed to capture large

numbers of native context sources and real-world Contextualized Resources. Section 8.5 presents a

validation of the basic LinkFlow scenario within the Ocean Studio development environment. Section

8.6 describes the integration of the previously acquired native context sources and Contextualized

Chapter 1

14

Resource data into Ocean Studio. Notably this section also describes the resultant query performance

reduction due to context mismatch and information overload. Section 8.7 discusses how the

aforementioned query challenges can be addressed by applying Ocean‘s query expansion and

Resource personalization techniques.

Chapter 9 concludes the dissertation with a summary of contributions and a discussion of future

research directions.

15

Chapter 2

On Context-aware Computing

2.1 Introduction

To help motivate the Ocean approach, this chapter presents background material and related work

regarding context-aware computing. As discussed shortly, context-aware computing represents an

evolutionary synthesis of several domains of computer science, including data communication

networks, distributed systems and mobile computing. As such, a comprehensive treatment of each

sub-domain remains outside of the scope of this dissertation. Rather, this chapter discusses the

background material directly related to the development of large-scale context-aware systems. First,

section 2.2 begins by discussing the rise of computer networking and the key techniques that have led

to the rapid proliferation of network infrastructure. Based on increasingly ubiquitous communication

networks, section 2.2.1 describes important approaches for distributing computation across multiple

autonomous networked computers. Related, section 2.2.2 describes techniques for accommodating

distributed computing in Internet-based scenarios through service-oriented computing and SOAP Web

services. Finally, section 2.2.3 describes how recent trends in mobile computing and wireless

networks have motivated in the development of adaptive systems capable of altering their runtime

behavior and capabilities to better fit the characteristics of a mobile user‘s current situation.

The aforementioned background material is used to introduce the field of context-aware computing

in section 2.3. This section describes major techniques and technologies for adapting mobile and

embedded systems to the characteristics of highly dynamic mobile computing scenarios. Notably, this

section is structured by the introduction of a unified conceptual framework that allows context-aware

systems to be decomposed, categorized and analyzed. Based on this conceptual framework, a

representative sampling of context-aware computing research is presented. First, section 2.3.1 defines

key notions of context and context-awareness. Next, section 2.3.2 describes important approaches in

context acquisition. Section 2.3.3 describes techniques for context modeling and representation.

Section 2.3.4 presents key techniques for context-management and provisioning. Finally, section 2.3.5

describes major approaches for facilitating context-aware component interoperation.

2.2 Background

Over the past several decades, increasingly powerful computational capabilities have been steadily

diffusing into everyday objects, devices and environments. Today our homes, cars, offices and public

spaces contain an ever-increasing assortment of embedded systems, mobile devices and computer

networks. Although such trends appear recent, the dissemination of computation away from

individual devices has been evident since the beginnings of general purpose computing. Early

computing systems were designed necessarily with all hardware resources, processing instructions

and data persistence isolated within a single hardware platform. The rapid proliferation of such stand-

alone computers gave rise to a set of well-understood techniques for sequential computing, where

computational tasks are solved through the step-by-step serial application of processing instructions

[13]. Importantly, the development of sequential computing produced a framework for specifying

algorithms, comparing their performance and understanding their inherent limitations such as lower-

Chapter 2

16

bound runtime and the notion of NP-completeness. However, although stand-alone computing

provided a straightforward means of solving common computational problems, most sequential

algorithms were unable to dynamically exploit additional computing resources and often suffered

from intrinsic inefficiencies imposed by their inability to work on different parts of a problem

simultaneously [38].

Improvements in computer hardware resulted in the emergence of parallel computing as a

mechanism to address the inefficiencies of sequential algorithms. In parallel computing, different

processing instructions are carried out simultaneously within a single computer system by exploiting

the notion that larger computational problems can often be divided into smaller ones that can be

solved concurrently. Parallel processing architectures typically coordinate task partitioning,

scheduling and processing using local intra-process communication (IPC), which occurs within a

shared memory address space on the same machine using techniques such as pipes, first-in-first-out

queues or shared memory. In many cases, parallel architectures incur beneficial properties such as

increased computational performance, improved modularity, and fault isolation [36]. As a

consequence, advanced parallel computing techniques – such as instruction pipelining,

multithreading, task scheduling and multiprocessor hardware architectures – have become common

features of most modern hardware platforms, operating systems, compilers and programming

languages [132].

The advent of parallel computing coincided and often supported related advancements in the field

of data communication networks throughout the late 1960s and early 1970s. During this time, the

costs associated with mainframe computing, combined with the increasing availability of micro-

computers, spurred increased interest in designing computer networks capable of interconnecting

autonomous computers. In this regard, the development of network-based communications was

motivated by a diverse set of goals, including resource sharing (e.g. sharing a mainframe computer or

file server); increased reliability (i.e. providing alternative sources of data or computation); increased

computational performance through parallelization; and improved human communications (e.g. file

sharing and electronic mail) [323]. Important networking challenges included reliable data exchange;

selection of appropriate communication paths; congestion control; deadlock control; and security

[325].

Resolution of the aforementioned challenges requires a communication model that imposes a high

degree of cooperation between participating entities. Cooperation is often achieved through the

specification of network protocols that dictate the rules and conventions of communication [323]. In

this regard, the complexity of network-based communication is mitigated through the use of protocol

layering whereby communication sub-tasks are encapsulated by a structured set of interrelated

protocols commonly referred to as a communications architecture or protocol suite [248]. The

exploration of such architectures resulted in the development of two broad classes of transmission

technologies, including broadcast and point-to-point. Briefly, in broadcast networks, a number of

computers (hosts) communicate using a shared communications medium (or link) by means of

medium access control (MAC) protocols that help the hosts share the link fairly and efficiently. In

broadcast networks, short messages (called packets in some contexts) are sent by any machine to all

other hosts connected to the shared link [323]. In contrast, point-to-point networks support multiple

2.2 Background

17

connections between pairs of hosts by way of an unshared serial link and related protocols. In point-

to-point scenarios, transmitted data must pass through (often multiple) intermediaries on the way to a

given destination.

The commercial success of both broadcast and point-to-point network designs resulted in the

development of broad range network types, which are commonly classified according to physical size

[323]. Common classifications include personal area networks (PANs) that are intended to serve a

single person at a range up to 1 meter; local area networks (LANs) that often represent privately

owned networks at the organization scale; metropolitan area networks (MANs) that operate at the

scale of cities or groups of corporate offices; and wide area networks (WANs) that span large

geographical areas such as countries or continents. A more detailed illustration of this basic

classification scheme is shown in Figure 2.

Figure 2: Classification of computer networks based on physical size (from [323])

The rapid proliferation of incompatible network infrastructure motivated the exploration of

internetworking techniques, whereby computer-based communications could span multiple

heterogeneous physical networks. The dominant communications architecture in this regard is the

Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite that was first proposed by

Cerf and Kahn in [56]. Briefly, TCP/IP combines several interrelated advancements into a relatively

simple, flexible and robust internetworking scheme that has come to form the foundation of the

modern Internet. At its core, the TCP/IP model aims to optimize available channel capacity, minimize

transmission latency and improve communication robustness by adopting packet-based statistical

multiplexing (packet switching) as its principle communications model [248]. Second, the TCP/IP

approach enhances the basic packet switching model by defining a standardized set of abstractions

intended to encapsulate the technology-dependent communication functions (primitives) of various

underlying network types. Accordingly, the TCP/IP architecture encapsulates complex

communication sub-tasks into multiple self-contained layers; each providing well-defined service

interfaces to layers above and below. By introducing a platform agnostic virtual network between

underlying network technologies and higher-level network users, the TCP/IP model provides ―users

the illusion of a single, seamlessly connected network where the fragmented nature of the underlying

infrastructure and the many layers of protocols remain largely transparent to the user‖ [358].

Chapter 2

18

While a detailed description of Internet architecture can be found elsewhere [323], a brief

description of its three fundamental design principles provide insight into its design. First, as

described above, layering is used to break up complex tasks into relatively simple subtasks that can be

structured and arranged separately. Subtasks are implemented by modules that can be arranged into a

vertical stack, where each layer provides a well-defined set of services to its adjoining layers and

structures communication through a specific convention, or protocol. Secondly, Internet architecture

has been influenced by the end-to-end argument in system design, which states that ―certain required

end-to-end functions can only be performed correctly by the end-systems themselves. A specific case

is that any network, however carefully designed, will be subject to failures of transmission at some

statistically determined rate. The best way to cope with this is to accept it, and give responsibility for

the integrity of communication to the end systems‖ [279]. The end-to-end principle positions

complex, application-specific functionality at the end-systems while retaining relatively simple and

scalable core network characteristics. The Internet‘s final design principle is the use of a single logical

addressing scheme that is shared by all participating nodes. As described in [223], these principles

affirm that the Internet‘s ―goal is connectivity, the tool is the Internet Protocol, and the intelligence is

end to end rather than hidden in the network.‖ As evidenced by the Internet‘s explosive growth, rapid

performance increases and proliferation of software services, its basic design philosophy has proven

remarkably effective at supporting ―constant innovation and entrepreneurial spirit at the physical

substrate of the network as well as at the application layer‖ [358]. The Ocean approach is strongly

influenced by these design principles, as described in section 3.4.2.

2.2.1 Key Aspects of Distributed Computing

The increasing availability of inexpensive computing hardware combined with emerging computer

networks and internetworking techniques led to the development of techniques for distributing

computation across multiple autonomous networked computers. The resultant field of research,

known as distributed systems or distributed computing, encompasses a wide range of approaches and

algorithms for distributing and coordinating remote processing. Generally, distributed computing

refers to any ―computing system in which a number of components cooperate by communicating over

a network‖ [44]. While such definitions are often vague and contentious, Ghosh [120] presents several

well-recognized criteria for distributed systems, including having more than one sequential process;

message-based IPC; disjoint address space; and, collective goals whereby distributed processes

interact with each other to address a common task. Ghosh also identifies several benefits of

distributed systems, including geographic distribution; performance improvements beyond parallel

computing; enhanced resource sharing; and enhanced fault-tolerance. Coulouris et al. identify several

additional beneficial properties in [74], including system extensibility; location transparency whereby

local and remote information can be accessed in a unified way; failure transparency whereby system

failures can be automatically masked; and replication transparency whereby software and data can be

replicated on multiple machines invisibly.

A distributed system can be described in terms of software architecture. Broadly, software

architecture has been defined by Fielding as ―an abstraction of the run-time elements of a software

system during some phase of its operation. A system may be composed of many levels of abstraction

and many phases of operation, each with its own software architecture‖ [105]. Fielding further

2.2 Background

19

describes that software architectures are used to structure and decompose computational tasks into

smaller, more manageable parts through encapsulation. Encapsulated elements are selected, arranged

and configured to achieve a set of system properties that fulfill a system‘s requirements. Properties

can include functional properties (e.g. system behavior) and quality attributes (e.g. ease of evolution,

reusability of components, efficiency, and dynamic extensibility). Evaluations of software architecture

include metrics such as correctness (that the system indeed fulfills the specified requirements) and

efficiency (that the system fulfils the specified requirements at a low cost – e.g. low computational

complexity, communication efficiency, etc.) Properties are induced within a system through the

application of software engineering principles, which represent a style of arranging and configuring

architectural elements. Accordingly, software engineering principles induce a ―coordinated set of

architectural constraints that restricts the roles/features of architectural elements and the allowed

relationships among those elements within any architecture that conforms to that style‖ [105]. Table 2

provides an overview of the four principle architectural elements of software architecture as defined

by Fielding in [105].

Element Description

Component An abstract unit of software instructions and internal state that provides a transformation of

data via its interface.

Connector An abstract mechanism that mediates communication, coordination, or cooperation among

components.

Data Elements of information which are transferred from a component, or received by a

component, via a connector.

Configuration The structure of architectural relationships among components, connectors, and data during

a period of system run-time.

Table 2: The principle elements of software architecture (from [105])

With reference to Table 2, distributed systems differ from stand-alone architectures in several

notably ways. First, components in a distributed system may reside on (potentially several)

addressable networked devices that are known as nodes or hosts. Nodes are generally autonomous

(i.e. maintain their own semi-independent agenda) and heterogeneous (i.e. comprise a diversity of

hardware platforms, operating systems and runtime software). Hence, units of distributed computation

provide their own internal stand-alone software architecture that is configured to collaborate with

other networked entities via network-based messages. Accordingly, a distributed architecture can be

described as a finite collection of entities that communicate using messages in order to ―achieve a

common goal; for example, to perform a given task, to compute the solution to a problem, to satisfy a

request either from the user (i.e., outside the environment) or from other entities‖ [282]. Distributed

architectures are also characterized by connectors that are often several orders of magnitude slower

than in-memory IPC techniques and may be subject to significant variations in communications

quality due of the characteristics of the underlying network (e.g. delay, jitter and loss) [323].

Moreover, the capabilities of entities in a distributed architecture may not be uniform. For example,

Chapter 2

20

entities may vary in terms of available processing capability, local memory or access to connected

peripherals such as input and output hardware. Consequently, distributed architectures require

additional measures to ensure interoperability (e.g. data passed between entities cannot often rely on

proprietary representation such as language specific data types [334]). Additionally, the design and

configuration of distributed systems is often significantly more complex than stand-alone

architectures. Several important factors in this regard are listed below as presented in [325]:

1. Broadcasting and synchronization: If information must be made available to all

processes, or all processes must wait until some global condition is satisfied, it is necessary

to have a message passing scheme that somehow touches all processes.

2. Election: Some tasks must be carried out by exactly one process of a set, for example,

generating output or initializing a date structure. If, as is sometimes desirable or necessary,

no process is assigned this task a priori, a distributed algorithm must be executed to select

one of the processes to perform the task.

3. Termination detection: It is not always possible for the processes in a distributed system

to observe directly that the distributed computation in which they are engaged has

terminated. Termination detection is then necessary in order to make the computed results

definitive.

4. Resource allocation: A node may require access to a resource that is available elsewhere

in the network, though it does not know in which node this resource is located. Maintaining

a table that indicates the location of each resource is not always adequate, because the

number of potential resources may be too large for this, or resources may migrate from one

node to another. In such a case the requesting node may inquire at all or some other nodes

about the availability of the resource, for example using broadcasting mechanisms.

5. Deadlock detection and resolution: If processes must wait for other processes (which is

the case if they share resources, and also if their computation relies on data provided by

other processes) a cyclic wait may occur, in which no further computation is possible.

These deadlock situations must be detected and proper action must be undertaken to restart

or continue the computation.

6. Distributed file maintenance: When nodes place read and write quests for a remote file,

these requests may be processed in an arbitrary order, and hence provision must be made to

ensure that each node observes a consistent view of the file or files. Usually this is done by

time stamping requests, as well as the information in files and ordering incoming requests

on the basis of their time stamps.

Based on the above challenges, several computational models and infrastructure technologies have

been developed to aid in creating distributed applications. Early ad-hoc approaches were generally

based on low-level communication abstractions (e.g. sockets), which were used to manually organize

communications between distributed entities. Ad-hoc approaches require that developers specifically

adapt the underlying communication techniques to the requirements of a given application. While

suitable for some application types, several deficiencies have been identified. According to

Buschmann et al. [44], the resultant application code is often tightly coupled to the underlying

2.2 Background

21

operating system and socket APIs; requiring costly manual programming effort when porting an

application to different platforms. Related, creating distributed communication frameworks using

sockets can also result in paradigm mismatches, which derive from fundamental platform differences

(e.g. object-oriented versus function-oriented socket APIs). In this regard, the reuse of ad-hoc

techniques is often limited as developers rely on the creation of custom data-structures and

application-specific method invocation that may not be widely known or applicable across problem

domains.

The proliferation of increasingly heterogeneous network infrastructure, combined with the

increasing need to create platform independent networked applications, led to the development of

Structured Communication techniques beginning in the mid-1970s. Structured Communications

decouples the intricacies of network-based IPC from higher-level application logic by providing a

common communications infrastructure that allows remote applications to interact much like they

would in shared-memory environments. Structured Communications infrastructure provides common

abstractions such as procedures and data-types, which shield developers from machine-level data

representations and encapsulate network-based IPC within a familiar programming model.

Historically significant Structured Communication approaches include Sun Microsystems‘ Remote

Procedure Call (RPC) [320] and the Distributed Computing Environment (DCE) [273]. A high-level

overview of Remote Procedure Call is shown in Figure 3.

Figure 3: Overview of Remote Procedure Call (from [186])

As traditional procedure-based programming gave way to object-oriented programming (OOP) in

the early 1990s, the confluence of RPC-based distributed computing and component-based

architectures resulted in the development of Distributed Object Communications (DOC) middleware.

DOC middleware extends Structured Communications‘ notion of platform independence with object-

oriented techniques for distributing reusable services efficiently and robustly over heterogeneous

nodes [44]. DOC middleware provides network-aware versions of common OOP abstractions (e.g.

objects, properties, methods and parameters) along with related infrastructure for marshaling,

transporting and unmarshalling object representations between remote entities [13]. Similar to OOP‘s

object-based encapsulation model, DOC middleware relies upon precise (and often fine-grained)

interface descriptions that establish interface contracts between client and server regarding the

mechanisms and data-types necessary for remote interactions. Notable DOC middleware technologies

Chapter 2

22

include the Java-specific Remote Method Invocation (RMI) [319] and the largely language

independent Common Object Requesting Broker Architecture (CORBA) [235]. In DOC middleware,

significant infrastructure such as CORBA‘s Object Request Broker (ORB) is used to provide

transparent IPC between distributed objects through integrated support for naming, object binding,

communication protocols, exception handling, transaction support, security, etc. A high-level

overview of ORB-based distributed communications is shown in Figure 4.

Figure 4: Overview of ORB-based distributed communications (from [186])

The RPC techniques and DOC middleware approaches previously described are generally based on

the request/response communications model, where requests flow from client to server and responses

flow back from the server to the calling client. However, such approaches are often ill-suited for

scenarios where a distributed application must respond to external stimuli and events [44].

Problematic issues in this regard include designated communication whereby clients must know the

identity of a suitable server (resulting in tight coupling between sender and recipient); point-to-point

communication, whereby client are restricted to communications with one server at a time; and brittle

interface semantics, whereby slight changes in interface definitions may break dependant

applications. As discussed in section 3.2, these issues are important limiting factors with regards to

large-scale, cross domain context-aware systems.

To address some of the aforementioned challenges, Message-Oriented Middleware (MOM) has

been proposed as an alternative method of structuring distributed applications. Although variations

exist (e.g. UDP multicast-based systems), most MOM approaches are based on asynchronous message

queuing, whereby senders transmit data to receivers without blocking to wait for a response [44].

Asynchronous message services are typically provided by an abstraction known as a message queue,

which allows messages to be published and persisted until picked up by a receiver (or group of

receivers). Notable MOM implementations include IBM‘s MQSeries [154] and BEA‘s MessageQ

[239]. Unlike many interface-centric approaches, MOM‘s often rely on payload semantics, whereby a

relatively simple messaging interface (e.g. sendMessage() and receiveMessage()) is used to

manage flows of self-describing messages (e.g. based on XML-based headers). In the basic message

2.2 Background

23

queuing model, point-to-point communications are used to asynchronously deliver messages from a

single sender to a single receiver. More sophisticated implementations are organized using a publish-

and-subscribe model that introduces a topic abstraction, which is used to provide anonymous

publication of messages to any number of receivers who have registered interest in a given topic. As

described in section 3.5, the concept of payload semantics plays an important role in the Ocean

application model. An overview of the two example MOM approaches is provided below in Figure 5.

Figure 5: Overview of two example message-oriented-middleware approaches (from [186])

2.2.2 Service Oriented Computing and SOAP Web Services

The widespread adoption of DOC middleware and rapid rise of the Internet as an important global

communications infrastructure have motivated two related (yet often divergent) trends in distributed

computing [257]. The first trend, known as Enterprise Application Integration (EAI), involves

devising methods for integrating (often numerous) legacy software systems contained within an

organization into coherent (and often large) distributed systems. The second trend involves

developing techniques for cross-organization integration of enterprise data among external customers

and partners (often via the Internet). Accommodating the autonomy, heterogeneity and complexity

implied by such requirements has led to the emergence of a distributed computing style, known as

Service Oriented Computing (SOC), which aims to abstract business functionality away from

monolithic applications in order to yield distributed systems that are easier to build, maintain and

extend [335].

SOC defines a distributed computing model whereby applications are constructed by combining

pre-existing, self-contained and loosely-coupled units of functionality known as services. In SOC,

services can be defined as self-describing, modular, atomic pieces of computation that adhere to well-

known (and often self-describing) interfaces. While conceptually similar to objects in OOP, where

data and methods are encapsulated to promote modularity and reuse, services generally offer a higher

degree of abstraction and interface granularity. SOC implementations (also known as Service

Oriented Architectures or SOAs) typically extend related advances in component-based middleware

Chapter 2

24

such as Corba‘s Component Model [233] and Enterprise Java Beans
3
. Briefly, component middleware

provides support for dynamic assemblies of components along with comprehensive deployment and

lifecycle management in the form of component containers. As described in [44, 234], containers are

used to provide unified deployment and runtime mechanisms such as data persistence, event

notification, transaction support, replication, load balancing, security, etc. Further, containers also

define a collection of runtime policies (e.g. transaction, persistence, security, and event delivery) and

are responsible for initializing and providing runtime management of components.

SOAs typically extend component middleware approaches with additional facilities for component

distribution, discovery and runtime interaction. These mechanisms are introduced by Vinoski in [335]

as:

 Service registries, in which services advertise their locations and capabilities, and where

consuming applications go to find those services;

 Service repositories, in which developers store metadata, such as contract descriptions and

policies, for use at both service design and deployment times;

 Service definition languages, which developers use to define service contracts; and

 Service platforms, which provide design-time and runtime support for service creation,

deployment, and execution.

Based on these foundational concepts, SOAP web services (SOAP-WS) have emerged as a popular

approach for building SOA using Internet-based infrastructure [369]. Similar to conventional DOC

middleware, SOAP-WS aim to "provide a standard means of interoperating between different

software applications, running on a variety of platforms and/or frameworks" [371]. More specifically,

SOAP-WS define a set of protocols and frameworks for achieving service discovery, interoperation

and coordination using common Internet protocols and standards such as HTTP and XML. At its

foundation, SOAP represents "a lightweight protocol for exchange of information in a decentralized,

distributed environment. It is an XML based protocol that consists of three parts: an envelope that

defines a framework for describing what is in a message and how to process it, a set of encoding rules

for expressing instances of application-defined data-types, and a convention for representing remote

procedure calls and responses" [369]. Accordingly, the SOAP standard is used to provide a distributed

interoperation approach consisting of: a common type system; a service description language;

addressing model; bindings to lower-level transports; security or routing frameworks; and

mechanisms for breaking message into segments like header and body (known as framing). While the

SOAP model is transport agnostic, bindings have been developed for common protocols such as

HTTP, SMPT, and others (with HTTP being the most common [266]). Moreover, SOAP is message

exchange agnostic, allowing applications to utilize a variety of interaction patterns, such as

request/response, request/multiple response, etc. [266]

To achieve application-level component discovery and interoperability, SOAP-WS utilize several

specifications in addition to SOAP. Notably, the Web Services Description Language (WSDL) is used

to describe the operations a networked component supports (e.g. how messages are used during

3
 http://java.sun.com/products/ejb/

2.2 Background

25

method invocation) along with the associated type and structure of the messages conveyed. As

described in [67], WSDL provides an XML grammar that describes network services as sets of

endpoints that operate on messages that contain either document-oriented or procedure-oriented

information. Importantly, supported operations and messages are described abstractly and then bound

to a specific network protocol and message format as a means of defining endpoints.

Several other standards are commonly used in conjunction with WSDL and SOAP. First, service

discovery and binding is facilitated through an additional specification called Universal Description,

Discovery and Integration (UDDI) [231]. The UDDI specifications describe an Internet-based registry

architecture intended to allow organizations to publish and discover services using SOAP as an

interrogation protocol and WSDL as service description metadata (see section 4.2). Additional notable

specifications include WS-Addressing, which provides a ―transport-neutral mechanisms to address

Web services and messages‖ [370]; WS-Transaction, which provides a set of specifications intending

to provide ―protocols for coordinating the outcome of distributed application actions‖ [241]; and, WS-

Security, which provides ―security functions such as integrity and confidentiality in messages

implementing higher-level Web services applications‖ [240].

2.2.3 The Influence of Mobility

The widespread deployment of distributed computing infrastructure such as Java RMI and SOAP-WS,

has paralleled related advances in mobile computing and wireless networks. Beginning in the early

1990s, advances in semiconductor electronics, battery technologies and materials science led to the

emergence of small computing systems that could be easily carried or embedded within physical

objects. Simultaneously, wireless networking technologies began transitioning from research

prototypes into commercially available products. The resultant proliferation of wireless networking

infrastructure and related mobile device support motivated interest in developing software systems

capable of addressing the unique challenges imposed by mobile scenarios. As described by Forman

and Zahorjan in [109], these principle challenges included portability, mobile networking, and

wireless communications. Briefly, portability refers to the development of small, lightweight

computing systems. Notable portability challenges include resource constraints (e.g. limited storage or

screen size); power limitations; and increased security risks. Next, mobile networking refers to the

ability of a device to change locations while maintaining network connectivity. Notable mobility

challenges include address migration; location-dependent information; and locality migration. Finally,

wireless communication refers to techniques for connecting mobile devices using wireless networks.

Notable wireless communication challenges include disconnection; low bandwidth operation; high

bandwidth variability; network heterogeneity and enhanced security risks.

Over the last decade, many of the aforementioned challenges have been addressed by significant

research efforts in the field of mobile computing. As discussed by Satyanarayanan in [288],

portability has been addressed through the development of a variety of power management

techniques, including variable-speed processor scheduling [355]; energy-aware adaptation [108]; and

energy-sensitive memory management [193]. Next mobility has been addressed through the

development of a variety of address migration techniques, including Mobile IP [252] and the

widespread adoption of the Dynamic Host Configuration Protocol (DHCP) in wireless networks

Chapter 2

26

[323]. Finally, wireless communication has been addressed through the development of a variety of

networking technologies, including several broadly adopted 802.11 wireless communication standards

[323]; energy-aware mobile ad-hoc networking technologies and routing protocols [133]; bandwidth-

adaptive file access [215]; selective control of data consistency [326]; and techniques for disconnected

operation [182].

The mobile computing techniques and technologies presented above have motivated increasing

interest in software systems capable of dynamically adapting their runtime behavior and capabilities

to fit the characteristics of a mobile user‘s current situation [293]. Two principle approaches for

runtime adaptation have been explored. First, parameter adaptation relies on a predetermined set of

program variables that can be ―tuned‖ to help adjust an application‘s runtime behavior. A well-known

example of parameter adaptation is TCP‘s flow control approach, which responds to detected network

congestion by dynamically adapting its retransmission strategy using a preconfigured set of control

window values [323]. Although parameter adaptation is often effective and relatively easy to

implement, it lacks the ability to incorporate additional algorithms and system components after an

application has been deployed. In contrast, compositional adaptation allows for algorithmic or

structural system components to be integrated into a software application during runtime. Broadly,

compositional adaptation ―enables dynamic recomposition of the software during execution – for

example, to switch program components in and out of a memory-limited device or to add new

behavior to deployed systems‖ [208].

Adaptive composition is based on three fundamental concepts. First, adaptive systems are derived

from the separation of concerns principle, which promotes program modularity by breaking an

application into distinct features with little functional overlap [249]. A separation of concerns is used

to promote the independent development of application logic and cross-cutting concerns, which

cannot typically be cleanly decomposed (e.g. quality of service, fault tolerance, security, etc.) Second,

adaptive systems extend notions of computational reflection, whereby a program can reason about,

and possibly alter its runtime behavior [204]. Computational reflection generally involves both

introspection, where an application observes its behavior, and intercession, where an application acts

on its observations and modifies its behavior in response. For example, an application may use

computational reflection to discover, select and dynamically load a communication protocol better-

suited to the current network conditions [208]. Finally, adaptive systems typically extend notions of

component-based design (CBD), which refers to a method decomposing software systems into self-

describing, self-contained executable units of functionality.

As noted by McKinley et al. in [208], CBD can be delineated into two basic approaches: static and

dynamic. In static approaches, components are selected and composed at compile time (i.e. early

binding). In dynamic approaches, components are added, removed and configured at runtime through

the use of component resolution and late binding (also known as dynamic binding). Generally,

dynamic binding approaches are supported by specific programming language constructs (e.g. Python

and various Java derivatives) and related host and middleware infrastructure (e.g. the Java virtual

machine and Open ORB
4
). Notably, academia and industry have developed a variety of methods and

4
 http://openorb.sourceforge.net/

2.2 Background

27

mechanisms for supporting dynamic compositional adaptation (please see [209] for a detailed

overview). An overview of static versus dynamic recomposition is presented in Figure 6.

Figure 6: Overview of static (a) versus dynamic (b) recomposition (from [209])

Dynamic recomposition, as illustrated above, is often reliant on the principle of loose coupling,

which refers to architectural strategies for minimizing the dependencies between the functional units

of a software system [186]. Examples of such dependencies can include hard-coded method calls

between service implementations or reliance on proprietary messaging formats. Several examples of

tight versus loose coupling are provided below in Table 3 as adapted from Krafzig et al. [186].

Level Tight coupling Loose coupling

Physical coupling Direct physical link required Physical intermediary

Communication style Synchronous Asynchronous

Type system Strong type system

(e.g., interface semantics)

Weak type system

(e.g., payload semantics)

Interaction pattern OOP-style navigation of complex object

trees

Data-centric, self-contained messages

Control of process logic Central control of process logic Distributed logic components

Service discovery and

binding

Statically bound services Dynamically bound services

Platform dependencies Strong OS and programming language

dependencies

OS- and programming language

independent

Table 3: Tight versus loose coupling (adapted from [186])

Although widespread adoption of the approaches summarized in this chapter have produced a

relatively seamless substrate of data communications, portable computing platforms and adaptation

mechanisms, the development of mobile distributed systems (MDS) has often proven more difficult

[293]. Unlike conventional distributed systems, where the application scenarios are well-understood

and distributed components are known a priori, mobile users often encounter rapidly changing and

Chapter 2

28

highly diverse execution environments that place unique demands on networked mobile software

[293]. An overview of the challenges faced by MDS is presented below as adapted from [73]:

 Heterogeneity: Mobility increases heterogeneity concerns for distributed systems on

several levels. Mobile users encounter a comparatively diverse set of computational

resources which may vary widely in terms of capabilities, interaction mechanisms and

arrangement within a physical or virtual space. Moreover, mobile and pervasive devices

also vary widely in terms of hardware platform, operating systems and runtime software. In

addition, sources of environmental computation may be unsystematically organized,

unpredictably available and not inherently interoperable.

 Scalability: Mobile scenarios are often characterized by unpredictable numbers of users,

devices and operational areas [109]. Moreover, components within mobile scenarios may

pursue autonomous agendas. Consequently, mobile software must address aspects of both

structural scalability and load scalability. As described by Bondi in [38], structural

scalability refers to a system‘s ability to expand in a given dimension without major

modifications – e.g. accommodating flexible routing schemes – whereas load scalability

refers to a system‘s ability to handle increasing amounts of work without degradation in

system performance – e.g. additional service interaction or increasing data traffic.

 Dependability and security: The autonomy of mobile scenarios often introduces

additional dependability and security concerns. Existing failure-detection and recovery

strategies, such as check-pointing, compensation, isolation, or reconfiguration must be

adapted for mobile use. Further, network connectivity and distributed services may be

provided by unknown parties. Hence, large-scale distributed applications must be capable

of operating across multiple trust domains, and ―continue operating when subjected to an

unanticipated load, or when given malformed or maliciously constructed data, since they

may be communicating with elements outside their organizational control‖ [106].

 Spontaneous interoperation: The dynamism characteristic of mobile scenarios often

results in spontaneous encounters with relevant information or computation. As noted by

Edwards et al., ―Interoperability among a group of devices, applications, and services is

typically predicated on those entities having some degree of prior knowledge of one

another‖ [96]. However, given the large operational range characteristic of mobile

scenarios combined with a proliferation of domain-specific component interfaces and

related data-types often results in architectural mismatch, where implicit and often

conflicting assumptions made by component designers inhibit spontaneous cross-domain

component interoperation [115].

2.3 Related Work in Context-aware Computing

29

2.3 Related Work in Context-aware Computing

Based on the issues and challenges presented in the last section, new computing techniques were seen

as necessary for adapting mobile and embedded systems to the dynamic and complex characteristics

of the physical world [208, 287]. In this regard, Ubiquitous Computing (Ubicomp) emerged as a novel

―method of enhancing computer use by making many computers available throughout the physical

environment, but making them effectively invisible to the user‖ [354]. Attracting interest across a

broad range of disciplines – including computer science, human computer interaction, engineering,

the social sciences, philosophy, and anthropology – the Ubicomp model advocates ―an extended form

of mobile computing in which users employ many different mobile, stationary and embedded

computers over the course of the day. In this model computation does not occur at a single location in

a single context, as in desktop computing, but rather spans a multitude of situations and locations

covering the office, meeting room, home, airport, hotel, classroom, market, bus, etc. Users might

access their computing resources from wireless portable machines and also through stationary devices

and computers connected to local area networks‖ [290].

An central aspect of the Ubicomp model is context-aware computing, which refers to a generalized

approach for building software applications capable of examining and adapting to an individual‘s

(often changing) context and requirements [293]. Context-aware systems represent evolutionary

syntheses of distributed systems and mobile computing that may involve sophisticated parameter and

compositional adaptation. However, unlike conventional adaptive computing scenarios, where the

distributed applications and participating components are well-known and relatively static over time,

Ubicomp scenarios are characterized by rapidly changing execution environments where the available

computational resources may fluctuate and may be unknown a priori [145]. In this regard, notable

variations include the ―processors available for a task, the devices accessible for user input and

display, the network capacity, connectivity, and costs may all change over time and place. In short,

the hardware configuration is continually changing. Similarly, the computer user may move from one

location to another, joining and leaving groups of people, and frequently interacting with computers

while in changing social situations‖ [290].

As context-aware computing involves complex aspects of distributed, mobile and adaptive

computing, supportive middleware is well-recognized as an essential requirement for non-trivial

systems [147]. Broadly, context-aware systems acquire and model contextual information from the

user‘s environment as a means of facilitating adaptation within a domain-specific application. Similar

to conventional distributed computing middleware, context-aware middleware often provides

infrastructure for facilitating data communications between participating distributed components. As

such, most context-aware approaches extend existing distributed computing models such as Remote

Procedure Call, Distributed Object Communications and Message-Oriented-Middleware (see section

2.2.1). In addition, most context-aware middleware provides support for automated acquisition and

modeling of context information from the user‘s physical environment as a means of informing

application adaptation. However, despite the similarities between systems, a variety of approaches are

often used to address heterogeneous ―requirements and conditions such as the location of sensors

(local or remote), the amount of possible users (one user or many), the available resources of the used

Chapter 2

30

devices (high-end-PCs or small mobile devices) or the facility of a further extension of the system‖

[21].

Researchers have attempted to derive generalized conceptual frameworks whereby context-aware

systems can be decomposed, categorized and analyzed. In this regard, layering is often utilized as a

structuring principle to assure desirable system properties, such as separation of concerns, modularity,

extensibility and flexibility [117]. As such, the functionality of context-aware systems can often be

segmented into well-defined layers as a means of decoupling low-level context acquisition and

modeling tasks from higher-level information management, dissemination and application adaptation

tasks. For example, low-level sensing and data retrieval can be encapsulated by a specific layer (or

layers) similar to the physical and link layers of the TCP/IP model [323]. While some discrepancies

exist, prominent conceptual frameworks differ only by the level of detail. For example the Henricksen

framework [146] simply suggests that low-level data acquisition details should be placed into the

lowest layers, whereas the Mäntyjärvi framework [185] specifies separate layers for sensor

measurement, preprocessing and quantization. Further, each framework suggests a mechanism for

managing (and potentially storing) context information that can be used by a context-aware

application or group of applications. Finally, application-level adaptation decisions and behavior are

uniformly encapsulated into the highest layer or layers (with the Henricksen framework providing a

separate ―decision support tools‖ layer). Figure 7 provides a layered conceptual framework that is

intended to guide the discussion of context-aware systems throughout the remainder of this chapter.

Figure 7: Layered conceptual framework for context-aware applications

2.3.1 Defining Context and Context-awareness

When discussing the operational details of context-aware systems, definitions of ―context‖ are often

intuitively understood, yet difficult to apply when engineering practical systems. In this section, we

summarize findings from Dey and Abowd [89], who provide insight into the various

conceptualizations of the terms context and context-awareness. One of the first general descriptions of

context was introduced by Schilit and Theimer [292], who included basic notions such as location,

proximate users and objects (plus related state changes). Their definition is similar in spirit to the

definition provided by Brown et al. in [42], where additional aspects such as time, temperature and

season are considered. Dey [88] includes several user-centric notions of context, such as the user‘s

orientation, focus of attention and emotional state. Related, Franklin and Flaschbart [103] include the

user‘s situation whereas Ward et al. [348] view context from the application's standpoint.

2.3 Related Work in Context-aware Computing

31

The early context definitions presented above have been criticized as overly domain-specific and

difficult to apply [145]. To overcome domain-specificity, researchers have attempted to categorize the

types of functionality that a context-aware system might provide. The first such categorization was

provided by Schilit [293] who provided four classifications for context-aware applications based on

whether the system manually or automatically obtains information and execute commands on behalf

of the user. Specifically, systems that manually obtain contextually relevant information are classified

as proximate selection applications. In these systems, available information or services are made

easier to choose based on contextual information such as location or proximity (e.g. displaying a list

of nearby printers). Similarly, systems that allow users to manually execute service commands are

classified as contextual command applications. Next, systems that automatically discover and bind to

contextually relevant computation are categorized as automatic contextual reconfiguration

applications. Finally, systems that automatically execute commands based on contextually bound

services are classified as context-triggered action applications.

Pascoe [250] provides a more elaborated version of Schilit‘s classification scheme, which includes

descriptions the fundamental features of a context-aware system. Pascoe‘s taxonomy implies a

hierarchical application of context-awareness features, whereby contextual sensing (or acquisition) is

introduced as the foundation of a context-aware system. Contextual sensing refers to an application‘s

ability to discover relevant information from the environment such as sensor data or user preferences.

Additionally, an application may undergo contextual adaptation, whereby the application alters its

state based on the discovery of context information. An important contextual adaptation strategy is

identified as context-based resource discovery, whereby contextual information leads to the discovery

of relevant distributed services. Finally, discovered services may prompt an application to undergo

contextual augmentation, whereby the services are dynamically composed into the application at

runtime.

Context-aware feature taxonomies have led to more applicable definitions of context and context-

awareness. Perhaps one of the most widely adopted operational definitions was suggested by Dey and

Abowd [89], who defined context as ―any information that can be used to characterize the situation of

entities (i.e. whether a person, place or object) that are considered relevant to the interaction between

a user and an application, including the user and the application themselves.‖ Importantly, this

definition highlights the central role of the application as the arbiter of context information

significance; reducing system-level reliance on considerations such as context detection,

determination and response. Related, Dey and Abowd further differentiate between primary and

secondary context. Briefly, a primary context answers questions such as who, what, when, and where

and may involve information such as location, identity, time, and activity. Primary context

information may lead to additional sources of derived context information, known as secondary

context information. For example, understanding a person‘s identity (i.e. primary context information)

may help a system discover the person‘s address (i.e. secondary context information).

Dey and Abowd also provide a domain-neutral definition for context-awareness, whereby a system

is considered context-aware if it ―uses context to provide relevant information and/or services to the

user, where relevancy depends on the user‘s task‖ [89]. Importantly, this definition helps clarify the

generality of contextual information and its relevance to many existing software applications. For

Chapter 2

32

example, a traditional Web browser might be viewed as context-aware if it exploits user preferences

to control issues related to default text size and home page. However, user preference information

arguably represents an impoverished type of contextual information.

More sophisticated context-aware systems generally utilize techniques for automatically

discovering and utilizing context information. In this regard, Hendrickson provides several additional

distinctions between context, context model and context information, which are applicable in more

complex systems. These definitions are summarized below as presented in [145]:

 The context of a task is the set of circumstances surrounding it that are potentially relevant

to its completion.

 A context model identifies a concrete subset of the context that is realistically attainable

from sensors, applications and users, and able to be exploited in the execution of the task.

The context model that is employed by a given context-aware application is usually

explicitly specified by the application developer, but may evolve over time.

 Context information is a set of data, gathered from sensors and users, that conforms to a

context model. This provides a snapshot that approximates the state, at any given point in

time, of the subset of the context encompassed by the model.

Based on the above definitions, Hendrickson goes on to describe several important characteristics

of context information in [146]. In her work, she classifies context information into four principle

classes, including sensed, static, profile and derived. Briefly, sensed information refers to information

gleaned from a user‘s environment through the use of physical sensors such as accelerometers, radio

frequency receivers, etc. Such information is often highly dynamic, rapidly changing and may be

affected by issues such as faulty connections, sensor drift, mis-calibration, wear and tear and humidity

[185]. Static information refers to relatively fixed information such as a device‘s local resources or

available communication channels. Static information is generally provided using domain-specific

means (e.g. registry settings). Profile information refers to manually created data provided by the

user. Profile information is often highly accurate for limited time periods, but can be affected by

staleness if the user fails to continually update the profile. Finally, derived information refers to

information that is automatically interpreted from other context types such as sensor data, user

profiles or application-specific mechanisms. Notably, derived information is often error prone because

of low-level error propagation and brittle heuristics. Table 4 provides an overview of the properties of

the aforementioned context information types as presented in [146].

2.3 Related Work in Context-aware Computing

33

Context type Persistence Quality issues Source of inaccuracy

Sensed Low May be inaccurate,

unknown or stale

Sensing errors; sensor failures or network

disconnections; Delays introduced by distribution or

the interpretation process

Static Forever Usually none Human error

Profile Moderate Prone to staleness Omission of user update in response to changes

Derived Variable Subject to errors and

inaccuracies

Imperfect inputs; use of a crude or oversimplified

derivation mechanism

Table 4: Typical properties of context information (from [146])

The context information types presented above are subject to a variety of errors and may exhibit

considerable uncertainty with regard to quality [146]. Hendrickson describes four principle types of

information quality problems, including unknown, ambiguous, imprecise and erroneous. Briefly,

unknown refers to information that is not known or not understood. Ambiguous refers to the possible

variance between distinct information describing the same attribute (e.g. two distinct sensor values for

a given attribute). Imprecise refers to information that represents correct, yet inexact values for a

given attribute (e.g. proximity values with relatively high margins of error). Finally, erroneous refers

to information that does not match the state of the attribute being measured (e.g. a disconnected

temperature sensor). Related, several measures for specifying the uncertainty of context information

have been proposed, including quality measure specification [173], confidence metadata [196] and

semantic quantization [185].

The characteristics described above emphasize the domain-specificity and complexity of context

information. For example, sensors have been developed to detect a wide variety of environmental

attributes such as acceleration, temperature, light, image data, radio frequency signals, etc.

Interactions with sensors often involves domain-specific issues such as electrical specifications,

interaction protocols, data integrity measures and post-processing mechanisms (e.g. sensor fusion)

[349]. Moreover, interacting with a given sensing system requires a precise understanding of its

underlying physical organization along with a detailed understanding of the temporal and uncertainty

constrains of the information in question [216]. For example, sensors may be part of a device‘s local

capabilities or deployed throughout the target environment as collections of semi-autonomous sensing

equipment capable of self-organization and adaptation. The raw information obtained from a sensing

system may require aggregation or other post-processing. For example, relatively high-order context

information such a device‘s physical position may be derived from a GPS receiver that aggregates

low-level timing signals and calculates associated time-of-arrival variance using two-dimensional

trilateration [237]. Notably, the use of sophisticated contextual information often necessitates the

participation of domain-experts capable of effectively modeling and representing such information

types [173]. Accordingly, Ocean provides dedicated abstractions in this regard (see section 4.3.2).

Chapter 2

34

2.3.2 Context Acquisition

A primary feature of most context-aware systems is an ability to obtain useful environmental

information that may be relevant to the interactions between a user and an adaptive application. As

discussed in the last section, context information can be classified as sensed, static, profile and

derived. To accommodate the unique requirements of each information type, context-aware

applications typically employ sensors that are adapted to the characteristics of the information under

consideration. (It should be noted that ―sensor‖ refers to any element capable of capturing contextual

information.) Sensors generally encapsulate the domain-expertise required for managing and

interpreting low-level sensor data. Such encapsulation insulates a software system from the low-level

considerations inherent to many sensor types. For example, an RFID sensor may produce a stable and

accurate list of tags currently in its energizing field by handling low-level details such as energy level

adaptation, response aggregation and collision avoidance [301].

Indulska and Sutton [157] have classified sensors into three main types, including physical, logical

and virtual. Physical sensors refer to devices capable of capturing physical attributes from the

environment (also known as context atoms [185]). Physical sensors are capable of capturing a wide

variety of attributes (e.g. light, sound, pressure, temperature, switch position, etc.) using domain-

specific measurement hardware and associated software control systems. Virtual sensors are generally

pure software systems that capture context atoms from the user‘s local computing environment.

Virtual sensors have been used to capture user profile information, mouse clicks, keyboard input,

email addresses and raw scheduling data [21]. Finally, logical sensors use low-level context atoms

from both physical and virtual sensors to derive higher-order context information that better reflects

the situation of the user. In this respect, logical sensors are similar to the ―derived‖ context

information type discussed by Hendrickson [146]. Examples of derived information from logical

sensors may include contacted email addresses or scheduling conflicts, whereas derived information

from physical sensors may include physical position estimations based on an analysis of the signal

strength values from multiple radio sources [188].

In order to utilize sensor-derived information within a context-aware system, raw measurement data

generally require transformation into more meaningful information [333]. Such transformations are

often sensor-specific and adhere to the following steps, as described by Korpipaa et al. [185]. First,

measurement refers to the capture of relatively unstructured sensor data flows such as electrical signal

measurements. Next, preprocessing refers to the construction of more structured data that contain a

certain number of samples (e.g. time dimension quantization) and generic features for each time

interval. Next, feature extraction delineates ―interesting‖ segments of the data (provided by the

preprocessing phase) into distinct sets that can be analyzed together. Finally, quantization is then

applied to extracted feature sets in order to produce more meaningful context information. Notably,

the quantization method employed is dependent on the characteristics of the feature data and may

include approaches such as fuzzy sets or crisp limits [101]. Figure 8 illustrates two example

quantization approaches applicable to audio sample data.

2.3 Related Work in Context-aware Computing

35

Figure 8: Examples of (a) crisp and (b) fuzzy context quantization (from [185])

Once sensor data has been acquired and transformed, it must be integrated within a software system

in order to drive runtime adaptation. Early context-aware systems such as Xerox Parc‘s PARCTAB

system [347] relied on dedicated acquisition techniques such as direct sensor access [65], whereby

client applications are hardcoded to utilize specific sensing equipment, device drivers and specially

developed instrumentation. For example, PARCTAB represented a Ubicomp infrastructure composed

of custom-built hardware devices in three form-factors: inch-scale Tabs; foot-scale Pads; and yard-

scale Liveboards. These devices, which were available throughout the Xerox PARC facilities, were

connected through a dedicated infrared network capable of both data transfer and device position

estimation. Initially designed with 25 infrared network cells, PARCTAB was eventually extended to

50 cells and became the foundation for several context-aware applications that allowed researchers to

study the effects of software services capable of continuous connectivity and contextualized use.

Similar to PARCTAB, many early context-aware systems utilized direct sensor access as their

primary context acquisition method. For example, Active Badge [345] utilized direct sensor access

techniques to provide routing of telephone calls based on the known locations of people within office

buildings. Developed in the early 1990s by the Olivetti Research Lab in Cambridge England, the

Active Badge system features a lightweight, power-efficient identity badge design that helps locate

the wearer by emitting a unique infrared (IR) signal every ten seconds. Additional system

infrastructure and instrumentation is used to received and identify emitted IR pulses using a custom-

built network of infrared receivers positioned in rooms and hallways. Further refinement of the Active

Badge system resulted in Active Bat [140], which improved positioning accuracy and speed.

Additionally, Schilit extended PARCTAB with a service-based application architecture supporting

management of time-varying resources, dynamic configuration, opportunistic interaction and

contextual customization [293]. Shortly thereafter, context-aware tour-guide systems began to emerge

such as Cyberguide [1] and Lancaster GUIDE [78], which provided tourist information to users

through the wireless delivery of contextualized media to dedicated mobile devices.

More recently, the prohibitive expense of many positioning systems motivated further research into

developing more cost-effect solutions. In this regard, MIT‘s Cricket system [258] provides fine-

grained ultrasonic positioning information based on low-cost, off-the shelf components. Similarly,

Patel et al. [317] proposed a sub-room localization technique that exploits residential power-lines as a

universally available positioning infrastructure. Further, Rehman et al. [332] developed an indoor

localization system, called CILoS, which is based on pre-existing code division multiple access

Chapter 2

36

(CDMA) mobile-phone infrastructure and is capable of accurately differentiating between floors of a

multi-floor building.

While direct sensor access approaches are relatively straightforward to construct and are often

effective in limited application scenarios, they offer little in terms of extensibility and reuse [21]. For

example, the Smart Floor [242] is capable of identifying and localizing users based on footstep force

profiles detected by specially engineered floor tile; however, significant instrumentation requirements

has limited its widespread use. Accordingly, beginning in the late 1990s several projects began to

explore the application of software modularization to the task of context acquisition and processing.

For example, Georgia Tech‘s Cyberdesk project [88] addressed dynamic software integration with a

Java-based application framework in order to enable context-aware discovery and integration of

software modules. Cyberdesk‘s supported context types included physical location, nearby objects,

time, application data, etc. Notably, Cyberdesk represents one of the first Ubicomp projects to provide

an application programming interface (API) intended for service developers.

Other projects have explored techniques for abstracting rich contextual data from high-level

applications. Inspired by Cyberdesk, Salber et al. proposed the Context Toolkit [276], which provides

a component-based architecture and distributed infrastructure designed to support the aggregation of

sensor data through several abstractions. First, Widgets provide simplified access to context

information through reusable and customizable sensor wrappers. Next, Interpreters help transform

low-level context data into more useful high-order information (e.g. translating raw sensor data into

location coordinates or room identifiers). Finally, Aggregators combine multiple types of sensor data

into unified context information. Notably, Widgets incorporate support for context histories, although

neither user profile information nor uncertainty representation is provided. Related, the Technology

for Enabled Awareness (TEA) project [294], proposed by Schmidt et al., espouses a simple, yet

flexible layered architecture designed to encapsulate a heterogeneous set of underlying sensors. TEA

provides several context information aggregation methods along with a set of mechanisms for

quantizing acquired low-level data into more meaningful high-order data using rule-based algorithms,

statistical methods and neural network techniques.

2.3.3 Context Modeling and Representation

Sensor measurement, preprocessing, feature extraction and quantization result in structured

information that requires semantic labeling before it can be used by a context-aware application [185].

In context-aware software, semantic labeling is generally known as context modeling. Broadly, a

context model encapsulates the syntax and semantics of a given context acquisition domain as

machine-readable and (often) temporally constrained native context data (NCD). The format of NCD

can range from application-specific data structures that may be only useful for a single application

type to well-known industry standards that have been developed and ratified by organizations such as

the International Organization for Standardization (ISO). Importantly, a context model represents a

mechanism for capturing environmental information such that it ―can be used to characterize the

situation of entities [in order to] provide relevant information and/or services to the user, where

relevancy depends on the user‘s task‖ [89]. As such, resultant NCD must be capable of expressing the

often complex characteristics of an environment or situation, as discussed in section 2.3.1. Additional

2.3 Related Work in Context-aware Computing

37

aspects of context models include partial validation, expressions of incompleteness, ambiguity and

applicability to existing environments [316].

The majority of context-aware computing research has focused on developing specific context

acquisition and management systems rather than widely applicable context modeling techniques

[145]. Consequently, most current context models are defined for the requirements of a given research

project. However, recent work in has begun to address more generalized modeling approaches that

allow domain-experts to express complex context information and provide related mechanisms for

syntax parsing, feature extraction, interpretation and comparison [146]. While existing context-aware

systems rarely support externally developed context modeling techniques, they are increasingly

regarded as important for modeling real-world environments [49]. As such, the following sections

summarize the findings of Strang and Linnhoff-Popien [316], who investigated several notable

context modeling approaches and related NCD formats.

2.3.3.1 Key-Value Models

A popular context modeling approach is the key-value model, which represents contextual

information as collections of keys and associated values. Keys are generally text-based entities that

denote well-understood context designations such as temperature or location. Values refer to the

quantized context data associated with the keys. Importantly, the key-value approach relies on a

shared understanding of the key elements along with the syntax and semantics of the value data. Early

context-aware systems utilized the key-value model because of its relative simplicity (see Schilit et al.

[290]); however its flexibility has promoted adoption in more recent context-aware frameworks such

as Capeus [280] and popular service discovery protocols (e.g. SLP [136] and JINI [342]). However,

while widely used, the key-value model suffers from a lack of expressiveness [145] and a lack of

sophisticated structuring [316], which limits its use in wide-area context-awareness scenarios.

2.3.3.2 Markup-Scheme Models

The Markup scheme context model refer to hierarchically structured contextual attributes and

associated values; often taking the form of generic XML-based data or more complex representations

such as the Standard Generic Markup Language
5
. Markup schemes are commonly used for modeling

static or dynamic profile information (see section 2.3.1). Examples of markup-based profiles include

the Composite Capabilities/Preferences Profile (CC/PP) [344] and the User Agent Profile
6
. Markup

models also may integrate contextual attributes with existing semantic models. For example, the

Comprehensive Structured Context Profiles (CSCP) proposed by Held et al. [142], combines profile

information with semantic representations based on RDF/S [367]. An example CSCP profile is shown

below in Figure 9, as presented in [142].

5
 http://www.w3.org/MarkUp/SGML/

6
 http://www.wapforum.org

Chapter 2

38

Figure 9: A context representation based on the CSCP profile (from [142])

2.3.3.3 Ontology-based Models

The integration of RDF as a component within markup-based models parallels related efforts in

ontology-based context models and related reasoning algorithms. Ontology-based models attempt to

encapsulate a specific domain of knowledge by formalizing and standardizing a set of concepts and

associated relationships. The concrete encapsulation of semantics and relationships in this way is

referred to as an ontology, which has been defined as ―a formal explicit description of concepts in a

domain of discourse (or classes), properties of each class describing various features and attributes of

the class, and restrictions on properties‖ [65]. The usefulness of an ontology is often evaluated in

terms of its descriptive power, support of reasoning algorithms, encoding scheme (i.e. NCD format)

and overall adoption (i.e. shared understanding) [315]. In this regard, ontology-based context models

generally derive from the requirements of probabilistic reasoning approaches such as Bayesian

networks [260], fuzzy logic [185], or ad-hoc situation determination [329].

Ontology-based models are often used as inputs to reasoning algorithms, which attempt to infer

contextually-relevant knowledge as a means of mediating system behavior. One of the first uses of

ontologies in context-aware computing was described by Öztürk and Aamodt [245], who proposed

normalizing and combining various knowledge domains based on an analysis of psychological studies

related to recall and recognition. Additional notions of encoding have also been explored by

approaches that exploit the generalized Web Ontology Language (OWL) as a means of developing

domain-specific ontologies [344]. Important ontologies specific to context-awareness include the

Context Ontology Language (COOL) [315], the Standard Ontology for Ubiquitous and Pervasive

Applications (SOUPA) [65] and the Ontology for Mobile Device Sensor-Based Context Awareness

[184]. Examples from the Ontology for Mobile Device Sensor-Based Context Awareness are shown

in Table 5 (from [184]).

<?xml version="1.0" encoding="UTF-8"?>

 <rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:cscp="context-aware.org/CSCP/CSCPProfileSyntax#"

 xmlns:dev="context-aware.org/CSCP/DeviceProfileSyntax#"

 xmlns:net="context-aware.org/CSCP/NetworkProfileSyntax#"

 xmlns="context-aware.org/CSCP/SessionProfileSyntax#"

 <SessionProfile rdf:ID="Session">

 <cscp:defaults rdf:resource=

 "http://localContext/CSCPProfile/previous#Session"/>

 <device><dev:DeviceProfile>

 <dev:hardware><dev:Hardware>

 <dev:memory>9216</dev:memory>

 </dev:Hardware></dev:hardware></dev:DeviceProfile>

 </device>

 </SessionProfile>

 </rdf:RDF>

2.3 Related Work in Context-aware Computing

39

 Context type Context Value Confidence Source Attributes

1 Environment:Light:Type Natural - 1.0 Device

Sensor

Confidence = Fuzzy membership

2 Environment:Temperature Warm 21 0.8 Device

Sensor

Confidence = Fuzzy membership

Valueunit = Celsius

3 Device:Activity:Placement Athand - 1.0 Device

Sensor

Confidence = Crisp

Table 5: Examples from the Ontology for Mobile Device Sensor-Based Context Awareness

2.3.3.4 Logic-based Models

Logic-based context models attempt to encapsulate domain knowledge into more formalized

definitions of facts, expressions and rules. Early logic models emerged from artificial intelligence

research, where context information became increasingly viewed as useful for reducing the number of

assumptions required by reasoning techniques [185]. Logical-models have also been used to constrain

reasoning about the intended goals of a human user by modeling a subset of the environmental state

[119]. Akman and Surav [5] used logic-models in deriving the Extended Situation Theory, which

investigated the use of context-derived situations as a means for enhancing natural language analysis.

Such approaches develop ―mathematically-based tools to analyze, in particular, the way context

facilitates and influences the rise and flow of information‖ [87]. Additionally, Work by Gray and

Salber [127] investigated the use of logical-models as inputs to first-order predicate logic, while

Bacon et al. [16] modeled location as a fact type in a rule-based inference engine used to mediate the

behavior of a multimedia system. A logic model example from Situational Theory is shown in Figure

10.

Figure 10: An example of a logical context model based on Situational Theory (from [87])

If it freezes, Ovett will be cold.

This utterance expresses an instance of the constraint that, if a person‘s environment is freezing,

and that person is scantily clad (such as a runner), then that person will be cold. More precisely, let

S and T be the situation-types:

S = [e˙ | e˙ |= <<freezing, t˙, 1>>
 ˄ <<present-in, p˙, e˙, t˙, 1 >>
 ˄ <<scantily-clad, p˙, t˙, 1>>]

T = [e˙ | e˙ |= <<cold, p˙, t˙, 1>>]

where e˙ is a situation parameter, t˙ is a temporal parameter, and p˙ is a parameter for a person.

Then the described situation for u3 is the world and the propositional content is:

 w |= (S => T)[f]

where f anchors p˙ to SO = cu3(Ovett).

Chapter 2

40

2.3.3.5 Graphical Models

The representation of context semantics and relationships has been further explored by the

development of graphical context models. Existing graphical modeling techniques such as the Unified

Modeling Language (UML) [110] are widely used in software engineering as a means of expressing

relationships between elements in software systems. As the UML is sufficiently general, it has also

been used to model contextual information. For example, Bauer [25] used UML to model context

information in air traffic management scenarios. A more complex example is provided by Henricksen

et al. [145], who proposed the Context Modeling Language (CML) as an extension of Object-Role

Modeling (ORM). Broadly, ORM defines a methodology and a related graphical means of modeling

complex contextual relationships as sets of entities constrained by facts [145]. In ORM, facts

represent informative statements about a relationship between entities in a context situation. Examples

of fact constraints include ―is of type‖ and ―permitted to use.‖ Importantly, facts can be used to

represent the various elemental context types (see section 2.3.1) such as sensed, static, profile and

derived. While ORM is useful for graphical modeling, an XML-based representation of the CML,

called XCML [270], has been proposed as an approach for transforming graphical ORM diagrams

into runtime context model representations suitable for dissemination within context-aware

frameworks. An example context model representation based on ORM is shown in Figure 11.

Figure 11: A graphical context model based on Object Role Modeling (from [146])

2.3.3.6 Object-oriented Models

While graphical context models capture context information visually, object-oriented context models

attempt to represent context information as machine-processable objects that expose well-known

interfaces and data-types [316]. Typically, object-oriented models rely on domain-specific

representation formats that may imply language-specific data types, serialization mechanisms and

framework support. For example, Bouzy and Cazenave [40] developed an object-oriented model

which represents characteristics of a 4000 year old game, termed "Go," which is popular in Japan,

China and Korea. Their approach, termed ―Computer Go,‖ uses objects to model Go-specific context

information (e.g. temporal, spatial and goal) as a means of reducing the number of assumptions

2.3 Related Work in Context-aware Computing

41

required by game-play reasoning techniques. Related, location based systems utilize a variety of

location sensing techniques, including triangulation, scene-analysis and proximity (see section 4.3.2).

In such systems, object-oriented models have been used to represent values such as time-of-flight

[258] or provide native representations of standard geo-location markup models [237]. Additionally,

the Technology for Enabled Awareness (TEA) project [294] provides an object-based infrastructure to

supports mobile devices that interact simultaneously with multiple context sources. TEA addresses the

often complex requirements of physical and logical sensor types through the definition of an object-

oriented contextual model known as a cue. In TEA, cues encapsulate sensor measurement,

preprocessing, feature extraction and quantization and may be combined or aggregated in order to

model more complex situations. As an example, TEA aggregates time-series sensor data as a means of

constructing higher-order context information using Kohonen's Self-Organizing Maps (see Figure 12).

Figure 12: Time series sensor data (left) and Kohonen Clustering of sensor readings (right)

(from [294])

2.3.4 Context Management and Provisioning

Provided that contextual information can be acquired, modeled and represented, it is well-recognized

that additional approaches are necessary for managing and provisioning context information so that it

can be used by adaptive applications [21, 146]. As previously discussed, early context-aware systems

were often designed to accommodate a limited set of context instrumentation and associated

representation formats; hence, such systems were often tightly coupled with the underlying sensing

technologies [276]. However, as the scope of context-aware systems expanded, the complexity of

building non-trivial systems increased dramatically [147]. Notably, mobile distributed systems require

techniques for acquiring reliable sources of context information in uncertain environments, where

sensor sources may be rapidly changing, noisy, partially true and heterogeneous [185]. In this regard,

the complexity inherent in managing and provisioning such information is seen as a major obstacle for

the development of context-aware software [146].

Over the years, researchers have purposed a variety of context management and provisioning

approaches. As discussed by Riva [268], several categories of approaches can be identified in this

regard, as shown in Figure 13. Briefly, internal context provisioning localizes context acquisition and

related management systems within a single device platform. Next, external centralized context

provisioning utilizes a federated service infrastructure to aggregate context data from dedicated

sensors located within the environment; providing additional services such as context processing,

Chapter 2

42

reasoning and dissemination. Finally, external distributed context provisioning combines federated

infrastructure with additional peer-to-peer mechanisms for direct, inter-device context information

sharing. This section describes a representative sampling of important approaches from each category.

Figure 13: Context management and provisioning categories (from [268])

Many early Ubicomp projects such as those discussed in the last section relied upon internal context

provisioning, where the application software is tightly coupled to local sensing hardware and device

drivers. Although some early projects involved notions of generalized context management and

processing [293], the tight coupling common to the underlying instrumentation prevented more

generalized use. One of the first techniques for separating context management from the underlying

acquisition approach was provided by Salber and Abowd [275] who suggested the notion of a generic

context-server. According to Salber and Abowd, a context server ―gathers raw local context data

through sensors, stores it and provides context data access to local and remote applications. In

addition, each context server runs services, called context synthesizers, which act on local or remote

context data to generate context information at a higher level of abstraction.‖ Further, the introduction

of the context-server mechanism was intended to impart the following system properties: to allow

networked applications to access local and remote context data in heterogeneous environments; to

accommodate a variety of applications, sensors, and operations on context data; and to preserve a

history of sensed contextual data.

The notion of the generic context server became widely adopted and extended by projects that

utilized external centralized context provisioning techniques. For example, the Strathclyde Context

Infrastructure (SCI) [121] provides dynamic composition and representation of contextual information

through a layered architectural model. Similar to other middleware-based context-server approaches,

SCI defines a distributed model whereby multiple context-servers are deployed throughout an

environment to support a network overlay of partially connected nodes. Each context server is

deployed within a specified operational area (called a ―range‖) and is responsible for providing both

local and global services to dependent applications (e.g. context event subscription and inter-range

communications).

Other notable approaches investigated techniques for external distributed context provisioning. For

example, the Hydrogen approach [152] extends the generic context-server to support the needs of

mobile devices. Hydrogen addresses the increased dynamism of mobile computing environments and

resource constraints of mobile devices through a three layer architecture that supports extensible

context types, disconnected operation and peer-to-peer context sharing. Similar to Hydrogen, the

2.3 Related Work in Context-aware Computing

43

Solar project [63] provides a context management approach capable of discerning and delivering

higher-order context to applications using sensor fusion techniques. Notably, Solar involves aspects of

both service composition and context transformation. Solar defines a distributed context-server-based

overlay architecture where each host (called a ―planet‖) is responsible for a given operational area.

Multiple planets manage access to connected sensing equipment and provide aggregation and fusion

services (among much else). Notably, Planets may autonomously or cooperatively select sensors and

aggregate (or fuse) incoming data streams to produce high-order context data for use by subscribing

context-aware applications.

While context-server techniques have predominated in Ubicomp research throughout the last

several years, most suffer from intractable challenges in large-scale deployments (see section 3.2).

Hence, a variety of additional context management techniques have been proposed. For example,

Hewlett-Packard‘s Cooltown project [179] takes a more general approach to context management by

embedding context information directly into physical objects with the intention of bridging the Web

and the physical world. Cooltown extracts context information using two principle mechanisms. First,

direct sensing uses a dedicated short range wireless protocol to send URIs between devices using

wireless technologies such as IR and Bluetooth (called eSquirt). Using direct sensing, objects provide

Cooltown clients high-order contextual information without the need for context interpretation;

however, participating objects must be retrofitted with Cooltown technology. Cooltown‘s second

approach, termed indirect sensing, is based on an external context registry that supports associations

between Web Resources and specific types of context data; allowing externally stored context

information to serve as the bridging mechanism. Related, Intel‘s PlaceLab project [291] explored the

extraction of existing context information by reappropriating common radio signal sources (termed

beacons) such as 802.11 access points, Bluetooth radios and Global System for Mobile

Communication (GSM) cell towers. As discussed in detail in section 7.2.2, PlaceLab proposes a

community-centric acquisition model, whereby volunteers use specially outfitted laptops and

―stumbler‖ software to war-drive large geographic areas (i.e. search for beacons using vehicles).

As richly described in [89] and [146], real-world contextual information is often provided by

heterogeneous sources that may not be foreseen at design time. Accordingly, context management

approaches have begun exploring mechanism for deploying context acquisition and modeling

components to mobile devices at runtime. For example, our previous context-aware system, called

Aladin [49, 50], provides a modular, client-centric approach for cross-domain context acquisition and

modeling. Operating without the need for dedicated instrumentation, the Aladin Framework provides

a plug-in-based architecture, whereby context modeling mechanisms are dynamically deployed to

mobile devices based on the capabilities of the device and characteristics of the environment. Using

plug-ins, Aladin exploits the computational capabilities and integrated sensing equipment of

commodity hardware as a means of modeling context information from common environmental

sources such as GPS, RF signals, imaging data and other sensor types. Other client-centric approaches

have been proposed. For example Riva developed the CONTextfactORY (Contory) [268] as a

―middleware specifically designed to accomplish efficient context provisioning on mobile devices.‖

While not addressing runtime integration of context acquisition and modeling plug-ins, Contory does

provide dynamic selection of inbuilt context acquisition strategies and allows for context sharing

Chapter 2

44

between mobile devices. Other notable context management platforms for mobile phones include the

context-aware Blackboard architecture from Korpipää et al. [185] and the ContextPhone [259] rapid

prototyping platform from Raento et al.

2.3.5 Context-aware Component Interoperation

Based on the context management and provisioning techniques described in the previous section,

many context-aware systems utilize modeled context information to discover, select and interoperate

with contextually relevant components at runtime. Accordingly, context-aware systems are often

classified as service composition frameworks, whereby an dependent application‘s structure and

behavior derive from the integration of component constituents [208]. Accordingly, context-aware

systems have much in common with the conventional adaptive systems discussed in section 2.2.3. For

example, context-aware systems may dynamically adapt their runtime behavior and capabilities to fit

the characteristics of a mobile user‘s current situation. Moreover, context-aware systems may extend

the architectural principles common to compositionally adaptive systems such as separation of

concerns, computational reflection and component-based design [73]. In this regard, context-aware

systems face many of the same challenges as adaptive distributed systems, including automated

checking of functional and nonfunctional system properties (i.e. assurance), security, interoperability

and decision making [209]. However, as context-aware systems often operate across multiple

organizational boundaries and may encounter heterogeneous networks and distributed components,

additional adaptive approaches have been devised. This section outlines key adaptive techniques in

this regard and discusses several representative approaches.

At their foundation, a primary task of many context-aware systems is the advertisement and

discovery of relevant components for runtime composition [180]. Over the last decade, the number of

networked services available on the local link (e.g. printers, routers and media systems) and across the

enterprise and Internet (e.g. through Web services) has increased dramatically [24, 314]. Significant

interest in developing techniques for advertising and discovering networked services has resulted in

the development of various service discovery protocols, including the Service Location Protocol

(SLP) [135]; Zero Configuration Networking (Zeroconf) [314]; Universal Plug and Play (UPnP)

[169]; and JINI [342]. While differing in approach, service discovery protocols are broadly designed

to facilitate service advertising (i.e. publishing a service‘s capabilities and interfaces) and service

discovery, whereby appropriate services can be located and selected based on certain desirable

characteristics. In terms of scope, UPnP and Zeroconf target home automation applications, whereas

SLP and JINI are designed primarily for enterprise scenarios. Related, JINI provides support for the

runtime delivery of executable software and UPnP promotes industry-wide standardization of specific

service and device types. Notably, approaches such as Zeroconf include automatic network

configuration mechanisms designed to support ad-hoc or isolated network scenarios. While such

service discovery protocols are not primarily intended for Internet-based scenarios, the Web Services

Dynamic Discovery protocol (WS-Discovery) specification [26] has been proposed as a mechanism

for multicast advertisement and discovery of SOAP Web services; however, as of the time of writing,

WS-Discovery remains unstandardized.

2.3 Related Work in Context-aware Computing

45

While some service discovery protocols have achieved limited commercial adoption (notably

Zeroconf and UPnP), most are seen as insufficient for supporting wide-area context-aware scenarios

due to inherent limitations in service density, network accessibility (i.e. local-link constraints) and

protocol interoperability [378]. For example, UPnP‘s non-standard UDP message format faces

interoperability challenges in wide-area scenarios; resulting in low service density [3]. While

techniques for supporting multi-protocol and multi-network service discovery have been proposed

(notably MSDA [261] and Haggle [318]), they are not widely deployed or supported. Further, most

conventional service discovery techniques provide only limited support for contextual information

and rarely accommodate sophisticated component descriptions [29]. For example, in many approaches

service descriptions are expressed using simple string-based name/value tuples, which lack high-

fidelity representations, constraint specifications and support for inexact service matching [59]. In

contrast, context-aware scenarios require context mediation based on complex context information

such as location, identity, device proximity, temperature and so forth [89]. In this regard, recent

service discovery approaches for mobile scenarios (e.g. Splendor [378]) have begun introducing

richer context semantics (e.g. location).

In addition to service advertisement and discovery, most context-aware systems require

sophisticated distributed middleware support [145] as a means of supporting hardware abstraction,

service provisioning, distributed communications and comprehensive context acquisition,

management and dissemination facilities [228]. Early approaches for addressing such requirements

took the form of intelligent environments (IEs), whereby specially instrumented physical spaces are

outfitted with specialized computing infrastructure. For example, Microsoft‘s EasyLiving project [43]

provides an architecture capable of aggregating diverse devices into a coherent user experience using

heterogeneous sources of context data. Similar to related approaches such as iRoom [111] and iRos

[255], EasyLiving adopts an infrastructure-centric architecture, whereby the environment itself

provides orchestration of distributed components and related context data acquisition and modeling

abstractions that rely on environmental instrumentation. In this regard, IEs typically utilize

abstractions that encapsulate participating entities (e.g. sensing, input and output systems) in order to

provide a unified development environment for the creation of context-aware services. As such,

distributed communications and component interoperation are often proprietary and domain-specific.

For example, iRoom and iRos are based on a custom designed distributed communication architecture

called the EventHeap, which enables multicast-style groupware communication through a

publish/subscribe model and extensible event system [111]. Similar to EasyLiving‘s utilization of the

proprietary InConcert middleware (a predecessor of modern SOAP Web services), the EventHeap

provides support for inter-process communication across heterogeneous middleware platforms. The

complexity and domain-specificity of the EventHeap architecture is illustrated in Figure 14.

Chapter 2

46

Figure 14: Overview of the EventHeap architecture (from [111])

Several other projects have extended the IE concept dramatically. For example, projects such as

iQueue [70] attempt to extend the basic IE model to support more generalized Internet-based data

sources that can be dynamically selected and composed at runtime. Specifically, iQueue provides

mechanisms whereby data such as files, databases, newsfeeds, SOAP web services and sensor output

can be described by a unified functional data specification provided by the project team. When

described appropriately, iQueue is able to dynamically select data sources that satisfy an application‘s

requested data types, reselect data sources as appropriate and mediate between incompatible data

formats by transcoding. Notably, the iQueue approach is contingent on the definition of appropriate

functional data specifications for each possible data source in combination with related support for

data source syntax parsing. Next, the Gaia meta-operating system [272] extends conventional

operating system concepts – e.g. program execution, I/O operations, file-system manipulation,

communications, error detection, and resource allocation – to support distributed application

development in ―integrated programmable environments.‖ Gaia is based on the notion of ―Active

Spaces,‖ which constitute a "physical space coordinated by a responsive context-based software

infrastructure that enhances mobile users‘ ability to interact with and configure their physical and

digital environments seamlessly" [272]. Giaia applications are created using a set of predefined

components that intercommunicate via the Gaia Kernel using a dedicated Corba-based

communications middleware. An overview of Gaia‘s physical versus active space models is shown in

Figure 15.

Figure 15: Gaia's (a) physical space versus (b) active space models (from [272])

2.3 Related Work in Context-aware Computing

47

Similar in scope to Gaia, the Aura project [116] focuses on minimizing user attention demands

through a comprehensive middleware architecture that ―spans every system level: from the hardware,

through the operating system, to applications and end users.‖ Accordingly, Aura monitors user and

component activity transparently; attempting to anticipate and proactively support user needs – e.g. by

proactively staging data on servers nearest to the user as a means of reducing network latency. The

prototype version of Aura is based on a custom-designed Corba communications infrastructure;

however, Aura also provides a connector abstraction that provides transport independence. (Notably,

usage of the connector abstraction requires that wrappers be constructed for a given underlying

communications protocol based on Aura‘s set of well-defined service interfaces.)

Unlike relatively small-scale deployments such as Gaia and Aura, the ActiveCampus project [129]

proposes a more scalable context-aware system capable of ―simultaneously supporting extensibility

and tight integration.‖ ActiveCampus is designed around a centralized, layered client/server

architecture, whereby loosely-coupled set of interfaces provide ―component contracts that are easy for

implementers to satisfy (i.e., supporting innovation), yet whose behaviors are rather open (i.e.,

enabling integration)‖ [129]. ActiveCampus‘ interfaces are designed with the intention of providing

extensibility along several dimensions, including service provisioning, context acquisition, modeled

physical entities and end-user devices. Although ActiveCampus arguably provides significant benefits

for larger deployments, the designers noted that its process-centric interface abstractions quickly led

to increased interoperation complexity, performance problems, tight component coupling and an

inability to effectively introduce new services. This observation lies at the core of Ocean‘s component

interoperability approach that is introduced in section 3.2.8.

Recognizing the deployment limitations of conventional IE approaches, more recent efforts have

focused on utilizing the capabilities of existing mobile devices and reducing reliance on

infrastructure-centric architectures. For example, the Cortex middleware [310] utilizes computational

reflection and related component based techniques to accommodate mobile and ad-hoc scenarios.

Cortex extends the notion of autonomous sentient objects, which encapsulate service discovery and

provide context acquisition, modeling and inferencing (i.e. high-order context quantization). Cortex

also provides an event model called STEAM that allows context events to be published and

disseminated without a centralized infrastructure. In contrast to IE approaches, Cortex provides

architectural support for mobile devices through the adoption and extension of OpenCOM, which is a

lightweight component model based on Microsoft‘s COM. Related approaches such as the Reflective

Middleware for Mobile Computing (ReMMoC) [126] address issues related to heterogeneous mobile

service platforms through the adoption of a lightweight middleware model that accommodates

multiple service discovery protocols (e.g. SLP and JINI) and provides additional binding and

interaction techniques intended to support the independent evolution of context-aware applications.

In terms of more generalized frameworks, several approaches have emerged. For example, the Java

Context-Awareness Framework (JCAF) [23] provides a general-purpose, event-based runtime and

related Java programming framework focused on the development of context-aware applications.

Similar to peer-to-peer context management architectures such as Solar (see section 2.3.4), JCAF

defines a set of extensible Context Services that are dedicated to modeling and managing particular

types of context information. Context Services communicate via a related Entity Environment, which

Chapter 2

48

handles context aggregation and transformation. The JCAF approach is based on the Java J2EE

specifications
7
 and relies on a long-lived component container for handling shared resources such as

database connections and RMI stubs. A related Java-centric approach, called the Java ADhoc

Application BootStrap (Jadabs) [112], extends the Java container model to include support for ad-hoc

service composition on small, resource-constrained devices. Notably, Jadabs adapts conventional

service-oriented computing techniques (see section 2.2.2) to the requirements of mobile devices

utilizing the Java micro and standard edition runtimes.

To promote wide-area component interoperation, several context-aware projects have adopted the

SOAP Web services infrastructure introduced in section 2.2.2. As a prototypical example, Keidl and

Kemper [175] describe a framework for context-aware adaptable SOAP Web services. In their

approach, automated Web service discovery is performed by first acquiring context information from

the user‘s environment using extensible context modules capable of including context information

within UDDI component Discovery Requests. Related, a specially designed UDDI registry is used to

select appropriate Web services based on mappings between well-known context information and the

associated WSDL documents describing registered Web service components. As noted by Belotti et

al. [29], an important challenge for context-aware selection of Web service components is the

application of descriptive semantics describing the contextual relevancy of a given component.

Towards this end, context-aware Web-service registries such as SOPHIE [29] have been devised to

facilitate discovery and binding of application constituents based on a semantic data model that

integrates object-oriented and entity-relationship concepts. Other approaches address Web service

component annotation through semantic description. For example, Manners [11] exploits notions

introduced by grammar-oriented object design and Cobra [64] extends the Web Ontology Language

(OWL)
8
 as proposed within the Semantic Web initiative [368].

Although SOAP Web services have improved syntactical interoperability though open interface and

the use of well-known Internet protocols, they rarely accommodate spontaneous, cross-domain

discovery and interoperation without involving significant prior interface knowledge [336]. As noted

by Edwards et al. in [96], ―Interoperability among a group of devices, applications, and services is

typically predicated on those entities having some degree of prior knowledge of one another.‖ Thus,

several context-aware projects have explored techniques for reducing the reliance on domain-specific

interface definitions as a means of promoting widespread reuse. For example, the SpeakEasy project

[96] from Xerox PARC described a new computing paradigm, called recombinant computing, that

aims to allow arbitrary component interaction through the use of a fixed set of compact interface

definitions and mobile code to allow dynamic extension of functionality at runtime. In this regard,

SpeakEasy leverages conventional Web architecture techniques as a means of supporting

―serendipitous interoperability – the ability for devices and services to use one another with only very

restricted prior knowledge‖ [96]. Related projects such as SA-REST [192] have similarly

demonstrated how conventional Web architecture can be used to promote cross-domain component

interoperation through the Representational State Transfer (REST) architectural style (see section

3.2.8).

7
 http://java.sun.com/javaee/

8
 http://www.w3.org/2004/OWL/

2.4 Chapter Summary

49

2.4 Chapter Summary

This chapter presented background and related work regarding context-aware computing. It began by

discussing how the rise of data communication networks led to the emergence of distributed

computing. Next it described key aspects of distributed computing, including the characteristics of

distributed software architectures and their associated challenges. Based on these challenges, it

described several key distributed computational approaches, including ad-hoc, Structured

Communication, Distributed Object Communications Middleware and Message-Oriented

Middleware. Next, it described Service Oriented Computing as a generalized approach for combing

self-contained, loosely coupled units of functionality (called services) and SOAP Web services as a

popular mechanism for providing SOC across Internet-based infrastructure. We noted that SOAP Web

services often rely on process-centric descriptions of a component‘s end-point addresses, supported

methods and associated data types using technologies such as Corba IDL or WSDL. The background

section concluded by describing the influence of mobile computing and wireless networks. Notably, it

discussed how parameter and compositional adaptation are increasingly used to dynamically adapt

software systems to better fit the characteristics of a mobile user‘s current situation.

The remainder of the chapter described context-aware computing as an approach for adapting

mobile and embedded computing approaches to the complex dynamics of the physical world. The first

section discussed the complexity of distributed mobile systems and how supportive middleware is

well-recognized as an essential requirement for constructing non-trivial systems. Next, we introduced

a conceptual framework intended to guide the discussion of context-aware computing techniques,

middleware and projects. Using the conceptual framework as a guide, the next section began by

defining key terms related to context and context-aware computing; noting the various important

properties of context information. The next section described techniques for acquiring context

information and noted that conventional acquisition approaches are often reliant on the widespread

deployment of sensing instrumentation and infrastructure. The next section described context

modeling and representation techniques. Importantly, this section discussed how effective context

modeling often requires the participation of domain-experts to help capture the syntax and semantics

of a given context domain. The next section introduced common mechanisms for context management

and provisioning. Notably, this section described how existing context management approaches (e.g.

context servers) often encounter scaling challenges that prevent large-scale deployments. Moreover, it

noted how recent advances have begun exploring cross-domain context acquisition and modeling in

real-world scenarios. The final section presented techniques for context-aware component

interoperation, whereby context-aware systems utilize resultant context information to discover, select

and interoperate with contextually relevant components at runtime. This section presented several

service discovery protocols and related distributed communications infrastructures. Importantly, it

noted how existing architectures require significant prior interface knowledge in order to support

spontaneous component interoperation. The chapter concluded by mentioning several promising

component integration techniques that closely resemble conventional Web architecture.

Based on the related work presented in this chapter, we note that current context-aware systems are

typically devised with the assumption that the underlying network infrastructure, hardware devices,

application components and context mechanisms are well-known a-priori and contained within a

Chapter 2

50

limited and controlled administrative domain. Hence, many approaches mandate expensive and

invasive deployment of context instrumentation; require domain-specific network configurations; rely

on specially outfitted mobile devices; adopt enterprise-specific distributed middleware; and generally

lack support for spontaneous cross-domain component interoperation. Further, the considerable

expense and effort required to devise, implement and deploy such systems often promotes a top down

development approach intended to address niche problem domains where the requisite support

infrastructure can be readily provided, administrative access is available and return on investment is

assured. Indeed, several recent surveys [22, 62, 106] indicate that existing systems generally fail to

provide ubiquitous accessibility; resulting in a pronounced lack of developer adoption and end-user

participation. The next chapter addresses these issues by introducing the foundations of the Ocean

approach.

51

Chapter 3

Foundations of the Ocean Approach

3.1 Introduction

Throughout the last chapter, it was discussed how interrelated contributions from the domains of

network engineering, distributed systems and mobile computing are rapidly converging to produce

everyday environments comprised of powerful mobile and embedded devices, ubiquitous network

connectivity and rich sources of networked computation. These advances are recognized as important

foundations for the development of mobile distributed systems capable of supporting human-centric

tasks and modes of interaction [353]. However, while many everyday environments provide ample

opportunities for adaptive computing, mobility often introduces significant challenges related to

heterogeneity, scalability, security, privacy, spontaneous interoperation, and so-forth [73].

Accordingly, context-aware computing has emerged to address these challenges through an

evolutionary synthesis of distributed systems and mobile computing. As discussed in section 2.3,

context-aware systems model environmental and situational information – e.g. location, identity or the

proximity of nearby devices – as a means of orchestrating parameter and compositional adaptation. In

this way, a context-aware system aims to dynamically optimize its runtime behavior and capabilities

to fit the characteristics of a user‘s current situation and computing environment. While applicable to

many application domains, context-awareness is recognized as particularly compelling for mobile

computing, where users often encounter rapidly changing execution environments and sources of

information and computation potentially not known a-priori [293]. However, despite decades of

research effort, context-aware systems remain consigned to small-scale deployments and research

prototypes [79, 346].

Based on the background and related work presented in the last chapter, this chapter begins a

discussion of our novel context-aware computing approach, called Ocean, which aims to capture the

entrepreneurial spirit of modern Web architecture as a means of supporting large-scale, real-world

context-aware systems. The structure of this chapter is based on an abbreviated version of the IEEE

Recommended Practice for Software Requirements Specifications (SRS) [156], which provides a

approach for deriving software specification requirements based on the recommended practices of the

IEEE. The structure of this chapter is as follows: Section 3.2 begins by introducing the key challenges

facing large-scale context-aware systems and discusses related advances in cross-domain context

modeling, network engineering, scalable middleware and component interoperability. Next, section

3.3 introduces the overall scope of the Ocean approach, which aims to address the challenges

discussed in section 3.2. Section 3.4 introduces Ocean‘s non-functional requirements by presenting

Ocean‘s major design principles in section 3.4.1 and related design constraints in section 3.4.2. Based

on these non-functional requirements, section 3.5 derives the overall Ocean approach by describing its

principle architectural abstractions, application model, component contextualization and discovery

techniques, registry architecture and integrated support for community-based processes (e.g. open

contribution, collaborative annotation, volunteer-based computing and recommender systems).

Related, section 3.6 describes Ocean‘s principle stakeholders. The chapter concludes with a

discussion of the Ocean Reference Implementation as a validation methodology in section 3.7.

Chapter 3

52

3.2 Large-scale Context-aware Systems: Challenges and Foundations

Despite decades of research effort, current context-aware systems remain consigned to small-scale

deployments and research prototypes; existing primarily within isolated islands of niche functionality

that are far removed from everyday use [79, 288]. Indeed, several recent surveys [21, 62, 97] indicate

that existing systems generally fail to provide ubiquitous accessibility and often incur intractable

scaling costs that inhibit widespread reuse; resulting in a pronounced lack of developer adoption and

end-user participation. As previously discussed, current context-aware systems are often designed

with the assumption that the underlying network infrastructure, hardware devices, application

components and context mechanisms are contained within a limited and controlled administrative

domain and are well-known a-priori [97]. As such, many mandate expensive and invasive deployment

of context instrumentation; require domain-specific network configuration; rely on specially outfitted

mobile devices; adopt enterprise-specific distributed middleware; and lack support for spontaneous

cross-domain component interoperation. Further, the considerable expense and effort required to

devise, implement and deploy such systems often promotes a top-down development style intended to

address niche problem domains where the requisite support infrastructure can be readily provided [62,

97]. However, while existing techniques have been moderately successful in supporting enterprise

scale systems, they are often inappropriate for large-scale, real-world environments due to a number

of interrelated challenges. In this section, we discuss these challenges and present related advances

that provide the foundations for the Ocean approach.

3.2.1 Challenge: Ubiquitous Context Infrastructure

As previously discussed, context aware systems are founded upon mechanisms for acquiring,

modeling and provisioning context information. Most systems utilize modeled context information to

orchestrate parameter and compositional adaptation (see section 2.2.3). In sophisticated approaches,

compositional adaptation techniques are used to discover, select and interoperate with relevant

networked components at runtime. Notably, such systems often aim to provide adaptive features to

nomadic users operating within heterogeneous, real-world environments. In this regard, most non-

trivial context-aware systems are organized hierarchically; with context acquisition, context modeling

and representation and context management and provisioning forming a generalized layered model

(see section 2.3). Hence, at their foundation, large-scale context-aware systems presume the

availability of ubiquitous context infrastructure; however, as discussed shortly, existing approaches

often suffer from significant scalability issues in larger scenarios.

Context-aware systems presume a level of physical integration and network accessibility beyond

that of conventional distributed and mobile systems [180]. Physical integration is most apparent at the

boundary between the physical and virtual domains, where sensors are used to capture contextual

attributes from the environment. In many context-aware systems, expensive and invasive context

instrumentation is deployed throughout the system‘s operational area in order to support the context

acquisition and modeling process. For example, the University of Karlsruhe‘s MediaCup project [28]

explores techniques for augmenting physical objects with digital presence while preserving an

object‘s original appearance and purpose. In this regard, the MediaCup project team outfitted

conventional coffee cups with dedicated sensing equipment, wireless technologies and low-power

3.2 Large-scale Context-aware Systems: Challenges and Foundations

53

microcontrollers that broadcast the cups‘ physical state to interested applications (see Figure 16a).

Similarly, the Smart Floor [242] from the Georgia Institute of Technology transparently identifies and

localizes users based on footstep force profiles detected by specially engineered floor tile with

integrated load sensors (see Figure 16b). Related, MIT‘s Cricket system [258] provides fine-grained

position estimation by way of custom designed ultrasonic hardware that must be deployed throughout

the intended operational environment. Although such infrastructure-centric projects are inarguably

capable of providing high resolution contextual data, the augmentation of existing physical

environments with custom-designed instrumentation and related infrastructure is often prohibitively

costly outside of small-scale deployments [79]. Indeed, even with significant industry backing, the

development and standardization of the UPnP service discovery protocols required almost a decade of

effort [162].

Figure 16: Dedicated context instrumentation: a) MediaCup and b) the Smart Floor

Aside from the costs associated with context instrumentation, other factors have inhibited the

widespread deployment of context infrastructure. For example, many context-aware projects require

dedicated context servers that impose significant scalability issues. Notably, systems such as Solar

[63], SCI [121] and Hydrogen [152] require the widespread deployment and maintenance of multiple

context servers; resulting in increased hardware costs, increased development time and necessitating

administrative access across the operational area. Related, many context-aware systems rely on the

related deployment of ―heavyweight‖ middleware components such as Corba ORBs or Java RMI

stubs, which imposes limitations on the devices, programming languages and communication

protocols available for a given project. For example, the JINI architecture mandates use of the Java

programming language, requires a device-compatible Java virtual machine, requires pre-deployment

of runtime software components and constrains distributed communications to Java RMI [342].

Further, the adoption of complex distributed computing middleware often limits application

development to experts [145]. As such, current context-aware systems are generally based on niche

application models that lack adequate toolkits and programming models [147]. Moreover, niche

context-aware infrastructures are often designed to accommodate preconceived application domains

and may only support a limited set of context information types [73]. Notably, such systems rarely

Chapter 3

54

support the dynamic integration of new context mechanisms at runtime or allow service provisioning

by external developers; further limiting their use in heterogeneous, large scale scenarios [97].

3.2.2 Foundation: Aladin-based Context Acquisition and Modeling

Although the deployment of dedicated context infrastructure has proven to be infeasible for large-

scale scenarios, many everyday environments are becoming increasingly saturated with preexisting

sources of potential contextual information (e.g. GPS signals, GSM cell tower identifiers, MAC

addresses, RFID tags, barcodes, accelerometer data, light intensity, etc.) As noted by Edwards and

Grinter [95], suitable environments for context-awareness arise more or less ―accidentally‖ from an

―accretion of technological components embedded in an environment that has not benefited from a

holistic, ground-up approach to design and integration.‖ Based on such observation, we developed a

context-aware computing approach, called Aladin [49], which explores how commodity devices can

be dynamically adapted to acquire and model a diverse range of context information using local

available hardware and software. Aladin is specifically designed to automatically acquire and model

context information in large-scale, cross domain scenarios without requiring significant context

instrumentation or related infrastructure. Aladin provides a domain-neutral, client-centric approach

that dynamically extends the context modeling capabilities of commodity mobile devices through the

use of runtime deployed plug-ins. Client-side Aladin software enables devices to adapt their context

acquisition and modeling capabilities by performing ongoing capability analyses and integrating

platform-specific context acquisition and modeling plug-ins on-the-fly. Related, we also developed an

Internet-based plug-in repository whereby external parties can develop and integrate context plug-ins

for use by the Aladin community.

The Aladin approach is based on the extensible, client-centric software architecture shown in

Figure 17. In the Aladin approach, domain-specific software running on a commodity device hosts the

Aladin Framework. Based on the Façade pattern [114], the Aladin Framework provides a context

management API and related set of context events. During runtime, the Aladin Framework

automatically analyses the capabilities of its host device and environment by way of dynamically

installed capability analysis plug-ins. Based on the detected capabilities the host device and

environment, Aladin then dynamically downloads and installs context acquisition and modeling plug-

ins that are capable of rendering high-fidelity native context data (NCD). During runtime, low-level

context preprocessing and quantization are provided by the installed context plug-ins; resulting in the

generation of context events (containing NCD) that are received by the hosting application. The

hosting application may react to incoming context events as needed, according to their local

application logic; however, Aladin provides an additional context interpretation abstraction that can

be implemented as a means of customizing Aladin with support for a particular application model.

Aladin has been validated through the construction of three diverse application models, including a

mobile interactive cinema platform [50]; a museum tour-guide system [49]; and a pervasive

multiplayer tangible game [148]. Related work indicates that client-centric approaches, such as

Aladin, can be effectively adapted to large-scale heterogeneous environments [139, 268].

Accordingly, the Aladin Framework is used to provide a foundation for the Ocean approach (see

section 3.4.2).

3.2 Large-scale Context-aware Systems: Challenges and Foundations

55

Figure 17: Overview of the Aladin Framework architecture

3.2.3 Challenge: Widespread Network Accessibility

Given effective cross-domain context acquisition and modeling, large-scale scenarios presuppose a

foundation of network accessibility encompassing the intended operational area [73]. As discussed in

sections 2.3.4 and 2.3.5, most existing context-aware infrastructures adopt conventional distributed

object communication (DOC) infrastructure (e.g. Corba, Java RMI and SOAP Web services) to

facilitate context provisioning and component interoperation. For example, the Gaia meta-operating

system [272] adopts Corba as its principle communications middleware. As a result, the Gaia

infrastructure inherits Corba‘s mechanisms for "object registration, location, and activation; request

demultiplexing; framing and error-handling; parameter marshalling and demarshalling; and operation

dispatching" [122]. Similarly, the design of many context-aware systems is significantly influenced by

the underlying service discovery and distributed communications models.

As discussed in section 2.3.5, context-aware approaches that utilize ad-hoc, local-link service

discovery protocols (e.g. SLP, UPnP and Zeroconf) are inherently limited to short-range operations

with relatively homogenous peers. While ad-hoc integration techniques are inarguably important for

context-aware computing, existing approaches provide impoverished mechanism for wide-area

service discovery and lack protocol interoperability [194]. For example, in order for an UPnP AV

MediaServer to discover and interoperate with an UPnP MediaRenderer, compatible devices must be

capable of communicating via multicast. Although, the UPnP standards allow for service discovery

Chapter 3

56

beyond the local link, most firewalls block multicast traffic beyond the local administrative scope;

effectively constraining UPnP to a single administrative boundary. While some service discovery

protocols provide external service registries and related network address translation (NAT) traversal,

current registries have only achieved limited adoption [283] and many NAT traversal techniques

remain unstandardized or poorly supported [323] (e.g. the Internet Gateway Device Protocol). Finally,

although service discovery protocols share similar functionality, most are not interoperable [3]; hence,

inter-protocol discovery and interoperation scenarios are generally precluded. While hybrid protocols

have attempted to address wide-area service discovery and advertisement [194], such techniques have

not yet gained traction.

In addition to service discovery limitations, the adoption of conventional DOC infrastructure

imposes network accessibility challenges for many context-aware systems. For example, current DOC

middleware often imply considerable implications regarding firewall traversal in cross-domain

deployments [72]. Specifically, wide-area use of conventional DOC techniques may pose security

risks (due to unencrypted protocols) and often requires the opening of specific network ports in an

organization‘s firewall [233]. While some corporate network policies allow for the transport of DOC

protocols, many organizations have proven reluctant to allow intercommunication between local

services and distributed components outside their administrative control [144]. Further, additional

cross-domain issues related to NAT also arise in situations where isolated IP address spaces conflict

with a DOC middleware‘s object registration, location, and activation techniques (e.g. Corba‘s

Interoperable Object Reference). In such cases, published private IP addresses may not be reachable

by external entities, even with appropriate firewall security policies. In this regard, approaches such as

Java RMI and Corba have attempted to accommodate firewall traversal through the use of HTTP

tunneling techniques and dedicated firewall hardware; however, such techniques often result in

performance limitations, increases security risks and are currently poorly supported due to technical

shortcomings and lack of interest from firewall vendors [144].

3.2.4 Foundation: Public Internet Infrastructure

The development of large-scale context-aware systems will require support for ubiquitous network

accessibility. In this regard, we suggest that public Internet infrastructure represents a compelling

foundation for context-aware systems capable of cross-domain context modeling. In terms of

adoption, the Internet remains unparalleled as an open data communications infrastructure. Recently,

innovative census techniques [141] have been used to survey the Internet‘s ubiquity and global scope.

As of the time of writing, the most recent census of Internet edge hosts describes an rapid and

increasing allocation of IP addresses; ranging from 315 in 1982 [306] to over 2.7 billion in 2006.

Other recent surveys [227] estimate global Internet usage at approximately 20.3% of the world‘s

population (1.36 billion people) according to the following geographic distributions: North America

(72.2%); Oceania/Australia (56.4%); Europe (46.8%); Latin America/Caribbean (22.1%); Middle East

(17.1%); Asia (13.6 %); and Africa (4.1%). Related, recent Web server response surveys [222] and

search engine indexes [189] estimate the total number of Web servers at 187 million and the total

number of indexed Web pages at over 25.81 billion. While an accurate assessment of the Internet‘s

growth dynamics remain challenging, modern Internet infrastructure inarguably represents an

increasingly ubiquitous global phenomenon that spans continents and cultures.

3.2 Large-scale Context-aware Systems: Challenges and Foundations

57

Although the Internet provides ubiquitous network accessibility, its design has proven difficult to

exploit by traditional context-aware systems [97]. As previously described, Internet architecture is

often hostile to the service discovery and distributed communication techniques common to many

context-aware systems. Moreover, by emphasizing connectivity and the end-to-end principle (see

section 2.2), Internet infrastructure reveals very little of the rich contextual semantics often required

by context-mediated adaptation strategies. As previously stated, aside from basic addressing and

routing information, potential context information – such as underlying communications hardware,

network topologies and physical location of components – is intentionally hidden from end-systems as

a means of providing ―the illusion of a single, seamlessly connected network where the fragmented

nature of the underlying infrastructure and the many layers of protocols remain largely transparent to

the user‖ [358]. As such, the Internet‘s architectural model often confounds traditional context-aware

approaches that rely on domain-specific network configuration and well-known context sources.

Indeed, the conspicuous lack of Internet-scale context-aware systems highlights the fundamental

conflicts that arise between the scope of context-aware systems and the requirements of large-scale

network architectures.

Although Internet-scale context-aware systems have yet to be devised, several interrelated advances

are providing the foundations for larger deployments. First, as described in section 3.2.1, adaptive

context-aware frameworks such as Aladin [49] and Contory [268] demonstrate techniques for cross-

domain context acquisition and modeling that are well-adapted to conventional Internet infrastructure.

Next, the widespread adoption of the Internet is providing an increasingly ubiquitous foundation of

network communications across a broad range of environments. Importantly, the widespread adoption

of the TCP/IP model has led to ―constant innovation and entrepreneurial spirit at the physical

substrate of the network as well as at the application layer‖ [358]. The resultant explosion of Internet-

based services such as email and the Web have resulted in the development of broadly supported

application-layer communication protocols such as HTTP [104]. Related, the pairing of open data-

exchange mechanisms (e.g. XML) with Internet-friendly communication protocols has resulted in the

emergence of SOAP Web services as a mechanism for constructing distributed computing systems

using Internet technologies. While SOAP Web services face significant challenges in wide-area

context-aware scenarios (see section 3.2.7), their current market dominance has promoted the

widespread adoption of software support across a broad range of devices (e.g. XML parsing).

3.2.5 Challenge: Ubiquitous Middleware

Although Internet infrastructure provides widespread accessibility and architectural flexibility, cross-

domain context-aware systems presuppose distributed middleware that is similarly accessible, highly

scalable [38] and supportive of a wide variety of problem domains [323]. While definitions vary,

middleware has been described as a ―software layer between the operating system – including the

basic communication protocols – and the distributed applications that interact via the network. This

software infrastructure facilitates the interaction among distributed software modules‖ [117]. In

contrast to enterprise-scale distributed systems, which are generally highly complex and contained

within a limited administrative boundary, large-scale distributed architectures must address several

additional requirements such as a low entry-barrier, extensibility, independent deployment of

components and rapid evolution [105]. Importantly, large-scale distributed applications must be

Chapter 3

58

capable of operating across multiple trust domains, and ―continue operating when subjected to an

unanticipated load, or when given malformed or maliciously constructed data, since they may be

communicating with elements outside their organizational control‖ [106]. Table 6 presents an

overview of the key requirement for context-aware middleware as identified by Henricksen et al.

[147].

Middleware requirement Description

Support for heterogeneity Hardware components ranging from resource-poor sensors, actuators and

mobile client devices to high-performance servers must be supported, as must

a variety of networking interfaces and programming languages. Legacy

components may be present.

Support for mobility All components (especially sensors and applications) can be mobile, and the

communication protocols that underpin the system must therefore support

appropriately flexible forms of routing. Context information may need to

migrate with context-aware components. Flexible component discovery

mechanisms are required.

Scalability Context processing components and communication protocols must perform

adequately in systems ranging from few to many sensors, actuators and

application components. Similarly, they must scale to many administrative

domains.

Support for privacy

Flows of context information between the distributed components of a context-

aware system must be controlled according to users‘ privacy needs and

expectations.

Traceability and control The state of the system components and information flows between

components should be open to inspection - and, where relevant, manipulation -

in order to provide adequate understanding and control of the system to users,

and to facilitate debugging.

Tolerance for failures Sensors and other components are likely to fail in the ordinary operation of a

context-aware system. Disconnections may also component occur. The system

must continue operation, without requiring excessive resources to detect and

handle failures.

Ease of deployment and

configuration

The distributed hardware and software components of a context-aware system

must be easily deployed and configured to meet user and environmental

requirements, potentially by non-experts (for example, in ―smart home‖

environments).

Table 6: Requirements for context-aware middleware (from [147])

To accommodate the requirements presented above, current context-aware systems typically utilize

―heavyweight‖ middleware infrastructure (see section 3.2.1) that impose significant restrictions on the

3.2 Large-scale Context-aware Systems: Challenges and Foundations

59

types of devices and computing environments that can be supported. Notably, Java RMI, Microsoft

.NET and Corba all require specific local runtimes that may not be widely available across all device

types. For example, Java RMI requires a Java virtual machine, mandates use of the Java programming

language and is available only as an optional package for mobile devices running the Java 2 Mobile

Edition (J2ME) [321]. Similarly, Corba requires the deployment of a compatible Object Request

Broker across participating entities [233] and .NET remoting presumes widespread availability of a

compatible .NET runtime library. Furthermore, even distributed applications based on SOAP Web

services require a local SOAP stack to provide marshaling, serialization, transport and demarshaling

of XML-encoded SOAP data. As noted by Garlan et al. [115], such techniques often result in tight-

coupling between middleware components and dependant distributed applications; potentially limiting

reuse or inhibiting a system‘s ability to accommodate new application scenarios without retooling.

3.2.6 Foundation: Conventional Web Architecture

Although rarely directly exploited by context-aware systems, conventional Web architecture is

increasingly recognized as an Internet-scale middleware platform that fulfils many of the context-

aware computing requirements presented in the last section [106, 139]. Modern Web architecture

emerged from experiments at CERN by Tim Berners Lee between 1982 and 1988 [31]. During this

period, Berner‘s Lee envisioned a novel application scenario whereby conventional Internet

infrastructure could be used to support ―a shared information space through which people and

machines could communicate‖ [33]. Communication within this information space was seen as a way

for participating users to independently structure and publish a variety of information such as research

notes and contact details. The intended users of the original system were physics researchers who

were broadly categorized as geographically dispersed, connected via the Internet and utilizing a

heterogeneous collection of computing devices. Consequently, the ―challenge was to build a system

that would provide a universally consistent interface to this structured information, available on as

many platforms as possible, and incrementally deployable as new people and organizations joined the

project‖ [106]. The resultant architecture, called the World Wide Web (Web), was designed to extend

existing hypertext techniques [31] with a data-centric distributed computing approach that emphasized

non-centralization, remote access across multiple networks and heterogeneity of devices [105].

An idealized model of the interactions within a Web application has been formalized as the

Representational State Transfer (REST) architectural style by Fielding in 2000 [105]. Although not

specifically tied to Web architecture, REST was derived from the standardization of its first

application-layer protocol, known as the Hypertext Transport Protocol (HTTP) [104]. REST was

designed to provide ―caching and reuse of interactions, dynamic substitutability of components, and

processing of actions by intermediaries, in order to meet the needs of an Internet-scale distributed

hypermedia system‖ [106]. The foundational architectural styles underlying REST include replicated

repository, cache, client-server, layered system, stateless, virtual machine, code on demand, and

uniform interface (for details see [105]). The constraints of these underlying styles differ from

traditional distributed computing approaches that hide underlying components, network entities and

data. In contrast, REST intentionally exposes the nature and state of the network and data elements

that comprise a system [105]. On overview of the REST architectural style is shown in Figure 18.

Chapter 3

60

Figure 18: Overview of the REST architectural style (from [262])

REST is based on a key information abstraction known as a Resource, which represents ―any

concept that might be the target of an author‘s hypertext reference‖ [106]. As described in [105], any

information that is important enough to be named can be modeled as a Resource (e.g. an image,

newsfeed, software release, Web page, etc.) Resources comprise identity, state and behavior. Further,

Resource naming is accomplished through the use of a globally adopted addressing scheme known as

the Unified Resource Identifier (URI) [34], which provides a standardized mechanism for acting upon

or obtaining information about Resources. As described in [341], ―A resource should have an

associated URI if another party might reasonably want to create a hypertext link to it, make or refute

assertions about it, retrieve or cache a representation of it, include all or part of it by reference into

another representation, annotate it, or perform other operations on it. Software developers should

expect that sharing URIs across applications will be useful, even if that utility is not initially evident.‖

In this regard, the use of URIs allows applications to independently expose ―interesting‖ aspects of

their internal data or functionality. Likewise, URIs allow clients to decide which parts of an

application‘s data are important; allowing for component integration in ways perhaps not originally

envisioned by the designer of the Resource [266].

On the Web, distributed entities called Web Agents observe and change Resource state by sending

and receiving Representations. A Representation can be understood as a sequence of bits (generally in

a standardized data format) that represents the current (or desired) state of a Resource. Web agents

include software systems acting directly on behalf of a user (i.e. user agents) or intermediary entities

such as proxies, browsers, spiders and multimedia players (i.e. software agents). As Representations

are exchanged between Web agents, Resource state is managed by its hosting origin server, whereas

the application state is managed by the clients. State transitions between application states are

facilitated through the use of hypermedia, which enable clients change transition from one state to the

next by examining and dereferencing hyperlinks embedded within received Representations [105]. In

the REST model, interactions between Web agents are stateless; meaning that each request for a

Representation occurs in isolation. Stateless interactions help improve a systems scalability because

3.2 Large-scale Context-aware Systems: Challenges and Foundations

61

servers do not need to cache state information between requests; allowing for improved resource

allocation and simplified load balancing that does not require server affinity or state passing [266].

Perhaps most distinguishing feature of the REST model is its establishment of a uniform interface

between distributed components, which helps improve interoperability across multiple organizational

boundaries [336]. Rather than allowing components to expose unrestricted method vocabularies (i.e.

process-centric distributed computing), all RESTful components implement the same minimal set of

generic interface methods. By requiring that Resources to provide suitable implementations of the

same generalized interface, requesting clients need only understand the semantics of a single

interaction vocabulary. Further, the uniform interface is complimented by the use of self-describing

message payloads, whereby the data passed between entities are well-known. On the Web, message

payloads typically adhere to globally standardized formats (e.g. MIME content types [327]) and the

uniform interface is provided by the set of HTTP methods shown in Table 7. As noted by Ray et al.

[262], ―It is precisely because HTTP has few methods that HTTP clients and servers can grow and be

extended independently without confusing each other.‖

Method Description

GET Retrieve a representation of a Resource addressed by a URI.

POST Creates a new Resource when directed to an existing URI.

PUT Modifies an existing Resource when directed to an existing URI. Creates a new Resource if

directed to a new URI.

DELETE Deletes an existing Resource when directed to an existing URI.

HEAD Retrieve a metadata-only representation of a Resource.

OPTIONS Check which HTTP methods a particular Resource supports.

Table 7: Overview of the HTTP uniform interface (adapted from [262])

Based on characteristics of the REST architectural style, conventional Web architecture provides a

promising middleware foundation for context-aware systems. The Web‘s design addresses scalability

beyond geographic dispersion by incorporating techniques that accommodate multiple trust domains,

unanticipated load and allow for independent component deployment [341]. Next, as evidenced by the

tremendous number of Web-based applications, the hypermedia application model has proven

remarkably capable of accommodating a variety of application domains. Moreover, the distributed

architecture designed to support the Web‘s hypermedia model is sufficiently flexible to accommodate

a variety of non-hypermedia application scenarios [266]. Additionally, the Web‘ low entry-barrier and

non-proprietary standards have made its communication protocols, functional apparatus and device

support ubiquitous. Related, the Web‘s increasing ubiquity has resulted in significant developer

adoption that has resulted in the emergence of a broad array of development toolkits, application

frameworks and related knowhow. Consequently, increasing developer adoption has resulted in an

explosion of Web-based information and computation.

Chapter 3

62

3.2.7 Challenge: Cross-domain Component Interoperation

Given a sufficiently ubiquitous middleware approach, cross-domain context-aware systems must be

able to discover and interoperate with relevant distributed components at runtime without extensive

prior knowledge [96, 180]. As described in section 2.2.1, traditional distributed component

architectures rely on process-centric descriptions of a software component‘s end-point addresses,

methods and associated data-types provided by technologies such as Corba IDL or WSDL. However,

although modern development environments simplify the creation of remotely accessible methods, the

resultant proliferation of domain-specific interfaces can reduce the probability of component

interoperation [225, 334, 336]. Notably, several recent surveys [21, 62, 97] indicate that the majority

of current context-aware systems adopt process-centric interoperation (PCI) styles. PCI techniques

such as those epitomized by Corba and SOAP Web Services make the coupling between callers and

components clear and unambiguous; however, in large-scale scenarios, interactions between

distributed components may suffer from architectural mismatch [115], where domain specific method

syntax, sequencing and semantics prevent widespread reuse due to a lack of widespread

understanding of a given interface [334]. While dynamic interactions between specialized interfaces

can be resolved in small-scale distributed systems (e.g. enterprise scenarios) they become problematic

in larger scenarios where component interfaces cannot be known a-priori [334]. Moreover, PCI

techniques rely on complex infrastructure, highly skilled developers, platform specific mobile code

and significant tooling, which are all recognized as antithetical to widespread developer adoption

[145].

3.2.8 Foundation: RESTful Component Interoperation

The Web‘s underlying REST architectural style, as described in section 3.2.6, provides several

advantages for component interoperation in scenarios where a-priori interface knowledge is

impossible or difficult to achieve [336]. Unlike conventional PCI approaches, which generally rely on

domain-specific interface definitions, proprietary component addressing and opaque communication

endpoints, REST employs a lightweight middleware model that has been rapidly gaining in popularity

across a wide variety of cross-domain composition scenarios, including component architectures (see

section 5.2.1), enterprise Web services [170, 262] and context-aware systems [96, 192]. As previously

discussed, REST exploits a standardized endpoint addressing scheme that allows for the flexible

organization of exposed component functionality through the use of URIs. Further, RESTful

Resources are interconnected through hyperlinks that are embedded within their associated

Representations; providing clients a set of available application states that can be provisioned at

runtime. Finally, RESTful Web Resources adhere to the HTTP uniform interface, whose syntax and

semantics are well-known by all participating entities [106]. In contrast to the specialized interfaces

common to PCI techniques, the standardization of a limited set of generalized interface methods

―enables entities to use new devices and services that appear in their environment without explicit

rewriting, updates, or installation of drivers. In addition, it reduces the number of agreements that

must be made among communicating entities, and allows for dynamic, runtime interoperation of

devices and services on a network‖ [247]. Vinoski [336] describes the following beneficial data-

coupling characteristic common to RESTful architectures:

3.2 Large-scale Context-aware Systems: Challenges and Foundations

63

 System resources adhere to the same semantics for each operation in the Uniform Interface,

thus simplifying client applications by eliminating the need for custom code to support

specialized interface semantics.

 Developing Resources means designing an implementation to fulfill the Uniform Interface and

its expected semantics, essentially eliminating the development phase required for designing

separate interfaces for each Resource, with their specialized semantics and implied workflow.

 Error handling is typically a source of significant variance between interfaces as interface

designers individually cook up their own data structures and exceptions for reporting problems.

Under the Uniform Interface constraint, however, error handling also gains uniformity.

 Intermediation becomes highly practical because intermediaries can understand the Uniform

Interface semantics just as well as Resources and clients can. For example, a Uniform Interface

can specify which calls are idempotent (that is, can be called repeatedly without side effects)

and which aren't. Resources can include cache control information in responses to idempotent

operations, so that developers can easily insert caches between a client and the resources it uses

without breaking the client or needing to specialize the caches for the invoked resources.

 Without the presence of numerous specialized interfaces, overall system simplicity increases,

which typically decreases the number of defects. Notably, interface versioning issues are

significantly reduced, though not entirely eliminated. Moreover, the overall system becomes

much more extensible.

In the traditional hypermedia model, user agents (e.g. Web browsers) discover, select and compose

components (i.e. Resources such as Web pages or newsfeeds) at runtime using three basic steps:

identification, interaction and message payload interpretation [341]. Briefly, in the identification

phase, a discovered URI is used to address an abstract Resource in a standardized way. Next, in the

interaction phase, the user agent interacts with a Resource using HTTP‘s uniform interface, which

supports the exchange of messages according to a well-defined set of semantics (see [104]). During a

typical interaction, a Web browser may provide supplemental information (e.g. the HTTP Accept

request-header field) to help the server provide a suitable Resource Representation. Importantly, the

well-known semantics of HTTP‘s uniform interface allows developers to predictably weigh the

impact a give method call may have on a Resource‘s state (for example, the side effects of a single

GET, HEAD, PUT or DELETE request are the same as N > 0 identical requests [104]). As an interaction

completes, a server may return a Representation to the client that represents the current state of the

Resource involved in the interaction (or an appropriate status code). Finally, during message payload

interpretation, Representations are handled by the user agent according to the Representation‘s data

type and the original method semantics. For example, after performing a GET request, Web browsers

may render the resultant HTML document for the user. As per the hypermedia model, embedded

hyperlinks within Representations allow Resources to suggest potential next application states to the

user, who may continue the interaction cycle by dereferencing additional hyperlinks.

The basic hypermedia model described above provides insight as to how complex, machine-based

interactions can be accomplished using REST. In this regard, an illustrative example proposed by

Tilkov [330] is now summarized as a means of comparing typical REST versus SOAP Web service

Chapter 3

64

implementations. Tilkov‘s example considers a simple procurement scenario where a Web-based

application is designed to handle common tasks related to customer registration and order

management. In typical service-oriented approaches (i.e. those common to SOAP Web services)

distributed components are designed to represent high-level coordination entities (e.g. an

OrderManagementService) and related domain-specific interfaces are defined to provide the requisite

functionality. An example of the resultant PCI-based interface methods are shown in Figure 19.

Figure 19: Implementing the procurement scenario using PCI principles (from [330])

With reference to Figure 19, the interface specifications are designed according to the processes a

particular component supports (e.g. getOrders(), addCustomer() and cancelOrder()). In this case,

the problem domain has been decomposed into two basic components, each with a specialized

interface (i.e. OrderManagementService and CustomerManagementService). To utilize such

components in a distributed application scenario, a client application would need to be specifically

engineered to understand the syntax and semantics of each component‘s interface. In SOAP Web

services, WSDL is used to provide these types of interface contracts (see section 2.2.2). However,

although WSDL describes how a given method can be used, it does not inherently capture the

meaning of each method [67]. As a result, process-centric interfaces such those shown in Figure 19

require significant prior domain knowledge to achieve component integration and reuse. As noted by

Vinoski [336], ―To invoke a service, a caller must incorporate details of each specific operation

defined in the service's contract. In other words, the specialized interface forces each calling

application to include custom code specific to the operations it wants to call. Calling applications

must also be cognizant of each contract's ‗implied workflow,‘ which is the order in which the service's

operations were designed to be invoked.‖

In contrast to PCI-based interoperation techniques, recasting the aforementioned procurement

example in terms of the Web‘s RESTful implementation yields dramatically different results. In terms

of object oriented design, REST‘s Resource abstraction can be understood as an interface that all

exposed component classes must implement. On the Web, this interface is provided by the HTTP

specification, which defines the syntax and semantics of methods such as GET, PUT, POST, DELETE, etc.

To model the previous example using REST, the domain-specific requirements of the procurement

scenario are mapped to the HTTP uniform interface by defining an appropriate set of Resources (each

providing a mapping between the example‘s functional requirements and a set of appropriate HTTP

methods). For example, rather than defining an OrderManagementService component that exposes a

specialized getOrders()method and cancelOrder() method, a single /orders Resource is created

to provide domain-specific functionality through generalized HTTP methods. For example,

3.2 Large-scale Context-aware Systems: Challenges and Foundations

65

functionality provided by getOrders()can be encapsulated within the /orders Resource‘s HTTP GET

method, whereas the functionality provided by cancelOrder()can be encapsulated within the

/orders Resource‘s HTTP DELETE method. In this way, the functionality of the procurement scenario

can be fully expressed using the HTTP‘s uniform interface as shown in Figure 20.

Figure 20: Re-implementing the procurement scenario using RESTful principles (from [330])

Once a problem domain is mapped to the HTTP uniform interface, the Web‘s RESTful architecture

helps support wide-area integration and reuse. First, the use of URIs and standardized interface

methods allows additional network entities, such as proxies and caches, to provide intermediary

services that can help facilitate accessibility and scalability. Further, exposed URIs allow Web clients

to selectively compose Resources in application-specific ways (perhaps not originally envisioned by

the service developers). Importantly, Resource Representations are often connected to other related

Resources through the use of embedded hyperlinks. This inherent connectedness [266] allows

hypermedia to become the ―engine of application state‖ [105] whereby the Resource‘s themselves

provide descriptions of relevant components that are available for runtime composition. As noted by

Prescod [257], ―It is the client that knows what mission it needs to complete for the end-user. It is the

client's responsibility to navigate from resource to resource, collecting the information it needs or

triggering the state changes that it needs to trigger.‖

While modern Web architecture arguably supports several context-aware computing requirements,

two important limitations have prevented its widespread use in this regard. First, while the human-

based Web is highly interconnected through the use of embedded hyperlinks, REST-based Web

Chapter 3

66

services often lack such connectedness as their Representation formats often consist of serialized data

structures that lack embedded hyperlinks [266]. While some Resource representation formats support

connectedness (e.g. the Atom Syndication Format [328]) many require external mechanisms for

component discovery, which can inhibit ad-hoc integration [266]. Second, the current REST model

provides no inherent support for component discovery and selection based on complex, real-world

context information [105]. Recall that context-aware applications require pre-filtering of relevant

application constituents based on domain-specific requirements [21, 29, 192, 231]. As such, additional

wide-area discovery and selection mechanisms are required in order to support the spontaneous,

cross-domain component integration capabilities required by large-scale context-aware systems.

3.3 Approach Scope

Based on the challenges and advances presented in the last section, we aim to develop a context-aware

computing approach that captures the entrepreneurial spirit of modern Web architecture as a means of

supporting the emergence of large-scale, real-world context-aware systems. Importantly, we suggest

that much of the information and computation available on the Web has semantic associations to real-

world contexts. This fundamental observation follows in the tradition of an increasing number of

researchers who suggest that ubiquitous Web-based computation has much to offer context-aware

computing [37, 174, 179]. As richly described in [179], ―much of the information on the Web

describes the world we physically inhabit, [however], there are few systematic linkages to real-world

entities. This is unfortunate, because most of our activities concern physical objects other than

computers.‖ To provide a few familiar examples, digital images are often associated with physical

locations [302]; real-world products may be related to Web-based reviews [200]; an organization may

publish online calendar data [81] or news feeds [99] describing upcoming events; a person may be

linked with digital business card data or specific Web pages [80]; and streaming media may be

preferred in certain locations [339]. However, while examples of contextually-relevant Resources

abound on the Web, most remain hidden from context-aware systems due to an inherent lack of

Resource contextualization and discovery mechanisms within conventional Web architecture (see

section 4.2).

The scope of our hybrid context-aware computing approach, called Ocean, addresses the large-scale

computing challenges outlined in section 3.2. Unlike existing approaches, Ocean addresses these

challenges by emphasizing user participation and community-based computation. Accordingly, Ocean

defines a comprehensive conceptual model for augmenting existing Web-based software components

(Resources) with expressive contextual metadata as a means of facilitating in-situ discovery and

integration. Related, Ocean provides a complimentary software architecture that provides simple,

accessible and scalable mechanisms for distributed applications to discover and compose

contextually-relevant Resources at runtime. Towards these ends, Ocean extends emerging

community-centric computing techniques such as collaborative annotation, open contribution,

volunteer-based computing and recommender systems. By leveraging community participation,

Ocean aims to support the emergence of a new class of hybrid context-aware Web applications

capable of in-situ, context-mediated component discovery and composition.

3.4 Non-Functional Requirements

67

3.4 Non-Functional Requirements

To guide Ocean‘s development, we now present several non-functional requirements that are intended

to align our approach with the requirements of conventional Web architecture. The following sections

include a presentation of Ocean‘s design principles and related approach constraints.

3.4.1 Design Principles

Based on the design principles underlying conventional Web architecture [105], the following design

principles are proposed for the Ocean approach:

 Widespread accessibility: The Ocean approach should be widely accessible across a broad

range of context situations, network infrastructure and device types. Deployment of

supplemental context instrumentation and related infrastructure should be minimized or

avoided. Related, Ocean should be directly supported on commodity end-user devices without

requiring prohibitive runtime software such as complex distributed computing middleware.

 Low entry-barrier: The Ocean approach should be conceptually simple and amenable to a

wide variety of developer skill-levels. The approach should be designed to accommodate

developers who may not be expert in context-aware computing. Finally, Ocean should co-opt

well-known application models in order to leverage existing knowhow and infrastructure.

 Application independence: The Ocean approach should accommodate a broad range of

application types without modification of its underlying architecture. Ocean should limit

domain preconceptions by relying on the end-to-end principle of system design as described

in [279].

 Extensibility: The Ocean approach should support an extensible application model and a

broad range of context data. In particular, context acquisition and modeling should be

facilitated by external experts who understand the intricacies of a given context domain.

Moreover, the Ocean application model should accommodate emerging data types and

application scenarios without requiring changes to its underlying architecture.

 Scalability: The Ocean approach should be highly scalable in terms of application model,

context mechanisms and component interoperation. Further, the Ocean application model

should accommodate cross-domain component scalability and independent deployment.

3.4.2 Approach Constraints

Based on the scope and design principles previously discussed, Ocean‘s key approach constraints are

now presented. This somewhat unconventional presentation is motivated by the significant challenges

facing large-scale context-aware systems, which impose important practical considerations. Recall

that section 3.2 identified these key challenges as ubiquitous context infrastructure; ubiquitous

network infrastructure; ubiquitous middleware; and effective cross-domain component interoperation.

Below we defined our primary approach constraints, which derive directly from the foundations of

large-scale context-aware systems identified throughout section 3.2.

 Constraint 1: Aladin-based context acquisition and modeling: In order to accommodate

cross-domain context-aware scenarios, Ocean directly subsumes Aladin‘s extensible, client-

centric context modeling style. Accordingly, Ocean adopts the Aladin architecture as the

Chapter 3

68

foundation of its application model. In this regard, Ocean applications inherit Aladin‘s client-

centricity and overall approach; however, we impose no further constraints regarding how

Aladin capabilities might be realized for a given platform.

 Constraint 2: Internet-based network infrastructure: Despite its inherent lack of rich

contextual semantics, we suggest that the Internet‘s ubiquity, flexibility and core design

principles can serve as a foundation for specific classes of context-aware systems. Hence, our

second constraint limits Ocean‘s data communications to those that can be directly

accommodated by the public Internet, without requiring adoption of domain-specific security

configurations, supplemental infrastructure or requiring changes to the existing TCP/IP

communications model.

 Constraint 3: Web-based middleware: Based on constraint 2, Ocean‘s subsumes

conventional Web architecture as the foundation of its middleware approach. Hence,

distributed communications within Ocean applications are bound to the Web‘s architectural

styles as described in [104, 341]. By adopting the Web‘s architectural model, Ocean inherits

its scalability, communication protocols, widely deployed functional apparatus and developer

knowhow; however, Ocean must provide additional mechanisms for context-mediated

Resource discovery and selection.

 Constraint 4: REST-based component interoperation: Based on our adoption of

conventional Web-based middleware, Ocean constrains component interoperation to the

REST architectural style as described in [105]. As such, participating distributed components

must be addressed using standard URIs and resolved using conventional DNS mechanisms.

Second, participating components must provide domain-specific implementations of the

HTTP uniform interface as described in [104]. Third, message payloads exchanged between

distributed components must adhere to self-describing, standardized data types (e.g. MIME

types). Fourth, interoperation between components must adhere to the REST style as

described [105].

3.5 Approach Derivation

Based on the nonfunctional requirements presented in the last section, this section derives the overall

Ocean approach by describing its conceptual underpinnings and highlighting its key architectural

aspects that are discussed in detail throughout the remainder of this dissertation. We note that by

imposing the constraints presented in section 3.4.2, Ocean is strongly influenced by conventional Web

architecture and, thus, inherits many of its capabilities and limitations. In this regard, the aim of

Ocean is to provide a simple, accessible and scalable mechanism for mobile applications to discover,

select and compose contextually-relevant Web Resources at runtime. To address this foundational

aim, we first address the challenge of cross-domain operation by applying the Aladin-based context

acquisition and modeling constraint described in section 3.4.2. According to this constraint, the Ocean

approach directly subsumes the Aladin architecture as described in [49]. The extension of Aladin

provides Ocean applications a means of operating in large-scale, cross domain scenarios. Notably, by

subsuming the Aladin approach, the Ocean application model becomes architecturally client-centric,

as shown in Figure 21.

3.5 Approach Derivation

69

Figure 21: Ocean's extension of the Aladin architecture

With reference to Figure 21, Ocean extends the Aladin architecture in the following way:

1. Domain-specific software utilize Aladin‘s Façade to control high-level framework features

such as context event subscription, resource allocation (e.g. thread priority), preference

policies (e.g. privacy requirements), communications, etc. (If needed, context acquisition

and modeling may be performed locally without Aladin using any appropriate means.)

2. The client-side Aladin Framework dynamically analyzes the capabilities of the end-user‘s

device; downloading and integrating appropriate context acquisition and modeling plug-ins

at runtime.

3. Using its installed plug-ins, Aladin continually acquires and models native context data

(NCD) from the user‘s environment using local hardware and related device drivers.

4. Aladin notifies its host application of changes to the user‘s context situation through events

that include NCD. Applications may react to context events as needed by parsing and

interpreting extracted NCD internally.

5. Finally, the Aladin architecture is extended with Ocean-based context interpretation, which

translates locally modeled NCD into a ranked list of contextually relevant Web Resources

(described shortly).

To address the scalability and heterogeneity issues related to Ocean‘s Internet infrastructure

constraint (see section 3.4.2), Ocean subsumes existing Web architecture by casting applications as

conventional Web agents that ―communicate using standardized protocols that enable interaction

Chapter 3

70

through the exchange of messages which adhere to a defined syntax and semantics‖ [341].

Specifically, Ocean applications are defined as user agents that act on behalf of the user according to

the interaction model elaborated throughout this chapter. As in conventional Web architecture, the

Ocean application model makes no assumptions regarding the type of component interactions that

might be implemented; requiring only that interoperation between distributed components adheres to

the principles underlying Web architecture [32]. Hence, Ocean‘s application constituents (i.e.

Resources) are addressed using standard URIs, resolved using DNS, adhere to the HTTP uniform

interface, exchange standards-based message formats and provide suitable Representation formats. As

in conventional Web architecture, Resource state management is governed by origin servers, which

represent the ―definitive source for representations of its resources and must be the ultimate recipient

of any request that intends to modify the value of its resources‖ [106]. Accordingly, any RESTful

Web Resource may become part of a dynamically assembled or adapted Ocean application; even

those Resources not specifically designed for context-aware scenarios.

Next, Ocean extends the Web‘s hypermedia application model with additional aspects of dynamic,

context-mediated Resource discovery and composition. Recall that in traditional hypermedia

applications, Resource content and structure (e.g. Web page text) are used to provide the context

mediation necessary for users to discover, select and compose Resources on-demand (e.g. dereference

a link using a Web browser) [106]. Notably, conventional Web architecture defines URIs as having

global scope; meaning that ―the resource identified by a URI does not depend on the context in which

the URI appears‖ [341]. However, while global scope supports the hypermedia application model, it

does not inherently support Resource pre-filtering based on environmental context information such

as location, proximate devices or activity (see section 4.1).

To overcome the Web‘s context-mediation limitations, Ocean defines a foundational architectural

abstraction in section 4.3, called a Contextualized Resource, which provides an extensible semantic

metadata model designed to constrain the Discoverability Context of conventional Web Resources.

Extending the definition proposed by Dey and Abowd in [89], we define a Resource‘s Discoverability

Context as:

Further, as described in section 4.3.2, the Contextualized Resource is based on an extensible

Context Metadata abstraction, which encapsulates the syntax and semantics of a given context

domain; allowing domain-neutral processing by Ocean infrastructure and enabling non-experts to

describe the Discoverability Context of Resources without domain expertise (see section 5.3.2). In

this regard, a conventional Resource is contextualized (i.e. provided a Discoverability Context) by

associating it with a specifically configured set of General and Context Metadata using the

Contextualized Resource data model described in section 4.3.1.

Definition 1: Discoverability Context

Discoverability Context: The set of contextual criteria that must be fulfilled before a

Resource is considered relevant to the interaction between a user and an Ocean

application, including the user and application themselves.

3.5 Approach Derivation

71

Using the Contextualized Resource as a foundation, Ocean defines a Web-centric application model

in section 5.2 that is based on the client-centric mashup (CS mashup) style. Briefly, in standard CS

mashups, Resources are manually composed to create (relatively static) hybrid Web applications that

combine data or computation from multiple sources. In the Ocean approach, we extend the

conventional CS mashup style with support for dynamic, context-mediated component discovery and

selection. Accordingly, Ocean allows mashups to be dynamically created and adapted in-situ using

discovered contextually-relevant components (i.e. Resources). To promote wide-area Resource

integration, we apply the REST-based component interoperation constraint described in section 3.4.2.

Hence, Contextualized Resources in Ocean refer to Web Resources that adhere to the REST

architectural style as defined in [105].

To maintain backwards compatibility with existing Web architecture, Contextualized Resource

metadata are persisted within a context-aware component registry, called the Ocean Registry, which

facilitates Resource contextualization and discovery (see section 5.3). To perform Resource

discovery, Ocean applications aggregate NCD locally using the Aladin context modeling style and

then query the Ocean Registry using a flexible search protocol that allows NCD to be included as

query terms (see section 6.4.1.1). Notably, Ocean application developers may formulate Discovery

Requests without detailed knowledge of the underlying context domains. In response, the Ocean

Registry returns a ranked list of Descriptive Metadata regarding the relevant Contextualized

Resources for a given Discovery Request (see section 6.4.1.2). Ocean applications can then select and

compose appropriate Resources dynamically according to the extended CS mashup style described in

section 5.2.2.

To support Contextualized Resource storage and lookup, the Ocean Registry provides integrated

Persistence and Discovery Frameworks, which are described in Chapter 6. Briefly, the Persistence

Framework allows Contextualized Resources to be efficiently stored and indexed for rapid retrieval.

In real-world scenarios, Context Metadata are often represented by complex object types that resist

classical database indexing techniques [29, 61]. As described in section 6.4, Ocean‘s Persistence

Framework extends several similarity search techniques to address this issue. Further, the Persistence

Framework accommodates a variety of domain-specific indexing techniques to support rapid query

processing. Query processing is provided by Ocean‘s Discovery Framework, which operates in

conjunction with the Persistence Framework; allowing NCD to be compared to persisted metadata

contained within the Ocean Registry (see section 6.4). Related, domain-specific implementations of

the aforementioned Context Metadata abstraction, called Context Handlers, are provided by external

context domain experts who extend the functionality of the Ocean Registry using the open

contribution process described in section 5.4. Further, in order to promote large-scale Resource

contextualization, the Ocean Registry provides an additional open contribution process that allows

community-based Resource contextualization using arbitrary combinations of Context Metadata (see

section 5.5). For reference, a high-level overview of the Ocean approach is presented in Figure 22 (see

section 5.2 for a complete description).

Chapter 3

72

Figure 22: High-level overview of the Ocean approach

Ocean‘s Web-scale focus introduces two critical challenges for effective Resource discovery and

selection, which are addressed in Chapter 7. The first challenge relates to context-mismatch, whereby

Resource discovery performance is degraded due to mismatches between the Context Metadata used

to describe a Web Resource and incoming query terms. Section 7.2 addresses context-mismatch by

defining a query expansion mechanism that automatically supplements Discovery Requests with

additional, contextually-relevant query terms extracted from query information shared by members of

the Ocean end-user community. The second challenge relates to information overload, whereby

Resource discovery performance is degraded due to extremely large numbers of undifferentiated

query results. Section 7.3 addresses information overload by describing Ocean‘s Resource

personalization approach that automatically predicts a user‘s affinity for a given Resource based on

modeled preference information from similar Ocean end-users. Notably, both query expansion and

Resource personalization are available as optional, privacy-aware enhancement features that can be

used either alone or in combination to help improve discovery results.

3.6 Principle Ocean Stakeholders

The Ocean approach introduced in the last section implies participation by a diverse set of developers

and end-users. In this section, we identify Ocean‘s principle stakeholders; providing a description of

each along with an overview of related technical and business constraints. It should be noted that,

while each stakeholder is presented in isolation, some roles may overlap to form hybrids. In addition,

Ocean‘s adoption of existing architecture may involve ancillary or unintentional stakeholders;

however, these are not investigated within this dissertation. Notably, the following stakeholder

descriptions are not intended to be rigorous or complete. Rather, they are presented as a means of

clarifying the principle users of Ocean as related to subsequent chapters of this dissertation.

3.6 Principle Ocean Stakeholders

73

3.6.1 Ocean Core Developers

Description: Ocean core developers (Core Developers) are responsible for the development and

maintenance of the Ocean Registry, its software architecture and its Contextualized Resource data

store. Key development aspects include: conceptualization of Ocean‘s application model; definition of

related external APIs; development of associated communication protocols; definition of the Ocean

Registry architecture and its related interface abstractions; development of Context Metadata and

Contextualized Resource contribution mechanisms; development of the Contextualized Resource

Persistence Framework; development of the Contextualized Resource Discovery Framework,

including integration of appropriate similarity search algorithms; and development and maintenance

of a suitable technical infrastructure. Key aspects of the Core Developer stakeholder are elaborated in

section 5.3.

Key technical and business constraints: Core Developers are experts in the Ocean Registry

software infrastructure and its related context-aware computing approach. Primary technical skills

include: development and maintenance of large-scale software systems; knowledge of multi-feature

similarity search algorithms; knowledge of domain-neutral indexing abstractions and associated data

modeling; database development and optimization; and setup and maintenance of supportive technical

infrastructure. Core Developers are not necessarily experts in any specific context or application

domain. Core Developers devise and implement business models supporting the following key

aspects: Ocean Registry design; technical infrastructure operations and maintenance; acquisition of

required support software, tooling and training; and related costs associated with development and

support staff.

3.6.2 Context Domain Experts

Description: In Ocean, we suggest that context modeling is best accommodated by external experts

who understand the inherent complexities of a given context domain. In this regard, context domain

experts (Context Experts) develop, test and contribute Context Handlers for use within the Ocean

Registry. As Context Handlers encapsulate the syntax and semantics of a given context domain,

Context Experts must be well versed in any associated native context data formats and related

semantics. Context Experts also devise Context Metadata configuration options and related

documentation intended to allow non-experts to sufficiently describe the Discoverability Context of

conventional Resources. Finally, Context Experts participate in the Ocean Registry‘s Context Handler

contribution process and manage contributed handlers throughout their lifecycle. Key aspects of the

Context Expert stakeholder are further elaborated in section 4.3.2.

Key technical and business constraints: Context Experts are technically proficient within their

given context domain. As such, Context Experts have technical knowledge related to developing

Context Model implementations (i.e. Context Handlers) along with any associated configuration

options and related documentation. Context Experts must be technically proficient in deriving, testing

and optimizing the algorithms underlying a given context domain. Context Experts are not necessarily

experts in the Ocean Registry architecture or any specific application domain. Context Experts devise

and implement business models supporting the following key aspects: Context Handler design;

Chapter 3

74

development and testing; acquisition of required support software, tooling and training; and related

costs associated with any required development and support staff.

3.6.3 Resource Contextualizers

Description: Resource contextualizers (Contextualizers) create and maintain Contextualized

Resources using the Ocean Registry‘s Resource Management API (see section 5.3.2). Contextualizers

describe the Discoverability Context of Resources using the Context Handlers contributed by Context

Experts. Contextualizers devise application scenarios that motivate and guide their contextualization

efforts. Such application scenarios are domain-specific and may not be related to the semantic content

of the Resources under consideration. Contextualizers may utilize the Resource Management API

directly using its XML-based protocol; however, we envision the emergence of an ecosystem of

stand-alone and Web-based tools designed to provide simplified contextualization services. In this

regard, we suggest that many Web site developers may be motivated to provide integrated Ocean

support; enabling end-users to transparently contextualize Resources using Ocean (e.g. a photo

sharing Website that utilizes Ocean to automatically contextualizes shared digital photos on behalf of

users). Finally, the Contextualizer stakeholder may be provided by software agents that automatically

create Contextualized Resources based on specific semantic rules and strategies (e.g. context-aware

Web crawlers – see section 8.4). Key aspects of the Contextualizer stakeholder are further elaborated

in sections 5.3.2 and 5.5.

Key technical and business constraints: Contextualizers may vary widely in technical skill;

however, most will have at least modest technical skills within a given contextualization domain. As

such, Contextualizers may have technical knowledge related to the configuration of Context Metadata

and an understanding of the basic Ocean application model. Some contextualization scenarios may

require domain-specific technical skills, including Website design, web service interaction or stand-

alone application development. Contextualizers devise and implement business models supporting the

following key aspects: Contextualized Resource creation and maintenance; design, development and

testing; acquisition of required support software, tooling and training; and associated costs associated

with any required development and support staff.

3.6.4 Ocean Application Developers

Description: Ocean application developers (Ocean Developers) develop, deploy and maintain

software applications that leverage Ocean functionality. In the Ocean approach, software applications

created by Ocean Developers are known as Ocean applications. Broadly, Ocean Developers use the

Ocean Registry‘s Discovery API to discover, select and compose contextually-relevant Web

Resources at runtime (see section 6.4.1). As such, Ocean Developers are responsible for developing

suitable application scenarios, providing domain-specific application logic and providing suitable

technical infrastructure. Moreover, Ocean Developers are responsible for responding to Discovery

Responses by appropriately selecting Resources based on Ocean‘s Descriptive Metadata. Once

contextually-relevant Resources have been selected, Ocean Developers are responsible for

orchestrating component composition and interoperation according to the REST architectural style.

Key aspects of the Ocean Developer stakeholder are elaborated in section 5.2.

3.7 The Ocean Reference Implementation

75

Key technical and business constraints: Ocean Developers are typically experts in a specific

application domain. Accordingly, primary technical skills often include: mobile application

development; Web application development; XML parsing and validation; REST-based component

interoperation; human-computer interaction; and maintenance of supportive technical infrastructure.

As previously described, Ocean context acquisition and modeling is accomplished using Aladin‘s

client-centric approach. Accordingly, Ocean Developers are responsible for developing (or

integrating) a suitable Aladin style context modeling mechanism (possibly through integration of

third-party libraries). Ocean Developers are not necessarily experts in any specific context or

contextualization domain. Ocean Developers devise and implement business models supporting the

following key aspects: Application scenario development; software engineering and deployment;

context modeling libraries; technical infrastructure operations; acquisition of required support

software, tooling and training; and associated costs associated with any required development and

support staff.

3.6.5 Ocean Application End-users

Description: Ocean application end-users (Ocean Users) utilize domain-specific Ocean software to

accomplish tasks according to a specific set of user-specific needs, goals and modes of interaction.

Typically, an Ocean User owns and manages the computing device executing Ocean software;

however, software deployment and hardware maintenance may be handled by the user‘s organization.

Ocean Users may be differentiated in terms of security and privacy considerations. Finally, Ocean

Users may operate Ocean software in a variety of real-world computing environments.

Key technical and business constraints: Ocean Users vary widely in terms of technical

capabilities; however, they typically have expertise in a given Ocean application domain. As such,

Ocean Users may have no knowledge of Ocean infrastructure, context modeling, Resource

contextualization or component interoperation techniques. Ocean Users are capable of operating and

maintaining the hardware device upon which an Ocean application executes. Further, Ocean Users

may rely on technical support provided by their organizations, hardware manufacturers or Ocean

Developers. Ocean Users typically consider business models directly addressed by Ocean

applications.

3.7 The Ocean Reference Implementation

Each aspect of the Ocean approach introduced in this chapter is described in detail throughout the

remainder of this dissertation. Throughout this dissertation, Ocean is presented hierarchically by

providing focused discussions of related work, formulating related theoretical contributions, and then

validating each contribution with an ongoing discussion of the Ocean Reference Implementation (RI).

The Ocean RI is a software-based implementation of core Ocean theoretical concepts and is used to

validate that Ocean‘s various contributions are indeed realizable using existing techniques,

technologies and infrastructure. Notably, the Ocean RI is intended to validate our contributions in

terms of the design principles and approach constraints described in sections 3.4.1 and 3.4.2

respectively. Rather than presenting the Ocean RI within a dedicated chapter, we describe its

implementation in conjunction with Ocean‘s theoretical development as a mechanism for clarifying

core Ocean concepts. As such, our presentation of the Ocean RI is distributed over the next several

Chapter 3

76

chapters. In addition, Chapter 8 presents an example Ocean application (based on the Ocean RI) that

aims to draw together the theoretical and practical aspects discussed throughout the dissertation as a

means of validating the Ocean approach in large-scale scenarios.

3.8 Chapter Summary

This chapter presented the foundations of the Ocean approach based on an adapted version of the

IEEE Recommended Practice for Software Requirements Specifications. The chapter began with a

description of the key challenges facing large-scale context-aware systems and described several

related advances that address each challenge in isolation. Next, it described how Ocean aims to

capture the entrepreneurial spirit of modern Web architecture as a means of supporting large-scale,

real-world context-aware systems. Next, nonfunctional requirements were presented, including key

design principles and approach constraints. Notably, in order to align Ocean with the requirements of

conventional Web architecture, Ocean‘s key constraints include: Aladin-based context acquisition and

modeling; Internet-based network infrastructure; Web-centric middleware; and REST-based

component interoperation. Based on these constraints, the Ocean approach was then derived. Notably,

the Ocean approach extends Aladin‘s client-centric context modeling style with an accessible and

scalable mechanism for mobile applications to discover, select and compose contextually-relevant

Web Resources at runtime. In order to facilitate wide-area component contextualization and

discovery, several core Ocean concepts were introduced, including the Contextualized Resource

abstraction; the Context Metadata abstraction; the Ocean Registry; community-based contribution

models; mechanisms for Contextualized Resource storage and indexing; and community-based

methods for overcoming context mismatch and information overload. Next, Ocean‘s principle

stakeholders were described, including Core Developers, Ocean Developers, Contextualizers and

Ocean Users. The chapter concluded with a discussion of the Ocean RI as an approach validation

methodology.

77

Chapter 4

The Contextualized Resource

4.1 Introduction

The last chapter presented the foundations of the Ocean Web-centric context-aware computing

approach. As previously introduced, Ocean investigates techniques for promoting the emergence of

large-scale context-aware computing systems based on the integration of existing context sources,

network infrastructure, application models and component interoperation styles. It was discussed how

many of the adaptive techniques uncovered by isolated context-aware systems are increasingly

relevant for everyday computing environments, which are rapidly becoming saturated with network

connectivity and contextually-relevant distributed computation. Towards this end, the last chapter

presented Ocean‘s scope, design principles, approach constraints, approach derivation, principle

stakeholders and validation methodology. Unlike traditional context-aware systems, which are

generally intended to address niche application scenarios, Ocean represents a generalized conceptual

approach and complimentary technical infrastructure that intends to enable context-aware applications

to arise in an ―evolutionary fashion from modest beginnings, rather than from a Grand Plan‖ [223].

Towards this end, this chapter presents the Contextualized Resource as a mechanism for extending

conventional Web architecture with extensible context-awareness features.

The structure of this chapter is as follows: Based on the Ocean approach derivation presented in the

last chapter, relevant background and related work are discussed in section 4.2. Next, section 4.3

introduces the Contextualized Resource abstraction, which provides a mechanism for constraining the

Discoverability Context of conventional Web Resources. Section 4.3.1 details Ocean‘s extension of

the conventional Resource model with extensible semantic metadata indented to facilitate

contextualization and wide-area component discovery. Next, section 4.3.2 details the Context

Metadata abstraction underlying the Contextualized Resource by describing its architectural lineage

and defining its data model. Section 4.3.3 provides a theoretical discussion of similarity modeling

with regard to the syntax and semantics of a given context domain. Section 4.3.4 discusses validation

of the Context Metadata interface. Ocean RI validation of the Contextualized Resource model and

related XML schema are presented in section 4.3.5. The chapter concludes with a Contextualized

Resource example in section 4.4.

4.2 Background and Related Work

Ocean‘s high-level approach derivation described in the last chapter draws inspiration from a broad

range of related work. As is evident from the design constraints described in section 3.4.2, Ocean‘s

foundation is rooted firmly in conventional Web architecture and Internet-based network

communications. However, as described in section 3.5, the effectiveness of the Ocean approach is

contingent upon the development of mechanisms for dynamically discovering, selecting and

interoperating with contextually-relevant Resources in-situ. As previously introduced, Web

architecture has been designed primarily to support the requirements of an Internet-scale distributed

hypermedia system [105, 106, 341]. This section discusses the context-mediation approaches common

to conventional Web architecture with regards to the Ocean approach.

Chapter 4

78

In terms of runtime adaptation, conventional Web architecture addresses the late-binding of

application constituents based on two principle mechanisms: Resource mediation and metadata

mediation [341]. In the Resource mediation model, context information is delivered to users encoded

within requested Representations as inline context, which typically takes the form of the informational

and structural elements within a given Representation‘s data format. For example, Web pages

typically provide inline information such as text, page layout and graphic elements that serve as

mediators between users and the embedded hyperlinks within the page. As users navigate between

application states (i.e. other Web pages) using discovered hyperlinks, additional contextual

information is delivered progressively as the transaction unfolds.

During metadata mediation, supplemental descriptive information is provided alongside a

Resource‘s Representation as a means of supporting services such as caching, content negotiation,

cataloging, information retrieval, etc. Broadly, metadata has been defined as ―machine understandable

information about web resources or other things‖ [30]. Typically, metadata ―consists of assertions

about data, and such assertions typically, when represented in computer systems, take the form of a

name or type of assertion and a set of parameters, just as in the natural language a sentence takes the

form of a verb and a subject, an object and various clauses‖ [30]. In Web architecture, examples of

metadata may include information regarding a Resource‘s language, owner, content-type and other

arbitrary information [341].

Metadata are used to describe Resources in three principle ways. First, embedded metadata occur

within the Resource's Representation itself (e.g. HTML metadata tags [365]). Second, accompanying

metadata are provided separately from the Resource‘s representation during transmission (e.g. HTTP

entity headers [104]). Third, associative metadata are used to provide semantic descriptions of

Resources that can be stored externally (e.g. within another Resource or component registry).

Broadly, embedded and accompanying metadata are used to guide interactions between Web agents

and origin servers [104]. For example, during an HTTP GET request, HTTP headers are used to specify

the requirements and preferences of the client (e.g. accepted content types or preferred languages).

For example, the HTTP Accept header can be used to specify the media types that are acceptable as a

response to a GET request. As described in [104], an Accept header may include ”Accept: audio/*;

q=0.2, audio/basic”, which indicates that the client prefers ”audio/basic” but would accept any

audio type if appropriate. Additional header examples include accepted encoding, charset, language

and authorization credentials [104]. Notably, embedded and accompanying metadata have been

classified as transactional context information due to their relevance during the Resource

request/response phase [266].

While inline and transactional contextual information support the requirements of hypermedia

applications, they are generally poorly suited for supporting the component interoperation

requirements of many context-aware systems [29]. Problematically, Web-based hypermedia requires

that Resources are requested and composed before context information can be extracted, which

prevents component pre-filtering outside of the hypermedia transaction. In contrast, adaptive context-

aware applications generally require pre-filtering of potential constituents based on domain-specific

requirements [21, 29, 192, 231]. In Web-based context-aware systems, constituent pre-filtering is

typically accommodated through the use of associative metadata, which are stored within a

4.2 Background and Related Work

79

component registry. Broadly, component registries are used to mediate dynamic binding and

interaction between loosely-coupled elements of a distributed application [29, 308]. Within

component registries, associative metadata are used to describe important attributes of distributed

components such as addressing information, interface descriptions, data types and other semantic

information [254]. Distributed applications discover suitable constituents by querying the component

registry using a search protocol. The component registry uses incoming queries to perform a

component lookup using the associated metadata as a filtering mechanism. Components that match

the specified search parameters and query terms are returned to the application where they may be

used for runtime composition.

Component registries are typified by the Universal Description, Discovery and Integration (UDDI)

specification central to SOAP Web Services [231]. UDDI provides an XML-based metadata

specification that provides structured information describing SOAP-based Web-services. UDDI is

used in combination with the Web Services Description Language (WSDL) [67], which typically

provides a process-centric description of a Web Service‘s method syntax, supported data types and

endpoint addresses. UDDI supports Publish and Inquiry APIs that provide clients a means of storing,

updating, querying and deleting Web Service metadata. As per the SOAP Web Services model, once a

component has been discovered using UDDI, point-to-point communications between the discovering

application and the selected distributed component occur without further interaction with the UDDI

registry (unless initiated by the application). The query facilities of UDDI are based on a SOAP-based

search protocol that provides basic interface matching and text-based keyword search. However,

UDDI‘s lack of semantic metadata support has been viewed as serious limitation in more complex

interaction scenarios such as mobile and context-aware systems [29, 308]. Indeed, while several open-

source and commercial implementations of UDDI exist [155, 238], industry support has been waning.

Notably, Microsoft, IBM and SAP discontinued public Internet-based UDDI registries in 2006 [283].

The lack of semantic metadata within the UDDI specifications has been addressed by more recent

work. For example, the Electronic Business using eXtensible Markup Language (ebXML) [232]

defines a registry service that incorporates a more advanced metadata model capable of supporting

hierarchical classification and association descriptions of registered components. In addition, the

ebXML registry provides a comprehensive query interface that supports SQL-like search

constructions. Similarly, Pokraev et al. [254] developed an enhanced UDDI registry that incorporates

a semantic model built on the Web Ontology Language for Services (OWL-S) [244]. Their approach

integrates domain-specific metadata for semantic service description such as the Composite

Capability/Preference Profiles (CC/PP) ontology [364]. Their approach also allows clients to include

contextual information within a query in order to improve component discovery results for context-

sensitive applications. Similarly, Song, et al. [308] use an ontology-enabled registry to address

semantic interoperability. More recently, the SOPHIE architecture [29] was developed as a means of

addressing the needs of context-aware scenarios through the association of semantic metadata with

conventional WSDL using a hybrid registry approach. Seeing the need for improved semantic

component mediation, the W3C developed a charter focused on creating Semantic Annotations for

WSDL and XML Schema (SAWSDL) that intends to define a standards-based mechanism whereby

semantic annotations can be added to WSDL components [289].

Chapter 4

80

The inclusion of semantic metadata is increasingly recognized as important for supporting context-

aware scenarios [29]. In this regard, the Multi Channel Adaptive Information Systems (MAIS) project

[14] provides a component registry designed for mobile applications and intelligent environments.

MAIS aims to improve upon competing registry techniques by accounting for both the context of the

client and the service during query operations. Similarly, Chakraborty et al. [59] proposed a set of

semantic extensions, called DReggie, which supplement the JINI lookup service (JLS) [342] with

supplemental semantic information based on the DARPA Agent Markup Language (DAML)
9
.

Additional work by Doulkeridis et al. [93] demonstrates the effectiveness of augmenting traditional

component registries with a multidimensional Object Exchange Model (OEM) graph that models

services as atomic nodes [313]. Notably, their approach demonstrates how contextual information can

improve query results in dynamic service scenarios and how the type of context metadata model

constrains an approach in terms of computational complexity and semantic expressiveness. Related,

Blackstock, Lea and Krasic [37] suggest a ―shared environment model‖ as a means of bridging

divergent middleware using enhanced interface specifications. An additional registry approach has

addressed search-space reduction using context values and semantic parameters [265].

While the addition of semantic metadata to component registries has been shown to improve

constituent discovery in loosely-coupled distributed systems, existing techniques are largely

incompatible with the Ocean approach. For example, context-enhanced registries define intermediary

metadata models that may not be known be all participants or capable of expressing the fidelity of

native context information [254]. Further, existing approaches provide only a restricted set of

metadata types and do not provide inbuilt mechanisms for promoting contributions by external

domain-experts [29]. Further, in order to accommodate component interoperation, current registry

approaches focus on supporting process-centric interoperation (PCI) styles such as those typified by

SOAP-Web services. As described in section 3.2.7, PCI-based interoperation relies on the definition

of domain-specific interface methods and related data types using interface description languages

such as WSDL or Corba IDL. As a result, PCI techniques result in an explosion specialized interfaces;

each with complex method semantics and related sequencing requirements. Thus, in order for an

application to effectively utilize a discovered process-centric component, it must possess significant

prior component knowledge; reducing the chance of interoperation in large-scale, real-world

environments [334].

As detailed in section 3.2.8, by standardizing component addressing schemes, method semantics

and message payloads, the REST architectural style is increasingly recognized as well-suited for

supporting cross-domain component interoperation. In this regard, several projects have begun

exploring the application of semantic metadata to conventional RESTful Resources. One of the first

approaches in this regard was the Platform for Internet Content Selection (PICS) [366] specification

proposed by the W3C. Broadly, PICS ―defines a language for describing rating services. Software

programs will read service descriptions written in this language, in order to interpret content labels

and assist end-users in configuring selection software‖ [366]. Accordingly, PICS metadata provide a

set of extensible attribute-value pairs that are used to describe Resources according to name, subject,

category and content rating. PICS metadata can be embedded within Resources or stored within an

9
 http://www.daml.org/

4.2 Background and Related Work

81

external rating registry where they can be used to mediate interactions between User agents and

Resources. While PICS was integrated within the Microsoft Internet Explorer browser within its

―approved sites‖ feature, its narrow application scope and lack of a coherent registry design ultimately

led to the project‘s discontinuance.

A substantially richer approach for contextualizing Web Resources is the Dublin Core (DC)

metadata approach [82]. As part of the W3C‘s semantic Web initiative [368], which endeavors to

extend the Web with machine-based reasoning and processing capabilities, the DC represents an

international metadata standard for describing the semantics of Web Resources. The DC provides a

standardized set of metadata elements that are implemented using non-proprietary technologies such

as XML and RDF [367]. As described in [83], the elements that comprise the DC are separated into

two principle categories. The first category, termed simple elements, refers to generic metadata that

are applicable across domains (e.g. title, description, date, language, etc.) The second category,

termed qualified elements, provides domain-specific extensions of simple elements. Both simple and

qualified elements incorporate established vocabularies and provide for extensions. For example, the

simple element ―Date‖ may be refined as ―Date Submitted‖ and encoded as ―W3C-DTF.‖

Implementations of simple or qualified elements may be embedded within Resources or linked via

associative metadata. While the DC and RDF do not define a specific application model that can be

used directly by context-aware applications, they do provide insight into the benefits of non-

proprietary technologies and community contribution. An example DC metadata element is provided

below.

Figure 23: An example of Dublin Core metadata (from [83])

In terms of RESTful context-mediation in context-aware systems, many current approaches

associate relatively simple contextual metadata to domain-specific Web URIs (generally under the

control of the project). For example, Yarin and Ishii‘s TouchCounter project [375] provides Web-

based information describing the usage patterns of physical storage containers and shelving surfaces

through Resource mediation based on infrared tag identifiers. In their approach, a unique infrared tag

identifier is used to mediate interactions with related Web content (e.g. updates or consuming).

Similarly, the Lancaster GUIDE system [78] uses a Web-based infrastructure as a means of providing

dynamic information within a mobile tour-guide scenario. User‘s of the GUIDE system carry a

specially outfitted mobile device that runs the GUIDE application and related context acquisition

mechanisms. As users encounter changing contextual information (e.g. transitioning between

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://example.com/audio/guide.ra">

 <dc:creator>Rose Bush</dc:creator>

 <dc:title>A Guide to Growing Roses</dc:title>

 <dc:description>Description text<dc:description>

 <dc:date>2001-01-20</dc:date>

 </rdf:Description>

</rdf:RDF>

Chapter 4

82

WaveLAN cells) the system automatically applies an integrated filtering algorithm to discover

relevant URIs from within a set of predetermined Resources. Rendering of selected Resources is

provided by an integrated Web browser within the GUIDE application. Similar Web-centric tour-

guide systems have been developed to explore the binding of various other context types with Web-

based content [191, 303].

Hewlett-Packard‘s Cooltown project [179] takes a more general approach to Resource

contextualization. In Cooltown, HP researchers developed a software system designed to augment

people, places and things with Web URIs. Cooltown supports URI context mediation through two

principle mechanisms. The first mechanism, termed direct sensing, involved the development of a

short range wireless protocol (called eSquirt) that is intended for sending standard URIs across

common technologies such as IR and Bluetooth. The second approach, termed indirect sensing, is

based on an external context registry that supports associations between Web Resources and specific

types of context data. Cooltown proposes that indirect sensing might be accomplished by linking

information such as RFID tags or iButtons
10

 to Web URIs using a registry; however, Cooltown‘s

indirect sensing approach was only preliminarily elaborated and its initial design supports a limited

set of predefined context information.

Cooltown can be understood (anachronistically) as an object hyperlinking technique refers to the

association of physical objects with Web-based Resources using some mechanism for context-

mediation. Similar to Cooltown, object hyperlinking systems may employ either direct or indirect

sensing techniques to obtain URI information or resolvable identifiers from real-world objects. For

example, Semapedia
11

 have developed an approach for linking physical objects and locations to

Wikipedia
12

 articles through a dedicated two dimensional (2D) barcode system and related mobile-

phone reader software. Using a Semapedia reader, images taken of discovered 2D barcodes are

translated into valid URIs and used to open the associated Wikipedia page in a mobile browser.

Related barcode techniques include Denso-Wave‘s Quick Response Code (QR Code)
13

 and

Cambridge University‘s ShotCode
14

 system.

While object hyperlinking is becoming a commercial success in many markets [343], current

approaches are generally proprietary and limited to a single application model. For example,

Semapedia only allow association of 2D barcodes to Web Resources contained within the Wikipedia

domain. Similarly, the Hardlink
15

 system provides a mobile phone gateway that maps physical

hyperlinks to Resources within the dedicated .mobi domain. Moreover, sophisticated contexts (e.g.

profile, temperature and geo-location) are not directly supported by current approaches. Additionally,

many current object hyperlinking approaches require specific hardware support (e.g. a compatible

inbuilt camera) and domain-specific software for translating captures images into suitable identifiers.

For example, QR Codes require a compatible onboard camera and ISO/IEC 18004 compliant

translation software whereas ShotCode requires entirely different translation software. In this regard,

10

 http://www.maxim-ic.com/products/ibutton/
11

 http://www.semapedia.org/
12

 http://www.wikipedia.org/
13

 http://www.denso-wave.com/qrcode/aboutqr-e.html
14

 http://www.shotcode.com/
15

 http://hardlink.mobi/

4.2 Background and Related Work

83

the proprietary nature of these context mechanisms cannot be used to support arbitrary application

domains or comprehensive pre-filtering and ranking of contextually relevant URIs. In response, the

recently formed W3C UbiWeb
16

 has been formed to promote more open contextualization

approaches; however, to the best of our knowledge, no current object hyperlinking technique is

directly capable of supporting the Ocean application model introduced in section 3.5 and elaborated in

section 5.2.

The commercial success of existing object hyperlinking illustrates the effectiveness of RESTful

component interoperation. In particular, existing approaches demonstrate how the translation of

contextual information into standard Web URIs can be combined with the Web‘s uniform interface to

provide cross-domain access to contextually-relevant Resources. Recent efforts for associating

additional semantic information to REST resources includes OWL-S [244], WSMO [372] and

WSDL-S [4]. These approaches provide a controlled vocabulary for semantically annotating REST

Resources; however, they do not address the component mismatch that may occur between Resources

that provide differently represented data. Towards this end, Lathem, Gomadam and Sheth have

developed the SA-REST [192], which provides an approach for bridging incompatible component

representations using ontology-based matching and data transcoding. SA-REST is derived from W3C

SAWSDL recommendation [289] and provides a means of annotating the inputs and outputs of

REST-based Resources using RDF descriptions. Using semantic annotations, SA-REST applications

are able to combine the inputs and outputs of various Resource representations; however, SA-REST

does not provide a wide-area component discovery approach based on arbitrary context metadata.

Based on the increasing popularity of REST-based component interoperation, Hansen et al.

proposed a context-aware hypermedia system called the HyCon framework [139]. HyCon represents a

―framework for context aware hypermedia‖ that is designed to facilitate context-aware browsing,

annotation, searching and tour guidance. Of particular interest, HyCon provides integrated support for

community-driven Resource annotation, whereby users of the systems can ―tag‖ conventional

Resources with context data such as RFID or Bluetooth identifiers. In this regard, HyCon supports the

automatic collection of context information that can be used later to facilitate context-aware browsing.

To overcome challenges related to heterogeneity, HyCon employs open representation formats such

as XLink and SVG. Finally, the HyCon framework uses a data model intended to capture and

associate contextually relevant information with Resources. While HyCon‘s dedicated application

model is incapable of supporting Ocean‘s generalized approach, its abstract data model and

community-focus provides insight into the benefits of extensible metadata and collaborative

annotation respectively. An overview of the HyCon abstract data model is shown below in Figure 24.

16

 http://www.w3.org/UbiWeb/

Chapter 4

84

Figure 24: The HyCon abstract data model (from [139])

While the approaches presented in this section ostensibly support some features of the Ocean

approach, several important challenges persist. First, many current techniques rely on intermediary

context formats; requiring that locally acquired native context data be converted into a predetermined

intermediary format for use with a given discovery protocol (e.g. mapping native geospatial data into

a specific data structure using an OWL ontology). Such techniques errantly presuppose significant

domain-expertise on the part of the application developer and may impose significant processing

overhead on mobile devices. Second, although recent approaches have explored Resource mediation

based on context information, existing techniques are limited to a predetermined set of context

metadata, do not address wide-area scenarios and cannot be extended by external context domain

experts. Third, existing approaches are generally application specific and cannot easily support a wide

variety of application domains. Fourth, existing techniques do not address context mismatch scenarios

whereby the query terms provided within a component Discovery Request do not sufficiently match

the metadata used to contextualize Web Resources (see section 7.2). Finally, existing techniques are

not well-suited for overcoming information overload in complex environments; requiring that

developers (or users) manually filter and select appropriate Resources for runtime composition (see

section 7.3).

4.3 The Contextualized Resource Abstraction

Based on the limitations presented above, this section derives the associative metadata model that

provides a foundation for flexible Resource contextualization and discovery in Ocean. Notably, this

model provides a mechanism whereby additional context handling support can be dynamically

integrated into Ocean by external Context Experts. Further, it supports the development of an open

contribution model whereby communities of Contextualizers can freely annotate Web Resources with

arbitrary contextual metadata using an open set of APIs. Further, it provides a foundation for Ocean‘s

Persistence and Discovery Frameworks, which enable Ocean applications to perform wide-area

component discovery and selection using locally modeled NCD as query terms. Finally, it imposes a

separation of concerns between conventional Web Resources and associated contextual metadata;

providing developers a familiar Web-centric programming approach and enabling the independent

evolution of both Resources and contextual metadata.

4.3 The Contextualized Resource Abstraction

85

4.3.1 Extending the Web’s Resource Model

Recall from section 3.2.6 that a Resource represents the primary informational abstraction upon which

the Web‘s architectural style is based. As described in [105], any information that is important enough

to be named can be modeled as a Resource (e.g. an image, newsfeed, software release, Web page,

search result, etc.) In conventional Web architecture, Resources are addressed by Unified Resource

Identifiers (URIs), which provide a globally standardized mechanism for component access. As

described in [341], ―A resource should have an associated URI if another party might reasonably want

to create a hypertext link to it, make or refute assertions about it, retrieve or cache a representation of

it, include all or part of it by reference into another representation, annotate it, or perform other

operations on it. Software developers should expect that sharing URIs across applications will be

useful, even if that utility is not initially evident.‖ During Web-centric component interoperation,

distributed clients observe and change Resource state by sending and receiving Resource

Representations using HTTP‘s uniform interface methods (i.e. GET, POST, PUT, etc.) Briefly, a

Representation can be understood as a sequence of bits (generally in a standardized data format) that

represents the current or desired state of a Resource. As Representations are exchanged between

client and server, Resource state is managed by the origin server while application state is managed by

the client. An overview of the Web‘s conventional Resource model is shown in Figure 25.

Figure 25: The Web’s conventional Resource model

The Web‘s Resource model provides a foundation for many of the key features of modern Web

architecture. As described in [106], ―First, it provides generality by encompassing many sources of

information without artificially distinguishing them by type or implementation. Second, it allows late

binding of the reference to a representation, enabling content negotiation to take place based on

characteristics of the request. Finally, it allows an author to reference the concept rather than some

singular representation of that concept, thus removing the need to change all existing links whenever

the representation changes.‖ In order to retain these features, Ocean adopts the conventional Resource

Chapter 4

86

model as the foundation of its contextual metadata approach (described shortly). Accordingly, Ocean

application constituents are defined as standard Web Resources as described in [341].

Recall that in the REST application model, hyperlinks represent the ―engine of application state‖

[105] whereby clients navigate between various application states by discovering, selecting and

composing Resources at runtime. As previously described, inline and transactional context

information are used to provide contextual mediation during an application‘s interactions with

distributed Resources (e.g. Web page text, HTML metadata and HTTP headers). However, as

introduced in section 4.2, the Web‘s hypermedia model precludes component pre-filtering based on

real-world context data such as location, proximate devices, temperature, etc. Towards this end, we

propose an extended Resource model, called the Contextualized Resource (CR), which supplements

the Web‘s conventional Resource model with an extensible set of Ocean Metadata intended to

constrain a Resource‘s global scope through the establishment of a Discoverability Context. Recall

from Definition 1 that a Resource‘s Discoverability Context is the set of contextual criteria that must

be fulfilled before a Resource is considered relevant to the interaction between a user and an Ocean

application, including the user and applications themselves. An overview of the Contextualized

Resource model (CR model) is shown in Figure 26.

Figure 26: The Contextualized Resource model

The CR model extends the Web‘s conventional Resource model in the following ways. First, in

order to maintain backwards compatibility with existing Web infrastructure, the conventional

Resource model is retained entirely. Next, we define an associative semantic metadata model, called

Ocean Metadata, which is used to describe the Discoverability Context of an associated Resource.

Ocean Metadata consists of a single General Metadata entity and one or more Context Metadata

entities. General Metadata include Resource-specific information such as the component‘s URI, data-

type, title, description and an optional WADL document that can be used to provide a machine-

processable description of the Resource‘s implementation of the HTTP uniform interface (see [137]

4.3 The Contextualized Resource Abstraction

87

for details). Context Metadata abstract the syntax and semantics of a given context domain into an

interface known as the Context Metadata interface (section 4.3.2). Briefly, the Context Metadata

interface supports CR configuration (section 4.3.2), similarity modeling (section 4.3.3), persistence

and indexing (section 6.3), discovery (section 6.4) and association modeling (section 7.2.4). Domain-

specific implementations of the Context Metadata interface are termed Context Handlers. Notably,

Context Handlers support instantiation from a given set of supported NCD (during query operations)

and may be specifically configured when establishing a Discoverability Context (during

contextualization). Finally, Context Metadata can be associated with General Metadata according to

the three association types described briefly below:

 Required: Indicates that a given Contextualized Resource is only discoverable if an Ocean

application provides NCD that is supported by at least one of the Context Handlers within

the Ocean Metadata entity. For example, a Context Handler may support NCD based on the

Geography Markup Language (GML) Encoding Standard [237]. If such a Context Handler

is associated within Ocean Metadata using the required type, an Ocean application must

provide compatible NCD in order for the Contextualized Resource to be considered

discoverable (e.g. by providing NCD in the GML format).

 Excluded: Indicates that that a given Contextualized Resource is not discoverable if an

Ocean application provides NCD that is supported by a Context Handler within the Ocean

Metadata entity. For example, a Contextualizer may wish to specify geo-locations where a

given Contextualized Resource is not discoverable.

 Optional: Indicates that supported NCD may be used during discovery but are neither

required nor excluded.

Importantly, the CR model introduced above is domain neutral regarding which Resources should

be contextualized; the types of Ocean Metadata that may be included; and how Ocean applications

might select and compose discovered Resources in-situ. Its use of the associative metadata approach

(see section 4.2) allows for the contextualization of existing Web Resources without requiring

changes to conventional Web architecture. In this regard, Ocean Metadata are persisted in a context-

aware component registry, called the Ocean Registry, which is used to facilitate Resource

contextualization and lookup (see section 5.3). Further, Contextualized Resources do not require

domain control over a given Resource in order for Discoverability Contexts to be established. As

such, multiple Ocean Metadata entities may exist for any given URI; providing the foundation for

Ocean‘s community-based contextualization process, which is described in section 5.5.

4.3.2 The Context Metadata Abstraction

To address Ocean‘s Web-scale focus (see section 3.3), the CR model must support expressive

contextualization across a diverse range of context domains. As detailed in section 2.3.3, native

context data (NCD) represent the complex and often subtle semantics of a given context domain.

Further, NCD are typically rendered using high-fidelity data formats that are specifically designed to

express the specific details of a given context modeling technique. Recall that prominent context

modeling techniques include key-value models, markup-scheme models, graphical models, object-

oriented models and logic-based models. Hence, a key challenge for the CR model is to provide an

Chapter 4

88

extensible means of encapsulating a variety of context modeling techniques for use within the Ocean

approach. Towards this end, this section elaborates upon the Context Metadata abstraction introduced

in the last section.

To illustrate the domain-centricity inherent to many context modeling techniques, we briefly

consider a few aspects of the location context domain. As detailed by Hightower and Borriello [149],

a variety of location sensing techniques have been devised, including several prominent triangulation

approaches. Briefly, triangulation leverages the geometric properties of triangles to compute object

locations by calculating distance (i.e. lateration) or by calculating angle or bearing measurements (i.e.

angulation). Prominent lateration techniques include direct (e.g. physical action impediment), time-of-

flight (e.g. ultrasonic pulse timing) and attenuation (e.g. radio signal power decrease). While similar

to lateration, angulation techniques measure angles rather than distance (e.g. exploiting phased

antenna arrays and receivers with a known geometry). Various approaches are used to represent such

data. For example, the physical or symbolic location of a radio may be inferred from a set of received

radio signals and associated signal characteristics (e.g. signal strength or time-of-flight) [19]. To

express the details of a given context domain, native context data formats are generally devised. For

example, one system may represent such signal values according to a proprietary key-value data

structure where the keys represent signal source identifiers and the values represent associated signal

strength values (according to a specific decibel normalization scheme [352]). Another system may

provide additional quantization of low-level signal values into a higher-order context representation

such as a geo-location encoded using a markup model [237]. While we do not elaborate further, we

note that many context domains are similarity complex and domain-specific (see section 2.3.3).

In traditional context-aware systems, the effective use of complex NCD such as the triangulation

examples described above requires that a system be capable of parsing and understanding the

underlying context domain. While such domain knowledge can be safely assumed in small-scale or

prototype systems, large-scale context-aware scenarios become quickly intractable as the

heterogeneity of context data increases [79, 145]. To accommodate context heterogeneity, Ocean

provides the Contextualized Resource abstraction (see section 4.3.1), which supports the

contextualization and discovery of conventional Web Resources using Ocean Metadata. As previously

described, the principle architectural abstraction of the CR model is the Context Metadata interface,

which allows for the development of a broad range of Context Handler implementations. In the Ocean

approach, the Context Handlers are used to support effective and efficient CR persistence and

discovery (see sections 6.3 and 6.4 respectively). Relevant details of the Context Metadata interface

are shown in Figure 27.

4.3 The Contextualized Resource Abstraction

89

Figure 27: The Context Metadata interface

With regard to Figure 27, the Context Metadata interface methods are defined as follows:

 setConfiguration(Object configurationData): void - As Context Handlers

encapsulate domain-specific context information, their configuration is provided by a

similarly domain-specific configuration data object. Notable, the configurationData

object is designed by Context Experts to provide configuration of the instance‘s internal

state and comparison semantics by non-experts.

 refineMetadata(List<Context Metadata> colleagues): void - Provides a

mechanism whereby Context Handlers may provide additional configuration refinement in

response to the presence of other Context Metadata contained within a Contextualized

Resource (termed colleagues). During instantiation, each Context Handler receives all of its

colleagues via the refinemetadata method and may adapt its internal configuration as

needed. For example, a Context Handler encapsulating physical positioning based on radio

frequency signal strength values may alter its comparison semantics if it determines that the

receiver‘s antenna is located indoors (i.e. potentially affected by physical obstructions such

as walls and floors). In this example, an indoor location might be inferred from the

presence of a colleague providing a well-known ontological description of an indoor state

(e.g. Environment:Location:Building=”indoors” as described in [185]).

 compareTo(ContextMetadata candidate): ComparisonRepresentation - Supports

domain-specific comparison of instantiated Context Metadata as required for indexing via

the Ocean Persistence Framework (see section 6.3). Implementations of compareTo provide

domain-specific comparisons, which are represented by an extension of the

ComparisonRepresentation class. The compareTo method is used to encapsulate various

comparison models, such as geometric models, feature models, alignment-based models

and transformational models [125]. Common implementations may include Quadratic Form

Distance, Levenshtein distance (also known as edit distance) and Jaccard‘s Coefficient

[376]. Additional details regarding Context Metadata similarity modeling are provided in

section 4.3.3.

Chapter 4

90

 getNormalizedSimilarity (ContextMetadata candidate): NormalizedSimilarity

- As ComparisonRepresentations cannot generally be combined across diverse context

domains, getNormalizedSimilarity is used to obtain a domain-independent similarity

score. The output of the getNormalizedSimilarity method is a NormalizedSimilarity

object whose value is a numerical score constrained to the unit interval (0 ≤ 𝑥 ≤ 1 ,

where 𝑥 ∈ R) where 0 equals no similarity and 1 equals perfect similarity. As

ComparisonRepresentations may be based on the distance between multivariate points in

vector space, they may need to be converted to an appropriate normalized similarity score

in order to be combined. A typical example of how such a conversion might be

accomplished using Euclidian distance is shown below (from [39]):

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1 + 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4.3.3 Modeling Similarity

As described in the last section, the Context Metadata abstraction provides a means of encapsulating

domain specific Contextualized Resource configuration and comparison. As such, Context Metadata

implementations (i.e. Context Handlers) may be represented by complex objects that are difficult to

compare, index and retrieve from a data store. In general, information systems that must contend with

large amounts of complex and heterogeneous data require domain-specific mechanisms for

differentiating between persisted objects [376]. As database systems have increased in complexity and

scope, the types of information stored within them has changed dramatically. Moreover, the problem

domains served by such systems now span a broad range of disciplines [61], including statistics,

computational geometry, artificial intelligence, databases, pattern recognition, etc. Increasingly,

application scenarios within these disciplines rely on the storage and retrieval of data types such as

images, audio, video, unstructured text and object hierarchies. However, the persistence features and

query mechanisms common to classical databases cannot often differentiate between such data types

meaningfully [281]. Similarly, Contextualized Resources can be understood as arbitrarily complex

data structures that may resist classical indexing and search techniques. Hence, this section provides

background and related work regarding similarity modeling as a foundation for the upcoming

discussions regarding Context Handler indexing, persistence and discovery within the Ocean

approach.

Similarity modeling in common database approaches is often designed to accommodate simple

structured data that can be easily compared. In many classical techniques, candidate objects are

retrieved from a data store if a well-defined textual or numerical data entity present within the record

(i.e. a key) matches a given set of search criteria (e.g. constraints expressed in a query grammar)

[205]. Searching and indexing operations generally operate on simple fields represented by data-types

that can be directly compared to related aspects of a posed query (e.g. strings or integers). As

discussed in [61], classical search techniques include key search, where records are returned if a

record key precisely matches the query; range search, where records are returned based on full or

partial matches within specific fields or value ranges; and proximity search, where records are

returned if they are considered statistically related to the search query.

4.3 The Contextualized Resource Abstraction

91

Notably, in proximity search, statistical relevancy is often determined by modeling the search space

as a hyper-rectangle of k dimensions, where each dimension is related to a specific field of interest

within the database (numerical or alphabetical). Records are then projected as points within the hyper-

rectangle and queries return records if they are contained within a sub-rectangle specified along a

dimension of interest. This approach is common to many Web search engines and is exemplified by

techniques such as grid file [229]. While such techniques may resolve issues related to text retrieval,

they often lack the sophistication to model similarity between complex data types such as multimedia

elements or object hierarchies [61]. For example, in many image search scenarios such as fingerprint

analysis and facial recognition, it is derisible to search through a large image repository in order to

extract images that are similar in some meaningful way to a query image [351].

To illustrate how similarity comparisons might be implemented using the Context Metadata‘s

compareTo and getNormalizedSimilarity interface methods described in the last section, a brief

overview of similarity modeling techniques is now presented. Importantly, this section is not intended

to provide a complete treatment of similarity modeling; rather, it presents a sampling of approaches as

a means of illustrating how specific Context Handlers might be implemented. Moreover, it also

illustrates how similarity modeling techniques often imply significant domain-expertise that may be

prohibitively complex for non-experts. As such, the Context Metadata interface is used to insulate the

Ocean approach from complex similarity calculations during persistence and discovery operations,

which are elaborated in sections 6.3 and 6.4 respectively.

We begin our overview of relevant approaches by introducing geometric models, which have long

been recognized as an influential notion of similarity [125]. Broadly, geometric approaches represent

similarity relationships by modeling important aspects of a given object type as a set of points within

a dimensionally organized metric space. The input to geometric models may consist of any measure

of pair-wise proximity such as correlation coefficients, joint probabilities, similarity judgments, etc.

Objects in the dataset are represented as points in an n-dimensional space, where the similarity

between a pair of objects is inversely related to the distance between the object‘s points in the space.

For example, as presented in [299, 300], distance metrics within Euclidian space are exemplified by

non-metric multidimensional scaling (MDS) of the basic form:

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖, 𝑗 = |𝑋𝑖𝑘 − 𝑋𝑗𝑘 |𝑟
𝑛

𝑘=1

1
𝑟

where n indicates the number of dimensions, 𝑋𝑖𝑘 represents the dimension k for item i, and r is a value

that allows different metrics to be used. For example, if r=1, the distance between two points is

computed by a city block metric (also known as the rectilinear distance or Manhattan distance),

whereby the total distance is found by summing the distance between points for each dimension. As

another example, when r=2, a standard Euclidian notion of distance is invoked, whereby the distance

between two points is found by the length of a straight line connecting them. Notably, a Euclidian

metric has been shown to be an effective model for some perceptually fused dimensions, whereas the

city block metric has been shown as an effective model for separated similarity notions such as color

and size. For reference, the Manhattan (or Minkowski 𝐿1 distance) is typically given by:

Chapter 4

92

𝑑 𝑥,𝑦 = 𝑥𝑖− 𝑦𝑖

𝑛

𝑖=1

While geometric models utilize a distance metric, other metric space approaches are possible. For

example, information retrieval systems often model documents as vectors in Euclidian space;

representing the similarity between documents as the cosine of the angle between the vectors [205].

As an illustrative example, we summarize an approach for evaluating the similarity of publications, as

presented by Bani-Ahmad, Ali Cakmak, and Ozsoyoglu in [22]. In their approach, a vocabulary T of

atomic terms t is generated from a collection of publication documents. An individual document can

then be represented as vector of real numbers 𝑣 = 𝑅 𝑇 , where each element is described by a term.

Accordingly, 𝑣𝑡 is used to denote an element of 𝑣 that corresponds to the term 𝑡, 𝑡 ∈ 𝑇. The value of

𝑣𝑡 is related to the importance of 𝑡 in the document represented by 𝑣. Using the Term Frequency-

Inverse Document Frequency (TF-IDF) weighting scheme, as described in [277], 𝑣𝑡 is defined as:

𝑣𝑡 = 𝑙𝑜𝑔(𝑇𝐹𝑣,𝑡 + 1) × 𝑙𝑜𝑔(𝐼𝐷𝐹𝑡)

where 𝑇𝐹𝑣,𝑡 represents the number of times the term 𝑡 occurs in the document represented by 𝑣;

𝐼𝐷𝐹𝑡 = 𝑁 𝑛𝑡 ; 𝑁 is the total number of documents in the database; and 𝑛𝑡 represents the total

number of documents in the database that contain the term 𝑡. The cosine similarity between two

documents with vectors 𝑣 and 𝑤 is then computed as:

cos 𝑣,𝑤 = 𝑓 𝑣𝑖 ∙ 𝑓 𝑤𝑖
 𝑇

𝑖=1
 𝑓 𝑣𝑖

2 ∙ 𝑓 𝑤𝑖
2

 𝑇

𝑖=1

where 𝑓() is a damping function, which is either the square-root or the logarithm function. It should

be noted that such approaches remove stop-words (e.g. an, the and then) from the document and then

apply the Porter‘s algorithm [256] to stem the terms.

While distance and angle similarity operate within domains that can be well-represented as a metric

space, feature metrics are useful for detecting similarities and differences between sets of events

[331]. For example, Microsoft‘s SensCam [47] is a multi-sensor camera (worn around the neck) that

records a continuous stream of images as a means of enabling so-called ―lifelog recording‖. Because

SensCams take approximately 3,000 images per day, the volume of image data is often a barrier for

effective image retrieval. To help address this issue, SensCam logs a variety of context information

along with the collected images. One novel SensCam technique is the detection of Bluetooth

familiarity as a means of inferring the people present during a particular event. In this technique,

SensCam identifies nearby Bluetooth devices (by MAC address) logs the duration of the encounter;

linking the presence of Bluetooth devices to the ongoing image stream. To provide a basic similarity

score, the set of devices present during an event are compared using a Jaccard coefficient scheme

[205]. The similarity score is then computed by calculating the intersection of devices co-present

during two events as:

𝐽 𝐴,𝐵 = 𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵

which results in a similarity score in the range [0,1], with values of 0 indicating no similarity and

values of 1 indicating strong similarity. Related, the researchers suggest that the longer a device is

4.3 The Contextualized Resource Abstraction

93

present, the more significant the device‘s owner may be to the event. Hence, the duration of detected

Bluetooth signals is used to weight the significance of proximate devices during an event. The

duration weight is calculated as:

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔𝑡 =
 𝑋 ∩ 𝑌 − 𝐷𝑖𝑓𝑓𝐷𝑢𝑟(𝑋𝑖 − 𝑌𝑖)

|𝑋∪𝑌|
𝑖=0

|𝑋 ∪ 𝑌|

where X=Event 1, Y=Event 2, i = devices present in both events and 𝐷𝑖𝑓𝑓𝐷𝑢𝑟 = 𝐷𝑢𝑟𝑟𝑎𝑡𝑖𝑜𝑛 𝑋𝑖 −

𝐷𝑢𝑟𝑟𝑎𝑡𝑖𝑜𝑛 𝑌𝑖 . Next, using the Jaccard co-efficient and the 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔𝑡 value, events can be

segmented in several ways. First, devices can be sorted by familiarity, where increased significance is

given to devices that are present in events relative to devices that are not. Second, devices can be

weighted by both duration and familiarity, where the 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔𝑡 is used to enhance the

significance of devices that are present longer during an event. Finally, events can be segmented by

inverse familiarity, where strangers and outliers can be used to enhance image retrieval in certain

situations (e.g. during a chance meeting with an unfamiliar person).

Feature metrics are useful for determining similarity between complex objects that vary along a

large number of dimensions; however, feature models may not adequately capture the semantics of

the structured information within a comparison [187]. For example, the feature ―red‖ may be part of

the description of an automobile; however feature models may not be capable of discerning between

automobiles with red wheels versus red body paint [125]. Hence, refinements of the feature-based

model have been proposed. Common approaches include modeling features as fuzzy predicates within

a contrast model (e.g. in computer vision) [281] and the LogOdds approach, which models the

probability of set membership based on the presence of an object in related communities [311].

Finally, transformational models such Levenshtein distance are used to represent the similarity of

objects by calculating the number of operations required to transform one object into another (e.g.

sequences of text in information retrieval scenarios) [205].

Notably, in large-scale information retrieval systems, indexing becomes a critical aspect of finding

similar information in high dimensional space [376]. In a single dimension, naïve search algorithms

exploiting linear scan strategies exhibit query times of Θ(dn), where d represents the number of

dimensions and n represents the number of search items. However, as dimensionality increases, naïve

strategies often encounter the so-called curse of dimensionality, which is characterized by exponential

increases in storage space or search time requirements [39]. For example, the nearest-neighbor

problem has a solution of O(d
O(1)

 log n) query time, but requires roughly n
O(d)

 space [296]. Hence,

while such algorithms can be effective for small datasets, they become quickly intractable when

applied to larger datasets and are often too slow for many time-sensitive applications. To improve

indexing operations in multi-feature scenarios, a common optimization approach includes the use of

approximate nearest neighbor algorithms (ANN), which trade query precision for speed

improvements or memory savings [69]. Moreover, the speed of ANN algorithms can be further

improved through the use of efficient index data structures such as R-Trees [134] and M-trees [68].

Note that such issues are discussed further during the presentation of Ocean‘s Persistence Framework

in section 6.3.

Chapter 4

94

4.3.4 Validating the Context Metadata Interface

In order to validate the Context Metadata abstraction described in section 4.3.2, we implemented

several real-world Context Handlers within the Ocean Reference Implementation (RI). We began by

identifying ten heterogeneous context information types as a means of exploring the applicability of

the Context Metadata abstraction to diverse context domains. We selected context domains according

to the following criteria: (1) the domain used non-proprietary or open data formats; (2) the domain

was applicable to real-world context-aware scenarios; (3) the domain was amenable to the Aladin

approach described in section 3.2.2; and, (4) context domain expertise could be extracted from

existing development efforts. Related, we implemented several customizable comparison functions

intended to allow non-experts to configure Context Handlers for a specific contextualization use-case.

To illustrate how such comparison functions might be integrated into development and end-user tools,

we also created a dedicated contextualization application, known as Ocean Studio, which provides

forms-based Contextualized Resource creation and Context Handler configuration (see section 8.2).

To validate the Context Metadata abstraction using the Ocean Reference Implementation (RI), we

began by creating an IContextMetadata interface that expresses the methods described in section

4.3.2. Additionally, we created a ContextHandlerBase class as a means of consolidating common

functionality across multiple Context Handler types (e.g. configuration data). Next, we implemented

several concrete Context Handler classes using the IContextMetadata interface and

ContextHandlerBase class as foundations. Further, we designed a complimentary plug-in framework

that allows the dynamic integration of Context Handlers at runtime as a means of supporting the

community-based contribution approach described in section 5.4. An overview of the implemented

Context Handlers, the IContextMetadata interface and the ContextHandlerBase class is shown

below in Figure 28. (Note that implementation-specific methods may be included in the figure below;

however, in the interest of clarity, these are not described.) Related, Table 8 below provides a brief

description of each Context Handler.

Figure 28: Implemented Context Handlers, the IContextMetadata interface and the

ContextHandlerBase class within the Ocean RI

4.3 The Contextualized Resource Abstraction

95

Context Handler Description

GEOPointHandler Preliminary support for the OpenGIS Geography Markup Language

(GML) Encoding Standard as presented in [237]. Comparison

functions include GPSPointDistanceBoolean and

GPSPointDistanceLinear (see section 4.4 for details). Geographic

distance calculations are provided by the dinopolis gpstool package
17

.

WIFIPlaceLabStumblerHandler Preliminary support for the PlaceLab stumbler format as described in

[66]. Supports the 802.11a/b standards. A supplemental

RFSignalPropagation comparison function provides handler tuning

based on a variation of the log-normal shadowing signal propagation

model as described in [202]. Provides automatic refinement of

comparison functions based on the VTTOntologyHandler.

ISO639LanguageHandler Preliminary support of the ISO 639 Language standard
18

.

ISO8601DateTimeHandler Preliminary support for the ISO 8601 date and time formats as

described in [324]. Time and data evaluation are provided by the open-

source Joda Time software package
19

.

RFIDHandler Preliminary support for RFID strings in both Electronic Product Code

(EPC) [98] and RAW formats.

SecurityTokenHandler Preliminary support for secure hash tokens per the SHA-1 standard

described in [219].

TextSearchHandler An Ocean-provided Context Handler that supports contextualization of

Resources based on textual metadata within the title and description

elements of a Contextualized Resource. Support for textual search is

provided through the Apache Lucene search engine
20

.

VTTOntologyHandler Preliminary support of the Ontology for Mobile Device Sensor-Based

Context Awareness, as described in [184].

QRCodeHandler Preliminary support of the Quick Response two-dimensional bar code

format (QR Code) developed by Denso-Wave Corporation
21

.

Table 8: Overview of Context Handlers implemented within the Ocean RI

17

 http://gpsmap.sourceforge.net/
18

 http://www.loc.gov/standards/iso639-2/
19

 http://joda-time.sourceforge.net/
20

 http://lucene.apache.org/java/docs/
21

 http://www.denso-wave.com/qrcode/index-e.html

Chapter 4

96

4.3.5 The Contextualized Resource XML Schema and Ocean RI Validation

To provide an open mechanism for describing Contextualized Resources, a flexible XML

representation format is now defined. While the next chapter elaborates in detail on how the following

XML schema is used within the Ocean approach, we introduce it here to help support the

Contextualized Resource example presented at the end of this chapter. The Contextualized Resource

XML schema is shown in Figure 29.

Figure 29: The Contextualized Resource XML schema

With reference to Figure 29, the Contextualized Resource XML scheme is defined as follows:

 The contextualized_resource root element provides a version attribute (used for

finding a suitable parser) that includes a single general_metadata element and single

context_metadata element.

 general_metadata provides Resource-specific information, including uri (as per RFC:

3986 [34]); type (e.g. MIME data types [327]); title (UTF-8 text); description (UTF-8

text); and an optional WADL document (as described in [137]).

 The context_metadata element includes one or more context_metadatum elements that

have an association_type attribute with one of the following strings: required,

excluded or optional.

 A context_metadatum element provides a value element that includes the native context

data of the context_metadatum, plus an optional configuration element that may include

domain-specific configuration data. Notably, configuration data is generally used to

customize the comparison semantics of a given context_metadatum. Importantly, the

information within context_metadatum sub-elements must be enclosed within an XML

CDATA tag to allow for the inclusion of arbitrary configuration data (e.g. binary data

structures and XML incompliant configuration strings).

4.3 The Contextualized Resource Abstraction

97

With regards to the Contextualized Resource data model, Figure 30 shows the relevant classes and

interfaces within the Ocean Reference Implementation (RI). For reference, the

ContextualizedResource class provides an implementation of the Contextualized Resource data

model described in section 4.3.1. Notably, both General and Context Metadata properties are provided

by the class. Additionally, the IContextMetadata interface provides an implementation of the

Context Metadata abstraction described in section 4.3.2. Finally, the Item interface is used to validate

the Contextualized Resource in terms of the Resource personalization approach described in section

7.3. (Note that implementation-specific methods may be included in the figure below; however, in the

interest of clarity, these are not described.)

Figure 30: The ContextualizedResource and IContextMetadata classes from the Ocean RI

Chapter 4

98

4.4 A Contextualized Resource Example

To clarify the CR model and Context Metadata concepts introduced in this chapter, this section

presents a simplified Contextualized Resource example. Importantly, the example is not intended to

provide a complete overview of the Ocean approach; rather, it is intended to illustrate the foundational

principles upon which Ocean is founded (upcoming chapters present the Ocean approach in detail).

Hence, this section presents an intentionally simplified scenario whereby a Web-based calendar

Resource is contextualized using Context Metadata consisting geo-location and time. In order to

accommodate a broad range of application scenarios, the example CR references a Resource that

provides a Representation in the well-known iCalendar data format (iCal) [81]. Briefly, iCal supports

a variety of electronic calendaring functions (e.g. events, to-do and journal entry information) and is

compatible with a broad range of applications. As per the CR model introduced in section 4.3,

Resources are managed outside of the Ocean approach (i.e. iCal data may be created using tools such

as Microsoft Outlook
22

 and hosted on an organization‘s Web server). In this example, contextualized

calendar data are used to support a simple conference scenario, whereby attendees receive time-

sensitive event scheduling information when near the conference location. To develop this example

scenario, we describe two related Context Handlers that were developed within the Ocean RI,

including the GEOPointHandler and the ISO8601DateTimeHandler. Both Context Handler

description sections provide an general overview of the related context domain, the associated

comparison semantics and configuration options. The example concludes with a presentation of the

example CR‘s UML diagram and associated XML configuration.

4.4.1 The GEOPointHandler

We now introduce the GEOPointHandler that was developed as a part of the Ocean RI. Briefly, the

GEOPointHandler encapsulates the domain semantics of geo-location proximity based on key features

of the OpenGIS Abstract Specification [236] and the OpenGIS Geography Markup Language (GML)

Encoding Standard [237]. Based on these standards, the handler can be used to constrain the

Discoverability Context of Resources to a geographic area that is represented by a defined center

point described by latitude and longitude values. The handler supports instantiation based on native

context data (NCD) in the Geography Markup Language simple profile format (GML simple) [237];

however, it could also be extended to support additional NCD formats such as NMEA 0183 [220] or

the Microformat Geo standard [55]. (Note that we chose the GML simple specification initially

because of its broad industry support and its ability to represent ―variety of kinds of objects for

describing geography including features, coordinate reference systems, geometry, topology, time,

units of measure and generalized values‖ [237].)

To support contextualization and discovery within Ocean, the GEOPointHandler provides a

domain-specific implementation of the Context Metadata interface described in section 4.3.3. In this

example, we describe its practical implementation and several conceptual enhancements regarding

persistence (see section 6.3). Accordingly, the GEOPointHandler implements the Context Metadata

interface as presented in Table 9.

22

 http://www.microsoft.com/outlook/

4.4 A Contextualized Resource Example

99

Interface method Implementation details

setConfiguration Accepts XML configuration data based on the GML simple profile [237].

Additional configuration options include: GEOPointDistanceLinear and

GEOPointDistanceBoolean comparison functions (described shortly).

refineMetadata No implementation.

compareTo Geo-location data are intended for storage within a 2-dimensional vector

space model as per [183]. Intra-domain comparisons are represented by a

Euclidean metric extension of the ComparisonRepresentation object.

getNormalizedSimilarity Normalized similarity is computed by transforming the distances between

points in 2-dimensional vector space using following equation:

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1+𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Table 9: The GEOPointHandler Context Metadata interface implementation

In its default configuration, the GEOPointHandler requires that two geo-locations represent exactly

the same latitude and longitude values to provide a similarity of 1 (otherwise the similarity is

determined to be 0). To improve the flexibility of the handler, we also developed two related

comparison functions that allow Contextualizers to control how the handler performs similarity

comparisons. The first comparison function, termed GEOPointDistanceLinear, allows a

Contextualizer to define a circular area around a given geo-location point, whereby similarity is

modeled as a linear falloff that is 1 at the center and fades to 0 at the perimeter. This comparison

function represents a range query of the form R(q,r), where q represents the center of the circle and r

represents the radius of the search in meters [61]. Within the bounds of the circular area, similarity is

represented by fractional numbers such as 0.8 or 0.5. The second function, termed

GEOPointDistanceBoolean, allows a Contextualizer to define a circular area around a particular geo-

location point that accommodates Boolean comparisons; yielding a similarity of 1 within the bounds

of the circular area and 0 outside it. A visualization of both comparison functions is shown in Figure

31 (note that similarity values are normalized).

Figure 31: Visualization of two GEOPointHandler similarity comparison functions

Chapter 4

100

Finally, based on the XML specification introduced in section 4.3.5, an example snippet of the

GEOPointHandler configuration XML is provided in Figure 32.

Figure 32: Example GEOPointHandler XML configuration

With regards to Figure 32, we note the following regarding the GEOPointHandler configuration

data:

1. The Context Metadata is associated with the CR model according to the required type.

2. The value and configuration elements are enclosed with XML CDATA tags; allowing for

arbitrary data to be passed in during instantiation.

3. The value element includes native GML Point data that is understood by the handler‘s

setConfiguration implementation.

4. The configuration element includes a GEOPointDistanceLinear comparison function that

is configured for a discoverability range of 500 meters around the handler‘s location.

4.4.2 The ISO8601DateTimeHandler

We now introduce the ISO8601DateTimeHandler Context Metadata implementation that was

developed as a part of the Ocean RI. Briefly, the ISO8601DateTimeHandler encapsulates the

semantics of date, time and interval information based on key features of the ISO8601 standard, as

described in [324]. We selected the ISO8601 standard because of its non-proprietary nature and text-

based representation format that is independent of communication medium. Notably, the ISO8601

standard can be used to express a variety of dates, times, time-zones and durations, intervals,

repeating intervals, etc. Additionally, several safety and compactness features are built into the

standard. For example, year representations are constrained to four digit representations to avoid

millennium confusion (e.g. ―YYYY‖) and time expressions utilize the twenty-four hour clock for

compactness. Examples of the ISO8601 standard are shown in Figure 33.

...

<context_datum association_type=”required”>

 <value><![CDATA[

 <gml:Point>

 <gml:pos>53.874532,10.684183</gml:pos>

 </gml:Point>]]>

 </value>

 <configuration><![CDATA[

 <config>

 <comparison_function>GEOPointDistanceLinear</comparison_function>

 <max_meters>500</max_meters>

 </config>]]>

 </configuration>

</context_datum>

...

4.4 A Contextualized Resource Example

101

Figure 33: ISO8601 format examples (from [324])

To support contextualization and discovery in Ocean, the ISO8601DateTimeHandler provides a

domain-specific implementation of the Context Metadata interface described in section 4.3.3.

Accordingly, its interface methods have been implemented as shown in Table 10:

Interface method Implementation details

setConfiguration Accepts XML configuration data based on the ISO8601 format.

refineMetadata No implementation.

compareTo The GEOPointHandler is intended for object-based persistence optimized

for the ISO8601 standard.

getNormalizedSimilarity Dependent on the configuration of the handler. Please see the description

below for details. (Note that comparisons are provided for DateTime and

Intervals only.)

Table 10: The ISO8601DateTimeHandler Context Metadata interface implementation

In terms of comparison semantics, the ISO8601DateTimeHandler is designed to encapsulate the

DateTime and Interval specifications expressed by the ISO8601 standard; hence, comparisons are

dependent on the configuration of the handler. For example, if an ISO8601DateTimeHandler is

configured to support the date and time (i.e. DateTime), the comparison function computes the

Chapter 4

102

similarity between two Context Metadata instances 𝐷𝑇1 and 𝐷𝑇2 based on the difference between the

DateTime values (in minutes). The getNormalizedSimilarity value is computed as follows:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1 + 𝐷𝑇1 −𝐷𝑇2

Note that DateTime similarity calculations are always based on the time resolution of the handler

associated with the Contextualized Resource. For example, if such a handler has been configured to

represent the year “2008” (without additional expressions for days, hours, etc.) normalized similarity

comparisons will result in a value of 1 provided that candidates are configured with a “2008” year

(regardless of day, hour, minute and second configurations). Likewise, an associated handler that has

been configured using an extended format string (e.g. “2008-08-27T11:15:30”) will result in a

fractional normalized similarity values depending on the configuration of the candidate Context

Metadata.

The ISO8601DateTimeHandler behaves differently if configured as an Interval. To support

normalized similarity computation, an Interval-based ISO8601DateTimeHandler provides a Boolean

comparison function that computes whether a given DateTime falls within the handler‘s Interval. If

it does, getNormalizedSimilarity returns 1 (otherwise it returns 0). Note that Interval-based

ISO8601DateTimeHandlers are only comparable to standard DateTime values (i.e. Interval to

Interval comparisons are not currently supported due to time constraints). It should be noted that the

default comparison semantics could be further enhanced through the use of a supplemental

comparison functions.

Based on the XML specification introduced in section 4.3.5, an example snippet of the

ISO8601DateTimeHandler configuration XML is provided in Figure 34:

Figure 34: Example ISO8601DateTimeHandler XML configuration snippet

With regards to Figure 34, we note the following regarding the Context Handler‘s configuration:

1. The context_datum is associated to the CR model with the required association type in

order to constrain discovery to DateTime NCD that fall within the handler‘s Interval.

2. The value and configuration elements are enclosed with XML CDATA tags; allowing for

arbitrary native data to be passed in during instantiation.

3. The value element includes a native ISO8601 extended format Interval string, which is

understood by the handler‘s setConfiguration implementation.

4. The configuration element is not used by this handler, meaning that default comparison

semantics are used.

...

<context_datum association_type=”required”>

 <value><![CDATA[2008-06-14T10:00:00/2008-06-14T18:00:00]]></value>

 <configuration/>

</context_datum>

...

4.4 A Contextualized Resource Example

103

4.4.3 Bringing it All Together

Using the GEOPointHandler and ISO8601DateTimeHandler Context Metadata implementations

described in the previous sections, we now present a completed Contextualized Resource (CR). As

previously introduced, the example CR is used to contextualize calendar data (in the iCal format) as a

means of supporting a simple conference scenario, whereby attendees receive time-sensitive event

scheduling information when near the conference location. With reference to the CR model

introduced in section 4.3, the General Metadata for the example CR are presented in Table 11.

General Metadata Value

Type text/calendar

URI http://isnm.de/2008/cal

Title ―ISNM Open House 2008‖

Description ―Event calendar for the 2008 ISNM Open House‖

WADL None

Table 11: Example General Metadata

In addition to the General Metadata presented above, two Context Handlers are used to constrain

the Discoverability Context of the iCal Resource. The Context Metadata associated with the example

Resource are represented by the GEOPointHandler and ISO8601DateTimeHandler implementations

previously introduced. An overview of the associated configuration specifications are shown in Table

12.

Context Metadata Description

ISO8601DateTimeHandler Configured as an ISO8601 interval encompassing the following time span:

June 14
th

, 2008 (10:00) until June 14
th

, 2008 (18:00).

GEOPointHandler Configured with a physical location of the Media Docks facility in Luebeck,

Germany (Lat: 53.874532/ Lon:10.684183), which is represented using the

GML simple profile. In addition, the handler is configured with a

GEOPointDistanceLinear compare function with a maximum discovery

range of 200 meters.

Table 12: Example Context Metadata configuration specifications

To form the completed CR, the General Metadata and Context Metadata presented above are

constrained in their relationship according to the CR model described in section 4.3. The resultant

Contextualized Resource data structure is shown in Figure 35.

Chapter 4

104

Figure 35: Diagram of the example Contextualized Resource

To realize the CR model shown above within the Ocean Registry, the Contextualized Resource

specification is encoded according to the XML schema defined in section 4.3.5, as shown in Figure

36.

Figure 36: Example Contextualized Resource configuration XML

<?xml version="1.0" encoding="UTF-8"?>

<contextualized_resource version="1.0">

 <general_metadata>

 <type><![CDATA[text/calendar]]></type>

 <uri><![CDATA[http://isnm.de/2008/cal]]></uri>

 <title>2008 ISNM Open House</title>

 <description>Event calendar for the 2008 ISNM Open House</description>

 <wadl/>

 </general_metadata>

 <context_metadata>

 <context_metadatum association_type=”required”>

 <value><![CDATA[2008-06-14T10:00:00/2008-06-14T18:00:00]]></value>

 <configuration/>

 </context_metadatum>

 <context_metadatum association_type=”required”>

 <value><![CDATA[<gml:Point><gml:pos>53.874532,10.684183</gml:pos>

 </gml:Point>]]>

 </value>

 <configuration><![CDATA[<comparison_function><type>GEOPointDistanceLinear

 </type><max_meters>200</max_meters>

 </comparison_function]]>

 </configuration>

 </context_metadatum>

 </context_metadata>

</contextualized_resource>

4.5 Chapter Summary

105

4.5 Chapter Summary

This chapter presented Ocean‘s Contextualized Resource abstraction. It began by providing

background and related work specific to context-mediation in RESTful distributed systems. It first

described context-mediation in conventional Web architecture and then introduced several related

approaches employed by current context-aware systems. It was noted that while many Web-centric

component discovery techniques support features of the Ocean approach, several important challenges

persist. These challenges were identified as: support for native context data; support for multi-feature

similarity search; context mismatch handling; and techniques for overcoming information overload.

Based on these limitations, the Contextualized Resource (CR) abstraction was introduced as a

mechanism for supplementing the Web‘s conventional Resource model with an extensible set of

Ocean Metadata intended to constrain a Resource‘s global scope through the establishment of a

Discoverability Context. This section presented the Contextualized Resource data model, which

included both General and Context Metadata entities. Briefly, General Metadata refers to Resource-

specific information such as URI, title, description and an optional WADL document. In contrast,

Context Metadata are intended to constrain the Discoverability Context of Web Resources through the

encapsulation of the syntax and semantics of a given context domain. In this regard, the Context

Metadata interface was presented as a means supporting Ocean‘s CR persistence and Discovery

Frameworks described in Chapter 6. This section also included a theoretical discussion of similarity

modeling techniques and their applicability to the Context Metadata interface. Next, the

Contextualized Resource XML schema was presented and validation within the Ocean RI was

discussed. The chapter concluded with a presentation of an example Contextualized Resource.

106

Chapter 5

Towards Web-scale Context-aware Computing

5.1 Introduction

The Contextualized Resource model (CR model) introduced in the last chapter provides an extensible

and expressive mechanism for constraining the Discoverability Context of conventional Web

Resources. However, the CR model is not sufficient for realizing the Ocean approach derived in

section 3.5 as it provides only a means of differentiating between Web Resources based on native

context data. This chapter builds upon the Contextualized Resource abstraction by defining Ocean‘s

application model and deriving a complimentary support infrastructure that is further elaborated in

subsequent chapters. First, section 5.2 details the overall Ocean approach. Related, section 5.2.1

discusses how the client-centric mashup model aligns well with Ocean‘s design principles and

approach constraints introduced in sections 3.4.1 and 3.4.2 respectively. Next, section 5.2.2 defines

the Ocean‘s application model by extending the client-centric mashup style to support in-situ, context-

mediated Resource discovery, selection and composition. Based on the Ocean application model, we

then define the necessary computing infrastructure required to support wide-area creation and

discovery of Contextualized Resources. Related, section 5.3 describes Ocean‘s Contextualized

Resource registry (Ocean Registry) and its related software architecture. Section 5.3.2 introduces the

Ocean Registry‘s Resource Management API. Next, section 5.3.3 provides details regarding the

instantiation of Contextualized Resources as a foundation for the CR persistence and discovery

techniques presented in Chapter 6. The final sections of this chapter describe two preliminary

community-centric techniques designed to support the overall Ocean approach. First, section 5.4

describes Ocean‘s Context Handler contribution model, which is based on an adaptation of the Java

Community Process. Finally, section 5.5 introduces Ocean‘s open contextualization model, which is

intended to promote the large-scale Resource contextualization through collaborative annotation.

5.2 The Ocean Application Model

Based on the large-scale context-aware computing challenges presented in section 3.2, we derived

Ocean‘s Web-centric context-aware computing approach in section 3.5. As presented in section 3.4.2,

Ocean adheres to the following design constraints: Aladin-based context acquisition and modeling;

Internet-based network communications; Web-centric middleware; and REST-based component

interoperation. Based on these constraints, Ocean inherits many of the capabilities and limitations of

conventional Web architecture. Recall that in Web-based hypermedia, Resource content (e.g. Web

page text) and transactional metadata (e.g. HTTP headers) provide the context mediation necessary

for users to discover, select and compose Resources on-demand (see section 4.2). However,

conventional Web architecture does not inherently support context-mediation based on real-world

context information such as location, proximate devices and activity. Hence, Chapter 4 introduced the

Contextualized Resource as a mechanism for constraining the Discoverability Context of conventional

Web Resources based on extensible Ocean Metadata. While the Contextualized Resource abstraction

provides a foundation for Web-centric context-aware computing, Ocean‘s wide-area focus

presupposes a client-centric application model capable of supporting cross-domain component

Chapter 5

107

interoperation using conventional Web technologies. Towards this end, the following section presents

the client-centric mashup style as a promising application model that is well-aligned with Ocean‘s

design constraints and approach derivation. Moreover, the following section describes an extension of

the client-side mashup style as a means of supporting wide-area context-mediated component

discovery and composition.

5.2.1 Introduction to the Client-side Mashup Style

As described in section 3.2.6, modern Web architecture has been increasingly used to support

complex cross-domain component interoperation scenarios. Notably, hybrid web applications (or

mashups) have emerged as a popular approach for combining Web-based information and

computation in ways that add value beyond the individual application constituents [206]. For

example, the popular mashup HousingMaps.com
23

 combines house sale listings from

CraigsList.com
24

 with graphical map data from Google Maps
25

 to provide a unique Web application

that allows users to search for houses according to geographic location, price and number of rooms.

Based on similar techniques, ―Developers are now using various Web APIs to create a plethora of

mashups to solve all types of problems, from esoteric mashups that record the location and

availability of rare gaming consoles to those that create Sudoku games from Flickr photos‖ [206].

In contrast to enterprise-centric distributed computing techniques, which often require highly

skilled developers, significant technical infrastructure and months of development time, mashups can

be created by a broad range of developers using data-centric Web architecture and lightweight

development tools such as Yahoo Pipes
26

 and Marmite [361]. Component integration is typically

coordinated by exploiting a shared surrogate key (e.g. address) as a means of joining disparate

datasets along a semantically known dimension [170]. Examples include union, join and implicit

searching along dimensions such as location, time, keyword, UPC/ISBN primary keys, etc. The

underlying data-sources may involve screen scraping (where a mashup parses non-structured human-

readable content), the inherent semantics of well-known Resource representation formats and

specialized Web-based APIs, which expose an application‘s information and computation.

Based on data-centric interoperation, the adoption of mashup techniques and technologies has been

rapidly increasing. Indeed, ProgrammableWeb.com
27

, a comprehensive online compendium of

established and emerging mashups, listed more than 3,478 mashups and 1,013 related Web service

APIs as of November 2008. The popularity of mashups is often attributed to the simplicity and

flexibility of RESTful Web architecture [170, 334, 336]. Although REST principles are not required

for creating mashups, they align well with the data-centric, cross-domain interoperation style common

to many implementations [336]. As a consequence, mashups are often based on a variety of Web-

based information such as news feeds, mapping data and Web-based APIs. Due to the variety of

available data sources and related application scenarios, several functional categories of mashups have

emerged. These categories were described in a recent survey by Hong and Wong [362] as:

23

 http://www.housingmaps.com/
24

 http://www.craigslist.org/
25

 http://maps.google.com/
26

 http://pipes.yahoo.com/pipes/
27

 http://www.programmableweb.com/

5.2 The Ocean Application Model

108

1. Aggregation: Refers to mashups that aggregate data from several external sources; providing a

summarized or application-specific view of the data. As a prototypical example,

EveryBlock.com
28

 uses a shared address key to aggregate geo-tagged images from Flickr
29

,

reviews of local businesses from Yelp
30

, proximate CraigsList advertisements and civic

information such as crime statistics.

2. Alternate UI & In-situ Use: Refers to mashups that provide an alternate user-interface or other

application-specific adaptation of a Website or set of Web-based data. For example, Leaflets
31

provides specially adapted, low-bandwidth versions of popular Websites for use on the Apple

iPhone
32

.

3. Personalization: Refers to mashups that personalize the functionality of Websites based on

user provided information. For example, the YES! mashup
33

 calculates a year-end summary of

sales and tax liabilities for a person‘s eBay account.

4. Focused View of Data: Refers to mashups that index and categorizes the content of large

datasets according to a particular organizational scheme. For example, Youtorials
34

 is a user-

submitted compilation of tutorials that can be found on the YouTube
35

 video service.

5. Real-time Monitoring: Refers to mashups that provide continually updated aggregations of

rapidly changing and potentially large data sets. For example, Flickr real-time
36

 dynamically

updates an evolving term list of recently added tags from the Flickr photo sharing website.

The technologies underlying the majority of mashup applications can be divided into five main

categories, as shown in Figure 37. As described in [128], these categories can be briefly summarized

as follows: First, the foundations of many mashups are browser-based execution environments and

HTTP-based network communications. As such, the associated presentation technologies leverage

browser-based HTML/XHTML and CSS engines such as Webkit
37

. To support dynamic interactivity

within browser-based applications, technologies such as JavaScript and Ajax are used to update user

interface elements, provide network communications and provide application logic during runtime.

Dynamic interactivity typically involves interactions with Web service APIs, using interoperation

approaches such as XMLHTTP request, XML-RPC, SOAP and REST. Finally, dynamic

interoperation in mashups typically involve the exchange of data between the mashup and Web

service API using representation formats based on XML, Atom [328], JSON [76] and KML
38

.

28

 http://www.everyblock.com/
29

 http://flickr.com/
30

 http://www.yelp.com/
31

 http://getleaflets.com/
32

 http://www.apple.com/iphone/
33

 http://yes.sagefire.com/
34

 http://youtorials.com/
35

 http://youtube.com
36

 http://www.pimpampum.net/rt/
37

 http://webkit.org/
38

 http://code.google.com/apis/kml/documentation/

Chapter 5

109

Figure 37: Key mashup technologies (from [128])

Currently, the client-centric mashup style represents one of the most common architectural

approaches for devising hybrid Web applications [243]. In client-centric mashups (CS mashups),

client devices serve as platforms for the orchestration and aggregation of distributed data and

computation. CS mashups generally load presentation artifacts, application logic and related

JavaScript from a remote server using conventional HTTP. Typically, the client-side application

exists as a set of conventional Web pages that accommodate user interaction via JavaScript, which is

deployed to clients using the code-on-demand (COD) style [105]. Briefly, the COD style allows

clients to be extended with additional functionality through the deployment and execution of remote

software. Data aggregation and related user interface updates are generally accomplished using

asynchronous XmlHttpRequests that dynamically update the mashup‘s document object model

(DOM); allowing Web pages to provide updated information without reloading. An overview of the

CS mashup style is shown in Figure 38.

Figure 38: Overview of the client-side mashup style (adapted from [243])

5.2 The Ocean Application Model

110

With reference to Figure 38, the CS mashup style is described below:

1. The user navigates to an origin server using an appropriate Web agent (typically a Web

browser). The mashup‘s presentation artifacts, application logic and JavaScript are

downloaded to the client using conventional HTTP mechanisms and then rendered by the

browser.

2. A DOM event (e.g. page loaded), user initiated event (e.g. mouse click) or other

application-specific event triggers a request for Resource composition (e.g. data

aggregation). Application logic and related JavaScript are typically used to request data or

computation from a Web-based data source. In Web browser scenarios, the client typically

uses an XmlHttpRequest to acquire external data.

3. At the remote server, Resource-level state management is provided and an appropriately

encoded Resource Representation is sent to the client per HTTP content negotiation [104].

A lightweight data interchange format such as JSON [76] may be used to reduce

communication overhead and interaction latency.

4. The client-side mashup receives the Resource‘s Representation from the remote server and

applies data transformation processing as per local application logic. Application state is

maintained at the client. Interface updates are typically applied dynamically using the

DOM as to avoid page refresh.

Importantly, the CS mashup style is increasingly recognized as supporting cross-domain

component interoperation through the application of RESTful principles [334, 336]. In particular,

Resource-based problem modeling and extensible Representations help reduce client/server data-

coupling as they are not bound to a specific underlying protocol [334]. Moreover, client-based

application state and an increased URI surface area makes it easier for clients to extract ―interesting‖

data from RESTful applications in ways perhaps not originally envisioned by the Resource‘s

developer [266]. Indeed, the large number of URI entry points common to RESTful applications

stands in stark contrast to process centric approaches (e.g. SOAP Web services), which typically

present only a single service endpoint URI and require a shared understanding of domain-specific

method semantics, sequencing issues and server-side state management requirements (see section

3.2.8). Hence, the CS mashup style has been increasingly used to support situational applications,

where component-based constituents are rapidly assembled to solve an immediate business need

[206]. Although current situational applications are generally assembled statically in days or weeks,

we suggest that the addition of context-aware component discovery can provide an effective

foundation for the dynamic assembly of such application types.

Based on the above observations, we suggest that the CS mashup style provides a foundation for

extending the Web‘s conventional hypermedia model to support the Ocean approach. While current

mashups often leverage Web browsers to support presentation and application logic execution, the CS

mashup style does not preclude adaptation to other Web agent types or execution platforms.

Furthermore, the CS mashup style aligns with Ocean‘s Internet-based communications and Web-

centric middleware constrains described in section 3.4.2. Notably, CS mashups are based upon

common Web technologies and are well supported by existing Internet infrastructure. Finally, the CS

Chapter 5

111

mashup style aligns with Ocean‘s REST component interoperation constraint. Indeed, the majority of

current mashup applications exploit RESTful Web APIs and other Resource types as a means of

providing data-centric component interoperation. However, as discussed in section 4.2, conventional

Web architecture does not inherently support context-mediated component discovery and selection.

To address these issues, the next section describes Ocean‘s extension of the CS mashup style.

5.2.2 Contextualizing the Client-side Mashup Style

In this section, we extend the CS mashup style with context-mediation techniques intended to support

the emergence of context-aware Web applications capable of dynamically composing contextually-

relevant Resources at runtime. As discussed in the last section, current mashups are typically

developed to address relatively static application scenarios and do not support context-mediated

component discovery and selection beyond conventional hypermedia techniques (i.e. inline and

transactional context information). In contrast, context-aware applications must often be rapidly

adapted with relevant application constituents in-situ and may only exist in a particular configuration

while a context situation remains valid. To support the development of Web-centric context-aware

systems, we now define a Resource discovery and selection approach based on the Contextualized

Resource model described in section 4.3.

As previously introduced, the Contextualized Resource extends the conventional Web Resource

model with supplemental General and Context Metadata intended to constrain the Discoverability

Context of the underlying Web Resource. Recall from Definition 1 that a Discoverability Context is

defined as the set of contextual criteria that must be fulfilled before a Resource is considered relevant

to the interaction between a user and an Ocean application, including the user and application

themselves. In conventional hypermedia applications, inline and transactional context provide the

necessary semantics for users to discover, select and compose Resources (i.e. dereference a link using

a browser User agent).

In Ocean we introduce an extensible context-aware component registry, called the Ocean Registry,

which maintains a shared data store of Contextualized Resources (described in section 5.3). To

perform Resource discovery, autonomous Ocean applications acquire and model native context data

(NCD) locally using the Aladin approach presented in section 3.2.2. Next, Ocean applications query

the Ocean Registry using their locally modeled NCD as query terms (see section 6.4.1.1). The Ocean

Registry uses the incoming discovery query to search for similar Contextualized Resources from

within its shared data store (see section 6.4). Contextually relevant Resources are returned to the

requesting client as a ranked and sorted list of Descriptive Metadata (see section 6.4.1.2). Notably,

discovered Resources adhere to the REST architectural style as presented in [105]; hence, subsequent

component interoperation is performed as per the CS mashup style discussed in the last section. An

overview of the Ocean application model is shown in Figure 39.

5.2 The Ocean Application Model

112

Figure 39: Overview of the Ocean application model

With reference to Figure 39, the Ocean application model is defined as follows:

1. An end-user device executes domain-specific software that adopts the Ocean approach. In

the implementation shown above, Ocean extends the basic architectural framework of

Aladin; hence, interaction between local application logic and the Ocean subsystem is

provided by Aladin‘s façade API and related event mechanism (see section 3.2.2).

However, applications may communicate directly with the Ocean Registry if necessary.

2. Aladin analyses the host device and environment capabilities; dynamically downloading

and installing appropriate context acquisition and modeling plug-ins as necessary during

runtime.

3. Context acquisition and modeling is provided using local device capabilities. Acquired

low-level contextual information is quantized and formatted into native context data (NCD)

that express the syntax and semantics of a given context domain.

4. NCD are passed to the Ocean application where they may be used to guide adaptation

without the aid of Ocean context interpretation (provided that the local application logic is

capable of parsing and understanding the incoming NCD).

5. Local application logic may utilize Ocean Context Interpretation (OCI) to perform a

Resource Discovery query using the Ocean Registry. To Discovery queries, Ocean

applications form Discovery Requests using an XML-based search grammar that comprises

a set of search parameters and includes local NCD as query terms (discussed shortly).

6. The local OCI passes Discovery Requests to the Ocean Registry, which maintains a shared

data store of persisted Contextualized Resources.

Chapter 5

113

a. The shared data store is supported by the Context Metadata abstraction which

encapsulates the syntax and semantics of a given context domain (see section

4.3.2).

b. The Ocean Registry provides an open contribution process whereby external

Context Experts develop, contribute and manage Context Metadata

implementations termed Context Handlers (see section 5.4).

c. The Ocean Registry provides an open contribution process whereby external

Contextualizers contextualize conventional Web Resources using arbitrary Ocean

Metadata (see section 5.5).

d. The Ocean Registry provides integrated Persistence and Discovery Frameworks

that allows Contextualized Resources to be efficiently stored, indexed and queried

(see Chapter 6).

7. Once contextually-relevant Resources have been discovered by the Ocean Registry, the

results are marshaled into a Discovery Response, which contains a set of Descriptive

Metadata (e.g. similarity score, personalization score, title, description, domain, etc.) The

Discovery Response is returned to the calling client.

8. The Ocean OCI unmarshals the Discovery Response and passes the results to the Ocean

application. The Ocean application uses domain-specific application logic and appropriate

user interaction to select appropriate Resources for runtime composition.

9. The host application employs the REST architectural style to interoperate with selected

Web Resources according to the CS mashup style described in section 5.2.1.

10. As additional contextually-relevant Resources are discovered, the Ocean application adapts

its runtime configuration and composed constituents dynamically. (Note that arbitrary Web

Resource may be discovered and integrated in this manner).

As described above, Ocean applications acquire NCD from their environments and then query the

Ocean Registry to discover contextually relevant Resources using NCD as query terms. In this way,

Ocean Developers may formulate Discovery Requests without requiring detailed knowledge of each

modeled NCD. To support effective Resource Discovery, the Ocean Registry utilizes a multi-feature

similarity search framework that allows Contextualized Resources to be discovered and ranked based

on their similarity to the query terms contained within incoming Discovery Requests (see section 6.4).

Related, the Discovery Framework also provides context-aware information filtering, automatic query

expansion and Resource personalization to help improve search results for a broad range of device

types and application scenarios (see Chapter 7). The next section describes the Ocean Registry in

detail.

5.3 The Contextualized Resource Registry

114

5.3 The Contextualized Resource Registry

As previously introduced, component registries and context-aware component registries are common

approaches for mediating dynamic binding and interaction between the loosely-coupled application

constituents in a distributed system [29]. However, as discussed in section 4.2, current component

registries face significant challenges in large-scale context-aware scenarios. First, many current

techniques rely on intermediary context formats; requiring that locally acquired native context data be

converted into a predetermined intermediary format for use with a given discovery protocol (e.g.

mapping native geospatial data into a specific data structure using an OWL ontology).

Problematically, such techniques errantly presuppose significant domain-expertise on the part of the

application developer and may impose significant processing overhead on mobile devices. Second,

although recent approaches have explored Resource mediation based on context information, existing

techniques are limited to a predetermined set of context metadata, do not address wide-area scenarios

and cannot be extended by external context domain experts. Third, existing approaches are generally

highly application specific and do not support a variety of application domains. Fourth, existing

techniques do not address context mismatch scenarios, whereby the query terms provided within a

Discovery Request do not sufficiently match the metadata used to contextualize Web Resources (for

details see section 7.2). Finally, existing techniques are not well-suited for overcoming information

overload in complex environments; requiring that developers (or users) manually filter and select

appropriate Resources for runtime composition (for details see section 7.3). Based on these

limitations, we have developed the Contextualized Resource Registry (Ocean Registry), which is

introduced next.

5.3.1 Architecture Overview

The Ocean Registry is designed to mediate interactions between Ocean Core Developers, Context

Experts, Contextualizers and Ocean Developers (see section 3.6). Accordingly, the architecture of the

Ocean Registry is organized around a repository of Contextualized Resources (in the form of Ocean

Metadata) that are persisted within a shared data store. This shared data store is intended to facilitate

autonomous interactions in the following ways: First, the Ocean Registry is designed, developed and

managed by Core Developers who are responsible for its software architecture and its Contextualized

Resource data store. Second, the Ocean Registry allows Context Experts to contribute and manage

Context Handlers, which implement the Context Metadata interface described in section 4.3.2 (using

the Context Handler API). As previously introduced, Context Metadata are used to constrain the

Discoverability Context of Web Resources according to the CR model presented in section 4.3. Third,

the Ocean Registry allows Contextualizers to create, update and delete Contextualized Resources

from the shared data store. Finally, the Ocean Registry allows Ocean Developers to discover, resolve

and rate Contextualized Resources within their applications using a flexible discovery protocol that

allows locally modeled NCD to be included as query terms (see section 6.4). In response to Resource

Discovery Requests, the Ocean Registry discovers and returns contextually-relevant Resources from

its shared data store. Finally, Ocean applications are then free to select and compose discovered

Resources in-situ according to the Ocean application model described in section 5.2.2. An overview

of the Ocean Registry is provided in Figure 40.

Chapter 5

115

Figure 40: Overview of the Ocean Registry

The Ocean Registry is designed according to the blackboard architectural pattern [45]. Briefly,

Blackboard architectures are useful for distributed systems where several independent entities work

collectively on a common data structure. According to [45], ―The Blackboard architectural pattern is

useful for problems for which no deterministic solution strategies are known. In Blackboard several

specialized subsystems assemble their knowledge to build a [possibly] partial or approximate

solution.‖ These specialized subsystems (e.g. distributed programs) typically have no explicit

interdependencies (aside from the blackboard itself) and no predetermined activation sequence.

Rather, the blackboard itself provides internal state management and coordinates interactions with

distributed entities. This data-directed control approach makes ―experimentation with different

algorithms possible, and allows experimentally-derived heuristics to control processing‖ [266].

According to [45], the benefits of a blackboard architecture include flexibility through recombination;

efficiency through parallel processing; and autonomous contribution.

To support Resource contextualization and discovery, the Ocean Registry provides an integrated

Persistence Framework and complimentary Discovery Framework (see Chapter 6). Briefly, the

Persistence Framework allows Contextualized Resources to be efficiently stored and indexed for rapid

retrieval according to domain-specific indexing and similarity modeling techniques. As Ocean

applications perform Discovery Requests, the Ocean Registry‘s Discovery Framework is used to

rapidly discover contextually-relevant Resources based on the similarity of incoming query terms to

the Ocean Metadata within the shared data store. Ocean similarity search operates in conjunction with

the previously mentioned Persistence Framework; allowing native context data to be compared to

persisted Context Metadata using the Context Metadata abstraction introduced in section 4.3.2.

To validate our approach, the Ocean Registry architecture shown above was implemented within

the Ocean Reference Implementation (Ocean RI). Notably, the Ocean RI‘s implementation is

organized around several key classes that provide unified access to request processing, query

handling, personalization services, context management, plug-in handling and database access.

5.3 The Contextualized Resource Registry

116

Related classes in the Ocean RI include: the OceanManager, which handles Ocean Registry state

management; the PluginManager, which handles dynamic integration and instantiation of Context

Handlers; the PersistanceFramework, which handles storage and indexing of Contextualized

Resources (see section 6.3); the RequestFactory, which handles incoming Discovery Requests in

combination with the ContextManager and QueryProcessor (see section 6.4.2); and the

RecommendationEngine and AssociationDiscoveryFramework, which provide community-based

discovery query enhancement (see Chapter 7). An overview of these classes is shown in Figure 41.

(Note that implementation-specific methods may be included in the figure below; however, in the

interest of clarity, these are not described.)

Figure 41: Overview of key Ocean Registry classes from the Ocean RI

5.3.2 The Resource Management API

Contextualizers contribute and manage Contextualized Resources using the Ocean Registry‘s

Resource Management API (Resource API), which provides methods for creating, retrieving,

updating and deleting Ocean Metadata from the Ocean Registry‘s shared data store. As described in

section 4.3, Contextualized Resources are based on the CR model, which is used to constrain the

Discoverability Context of conventional Web-based Resources. Notably, the CR model is agnostic

regarding the Resources that might be contextualized and any associated Ocean Metadata; hence,

Contextualizers are free to describe the Discoverability Context of Resources according to their

individual requirements using the XML schema presented in section 4.3.5. The Ocean RI provides an

implementation of the Resource API based on the RESTLet Web Services Framework
39

. Figure 42

provides an overview of the related classes within the Ocean Registry implementation (Note that

39

 http://www.restlet.org/

Chapter 5

117

implementation-specific methods may be included in the figure below; however, in the interest of

clarity, these are not described.)

Figure 42: Web Service handler classes within the Ocean RI

To manage Ocean Metadata, Contextualizers are required to authenticate with the Ocean Registry.

Notably, identity and authentication are core aspects of the Ocean Registry‘s security approach and

are used in all access control decisions. Contextualizers are issued private API keys that must be

included with all method calls made using the Ocean Registry. In the Ocean RI, all interactions with

the Resource API are mediated by the WebServiceGuard, which throttles incoming connections (if

needed) and performs authentication in combination with the FrobHander and TokenHandler using

either HTTP Basic Authentication [104] or signed signature digest as per [7]. Requests arriving at the

Ocean Registry without authentication receive a 401 Unauthorized HTTP status code in reply.

Once authenticated, Contextualizers use the Resource API to create Contextualized Resources

using the CR model XML description presented in section 4.3.5. Importantly, it remains the

responsibility of the Contextualizer to properly describe the Discoverability Context of a given

Resource using appropriate Ocean Metadata. Note that the creation of valid Contextualized Resource

XML descriptions may be facilitated by software such as Web-based and stand-alone applications

(see section 8.2 for details). Once an XML description has been created, it is sent to the Ocean

Registry using HTTP POST. The URI for Contextualized Resource creation is

http://oceanframework.org/create/. In the Ocean RI, create requests are directed to the

ResourceContextualizationHandler, which provides request unmarshalling and validation. Once

the request is validated, its data are unmarshaled and sent to the Request Factory, which attempts to

instantiate a Contextualized Resource object (see section 5.3.3). If the creation process fails – e.g. no

Context Handler could be found for a given context description – the method returns a 400 Bad

Request HTTP status code, along with an error message. If the creation process succeeds, the method

returns a 200 OK HTTP status code along with the globally unique identifier (GUID) assigned to the

newly created Contextualized Resource. For security purposes, Contextualized Resources are

5.3 The Contextualized Resource Registry

118

automatically associated to the Contextualizer developer account used to create it (e.g. to prevent

unauthorized updates or deletions).

Contextualizers update existing Contextualized Resources by creating a new CR XML description

and sending it to the Ocean Registry using HTTP PUT. The URI for Contextualized Resource updating

is: http://oceanframework.org/update/{guid}. In the Ocean RI, update requests are directed to

the ResourceContextualizationHandler, which provides request unmarshalling and validation.

Once the request is validated, its data are unmarshaled and sent to the Request Factory, which

attempts to instantiate a Contextualized Resource object. If a valid CR object can be instantiated, the

new object overwrites the existing Contextualized Resource; however, its global identity is

maintained. As in the creation process, updating existing Contextualized Resources may be facilitated

by software tools. If the update process fails – e.g. no Context Handler could be found for a given

context description – the method returns a 400 Bad Request HTTP status code along with an error

message. If the update process succeeds, the method returns a 200 OK HTTP status code.

Contextualizers delete Contextualized Resources by calling the Resource API using HTTP DELETE

using the following URI: http://oceanframework.org/delete/{guid}. In the Ocean RI, delete

requests are directed to the ResourceDeleteHandler, which provides request handling. The deletion

of a Contextualized Resource permanently removes its reference from the Ocean Registry‘s shared

data store and makes it unavailable for subsequent Discovery Requests. If the delete process fails –

e.g. no Contextualized Resources exists for a given GUID – the method returns a 400 Bad Request

HTTP status code along with an error message. If the delete process succeeds, the method returns a

200 OK HTTP status code.

5.3.3 Contextualized Resource Instantiation

A factory approach [114] is used to instantiate CR objects according to the incoming XML

descriptions provided by Contextualizers. To begin the instantiation process, a multi-threaded factory

object is created and assigned to a request by the Ocean Registry. The factory unmarshals the XML

data contained within the request and selects an appropriate instantiation strategy. The instantiation

strategy is based on a modified version of the chain-of-responsibility pattern [114], which employs

generalized command objects to perform a domain-specific actions. Specifically, contributed Context

Handlers are utilized as command objects by way of a static create method that each Context

Handler must provide. Similar to the Context Metadata‘s setConfiguration method described in

section 4.3.2 (which accepts a generic object as an argument and uses domain-specific mechanisms to

parse native description values), the create method accepts a generic initialization object that is used

to prepare internal state. A diagram of the Contextualized Resource instantiation process is shown in

Figure 43.

Chapter 5

119

Figure 43: The Contextualized Resource instantiation process

Regarding Figure 43, the Contextualized Resource instantiation process proceeds as follows: First,

a Contextualized Resource is described by a Contextualizer using the CR model XML schema

presented in section 4.3.5 (XML Description). The completed XML Description is sent to the Ocean

Registry‘s create or update API methods. Second, a multi-threaded factory object is created to handle

the request (note that thread pooling techniques may be used to manage factory objects). Third, the

assigned factory attempts to instantiate a compatible Context Handler for each NCD contained within

the XML Description. Instantiation attempts are handled by calling each registered Context Handler

within the Ocean Registry using its static create method and passing in the given NCD as the

instantiation object. During this process, if a particular Context Handler cannot parse the provided

NCD, it raises an exception; otherwise it returns a preliminarily configured Context Handler object. If

an exception is raised, the factory recursively selects another Context Handler and repeats the

instantiation process until suitable Context Handler is instantiated or the process fails (i.e. no

compatible Context Handler could be found). This command process is repeated for each NCD (plus

the GMD) contained within the XML Description. (To help improve efficiency, identifiable aspects of

the request NCD may be cached as a means of providing mappings to compatible Context Handlers

for future requests). Fourth, once all metadata are instantiated as Context Handler objects, each

handler is provided all of the other handlers contained within the request using its refineMetadata

method (see section 4.3.2). During refinement, Context Handlers may adapt their configuration to

accommodate the presence of specific colleagues. Fifth, once the refinement process is complete, the

factory creates a Contextualized Resource comprised of Ocean Metadata (i.e. General and Context

Metadata).

5.4 Community-based Context Handler Contribution

120

5.4 Community-based Context Handler Contribution

A key challenge facing the Ocean approach is the contribution of a large set of Context Handlers for

use in creating and discovering Contextualized Resources. As introduced in section 5.2.2, the

effectiveness of the Contextualized Resource abstraction depends on the availability of diverse

Context Handlers that encapsulate the syntax and semantics of complex context domains. As

discussed in section 4.3.3, the development of Context Handlers is often highly complex and domain-

specific. In this regard, the complexity inherent in many context domains requires participation by

external Context Experts (see section 2.3.3). To support the dynamic extension of the Ocean Registry

with additional Context Handlers, we introduced the Context Metadata abstraction (see section 4.3.2)

and the associated Context Handler API (see section 5.3). As described in section 3.6.2, Context

Experts may contribute Context Handlers based on a variety of motivations. As Context Handlers

represent critical functional components of the Ocean Registry, implementations must not be allowed

to adversely affect the performance of the overall registry architecture. Moreover, as Context

Handlers are utilized by non-experts (i.e. Contextualizers) during CR creation and management, their

intent, functionality and configuration options must be clearly described. Based on these

requirements, we now propose a preliminary Context Handler contribution approach based on the

Java Community Process (JCP) [167].

5.4.1 Overview of the Java Community Process

The JCP was established in 1998 to help guide the development and evolution of Java technologies.

The JCP defined a formalized process whereby interested parties may propose new specifications and

technologies for the Java platform [167]. Similar in spirit to the Context Metadata abstraction, the JCP

suggests that ―the best way to produce a technology specification is to gather a group of industry

experts who have a deep understanding of the technology in question and then have a strong technical

lead work with that group to create a first draft‖ [166]. Currently, there are over 300 JCP-developed

technology specifications, called Java Specification Reviews (JSRs). Examples of notable JSRs

include the Java API for XML Processing (JSR 5); Java Database Connectivity (JSR 221); and the

Scalable 2D Vector Graphics API for J2ME (JSR 226). The diversity of current JSRs attest to the

JCP‘s ability to attract external domain experts, build community consensus and promote the

widespread adoption of Java technologies. A timeline of the JCP process is shown in Figure 44.

Figure 44: Timeline of the Java Community Process (from [166])

Chapter 5

121

With reference to Figure 44, the contribution of new Java technologies follows the following four-

phase process: In phase 1 (Initiation), any interested party may propose a new JSR specification or a

revision of an existing specification. Once proposed, the Executive Committee (EC) reviews and

votes on the JSR proposal. If approved, the JSR enters phase 2 (Early Draft), where an expert group is

formed to write the initial specification. During this phase, JCP members (plus the general public) are

allowed to comment on the draft. Next, the draft is revised according to the collected comments;

resulting in an Early Draft specification. Once the Early Draft specification is produced, the JSR

enters phase 3 (Complete the Specification, Public Draft/Final Release), where a combination of

expert-group contribution, public review and EC voting result in the development of a Proposed Final

Draft. If approved, the Proposed Final Draft is supplemented by the development of a Reference

Implementation (RI) – intended to demonstrate that the JSR can indeed be implemented – and a

Technology Compatibility Kit (TCK) – developed to test the impact of the JSR on existing Java

technology and related public APIs. Once the RI and TCK are complete, a final round of member and

public reviews culminates in a vote on the Final Release. If the Final Release is adopted, the JSR

enters phase 4 (Maintenance), where a process of ongoing review and updates keep the specification

current.

5.4.2 Towards Community-based Context Handler Contribution

We suggest that the JCP process introduced above provides a suitable conceptual framework for the

controlled contribution of Context Handlers within the Ocean Registry. In particular, the JCP‘s

combination of staged expert-group development, community and public reviews and executive

committee oversight align well with the requirements of the Ocean Registry. Notably, the JCP‘s

inclusion of member and public reviews provides a mechanism whereby problematic and structural

issues can be identified and resolved in an open forum. In addition, broad participation in the review

process can be used to generate consensus throughout the community. According to the JCP,

consensus around the form and content of proposed JSRs is built by ―using an iterative review process

that allows an ever-widening audience to review and comment on the document‖ [167]. We suggest

that a similar process could be integrated into Ocean, whereby Context Handler specifications are

reviewed and commented before subsequent revision and executive committee voting. Recall that the

JSP‘s emphasis on testing and verification are used to ensure that new Java technologies do not

adversely affect existing Java platform. Similarly, we suggest that Ocean should adopt similar RI and

TCK requirements as a means of ensuring such compatibility within the Ocean Registry. In particular,

the Context Handler contribution process must carefully guard existing Context Handlers from

potentially detrimental effects of new implementations. Furthermore, the contribution process must

guard against functionality fragmentation such as duplication of Context Handler functionality or

inconsistent implementations (e.g. support of the same NCD by different handlers). In this regard,

Executive Committee oversight should be retained during the contribution process at key junctures.

We have illustrated how the JCP process might be adapted for use in Ocean in Figure 45.

5.4 Community-based Context Handler Contribution

122

Figure 45: Preliminary community-based Context Handler contribution process

With reference to Figure 45, the preliminary Context Handler contribution process is defined as

follows:

1. Context Experts review the Context Metadata interface descriptions, sample code and

associated documentation. Context Experts prepare a request to develop a new Context

Handler, which is submitted to the Ocean Registry‘s Executive Committee (EC) for

approval.

2. If the request is approved, the Context Experts prepare an early Context Handler prototype

implementation and related documentation. The prototype encapsulates the syntax and

semantics of a given context domain as described in section 4.3.2. In addition, Context

Experts may provide advanced configuration mechanisms (e.g. comparison functions),

which allow non-experts to control Discoverability Context formation (see section 4.3.3).

3. The Context Handler prototype and related documentation enter the Ocean Community

Process, which may include several rounds of development and review. During the process,

public and member reviewers are able to comment on the Context Handler prototype.

Oversight from the Executive Committee is integrated into the development process at key

junctures. The cycle of prototype updates and community reviews continues until the

prototype reaches a proposed final prototype (as decided by a vote of the EC.) If approved,

the Context Experts prepare a reference implementation (RI) and related Technology

Compatibility Kit (TCK), which are used to ensure proper operation of the Context Handler

within the Ocean Registry.

Chapter 5

123

4. Using the Context Handler‘s RI and TCK, the proposed final prototype undergoes a testing

and verification phase, whereby the prototype is checked for compatibility with the existing

Ocean infrastructure. If the proposed final prototype passes the testing and verification

phases, a final Context Handler implementation is produced along with related

documentation.

5. Once the final Context Handler implementation and documentation is complete, an

additional round of public and community comments is allowed. The EC then rejects or

accepts the final Context Handler release by ballet.

6. If adopted, the final Context Handler release is registered within the Ocean Registry and

made available for use by Contextualizers and Ocean applications. Additionally, the

Context Handler‘s official documentation package is made publically available.

The contribution process described above is preliminarily supported by the Ocean Reference

Implementation (RI). Notably, we have developed an integrated plug-in framework that allows

externally developed Context Handlers to be dynamically loaded into the Ocean Registry at runtime.

The plug-in framework is managed by a PluginManager, which dynamically loads, caches and

garbage-collects Context Handler implementations on-demand. Registered Context Handler plug-ins

are described by PluginInfo objects and managed by PluginHolder objects, which are used to

dynamically instantiate Context Handlers according to the request handling needs of the Ocean

Registry. Further, the PluginManager insures that contributed Context Handlers properly implement

the Context Metadata abstraction (i.e. the IContextMetadata interface) and adhere to appropriate

security considerations. An overview of the PluginManager and related classes from the Ocean RI is

shown in Figure 46. (Note that implementation-specific methods may be included in the figure below;

however, in the interest of clarity, these are not described.)

Figure 46: Overview of the PluginManager and related classes from the Ocean RI

5.5 Community-based Contextualized Resource Contribution

124

5.5 Community-based Contextualized Resource Contribution

Given a sufficiently large set of contributed Context Handlers, a second key challenge facing the

Ocean approach is the generation of a pool of Contextualized Resources that is large enough to

support a broad range of Ocean applications. As described in section 4.3, Contextualized Resources

express the Discoverability Context of conventional Web Resources by way of supplemental Ocean

Metadata, which are stored separately from Resources within the Ocean Registry. As described in

section 4.2, this associative metadata approach allows for the independent evolution of both

Resources and Context Metadata by providing a separation of concerns between Resource providers,

Contextualizers and Resource consumers; effectively allowing Ocean to integrate existing Resources

without requiring changes to existing Web architecture. However, in order to overcome component

sparsity in real-world environments, the Ocean application model presupposes a vast collection of

Contextualized Resources. Given the tremendous volume of information and computation present on

the Web, the creation and maintenance of such a collection represents a significant challenge.

Recently, several community-based approaches have shown considerable promise in addressing large-

scale contribution and classification tasks. In this regard, this section describes our preliminary

community-based contribution approach that leverages collaborative annotation as a mechanism for

promoting large-scale Contextualized Resource contribution.

5.5.1 Overview of Collaborative Annotation

The success of modern Web architecture has resulted in an explosion of Web-based information and

computation; however, the scale, decentralization and dynamics of the Web present serious challenges

for discovering information and computation that meet the requirements of users [205]. To address

this issue, Web search and related information retrieval research has produced increasingly effective

techniques for organizing and searching for Web content [205, 380]. Through the development of

distributed indexing techniques [253], first generation search engines were capable of indexing large

portions of the Web; however, the relatively unstructured nature of hypermedia Resources often

resulted in low search effectiveness [205]. Hence, early contributors in Web search (e.g. Yahoo!)

augmented full-text search offerings with the creation of Website taxonomies, whereby Resources are

categorized into browseable classification hierarchies. Problematically, taxonomy-based approaches

required significant human effort for performing the requisite editorial process. More recently,

improvements such as large-scale distributed indexing [84], improved search algorithms [205], and

the development of Resource ranking techniques (e.g. PageRank [246]) have made modern search

engines invaluable tools for navigating the deluge of relatively unstructured Web content.

Based on the success of the human-centric Web, the semantic Web movement has endeavored to

develop technologies that allow machine-based processing of Web-based information and

computation [373]. Towards this end, Semantic Web techniques are used to augment the diverse and

relatively unstructured nature of hypermedia with structured machine-readable metadata [367]. A

primary approach in this regard is the development of formalized ontologies [377] that encapsulate a

given knowledge domain and support reasoning models based on structured markup schemes such as

RDF [367] and OWL [91]. As structured data is not an inherent aspect of conventional Web

architecture, various approaches for annotating conventional Web resources with semantic metadata

Chapter 5

125

have been explored. In several recent approaches, annotations are created through the automatic

analysis of Web page content and structure using a combination of machine-learning algorithms and

natural language processing (NLP) techniques [165]. However, while automated techniques have been

gaining in popularity, their relative immaturity often necessitates manual human intervention using

toolkits such as Protégé [230] and CREAM [138] or semi-automated disambiguation algorithms

[309]. Notably, it is recognized that manual and semi-automatic classification techniques require

human users who are familiar (or even expert) with a given knowledge domain and committed to

annotating significant quantities of Resources [205]. Hence, while semantic Web approaches have

found success in limited scenarios (e.g. bioinformatics [17] and knowledge management [309]) they

are largely incapable of accommodating Web-scale environments due to a fundamental lack of

semantic content [205].

Recently, collaborative annotation has emerged as a community-based approach for generating

semantic annotations (often called tags) in large-scale scenarios. In this approach, tags have been

defined as "an important subclass of annotations that comprise simple, unstructured labels or

keywords assigned to digital resources to describe and classify the digital resource" [153].

Collaborative annotation systems rely on a community of users that create and freely associate tags

with Resources such as Web pages, image data, and video content. The resultant tag collection

provides a semi-structured, community-generated semantic vocabulary that is commonly known as a

folksonomy [153]. In most cases, collaborative annotation is facilitated by an open contribution model,

whereby tags can be freely defined and contributed by any member of the community [123].

Recent studies have shown that users are often willing to manually annotate Resources (such as

photos) in order to help make them more discoverable [8]. For example, the popular photo sharing

Website Flickr
40

 uses collaborative annotation to help organize over 52 million publicly available

images [302]. To achieve massive scalability, Flickr employs an open contribution model that allows

the Flickr community to categorize photographs according to a multitude of preferences and

perspectives. As illustrated in an example from [8], ―a Flickr photo of La Sagrada Familia - a massive

Roman Catholic basilica under construction in Barcelona - is described by its owner using the tags

Sagrada Familia, and Barcelona. Using the collective knowledge that resides in Flickr community on

this particular topic one can extend the description of the photo with the tags: Gaudi, Spain,

Catalunya, architecture, and church. This extension provides a richer semantical description of the

photo and can be used to retrieve the photo for a larger range of keyword queries.‖

Recently, collaborative annotation has become a central aspect of many large-scale Web

applications, including blogging systems, digital library systems, and a variety of prominent Websites

(for a detailed overview, see [123]). Within these diverse applications, a variety of techniques have

been explored to help users create and maintain effective folksonomies. Common quality control

techniques include image processing and machine-learning [199]; tag clouds to users help visualize

popular keywords [304]; and various tag recommendation strategies, including co-occurrence

detection, stability-promotion, descriptiveness-promotion and rank-promotion [302]. However,

despite the emergence of such quality control techniques, recent studies have shown that a significant

degree of inconsistency, contradiction and inaccuracy exists within many folksonomy-based systems

40

 http://flickr.com/

5.5 Community-based Contextualized Resource Contribution

126

[94]. Common tagging problems include misspellings, confusing punctuation, non-descriptiveness

and erroneousness [153]. Proposed solutions to these issues generally include constructing hybrid

system architectures that combine freeform tagging with structured vocabularies. A common

approach in this regard is an ontology-directed-folksonomy, where tags from a formalized ontology

are suggested, but users retain the ability to define freeform tags [153, 337].

5.5.2 Towards Collaborative Contextualized Resource Contribution

In Ocean, we suggest that large-scale Contextualized Resource contribution can be facilitated by the

application of collaborative annotation techniques. As described in section 4.3.2, the foundation of the

CR model is a set of configurable Context Metadata which are associated to Web Resources as a

means of describing their Discoverability Contexts. In this regard, Ocean Context Metadata can be

understood as a controlled, yet configurable annotation vocabulary that supports machine-based

processing and configuration options. For example, a Context Handler encapsulating the semantics of

geo-location can be understood as roughly analogous to semantic metadata elements such as Dublin

Core‘s DCMI Point scheme [75]; however, unlike Dublin Core metadata, which is itself an

intermediary format, Ocean‘s metadata model supports component discovery based on native context

data (NCD) such as raw NMEA sentences [220], GML encoded data [237], microformats [55], etc.

Moreover, the Ocean Metadata model can be dynamically extended to support additional NCD

formats as they become available.

In Ocean we adopt an open Contextualized Resource contribution model based on a modified

version of the ontology-directed-folksonomy approach previously introduced. Specifically, we extend

the basic contribution architecture introduced in section 5.3.2 to allow any Contextualizer to

contextualize any Resource with any combination of Ocean Metadata. The open contribution

architecture is facilitated by the Ocean Registry‘s Resource API (Resource API) described in section

5.3.2. Recall that interactions with the Resource API are accomplished using the Ocean Registry‘s

Web services in combination with the Contextualized Resource XML schema described in section

4.3.5. Although interaction with the Resource API is straightforward, it is not generally intended for

direct Contextualizer interaction. Rather, the Resource API is designed to support the emergence of a

variety of software tools and Web-applications, which handle the underlying Web service interaction

and provide simplified access to Context Metadata configuration. For example, Ocean‘s Resource

API could be coupled with a photo sharing Website offering automatic Resource contextualization as

part of its service offerings; making the user‘s photos discoverable by the community of Ocean

applications.

In the Ocean Registry, the Context Metadata vocabulary is only limited to the available Context

Handlers that have been previously contributed (see section 5.4). Unlike many semantic Web

approaches, which require the encoding of metadata within Resource representations, Ocean‘s

associative metadata model allows Context Metadata to exist independently. This approach allows

Contextualized Resources to be created without Resource alteration (e.g. updating all Web-page

headers with Dublin Core metadata). Moreover, the use of the associative model allows anyone (not

only Resource owners) the ability to contextualize Resources; aligning with the best practices of many

open contribution models [302].

Chapter 5

127

In addition to the basic contribution model, Contextualizers may also establish domain authority

over a given domain or sub-domain by demonstrating administrative access (e.g. by updating a given

Web Resource with an Ocean-specified HTML metadata code). Once verified, any Contextualized

Resources created by the authorized Contextualizer for that domain are marked as authoritative;

meaning that they are considered to be created by the domain owner. This additional contextualization

mechanism allows Ocean applications to further restrict Discovery Requests to authoritative

results. In this way, Ocean applications can be constructed to interact specifically with a known set of

Resources. For example, Flickr may develop an Ocean-based photo browser that is configured to

discover digital images from the authoritative Flickr domain.

Finally, while Ocean‘s collaborative annotation model provides a community-based approach for

scalable Contextualized Resource contribution, Ocean applications may still encounter constituent

sparsity issues in less popular or newly established contexts (i.e. contexts without adequate

Contextualized Resources). To address sparsity issues, we explored augmenting Ocean‘s context-

aware collaborative annotation model with automated methods of Context Metadata extraction and

annotation. Increasingly, Websites embed machine-readable context information within Resource

collections such as geo-location [55], calendar data [81] or electronic business cards [80]. Several

projects have explored automatic extraction of such semantic metadata. For example, Ding et al. [90]

investigated geo-location extraction using various Websites; the TimesMine system [322] can

automatically generate timeline-based views of date-tagged Web content; and Newsjunkie [99] mines

online new sites to extract personally relevant content. As described in section 8.4, we developed a

context-aware WebCrawler framework capable of automatically extracting Contextualized Resources

from several popular Web applications.

5.6 Chapter Summary

This chapter provided an overview of wide-area context-aware computing techniques based on the

Ocean approach. It began by describing the client-centric mashup (CS mashup) style, which aligns

well with Ocean‘s approach presented in section 3.5 but lacks support for context-mediated

adaptation. Accordingly, we introduced an extension to the CS mashup style that enables dynamic,

context-aware component discovery and selection based on the Contextualized Resource model

introduced in section 4.3. Related, we proposed the Ocean Registry, which represents an extensible

mechanism intended for storing, managing and discovering Ocean Metadata. Notably, the Ocean

Registry‘s Blackboard architecture provides a separation of concerns between Resource providers,

Contextualizers and Resource consumers; effectively allowing Ocean to integrate existing Resources

without requiring changes to conventional Web architecture. Related, several Ocean Registry

processes were presented including a detailed discussion of Contextualized Resource management

and an introduction to Context Handler management and Contextualized Resource discovery. The

chapter concluded with the presentation of two preliminary community-based contribution

mechanisms intended to promote the controlled contribution of Context Handlers and the open

contribution of Contextualized Resources.

128

Chapter 6

Contextualized Resource Persistence and Discovery

6.1 Introduction

According to the Ocean application model described in section 5.2.2, the Ocean Registry must

accommodate very large Contextualized Resource (CR) datasets while simultaneously supporting

Discovery Requests that include native context data (NCD) as query terms. Importantly, Ocean

applications make Discovery Requests at runtime (often under strict time constraints); hence, in

addition to query effectiveness, query efficiency is a major aspect of the Ocean Registry. As

introduced in section 4.3, Contextualized Resources represent arbitrarily complex data structures that

cannot often be effectively indexed or queried using classical key, range or proximity techniques.

Hence, in section 4.3.3, we introduced similarity modeling as a promising approach for discovering

semantically related objects based on domain-specific features. In this regard, we adopted notions of

similarity modeling within the Context Metadata interface described in section 4.3.2. Recall that

implementations of the Context Metadata interface (i.e. Context Handlers) allow Context Experts to

provide domain-specific configuration and comparison intended to facilitate complex information

retrieval scenarios. However, as discussed in section 4.3.3, similarity modeling techniques often suffer

from the ―curse of dimensionality,‖ whereby exponential search time or memory requirements may be

encountered in high dimensional feature spaces [376]. This chapter discusses the Ocean Registry‘s

approach for accommodating efficient storage, indexing and discovery of Contextualized Resources.

This chapter proceeds as follows: First, section 6.2 describes background and related work specific

to similarity search. Next, section 6.3 discusses Contextualized Resource persistence. First, section

6.3.1 presents the IndexManager abstraction. Next, section 6.3.2 describes Ocean‘s persistence

architecture. Finally, section 6.3.3 provides an indexing and persistence example. Next, section 6.4

discusses Contextualized Resource discovery. First, section 6.4.1 describes the Ocean Registry‘s

Discovery API and associated query protocol. Next, section 6.4.2 describes Query Object

instantiation. Next, section 6.4.3 provides an overview of multi-feature similarity search. Finally,

section 6.4.4 presents Ocean‘s multi-feature similarity search approach, including the adoption of the

Threshold Algorithm, search space reduction and the Discovery Framework software architecture.

6.2 Background and Related Work

The diversity of emerging data types and limitations of existing search techniques have motivated the

development of similarity search approaches, whereby complex objects are retrieved from a data store

if they are determined to be similar to a query object according to one or more domain-specific

features [376]. As previously introduced, complex objects cannot often be meaningfully indexed or

queried using classical means. Notably, complex objects may provide neither a natural ordering

scheme nor a means of directly comparing equality. Related, similarity search algorithms model and

compare search objects according to a comparison function, which analyses important aspects of the

objects resulting in a domain-specific comparison metric. Common comparison functions include

geometric models, feature models, alignment-based models and transformational models [125].

Common comparison metrics include geometric distance, cosine similarity, Jaccard coefficients,

Chapter 6

129

Hamming distance, Levenshtein distance and so forth [281]. Similarity search algorithms are often

developed to meet the requirements of a given domain. Example domains include computational

biology, where researchers may be interested in searching for protein sequences that are similar to a

representative sample (e.g. from slightly different animal species) [350]; unstructured text retrieval,

where large repositories of information can be searched for objects containing similar ―concepts of

interest‖ [18]; and video compression, where objects of interest can be identified and described as

vectors [163].

In many similarity search problems, prohibitive computational complexity derives from a proximity

problem, whereby the distances between several points must be calculated in a metric space according

to an exact nearest neighbor search algorithm [376]. Efficient solutions to such problems have been

discovered when these points lie in a constant dimension [160]. For example, if the points in question

lie within a plane, exact nearest neighbor algorithms achieve a query time of 𝑂 𝑙𝑜𝑔𝑛 and require

only 𝑂(𝑛) storage [297]. However, as dimensionality increases, many algorithms‘ space or time

requirements grow exponentially. For example, the exact nearest neighbor problem has a solution of

𝑂(𝑑𝑂 1 log n) query time and requires 𝑛𝑂(𝑑)storage [210]. Such performance issues may also be

exacerbated in practical scenarios, where linear or near-linear storage causes exact nearest neighbor

algorithms to exhibit linear query times for relatively small values of n [351]. Hence, it has been

conjectured that no efficient solutions for the exact nearest neighbor problem exists when the

dimensionality is sufficiently large [160].

Several approaches have been devised to address the performance challenges associated with exact

nearest neighbor similarity search techniques. Often, it is possible to eliminate the exponential effect

of increasing dimensionality by allowing solutions to be approximate rather than exact, using so-

called approximate nearest neighbor (ANN) algorithms. Notably, several ANN approaches have

shown that approximation can reduce exponential effects to polynomial [160]. In general, most ANN

techniques allow for the specification of a precision parameter (𝜀), which is used to control the

distance of neighboring points from the search point. ANN algorithms typically attempt to

asymptotically approach the exact neighbor as 𝜀 goes to 0, and to increase the query performance (at

the expense of precision) as 𝜀 becomes larger [61]. While a full treatment of ANN techniques is

outside the scope of this dissertation, the interested reader may reference [356] for a comprehensive

treatment. Table 13 presents the performance characteristics of selected ANN algorithms as described

in [160].

6.2 Background and Related Work

130

Source Query time Storage Update time

[190]

Randomness:

Monte Carlo

𝑑 log𝑛 min(𝜀2, 1) 𝑛𝑂 1 𝜀2 +log (1+𝜀) 1+𝜀 𝑛𝑂 1 𝜀2 +log (1+𝜀) 1+𝜀

[159]

Randomness:

Monte Carlo

𝑛
𝑂

1+log (1+𝜀)
1+𝜀

 𝑑𝑛 𝑑 𝑙𝑜𝑔𝑂(1)𝑛

[161]

Randomness:

Monte Carlo

𝑑𝑛1 (1+𝜀) 𝑛1+1 (1+𝜀) + 𝑑𝑛 𝑑𝑛1 (1+𝜀)

[158]

Randomness:

Las Vegas

 𝑑 log𝑛 𝜀 𝑂(1) 𝑛1 𝜀 𝑂(1)
 Static

[158]

Randomness:

Deterministic

 𝑑 log𝑛 𝜀 𝑂(1) 𝑛1 𝜀 𝑂(1)
 Static

Table 13: Selected approximate nearest neighbor performance characteristics (from [160])

In addition to approximation, dimensionality reduction techniques have also been proposed to

increase query speed. The central idea of dimensionality reduction is to select the subset of the

available features that best represents the data and then construct an index data structure for this

reduced feature space [57]. Additionally, queries are also feature-reduced in order to match the search

space of the constructed index. To help alleviate the curse of dimensionality with regards to the index

data structure, datasets can be feature-reduced before indexing [164]. Importantly, results from

dimensionally reduced queries are lossy in character (e.g. producing false positives); however, the

amount of loss is dependent on both the dataset and feature-reduction techniques. For example,

Principal Component Analysis (PCA) [172] is a widely used technique for dimensionality reduction

that exploits detected variance in data as a means of determining an appropriate feature reduction

space. However, while PCA results in little or no information loss when the data are globally

correlated, many data types do not exhibit global correlation in practical scenarios; resulting in

significant information loss [164]. Other approaches, such as Local Dimensionality Reduction (LDR),

attempt to overcome these shortcomings by segmenting locally correlated data before performing

dimension reduction [58].

Approximation and dimension reduction are typically combined with indexing techniques to

facilitate sub-linear query performance. Unlike classical database systems, which often construct

indexes based on specific table columns (e.g. record keys), similarity search approaches must index

the complex features of the search objects in question. Towards this end, similarity-based indexing

extracts domain-specific aspects of the information content into a data-structure supporting fast

Chapter 6

131

lookup [376]. Importantly, indexing algorithms attempt to capture aspects of the data considered

relevant to a user‘s information needs; however, most approaches introduce some measure of

inexactness, which can be measured according to the approaches effectiveness. As informally defined

in [380], ―a system is effective if a good proportion of the first r matches returned are relevant. Also,

different search mechanisms have different computational requirements and so measurement of

system performance must thus consider both effectiveness and efficiency.‖ Related, precision and

recall are commonly used to quantify effectiveness [205]. Precision refers to the fraction of the

retrieved objects that are relevant and recall refers to the fraction of relevant objects that are retrieved

[380].

The determination and representation of important aspects of persisted data means that most

indexing techniques rely on domain-specific similarity metrics. For example, many image databases

provide spatial indexing techniques that must consider domain-specific aspects such as space

partitioning, data partitioning and dynamic adjustment of overlapping image sub-regions within the

index [217]. In contrast, indexing techniques have also been developed for large scientific datasets

that are based on the structural aspects of self-describing file formats such as Planetary Data System

and Hierarchical Data Format (see [218]). Such approaches rely on detailed knowledge of the

application-specific metadata associated to these file formats. Similar domain-specificity can be

observed across most similarity search domains, including unstructured text [205], audio data [360],

fuzzy set values [143], Web service metadata [214] and so forth.

A variety of index data structures have been developed to address domain-specific similarity

metrics [46]. Early multidimensional indexing data-structures included R-trees [134] and early

variants such as the R+-tree [295]. These early approaches formed the basis of many subsequent

techniques, but have been largely superseded due to inefficiencies in higher dimensional space [164].

For example, Weber et al. [351] developed a multidimensional index approach called VA-file, which

represents index points as an array of compact geometric approximations. The VA-file has been

shown to improve disk I/O performance in high dimensional space on uniform data, but can suffer

from higher computational complexity and poor performance for skewed data. These types of

performance issues have been explored by Ciaccia et al. [68], who proposed a height balanced M-tree

where metric space point positioning relies only upon positivity, symmetry, and triangle inequality

postulates. The M-tree demonstrates an ability to perform reasonably well in increasing

dimensionality, scales well as file size increases and provides dynamic update capability. While M-

trees provide a general approach, Filho et al. [107] proposed Omni-concept as a performance

enhancement technique which can be applied when ―the correlation behaviors of database are known

beforehand and the intrinsic dimensionality 𝑑2 is smaller than the embedded dimensionality 𝑑 of

database‖ [164]. Omni-concept can be realized using different index structures such as B+-trees and

R-trees. Additional notable indexing data-structures include: P-Sphere trees [124], Slim-trees [48] and

iDistance [164].

6.3 Contextualized Resource Persistence

132

6.3 Contextualized Resource Persistence

The aforementioned indexing approaches and data-structures illustrate the domain-specificity of most

similarity search algorithms. In particular, domain-specificity relates strongly to the underlying search

objects, the associated comparison semantics and related persistence model of a given search

technique [376]. As described in section 4.3, Contextualizers constrain the Discoverability Context of

Resources by creating Contextualized Resources comprised of General Metadata and a set of

configured Context Metadata (in the form of Context Handlers). As described in section 4.3.2,

Context Handlers adhere to the Context Metadata interface as a means of encapsulating instantiation,

configuration, similarity comparison for a given context domain. Using this interface, Contextualized

Resources can be meaningfully compared to incoming Discovery Requests according to query terms

containing native context data (NCD). However, significant variation exists regarding the persistence,

indexing and query models that might be used to store and search for Context Metadata objects.

Accordingly, this section describes Ocean‘s persistence approach, which supports domain-specific

indexing and persistence techniques for each contributed Context Handler type.

6.3.1 The Index Manager Abstraction

In order to accommodate multiple indexing approaches, Ocean provides an architectural abstraction

called the IndexManager, which is implemented by Context Experts for a given Context Handler

using the contribution process described in section 5.4. The IndexManager provides a set of methods

supporting domain-neutral indexing and query operations while encapsulating underlying data

structures as required by the similarity mechanisms of a given context domain. We base our

IndexManager interface definition on related work from Chaudhuri et al. as presented in [60]. The

IndexManager interface is shown in Figure 47.

Figure 47: The IndexManager interface

Regarding Figure 47, the IndexManager interface methods are defined as follows:

 create: Indexes a Context Metadata object (of a specific type) in secondary storage

according to a domain-specific indexing technique and related data structures. If successful,

the method returns an integer representing the resultant Context Metadata identifier (CMID),

which can be used to directly access the persisted Context Metadata object.

 retrieve: Returns the Context Metadata object referenced by a given CMID.

 update: Updates the previously persisted Context Metadata object (as identified by its CMID)

with new values and updates related index data structures.

Chapter 6

133

 delete: Permanently removes the previously persisted Context Metadata object identified by

the given CMID.

 topSearch: For a given set of QueryConstraints, returns a sorted set of objects

(ResultSet)from the underlying data store (bounded by count) that are considered most

similar to the QueryObject. The QueryConstraints object indicates how the search space

should be reduced according to the data type, URI domain or Contextualizer associated with

the Context Metadata‘s parent (i.e. its associated Contextualized Resource). The QueryObject

refers to a template Context Handler constructed from an incoming Discovery Request

(described in section 6.4.2).

 probe: Provides random access to the similarity grade (in the interval [0,1]) of a specified

Context Metadata entity (according to CMID) from within a given ResultSet. Returns null

if the CMID is not found.

6.3.2 The Ocean Persistence Architecture

The IndexManager abstraction forms the foundation of the Ocean persistence architecture, which

allows Ocean Metadata to be efficiently stored and indexed for rapid retrieval. As a given Ocean

Metadata entity is stored within the Persistence Framework it may be referenced by several domain-

specific indexes; each based on a different similarity mechanism and related Index Manager. Within

the Ocean Registry, complete Ocean Metadata objects are persisted within a shared data store, called

the Ocean Metadata Store, whereas associated Context Metadata objects are indexed and stored

according to the associated Context Handler type. The persistence architecture is illustrated in Figure

48 using an example Ocean Metadata entity (note that other Context Metadata combinations are

possible).

Figure 48: Overview of the Ocean Metadata persistence architecture

6.3 Contextualized Resource Persistence

134

Regarding Figure 48, the Ocean Metadata persistence architecture is defined as follows:

1. At the conclusion of the instantiation process described in section 5.3.3, Contextualized

Resources exist as complex Ocean Metadata objects comprised of General Metadata and

appropriately configured Context Metadata (see section 4.3.3 for examples). The Ocean

Metadata is sent to the Ocean Persistence Framework for indexing and storage.

2. The Persistence Framework checks the integrity of the Ocean Metadata object and ensures

that no duplicate objects exist within the Ocean Metadata Store data store. Next, the Ocean

Metadata object is assigned a globally unique identifier (GUID). Next, the General

Metadata and associated Context Metadata are sent to their appropriate Index Managers

(based on data type), where they are indexed and persisted according to the Index Manager

abstraction described in section 6.3.1.

3. For large-scale scenarios, an optional scalable distributed file-system may be employed to

support the storage of large datasets on commodity hardware (discussed shortly).

4. CM indexes are persisted in secondary storage using an appropriate underlying data model.

Each Index Manager provides an appropriate file-system representation for its underlying

index data structure (index store). Additional indexes are also established for each Context

Metadata entity based on its parent‘s data type, URI domain and Contextualizer (see [380]).

5. Finally, the indexed Ocean Metadata object is sent to the Primary Data Store Manager

(Storage Manager) where it is persisted within the Ocean Metadata Store as an object. The

stored Ocean Metadata in combination with its associated Web Resource is referred to a

Contextualized Resource.

While not discussed in this dissertation, recent approaches provide insight into real-world

persistence mechanisms that might be adopted for large-scale data storage in Ocean. For example,

Google have developed a distributed file-system called GoogleFS [118], which supports extremely

large data sets and provides high I/O throughput by exploiting inexpensive commodity hardware.

GoogleFS was developed to support large-scale distributed computing environments comprised of

large numbers of commodity machines, vast amounts of very large files (i.e. multi-GB), data

streaming, append-based file access. Google have demonstrated the feasibility of their approach

throughout their enterprise using extremely large configurations (e.g. 300TB storage spread across

1000 notes). While GoogleFS is not available commercially, the Apache Software Foundation has

developed an open-source implementation of GoogleFS, called the Hadoop File System (HDFS)
41

,

which provides similar capabilities. Notably, HDFS is designed to scale to petabytes of storage and

can exploit a variety of underlying hardware architectures. HDFS‘ capabilities include streaming data

access, large data files and a simple coherency model [178]. Related, a recent object-based database

system has also demonstrated the ability to accommodate petabyte size datasets [27].

41

 http://hadoop.apache.org/core/

Chapter 6

135

6.3.3 An Indexing and Persistence Example

Details regarding the Index Manager abstraction and related index storage are now discussed using an

example based on the iDistance index approach presented in [164]. As described by Jagadish et al.,

iDistance is a modified B+-tree designed to address a class of approximate nearest neighbor search

algorithms known as K-nearest neighbor query. In their paper, they formalize a K-nearest neighbor

query as ―Given a set of points DB in a d-dimensional space DS, and a query point 𝑞 ∈ 𝐷𝑆 find a set S

which contains K points in DB such that, for any 𝑝 ∈ 𝑆 and for any 𝑝′ ∈ 𝐷𝐵 − 𝑆, 𝑑𝑖𝑠𝑡 𝑞,𝑝 <

𝑑𝑖𝑠𝑡(𝑞,𝑝′)‖ [164]. To accommodate efficient queries, iDistance transforms high dimensional points

into a single dimensional space using m data space partitions and a B+-tree to represent the

transformed points (see [164] for details). In this regard, the iDistance approach is lossy as it trades

the possibility of false positives for very fast single-dimensional range queries and the possibility of

integration into commercial database management systems (which often support B+-tree indexing

[205]). Given iDistance‘s inherent limitations, it may not be applicable for every type of Context

Metadata; however, given some tolerance for error, the benefits of the approach may outweigh the

costs (for details, see the cost benefit analysis in [164]).

As a real-world example, an Ocean Index Manager could be designed to map the iDistance

algorithm directly into an underlying DBMS as per Figure 49. In this figure, an incoming Context

Metadata (CM) object is processed by its associated Index Manager‘s underlying iDistance algorithm.

During index processing, domain-specific features of the CM object are translated into data points

within a d-dimensional space appropriate to the context domain. Next, as per the iDistance approach,

high dimensional points are transformed into a partitioned single dimensional space according to the

process described in [164]. The resultant partition information (denoted 𝑃𝑖 below) and the related

single-dimensional points are then stored within a commercial DBMS (configured to support B+-tree

indexing). An additional database table is used to store iDistance partition data. Additionally,

conventional approaches are also used to establish additional indexes based on attributes of the CM‘s

parent Contextualized Resource, including data-type, URI domain and Contextualizer. To reference

the parent Contextualized Resource, the persisted CM object retains the parent‘s GUID.

Figure 49: Example iDistance Index Manager and related persistence model

6.4 Contextualized Resource Discovery

136

Similar to the iDistance example, Ocean Index Managers can be constructed for various Context

Metadata indexing approaches using appropriate file system representations. For completeness we

note that, while B+-trees are compatible with many commercial DBMSs, other tree structures may not

be widely supported (e.g. M-trees). However, advanced indexing techniques may be provided by

custom data store implementations that include specialized performance techniques to help improve

indexing and query speed. Such techniques are described in [305] and include examples such as

buffering strategies, which aim to reduce disk I/O using techniques such as LRU replacement [203];

dynamic layout rearrangement, which optimizes disk I/O for common access patterns by rearranging

the physical layout of the data on secondary storage [54]; and physical designs, which exploit physical

properties of modern disk drives using technique such as adjacent block utilization [305].

6.4 Contextualized Resource Discovery

The Ocean approach presupposes a similarity search mechanism whereby Ocean Metadata can be

retrieved from the Ocean Registry‘s persistence model and returned to an Ocean application as

Descriptive Metadata. In order to provide a foundation for discovering contextually-relevant

Resources, we proposed the Contextualized Resource abstraction in section 4.3, which provides a

means of constraining the discovery context of conventional Web Resources using Ocean Metadata.

Notably, the Contextualized Resource abstraction adopts an associative metadata model, whereby

Ocean Metadata are stored separately from the Resources themselves within the Ocean Registry. As

described in section 5.5, the Ocean Registry provides an open contribution model whereby any

Contextualizer can contextualize any Resource with any combination of Ocean Metadata. As

described in section 6.3, Ocean Metadata are stored and indexed within the Ocean Registry using a

persistence model that exploits the similarity modeling mechanisms of the Context Metadata

abstraction. Recall that the Ocean persistence architecture is designed to support efficient Ocean

Metadata storage and lookup based on multiple domain-specific indexing approaches. This section

describes Ocean‘s Discovery Framework, which operates in conjunction with the previously

introduced Persistence Framework to discover relevant Contextualized Resources based on arbitrarily

complex Query Objects provided by Ocean applications.

Recall from section 5.2.2 that the Ocean application model is designed to support dynamic, in-situ

composition of CS mashups. With regards to Figure 50, the Ocean application model can summarized

as follows: First, domain-specific Ocean applications utilize Aladin techniques to acquire and model

native context data (NCD) from their local environment (1, 2). Next, NCD are passed to the hosting

application where they may be handled by local application logic as needed (3). In the Ocean

approach discussed in this dissertation, the Aladin architecture is extended by an Ocean Context

Interpreter (OCI), which supports communications with the Ocean Registry using the search protocol

defined in section 6.4.1. Ocean applications formulate Discovery Requests (using the NCD as query

terms), which are sent to the Ocean Registry‘s Resource Discovery API (4). The Ocean Registry

receives the request and uses a set of information filtering techniques (see section 6.4) to discover

contextually relevant Contextualized Resources (5). Next, discovered Contextualized Resources are

formulated as a Discovery Response and returned to the Ocean application as Descriptive Metadata,

termed Uniform Resource Identifier metadata in the figure below (6). The local OCI unmarshals the

Discovery Response and sends the Descriptive Metadata to the Ocean application (7). Finally, the

Chapter 6

137

Ocean application selects appropriate Contextualized Resources from the Discovery Response and

composes the associated Resources in-situ using the REST interoperation mechanisms described in

section 3.2.8 (8, 9).

Figure 50: The simplified Ocean application model

6.4.1 The Contextualized Resource Discovery API

To support context-aware component discovery, the Ocean Registry provides a Contextualized

Resource Discovery API (Discovery API), which is intended for use by Ocean applications.

Interactions between Ocean applications and the Ocean Registry may occur directly or be facilitated

by an Ocean Context Interpretation plug-in, which provides request marshaling/unmarshalling for

Aladin-based Ocean applications. Interaction with the Discovery API is accomplished by sending an

XML-based Discovery Request to the Discovery API‘s URI using HTTP POST. The Ocean Registry‘s

Discovery URI is http://oceanframework.org/discovery. Importantly, Discovery Requests must

adhere to the Ocean Discovery Request format XML schema described in section 6.4.1.1. The

Discovery API responds to Discovery Requests synchronously; returning either a structured

Discovery Response or an HTTP error code. The Discovery Response XML schema and associated

error codes are described in section 6.4.1.2.

6.4.1.1 Discovery Request Format

Contextualized Resource Discovery Requests (Discovery Requests) consist of specially formulated

XML requests, which allow Ocean applications to control various aspects of the Resource Discovery

process. Importantly, before Discovery Requests may be initiated, Ocean application must first

authenticate with the Ocean Registry using the mechanisms described in section 5.3.2. Once

authenticated, Ocean applications may query the Discovery API as often as needed, provided that the

request rate is not deemed excessive (e.g. requests in excess of 1 per second per IP may receive HTTP

6.4 Contextualized Resource Discovery

138

response code 503 – Service Unavailable as a response). Discovery Requests must adhere to

the Discovery Request XML schema shown in Figure 51.

Figure 51: The Discovery Request XML schema

Regarding Figure 51, the Discovery Request schema is defined as follows:

1. The root ocean_resource_request element contains a single version attribute that is used

by the Ocean Registry to select a proper request parser. Within the root element, two sub-

elements represent the query‘s search parameters and query terms.

2. The query_parameters element provides several attributes that are used to control query

processing: max_results, domain_restrict and contextualizer_restrict (described

shortly). In addition, two sub-elements are used to describe fundamental aspects of the

requested Contextualized Resources. The type indicates the data type of requested

Resources (e.g. standard MIME types [327]) and search_text is used to match textual terms

against the title and description contained within persisted Contextualized Resources (see

section 4.3). Note that both type and search_text must be wrapped in XML CDATA tags to

allow for the inclusion of arbitrary character values within the request.

3. Finally, the query_terms element includes one or more context_data sub-elements,

which include native context data wrapped within XML CDATA tags to allow for the inclusion

of arbitrary values within the request.

Chapter 6

139

Regarding Figure 51, the query parameters for Discovery Requests are defined as follows:

Parameter Description Default

type Indicates the desired data-type of discovered Resources

(e.g. standard IANA MIME types). Only one data-type is

allowed per request.

text/html

max_results Specifies the maximum search results requested by the

Ocean application.

50

domain_restrict Indicates that the Query Processor should limit search

results to a specific domain or sub-domain (as per [34]).

Unrestricted

contextualizer_restrict Indicates if Query Processor should limit search results to

a specific Contextualizer developer account.

Unrestricted

Table 14: Overview of available Resource Discovery search parameters

The Ocean Registry‘s information filtering algorithms perform similarity search according to the

native context data contained within a Discovery Request‘s query terms. As such, query terms must

be wrapped within an XML CDATA tag to allow for the inclusion of arbitrary context data. In this way,

native data formats such as structured text and base64 encoded binary data may be provided. The

number of query_terms that can be included within a Discovery Request is currently unbounded. An

example Discovery Request is provided in Figure 52.

Figure 52: An example Discovery Request

<?xml version="1.0" encoding="UTF-8"?>

 <ocean_resource_request version="1.0" >

 <query_parameters max_results="50"

 domain_restrict=""

 contextualizer_restrict="dcarlson">

 <type><![CDATA[mime:text/calendar]]></type>

 <search_text><![CDATA[Example search text]]></search_text>

 </query_parameters>

 <query_terms>

 <context_data>

 <value>

 <![CDATA[security_token:776958d554c987ae6d0b6f70826edfdaeb8670c8]]>

 </value>

 </context_data>

 <context_data>

 <value><![CDATA[<gml:Point><gml:pos>53.873488,10.686607</gml:pos>

 </gml:Point>]]></value>

 </context_data>

 <context_data>

 <value><![CDATA[TYPE=WIFI|TIME=1096470064731|ID=00:09:5b:de:fa:7a

 |NAME=NETGEAR|RSSI=-88|WEP=true|INFR=false]]></value>

 </context_data>

 </query_terms>

</ocean_resource_request>

6.4 Contextualized Resource Discovery

140

Several observations can be made regarding Figure 52. First, the example Discovery Request pre-

filters Contextualized Resources that are associated to Web Resources of type text/calendar. Next,

the request includes query parameters that restrict the maximum search results to 50; place no

restrictions on the Resource‘s domain; and restrict results to those contextualized by the Ocean

Contextualizer dcarlson. Finally, the request includes several native context data query_terms,

including a security token as an SHA-1 hash-code [219], geo-location information in the GML-simple

format [237] and Wireless LAN access point information in the NetStumbler format [212].

6.4.1.2 Discovery Response Format

Once query processing is complete for a given Discovery Request, the set of Ocean Metadata

determined to be most similar to the request are returned to the calling Ocean application. Discovery

Responses provide Ocean applications a set of Descriptive Metadata regarding contextually-relevant

Resources for use in machine-based or user-based adaptation decision models. Recall that in the

Ocean approach, applications are free to act upon Discovery Response metadata according to domain-

specific application logic (see section 5.2.2). Note that each discovered Resource provides a

composite similarity_score (in the interval [0,1]) indicating how similar the given Resource is to

the Discovery Request (see section 4.3.2). The set of Descriptive Metadata is rank-ordered according

to the associated score value and formulated according to the Discovery Response XML schema

shown in Figure 53.

Figure 53: The Discovery Response XML schema

Regarding Figure 53, the Discovery Response XML schema is defined as follows:

1. The root ocean_resource_response element contains a single version attribute that can be

used to select a response parser.

2. The resources element is the top-level container for all discovered Resource metadata and

may contain from 0 to max_results sub-elements.

Chapter 6

141

3. Each discovered resource element provides the following Descriptive Metadata:

a. a type element describing the Resource‘s data-type (e.g. to its MIME type) as a

means of assisting application state management;

b. a title element providing the title text provided by the Contextualizer;

c. a description element providing descriptive text provided by the Contextualizer;

d. a uri_code element providing the URI of the Resource or a hash-code that can be

used by the Ocean application to resolve the Resource‘s URI (described shortly);

e. a domain element indicating the domain of the URI (or sub-domain);

f. a similarity_score element as a numerical score indicating how similar the

associated Contextualized Resource is to the incoming Discovery Request (see

section 6.4);

g. a personalization_score element as a numerical score indicating the user‘s

predicted affinity for the Resource (see section 7.3); and

h. an optional wadle element providing an associated WADL document, if provided

(as per [137]).

As previously introduced, the uri_code element within the Discovery Response can represent

either a valid URI or a related hash-code. The presence of a hash-code indicates that the Ocean

application requested Resource personalization, as described in section 7.3. In this case, the

Descriptive Metadata are intentionally insufficient for fully resolving discovered Resources.

Specifically, all URI references are removed from the Response metadata, including the removal of

URI details from the base attribute of the <resources> element of associated WADL documents (see

[137] for details). In place of URIs, a generated hash code is used to force Ocean applications to

contact the Ocean Registry again to resolve true URIs. Notably, uri_codes are used to support the

implicit rating of Resources as required by Ocean‘s recommender algorithms (see section 7.3). Ocean

applications resolve true URIs by calling the Ocean Registry using HTTP GET using the following

URI: http://oceanplatform.org/resolve/{uri_code}. If a given uri_code is found, the Ocean

Registry returns a HTTP 303 redirection status code, which provides the Resource‘s true URI (or a 400

Bad Request status code if the uri_code was not found). An example Discovery Response is shown

in Figure 54.

6.4 Contextualized Resource Discovery

142

Figure 54: An example Ocean Discovery Response

6.4.2 Query Object Instantiation

Based on the results of local application logic and context modeling, Ocean applications attempt to

discover contextually-relevant Resources using the Discovery API‘s request format (see section

6.4.1.1). Recall that query parameters allow Ocean application to control discovery results based on

constraints such as data-type, domain and Contextualizer account. Further, provided query terms

include native context data (NCD) that are wrapped by XML CDATA tags. As Discovery Requests arrive

at the Discovery API, the Ocean Registry performs a multi-feature similarity search process based on

the contents of the request. To begin the discovery process, an incoming Discovery Request is

transformed into a Query Object by a multi-threaded Query Processor that controls query handling

and coordinates the required Ocean Registry resources. Once a Query Processor is instantiated for a

given request, it creates a Request Factory that is responsible for processing the request XML. The

Request Factory first unmarshals all search parameters and query terms and then instantiates the

necessary Context Handlers for each included NCD using the adapted chain of responsibility

technique introduced in section 5.3.3. (Recall that Context Handlers represent implementations of the

Context Metadata interface presented in section 4.3.2.) Resultant Query Object represents a machine-

processable representation of the client‘s Discovery Request, which forms a central component of the

Ocean Registry‘s similarity search approach (described shortly). An overview of the Query Object

instantiation process is shown in Figure 55.

<?xml version="1.0" encoding="UTF-8"?>

<ocean_resource_response version="1.0" >

 <resources>

 <resource>

 <type><![CDATA[mime:text/html]]></type>

 <uri_code>10fb2d66a65335317b54c93b15edefebe62a19c9</uri_code>

 <domain><![CDATA[www.smugmug.com]]></domain>

 <title><![CDATA[Example photo website]]></title>

 <description><![CDATA[Example description]]></description>

 <similarity_score>.89</similarity_score>

 <personalization_score/>

 <wadle/>

 </resource>

 <resource>

 <type><![CDATA[mime:text/html]]></type>

 <uri_code>a0fc1e77a65235317b54a93c15edefebe45a19c8</uri_code>

 <domain><![CDATA[subdomain.example.com]]></domain>

 <title><![CDATA[Another example title]]></title>

 <description><![CDATA[Another example description]]></description>

 <similarity_score>.55</similarity_score>

 <personalization_score/>

 <wadle/>

 </resource>

 </resources>

</ocean_resource_response>

Chapter 6

143

Figure 55: Overview of the Query Object instantiation process

With reference to Figure 55, the Ocean Reference Implementation (RI) provides the following

realization of the RequestFactory and related classes as shown in Figure 56. (Note that

implementation-specific methods may be included in the figure below; however, in the interest of

clarity, these are not described.)

Figure 56: The RequestFactory and related classes within the Ocean RI

Once a Query Object has been instantiated for a given Discovery Request, the Query Processor

dynamically formulates a search strategy based on the included Context Metadata. As persisted Ocean

Metadata may be described by multiple Context Metadata entities, Ocean Contextualized Resource

Discovery (Resource Discovery) supports a multi-feature similarity search (MFSS) approach,

whereby multiple similarity metrics are considered simultaneously. Broadly, MFSS approaches

employ multiple classifiers for a given Query Object and provide a ranked query model that scores the

similarity of database object against the Query Object using multiple feature comparisons [376].

Resulting similarity scores are typically composed of several atomic similarity approximations (or

grades) that are aggregated together. As presented in [102], ―Assume that each object in a database

6.4 Contextualized Resource Discovery

144

has m grades, or scores, one for each of m attributes. For example, an object can have a color grade,

that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted

list, which lists each object and its grade under that attribute, sorted by grade (highest grade first).

Each object is assigned an overall grade that is obtained by combining the attribute grades using a

fixed monotone aggregation function, or combining rule, such as min or average. To determine the

top k objects, that is, k objects with the highest overall grades, the naive algorithm must access every

object in the database, to find its grade under each attribute.‖ Related, the next section presents

important aspects of multi-feature search optimization.

6.4.3 Multi-Feature Search Optimization

At their foundation, most MFSS approaches define an aggregation function t where 𝑡(𝑥1 ,… , 𝑥𝑚) is

the overall score of an object R, where 𝑥1 ,… , 𝑥𝑚 represent the set of R’s grades of m attributes (also

referred to as features). Common aggregation functions include min, average and sum (where min

refers to a conjunction in fuzzy logic). As presented in [101], MFSS approaches utilize aggregation

functions together with a method for modeling the similarity of object features by generating m sorted

lists (1 per feature), where each list represents a graded set of pairs (x,s), where x is the object and s is

the real number grade for a given feature (typically in the interval [0,1]). Each list is generated in

sorted order according to the object‘s feature grades. Most MFSS techniques are designed to discover

the top k objects, where k is the number of requested query results and ―top‖ refers to the highest

ranked objects in the dataset as compared to a Query Object 𝑅 (according to score).

Naïve search approaches exhibit linear efficiency and can become quickly intractable in large-scale

scenarios [101]. To achieve sub-linear query performance, researchers have explored various

optimization techniques. The first such optimization algorithm, called ―Fagin‘s Algorithm‖ or FA,

was proposed by Fagin in 1996 and was subsequently refined in 1999 [100]. Notably, the FA

approach has been shown to be correct for monotone aggregation functions [100]. In terms of

algorithmic efficiency, assuming that the items within each sorted list are probabilistically

independent, FA exhibits a cost of 𝑂(𝑁(𝑚−1) 𝑚 𝑘1 𝑚) [100]. While FA can exhibit sub-linear

performance, in many cases its performance guarantees are dependent on the aggregation function

being ―strict‖, where 𝑡 𝑥1 ,… , 𝑥𝑚 = 1 when 𝑥𝑖 = 1 for every i. While strict aggregation functions are

common, they are not always adequate in all search scenarios, resulting in reduced FA performance in

many cases (e.g. the use of max is common; yet max is not strict). Moreover, even when the

aggregation function is strict, common database structures have been identified that result in poor FA

performance and its memory requirements grow arbitrarily large as the database grows [100].

Several related MFSS optimization approaches have also been explored. For example, Chaudhuri

and Gravano [60] suggested methods of extending FA through the use of query constraints (for

example compound searches where certain threshold conditions must be met, as per the

IndexManager query constraints described in section 6.3.1). Additional middleware-based MFSS

approaches such as IBM‘s GARLIC [274] and visual retrieval systems such as HERON [201] have

also demonstrated techniques for aggregating search results from multiple underlying data stores.

However, these techniques encounter performance problems in heterogeneous scenarios [131]. For

Chapter 6

145

example, HERON relies on the Quick-Combine algorithm, which often deteriorates to linear scan (or

worse) when processing heterogeneous data sets [130].

Based on the limitations of prior MFSS techniques, researchers sought to develop an algorithm that

performs better than linear scan over arbitrary databases and requires less memory. The result of this

research effort was the near simultaneous discovery of a new MFSS optimization algorithm, called the

Threshold Algorithm (TA), by three independent research groups [102, 130, 221]. Unlike FA, which

is only optimal in limited cases, the TA approach is considered to be optimal in a much stronger sense

as it does not make any underlying probabilistic model assumptions [102]. Given m sorted lists (1 per

feature), where each list represents a graded set of pairs (x,s), where x is a database object and s is the

real number grade for the given feature in the interval [0,1], a top k query under TA can be described

as follows (as adapted from [100]):

1. Do sorted access in parallel to each of the m sorted lists 𝐿𝑖 . As an object R is seen under

sorted access in some list, do random access to the other lists to find the grade 𝑥𝑖 of object

R in every list 𝐿𝑖 . Then compute the score 𝑡 𝑅 = 𝑡(𝑥1 ,… , 𝑥𝑚) of object R. If this score is

one of the k highest we have seen, remember object R and its score t(R) (ties are broken

arbitrarily, so that only k objects and their scores need to be remembered at any time).

2. For each list 𝐿𝑖 , let 𝑥𝑖 be the score of the last object seen under sorted access. Define the

threshold value 𝜏 to be 𝑡(𝑥1 ,… , 𝑥𝑚). As soon as at least k objects have been seen whose

score is at least equal to 𝜏, then halt. (Note that 𝑥𝑖 refers to the aggregation of individual

feature grades from the last object seen under sorted access; hence, the last seen feature

grades from each list do not need to be maintained.)

3. Let Y be a set containing the k objects that have been seen with the highest scores (ties are

broken arbitrarily).The output is then the scored set 𝑅, 𝑡(𝑅)|𝑅 ∈ 𝑌 .

6.4.4 The Ocean Multi-Feature Similarity Search Approach

This section draws together several threads of related work to derive Ocean‘s multi-feature similarity

search approach. In order to find the top k most similar Contextualized Resources for a given

Discovery Request, we propose a feature grade aggregation approach based on the Threshold

algorithm (TA) introduced in section 6.4.3. We begin with the observation that the Ocean Registry‘s

IndexManager abstraction described in section 6.3.1 provides domain-optimized, sorted access to

collections of Context Metadata indexes that reference persisted Ocean Metadata. In response to an

incoming Query Object, the set installed IndexManagers within the Ocean Registry are used to

produce m sorted lists (1 per Context Metadata type), where each list represents a graded set of pairs

(x,s), where x is the object (i.e. a reference to the parent Ocean Metadata entity) and s is the real

number grade for a given context feature (i.e. Context Metadata entity). List generation is

accomplished using each IndexManager’s topSearch method. Related, the IndexManager probe

method is used to provide random access to similarity grades for each of the m sorted lists.

During list generation, the Query Processor first reduces each IndexManager’s search space by

introducing a set of QueryConstraints within each topSearch method. In the first stage of search

space reduction, Context Metadata objects are excluded from an IndexManager’s search space if their

6.4 Contextualized Resource Discovery

146

parent Ocean Metadata entity does not match the specified data-type, domain or Contextualizer values

contained within the query parameters. Additionally, each IndexManager’s search space is further

reduced by excluding objects whose parent‘s association types do not match the Context Metadata

present within the Query Object (see section 4.3.1). For example, all Context Metadata indexes whose

parent Ocean Metadata require GEOPointHandlers (through the ―required‖ association type) will be

excluded from the associated IndexManager’s search space if the Query Object does not contain a

GEOPointHandler. (Note that the ―optional‖ association type has no affect on search space reduction

but does have an effect on similarity scoring.) A simplified overview of search space reduction is

shown in Figure 57 (for a single Context Metadata index type). In this example, the

QueryConstraints specify a data-type ―text/html‖ and a Contextualizer restriction of ―dcarlson‖.

(Note that only Context Handler indexes shown as dark circles will be included in the search space.)

Figure 57: Example search space reduction for a single Context Metadata index type

Next, following [92], we introduce an aggregation function t that computes an overall score 𝑡 𝑅 of

object R as:

 𝑡 𝑅 =
1

𝑛
 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖 , 𝑥 𝑖)

𝑛

𝑖=1

where n refers to the total number of Context Handlers associated to a Contextualized Resource, 𝑥𝑖

refers to the Context Handlers associated with the Contextualized Resource and 𝑥 𝑖 refers to the

matching Context Handlers within the Query Object. The similarity grade of 𝑥𝑖 and 𝑥 𝑖 is calculated by

passing the 𝑥 𝑖 Context Handler into the getNormalizedSimilarity method of Context Handler 𝑥𝑖

(recall getNormalizedSimilarity returns domain-neutral similarity values in the interval [0,1]).

Using this aggregation function, we adopt the TA algorithm as follows (adapted from [100]):

1. Do sorted access in parallel to each of the m IndexManagers using their associated

topSearch methods. Importantly, the search space of each IndexManager should be

reduced by passing in the set of QueryConstraints derived from the query parameters (i.e.

data-type, domain and contextualizer restrictions).

2. As an object R is seen under sorted access in some IndexManager, use the probe method to

find the grade 𝑥𝑖 of object R in every IndexManager referred to by the Query Object. Then

compute the score 𝑡 𝑅 = 𝑡(𝑥1 ,… , 𝑥𝑚) of object R using the aggregation function defined

above. If this score is one of the k highest we have seen, remember object R and its score

Chapter 6

147

(ties are broken arbitrarily, so that only k objects and their scores need to be remembered at

any time).

3. For each IndexManager referred to by the Query Object, let 𝑥𝑖 be the score of the last

object seen under sorted access. Define the threshold value 𝜏 to be 𝑡(𝑥1 ,… , 𝑥𝑚). As soon as

at least k objects have been seen whose score is at least equal to 𝜏, then halt. (Note that 𝑥𝑖

refers to the aggregation of individual feature grades from the last object seen under sorted

access; hence, the last seen feature grades from each list do not need to be maintained.)

4. Let Y be a set containing the k objects that have been seen with the highest scores (ties are

broken arbitrarily). The output is then the scored set 𝑅, 𝑡(𝑅)|𝑅 ∈ 𝑌 .

Using the adaptation of the Threshold Algorithm presented above, the top k Contextualized

Resources are discovered for a given Query Object using the process shown in Figure 58.

Figure 58: Overview of Ocean’s multi-feature similarity search process

At the completion of query processing, Descriptive Metadata are generated for each discovered

Contextualized Resource according to the following process: First, a Discovery Response object is

created. Second, Descriptive Metadata for each Contextualized Resource are retrieved from the Ocean

Metadata Store (using random access) and integrated into the response along with either a URI or a

uri_code (generated using a time-based salted hash function that incorporates the true URI). Next,

the Descriptive Metadata for each Contextualized Resource are updated with the composite similarity

score generated during query processing. Next, the Descriptive Metadata are rank sorted according to

6.5 Chapter Summary

148

their associated similarity scores. Finally, the Descriptive Metadata objects are marshaled into a

Discovery Response XML structure and returned to the Ocean application (see section 6.4.1.2). Once

the Discovery Response is received by an Ocean application, its local application logic performs

dynamic, in-situ component selection and composition as per the Ocean application model presented

in section 5.2.

6.5 Chapter Summary

This chapter discussed the Ocean Registry‘s approach for indexing, storing and discovering

Contextualized Resources. As discussed in section 4.3, Contextualized Resources represent arbitrarily

complex data structures that cannot be effectively indexed or queried using classical key, range or

proximity techniques. Towards this end, we leveraged the similarity modeling capabilities of the

Context Metadata interface described in section 4.3.2. The chapter began with a discussion of

similarity search algorithms and comparison metrics. Based on the related work discussion, we then

defined the Index Manager abstraction, which encapsulates the indexing techniques and data models

required to support efficient queries for a given context domain. Notably, Index Managers are

provided by Context Experts using the Context Metadata contribution approach introduced in section

5.4. Next, we defined the Ocean persistence model, which allows Contextualized Resources to be

efficiently stored and indexed for rapid retrieval. This section included a persistence example based

on a B+-tree approximate nearest neighbor search approach called iDistance. Next, we developed

Ocean‘s multi-feature similarity search approach, whereby contextually-relevant Ocean Metadata can

be retrieved from the Ocean Registry and returned to Ocean applications as Descriptive Metadata.

Related, this section presented the Ocean Registry‘s Discovery API and Discovery Protocol. The

section concluded with a discussion of Query Object instantiation; an overview of multi-feature

similarity search techniques; an Ocean-specific adaptation of the Threshold Algorithm; and a

description of Ocean‘s multi-feature similarity search process (including Resource scoring and

Descriptive Metadata generation).

149

Chapter 7

Leveraging the Ocean Community

7.1 Introduction

As described throughout this dissertation, the Ocean approach provides a conceptual and practical

foundation for the development of Web-centric context-aware systems. By co-opting existing context

sources, network infrastructure and distributed middleware, Ocean promotes the development of

wide-area context-awareness techniques through significant developer adoption and user

participation. However, the complexity and scale of many real-world environments impose additional

challenges for effective Contextualized Resource discovery and selection. This chapter discusses two

important challenges in this regard. First it addresses context mismatch, which refers to the situation

where an Ocean application may not be capable of generating the native context data necessary to

discover Contextualized Resources in a given environment; reducing query effectiveness. Next, this

chapter addresses information overload, which refers to the situation where a prohibitively large

number of similarly scored Discovery Response results become difficult to differentiate based on

Descriptive Metadata alone; resulting in ineffective Resource selection.

While context mismatch and information overload are not well-addressed by existing context-aware

systems, these important topics have been explored in other large-scale networked systems. Notably,

the emergence of the Internet and Web has given rise to powerful community-based computational

models that have proven adept at solving large-scale information filtering challenges. To explore the

application of such approaches in Ocean, this chapter presents two preliminary techniques for

leveraging the participation of various Ocean stakeholders as a means of addressing the information

filtering challenges facing large-scale context-aware systems. First, in section 7.2, we introduce a

preliminary approach for overcoming context mismatch. This approach leverages the Discovery

Requests provided by Ocean applications to automatically model context information in large-scale

environments. Community-modeled context information is then used to automatically expand

subsequent Discovery Requests with supplemental query terms to help improve query effectiveness.

Next, in section 7.3, we introduce a preliminary approach for overcoming information overload. This

approach captures both implicit and explicit Resource preference information from large numbers of

Ocean Users as a means of personalizing discovery results. Resource personalization is facilitated by

the development of an Ocean-specific Recommender Engine capable of integrating a variety of

recommender algorithms.

7.2 Context-aware Query Expansion

As described in section 5.5, the Ocean Registry provides an open Contextualized Resource

contribution model whereby any Contextualizer can contextualize any Resource with any combination

of Ocean Metadata. For example, a Contextualizer may contextualize iCalendar data using Context

Metadata such as geo-position and a valid time interval (see section 4.4); however, many other

Contextualizers may contextualize the same Resource using a variety of other Context Metadata (e.g.

device proximity, temperature or ambient light levels). As previously discussed, this community-

based annotation technique is used to promote the contribution of vast amounts of Contextualized

Chapter 7

150

Resources. For example, a context-aware crawler could automatically generate large numbers of

Contextualized Resources from existing Web-based data sources (see section 8.4). While open

contribution addresses large-scale Contextualized Resource generation and maintenance (see section

5.5), the scale of contribution, the diversity of available Context Metadata and the heterogeneity of

Ocean devices may decrease query performance due to context mismatch. Briefly, context mismatch

refers to the situation where an Ocean Discovery Request‘s query terms may not sufficiently match

the Context Metadata used to create Contextualized Resources. In such cases, query effectiveness is

diminished and contextually-relevant Resources may remain invisible to Ocean applications.

Recall that as Contextualized Resources are stored within the Ocean Registry, its Persistence

Framework generates multiple indexes to facilitate fast lookup (using the IndexManager abstraction

described in section 6.3.1). As described in section 6.4.1, Ocean applications formulate Discovery

Requests based on application-specified search parameters and query terms that include locally

derived native context data (NCD). In real-world scenarios, NCD are often complex, domain-specific,

unsystematically organized and unpredictably available [21]. Further, while Aladin-based context

modeling is capable of operating across multiple administrative domains (see section 3.2.2), client-

centric context acquisition is inherently limited to the capabilities of a given host device. For example,

while many devices are capable of position determination based on GPS hardware, this capability is

far from universal. Further, even if such capabilities are present, the resultant NCD may be inaccurate

or unavailable under certain conditions (e.g. indoors or in ―urban valleys‖). Given the device

heterogeneity common to Web-scale scenarios, incoming Discovery Requests may not include the

NCD necessary to produce effective query results using Ocean‘s multi-feature search approach

described in section 6.4.4. This section presents our preliminary approach for addressing this issue by

means of community-participation.

7.2.1 Background and Related Work

Important aspects of context mismatch have been studied in traditional information retrieval (IR)

research in a related form known as word mismatch. Word mismatch ―refers to the phenomenon that

the users of IR systems often use different words to describe the concepts in their queries than the

authors use to describe the same concepts in their documents‖ [374]. As Furnas et al. [113] noted in

1987, people use the same words to describe a search object less than 20% of the time. This so-called

vocabulary problem gives rise to word mismatch. While the effect can be slightly mitigated through

the use of longer queries, short queries are becoming increasingly common in Web-based search

[205]. Moreover, large sets of complex search objects (e.g. long documents) can be difficult to

meaningfully rank based on limited query terms [374]. Hence, the severity of the vocabulary problem

has motivated the development of query expansion techniques that augment queries with

supplemental search terms in order to improve query effectiveness [51].

Two general categories of query expansion have been studied. First, in global query expansion,

various statistical analyses are applied to an entire collection of search objects (e.g. finding the co-

occurrence of all possible pairs of terms). Common examples of global techniques include Boolean

term decomposition [363], statistical factor analysis [85] and formal concept analysis [53]. Additional

global techniques have been developed to help users select appropriate search terms by manually or

7.2 Context-aware Query Expansion

151

automatically deriving a thesaurus of related words (based on the initial query terms), which is

presented to the user during an iterative search process [52, 71]. In a related technique, thesauri have

also been used to supplement user queries with additional terms or to reweight existing terms [338].

While the effectiveness of thesauri-based query expansion has been questioned [51], more

sophisticated query expansion techniques have been developed to exploit the content relationships

between the various documents of a collection; however, as global techniques operate over the entire

collection, they are often computationally expensive and have not demonstrated significant

improvements in query results [51].

In contrast to global techniques, local query expansion demonstrates improvements in query

effectiveness and offers lower computational complexity characteristics [51]. Instead of calculating

term relevancy for all documents within a collection, local techniques derive supplemental query

terms from the top ranked documents for a given query [12, 77]. The simplest local technique, called

local feedback (or pseudo-feedback), assumes that the top ranked documents for a query are relevant

and applies standard relevance feedback mechanisms to expand the query terms [374]. The relevance

feedback algorithm simply adds common terms from highly ranked documents and then reweights the

results based on term frequencies [278]. Work from Croft and Harper suggested a similar approach

that uses the top-ranked documents to estimate the probabilities of the query terms, but does not add

additional terms [77]. While local query expansion is often characterized by lower computational

complexity, some techniques can suffer from erratic performance when the top-ranked documents are

not relevant [374].

Based upon the foundation of local feedback, several recent proposals have been developed that

demonstrate improved query effectiveness across a variety of problem domains [213]. In many

approaches, a modified version of Rocchio‘s formula [271] serves as the foundation for term

reweighting [278]. A common modification is described below, as presented in [51] :

𝑄𝑛𝑒𝑤 = 𝛼 ∙ 𝑄𝑜𝑟𝑖𝑔 +
𝛽

 𝑅
 𝑟 −

𝛾

 𝑅
𝑟∈𝑅

 𝑟

𝑟 ∈𝑅

where 𝑄𝑛𝑒𝑤 is a weighted term vector for the expanded query; 𝑄𝑜𝑟𝑖𝑔 is a weighted term vector for the

original unexpanded query; 𝑅 and 𝑅 represent the sets of relevant and non-relevant documents

(respectively); 𝑟 and 𝑟 are term weighting factors extracted from the relevant and non-relevant

document sets (respectively); and 𝛼, 𝛽 and 𝛾 are multipliers used to tune the approach. Using this

formula, the weights in each vector are computed by a weighting scheme applied to the whole

collection. According to [51], if the query expansion technique is constrained to highly ranked

documents, the aforementioned formula reduces to:

𝑄𝑛𝑒𝑤 = 𝛼 ∙ 𝑄𝑜𝑟𝑖𝑔 +
𝛽

 𝑅
 𝑟

𝑟∈𝑅

where 𝑅 refers to the collection of top ranked documents that are considered relevant to the original

query. While computationally efficient, the above approach has been criticized as being overly

collection-centric rather than query-centric [51].

Chapter 7

152

While a comprehensive treatment of query expansion is beyond the scope of this dissertation, we

suggest that the addition and weighting of supplemental query terms can be used to improve query

effectiveness for Ocean applications. Importantly, Ocean‘s vocabulary problem precludes the direct

application of existing query expansion techniques as current approaches are designed for text-based

scenarios, where the search objects (i.e. documents) often share identical terms (i.e. words and

concepts) across the collection [213]. In contrast, even though a large number of Ocean‘s search

objects (i.e. Contextualized Resources) may be relevant to a given Discovery Request, they may not

share any terms with the Context Metadata within the query. Recall that Ocean‘s basic multi-feature

similarity search approach considers only Ocean Metadata that have at least one element of Context

Metadata in common with a given Query Object (see section 6.4.4). Without a minimal overlap

between a given query‘s Context Metadata and the Context Metadata of persisted Ocean Metadata,

contextually-relevant Resources will remain hidden from Ocean applications and unavailable for in-

situ composition.

7.2.2 The Emergence of Community-centric Context Modeling

Recently, a multi-organizational initiative, called PlaceLab, has demonstrated a highly scalable

approach for modeling context information in large-scale, real-world environments [291]. In contrast

to many context-aware infrastructures, PlaceLab is designed to: (1) work over a wide area, indoors

and out; (2) run on commodity devices; (3) observe privacy needs; (4) support standard programming

interfaces; and (5) make accuracy a secondary goal. Towards these ends, PlaceLab aims to collect and

model information regarding the geo-location and response-rate histogram patterns of commonly

occurring radio signals in real-world environments (termed beacons). In PlaceLab, information

regarding 802.11 access points, Bluetooth devices and GSM cell towers is captured by a community

of volunteers that use specially developed ―Stumbler‖ software to search for radio signals in large

geographic areas using vehicles (termed war-driving). During field trials, PlaceLab volunteers

constructed a database of over 35,000 Wi-Fi and 7,000 GSM beacons by war-driving 4,350 kilometers

throughout the Seattle metropolitan area [151]. Using these results, application developers are able to

perform position estimations using a PlaceLab client library and related Web service that provides

access to the beacon information. Additionally, the PlaceLab client supports access to the wigle.net
42

beacon database, which provides an additional six-million beacon mappings worldwide. By using the

PlaceLab client software, the position of mobile devices can be estimated without the need for GPS

hardware or in conditions where GPS signal quality is poor or unavailable.

PlaceLab researchers evaluated their infrastructure with nine detailed user studies and several

empirical evaluations that included the collection of comments from a public developer forum [66].

The researchers studied the effects of beacon density within three geographic regions, including

urban, suburban and residential. Notably, their experiments demonstrated that a median positioning

error of 15 – 20 meters could be achieved in urban and suburban areas, provided that 3 distinct

beacons could be detected within 10 seconds (with 100 percent coverage). In more sparsely populated

residential areas, where beacon density is lower, PlaceLab clients demonstrated a median positioning

error of approximately 30 meters (with 100 percent coverage). Several additional experiments were

42

 http://wigle.net/

7.2 Context-aware Query Expansion

153

conducted using GSM beacons alone. The results from these studies show that PlaceLab could

achieve a median positioning error of 94 meters in downtown areas and 196 meters in residential

areas using a single GSM network. Using multiple GSM networks, the median positioning error was

65-134 meters in downtown areas. The GSM results were characterized using three positioning

algorithms, including a centroid algorithm that does not model radio propagation; fingerprinting; and

Monte Carlo localization with a Gaussian Processes signal propagation model. An overview of the

PlaceLab GSM trace collection for Seattle is shown below in Figure 59.

Figure 59: Example PlaceLab GSM trace collection for Seattle (from [66])

In addition to geo-positioning, PlaceLab researchers also studied methods of detecting places by

means of beacon signatures. Towards this end, the researchers developed an algorithm, called

BeaconPrint, which identifies previously encountered places (e.g. home or work) using the response-

rate histograms of previously detected beacon patterns [150]. Experiments conducted using

BeaconPrint demonstrated a 90 percent recognition rate for frequently visited places. For less

frequently visited places, BeaconPrint achieves a 63 percent recognition rate for places visited once

and an 80 percent recognition rate for places visited twice. While BeaconPrint does not provide geo-

location information, it does provide relatively accurate symbolic location information and does not

rely on a connection to the PlaceLab server.

Perhaps one of the most interesting aspects of the PlaceLab approach is its focus on leveraging

community participation as a means of solving a computationally and logistically difficult problem.

Specifically, PlaceLab addresses the daunting challenge of large-scale beacon discovery and

maintenance by promoting a grass-roots, volunteer-based war-driving community [291]. In this

regard, the PlaceLab contribution architecture has been characterized as an ―open source approach to

content generation‖ [181] that distributes context acquisition tasks to geographically dispersed

volunteers. Individual beacon trace contributions are then aggregated by the centralized PlaceLab

server and made available to clients via an open API. Mediation between the producers of PlaceLab

data (i.e. the war-drivers) and the consumers of that data (i.e. the mobile clients) is provided by the

PlaceLab infrastructure; however, similar to the Ocean application model, clients are free to use

derived positioning information as needed.

Chapter 7

154

The PlaceLab initiative can be understood as a type of volunteer computing system that provides

collection and processing of beacon data using shared computing resources. Broadly, volunteer

computing ―allows high-performance parallel computing networks to be formed easily, quickly, and

inexpensively by enabling ordinary Internet users to share their computers‘ idle processing power

without needing expert help‖ [284]. A canonical example of volunteer computing is the SETI@home

project [10], which leverages shared computing resources to analyze radio signals from space. Before

the SETI@home project, the analysis of the data output from modern radio telescopes required

specialized, expensive and dedicated computing systems. As a means of improving analysis power

and decreasing the associated computing costs, Berkley researchers developed the SETI@home

project as an experimental distributed computing architecture that divides space telescope data into

fixed work units that can be distributed via the Internet to a related client program running on

volunteers‘ computers. The distributed clients calculate and return results to the U.C. Berkeley server

infrastructure, where they are collected and new tasks are assigned. Notably, the general public can

participate by simply downloading and installing a client program, which exploits unused computing

cycles by running as a screensaver or continuously in the background.

The results of the SETI@home project have been remarkable in terms of participation and

computational performance. Within weeks of the public project announcement in 1998, over 400,000

volunteers had preregistered to participate [10]. Since its release in May 1999, the project has quickly

garnered participants; growing from an initial user base of 200,000 to over 3.91 million users in 2002.

At its peak, the original SETI@home infrastructure was capable of generating an average throughput

of over 27.36 TeraFLOPS [10]. This success prompted SETI@home researchers to develop a

generalized architecture for public-resource computing, called the Berkeley Open Infrastructure for

Network Computing (BOINC) [9]. As of November 2008, BOINC generates an average processing

throughput of 1,487 TeraFLOPS derived from the shared computing resources of 320,372 volunteers.

Prominent BOINC projects include Rosetta@home
43

 (biology), Climateprediction.net
44

 (earth

sciences) and Einstein@Home
45

 (physics).

While differing in overall approach, PlaceLab shares some similarities with public-resource

computing approaches such as BOINC. Similar to BOINC, PlaceLab leverages the shared computing

resources of a community as a means of solving difficult computational problems. In PlaceLab,

shared resources include mobile devices (i.e. Stumbler-equipped laptops), context detection hardware

(e.g. GPS receivers), a means of mobility (e.g. cars and fuel) and volunteer time. Moreover, similar to

SETI@home, PlaceLab provides a centralized computing infrastructure that aggregates results and

provides a related public API. However, unlike the BOINC contribution model, which places few

demands on participants beyond the installation of an unobtrusive software client, the PlaceLab

contribution model required a significant investment of time, effort and money on the part its

volunteers.

43

 http://boinc.bakerlab.org/rosetta/
44

 http://climateprediction.net/
45

 http://einstein.phys.uwm.edu/

7.2 Context-aware Query Expansion

155

Although the PlaceLab architecture demonstrated promising initial results, its contribution model

has been criticized [181]. In PlaceLab, war-driver volunteers are required to provide a laptop running

specially developed software along with appropriate radio hardware. Notably, meaningful beacon

detection often necessitated the purchase of additional equipment such as GPS devices, Bluetooth

radios and multiple GSM modems (see Figure 60). In addition, volunteers faced considerable time

requirements and fuel costs when war-driving large geographic areas [66]. The cost and effort

associated with collecting beacon traces is further exacerbated by issues related to the ownership,

licensing, and copyright of collected data [181]. For example, the licensing terms of the PlaceLab

Stumbler software state that ―The access point data you submit becomes the property of Intel

Corporation for use in this research‖
46

. Licensing restrictions, combined with a general distrust of

Intel‘s corporate sponsorship of the project, resulted in PlaceLab being ―unable to both attract enough

users and obtain the quality and breadth of data they desired to make the database widely useful‖

[181].

Figure 60: A PlaceLab war-driving laptop outfitted with specialized radio equipment

(including one WiFi card, two GPS units, and three Sony Ericsson GM28 GSM modems)

7.2.3 Towards Volunteer-based Context Modeling in Ocean

In Ocean, we propose that community-generated context information can be used to expand

Discovery Requests to help overcoming context mismatch. As discussed in section 7.2.1, various

query expansion techniques have been developed to generate and ensure the relevancy of

supplemental search terms; however, existing approaches are designed for text-based information

retrieval and do not accommodate context-aware query term modeling. In this section, we discuss our

preliminary approach for using the Ocean User community to acquire and model context information

for use in automatic query expansion. We base our approach on an extension of the PlaceLab

infrastructure previously introduced. We suggest that PlaceLab‘s community-based approach

demonstrates how large amounts of context information can be generated and maintained for real-

world environments. Related, we suggest that volunteer-based computing infrastructures such as

BOINC illustrate how a low-cost contribution model can result in self-sustaining volunteerism and

formidable computational capabilities.

46

 http://placelab.org/data/disclaimer.html

Chapter 7

156

As discussed in section 6.4.1, Ocean applications discover contextually-relevant Resources using

the Ocean Registry‘s Discovery API. In order to form Discovery Requests, Ocean applications first

acquire and model native context data (NCD) from their local environment using the techniques

described in section 3.2.2. In Ocean‘s client-centric approach, the type of NCD modeled depends on

the capabilities of a given host device and the available sources of environmental context information.

Notably, host devices may provide several context acquisition sensors; hence, multiple NCD may be

generated during the context modeling process. For example, a given mobile device may

simultaneously detect multiple types of nearby radio transceivers, an ambient light value, a

temperature reading and geographic positioning information. In order to improve Resource Discovery

effectiveness, an Ocean application may provide multiple NCD as query terms within Discovery

Requests. Importantly, Discovery Requests are performed by all Ocean applications using the Ocean

Registry; resulting in an incoming stream of heterogeneous contextual data from diverse device types

and real-world environments. Notably, the query terms within individual Discovery Requests can be

understood as ―snapshots‖ of the context information encountered by each distributed Ocean

application. In this regard, each Ocean User behaves similar to a PlaceLab war-driver; proactively

modeling context information in-situ and then providing resultant NCD to the Ocean Registry in

Discovery Requests. However, unlike the PlaceLab Stumbler software, which can detect only a few

well-known context types (e.g. 802.11 beacons and GPS coordinates), heterogeneous Ocean

applications include a variety of NCD that are transformed into arbitrary Context Handlers during

Resource Discovery (see section 6.4).

In PlaceLab, establishing location information for discovered beacons is accomplished by domain-

specific algorithms that take into account the semantics of the underlying context data [66]. For

example, the PlaceLab Stumbler trace shown in Figure 43 provides the following domain-specific

information: a beacon of type ―WIFI‖ that is identified by a MAC address (―00:0f:b5:27:2e:a6‖)

and name (―KVK NETGEAR‖); and location information that includes latitude (―47.67006963632125‖)

and longitude (―-122.29616917072389‖). In order to provide meaningful associations between the

discovered beacon and its related geo-coordinates, PlaceLab provides support for parsing the Stumber

file format [212] and provides domain-specific mechanisms for associating geo-positioning

information using the radio signal propagation characteristics of a given beacon type (e.g. WIFI or

GSM) [66].

As previously discussed, sophisticated proximity algorithms utilize radio signal strength values to

infer a distance to the signal‘s source [188]. In the case of common omni-directional antennas (which

many 802.11 transceivers employ) a single signal strength value may not indicate precisely where an

associated geo-coordinate should be assigned. In this regard, several recent signal triangulation

approaches have suggested to help improve localization precision by using multiple radio signal

Figure 43: An example PlaceLab Stumber trace (from the dataset discussed in [66])

TYPE=WIFI|ID=00:0f:b5:27:2e:a6|NAME=KVK NETGEAR|

LAT=47.67006963632125|LON=-122.29616917072389|

VCNT=0|ACNT=0|ANCHORED=1|RAD=75.0|GCNT=1

7.2 Context-aware Query Expansion

157

sources [19, 188, 195]. However, even with a single 802.11 beacon, its relatively short range (e.g. 70

to 100 meters outdoors) results in relatively accurate position estimations [151]. In contrast, GSM

signals exhibit a comparatively stable deployment configuration; however, the propagation range of

GSM signals exceeds that of 802.11 transceivers by as much as 70 times [66]. Hence, PlaceLab‘s

association algorithms rely on multiple tower ―sightings,‖ exploit signal strength information and

involve multiple GSM providers where possible. In the next section, we describe Ocean‘s generalized

approach for domain-specific context association discovery and modeling.

7.2.4 Context Association Discovery and Modeling

The previous section discussed PlaceLab‘s use domain-specific algorithms as a mechanism for

creating meaningful associations between well-understood context information. To support query

expansion within the Ocean Registry using arbitrary context information, we have developed several

extensions to the PlaceLab approach. First, we enhanced the Discovery Request XML schema to

include a mechanism for controlling context sharing. Next, to support domain-independent discovery

of context associations, we developed an AssociationDiscoverer interface that Context Handlers

may implement as a means of encapsulating context association discovery in accordance with the

similarity model described in section 4.3.3. Next, we extended the Ocean‘s Index Manager interface

to support the persistence and discovery of ContextAssociation objects, which represent discovered

associations between incoming native context data (NCD). Finally, we developed a related

Association Discovery Framework (ADF) that supports the creation, discovery and management of

ContextAssociation objects within the Ocean Registry. This section describes each of these

extensions in detail.

The foundations of Ocean‘s context association approach are the AssociationDiscoverer

interface and ContextAssociation object shown in Figure 61. In order to support domain-

independent discovery of ContextAssociations, the AssociationDiscoverer interface provides the

discoverAssociations method, which takes a set of candidate Context Metadata objects and

(potentially) returns a set of related ContextAssociation objects. The association semantics resulting

from the discoverAssociation method are encapsulated by the ContextAssociation object, which

is used to model domain-specific association information that is used during query expansion

(described shortly). These foundations allow Context Experts to implement arbitrarily complex

mechanisms for discovering and modeling associations using the Context Handlers contained within a

given Query Object (see section 6.4.2).

Chapter 7

158

Figure 61: The AssociationDiscoverer interface and ContextAssociation object

Regarding Figure 61, the ContextAssociation object is defined as follows:

 create: Instantiates a ContextAssociation between the parent ContextMetadata object

(i.e. the Context Handler whose discoverAssociation was called) and a child

ContextMetadata object (i.e. a candidate Context Handler determined to be associated to

the parent in some domain-specific way) using an initial confidence interval and creation

DateTime.

 ageAssociation: Ages the ContextAssociation according to the incoming DateTime.

The ContextAssociation uses the DateTime to calculate a new confidence interval or

expire the association (expiration indicates that the ContextAssociation is no longer

valid). If the ContextAssociation expires, the ageAssociation method returns true;

otherwise it returns false.

 isExpired: Checks if the ContextAssociation is expired. If so, this method returns true;

false otherwise.

 getParentContextMetadata: Returns the parent ContextMetadata object contained

within the ContextAssociation.

 getChildContextMetadata: Returns the child ContextMetadata object contained within

the ContextAssociation.

 getConfidence: Returns a double representing the confidence interval existing between the

parent and child Context Metadata objects (note that confidence intervals are always

expressed in the unit interval [0,1]).

 mergeContextMetadata: Merges the incoming ContextMetadata object with the

ContextAssoication, resulting in a new confidence interval value, a modification of the

underlying child ContextMetadata entity or expiration (discussed shortly). If the

association expires during the mergeContextMetadata call the method returns true;

otherwise it returns false.

7.2 Context-aware Query Expansion

159

To validate the above approach, the Ocean Reference Implementation (Ocean RI) provides a

realization of the AssociationDiscoverer interface and ContextAssociation objects as shown in

Figure 62. (Note that implementation-specific methods may be included in the figure below; however,

in the interest of clarity, these are not described.) Notably, the Ocean RI provides a post processing

framework capable of handling a variety of background processing tasks after Resource Discovery

has been completed for a given request. Post processing tasks implement the IPostProcessor

interface, which allows for generic task handling and scheduling. Related, the Ocean RI provides a

prototype AssociationDiscoveryPostProcessor, which utilizes the IAssociationDiscoverer

interface implemented by Context Handlers to discover ContextAssociation objects using the Ocean

Registry‘s Association Discovery Framework (described next).

Figure 62: Association discovery support within the Ocean RI

As the NCD contained within Discovery Requests may invoke privacy concerns and dissuade

participation, several privacy mechanisms are employed. First, as described in section 5.2, Ocean

applications are responsible for modeling context and deciding which NCD to provide during

Discovery Requests (allowing clients to control which context information is sent). Next, Ocean Users

are not required to provide any personally identifiable information in order to use the Ocean Registry

(i.e. anonymous access is allows). Next, Ocean applications may access the Ocean Registry using

privacy mechanisms such as anonymous proxies, virtual private networks or onion routing
47

. Next,

Ocean Users must explicitly state they wish share their context information with the Ocean

community (i.e. context sharing is inactive by default). Finally, following the context obfuscation

work by Wishar et al. [359], all shared context information is anonymized before association

discovery is performed. Anonymized information includes the originating IP address, developer

tokens and user identifiers (if present). While such privacy mechanisms may not be sufficient for all

users, the benefits of providing detailed context information within Discovery Requests (to help

improve query effectiveness) may outweigh the privacy costs for some users [171].

To support the instantiation, persistence and management of ContextAssociation objects within

the Ocean Registry, we have developed an Association Discovery Framework (ADF). Broadly, the

ADF attempts to discover meaningful associations between the native context data (NCD) contained

47

 http://www.torproject.org/

Chapter 7

160

within incoming Discovery Requests using ContextHandlers that implement the previously

described AssociationDiscoverer interface. For completeness, we note that our preliminary

approach does not include indexing support; however, we suggest that the IndexManager model

described in section 6.3.1 can be adapted to provide efficient ContextAssociation indexing and

discovery using techniques similar to those discussed in section 6.4.4. An overview of the ADF is

shown in Figure 63.

Figure 63: Overview of the Association Discovery Framework

Regarding Figure 63, the ADF operates as follows:

1. Resource Discovery processing occurs using the Discovery Framework described in section

6.4. Discovery results are returned to the requesting Ocean application as rank-ordered

Descriptive Metadata.

2. Once discovery processing is complete, the Query Processor determines if context sharing is

allowed. If so, the Query Object is anonymized and passed to the ADF for post processing

(discussed shortly).

3. During post processing, the ADF performs ―association discovery‖ for each Context Metadata

present within the Query Object. During association discovery, each associated Context

Handler implementing the AssociationDiscoverer interface receives all other Context

Handlers contained within the Query Object through the discoverAssociation method.

Resultant ContextAssociation objects are returned to the ADF.

7.2 Context-aware Query Expansion

161

4. The collection of discovered ContextAssociation objects is passed to the Context

Association Manager (CAM), which queries its associated data store to determine if the given

ContextAssociation has been previously persisted. If so, the ContextAssociation’s child

Context Metadata object is merged with the previously persisted ContextAssociation using

the mergeContextMetadata method. If not, the newly discovered ContextAssociation is

persisted within the data store as a new object.

5. In addition, the CAM continually ages and prunes the ContextAssociation objects persisted

within the Context Association Data Store. Aging informs each persisted

ContextAssociation object of the passage of time; possibly resulting in

ContextAssociation expiration (meaning that the ContextAssociation is no longer valid).

Pruning refers to the removal of expired ContextAssociations from the data store.

To illustrate the ADF concepts introduced above, a simple association discovery example is now

presented. As per the Ocean discovery approach described in section 6.4.1, Discovery Requests are

converted into Query Objects using instantiation mechanism similar to those described in section

5.3.3. Recall that instantiated Query Objects include search parameters and a set of Context Metadata

representing the NCD extracted from the request. For example, the query_term elements in the

sample Discovery Request show in Figure 64 will be converted into two Context Handlers, including

a GEOPointHandler representing geographic location; and a WIFIPlaceLabStumblerHandler

representing an 802.11 radio beacon identified by MAC address, name, RSSI value, etc.

Figure 64: A sample Discovery Request with context sharing enabled

Once query processing is complete for the sample Discovery Request, it is checked for context

sharing permission and passed to the ADF. As the Query Object enters the ADF, it is anonymized by

removing all personally identifiable information such as search parameters, user IDs, security tokens,

IP addresses, etc. Next, Context Handlers implementing the AssociationDiscoverer interface are

<?xml version="1.0" encoding="UTF-8"?>

 <ocean_resource_request version="1.0" >

 <query_parameters max_results="50"

 domain_restrict=""

 annotator_restrict="dcarlson"

 share_context=”true”>

 <type><![CDATA[mime:text/calendar]]></type>

 <search_text><![CDATA[Example search text]]></search_text>

 </query_parameters>

 <query_terms>

 <context_data>

 <value><![CDATA[

 <gml:Point>

 <gml:pos>53.873488,10.686607</gml:pos>

 </gml:Point>]]>

 </value>

 </context_data>

 <context_data>

 <value><![CDATA[

 TYPE=WIFI|TIME=1096470064731|ID=00:09:5b:de:fa:7a

 |NAME=NETGEAR|RSSI=-88|WEP=true|INFR=false]]>

 </value>

 </context_data>

 </query_terms>

</ocean_resource_request>

Chapter 7

162

identified for each ContextMetadata object within the Query Object. Once identified, the

discoverAssociation method is called for each of the Context Handlers as previously identified. For

example, the WIFIPlaceLabStumblerHandler will have its discoverAssociation method called

using the GEOPointHandler as a parameter. Likewise, the GEOPointHandler will have its

discoverAssociation method called using the WIFIPlaceLabStumblerHandler as a parameter. In

this example, the WIFIPlaceLabStumblerHandler returns an instantiated ContextAssociation

object with the WIFIPlaceLabStumblerHandler as the parent and the GEOPointHandler object as the

child (with an initial confidence interval set by the WIFIPlaceLabStumblerHandler’s domain logic).

In this example no ContextAssociation is discovered by the GEOPointHandler; however, such

functionality could be implemented.

Once a ContextAssociation object is discovered for a given Discovery Request, the Context

Association Manager (CAM) checks its data store to determine if the ContextAssociation has been

previously discovered and persisted (based on the parent Context Handler). In this example, no

preexisting ContextAssociation exists; hence, the newly instantiated ContextAssociation is

persisted (using its default configuration) within the CAM‘s data store. The initial configuration of a

given ContextAssociation represents a validity duration and confidence interval appropriate for a

single sighting. For example, given the relatively low deployment stability characteristics of 802.11

access points (as compared to a GSM towers) a ContextAssociation generated for a single sighting

of an 802.11 signal and related geo-position may be configured with a short validity duration (e.g. 2

days) and a low confidence level (e.g. .25). Additional sightings of the same ContextAssociation

will be integrated into the CAM‘s data store using the mergeContextMetadata method, whereby the

ContextAssociation may increase its confidence interval, increase its validity time or improve its

association accuracy in response. For example, if hundreds of Ocean applications encounter the same

802.11 access point near the same geographic location over several months, the related

ContextAssociation will be continually merged with similar Context Handlers using its

mergeContextMetadata method. In response, the ContextAssociation may determine that its

confidence level should increase (e.g. .75) and that its validity time should be extended (e.g. 3 weeks).

Similarly, various domain-specific implementations of the AssociationDiscoverer and

ContextAssociation interfaces can provide association discovery and management implementations

suited to the specifics of a given context domain.

7.2.5 Context-aware Query Expansion

The ADF described in the last section provides the foundation for Ocean‘s context-aware query

expansion approach. As communities of autonomous Ocean applications make Discovery Requests

using the Ocean Registry‘s Discovery API, the ADF maintains a continually evolving data model of

ContextAssociations that can be used to automatically expand incoming Discovery Requests with

supplemental query terms. In order to improve the quality of supplemental search terms, the ADF

exploits the domain knowledge encapsulated within Context Handlers implementing the

AssociationDiscoverer interface. This section describes an extension to the basic Ocean multi-

feature similarity search (MFSS) approach (see section 6.4.4), which aims to help Ocean applications

overcome context mismatch by using the ADF to discover supplemental Context Metadata.

7.2 Context-aware Query Expansion

163

Recall from section 6.4 that the Ocean MFSS approach is based on an adaptation of the Threshold

Algorithm [101], which exploits the IndexManager abstraction presented in section 6.3.1. As

previously discussed, the IndexManager abstraction provides domain-optimized, sorted access to

collections of Context Handler indexes; each representing a context feature associated with a persisted

Ocean Metadata entity. To process a given Query Object, set installed IndexManagers within the

Ocean Registry are used to produce m sorted lists (1 per Context Metadata type), where each list

represents a graded set of pairs (x,s), where x is the object (i.e. a reference to the parent

Contextualized Resource) and s is the real number grade for a given context feature (i.e. Context

Metadata entity). List generation is accomplished using each IndexManager’s topSearch method.

Related, the IndexManager probe method is used to provide random access to Contextualized

Resource similarity grades for each of the m sorted lists. (Note that search space reduction is

performed as per section 6.4.4.)

To augment Ocean MFSS with context-aware query expansion, we extend the functionality of the

previously introduced ADF by introducing a QueryExpander object within the Query Processor

introduced in section 6.4. (Note that query expansion is understood as a pre-processing function;

requiring only superficial changes to the Query Processor and Query Object.) Next, we posit a

mechanism whereby the top k ContextAssociation objects for a given Context Metadata object can

be discovered from the Context Association Manager‘s (CAM‘s) data store. The QueryExpander

object is integrated within the Query Processor after the Request Factory, which is responsible for

decomposing XML-based requests into Ocean-compatible objects as described in section 6.4.2. After

the Query Object is instantiated for a given Discovery Request, the QueryExpander searches the ADF

to discover the top k ContextAssociation objects for each of the Context Metadata objects that were

derived from the NCD within the Discovery Request. The resulting Supplemental Metadata (SM) are

integrated into the Query Object to form an Expanded Query Object as shown in Figure 65.

Figure 65: Overview of context-aware query expansion

Chapter 7

164

Using the Expanded Query Object, we then compute the top k most similar Contextualized

Resources using a modification of the Ocean MFSS approach presented in section 6.4.4. Recall that

Ocean‘s foundational MFSS technique is based on an aggregation function t that computes an overall

base score 𝑡 𝑅 of object R as:

𝑡 𝑅 =
1

𝑛
 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖 , 𝑥 𝑖)

𝑛

𝑖=1

where n refers to the total number of Context Handlers associated to a Contextualized Resource, 𝑥𝑖

refers to the Context Handlers associated with the Contextualized Resource and 𝑥 𝑖 refers to the

matching Context Handlers within the Query Object. The similarity between 𝑥𝑖 and 𝑥 𝑖 is calculated by

passing the 𝑥 𝑖 Context Handler into the getNormalizedSimilarity method of Context Handler 𝑥𝑖

(recall getNormalizedSimilarity returns domain-neutral similarity values in the interval [0,1]).

Next, the foundational MFSS approach is extended through the definition of a second aggregation

function that is used to combine similarity grades for the Supplemental Metadata present within the

Expanded Query Object. Hence, we introduce a second aggregation function 𝑡 that computes an

expansion score 𝑡 (𝑅) of object R as:

 𝑡 𝑅 =
1

𝑛
 𝐶𝑖 × 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑦𝑖 ,𝑦 𝑖)

𝑛

𝑖=1

where n refers to the total number of Context Handlers associated to a Contextualized Resource; 𝐶𝑖

refers to the confidence interval of the ContextAssociation providing the Supplemental Metadata

(i.e. the Supplemental Context Handler); 𝑦𝑖 refers to the Context Handlers associated with the

Contextualized Resource and 𝑦 𝑖 refers to the matching Supplemental Context Handler within the

Expanded Query Object. The similarity between 𝑦𝑖 and 𝑦 𝑖 is calculated by passing the Supplemental

Context Handler 𝑦 𝑖 into the getNormalizedSimilarity method of Context Handler 𝑦𝑖 (recall

getNormalizedSimilarity returns domain-neutral similarity values in the interval [0,1]).

Using the aggregation functions described above, query processing is completed using the adapted

Threshold Algorithm presented in section 6.4.4. During query processing, the overall score os(R) of

each object R is calculated by combining the results of the base score (BS) and the expansion score

(SC) using an algebraic sum as per:

𝑜𝑠(𝑅) = 𝐵𝑆 + 𝑆𝐶 − (𝐵𝑆 × 𝑆𝐶)

As previously described, at the completion of the query processing, Descriptive Metadata are

generated for each discovered Contextualized Resource according to the following process: First, a

Discovery Response object is created. Second, Descriptive Metadata for each Contextualized

Resource are retrieved from the Ocean Metadata Store (using random access) and integrated into the

response along with either a true URI or a uri_code, which is generated using a time-based salted

hash that incorporates the true URI. Next, the Descriptive Metadata for each Contextualized Resource

are updated with the overall score os(R) generated during the query process. Next, the Descriptive

Metadata are rank sorted according to the associated overall scores. Next, the Descriptive Metadata

objects are marshaled into a Discovery Response XML structure and returned to the Ocean

7.3 Discovery Personalization

165

application (see section 6.4.1.2). Once the Discovery Response is received by an Ocean application,

local application logic performs dynamic, in-situ component selection and composition as per the

Ocean application model presented in section 5.2.

7.3 Discovery Personalization

Information overload represents another critical challenge for Ocean applications operating in

complex, real-world environments. Similar to Web Search scenarios, where common query terms may

result in an overwhelming number of search results [51, 205], Ocean Discovery Requests may result

in an overwhelming number of component discoveries; making effective selection and composition

difficult or impossible. Although Ocean constrains Resource Discovery results based on the client‘s

modeled native context data (NCD), many environments may quickly accrue a large numbers of

similarly contextualized Resources. In such scenarios, search enhancement techniques such context-

aware query expansion (described in the last section), may actually worsen discovery results by

supplementing queries with commonly encountered context information; increasing the number of

contextually-relevant results. Hence, resultant Resource Discovery results may be overwhelming in

quantity and difficult to distinguish based on similarity scores alone. As described in section 6.4,

similarity scores provide a quantitative measure of the similarity between discovered Contextualized

Resources and a given Discovery Request. However, such scores do not reflect qualitative measures

such as the relevancy of the results to a user‘s personal interests and past preferences. Towards this

end, this section defines Ocean‘s context-aware Resource personalization approach that enhances

Contextualized Resource Discovery with community-based affinity predictions.

7.3.1 Background and Related Work

Due of its architectural lineage, the Ocean approach cannot escape the information overload

challenges inherent in modern Web architecture. Ironically, the same Web Resource model that help

Ocean overcome the component sparsity challenges can pose a significant hindrance to effective

Resource selection and composition. Recently, recommender systems have emerged as promising

approaches for reducing information overload in complex, information saturated scenarios where

choice differentiation is difficult or impossible [264]. The principle objective of a recommendation

system is to help users select relevant items from among a large set of similar items by generating

suggestions or predicting the utility of specific items [339]. For example, Amazon.com have reported

significant improvements in click-through and conversion rates for their personalized storefronts as

compared to untargeted content such as banner advertisements and top-seller lists [200]. In most

systems, the principle entities include users and items, where a user is a person who utilizes a

recommender system to provide opinions (or ratings) about items that have been consumed and

receive recommendations about new items that may be of interest. Importantly, recommender systems

are based on the underlying assumption that users who have similar preferences in the past will

probably have similar preferences in the future; allowing for an extrapolation of user history as a

means of improving item suggestions (such as products) [379]. In this regard, a recommendation

system can be defined as ―personalized information filtering technology used to either predict whether

a particular user will like a particular item (prediction problem) or to identify a set of N items that will

be of interest to a certain user (top-N recommendation problem)‖ [86].

Chapter 7

166

Recommendation systems can be broadly classified into two general approaches, including content-

based filtering and collaborative filtering [379]. In content-based filtering, also known as cognitive

filtering, algorithms compute the similarity between a user‘s collection of appreciated items and the

universe of items still unknown to the user [379]. The computation of item similarity is based on a

selection of domain-specific features such as plain-text terms or machine-readable metadata. Common

content-based similarity approaches include naïve Bayesian classification of content features (e.g.

product labels) [307] and nearest-neighbor vector-space queries (e.g. for keyword frequencies) [251].

Notably, content-based filtering is only appropriate for domains where feature extraction is feasible

and attribute information readily available [379].

In contrast to content-based approaches, collaborative filtering (CF) does not rely on the availability

of feature extraction or attribute information [263]. Rather, CF techniques compute similarities

between users based on each user‘s known preferences; recommending items that are preferred by

similar users [177]. Among the first systems to integrate CF techniques were Ringo [298] and

GroupLens [263]. CF approaches compute user similarity based on their past ratings of the same

items; generating a so-called ―rating profile‖ for each user in order to identify potential advisors

whose highly rated items are aggregated and used as recommendations. Due to their minimal

information requirements and high quality recommendations, CF techniques have become dominant

in commercial recommender systems such as those employed by enterprises such as Amazon.com and

NetFlix. Notably, advanced recommender systems may employ a combination of both content and

collaborative filtering in an attempt to mitigate the drawbacks of each [20].

To perform item filtering, CF systems first collect user preference information, which may include

purchased products, click-stream data, demographic data (e.g. the age, gender and education of the

users), content data (i.e. item features, such as text elements) and dedicated ratings [200]. In this

regard, the two principle types of ratings are explicit or implicit. In an explicit rating, a user

intentionally expresses appreciation for a given item using a numerical score such as a 5-point likert

scale or binary scoring. Numerical rating scores are generally converted into a continuous range

[−1, +1], where negative numbers indicate dislike and positive numbers indicate fondness. However,

while explicit ratings are generally considered accurate predictors of appreciation [264], the user-

effort required for generating explicit ratings often dissuades participation and may promote ―free

riding‖ where users may not actively participate and rely on the results of others [15]. Therefore,

many systems make use of implicit ratings [226], where preference information is inferred by

observing key interactions between the user and the system such as purchase data and browsing

behavior [211]. While implicit ratings have been shown to lower user-effort and increase

participation, they are often less accurate predictors of affinity than explicit ratings [379].

The output of a recommender system is typically in the form of a prediction or recommendation. A

prediction refers to the anticipated opinion of a user regarding a specific item according to the same

numerical scale used to collect preference information from the user (e.g. a 5 point likert scale).

Individually predictive preference values are categorized as Individual Scoring. Using the formalisms

defined in [339], a recommendation refers to a ranked list of N items that are considered to be the

most preferable for a given user (𝑁 < 𝑛 where 𝑛 refers to the total number of items 𝐼 = {𝑖1 , 𝑖2 … 𝑖𝑛}).

Such outputs are typically categorized as a Top-N Recommendation or Ranked Scoring [86]. In most

7.3 Discovery Personalization

167

cases, ranked scoring systems only include items for recommendation that have not been previously

purchased or viewed (i.e. consumed) by the user.

The mediation between a recommender system‘s input (i.e. user opinions) and output (i.e.

predictions or recommendations), is now briefly summarize (as presented in [339]). First, filtering

algorithms consider input collected from m users 𝑈 = {𝑢1 ,𝑢2 ,… ,𝑢𝑚 } regarding a set of n items

𝐼 = {𝑖1 , 𝑖2 … 𝑖𝑛}. Hence, each user 𝑢𝑖 has a collection of items 𝑖𝑢 𝑖 for which their opinions have been

expressed and collected (𝑖𝑢 𝑖 ⊆ 𝐼). It should be noted that 𝑖𝑢 𝑖 may include the null set (i.e. users have

not provided opinions regarding each item). As previously mentioned, user opinions regarding items

are expressed in the form of a rating score where a given user 𝑢𝑖 expresses a rating score of item 𝑖𝑗 as

denoted by 𝑟𝑖𝑗 where the rating value is a real number or ―no rating‖ (denoted by the symbol ⊥). To

facilitate filtering, ratings are collected into a 𝑚 × 𝑛 user-item matrix denoted by R. Filtering

algorithms operate either on the rows of matrix R (corresponding to the ratings of a single user

regarding different items) or on the columns of matrix R (corresponding to different users‘ ratings

about a single item). An important distinction is made between the set of users U and the active user

(𝑢𝑎 ∈ 𝑈), which refers to the single user for which recommendations or predictions are made.

Broadly, two main classes of collaborative filtering algorithm can be discerned, including user-based

and item-based. The next section introduces user-based collaborative filtering (user-based CF); item-

based systems are introduced in section 7.3.1.2.

7.3.1.1 User-based Collaborative Filtering

User-based CF algorithms are designed to make item predictions and recommendations based on

rating similarities that exist between the users in the collection U. User-based CF algorithms compute

user similarities in a two step process. In the first step, the similarity values for all users in R are

calculated according to a specific similarity metric. In most cases, rating similarities are computed

using a Pearson Correlation or a Cosine Similarity Measure. The Pearson Correlation was proposed

by the GroupLens project [263] as a means of computing the degree of linear relationship which

exists between two users 𝑢𝑖 and 𝑢𝑘 and is given by:

𝑠𝑖𝑚𝑖𝑘 = 𝑐𝑜𝑟𝑟𝑖𝑘 =
 𝑟𝑖𝑗 − 𝑟 𝑖 𝑟𝑘𝑗 − 𝑟 𝑘
𝑙
𝑗=1

 𝑟𝑖𝑗 − 𝑟 𝑖
2
 𝑟𝑖𝑗 − 𝑟 𝑖

2𝑙
𝑗=1

where n is the total number of items in the user-item matrix and 𝑙 < 𝑛; summations are calculated for

𝑙 items for which both users 𝑢𝑖 and 𝑢𝑘 have provided ratings; and 𝑟 𝑖 and 𝑟 𝑘 represent the average

ratings of the respective users.

Another method for calculating user similarity considers the user-item matrix to be an n-

dimensional item space (or k-dimensional item space if dimensionality reduction has been applied). In

these approaches, users represent feature vectors, where the vector consists of n feature slots (one for

each item). The slots are filled with the rating 𝑟𝑖𝑗 provided by a user 𝑢𝑖 for a corresponding item 𝑖𝑗 (or

filled with zero when ―no rating‖ has been provided). Next, the similarity between users is calculated

according to the Cosine Similarity Measure, which computes the similarity between each user‘s

feature vector as the cosine of the angle between them. Cosine Similarity is given by:

Chapter 7

168

𝑠𝑖𝑚𝑖𝑘 = 𝑐𝑜𝑠𝑖𝑘 =
𝑟𝑖𝑗 𝑟𝑗𝑘

 𝑟𝑖𝑗
2

𝑗 𝑟𝑘𝑗
2

𝑗

𝑙

𝑗=1

where n is the total number of items in the user-item matrix and 𝑙 < 𝑛 (summations are calculated for

𝑙 items for which both users 𝑢𝑖 and 𝑢𝑘 have provided ratings).

Once rating similarities have been computed for each user, the next step is neighborhood formation.

Using one of the previously described similarity metrics, an 𝑚 × 𝑚 similarity matrix S can be

generated for all users. A straightforward approach for neighborhood formation is the Center-based

scheme, which establishes a neighborhood by selecting the users who have the highest similarity

values in common with the active user based on the row of the similarity matrix S that corresponds to

the active user. While simple to implement, the center-based scheme introduces significant

computational complexity as the number of users increases [339].

To reduce computational complexity, the aggregate neighborhood scheme generates a

neighborhood by picking users that are closest to the centroid of the current neighborhood. As

described in [339], the aggregate neighborhood scheme operates as follows: First, the closest user to

the active user 𝑢𝑎 is selected from the similarity matrix; forming an initial neighborhood. Next, in

order to select the remaining neighbors, the centroid 𝐶 of the current neighborhood N is computed as:

𝐶 =
1

 𝑢𝑗

𝑗=1

where N consists of h users and < 𝑙. According to the aggregate neighborhood scheme, a user 𝑢𝑘

not contained within the current neighborhood 𝑢𝑘 ∉ 𝑁 will only be selected for inclusion if it is

closest to the centroid 𝐶 . Based on the similarity matrix, a neighborhood of similar users can then be

generated for the active user.

Problematically, data within the 𝑚 × 𝑛 user-item are often sparsely populated due to large numbers

of ―no ratings‖; resulting in significant space requirements and computational complexity during

operations. To address this issue, several techniques for overcoming rating sparsity have been

developed, including default voting [41], preprocessing using averages [285] and filterbots [286].

Broadly, these techniques attempt to automatically fill ―no rating‖ entries with appropriate values;

however, their significant complexity and the potential for inappropriate values are recognized as a

serious challenge [41]. Consequently, other sparsity reduction techniques have also been explored,

including capturing latent relationships among users through dimensionality reduction techniques

(e.g. Singular Value Decomposition [35]).

Based on the computed neighborhood of N users considered most similar to the active user,

predictions and recommendations can then be generated. A prediction refers to the expected opinion

of the active user for a specific item (expressed as a numerical value), whereas a recommendation

refers to a list of the top-N items expected to be most appreciated by the active user (based on

predictions). The first step in the recommendation process is the formation of a set of predictions for

all rated items in the active user‘s neighbors that are so-far unknown to the active user. As described

in [339], a prediction may be expressed as:

7.3 Discovery Personalization

169

𝑝𝑟𝑎𝑗 = 𝑟 𝑎 +
 (𝑟𝑖𝑗 − 𝑟 𝑖) × 𝑠𝑖𝑚𝑎𝑖
𝑙
𝑖=1

 𝑠𝑖𝑚𝑎𝑖
𝑙
𝑖=1

where 𝑝𝑟𝑎𝑗 represents a numerical prediction score for item 𝑖𝑗 for the active user 𝑢𝑎 ; 𝑠𝑖𝑚𝑎𝑖 refers to

the similarity value obtained from the similarity matrix S, for all users 𝑢𝑖 within the active user‘s

neighborhood 𝑖 = 1,2,… , 𝑙 (for users that have provided ratings).

As predictions are constructed, several performance enhancement techniques may also be applied to

help improve prediction accuracy. Examples of such techniques include Inverse User Frequency [41],

Significance Weighting [286] and Case Amplification [41]. Once a neighborhood of similar users has

been constructed, a list of N recommended items can be generated for the active user. A common

approach for generating recommendations is the Most-Frequent Item Recommendations (top-N)

where a list 𝑅𝑝𝑟 ∶ {1,2,… ,𝑁} → 𝐼 is calculated based on the predictions 𝑝𝑟𝑎𝑗 [86]. The list contains

the items considered to be most appreciated by the active user in descending rank-order (i.e. highest

predicted items listed first).

7.3.1.2 Item-based Collaborative Filtering

Although user-based algorithms underlie many popular recommender systems, they suffer from some

serious drawbacks. As noted by Badrul in [285], user-based approaches generally perform poorly

when rating data are sparse because it is difficult to generate a neighborhood of similar users. Sparsity

issues are also difficult to overcome in many real-world scenarios where the total number of ratings

for a given user is very small compared to the collection of available items (e.g. e-commerce). In

addition, user-based algorithms generally suffer from scalability problems as they calculate

predictions using the entire database of users and items. As user-based approaches generate user

neighborhoods based on the entire set of users, their computational complexity grows linearly with the

number of users and can become quickly intractable in large-scale systems. Hence, while such

systems demonstrate good predictive characteristics and are relatively simple to implement, they are

generally not well-suited for fast, online filtering operations.

Due to the aforementioned challenges, several item-based collaborative filtering approaches have

been developed (item-based CF) [86]. Item-based CF exploits historical rating (or consumption)

information to identify useful relationships between the various items under consideration. For

example, the purchase of a given item (or set of items) is often shown to precede the purchase of

second item (or set of items) with a high degree of probability [86]. Because the set of items remain

relatively consistent and stable over time, similarity models can be pre-computed; leading to

improved computational characteristics when the set of users is significantly larger than the set of

items (i.e. 𝑈 ≫ 𝐼) [379]. Similar to user-based approaches, item-based CF approaches are based on

the ratings 𝑟𝑖𝑗 provided by users 𝑢𝑖 ∈ 𝑈 for items 𝑖𝑗 ∈ 𝐼. However, unlike user-based CF techniques,

item-based CF similarity values are calculated for items rather than users; where two items are

considered similar if the users rating one item rate another item similarly. Item-based CF techniques

analyze the set of items rated by the active user 𝑢𝑎 and compute how similar each is to the target item

𝑖𝑗 ; selecting the k most similar items {𝑖1 , 𝑖2 ,… , 𝑖𝑘} based on their corresponding similarities

{𝑠𝑖1, 𝑠𝑖2 ,…𝑠𝑖𝑘 }. Predictions are generated by taking a weighted average of the active user‘s ratings on

these similar items.

Chapter 7

170

Importantly, item-based recommender techniques are probabilistic rather than deterministic;

typically trading a time-intensive model building process (and often lower quality predictions) for

improved computational complexity characteristics and faster query speeds [379]. In contrast to user-

based CF techniques that operate over the entire database of users and items, item-based CF

techniques improve performance by constructing a model of rating information that is initially based

on the user-item matrix R; however the model becomes less reliant on the full matrix as the system is

trained. Once training is complete, recommendations can be generated by interactions using the

compact model; resulting in performance improvements [339]. Indeed, a recent survey of item-based

recommenders demonstrated techniques that performed up to 28 times faster than user-based methods

[86].

As described in [339], the general item-based CF approach operates as follows: First, the rating data

are represented in an 𝑚 × 𝑛 user-item matrix R, where each element 𝑟𝑖𝑗 is a rating provided by a user

𝑢𝑖 (i.e. row i) for item 𝑖𝑗 (i.e. column j). Using matrix R, item similarity is calculated by isolating

users that have both rated two items 𝑖𝑗 and 𝑖𝑘 and applying a similarity evaluation such as the Pearson

Correlation Similarity and Cosine Similarity techniques described in the last section (exchanging item

similarity for user similarity in the calculations). Once the similarities between all items in matrix R

have been calculated, a neighborhood is created using the 𝑙 most similar items 𝑖𝑘 , with 𝑘 = {1,2… , 𝑙},

with regard to a specific item 𝑖𝑗 of the active user 𝑢𝑎 . Computing predictions is often accomplished

using:

𝑝𝑟𝑎𝑗 =
 𝑠𝑖𝑚𝑗𝑘 ∙ 𝑟𝑎𝑘
𝑙
𝑘=1

 𝑠𝑖𝑚𝑎𝑘
𝑙
𝑘=1

where ratings are weighted by a corresponding similarity 𝑠𝑖𝑚𝑎𝑘 between the active user‘s item 𝑖𝑗 and

that of another item 𝑖𝑘 . Given a set of predictions, a top-N list of recommendation items can be

generated by following the user-based recommendation approach described in the last section.

7.3.2 The Ocean Recommendation Engine

To address the information overload that may affect Ocean applications during Resource Discovery,

we have developed a hybrid recommender approach that supplements Resource Discovery Results

with personalized affinity predictions based on the captured preferences of the Ocean User

community. To support the integration of a variety of recommender techniques, we have developed a

Recommendation Engine that extends the functionality of Ocean‘s Discovery Framework with

generalized support for various recommendation algorithms. As Resource discovery results are

intended to be composed into Ocean applications at runtime, query speed is a critical factor for

application performance. Recall from section 7.3.1.1 that user-based recommender techniques provide

good predictive quality but are often too slow for online query scenarios [285]. Hence, Ocean adopts

the item-based class of recommenders as the foundation of its Resource personalization approach.

Extending the privacy mechanism introduced in section 7.2.5, Ocean does not provide Resource

personalization by default (meaning that the Ocean Registry may be used anonymously). To enable

Resource personalization, Ocean Users create an Ocean personalization account and obtain a private

7.3 Discovery Personalization

171

key that is used to track preferences and support affinity predictions. To activate Resource

personalization, Discovery Requests include personalization credentials as shown in Figure 66.

Figure 66: An example Discovery Request with personalization credentials

When the Ocean Registry receives a Discovery Request with integrated personalization credentials,

it first generates a subset of contextually-relevant Resources according to the basic Ocean MFSS

approach described in section 6.4 (computing similarity scores for contextually relevant Resources as

described in section 6.4.4). If query expansion is requested, supplemental query terms are generated

and used during query processing as described in section 7.2.5. As the Query Processor completes

Resource discovery for a given request, it passes its preliminary results to the Ocean Recommendation

Engine as shown in Figure 67. To compute Resource predictions, a suitable recommendation

algorithm is used to estimate a user‘s predicted appreciation of each Resource contained within the

preliminary result set (for en example see section 7.3.3). Resulting personalization scores are added to

each Resource‘s Descriptive Metadata and returned to the Ocean application at the conclusion of the

discovery process. Ocean applications may then utilize both similarity scores and personalization

scores to help select appropriate Resources for in-situ composition.

Figure 67: Overview of the Ocean Recommendation Engine

Within the Ocean Recommendation Engine, Resource affinity predictions are based on Resource

ratings provided by the community of Ocean Users who have volunteered to share preference

<?xml version="1.0" encoding="UTF-8"?>

<ocean_resource_request version="1.0" >

 <query_parameters max_results="50"

 domain_restrict=""

 contextualizer_restrict=""

 share_context=”true”

 personalization_key =”45d20b1d2cc2d52e74b3cbf1750a2e31”>

 (continued...)

Chapter 7

172

information. To capture Resource ratings, the Recommendation Engine relies on two rating

mechanisms, including explicit and implicit. To capture explicit ratings, the Ocean Registry provides a

dedicated Resource Rating API, which is managed by a RatingHandler object. To explicitly rate a

given Resource, an Ocean application constructs a Resource Rating XML document (defined shortly),

which provides a reference to a given Resource‘s URI and an associated rating value (e.g. using a 5-

point likert scale). To perform ratings, a user provides his or her personalization credentials to an

Ocean application, which then establishes a unique user session with the Ocean Registry. Once a user-

session is established, the RatingHandler ensures that incoming Resource references are valid and

that rating limits are enforced (Ocean Users may provide one rating per Resource). As explicit ratings

are created, the Recommendation Engine mediates interactions with the Resource preference model

database, which stores rating information for use by recommendation algorithms. The Ocean

Resource Rating XML schema is shown below in Figure 68.

Figure 68: The Resource rating XML schema

To capture implicit ratings, the Ocean Registry provides the Resource Resolution API, which is

managed by a ResourceResolver object. As introduced in section 7.3.1, the user-effort required to

generate adequate numbers of explicit ratings often dissuades participation and promotes ―free

riding.‖ To counteract this phenomenon, Ocean employs an implicit rating scheme whereby ratings

are inferred by observing the Resource selections made by the Ocean Users. To facilitate implicit

rating capture, the Descriptive Metadata within personalized Discovery Responses do not provide true

URI information (see section 6.4.1.2). Rather, each Descriptive Metadata entity includes a unique

uri_code that must be resolved to a valid URI using the Ocean Registry. As previously introduced, a

uri_code represents a single-use, time-limited hash key that is generated by the Ocean Registry

Query Processor for each Contextualized Resource referenced by a given Discovery Response. If an

Ocean application wishes to resolve a particular Resource URI, it calls the Ocean Registry‘s Resource

Resolution API using HTTP GET as http://oceanplatform.org/resolve/{uri_code}. As a

resource resolution request arrives at the Ocean Registry, the ResourceResolver extracts the

uri_code from the request and searches the given user‘s session hashtable using the uri_code as a

key. If the uri_code is found, the Ocean Registry returns a HTTP 303 redirection to the Ocean

application, which provides the Contextualized Resource‘s true URI. The Ocean Resource Resolution

XML schema is shown in Figure 69:

7.3 Discovery Personalization

173

Figure 69: The Resource resolution XML schema

As URI resolution is completed, the ResourceResolver notifies the Recommendation Engine of

the Resource selection. If Resource personalization is authorized by the user, the Recommendation

Engine rates the Resource on behalf of the user using an appropriate preference value (if the user has

not already provided an explicit rating). Depending on the recommendation algorithm employed,

implicit rating for a given Discovery Response may be deactivated after a specific period of time has

elapsed. As previously described, implicit ratings have been shown to be less accurate than explicit

ratings when predicting a user‘s affinity for items [379]; hence, implicit ratings must be weighted

accordingly. Finally, explicit rating should always override any implicit ratings already inferred for a

given user.

7.3.3 Approach Validation Using the Weighted Slope One Algorithm

Recently, Lemire and Maclachlan [197] proposed a family of item-based recommenders, called Slope

One, that demonstrate similar predictive accuracy to user-based recommenders yet are ―easy to

implement, dynamically updateable, efficient at query time, and expect little from first visitors while

having a comparable accuracy to other commonly reported schemes.‖ They observe that many item-

based approaches rely on predictors that use weighted averages in a regression of the form 𝑓 𝑥 =

𝑎𝑥 + 𝑏 [340]. As presented in [197], the Slope One approach suggests that a simpler regression

scheme of the form 𝑓 𝑥 = 𝑥 + 𝑏 (where b is a constant and x represents rating values), can produce

effective predictions while being:

1. easy to implement and maintain: all aggregated data should be easily interpreted by the

average engineer and algorithms should be easy to implement and test;

2. updateable on the fly: the addition of a new rating should change all predictions

instantaneously;

3. efficient at query time: queries should be fast, possibly at the expense of storage;

4. expect little from first visitors: a user with few ratings should receive valid

recommendations;

5. accurate within reason: the schemes should be competitive with the most accurate schemes,

but a minor gain in accuracy is not always worth a major sacrifice in simplicity or

scalability.

As described by Lemire and Maclachlan, Slope One operates on an intuitive ―popularity

differential‖ principle, which indicates in a pair-wise fashion how much better items are liked by the

various users in the complete set of users U. They suggest that simple way to measure the differential

Chapter 7

174

between two given items is to simply subtract the ratings from users that have rated both. The

resultant differential can then be used to predict a user‘s affinity for an unrated item.

For example, consider the two users A and B and the two items I and J presented in Table 15. In

this example, user A rates item I with a value of 1 and item J with a value of 1.5. Next, the popularity

differential between item I and item J is calculated by subtracting the ratings given for both items.

Next, user B‘s affinity for the unrated item J can then be estimated by adding the previously

calculated popularity differential (0.5) to user B‘s rating for the co-rated item J. In this case, the user

B‘s predicted rating for item J is calculated as 2 + 1.5 − 1 = 2.5. It should be noted that in realistic

scenarios, the Slope One scheme computes averaged popularity differentials based on co-ratings from

multiple users (discussed shortly).

 Rating for item I Rating for item J Popularity differential

User A 1 1.5 1 − 1.5 = 𝟎.𝟓

User B 2 Unrated

Prediction: 2 + 1.5 − 1 = 𝟐.𝟓

Table 15: A simple rating profile and popularity differential calculation for Slope One

Lemire and Maclachlan use the following notation when describing Slope One schemes: First, all

ratings of a given user, referred to as an evaluation, are represented as an incomplete array u where 𝑢𝑖

represents the rating provided by the user for item i. The subset of all rated items for a given user

array u is denoted 𝑆𝑢 and the values of all evaluations for a given item pair (i.e. the training set) is

denoted 𝜒. The number of all elements in set S is denoted 𝑐𝑎𝑟𝑑(𝑆) (deferring to the notation provided

by Lemire and Maclachlan rather than the common notation 𝑆). The average ratings in an evaluation

u is denoted 𝑢 . The set of all evaluations 𝑢 ∈ 𝜒 such that they contain item 𝑖(𝑖 ∈ 𝑆(𝑢)) is denoted

𝑆𝑖(𝜒). Given two evaluations u and v their scalar product 𝑢, 𝑣 is defined as 𝑢𝑖𝑣𝑖𝑖∈𝑆(𝑢)∩𝑆(𝑣) . Hence

predictions, which are denoted 𝑃(𝑢), represent a vector where each component is the prediction

corresponding to one item (depending implicitly on the training set 𝜒).

Using the above notion, Lemire and Maclachlan describe the baseline Slope One scheme as

follows: First, given two evaluation arrays 𝑣𝑖 and 𝑤𝑖 (𝑖 = 1,… , 𝑛), the best predictor of 𝑤 with

respect to 𝑣 (in the form 𝑓 𝑥 = 𝑥 + 𝑏) is searched by minimizing 𝑣𝑖 − 𝑏 −𝑤𝑖
2𝑛

𝑖=1 . Next,

deriving with respect to 𝑏 and setting the derivative to 0 results in 𝑏 =
 𝑣𝑖−𝑤 𝑖
𝑛
𝑖=1

𝑛
 (meaning that 𝑏 is

always chosen to be the average difference between the two evaluation arrays).

Next, given a training set 𝜒 and any two items j and i with associated ratings 𝑢𝑗 and 𝑢𝑖 from a user

evaluation 𝑢 (𝑢 ∈ 𝑆𝑗 ,𝑖(𝜒)), the average deviation of item i with respect to j is given by:

𝑑𝑒𝑣𝑗 ,𝑖 =
𝑢𝑗 − 𝑢𝑖

𝑐𝑎𝑟𝑑(𝑢 ∈ 𝑆𝑖,𝑗 𝜒)
𝑢∈𝑆𝑖,𝑗 (𝜒)

7.3 Discovery Personalization

175

where the summation does not include any evaluation u which does contain ratings for both 𝑢𝑗 and 𝑢𝑖 .

Using the above formula, a symmetric matrix can be computed once and quickly updated as new

ratings are provided.

Given that 𝑑𝑒𝑣𝑗 ,𝑖 + 𝑢𝑖 is a predictor of 𝑢𝑗 when given 𝑢𝑖 , a more meaningful predictor can be

defined as the average of all such individual predictions as:

𝑃(𝑢)𝑗 =
1

𝑐𝑎𝑟𝑑(𝑅𝑗)
 𝑑𝑒𝑣𝑗 ,𝑖 + 𝑢𝑖
𝑖∈𝑅𝑗

where 𝑅𝑗 = {𝑖|𝑖 ∈ 𝑆 𝑢 , 𝑖 ≠ 𝑗, 𝑐𝑎𝑟𝑑 𝑆𝑗 ,𝑖 𝜒 > 0} represents the set of all relevant items.

In dense datasets (i.e. where most item pairs have ratings) 𝑢 ≅
𝑢𝑗

𝑐𝑎𝑟𝑑 𝑅𝑗
𝑖∈𝑅𝑗

. Thus, the previous

predictor can be simplified to:

𝑃𝑆1(𝑢)𝑗 = 𝑢 +
1

𝑐𝑎𝑟𝑑(𝑅𝑗)
 𝑑𝑒𝑣𝑗 ,𝑖

𝑖∈𝑅𝑗

Lemire and Maclachlan note that the Slope One scheme takes advantage of information from other

users who have rated the same item as well as the items rated by the active user; emphasizing that the

strength of the approach is the estimation of data points that are not specified (i.e. data not in the item

array or user array). However, a drawback of the baseline Slope One scheme is that the total number

of ratings for an item is not accounted for; meaning that items with a large number of ratings are

treated the same as items with only a few ratings. Therefore, in order to place additional significance

on those items with a larger number of ratings, the Weighted Slope One predictor is defined as:

𝑃𝑤𝑆1(𝑢)𝑗 =
 (𝑑𝑒𝑣𝑗 ,𝑖 + 𝑢𝑖)𝑐𝑗 ,𝑖𝑖∈𝑆 𝑢 −{𝑗 }

 𝑐𝑗 ,𝑖𝑖∈𝑆 𝑢 −{𝑗 }

where 𝑐𝑗 ,𝑖 = 𝑐𝑎𝑟𝑑(𝑆𝑗 ,𝑖(𝜒)).

To validate the Ocean Recommendation Engine previously introduced, we adopted a recommender

algorithm based on the Slope One predictor presented above. Following the implementation described

in [198], we devised a Weighted Slope One predictor and integrated it within the Ocean

Recommendation Engine as shown in Figure 70. Resource predictions are generated as follows: First,

the rating data for Ocean Users are collected using the explicit and implicit rating schemes described

in section 7.3.2. These rating data are stored in a Rating table that is part of a Slope One database

within the Ocean Registry. As ratings are captured by the Ocean Registry, popularity differentials

between co-rated Contextualized Resources are pre-computed and inserted into a item-to-item matrix

that is stored within a Differential table (according to the baseline SlopeOne approach). To support

fast, online updating of the preference matrix, each item in the Differential Table includes both a sum

value (representing the sum of all rating differentials for the item) and a count value (representing the

total number of differentials comprising the sum) [198]. From the sum and count values in the

Differential Table an average differential (AvDif) can be computed for each item pair.

If an Ocean User requests Resource personalization, the Query Processor sends its preliminary

Discovery results to the Recommendation Engine at the conclusion of the multi-feature similarity

Chapter 7

176

search process described in 6.4.4. The Recommendation Engine computes a set of affinity predictions

for each discovered Contextualized Resource using the Slope One algorithm. After affinity prediction

is complete, the Query Processor updates the personalization_score property of each Descriptive

Metadata entity using the predicted affinity scores provided by the Recommendation Engine. Finally,

the Descriptive Metadata are marshaled into a response XML structure and returned to the Ocean

application as discussed in section 6.4.2. Once a Discovery Response is received by an Ocean

application, local application logic performs dynamic, in-situ component selection and interoperation

as per the Ocean application model presented in section 5.2. Notably, Ocean applications may use

both similarity_score values and personalization_score values to select appropriate Resources

for runtime composition.

Figure 70: Integrating Slope One into the Ocean Recommender Engine

With reference to Figure 70, a Resource personalization example is briefly described (based on

[357]). First, we posit a collection of Resource ratings that is stored in the Rating table. As per the

Slope One approach, averaged popularity differentials are computed for each item pair as shown in

Table 16.

7.3 Discovery Personalization

177

Pair Sum Count AvDif

R1/R2 5 − 3 + 3 − 4 = 1 2 1

2
= 0.5

R2/R1 3 − 5 + 4 − 3 = −1 2 −1

2
= −0.5

R1/R3 5 − 2 = 3 1 3

1
= 3

R3/R1 2 − 5 = −3 1 −3

1
= −3

R2/R3 3 − 2 + 2 − 5 = −2 2 −2

2
= −1

R3/R2 2 − 3 + 5 − 2 = 2 2 2

2
= 1

Table 16: Differential table calculations for Slope One

Next, we posit a preliminary Discovery result for User C, which includes Resource R1 with a

similarity_score of 0.89 (note that User C has not yet rated R1 but has rated R2 and R3). Since

User C requested Resource personalization, the Query Processor passes R1 to the Recommendation

Engine for affinity prediction. Using the baseline Slope One approach, the average rating differential

(AvDif) between R1 and R2 has been pre-computed as
 5−3 + 3−4

2
= 0.5 (note this value is stored

within the Differential table for improved prediction speed). Using this average differential, user C‘s

preference for R1 can be predicted by adding the averaged popularity differential existing between R1

and R2 to User C‘s rating for R2 as 2 + 0.5 = 2.5. Similarly, affinity prediction for R1 can also be

predicted for User C based on the average rating differential (AvDif) between R1 and R3, which has

been pre-computed as 5 − 2 = 3 (note this value is stored within the Differential table for improved

prediction speed). Using this average differential, user C‘s preference for R1 can be predicted by

adding the averaged popularity differential existing between R1 and R3 to User C‘s rating for R3 as

5 + 3 = 8. Since User C has multiple co-ratings, a Weighted Slope One scheme is used to combine

the predictions as
2×2.5+1×8

2+1
=

13

3
= 4.33, where the weight is the total number of users contributing

to the given popularity differentials (i.e. rating both items). Using this final value, the Query Processor

updates the Descriptive Metadata‘s personalization_score for R1 using the weighted Slope One

affinity result of 4.33. Finally, the Descriptive Metadata are marshaled into a response XML structure

and returned to the Ocean application. An example personalized Discovery Response is shown in

Figure 71.

Chapter 7

178

Figure 71: Example personalized Discovery Response

As a validation of the Resource personalization approach described throughout this section, we

created a prototype RecommendationEngine as part the Ocean Reference Implementation (Ocean RI).

As a means of evaluating our approach using real-world algorithms, we adapted the Ocean RI for use

with the Taste collaborative filtering engine (Taste Engine)
 48

, which provides open-source

implementations of several popular recommender algorithms, including SlopeOne. Accordingly, we

devised an Ocean-specific implementation of the Taste DataModel interface, called the

OceanDataModel, which provides the Taste Engine access to the Ocean Persistence Framework

described in section 6.3. Further, we enhanced Taste‘s basic SlopeOne approach by providing

context-aware search-space reduction using the Resource discovery process described in section 6.4.

Figure 72 illustrates how the Taste Engine was integrated within the Ocean RI. (Note that

implementation-specific methods may be included in the figure below; however, in the interest of

clarity, these are not described.)

Figure 72: Integration of the Taste recommender within the Ocean RI

48

 http://taste.sourceforge.net/

<?xml version="1.0" encoding="UTF-8"?>

<ocean_resource_response version="1.0" >

 <resources>

 <resource>

 <type><![CDATA[mime:text/html]]></type>

 <uri_code><![CDATA[10fb2d66a65335317b54c93b15edefebe62a]]></uri_code>

 <domain><![CDATA[example_user.smugmug.com]]></domain>

 <title><![CDATA[Example's photo website]]></title>

 <description><![CDATA[Example description]]></description>

 <similarity_score>.89</similarity_score>

 <personalization_score>4.33</personalization_score>

 <wadle/>

 </resource>

(continued...)

7.4 Chapter Summary

179

7.4 Chapter Summary

This chapter discussed Ocean‘s use of community-based computation as a means of overcoming two

key challenges inherent in large-scale networked systems. It began by describing the issue of context-

mismatch, which refers to the situation where an Ocean application may not be capable of generating

the native context data necessary to discover contextually-relevant Resources in a given environment.

Notably, it discussed context mismatch with regards to a similar problem from the domain of

Information Retrieval (IR), known as word mismatch. Briefly, word mismatch refers to the situation

where the textual information within a IR search query may not adequately match the terms within a

given document set; resulting in a vocabulary problem that reduces query effectiveness. It was noted

how word mismatch has been effectively addressed through the use of query expansion techniques

that augment queries with supplemental search terms in an effort to improve query results. Using

query expansion as a foundation, we defined our preliminary mechanism for enhancing Ocean

Discovery Requests with context-aware query expansion based on context information modeled from

real-world environments. We founded our context modeling approach on a low-effort community

contribution model (inspired by PlaceLab and BOINC), which exploits incoming Discovery Requests

provided by large communities of heterogeneous Ocean applications.

Next, we described our preliminary approach for overcoming information overload in situations

where Resource Discovery produces an overwhelming number of results; making effective

component selection difficult or impossible. This section began by presenting background and related

work regarding recommender systems, which have emerged as a promising technique for reducing

information overload in information saturated environments. This section highlighted various

recommender algorithms and discussed their applicability to Ocean‘s Discovery Framework. Based

on this related work, we proposed the Ocean Recommender Engine as a mechanism for

supplementing Discovery results with Resource affinity predictions based on captured preference

information from the Ocean User community. Related, we also suggested techniques for capturing

explicit and implicit rating information. To validate the Ocean Recommender Engine, an example

recommender algorithm, called Slope One, was introduced and adapted for use within Ocean. The

chapter concluded with a Resource personalization example and a discussion regarding the integration

of the Taste collaborative filtering engine within the Ocean RI.

180

Chapter 8

Example Scenario

8.1 Introduction

The preceding chapters have detailed the theoretical aspects and practical infrastructure necessary to

realize the Ocean approach for Web-scale context-aware computing. As previously discussed, the

Ocean approach addresses the challenges facing large-scale context-aware systems presented in

section 3.2. Notably, each of Ocean‘s related contributions has been detailed within a dedicated

chapter in order to provide sufficient space for related work presentation, theoretical development and

approach verification using the Ocean Reference Implementation (RI). As a method of illustrating

how Ocean‘s various contributions form an integrated whole, this chapter presents a real-world Ocean

application scenario that integrates various aspects of the Ocean approach. In addition, the example

scenario provides further validation of Ocean‘s large-scale focus (see section 3.3) by integrating real-

world sources of native context sources, significant amounts of Contextualized Resource information

and more realistic models of Ocean community behavior. The intentionally simplified example

scenario developed throughout this chapter aims to clarify core Ocean concepts and serve as a

foundation for the development of more sophisticated Ocean applications.

The structure of this chapter is as follows: First, section 8.2 describes the experimental setup,

including the development of an Ocean application development environment, called Ocean Studio,

and an embedded version of the Ocean Reference Implementation (Ocean RI) designed for rapid

prototyping. Next, section 8.3 provides an overview of the LinkFlow application, which forms the

conceptual foundation for the chapter. Section 8.4 describes our data acquisition methodology and

related toolset designed to capture and integrate large numbers of native context sources and real-

world Contextualized Resources into Ocean Studio. Section 8.5 validates the basic LinkFlow scenario

using the Ocean Studio development environment. Section 8.6 describes the integration of the

previously acquired native context sources and Contextualized Resource information and discusses

the resultant query performance reduction due to context mismatch and information overload.

Related, a complimentary agent system is also presented as a means of approximating the behavior of

a large Ocean application community operating within Ocean Studio. Finally, section 8.7 discusses

how the aforementioned query challenges can be addressed by applying the context-aware query

expansion and Resource personalization techniques presented in the last chapter.

8.2 Experimental Setup

To devise Ocean application scenarios we created a comprehensive Ocean development environment

called Ocean Studio, which includes several interrelated components. First, it provides a device

emulation framework that provides support for modeling, configuring and controlling device

emulators that are capable of running Ocean-based applications. Device emulators provide a platform-

specific set of context acquisition hardware – such as an onboard camera, language preferences, radio

transceivers and GPS equipment – which is capable of receiving real-world context information from

multiple data sources. Context acquisition and modeling within each emulator is based on the client-

centric Aladin approach described in section 3.2.2. Using the Aladin style, emulators gather context

Chapter 8

181

information using locally available hardware and provide the resultant native context data (NCD) to

Ocean applications through events. Emulators are capable of running a single Ocean application,

which provides its own internal application logic and is presented full screen within the active

emulator‘s display. Ocean applications receive NCD as events from the emulator framework and

receive user input from screen-clicks, hardware buttons and a settings profile. Using the emulator

framework, we modeled two separate devices: (1) a Nokia N95 mobile phone
49

 with inbuilt GPS

hardware, Bluetooth and 802.11 transceivers and an onboard camera; and (2) a Dell Axim x50v

PDA
50

 with inbuilt Bluetooth and 802.11 transceivers and an attached camera. Within Ocean Studio,

the active emulator can be changed at runtime by selecting from a drop-down list of installed

emulators. An overview of Ocean Studio is shown in Figure 73.

Figure 73: Overview of Ocean Studio

As shown in Figure 73, Ocean Studio provides an integrated scenario designer whereby context

sources, emulator representations (i.e. the active emulator‘s icon) and Contextualized Resources can

be placed, configured and visualized on a graphical map component. The map component is based on

the Yahoo Mapping API
51

, which provides support for visualizing mapping data, satellite imagery and

overlay graphics. The mapping component is configured to allow location dragging and zooming and

49

 http://europe.nokia.com/find-products/devices/nokia-n95
50

 http://www.dell.com/content/topics/segtopic.aspx/brand/axim_x50
51

 http://developer.yahoo.com/maps/

8.2 Experimental Setup

182

provides support for drag-and-drop placement of 802.11 and Bluetooth transceivers. Additionally, the

scenario designer automatically renders available Contextualized Resources that include a

GeoPointHandler as Context Metadata (described in section 4.4.1). The active emulator appears

within the scenario designer as a graphical icon that can be moved within the map component by

dragging and dropping its location pointer, which appears as a green circle connected to the emulator

by a white line. An overview of two context sources and the active emulator is shown rendered within

the scenario designer in Figure 74.

Figure 74: Example context sources and the active emulator rendered within the scenario

designer

The scenario designer also provides an integrated context framework capable of aggregating and

provisioning multiple sources of context information. The physical location of the active emulator is

determined by querying the Yahoo Map API with the coordinates of the emulator‘s location pointer as

it is moved within the map component. Physical positioning information for the active emulator is

provisioned using the native NMEA 0183 ASCII sentence format [220] common to most GPS

hardware. The physical positions of 802.11 and Bluetooth transceivers that have been manually

created within the scenario designer are automatically managed by the context framework, which

provisions transceiver data in the native NetStumbler format [212] common to popular ―war-driving‖

software libraries [291] and wireless network diagnostic utilities
52

. The radio transmission

characteristics of several transceiver types (e.g. Bluetooth class 1 and 802.11b) are estimated using

radio frequency (RF) propagation models [312] that account for common transmission characteristics

such as free space loss, signal power attenuation and signal scattering (for the example scenario we

used a propagation model appropriate for outdoor environments with building obstructions).

Additionally, the context framework is capable of importing bulk transceiver geo-location information

from external data sources such as the beacon collection results of the PlaceLab project (see section

7.2.2). Finally, the context framework is capable of provisioning bitmap data to the active emulator‘s

camera frame-buffer using an imported image that can be set using the Ocean Studio preferences. As

an overview, Figure 75 shows an emulator acquiring and modeling native context data from the

52

 http://www.stumbler.net/

Chapter 8

183

context framework. Specifically, this figure shows the active emulator modeling GPS positioning

information in the NMEA data format, several nearby radio sources in the NetStumbler format, a

language preference string according to RFC 3066 [6] and the raw image data from the emulator‘s

camera frame-buffer as a device-independent bitmap.

Figure 75: Native context data as modeled by the active emulator

Finally, Ocean Studio includes an integrated Resource contextualizer tool that allows

Contextualized Resources to be created and managed using a form-based visual designer. The tool

allows Contextualizers to create, retrieve (list), update and delete Contextualized Resources using

both General Metadata and Context Metadata, as described in section 4.3. Notably, the Resource

contextualizer provides form-based configuration options for each Context Handler installed in the

embedded Ocean RI. Recall that, Context Experts may provide a set of arbitrarily complex

configuration options that can be controlled by non-experts through relatively simple external

interfaces (see section 4.3.2). Related, the Resource contextualizer automatically discovers and

presents such configuration options using reflection mechanisms of the .NET Framework.

Based on the server-based Ocean RI presented throughout this dissertation, we developed an

embedded version of the Ocean RI as a means of supporting Ocean Studio scenarios. The embedded

Ocean RI includes the same core functionality as the server-based version previously discussed;

however, the embedded version is designed specifically for rapid prototyping and includes support for

server-less operation, high-speed integration of preconfigured data-sets, in-memory component

communication, and rapid integration of test components such as prototype Context Handlers.

Further, to support Discovery Request/Response debugging, the embedded Ocean RI operates without

the Web service interfaces and security mechanisms discussed in section 5.3.1.

Ocean Studio facilitates communication between the active emulator‘s Ocean application and the

embedded Ocean RI using an implementation of the Ocean discovery protocol described in section

6.4.1. Hence, Ocean applications running within the emulator construct and pose Discovery Requests

to the Ocean RI as required by their internal application logic. If deemed advantageous by the

application, the NCD acquired and modeled by the emulator may be included within Discovery

8.3 Scenario Overview

184

Requests as query terms. As such, Ocean application developers do not need to possess context

domain expertise in order to utilize the Ocean approach. Figure 76 shows how the active emulator‘s

profile settings are used to control various aspects of the Resource discovery process. The available

profile settings include an Ocean username and password; a context sharing Boolean; a discovery

result personalization Boolean; and a context-aware query expansion Boolean. (Note that each of

these options is discussed in detail later in this chapter.)

Figure 76: Ocean preference settings as shown in the active emulator’s user profile

8.3 Scenario Overview

As a means of demonstrating various aspects of the Ocean approach, we devised a simple context-

aware Web browser application called LinkFlow, which is intended to be executed within the Ocean

Studio emulator framework. We created LinkFlow based on the results of other well-known context-

aware hypermedia applications such as Guide [78] and Cooltown [179]. As discussed in Chapter 2,

location-aware hyperemia applications often aim to extend the Web‘s conventional model to include

Resource discovery and selection using context information such as physical or symbolic positioning

data. Similarly, LinkFlow extends the traditional Web agent model (see [341]) and operates much like

a conventional Web browser in traditional hypermedia scenarios. However, unlike a conventional

hypermedia application, LinkFlow‘s set of available URIs flow from Discovery Requests made

against the Ocean RI. As such, LinkFlow users are provided a continually evolving set of contextually

relevant Resources in the form of Descriptive Metadata, which include a similarity score,

personalization score, title, description, etc.

As detailed later in this chapter, the LinkFlow application involves the following workflow: context

detection; Discovery Request formation; Discovery Response selection; and context-aware browsing.

As detailed in section 3.2.8, component interoperation with discovered Resources takes place

according to the REST architectural style as presented in [105]. However, while the LinkFlow

scenario involves only simple context-aware browsing, more sophisticated application scenarios

involving additional Resource types (e.g. structured XML) and various control flow scenarios (e.g. CS

mashups) are also possible (see section 5.2.2).

LinkFlow differs from other context-aware browser approaches in that its application model and

support infrastructure are based on the Ocean approach. With regards to LinkFlow, the Ocean

approach can be summarized as follows: First, because the Ocean approach extends the Aladin

context modeling style described in section 3.2.2, the LinkFlow application is capable of modeling

real-world environments without the need for dedicated context instrumentation and related

infrastructure. Second, as described in section 5.5, Ocean‘s open APIs for the creation and

Chapter 8

185

management of Contextualized Resources can be used to promote the contextualization of large

numbers of existing Web Resources. Third, based on Ocean‘s Context Handler contribution model

described in section 5.4, external Context Experts are able to integrate complex domain semantics into

the Ocean Registry; allowing LinkFlow developers use the Ocean Registry without requiring complex

context domain knowledge (see section 6.4.1). Fourth, as described in section 6.3, the Ocean RI

supports Contextualized Resource persistence and indexing and provides a multi-feature similarity

search approach that generates search results based on incoming query NCD and domain-specific

similarity features contained within persisted Contextualized Resources. Fifth, as described in section

7.2, LinkFlow applications running on resource constrained devices (e.g. without GPS hardware) may

request that Ocean automatically expand Discovery Requests with supplemental context-relevant

query terms that have been modeled from the shared context information provided by the Ocean User

community. Finally, as described in section 7.3, LinkFlow applications may request Resource

personalization, which allows the Ocean Registry to automatically rank Discovery Results based on

privacy-aware user profiling, community generated preference information, and Ocean‘s integrated

recommender algorithms.

8.4 Data Acquisition

As a means of acquiring significant quantities of real-world context information and Contextualized

Resources data, we integrated two external datasets into Ocean Studio. First, we obtained the publicly

available beacon capture datasets provided by the PlaceLab research team [151]. These datasets

include the results from several large ―war-driving‖ sessions completed using the data acquisition

process described in section 7.2.2. Notably, the public PlaceLab datasets contain significant quantities

of real-world beacon information (e.g. over 50,000 trace samples) and include detailed information

regarding the identification and characteristics of various 802.11, Bluetooth and GSM radio

transceivers located throughout the Seattle Washington metropolitan area. To support the LinkFlow

scenario, we utilized a subset of the PlaceLab beacon capture data that was localized to a geographic

region encompassing the downtown Seattle area (the resulting subset included 7,943 individual

beacons).

Next, we obtained real-world Contextualized Resource data by creating a multithreaded

Contextualized Resource crawler framework (crawler framework) capable of extracting domain-

specific context information from several large, publicly available Web Resource datasets. As shown

in Figure 77, the crawler framework provides several high-level features, including crawler controls

(e.g. starting, stopping and crawl interval); crawler management tools (e.g. maximum results, start

offset, etc.); and database interaction tools (e.g. database management, crawl totals and result

clearing).

8.4 Data Acquisition

186

Figure 77: Overview of the Contextualized Resource crawler framework interface

Using the crawler framework, we developed three independent context-aware crawlers. First, a

crawler was devised to extract image-based Contextualized Resources from the photo sharing Website

Flickr
53

. The Flickr crawler utilizes Flickr‘s REST-based Web service API
54

 to query for structured

information related to shared photos that have been geo-coded using latitude and longitude

information. The Flickr crawler can be customized to allow for additional query constraints based on

specific geographic coordinates or text-based query terms. The Flickr crawler creates Contextualized

Resources by parsing the resultant XML result data (in Flickr‘s native format) in order to obtain

General Metadata information such as a title, description and URI. Additionally, Context Metadata is

generated from Flickr results by encapsulating positioning data using the GeoPointHandler described

in section 4.4.1.

Next, a crawler was devised to extract Contextualized Resources from the micro-blogging Website

Twitter
55

. The Twitter crawler utilizes Twitter‘s REST-based Web service API
56

 to query for XML-

based feed data that have been geo-coded within a customizable geographic area. The Twitter crawler

creates Contextualized Resource‘s by parsing the resultant Atom feed data [328] in order to obtain

General Metadata information such as a title, description and URI. Additionally, Context Metadata is

generated from Twitter results by encapsulating positioning data using the GeoPointHandler

mentioned above. If precise positioning data is not present within the resultant Atom feed data, the

Yahoo geo-coding API
57

 is used to translate address information into geographic coordinates suitable

for use by the GeoPointHandler.

53

 http://www.flickr.com/
54

 http://www.flickr.com/services/api/
55

 http://twitter.com/
56

 http://apiwiki.twitter.com/
57

 http://developer.yahoo.com/maps/rest/V1/geocode.html

Chapter 8

187

Finally, a crawler was devised to extract Contextualized Resources from the community-based

online encyclopedia Wikipedia
58

. As not all Wikipedia articles contain geo-coded information, we

utilized the GeoNames geographical database
59

, which aggregates multiple sources of geographical

data and provides a unified Web-service query interface. The Wikipedia crawler constraints

GeoNames query results to Wikipedia articles that have been geo-coded within a specific geographic

area. The Wikipedia crawler creates Contextualized Resource‘s by parsing the resultant XML result

data (in the GeoNames native format) in order to obtain General Metadata information such as a title,

description and URI. Additionally, Context Metadata is generated from GeoName results by

encapsulating positioning data using the GeoPointHandler mentioned above. Finally, the Wikipedia

crawler creates an additional ISO639LanguageHandler based a supplemental query of the Wikipedia

site, which checks for articles in both English and German.

Using crawler implementations described above, we performed several crawling sessions over a 13

day period. Crawling session duration ranged from approximately 2.5 minutes to over 17 hours and

care was taken to adhere to Web service rates limits (e.g. the Flickr API limits Web service calls to 1

per second per IP). In order to improve crawling performance, each individual crawler operates in

parallel. The Contextualized Resource results from each crawling session were stored in separate

database files in order to organize the results for integration into Ocean Studio. We began by

performing small initial test crawls and continued to perform additional crawls as the LinkFlow

application was finalized. The longest crawling session took over 17 hours and resulted in the

generation of 68,438 Contextualized Resources. To align our crawling results with the PlaceLab

beacon datasets previously described, we configured each crawler to extract Contextualized

Resources using geographic coordinates and search terms specific to the Seattle metropolitan area.

Table 17 provides an overview of several Contextualized Resource crawl sessions and provides

related information, including duration, description and total Contextualized Resources extracted (i.e.

CR Totals).

58

 http://www.wikipedia.org/
59

 http://www.geonames.org/

8.5 Validating the Basic LinkFlow Scenario

188

Date

Crawl

Duration

(minutes)

Session description CR Totals

February 22
nd

, 2009 22.5 Initial test crawl session with simultaneous

crawler start.

All: 1490

Flickr: 500

Twitter: 500

Wikipedia: 490

February 22
nd

, 2009 105.9 Stability testing crawl session with a longer

duration. Staged crawler start to test multithreaded

operation.

All: 6990

Flickr: 5000

Twitter: 1500

Wikipedia: 490

March 4
th

, 2009 1036.9 Large crawl session using simultaneous crawler

start and supplemental ISO639LanguageHandler

generation.

All: 68,438

Flickr: 66,343

Twitter: 1497

Wikipedia: 598

March 6
th

, 2009 24.1 Sample extraction for Ocean Studio with start

offset for use in test rendering.

All: 1594

Flickr: 500

Twitter: 497

Wikipedia: 597

Table 17: Overview of notable Contextualized Resource crawling sessions

8.5 Validating the Basic LinkFlow Scenario

To validate the basic LinkFlow scenario introduced in section 8.3 we used Ocean Studio‘s Resource

contextualizer to manually create and test an example Contextualized Resource (CR). The example

CR constrains the Discoverability Context of an HTML-based image slideshow using a specific

geographic area definition and language preference. Recall from section 4.3 that Ocean Metadata are

stored separately from the associated Resources within the Ocean Registry in order to impose the

separation of concerns necessary for supporting context-aware compositional adaptation (see section

2.2.3). CRs created within Ocean Studio are persisted within the embedded Ocean RI using a version

of the Ocean persistence model presented in section 6.3.2. The example CR‘s General Metadata

include a title, description, data-type and URI (the URI references a Resource hosted on the

SmugMug photo sharing Website
60

). Additionally, the example CR contains two Context Metadata

entities, including a GeoPointHandler configured with a ―Required‖ association type, a validity

radius of 100 meters and a linear comparison function (see section 4.4.1); and a

ISO639LanguageHandler entity configured with an ―Optional‖ association type and a language code

of ―English.‖ Figure 78 shows the example CR rendered within Ocean Studio‘s scenario designer.

60

 http://smugmug.com/

Chapter 8

189

Figure 78: Example Contextualized Resource rendered within Ocean Studio’s scenario designer

To validate the basic LinkFlow scenario, we began by positioning the active emulator within the

validity radius of the example CR‘s GeoPointHandler (using the emulator‘s location pointer) and

setting the emulator‘s preferred language to English (using the emulator‘s property controls). As

described in section 8.2, the active emulator automatically models relevant NCD. In this scenario, the

emulator models geo-location information (provided by local GPS hardware in the NMEA format), a

language preference string in the ISO639 format, and a bitmap from the device‘s camera frame-

buffer.

While methods of configuring and performing Discovery Requests are entirely application-specific

(see section 6.4.1), the LinkFlow application presents several options as a means of illustrating the

Ocean approach. As shown in Figure 79, the LinkFlow application provides both an NCD view

(containing raw context data values) and several query controls that allow the user to constrain

Discovery Requests by data-type, domain and Contextualizer. While some Ocean application types

may shield details of the Resource Discovery process from users (e.g. by automatically performing

Discovery Requests when certain criteria are met), LinkFlow provides an explicit ―Search‖ button that

allows users to initiate Discovery Requests directly. An overview of LinkFlow‘s Discover View is

shown in Figure 79.

8.5 Validating the Basic LinkFlow Scenario

190

Figure 79: The Discover View showing locally modeled NCD and several search constraints

Using the Discover View controls shown above, Discovery Requests can be performed by choosing

appropriate query constraints and clicking the Search button. Recall that when the Search button is

clicked the LinkFlow application formulates a Discovery Request, which includes the emulator‘s

modeled NCD as query terms. Discovery Requests arriving at the embedded Ocean RI are processed

by a naïve implementation of the Ocean multi-feature similarity search (MFSS) approach described in

chapter 6.4.4. Recall that Ocean‘s full MFSS framework utilizes the Context Metadata interface

implemented by contributed Context Handlers to provide Contextualized Resource indexing,

persistence and similarity determination.

At the completion of Ocean query processing, resultant Descriptive Metadata results are returned to

the LinkFlow application using the Discovery Response format described in section 6.4.1.2. Recall

that Descriptive Metadata include a URI (or uri_code), similarity score, personalization score (if

requested), title, description, domain and an optional WADL document (see [137] for details). Several

of these metadata are integrated into LinkFlow‘s Results View, which provides a multi-column

ListBox component capable of rendering ranked results for the user. Next, LinkFlow users survey the

discovered metadata as a means of making suitable Resource selections (according to similarity score

(Sim), the personalization score (Pref) and the title).

As expected, Discovery Requests made within the example CR‘s Discoverability Context resulted

in proper CR detection and the generation of appropriate similarity scores. Furthermore, double-

clicking the CR‘s metadata entry in the Result View ListBox resulted in runtime composition

according to the Web-browser model described in [341] (i.e. the CR‘s URI is rendered in the Browse

View using an embedded Web browser). An overview of the basic LinkFlow application scenario is

shown in Figure 80.

Chapter 8

191

Figure 80: Overview of the basic LinkFlow application scenario

As described at the beginning of this chapter, LinkFlow is designed to closely mirror the Ocean

application model as a means of clarifying Ocean concepts; however, other Ocean application types

may use more sophisticated application logic to address specific problem domains. For example,

Ocean applications may react in domain-specific ways to well-known NCD types while using Ocean

to interpret unknown NCD types. As another example, Ocean applications may model Discovery

Results themselves as NCD; using these data to form new Discovery Requests (e.g. using discovered

image from Ocean data as NCD). Ocean Developers may also extend prepackaged control flows that

may not mirror the Ocean application model directly. Briefly, Richardson and Ruby [266] describe

control flow as ―a set of instructions about what to do when you get certain kinds of requests‖ and

identify two example types, including database-backed (where applications adapt based on

information or state contained within a database) and the Atom publishing protocol [224] (which

defines a set of Resources that capture the process of publishing feed data using the Atom XML

format [328]). While we do not speculate on the types of applications that might be constructed using

such techniques, we suggest that many control flow scenarios may be amenable for the integration of

contextually relevant computation. Notably, as discussed in section 5.2.1, we view the

contextualization of client-centric mashups styles (e.g. Aggregation, Personalization and Real-time

Monitoring) as the foundation for new classes of context-aware Web applications capable of

spontaneous cross-domain component discovery and interoperation.

8.6 Importing Crawled CR Data and Acquired Context-Sources

Using the basic scenario described in the previous section, we next validated the LinkFlow application

using the crawled CR data and real-world context-sources described in section 8.4. First, the CR

crawling results were imported into the embedded Ocean RI and rendered using the Ocean Studio

scenario designer. During testing, it was discovered that the Yahoo Map component performs well for

visualizing small CR datasets (i.e. less than 100); however, rendering larger CR datasets resulted in

poor visualization quality (due to overcrowding) and map unresponsiveness (due to performance

8.6 Importing Crawled CR Data and Acquired Context-Sources

192

limitations of the Yahoo Map component and API). To compensate for these limitations, three

strategies were employed. First, unlike manually created CRs, which are rendered with

Discoverability Contexts, crawled CR data are visualized using only red flags, which are placed on

the map component according to their geo-coordinates (if available). Second, Ocean Studio is

configured to utilize a localized subset of the CR crawl data (see section 8.4). Third, the scenario

designer only renders CRs located within a customizable distance of the active emulator.

Next, Ocean Studio‘s import tool was used to import the 7,943 beacons from the PlaceLab dataset

presented in section 8.4. In order to minimize visual overcrowding and maintain map responsiveness,

imported beacon data are not rendered within the scenario designer; however, the context

provisioning framework continually provisions imported context information to the active emulator,

which appears as NCD within the LinkView Discover View. To further improve Ocean Studio

performance, only beacons located within a theoretically detectable range of the active emulator are

considered during context provisioning. An overview of Ocean Studio rendering crawled CRs and

provisioning PlaceLab beacon data is shown in Figure 81.

Figure 81: Ocean Studio rendering crawled CRs and provisioning PlaceLab beacon data

A Sony VAIO VGN-FZ21Z laptop with 2GB of RAM and a 2.2GHz Centrino Duo processor was

used to run both the Ocean Studio application and embedded Ocean RI during LinkFlow validation.

Although Ocean Studio is not performance optimized, it proved capable of consistently provisioning

PlaceLab context information to the active emulator in less than 500ms. Similarly, although the

embedded Ocean RI prototype relies on naïve query processing, it proved capable of processing

Discovery Requests within 1000ms to 3000ms (depending on the amount of NCD provided as query

terms). Although not discussed further, we note that many real-world applications must be designed to

accommodate additional query handling delays (e.g. due to variations in network conditions). During

the evaluations, each active emulator‘s local hardware devices were activated and deactivated to

check the effect on context acquisition. As expected, when a given hardware device was turned off,

Chapter 8

193

the active emulator stopped acquiring the associated NCD type. Moreover, switching between the

Nokia N95 and Dell x50v emulators resulted in different sets of detected NCD, due to the differences

in the device‘s capabilities (e.g. the N95 has inbuilt GPS hardware unlike the Dell x50v).

During the initial evaluations of the advanced LinkFlow scenarios, the active emulator was

positioned in multiple locations throughout the downtown Seattle area to validate context

provisioning and modeling. The LinkFlow application acquired and modeled NCD appropriately as

the emulator was moved within the scenario designer (i.e. reasonable NCD results appeared within the

emulator‘s NCD list). As the emulator was moved, multiple Discovery Requests were performed

using a variety of query constraints and modeled NCD as query terms. Discovery Results accurately

matched the scenario configurations rendered within the scenario designer according to both

qualitative and quantitative metrics. For example, moving the emulator physically closer to a given

CR resulted in increasing similarity scores within LinkFlow‘s Results View. Moreover, logging

output from the Ocean RI provided quantitative validation by outputting expanded similarity score

metrics that corresponded to the visual results (according to the GeoPointHandler linear similarity

model described in section 4.4.1).

Query constrains were also evaluated. For example, selecting the WikipediaCrawler as a

Contextualizer and changing the emulator‘s preferred language (resulting in a change in modeled

NCD) correctly constrained Discovery Results to Wikipedia CR data in the specified language (e.g.

German or English). Similarly, alterations to the Data Type query constraint resulted in appropriate

changes to subsequent discovery results. For example, changing the Data Type constraint to ―Image‖

isolated results from Flickr, whereas changing the Data Type constraint to ―Feed‖ isolated CR data

from Twitter (note that in realistic Ocean scenarios real-world data types would be used – e.g. MIME

types as per [327]).

Discovery Results accurately rendered within the LinkFlow Results View, allowing users to survey

contextually relevant CR metadata (i.e. similarity score, personalization score and title). Selection of

CR metadata from the Results View (by double-clicking) resulted in the proper rendering of the

Descriptive Metadata‘s associated URI within LinkView‘s Results View using the embedded Web

browser previously described. As the aforementioned context-aware crawlers extracted

Contextualized Resource data from Flickr, Twitter and Wikipedia, rendered CR URIs reflected real-

world user-generated content. Moreover, as the crawlers formulated mobile content URIs for each

CR, rendered content appeared well-proportioned within LinkView‘s resource constrained browser.

As an example, a discovered Contextualized Resource from Flickr
61

 is shown rendered within the

active emulator in Figure 82.

61

 Photo credit: http://m.flickr.com/photos/a_ninjamonkey/3306601531 (published under the

Attribution-Noncommercial-No Derivative Works 2.0 Generic license).

8.7 Validating Community-enhanced LinkView Query Processing

194

Figure 82: A discovered Contextualized Resource rendered within the active emulator

8.7 Validating Community-enhanced LinkView Query Processing

In the basic LinkFlow scenario described in section 8.5, switching from the Nokia N95 emulator to

the Dell x50v emulator prevented CR discoveries due to context mismatch arising from the lack of

GPS hardware within the Dell emulator. As discussed in section 7.2, context mismatch refers to the

situation where an Ocean Discovery Request‘s query terms do not sufficiently match the Context

Metadata used to create persisted CRs. In such cases, query effectiveness is diminished and

contextually-relevant Resources may remain invisible to Ocean application. As per the Ocean

discovery approach described in section 6.4, persisted CRs from the crawler framework require

similar geo-positioning NCDs for discovery. To help improve query results for the Dell emulator, we

activated the context-aware query expansion mechanisms built into the embedded Ocean RI.

As described in section 7.2.4, the Ocean Registry provides an Association Discovery Framework

(ADF) that forms the foundation for Ocean‘s context-aware query expansion techniques. Briefly, as

communities of autonomous Ocean applications make Discovery Requests using the Ocean Registry‘s

Resource Discovery API, the ADF automatically models and maintains a continually evolving data

model of ContextAssociation objects, which are used to automatically expand incoming Discovery

Requests with supplemental search terms (see section 7.2.5). In order to improve the quality of

supplemental search terms, the Ocean ADF exploits the domain knowledge encapsulated within

implementations of the AssociationDiscoverer interface provided by Context Experts for a given

Context Handler (see section 7.2.4).

To validate context-aware query expansion approach using Ocean Studio, we developed a PlaceLab

agent system capable of parsing the NetStumbler data contained within the PlaceLab beacon dataset

and making standard Ocean Discovery Requests using the beacon data as query terms (simulating a

large number of real-world Ocean requests). The agent‘s Discovery Requests were formulated such

Chapter 8

195

that context sharing was enabled; allowing the Ocean RI to anonymize and pass the query NCD to the

ADF for processing. As PlaceLab agents make Discovery Requests, the ADF automatically extracts,

models and persists ContextAssociation data using the process described in section 7.2. In our

evaluation scenario, PlaceLab agent requests consisted of both transceiver information and geo-

location information; hence, the resultant ContextAssociation data were created using an

RFPositionHandler as the parent and the GeoPointHandler as the child (using an arbitrary initial

confidence of 0.5). Additional ContextAssociation sightings (e.g. the same 802.11 access point

sighted by another agent) were merged with the existing ContextAssociation using a simple step-

wise confidence function that increased confidence to a maximum of 0.8. While

ContextAssociation creation and merging functionality were implemented in both versions of the

Ocean RI, advanced functionality such as ContextAssociation ageing and pruning were left for

future work.

Context-aware query expansion was validated as follows: First, we used the agent system to process

all 7,943 beacons contained within the PlaceLab dataset described in section 8.4. To help improve

map rendering performance, agent requests were constrained to within 500 meters of the active

emulator. Next, the Dell emulator was selected and positioned within the downtown Seattle area.

Importantly, while the Dell emulator does not have inbuilt GPS hardware, it is capable of acquiring

and modeling nearby 802.11 and Bluetooth transceivers using local hardware and appropriate Aladin

plug-ins. Initially we validated that the Dell emulator was incapable of discovering persisted CR data

using its locally modeled NCD by performing several Discovery Requests with ―Expand Query‖ set

to ―False‖ in the emulator‘s query preferences. As expected, no CRs were discovered. Next, we set

―Expand query‖ to ―True‖ and performed several additional Discovery Requests. As expected, in

locations where the PlaceLab agents had previously shared context information, the Dell emulator

was capable of discovering previously invisible CRs persisted using GeoPointHandlers. Notably,

expanded discovery results accurately matched the scenario configurations displayed within the

scenario designer according to both qualitative and quantitative metrics. For example, moving the

emulator physically closer to a given CR resulted in increasing similarity scores within LinkView‘s

Results View (according to the nearby ContextAssociations). Logging output from the embedded

Ocean RI provided quantitative validation of the visual results by presenting corresponding expanded

similarity score values.

An overview of the expanded Resource Discovery results obtained by the Dell emulator is shown in

Figure 83. In this figure, ContextAssociation data modeled by the ADF (in response to previous

PlaceLab agent requests) are shown as semi-transparent circles, whose radius values correspond to the

theoretical maximum range of the parent RFPositionHandler (according to transceiver type).

Second, as described in section 7.2.5, supplemental query terms added to the Dell‘s Discovery

Requests are weighted using associated ContextAssociations confidence values when performing

similarity calculations. Accordingly, the similarity scores presented in the Results View are lower

than those discovered by the Nokia emulator with inbuilt GPS hardware. Finally, while the embedded

Ocean RI does not provide an implementation of the Resource personalization approach described in

section 7.3, the Results View indicates how personalized query results could appear (using preference

values in the unit interval (0 ≤ 𝑥 ≤ 1). In this hypothetical example, the emulator‘s user is

8.7 Validating Community-enhanced LinkView Query Processing

196

predicted to have higher affinity for Resources from Wikipedia, which can be used by the LinkFlow

application logic (or the user) to help improve Resource selection.

Figure 83: Resource discovery results obtained using context-aware query expansion

As a means of further validating the Ocean ADF, we implemented an additional Context Metadata

type called the QRCodeHandler, which is capable of parsing the Quick Response two-dimensional bar

code format (QR Code) developed by Denso-Wave Corporation
62

. Notably, the QR Code format

supports comparatively large capacity data storage (e.g. 7,089 numerals, 4,296 alphanumeric

characters or 2,953 bytes) and provides Reed–Solomon error correction for use in decoding low-

quality or partial barcode images. Moreover, the QR Code format is supported by a broad range of

mobile devices (e.g. the Open Source QR Code Library
63

 supports most Java-based mobile devices).

Within the embedded Ocean RI, QR Code handling is encapsulated within a QRCodeHandler, which

utilizes the ThoughtWorks QRCode library
64

 for low-level image processing and data extraction. In

addition, Ocean Studio‘s Resource contextualizer tool provides form-based support for creating

Contextualized Resources based on imported QR Code image data. Importantly, the QRCodeHandler

implements the AssociationDiscoverer interface (see section 7.2.4), which allows the Ocean ADF

to automatically discover, persist and manage ContextAssociations based on Discovery Requests

containing both a QR Code data and geo-position data.

To evaluate the QRCodeHandler, we used Ocean Studio to design a scenario whereby a Wikipedia

article about the University of Luebeck was contextualized using a single GeoPointHandler. Next,

we selected the Nokia N95 as the active emulator and positioned it within the Discoverability Context

of the previously created CR. The Nokia emulator‘s integrated camera was then used to obtain a QR

62

 http://www.denso-wave.com/qrcode/index-e.html
63

 http://qrcode.sourceforge.jp/
64

 http://www.twit88.com/home/opensource/qrcode

Chapter 8

197

Code image from the device‘s environment (e.g. image data from a stationary sign). The Nokia

emulator‘s context framework properly acquired and modeled local NCD, which included the QR

Code image as a raw bitmap and geo-position data in the NMEA format. Next, context sharing was

activated and a single Ocean Discovery Request was performed using the locally acquired NCD as

query terms. As context sharing was enabled, the embedded Ocean RI performed association

discovery after query processing was completed. In this case, the ADF modeled and persisted a single

ContextAssociation, which included the Discovery Request‘s QRCodeHandler as the parent Context

Metadata entity and its colleague GeoPositionHandler as the child Context Metadata entity.

Once the Discovery Request was completed for the Nokia emulator, the Dell emulator was then

selected (its position was maintained within the Discoverability Context of the manually created CR

previously introduced). Since the Dell emulator lacks inbuilt GPS hardware, its NCD list did not

contain geo-positioning data. As expected, Discovery Requests performed by the Dell emulator failed

to discover the manually created CR due to context mismatch. Next, the Dell emulator‘s attached

camera was used to obtain the same QR Code image previously encountered by the Nokia emulator.

The Dell emulator‘s context framework properly acquired and modeled the QR Code image, which

appeared within its NCD list as a raw bitmap. Next, query expansion was enabled using the Dell

emulator‘s Ocean preference settings and a single Discovery Request was performed using the

embedded Ocean RI. Using the Association discovery approach described in section 7.2.5, the

embedded Ocean RI‘s ADF automatically discovered the ContextAssociation previously created

from the Nokia emulator‘s request. In this case, the QR Code bitmap within the Dell emulator‘s NCD

list was used to match the QRCodeHandler parent of the previously persisted ContextAssociation.

Next, the discovered ContextAssociation’s child Context Metadata entity (i.e. the

GeoPositionHandler provided by the Nokia emulator) was added to the Dell‘s query as a

Supplemental Metadata query term. As described in section 7.2.5, supplemental query terms are

weighted using the ContextAssociation’s confidence value when performing similarity

calculations. Accordingly, the Dell emulator was capable of discovering the previously invisible CR;

however, the similarity value within the Discovery Results was lower than the value discovered by the

Nokia emulator with inbuilt GPS hardware.

8.8 Chapter Summary

This chapter presented an example scenario as a means of clarifying core Ocean concepts and

validating the Ocean approach using significant quantities of real-world data. It began by describing

the experimental setup, which included the development of an Ocean application development

environment, called Ocean Studio. Ocean Studio provides an integrated suite of development and

evaluation tools, including a scenario designer with an integrated context provisioning framework; an

emulator framework with two implemented emulator devices; a Resource contextualizer tool; and an

embedded version of the Ocean RI designed for rapid prototyping. The next section introduced the

example application scenario, called LinkView, which extends conventional context-aware Web

browsing with core features of the Ocean approach. The next section described the LinkView data

acquisition methodology and presented two related tools, including Ocean Studio support for

PlaceLab beacon importing and a context-aware crawler framework, which included three example

crawlers. The crawling framework was used to extract over 68,000 Contextualized Resources from

8.8 Chapter Summary

198

popular Web-based data sources, including the Flickr photo sharing Website; the Twitter micro-

blogging platform; and the community-based Wikipedia encyclopedia project.

Next, the LinkFlow application was evaluated using several approaches. First, the basic LinkFlow

scenario was validated by manually creating Contextualized Resources within Ocean Studio and

testing the LinkFlow application model using emulator framework and scenario designer. Next, the

crawled CR data and acquired PlaceLab context-sources were imported into OceanStudio. As

expected, the addition of significant real-world data led to Resource Discovery challenges in the form

of context mismatch and information overload. Next, Ocean Studio‘s PlaceLab agent system was

presented as a mechanism for simulating the behavior of large Ocean application communities. Using

the agent system, PlaceLab beacon data were used to perform large numbers of Ocean Discovery

Requests (with context sharing enabled); allowing Ocean‘s Association Discovery Framework to

automatically model ContextAssociation data for use in context-aware query expansion. Finally,

Ocean‘s community-enhanced query approaches were validated by performing a series of Discovery

Requests using a resource constrained emulator. Notably, the resource constrained emulator was

capable of effectively overcoming context mismatch and information overload by leveraging Ocean‘s

context-aware expansion and Resource personalization techniques.

199

Chapter 9

Conclusion

9.1 Summary of Contributions

This chapter concludes the dissertation by presenting a summary of contributions and a discussion of

directions for future research. As discussed in Chapter 1, the central thesis of this dissertation is that

traditional context-aware computing approaches are ill-suited for building truly ubiquitous, large-scale

networked systems and generally fail to promote significant developer adoption and end-user

participation. As a result, the considerable wealth of intriguing and innovating context-aware

computing techniques remain consigned to small-scale deployments and research prototypes; existing

as isolated islands of niche functionality that are far removed from everyday use [79, 288]. Given the

rapidly increasing capabilities and sophistication of many everyday environments, the lack of large-

scale context-aware computing systems was introduced as the key motivation for this research. The

following paragraphs provide a summary of key contributions in this regard.

Chapter 2 included a survey of background material and a presentation of related work. Related

work was presented using a layered conceptual framework that addressed context acquisition; context

modeling and representation; context management and provisioning; and context-aware component

interoperation. Based on a representative sampling of state-of-the-art approaches, it was observed that

current context-aware systems are typically created with the assumption that the underlying network

infrastructure, hardware devices, application components and context mechanisms are well-known a-

priori and contained within a limited and controlled administrative domain. Hence, many approaches

mandate expensive and invasive deployment of context instrumentation; require domain-specific

network configurations; rely on specially outfitted mobile devices; adopt enterprise-specific

distributed middleware; and generally lack support for spontaneous cross-domain component

interoperation. Further, the considerable expense and effort required to devise, implement and deploy

such systems often promotes a top down development approach intended to address niche problem

domains where the requisite support infrastructure can be readily provided, administrative access is

available and return on investment is assured. Indeed, several recent surveys [22, 62, 106] indicate

that existing systems generally fail to provide ubiquitous accessibility; resulting in a pronounced lack

of developer adoption and end-user participation.

 Based on the above observations, Chapter 3 began by identifying several key challenges that have

prevented the emergence of large-scale context-aware systems. These challenges included the

deployment of ubiquitous context infrastructure; the widespread availability of suitable data

communication networks; the scalability of underlying middleware; and techniques for spontaneous

cross-domain component interoperation. Related, this section also identified several ―foundations‖ for

addressing each of the aforementioned challenges. These foundations included (respectively) Aladin-

based context acquisition and modeling; public Internet infrastructure; conventional Web architecture;

and RESTful component interoperation. Based on these foundations, Chapter 3 derived our novel

context-aware computing approach, called Ocean, which aims to capture the entrepreneurial spirit of

modern Web architecture as a means of supporting large-scale context-aware systems. The derivation

Chapter 9

200

of the Ocean approach was based on the application of the aforementioned foundations as a

coordinated set of design constraints that are intended to restrict the Ocean application model and

resultant infrastructure. Related, Ocean‘s principle stakeholders were also described, including Ocean

Developers, Context Experts, Contextualizers and Application Developers. Finally, the Ocean

Reference Implementation (Ocean RI) was introduced as a means of validating the Ocean approach in

terms of the design principles and approach constraints described in sections 3.4.1 and 3.4.2

respectively.

To overcome the Web‘s inherent context-mediation limitations, Chapter 4 presented Ocean‘s

foundational architectural abstraction, called the Contextualized Resource (CR). Briefly, the CR

abstraction extends the conventional Web Resource model with supplemental General and Context

Metadata intended to constrain the Discoverability Context of an associated Web Resource. Recall

from Definition 1 that a Discoverability Context is defined as the set of contextual criteria that must

be fulfilled before a Resource is considered relevant to the interaction between a user and an Ocean

application, including the user and application themselves. A secondary contribution from Chapter 4

included the definition of the Context Metadata abstraction, which provides a domain-neutral

interface whereby the syntax and semantics of a given context domain can be encapsulated by Context

Experts (concrete implementations of the ContextMetadata interface are termed Context Handlers).

To clarify the CR model, a detailed interface description was provided along with a survey of relevant

similarity modeling techniques. The chapter concluded with the presentation of a CR example that

included two ContextHandler implementations.

Building on the CR abstraction, the primary contribution from Chapter 5 included the definition of

key approaches for supporting large-scale context-aware computing using Ocean. First, the basic

Ocean philosophy was defined as a simple, accessible and scalable mechanism for mobile

applications to discover, select and compose contextually-relevant Web Resources in-situ at runtime.

Based on this philosophy, Ocean‘s Web-centric application model was defined as an extension of the

client-centric mashup style (which aligns well with Ocean‘s approach constraints defined in Chapter

3). In order to adapt the Ocean application model to the requirements of conventional Web

architecture, a complimentary Contextualized Resource Registry (Ocean Registry) was presented as a

means of facilitating wide-area Resource contextualization and discovery. Next, two related

community-based contribution models were presented. First, a preliminary Context Handler

contribution approach was proposed as a means of facilitating the extension of the Ocean Registry by

external Context Experts (based on an adaptation of the Java Community Process). Second, an open

Contextualization API was proposed as a mechanism for promoting large-scale Resource

contextualization (allowing any Contextualizer to contextualize any Resource with any combination

of Ocean Metadata).

Chapter 6 contributed techniques for persisting, indexing and discovering CRs from within the

Ocean Registry. As CRs represent complex data structures that cannot be effectively indexed or

queried using classical database techniques, related work regarding similarity search mechanisms was

first presented. Using the related work as a foundation, the Ocean Registry‘s Persistence Framework

was derived. Briefly, the Persistence Framework allows CRs to be efficiently stored and indexed for

rapid retrieval according to domain-specific indexing and data modeling techniques. Notable

9.1 Summary of Contributions

201

contributions in this regard included the IndexManager interface and its related software architecture.

Another contribution from Chapter 6 included the development of the Ocean Discovery Framework,

whereby contextually-relevant CRs can be retrieved from the Ocean Registry‘s Persistence

Framework and returned to requesting applications. Related, the Ocean Registry‘s Discovery API and

Discovery protocol were defined as a means of allowing applications to discover contextually-

relevant Resources using native context data (NCD) as query terms. The Discovery Framework is

based on a Query Object abstraction and complimentary multi-feature similarity search (MFSS)

model. Importantly, Ocean MFSS operates in conjunction with the Persistence Framework and

Context Metadata interfaces previously described; allowing NCD to be translated into appropriate

Context Handlers and compared to persisted CRs within the Ocean Registry.

The primary contributions from Chapter 7 included two community-based computational models

designed to address the significant challenges arising from Ocean‘s Web-scale focus. First, the

challenge of context mismatch was introduced, whereby an Ocean application may not be capable of

generating the requisite native context data necessary to discover contextually-relevant Resources in a

given environment; reducing query effectiveness. To address this challenge, a context-aware query

expansion technique was developed. Briefly, context-aware query expansion supplements incoming

Discovery Requests with additional, contextually-relevant query terms, which have been extracted

and modeled from previous Discovery Requests made by diverse Ocean applications. Related,

Ocean‘s Association Discovery Framework (ADF) was defined as the entity responsible for

automatically extracting domain-specific ContextAssociation data from incoming Discovery

Requests (using an extension of the Context Metadata interface previously described). Next the

challenge of information overload was introduced, whereby Discovery Results that include a large

number of similarly scored Resources may become difficult to differentiate based on the Descriptive

Metadata alone; resulting in ineffective Resource selection. To address this challenge, Ocean‘s

Resource personalization approach was described. Briefly, Resource personalization estimates a

user‘s affinity for discovered contextually-relevant Resources based on the captured preferences of

the Ocean User community. Related Ocean‘s Recommendation Engine and preference modeling

techniques were described in detail. Finally, the Recommendation Engine was validated using an

implementation of the Slope One recommender algorithm.

Finally, the primary contribution from Chapter 8 was the presentation an example Ocean

application scenario as a means of clarifying core Ocean concepts and validating the overall Ocean

approach. Notably, the example scenario utilized real-world context-sources, large-scale CR datasets

and more realistic models of Ocean community behavior. The chapter began with a description of the

experimental setup, which included the development of an Ocean application development

environment, called Ocean Studio, and an embedded Ocean reference implementation (RI) designed

for rapid prototyping. Next, the example application scenario, called LinkFlow, was introduced as the

conceptual foundation for the remainder of the chapter. Next, LinkFlow‘s data acquisition

methodology and related toolset were described. First, Ocean Studio was enhanced with the ability to

import beacon capture datasets from the PlaceLab project. Next, a context-aware Crawler framework

was developed to extract large numbers of CRs from popular Web applications such as Flickr, Twitter

and Wikipedia. The LinkFlow scenario was then validated within the Ocean Studio development

Chapter 9

202

environment using both basic and enhanced scenarios. Notably, the advanced scenarios included an

integration of the previously acquired native context sources and crawled CR data as a means of

inducing context mismatch and information overload. Based on the community-based computational

models introduced in Chapter 7, it was demonstrated how discovery query performance could be

improved in real-world scenarios by applying Ocean‘s context-aware query expansion and Resource

personalization techniques. Related, qualitative and quantitative query improvements were

demonstrated using Ocean Studio‘s scenario designer and debugging output from the embedded

Ocean RI.

9.2 Directions for Future Research

As described throughout this dissertation, Ocean represents a preliminary approach for enabling

Web-scale context-aware computing. Notably, Ocean‘s conceptual foundations and practical

infrastructure design co-opt existing context-sources, network infrastructure and distributed

middleware. As such, Ocean‘s intentionally broad focus provides a variety of opportunities for future

research. First, as described in section 5.3, the Ocean Registry requires a highly scalable software

architecture to support Ocean‘s Web-scale focus. Although Ocean‘s application model addresses

distributed component scalability and independent deployment through an extension of conventional

Web architecture, Resource contextualization and discovery are currently reliant on the federated

Ocean Registry architecture presented in section 5.3.1. During the presentation of this architecture

(see section 6.3.2), we identified several promising technical foundations for developing large-scale

version of the Ocean infrastructure. Examples of these foundations include the Hadoop Map Reduce

implementation, HDFS, Amazon EC2 architecture, etc. However, aside from the two Ocean reference

implementations created to validate core aspects of the Ocean approach, large-scale Ocean

architecture designs have not yet been developed or validated. Towards this end, an exploration of

high performance and alternative architectures (e.g. those based on peer-to-peer models) represents an

important area for future investigations.

Related to the Ocean Registry, effective Resource contextualization and discovery are contingent

upon the contribution of a broad range of real-world Context Handlers. As discussed in section 4.3.3,

the development of Context Handlers is often highly complex and domain-specific. Importantly, such

complexity often necessitates participation by external Context Experts as a means of capturing the

subtle semantics of a given context domain. Hence, the development and integration of a variety of

real-world Context Handlers remains an important area of exploration in Ocean. Related, the JCP was

identified as a suitable conceptual framework for the controlled contribution of Context Handlers

within the Ocean Registry. Towards this end, a preliminary community-based Context Handler

contribution approach was presented in section 5.5; however, this contribution model has not been

fully implemented or evaluated in real-world scenarios. Hence, an important area of future work is the

elaboration of the Context Handler contribution process and the development of related infrastructure.

Importantly, developed contribution models must promote Context Expert participation while

simultaneously shielding the Ocean Registry from poorly engineered Context Handler

implementations.

9.2 Directions for Future Research

203

As described in Chapter 6, Context Handler indexing, persistence and similarity modeling represent

critical aspects of the Ocean Registry. In our current Ocean RI versions, object-based database

techniques are used to accommodate CR persistence and indexing based on General Metadata;

however, complex indexing based on Context Metadata is largely unexplored at present. As such,

Ocean‘s Persistence and Discovery Frameworks represent important areas for future work. Regarding

the Persistence Framework, notable focus areas include the development of real-world indexing

techniques for Context Metadata; investigations into suitable data models; and an exploration of

efficient means for processing large numbers of resource-intensive indexing tasks. Regarding the

Discovery Framework, notable focus areas include the identification and extension of additional

similarity search algorithms; further elaboration of the Context Metadata abstraction with regard to

MFSS; validation using heterogeneous Context Handler implementations; and the development of

query optimization techniques.

As discussed in section 7.2, Ocean‘s context-aware query expansion approach is designed to

improve Discovery Results using supplemental query terms modeled from incoming Discovery

Requests provided by the Ocean application community. Ocean‘s Association Discovery Framework

(ADF) was used to validate techniques for automatic ContextAssociation discovery using domain-

specific mechanisms provided by Context Experts. In both the server-based and embedded Ocean RIs,

preliminary versions of the ADF included basic support for ContextAssociation extraction,

persistence, merging and discovery; however, ADF functionality such as ContextAssociation

pruning and complex merging have not been explored. Further, as the number of

ContextAssociation objects increases within the Context Association Manager‘s data store, efficient

ContextAssociation discovery becomes a concern for rapid query processing. In this regard, section

7.2.4 suggested that ContextAssociation indexing could take advantage of the IndexManager

interface previously described; however, this approach remains unexplored at present. Related, Ocean

provides a Recommender Engine designed to support Resource personalization based on a variety of

recommender algorithms. At present, Ocean‘s Recommender Engine has been validated using the

SlopeOne algorithm (see section 7.3.3); however, investigations of other recommender algorithms are

still needed (along with analyses of related performance characteristics and persistence requirements).

Finally, the development of Ocean application scenarios represents a broad area of future research.

As described, Ocean is designed to support the emergence of new classes of context-aware Web

applications capable of in-situ, cross-domain component discovery and interoperation. As with any

generalized computing approach, forecasting successful application domains is often a futile exercise

from the perspective of the infrastructure. Indeed, the most innovative applications will likely be

uncovered by intrepid developers who understand the possibilities of the generalized Ocean approach

with regard to the subtle details of a specific problem domain. As previously discussed, the challenge

of addressing such application domains is predicated on interrelated contributions from a wide variety

of Context Experts, Contextualizers and Application Developers; however, we suggest that Ocean‘s

community-centric design provides a first step towards Web-scale context-aware computing.

204

References

1. Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R. and Pinkerton, M. Cyberguide:

A Mobile Context-Aware Tour Guide. Wireless Networks, 3 (5), 421-433, 1997.

2. Adams, N., Gold, R., Schilit, B.N., Tso, M.M. and Want, R. An Infrared Network for Mobile

Computers. Mobile & Location-Independent Computing Symposium on Mobile & Location-

Independent Computing Symposium, Cambridge, Massachusetts, USA, USENIX

Association, 1993.

3. Ahmed, R., Boutaba, R., Iraqi, Y., Li, T., Limam, N., Xiao, J. and Ziembicki, J. Resource and

Service Discovery in Large-Scale Multi-Domain Networks. IEEE Communications Surveys &

Tutorials, 9 (4), 2-30, 2007.

4. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A. and Verma, K.

Web Service Semantics (WSDL-S). Retrieved from http://www.w3.org/Submission/WSDL-

S/

5. Akman, V. and Surav, M. The Use of Situation Theory in Context Modeling. Computational

Intelligence, 13, 427-438, 1997.

6. Alvestrand, H. Tags for the Identification of Languages (RFC: 3066). Retrieved from

http://www.ietf.org/rfc/rfc3066.txt

7. Amazon Web Services. Authenticating REST Requests. Retrieved from

http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAuthentication.html

8. Ames, M. and Naaman, M. Why We Tag: Motivations for Annotation in Mobile and Online

Media. In Proceeding of the SIGCHI Conference on Human Factors in Computing Systems,

pp. 971-980, ACM Press, New York, NY, USA, 2007.

9. Anderson, D.P. Boinc: A System for Public-Resource Computing and Storage. In

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pp. 4-10,

IEEE Computer Society, 2004.

10. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M. and Werthimer, D. Seti@Home an

Experiment in Public-Resource Computing. Communications of the ACM, 45 (11), 56-61,

2002.

11. Arsanjani, A., Curbera, F. and Mukhi, N. Manners Externalize Semantics for on-Demand

Composition of Context-Aware Services. In Proceedings of the IEEE International

Conference on Web Services, ICWS'04, p. 583, IEEE Computer Society, 2004.

12. Attar, R. and Fraenkel, A.S. Local Feedback in Full-Text Retrieval Systems. Journal of the

ACM, 24 (3), 397-417, 1977.

13. Attiya, H. and Welch, J. Distributed Computing: Fundamentals, Simulations, and Advanced

Topics. John Wiley & Sons Inc., Hoboken, New Jersey, USA, 2004.

14. Atzeni, P., Catarci, T. and Pernici, B. Mais: Multichannel Adaptive Information Systems.

World Wide Web, 10 (4), 345-347, 2007.

15. Avery, C. and Zeckhauser, R. Recommender Systems for Evaluating Computer Messages.

Communications of the ACM, 40 (3), 88-89, 1997.

16. Bacon, J., Bates, J. and Halls, D. Location-Oriented Multimedia. IEEE Personal

Communications, 4 (5), 48-57, 1997.

17. Bada, M., Turi, D., McEntire, R. and Stevens, R. Using Reasoning to Guide Annotation with

Gene Ontology Terms in Goat. ACM SIGMOD Record, 33 (2), 27-32, 2004.

18. Baeza-Yates, R.A., Cunto, W., Manber, U. and Wu, S. Proximity Matching Using Fixed-

Queries Trees. 5th Annual Symposium on Combinatorial Pattern Matching, Springer-Verlag,

1994.

19. Bahl, P. and Padmanabhan, V.N. Radar: An in-Building Rf-Based User Location and

Tracking System. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer

and Communications Societies, INFOCOM 2000, pp. 775-784, IEEE Computer Society,

2000.

20. Balabanovi, M. and Shoham, Y. Fab: Content-Based, Collaborative Recommendation.

Communications of the ACM, 40 (3), 66-72, 1997.

205

21. Baldauf, M., Dustdar, S. and Rosenberg, F. A Survey on Context-Aware Systems.

International Journal of Ad Hoc and Ubiquitous Computing, 2 (4), 263-277, 2007.

22. Bani-Ahmad, S., Cakmak, A., Özsoyoglu, G. and Al-Hamdani, A. Evaluating Publication

Similarity Measures. IEEE Data Engineering Bulletin, 28 (4), 21-28, 2005.

23. Bardram, J.E. The Java Context Awareness Framework (Jcaf) – a Service Infrastructure and

Programming Framework for Context-Aware Applications. Pervasive 2005, Munich,

Germany, 2005.

24. Barros, A.P. and Dumas, M. The Rise of Web Service Ecosystems. IT Professional, 8 (5), 31-

37, 2006.

25. Bauer, J. Identification and Modeling of Contexts for Different Information Scenarios in Air

Traffic. Diplomarbeit, 2003.

26. Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T., Lovering, B., Roe, B., John, C.S., Simonnet,

G., Walter, D., Weast, J., Yarmosh, Y. and Yendluri, P. Web Services Dynamic Discovery

(Ws-Discovery Draft). Schlimmer, J. (Ed.), 2005.

27. Becla, J. and Wang, D.L. Lessons Learned from Managing a Petabyte. In Second Biennial

Conference on Innovative Data Systems Research (CDIR 2005), pp. 70-83, 2005.

28. Beigl, M., Gellersen, H.W. and Schmidt, A. Mediacups: Experience with Design and Use of

Computer-Augmented Everyday Artefacts. Computer Networks: The International Journal of

Computer and Telecommunications Networking, 35 (4), 401-409, 2001.

29. Belotti, R., Decurtins, C., Norrie, M.C. and Python, E. A Context-Aware Component Registry

for Ubiquitous and Mobile Applications. Workshop on Ubiquitous Mobile Information and

Collaboration Systems, UMICS'05, Porto, Portugal, 2005.

30. Berners-Lee, T. Axioms of Web Architecture: Metadata. Retrieved from

http://www.w3.org/DesignIssues/Metadata.html

31. Berners-Lee, T. The Enquire System Short Description. Retrieved from

http://infomesh.net/2001/enquire/manual/

32. Berners-Lee, T. Web Architecture from 50,000 Feet. Retrieved from

http://www.w3.org/DesignIssues/Architecture.html

33. Berners-Lee, T. The World Wide Web: Past, Present and Future. IEEE Computer, 29 (10),

69-77, 1996.

34. Berners-Lee, T., Fielding, R. and Masinter, L. RFC: 3986 - Uniform Resource Identifier

(URI): Generic Syntax. Retrieved from http://tools.ietf.org/html/rfc3986

35. Berry, M.W., Dumais, S.T. and O'Brien, G.W. Using Linear Algebra for Intelligent

Information Retrieval. SIAM Review, 37 (4), 573-595, 1995.

36. Bershad, B.N., Anderson, T.E., Lazowska, E.D. and Levy, H.M. User-Level Interprocess

Communication for Shared Memory Multiprocessors. ACM Transactions on Computer

Systems (TOCS), 9 (2), 175-198, 1991.

37. Blackstock, M., Lea, R. and Krasic, C. Toward Wide Area Interaction with Ubiquitous

Computing Environments. Smart Sensing and Context, pp. 113-127, Springer

Berlin/Heidelberg, 2006.

38. Bondi, A.B. Characteristics of Scalability and Their Impact on Performance. 2nd International

Workshop on Software and Performance, Ottawa, Ontario, Canada, ACM Press, New York,

NY, USA, 2000.

39. Boriah, S., Chandola, V. and Kumar, V. Similarity Measures for Categorical Data: A

Comparative Evaluation. Society for Industrial and Applied Mathematics, SIAM Data Mining

Conference, Atlanta, GA, USA, 2008.

40. Bouzy, B. and Cazenave, T. Using the Object Oriented Paradigm to Model Context in

Computer Go. The First International and Interdisciplinary Conference on Modeling and

Using Context, Context‘97, Rio de Janeiro, Brasil, 1997.

41. Breese, J.S., Heckerman, D. and Kadie, C. Empirical Analysis of Predictive Algorithms for

Collaborative Filtering. The Fourteenth Conference on Uncertainty in Artificial Intelligence,

UAI-98, San Francisco, USA, 43-52, 1998.

42. Brown, P.J., Bovey, J.D. and Chen, X. Context-Aware Applications: From the Laboratory to

the Marketplace. IEEE Personal Communications, 4 (5), 58-64, 1997.

206

43. Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S.A. Easyliving: Technologies for

Intelligent Environments. In Proceedings of the 2nd international symposium on Handheld

and Ubiquitous Computing, pp. 12-29, Springer-Verlag, 2000.

44. Buschmann, F., Henney, K. and Schmidt, D.C. Pattern-Oriented Software Architecture

Volume 4: A Pattern Language for Distributed Computing. Wiley & Sons, 2007.

45. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. Pattern-Oriented

Software Architecture Volume 1: A System of Patterns. Wiley, 1996.

46. Bustos, B. and Skopal, T. Dynamic Similarity Search in Multi-Metric Spaces. 8th ACM

international Workshop on Multimedia Information Retrieval, Santa Barbara, California,

USA, ACM Press, New York, NY, USA, 2006.

47. Byrne, D., Lavelle, B., Doherty, A., Jones, G.J. and Smeaton, A.F. Using Bluetooth and GPS

Metadata to Measure Event Similarity in Sensecam Images. 5th International Conference on

Intelligent Multimedia and Ambient Intelligence, IMAI'07, Salt Lake City, USA, 2007.

48. C. Traina Jr., Traina, A.J.M., Seeger, B. and Faloutsos, C. Slim-Trees: High Performance

Metric Trees Minimizing Overlap between Nodes. In Proceedings of the 7th International

Conference on Extending Database Technology: Advances in Database Technology, pp. 51-

65, Springer-Verlag, 2000.

49. Carlson, D.V. Aladin: An Extensible Ubiquitous Computing Infrastructure. Master's thesis,

University of Luebeck, 2005.

50. Carlson, D.V., Schrader, A. and Busch, D. Modular Framework Support for Context-Aware

Mobile Cinema. Personal and Ubiquitous Computing, 12 (4), 299-306, 2008.

51. Carpineto, C., de-Mori, R., Romano, G. and Bigi, B. An Information-Theoretic Approach to

Automatic Query Expansion. ACM Transactions on Information Systems, TOIS, 19 (1), 1-27,

2001.

52. Carpineto, C. and Romano, G. Effective Reformulation of Boolean Queries with Concept

Lattices. 3rd International Conference on Flexible Query Answering Systems, Springer-

Verlag, 1998.

53. Carpineto, C. and Romano, G. Order-Theoretical Ranking. Journal of the American Society

for Information Science, 51 (7), 587-601, 2000.

54. Carson, S.D. A System for Adaptive Disk Rearrangement. Software—Practice & Experience,

20 (3), 225-242, 1990.

55. Çelik, T. The Microformat Geo Standard. Retrieved from http://microformats.org/wiki/geo

56. Cerf, V.G. and Kahn, R.E. A Protocol for Packet Network Interconnections. IEEE

Transactions on Communications, 22 (5), 637–648, 1974.

57. Chakrabarti, K. and Mehrotra, S. The Hybrid Tree: An Index Structure for High Dimensional

Feature Spaces. In Proceedings of the 15th International Conference on Data Engineering, p.

440, IEEE Computer Society, 1999.

58. Chakrabarti, K. and Mehrotra, S. Local Dimensionality Reduction: A New Approach to

Indexing High Dimensional Spaces. In Proceedings of the 26th International Conference on

Very Large Data Bases, pp. 89-100, Morgan Kaufmann Publishers Inc., 2000.

59. Chakraborty, D., Perich, F., Avancha, S. and Joshi, A. Dreggie: Semantic Service Discovery

for M-Commerce Applications. Workshop on Reliable and Secure Applications in Mobile

Environments at the 20th Symposium on Reliable Distributed Systems, New Orleans, USA,

2001.

60. Chaudhuri, S. and Gravano, L. Optimizing Queries over Multimedia Repositories. ACM

SIGMOD Record, 25 (2), 91-102, 1996.

61. Chávez, E., Navarro, G., Baeza-Yates, R. and Marroquín, J.L. Searching in Metric Spaces.

ACM Computing Surveys, CSUR, 33 (3), 273-321, 2001.

62. Chen, G. and Kotz, D. A Survey of Context-Aware Mobile Computing Research. Dartmouth

College, 2000.

63. Chen, G., Li, M. and Kotz, D. Design and Implementation of a Large-Scale Context Fusion

Network. First Annual International Conference on Mobile and Ubiquitous Systems:

Networking and Services, MOBIQUITOUS 2004, Boston, Massachusetts, USA, 2004.

207

64. Chen, H., Finin, T. and Joshi, A. Semantic Web in the Context Broker Architecture. In

Proceedings of the 2nd IEEE International Conference on Pervasive Computing and

Communications, PerCom'04, p. 277, IEEE Computer Society, 2004.

65. Chen, H., Perich, F., Finin, T. and Joshi, A. Soupa: Standard Ontology for Ubiquitous and

Pervasive Applications In Proceedings of the 1st International Conference on Mobile and

Ubiquitous Systems: Networking and Services, pp. 258-267, IEEE Computer Society, 2004.

66. Chen, M.Y., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J., Hughes, J., Lamarca, A.,

Potter, F., Smith, I. and Varshavsky, A. Practical Metropolitan-Scale Positioning for Gsm

Phones. 8th International Conference of Ubiquitous Computing, UbiComp 2006, California,

USA, 2006.

67. Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. Web Services Description

Language (WSDL) 1.1. Retrieved from http://www.w3.org/TR/wsdl

68. Ciaccia, P., Patella, M. and Zezula, P. M-Tree: An Efficient Access Method for Similarity

Search in Metric Spaces. In Proceedings of the 23rd International Conference on Very Large

Data Bases, pp. 426-435, Morgan Kaufmann Publishers Inc., 1997.

69. Clarkson, K.L. A Randomized Algorithm for Closest-Point Queries. SIAM Journal on

Computing, 17 (4), 830-847, 1988.

70. Cohen, N.H., Purakayastha, A., Wong, L. and Yeh, D.L. Iqueue: A Pervasive Data

Composition Framework. In Proceedings of the 3rd International Conference on Mobile Data

Management, p. 146, IEEE Computer Society, 2002.

71. Cooper, J.W. and Byrd, R.J. Lexical Navigation: Visually Prompted Query Expansion and

Refinement. In Proceedings of the 2nd ACM International Conference on Digital Libraries,

pp. 237-246, ACM Press, New York, NY, USA, 1997.

72. Costa, A.T., Endler, M. and Cerqueira, R. Evaluation of Three Approaches for Corba

Firewall/Nat Traversal. International Symposium on Distributed Objects and Applications,

DOA'05, Agia Napa, Cyprus, 2005.

73. Costa, C.A.d., Yamin, A.C. and Geyer, C.F.R. Toward a General Software Infrastructure for

Ubiquitous Computing. IEEE Pervasive Computing, 7 (1), 64-73, 2008.

74. Coulouris, G., Dollimore, J. and Kindberg, T. Distributed Systems: Concepts and Design.

Addison-Wesley Longman Publishing Company Inc., 1988.

75. Cox, S. Dcmi Point Encoding Scheme: A Point Location in Space, and Methods for Encoding

This in a Text String. Retrieved from http://dublincore.org/documents/dcmi-point/

76. Crockford, D. RFC: 4627 - the Application/Json Media Type for Javascript Object Notation.

Retrieved from http://tools.ietf.org/html/rfc4627

77. Croft, W.B. and Harper, D.J. Using Probabilistic Models of Document Retrieval without

Relevance Information. Readings in Information Retrieval, pp. 339-344, Morgan Kaufmann

Publishers Inc., 1997.

78. Davies, N., Cheverst, K., Mitchell, K. and Efrat, A. Using and Determining Location in a

Context-Sensitive Tour Guide. Computer, 34 (8), 35-41, 2001.

79. Davies, N. and Gellersen, H.-W. Beyond Prototypes: Challenges in Deploying Ubiquitous

Systems. Pervasive Computing, 1 (1), 26 - 35, 2002.

80. Dawson, F. and Howes, T. RFC: 2426 - Vcard Mime Directory Profile. Retrieved from

http://tools.ietf.org/html/rfc2426

81. Dawson, F. and Stenerson, D. Internet Calendaring and Scheduling Core Object Specification

(RFC: 2445). Retrieved from http://tools.ietf.org/html/rfc2445

82. DCMI. Dublin Core Metadata Initiative. Retrieved from http://dublincore.org/

83. DCMI. Using Dublin Core. Retrieved from http://dublincore.org/documents/usageguide/

84. Dean, J. and Ghemawat, S. Mapreduce: Simplified Data Processing on Large Clusters.

Communications of the ACM, 51 (1), 107-113, 2008.

85. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K. and Harshman, R. Indexing by

Latent Semantic Analysis. Journal of the American Society for Information Science, 41 (6),

391-407, 1990.

86. Deshpande, M. and Karypis, G. Item-Based Top-N Recommendation Algorithms. ACM

Transactions on Information Systems, TOIS, 22 (1), 143-177, 2004.

208

87. Devlin, K. Situation Theory and Situation Semantics. Handbook of the History of Logic

(Logic and the Modalities in the Twentieth Century), 7, 601-664, 2006.

88. Dey, A.K. Context-Aware Computing: The Cyberdesk Project. The AAAI 98 Spring

Symposium on Intelligent Environments, Menlo Park, CA, USA, AAAI Press, 1998.

89. Dey, A.K. and Abowd, G.D. Towards a Better Understanding of Context and Context-

Awareness. The Workshop on The What, Who, Where, When, and How of Context-

Awareness, as part of the 2000 Conference on Human Factors in Computing Systems, The

Hague, The Netherlands, 2000.

90. Ding, J., Gravano, L. and Shivakumar, N. Computing Geographical Scopes of Web

Resources. In Proceedings of the 26th International Conference on Very Large Data Bases,

pp. 545-556, Morgan Kaufmann Publishers Inc., 2000.

91. Ding, Z., Eren, M., Jia, L., Giles, C.L. and Hongyuan, Z. Probabilistic Models for

Discovering E-Communities. In Proceedings of the 15th international conference on World

Wide Web, pp. 173-182, ACM Press, New York, NY, USA, 2006.

92. Domshlak, C. and Roitman, H. Rank Aggregation for Automatic Schema Matching. IEEE

Transactions on Knowledge and Data Engineering, 19 (4), 538-553, 2007.

93. Doulkeridis, C., Valavanis, E. and Vazirgiannis, M. Towards a Context-Aware Service

Directory. In Proceedings of the 4th VLDB Workshop on Technologies on E-Services,

TES’03, pp. 54-65, North-Holland, 2003.

94. Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P. and Tomkins, A. Visualizing

Tags over Time. In Proceedings of the 15th International Conference on World Wide Web,

pp. 193-202, ACM Press, New York, NY, USA, 2006.

95. Edwards, W.K. and Grinter, R.E. At Home with Ubiquitous Computing: Seven Challenges. In

Proceedings of the 3rd international conference on Ubiquitous Computing, pp. 256-272,

Springer-Verlag, 2001.

96. Edwards, W.K., Newman, M.W., Sedivy, J., Smith, T. and Izadi, S. Challenge: Recombinant

Computing and the Speakeasy Approach. In Proceedings of the 8th Annual International

Conference on Mobile Computing and Networking, pp. 279-286, ACM Press, New York, NY,

USA, 2002.

97. Endres, C., Butz, A. and MacWilliams, A. A Survey of Software Infrastructures and

Frameworks for Ubiquitous Computing. Mobile Information Systems, 1 (1), 41-80, 2005.

98. EPCglobal Inc. Epcglobal Tag Data Standards Version 1.4. 2008.

99. Evgeniy, G., Susan, D. and Eric, H. Newsjunkie: Providing Personalized Newsfeeds Via

Analysis of Information Novelty. In Proceedings of the 13th International Conference on

World Wide Web, pp. 482-490, ACM Press, New York, NY, USA, 2004.

100. Fagin, R. Combining Fuzzy Information from Multiple Systems. Journal of Computer and

System Sciences, 58 (1), 83-99, 1999.

101. Fagin, R. Combining Fuzzy Information: An Overview. ACM SIGMOD Record, 31 (2), 109-

118, 2002.

102. Fagin, R., Lotem, A. and Naor, M. Optimal Aggregation Algorithms for Middleware. In

Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, pp. 102-113, ACM Press, New York, NY, USA, 2001.

103. Fickas, S., Kortuem, G. and Segall, Z. Software Organization for Dynamic and Adaptable

Wearable Systems. In Proceedings of the 1st IEEE International Symposium on Wearable

Computers, p. 56, IEEE Computer Society, 1997.

104. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee, T.

Hypertext Transfer Protocol -- Http/1.1. The Internet Engineering Task Force, 1999.

105. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures.

PhD Thesis, University of California, Irvine, 2000.

106. Fielding, R.T. and Taylor, R.N. Principled Design of the Modern Web Architecture. ACM

Transactions on Internet Technology, 2 (2), 115–150, 2002.

107. Filho, R.F.S., Traina, A., Jr., C.T. and Faloutsos, C. Similarity Search without Tears: The

Omni-Family of All-Purpose Access Methods. In Proceedings of the 17th International

Conference on Data Engineering, p. 623, IEEE Computer Society, 2001.

209

108. Flinn, J. and Satyanarayanan, M. Energy-Aware Adaptation for Mobile Applications. ACM

SIGOPS Operating Systems Review, 33 (5), 48-63, 1999.

109. Forman, G.H. and Zahorjan, J. The Challenges of Mobile Computing. Computer, 27 (4), 38-

47, 1994.

110. Fowler, M. and Scott, K. Uml Distilled: A Brief Guide to the Standard Object Modeling

Language (2nd Edition). Addison-Wesley Longman Publishing Company Inc., 2000.

111. Fox, A., Johanson, B., Hanrahan, P. and Winograd, T. Integrating Information Appliances

into an Interactive Workspace. IEEE Computer Graphics and Applications, 20 (3), 54-65,

2000.

112. Frei, A. and Alonso, G. A Dynamic Lightweight Platform for Ad-Hoc Infrastructures. In

Proceedings of the Third IEEE International Conference on Pervasive Computing and

Communications, pp. 373-382, IEEE Computer Society, 2005.

113. Furnas, G.W., Landauer, T.K., Gomez, L.M. and Dumais, S.T. The Vocabulary Problem in

Human-System Communication. Communications of the ACM, 30 (11), 964-971, 1987.

114. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.M. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional, 1994.

115. Garlan, D., Allen, R. and Ockerbloom, J. Architectural Mismatch or Why It's Hard to Build

Systems out of Existing Parts. In Proceedings of the 17th International Conference on

Software Engineering, pp. 179-185, ACM Press, New York, NY, USA, 1995.

116. Garlan, D., Siewiorek, D., Smailagic, A. and Steenkiste, P. Project Aura: Toward Distraction-

Free Pervasive Computing. IEEE Pervasive Computing, 1 (2), 22-31, 2002.

117. Geihs, K. Middleware Challenges Ahead. Computer, 34 (6), 24-31, 2001.

118. Ghemawat, S., Gobioff, H. and Leung, S.-T. The Google File System. ACM SIGOPS

Operating Systems Review, 37 (5), 29-43, 2003.

119. Ghidini, C. and Giunchiglia, F. Local Models Semantics, or Contextual Reasoning = Locality

+ Compatibility. Artificial Intelligence, 127 (2), 221-259, 2001.

120. Ghosh, S. Distributed Systems: An Algorithmic Approach. CRC Press, 2006.

121. Glassey, R., Stevenson, G., Richmond, M., Nixon, P., Terzis, S., Wang, F. and Ferguson, I.

Towards a Middleware for Generalised Context Management. The First International

Workshop on Middleware for Pervasive and Ad Hoc Computing at Middleware 2003, Rio de

Janeiro, Brazil, 2003.

122. Gokhale, A. and Schmidt, D.C. Evaluating the Performance of Demultiplexing Strategies for

Real-Time Corba. IEEE Global Telecommunications Conference, GLOBECOM '97, Phoenix,

Arizona, USA, IEEE Computer Society, 1997.

123. Golder, S. and Huberman, B.A. Usage Patterns of Collaborative Tagging Systems. Journal of

Information Science, 32 (2), 198-208, 2006.

124. Goldstein, J. and Ramakrishnan, R. Contrast Plots and P-Sphere Trees: Space Vs. Time in

Nearest Neighbour Searches. In Proceedings of the 26th International Conference on Very

Large Data Bases, pp. 429-440, Morgan Kaufmann Publishers Inc., 2000.

125. Goldstone, R.L. and Son, J.Y. Respects for Similarity. Psychological Review, 100 (2), 254-

278, 1993.

126. Grace, P., Blair, G.S. and Samuel, S. A Reflective Framework for Discovery and Interaction

in Heterogeneous Mobile Environments. ACM SIGMOBILE Mobile Computing and

Communications Review, 9 (1), 2-14, 2005.

127. Gray, P.D. and Salber, D. Modelling and Using Sensed Context Information in the Design of

Interactive Applications. In Proceedings of the 8th IFIP International Conference on

Engineering for Human-Computer Interaction, pp. 317-336, Springer-Verlag, 2001.

128. Griffin, E. Foundations of Popfly: Rapid Mashup Development. Apress Inc., 2008.

129. Griswold, W.G., Boyer, R., Brown, S.W. and Truong, T.M. A Component Architecture for an

Extensible, Highly Integrated Context-Aware Computing Infrastructure. In Proceedings of the

25th International Conference on Software Engineering, pp. 363-372, IEEE Computer

Society, 2003.

210

130. Güntzer, U., Balke, W.-T. and Kießling, W. Optimizing Multi-Feature Queries for Image

Databases. In Proceedings of the 26th International Conference on Very Large Data Bases,

pp. 419-428, Morgan Kaufmann Publishers Inc., 2000.

131. Güntzer, U., Balke, W.-T. and Kießling, W. Towards Efficient Multi-Feature Queries in

Heterogeneous Environments. In Proceedings of the International Conference on Information

Technology: Coding and Computing, p. 622, IEEE Computer Society, 2001.

132. Gunther, B.K. Multithreading with Distributed Functional Units. IEEE Transactions on

Computers, 46 (4), 399-411, 1997.

133. Guo, S. and Yang, O.W.W. Energy-Aware Multicasting in Wireless Ad Hoc Networks: A

Survey and Discussion. Computer Communications, 30 (9), 2129-2148, 2007.

134. Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of

the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47-57, ACM

Press, New York, NY, USA, 1984.

135. Guttman, E., Perkins, C., Veizades, J. and Day, M. RFC: 2608 - Service Location Protocol,

Version 2. Retrieved from http://tools.ietf.org/html/rfc2608

136. Guttman, E., Perkins, C., Veizades, J. and Day, M. Service Location Protocol, Version 2

(RFC: 2608). Retrieved from http://www.ietf.org/rfc/rfc2608.txt

137. Hadley, M.J. Web Application Description Language (WADL). Retrieved from

https://wadl.dev.java.net/wadl20061109.pdf

138. Handschuh, S. and Staab, S. Authoring and Annotation of Web Pages in Cream. In

Proceedings of the 11th International Conference on World Wide Web, pp. 462-473, ACM

Press, New York, NY, USA, 2002.

139. Hansen, F.A., Bouvin, N.O., Christensen, B.G., Grønbæk, K., Pedersen, T.B. and Gagach, J.

Integrating the Web and the World: Contextual Trails on the Move. In Proceedings of the

Fifteenth ACM Conference on Hypertext and Hypermedia, pp. 98-107, ACM Press, New

York, NY, USA, 2004.

140. Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P. The Anatomy of a Context-

Aware Application. In ACM Mobile Computing and Networking, pp. 187-197, Kluwer

Academic Publishers, Hingham, MA, USA, 1999.

141. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G. and Bannister, J.

Census and Survey of the Visible Internet. In Proceedings of the 8th ACM SIGCOMM

Conference on Internet Measurement, pp. 169-182, ACM Press, New York, NY, USA, 2008.

142. Held, A., Buchholz, S. and Schill, A. Modeling of Context Information for Pervasive

Computing Applications. 6th World Multiconference on Systemics, Cybernetics and

Informatics, SCI '02, Orlando, Florida, USA, 2002.

143. Hellerstein, J.M., Naughton, J.F. and Pfeffer, A. Generalized Search Trees for Database

Systems. In Proceedings of the 21th International Conference on Very Large Data Bases, pp.

562-573, Morgan Kaufmann Publishers Inc., 1995.

144. Henning, M. The Rise and Fall of Corba. Communications of the ACM, 51 (8), 52-57, 2008.

145. Henricksen, K. A Framework for Context-Aware Pervasive Computing Applications. PhD

Thesis, School of Information Technology and Electrical Engineering, The University of

Queensland, 2004.

146. Henricksen, K. and Indulska, J. Modelling and Using Imperfect Context Information. In

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and

Communications Workshops, p. 33, IEEE Computer Society, 2004.

147. Henricksen, K., Indulska, J., McFadden, T. and Balasubramaniam, S. Middleware for

Distributed Context-Aware Systems. International Symposium on Distributed Objects and

Applications, DOA Agia Napa, Cyprus, 2005.

148. Heumer, G., Carlson, D., Kaligiri, S.H., Maheshwari, S., Ul, H.-W., Jung, B. and Schrader, A.

Paranoia Syndrome – a Location Based Pervasive Multiplayer Game Using PDAs, RFID, and

Tangible Objects. Third International Workshop on Pervasive Gaming Applications,

PerGames 2006, Dublin, Ireland, 2006.

149. Hightower, J. and Borriello, G. A Survey and Taxonomy of Location Systems for Ubiquitous

Computing. Computer, 34 (8), 57-66, 2001.

211

150. Hightower, J., Consolvo, S., LaMarca, A., Smith, I. and Hughes, J. Learning and Recognizing

the Places We Go. 7th International Conference, UbiComp 2005, Tokyo, Japan, Springer

Berlin/Heidelberg, 2005.

151. Hightower, J., LaMarca, A. and Smith, I.E. Practical Lessons from Placelab. IEEE Pervasive

Computing, 5 (3), 32-39, 2006.

152. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J. and Retschitzegger,

W. Context-Awareness on Mobile Devices - the Hydrogen Approach. In Proceedings of the

36th Annual Hawaii International Conference on System Sciences, HICSS'03, p. 292.291,

IEEE Computer Society, 2003.

153. Hunter, J., Khan, I. and Gerber, A. Harvana: Harvesting Community Tags to Enrich

Collection Metadata. In Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital

Libraries, pp. 147-156, ACM Press, New York, NY, USA, 2008.

154. IBM Corporation. Mqseries Version 5.1 Administration and Programming Examples, Ibm

Redbooks. 1999.

155. IBM Corporation. Websphere Service Registry and Repository. Retrieved from http://www-

01.ibm.com/software/integration/wsrr/

156. IEEE Computer Society. IEEE Recommended Practice for Software Requirements

Specifications. Retrieved from

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=15571&arnumber=720574&count=1

&index=0

157. Indulska, J. and Sutton, P. Location Management in Pervasive Systems. In Proceedings of the

Australasian Information Security Workshop Conference on ACSW Frontiers 2003 - Volume

21, pp. 143-151, Australian Computer Society Inc., 2003.

158. Indyk, P. Dimensionality Reduction Techniques for Proximity Problems. In Proceedings of

the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 371-378, Society for

Industrial and Applied Mathematics, 2000.

159. Indyk, P. High-Dimensional Computational Geometry. PhD Thesis, Stanford University,

2001.

160. Indyk, P. Nearest Neighbors in High-Dimensional Spaces. Handbook of Discrete and

Computational Geometry (2nd Edition), Goodman, J.E. and O'Rourke, J. (Eds.), Chapman &

Hall, 2004.

161. Indyk, P. and Motwani, R. Approximate Nearest Neighbors: Towards Removing the Curse of

Dimensionality. In Proceedings of the 13th Annual ACM Symposium on Theory of

Computing, pp. 604-613, ACM Press, New York, NY, USA, 1998.

162. International Organization for Standardization (ISO). ISO/IEC Standard on UPNP Device

Architecture Makes Networking Simple and Easy. Retrieved from

http://www.iso.org/iso/pressrelease.htm?refid=Ref1185

163. International Organization for Standardization (ISO). Mpeg Video Technologies -- Part 1:

Accuracy Requirements for Implementation of Integer-Output 8x8 Inverse Discrete Cosine

Transform (ISO/IEC 23002-1:2006). Retrieved from

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42030

164. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C. and Zhang, R. Idistance: An Adaptive B+-Tree

Based Indexing Method for Nearest Neighbor Search. ACM Transactions on Database

Systems, TODS, 30 (2), 364-397, 2005.

165. Järvelin, K. and Kekäläinen, J. Ir Evaluation Methods for Retrieving Highly Relevant

Documents. In Proceedings of the 23rd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 41-48, ACM Press, New York, NY,

USA, 2000.

166. Java Community Process (JCP). General JCP Questions (FAQ). Retrieved from

http://www.jcp.org/en/introduction/faq

167. Java Community Process (JCP). JCP 2: Process Document. Retrieved from

http://jcp.org/en/procedures/jcp2

168. Jernigan, C., Bayley, C., Lin, J. and Wright, C. The Locale Project Homepage. Retrieved

from http://code.google.com/android/adc_gallery/app.html?id=25

212

169. Jeronimo, M. and Weast, J. UPNP Design by Example: A Software Developer's Guide to

Universal Plug and Play. Intel Press, 2003.

170. Jhingran, A. Enterprise Information Mashups: Integrating Information, Simply. In

Proceedings of the 32nd International Conference on Very Large Databases, pp. 3-4, VLDB

Endowment, 2006.

171. Jiang, X. and Landay, J.A. Modeling Privacy Control in Context-Aware Systems. IEEE

Pervasive Computing, 1 (3), 59-63, 2002.

172. Jolliffe, I.T. Principal Component Analysis. Springer-Verlag, 2002.

173. Judd, G. and Steenkiste, P. Providing Contextual Information to Pervasive Computing

Applications. In Proceedings of the First IEEE International Conference on Pervasive

Computing and Communications, p. 133, IEEE Computer Society, 2003.

174. Keidl, M. and Kemper, A. A Framework for Context-Aware Adaptable Web Services. In

Proceedings of the 9th International Conference on Extending Database Technology, pp.

635-636, Springer, 2004.

175. Keidl, M. and Kemper, A. Towards Context-Aware Adaptable Web Services. In Proceedings

of the 13th International World Wide Web Conference on Alternate Track Papers & Posters,

pp. 55-65, ACM Press, New York, NY, USA, 2004.

176. Kendall, S.C., Waldo, J., Wollrath, A. and Wyant, G. A Note on Distributed Computing. Sun

Microsystems Inc., 1994.

177. Kim, C. and Kim, J. A Recommendation Algorithm Using Multi-Level Association Rules. In

Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, p. 524,

IEEE Computer Society, 2003.

178. Kimball, A., Michels-Slettvet, S. and Bisciglia, C. Cluster Computing for Web-Scale Data

Processing. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science

Education, pp. 116-120, ACM Press, New York, NY, USA, 2008.

179. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid, M.,

Krishnan, V., Morris, H., Schettino, J., Serra, B. and Spasojevic, M. People, Places, Things:

Web Presence for the Real World. Mobile Networks and Applications, 7 (5), 365-376, 2002.

180. Kindberg, T. and Fox, A. System Software for Ubiquitous Computing. IEEE Pervasive

Computing, 1 (1), 70 - 81, 2002.

181. King, J. and Rothenberg, M. Place Lab: User Gathered Data and Open Source Data

Repositories. Retrieved from http://people.ischool.berkeley.edu/~jenking/placelab.pdf

182. Kistler, J.J. and Satyanarayanan, M. Disconnected Operation in the Coda File System. ACM

Transactions on Computer Systems, TOCS, 10 (1), 3-25, 1992.

183. Kleinberg, R. Geographic Routing Using Hyperbolic Space. In 26th IEEE International

Conference on Computer Communications, INFOCOM 2007, pp. 1902-1909, IEEE Computer

Society, 2007.

184. Korpipää, P. and Mäntyjärvi, J. Ontology for Mobile Device Sensor-Based Context

Awareness. 4th International and Interdisciplinary Conference, CONTEXT 2003, Stanford,

CA, USA, 2003.

185. Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H. and Malm, E.-J. Managing Context

Information in Mobile Devices. IEEE Pervasive Computing, 2 (3), 42-51, 2003.

186. Krafzig, D., Banke, K. and Slama, D. Enterprise Soa : Service-Oriented Architecture Best

Practices. Prentice Hall, 2004.

187. Krumhansl, C.L. Concerning the Applicability of Geometric Models to Similarity Data: The

Interrelationship between Similarity and Spatial Density. Psychological Review, 85, 450-463,

1978.

188. Krumm, J. and Hinckley, K. The Nearme Wireless Proximity Server. In The Sixth

International Conference on Ubiquitous Computing, UbiComp 2004, pp. 283-300, Springer

Berlin/Heidelberg, 2004.

189. Kunder, M.d. Geschatte Grootte Van Het Geïndexeerde World Wide Web. Master's Thesis,

Tilburg University, 2007.

190. Kushilevitz, E., Ostrovsky, R. and Rabani, Y. Efficient Search for Approximate Nearest

Neighbor in High Dimensional Spaces. SIAM Journal on Computing, 30 (2), 457-474, 2000.

213

191. Lassabe, F., Canalda, P., Chatonnay, P. and Charlet, D. Refining Wifi Indoor Positioning

Renders Pertinent Deploying Location-Based Multimedia Guide. In Proceedings of the 20th

International Conference on Advanced Information Networking and Applications - Volume 2,

AINA'06, pp. 126-132, IEEE Computer Society, 2006.

192. Lathem, J., Gomadam, K. and Sheth, A.P. Sa-REST and (S)Mashups: Adding Semantics to

RESTful Services. In Proceedings of the International Conference on Semantic Computing,

pp. 469-476, IEEE Computer Society, 2007.

193. Lebeck, A.R., Fan, X., Zeng, H. and Ellis, C. Power Aware Page Allocation. ACM SIGOPS

Operating Systems Review, 34 (5), 105-116, 2000.

194. Lee, C. and Helal, S. A Multi-Tier Ubiquitous Service Discovery Protocol for Mobile Clients.

2003 International Symposium on Performance Evaluation of Computer and

Telecommunication Systems, SPECTS 2003, Montréal, Canada, 2003.

195. Lee, D.L. and Chen, Q. A Model-Based Wifi Localization Method. In Proceedings of the 2nd

International Conference on Scalable Information Systems, pp. 1-7, Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering, 2007.

196. Lei, H., Sow, D.M., J. S. Davis II, Banavar, G. and Ebling, M.R. The Design and

Applications of a Context Service. ACM SIGMOBILE Mobile Computing and

Communications Review, 6 (4), 45-55, 2002.

197. Lemire, D. and Maclachlan, A. Slope One Predictors for Online Rating-Based Collaborative

Filtering. SIAM Data Mining, SDM'05, Newport Beach, California, 2005.

198. Lemire, D. and Mcgrath, S. Implementing a Rating-Based Item-to-Item. Recommender

System in Php/Sql, Technical Report D-01. Université Du Québec, 2005.

199. Li, J. and Wang, J.Z. Real-Time Computerized Annotation of Pictures. In Proceedings of the

14th Annual ACM International Conference on Multimedia, pp. 911-920, ACM Press, New

York, NY, USA, 2006.

200. Linden, G., Smith, B. and York, J. Amazon.Com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing, 7 (1), 76-80, 2003.

201. Ling, W.K., Erber-urch, K., Balke, W.-T., Birke, T. and Wagner, M. The Heron Project:

Multimedia Database Support for History and Human Sciences. In Proceedings of the GI

Annual Conference, INFORMATIK'98, pp. 309–318, Springer-Verlag, 1998.

202. Lymberopoulos, D., Lindsey, Q. and Savvides, A. An Empirical Characterization of Radio

Signal Strength Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas. In

Proceedings of the European Workshop on Wireless Sensor Networks, EWSN 2006, pp. 326-

341, Springer-Verlag Berlin/Heidelberg, 2006.

203. Mackert, L.F. and Lohman, G.M. Index Scans Using a Finite Lru Buffer: A Validated I/O

Model. ACM Transactions on Database Systems, TODS, 14 (3), 401-424, 1989.

204. Maes, P. Concepts and Experiments in Computational Reflection. ACM SIGPLAN Notices, 22

(12), 147-155, 1987.

205. Manning, C.D., Raghavan, P. and Schütze, H. Introduction to Information Retrieval.

Cambridge University Press, 2008.

206. Maximilien, E.M., Ranabahu, A. and Gomadam, K. An Online Platform for Web Apis and

Service Mashups. IEEE Internet Computing, 12 (5), 32-43, 2008.

207. McDonald, D.W. Ubiquitous Recommendation Systems. Computer, 36 (10), 111, 2003.

208. McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.C. Composing Adaptive

Software. Computer, 37 (7), 56-64, 2004.

209. McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.C. A Taxonomy of

Compositional Adaptation (Tech. Report Msu-Cse-04-17). Department of Computer Science

and Engineering, Michigan State University, 2004.

210. Meiser, S. Point Location in Arrangements of Hyperplanes. Information and Computation,

106 (2), 286-303, 1993.

211. Middleton, S.E., Shadbolt, N.R. and Roure, D.C.D. Ontological User Profiling in

Recommender Systems. ACM Transactions on Information Systems, TOIS, 22 (1), 54-88,

2004.

214

212. Milner, M. The Netstumbler File Format Specification. Retrieved from

http://www.stumbler.net/ns1files.html

213. Mitra, M., Singhal, A. and Buckley, C. Improving Automatic Query Expansion. In

Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 206-214, ACM Press, New York, NY, USA, 1998.

214. Mrissa, M., Ghedira, C., Benslimane, D. and Maamar, Z. Context and Semantic Composition

of Web Services 17th International Conference, DEXA 2006, Krakow, Poland, 2006.

215. Mummert, L.B., Ebling, M.R. and Satyanarayanan, M. Exploiting Weak Connectivity for

Mobile File Access. ACM SIGOPS Operating Systems Review, 29 (5), 143-155, 1995.

216. Nakamura, E.F., Loureiro, A.A.F. and Frery, A.C. Information Fusion for Wireless Sensor

Networks: Methods, Models, and Classifications. ACM Computing Surveys, CSUR, 39 (3), 9,

2007.

217. Nam, B. and Sussman, A. A Comparative Study of Spatial Indexing Techniques for

Multidimensional Scientific Datasets. In Proceedings of the 16th International Conference on

Scientific and Statistical Database Management, p. 171, IEEE Computer Society, 2004.

218. Nam, B. and Sussman, A. Improving Access to Multi-Dimensional Self-Describing Scientific

Datasets. In Proceedings of the 3st International Symposium on Cluster Computing and the

Grid, p. 172, IEEE Computer Society, 2003.

219. National Institute of Standards and Technology (NIST). Secure Hash Standard, Publication

180-2. 2002.

220. National Marine Electronics Association. The Nmea 0183 Standard. Retrieved from

http://www.nmea.org/pub/0183/

221. Nepal, S. and Ramakrishna, M.V. Query Processing Issues in Image (Multimedia) Databases.

In Proceedings of the 15th International Conference on Data Engineering, p. 22, IEEE

Computer Society, 1999.

222. Netcraft Ltd. November 2008 Web Server Survey. Retrieved from

http://news.netcraft.com/archives/2008/11/19/november_2008_web_server_survey.html

223. Network Working Group. RFC: 1958 - Architectural Principles of the Internet. Retrieved

from ftp://ftp.isi.edu/in-notes/rfc1958.txt

224. Network Working Group. RFC: 5023 - the Atom Publishing Protocol. Retrieved from

http://tools.ietf.org/html/rfc5023

225. Newman, M.W., Sedivy, J.Z., Neuwirth, C.M., Edwards, W.K., Hong, J.I., Izadi, S., Marcelo,

K. and Smith, T.F. Designing for Serendipity: Supporting End-User Configuration of

Ubiquitous Computing Environments. In Proceedings of the 4th Conference on Designing

Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 147-156, ACM

Press, New York, NY, USA, 2002.

226. Nichols, D.M. Implicit Rating and Filtering. In Proceedings of the Fifth DELOS Workshop on

Filtering and Collaborative Filtering, pp. 31-36, The European Research Consortium for

Informatics and Mathematics, 1997.

227. Nielsen, J. One Billion Internet Users. Retrieved from

http://www.useit.com/alertbox/internet_growth.html

228. Niemelä, E. and Latvakoski, J. Survey of Requirements and Solutions for Ubiquitous

Software. In Proceedings of the 3rd International Conference on Mobile and Ubiquitous

Multimedia pp. 71-78, ACM Press, New York, NY, USA, 2004.

229. Nievergelt, J., Hinterberger, H. and Sevcik, K.C. The Grid File: An Adaptable, Symmetric

Multikey File Structure. ACM Transactions on Database Systems, TODS, 9 (1), 38-71, 1984.

230. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W. and Musen, M.A. Creating

Semantic Web Contents with Protégé. IEEE Intelligent Systems, 16 (2), 60-71, 2001.

231. OASIS. UDDI Version 3.0.2. Retrieved from http://www.uddi.org/pubs/uddi_v3.htm

232. OASIS/ebXML Registry Technical Committee. Oasis EBXML Registry Specification V3.01.

Retrieved from http://docs.oasis-open.org/regrep/v3.0/regrep-3.0-os.zip

233. Object Management Group. Corba Component Model, V4.0. OMG Document Formal/2006-

04-01, 2006.

215

234. Object Management Group. Specification for Deployment and Configuration of Component-

Based Distributed Applications. OMG Document ptc/03-07-08, 2003.

235. Object Management Group Inc. Common Object Request Broker Architecture: Core

Specification Version 3.0.3. 2004.

236. Open Geospatial Consortium. OpenGIS Abstract Specifications. Retrieved from

http://www.opengeospatial.org/standards/as

237. Open Geospatial Consortium. OpenGIS Geography Markup Language (GML) Encoding

Standard. Retrieved from http://www.opengeospatial.org/standards/gml

238. OpenUDDI. The OpenUDDI UDDI V3 Compliant Server and Client Library. Retrieved from

http://openuddi.sourceforge.net/

239. Oracle Corporation. Bea Messageq Product Overview. Retrieved from

http://kr.bea.com/products/more/messageq/overview.shtml

240. Organization for the Advancement of Structured Information Standards. Oasis Web Services

Security (Wss) Tc. Retrieved from http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wss

241. Organization for the Advancement of Structured Information Standards. Oasis Web Services

Transaction (Ws-Tx) Tc. Retrieved from http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-tx

242. Orr, R.J. and Abowd, G.D. The Smart Floor: A Mechanism for Natural User Identification

and Tracking. In Proceesings of CHI '00 Extended Abstracts on Human Factors in

Computing Systems, pp. 275-276, ACM Press, New York, NY, USA, 2000.

243. Ort, E., Brydon, S. and Basler, M. Mashup Styles, Part 2: Client-Side Mashups. Retrieved

from http://java.sun.com/developer/technicalArticles/J2EE/mashup_2/

244. OWL-S Coalition. Owl-S 1.1 Release. Retrieved from http://www.daml.org/services/owl-

s/1.1/

245. Öztürk, P. and Aamodt, A. A Context Model for Knowledge-Intensive Case-Based

Reasoning. International Journal of Human-Computer Studies, 48 (3), 331-355, 1998.

246. Page, L., Brin, S., Motwani, R. and Winograd, T. The Pagerank Citation Ranking: Bringing

Order to the Web. Retrieved from http://dbpubs.stanford.edu:8090/pub/1999-66

247. Palo Alto Research Center. Obje Interoperability Framework (Whitepaper). 2003.

248. Panwar, S.S., Mao, S., Ryoo, J.-d. and Li, Y. Tcp/Ip Essentials: A Lab-Based Approach.

Cambridge University Press, 2004.

249. Parnas, D.L. On the Criteria to Be Used in Decomposing Systems into Modules.

Communications of the ACM, 15 (12), 1053-1058, 1972.

250. Pascoe, J. Adding Generic Contextual Capabilities to Wearable Computers. In Proceedings of

the 2nd IEEE International Symposium on Wearable Computers, p. 92, IEEE Computer

Society, 1998.

251. Pazzani, M.J. A Framework for Collaborative, Content-Based and Demographic Filtering.

Artificial Intelligence Review, 13 (5-6), 393-408, 1999.

252. Perkins, C.E., Alpert, S.R. and Woolf, B. Mobile Ip; Design Principles and Practices.

Addison-Wesley Longman Publishing Company Inc., 1997.

253. Pinkerton, B. Webcrawler: Finding What People Want. PhD Thesis, University of

Washington, 2000.

254. Pokraev, S., Koolwaaij, J. and Wibbels, M. Extending UDDI with Context-Aware Features

Based on Semantic Service Descriptions. International Conference on Web Services,

ICWS'03, Las Vegas, USA, 2003.

255. Ponnekanti, S.R., Johanson, B., Kiciman, E. and Fox, A. Portability, Extensibility and

Robustness in Iros. In Proceedings of the 1st IEEE International Conference on Pervasive

Computing and Communications, p. 11, IEEE Computer Society, 2003.

256. Porter, M.F. An Algorithm for Suffix Stripping. Readings in Information Retrieval, pp. 313-

316, Morgan Kaufmann Publishers Inc., 1997.

257. Prescod, P. Roots of the REST/SOAP Debate. Extreme Markup Languages 2002, Montréal,

Québec, 2002.

216

258. Priyantha, N.B., Chakraborty, A. and Balakrishnan, H. The Cricket Location-Support System.

In Proceedings of the Sixth Annual International Conference on Mobile Computing and

Networking, Mobicon2000, pp. 32-43, ACM Press, New York, NY, USA, 2000.

259. Raento, M., Oulasvirta, A., Petit, R. and Toivonen, H. Contextphone: A Prototyping Platform

for Context-Aware Mobile Applications. IEEE Pervasive Computing, 4 (2), 51-59, 2005.

260. Ranganathan, A., Al-Muhtadi, J. and Campbell, R.H. Reasoning About Uncertain Contexts in

Pervasive Computing Environments. IEEE Pervasive Computing, 3 (2), 62-70, 2004.

261. Raverdy, P.-G., Chibout, R., Chapelle, A.d.L. and Issarny, V. A Multi-Protocol Approach to

Service Discovery and Access in Pervasive Environments. The 3rd Annual International

Conference on Mobile and Ubiquitous Systems: Networks and Services, San Jose, CA, USA,

2006.

262. Ray, R., Kulchenko, P. and Guelich, S. Programming Web Services with Perl. O'Reilly &

Associates Inc., 2002.

263. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. Grouplens: An Open

Architecture for Collaborative Filtering of Netnews. In Proceedings of the 1994 ACM

Conference on Computer Supported Cooperative Work, pp. 175-186, ACM Press, New York,

NY, USA, 1994.

264. Resnick, P. and Varian, H.R. Recommender Systems. Communications of the ACM, 40 (3),

56-58, 1997.

265. Riaz, M., Kiani, S.L., Lee, S., Han, S.-M. and Lee, Y.-K. Service Delivery in Context Aware

Environments: Lookup and Access Control Issues. In Proceedings of the 11th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applications,

pp. 455-458, IEEE Computer Society, 2005.

266. Richardson, L. and Ruby, S. RESTful Web Services. O'Reilly Media Inc., 2007.

267. Richardson, T., Bennett, F., Mapp, G. and Hopper, A. Teleporting in an X Window System

Environment. IEEE Personal Communications, 1 (3), 6-15, 1994.

268. Riva, O. Contory: A Middleware for the Provisioning of Context Information on Smart

Phones. In Proceedings of the 3rd IEEE International Conference on Pervasive Services,

ICPS'06, pp. 47-56, IEEE Computer Society, 2006.

269. Riva, O. and Toivonen, S. A Hybrid Model of Context-Aware Service Provisioning

Implemented on Smart Phones. In Proceedings of the ACS/IEEE International Conference on

Pervasive Services, pp. 47-56, 2006.

270. Robinson, R., Henricksen, K. and Indulska, J. Xcml: A Runtime Representation for the

Context Modelling Language. In Proceedings of the Fifth IEEE International Conference on

Pervasive Computing and Communications Workshops, pp. 20-26, IEEE Computer Society,

2007.

271. Rocchio, J. Relevance Feedback in Information Retrieval. The Smart Retrieval System,

Salton, G. (Ed.), pp. 313-323, Prentice-Hall, Englewood Cliffs, NJ, USA, 1971.

272. Rom, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H. and Nahrstedt, K. Gaia:

A Middleware Platform for Active Spaces. Mobile Computing and Communications Review,

SIGMOBILE, 6 (4), 65-67, 2002.

273. Rosenberry, W., Kenney, D. and Fisher, G. Understanding Dce. O'Reilly & Associates Inc.,

1992.

274. Roth, M.T., Arya, M., Haas, L., Carey, M., Cody, W., Fagin, R., Schwarz, P., Thomas, J. and

Wimmers, E. The Garlic Project. ACM SIGMOD Record, 25 (2), 557, 1996.

275. Salber, D. and Abowd, G.D. The Design and Use of a Generic Context Server. In

Proceedings of the Perceptual User Interfaces Workshop, PUI '98, pp. 63-66, ACM Press,

New York, NY, USA, 1998.

276. Salber, D., Dey, A.K. and Abowd, G.D. The Context Toolkit: Aiding the Development of

Context-Enabled Applications. In Proceedings of the SIGCHI conference on Human factors

in computing systems: the CHI is the limit, pp. 434-441, ACM Press, New York, NY, USA,

1999.

277. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of

Information by Computer. Addison-Wesley Longman Publishing Company Inc., 1989.

217

278. Salton, G. and Buckley, C. Improving Retrieval Performance by Relevance Feedback.

Readings in Information Retrieval, pp. 355-364, Morgan Kaufmann Publishers Inc., 1997.

279. Saltzer, J.H., Reed, D.P. and Clark, D.D. End-to-End Arguments in System Design.

Transactions on Computer Systems, 2 (3), 277 - 288, 1984.

280. Samulowitz, M., Michahelles, F. and Linnhoff-Popien, C. Capeus: An Architecture for

Context-Aware Selection and Execution of Services. In Proceedings of the IFIP TC6 / WG6.1

Third International Working Conference on New Developments in Distributed Applications

and Interoperable Systems, pp. 23-40, Kluwer, B.V., Deventer, The Netherlands, 2001.

281. Santini, S. and Jain, R. Similarity Measures. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21 (9), 871-883, 1999.

282. Santoro, N. Design and Analysis of Distributed Algorithms. Wiley-Interscience, 2006.

283. SAP News Desk. Microsoft, Ibm, Sap to Discontinue UDDI Web Services Registry Effort.

Retrieved from http://soa.sys-con.com/node/164624

284. Sarmenta, L.F.G. Volunteer Computing. PhD Thesis, Massachusetts Institute of Technology

(MIT), 2001.

285. Sarwar, B.M. Sparsity, Scalability, and Distribution in Recommender Systems. PhD Thesis,

University of Minnesota, 2001.

286. Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B. and Riedl, J. Using

Filtering Agents to Improve Prediction Quality in the Grouplens Research Collaborative

Filtering System. In Proceedings of the 1998 ACM Conference on Computer Supported

Cooperative Work, pp. 345-354, ACM Press, New York, NY, USA, 1998.

287. Satyanarayanan, M. Fundamental Challenges in Mobile Computing. In Proceedings of the

Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1-7, ACM

Press, New York, NY, USA, 1996.

288. Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE Personal

Communications, 8 (4), 10-17, 2001.

289. SAWSDL Working Group. Semantic Annotations for WSDL (SAWSDL). Retrieved from

http://www.w3.org/2002/ws/sawsdl/

290. Schilit, B.N., Adams, N. and Want, R. Context-Aware Computing Applications. In

Proceedings of the Workshop on Mobile Computing Systems and Applications, pp. 85-90,

IEEE Computer Society, 1994.

291. Schilit, B.N., LaMarca, A., Borriello, G., Griswold, W.G., McDonald, D., Lazowska, E.,

Balachandran, A., Hong, J. and Iverson, V. Challenge: Ubiquitous Location-Aware

Computing and The "Place Lab" Initiative. In Proceedings of the 1st ACM International

Workshop on Wireless Mobile Applications and Services on WLAN Hotspots, pp. 29-35,

ACM Press, New York, NY, USA, 2003.

292. Schilit, B.N. and Theimer, M.M. Disseminating Active Map Information to Mobile Hosts.

IEEE Network, 8 (5), 22-32, 1994.

293. Schilit, W.N. A System Architecture for Context-Aware Mobile Computing. PhD Thesis,

Columbia University, 1995.

294. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van-Laerhoven, K. and Van-de-

Velde, W. Advanced Interaction in Context. In Proceedings of the 1st International

Symposium on Handheld and Ubiquitous Computing, pp. 89-101, Springer-Verlag, 1999.

295. Sellis, T.K., Roussopoulos, N. and Faloutsos, C. The R+-Tree: A Dynamic Index for Multi-

Dimensional Objects. In Proceedings of the 13th International Conference on Very Large

Data Bases, pp. 507-518, Morgan Kaufmann Publishers Inc., 1987.

296. Shakhnarovich, G., Darrell, T. and Indyk, P. Nearest-Neighbors Methods in Learning and

Vision. Theory and Practice. Pattern Analysis & Applications, 11 (2), 221-222, 2008.

297. Shamos, M.I. and Hoey, D. Closest-Point Problems. In Proceedings of the 16th IEEE

Symposium on the Foundations of Computer Science, pp. 151-162, IEEE Computer Society,

1975.

298. Shardanand, U. and Maes, P. Social Information Filtering: Algorithms for Automating "Word

of Mouth". In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pp. 210-217, ACM Press/Addison-Wesley Publishing Co., 1995.

218

299. Shepard, R.N. The Analysis of Proximities: Multidimensional Scaling with Unknown

Distance Function Part I. Psychometrika, 27, 125-140, 1962.

300. Shepard, R.N. The Analysis of Proximities: Multidimensional Scaling with Unknown

Distance Function Part Ii. Psychometrika, 27, 219–246, 1962.

301. Shepard, S. RFID: Radio Frequency Identification. McGraw-Hill Professional, 2005.

302. Sigurbjörnsson, B. and Van-Zwol, R. Flickr Tag Recommendation Based on Collective

Knowledge. In Proceeding of the 17th International Conference on World Wide Web, pp.

327-336, ACM Press, New York, NY, USA, 2008.

303. Simcock, T., Hillenbrand, S.P. and Thomas, B.H. Developing a Location Based Tourist Guide

Application. In Proceedings of the Australasian Information Security Workshop Conference

on ACSW Frontiers 2003 - Volume 21, pp. 177-183, Australian Computer Society Inc., 2003.

304. Sinclair, J. and Cardew-Hall, M. The Folksonomy Tag Cloud: When Is It Useful? Journal of

Information Science, 34 (1), 15-29, 2008.

305. Skopal, T., Hoksza, D. and Pokorný, J. Construction of Tree-Based Indexes for Level-

Contiguous Buffering Support. In Proceedings of the 12th International Conference on

Database Systems for Advanced Applications, DASFAA 2007, pp. 361-373, Springer

Berlin/Heidelberg, 2007.

306. Smallberg, D. RFC: 832 - Who Talks Tcp? Retrieved from http://www.isi.edu/in-

notes/rfc832.txt

307. Sollenborn, M. and Funk, P. Category-Based Filtering and User Stereotype Cases to Reduce

the Latency Problem in Recommender Systems. In Proceedings of the 6th European

Conference on Advances in Case-Based Reasoning, pp. 285-290, Springer-Verlag, 2002.

308. Song, D., Liu, W., He, Y. and He, K. Ontology Application in Software Component Registry

to Achieve Semantic Interoperability. In Proceedings of the International Conference on

Information Technology: Coding and Computing, ITCC'05 - Volume 02, pp. 181-186, IEEE

Computer Society, 2005.

309. Soo, V.-W., Lee, C.-Y., Li, C.-C., Chen, S.L. and Chen, C.-c. Automated Semantic

Annotation and Retrieval Based on Sharable Ontology and Case-Based Learning Techniques.

In Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 61-72,

IEEE Computer Society, 2003.

310. Sørensen, C.-F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A. and Duran-Limon,

H. A Context-Aware Middleware for Applications in Mobile Ad Hoc Environments. In

Proceedings of the 2nd Workshop on Middleware for Pervasive and Ad-hoc Computing, pp.

107-110, ACM Press, New York, NY, USA, 2004.

311. Spertus, E., Sahami, M. and Buyukkokten, O. Evaluating Similarity Measures: A Large-Scale

Study in the Orkut Social Network. In Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery in Data Mining, pp. 678-684, ACM Press,

New York, NY, USA, 2005.

312. Sputnik Inc. Rf Propagation Basics (White Paper). Retrieved Sputnik Inc, from:

http://www.sputnik.com/docs/rf_propagation_basics.pdf

313. Stavrakas, Y. and Gergatsoulis, M. Multidimensional Semistructured Data: Representing

Context-Dependent Information on the Web. In Proceedings of the 14th International

Conference on Advanced Information Systems Engineering, pp. 183-199, Springer-Verlag,

2002.

314. Steinberg, D. and Cheshire, S. Zero Configuration Networking: The Definitive Guide.

O'Reilly Media Inc., 2005.

315. Strang, T., Linnho-Popien, C. and Frank, K. Cool: A Context Ontology Language to Enable

Contextual Interoperability. 4th International Conference on Distributed Applications and

Interoperable Systems, DAIS2003, Paris, France, 2003.

316. Strang, T. and Linnhoff-Popien, C. A Context Modeling Survey. Workshop on Advanced

Context Modelling, Reasoning and Management at the 6th International Conference on

Ubiquitous Computing, Nottingham, England, 2004.

219

317. Stuntebeck, E.P., Patel, S.N., Robertson, T., Reynolds, M.S. and Abowd, G.D. Wideband

Powerline Positioning for Indoor Localization. In Proceedings of the 10th International

Conference on Ubiquitous Computing, pp. 94-103, ACM Press, New York, NY, USA, 2008.

318. Su, J., Scott, J., Hui, P., Crowcroft, J., Lara, E.D., Diot, C., Goel, A., Lim, M.H. and Upton,

E. Haggle: Seamless Networking for Mobile Applications. The 9th International Conference

on Ubiquitous Computing, UbiComp 2007, Innsbruck, Austria, 2007.

319. Sun Microsystems. Remote Method Invocation Home. Retrieved from

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

320. Sun Microsystems Inc. RFC: 1057 - Remote Procedure Call Protocol Specification, Version

2. Retrieved from http://tools.ietf.org/html/rfc1057

321. Sun Microsystems Inc. J2me RMI Optional Package (RMI Op - JSR 66). Retrieved from

http://java.sun.com/products/rmiop/

322. Swan, R. and Allan, J. Timemine: Visualizing Automatically Constructed Timelines. In

Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, p. 393, ACM Press, New York, NY, USA, 2000.

323. Tanenbaum, A. Computer Networks. Prentice Hall Professional Technical Reference, 2002.

324. Technical Committee ISO/TC 154. ISO 8601 - Data Elements and Interchange Formats —

Information Interchange — Representation of Dates and Times (ISO 8601:2004(E)).

International Organization for Standardization (ISO), 2004.

325. Tel, G. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

326. Terry, D.B., Theimer, M.M., Karin, P., Demers, A.J., Spreitzer, M.J. and Hauser, C.H.

Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In

Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pp. 172-182,

ACM Press, New York, NY, USA, 1995.

327. The Internet Corporation for Assigned Names and Numbers (IANA). Mime Media Type

Specifications (RFC 2045, RFC 2046, RFC 4288, RFC 4289, RFC 4855). Retrieved from

http://www.iana.org/assignments/media-types/

328. The Internet Engineering Task Force (IETF). The Atom Syndication Format (Rfc: 4287).

Retrieved from http://tools.ietf.org/html/rfc4287

329. Thomson, G., Nixon, P. and Terzis, S. Towards Adhoc Situation Determination. The 1st

International Workshop on Advanced Context Modelling, Reasoning and Management at

UbiComp2004, Nottingham, England, 2004.

330. Tilkov, S. A Brief Introduction to REST. Retrieved from http://www.infoq.com/articles/rest-

introduction

331. Tversky, A. Features of Similarity. Psychological Review, 84, 327-352, 1977.

332. ur-Rehman, W., de-Lara, E. and Saroiu, S. Cilos: A Cdma Indoor Localization System. In

Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 104-113,

ACM Press, New York, NY, USA, 2008.

333. Van-Laerhoven, K. and Cakmakci, O. What Shall We Teach Our Pants? In Proceedings of

the 4th IEEE International Symposium on Wearable Computers, p. 77, IEEE Computer

Society, 2000.

334. Vinoski, S. Demystifying RESTful Data Coupling. IEEE Internet Computing, 12 (2), 87-90,

2008.

335. Vinoski, S. REST Eye for the Soa Guy. IEEE Internet Computing, 11 (1), 82-84, 2007.

336. Vinoski, S. Serendipitous Reuse. IEEE Internet Computing, 12 (1), 84-87, 2008.

337. Vojnović, M. Tagbooster: A System for Ranking and Suggesting Tags. Retrieved from

http://research.microsoft.com/~milanv/tagbooster.htm

338. Voorhees, E.M. Query Expansion Using Lexical-Semantic Relations. In Proceedings of the

17th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 61-69, Springer-Verlag, 1994.

339. Vozalis, E. and Margaritis, K.G. Analysis of Recommender Systems' Algorithms. In The 6th

Hellenic-European Conference on Computer Mathematics and its Applications, 2003.

220

340. Vucetic, S. and Obradovic, Z. A Regression-Based Approach for Scaling-up Personalized

Recommender Systems in E-Commerce. In ACM WEBKDD ’00, ACM Press, New York, NY,

USA, 2000.

341. W3C Technical Architecture Group. Architecture of the World Wide Web, Volume One.

Retrieved from http://www.w3.org/TR/webarch/

342. Waldo, J. The JINI Architecture for Network-Centric Computing. Communications of the

ACM, 42 (7), 76-82, 1999.

343. Walker, R. Style Decoder. New York Times Magazine. The New York Times Company,

2008.

344. Wang, X.H., Zhang, D.Q., Gu, T. and Pung, H.K. Ontology Based Context Modeling and

Reasoning Using Owl. In Proceedings of the Second IEEE Annual Conference on Pervasive

Computing and Communications Workshops, p. 18, IEEE Computer Society, 2004.

345. Want, R., Hopper, A., Falc, V. and Gibbons, J. The Active Badge Location System. ACM

Transactions on Information Systems, TOIS, 10 (1), 91-102, 1992.

346. Want, R. and Pering, T. System Challenges for Ubiquitous & Pervasive Computing. In

Proceedings of the 27th International Conference on Software Engineering, pp. 9-14, ACM

Press, New York, NY, USA, 2005.

347. Want, R., Schilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis, J.R. and

Weiser, M. The Parctab Ubiquitous Computing Experiment. IEEE Personal Communications,

2 (6), 28-43, 1995.

348. Ward, A., Jones, A. and Hopper, A. A New Location Technique for the Active Office. IEEE

Personal Communications, 4 (5), 42-47, 1997.

349. Ward, A.M.R. Sensor-Driven Computing. University of Cambridge, 1998.

350. Waterman, M.S. Introduction to Computational Biology. Chapman and Hall, London, 1995.

351. Weber, R., Schek, H.-J. and Blott, S. A Quantitative Analysis and Performance Study for

Similarity-Search Methods in High-Dimensional Spaces. In Proceedings of the 24rd

International Conference on Very Large Data Bases, pp. 194-205, Morgan Kaufmann

Publishers Inc., 1998.

352. Wei, E.J.Y. and Chan, A.T.S. Towards Context-Awareness in Ubiquitous Computing. In

Embedded and Ubiquitous Computing, EUC 2007, pp. 706-717, Springer Berlin/Heidelberg,

2007.

353. Weiser, M. The Computer for the Twenty-First Century. Scientific American. Scientific

American Inc., 94 - 104, 1991.

354. Weiser, M. Some Computer Science Issues in Ubiquitous Computing. Communications of the

ACM, 36 (7), 75-84, 1993.

355. Weiser, M., Welch, B., Demers, A. and Shenker, S. Scheduling for Reduced Cpu Energy. In

Proceedings of the 1st USENIX conference on Operating Systems Design and

Implementation, p. 2, USENIX Association, 1994.

356. White, D. and Jain, R. Technical Report Vcl-96-101: Algorithms and Strategies for Similarity

Retrieval. Visual Computing Laboratory, University of California, La Jolla, California, USA,

1996.

357. Wikipedia. Slope One. Retrieved from http://en.wikipedia.org/wiki/Slope_One

358. Willinger, W. and Doyle, J. Robustness and the Internet: Design and Evolution. Robust

Design: A Repertoire of Biological, Ecological, and Engineering Case Studies, Jen, E. (Ed.),

p. 231, Oxford University Press, 2002.

359. Wishart, R., Henricksen, K. and Indulska, J. Context Obfuscation for Privacy Via Ontological

Descriptions. In Proceedings of the 1st International Workshop of Location and Context-

Awareness, LoCA 2005, pp. 276-288, Springer Berlin/Heidelberg, 2005.

360. Wold, E., Blum, T., Keislar, D. and Wheaton, J. Content-Based Classification, Search, and

Retrieval of Audio. IEEE MultiMedia, 3 (3), 27-36, 1996.

361. Wong, J. Marmite: Towards End-User Programming for the Web. In Proceedings of the IEEE

Symposium on Visual Languages and Human-Centric Computing, pp. 270-271, IEEE

Computer Society, 2007.

221

362. Wong, J. and Hong, J. What Do We "Mashup" When We Make Mashups? In Proceedings of

the 4th International Workshop on End-user Software Engineering, pp. 35-39, ACM Press,

New York, NY, USA, 2008.

363. Wong, S.K.M., Ziarko, W., Raghavan, V.V. and Wong, P.C.N. On Modeling of Information

Retrieval Concepts in Vector Spaces. ACM Transactions on Database Systems, TODS, 12 (2),

299-321, 1987.

364. World Wide Web Consortium (W3C). Composite Capabilities/Preference Profiles: Structure

and Vocabularies 2.0 (Cc/Pp 2.0). Retrieved from http://www.w3.org/Mobile/CCPP/

365. World Wide Web Consortium (W3C). Html 4.01 Specification. Retrieved from

http://www.w3.org/TR/1999/REC-html401-19991224/

366. World Wide Web Consortium (W3C). Platform for Internet Content Selection (Pics).

Retrieved from http://www.w3.org/PICS/

367. World Wide Web Consortium (W3C). Rdf/Xml Syntax Specification (Revised). Retrieved

from http://www.w3.org/TR/rdf-syntax-grammar/

368. World Wide Web Consortium (W3C). Semantic Web Initiative. Retrieved from

http://www.w3.org/2001/sw/

369. World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP) 1.1. Retrieved

from http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

370. World Wide Web Consortium (W3C). Web Services Addressing (Ws-Addressing). Retrieved

from http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

371. World Wide Web Consortium (W3C). Web Services Architecture, W3c Working Group Note

11. Retrieved from http://www.w3.org/TR/ws-arch/

372. WSMO Working Group. Web Service Modeling Ontology (Wsmo Final Draft 21 October

2006). Retrieved from http://www.wsmo.org/TR/d2/v1.3/

373. Wu, X., Zhang, L. and Yu, Y. Exploring Social Annotations for the Semantic Web. In

Proceedings of the 15th International Conference on World Wide Web, pp. 417-426, ACM

Press, New York, NY, USA, 2006.

374. Xu, J. and Croft, W.B. Improving the Effectiveness of Information Retrieval with Local

Context Analysis. ACM Transactions on Information Systems, TOIS, 18 (1), 79-112, 2000.

375. Yarin, P. and Ishii, H. Touchcounters: Designing Interactive Electronic Labels for Physical

Containers. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems: the CHI is the Limit, pp. 362-369, ACM Press, New York, NY, USA, 1999.

376. Zezula, P., Amato, G., Dohnal, V. and Batko, M. Similarity Search: The Metric Space

Approach (Advances in Database Systems). Springer, 2005.

377. Zhou, D., Bian, J., Zheng, S., Zha, H. and Giles, C.L. Exploring Social Annotations for

Information Retrieval. In Proceeding of the 17th International Conference on World Wide

Web, pp. 715-724, ACM Press, New York, NY, USA, 2008.

378. Zhu, F., Mutka, M. and Ni, L. Splendor: A Secure, Private, and Location-Aware Service

Discovery Protocol Supporting Mobile Services. In Proceedings of the First IEEE

International Conference on Pervasive Computing and Communications, p. 235, IEEE

Computer Society, 2003.

379. Ziegler, C.-N. Towards Decentralized Recommender Systems. PhD Thesis, Albert-Ludwigs-

Universität Freiburg, 2005.

380. Zobel, J. and Moffat, A. Inverted Files for Text Search Engines. ACM Computing Surveys,

CSUR, 38 (2), 6, 2006.

Short Curriculum Vitae of Darren Vaughn Carlson

Personal
Information

Grosser Bauhof 5 Phone: +49-(0)451-889-6614
23552 Luebeck E-mail: carlson@itm.uni-luebeck.de
Germany Born: 24/2/1972 in Coon Rapids, Minnesota, USA

Education Master of Science in Digital Media 6/2005
University of Luebeck, Germany (ISNM)

Bachelor of Science in Electronic Engineering Technology 6/1998
Minnesota State University, Mankato, Minnesota, USA

High School Degree 6/1990
Hutchinson High School, Hutchinson, Minnesota, USA

Professional
Experience

Founder and Lead Software Engineer 10/2003 - Present
StreamLabs LLC, Minnesota, USA.

Research and Teaching Assistant 10/2003 - 7/2008
International School of New Media gGmbH, Luebeck, Germany.

Research Staff Member 3/2000 - 9/2003
NEC Computer and Communications Research Laboratories, Heidelberg, Germany.

Embedded Systems Engineering Internship 3/1998 - 5/1999
Elektrobit OY, Oulu, Finland.

Publications Carlson, D. Adaptive Ubiquitous Computing Environments. In: Hasebrook, J., Muhr, G. and
Schrader, A. (eds.): Applying Digital Media to Culture, IOS Press, Amsterdam, 2008 (in press).

Carlson, D., Busch, D. and Schrader, A. Modular Framework Support for Context-Aware Mobile
Cinema. Personal and Ubiquitous Computing, 12 (4), 2008, 299-306.

Detken, K., Martinez, C., Carlson, D., Guljajeva, V., Oja, M.K. and Schrader, A. ECHOES -
A Crazy Multiplayer Pervasive Game. Workshop for Mobile Gaming (Mobile Gaming ’08) at
(GI) Informatik’2008, Munich, Germany, September 9, 2008.

Heumer, G., Carlson, D., Jung B. and Schrader, A. Paranoia Syndrome - A Pervasive Multi-
player Game. In: Carsten Magerkurth, Carsten Roecker (eds.): Pervasive Gaming Applications
- A Reader for Pervasive Gaming Research vol. 2, Shaker Verlag, 2007.

Carlson, D., Schrader, A. and Busch, D. Mobile Cinema - Context-aware Interactive Video.
Workshop on Investigating new user experience challenges in iTV: Mobility & Sociability at
the International Conference on Human Factors in Computer Systems (CHI’2006), Montreal,
Canada, April 22, 2006.

Heumer, G., Carlson, D., Kaligiri, S. H., Maheshwari, S., Hasan-Waqar-Ul, Jung, B. and
Schrader, A. Paranoia Syndrome - A Location Based Pervasive Multiplayer Game using PDAs,
RFID, and Tangible Objects. Third International Workshop on Pervasive Gaming Applications
- PerGames 2006.

Carlson, D. and Schrader, A. Ocean: Community-Based, Real-World Ubicomp. 8th Annual Con-
ference on Ubiquitous Computing (Ubicomp 2006), Workshop: System Support for Ubiquitous
Computing (UbiSys’2006), Orange County, California, USA, Sept. 17-21, 2006.

Schrader, A., Ahad, A., Carlson, D., Egan, B., Kaminski, J. and Moser, J. Das begreifbare
Museum - Ein interaktives Informationssystem (Demonstration). ACM Mensch & Computer
2005, Linz, Austria, September 4-7, 2005.

Jung, B., Schrader, A. and Carlson, D. Tangible Interfaces for Pervasive Gaming. 2nd Inter-
national Conference of the Digital Games Research Association, Vancouver, British Columbia,
Canada, June 16-20, 2005.

Carlson, D. Aladin: An Extensible Ubiquitous Computing Infrastructure. Master’s Thesis, Uni-
versity of Luebeck, Germany, 2005.

Carlson, D., Fan, C., Kassler, A., Niedermeier, C., Schrader, A. and Schorr, A. MASA: A
scalable QoS Architecture. 7th IASTED International Conference on Internet and Multimedia
Systems and Applications, Honolulu, Hawaii, USA, August 13-15, 2003.

Carlson, D. and Schrader, A. Seamless Media Adaptation with Simultaneous Media Processing
Chains. Poster session at the the 10th ACM International Conference on Multimedia, Juan-les-
Pins, France, December 1-6, 2002.

Carlson, D., Hartenstein, H. and Schrader, A. QoS Orchestration for Mobile Multimedia. The 1st
Workshop on Applications and Services in the Wireless Networks (ASWN’2001), Evry, France,
July 25-27, 2001.

Patents Carlson, D. and Schrader, A. Verfahren zur Uebertragung von zeitsynchronen Daten. German
Patent DE 102 28 861 B4 (04.05.2005). Patent holder: NEC Europe Ltd., 69115 Heidelberg.

Carlson, D. and Schrader, A. Mechanism for transmission of time-synchronous data. US Patent
(pending): US 2004/0008626 A1 (15.01.2004). Patent holder: NEC Europe Ltd., 69115 Heidel-
berg.

Carlson, D. and Schrader, A. Time Synchronous Data Transmitting Method, Data Processing
Apparatus and Network. Japanese Patent: JP 2004/072737 A (04.03.2004). Patent holder: NEC
Europe Ltd., 69115 Heidelberg.

	2010.02.09a-OceanDissertationPress
	dc-dissertation-cv2

